
Dependency
 Injection

DESIGN PATTERNS USING SPRING AND GUICE

DHANJI R. PRASANNA

M A N N I N G
Greenwich

(74° w. long.)
 www.allitebooks.com

http://www.allitebooks.org

For online information and ordering of this and other Manning books, please visit
www.manning.com. The publisher offers discounts on this book when ordered in quantity.
For more information, please contact

Special Sales Department
Manning Publications Co.
Sound View Court 3B fax: (609) 877-8256
Greenwich, CT 06830 email: orders@manning.com

©2009 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by means electronic, mechanical, photocopying, or otherwise, without prior written
permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial caps
or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books we publish printed on acid-free paper, and we exert our best efforts to that end.
Recognizing also our responsibility to conserve the resources of our planet, Manning books are
printed on paper that is at least 15% recycled and processed without the use of elemental chlorine.

Development Editor: Tom Cirtin
Manning Publications Co. Copyeditor: Linda Recktenwald
Sound View Court 3B Typesetter: Gordan Salinovic
Greenwich, CT 06830 Cover designer: Leslie Haimes

ISBN 978-1-933988-55-9
Printed in the United States of America
1 2 3 4 5 6 7 8 9 10 – MAL – 14 13 12 11 10 09
 www.allitebooks.com

http://www.allitebooks.org

1 Dependency injection: what’s all the hype? 1
1.1 Every solution needs a problem 2

Seeing objects as services 2

1.2 Pre-DI solutions 4
Construction by hand 5 ■ The Factory pattern 7 ■ The Service
Locator pattern 12

1.3 Embracing dependency injection 13
The Hollywood Principle 13 ■ Inversion of Control vs. dependency
injection 15

1.4 Dependency injection in the real world 17
Java 17 ■ DI in other languages and libraries 19

1.5 Summary 19

2 Time for injection 21
2.1 Bootstrapping the injector 22
2.2 Constructing objects with dependency injection 23
 www.allitebooks.com

http://www.allitebooks.org

2.3 Metadata and injector configuration 26
XML injection in Spring 27 ■ From XML to in-code configuration 30
Injection in PicoContainer 31 ■ Revisiting Spring and autowiring 34

2.4 Identifying dependencies for injection 36
Identifying by string keys 37 ■ Limitations of string keys 42
Identifying by type 44 ■ Limitations of identifying by type 46
Combinatorial keys: a comprehensive solution 47

2.5 Separating infrastructure and application logic 51
2.6 Summary 52

3 Investigating DI 54
3.1 Injection idioms 55

Constructor injection 55 ■ Setter injection 56 ■ Interface injection 60
Method decoration (or AOP injection) 62

3.2 Choosing an injection idiom 65
Constructor vs. setter injection 66 ■ The constructor pyramid problem 69
The circular reference problem 71 ■ The in-construction problem 75
Constructor injection and object validity 78

3.3 Not all at once: partial injection 81
The reinjection problem 81 ■ Reinjection with the Provider pattern 82
The contextual injection problem 84 ■ Contextual injection with the
Assisted Injection pattern 86 ■ Flexible partial injection with the Builder
pattern 88

3.4 Injecting objects in sealed code 92
Injecting with externalized metadata 93 ■ Using the Adapter pattern 95

3.5 Summary 96

4 Building modular applications 99
4.1 Understanding the role of an object 100
4.2 Separation of concerns (my pants are too tight!) 101

Perils of tight coupling 102 ■ Refactoring impacts of tight coupling
105 ■ Programming to contract 108 ■ Loose coupling with
dependency injection 111

4.3 Testing components 112
Out-of-container (unit) testing 113 ■ I really need my dependencies! 114
More on mocking dependencies 115 ■ Integration testing 116

4.4 Different deployment profiles 118
Rebinding dependencies 118 ■ Mutability with the Adapter pattern 119

4.5 Summary 121
 www.allitebooks.com

http://www.allitebooks.org

5 Scope: a fresh breath of state 123
5.1 What is scope? 124
5.2 The no scope (or default scope) 125
5.3 The singleton scope 128

Singletons in practice 131 ■ The singleton anti-pattern 135

5.4 Domain-specific scopes: the web 139
HTTP request scope 141 ■ HTTP session scope 149

5.5 Summary 154

6 More use cases in scoping 156
6.1 Defining a custom scope 157

A quick primer on transactions 157 ■ Creating a custom transaction
scope 158 ■ A custom scope in Guice 160 ■ A custom scope in
Spring 164

6.2 Pitfalls and corner cases in scoping 166
Singletons must be thread-safe 167 ■ Perils of scope-widening injection 169

6.3 Leveraging the power of scopes 180
Cache scope 181 ■ Grid scope 181 ■ Transparent grid computing
with DI 183

6.4 Summary 184

7 From birth to death: object lifecycle 186
7.1 Significant events in the life of objects 187

Object creation 187 ■ Object destruction (or finalization) 189

7.2 One size doesn’t fit all (domain-specific lifecycle) 191
Contrasting lifecycle scenarios: servlets vs. database connections 191 ■ The
Destructor anti-pattern 196 ■ Using Java’s Closeable interface 197

7.3 A real-world lifecycle scenario: stateful EJBs 198
7.4 Lifecycle and lazy instantiation 201
7.5 Customizing lifecycle with postprocessing 202
7.6 Customizing lifecycle with multicasting 205
7.7 Summary 207

8 Managing an object’s behavior 210
8.1 Intercepting methods and AOP 211

A tracing interceptor with Guice 212 ■ A tracing interceptor with Spring 214
How proxying works 216 ■ Too much advice can be dangerous! 219
 www.allitebooks.com

http://www.allitebooks.org

8.2 Enterprise use cases for interception 221
Transactional methods with warp-persist 222 ■ Securing methods
with Spring Security 224

8.3 Pitfalls and assumptions about interception and proxying 228
Sameness tests are unreliable 228 ■ Static methods cannot be
intercepted 230 ■ Neither can private methods 231 ■ And certainly
not final methods! 233 ■ Fields are off limits 234 ■ Unit tests and
interception 236

8.4 Summary 238

9 Best practices in code design 240
9.1 Objects and visibility 241

Safe publication 244 ■ Safe wiring 245

9.2 Objects and design 247
On data and services 247 ■ On better encapsulation 252

9.3 Objects and concurrency 257
More on mutability 258 ■ Synchronization vs. concurrency 261

9.4 Summary 264

10 Integrating with third-party frameworks 266
10.1 Fragmentation of DI solutions 267
10.2 Lessons for framework designers 270

Rigid configuration anti-patterns 271 ■ Black box anti-patterns 276

10.3 Programmatic configuration to the rescue 280
Case study: JSR-303 280

10.4 Summary 286

11 Dependency injection in action! 289
11.1 Crosstalk: a Twitter clone! 290

Crosstalk’s requirements 290

11.2 Setting up the application 290
11.3 Configuring Google Sitebricks 294
11.4 Crosstalk’s modularity and service coupling 295
11.5 The presentation layer 296

The HomePage template 298 ■ The Tweet domain object 301
Users and sessions 302 ■ Logging in and out 304

11.6 The persistence layer 308
Configuring the persistence layer 310

11.7 The security layer 311
11.8 Tying up to the web lifecycle 312
11.9 Finally: up and running! 313

11.10 Summary 314

appendix A The Butterfly Container 315
appendix B SmartyPants for Adobe Flex 320

index 323

Dependency injection:
 what’s all the hype?
“We all agree that your theory is crazy, but is it crazy enough?”
 —Niels Bohr

So you’re an expert on dependency injection (DI); you know it and use it every day.
It’s like your morning commute—you sleepwalk through it, making all the right left
turns (and the occasional wrong right turns before quickly correcting) until you’re
comfortably sitting behind your desk at work. Or you’ve heard of DI and Inversion
of Control (IoC) and read the occasional article, in which case this is your first com-
mute to work on a new job and you’re waiting at the station, with a strong suspicion
you are about to get on the wrong train and an even stronger suspicion you’re on
the wrong platform.

This chapter covers:
■ Seeing an object as a service
■ Learning about building and assembling services
■ Taking a tour of pre-existing solutions
■ Investigating the Hollywood Principle
■ Surveying available frameworks
1

2 CHAPTER 1 Dependency injection: what’s all the hype?
 Or you’re somewhere in between; you’re feeling your way through the idea, not yet
fully convinced about DI, planning out that morning commute and looking for the
best route to work, MapQuesting it. Or you have your own home-brew setup that works
just fine, thank you very much. You’ve no need of a DI technology: You bike to work,
get a lot of exercise on the way, and are carbon efficient.

 Stop! Take a good, long breath. Dependency injection is the art of making work
come home to you.

1.1 Every solution needs a problem
Most software today is written to automate some real-world process, whether it be writ-
ing a letter, purchasing the new album from your favorite band, or placing an order to
sell some stock. In object-oriented programming (OOP), these are objects and their
interactions are methods.

 Objects represent their real-world counterparts. An Airplane represents a 747 and
a Car represents a Toyota; a PurchaseOrder represents you buying this book; and so on.

 Of particular interest is the interaction between objects: An airplane flies, while a
car can be driven and a book can be opened and read. This is where the value of the
automation is realized and where it is valuable in simplifying our lives.

 Take the familiar activity of writing an email; you compose the message using an
email application (like Mozilla Thunderbird or Gmail) and you send it across the
internet to one or more recipients, as in figure 1.1. This entire activity can be modeled
as the interaction of various objects.

This highlights an important precept in this book: the idea of an object acting as a ser-
vice. In the example, email acts as a message composition service, internet relays are
delivery agents, and my correspondent’s inbox is a receiving service.

1.1.1 Seeing objects as services

The process of emailing a correspondent can be reduced to the composing, deliver-
ing, and receiving of email by each responsible object, namely the Emailer, Internet-
Relay, and RecipientInbox. Each object is a client of the next.

 Emailer uses the InternetRelay as a service to send email, and in turn, the
InternetRelay uses the RecipientInbox as a service to deliver sent mail.

 The act of composing an email can be reduced to more granular tasks:

■ Writing the message
■ Checking spelling
■ Looking up a recipient’s address

Email

Inbox
Internet relay

Email

Figure 1.1 Email is
composed locally,
delivered across an
internet relay, and
received by an inbox.

3Every solution needs a problem
And so on. Each is a fairly specialized task and is modeled as a specific service. For
example, “writing the message” falls into the domain of editing text, so choosing a
TextEditor is appropriate. Modeling the TextEditor in this fashion has many advan-
tages over extending Emailer to write text messages itself: We know exactly where to
look if we want to find out what the logic looks like for editing text.

■ Our Emailer is not cluttered with distracting code meant for text manipulation.
■ We can reuse the TextEditor component in other scenarios (say, a calendar or

note-taking application) without much additional coding.
■ If someone else has written a general-purpose text-editing component, we can

make use of it rather than writing one from scratch.

Similarly, “checking spelling” is done by a SpellChecker. If we wanted to check spell-
ing in a different language, it would not be difficult to swap out the English
SpellChecker in favor of a French one. Emailer itself would not need to worry about
checking spelling—French, English, or otherwise.

 So now we’ve seen the value of decomposing our services into objects. This princi-
ple is important because it highlights the relationship between one object and others
it uses to perform a service: An object depends on its services to perform a function.

 In our example, the Emailer depends on a SpellChecker, a TextEditor, and an
AddressBook. This relationship is called a dependency. In other words, Emailer is a cli-
ent of its dependencies.

 Composition also applies transitively; an object may depend on other objects that
themselves have dependencies, and so on. In our case, SpellChecker may depend on
a Parser to recognize words and a Dictionary of valid words. Parser and Dictionary
may themselves depend on other objects.

 This composite system of dependencies is commonly called an object graph. This
object graph, though composed of many dependencies, is functionally a single unit.

 Let’s sum up what we have so far:

■ Service —An object that performs a well-defined function when called upon
■ Client —Any consumer of a service; an object that calls upon a service to per-

form a well-understood function

The service–client relationship implies a clear contract between the objects in the role
of performing a specific function that is formally understood by both entities. You will
also hear them referred to as:

■ Dependency —A specific service that is required by another object to fulfill its func-
tion.

■ Dependent —A client object that needs a dependency (or dependencies) in
order to perform its function.

Not only can you describe an object graph as a system of discrete services and clients,
but you also begin to see that a client cannot function without its services. In other
words, an object cannot function properly without its dependencies.

4 CHAPTER 1 Dependency injection: what’s all the hype?
NOTE DI as a subject is primarily concerned with reliably and efficiently build-
ing such object graphs and the strategies, patterns, and best practices
therein.

Let’s look at ways of building object graphs before we take on DI.

1.2 Pre-DI solutions
Figure 1.2 shows a simple relationship be-
tween an object and its dependency.

 Were you asked to code such a class with-
out any other restrictions, you might attempt
something like this:

public class Emailer {
 private SpellChecker spellChecker;
 public Emailer() {
 this.spellChecker = new SpellChecker();
 }

 public void send(String text) { .. }
}

Then constructing a working Emailer (one with a SpellChecker) is as simple as con-
structing an Emailer itself:

Emailer emailer = new Emailer();

No doubt you have written code like this at some point. I certainly have. Now, let’s say
you want to write a unit test for the send() method to ensure that it is checking spell-
ing before sending any message. How would you do it? You might create a mock
SpellChecker and give that to the Emailer. Something like:

public class MockSpellChecker extends SpellChecker {
 private boolean didCheckSpelling = false;
 public boolean checkSpelling(String text) {
 didCheckSpelling = true;
return true;
 }

 public boolean verifyDidCheckSpelling()
 { return didCheckSpelling; }
}

Of course, we can’t use this mock because we are unable to substitute the internal
spellchecker that an Emailer has. This effectively makes your class untestable, which is
a showstopper for this approach.

 This approach also prevents us from creating objects of the same class with differ-
ent behaviors. See listing 1.1 and figure 1.3.

public class Emailer {
 private SpellChecker spellChecker;

Listing 1.1 An email service that checks spelling in English

Called by test to
verify behavior

SpellChecker

- spellChecker- sEmailer

Figure 1.2 Object Emailer is composed of
another object, SpellChecker.

5Pre-DI solutions
Emailer
English

SpellChecker

- spellChecker

Figure 1.3 An email service that checks
spelling in English

 public Emailer() {
 this.spellChecker = new EnglishSpellChecker();
 }
 ...
}

In this example, the Emailer has an Eng-
lishSpellChecker. Can we create an
Emailer with a FrenchSpellChecker? We
cannot! Emailer encapsulates the creation
of its dependencies.

 What we need is a more flexible solu-
tion: construction by hand (sometimes called manual dependency injection), where
instead of a dependent creating its own dependencies, it has them provided externally.

1.2.1 Construction by hand

Naturally, the solution is not to encapsulate the creation of dependencies, but what
does this mean and to whom do we offload this burden? Several techniques can solve
this problem. In the earlier section, we used the object’s constructor to create its
dependencies. With a slight modification, we can keep the structure of the object
graph but offload the burden of creating dependencies. Here is such a modification
(see figure 1.4):

public class Emailer {
 private SpellChecker spellChecker;
 public void setSpellChecker(SpellChecker spellChecker) {
 this.spellChecker = spellChecker;
 }
 ...
}

Notice that I’ve replaced the constructor
that created its own SpellChecker with a
method that accepts a SpellChecker. Now
we can construct an Emailer and substitute
a mock SpellChecker:

 @Test
 public void ensureEmailerChecksSpelling() {
 MockSpellChecker mock = new MockSpellChecker();
 Emailer emailer = new Emailer();
 emailer.setSpellChecker(mock);
 emailer.send("Hello there!");

 assert mock.verifyDidCheckSpelling();
 }

Similarly, it is easy to construct Emailers with various behaviors. Here’s one for French
spelling:

Emailer service = new Emailer();
service.setSpellChecker(new FrenchSpellChecker());

Pass in mock
dependency
for testing

Verify the dependency
was used properly

Emailer SpellChecker
- spellChecker

<< abstract >>

Figure 1.4 An email service that checks
spelling using an abstract spelling service

6 CHAPTER 1 Dependency injection: what’s all the hype?
And one for Japanese:

Emailer service = new Emailer();
service.setSpellChecker(new JapaneseSpellChecker());

Cool! At the time of creating the
Emailer, it’s up to you to provide its
dependencies. This allows you to
choose particular flavors of its services
that suit your needs (French, Japanese,
and so on) as shown in figure 1.5.

 Since you end up connecting the
pipes yourself at the time of construc-
tion, this technique is referred to as
construction by hand. In the previous
example we used a setter method (a
method that accepts a value and sets it
as a dependency). You can also pass in
the dependency via a constructor, as
per the following example:

public class Emailer {
 private SpellChecker spellChecker;
 public Emailer(SpellChecker spellChecker) {
 this.spellChecker = spellChecker;
 }
 ...
}

Then creating the Emailer is even more concise:

Emailer service = new Emailer(new JapaneseSpellChecker());

This technique is called constructor injection and has the advantage of being explicit
about its contract—you can never create an Emailer and forget to set its dependen-
cies, as is possible in the earlier example if you forget to call the setSpellChecker()
method. This concept is obviously very useful in OOP. We’ll study it in greater detail in
the coming chapters.

NOTE The idea of connecting the pipes together, or giving a client its depen-
dency, is sometimes also referred to as “injecting” objects into one
another and other times as “wiring” the objects together.

While construction by hand definitely helps with testing, it has some problems, the
most obvious one being the burden of knowing how to construct object graphs being
placed on the client of a service. If I use the same object in many places, I must repeat
code for wiring objects in all of those places. Construction by hand, as the name sug-
gests, is really tedious! If you alter the dependency graph or any of its parts, you may
be forced to go through and alter all of its clients as well. Fixing even a small bug can
mean changing vast amounts of code.

FrenchSpellChecker

Emailer

EnglishSpellChecker

JapaneseSpellChecker

Figure 1.5 The same Emailer class can now
check spelling in a variety of languages.

7Pre-DI solutions
 Another grave problem is the fact that users need to know how object graphs
are wired internally. This violates the principle of encapsulation and becomes prob-
lematic when dealing with code that is used by many clients, who really shouldn’t
have to care about the internals of their dependencies in order to use them. There
are also potent arguments against construction by hand that we will encounter in
other forms in the coming chapters. So how can we offload the burden of depen-
dency creation and not shoot ourselves in the foot doing so? One answer is the Fac-
tory pattern.

1.2.2 The Factory pattern

Another time-honored method of constructing object graphs is the Factory design
pattern (also known as the Abstract Factory1 pattern). The idea behind the Factory
pattern is to offload the burden of creating dependencies to a third-party object called
a factory (shown in figure 1.6). Just as an automotive factory creates and assembles
cars, so too does a Factory pattern create and assemble object graphs.

Let’s apply the Factory pattern to our Emailer. The Emailer’s code remains the same
(as shown in listing 1.2).

public class Emailer {
 private SpellChecker spellChecker;
 public Emailer(SpellChecker spellChecker) {
 this.spellChecker = spellChecker;
 }
 ...
}

Instead of constructing the object graph by hand, we do it inside another class called a
factory (listing 1.3).

public class EmailerFactory {
 public Emailer newFrenchEmailer() {
 return new Emailer(new FrenchSpellChecker());
 }
}

1 Erich Gamma et al., Design Patterns: Elements of Reusable Object-Oriented Software (Addison-Wesley Professional
Computing Series, 1994). Sometimes called the “Gang of Four” book.

Listing 1.2 An email service whose spellchecker is set via constructor

Listing 1.3 A “French” email service Factory pattern

requests constructsc

Factory

ServiceClient

Figure 1.6 A client requests its
dependencies from a Factory.

8 CHAPTER 1 Dependency injection: what’s all the hype?
Notice that the Factory pattern is very explicit about what kind of Emailer it is going
to produce; newFrenchEmailer() creates one with a French spellchecker. Any code
that uses French email services is now fairly straightforward:

Emailer service = new EmailerFactory().newFrenchEmailer();

The most important thing to notice here is that the client code has no reference to
spellchecking, address books, or any of the other internals of Emailer. By adding a level
of abstraction (the Factory pattern), we have separated the code using the Emailer from
the code that creates the Emailer. This leaves client code clean and concise.

 The value of this becomes more apparent as we deal with richer and more com-
plex object graphs. Listing 1.4 shows a Factory that constructs our Emailer with many
more dependencies (also see figure 1.4).

public class EmailerFactory {
 public Emailer newJapaneseEmailer() {
 Emailer service = new Emailer();
 service.setSpellChecker(new JapaneseSpellChecker());
 service.setAddressBook(new EmailBook());
 service.setTextEditor(new SimpleJapaneseTextEditor());
 return service;
 }
}

Code that uses such an Emailer is as simple and readable as we could wish:

Emailer emailer = new EmailerFactory().newJapaneseEmailer();

The beauty of this approach is that client code only needs to know which Factory to
use to obtain a dependency (and none of its internals).

 Now how about testing this code? Are we able to mock Emailer’s dependencies?
Sure; our test can simply ignore the Factory and pass in mocks:

 @Test
 public void testEmailer() {
 MockSpellChecker spellChecker =

Listing 1.4 A Factory that constructs a Japanese emailer

Emailer
Factory

Emailer

constructs

JapaneseSpellChecker

EmailBook

SimpleJapaneseTextEditor

Figure 1.7 Emailer-
Factory constructs and
assembles a Japanese
Emailer with various
dependencies.

9Pre-DI solutions
 new MockSpellChecker();
 ...

 Emailer emailer = new Emailer();
 emailer.setSpellChecker(spellChecker);
 ...

 emailer.send("Hello there!");

 //verify emailer's behavior
 assert ...;
 }

So far, so good. Now let’s look at a slightly different angle: How can we test clients of
Emailer? Listing 1.5 shows one way.

public class EmailClient {
 private Emailer emailer =
 new EmailerFactory().newEnglishEmailer();

 public void run() {
 emailer.send(someMessage());

 confirm("Sent!");
 }
}

This client does not know anything about Emailer’s internals; instead, it depends on a
Factory. If we want to test that it correctly calls Emailer.send(), we need to use a
mock. Rather than set the dependency directly, we must pass in the mock via the Fac-
tory, as in listing 1.6.

 @Test
 public void testEmailClient() {
 MockEmailer mock = new MockEmailer();
 EmailerFactory.set(mock);

 new EmailClient().run();

 assert mock.correctlySent();
 }

In this test, we pass in MockEmailer using the static method EmailerFactory.set(),
which stores and uses the provided object rather than creating new ones (listing 1.7).

public class EmailerFactory {
 private static Emailer instance;

 public Emailer newEmailer() {
 if (null == instance)
 return new Emailer(..);

Listing 1.5 A client uses Emailer to send messages typed by a user

Listing 1.6 Test sets up a mock instance for EmailClient using Emailer’s Factory

Listing 1.7 A client uses Emailer to send messages typed by a user

Create mocks for
each dependency

Set mocked
dependencies on emailer

Ensure everything worked

Get ourselves an Emailer
from its Factory

Send message and
confirm to user

Set mock instance on factory
using a static method

Verify that the mock was used
correctly by EmailClient

Static holder stores mock
instance for later use

If no mock is present, create a
new Emailer with dependencies

10 CHAPTER 1 Dependency injection: what’s all the hype?
 return instance;

 }

 static void set(Emailer mock) {
 instance = mock;
 }

In listing 1.7, EmailerFactory has been heavily modified to support testing. A test can
first set up a mock instance via the static set() method, then verify the behavior of
any clients (as shown in listing 1.6).

 Unfortunately, this is not the complete picture, since forgetting to clean up the
mock can interfere with other Emailer-related tests that run later. So, we must reset the
Factory at the end of every test:

 @Test
 public void testEmailClient() {
 MockEmailer mock = new MockEmailer();
 EmailerFactory.set(mock);

 new EmailClient().run();

 assert mock.correctlySent();
 EmailerFactory.set(null);
 }

We’re not quite out of the woods yet. If an exception is thrown before the Factory is
reset, it can still leave things in an erroneous state. So, a safer cleanup is required:

 @Test
 public void testEmailClient() {
 MockEmailer mock = new MockEmailer();
 EmailerFactory.set(mock);
 try {
 new EmailClient().run();

 assert mock.correctlySent();
 } finally {
 EmailerFactory.set(null);
 }
 }

Much better. A lot of work to write a simple assertion, but worth it! Or is it? Even this
careful approach is insufficient in broader cases where you may want to run tests in
parallel. The static mock instance inside EmailerFactory can cause these tests to clob-
ber each other from concurrent threads, rendering them useless.

NOTE This is an essential problem with shared state, often portended by the
Singleton pattern. Its effects and solutions are examined more closely in
chapter 5.

While the Factory pattern solves many of the problems with construction by hand, it
obviously still leaves us with significant hurdles to overcome. Apart from the testability
problem, the fact that a Factory must accompany every service is troubling. Not only
this, a Factory must accompany every variation of every service. This is a sizable amount

Save mock instance
to static holder

Reset factory’s
state to null

Reset factory’s state
inside a finally block

11Pre-DI solutions
of distracting clutter and adds a lot of peripheral code to be tested and maintained.
Look at the example in listing 1.8, and you’ll see what I mean.

public class EmailerFactory {
 public Emailer newJapaneseEmailer() {
 Emailer service = new Emailer();
 service.setSpellChecker(new JapaneseSpellChecker());
 service.setAddressBook(new EmailBook());
 service.setTextEditor(new SimpleJapaneseTextEditor());
 return service;
 }
 public Emailer newFrenchEmailer() {
 Emailer service = new Emailer();
 service.setSpellChecker(new FrenchSpellChecker());
 service.setAddressBook(new EmailBook());
 service.setTextEditor(new SimpleFrenchTextEditor());
 return service;
 }
}

If you wanted an English version of the Emailer, you would have to add yet another
method to the Factory. And consider what happens when we replace EmailBook with a
PhoneAndEmailBook. You are forced to make the following changes:

public class EmailerFactory {
 public Emailer newJapaneseEmailer() { ...
 service.setAddressBook(new PhoneAndEmailBook());
 ...
 public Emailer newFrenchEmailer() { ...
 service.setAddressBook(new PhoneAndEmailBook());
 ...
 public Emailer newEnglishEmailer() { ...
 service.setAddressBook(new PhoneAndEmailBook());
 ...
}

All three of the changes are identical! It is clearly not a desirable scenario. Further-
more, any client code is at the mercy of available factories: You must create new facto-
ries for each additional object graph variation. All this spells reams of additional code
to write, test, and maintain.

 In the case of Emailer, following the idea to its inevitable extreme yields:

Emailer service = new EmailerFactoryFactory()
 .newAdvancedEmailerFactory()
 .newJapaneseEmailerWithPhoneAndEmail();

It is very difficult to test code like this. I have seen it ruin several projects. Clearly, the
Factory pattern technique’s drawbacks are serious, especially in larger and more com-
plex code. What we need is a broader mitigation of the core problem.

Listing 1.8 Factories that create either French or Japanese email services

Specific
dependencies
of a Japanese
email service

Specific depen-
dencies of a
French email
service

“General” factory produces
simple or advanced factories

Factory for advanced Emailers

Factory producing
specific Emailer
configurations

12 CHAPTER 1 Dependency injection: what’s all the hype?
1.2.3 The Service Locator pattern

A Service Locator pattern is a kind of Factory. It is a third-party object responsible for
producing a fully constructed object graph.

 In the typical case, Service Locators are used to find services published by external
sources; the service may be an API offered by a bank to transfer funds or a search
interface from Google.

 These external sources may reside in the same application, machine, or local area
network, or they may not. Consider an interface to the NASA Mars Rover several mil-
lions of miles away, a simple library for text processing, bundled within an application,
or a Remote Enterprise Java Bean (EJB).2 Look at figure 1.8 for a visual.

 Let’s look at what a service locator does:

Emailer emailer = (Emailer) new ServiceLocator().get("Emailer");

Notice that we pass the Service Locator a key, in this case the word “Emailer.” This tells
our locator that we want an Emailer. This is significantly different from a Factory that
produces only one kind of service. A Service Locator is, therefore, a Factory that can
produce any kind of service.

 Right away this helps reduce a huge amount of repetitive Factory code, in favor of
the single Service Locator.

Let’s apply the Service Locator pattern to the earlier example:

Emailer emailer = (Emailer) new ServiceLocator()
 .get("JapaneseEmailerWithPhoneAndEmail");

2 A Remote EJB is a type of service exposed by Java EE application servers across a network. For example, a bro-
kerage may expose an order-placing service as a Remote EJB to various client banks.

Client

Service locator

requests

Library

Mars Rover

Remote EJB

Figure 1.8 Service locators find
specific services requested by clients.

JNDI: a Service Locator
The Java Naming and Directory Interface (JNDI) is a good example of a Service Loca-
tor pattern. It is often used by application servers to register resources at start time
and later by deployed applications to look them up. Web applications typically use
JNDI to look up data sources in this manner.

Key precisely describes
the desired service

13Embracing dependency injection
provides

with

with

Injector

Dependent
(client)

Dependency
(service)

Dependency
(service)

Figure 1.9 The injector provides an object
with its dependencies.

This code is simple and readable. The identity of a service (its key) is sufficient to
obtain exactly the right service and configuration. Now altering the behavior of a ser-
vice identified by a particular key or fixing bugs within it by changing its object graph
will have no effect on dependent code and can be done transparently.

 Unfortunately, being a kind of Factory, Service Locators suffer from the same prob-
lems of testability and shared state. The keys used to identify a service are opaque and
can be confusing to work with, as anyone who has used JNDI can attest. If a key is
bound improperly, the wrong type of object may be created, and this error is found
out only at runtime. The practice of embedding information about the service within
its identifier (namely, "JapaneseEmailerWithPhoneAndEmail") is also verbose and
places too much emphasis on arbitrary conventions.

 With DI, we take a completely different approach—one that emphasizes testability
and concise code that is easy to read and maintain. That’s only the beginning; as you
will see soon, with DI we can do a great deal more.

1.3 Embracing dependency injection
With dependency injection, we take the best parts of the aforesaid pre-DI solutions
and leave behind their drawbacks.

 DI enables testability in the same way as construction by hand, via a setter method
or constructor injection. DI removes the need for clients to know about their depen-
dencies and how to create them, just as factories do. It leaves behind the problems of
shared state and repetitive clutter, by moving construction responsibility to a library.

 With DI, clients need know nothing about French or English Emailers, let alone
French or English SpellCheckers and TextEditors, in order to use them. This idea of
not explicitly knowing is central to DI. More accurately, not asking for dependencies
and instead having them provided to you is an idea called the Hollywood Principle.

1.3.1 The Hollywood Principle

The Hollywood Principle is “Don’t call us; we’ll call you!” Just as Hollywood talent
agents use this principle to arrange auditions for actors, so do DI libraries use this
principle to provide objects with what they depend on.

 This is similar to what we saw in construc-
tion by hand (sometimes referred to as manual
dependency injection). There is one impor-
tant difference: The task of creating, assem-
bling, and wiring the dependencies into an
object graph is performed by an external
framework (or library) known as a dependency
injection framework, or simply a dependency injec-
tor. Figure 1.9 illustrates this arrangement.

 Control over the construction, wiring,
and assembly of an object graph no lon-
ger resides with the clients or services

14 CHAPTER 1 Dependency injection: what’s all the hype?
themselves. The Hollywood Principle’s reversal of responsibilities is sometimes also
known as IoC.

NOTE DI frameworks are sometimes referred to as IoC containers. Examples of
such frameworks are PicoContainer (for Java), StructureMap (for C#),
and Spring (for Java and C#).

Listing 1.9 shows the Hollywood Principle in action.

public class Emailer {
 ...
 public void send(String text) { .. }
}

public class SimpleEmailClient {
 private Emailer emailer;
 public SimpleEmailClient(Emailer emailer) {
 this.emailer = emailer;
 }
 public void sendEmail() {
 emailer.send(readMessage());
 }
}

In this example, our dependent is SimpleEmailClient B and the service it uses C is
Emailer. Notice that neither class is aware of how to construct its graph, nor does
either explicitly ask for a service.

 In order to send mail, SimpleEmailClient does not need to expose anything about
Emailer or how it works. Put another way, SimpleEmailClient encapsulates Emailer,
and sending email is completely opaque to the
user. Constructing and connecting dependen-
cies is now performed by a dependency injector
(see figure 1.10).

 The dependency is shown as a class dia-
gram in figure 1.11.

 Notice that SimpleEmailClient knows
nothing about what kind of Emailer it needs or
is using to send a message. All it knows is that it
accepts some kind of Emailer, and this depen-
dency is used when needed. Also notice that
the client code is now starting to resemble ser-
vice code; both are free of logic to create or

Listing 1.9 An Emailer and a client

SimpleEmailClient
depends on Emailer

B

Sends an email
read from input

C

Email
SendingClient Emailer

- emailer

- sendEmail()

Figure 1.11 Client code that uses an
email service provided by dependency
injection

constructs
constructs

& wires
ucts

Injector

Emailer
(dependency)

SimpleEmailClient
(dependent)

Figure 1.10 The injector constructs and
wires SimpleEmailClient with a
dependency (Emailer).

15Embracing dependency injection
locate dependencies. DI facilitates this streamlining, stripping code of distracting clutter
and infrastructure logic, leaving purposed, elementary logic behind.

 We have not yet seen how the wiring is done, as this differs from injector to injec-
tor, but what we’ve seen is still very instructive because it highlights the separation of
infrastructure code (meant for wiring and construction) from application code (the
core purpose of a service). The next couple of sections explore this idea, before we
jump into the specifics of working with dependency injectors.

1.3.2 Inversion of Control vs. dependency injection

Worthy as they are of a heavyweight bout, these two terms are not really opposed to
one another as the heading suggests. You will come across the term IoC quite often,
both in the context of dependency injection and outside it. The phrase Inversion of
Control is rather vague and connotes a general reversal of responsibilities, which is
nonspecific and could equally mean any of the following:

■ A module inside a Java EE application server
■ An object wired by a dependency injector
■ A test method automatically invoked by a framework
■ An event handler called on clicking a mouse button

Pedantic users of the term suggest that all of these cases are consistent with its defini-
tion and that DI itself is simply one instance of IoC.

 In common use, dependency injectors are frequently referred to as IoC containers.
 In the interest of clarity, for the rest of this book I will abandon the term IoC (and

its evil cousin IoC container) in favor of the following, more precise terms:

■ Hollywood Principle —The idea that a dependent is contacted with its dependencies
■ Dependency injector —A framework or library that embodies the Hollywood

Principle
■ Dependency injection —The range of concerns with designing applications built

on these principles

3 The article has been updated many times over the years. You can read the latest version at http://martin-
fowler.com/articles/injection.html.

Dependency injection
As near as I can determine, it wasn’t until Martin Fowler wrote “Inversion of Control
Containers and the Dependency Injection Pattern”3 that the term dependency injec-
tion came into popular use. The term came out of many discussions on the subject
among Fowler, the authors of PicoContainer (Paul Hammant and Aslak Hellesøy), Jon
Tirsen, and Rod Johnson, among others.

16 CHAPTER 1 Dependency injection: what’s all the hype?
Early frameworks differed by the forms of wiring that they proffered and promoted.
Over the years, the efficacy of setter and constructor wiring overtook that of other forms
of wiring, and more flexible solutions that emphasized the safety of contracts and the
reduction of repetitive code emerged. With the rise of related paradigms such as aspect-
oriented programming (AOP), these features continued to improve. Applications built
with DI became streamlined and tolerant to rapid structural and behavioral change.

 The modes of configuring a dependency injector also evolved from verbose sets of
contracts and configuration files to more concise forms, using new language con-
structs such as annotations and generics. Dependency injectors also took better advan-
tage of class manipulation tools like reflection and proxying and began to exploit design
patterns such as Decorator 4 and Builder,5 as well as Domain Specific Languages (DSL).

A growing emphasis on unit testing continues to be a natural catalyst to the growth of
DI popularity. This made for agile programs, which are easily broken down into dis-
crete, modular units that are simple to test and swap out with alternative behaviors.
Consequently, loose coupling is a core driver in the evolution of DI.

We will explore the best approaches to solving problems with DI and look in detail at
bad practices, pitfalls, and corner cases to watch out for, as well as the safety, rigor, and
power of DI, properly applied. And most of all we’ll see how DI can make your code
lean, clean, and something mean.

4 Erich Gamma et al, Design Patterns: “The Decorator Pattern.”
5 Ibid., “The Builder Pattern.”

Domain Specific Language (DSL)
Domain Specific Language, or DSL is a language used to solve a specific problem as
opposed to a language like C++ that is intended to solve general (or any) problems.
DSLs are sometimes used in dependency injection as a precise way of expressing
the structural relationship between objects. They are also used to capture other con-
cerns (such as scope) in the language of DI. (For more information, see the forthcom-
ing book from Manning Publications, Building Domain Specific Languages in Boo by
Ayende Rahien.)

Loose coupling
Loose coupling describes an adaptable relationship between a client and a service,
where significant changes to the internals of the service have minimal impact on the
client. It is generally achieved by placing a rigid contract between client and service
so that either may evolve independently, so long as they fulfill the obligations laid
down by the contract. Loose coupling is explored in greater detail in chapter 4.

17Dependency injection in the real world
1.4 Dependency injection in the real world
We have now looked at several possible solutions and hinted at a cool alternative
called DI. We’ve also taken an evening stroll down History Lane, turning at the corner
of Terminology Boulevard (and somehow visited Hollywood on the way!). Before we
proceed to the nuts and bolts of dependency injection, let’s survey the landscape to
learn what libraries are available, how they work and how they originated.

 This is by no means a comparison or evaluation of frameworks; it’s a brief intro-
duction. Neither is it meant to be a comprehensive list of options. I will only touch on
relatively well-known and widely used DI libraries in Java—and only those that are
open source and freely available. Not all of them are purely DI-focused, and very few
support the full gamut of DI design patterns described in this book. Nevertheless,
each is worth a look.

1.4.1 Java

Java is the birthplace of dependency injection and sports the broadest and most
mature set of DI libraries among all platforms. Since many of the problems DI evolved
to address are fundamental to Java, DI’s effectiveness and prevalence are especially
clear in this platform. We’ll look at five such libraries ranging from the earliest incar-
nations of DI in Apache Avalon, through mature, widely adopted libraries like Spring
and PicoContainer, to the cutting-edge, modern incarnation in Google, Guice.
APACHE AVALON

Apache Avalon is possibly the earliest DI library in the Java world, and it’s perhaps the
first library that really focused on dependency injection as a core competency. Avalon
styled itself as a complete application container, in the days before Java EE and appli-
cation servers were predominant. Its primary mode of wiring was via custom inter-
faces, not setter methods or constructors. Avalon also supported myriad lifecycle and
event-management interfaces and was popular with many Apache projects. The
Apache James mail server (a pure Java SMTP, POP3, and IMAP email server) is built
on Avalon.

 Avalon is defunct, though Apache James is still going strong. Some of the ideas
from Avalon have passed on to another project, Apache Excalibur, whose DI container
is named Fortress. Neither Avalon nor Excalibur/Fortress is in common use today.
SPRING FRAMEWORK

Spring Framework is a groundbreaking and cornerstone dependency injection library
of the Java world. It is largely responsible for the popularity and evolution of the DI
idiom and for a long time was almost synonymous with dependency injection. Spring
was created by Rod Johnson and others and was initially meant to solve specific pains in
enterprise projects. It was established as an open source project in 2003 and grew rap-
idly in scope and adoption. Spring provides a vast set of abstractions, modules, and
points of integration for enterprise, open source, and commercial libraries. It consists
of much more than dependency injection, though DI is its core competency. It primar-
ily supports setter and constructor injection and has a variety of options for managing

18 CHAPTER 1 Dependency injection: what’s all the hype?
objects created by its dependency injector. For example, it provides support for both
the AspectJ and AopAlliance AOP paradigms.

 Spring adds functionality, features, and abstractions for popular third-party librar-
ies at alarming rates. It is extremely well-documented in terms of published reference
books as well as online documentation and continues to enjoy widespread growth and
adoption.
PICOCONTAINER AND NANOCONTAINER

PicoContainer was possibly the first DI library to offer constructor wiring. It was envi-
sioned and built around certain philosophical principles, and many of the discussions
found on its website are of a theoretical nature. It was built as a lightweight engine for
wiring components together. In this sense it is well-suited to extensions and customiza-
tion. This makes PicoContainer useful under the covers. PicoContainer supports both
setter and constructor injection but clearly demonstrates a bias toward the latter. Due
to its nuts-and-bolts nature, many people find PicoContainer difficult to use in appli-
cations directly. NanoContainer is a sister project of PicoContainer that attempts to
bridge this gap by providing a simple configuration layer, with PicoContainer doing
the DI work underneath. NanoContainer also provides other useful extensions.
APACHE HIVEMIND

Apache HiveMind was started by Howard Lewis Ship, the creator of Apache Tapestry,
a popular component-oriented Java web framework. For a long time Tapestry used Hive-
Mind as its internal dependency injector. Much of the development and popularity of
HiveMind has stemmed from this link, though HiveMind and Tapestry have parted com-
pany in later releases. HiveMind originally began at a consulting project of Howard’s
that involved the development and interaction of several hundreds of services. It was pri-
marily used in managing and organizing these services into common, reusable patterns.

 HiveMind offers both setter and constructor injection and provides unusual and
innovative DI features missing in other popular libraries. For example, HiveMind is
able to create and manage pools of a service for multiple concurrent clients. Apache
HiveMind is not as widely used as some other DI libraries discussed here; however, it
has a staunch and loyal following.
GOOGLE GUICE

Guice (pronounced “Juice”) is a hot, new dependency injector created by Bob Lee
and others at Google. Guice unabashedly embraces Java 5 language features and
strongly emphasizes type and contract safety. It is lightweight and decries verbosity in
favor of concise, type-safe, and rigorous configuration. Guice is used heavily at
Google, particularly in the vast AdWords application, and a version of it is at the heart
of the Struts2 web framework. It supports both setter and constructor injection along
with interesting alternatives. Guice’s approach to AOP and construction of object
graphs is intuitive and simple. Guice is also available inside the Google Web Toolkit
(GWT), via its cousin Gin.6

6 Google Gin is a port of Guice for the GWT, a JavaScript web framework. Find out more at http://
code.google.com/p/google-gin.

19Summary
 It is a new kid on the block, but its popularity is rising and its innovations have
already prompted several followers and even some mainstays to emulate its ideas.
Guice has a vibrant and thoughtful user community.

1.4.2 DI in other languages and libraries

Several other DI libraries are also available. You could write a whole book on the sub-
ject! Some provide extra features, orthogonal to dependency injection, or are simply
focused on a different problem space. JBoss Seam is one such framework; it offers
complex state management for web applications and integration points for standard-
ized services such as EJBs. It also offers a reasonably sophisticated subset of depen-
dency injection.

 As languages, C# and .NET are structurally similar to Java. They are both statically
typed, object-oriented languages that need to be compiled. It is no surprise, then, that
C# is found in the same problem space as Java and that dependency injectors are
applied to equal effect in applications written in C#. However, the prevalence of DI is
much lower in the C# world in general. While C# has ports of some Java libraries like
Spring and PicoContainer, it also has some innovative DI of its own, particularly in
Castle MicroKernel, which does a lot more than just DI. StructureMap, on the other
hand, is a mainstay and a more traditional DI library.

 Some platforms (or languages) make it harder to design dependency injectors
because they lack features such as garbage collection and reflection. C++ is a prime
example of such a language. However, it is still possible to write dependency injectors
in these languages with other methods that substitute for these tools. For instance,
some C++ libraries use precompilation and source code generation to enable DI.

 Still other languages place different (and sometimes fewer) restrictions on types
and expressions, allowing objects to take on a more dynamic role in constructing and
using services. Python and Ruby are good examples of such duck-typed languages. Nei-
ther Python nor Ruby programs need to be compiled; their source code is directly
interpreted, and type checking is done on the fly. Copland is a DI library for Ruby that
was inspired by (and is analogous to) Apache HiveMind for Java. Copland uses many
of the same terms and principles as HiveMind but is more flexible in certain regards
because of the dynamic nature of Ruby.

1.5 Summary
This chapter was an exposition to the subject of building programs in units and has laid
the groundwork for DI. Most software is about automating some process in the real
world, such as sending a friend a message by email or processing a purchase order.
Components in these processes are modeled as a system of objects and methods. When
we have vast swaths of components and interactions to manage, constructing and con-
necting them becomes a tedious and complex task. Development time spent on main-
tenance, refactoring, and testing can explode without carefully designed architectures.
We can reduce all of this to the rather simple-sounding problem of finding and

20 CHAPTER 1 Dependency injection: what’s all the hype?
constructing the dependencies, the requisite services of a component (client). How-
ever, as you’ve seen, this is nontrivial when dealing with objects that require different
behaviors and does not often scale with typical solutions.

 Prior to the use of dependency injectors, there were several solutions of varying
effectiveness:

■ Construction by hand —This involves the client creating and wiring together all of
its dependencies. This is a workable solution and certainly conducive to testing,
but it scales very poorly as we’ve merely offloaded the burden of creating and
wiring dependencies to clients. It also means clients must know about their
dependencies and about their implementation details.

■ The Factory pattern —Clients request a service from an intermediary component
known as a Factory. This offloads the burden to Factories and leaves clients rela-
tively lean. Factories have been very successful over the years; however, they
pose very real problems for testing and can introduce more with shared state.
In very large projects they can cause an explosion of infrastructure code. Code
using factories is difficult to test and can be a problem to maintain.

■ The Service Locator pattern —Essentially a type of Factory, it uses keys to identify
services and their specific configurations. The Service Locator solves the explo-
sion-of-factories problem by hiding the details of the service and its configura-
tion from client code. Since it is a Factory, it is also prone to testability and
shared state problems. Finally, it requires that a client explicitly request each of
its dependencies by an arbitrary key, which can be unclear and abstruse.

Dependency injection offers an innovative alternative via the Hollywood Principle:
“Don’t call us; we’ll call you!” meaning that a component need know nothing about its
dependencies nor explicitly ask for them. A third-party library or framework known as
the dependency injector is responsible for constructing, assembling, and wiring
together clients with services.

 DI solves the problem of object graph construction and assembly by applying the
Hollywood Principle across components. However, this is just a small window into
what is possible when an application is designed and built around DI. We will explore
managing state and modifying the behavior and lifecycle of objects in broader con-
texts. We’ll look at the nuances, pitfalls, and corner cases of various configurations
and the subtle consequences of particular design choices. This book will equip you
with the knowledge and careful understanding you need to design robust, testable,
and easily maintainable applications for any purpose or platform. In the next chapter,
you’ll get a chance to get your hands dirty. We’ll dive right in to using some of the DI
libraries surveyed in this chapter and contrast their various approaches. Keep a bar of
soap handy.

Time for injection
“We shape our buildings, thereafter they shape us.”
 —Winston Churchill

In chapter 1, we saw that dependency injection offers a unique and concise solu-
tion to the problem of constructing object graphs, with a strong emphasis on unit
testing. The crux of this solution is the fact that all your code is freed from con-
structing dependencies. Code written with DI in mind is behaviorally focused and
without distracting clutter. Why is this important?

 While the answer may seem self-evident (hard to argue with the less and more
precise), it is well worth spelling out:

This chapter covers:
■ Using dependency injection
■ Identifying dependencies by keys
■ Comparing string, type, and combinatorial keys
■ Separating infrastructure from application logic
21

22 CHAPTER 2 Time for injection
■ Behaviorally focused —Presumably, you set out to write code toward a specific pur-
pose, and that purpose is not to construct more objects! Whether writing an
email system, a game, or an enterprise messaging system, your primary focus is
the behavior of the system. When architectural concerns (such as constructing
and locating services) impinge on this logic, it unnecessarily distracts from the
original purpose.

■ Modular —Code designed in discrete, modular units is not only easy to main-
tain, but it is reusable and easy to package. Individual units are structurally
simple to work with. Understanding whether code meets specified require-
ments is often a difficult proposition for developers. Modular code is focused
on small functional subsets (for instance, a spellchecker) and thus is easier
to develop.

■ Testable —Since modules are easy to test for general, purposed behavior without
specific awareness of the overall system, it follows that they provide for more
robust code. While nominal testability is a benefit in itself, there is much more
that concise, loosely coupled code purports. The ability to swap out dependen-
cies with mock counterparts is crucial when testing objects that make use of
expensive resources like database connections.

In this chapter, we’re going to work with dependency injectors, using various libraries.
We’ll look at how to identify dependencies, distinguish them from one another, and
tell the injector what to do with them. This chapter also examines best practices in
configuring dependency injectors and in choosing identifiers (keys) for objects. Let’s
begin with bootstrapping the injector.

2.1 Bootstrapping the injector
The dependency injector is itself a service like any other. And like any service, it must
be constructed and prepared before it can be used. This bootstrap of the injector
occurs before any object in the application can benefit from DI. When and how the
injector is bootstrapped is often specific to the kind of application in question. It may
be done in the following situations:

■ In the init lifecycle stage of a web application, upon being deployed (figure 2.1)

■ On startup of a desktop program (figure 2.2)

Web Server

Bootstrap
Injector

(deploy)

Bootstrap
Injector

(deploy)

Figure 2.1 Injector is bootstrapped
in the init lifecycle stage of a web
application, on deployment.

23Constructing objects with dependency injection
■ On demand, every time it is needed (for instance, on remote invocations [fig-
ure 2.3])

■ Lazily, when it is first needed (figure 2.4)

Each option conforms to a different architectural scenario. None is the correct choice
for all environments. It is typical to find that injector startup coincides with applica-
tion startup. Once the injector has been bootstrapped, we can obtain an object from it
for use.

2.2 Constructing objects with dependency injection
Let’s look at one such scenario with a
dependency injector named Guice. In
this example, we will let Guice create and
assemble an Emailer for us and provide it
with dependencies (an English spell-
checker). See figure 2.5.

Guice.createInjector().getInstance(Emailer.class).send("Hello");

Notice that we created the injector and obtained the emailer from it, all in one
line—this is an example of the on-demand bootstrapping of injectors. In the example,
we have done three things worth talking about:

1 Created the injector.
2 Obtained an instance of Emailer from the injector.
3 Signaled the Emailer to send an email message.

Desktop
Application

Bootstrap
Injector

Figure 2.2 Injector is bootstrapped
during a desktop application’s startup.

Desktop
Application

Bootstrap
Injector

(injector used) (injector used)

Bootstrap
Injector

Figure 2.3 Injector is bootstrapped
every time it is needed (on demand).

Desktop
Application

Bootstrap
Injector

(injector used)

Figure 2.4 Injector is bootstrapped
on first use (lazily).

Emailer English
SpellChecker

- spellChecker

- sendMail()

Figure 2.5 A class model of the emailer and
English spellchecker

24 CHAPTER 2 Time for injection
Figure 2.6 illustrates this sequence.
 Let’s break down this example in code.

The first invocation is a simple static method
that asks Guice for a new injector:

Guice.createInjector()

We can think of Guice as a factory class for
dependency injectors (recall the Factory pat-
tern from chapter 1). This is fairly straightfor-
ward. The second invocation is of greater
interest; it asks the injector for an instance
of Emailer:

Guice.createInjector().getInstance(Emailer.class)

The Emailer obtained from our injector is properly wired with its dependencies, so
when it needs to send a message it can call on its SpellChecker to do the spelling ver-
ification—all very tidy with a single-use injector:

Guice.createInjector().getInstance(Emailer.class).send("Hello!");

This, of course, is functionally identical to the more verbose form:

Injector injector = Guice.createInjector();
Emailer emailer = injector.getInstance(Emailer.class);
emailer.send("Hello!");

This is reasonable at first glance and seems to have brought us some kind of compel-
ling result. However, upon closer inspection it evokes a sense of déjà vu. Remember
this?

Emailer emailer = (Emailer) new ServiceLocator().get("Emailer");

Comparing this to obtaining an emailer from the injector yields more than a suspi-
cious similarity:

Emailer emailer = injector.getInstance(Emailer.class);

It looks as though injector is performing the role of a Service Locator pattern and
that I’ve used Emailer.class as a key that identifies emailers. As we’ve already noted,
keys need not be strings, so it seems I have indeed used a Service Locator. That can’t
be right, can it? Well, yes, because an injector can itself be used as a Service Locator.

 So what is the hype really about? In a sense the injector is an automated, all-purpose
service locator prepackaged for convenience. This is a fair characterization, but with
three important differences, and the hype is really about these three things:

■ Client code (the Emailer) is not invoking the injector, unlike with service locators.
Rather, it is the application bootstrapper that invokes the injector. The key dif-
ference here is that the latter does not participate in the behavior of the program.

Ask injector for an
Emailer by key

Application

Bootstrap
injector

Obtain
instance

Use
service

Figure 2.6 Injector obtains emailer for a
client, which is then used to send mail.

25Constructing objects with dependency injection
■ Only a root object is obtained from the injector. This object is generally the entry
point of an application and is typically requested only once. This means that no
matter how many client-service systems exist within the application, their cre-
ation, injection, and usage cascades from the root object. For example, an
HTTP servlet is a root object, with data-source dependencies injected into it.

■ The injector obtains instances within the current execution context. In other words,
the instance returned may or may not be different depending on the state of
the application and the current context. This is known as scoping and is a very
powerful feature of dependency injection—one that essentially separates it
from Service Location. See chapter 5 for more on scopes.

In most real-world applications the act of obtaining and running objects is typically
done for you by integration layers, such as the guice-servlet1 extension does with HTTP
servlets and Guice. Many DI libraries provide such integration layers out of the box.

 This introduces us to the notion that a single unit is an entry point into a program,
like a starting line from which other objects (dependencies) stem. The “offspring” of
the root object are built and wired as required. In turn, each object may construct and
call several of its own dependencies, and so on down the tree of dependencies. This
cascading creation of objects is called viral injection.

 Unlike traditional Service Location patterns this means your code is not explicitly
dependent on a service (the dependency injector). Of course, apart from this is the
not-insignificant fact that you don’t have to write, test, or maintain the injector itself.

 So what do our Emailer (client) and its SpellChecker (dependency) look like?
Listing 2.1 has one version.

import com.google.inject.Inject;

public class Emailer {
 private SpellChecker spellChecker;

 @Inject
 public Emailer(SpellChecker spellChecker) {
 this.spellChecker = spellChecker;
 }

 public void send(String text) {
 spellChecker.check(text);
 //send if ok..;
 }
}

Notice the @Inject2 annotation B placed on Emailer’s constructor. This piece of
metadata tells Guice to use the annotated constructor. The injector constructs and

1 Guice-servlet allows your HTTP servlets to be created and injected by Guice. A detailed example is provided
in chapter 5. For more on guice-servlet, visit http://code.google.com/p/google-guice.

Listing 2.1 An emailer with a spellchecker

2 The @Inject annotation ships with Guice’s library distribution.

Dependencies, wired
via constructor

B

An annotation
tells Guice to use
this constructor

Dependency used
directly when needed

26 CHAPTER 2 Time for injection
wires the Emailer using it. Guice inspects classes at runtime and determines how to
build them. It detects that SpellChecker must also be constructed and provided to
Emailer before it is ready to use.

NOTE Annotations are a feature of Java that allow classes and programs to be
enhanced with extra information. Tools, libraries, or even humans can
use them to glean additional meaning or intent about the program.
Annotations do not manipulate program semantics directly but instead
provide a standard way of enhancing them along with appropriate tools.

When send() is called, Emailer has been wired with a SpellChecker and can be
called on to check() spelling.

 In the popular Spring Framework, the same thing is achieved with slightly differ-
ent annotations:

import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.stereotype.Component;

@Component
public class Emailer {
 private SpellChecker spellChecker;

 @Autowired
 public Emailer (SpellChecker spellChecker) {
 this.spellChecker = spellChecker;
 }

 public void send(String text) {
 spellChecker.check(text);
 //send if ok..;
 }
}

What we see here is one way of passing an injector some information via program
metadata. In the next section, we’ll see how injectors are configured in different ways.

2.3 Metadata and injector configuration
Annotations and custom attributes are an elegant and unintrusive form of metadata
that helps indicate some information about your code to an injector, namely, which
constructor to use (and consequently what its dependencies are).

 In essence, what I did was to use the @Inject annotation to configure the injector
(@Autowired and @Component for Spring), providing it with the appropriate informa-
tion it needed to construct the Emailer. DI libraries provide a number of mechanisms
for configuring the injector (as shown in figure 2.7):

■ Using an XML configuration file
■ Invoking into a programmatic API
■ Using an injection-oriented DSL
■ By inference; that is, implicitly from the structure of classes
■ By inference from annotated source code

Instead of
@Inject

27Metadata and injector configuration
Or some combination of mechanisms.
 That’s certainly a lot of options. And choosing among them doesn’t always come

down to taste. Before judging the effectiveness of each option, let’s take our emailer
out for a spin with a couple of available options.

2.3.1 XML injection in Spring

Spring’s primary mode of configuration is an XML file. Though Spring offers many
alternatives (we saw one with @Autowired), the XML configuration is its most easily
identified and common configuration mechanism. Recall our three wonted steps:

■ Creating the injector
■ Obtaining a component instance from it
■ Using the instance to send mail (spamming away!)

In Guice this was written as:

Guice.createInjector().getInstance(Emailer.class).send("Hello!");

Translating to Spring yields the following:

Application

Injector
Class

introspection
XML

@Inject
public
void...

Annotated code

DSL

bind(My.class)
.to(Your.class)
.in(..)

Programmatic
API

addComponent(A)
addComponent(B)
...

Figure 2.7 An injector can be
configured in several different ways.

28 CHAPTER 2 Time for injection

e
ces
iler
BeanFactory injector = new FileSystemApplicationContext("email.xml");
Emailer emailer = (Emailer) injector.getBean("emailer");
emailer.send("Hello!");

Here, BeanFactory refers to the Spring dependency injector. The call to getBean() is
analogous to the original call to getInstance(). Both return an instance of Emailer.
One interesting difference is that we use a string key to identify emailers (and are
therefore required to downcast3 it into the variable emailer):

Emailer emailer = (Emailer) injector.getBean("emailer");

Notice that sending an email remains exactly the same in both DI libraries:

emailer.send("Hello!");

This is an important point, because it means that using code for its original, intended
purpose remains exactly the same regardless of what library you choose. And it under-
lines the fact that dependency injection is not an invasive technique.

 Note also how an injector is created. Rather than using a Factory, I’ve used construc-
tion by hand to create a FileSystemApplicationContext and assigned it to a variable
of type BeanFactory. Both BeanFactory and FileSystemApplicationContext refer to
Spring’s injector. The latter is a specific kind of BeanFactory (just like an English-
SpellChecker is a specific kind of SpellChecker).

 The file email.xml contains the configuration required for Spring’s injector to pro-
vide us with an emailer correctly wired with its dependencies. Listing 2.2 shows what
email.xml looks like, and figure 2.8 shows how this works.

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.springframework.org/schema/beans

http://www.springframework.org/schema/beans/spring-beans-2.5.xsd" >

 <bean id="emailer" class="Emailer">
 <constructor-arg ref="spellChecker"/>
 </bean>

 <bean id="spellChecker" class="SpellChecker"/>
</beans>

Let’s look at this in some detail. For clarity, we will omit the boilerplate XML schema
declaration4 at the top of the file B. First, a <bean> tag C declares a component of

3 Downcasting (or casting) is the checked process of converting an instance of a general type into that of a more
specific type; this is typically done by assigning the instance to a variable of the target type. In the given case,
the general type Object is cast into a more specific type Emailer.

Listing 2.2 Spring’s injector configuration, email.xml

4 An XML schema is a formal description of the structure of an XML document toward a particular purpose.
In this case, it describes the legal form and structure of a Spring configuration file.

Boilerplate to
declare this
 as a Spring

configuration file

B

D

Inject
 object bound to

“spellChecker”
C

Declar
instan
of EmaEDeclare instances of SpellChecker

29Metadata and injector configuration
class Emailer bound to the string identifier "emailer." This identifier is the key used
to identify instances of Emailer in the vocabulary of the injector.

 <bean id="emailer" class="Emailer">

Recall that in Guice the key served as both identifier as well as the binding to the
Emailer class and was implicit. In Spring’s XML, this binding takes the form of an
explicit declaration in a <bean> element. Dependencies of Emailer are similarly
declared in their own <bean> tags, in this case a SpellChecker:

 <bean id="spellChecker" class="SpellChecker">

Now turn your attention back to the first <bean> tag D, where the interesting part
lies:

 <bean id="emailer" class="Emailer">
 <constructor-arg ref="spellChecker"/>
 </bean>

The <constructor-arg> tag tells Spring to use constructor wiring. It also indicates
that Emailer instances should be wired with objects identified by a string key,
"spellChecker." SpellChecker itself is declared E in another <bean> tag. This
method of configuration has the somewhat useful advantage of being explicit about
everything, but that is not necessarily a benefit in itself. As you will see later, it can be
more flexible under certain circumstances. Also worth mentioning is a more compact
rendering that does the same job for us:

<beans ...>
 <bean id="emailer" class="Emailer">
 <constructor-arg><bean class="SpellChecker"/></constructor-arg>
 </bean>
</beans>

Application
sends email

Injector

Emailer

SpellChecker

Configuration

AB

Emailer

Figure 2.8 An emailer is wired with a
spellchecker as per configuration by the injector.

30 CHAPTER 2 Time for injection
In this case, I’ve nested the declaration of SpellChecker inside Emailer’s constructor-
argument tag and omitted its identifier altogether. This is nicer for a couple of reasons:

■ The description of SpellChecker is available right inside that of Emailer.
■ SpellChecker is not exposed via its own identifier. Therefore it can be obtained

only within the context of a Emailer.

Both these ideas provide us with a neat encapsulation of Emailer and its dependen-
cies. Dependency encapsulation means you can’t accidentally wire a SpellChecker
meant for an Emailer to some other object (a Klingon editor, for example).

 This concept of encapsulation is roughly analogous to class member encapsulation,
which you should be familiar with in Java code. Listing 2.3 revisits our original
Emailer’s source code for Spring.

public class Emailer {
 private SpellChecker spellChecker;

 public Emailer(SpellChecker spellChecker) {
 this.spellChecker = spellChecker;
 }

 public void send(String text) {
 spellChecker.check(text);
 //send if ok...;
 }
}

There is no change—except that now I no longer need Guice’s annotations and can
safely remove them, leaving me with a pristine, shiny Emailer.

2.3.2 From XML to in-code configuration

Both Spring and Guice provide the notion of explicit configuration (in Spring, as you
saw, via XML). The advantage to this approach is that you have a central directory of
all the services and dependencies used in a particular application. In a large project
with many developers working on the same source code, such a directory is especially
useful. In Guice this file is called a Module.

 Guice modules are regular Java classes that implement the com.google.inject.
Module interface (shown in listing 2.4).

import com.google.inject.Binder;
import com.google.inject.Module;

public class MyModule implements Module {
 public void configure(Binder binder) {
 ...
 }
}

Listing 2.3 The emailer, stripped of annotations

Listing 2.4 A typical Guice module

private keyword hides
(encapsulates) members

31Metadata and injector configuration
Services are registered by using the given binder and making a sequence of calls that
configure Guice accordingly. This is similar to the XML <bean> tags you saw in the pre-
vious section. Listing 2.5 shows how to declare an emailer’s bindings explicitly.

import com.google.inject.Binder;
import com.google.inject.Module;

public class EmailModule implements Module {

 public void configure(Binder binder) {
 binder.bind(Emailer.class);
 binder.bind(SpellChecker.class);
 }
}

This is pretty simple.

TIP To save yourself some typing, extend the AbstractModule class, which is
a convenience provided by Guice. This marginally neater version with
exactly the same semantics is shown in listing 2.6.

import com.google.inject.AbstractModule;

public class EmailerModule extends AbstractModule {

 @Override
 protected void configure() {
 bind(Emailer.class);
 bind(SpellChecker.class);
 }
}

Listings 2.5 and 2.6 are pretty close to Spring’s XML configuration. You should be able
to see the similarity quite easily:

<beans ...>
 <bean id="emailer" class="Emailer">
 <constructor-arg ref="spellChecker"/>
 </bean>

 <bean id="spellChecker" class="SpellChecker"/>
</beans>

Before we look at keys and bindings (tying keys to their services) in greater detail, let’s
look at a few more cool DI libraries.

2.3.3 Injection in PicoContainer

Guice configures the injector with annotations and optionally via inference; similarly
Spring provides an XML facility for explicit injector configuration. Yet another alter-
native is provided by PicoContainer—this is similar to inference but takes the form of
a programmatic API.

Listing 2.5 Guice module registering emailers

Listing 2.6 Slightly neater module registering emailers

Register keys/services
explicitly

Alternative to
implementing Module

Service binding
is more concise

32 CHAPTER 2 Time for injection
First, create the injector. Then grab an emailer from it, and dispatch those endearing
greeting emails.

MutablePicoContainer injector = new DefaultPicoContainer();
injector.addComponent(Emailer.class);
injector.addComponent(SpellChecker.class);
injector.getComponent(Emailer.class).send("Hello!");

This is much closer to the original Guice version with the only real difference being
that we use construction by hand to create the injector itself, namely, a DefaultPico-
Container. The method getComponent() is exactly like getInstance() in Guice (and
getBean() in Spring), taking Emailer.class as an identifier.

NOTE Unless you are using PicoContainer 2.0, you will need to downcast the
returned instance to type Emailer. In this example (and for the rest of this
book), I’ve preferred PicoContainer 2.0, as it takes advantage of Java 5 and
generics to add a measure of type safety.

What’s this line doing here?

injector.addComponent(Emailer.class);

That appears to be a bit more than the three sweet steps of our wonted familiarity. In
fact, what we have done is combine bootstrap and configuration in the same sequence

5 Read more of Eric’s comic strips at http://stuffthathappens.com.

Figure 2.9 An ironic comic
strip about Guice and creator
Bob Lee from Eric Burke5

33Metadata and injector configuration
of method calls. The source code for Emailer itself does not change. So how does the
injector know about Emailer’s dependencies? There has been no explicit description
of SpellCheckers and whether or not to use constructor wiring. Nor have we anno-
tated the class itself with @Inject or anything like it.

 By default, PicoContainer prefers con-
structor wiring and greedily looks for avail-
able constructors. Greedy, in this sense, re-
fers to the widest set of arguments that it can
successfully provide to a class’s constructor.

 This can seem somewhat counterintui-
tive, but let’s explore an example. For con-
sistency (and because it is cool), I will stick
with the emailer. If we imagine that the
emailer now requires an editor to write mes-
sages in (listing 2.7 and figure 2.10), this can
be modeled as a second dependency.

public class Emailer {

 private SpellChecker spellChecker;
 private TextEditor editor;

 public Emailer(SpellChecker spellChecker) {
 this.spellChecker = spellChecker;
 }
 public Emailer(SpellChecker spellChecker, TextEditor editor) {
 this.spellChecker = spellChecker;
 this.editor = editor;
 }

 public void send() {
 spellChecker.check(editor.getText());
 // send if ok.. .
 }
}

Method send() now calls editor.getText() B to get the contents of the composed
message and send it. Listing 2.8 shows the changes to injector configuration required
for this new functionality.

MutablePicoContainer injector = new DefaultPicoContainer();
injector.addComponent(Emailer.class);
injector.addComponent(SpellChecker.class);
injector.addComponent(TextEditor.class);
Emailer emailer = injector.getComponent(Emailer.class);

This code works because PicoContainer greedily picks the second constructor (the one
with a greater number of arguments). This default behavior is confusing but fortunately

Listing 2.7 The emailer, now with two dependencies

Listing 2.8 Injector bootstrap and using the emailer with its engine

Second constructor
accepts both

dependencies

B

Method
send() directly
retrieves text
from the editor

Emailer English
SpellChecker

- spellChecker

- sendMail()

TextEditor

- textEditor

Figure 2.10 Emailer with two dependencies:
SpellChecker and TextEditor

34 CHAPTER 2 Time for injection
can be changed to suit your preference. We’ve now seen a couple of forms of configu-
ration that tell a dependency injector how to construct objects. Next we’ll use a different
idiom: showing the injector how to construct objects.

2.3.4 Revisiting Spring and autowiring

I mentioned in several places that Spring also supports other configuration styles,
including the inference style of Guice. One compelling style it offers that you will come
across very often is autowiring. Autowiring, as the name suggests, is a mode where Spring
automatically resolves dependencies by inference on class structure. Back to our email
scenario, if this is the structure of the object I want to build with autowiring:

public class Emailer {
 private SpellChecker spellChecker;

 public Emailer(SpellChecker spellChecker) {
 this.spellChecker = spellChecker;
 }

 public void send(String text) {
 spellChecker.check(text);

// send if ok...
 }
}

then I can have Spring wire Emailer’s SpellChecker dependency without explicitly
specifying it:

<beans ...>
 <bean id="spellChecker" class="SpellChecker"/>

 <bean id="emailer" class="Emailer" autowire="constructor"/>
</beans>

Attribute autowire="constructor" informs the injector to guess dependencies by
introspecting on Emailer’s constructor. While we still had to register all the available
dependency classes in the XML file, there was no need to specify how the graph is
wired. Now when an instance of Emailer is constructed, it is automatically wired with a
SpellChecker (see figure 2.11):

BeanFactory injector = new FileSystemXmlApplicationContext("email.xml");
Emailer emailer = (Emailer) injector.getBean("emailer");

And the sending of emails can continue unfettered!

emailer.send("Hello!");

Constructor autowiring can save you a lot of typing in XML, though it does force you
to look in two places to understand your object graph. It is especially useful if most of
your dependencies are of unique types, that is, without many variants. And it is partic-
ularly useful if you can enforce the convention of only one constructor per class.

 From Spring 2.5, you can even resolve the ambiguity between multiple construc-
tors in a class by placing an @Autowired annotation on the particular constructor you

35Metadata and injector configuration
are interested in. Recall this from earlier in the chapter where we used it in place of
@Inject. For example:

@Component
public class Emailer {
 private SpellChecker spellChecker;

 public Emailer() {
 this.spellChecker = null;
 }

 @Autowired
 public Emailer(SpellChecker spellChecker) {
 this.spellChecker = spellChecker;
 }

 public void send(String text) {
 spellChecker.check(text);
 }
}

@Autowired performs the same role as Guice’s @Inject (in addition to @Component
annotation placed on the class itself). It instructs the injector to choose the annotated
constructor when introspecting the class for injection. Remember that you still need
to place a <bean> tag in XML to make Spring aware of autowired classes:

<beans ...>
 <bean id="spellChecker" class="SpellChecker"/>

 <bean id="emailer" class="Emailer"/>
</beans>

Note the absence of any explicit wiring directive (<constructor-arg> or <prop-
erty>) that we used in the pure XML configuration system. Note also the more con-
spicuous absence of the autowire="..." attribute, which is unnecessary now that we
have @Autowired.

Injector

(introspects)(introspects)

(autowired)

AB

(autowired)

AB
Figure 2.11 Emailer autowired with its
SpellChecker with no explicit configuration

36 CHAPTER 2 Time for injection
 Like Guice, this method is both concise and exemplar. In other words, what you see
in constructor code is what you get in the object graph. The next few sections exam-
ine this concept in detail.

2.4 Identifying dependencies for injection
We’ve already seen that a service generally has some kind of identity, whether an
arbitrary string identifier, the class it belongs to, or some other combinatorial key. In
this section we will briefly examine a few approaches and the benefits or drawbacks
of each.

 First, let’s formally address what it means to identify components and dependen-
cies. Recall our discussion of the construction and assembly of object graphs from
chapter 1. Essentially, a dependency is some implementation of a service. It may only
be a flat object with no dependencies of its own. Or it may be an object with a vast
graph of interconnected dependencies, which themselves have dependencies, and
so on.

 To sum up:

■ A dependency is any particular permutation of objects in a graph that repre-
sents the original service; that is, all permutations obey the same contract.

■ Permutations of the same service may be thought of as variants (or implementa-
tions) of that service.

Recall the example of the French and English Emailers. They are two variants of the
same service (formed by two different object graphs). As shown in listing 2.9, depen-
dent Emailer is the same for either variant.

public class Emailer {
 private SpellChecker spellChecker;

 public Emailer(SpellChecker spellChecker) {
 this.spellChecker = spellChecker;
 }

 public void send(String text) {
 spellChecker.check(text);
 // send if ok...
 }
}

interface SpellChecker {
 public boolean check(String text);
}

class FrenchSpellChecker implements SpellChecker {
 public boolean check(String text) {
 //perform some checking...
 }
}

Listing 2.9 An email service with French or English spellcheckers

Injected spellchecker
wired via constructor

Provided dependency
is used transparently

Interface represents
Emailer’s dependency

French implementation
of SpellChecker

37Identifying dependencies for injection
class EnglishSpellChecker implements SpellChecker {
 public boolean check(String text) {
 //perform some checking...
 }
}

Were we to construct them by hand, there would be two possible paths to take. First,
for the English email service (the one with the English spellchecker):

Emailer emailer = new Emailer(new EnglishSpellChecker());
emailer.send("Hello!");

Second, the version with French spelling:

Emailer emailer = new Emailer(new FrenchSpellChecker());
emailer.send("Bonjour!");

In both these cases, we want an Emailer but with different dependencies set. Using a
simple string identifier such as emailer or a class identifier like Emailer.class is
clearly insufficient. As an alternative we might try these approaches:

■ Use a more specific string identifier, for example "englishEmailer" or
"frenchEmailer"

■ Use the class identifier Emailer.class together with a discriminator, for exam-
ple, the ordered pair [Emailer.class, "english"]

Existing DI libraries use various methods to solve this problem, usually by falling into
one of the two aforementioned paths. Both these options give us an abstract identity
over a particular service implementation. Once its object graph has been described, a
service implementation is easily identified by this abstract identity (which we refer to
as its key).

 If you wanted to use one particular implementation instead of another, you’d only
need to point the dependent to its key. Keys are also essential when we want to lever-
age other features of dependency injectors, such as:

■ Interception —Modifying an object’s behavior
■ Scope —Managing an object’s state
■ Lifecycle —Notifying an object of significant events

Keys provide a binding between a label and the object graph that implements the ser-
vice it identifies. The rest of this chapter will focus primarily on the merits and demer-
its of approaches to keys and bindings.

2.4.1 Identifying by string keys

A key that explicitly spells out the identity of the service implementation should gen-
erally have three properties:

■ It is unique among the set of keys known to an injector; a key must identify only
one object graph.

English implementation
of SpellChecker

38 CHAPTER 2 Time for injection
■ It is arbitrary; it must be able to identify particular, arbitrary service implementa-
tions that a user has cooked up. In other words, it has to be more flexible than
the service name alone.6

■ It is explicit; it must clearly identify the object graph, preferably to the letter of
its function.

While these are not hard-and-fast rules, they are good principles to follow. Too often,
people dismiss the worth of clear and descriptive keys. Let’s look at real-world examples:

 A Set in Java is a data structure that has many implementations. Among other
things, the contract of Set disallows duplicate entries. The core Java library ships with
the following implementations of Set:

■ java.util.TreeSet—A binary-tree 7 implementation of the Set service
■ java.util.HashSet—A hash-table 8 implementation of the Set service

How should we choose keys for these variants? The names of these implementations
give us a good starting point—nominally, "binaryTreeSet" and "hashTableSet."
This certainly isn’t rocket science! These keys are explicit, sufficiently different from
one another to be unique, and they clearly identify the behavior of the implementa-
tion (either binary-tree or hash-table behavior). While this may seem fairly obvious, it
is not often the case. You’d be surprised at how many real-world projects are obfus-
cated with unclear, overlapping keys that say little if anything about an object graph. It
is as much for your benefit as the developer and maintainer of an application as it is
for the dependency injector itself that you follow these guidelines. Lucid, articulate
keys are easily identified and self-documenting, and they go a long way toward pre-
venting accidental misuse, which can be a real nuisance in big projects.

 I also strongly encourage use of namespaces, for example, "set.BinaryTree" and
"set.HashTable," which are nicer to read and comprehend than "binaryTreeSet"
and "hashTableSet." Namespaces are a more elegant and natural nomenclature for
your key space and are eminently more readable than strings of grouped capitalized
words. An email service with a French bent might be "emailer.French," and its coun-
terparts might be "emailer.English," "emailer.Japanese," and so forth.

 I am especially fond of namespaces in dependency injection. Their value was imme-
diately apparent to me the first time I was on a project with a very large number of XML
configuration files. They allowed my team and me to clearly separate services by areas
of function and avert the risk of abuse or misapprehension. For instance, data services
were prefixed with dao (for Data Access Object) and business services with biz. Helper
objects that sat at the periphery of the core business purpose were confined to a util.

6 Recall the example of SpellChecker (the service) being insufficient to distinguish between its English and
French implementations.

7 A binary tree is a data structure in which each stored item may have two successors (or children), starting at
a single root item.

8 A hash table is a data structure designed to store and look up entries in a single step using a calculated address
known as a hash code.

39Identifying dependencies for injection
namespace. I can’t emphasize enough how useful this was for us. Consider some of the
changes we made in a vast system of objects and dependencies identified solely by
string keys (also see figure 2.12):

■ UserDetailsService became dao.User.
■ UserDataUtils became util.Users.
■ DateDataUtils became util.Dates.
■ UserService became biz.Users.

The astute reader will appreciate how much clearer—and more succinct—the latter
form is. Of course, there is nothing new or innovative about the concept of
namespaces, though one rarely sees it preached in documentation.

 Spring and its XML configuration mechanism benefit heavily from this approach.
If we were to declare the variant implementations of a Set, they may look something
like this:

<beans ...>
 <bean id="set.HashTable" class="java.util.HashSet"/>

 <bean id="set.BinaryTree" class="java.util.TreeSet"/>
</beans>

And obtaining these objects from the injector accords to their keys:

BeanFactory injector =
 new FileSystemXmlApplicationContext("treesAndHashes.xml");
Set<?> items = (HashSet<?>) injector.getBean("set.HashTable");

For a more complete scenario, consider this pattern for the email service and its two
variant spellcheckers (listing 2.10).

<beans>
 <bean id="spelling.English" class="EnglishSpellChecker"/>

 <bean id="emailer.English" class="Emailer">

Listing 2.10 Variants of an email service using namespaces

UserDetailsService

- Users

UserDataUtils

DateDataUtils
UserService

- Dates

util

- Users

dao biz

- Users
Figure 2.12
Organizing string keys
into namespaces

40 CHAPTER 2 Time for injection
 <constructor-arg ref="spelling.English"/>
 </bean>

 <bean id="spelling.French" class="FrenchSpellChecker"/>

 <bean id="emailer.French " class="Emailer">
 <constructor-arg ref="spelling.French"/>
 </bean>
</beans>

Better yet, listing 2.11 is a more compact, encapsulated version of the same.

<beans ...>
 <bean id="emailer.English" class="Emailer">
 <constructor-arg><bean class="EnglishSpellChecker"/></constructor-arg>
 </bean>

 <bean id="emailer.French" class="Emailer">
 <constructor-arg><bean class="FrenchSpellChecker"/></constructor-arg>
 </bean>

 <bean id="emailer.Japanese" class="Emailer">
 <constructor-arg><bean class="JapaneseSpellChecker"/></constructor-arg>
 </bean>

</beans>

By now, you should be starting to appreciate the value of namespaces, encapsulation,
and well-chosen keys. Remember, a well-chosen key is unique, arbitrary, and explicit.
When you must use string keys, choose them wisely. And use namespaces.

 To drive the point home, look at the following two setups in pseudocode: one that
uses poorly chosen keys and a flat keyspace and a second that conforms to our princi-
ples of good key behavior. Listing 2.12 shows an injector configuration with bad keys
and no namespaces. Ugly! Wouldn’t you agree?

 configure() {

 personService { ... }
 personDataService { ... }
 personnelSoapService { ... }

 userAuth { ... }
 userAuthz { ... }

 userService { ... }
 database { ... }

 app {
 app = new Application()
 ...
 }
 }

Listing 2.11 A compact form of listing 2.10

Listing 2.12 Poorly chosen keys for services (in pseudocode configuration)

Start configuration

Services for personnel
management

Security
services

Wiring logic goes here

41Identifying dependencies for injection
Now compare this with listing 2.13 (and figure 2.13), which presents an improved ver-
sion of the same configuration. Much better!

configure() {

 define namespace :biz {
 biz.personnel { ... }
 biz.user
 }

 define namespace :data {
 data.database { ... }
 data.personnel { ... }
 }

 define namespace :soap {
 soap.personnel { ... }
 }

 define namespace {
 security.authentication { ... }
 security.authorization { ... }
 }

}

main {
 personnelService = injector.biz.personnel
 personnelDao = injector.data.personnel

}

String keys are flexible, and if chosen well they work well. But well chosen or not,
string keys have limitations that can be confounding and rather, well, limiting! Let’s
talk about some of them.

Listing 2.13 Good-practice version of listing 2.12

Services organized into biz namespace

Data objects are in data namespace

Security object keys
named lucidly

Get and use instances
from injector

personService

- authentication
- authorization

userService

personDataService
userAuth

security

- database
- personnel

data biz

- personnel
- user

personnelSoapService

userAuthz

database

- personnel

soap

Figure 2.13 Services with similar names
organized clearly by namespace

42 CHAPTER 2 Time for injection
2.4.2 Limitations of string keys

String keys are inherently problematic when one factors human error into the equa-
tion. We have all been there. Take the possible ways to spell a common name, for
example:

■ Alan
■ Allan
■ Alain
■ Allen
■ Allun (an Irish variant)

This is a short name (two syllables) and it does not incur the distractions of case and mul-
tiple-word capitalization.9 Yet we can barely agree on a spelling even in the English-
speaking world. Mistyping and misreading exacerbates the problem. It is not a stretch
to imagine how things can get out of hand very quickly with a large number of services
identified by many similar-looking (and sounding) keys. A misspelled key that maps to
no valid service can be difficult to detect until well into the runtime of the program.

 Furthermore, if you are working with a statically typed language like Java, this is a
poor sacrifice to have to make. These languages are supposed to offer guarantees
around type validity at compile time. Ideally, one should not have to wait until run-
time to detect problems in key bindings.

Sometimes tools like IDEs or build agents can help do this extra level of checking for
you, during or before compilation. IntelliJ IDEA11 provides plug-ins for Spring for just
this purpose. Naturally, it is difficult for any tool to guarantee the correct resolution of
dependencies into dependents without bootstrapping the injector and walking across
every bound object (or just about every one). As a result, this problem can arise often
in injectors that use string keys.

9 A phrase or set of words in a key is often delimited by capitalizing each first letter. For example, “Technicolor
dream coat” would be written as TechnicolorDreamCoat or technicolorDreamCoat, which are two forms
of the CamelCase convention.

10 Do not confuse static and dynamic typing with strong and weak typing, or indeed with duck typing.
11 IntelliJ IDEA is an advanced Java IDE developed by JetBrains. It is usually at the forefront of innovation in

developer productivity. Find out more at http://www.jetbrains.com.

Static and dynamic typing10

Types are specific classes of data in a programming language. For example, the num-
ber 32 is of an Integer type. Types may also be user defined, such as Car or Song.
Before operations on data can occur, the data’s particular type must be determined.
This is known as type resolution. A dynamically typed language resolves types when
an operation is performed, whereas a statically typed language resolves types when
an operation is defined (typically, but not necessarily, at compile time).

43Identifying dependencies for injection
 In your injector configuration there is no way to determine the type of a binding
if all you have is a string key. Without starting up the injector and inspecting the spe-
cific instance for a key, it is hard to determine what type the key is bound to. Take
the following example of a game console (the Nintendo Wii) and a game to be
played on it:

<beans>
 <bean id="nintendo.wii" class="com.nintendo.Wii">
 <constructor-arg ref="game.HalfLife"/>
 </bean>

 <bean id="game.HalfLife" class="com.valve.HalfLifeGame"/>

</beans>

Here our keys appear reasonably well chosen: they are unique, arbitrary, and explicit
(and they use namespaces). I’ve followed every tenet of good key behavior but some-
thing is horribly wrong with this injector configuration. The program crashes when I
try to run it. To understand why, delve into the code behind these bindings:

package com.nintendo;

public class Wii {
 private WiiGame game;
 public Wii(WiiGame game) {
 this.game = game;
 }

 public void play() { .. }
}

The Nintendo game system takes an argument of type WiiGame via its constructor. This
dependency represents a game I want to play (I enjoy Half-Life so let’s go with that) and
is loaded by the game system when play() is called. This is the game Half-Life:

package com.valve;

public class HalfLife implements PCGame {
 public void load() { .. }
}

Oh, no! Half-Life is a game for the PC,
not the Wii! It is not an instance of Wii-
Game and therefore cannot be wired into
Wii’s constructor (see figure 2.14).

 In Java, executing this program and
requesting an instance by key nintendo.
wii will result in an UnsatisfiedDepen-
dencyException being thrown. This indi-
cates that the configured binding is of the
wrong type for Wii’s dependency, and it
cannot be converted to the right type.

Game is wired
via constructor

Wii

PCGame

WiiGame

HalfLife

<< interface >>

- game

<< interface >>

Figure 2.14 Wii and game HalfLife, which
implements the wrong interface, PCGame

44 CHAPTER 2 Time for injection
More significant for us, however, is the fact that what appeared to be a perfectly well-
written injector configuration turned out to be fatally flawed. Worse, there was no way
to detect this until the offending object graph was constructed and used. This highlights
a serious limitation of string keys.

 Once the problem is identified, we can fix it by selecting the correct implementa-
tion of Half-Life. Listing 2.14 shows this fix, illustrated in figure 2.15.

<beans>
 <bean id="nintendo.wii" class="com.nintendo.Wii">
 <constructor-arg ref="game.HalfLife"/>
 </bean>

 <bean id="game.HalfLife" class="com.valve.wii.HalfLife"/>

</beans>

This time, the game is of the appropriate type and everything works as expected.

package com.valve.wii;

public class HalfLife implements WiiGame {
 public void load() { .. }
}

In large applications with many hundreds
of object graphs, string identifiers incur
many of these problems. No matter what
language or injector you decide on,
poorly chosen keys are a recipe for disas-
ter. Oh, and use namespaces. Seriously!

2.4.3 Identifying by type

We have seen how services are identified
by a type. Recall some of the examples
I’ve used so far in this book:

■ SpellChecker.class identifies EnglishSpellChecker or FrenchSpellChecker.
■ Emailer.class identifies itself.
■ WiiGame.class identifies HalfLife.
■ Wii.class identifies itself.

Unlike strings, referring to a type is not quite the same in all languages, but the essen-
tial semantic is the same. Java uses type literals that are analogous to string literals and
essentially identify the type directly in code:

■ Set.class
■ SpellChecker.class
■ Airplane.class

Listing 2.14 The fixed version of games.xml

Changed to
a variant of
HalfLife

Dependency variant HalfLife
is now of the correct type

Wii WiiGame

HalfLife

- game

<< interface >>

Figure 2.15 HalfLife now correctly
implements WiiGame.

45Identifying dependencies for injection
Identifying by type is a natural and idiomatic way of referring to a dependency. It is
self-descriptive and can be inferred by introspection tools automatically. This has addi-
tional advantages in a statically typed language where types are checked at compile
time and any errors in types are revealed early.

 Look at how identifying by type helps prevent the very error we just saw with string
keys and the incorrect wiring of dependencies. Listing 2.15 revisits the broken depen-
dency where the wrong version of the game HalfLife is used in the game console.

package com.nintendo;

public class Wii {
 private WiiGame game;
 public Wii(WiiGame game) {
 this.game = game;
 }

 public void play() { .. }
}

public class HalfLife implements PCGame {
 public void load() { .. }
}

This time, instead of XML configuration and Spring, I use Guice and its Module binding:

public class MyGamesModule extends AbstractModule {

 @Override
 protected void configure() {
 bind(WiiGame.class).to(HalfLife.class);
 }
}

This injector configuration B will not compile, failing with an error saying there is no
such method to() C taking an argument of type HalfLife. The error is caught nice
and early. What the compiler really means is that type key HalfLife.class refers to
the wrong type. Or, it is not an implementation of WiiGame. Another nice thing is that
bad spelling is also caught early, with a compiler error. IDEs help you catch this kind of
error as you are writing code, and let you smart complete the correct values when typ-
ing, which is especially nice. We can also achieve a similar end using Spring’s JavaCon-
fig configuration mechanism:

@Configuration
public class MyGamesConfig {

 @Bean
 public WiiGame game() {
 return new HalfLife();
 }

 @Bean
 public Wii gameConsole() {

Listing 2.15 The class com.nintendo.Wii bound to key nintendo.wii

Injected game wired
via constructor

HalfLife implements
the wrong type!

B

Configured via
subclasses of Module
or AbstractModule

C
This line results in
a compiler error

Binding of dependency
HalfLife

46 CHAPTER 2 Time for injection
 return new Wii(game());
 }

}

Clearly, identifying by type is a winner when compared to plain string keys. PicoCon-
tainer also offers identifying by type in a similar fashion to what we’ve just seen with
Guice. However, identifying by type does have serious limitations. In the next sections
we’ll explore what these are and how they may be overcome.

2.4.4 Limitations of identifying by type

I’ll wager you’re already familiar
with some of the limitations of type
(or class literal keys). We saw the pri-
mary one at the beginning of this
section—the inability to distinguish
between different implementations
of a service. The type key Car.class
can refer either to BmwZ4s or to Toy-
otaCamrys, as shown in figure 2.16.

 And the injector is none the
wiser as to which one to select and wire to clients of Car. This is irksome if we wanted
to plug in a variety of alternative implementations by just changing keys.

 You can refer to a specific implementation directly (like BmwZ4.class instead of
Car.class), but this is a poor solution and incurs the same problem of the one
default implementation (can’t replace it with a ToyotaCamry). Worse, it is difficult to
test and tightly couples client code to dependencies, which is undesirable.

 Identifying by type can be restrictive in other ways. Recall the three holy tenets of
well-chosen keys that helped make them lucid and maintainable. Keys must be
unique, arbitrary, and explicit. How does identifying by type fare under these tenets?

■ Not unique —Variant implementations of a service are indistinguishable by type
key alone (BMWZ4s and ToyotaCamrys both have type key Car.class).

■ Not arbitrary —A key bears only the label of the service (that is, the dependency).
There is no room to describe arbitrary variants. The game console accepts a
WiiGame, not HalfLife or SuperMarioBrothers. Try getting your kid to spend his
money on a nondescript, gray disc over a shiny new copy of Half-Life.

■ May or may not be explicit —One could argue that there is no better explanation
of the service’s function than its contract. However, were a service contract to
leave some details up to its implementations, or likely to other dependencies,
we would lose all explicit enunciation, as in an Emailer with English spellcheck-
ing rather than French (both identified by Emailer.class).

It does not fare very well at all: one or possibly none out of three important requisites
of good key behavior! Type keys are safer in the context of detecting errors early on,
particularly in statically typed languages like Java and C#, but they are rigid and don’t

Type checked like
normal Java code

Car.class

Car

<< abstract >>

BmwZ4

ToyotaCamry

?

?

Figure 2.16 Which implementation does type key
Car.class refer to?

47Identifying dependencies for injection
offer the breadth of abstraction that string keys do. String keys, on the other hand, are
dangerous through misspelling and can be abstruse and opaque if improperly chosen.
To summarize: type keys are safe but inflexible, and string keys are flexible but unsafe and
potentially confusing.

 It would be ideal if there were a key strategy that was both type and contract safe—and
was flexible enough to wire dependents with many implementations that we could iden-
tify easily. Fortunately for us, combinatorial keys provide the best of both worlds.

2.4.5 Combinatorial keys: a comprehensive solution

Earlier, I described a sample combinatorial key for an English variant of our favorite
email service; it looked like this:

[Emailer.class, "english"]

The ordered pair [Emailer.class, "english"] is one case of a combinatorial key
consisting of a type key and a string key. The type key identifies the service that depen-
dents rely on, in a safe and consistent manner. Its counterpart, the string key, identi-
fies the specific variant that the key is bound to but does so in an abstract manner.
Comparing this combinatorial key with a plain string key, the latter clearly has the
advantage of type safety. Its second part (the string key) provides a clear advantage
over plain type keys because it is able to distinguish between implementations. Let’s
examine this with a couple of examples:

Key 1: [Emailer.class, "english"]
Key 2: [Emailer.class, "french"]
Key X: [Book.class, "dependencyInjection"]
Key Y: [Book.class, "harryPotter"]

Keys 1 and 2 identify object graphs of an email service
with English and French spellchecking, respectively. Keys
X and Y identify two different books.

 Another example we’ve used before is an emailer that
depends on a SpellChecker:

[Emailer.class, "withSpellChecker"]

Consider a more complex take on this example, where
our emailer depends on a SpellChecker, which itself
depends on a dictionary to resolve word corrections (as
figure 2.17 models).

 The combinatorial key identifying this object graph
might look something like:

[Emailer.class, "withSpellCheckerAndDictionary"]

Even complex object graphs with many permutations are
identified easily with combinatorial keys. They also com-
ply with our rules for good key behavior:

Emailer

SpellChecker

- spellChecker

Dictionary

- dictionary

Figure 2.17 A class model
of two levels of dependencies
below emailer

48 CHAPTER 2 Time for injection
■ Keys are unique. The second part to the ordered pair ensures that two imple-
mentations are identified uniquely.

■ Keys are arbitrary. While the dependency is identified by the first part, any spe-
cific behavior exhibited by a custom variant is easily described by the second
part of the key.

■ Keys are explicit. More so than with pure string keys, combinatorial keys are
able to identify both the service contract they exhibit and any specific variation
to the letter of its function.

So, combinatorial keys are safe, explicit, and able to identify any service variants
clearly and precisely. They solve the problems of type-safety that pure string keys can’t,
and they ease the rigidity of pure type keys. And they do so in an elegant manner. The
only drawback is that we have a string part that incurs the problems of misspelling and
misuse identified earlier. For example, it is quite easy to see how the following combi-
natorial keys, relatively safe though they are, can still end up problematic:

[Emailer.class, "englihs"]
[Emailer.class, "English"]
[Emailer.class, "francais"]
[Emailer.class, "withFaser"]
[Emailer.class, "with.SpellChecker"]
[Emailer.class, "With.SpellChecker"]

Each of these keys will result in an erroneous injector configuration that won’t be
detected until runtime. While there are certainly far fewer possible total errors with this
approach, there are nonetheless the same perils and pitfalls so long as we rely on a string
key in any consistent and foundational manner. How then can we fix this problem?

 It turns out we can still keep all the benefits of combinatorial keys and eliminate
the problems that the string part of the key presents. By using an annotation in place of
the string part of the combinatorial key, we get the benefit of a safe key and the flexi-
bility of an arbitrary and explicit string key.

 Consider the following combinatorial keys that are composed of a type and an
annotation type:

[Emailer.class, English.class]
[Emailer.class, WithSpellChecker.class]
[Database.class, FileBased.class]

Misspelling the annotation name results in a compiler error, which is an early and
clear indication of the problem. This is exactly what we were after. What we have done
is effectively replace the string key with a second type key. In combination with the ser-
vice’s type key, this retains the qualities of good behavior in well-chosen keys but also
eliminates the problems posed by arbitrary, abstract strings. This is quite a compre-
hensive and elegant solution. The fact that annotations can be reused also makes
them good for more than the one service:

[Emailer.class, English.class]
[Dictionary.class, English.class]
[SpellChecker.class, English.class]

49Identifying dependencies for injection
We use the @English annotation to distinguish variant implementations of not only
the Emailer but also the Dictionary and TextEditor services. These keys are self-
documenting and still give us the flexibility of a string key. Since annotations are
cheap to create (hardly a couple of lines of code) and reuse, this approach scales
nicely too.

 Guice embodies the use of type/annotation combinatorial keys and was probably
the first library to use this strategy. Listing 2.16 and figure 2.18 show what the injector
configuration might look like for the spellchecking service I presented in the previ-
ous example.

public class SpellingModule extends AbstractModule {

 @Override
 protected void configure() {
 bind(SpellChecker.class)
 .annotatedWith(English.class)
 .to(EnglishSpellChecker.class);

 bind(SpellChecker.class)
 .annotatedWith(French.class)
 .to(FrenchSpellChecker.class);

 }
}

Then using either of these services in a client is as simple as using the appropriate
annotation:

Guice.createInjector(new SpellingModule())
 .getInstance(Key.get(SpellChecker.class, English.class))
 .check("Hello!");

When this code is executed, Guice obtains the SpellChecker instance bound to the
combinatorial key represented by [SpellChecker.class, English.class]. Invoking

Listing 2.16 Guice module binding services to combinatorial keys

[SpellChecker.class, English.class]

SpellChecker

<< interface >>
English

SpellChecker

<< annotation >>

@

English

(bound to)

[SpellChecker.class, French.class]

SpellChecker

<< interface >>
French

SpellChecker

<< annotation >>

@

French

(bound to)

Figure 2.18
Combinatorial type keys
use annotations to identify
variant implementations
of an interface.

50 CHAPTER 2 Time for injection
the check() method on it runs the service method on the correct (that is, English)
implementation.

 This is also easily done in any client of SpellChecker via the use of @English anno-
tation near the injection point of the dependency. Here’s one such example:

public class SpellCheckerClient {

 @Inject
 public SpellCheckerClient(@English SpellChecker spellChecker) {
 //use provided spellChecker
 }
}

This might strike you as odd—while the client does not depend directly on a specific
implementation, it seems to couple via the use of @English annotation. Doesn’t this
mean SpellCheckerClient is tightly coupled to English spellcheckers? The answer is
a surprising no. To understand why, consider the following altered injector configura-
tion:

public class SpellingModule extends AbstractModule {

 @Override
 protected void configure() {
 bind(SpellChecker.class)
 .annotatedWith(English.class)
 .to(FrenchSpellChecker.class);
 }
}

In this example, I’ve changed the service implementation bound to the combinatorial
key [SpellChecker.class, English.class] so that any dependent referring to an
@English annotated SpellChecker will actually receive an implementation of type
FrenchSpellChecker. There are no errors, and SpellCheckerClient is unaware of
any change and more importantly unaffected by any change. So they aren’t really
tightly coupled.

 No client code needs to change, and we were able to alter configuration transparently.
 Similarly, you can build such combinatorial bindings in Spring JavaConfig using

types and method names:

@Configuration
public class EmailConfig {

 @Bean
 public SpellChecker english() {
 return new EnglishSpellChecker();
 }

 @Bean
 public Emailer emailer() {
 return new Emailer(english());
 }

}

Binding of English
spellchecker

Create an
English emailer

51Separating infrastructure and application logic
Here, the combinatorial key is [SpellChecker, english()], the latter being the
name of the method. It performs a very similar function to the @English annotation
we saw just now, though the two approaches differ slightly.

 Now let’s look at how to take this practice a step further and separate code by area
of concern.

2.5 Separating infrastructure and application logic
You have seen how object graphs that represent various services may be created,
assembled, and referenced. You have also seen the steps to creating and using depen-
dency injectors and ultimately the objects that they manage for an application. DI
libraries differ slightly in the manner in which these steps are achieved and the rigor
with which they are performed, but ultimately they all follow the same principles.

 Together, these properties make for lean and focused components with code only
to deal with their primary business purpose, be it:

■ Rendering a web page
■ Sending email
■ Purchasing stock
■ Checking bad spelling

Logic geared toward such purposes is termed application logic. Everything else is meant
only to support and enhance it. Logic for constructing and assembling object graphs,
obtaining connections to databases, setting up network sockets, or crunching text
through spellcheckers is all peripheral to the core purpose of the application.

 While this infrastructure logic is essential to all applications, it is important to distin-
guish it from the application logic itself. This not only helps keep application logic
clear and focused, but it also prevents tests from being polluted with distracting bugs
and errors that may have nothing to do with the code’s purpose. Dependency injec-
tion helps in this regard. Figure 2.19 describes the fundamental injector and object
composition that forms the basis of modern architectures.

Application

Injector

Clients

Services

Configuration

Figure 2.19 Injectors assemble clients
and services as per configuration, into
comprehensive applications.

52 CHAPTER 2 Time for injection
Good DI libraries enforce and exemplify this core ideology. They are as much about
preventing abuse as they are about proffering best practices or flexibility. As such, a DI
library that takes extra steps to prevent you from accidentally shooting yourself in the
foot (by checking bindings at compile time, for instance) is preferable. On the other
hand, DI libraries that offer a great deal of flexibility (and weak type safety) can draw
even experienced developers into traps. This is where careful design is important.
Don’t be afraid to refactor and redesign your code when you discover violations of
good design. A little bit of effort up front to ensure that infrastructure logic remains
separate from application logic will go a long way toward keeping your code readable,
maintainable, and robust throughout its life.

2.6 Summary
This chapter was a headfirst dive into dependency injectors, their configuration, and
their use. You saw how injectors must be bootstrapped with specified configuration
and then used to obtain and perform operations on components they build and wire.
At first, the injector looks no different to a service locator, and this is roughly correct
in the context of obtaining the first, or the root, component from which the rest of an
object graph extends.

 All services that are used as dependencies are labeled by a key, which the injector
uses as a way of referring to them during configuration or service location. The cou-
pling of a key to a particular object graph is called a binding. These bindings deter-
mine how components are provided with their dependencies and thus how object
graphs are ultimately constructed and wired. There are several kinds of keys, the most
common being simply string identifiers, which are common in XML-configured DI
libraries such as Spring, StructureMap, and HiveMind. String keys are flexible and
provide us with the freedom to describe arbitrary and various assemblies of object
graphs that portend a service. Different object graphs that conform to the same set of
rules, that are the same service, may be thought of as different implementations of that
service. String keys allow easy identification of such dependency variants.

 However, string keys have many limitations, and the fact that they are unrestricted
character strings means that they are prone to human error and to misuse and poor
design choices. This leads to the necessity of well-chosen string identifiers that portend
good key behavior. We defined the characteristics of well-chosen keys as being unique,
arbitrary, and explicit. Unique keys ensure that no two object graphs are identified by
the same key accidentally and so ensure that there is no ambiguity when a dependency
is sought. Arbitrary keys are useful in supporting a variety of custom variants of services,
which a creative user may have cooked up. Finally, these keys must also be explicit if they
are to exactly describe what a service implementation does as clearly and concisely as is
possible. Well-chosen keys combined with the use of namespaces greatly improve read-
ability and also reduce the probability of accidental misuse.

 String keys satisfy all of these qualities, but they have serious drawbacks since they
lack the knowledge of the type (or class) they represent. This can result in syntactically

53Summary
correct injector configuration that fails at runtime, sometimes even as late as the first
use of a faultily configured object graph. In rare cases, it can even result in incorrect
dependency wiring without any explicit errors, which is a very scary situation! In a stat-
ically typed language like Java, better solutions are imperative to these problems, espe-
cially in large projects that make use of agile software methods that require rapid,
iterative execution of partial units.

 An alternative is the use of type keys. These are keys that simply refer to the data
type of the service. Type keys solve the misspelling and misuse problem of string keys
but sacrifice a lot of flexibility and abstraction in doing so. PicoContainer is one DI
library that supports the use of type keys. Their primary limitation is the inability to
distinguish between various implementations without directly referring to them in cli-
ent code. As a result, type keys violate almost all of the requirements of well-chosen
keys, though they are safe and help catch errors early, at compile time.

 One solution is to combine the two approaches and use type keys to narrow down
the service’s type and pair it with a string key that distinguishes the specific variant.
These are called combinatorial keys, and they provide all of the flexibility of string
keys and retain the rigor of type keys. PicoContainer also provides for these hybrid
type/string combinatorial keys. However, the use of string identifiers at all still means
that there is a risk of misspelling and accidental misuse. Guice provides a comprehen-
sive solution: the use of custom annotation types in place of the string part of a combi-
natorial key. The combination of the type key referring to a service and an annotation-
type key referring to an abstract identifier to distinguish between implementations
provides for a compelling mitigation of the problems of even partial string keys.

 Finally, whatever DI library you choose, dependency injectors are geared toward
the same goals, that is, separate logic meant for constructing and assembling object
graphs, managing external resources and connections, and so on from logic that is
intended solely for the core purpose of the application. This is called the separation
of infrastructure from application logic and is an important part of good design and
architecture. The majority of the concepts presented in this book revolve around this
core ideology and in many ways serve to emphasize or enhance the importance of this
separation. A successful rendition of dependency injection gives you more time to
focus effort on application logic and helps make your code testable, maintainable,
and concise.

Investigating DI
“The best way to predict the future is to invent it.”
 —Alan Kay

Previously we discussed two methods of connecting objects with their dependen-
cies. In the main we have written classes that accept their dependencies via construc-
tor. We have also occasionally used a single-argument method called a setter method
to pass in a dependency. As a recap, here are two such examples from chapter 1:

public class Emailer {
 private SpellChecker spellChecker;

 public Emailer(SpellChecker spellChecker) {
 this.spellChecker = spellChecker;
 }
}

This chapter covers:
■ Learning about injection by setter and constructor
■ Investigating pros and cons of injection idioms
■ Identifying pitfalls in object graph construction
■ Learning about reinjecting objects
■ Discovering viral injection and cascaded object graphs
■ Learning techniques to inject sealed code
54

55Injection idioms
The same class accepting dependencies by setter:

public class Emailer {
 private SpellChecker spellChecker;

 public void setSpellChecker(SpellChecker spellChecker) {
 this.spellChecker = spellChecker;
 }
}

These are two common forms of wiring. Many dependency injectors also support
other varieties and bias toward or away from these idioms.

 The choice between them is not always one of taste alone. There are several conse-
quences to be considered, ranging from scalability to performance, development
rigor, type safety, and even software environments. The use of third-party libraries and
certain design patterns can also influence the choice of injection idiom.

 DI can make your life easier, but like anything else, it requires careful thought and
an understanding of pitfalls and traps and the available strategies for dealing with
them. The appropriate choice of injection idiom and accompanying design patterns is
significant in any architecture. Even if you were to disavow the use of a DI library alto-
gether, you would do well to study the traps, pitfalls, and practices presented in this
chapter. They will stand you in good stead for designing and writing healthy code.

 In this chapter, we will look at an incarnation of each major idiom and explain
when you should choose one over another and why. I provide several strong argu-
ments in favor of constructor injection. However, I will show when setter injection is
preferable and how to decide between the two. Understanding injection idioms and
the nuances behind them is central to a good grasp of dependency injection and
architecture in general. Let’s start with the two most common forms.

3.1 Injection idioms
The key to understanding the differences between setter and constructor injection is
to understand the differences between methods and constructors. The advantages
and limitations arise from these essential language constructs. Constructors have sev-
eral limitations imposed on them by the language (for example, they can be called
only once). On the other hand, they have advantages, such as being able to set final
fields. We’ll start by examining these limitations and advantages in detail.

3.1.1 Constructor injection

Essentially, a constructor’s purpose is to perform initial setup work on the instance
being constructed, using provided arguments as necessary. This setup work may be
wiring of dependencies (what we are typically interested in) or some computation that
is necessary prior to the object’s use. A constructor has several odd and sometimes
confounding restrictions that differentiate it from an ordinary method. A constructor:

■ Cannot (does not) return anything.
■ Must complete before an instance is considered fully constructed.

56 CHAPTER 3 Investigating DI
■ Can initialize final fields, while a method cannot.
■ Can be called only once per instance.
■ Cannot be given an arbitrary name—in general, it is named after its class.
■ Cannot be virtual; you are forced to implement a constructor if you declare it.

A constructor is something of an initialization hook
and somewhat less than a method, even with a gen-
erous definition of methods. Constructors are pro-
vided in most object-oriented languages as a means
of adequately preparing an object prior to use. The
flow chart in figure 3.1 shows the steps taken inter-
nally to perform constructor injection.

 A more thorough look at the pros and cons of
construction injection is available later in this
chapter. As we said earlier, setters offer benefits in
areas where constructors are limited. They are
just like any other method and therefore are
more flexible. In the following section, we exam-
ine the advantages to this flexibility and where it
can sometimes cause problems.

3.1.2 Setter injection

The other approach we have seen (and the one that is very common) is setter injec-
tion. It involves passing an object its dependencies via arguments to a so-called setter
method. Let’s revisit some of our past uses of setter injection:

public class Emailer {
 private SpellChecker spellChecker;

 public void setSpellChecker(SpellChecker spellChecker) {
 this. spellChecker = spellChecker;
 }
}

Figure 3.2 depicts the flow of steps in how
objects are wired using setter injection. Con-
trast this with the flow chart presented in fig-
ure 3.1.

 This sequence is almost identical to that of
constructor injection, except that a method
named setSpellChecker() is used in place of a
constructor and the wiring takes place after the
instance is fully constructed. In common usage,
if you want to pass in additional dependencies,
you provide additional setters, as shown in list-
ing 3.1 (modeled in figure 3.3).

No

Construct &
wire instance

Key
requested

Provide
object

Has more
dependencies?

Yes

Find
dependency

Figure 3.1 Sequence of operations in
constructor injection

No

Construct
instance

Key
requested

Provide
object

Has more
dependencies?

YesFind & wire
dependency

Figure 3.2 Sequence
of operations in setter
injection

57Injection idioms
public class Amplifier {
 private Guitar guitar;
 private Speaker speaker;
 private Footpedal footpedal;
 private Synthesizer synthesizer;

 public void setGuitar(Guitar guitar) {
 this.guitar = guitar;
 }

 public void setSpeaker(Speaker speaker) {
 this.speaker = speaker;
 }

 public void setFootpedal(Footpedal footpedal) {
 this.footpedal = footpedal;
 }

 public void setSynthesizer(Synthesizer synthesizer) {
 this.synthesizer = synthesizer;
 }

}

As with constructor injection, DI libraries diverge slightly in how they are configured
to handle setter injection. In Spring parlance, a setter directly refers to a property on
the object and is set via the <property> XML element, as in listing 3.2.

<beans ...>

 <bean id="amplifier" class="stereo.Amplifier">
 <property name="guitar" ref="guitar"/>
 <property name="speaker" ref="speaker"/>
 <property name="footpedal" ref="footpedal"/>

Listing 3.1 A stereo amplifier wired by setter

Listing 3.2 Spring XML configuration for setter injection of Amplifier

Dependencies of a
stereo amplifier

Setters
for each
dependency

Amplifier

Speaker

Guitar

Footpedal
<< dependent >>

Synthesizer

Figure 3.3 Class model of the
amplifier and its four dependencies

58 CHAPTER 3 Investigating DI
 <property name="synthesizer" ref="synthesizer"/>
 </bean>

 <bean id="guitar" class="equipment.Guitar"/>

 <bean id="speaker" class="equipment.Speaker"/>

 <bean id="footpedal" class="equipment.Footpedal"/>

 <bean id="synthesizer" class="equipment.Synthesizer"/>

</beans>

Here we have declared four <property> tags under bean amplifier that refer (via the
ref=".." attribute) to dependencies of Amplifier. Spring knows which setter method
we are talking about by matching the name=".." attribute of the <property> tag to
the setter method’s name (minus the set prefix). So, name="guitar" refers to set-
Guitar(), name="speaker" to setSpeaker(), and so on. In listing 3.3, we can use
encapsulation for a more compact configuration.

<beans ...>

 <bean id="amplifier" class="stereo.Amplifier">
 <property name="guitar">
 <bean class="equipment.Guitar"/>
 </property>

 <property name="speaker">
 <bean class="equipment.Speaker"/>
 </property>

 <property name="footpedal">
 <bean class="equipment.Footpedal"/>
 </property>

 <property name="synthesizer">
 <bean class="equipment.Synthesizer"/>
 </property>
 </bean>

</beans>

The elements in bold are encapsulated within <property> declarations. Nothing
changes with the code itself. Dependencies are created and wired to the graph when
the key amplifier is requested from Spring’s injector.

NOTE The order in which these setters are called usually matches the order of
the <property> tags. This ordering is unique to the XML configuration
mechanism and is not available with autowiring.

As an alternative, listing 3.4 shows what the Guice version of Amplifier would look like.

import com.google.inject.Inject;

public class Amplifier {
 private Guitar guitar;

Listing 3.3 The same Spring configuration, now with encapsulation

Listing 3.4 A stereo amplifier wired by setter (using Guice)

59Injection idioms
 private Speaker speaker;
 private Footpedal footpedal;
 private Synthesizer synthesizer;

 @Inject
 public void setGuitar(Guitar guitar) {
 this.guitar = guitar;
 }

 @Inject
 public void setSpeaker(Speaker speaker) {
 this.speaker = speaker;
 }

 @Inject
 public void setFootpedal(Footpedal footpedal) {
 this.footpedal = footpedal;
 }

 @Inject
 public void setSynthesizer(Synthesizer synthesizer) {
 this.synthesizer = synthesizer;
 }

}

The main difference is annotating each setter with @Inject.

NOTE The order in which these setters are called is undefined, unlike with
Spring’s XML configuration.

But one nice thing is that you do not need the setter naming convention in Guice, so
you can rewrite this class in a more compact way. Listing 3.5 shows that I have replaced
the four separate setters with just one taking four arguments.

public class Amplifier {
 private Guitar guitar;
 private Speaker speaker;
 private Footpedal footpedal;
 private Synthesizer synthesizer;

 @Inject
 public void set(Guitar guitar, Speaker speaker, Footpedal footpedal,
 Synthesizer synthesizer) {
 this.guitar = guitar;
 this.speaker = speaker;
 this.footpedal = footpedal;
 this.synthesizer = synthesizer;
 }
}

Notice that this new setter looks very much like a constructor:

■ It returns nothing.
■ It accepts a bunch of dependencies.
■ It is called only once when the object is created by the injector.

Listing 3.5 Compact setter injection (in Java, using Guice)

60 CHAPTER 3 Investigating DI
Guice does not place any restrictions on the name or visibility of setters either. So you
can hide them from accidental misuse and even give them meaningful names:

 @Inject
 void prepareAmp(Guitar guitar, Speaker speaker, Footpedal footpedal,
 Synthesizer synthesizer) {
 this.guitar = guitar;
 this.speaker = speaker;
 this.footpedal = footpedal;
 this.synthesizer = synthesizer;
 }

Much nicer, indeed.
 Setter injection is easily the most common idiom in use. Many examples and tuto-

rials use setter injection without explaining it or saying why it ought to be used. In
fact, setter injection is quite a flexible option and can be very convenient in particular
cases. It certainly has a place in the DI spectrum. Yet, it is not an entirely satisfactory
situation. A method whose sole purpose is accepting a dependency seems awkward.
Worse still, if one is required for each dependency (as in Spring), the number of set-
ters can quickly get out of hand.

 This problem is mitigated by the fact that setters are rarely exposed to client code
(via interfaces or public classes, for example). Hiding setters makes them less of a dan-
ger to abuse. If they are only used by the injector (or by unit tests), there is less risk of
objects becoming intertwined.

 There are quite a few subtleties (some of the sledgehammer variety!) to deciding
when setter injection is appropriate. We will look at them in some detail very shortly. But
before that we’ll look at some other forms of injection that are less common. Interface
injection, in the following section, predates the more-familiar forms. Though it has
fallen out of use of late, it’s well worth our time to investigate this design idiom.

3.1.3 Interface injection

Interface injection is the idea that an object takes on an injectable role itself. In other
words, objects receive their dependencies via methods declared in interfaces. In a
sense, interface injection is the same as setter injection except that each setter is
housed in its own interface. Here’s a quick example (listing 3.6).

public class Starship implements PhaserMountable {
 private Phaser phaser;

 public void mount(Phaser phaser) {
 this.phaser = phaser;
 }
}

public interface PhaserMountable {
 void mount(Phaser phaser);
}

Listing 3.6 Phaser mounted on a starship via interface wiring

This method is called
by the injector

Interface solely for wiring
Phasers to dependents

61Injection idioms
Starship is a kind of PhaserMountable (it implements PhaserMountable), which is an
interface we’ve made up solely for the purpose of wiring phasers and starships
together. If you wanted to add more dependencies to a starship, you would similarly
have to create a role interface for each such dependency. Listing 3.7 shows how adding
just two more dependencies, a reactor and shuttlecraft, alters our code.

public class Starship implements PhaserMountable, ReactorMountable,
ShuttleDockable {
 private Phaser phaser;
 private Reactor reactor;
 private Shuttle shuttle;

 public void mount(Phaser phaser) {
 this.phaser = phaser;
 }

 public void mount(Reactor reactor) {
 this.reactor = reactor;
 }

 public void dock(Shuttle shuttle) {
 this.shuttle = shuttle;
 }
}

public interface PhaserMountable {
 void mount(Phaser phaser);
}

public interface ReactorMountable {
 void mount(Reactor reactor);
}

public interface ShuttleDockable {
 void dock(Shuttle shuttle);
}

The way in which these role interfaces are used by the injector is not a whole lot differ-
ent from what we saw in some of the other idioms. The now-defunct Apache Avalon
framework is the only real exponent of interface injection worth mentioning.

 Role interfaces can be used not only to wire dependencies to objects but also to
notify them of particular events, such as initialize, pause, destroy, and so forth. It is not
uncommon for objects managed by interface injection to expose a battery of such
interfaces. Listing 3.8 shows a rocket ship that exposes many such roles.

public class Rocket implements EngineMountable, Loadable, Startable,
 Stoppable {
 private Engine engine;
 private Cargo cargo;

 public void mount(Engine engine) {

Listing 3.7 Various dependencies of a starship via interface wiring

Listing 3.8 A rocket ship with many role interfaces

New role interfaces for each
additional dependency

Interface injection
methods

62 CHAPTER 3 Investigating DI
 this.engine = engine;
 }

 public void load(Cargo cargo) {
 this.cargo = cargo;
 }

 public void start() {
 //start this rocket's engine...
 }

 public void stop() {
 //stop this rocket...
 }
}

One advantage of interface injection is that you can name the methods-accepting
dependencies whatever you want. This gives you the opportunity to use natural, pur-
pose-specific names that are concise and self-explanatory. The method load(Cargo) is
more intuitive than, say, setCargo(Cargo).

 The disadvantages of interface injection are quite obvious. It is extremely verbose.
Creating a new interface for each dependency is rather wasteful, and the long string
of implemented interfaces following the class definition isn’t exactly pretty. These
interfaces clutter the class signature and distract attention from other interfaces you
may be more interested in. Practically speaking, the fact that the defunct Apache
Avalon is the only DI library that offers interface injection also makes it a less-than-
attractive option. It is largely an idiom that has gone out of style for these reasons.

 As we will see later, some of the ideas behind interface injection form the basis of
important design patterns and solutions to several knotty design problems. Another
lesser-known injection idiom is method decoration, sometimes called AOP injection. This
form is useful in certain very specific cases and is naturally not very common. How-
ever, it may be indispensable for solving particular types of problems, as you will see in
the following section.

3.1.4 Method decoration (or AOP injection)

Method decoration is an interesting variation on dependency injection. Method decora-
tion takes the approach that methods rather than objects are the target of injection.
This generally means that when they are called, these methods return an injector-pro-
vided value instead of their normal value. This requires a fundamental redefinition of
a method’s behavior and is generally done via some form of interception. More often
that not, an AOP framework supplies the means of interception. We will look in much
greater detail at interception and AOP in chapter 8.

 This process is called decorating the method and gets its name from the Decorator1

design pattern.

1 Decorator design pattern, from Design Patterns: Elements of Reusable Object-Oriented Software by Erich Gamma et
al. (Addison-Wesley Professional Computing Series, 1994). Sometimes called the “Gang of Four” book.

Interface injection
methods

Methods for other
infrastructure roles

63Injection idioms
 It is useful if you want to make a Factory out of an arbitrary method on your object.
The use cases for this are somewhat rare. But it can be a very powerful design pattern
if applied correctly. Here’s an example:

package candy;

public class Dispenser {

 public Pez dispense() {
 return ...;
 }
}

public class Pez { .. }

What we’re after is for the dispense() method to be a Factory for Pez. Since we would
like Pez to be created and wired by the injector, it isn’t enough just to manually con-
struct and return an instance:

public class Dispenser {

 public Pez dispense() {
 return new Pez(..);
 }
}

Clearly we need to bring the injector in, so Pez’s dependencies can be correctly wired.
One solution is to inject dependencies of Pez into Dispenser itself, then wire them up
manually each time dispense() is called:

public class Dispenser {
 private Sugar sugar;

 public Pez dispense() {
 return new Pez(sugar);
 }
}

This solution looks like it works (at least it compiles and runs), but it doesn’t quite
give us what we’re after:

■ The same instance of Sugar is wired to every new Pez, so we have just moved the
problem away one level, not solved it. What we want is new Sugar for new Pez.

■ Dispenser must know how to construct Pez and consequently is tightly coupled to
its internals.

■ Dispenser is unnecessarily cluttered with Pez’s dependencies.

All this looks like we’re not putting the injector to full use. So how do we get there?
Method decoration provides a compelling solution. To explain how this works, let’s
rewind to the original example:

package candy;

public class Dispenser {

 public Pez dispense() {

Dispenses new
Pez each time

Does not inject
Pez correctly

Provided by injection

Pez is now
correctly wired

64 CHAPTER 3 Investigating DI
 return ...;
 }
}

public class Pez { .. }

Now, in order to make this class legal, we will write a dummy implementation of dis-
pense(). This implementation does nothing and returns null with the understanding
that it should never be called or used directly:

 public Pez dispense() {
 return null;
 }

Now we can proceed to configuring the injector. In listing 3.9 I use Spring to demon-
strate.

<beans ...>
 <bean id="pez" class="candy.Pez">
 <constructor-arg><bean class="candy.Sugar"/></constructor-arg>
 </bean>

 <bean id="dispenser" class="candy.Dispenser"/>
</beans>

In listing 3.10, I have configured the injector to construct, assemble, and provide
instances of Pez and Dispenser. However, we’re not quite there yet.

<beans ...>
 <bean id="pez" class="candy.Pez">
 <constructor-arg><bean class="candy.Sugar"/></constructor-arg>
 </bean>

 <bean id="dispenser" class="candy.Dispenser">
 <lookup-method name="dispense" bean="pez"/>
 </bean>
</beans>

In listing 3.10, the <lookup-method> tag tells Spring to intercept dispense()and
treat it as a Factory and that it should return object graphs bound to key pez when
called. Now when we bootstrap and use the injector, we can use dispense() to get
some candy!

BeanFactory injector = new FileSystemXmlApplicationContext("pez.xml");
Dispenser dispenser = (Dispenser) injector.getBean("dispenser");
Pez candy1 = dispenser.dispense();
...

For a more detailed look at where method decoration is useful, browse down to the
“The Reinjection Problem.” Like any powerful DI feature, method decoration is
fraught with pitfalls and corner cases. Some of them, particularly regarding method

Listing 3.9 Pez and Dispenser configuration (using Spring), pez.xml

Listing 3.10 Pez dispensed with method decoration (using Spring), pez.xml

What goes
here?

65Choosing an injection idiom
interception, are examined in chapter 8. Carefully consider all of these issues before
settling on method decoration as your choice of injection idiom.

With so many options, how do you know what the right choice is?

3.2 Choosing an injection idiom
Well, interface injection is largely unsupported, and we’ve seen that it is rather ver-
bose and unwieldy, so we can rule it out. Method decoration seems to be something of
a corner-case solution, though I maintain that it has its place. That leaves us with con-
structor and setter injection, which are by far the most dominant forms of the idiom
in use today.

 The answer to the question of which idiom is the right choice is not simply one of
taste, as I have said before. This is a point I can’t emphasize too much—there are such
important consequences to either choice that potentially lead to difficult, underper-
formant, and even broken applications. Some of this has to do with objects used in
multithreaded environments. Some of it is about testing and maintainability. So you
must take special care before choosing an injection idiom. It is well worth the time

Field injection
Guice provides the rather obvious but often-overlooked facility to wire dependencies
directly into fields of objects (bypassing constructors or setters). This is often useful
in writing small test cases or scratch code, and it is particularly so in tutorial and ex-
ample code where space is limited and meaning must be conveyed in the least-pos-
sible number of lines. Consider this rather trivial example:

public class BrewingVat {
 @Inject Barley barley;
 @Inject Yeast yeast;

 public Beer brew() {
 //make some beer from ingredients
 ...
 }
}

Annotating fields barley and yeast with @Inject tells the injector to wire dependen-
cies directly to them when BrewingVat is requested. This happens after the class’s
constructor has completed and before any annotated setters are called for setter in-
jection. This syntax is compact and easy to read at a glance. However, it is fraught
with problems when you consider anything more than the simplest of cases.

Without the ability to set dependencies (whether mocked or real) for testing, unit
tests cannot be relied on to indicate the validity of code. It is also not possible to
declare field-injected fields immutable, since they are set post construction. So, while
field injection is nice and compact (and often good for examples), it has little worth
in practice.

66 CHAPTER 3 Investigating DI
and effort up front, to avoid intractable problems later. The rest of this chapter is
about such problems and how to go about solving them.

3.2.1 Constructor vs. setter injection

The merits and demerits of constructor and setter injection are the same as those for
setting fields by constructor or setter.

 An important practice regards the state of fields once set. In most cases we want
fields to be set once (at the time the object is created) and never modified again. This
means not only that the dependent can rely on its dependencies throughout its life
but also that they are ready for use right away. Such fields are said to be immutable. If
you think of private member variables as a spatial form of encapsulation, then immuta-
bility is a form of temporal encapsulation, that is, unchanging with respect to time. With
respect to dependency injection, this can be thought of as freezing a completely
formed object graph.

 Constructor injection affords us the ability to create immutable dependencies by
declaring fields as final (modeled in figure 3.4):

public class Atlas {
 private final Earth earthOnBack;

 public Atlas(Earth earth) {
 this.earthOnBack = earth;
 }
}

Atlas stands today as he did at the time of
his (and the earth’s) creation, with a fixed,
immutable earthOnBack. Any attempt,
whether accidental or deliberate, to alter
field earthOnBack will simply not compile
(see listing 3.11). This is a very useful fea-
ture because it gives us a strong assurance
about the state of an object and means that
an object is a good citizen.

public class Atlas {
 private final Earth earth;

 public Atlas(Earth earth) {
 this.earth = earth;
 this.earth = null;
 }

 public void reset() {
 earth = new Earth();
 }
}

Listing 3.11 An object with immutable fields cannot be modified, once set

Raises a
compile error

Atlas Earth
<< immutable >>

- earthOnBack

Figure 3.4 Atlas depends on Earth
and cannot be changed once wired.

67Choosing an injection idiom
Blender

GlassJar

- blades

- frappe()

- setJar()
- setBlades()

Blades

- jar

Figure 3.6 Blender is setter injected with Blades
and GlassJar (see listing 3.12).

Visualize listing 3.11’s mutability problem in figure 3.5.
 Immutability is essential in application programming. Unfortunately, it is not avail-

able using setter injection. Because setter methods are no different from ordinary
methods, a compiler can make no guarantees about the one-call-per-instance restriction
that is needed to ensure field immutability. So score one for constructor injection; it
leverages immutability while setter injection can’t.

 What else can we say about their differences? Plenty: dependencies wired by con-
structor mean they are wired at the time of the object’s creation. The fact that all
dependences are wired and that the dependent is ready for use immediately upon
construction is a very compelling one. It leads us to the notion of creating valid
objects that are good citizens. Were a dependency not available (either in a unit test
or due to faulty configuration), an
early compile error would result. No
field can refer to half-constructed
dependencies. Moreover, a construc-
tor-injected object cannot be created
unless all dependencies are available.
With setter injection such mistakes
are easy to make, as shown in listing
3.12 and illustrated in figure 3.6.

public class Blender {
 private GlassJar jar;
 private Blades blades;

Listing 3.12 Improperly setter-injected object graph (using Guice)

construction

injected

reset()

Figure 3.5 Once wired with an Earth,
instances of Atlas cannot be wired again.

Wired correctly

68 CHAPTER 3 Investigating DI
 @Inject
 public void setJar(GlassJar jar) {
 this.jar = jar;
 }

 public void setBlades(Blades blades) {
 this.blades = blades;
 }

 public void frappe() {
 jar.fillWithOranges();
 blades.run();
 }
}

A faulty configuration causes much
heartache, since it compiles properly
and everything appears normal. The pro-
gram in listing 3.12 runs fine until it hits
blades.run(), which fails by raising a
NullPointerException since there is
no object referenced by field blades
because it was never set by the injector.
Figure 3.7 illustrates the problem.

 So let’s say you found and fixed the
injector configuration (after a bit of
pain). Does everything work properly
now? No, because you could still encoun-
ter this problem in a unit test where
dependencies are set manually (without
an injector present), as this foolish test of
the Blender from listing 3.12 does:

public class BlenderTest {

 @Test
 public void blendOranges() {
 new Blender().frappe();

 //assert something
 }
}

The writer of this test has forgotten to call the appropriate setter methods and pre-
pare the Blender correctly before using it. It results in a false negative; that is, an
unexpected NullPointerException is raised, indicating a test failure when nothing is
wrong with Blender’s code as such. The reported error is caught only at runtime and
isn’t particularly intuitive in defining the problem. Worse, you may need to read
through a fair thicket of execution traces before discovering the cause of the problem.
This exists only with setter injection, since any test with unset dependencies in a con-
structor won’t compile. Score two for constructor injection.

Oops, missing an @Inject

Exception raised

Injector

Blades

GlassJar

Blender
(without blades)

Figure 3.7 Blender is incompletely wired, an
inadvertent side effect of setter injection.

69Choosing an injection idiom
 Another problem with setters, as we have already seen, is that their number can
very quickly get out of hand. If you have several dependencies, a setter for each
dependency can result in a cluttered class with an enormous amount of repeti-
tive code.

 On the other hand, the explicitness of setter injection can itself be an advantage.
Constructors that take several arguments are difficult to read. Multiple arguments of
the same type can also be confusing since the only thing distinguishing them is the
order in which they appear, particularly so if you use an IDE like IntelliJ IDEA to
generate constructors automatically. For instance, consider the following class wired
by constructor:

public class Spy {
 private String realName;
 private String britishAlias;
 private String americanAlias;

 public Spy(String name1, String name2, String name3, ...) { .. }
}

It is rather difficult to follow how to wire this object. The smallest spelling or ordering
mistake could result in an erroneous object graph that goes completely undetected
(since everything is a String). This is a particularly good example because there is no
easy way to validate that dependencies have not gotten crossed:

new Spy("John Doe", "James Bond", "Don Joe");

Everything looks all right, but my Spy’s British alias was really Don Joe and not the
other way around. With setter injection, however, this is clear and explicit (the follow-
ing example is in Java using setters):

Spy spy = new Spy();

spy.setRealName("John Doe");
spy.setBritishAlias("James Bond");
spy.setAmericanAlias("Don Joe");

So when you have large numbers of dependencies of the same type, setter injection
seems more palatable. This is particularly true for unit tests, which are an important
companion to any service and which inject dependencies manually. You’ll find more
on unit testing and dependency injection in chapter 4. Chalk up a victory for setter
injection. One additional problem with constructor injection is that when you have
different object graph permutations, the number of constructors can get out of hand
very quickly. This is called the constructor pyramid problem, and the following section
takes an in-depth look at it.

3.2.2 The constructor pyramid problem

Constructor injection also runs into trouble when dealing with objects that are
injected differently in different scenarios. Each of these scenarios is like a different
profile of the object. Listing 3.13 shows the example of an amphibian that has different
dependencies when on land than on water.

70 CHAPTER 3 Investigating DI
public class Amphibian {
 private Gills gills;
 private Lungs lungs;
 private Heart heart;

 public Amphibian(Heart heart, Gills gills) {
 this.heart = heart;
 this.gills = gills;
 }

 public Amphibian(Heart heart, Lungs lungs) {
 this.heart = heart;
 this.lungs = lungs;
 }

 ...
}

When we want a water Amphibian, we
construct one with a Heart and Gills.
On land, this same Amphibian has a dif-
ferent set of dependencies, mutually
exclusive with the water variety (a pair
of Lungs). Heart is a common depen-
dency of both Amphibian profiles. The
two profiles are modeled in figures 3.8
and 3.9.

 Ignore for a moment that real
amphibians can transition from land
to water. Here we require two mutually
exclusive constructors that match
either profile but not both (as list-
ing 3.13 shows). Were you to require
more such profiles, there would be
more constructors, one for each case.
All these constructors differ by is the
type of argument they take; unlike set-
ters, they can’t have different names. This makes them hard to read and to distinguish
from one another. Where an object requires only a partial set of dependencies, addi-
tional, smaller constructors need to be written, further adding to the confusion. This
issue is called the constructor pyramid problem, because the collection of constructors
resembles a rising pyramid. On the other hand, with setters, you can wire any permu-
tation of an object’s dependencies without writing any additional code. Score another
for setter injection.

 Having said all of this, however, the use cases where you require multiple profiles of
an object are rare and probably found only in legacy or sealed third-party code. If you

Listing 3.13 An amphibian can live on land or in water

Constructor for
life in water

Constructor for
life on land

Amphibian

Lungs

(land variety)

Heart

- lungs

- heart

Figure 3.8 The land-dwelling variety of Amphibian
depends on a Heart and Lungs.

Amphibian

Gills

(water variety)

Heart

- gills

- heart

Figure 3.9 The aquatic variety of Amphibian
depends on a Heart and Gills.

71Choosing an injection idiom
find yourself encountering the pyramid problem often, you should ask serious ques-
tions about your design before pronouncing setter injection as a mitigant. Another
problem when using only constructors is how you connect objects that are dependent
on the same instance of each other. This chicken-and-egg problem, though rare, is a
serious flaw in constructor injection and is called the circular reference problem.

3.2.3 The circular reference problem

Sometimes you run into a case where two
objects are dependent on each other. Fig-
ure 3.10 shows one such relationship.

 Any symbiotic relationship between two
components embodies this scenario. Parent/
child relationships are typical manifestations.
One example is shown in listing 3.14.

public class Host {
 private final Symbiote symbiote;

 public Host(Symbiote symbiote) {
 this.symbiote = symbiote;
 }
}

public class Symbiote {
 private final Host host;

 public Symbiote(Host host) {
 this.host = host;
 }
}

In listing 3.14 both Host and Symbiote refer
to the same instances of each other. Host
refers to Symbiote, which refers back to Host
in a circle (as described in figure 3.11).

 Syntactically, there is no conceivable way to
construct these objects so that circularity is
satisfied with constructor wiring alone. If you
decide to construct Host first, it requires a
Symbiote as dependency to be valid. So you are forced to construct Symbiote first; how-
ever, the same issue resides with Symbiote—#@$! Its only constructor requires a Host.

 This classic chicken-and-egg scenario is called the circular reference problem.
 There is also no easy way to configure an injector to solve the circular reference

problem, at least not with the patterns we’ve examined thus far. You can also imagine
indirect circular references where object A refers to B, which refers to C, which itself
refers back to A (as illustrated in figure 3.12).

Listing 3.14 A host and symbiote interdependency

A B

Figure 3.10 A and B are dependent on each
other (circular dependency).

Host Symbiote

Figure 3.11 Host and Symbiote are
circularly interdependent.

72 CHAPTER 3 Investigating DI
In fact, this triangular flavor of circular references is the one more commonly seen.
There is no reason why we should stop at three, either. Any number of objects can be
added to the circle, and so long as two end points connect, there is no clear strategy
for which object to instantiate first. It is the old problem of finding the beginning of a
cycle (figure 3.13).

 The circular reference problem has two compelling solutions that fall, like every-
thing else, between the camps of setter and constructor injection. The first and most
obvious solution is simply to switch to setter injection. For our purposes, I’ll examine
the two-object variety of the circular reference problem (though the same solution is
equally applicable to other cases) in listing 3.15.

package example;

public class Host {
 private Symbiote symbiote;

 public void setSymbiote(Symbiote symbiote) {
 this.symbiote = symbiote;
 }
}

public class Symbiote {
 private Host host;

 public void setHost(Host host) {
 this.host = host;
 }
}

Then, configuring the injector is straightforward (via setter injection, in Spring):

<beans ...>
 <bean id="host" class="example.Host">
 <property name="symbiote" ref="symbiote"/>
 </bean>

Listing 3.15 A host and symbiote interdependency with setter injection

A

BC

Figure 3.12 Triangular circularity:
A depends on B, which depends on
C, which depends on A.

Figure 3.13 Any number of objects
may be part of a circular dependency.

73Choosing an injection idiom
 <bean id="symbiote" class="example.Symbiote">
 <property name="host" ref="host"/>
 </bean>
</beans>

Now the circularity is satisfied. When the injector starts up, both host and symbiote
object graphs are constructed via their nullary (zero-argument) constructors and then
wired by setter to reference each other. Easy enough. Unfortunately there are a cou-
ple of serious drawbacks with this choice. The most obvious one is that we can no lon-
ger declare either dependency as final. So, this solution is less than ideal.

 Now let’s look at the constructor injection alternative. We already know that we
can’t directly use constructor wiring to make circular referents point to one another.
What alternative is available under these restrictions? One solution that comes to
mind is to break the circularity without affecting the overall semantic of interdepen-
dence. You achieve this by introducing a proxy. First let’s decouple Host and Symbiote
with interfaces (see listing 3.16).

public interface Host { .. }

public interface Symbiote { .. }

public class HostImpl implements Host {
 private final Symbiote symbiote;

 public HostImpl(Symbiote symbiote) {
 this.symbiote = symbiote;
 }
}

public class SymbioteImpl implements Symbiote {
 private final Host host;

 public SymbioteImpl(Host host) {
 this.host = host;
 }
}

The class diagram now looks like figure 3.14.
 The dependencies of HostImpl and SymbioteImpl are now on a contract (inter-

face) of each other, rather than a concrete class. This is where the proxy comes in:

Listing 3.16 A host and symbiote interdependency, decoupled to use interfaces

HostImpl refers to
interface Symbiote

SymbioteImpl refers
to interface Host

Host

Host
Impl

Symbiote

Symbiote
Impl

<< interface >>

- host- symbiote

<< interface >>

Figure 3.14 A class model for decoupled Host
and Symbiote services (see listing 3.16)

74 CHAPTER 3 Investigating DI
public class HostProxy implements Host {
 private Host delegate;

 public void setDelegate(Host delegate) {
 this.delegate = delegate;
 }
}

HostProxy, the intermediary, is wired with setter injection allowing HostImpl and Sym-
bioteImpl (the “real” implementations) to declare their fields immutable and use con-
structor injection. To complete the wiring now, we use the following construction order:

1 Construct HostProxy.
2 Construct SymbioteImpl with the instance of HostProxy (from step 1).
3 Construct HostImpl and wire it with the SymbioteImpl that refers to HostProxy

(from step 2).
4 Wire HostProxy to delegate HostImpl (from step 3) via setter injection.

Did that do it for us? Indeed—the Host instance now refers to a Symbiote instance
that itself holds a reference to the HostProxy. When the SymbioteImpl instance calls
any methods on its dependency host, these calls go to HostProxy, which transparently
passes them to its delegate, HostImpl. Since HostImpl contains a direct reference to
its counterpart SymbioteImpl, the circularity is satisfied, and all is well with the world.
Injector configuration for this is shown in listing 3.17.

<beans>
 <bean id="hostProxy" class="example.HostProxy">
 <property name="delegate" ref="host"/>
 </bean>

 <bean id="host" class="example.HostImpl">
 <constructor-arg ref="symbiote"/>
 </bean>

 <bean id="symbiote" class="example.SymbioteImpl">
 <constructor-arg ref="hostProxy"/>
 </bean>
</beans>

Figure 3.15 illustrates the solution.
 Guice offers a transparent mitigation of this problem

(illustrated in figure 3.16). All you need do is configure the
injector and bind the relevant keys to one another:

public class CircularModule extends AbstractModule {

 @Override
 public void configure() {
 bind(Host.class).to(HostImpl.class).in(Singleton.class);
 bind(Symbiote.class).to(SymbioteImpl.class).in(Singleton.class);

 }
}

Listing 3.17 Circular references wired via a proxy (using Spring)

HostProxy wired
with a Host

Host Symbiote

Host Proxy

Figure 3.15 Injecting
circular referents via a
proxy

75Choosing an injection idiom
 The Guice injector automatically provides the proxy in
the middle. We can also trust the injector to work out the
correct order of construction. We don’t deal directly with
proxies or setter injection or any other infrastructure con-
cern. If you are like me, you find this feature of Guice par-
ticularly useful where circular references are warranted.
A particular variant of the circular reference problem is
the in-construction problem. In this scenario, it’s impossible
to break the cycle even with a proxy. We examine the in-
construction problem in the following section.

3.2.4 The in-construction problem

Earlier, when describing constructor injection, we said that one of the purposes of a
constructor was to “perform some initialization logic” on an object. This may be as
simple as setting dependencies on fields or may involve some specific computation
needed in order to prepare the object (for example, setting a window’s title). The
constructor is a good place to put this because you can guarantee that any such logic is
run prior to the object being used anywhere. If this computation is expensive, it is
worthwhile performing it up front so you don’t encumber the object later on.

 One close relative of the circular reference problem (section 3.2.3) is where initial-
ization logic requires a dependency that is not yet ready for use. What this typically
means is that a circular reference was solved with a proxy, which has not yet been
wired with its delegate (recall the four steps to resolving circular references with a
proxy, from the previous section). Listing 3.18 illustrates this scenario.

public interface Host { .. }

public interface Symbiote { .. }

public class HostImpl implements Host {
 private final Symbiote symbiote;

 @Inject
 public HostImpl(Symbiote symbiote) {
 this.symbiote = symbiote;
 }

public int calculateAge() {
// figure out age
}
}

public class SymbioteImpl implements Symbiote {
 private final Host host;
 private final int hostAge;

 @Inject
 public SymbioteImpl(Host host) {

Listing 3.18 Proxy solution inadequate for in-constructor use (using Guice)

Derived property
computed on initialization

Host Symbiote

Dynamic
proxy

Figure 3.16 Injecting
circular referents in Guice
with a dynamic proxy

76 CHAPTER 3 Investigating DI
 this.host = host;

 this.hostAge = host.calculateAge();
 }
}

In listing 3.18, both dependents in the circle attempt to use each other within their con-
structors. One calls a method on the other and is doomed to fail. Since Host has been
proxied but does not yet hold a valid reference to its delegate, it has no way of passing
through calls to the dependency. This is the in-construction problem in a nutshell.

The in-construction problem has no obvious solution with constructor injection. The
only recourse in such cases is setter injection, as shown in listing 3.19.

public interface Host { .. }

public interface Symbiote { .. }

public class HostImpl implements Host {
 private Symbiote symbiote;

 @Inject
 public void setSymbiote(Symbiote symbiote) {
 this.symbiote = symbiote;
 }

public int calculateAge() {
// figure out age
}

Listing 3.19 In-construction problem solved via setter injection (using Guice)

Computation
will fail

Circular references in nature (symbiosis)
Symbiotes in nature are organisms that live in biological dependence on one another.
This is a more closely linked relationship than a parent and child. Symbiotes typically
cannot survive without their partners. Here are some interesting examples of circular
interdependence in nature:

Coral reefs are a symbiosis between coral and various algae that live communally.
The algae photosynthesize and excrete food for the coral, which in turn protect and
provide a place to live for the algae.

Siboglinid tube worms have no digestive tract. Instead, bacteria that live inside them
break down their food into nutrients. In turn, the worms prove the bacteria with a
home and a constant supply of food. These fascinating worms were discovered living
in hydrothermal vents in the ground.

Several herbivorous animals (plant eaters) have gut fauna living in their stomachs,
which help break down plant matter. Plant matter is inherently more difficult to digest
because of the thick cell walls plants possess. Like the tube worms, these animals
house and provide food for their symbiotes.

77Choosing an injection idiom
}

public class SymbioteImpl implements Symbiote {
 private Host host;
 private int hostAge;

 @Inject
 public void setHost(Host host) {
 this.host = host;

 this.hostAge = host.calculateAge();
 }
}

Now initialization is guaranteed to succeed because both objects hold references to
each other prior to any call to host.calculateAge(). This is not the whole story—the
in-construction problem can run even deeper. Consider listing 3.20’s addendum,
which exacerbates the problem.

public interface Host { .. }

public interface Symbiote { .. }

public class HostImpl implements Host {
 private Symbiote symbiote;
 private int symbioteAge;

 @Inject
 public void setSymbiote(Symbiote symbiote) {
 this.symbiote = symbiote;

 this.symbioteAge = symbiote.calculateAge();
 }

 ...
}

public class SymbioteImpl implements Symbiote {
 private Host host;
 private int hostAge;

 @Inject
 public void setHost(Host host) {
 this.host = host;

 this.hostAge = host.calculateAge();
 }

 ...
}

Now both objects not only refer to one another but also use each other when depen-
dencies are being wired. Essentially, this is an in-construction variation of the circular
reference problem. And there is no known solution to this circular initialization mess
with constructor injection. In fact, there is no solution to the problem with setter
injection either!

Listing 3.20 In-construction problem not quite solved

Initialization
logic now works

New initialization
logic

78 CHAPTER 3 Investigating DI
 More important, this is not really a wiring problem. The issue is with putting
objects into a usable state. While constructors are the traditional pack mule for this
sort of work, they don’t quite work in this case. If you find yourself encountering this
problem, you are probably better off using lifecycle as a solution. See chapter 7 for an
exploration of object lifecycle. Thus far, we’ve outlined many of the problems with
using constructor injection. While many of them are rare, they are nonetheless trou-
bling. Now let’s take a look at some of the benefits that really make constructor injec-
tion worthwhile.

3.2.5 Constructor injection and object validity

So far, we’ve talked about several benefits of constructor injection. None are perhaps
as significant as object validity. Knowing if an object is properly constructed is one of
the most overlooked design issues in OOP. Simply having a reference to it is insuffi-
cient. Dependencies may not be set, initialization logic may not have run yet, and so
on. Even if all this has been achieved in one thread, other participating threads may
not agree.

 Consider the class in listing 3.21.

public class UnsafeObject {
 private Slippery slippery;
 private Shady shady;

 public UnsafeObject() { }

 public void setSlippery(Slippery slippery) {
 this.slippery = slippery;
 }

 public void setShady(Shady shady) {
 this.shady = shady;
 }

 public void init() { .. }
}

Looking over UnsafeObject, it’s obvious that dependencies are wired by setter injec-
tion. But we’re not quite sure why. It has forced both dependencies slippery and
shady to be non-final, that is, mutable. And it looks like init()is expected to be
called at some stage before the UnsafeObject is ready to perform duties. This object is
unsafe, because there are too many ways to construct it incorrectly. Look at the follow-
ing abusive injector configurations that are permitted by it:

<beans ...>
 <bean id="slippery" class="Slippery"/>
 <bean id="shady" class="Shady"/>

 <bean id="unsafe1" class="UnsafeObject"/>
</beans>

Listing 3.21 A class allowing too many unsafe modes of injection

Dependencies
wired by setter Nullary constructor

does nothing

Initializer method

79Choosing an injection idiom
We have forgotten to set any of its dependencies. No complaints even after the object
is constructed and injected. It falls over in a big heap the first time it is used.

 <beans ...>
 <bean id="slippery" class="Slippery"/>
 <bean id="shady" class="Shady"/>

 <bean id="unsafe2" class="UnsafeObject">
 <property name="slippery" ref="slippery"/>
 </bean>
</beans>

There are still no complaints, and everything will work until dependency shady is
used. This is potentially riskier (since code using slippery will work normally).

<beans ...>
 <bean id="slippery" class="Slippery"/>
 <bean id="shady" class="Shady"/>

 <bean id="unsafe4" class="UnsafeObject">
 <property name="slippery" ref="slippery"/>
 <property name="shady" ref="shady"/>
 </bean>
</beans>

At first glance, this looks okay. Why is it labeled unsafe? Recall that the init() method
must be called as part of the object’s graduation to readiness. This is among the worst
of all cases because no obvious error may come up. Several programmers’ days have
been wasted over this problem, trivial though it seems at first glance.

<beans ...>
 <bean id="slippery" class="Slippery"/>
 <bean id="shady" class="Shady"/>

 <bean id="unsafe5" class="UnsafeObject" init-method="init">
 <property name="slippery" ref="slippery"/>
 <property name="shady" ref="shady"/>
 </bean>
</beans>

Finally, a configuration you can rely on! All dependencies are accounted for and the
initialization hook is configured correctly. Or is it? Has everything been accounted
for? Recall that objects in Spring are singletons by default. This means that other mul-
tiple threads are concurrently accessing unsafe5. While the injector is itself safe to
concurrent accesses of this sort, UnsafeObject may not be. The Java Memory Model
makes no guarantees about the visibility of non-final, non-volatile fields across
threads. To fix this, you can remove the concept of shared visibility, so an instance is
exposed to only a single thread:

<beans ...>
 <bean id="slippery" class="Slippery" scope="prototype"/>
 <bean id="shady" class="Shady" scope="prototype"/>

 <bean id="safe" class="UnsafeObject" init-method="init" scope="prototype">
 <property name="slippery" ref="slippery"/>

80 CHAPTER 3 Investigating DI
 <property name="shady" ref="shady"/>
 </bean>
</beans>

The attribute scope="prototype" tells the injector to create a new instance of
UnsafeObject each time it is needed. Now there are no concurrent accesses to
UnsafeObject. Notice that you are forced to mark both dependencies with
scope="prototype" as well. Otherwise they may be shared underneath.

 Well! That was exhaustive. And it involved a lot of configuration just to account for
an arbitrary design choice. With constructor injection these problems virtually disap-
pear (as shown in listing 3.22).

public class SafeObject {
 private final Slippery slippery;
 private final Shady shady;

 public SafeObject(Slippery slippery, Shady shady) {
 this.slippery = slippery;
 this.shady = shady;

 init();
 }

 private void init() { .. }
}

SafeObject is immune from all of the problems we encountered with its evil cousin.
There is only one way to construct it, since it exposes only the one constructor. Both
dependencies are declared final, making them safely published and thus guaranteed
to be visible to all threads. Initialization is done at the end of the constructor. And
init() is now private, so it can’t accidentally be called after construction. Here’s the
corresponding configuration for SafeObject in Guice (it involves placing a single
annotation on the class’s constructor, as you can see in listing 3.23).

public class SafeObject {
 private final Slippery slippery;
 private final Shady shady;

 @Inject
 public SafeObject(Slippery slippery, Shady shady) {
 this.slippery = slippery;
 this.shady = shady;

 init();
 }

 private void init() { .. }
}

Constructor injection forces you to create valid, well-behaved objects. Moreover, it pre-
vents you from creating invalid objects by raising errors early. I urge you to consider

Listing 3.22 A safe rewrite of UnsafeObject (see listing 3.21)

Listing 3.23 Safe object managed by Guice

Dependencies wired
by constructor

Initializer runs
inside constructor

Use this
constructor!

81Not all at once: partial injection
constructor injection as your first preference, whenever possible. Now, let’s look at a
problem where some of the more esoteric idioms that we examined earlier in the chap-
ter may prove useful. An example is the partial injection problem, where not all the
dependencies are available up front.

3.3 Not all at once: partial injection
Sometimes you don’t know about all the dependencies you need right away. Or you are
given them later and need to build an object around them. In other cases, you may
know about all the dependencies but may need to obtain new ones after each use (as
we saw with the Pez dispenser in “Method decoration”). These object graphs can’t be
described precisely at startup. They need to be built dynamically, at the point of sale.

 This introduces to us the idea of a partial injection. We’ll shortly examine several
scenarios where partial (or delayed) injection is useful and see how to go about
achieving it. First, we’ll look at a scenario where all dependencies are known at con-
struction time but need to be reinjected on each use (because the instance is used up
and needs to be replenished each time).

3.3.1 The reinjection problem

As the header suggests, this problem is about injecting an object that has already been
injected once earlier. Reinjection is typical in cases where you have a long-lived depen-
dent with short-lived dependencies. More specifically, reinjection is common where a
dependency is put into an unusable state after it is used (that is, it has been depleted
or used up in some way). You might have a data-holding object, and once it is saved
with user input, you may need a new instance for fresh input. Or the dependency may
be on a file on disk, which is closed (and disposed) after a single use. There are plenty
of incarnations of this problem. Let’s look at one purely illustrative case:

public class Granny {
 private Apple apple;

 public Granny(Apple apple) {
 this.apple = apple;
 }

 public void eat() {
 apple.consume();
 apple.consume();
 }
}

Granny is given one apple when she comes into existence. Upon being told to eat(), she
consumes that apple but is still hungry. The apple cannot be consumed again since it
is already gone. In other words, the state of the dependency has changed and it is no lon-
ger usable. Apple is short lived, while Granny is long lived, and on each use (every time
she eats), she needs a new Apple.

 There are a couple of solutions to this problem. You should recall one solution
we applied to a similar problem earlier—the Pez dispenser. We could use method

Causes an error as apple
is already consumed

82 CHAPTER 3 Investigating DI
decoration to achieve reinjection in this case. But we can’t replace eat() because it
performs a real business task. You could put another method on Granny. That would
certainly work:

public class Granny {

 public Apple getApple() {
 return null;
 }

 public void eat() {
 getApple().consume();
 getApple().consume();
 }
}

This is certainly a workable solution. However, it belies our original object graph (of
Granny depending on an Apple) and more importantly is difficult to test. It also relies
on a DI library that supports method decoration, and not all of them do. So what are
other possible solutions? Common sense says we should be using some kind of Fac-
tory, one that can take advantage of DI. The Provider pattern is one such solution.

3.3.2 Reinjection with the Provider pattern

In a nutshell, a Provider pattern is a Factory that the injector creates, wires, and man-
ages. It contains a single method, which provides new instances. It is particularly useful
for solving the reinjection problem, since a dependent can be wired with a Provider
rather than the dependency itself and can obtain instances from it as necessary:

public class Granny {

 public Provider<Apple> appleProvider;

 public void eat() {
 appleProvider.get().consume();
 appleProvider.get().consume();
 }
}

Notice this line:

 appleProvider.get().consume();

This effectively says that before we use an apple, we get it from the Provider, meaning
that a new Apple instance is created each time. This architecture is shown in figure 3.17.

Replaced with
method decoration

Provides
apples

Granny

Provider<Apple>

get()
Apple

obtain

Injector

Figure 3.17 Granny obtains
Apple instances from the
injector via a provider

83Not all at once: partial injection
There are a couple of things we can say about Providers:

■ A Provider is unique (and specific) to the type of object it provides. This means you
don’t do any downcasting on a get() as you might do with a Service Locator.

■ A Provider’s only purpose is to provide scoped instances of a dependency. There-
fore it has just the one method, get().

In Java, which has support for generics, a single provider is all that you need to write.
Under this you are free to create as many implementations as needed for each pur-
pose. Guice provides Providers out of the box for all bound types:

package com.google.inject;

public interface Provider<T> {
 public T get();
}

Method get() is fairly straightforward: it says get me an instance of T. This may or may
not be a new instance depending on the scope of T. (For example, if the key is bound
as a singleton, the same instance is returned every time.2) So, in Granny’s case, all
that’s required is an @Inject annotation:

public class Granny {

 private Provider<Apple> appleProvider;

 @Inject
 public Granny(Provider<Apple> ap) {
 this.appleProvider = ap;
 }

 public void eat() {
 appleProvider.get().consume();
 appleProvider.get().consume();
 }
}

You don’t need to do anything with the injector configuration because Guice is clever
enough to work out how to give you an Apple provider. For libraries that don’t sup-
port this kind of behavior out of the box, you can create a your own Provider that
does the same trick. Here I’ve encapsulated a lookup from the injector within a Pro-
vider for Spring:

public class AppleProvider implements Provider<Apple>, BeanFactoryAware {
 private BeanFactory injector;

 public Apple get() {
 return (Apple) injector.getBean("apple");
 }

 public void setBeanFactory(BeanFactory injector) {
 this.injector = injector;
 }
}

2 See chapter 5 for more on scope.

Provider is wired
via constructor

Apple is looked up
from the injector

84 CHAPTER 3 Investigating DI
There are two interesting things about AppleProvider:

■ It exposes interface Provider<Apple>, meaning that it’s in the business of pro-
viding apples.

■ It exposes BeanFactoryAware.3 When it sees this interface, Spring will wire the
injector itself to this provider.

The corresponding XML configuration is shown in listing 3.24.

<beans ...>
 <bean id="appleProvider" class="AppleProvider"/>

 <bean id="granny" class="Granny">
 <constructor-arg ref="appleProvider"/>
 </bean>
</beans>

Notice that I didn’t have to do anything with AppleProvider. Spring automatically
detects that it is an instance of BeanFactoryAware and wires it appropriately. Listing 3.25
shows a slightly more compact, encapsulated version.

<beans ...>
 <bean id="granny" class="Granny">
 <constructor-arg><bean class="AppleProvider"/></constructor-arg>
 </bean>
</beans>

What if you need to pass in an argument to the dependency? Something that’s avail-
able only at the time of use, like data from a user, or some resource that acts as a con-
text for the dependency. This is a variation on partial injection called the contextual
injection problem.

3.3.3 The contextual injection problem

You could say that contextual injection and reinjection are related problems. You could
even say that contextual injection is a special case of reinjection. These use cases come
up quite often, particularly with applications that have some form of external user.

 Consider an automated mailing list for a newsletter. Several users sign up with their
email addresses, and you periodically send them a copy of your newsletter. The long-
lived object in this case is triggered when it’s time for an edition of the newsletter to go
out, and its context is the newsletter. This is a case of partial injection—where the
long-lived object (let’s call it NewsletterManager) needs a new instance of a shorter-
lived one (let’s call this Deliverer) for every newsletter sent out. See figure 3.18 for a
visual representation.

3 This is an example of interface injection (which we saw in chapter 2).

Listing 3.24 Injector configuration for Granny and her Apple provider (in Spring)

Listing 3.25 Encapsulated version of listing 3.24 (in Spring)

85Not all at once: partial injection
You could treat this purely as a reinjection problem and pass the newsletter directly to
Deliverer on every use, say via a setter. Listing 3.26 shows how that might look.

public class NewsletterManager {
 private final List<Recipient> recipients;
 private final Provider<Deliverer> deliverer;

 public NewsletterManager(List<Recipient> rs,
 Provider<Deliverer> dp) {
 this.recipients = rs;
 this.deliverer = dp;
 }

 public void send(Newsletter letter) {
 for (Recipient recipient : recipients) {
 Deliverer d = deliverer.get();
 d.setLetter(letter);

 d.deliverTo(recipient);
 }
 }
}

public class Deliverer {
 private Newsletter letter;

 public void setLetter(Newsletter letter) {
 this.letter = letter;
 }

 ...
}

In listing 3.26, I’ve exposed a setter and used a form of manual dependency injec-
tion to set the current Newsletter (context) on the Deliverer. This solution works,
but it has the obvious drawbacks that go with using a setter method. What would be
really nice is contextual constructor injection. And that’s brings us to the Assisted
Injection pattern.

Listing 3.26 A newsletter-sending component and contextual delivery agent

Deliverer

send()

NewsletterManager

Newsletter

Figure 3.18 A Deliverer sends
Newsletters out to recipients, on
prompting by NewsletterManager

Dependencies wired
by constructor

Set contextual
dependency

86 CHAPTER 3 Investigating DI
3.3.4 Contextual injection with the Assisted Injection pattern
Since the contextual injection problem is a relative of reinjection, it follows that their
solutions are also related. I used the Provider pattern to solve reinjection. Listing 3.27
reenvisions the newsletter system with a similar pattern: Assisted Injection. Its architec-
ture is described in figure 3.19.

public class NewsletterManager {
 private final List<Recipient> recipients;
 private final AssistedProvider<Deliverer, Newsletter>
 deliverer;

 public NewsletterManager(List<Recipient> rs,
 AssistedProvider<Deliverer, Newsletter > dp) {
 this.recipients = rs;
 this.deliverer = dp;
 }

 public void send(Newsletter letter) {
 for (Recipient recipient : recipients) {
 Deliverer d = deliverer.get(letter);

 d.deliverTo(recipient);
 }
 }
}

public interface AssistedProvider<T, C> {
 T get(C context);
}

public class DelivererProvider implements AssistedProvider<Deliverer,
 Newsletter> {

 public Deliverer get(Newsletter letter) {
 return new Deliverer(letter);
 }
}

In listing 3.27, I have two classes of importance:

■ NewsletterManager—The long-lived, dependent class
■ DelivererProvider—The Assisted Injection provider, which provides Deliv-

erer instances wired with a context (i.e., Newsletter)

The other interesting artifact in listing 3.27 is the interface AssistedProvider, which
takes two type parameters:

■ T refers to the generic type provided by a call to get().
■ C refers to the generic type of the context object.

Listing 3.27 A newsletter manager and delivery agent, with Assisted Injection

Get dependency
for context

Alternative to
implementing Module

Construct
by hand!

Newsletter
Manager get()

obtain &
wire

Assisted
Provider

Newsletter

Deliverer

Newsletter

Figure 3.19
AssistedProvider
creates a contextualized
Deliverer with the
current Newsletter.

87Not all at once: partial injection
They let you use AssistedProvider in other, similar areas. Like Provider, Assisted-
Provider is a piece of framework code that you can customize to suit your needs.

 There’s one obvious flaw with this plan. We’ve used construction by hand in the
AssistedProvider. That’s not ideal because we lose viral dependency injection, inter-
ception, scope, and so on. One way to fix it is by using another Provider inside the
AssistedProvider. The trade-off is that we must use setter injection. This is actually a
reasonable solution if used sparingly. Listing 3.28 demonstrates it with Guice.

public class DelivererProvider implements
 AssistedProvider<Deliverer, Newsletter> {
 private final Provider<Deliverer> deliverer;

 @Inject
 public DelivererProvider(Provider<Deliverer> deliverer) {
 this.deliverer = deliverer;
 }

 public Deliverer get(Newsletter letter) {
 Deliverer d = deliverer.get();
 d.setLetter(letter);

 return d;
 }
}

In listing 3.28, we not only get the benefits of dependency injection but also can add
the newsletter context to it.

 Guice also provides an extension called AssistedInject that can help make this
problem easier. AssistedInject lets us declare a Factory-style interface and creates the
implementation for us, so we don’t have to create the intermediary wiring code by
hand. It is also compelling because this means we do not have to use setter injection
and can take advantage of all the goodness of constructor injection:

import com.google.inject.assistedinject.Assisted;

public class Deliverer {
 private final Newsletter letter;

 @Inject
 public Deliverer(@Assisted Newsletter letter) {
 this.letter = letter;
 }

 ...
}

The @Assisted annotation is an indicator to the generated factory that this construc-
tor parameter should be obtained from a factory, rather than use the normal course
of injection. The code from listing 3.28 now looks like this:

public class NewsletterManager {
 private final List<Recipient> recipients;
 private final DelivererFactory factory;

 public NewsletterManager(List<Recipient> rs,

Listing 3.28 A newsletter component, using Assisted Injection

Provider is
itself injected

Context set
manually

Tells Guice to assist
this injection

Use an injected
factory

88 CHAPTER 3 Investigating DI
 DelivererFactory factory) {
 this.recipients = rs;
 this.factory = factory;
 }

 public void send(Newsletter letter) {
 for (Recipient recipient : recipients) {
 Deliverer d = factory.forLetter(letter);

 d.deliverTo(recipient);
 }
 }
}

public interface DelivererFactory {
 Deliverer forLetter(Newsletter letter);
}

Then in our module, we tell Guice about the DelivererFactory:

public class NewsletterModule extends AbstractModule {

 @Override
 protected void configure() {
 bind(DelivererFactory.class).toProvider(
 FactoryProvider.newFactory(DelivererFactory.class,
 Newsletter.class));
 ...
 }
}

Here, the FactoryProvider.newFactory() method is used to create a provider that
will create the relevant factory implementation for us. This saves the step of creating a
DelivererFactory that adds the contextual dependency by hand.

 It doesn’t take much imagination to see that this too can be insufficient, for
instance, if you had two context objects. One mitigant would be to create another
kind of AssistedProvider with a type signature that supported two contexts:

public interface TwoAssistsProvider<T, C1, C2> {
 T get(C1 context1, C2 context2);
}

This works, but what about three contexts? Or four? It very quickly gets out of hand.
For such cases you will find the Builder pattern much more powerful.

3.3.5 Flexible partial injection with the Builder pattern

If you are familiar with the Gang of Four book on design patterns, you have doubtless
heard of the Builder pattern. Builders are often used to assemble object graphs when
there are many possible permutations. A Builder is one way to mitigate the construc-
tor pyramid, adding each dependency incrementally. They come in two varieties:

■ Using constructor wiring and thus able to produce safe, valid, and immutable
objects, but at the sacrifice of injector management

■ Using flexible setter wiring (and injector management) but sacrificing the
safety of constructor injection

Get dependency
for context

Factory backed
by Guice

Context set
manually

89Not all at once: partial injection
The Builder is a natural solution to all partial-injection problems. Builders can pro-
duce objects given only a partial view of their dependencies. In short, that’s their job.
Listing 3.29 reimagines the reinjection problem with a Builder.

public class Granny {

 private AppleBuilder builder;

 @Inject
 public Granny(AppleBuilder b) {
 this.builder = b;
 }

 public void eat() {
 builder.build().consume();
 builder.build().consume();
 }
}

public class AppleBuilder {
 public Apple build() {
 return new Apple();
 }
}

In this trivial example, there is no difference between a Builder and provider. Notice
that I did not use a generic interface for the Builder. Instead I relied directly on an
AppleBuilder. Although we had the same level of type-safety with the parameterized
Provider<Apple>, there’s an extra level of flexibility we get with Builders. Let’s say
that some apples are green and some are red. How would you build them with a pro-
vider? You can’t directly. One solution might be to create a Provider<GreenApple>
and Provider<RedApple>, but this exposes the underlying implementation (of red or
green apples) to a client that shouldn’t know these details. Builders give us a much
simpler solution:

public class Granny {

 private AppleBuilder builder;

 @Inject
 public Granny(AppleBuilder b) {
 this.builder = b;
 }

 public void eat() {
 builder.buildRedApple().consume();
 builder.buildGreenApple().consume();
 }
}

While Granny’s dependencies don’t change, she can still get red or green apples with-
out ever knowing anything about RedApple or GreenApple. To Granny, they are just
instances of Apple. All this needs is a small addition to AppleBuilder:

Listing 3.29 Granny gets apples using a Builder

Builder is wired
via constructor

Construct
apples by hand

90 CHAPTER 3 Investigating DI
public class AppleBuilder {
 public Apple buildRedApple() {
 return new RedApple();
 }

 public Apple buildGreenApple() {
 return new GreenApple();
 }

}

AppleBuilder now encapsulates the construction and any implementation details of
Apple (red, green, or otherwise). The dependent, Granny, is kept completely free of
implementation details.

 Similarly, Builders can be a powerful solution to the contextual injection problem.
Listing 3.30 shows this application of the Builder pattern to the newsletter example.

public class NewsletterManager {
 private final List<Recipient> recipients;
 private final DelivererBuilder builder;

 public NewsletterManager(List<Recipient> rs,
 DelivererBuilder db) {
 this.recipients = rs;
 this.builder = db;
 }

 public void send(Newsletter letter) {
 for (Recipient recipient : recipients) {
 builder.letter(letter);

 Deliverer d = builder.buildDeliverer();

 d.deliverTo(recipient);
 }
 }
}

public class DelivererBuilder {
 private Newsletter letter;

 public void letter(Newsletter letter) {
 this.letter = letter;
 }

 public Deliverer buildDeliverer() {
 return new Deliverer(letter);
 }
}

The interesting thing about listing 3.30 is that we have a setter method named let-
ter(), which takes the newsletter (context) object. It temporarily holds the context
until it is time to build a Deliverer around it: in the buildDeliverer() method.
Using construction by hand, DelivererBuilder ensures that Deliverer instances are
wired by constructor (and are thus immutable, valid, and safe). Builders are especially

Listing 3.30 A newsletter component, using Builder injection

Inject a Builder
for dependency

Set context and
build dependency

Setter method
accepts context

Construct
with context

91Not all at once: partial injection
powerful when you have more than one context object to deal with—all you need to
do is add setter methods on the Builder. Contrast the following AssistedProviders
for multiple contexts:

public interface TwoAssistsProvider<T, C1, C2> {
 T get(C1 c1, C2 c2);
}

public interface ThreeAssistsProvider<T, C1, C2, C3> {
 T get(C1 c1, C2 c2, C3 c3);
}

...

with the builder approach:

public class DelivererBuilder {
 private Newsletter letter;
 private String mailServerUrl;
 private int port;

 public void letter(Newsletter letter) {
 this.letter = letter;
 }

 public void mailServerUrl(String url) {
 this.mailServerUrl = url;
 }

 public void port(int port) {
 this.port = port;
 }

 public Deliverer buildDeliverer() {
 return new Deliverer(letter, mailServerUrl, port);
 }
}

Now any number of contexts can be set by the NewsletterManager (dependent)
directly in its send() method:

 public void send(Newsletter letter) {
 for (Recipient recipient : recipients) {
 builder.letter(letter);
 builder.mailServerUrl("mail.wideplay.com");
 builder.port(21);

 Deliverer d = builder.buildDeliverer();

 d.deliverTo(recipient);
 }
 }

These context objects are all set at the time they are needed (on the Builder, rather
than the Deliverer). This not only allows us to hide actual construction and assembly
code but also gives us an abstraction layer between dependent and dependency. If you
wanted to ignore the port (defaulting to an SSL port instead), you would change only
the appropriate Builder calls. This is useful if you need to make small tweaks in service

92 CHAPTER 3 Investigating DI
code without upsetting clients and also for performing some lightweight validation of
data (for instance, checking that a port number is within range). Builders also benefit
from dependency injection themselves and can do extra setup work if need be. For
instance, this Builder transforms email server details into a service for Deliverer:

public class DelivererBuilder {
 private final MailServerFinder finder;

 private Newsletter newsletter;
 private String mailServerUrl;
 private int port;

 @Inject
 public DelivererBuilder(MailServerFinder finder) {
 this.finder = finder;
 }

 ...

 public Deliverer buildDeliverer() {
 MailServer server = finder.findMailServer(mailServerUrl, port);

 return new Deliverer(letter, server);
 }

One important bit of housekeeping: if you are going to reuse a builder, remember to
reset it first:

 public Deliverer buildDeliverer() {
 try {
 return new Deliverer(letter, mailServerUrl, port);
 } finally {
 letter = null;
 mailServerUrl = null;
 port = -1;
 }
 }

Resetting it ensures that a failed Build sequence doesn’t contaminate future uses. You
could also obtain a new Builder every time (via a provider). This is especially advis-
able. And it ensures that a Builder is never reused or used concurrently on accident.
Thus far, all the code that we’ve been dealing with has been under our control. Often
it may be necessary to work with code that is not under your control and still apply
dependency injection to it. This is the problem of injecting objects in sealed code.

3.4 Injecting objects in sealed code
Not all the code you work with is under your control. Many third-party libraries come
in binary form and cannot be altered to work with dependency injectors. Adding
annotations, refactoring with providers or builders, is out of the question. We’ll call
this sealed code. (Don’t confuse this with the C# keyword.)

 So if we have no control over sealed code, what can be done to make it work with
dependency injection? One answer might be to find a way not to use annotations.

93Injecting objects in sealed code
3.4.1 Injecting with externalized metadata

Recall some of the early Spring XML configuration. It eliminates the need for annota-
tions, right off the bat, in essence moving configuration metadata from source code to
an external location (the XML file). Listing 3.31 shows a sealed class injected purely
with externalized metadata.

public class Sealed {
 private final Dependency dep;

 public Sealed(Dependency dep) {
 this.dep = dep;
 }
}

<!-- XML injector configuration -->
<beans ...>
 <bean id="sealed" class="Sealed">
 <constructor-arg><bean class="Dependency"/></constructor-arg>
 </bean>
</beans>

Here Sealed did not have to change, and the injector configuration is straightfor-
ward. This is possible even with Guice, using the module to select the appropriate con-
structor to inject:

public class SealedModule extends AbstractModule {

 @Override
 protected void configure() {
 bind(Sealed.class).toConstructor(sealedConstructor());
 }

 private Constructor<Sealed> sealedConstructor() {
 try {
 return Sealed.class.getConstructor(Dependency.class);
 } catch(NoSuchMethodException e) {
 addError(e);
 return null;
 }
 }
}

This allows us to skip the @Inject
annotation and get Guice to directly
inject the sealed code.

 In Spring, this technique even works
with setter injection. See figure 3.20.

 But sealed code often throws you
more curveballs than this. It may have
completely private constructors and

Listing 3.31 A sealed class injected via external configuration

Bind directly to a
constructor of Sealed

Resolve the constructor
we want to inject

SealedInjector
injects

External Configuration

Figure 3.20 External metadata allows you
to inject classes in sealed code easily.

94 CHAPTER 3 Investigating DI
expose only a static factory method. This is not uncommon in library code (see list-
ing 3.32).

public class Sealed {
 private final Dependency dep;

 private Sealed(Dependency dep) {
 this.dep = dep;
 }

 public static Sealed newInstance(Dependency dep) {
 return new Sealed(dep);
 }
}

<!-- XML injector configuration -->
<beans ...>
 <bean id="sealed" class="Sealed" factory-method="newInstance">
 <constructor-arg><bean class="Dependency"/></constructor-arg>
 </bean>
</beans>

Listing 3.32 shows how Spring is able to call on Factory methods just as though they
were constructors (the <constructor-arg> element now passes arguments to the Fac-
tory). If it is an unfriendly factory that completely encapsulates construction, the situ-
ation is a bit trickier:

public class Sealed {
 private final Dependency dep;

 Sealed(Dependency dep) {
 this.dep = dep;
 }

 public static Sealed newInstance() {
 return new Sealed(new Dependency());
 }
}

There is no obvious way to provide the constructor with an instance of Dependency.
Custom or mock implementations have been removed from the equation, also mak-
ing testing very difficult. Here’s another scenario where the XML falls over:

public class Sealed {
 private Dependency dep;

 public Sealed() {
 }

 public void dependOn(Dependency dep) {
 this.dep = dep;
 }
}

This class accepts its dependency via setter injection. However, the setter method
does not conform to Spring’s naming convention. Rather than being named

Listing 3.32 A sealed class injected via external metadata

95Injecting objects in sealed code
setDependency(), it is called dependOn(). Remember, we can’t change any of this
code—it is sealed.

 Even if there were some way around it, misspelling method names can easily cause
you much chagrin. The Adapter pattern provides a better solution.

3.4.2 Using the Adapter pattern

The Adapter is yet another design pattern from the Gang of Four book. It allows you to
alter the behavior of existing objects by extending them. The following Adapter allows
you to inject classes whose constructors are not public (so long as they are not private):

public class SealedAdapter extends Sealed {

 @Inject
 public SealedAdapter(Dependency dep) {
 super(dep);
 }
}

The call to super(dep) chains to
Sealed’s hidden constructor. Since
SealedAdapter extends Sealed, it can
be used by any dependent of Sealed
transparently. And it benefits from
dependency injection (see figure 3.21).

 The same solution applies when
you have a package-local constructor,
except you build SealedAdapter into
the same package as Sealed.

 Similarly, this works with the
unconventional setter methods:

public class SealedAdapter extends Sealed {

 @Inject
 public SealedAdapter(Dependency dep) {
 dependOn(dep);
 }
}

Here’s a more convoluted example with both combined:

public class SealedAdapter extends Sealed {

 @Inject
 public SealedAdapter(Dependency dep1, Dependency dep2, Dependency dep3) {
 super(dep1);

 dependOn(dep2);
 relyOn(dep3);
 }
}

Sealed

Sealed
Adapter

<< extends >>

Injector
injects

Figure 3.21 SealedAdapter helps
Sealed to be injected transparently.

96 CHAPTER 3 Investigating DI
Using an Adapter:

■ Any infrastructure logic is cleanly encapsulated within SealedAdapter.
■ Typing mistakes and misspellings are caught at compile time.
■ Dependents of Sealed require no code changes (unlike a provider, for example).
■ Testing follows the same method as the original sealed class.

Adapters can sometimes be more verbose, but they have no impact on client code.
And they can even be passed back to other sealed classes transparently, something
that’s hard to do with providers.

TIP If you’re particularly clever, you can bridge the gap between adapter and
provider to solve the reinjection problem. Do this by overriding each
method of the original component and looking up a new instance as
needed with a provider. Then delegate all methods to that instance. It
leaves minimal impact on dependent code and is a compelling alternative.

One other interesting option for injecting sealed code is the Builder pattern we saw
earlier. You can incrementally add dependencies to a builder and let it decide how to
construct the sealed component. Builders are particularly useful with unconventional
setters or if there are several constructors or factories to choose from.

3.5 Summary
This chapter was a real workout! First, we explored the injection idioms of setter, con-
structor, interface, and method decoration. Setter injection has advantages in being
flexible, particularly if you don’t need every dependency set all of the time. However,
it has significant drawbacks since fields can’t be made immutable (constant), which is
important to preserving object graph integrity. Constructor injection is a compelling
alternative, since it does allow you to set immutable fields. It is also useful since you
can’t accidentally forget to set a dependency (such configuration fails early and fast).
Constructor injection is also less verbose and prevents accidental overwriting of previ-
ously set dependencies.

 However, it too has some drawbacks: If you have several dependencies (or worse,
several similar ones), it is difficult to tell them apart. Furthermore, a circular refer-
ence (where two components depend on each other) is impossible to resolve with sim-
ple constructor wiring. Setter injection helps here, since both objects can be
constructed in an incomplete state and later wired to one another. Setter injection
also helps avoid the constructor pyramid, which is a design issue when you have multi-
ple profiles of a component, in other words, where a component uses different sub-
sets of its dependencies in different scenarios. Setters are also explicit about the
dependencies they wire and thus make for more browsable code.

 Constructor injection can be used to solve the circular reference problem, but it
requires an intermediary placeholder known as a proxy. Some DI libraries (such as
Guice) provide this out of the box, without any additional coding on your part. A
related issue, the in-construction problem, where circular interdependents are used

97Summary
before the proxied wiring can complete, can be solved by combining constructor and
setter injection or purely with setter injection. Better yet, you can solve this by using a
special initializing hook.

 However, the drawbacks of field mutability and the vulnerability that setter injection
has to accidental invalid construction are too great to ignore. Non-final fields are also
potentially unsafe to multiple interleaving threads (more on that in chapter 9). So,
always try constructor injection first and fall back to setter injection only where you must.

 There are also other injection idioms:

■ Interface injection —This involves exposing role interfaces that are effectively set-
ter methods in their own interface. It has the advantage of being explicit just
like setters, and it can be given meaningful names. However, interface injection
is extremely verbose and requires several single-use interfaces to be created for
the sole purpose of wiring. It is also not supported by many DI libraries.

■ Method decoration —This involves intercepting a method call and returning an
injector-provided value instead. In other words, method decoration turns an
ordinary method into a Factory method, but importantly, an injector-backed
Factory method. This is useful in some rare cases, but it is difficult to test with-
out an injector and so should be carefully weighed first.

■ Other idioms —Field injection is a useful utility, where fields are set directly using
reflection. This makes for compact classes and is good in tutorial code where
space is at a premium. However, it is nearly impossible to test (or replace with
mocks) and so should be avoided in production code. Object enhancement is a
neat idea that removes the injector from the picture altogether, instead enhanc-
ing objects via source code or otherwise leaving them to inject themselves. This
is different from Factories or Service Location because it does not pollute
source code at development time. There are very few such solutions in practice.

Some components “use up” their dependencies and need them reinjected (within
their lifetimes). This introduces a problem, namely reinjection. Reinjection can be
solved by the only, which involves the use of a single-method interface that encapsu-
lates the work of constructing a dependency by hand or looks it up from the injector
by service location. Providers let you abstract away infrastructure logic from depen-
dent components and are thus a compelling solution to reinjection.

 Contextual injection is a related problem. Here, a component may need new
dependencies on each use, but more important it needs to provide them with context.
This is a form of dependency that is known only at the time of use. Assisted injection
can help. A slight variation of the Provider pattern, an Assisted Provider does the same
job but passes in the context object to a partially constructed dependency. Since this
can quickly get out of hand if you have more than one context object, try looking at the
Builder pattern instead. The Builder incrementally absorbs dependencies (context
objects or otherwise) and then decides how to construct the original service. It may use
constructor wiring or a series of setters or indeed a combination as appropriate. The

98 CHAPTER 3 Investigating DI
builder is also an easy solution to the reinjection problem and in such cases is very sim-
ilar to a provider.

 Some code is beyond your control, either third-party libraries, frozen code, or
code that can’t be changed for some other reasons (such as time constraints). You still
need these components, so you need a way to bring them into a modern architecture
with dependency injection. DI is really good at this work and at neutralizing such
undulations in a large code base. One solution is to use external metadata (if your
injector supports it) such as an XML file. This leaves the sealed classes unaffected but
still provides them with requisite dependencies. However, if sealed code uses factories
or unconventional setter methods, this may be difficult. In this case, the Adapter pat-
tern is a powerful solution. You inject the Adapter as per usual, and then the Adapter
decides how to wire the original component. Adapters are a strong solution because
they can leave client code unaffected. They are also a transparent alternative to the
reinjection problem, though they are sometimes verbose compared to providers.

 Dependency injection is about components that are designed, tested, and main-
tained in discrete modular units that can be assembled, constructed, and deployed in
various configurations. It helps separate your code into purposed, uncluttered pieces,
which is essential for testing and maintaining code, especially in large projects with
many contributors. Chapter 4 examines these ideas in detail, exploring the value of
such modular separation and how to achieve it.

Building
 modular applications
“To define it rudely but not ineptly, engineering is the art of doing that well with one
dollar, which any bungler can do with two after a fashion.”

 —Arthur Wellesley

So far, we’ve looked at what it means for objects to be well behaved and classes to be
well designed in the small. But in any real-world project, there’s also a big picture
to be considered. Just as there are principles that help our design of objects in the
micro, there are principles for good design in the macro sense. In the coming sec-
tions, we’ll talk about these design principles and see how to relate them to depen-
dency injection.

This chapter covers:
■ Organizing code in modules
■ Watching out for tight coupling
■ Designing with loose coupling
■ Testing code in discrete units
■ Working with key rebinding
99

100 CHAPTER 4 Building modular applications
 Chief among these is testing. DI facilitates testing and testable code, the latter being
an extremely important and often-overlooked condition to successful development.
Closely tied to this is the concept of coupling, where good classes are linked to the
dependencies in ways that facilitate easy replacement and therefore testing—bad ones
are not. We’ll see how to avoid such cases, and finally we’ll look at the advanced case
of modifying injector configuration in a running application.

 First, let’s start at in the micro level and explore the role objects play as the con-
struction units of applications.

4.1 Understanding the role of an object
We’re all very familiar with objects; you work with them every day and use them to
model problems, effortlessly. But let’s say for a moment you were asked to define what
an object is—what might you say?

 You might say an object is:

■ A logical grouping of data and related operations
■ An instance of a class of things
■ A component with specific responsibilities

An object is all these things, but it is also a building block for programs. And as such,
the design of objects is paramount to the design of programs themselves. Classes that
have a specific, well-defined purpose and stay within clearly defined boundaries are
well behaved and reliable. Classes that grow organically, with functionality bolted on
when and where required, lead to a world of hurt.

 A class can itself be a member of a larger unit of collective responsibilities called a
module. A module is an independent, contractually sound unit that is focused on a
broad part of business responsibility. For example, a persistence module may be respon-
sible for storing and retrieving data from a database.

 A module may not necessarily be meant for business functionality alone. For exam-
ple, a security module is responsible for guarding unwarranted access to parts of an
application. Modules may also be focused on infrastructure or on application logic
but typically not both. In other words, a module is:

■ Whole —A module is a complete unit of responsibility. With respect to an applica-
tion, this means that modules can be picked up and dropped in as needed.

■ Independent —Unlike an object, a module does not have dependencies on other
modules to perform its core function. Apart from some common libraries, a
module can be developed and tested independently (that is, in an isolated envi-
ronment).

■ Contractually sound —A module conforms to well-defined behavior and can be
relied on to behave as expected under all circumstances.

■ Separate —A module is not invasive of collaborators, and thus it is a discrete unit
of functionality.

101Separation of concerns (my pants are too tight!)
These qualities of a module are largely important in relation to its collaborators. Many
modules interacting with one another through established, patent boundaries form a
healthy application. Since modules may be contributed by several different parties
(perhaps different teams, sister projects, or even external vendors), it’s crucial that
they follow these principles. Swapping in replacement modules, for example, replac-
ing persistence in a database with a module that provides persistence in a data cluster
or replacing a web presentation module with a desktop GUI, ought to be possible with
a minimum of fuss. So long as the overall purpose of the application is maintained, a
system of well-designed modules is tolerant to change. Much as different incarnations
of an object graph provide variant implementations of a service, different assemblies
of modules provide different application semantics. A module is thus an independent,
atomic unit of reuse.

 Objects and modules that collaborate typically have strong relationships with each
other. Often the design of a dependency is influenced by its collaborators. However,
each object has its area of responsibility, and well-designed objects stick to their areas
without intruding on their collaborators. In other words, each object has its area of
concern. Good design keeps those concerns separated.

4.2 Separation of concerns (my pants are too tight!)
Tight pants are very cumbersome! If, like me, you live in a sweltering subtropical envi-
ronment, they can be especially discomfiting. Similarly, tightly coupled code can cause
no end of development pain. It’s worth taking the time at the head of a project to pre-
vent such problems from creeping in later.

 A big part of modular design is the idea that modules are deployable in different
scenarios with little extra effort. The separation and independence of modules are core to
this philosophy, which brings us to the tight-pants problem.

 If we take a different perspective on the whole matter, it’s not difficult to see that a
module is itself a kind of object. The same principles that apply to module design and
behavior also apply right down to objects themselves. In the next few sections we’ll exam-
ine what it means to treat objects with the principle of separation. Earlier we laid down
a similar principle: separating infrastructure from application logic so that logic that
dealt with construction, organization, and bootstrap-
ping was housed independently from core business
logic. If you think of infrastructure as being orthogo-
nal to application logic, then separating the two can
be seen as dividing horizontally (see figure 4.1).

 Similarly, logic dealing with different business
areas can be separated vertically (see figure 4.2).

 Checking spelling and editing text are two core
parts of any email application. Both deal with appli-
cation logic and are thus focused on business purpose.
However, neither is especially related to the other. It

Application
logic

Infrastructure
logic

horizontal
divide

Figure 4.1 Conceptually,
application logic sits on top
of infrastructure logic.

102 CHAPTER 4 Building modular applications
behooves us to separate them from each other just as we would separate any infrastruc-
ture code from the two of them. In other words, separating logic by area of concern is
good practice. Figure 4.3 shows a group of modules, separated by area of application as
well as infrastructure concern. This kind of modularity is indicative of healthy design.

When we lose this healthy separation between modules (and indeed objects), things
start to get messy. Broadly speaking, this is tight coupling, and it has been a major
headache for a very long time in OOP. Many language constructs were developed just
to deal with this problem (interfaces and virtual methods, for instance). To know how
to write healthy code, one must first be able to recognize tightly coupled code and
understand why it is a problem.

4.2.1 Perils of tight coupling

In chapter 1, we looked at a classic example of tightly coupled code, declared that it
was bad, tossed it away, and laid the foundation for DI. Let’s resurrect that example
and examine it closely (listing 4.1).

public class Emailer {
 private EnglishSpellChecker spellChecker;

 public Emailer() {
 this.spellChecker = new EnglishSpellChecker();
 }

 ...
}

Listing 4.1 An email service that checks spelling in English

App logic
Area 1

App logic
Area 2

App logic
Area 3

vertical
divide

Figure 4.2 Application logic
modules sit next to each other.

App logic
Area 1

App logic
Area 2

Infrastructure
logic 1

Infrastructure
logic 2

App logic
Area 3

Figure 4.3 An assembly of discrete, separated
modules along both infrastructure and core logic lines

103Separation of concerns (my pants are too tight!)
This email service was poorly written because it encapsulated not only its dependen-
cies but also the creation of its dependencies. In other words:

■ It prevents any external agent (like the injector) from reaching its dependencies.
■ It allows for only one particular structure of its object graph (created in its

constructor).
■ It is forced to know how to construct and assemble its dependencies.
■ It is forced to know how to construct and assemble dependencies of its depen-

dencies, and so on ad infinitum.

By preventing any external agent from reaching its dependencies, not only does it
prevent an injector from creating and wiring them, it prevents a unit test from substi-
tuting mock objects in their place. This is an important fact because it means the class is
not testable. Take the test case in listing 4.2 for instance:

public class EmailerTest {

 @Test
 public final void ensureSpellingWasChecked() {
 MockSpellChecker mock = new MockSpellChecker();

 new Emailer(mock).send("Hello!");
 assert mock.verifyDidCheckSpelling()
 : "failed to check spelling";
 }
}

And the mock spellchecker is as follows:

public class MockSpellChecker implements SpellChecker {
 private boolean didCheckSpelling = false;

 public boolean check(String text) {
 didCheckSpelling = true;
 return true;
 }

 public boolean verifyDidCheckSpelling() {
 return didCheckSpelling;
 }
}

This test case is impossible to write on Emailer as it exists in listing 4.1. That’s because
there is no constructor or setter available to pass in a mock SpellChecker. Mock
objects are extremely useful:

■ They allow you to test one class and none other. This means that any resultant
errors are from that class and none other. In other words, they help you focus
on discrete units.

■ They allow you to replace computationally expensive dependencies (for
instance, those that require hardware resources) with fake versions.

Listing 4.2 A test case for Emailer using a mocked dependency

Mock tracks if
checkSpelling() was called

Mocked implementation
of interface method

Mock-only method reports
if spelling was checked

104 CHAPTER 4 Building modular applications
■ They assert that the class follows the appropriate contract when speaking to its
dependencies.

■ They assert that everything happened as expected and in the expected order.

Even if we rewrote the original Emailer to take its dependency as an argument, we
would still be stuck in this untenable position (see listing 4.3).

public class Emailer {
 private EnglishSpellChecker spellChecker;

 public Emailer(EnglishSpellChecker spellChecker) {
 this.spellChecker = spellChecker;
 }

 ...
}

Now an external agent can set dependencies. However, the problem with testing
remains, because Emailer is bound inextricably to an EnglishSpellChecker. Passing
in a mock

MockSpellChecker mock = new MockSpellChecker();

new Emailer(mock);

results in a compilation error, because MockSpellChecker is not an English-
SpellChecker. When a dependent is inextricably bound to its dependencies, code is
no longer testable. This, in a nutshell, is tight coupling.

 Being tightly coupled to a specific implementation, Emailer also prevents you
from producing variant implementations. Take the following injector configuration,
which tries to assemble an object graph consisting of an Emailer with an English-
SpellChecker and a Latin character set in Spring XML (also see figure 4.4):

<beans ...>
 <bean id="emailer" class="Emailer">
 <constructor-arg>
 <bean class="EnglishSpellChecker">
 <constructor-arg>
 <bean class="LatinCharset"/>
 </constructor-arg>
 </bean>
 </constructor-arg>
 </bean>
</beans>

Such a configuration is impossible given the
tightly coupled object graph. By deciding its own
dependencies, Emailer prevents any variant of
them from being created. This makes for poor
reuse and a potential explosion of similar code,
since a new kind of Emailer would have to be
written for each permutation.

Listing 4.3 An email service that checks spelling in English, modified

Emailer

LatinCharset

English
SpellChecker

Figure 4.4
Emailer with a specific
variant object graph

105Separation of concerns (my pants are too tight!)
 The example I used in chapter 1 is illustrative of the same problem—we were
restricted to English spellcheckers, unable to provide variants in French or Japanese
without a parallel deveMlopment effort. Tight coupling also means that we have
opened the door in the iron wall separating infrastructure from application
logic—something that should raise alarm bells on its own.

4.2.2 Refactoring impacts of tight coupling

We’ve built up quite a potent argument against coupling dependents to their depen-
dencies. There’s one major reason we can add that would outweigh all the others: the
impact to coupled code when dependencies change. Consider the example in listing 4.4.

public class StringSearch {
 public String startsWith(ArrayList<String> list, String aString) {
 Iterator<String> iter = list.iterator();
 while(iter.hasNext()) {
 String current = iter.next();

 if (current.startsWith(aString))
 return current;
 }

 return null;
 }

 public boolean contains(ArrayList<String> list, String aString) {
 Iterator<String> iter = list.iterator();
 while(iter.hasNext()) {
 String current = iter.next();

 if (aString.equals(current))
 return true;
 }

 return false;
 }

 ...
}

//elsewhere
String startsWith = new StringSearch().startsWith(myList, "copern");

boolean contains = new StringSearch().contains(myList, "copernicus");

StringSearch provides a couple of utilities for searching a list of strings. The two
methods I have in listing 4.5 test to see if the list contains a particular string and if it
contains a partial match. You can imagine many more such utilities that comprehend
a list in various ways. Now, what if I wanted to change StringSearch so it searched a
HashSet instead of an ArrayList?

public class StringSearch {
 public String startsWith(HashSet<String> set, String aString) {

Listing 4.4 A utility for searching lists of strings

Listing 4.5 Impact of refactoring tightly coupled code

Needs only an iterator
to do its work

Needs only an iterator
to do its work

106 CHAPTER 4 Building modular applications
 Iterator<String> iter = set.iterator();
 while(iter.hasNext()) {
 String current = iter.next();

 if (current.startsWith(aString))
 return current;
 }

 return null;
 }

 public boolean contains(HashSet<String> set, String aString) {
 Iterator<String> iter = set.iterator();
 while(iter.hasNext()) {
 String current = iter.next();

 if (aString.equals(current))
 return true;
 }

 return false;
 }

 ...
}

Client code can now search over a HashSet instead but only after a significant number
of changes to StringSearch (one per method):

String startsWith = new StringSearch().startsWith(mySet, "copern");

boolean contains = new StringSearch().contains(mySet, "copernicus");

Furthermore, you would have to make a change in every method that the implemen-
tation appeared in, and the class is no longer compatible with ArrayLists. Any clients
already coded to use ArrayLists with StringSearch must be rewritten to use Hash-
Sets at a potentially an enormous refactoring cost, which may not even be appropriate
in all cases. One way to solve this problem is by making the list a dependency, as shown
in listing 4.6.

public class StringSearch {
 private final HashSet<String> set;

 public StringSearch(HashSet<String> set) {
 this.set = set;
 }

 public String startsWith(String aString) {
 Iterator<String> iter = set.iterator();
 while(iter.hasNext()) {
 String current = iter.next();

 if (current.startsWith(aString))
 return current;
 }

Listing 4.6 Refactor the list to a dependency

107Separation of concerns (my pants are too tight!)
 return null;
 }

 public boolean contains(String aString) {
 Iterator<String> iter = set.iterator();
 while(iter.hasNext()) {
 String current = iter.next();

 if (aString.equals(current))
 return true;
 }

 return false;
 }

 ...
}

Consequently in client code, we can use one instance of the searching class to per-
form many actions on a set of strings:

StringSearch stringSearch = new StringSearch(mySet);

String startsWith = stringSearch.startsWith("copern");

boolean contains = stringSearch.contains("copernicus");

One problem is out of the way—we can now search HashSets. And if you had a new
requirement in the future to search, say, TreeSets, then the refactoring impact would
be much smaller (we’d need to change only the dependency and any clients). But
this is still far from ideal. A change every time you choose a different collection data
structure is excessive and untenable. We’re still feeling the pangs of tight coupling.
Listing 4.7 shows how loose coupling code cures this ailment.

public class StringSearch {
 private final Collection<String> collection;

 public StringSearch(Collection<String> collection) {
 this.collection = collection;
 }

 public String startsWith(String aString) {
 Iterator<String> iter = collection.iterator();
 while(iter.hasNext()) {
 String current = iter.next();

 if (current.startsWith(aString))
 return current;
 }

 return null;
 }

 public boolean contains(String aString) {
 Iterator<String> iter = collection.iterator();
 while(iter.hasNext()) {

Listing 4.7 Refactor to a loosely coupled dependency

108 CHAPTER 4 Building modular applications
 String current = iter.next();

 if (aString.equals(current))
 return true;
 }

 return false;
 }

 ...
}

By placing an abstraction between dependent and dependency (the interface
Collection), the code loses any awareness of the underlying data structure and
interacts with it only through an interface. All of these use cases now work without
any coding changes:

boolean inList = new StringSearch(myList).contains("copern");

boolean inSet = new StringSearch(mySet).contains("copernicus");

boolean hasKey = new StringSearch(myMap.keySet()).contains("copernicus");

...

Now StringSearch is completely oblivious to the decisions of clients to use any kind
of data structure (so long as they implement the Collection interface). You can even
add new methods to StringSearch without impacting existing clients. This ability of
the Collection interface to act as a contract for various services is extremely valuable,
and you can mimic it in your own services to achieve a similar goal. Services that act
according to a contract are well behaved. Going about this can be tricky, and we’ll out-
line some best practices in the next section.

4.2.3 Programming to contract

Loose coupling via interfaces leads nicely to the idea of programming to contract. Recall
that in chapter 1 we described a service as in part defined by a well-understood set of
responsibilities called a contract. Programming to contract means that neither client
nor service is aware of the other and communicates only via the contract. The only
common ground is the understanding provided by this contract (interface). This
means that either can evolve independently so long as both abide by the terms of the
contract. A contract is also much more than a means of communication:

■ It is a precise specification of behavior.
■ It is a metaphor for real-world business purpose.
■ It is a revelation of intent (of appropriate use).
■ It is an inherent mode of documentation.
■ It is the keystone for behavior verification.

The last point is extremely important because it means that a contract provides the
means of testing classes. Verifying that an implementation works as it should is done by
testing it against a contract. In a sense, a contract is a functional requirements specification

109Separation of concerns (my pants are too tight!)
for any implementation and one that is native to the programming language itself.
Furthermore, a contract represents conceptual purpose and is thus akin to a busi-
ness contract.

 When ordering coffee at Starbucks, you follow a well-defined business process:

1 Stand in line.
2 Place your order.
3 Move to the edge of the counter to pick it up.

If Starbucks were to automate this process, the conceptual obligation between you as a
client and the attendant would be a programmatic contract—probably not too different
from listing 4.8.

public interface Customer {
 void waitInLine();

 boolean placeOrder(String choice);

 void pickup(Coffee prepared);
}

public interface Attendant {
 boolean takeOrder(String choice);

 Coffee prepareOrder();
}

Of course, there are plenty more steps in the real world (exchange of money, for one)
but let’s set them aside for now. What’s important to note is that neither interface says
anything about how to perform their function, merely what that function is. Well-
behaved objects adhere strictly to their contracts, and accompanying unit tests help
verify that they do. If any class were to violate the terms of its contract, the entire appli-
cation would be at risk and most probably broken. If Starbucks were out of cappuc-
cino and an order for one were placed, Attendant.takeOrder() would be expected
to return false. If instead it returned true but failed to serve the order, this would
break Customers.

 Any class developed to the contract Customer or Attendant can be a drop-in
replacement for either, while leaving the overall Starbucks system behaviorally consis-
tent. Imagine a BrazilianCustomer served by a RoboticAttendant or perhaps a prop-
erly trained ChimpanzeeCustomer and GorillaAttendant.

 Modeling conceptual business purpose goes much further. A carefully developed
contract is the cornerstone for communication between business representatives and
developers. Developers are clever, mathematical folk who are able to move quickly
between abstractions and empiricism. But this is often difficult for representatives of
the business who may be unfamiliar with software yet in turn contain all the knowledge
about the problem that developers need. A contract can help clarify confusion and pro-
vide a bridge for common understanding between abstraction-favoring developers and

Listing 4.8 The coffee shop contract!

110 CHAPTER 4 Building modular applications
empirical business folk. While you probably won’t be pushing sheets of printed code
under their noses, describing the system’s interfaces and interoperation forms a reli-
able basis for communicating ideas around design.

 A contract is also a revelation of intent. As such, the appropriate manner and con-
text of a service’s usage are revealed by its contract definition. This even extends to
error handling and recovery. If instead of returning false, Attendant.takeOrder()
threw an OutOfCoffeeException, the entire process would fail. Similarly, an Input-
Stream’s methods throw IOException if there is an error because of hardware fail-
ure. IOException is explicitly declared on each relevant method and is thus part of
the contract. Handling and recovering from such a failure are the responsibility of a
client, perhaps by showing a friendly message or by trying the operation again.

 Finally, a contract should be simple and readable, clear as to its purpose. Reading
through a contract should tell you a lot about the classes that implement it. In this
sense, it is an essential form of documentation. Look at this semantic interface from
the StringSearch example shown earlier:

public interface StringSearch {
 boolean contains(String aString);

 String startsWith(String fragment);
}

This is a start, but there are several missing pieces. In the simple case of contains()
we can infer that since it returns a boolean, it will return true if the string is found.
However, what exactly does startsWith() return? At a guess, it returns a single suc-
cessful match. But is this the first match? The last? And what does it return when there
are no matches? Clearly, this is an inadequate specification to develop against. One
further iteration is shown in listing 4.9.

public interface StringSearch {

 /**
 * Tests if a string is contained within its list.
 *
 * @param aString Any string to look for.
 * @returns Returns true only if a matching string is found.
 */
 boolean contains(String aString);

 /**
 * Tests if a string in the list begins with a given sequence.
 *
 * @param fragment A partial string to search on.
 * @returns Returns the first match found or null if
 * none were found.
 */
 String startsWith(String fragment);
}

Listing 4.9 StringSearch expressed as a contract

111Separation of concerns (my pants are too tight!)
Now StringSearch is clear about its behavior; startsWith() returns the first match
or null if no matches are found. The implied benefit of this contractual programming
is that code can be discretized into modules and units without their severely affecting
one another when they change. DI is a natural fit in providing a framework for pro-
gramming such loosely coupled code.

4.2.4 Loose coupling with dependency injection

So far, we’ve seen that loose coupling makes testing, reuse, and evolution of compo-
nents easy. This makes for modules that are easy to build and maintain. Dependency
injection helps by keeping classes relatively free of infrastructure code and by making
it easy to assemble objects in various combinations. Because loosely coupled objects
rely on contracts to collaborate with dependencies, it is also easy to plug in different
implementations, via injection or mocks in a unit test. All it takes is a small change to
the binding step. Keeping object graph structure described in one place also makes it
easy to find and modify parts of it, with little impact to core application code.

 Let’s see this in practice. Let’s say we have a book catalog, consisting of a library to
search and locate books with. By following the principles of loose coupling, we’ve
arrived at the interfaces shown in listing 4.10.

public interface BookCatalog {
 Book search(String criteria);
}

public interface Library {
 Book findByTitle(String title);

 Book findByAuthor(String title);

 Book findByIsbn(String title);
}

BookCatalog refers only to the interface Library. Its search() method translates some
free-form text search criteria into a search by title, author, or ISBN, subsequently calling
the appropriate method on Library. In a simple case, the Library may be imple-
mented as a file-based service, storing and retrieving Book records from disk. In bigger
applications it will likely be an external database (like PostgreSQL1 or Oracle). Altering
the catalog system to use a database-backed variant of Library is as simple as changing
Library’s binding (see listing 4.11) to use the database-driven implementation.

public class BooksModule extends AbstractModule {

 @Override
 protected void configure() {

Listing 4.10 A book catalog and its library data service

1 PostgreSQL is an excellent, lightweight, and feature packed open source database. Find out more at http://
www.postgresql.org.

Listing 4.11 A book catalog and a database-backed library service

112 CHAPTER 4 Building modular applications
 bind(Library.class).to(DatabaseLibrary.class);
 bind(BookCatalog.class).to(SimpleBookCatalog.class);
 }
}

So long as DatabaseLibrary correctly implements the Library interface, the pro-
gram continues to work unhindered, and BookCatalog is none the wiser about its
underlying storage mechanism. You don’t have to compile it again. Listing 4.12 shows
another change—this time of the catalog.

public BooksModule extends AbstractModule {

 @Override
 protected void configure() {
 bind(Library.class).to(DatabaseLibrary.class);
 bind(BookCatalog.class).to(DesktopGUIBookCatalog.class);
 }
}

This time it’s the Library that’s oblivious to
the goings on in our application. Loose cou-
pling enables any of our services to evolve
down their own paths and yet remain
verifiable and behaviorally consistent (fig-
ure 4.5 visualizes this evolution), perform-
ing the intended service for end users.

 Loose assembly of modules is extremely
important to testing. It provides a tangible
benefit since such code can be constructed
easily in tests and given mock dependencies
without any additional work. This last part is
crucial to writing testable code. In the next section we will see why writing testable code
is important and how it helps in developing better application designs in general.

4.3 Testing components
One of the most important parts of software development is testing. Technology pun-
dits argue that there is little value to code that has not been verified by some formal
process. Without being able to assert expectations against an object’s behavior, there’s
no way to tell if it fulfills its function. The fact that it compiles correctly, or runs in a
deployment environment, is fairly useless in the broad sense. A functional test of an
application (say by clicking through menu items in a desktop application) is a mite
better than nothing at all, but not significantly so. It ignores several unseen failure
points, such as bad data or concurrency bottlenecks.

 While functional testing has its place in the quality assurance spectrum, the verac-
ity of code simply can’t be met without automated unit and integration tests. These
tests provide the following:

Listing 4.12 A desktop-GUI book catalog and a database-backed library service

A

A

A

B

B

B

Contract

e
v
o
l
v
e
s

e
v
o
l
v
e
s (remains constant)

1

2

3

1

2

3

Figure 4.5 Independent evolution of A and B,
with no impact to their collaboration

113Testing components
■ Unit-level assurance of functionality
■ Simulation of disaster situations like failing hardware or resource depletion
■ Detection of exceptional situations such as bugs in collaborating modules
■ Detection of concurrency bottlenecks or thread-unsafe code
■ Assurance of regression integrity2

■ Benchmarking performance under extreme duress

Not only can you test a much broader spectrum of possible scenarios in code, but you
can simulate disaster situations and measure performance under various loads. Auto-
mated tests are thus a vital part of any application, particularly one that is programmed
to contract. Testing comes in different flavors, some or all of which can be automated
by writing test code. Primary among these is the test accompanying an individual class
or unit. This kind of test is independent of the rest of the application and intended to
verify just the one unit. These tests are generally called unit tests but sometimes are
also called out-of-container tests. Another form of testing asserts integration behavior
between modules in a simulated environment.

4.3.1 Out-of-container (unit) testing

The idea of testing an individual unit of functionality (a class) raises questions about
the surrounding environment. What about its dependencies? Its collaborators? Its cli-
ents? Testing a unit is independent of these surrounds. And this means independent of
an injector too. As listing 4.13 shows, unit tests are not concerned with anything but
the unit (single class) that they are testing.

public class BookCatalogTest {

 @Test
 public final void freeFormSearch() {
 MockLibrary mock = new MockLibrary();

 new SimpleBookCatalog(mock)
 .search("dependency injection");

 assert mock.foundByKeyword();
 }
}

We are quite happy to use construction by hand, in particular because there are very
few dependencies (all of them mocked) and no dependents besides the test itself. It
would be unnecessarily tedious to configure an injector just for a few mocks. If the test
passes, there’s some assurance that a correctly configured injector will work too, since
the test uses normal language constructs. Furthermore, a mocking framework can make
it a lot easier to create an object with mock dependencies.

2 Regression integrity is the idea that previously verified behavior is maintained on new development iterations,
so you don’t undo the work that’s already been done (and successfully tested).

Listing 4.13 A unit test of the book catalog, from listing 4.10

Test verifies
search

Verify mock
after search

114 CHAPTER 4 Building modular applications
NOTE EasyMock, Mockito, and JMock are such powerful mock objects frame-
works for Java. I would highly recommend Mockito to start with and Easy-
Mock for more sophisticated uses.

This kind of test tests services outside an injector and outside an application—hence
the name out-of-container testing. A significant point about this kind of testing is that
it forces you to write loosely coupled classes. Classes that rely specifically on injector
behavior or on other parts of the application are difficult to test in this fashion
because they rely on some dependency that only the final application environment
can provide. A database connection is a good example. If it’s outside an application,
these dependencies are not readily available and must be simulated using mocks.

 When you encounter classes whose dependencies cannot be mocked, you should
probably rethink design choices. Older versions of EJB encouraged such container-
dependent code. Infrastructure concerns like security, transactions, or logging often
make things harder since their effects are not directly apparent. Developers tend to
want to test everything as a whole and end up hacking together parts of a real applica-
tion or environment. These don’t do justice to testing, because they remove the focus
on testing individual units of functionality. Errors raised by such tests may be mislead-
ing because of subtle differences in application environments. So when testing, try
focusing your attention on a single unit or class, mocking out the rest. If you can do
this individually for all units, you will have much more confidence in them and can
easily assemble them into working modules.

4.3.2 I really need my dependencies!

If the class you’re testing does little more than call into its dependencies, you might
be tempted to use an injector—at least for the relevant module and mock the rest. It’s
not unusual to see tests like this:

public class BookCatalogTest {
 private Injector injector;

 @BeforeMethod
 public final void setup() {
 injector = Guice.createInjector(new TestBooksModule());
 }

 @Test
 public final void freeFormBookSearch() {
 new SimpleBookCatalog(injector.getInstance(Library.class))
 .search("..");

 ...
 }
}

This is a bad idea. Not only will you introduce unnecessary complexity in your tests
(they now depend on an injector), but you’ll also have to maintain ancillary code in
the form of TestBooksModule. This is injector configuration that exists purely for the
unit test and adds no real value. Furthermore, if there are errors in the injector

115Testing components
configuration, the test will fail with a false negative. You may spend hours looking for
the bug in the wrong place, wasting time and effort on maintaining code that adds
very little value to the test case.

4.3.3 More on mocking dependencies

If your classes do nothing more than call into their dependencies, is it still worth writ-
ing unit tests for them? Absolutely. In fact, it is imperative if you want to assert your
module’s integrity in any meaningful way. Verifying the behavior of a service is only
half the picture. A class’s use of its dependencies is a critical part of its behavior. Mock
objects can track and verify that these calls are according to expectation. There are
many ways to do this. Let’s look at one using EasyMock and writing a behavior script.
Listing 4.14 shows such a script for Library and verifies its proper use by BookCata-
log. Remember we’re trying to verify that BookCatalog depends correctly on Library,
in other words, that it uses Library properly.

import static org.easymock.EasyMock.*;

public class BookCatalogTest {

 @Test
 public final void freeFormBookSearch() {
 Library mock = createStrictMock(Library.class);

 String criteria = "dependency injection";

 expect(mock.findByAuthor(criteria))
 .andReturn(null);

 expect(mock.findByKeyword(criteria))
 .andReturn(null);

 Book di = new Book("dependency injection");
 expect(mock.findByTitle(criteria))
 .andReturn(di);

 replay(mock);

 new SimpleBookCatalog(mock)
 .search(criteria);

 verify(mock);

 }
}

In listing 4.14, we script the Library mock to expect searches by author and keyword
first on each and to return null, signaling that no such book exists. Finally, on title
search, we return a hand-created instance of book that we’re after. This not only
asserts the correct use of Library by SimpleBookCatalog but also asserts correct order
of use. If SimpleBookCatalog were written to prefer searching by title over keyword
and author, this test would fail, alerting us to the mistake. To complete the test, we can

Listing 4.14 A mock script and assertion of behavior

First try author

Then try keyword

Finally try title

Signal the mock
to be ready

Verify its usage

116 CHAPTER 4 Building modular applications
add yet another assertion that tests the behavior of SimpleBookCatalog. Here’s the
relevant portion from listing 4.14, modified appropriately:

 Book di = new Book("dependency injection");

 ...
 Book result = new SimpleBookCatalog(mock).search(criteria);

 assert di.equals(result) : "Unexpected result was returned";

Notice that we perform this assertion in addition to the assertions that the mocks pro-
vide. Now we have a complete test of SimpleBookCatalog. A more elaborate form of
testing takes more than one unit into account. This helps detect problems in the
coherency between units and determines whether the application behaves well in a
broader context. This form of testing is known as integration testing.

4.3.4 Integration testing

So far we’ve shown how to test individual units and assert their behavior. This ought to
be the first step in any development process. We’ve also lain down reasons for keeping
tests independent of an injector or other environment-specific concerns. As your code
matures, and the time arrives for a completed module to be integrated into the larger
system, new testing concerns arise. These concerns have to do with the interoperation
of modules, their dependence on external factors like hardware or database
resources, and the overall coherence of the system. Automated tests can help in this
regard too, and this flavor of tests is called integration tests.

 Integration testing is about testing how various pieces fit together as a whole.
Naturally, the dependency injector plays a vital part in this assembly by helping
connect modules together in a transparent and cohesive fashion. Figure 4.6 illustrates
this architecture.

 As figure 4.6 shows, infrastructure concerns like persistence and security are encap-
sulated in their own modules and interfaced with logic in other modules. The depen-
dency injector is responsible for pulling all of them together to form a coherent whole.

 The idea behind integration testing is to simulate user interaction with a system or,
if the application is not directly exposed to a human user, to simulate the next most
relevant actor. This might be:

Persistence SecurityPresentation

Core app.
logic

Dependency injector

Figure 4.6 Architecture of
modules brought together by
dependency injection

117Testing components
■ A batch of cleared bank checks
■ Monitored cooling of a nuclear power plant
■ Just about anything else you can imagine

Let’s use the example of a web application that serves a page from a database. This will
be an automated integration test (listing 4.15).

public class HomePageIntegrationTest {
 private Injector injector;

 @BeforeTest
 public final void prepareContainer() {
 injector = Guice.createInjector(new WebModule(),
 new TestPersistenceModule());
 }

 @AfterTest
 public final void cleanup() { .. }

 @Test
 public final void renderHomePage() throws Exception {
 HttpServletRequest request = createMock(..);
 HttpServletResponse response = createMock(..);

 injector.getInstance(HomeServlet.class)
 .service(request, response);

 //assert something about response
 }
}

There are interesting things about the integration test in listing 4.15. Foremost
among them, it looks like we’ve violated nearly every rule of unit testing. We’re us-
ing an injector, not mocking anything apart from HTTP request (and response),
and using a specialized configuration for tests. Of course, the simple explanation is
that this isn’t a unit test, so we can ignore these restrictions. But we can do better
than that:

■ Integration testing is about testing how modules interoperate, so we want to use
actual production modules where possible.

■ An accurate analog of the production environment is important, so we try to
include as many of the variables as we can that go into it: infrastructure mod-
ules, the dependency injector, and any external services.

■ There will probably be differences between a production and integration envi-
ronment (such as which database instance to use), and these are captured in a
parallel configuration, TestPersistenceModule.

■ Integration tests are automated, so external interaction must be simulated (for
example, this is done by mocking or simulating HTTP requests).

Listing 4.15 Integration test for a web application

Use a test
environment for
data resources

Get page servlet from
injector and test

118 CHAPTER 4 Building modular applications
■ Integration tests can be expensive, hence the prepareContainer() method
that runs once before testing begins.

■ They also require clean shutdowns of external services (such as database con-
nections and timers), hence the presence of the cleanup() method, which runs
after testing is complete.

When used properly, integration testing can help reveal errors in configuration and
modular assembly. Typically these are environment-specific and often subtle. A healthy
codebase will reveal very few coding errors in integration tests, since classes are cov-
ered by unit tests. More often than not, one finds that integration tests reveal configu-
ration quirks in libraries or interoperability issues. These tests are an additional
safeguard against design flaws in an architecture. However, they are neither the first
line of defense (unit tests) nor the final word on application behavior (acceptance
tests and QA). But they are a must-have tool to go in the toolbox of any developer.

 Next up, we’ll take a gander at integration from a number of perspectives. Modu-
lar applications can be integrated in various permutations to suit different goals,
whether it be testing or deployment on weaker hardware such as a mobile device,
where not all of the modules are required.

4.4 Different deployment profiles
We’ve shown how modules are composite globs of functionality that are like prefab
units for big applications. As such, modular applications can be composed in different
profiles, to different fits. A security module guarding HTTP access can be combined
with a presentation module and a file-based persistence module to quickly create a
web application. Architectures faithful to modularity principles will be able to evolve
better, for instance, by replacing file-based persistence with a module that persists data
in an RDBMS database.

 While this sounds very simple, it’s not always a plug-and-play scenario. Much of it
depends on the flexibility of a module and its component classes. The more general
and abstract (in other words, loosely coupled) a module’s interface, the easier it will
be to integrate. This generally comes from experience and natural evolution. Design-
ing a module to be too abstract and all-purposed at the beginning is not a good idea
either (and very rarely works).

 Once you do have such an architecture, however, there are powerful uses to which
it can be put. Chief among those is altering the deployment profile dynamically,
for instance, by changing injector configuration at runtime. And this is what we
call rebinding.

4.4.1 Rebinding dependencies

First of all, I must say that altering an injector configuration and the model of objects
at runtime is potentially dangerous. Without careful library support, this can mean a
loss of some validation and safety features that you would normally get at startup time.
It can lead to unpredictable, erratic, and even undetectable bugs. However, if used

119Different deployment profiles
with care, it can give your application very powerful dynamic features (such as hot
deployment of changes). This is a fairly advanced use case, so convince yourself first that
it is needed and that you can handle the requisite amount of testing and design.

 Altering dependency bindings at runtime has several impacts. Injectors are there
to give you a leg up, but they can’t do everything, and putting them to unusual uses
(like rebinding) is fraught with pitfalls:

■ Once bound, a key provides instances of its related object until rebound.
■ When you rebind a key, all objects already referencing the old binding retain

the old instance(s).
■ Rebinding is very closely tied to scope. A longer-lived object holding an

instance of a key that has been rebound will need to be reinjected or discarded
altogether.

■ Rebinding is also tied to lifecycle. When significant dependencies are changed,
relevant modules may need to be notified (more on this in chapter 7).

■ Not all injectors support rebinding, but there are alternative design patterns in
such cases.

Injectors that support rebinding are said to be mutable. This says nothing about field
or object mutability (which is a different concept altogether). It refers purely to
changing the association of a key to an object graph. PicoContainer is one such muta-
ble injector. In the following section, we’ll look at how to achieve mutability without a
mutable injector, by using the well-known Adapter design pattern.

4.4.2 Mutability with the Adapter pattern

Here we will consider the case of an injector that does not support dynamic rebind-
ing. The problem we’re trying to solve is that there isn’t enough knowledge while cod-
ing to bind all the dependencies appropriately. In other words, the structure of an
object graph may change over the life of the application. One very simple solution is
to maintain both object graphs and flip a switch when you need to move from one
binding to another—something like this:

public class LongLived {
 private final DependencyA a;
 private final DependencyB b;
 private boolean useA = true;

 public LongLived(DependencyA a, DependencyB b) {
 this.a = a;
 this.b = b;
 }

 public void rebind() {
 useA = false;
 }

 public void go() {
 if (useA)
 ...

Start with a

Work with a

120 CHAPTER 4 Building modular applications
 else
 ...
 }
}

Here the method rebind() controls which dependency LongLived uses. At some
stage in its life, when the rebinding is called for, you need to make a call to rebind().

 This works—and probably quite well—but it seems verbose. What’s more, it seems
like there’s a lot of infrastructure logic mixed in with our application. If we’ve learned
anything so far, it’s to avoid any such mixing. What’s really needed is an abstraction,
an intermediary to which we can move the rebinding logic and still remain totally
transparent to clients. Providers and builders don’t quite work because they either
provide new instances of the same binding or provide an instance specific to some con-
text. But adapters do. They are transparent to dependents (since an adapter extends
its adaptee) and wrap any infrastructure, keeping it well hidden. Listing 4.16 demon-
strates LongLived and its dependencies with the adapter pattern.

public interface Dependency {
 int calculate();
}

public class DependencyAdapter implements Dependency, Rebindable {
 private final DependencyA a;
 private final DependencyB b;
 private boolean useA = true;

 @Inject
 public DependencyAdapter(DependencyA a, DependencyB b) {
 this.a = a;
 this.b = b;
 }

 public void rebind() {
 useA = false;
 }

 public int calculate() {
 if (useA)
 return a.calculate();

 return b.calculate();
 }
}

Now most of the infrastructure code has been moved to DependencyAdapter. When
the rebinding occurs, flag useA is set to false and the adapter changes, now delegat-
ing calls to DependencyB instead. One interesting feature of this is the use of a Rebind-
able role interface. The control logic for dynamic rebinding is thus itself decoupled
from the “rebinding” adapters. All it needs to do is maintain a list of Rebindables, go
through them, and signal each one to rebind() when appropriate. This is neat
because the logic of deciding which binding to use is completely known at coding time.

Listing 4.16 Dynamic rebinding with an adapter

Or work with b

121Summary
Some injectors even allow multicasting to make this an atomic, global process. Multi-
casting (and lifecycle in general) is explored in depth in chapter 7. Most of all, the use
of an adapter ensures our client code is lean and behaviorally focused. Here’s what
LongLived looks like now, after the changes from listing 4.16.

public class LongLived {
 private final Dependency dep;

 @Inject
 public LongLived(Dependency dep) {
 this.dep = dep;
 }

 public void go() {
 int result = dep.calculate();
 ...
 }
}

That’s certainly more concise. Rebinding of the key associated with Dependency is now
completely transparent to LongLived—and any other client code for that matter. This
is especially important because it means that unit tests don’t have to be rewritten to
account for a change in infrastructure. This is a satisfying saving.

4.5 Summary
Objects are discrete functional units of data mixed with operations on that data. In
the same sense, larger collections of objects and their responsibilities are known as
modules. A module is typically a separate and independent compilation unit. It can be
maintained, tested, and developed in isolation. So long as it fulfills the terms of its
contract to collaborators, a module can be dropped into any well-designed architec-
ture almost transparently.

 Components that are invasive of other components or rely on specific implementa-
tion details are said to be tightly coupled. Tight coupling is detrimental to maintenance
and readability. Moreover, it prevents reuse of utility-style components because they
are tightly bound to concrete classes rather than abstractions such as interfaces. This
reduces the overall modular integrity of a program. To avoid tight coupling, choose
abstractions between a client and service. So long as each fulfills the terms of the
mediary contract, either can evolve or be replaced with no impact to the other or to
the system as a whole. This flows down to component granularity from the concept of
modules. Contracts reveal many other things about a component and about design.
These are:

■ A business metaphor
■ An essential form of (self-) documentation
■ A revelation of intent
■ A specification for building implementations
■ A means of verifying behavior

122 CHAPTER 4 Building modular applications
Code that is modular is also easy to test. Testing specific modules (or components) is a
vital part of their development, as it is the primary way to verify their correctness. Tests
that rely on components to have dependencies wired are poor tests because they can
easily confuse the issue when an error occurs. You may spend hours tracking down
whether the component under test is responsible or if one of its dependencies caused
the error. The use of mock objects is a powerful remedy to this predicament, and
indeed it’s an important way to narrow down and verify the behavioral correctness of a
piece of code. Never allow injectors or other environment-specific frameworks to
creep into unit tests, even as a crutch. Try to use mocks and test units in isolation as
much as possible. Code that conforms to this focus is said to be tested out of container.

 Once a module has been developed and tested, it is useful to test whether it prop-
erly fits together with the rest of the system. This too can be done by automation via
integration testing. Integration tests try to be a close analog of the eventual produc-
tion environment but with some obvious differences (simulated direct user interac-
tion, lower-grade hardware, or external resources). Integration testing can be very
useful in detecting bugs caused by the software or hardware environment and by con-
figuration. These are often subtle and not caught easily in unit tests. In a healthy pro-
gram, integration tests should rarely fail.

 In rare cases, it is useful to alter injector configuration dynamically. This is analo-
gous to reassembling the modular structure of the application, but done so at run-
time. Not all DI libraries support this kind of functionality directly. One mitigant is to
provide dependents with all possible dependencies, then force them to decide which
to use as appropriate. This works, but it isn’t a great solution because it pollutes appli-
cation logic with infrastructure concerns. As an alternative solution, the adapter pat-
tern works nicely. It encapsulates any infrastructure logic and can be used in place of
the original dependency with no impact to client code. A change in the binding is sig-
naled to the adapter(s) via a rebinding notification, and the adapter shifts to the new
binding. While this is a robust and workable solution, it is fraught with potential pit-
falls and should be weighed carefully before being embarked upon.

 Modular code is wonderful for many reasons. As I’ve already mentioned, these
include testing, reuse, and independent development in isolation. It allows many
streams of development (and indeed teams of developers) to work on pieces of a very
large composite application and keeps complexity to a minimum. Modularity fits very
nicely into dependency injection. DI is not only able to wire and assemble modular code
quickly, but it is also able to cast it in different profiles (structures) with minimal impact
on collaborators. Thus, dependency injection empowers modular programming.

Scope:
 a fresh breath of state
“Still this planet’s soil for noble deeds grants scope abounding.”
 —Johann Goethe

In one sentence, scope is a fixed duration of time or method calls in which an object
exists. In other words, a scope is a context under which a given key refers to the same
instance. Another way to look at this is to think of scope as the amount of time an
object’s state persists. When the scope context ends, any objects bound under that
scope are said to be out of scope and cannot be injected again in other instances.

 State is important in any application. It is used to incrementally build up data or
responsibility. State is also often used to track the context of certain processes, for
instance, to track objects in the same database transaction.

 In this chapter we’ll talk about some of the general-purpose scopes: singleton
and no scope. These are scopes that are universally applicable in managing state.

This chapter covers:
■ Understanding what scope means
■ Understanding singleton and no scope
■ Applying practical scopes for the web
123

124 CHAPTER 5 Scope: a fresh breath of state
We’ll also look at managing state in specific kinds of applications, particularly the web.
Managing user-specific state is a major part of scoping for the web, and this is what the
request, session, flash, and conversation scopes provide. We’ll look at a couple of imple-
mentations of these with regard to Guice and Spring and how they may be applied in
building practical web applications. First, we’ll take a primer on scopes.

5.1 What is scope?
The real power of scope is that it lets you model the state of your objects declara-
tively. By telling the injector that a particular key is bound under a scope, you can
move the construction and wiring of objects to the injector’s purview. This has some
important benefits:

■ It lets the injector manage the latent state of your objects.
■ It ensures that your services get new instances of dependencies as needed.
■ It implicitly separates state by context (for example, two HTTP requests imply

different contexts).
■ It reduces the necessity for state-aware application logic (which makes code

much easier to test and reason about).

Scope properly applied means that code working in a particular context is oblivious to
that context. It is the injector’s responsibility to manage these contexts. This means
not only that you have an added separation between infrastructure and application
logic, but also that the same services can be used for many purposes simply by altering
their scopes. Take this example of a family bathroom and its toothpaste:

family.give("Joanie", injector.getInstance(Toothpaste.class));
family.give("Jackie", injector.getInstance(Toothpaste.class));
family.give("Sachin", injector.getInstance(Toothpaste.class));

Looking at this code we can say that the Toothpaste is used by Joanie first, then by
Jackie, and finally by Sachin. We might also guess that each family member receives
the same tube of toothpaste. If the tube were especially small, Sachin might be left
with no toothpaste at all (as per figure 5.1).

 This is an example of context: All three family members use the same bathroom
and therefore have access to the same instance of Toothpaste. It is exactly the same as
the following program, using construction by hand:

Toothpaste toothpaste = new FluorideToothpaste();

family.give("Joanie", toothpaste);
family.give("Jackie", toothpaste);
family.give("Sachin", toothpaste);

Toothpaste Joanie Jackie Sachin

<< empty >> Figure 5.1
The injector distributes
the same instance of
Toothpaste to all
family members.

125The no scope (or default scope)
If this were the whole life of the injector, only one instance of Toothpaste would ever
be created and used. In other words, Toothpaste is bound under singleton scope. If
each family member had his own bathroom (each with its own tube of toothpaste), the
semantics would change considerably (figure 5.2).

family.give("Joanie", injector.getInstance(Toothpaste.class));
family.give("Jackie", injector.getInstance(Toothpaste.class));
family.give("Sachin", injector.getInstance(Toothpaste.class));

Nothing has changed in the code, but now a new instance of Toothpaste is available to
each family member. And now there is no danger of Sachin being deprived of tooth-
paste by Joanie or Jackie. In this case, the context under which each object operates is
unique (that is, its own bathroom). You can think of this as the opposite of singleton
scoping. Technically this is like having no scope at all.

5.2 The no scope (or default scope)
In a sense, no scope fulfills the functions of scope, as it

■ Provides new instances transparently
■ Is managed by the injector
■ Associates a service (key) with some context

Or does it? The first two points are indisputable. However, there arises some difficulty
in determining exactly what context it represents. To get a better idea of no scope’s
semantics, let’s dissect the example of the toothpaste from earlier. We saw that it took
no change in the use of objects to alter their scope. The family.give() sequence
looks exactly the same for both singleton and no scope:

family.give("Joanie", injector.getInstance(Toothpaste.class));
family.give("Jackie", injector.getInstance(Toothpaste.class));
family.give("Sachin", injector.getInstance(Toothpaste.class));

Toothpaste

Injector

Joanie

Jackie

Sachin

Toothpaste

Toothpaste

<< new >>

<< new >>

<< new >>
Figure 5.2
The injector creates
a new Toothpaste
instance for each
family member.

126 CHAPTER 5 Scope: a fresh breath of state
Or, expanded using construction by hand (modeled in figure 5.3), the same code can
be expressed as follows:

Toothpaste toothpaste = new FluorideToothpaste();
family.give("Joanie", toothpaste);

toothpaste = new FluorideToothpaste();
family.give("Jackie", toothpaste);

toothpaste = new FluorideToothpaste();
family.give("Sachin", toothpaste);

In no scope, every reference to Toothpaste implies a new Toothpaste instance. We
likened this to the family having three bathrooms, one for each member. However,
this is not exactly accurate. For instance, if Sachin brushed his teeth twice,

family.give("Joanie", injector.getInstance(Toothpaste.class));
family.give("Jackie", injector.getInstance(Toothpaste.class));
family.give("Sachin", injector.getInstance(Toothpaste.class));
family.give("Sachin", injector.getInstance(Toothpaste.class));

we would end up with a total of four Toothpaste instances (see figure 5.4).
 In our conceptual model, there were only three bathrooms. But in practice there

were four tubes of toothpaste. This means that no scope cannot be relied on to
adhere to any conceptual context. No scope means that every time an injector looks

Toothpaste

Joanie

Jackie

Sachin

Toothpaste

<< new >>

<< new >>

Toothpaste

<< new >>

Figure 5.3 Each member of the
family receives her own instance
of Toothpaste.

Joanie Jackie Sachin

Toothpaste Toothpaste Toothpaste Toothpaste

Figure 5.4 There are now four
instances of Toothpaste,
one for each use.

127The no scope (or default scope)
for a given key (one bound under no scope), it will construct and wire a new instance.
Furthermore, let’s say Sachin took Joanie on vacation and only Jackie was left at home.
She would brush her teeth once, as follows:

family.give("Jackie", injector.getInstance(Toothpaste.class));

This would mean only one instance of Tooth-
paste was ever created for the life of the applica-
tion. This was exactly what happened with
singleton scoping, but this time it was purely acci-
dental that it did. Given these two extremes, it is
difficult to lay down any kind of strict rules for
context with no scope. You could say, perhaps,
that no scope is a split-second scope where the
context is entirely tied to referents of a key. This
would be a reasonable supposition. Contrast sin-
gleton and no scope in figure 5.5.

 No scope is a very powerful tool for working
with injector-managed components. This is
partly because it allows a certain amount of flexi-
bility in scaling upward. Dependents that exist for longer times (or in wider scopes)
may safely obtain no-scoped objects as they are required. If you recall the Provider pat-
tern from chapter 4, there is a close similarity. Granny obtained new instances of an
Apple on each use (see listing 5.1, modeled in figure 5.6).

public class Granny {

 private Provider<Apple> appleProvider;

 public void eat() {
 appleProvider.get().consume();
 appleProvider.get().consume();
 }
}

In listing 5.1, the eat() method uses a provider to retrieve new instances, just as we
did for Toothpaste, earlier. Here Apple is no scoped.

 Guice and Spring differ in nomenclature with regard to the no scope. Spring calls
it as the prototype scope, the idea being that a key (and binding) is a kind of template

Listing 5.1 An example of no scope using the Provider pattern

Two new Apples
created

Granny

Provider<Apple>

get()
Apple

obtain

Injector

Figure 5.6 Granny obtains
instances of Apple (bound to
no scope) from a provider.

Injector

SingletonS
A

B

B

No scope

Figure 5.5 Timeline of contexts,
contrasting singleton and no scope

128 CHAPTER 5 Scope: a fresh breath of state
(or prototype) for creating new objects. Recall chapter 3, in the section on construc-
tor injection and object validity, where no scoping enabled multiple threads to see
independent instances of an object (modeled in figure 5.7):

<beans ...>
 <bean id="slippery" class="Slippery" scope="prototype"/>
 <bean id="shady" class="Shady" scope="prototype"/>

 <bean id="safe" class="UnsafeObject" init-method="init" scope="prototype">
 <property name="slippery" ref="slippery">
 <property name="shady" ref="shady">
 </bean>
</beans>

 This object was actually safe, because
any dependents of key safe were guaran-
teed to see new, independent instances of
UnsafeObject. Like singleton, the name
prototype comes from the Gang of Four
book, Design Patterns. For the rest of this
book I will continue to refer to it as, largely
because it is a more descriptive name.

 Like Guice, PicoContainer also assumes
the no scope if a key is not explicitly bound
to some scope:

MutablePicoContainer injector = new DefaultPicoContainer();
injector.addComponent(Toothpaste.class);

family.give("Joanie", injector.getComponent(Toothpaste.class));
family.give("Jackie", injector.getComponent (Toothpaste.class));
...

There’s almost no difference.

NOTE You will sometimes also hear no scope referred to as the default scope.
This is a less descriptive name and typically connotes either Guice or
PicoContainer (since they default to no scope).

While no scope doesn’t really lend itself to a context, singleton scope does so quite
naturally. Although the design pattern is itself applied in many different ways, we can
establish a context quite easily for a singleton.

5.3 The singleton scope
Very simply, a singleton’s context is the injector
itself. The life of a singleton is tied to the life of
the injector (as in figure 5.8).

 Therefore, only one instance of a singleton
is ever created per injector. It is important to
emphasize this last point, since it is possible for

UnsafeObject Slippery

Shady

<< no scoped >>

<< no scoped >>

<< no scoped >>

Figure 5.7 UnsafeObject and both
its dependencies were no scoped.

Injector

SingletonS

Figure 5.8 Timeline view of an injector
and singleton-scoped object A

129The singleton scope
multiple injectors to exist in the same application. In such a scenario, each injector
will hold a different instance of the singleton-scoped object. This is important to
understand because many people mistakenly believe that a singleton means one
instance for the entire life of an application. In dependency injection, this is not the
case. The distinction is subtle and often confusing. In fact, PicoContainer has
dropped the term singleton and instead refers to it as cache scoping.

 I persist with singleton scope, however, for a few reasons:

■ A singleton-scoped object is different from a singleton-patterned object (more on
this shortly).

■ The term singleton is well known and reasonably well understood, even if its par-
ticular semantics are not.

■ Cache scoping is a different concept altogether (which you will see in the next
chapter).

Identifying which service should be a singleton is quite a divisive issue. It is a design
decision that should impinge on the nature of a service. If a service represents a con-
ceptual nexus for clients, then it is a likely candidate. For instance, a database connec-
tion pool is a central port of call for any service that wants to connect to a database (see
figure 5.9). Thus, connection pools are good candidates for singleton scoping.

 Similarly, services that are stateless (in other words, objects that have no dependen-
cies or whose dependencies are immutable) are good candidates. Since there is no
state to manage, no scoping and singleton scoping are both equally viable options. In
such cases, the singleton scope has advantages over no scope for a number of reasons:

■ Objects can be created at startup (sometimes called eager instantiation), saving
on construction and wiring overhead.

■ There is a single point of reference when stepping through a debugger.
■ Maintaining the lone instance saves on memory (memory complexity is constant

as opposed to linear in the case of no scoping; see figure 5.10).

Business objects are perfect candidates for singleton scoping. They hold no state but typ-
ically require data-access dependencies. These services are sometimes referred to as

Client

ConnectionPool

connections

Client

Client

Data server
Figure 5.9
ConnectionPool is
a nexus through which
data connections are
served to clients.

130 CHAPTER 5 Scope: a fresh breath of state
managers or simply business APIs, as
in PersonnelManager, SalaryManager,
and StockOptionsService in a hypo-
thetical employee payroll system. Any
services-oriented APIs are likewise good
candidates to be stateless singletons.
We’ll talk a bit more about services-
oriented architecture (SOA) in chapter 10.

 Another oft-stated use case for sin-
gletons is when dealing with any object
graphs that are expensive to construct
and assemble. This may be due to any of
the following reasons:

■ The object graph itself being very large
■ Reliance on slow external resources (like network storage)
■ Some difficult computation performed after construction

These aren’t good enough reasons in themselves to warrant singleton scoping. Instead
you should be asking questions about context. If an external resource is designed to
be held open over a long period, then yes, it may warrant singleton scoping, for exam-
ple, the pool of database connections.

 On the other hand, a TCP socket, while potentially expensive to acquire (and
cheap to hold onto) may not warrant singleton scoping. If you were writing a game
that logs in to a server over a TCP connection when playing against others, you cer-
tainly would not want it to be a singleton. If a user happened to log out and back in to
a new server in a different network location, a new context for the network service
would be established and consequently would need a new instance, not the old single-
ton instance.

 Similarly, the size of the object graph should not play a major role in deciding an
object’s scope. Object graphs that have several dependencies, which themselves have
dependencies, and so on, are not necessarily expensive to construct and assemble.
They may have several cheaply buildable parts. So without seeing clear shortcomings
in an object’s performance, don’t be in a rush to optimize it as a singleton. This is a
mantra you can repeat to yourself every time you start to speculate and worry about
performance in any context.

 Computational expense may be a legitimate reason for scoping an object as a sin-
gleton, but here too, there are other prevailing concerns. Is the computation a one-
time activity? Do its values never change throughout the life of the application? And
can you separate the expense of computation from the object itself by, for instance,
storing the resultant value in a memo object? If you can answer these questions, you may
have a singleton on your hands. Remember the singleton litmus test: Should the
object exist for the same duration as the injector? In the coming sections, we’ll look at
how the semantics of the singleton scope affect design in various situations.

Singleton
Injector

(used) (used) (used)

No scope
Injector

(used) (used) (used)

In

Figure 5.10 Memory usage for a singleton is
constant compared to linear for no-scoped instances.

131The singleton scope
5.3.1 Singletons in practice

The important thing to keep in mind about scoping is that a key is bound under a
scope, not an object or class. This is true of any scope, not just the singleton. Take the
following example of a master terminal that can see several security cameras in
a building:

<bean id="terminal" class="MasterTerminal" scope="singleton"/>

<bean id="camera.basement" class="SimpleCamera" scope="prototype">
 <constructor-arg ref="terminal"/>
</bean>

<bean id="camera.penthouse" class="SimpleCamera" scope="prototype">
 <constructor-arg ref="terminal"/>
</bean>

Notice that I explicitly declare terminal as a singleton (by default, Spring beans are
all singletons) and both cameras as no scoped (scope="prototype"). In this configu-
ration, both camera.basement and camera.penthouse share the same instance of
MasterTerminal. Any further keys will also share this instance. Consider this equiva-
lent in Guice, using a module:

Algorithmic (or asymptotic) complexity
Complexity in computing is a measure of the scalability of an algorithm with regard
to resources. These resources may be CPU cycles (time complexity), RAM (memory
complexity), or any other kind of physical resource that the algorithm may demand
(for instance, network bandwidth). Complexity is used to indicate how the algorithm
performs with increasing size of input. The input is typically expressed as a number
n, indicating the total number of input items. For instance, a text-search algorithm
may count the number of characters in a string as its input.

Performance is typically expressed in big Oh notation: O(n) or O(n²), and so on. Ev-
erything is relative to n; the idea is to measure how an algorithm scales for very large
values of n. Constant complexity, which is O(1), indicates that the algorithm is inde-
pendent of n, even for huge values of n. This is considered good because it means
the algorithm will only ever consume a fixed amount of resources, regardless of its
input.

Going back to the text-search algorithm, it is easy to see that its time complexity is
dependent on the size of the input (since every character needs to be searched). This
is called linear complexity and is usually written as O(n).

In my example of no scoping, the input items are the number of dependents of the no-
scoped dependency, and the amount of memory allocated scales in proportion to this
number. Therefore, its memory complexity is also linear. If I changed to singleton
scoping, the memory complexity would be constant, since only the one instance is
created and shared by all dependents.

132 CHAPTER 5 Scope: a fresh breath of state
public class BuildingModule extends AbstractModule {

 @Override
 protected void configure() {
bind(Camera.class).annotatedWith(Basement.class).

➥ to(SimpleCamera.class);
bind(Camera.class).annotatedWith(Penthouse.class).

➥ to(SimpleCamera.class);

 bind(MasterTerminal.class).in(Singleton.class);
 }
}

Here we use combinatorial keys (see chapter 2) to identify the basement and pent-
house security cameras. Since Guice binds keys under no scope by default, we need
only scope MasterTerminal:

 bind(MasterTerminal.class).in(Singleton.class);

This has the same semantics as the Spring configuration. All security camera instances
share the same instance of MasterTerminal, as shown in figure 5.11.

 Another option is to directly annotate MasterTerminal as a singleton:

@Singleton
public class MasterTerminal { .. }

public class BuildingModule extends AbstractModule {

 @Override
 protected void configure() {
bind(Camera.class).annotatedWith(Basement.class).

➥ to(SimpleCamera.class);
bind(Camera.class).annotatedWith(Penthouse.class).

➥ to(SimpleCamera.class);
 }
}

This lets you skip an explicit binding (see BuildingModule). Figure 5.12 shows how a
singleton-scoped instance is shared among no-scoped objects.

[Camera.class, Basement.class]

Camera

<< abstract >> << annotation >>

@

Basement

(refers to)

<< no scoped >>

[Camera.class, Penthouse.class]

Camera

<< abstract >> << annotation >>

@

Penthouse

<< no scoped >>

[MasterTerminal.class]

Master
Terminal

<< concrete >>

<< singleton scoped >>

(refers to)

Figure 5.11 Keys are bound under
scopes, rather than classes or objects

133The singleton scope
To further illustrate the difference between no scope and singleton scope, let’s exam-
ine another interesting case. Here is a class BasementFloor, which represents a part of
the building where security cameras may be installed:

public class BasementFloor {
 private final Camera camera1;
 private final Camera camera2;

 @Inject
 public BasementFloor(@Basement Camera camera1,
 @Basement Camera camera2) {

 this.camera1 = camera1;
 this.camera2 = camera2;
 }
}

You might expect that both camera1 and
camera2 refer to the same instance of security
camera, that is, the one identified by key [Cam-
era, Basement]. But this is not what hap-
pens—camera1 and camera2 end up with two
different instances of Camera. This is because
the key [Camera, Basement] is bound to no
scope (see figure 5.13).

 Similarly, any dependents of [Camera,
Penthouse] will end up with new, unrelated
instances of Camera. Consider another class,
Building, which houses more than one kind
of camera:

public class Building {
 private final Camera camera1;
 private final Camera camera2;
 private final Camera camera3;
 private final Camera camera4;

 @Inject
 public Building(@Basement Camera camera1,

No scope #1

No scope #2

No scope #3

Singleton

Figure 5.12 A singleton-scoped instance
injected into many no-scoped instances

Basement
Floor

[Camera, @Basement]

[Camera, @Basement]

Figure 5.13 BasementFloor is wired
with two separate instances of no-scoped
key [Camera, @Basement].

134 CHAPTER 5 Scope: a fresh breath of state
 @Basement Camera camera2,
 @Penthouse Camera camera3,
 @Penthouse Camera camera4) {

 this.camera1 = camera1;
 this.camera2 = camera2;
 this.camera3 = camera3;
 this.camera4 = camera4;
 }
}

Here, all four fields of Building receive different instances of Camera even though
only two keys are present. This is opposed to the following class, ControlRoom, which
has four fields that refer to the same instance of MasterTerminal but via four refer-
ences (modeled in figure 5.14):

public class ControlRoom {
 private final MasterTerminal terminal1;
 private final MasterTerminal terminal2;
 private final MasterTerminal terminal3;
 private final MasterTerminal terminal4;

 @Inject
 public ControlRoom(MasterTerminal terminal1,
 MasterTerminal terminal2,
 MasterTerminal terminal3,
 MasterTerminal terminal4) {

 this.terminal1 = terminal1;
 this.terminal2 = terminal2;
 this.terminal3 = terminal3;
 this.terminal4 = terminal4;
 }
}

If we added a new kind of MasterTerminal,
bound to a different key, then this would
be a different instance. Let’s say I add a
MasterTerminal for the basement only:

public class BuildingModule extends AbstractModule {

 @Override
 protected void configure() {
bind(Camera.class).annotatedWith(Basement.class).

➥ to(SimpleCamera.class);
bind(Camera.class).annotatedWith(Penthouse.class).

➥ to(SimpleCamera.class);

bind(MasterTerminal.class).annotatedWith(Master.class).in(Singleton.class);

 bind(MasterTerminal.class).annotatedWith(Basement.class)
 .to(BasementTerminal.class)
 .in(Singleton.class);

 }
}

ControlRoom
Master

Terminal

<< singleton >><< no scoped >>

Figure 5.14 All four fields of Control-
Room are wired with the same instance of
MasterTerminal.

135The singleton scope
Now any dependents of [MasterTerminal, Master] see the same shared instance, but
any dependents of key [MasterTerminal, Basement] see a different instance. The
modified version of Building in listing 5.2 illustrates this situation.

public class ControlRoom {
 private final MasterTerminal terminal1;
 private final MasterTerminal terminal2;

 private final MasterTerminal terminal3;
 private final MasterTerminal terminal4;

 @Inject
 public ControlRoom(@Master MasterTerminal terminal1,
 @Master MasterTerminal terminal2,
 @Basement MasterTerminal terminal3,
 @Basement MasterTerminal terminal4) {

 this.terminal1 = terminal1;
 this.terminal2 = terminal2;
 this.terminal3 = terminal3;
 this.terminal4 = terminal4;
 }
}

In listing 5.2, terminal1 and terminal2 share the same instance of MasterTerminal.
But terminal3 and terminal4 share a different instance. I belabor this point because
it is very important to distinguish that a key, rather than an object, is bound under a
scope. Singleton scoping allows many instances of the same class to exist and be used
by dependents; it allows only one shared instance of a key. This is quite different from
the conventional understanding of singletons. This idiom implies a more absolute sin-
gle instance per application and is definitely problematic. In the following section I’ll
explain why I go so far as to call it an anti-pattern when compared with the much
more erudite singleton scope.

5.3.2 The singleton anti-pattern

You have probably heard a lot of discussion around the web and in technical seminars
about the horrors of the singleton as an anti-pattern. Earlier we drew a distinction
between singleton scope, a feature of DI, and singleton objects (or singleton anti-patterns),
which are the focus of much of this debate. The singleton anti-pattern has several
problems. Compounding these problems is the fact that singletons are very useful and
therefore employed liberally by developers everywhere.

 Its problems however, greatly outweigh its usefulness and should warn you off
them for good (especially when dependency injection can save the day with singleton
scoping). Let’s break this down in code:

public class Console {
 private static Console instance = null;

 public static synchronized Console getInstance() {

Listing 5.2 Object with two different singleton-scoped dependencies

Shared instance of
[MasterTerminal, Master]

Shared instance of
[MasterTerminal, Basement]

136 CHAPTER 5 Scope: a fresh breath of state
 if (null == instance)
 instance = new Console();

 return instance;
 }

 ...
}

I’m sure you have seen or written code like this. I certainly have. Its purpose is quite
simple; it allows only one instance of Console ever to be created for the life of the pro-
gram (representing the one monitor in a computer, for example). If an instance does
not yet exist, it creates one and stores it in a static variable instance:

 if (null == instance)
 instance = new Console();

 return instance;

The static getInstance() method is declared synchronized so that concurrent
threads don’t accidentally attempt to create instances concurrently. In essence, get-
Instance() is a Factory method—but a special type of Factory that produces only one
instance, thereafter returning the stored instance every time. You might say this is the
Factory equivalent of singleton scoping.

 Apart from all the foibles that Factories bring, note that this immediately causes
one major problem. This code is not conducive to testing. If an object relies on Con-
sole.getInstance() to retrieve a Console instance and print something to it, there is
no way for us to write a unit test that verifies this behavior. We cannot pass in a substi-
tute Console in the following code:

public class StockTicker {
 private Console console = Console.getInstance();

 public void tick() {
 //print to console
 ...
 }
}

StockTicker directly retrieves its dependency from the singleton Factory method. In
order to test it with a mock Console, you’d have to rewrite Console to expose a setter
method:

public class Console {
 private static Console instance = null;

 public static synchronized Console getInstance() {
 if (null == instance)
 instance = new Console();

 return instance;
 }

 public static synchronized void setInstance(Console console) {
 instance = console;

137The singleton scope
 }

 ...
}

Patterns that force you to add extra code or infrastructure logic purely for the pur-
poses of testing are poor servants of good design. Nonetheless, now you can test
StockTicker:

public class StockTickerTest {

 @Test
 public final void printToConsole() {
 Console.setInstance(new MockConsole());
 ...
 }
}

But what if there are other tests that need to create their own mocked consoles for dif-
ferent purposes (say, a file listing service)? Leaving the mocked instance in place will
clobber those tests. To fix that, we have to change the test again:

public class StockTickerTest {

 @Test
 public final void printToConsole() {
 Console previous = Console.getInstance();
 try {
 Console.setInstance(new MockConsole());
 ...
 } finally {
 Console.setInstance(previous);
 }
 }
}

I wrapped the entire test in a try/finally block to ensure that any exceptions thrown
by the test do not subvert the Console reset.

TIP Depending on your choice of test framework, there may be other meth-
ods of doing this. I like to use TestNG,1 which allows the declaration of
setup and teardown methods that run before and after each test. See list-
ing 5.3.

public class StockTickerTest {
 private Console previous;

 @BeforeMethod
 void setup() {

1 TestNG is a flexible Java testing framework created by Cedric Beust and others. It takes many of the ideas in
JUnit and improves on them. Find out more about TestNG at http://www.testng.org and read Cedric’s blog
at http://beust.com/weblog.

Listing 5.3 A test written in TestNG with setup and teardown hooks

138 CHAPTER 5 Scope: a fresh breath of state
 previous = Console.getInstance();
 }

 @Test
 public final void printToConsole() {
 Console.setInstance(new MockConsole());
 ...
 }

 @AfterMethod
 void teardown() {
 Console.setInstance(previous);
 }
}

This is a lot of boilerplate to write just to get tests working. It gets worse if you have
more than one singleton dependency to mock. Furthermore, if you have many tests
running in parallel (in multiple threads), this code doesn’t work at all because threads
may crisscross and interfere with the singleton. That would make all your tests com-
pletely unreliable. This ought to be a showstopper.

 If you have more than one injector in an
application, the situation grows worse. Singleton
objects are shared even between injectors and can
cause a real headache if you are trying to sepa-
rate modules by walling them off in their own
injectors (see figure 5.15).

 Moreover, any object created and maintained
outside an injector does not benefit from its
other powerful features, particularly lifecycle
and interception—and the Hollywood Principle.
One of the great benefits of DI is that it allows you to quickly bind a key to a different
scope simply by changing a line of configuration. That’s not possible with the single-
ton object (figure 5.16).

 Its class must be rewritten and retested to
introduce scoping semantics. Refactoring
between scopes is also a vital part of software
development and emerging design. Singleton
objects hinder this natural, iterative evolution.

 So to sum up: singleton objects bad, single-
ton scoping good. Singleton objects make test-
ing difficult if not impossible and are
antithetical to good design with dependency
injection. Singleton scoping, on the other
hand, is a purely injector-driven feature and completely removed from the class in
question (figure 5.17).

 Singleton scope is thus flexible and grants the usefulness of the Singleton anti-
pattern without all of its nasty problems. Scopes have a variety of other uses; they

Injector

Singleton anti-patternS

Injector

Figure 5.15 Singleton-patterned
objects are shared even across injectors.

Singleton

Application

Injector

A

Injector

Figure 5.16 Singleton anti-pattern
objects sit outside dependency injectors.

139Domain-specific scopes: the web
needn’t only be applied in the singleton and no scope idioms. In web applications,
scopes are extremely useful as unintrusive techniques in maintaining user-specific
state. These web-specific scopes are explored in the following section.

5.4 Domain-specific scopes: the web
So far we’ve seen that scopes are a context in which objects live. When a scope ends,
objects bound to it go out of scope. And when it begins again, new objects (of the
same keys) come “into scope.” Scopes can also be thought of as a period in the objec-
tive life of a program where the state of objects is persistent; that is, it retains its values
for that period. We also examined two of these scopes: the singleton and the no scope.
They’re rather unique: One sticks around forever, the other a split second. In a sense,
these two scopes are universal. Any application has a use for no-scoped objects. And
most applications will probably need access to some long-lived service that the single-
ton context provides.

 But there is a whole class of uses that are very specific to a particular problem
domain. These are domain-specific scopes. They are contexts defined according to the
particular behavioral requirements of an application. For example, a movie theater
has a specific context for each movie as it is being shown. In a multiplex, several movies
may be showing simultaneously, and each of these is a unique context. We can model
these contexts as scopes in an injector. A moviegoer watching a showing of the movie
The Princess Bride is different from one who is watching Godzilla in another theater.

 An important corollary to this model is that the moviegoer exists for the entire
duration of the movie (that is, scope). So if you looked in on the Godzilla show, you
would expect to see the same members of the audience each time.

 The movie scopes are specific to the domain of movie theaters and intimately tied
with their semantics. If a moviegoer exits one show just as it is ending and enters
another show as it is starting (I used to do this in high school to save money), does it
mean the moviegoer is carried across two contexts? Or should its state be lost and a
new instance created? We can’t answer these questions without getting deeper into

Injector Singleton

Application

Injector Singleton

Injector Singleton

Figure 5.17 Singleton-scoped
objects are well-behaved and live
inside the injector.

140 CHAPTER 5 Scope: a fresh breath of state
the movie theater analogy. More important, the answers to the questions can’t be
reused in any other problem domain.

 One of the most important sets of domain-specific scopes is those around building
web applications. Web applications have different contexts that emerge from interaction
with users. Essentially, web applications are elaborate document retrieval and transmis-
sion systems. These are typically HTML documents, which I am sure you are infinitely
familiar with. With the evolution of the web, highly interactive web applications have
also arisen—to the point where they now closely resemble desktop applications.

 However, the basic protocol for transmission of data between a browser and server
has remained fairly unchanged. The contexts for a web application have their seman-
tics in this protocol. Unlike a desktop application, a web application will generally
have many users simultaneously accessing it. And these users may enter and leave a
chain of communications with the web application at will. For example, when check-
ing email via the popular Gmail service from Google, I sign in first (translated as a
request for the inbox document), then open a few unread messages (translated as
requests for HTML documents), and finally sign out. All this happens with Gmail run-
ning constantly on Google’s servers. Contrast this with a desktop client like Mozilla
Thunderbird, where I perform the same three steps, but they result in the program
starting up from scratch and terminating when I’ve finished (entirely on my desktop).
Furthermore, Google’s servers host thousands (if not millions) of users doing very
similar things simultaneously. Any service that would normally be singleton scoped,
for example, my user credentials in Thunderbird, can no longer be a singleton in
Gmail.2 Otherwise, all users would share the same credentials, and we would be able
to read each other’s mail.

 On the other hand, you can’t make everything no scoped either. If you do, classes
of the Gmail application would be forced to keep passing around user credentials in
order to maintain state in a given request, and that would rewind all the benefits orig-
inally reaped from scoping. It would also perform rather poorly. Here’s where web-
specific scopes really help.

 All interaction between a user (via a web browser) and a web application occurs
inside an HTTP request (figure 5.18).

 A request is—no surprise—a request for a document or, more generally, a resource.
To provide this resource, an application
might go to a database or a file or perform
some dynamic computation. All this hap-
pens synchronously, that is, while the user
is waiting. This entire transaction forms
one HTTP request. Objects that live and
operate within this context belong to the
request scope.

2 Interesting fact: Gmail’s frontend servers use Guice heavily for dependency injection concerns.

request

Web serverUser

Figure 5.18 Interaction between a web server
and a user happens in an HTTP request.

141Domain-specific scopes: the web
5.4.1 HTTP request scope

The request scope is interesting because it isn’t strictly a segment in the life of an
injector. Since requests can be concurrent, request scopes are also concurrent (but
disparate from one another). Let’s take the example of an online comic book store.
Sandman is one of my favorite books, so I do a search for Sandman by typing in "sand-
man" at the appropriate page. To the comics store, this is a request for a document
containing a list of Sandman titles. Let’s call the service that generates this document
ComicSearch. ComicSearch must

■ Read my search criteria from the incoming request
■ Query a database
■ Render a list of results

Let’s make another service that accesses the database and call this ComicAccess.
ComicAccess will in turn depend on database-specific services like connections and
statements in order to deliver results. Listing 5.4 describes the code for the comic
store so far.

public class ComicSearch {
 private final ComicAccess comicAccess;

 @Inject
 public ComicSearch(ComicAccess comicAccess) {
 this.comicAccess = comicAccess;
 }

 public HTML searchForComics(String criteria) {
 ...
 }
}

Now it makes sense for the ComicAccess object to be a singleton—it has no state, con-
nects to a database as needed, and will probably be shared by several clients (other
web pages needing to access the comic store). The searchForComics() method takes
search criteria (typed in by a user) and returns an HTML object.

NOTE Of course, this is a hypothetical class and the exact form of search-
ForComics() may be different depending on the web framework you
choose. But its semantics remain the same—it takes in search criteria and
converts them to an HTML page displaying a list of matches.

ComicSearch is itself stateless (since its only dependency, ComicAccess, is immutable),
so we could bind it as a singleton. Given this case, it actually works quite well. Since
there is no request-specific context, binding ComicSearch either as a singleton or no
scope is viable.

 Let’s expand this example. Let’s say we add a requirement that the store shows me
items of interest based on my prior purchases. It’s not important how it determines
my interests, just that it does. Another service, UserContext, will handle this work:

Listing 5.4 Comic store’s search and data access components

142 CHAPTER 5 Scope: a fresh breath of state
public class UserContext {
 private String username;

 private final ComicAccess comicAccess;

 @Inject
 public UserContext(ComicAccess comicAccess) {
 this.comicAccess = comicAccess;
 }

 public List<Comic> getItemsOfInterest() {
 ...
 }

 public void signIn(String username) {
 this.username = username;
 }
}

The method getItemsOfInterest()scans old purchases using ComicAccess and
builds a list of suggestions. The interesting part about UserContext is its field user-
name and method signIn():

 public void signIn(String username) {
 this.username = username;
 }

When called with an argument, signIn() stores the current user. You’ll notice that
signIn() is more or less a setter method. But I’ve deliberately avoided calling it
setUsername() to distinguish it from a dependency setter. signIn() will be called
from ComicSearch, which itself is triggered by user interaction. Here’s the modified
code from listing 5.4, reflecting the change:

public class ComicSearch {
 private final ComicAccess comicAccess;
 private final UserContext user;

 @Inject
 public ComicSearch(ComicAccess comicAccess, UserContext user) {
 this.comicAccess = comicAccess;
 this.user = user;
 }

 public HTML searchForComics(String criteria, String username) {
 user.signIn(username);

 List<Comic> suggestions = user.getItemsOfInterest();
 ...
 }
}

ComicSearch is triggered on a request from a user, and method searchForComics() is
provided with an additional argument, username, also extracted from the HTTP
request. The UserContext object is configured with this username. Now any results it
returns will be specific to the current user.

 Let’s put the UserContext to work and expand this another step. We’ll add a
requirement that the list of results should not show any comics that a user has already

143Domain-specific scopes: the web
purchased. One way to do this is with two queries, one with the entire set of results
and the second with a history of purchases, displaying only the difference. That
sequence would be:

1 Query all matches for criteria from database.
2 Query history of purchases for current user.
3 Iterate every item in step 1, comparing them to every item in step 2, and

remove any matches.
4 Display the remainder.

This works, but it seems awfully complex. It is a lot of code to write and a bit superflu-
ous. Furthermore, if these sets are reasonably large and contain a lot of overlap, it
could mean doing a large amount of work to bring up results that are simply thrown
away. Worse, two queries are two trips to the database, which is expensive and unnec-
essary in a high-traffic environment.

 Another solution is to create a special finder method on ComicAccess that accepts the
username and builds a database query sensitive to this problem. This is much better,
because only the relevant results come back and the impact to ComicSearch is very small:

 public HTML searchForComics(String criteria, String username) {
 user.signIn(username);

 List<Comic> suggestions = user.getItemsOfInterest();

 List<Comic> results = comicAccess.searchNoPriorPurchases(criteria,

➥ username);
 ...
 }

But we can do one better. By moving this work off to UserContext, it avoids Comic-
Search having to know the requisite details for querying comics:

public class UserContext {
 private String username;

 private final ComicAccess comicAccess;

 @Inject
 public UserContext(ComicAccess comicAccess) {
 this.comicAccess = comicAccess;
 }

 public List<Comic> getItemsOfInterest() {
 ...
 }

 public List<Comic> searchComics(String criteria) {
 return comicAccess.searchNoPriorPurchases(criteria, username);
 }

 public void signIn(String username) {
 this.username = username;
 }
}

144 CHAPTER 5 Scope: a fresh breath of state
Now ComicSearch is a lot simpler:

 public HTML searchForComics(String criteria, String username) {
 user.signIn(username);

 List<Comic> suggestions = user.getItemsOfInterest();

 List<Comic> results = user.searchComics(criteria);
 ...
 }

The real saving comes with request scoping. We already need to bind ComicSearch
and UserContext in the request scope (because their state is tied to a single user’s
request). Now let’s say that instead of signing in a user in the searchForComics()
method, we’re able to do it at the beginning of a request before the ComicSearch page
(say, in a servlet filter). This is important because it means that authentication logic is
separated from business logic. Furthermore, it means code to sign in the user need be
written only once and won’t have to litter every page:

public class ComicSearch {
 private final UserContext user;

 @Inject
 public ComicSearch(UserContext user) {
 this.user = user;
 }

 public HTML searchForComics(String criteria) {
 List<Comic> suggestions = user.getItemsOfInterest();
 List<Comic> results = user.searchComics(criteria);

 ...
 }
}

Notice that it is much leaner now and focused on its core purpose. But where has the
code for signing in a user gone? Here’s one possible way it may have disappeared.
REQUEST SCOPING IN GUICE WITH GUICE-SERVLET

Listing 5.5 shows one implementation using a Java servlet filter and the guice-servlet
extension library for Guice.

Guice Servlet and Guice
Guice servlet is an extension to Guice that provides a lot of web-specific functional-
ity, including web-domain scopes (request, session). Guice servlet is registered in
web.xml as a filter itself and then later configured using a Guice module. It allows
you to manage and intercept servlets or filters via Guice’s injector (which is not oth-
erwise possible).

Find out more about guice-servlet at http://code.google.com/p/google-guice.

145Domain-specific scopes: the web
import javax.servlet.Filter;

@Singleton
public class UserFilter implements Filter {
 private final Provider<UserContext> currentUser;

 @Inject
 public UserFilter(Provider<UserContext> currentUser) {
 this.currentUser = currentUser;
 }

 public void doFilter(ServletRequest request, ServletResponse response,
 FilterChain chain) throws IOException, ServletException {

 currentUser.get().signIn(...);

 chain.doFilter(request, response);
 }

 ...
}

There are some interesting things to say about listing 5.5:

■ UserFilter is a servlet filter applied at the head of every incoming request.
■ It is declared under singleton scope (note the @Singleton annotation).
■ It is injected with a Provider<UserContext> so that a request-scoped UserContext

may be obtained each time.
■ User credentials are extracted from the request and set on the current User-

Context.

I use a Provider<UserContext> instead of directly injecting a UserContext because
UserFilter is a singleton, and once a singleton is wired with any object, that object
gets held onto despite its scope. This is known as scope-widening injection and is a prob-
lem that I discuss in some detail in the next chapter.

 Interestingly enough, in listing 5.4 I was able to use constructor injection to get
hold of the UserContext provider:

 @Inject
 public UserFilter(Provider<UserContext> currentUser) {
 this.currentUser = currentUser;
 }

Ordinarily, this wouldn’t be possible for a filter registered in web.xml according to the
Java Servlet Specification. However, guice-servlet gets around this by sitting between
Java servlets and the Guice injector. Listing 5.6 shows how this is done, with a web.xml
that is configured to use guice-servlet.

<?xml version="1.0" encoding="UTF-8"?>
<web-app version="2.4"

Listing 5.5 An injector-managed servlet filter using guice-servlet (using Guice)

Listing 5.6 web.xml configured with guice-servlet and Guice

Set up current user

Continue processing
request

web.xml namespace
boilerplate

146 CHAPTER 5 Scope: a fresh breath of state
 xmlns="http://java.sun.com/xml/ns/j2ee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee
 http://java.sun.com/xml/ns/j2ee/web-app_2_4.xsd" >

 <listener>
 <listener-class>example.MyGuiceCreator</listener-class
 </listener>

 <filter>
 <filter-name>guiceFilter</filter-name>
 <filter-class>com.google.inject.servlet.GuiceFilter</filter-class>
 </filter>

 <filter-mapping>
 <filter-name>guiceFilter</filter-name>
 <url-pattern>/*</url-pattern>
 </filter-mapping>

</web-app>

Guice-servlet’s architecture is depicted in figure 5.19.
 Notice that in listing 5.6 a servlet context listener named MyGuiceCreator is regis-

tered. This is a simple class that you create to handle the job of bootstrapping the
injector. It is where you tell guice-servlet what filters and servlets you want the Guice
injector to manage. Here’s what a MyGuiceCreator would look like if it were config-
ured to filter all incoming requests with UserFilter (to do our authentication work):

public class MyGuiceCreator extends GuiceServletContextListener {

 @Override
 protected Injector getInjector() {
 return Guice.createInjector(new ServletModule() {
@Override
 protected void configureServlets() {
 filter("/*").through(UserFilter.class)

 }
 });
 }
}

web.xml
namespace
boilerplate

Listener creates injector
on web app deploy

Filter all URLs
through guice-servlet

reroute

Injector

guice-servlet

Incoming
request Filter Filter Servlet

Figure 5.19 Incoming requests are rerouted by guice-servlet to injector-managed
filters or servlets.

147Domain-specific scopes: the web
This code is self-explanatory, but let’s go through it anyway. Remember, MyGuice-
Creator is a class you provide to bootstrap and configure the injector (it must extend
GuiceServletContextListener). The factory method Guice.createInjector()

takes instances of Guice’s Module as argument. You configure filters in guice-servlet via
a programmatic API (rather than web.xml):

 filter("/*").through(UserFilter.class)

You could continue adding filters and servlets. Each servlet and filter must be anno-
tated @Singleton.

 Let’s get back to request scoping. By moving code out to the UserContext object,
every request receives its own instance of ComicSearch and UserContext. We were
able to achieve this transition without any impact to ComicAccess and minimal
impact to ComicSearch. Declarative scoping of objects is thus a very powerful and
unintrusive technique.

 This is all very well. But how do we actually bind these scopes in Spring, Guice, and
others? Let’s take a look:

import com.google.inject.servlet.RequestScoped;

public class ComicStoreModule extends AbstractModule {

 @Override
 protected void configure() {

 bindComicAccess.class).to(ComicAccessImpl.class).in(Singleton.class);

 bind(UserContext.class).in(RequestScoped.class);
 bind(ComicSearch.class).in(RequestScoped.class);
 ...
 }
}

In the example code, I’ve bound both UserContext and ComicSearch in @Request-
Scoped. This is a scope made available by guice-servlet and represents the HTTP
request scope in the world of Guice.3 ComicAccess is a simple singleton, and so it is a
straightforward binding (to its implementation, ComicAccessImpl):

 bind(ComicAccess.class).to(ComicAccessImpl.class).in(Singleton.class);

This same effect can be achieved in Spring with its own set of web-specific scoping util-
ities. The following section explores the techniques involved there.
REQUEST SCOPING IN SPRING

In Spring’s XML configuration mode, these bindings are slightly different (see list-
ing 5.7).

<beans ...>
 <bean id="data.comics" class="ComicAccessImpl" scope="singleton">

3 Don’t forget that you need to register guice-servlet’s GuiceFilter in web.xml, as shown previously.

Listing 5.7 Spring XML configuration for the online comic store’s components

148 CHAPTER 5 Scope: a fresh breath of state
 ...
 </bean>

 <bean id="web.user" class="UserContext" scope="request">
 <constructor-arg ref="data.comics"/>
 </bean>

 <bean id="web.comicSearch" class="ComicSearch" scope="request">
 <constructor-arg ref="data.comics"/>
 <constructor-arg ref="web.user"/>
 </bean>
</beans>

The only new thing in listing 5.7 is the attribute scope="request" on bindings
web.user and web.comicSearch. Of course, none of the three classes need change at
all. Like Guice and guice-servlet, Spring requires additional configuration in web.xml.
First off, you need to bootstrap a Spring injector when the web application is
deployed. In Guice we used a ServletContextListener (recall MyGuiceCreator, the
subclass of GuiceServletContextListener). You do this in Spring too:

<web-app ...>
 ...
 <context-param>
 <param-name>contextConfigLocation</param-name>
 <param-value>/WEB-INF/comic-store.xml</param-value>
 </context-param>

 <listener>
 <listener-class>
 org.springframework.web.context.ContextLoaderListener
 </listener-class>
 </listener>
 ...
</web-app>

This web.xml is similar to the one we saw earlier with guice-servlet. Notice that we
needed to set a context parameter with the name of the XML configuration file. You
can think of it as the web equivalent of the following:

BeanFactory injector = new FileSystemXmlApplicationContext("WEB-INF/comic-

➥ store.xml");

Now we’ve bootstrapped the injector and told it where to find its configuration. But
that’s not all; as guice-servlet did for Guice, there’s still an integration layer that needs
to be configured to get request scopes going:

<web-app ...>
 ...
 <listener>
 <listener-class>
 org.springframework.web.context.request.RequestContextListener
 </listener-class>
 </listener>
 ...
</web-app>

149Domain-specific scopes: the web
This listener must appear in addition to the ContextLoaderListener shown previ-
ously. Now you’re set up to shop comics with Spring.

TIP We haven’t quite looked at how to configure filters with Spring’s injector.
Guice-servlet handled this for us via its GuiceFilter. Spring does not
have this support out of the box. But a sister project, Spring Security (for-
merly Acegi Security4) does. Spring Security’s FilterToBeanProxy does a
similar job.

Apart from these practical aspects, there are things to keep in mind about request
scoping:

■ A thread is typically dedicated to a request for the request’s entire span. This
means that request-scoped objects are not multithreaded.

■ It also means that they are generally not thread-safe.
■ Integration layers that provide request scoping often cache scoped objects in

thread-locals.
■ In rare cases, web servers may use multiple threads to service a request (for

instance, while processing long-running asynchronous requests). If you
are designing a request-scoping library in such a scenario, be aware of thread-
local assumptions.

Most of these are pretty low-level and specific to the architecture in question. In the
Java servlet world, threads and requests are almost always the same thing (though
once completed, a thread may clear its context and proceed to service other
requests). So you should be careful to clean up at the end of a request. If you are
designing request scopes, you should carefully research these potential hazards. Per-
haps even more useful than the request scope is the HTTP session scope. This tech-
nique allows you to keep objects around between requests in a semantic user session.
Using dependency injection, a lot of the glue code to make this happen goes away.
Session scoping is thus a powerful tool in the dependency injector’s toolbox.

5.4.2 HTTP session scope

An HTTP session scope is the next step up from a request scope. HTTP sessions are an
abstraction invented to make up for the fact that the HTTP protocol is stateless. This
means that it does not easily allow for long-running interactions with a user to be main-
tained on the server side. To get around this, developers use clever techniques and
string together a series of requests from the same user and call it a session (figure 5.20).
An HTTP session has important characteristics:

■ A session represents a single, unique user’s interaction with a web application.
■ A session is composed of one or more requests from the same user.
■ Not all requests are necessarily part of a session.
■ A session is a kind of store that preserves state between requests.
■ The two logical end points of a session are user login and logout.

4 Find out about Acegi Security at http://www.acegisecurity.org.

150 CHAPTER 5 Scope: a fresh breath of state
You can visualize a session as made up of multiple
independent requests from the same user (as in
figure 5.20). In figure 5.21, each instance of a
request-scoped object is unique to that request (R1
to R3). But a session-scoped instance is shared across
all those requests.

 Sessions are extremely useful for tracking state
relative to a specific user, since a session always
exists around one user. These uses include:

■ Tracking a user’s credentials for security
purposes

■ Tracking a user’s recent activity for quick
navigation (for example, breadcrumbs)

■ Tracking preferences, to personalize a user’s
experience

■ Caching user-specific information for quick access
■ Caching general, constant data for quick access

All these use cases involve storing state temporarily, generally to improve a user’s
experience through the site. Whether that is about presentation or under the covers,
it’s about performance. And that’s essentially what sessions do. Objects scoped under
a session retain their state across requests, essentially continuing from where the last
request left off.

 Typically, sessions start and end when a user logs in and logs out. This behavior
may be customized as necessary. Some requests (for static content, for example) do
not participate in a user session and are considered stateless. These requests are inde-
pendent of sessions, and, generally speaking, services participating in them shouldn’t
have any user-specific functionality.

 Like requests, sessions may also be concurrent. For instance, multiple users who
log in at once are said to be in different, unique sessions. While session-scoped
instances are shared across requests inside a session, they are independent between
sessions. Figure 5.22 shows how this might look in an injector’s timeline.

request

Web server
User

request

request

HTTP session

Figure 5.20 A series of related requests
from the same user forms an HTTP session.

Injector

Session

(request)

(request)

(request)

(request)

R1

(request)

R2

(request)

R3

Figure 5.21 A session is composed
of independent requests from a user.

151Domain-specific scopes: the web
 In this figure, U1 is an object that exists in
the first user’s session, and U2 is a different
instance of the same key that exists in the sec-
ond user’s session (it also is an aging Irish rock
band). U1 and U2 are completely independent
of one another. But within the first user’s ses-
sion, all requests share the same instance
(U1)—likewise with the second user and U2.
Another interesting point is that the second
user’s session does not start for a while into the
application’s life. So there is a time when U2 is
out of scope while U1 is in scope, even though
both are instances of the same key (let’s call it
U) bound under session scope.

 Another interesting thing about figure 5.22
is that the second user actually logs out and
logs back in (at the point marked re-login). This means that there are two instances of
U2 for the second user because she started two sessions. The state of U2 prior to the
second login is totally independent from the state after the second login. Contrast this
with singleton scoping, where instance state would have been shared for the entire life
of the injector, regardless of the number of sessions (or users) involved.

 Let’s go back to the comic store example. We had three important components:

■ ComicSearch—A request-scoped service that searched the comic catalog
according to given criteria.

■ ComicAccess—A singleton-scoped data-access service that acted as a bridge
between ComicSearch and a database.

■ UserContext—A request-scoped service that was specific to a user; it con-
structed personalized and filtered search results around a user’s behavior.

There was also a filter that set up the UserContext each time, by extracting a user-
name from incoming requests. Can you see any room for improvement? Let’s revisit
class UserContext to see if it provides any inspiration:

public class UserContext {
 private String username;

 private final ComicAccess comicAccess;

 @Inject
 public UserContext(ComicAccess comicAccess) {
 this.comicAccess = comicAccess;
 }

 public List<Comic> getItemsOfInterest() {
 ...
 }

 public List<Comic> searchComics(String criteria) {
 return comicAccess.searchNoPriorPurchases(criteria, username);

Injector

Sessionn
U1

login logout

Sessionn
U2login re-login

U2

Figure 5.22 Multiple user sessions in
the life of an injector

152 CHAPTER 5 Scope: a fresh breath of state
 }

 public void signIn(String username) {
 this.username = username;
 }
}

Straight away there is a clear benefit from making this object session scoped. We
wouldn’t have to sign in the user on every request! It would be enough to do it once,
at the start of the session (logical, since this would be where a user logged in) and sim-
ply let it be shared across any further requests from the same user. This would be par-
ticularly useful if the application loaded user-specific information (such as a user’s full
name and date of birth) on sign in, since it would save several unnecessary trips to the
database on subsequent requests.

 Another saving comes from the use case around caching user-specific information
for quick access. If we assume that items of interest for a user are unlikely to change
within a single session, there is no need to search and collate them on every request. It
can be done once and stored in a memo field for further requests. Here’s how you
might modify getItemsOfInterest() to do just that:

public class UserContext {
 private List<Comic> itemsOfInterest;

 public List<Comic> getItemsOfInterest() {
 if (null == itemsOfInterest) {
 ...
 }

 return itemsOfInterest;
 }

 ...
}

By storing computed suggestions in the itemsOfInterest memo field, I save a lot of
unnecessary computation so long as subsequent requests come from the same user.
Each user has her own memo, in their session-scoped UserContext.

 Binding UserContext to session scope is also laughably simple. As far as the injec-
tor is concerned, all you need to do is change its binding (we’ll do this in Guice and
guice-servlet first):

import com.google.inject.servlet.RequestScoped;
import com.google.inject.servlet.SessionScoped;

public class ComicStoreModule extends AbstractModule {

 @Override
 protected void configure() {
 bind(ComicAccess.class).to(ComicAccessImpl.class).in(Singleton.class);

 bind(UserContext.class).in(SessionScoped.class);
 bind(ComicSearch.class).in(RequestScoped.class);
 ...
 }
}

Memo field

Compute once
and memorize

153Domain-specific scopes: the web
Earlier we also saw a shortcut notation, where the class was itself annotated. This is
possible with session scope too, but first it requires that you to set up a scoping annota-
tion. This must be done manually because the web scopes aren’t part of the core Guice
distribution. It’s fairly easy to do:

public class ComicStoreModule extends AbstractModule {

 @Override
 protected void configure() {

 install(new ServletModule());

 bind(ComicAccess.class).to(CommicAccessImpl.class).in(Singleton.class);
 bind(ComicSearch.class).in(ServletScopes.REQUEST_SCOPE);
 ...
 }
}

Notice that I’ve removed any explicit binding of UserContext. I can now simply anno-
tate the class, and Guice will correctly bind it to the session scope:

@SessionScoped
public class UserContext {
...
}

You could do the same with request scopes and guice-servlet’s @RequestScoped
annotation.

 The Spring equivalent for binding UserContext under session scope is also
straightforward (once you have the context listeners set up):

<beans ...>
 <bean id="data.comics" class="ComicAccessImpl" scope="singleton">
 ...
 </bean>

 <bean id="web.user" class="UserContext" scope="session">
 <constructor-arg ref="data.comics"/>
 </bean>

 <bean id="web.comicSearch" class="ComicSearch" scope="request">
 <constructor-arg ref="data.comics"/>
 <constructor-arg ref="web.user"/>
 </bean>
</beans>

No additional configuration of the web server (or servlet container) is required. Cool!
Finally, there are a couple of things to keep in mind when working with objects in the
session scope:

■ Multiple concurrent requests (from the same user) may belong to the same
session.

■ This means two threads may hit session-scoped objects at once.
■ A session-scoped instance, if wired into a singleton, will stick around even when

the user has logged out and the session has ended (scope-widening injection).
Take care that this does not happen. We’ll look at remedies in chapter 6.

154 CHAPTER 5 Scope: a fresh breath of state
5.5 Summary
Scope is about managing the state of objects. Service implementations are bound to
keys, which are realized as object instances in an application. Without scoping, keys
requested from the injector return new instances each time (and each time they are
wired as dependencies). This is known as the no scope. Since there is no way of speci-
fying a duration for the time, state may be preserved in these instances. Singleton-
scoped keys, on the other hand, are keys that the injector only wires or returns one
instance for. In other words, singletons have one instance per key, per injector. This is
different from singleton-patterned objects, which enforce one instance per entire
application. I decry this flavor of singleton as an anti-pattern because it is nigh on
impossible to test with mock substitution and is tricky in concurrently run tests and
environments. Such anti-patterned singletons are also shared between multiple injec-
tors in the same application, which may even violate the configuration of the injector.
Always choose singleton scoping over singleton patterning.

So how does a session get scoped?
This is a rather tricky question. I said earlier that HTTP sessions are a hack for the
fact that the HTTP protocol is stateless. This is more or less accurate—the common
way of maintaining a user session is to use a browser cookie. A cookie is a small file
with unique information that a web application can send to a browser as its identity.
So, the next time that web browser hits the same URL, it will send back its cookies.
When the web application sees this cookie, it “remembers” who is calling and cor-
rectly identifies the user—much like an ATM card reminds the bank of who you are.
Cookies are specific to a website and URL, so there is no danger of cookies getting
crossed between applications.

Not all browsers support cookies, and since some users consider them a risk, even
browsers that do may not have them enabled. In these cases we need an alternative
way of tracking sessions. One popular alternative is URL rewriting. URL rewriting is
quite simple. When a browser requests a document, it does so via a URL. Usually
this happens when you click a hyperlink on a previous page. Now, instead of the nor-
mal URL, the web application rewrites all the hyperlinks sent to a particular user by
adding an identifier to it. Then when you (or any user) click the link, your browser re-
quests the rewritten URL. Incoming requests of this nature are filtered and stripped
of the extra bit identifying you as a unique user. This information is used to restore
your session, and everything continues as normal.

Most web technologies can be configured to use either URL rewriting or cookies as
their session continuation strategy. Some, like the Java Servlet Framework, automati-
cally detect browser capability and choose the appropriate strategy. The Java Servlet
Framework also provides abstractions for HTTP requestsand sessions to make them
easy to work with. Guice-servlet and the SpringFramework both provide integration
layers that sit over the servlet APIs and enable transparent web scoping with depen-
dency injection.

155Summary
 Thus, scope may be thought of as the choice of instance each time a key is sought
from it—whether new, or old, or shared. The singleton and the no scope are universal
and have uses in most applications using dependency injection.

 However, there is a whole class of scopes that are specific to particular kinds of
applications. These scopes are closely tied to contexts specific to a particular problem
domain. One such example is the web. Web-specific scopes are popular with many
web frameworks and ship out of the box with many DI libraries. The HTTP request
scope is the first and simplest of the web scopes. Keys requested from an injector
within the same request always return the same instance. When the request com-
pletes, these request-scoped objects are discarded, and subsequent requests force the
creation of new instances. Request scoping is interesting since the context that a
request purports may be concurrent with several other requests. These requests are all
walled off in their own unique scopes and keys, and when sought from the injector
they are different across these requests.

 HTTP session scope is a step up from request scope and is a natural extension of it.
An HTTP session is an artificial construct above a string of requests from the same
user. Session scope is thus persistent across all these requests (so long as they are from
the same user). Sessions are useful for storing user-specific information temporarily,
but they are often abused to store data that is relevant only to specific workflows
within the user’s session. Try to restrict your use of session scope to keeping around
user-relevant information only. Good examples are credentials, preferences, and (rel-
atively) constant biographical data.

More use cases in scoping
“A common mistake that people make when trying to design something completely
foolproof is to underestimate the ingenuity of complete fools.”

 —Douglas Adams

As you’ve just seen in chapter 5, scope is a very powerful tool for managing object
state. In particular, it is a tool for making your objects and services agnostic of state
management. In other words, you allow the injector to worry about the details of
state and context, and you keep your objects lean. This has advantages in both pro-
ductivity and design elegance.

 In this chapter we’ll look at how to apply these same principles to any stateful
context and to broaden the applicability of scoping as a tool in dependency injec-
tion. Most libraries provide some manner of extending the available scoping func-
tionality. We’ll look at how to leverage this in Guice and Spring, in particular.

 Closely related are the perils of scoping. While it is extremely powerful as a tool
for reversing responsibility, state management can get very tricky to design and

This chapter covers:
■ Customizing scope to suit your needs
■ Avoiding the perils of improper scoping
■ Using advanced scoping: caches and data grids
156

157Defining a custom scope
build around. We’ll look at common pitfalls and some very hairy corner cases, which
one would do well to respect. We’ll also see how good design can ameliorate or com-
pletely avoid these cases and how it can also facilitate good testing.

 Finally, I present some ideas for using scope in unusual and potentially interesting
ways for very large applications that require enormous scalability. But first, let’s lay the
groundwork and explore how to customize scope.

6.1 Defining a custom scope
We’ve had a long look at web scopes. HTTP request and HTTP session scopes provide a
useful set of tools for working with context in web applications, particularly for deal-
ing with user interactivity. Most applications (including web apps) are built around
some form of data manipulation. In general this data is stored in a relational database
like Oracle or PostgreSQL. In object-oriented languages, the same data is modeled as
interrelating classes of objects and then mapped to database tables. Objects are mar-
shaled to their counterpart tables, then retrieved as required in future interactions.
This is often called object (or data) persistence.

 The process of moving data between application memory (in the form of objects)
and database storage (in the form of relational tables) occurs in series of tasks called
transactions. Let’s look at how to treat transactions as a context and define a custom
scope around them.

6.1.1 A quick primer on transactions

A transaction is a form of interaction with a data store that is atomic, consistent, isolated,
and durable. Such transactions are sometimes referred to as ACID transactions. This is
what they imply:

■ Atomicity —All of the tasks inside a transaction are successful or none are.
■ Consistency —Data modified by a transaction does not violate prior constraints.
■ Isolation —Other transactions can never see data in a partial state as it is being

transacted.
■ Durability —This refers to the ability to recover from failures while inside a trans-

action and leave data consistent.

These transactions extend to your application logic, meaning many different, unre-
lated components can all participate within a single transaction in order to perform a
logical operation on data. Rather than pushing each task through in isolated fashion,
it makes sense to combine them as a logical unit under an overall purpose. They are
said to be coarse grained. When creating an employee record in the database, a transac-
tion may include logic to create annual leave blocks, stock option grants, and other
related records. If any one of these tasks fails (for instance, stock could not be
assigned because of a shortage), the entire transaction is rolled back and no employee is
created. This prevents the creation of a partial, invalid employee record and keeps the
database in a consistent state. A new attempt must be made, once the stock shortage is
corrected, in a separate transaction.

158 CHAPTER 6 More use cases in scoping
 Like singletons or HTTP sessions, a transaction is also a specific context within an
application. An injector can take advantage of this to reduce the passing around of
ancillary data and placeholder objects and generally improve the maintainability of
code by moving transactional concerns into transaction-scoped dependencies.

6.1.2 Creating a custom transaction scope

Before defining your own scope, it helps to ask a few questions:

■ Is the context that this scope represents clearly defined?
■ Objects must live for the entire life of this scope; does this work for all scoped

instances? You should never have two life spans for a key within a scope.
■ Is there going to be more than one thread accessing objects in this scope?

Transaction scope has well-understood start and
end points (see figure 6.1). A transaction is also
generally confined to one thread of execution.
While it’s by no means impossible to consider
scopes that may be accessed by multiple threads,
it is certainly preferable to design scopes that
are confined to a single thread. These scopes
are inherently simpler and easier to test and rea-
son about. Classes that are bound under thread-
confined scopes also don’t need to worry about thread-safety, and they are therefore
easy to design and test.

 So it looks like we’re on good ground. Before scoping, let’s define a use case. A
nuclear power station needs software written to start the reactors and begin the flow of
power to an electrical grid. The restriction is that there are three chambers to activate,
and they must either all activate or none should. If the chambers are too hot, none must
activate. We’ll model this as a transaction with a common logical goal, that being the
startup of the power station. Listing 6.1 imagines this transactional power station.

public class PowerStation {
 ...

 public void start() {
 transaction.begin();

 chamber1.fire();
 chamber2.fire();
 chamber3.fire();

 transaction.commit();
 }
}

We won’t worry too much about the transaction architecture. The important thing
is the context that it provides. In PowerStation’s case, that context exists for the

Listing 6.1 Three energy chambers activated in concert under a transaction

Injector

Scope
context active
Scope Scope

context active
(again)

Scope

Figure 6.1 A scope generally exists
over a repeating context.

159Defining a custom scope
duration of method start(), finishing when it returns (figure 6.2 shows a model of
this transaction). The call to transaction.commit() implies a successful comple-
tion of the transaction.

 Now let’s introduce the failure scenario, where one of the chambers may fail to
start by throwing an exception:

 public void start() {
 transaction.begin();

 boolean failed = false;
 try {
 chamber1.fire();
 chamber2.fire();
 chamber3.fire();

 } catch (StartFailedException e) {
 failed = true;
 } finally {
 if (failed)
 transaction.rollback();
 else
 transaction.commit();
 }
 }

In this modified version, start() expects that one of the chambers may fail, catches
the relevant exception (StartFailedException), and proceeds to discard the
changes to the transaction by rolling it back. The following lines ensure that a failure
to start aborts the entire transaction:

 if (failed)
 transaction.rollback();
 else
 transaction.commit();

Now let’s look at the code in each chamber that may cause the abortive fault:

public class Chamber {
 private final Gauge gauge;

Chamber #1

Transaction

fire()

PowerStation Chamber #2

Chamber #3

fire()

fire()

Figure 6.2 PowerStation fires all
three Chambers in a single transaction.

160 CHAPTER 6 More use cases in scoping
 ...
 public void fire() {
 gauge.measure();

 if (gauge.temperature() > 100)
 throw new StartFailedException();

 ...
 }
}

If the chamber’s gauge reads above 100, fire() will abort by throwing a StartFailed-
Exception, causing the transaction to abort too. This works, but it does not ensure
that the cumulative temperature is under control. All three chambers together must
have a temperature less than 100, which the code fails to ensure. We need a change to
how fire() performs its temperature check. As things stand, Gauge measures the heat
level from each chamber independently. In other words, each Chamber has its own
Gauge (that is, Gauge is bound under the no scope). To fix the problem, we need to
share the gauges among all three chambers. Singleton scoping is not quite right since
this would mean all dependents of Gauge would share the same instance (perhaps a
backup Chamber on the other side of the station or perhaps some component that’s
not a Chamber at all).

 The context for this heat measurement is the starting up of the PowerStation (its
start() method). Therefore, the transaction scope is an apt fit:

@TransactionScoped
public class Gauge { .. }

It’s shown in figure 6.3 as a class model.

Now when each chamber is fired and consequently measures its heat level, the Gauge
correctly reports a cumulative measure of heat from all three chambers. There need
be no further changes to PowerStation, Chamber, or any of their methods.

 @TransactionScoped is something we just made up (there is certainly no library
for it). So how would we go about creating this scope in an injector? The following
section answers this question using Guice.

6.1.3 A custom scope in Guice

A scope in Guice is represented by the Scope interface. Scope is as follows:

public interface Scope {
 <T> Provider<T> scope(Key<T> key, Provider<T> unscoped);
}

PowerStation Chamber

<< transaction-scoped >>

- start() - fire()

Gauge

- measure()

Figure 6.3
A PowerStation’s
Chamber depends on
a transaction-scoped
measuring Gauge.

161Defining a custom scope
A custom scope is required to implement only one method, scope(), which returns a
scoped instance Provider. Recall the Provider pattern from chapter 4. This is the
same, except that instead of being used against the reinjection problem, here it’s used
for providing scoped instances. The two arguments to scope() manage the particular
object in its context:

■ Key<T> key—The combinatorial key to be scoped
■ Provider<T> unscoped—A provider that creates new instances of the bound key

(in other words, it is a no-scope provider)

Use provider unscoped when a new context comes to life and new instances need to
be provided. When the scope context completes, you simply discard all scoped
instances, obtaining new ones from provider unscoped instead (see figure 6.4).

 Listing 6.2 shows how this is done with the transaction scope.

public class TransactionScope implements Scope {
 private final ThreadLocal<Map<Key<?>, Object>> instances
 = new ThreadLocal<Map<Key<?>, Object>>();

 public <T> Provider<T> scope(
final Key<T> key, final Provider<T> unscoped) {

 return new Provider<T>() {

 public T get() {
 Map<Key<?>, Object> map = instances.get();

 if (!map.containsKey(key)) {
 map.put(key, unscoped.get())
 }

 return (T) map.get(key);
 }
 };
 }

 public void beginScope() {
 instances.set(new HashMap<Key<?>, Object>());
 }

 public void endScope() {
 instances.remove();
 }
}

Listing 6.2 TransactionScope implemented in Guice

Scope’s
provider
Scope’s(Dependent)

Injector
injects

No scope
provider

obtain

No scope

(as necessary)

Figure 6.4 The injector obtains instances from a Scope provider, which itself may use
the no-scope provider.

Returns a scoped provider

Returns cached or new
instance if unavailable

Sets up a new context

Closes an existing context

162 CHAPTER 6 More use cases in scoping
In listing 6.2, class TransactionScope exposes the Guice interface Scope. The imple-
mented method scope() returns a scoped provider that acts as a bridge between the
injector and its default no-scope provider. The no-scope provider unscoped is used to
create new instances as required.

 A scoped provider is returned for each key requested in method scope(). The pro-
vider checks a thread-local hash table, returning cached instances for the current
thread:

 public T get() {
 Map<Key<?>, Object> map = instances.get();

 if (!map.containsKey(key)) {
 map.put(key, unscoped.get());
 }

 return (T) map.get(key);
 }

If an instance is not already present in the hash table, it is created and cached:

 if (!map.containsKey(key)) {
 map.put(key, unscoped.get());
 }

Otherwise, the instance mapped to the given key is returned normally:

 return (T) map.get(key);

This ensures objects that don’t yet exist in the current context are created when
needed. Method beginScope() sets up a context for the current transaction by creat-
ing a new hash table to cache objects for the life of the scope (transaction):

 public void beginScope() {
 instances.set(new HashMap<Key<?>, Object>());
 }

The hash table maps Guice Keys to their scoped instances. Its complement, method
endScope(), is called by the transaction framework when a transaction completes
(either by a successful commit or an abortive rollback), disposing of the cached
instances:

 public void endScope() {
 instances.remove();
 }

The entire context of the transaction, its scope, and scoped instances are confined to
a single thread by using the ThreadLocal construct:

public class TransactionScope implements Scope {
 private final ThreadLocal<Map<Key<?>, Object>> instances
 = new ThreadLocal<Map<Key<?>, Object>>();
 ...
}

ThreadLocals are utilities that allow stored objects to be available only to the storing
thread and none other. Because a transaction runs entirely in a single thread, we can be

163Defining a custom scope
sure that its context will only ever need to be accessed by that thread, and simultaneous
transactions are separated from one another by confinement to their respective threads.

 Now when a transaction-scoped object (such as Gauge from the previous section) is
wired to any other object, it is done so inside an active transaction in the current
thread. When a transaction completes, this instance is lost and any new transactions
will see a new instance created. This also applies to concurrent transactions; they are
kept walled apart by thread confinement.

 Cool! What about when no transaction is active and a key is sought? Well, this is a
serious problem, and it likely represents an error on the programmer’s part. Either
she did not start the transaction where it was meant to start or she configured the
injector incorrectly. You should add a safety check that reports the error quickly and
clearly in such cases:

public <T> Provider<T> scope(
final Key<T> key, final Provider<T> unscoped) {

 return new Provider<T>() {

 public T get() {
 Map<Key<?>, Object> map = instances.get();

 if (null == map) {
 throw new
 OutOfScopeException("no transaction was active");
 }

 if (!map.containsKey(key)) {
 map.put(key, unscoped.get());
 }

 return (T) map.get(key);
 }
 };
}

This is our sanity check that ensures a proper exception is raised (OutOfScopeExcep-
tion) if a transaction-scoped object is sought outside a transaction.

 Registering a custom scope in Guice is simple:

public class TransactionModule extends AbstractModule {

 @Override
 protected void configure() {
 bindScope(TransactionScoped.class, new TransactionScope());
 ...
 }
}

The scoping annotation @TransactionScoped is declared as follows:

@Retention(RetentionPolicy.RUNTIME)
@ScopeAnnotation
public @interface TransactionScoped { }

This is a standard bit of boilerplate that needs to be used when declaring any Guice
scope annotation. Notice that @ScopeAnnotation is a meta-annotation (an annotation

164 CHAPTER 6 More use cases in scoping
on an annotation), which tells the injector that this is a scoping annotation. Now say
that three times fast!

6.1.4 A custom scope in Spring

The same principles of context, instance longevity, and thread-safety apply to all injec-
tors, and Spring is no different. The particular interfaces to expose for scoping, how-
ever, are slightly different. Spring also has a Scope interface that your scope
implementation must expose. But it looks a bit different from Guice’s Scope. It is
shown in listing 6.3.

package org.springframework.beans.factory.config;

public interface Scope {

 Object get(String key, ObjectFactory unscopedProvider);

 Object remove(String key);

 String getConversationId();

 void registerDestructionCallback(String key,
 Runnable destructionCallback);
}

Let’s take a look at this interface and see how it relates to what we saw in the previous
section. First, the scoping provider method:

 Object get(String key, ObjectFactory unscoped);

This is almost identical to Guice’s scope() method, except that instead of returning a
scoped provider, get() returns the scoped instance itself. Instead of taking a combina-
torial key, it takes a string key. You can think of get() as being the provider itself. The
second argument, ObjectFactory, is an implementation of the Provider pattern (sim-
ilar to Guice’s unscoped Provider). It provides no-scoped instances of the given key.

 Next, the remove() method:

 Object remove(String key);

remove evicts any instance stored for the given key in the scope’s internal cache (the hash
table in TransactionScope), and then another method retrieves the scope’s identity:

 String getConversationId();

This is an unusually named method. What it essentially points to is the unique identity
of the particular scope context. If a transaction were active for the current thread, this
method would return a string that uniquely identified this transaction. If we were
implementing a session scope, we would return a session ID, unique to a user.

 Finally, there’s a lifecycle support method:

 void registerDestructionCallback(String key, Runnable

➥ destructionCallback);

Listing 6.3 Spring’s custom scope interface

165Defining a custom scope
registerDestructionCallback() is intended to support lifecycle for specific keys
when their instances go out of scope. We won’t delve much into this now since lifecy-
cle is coming up in the next chapter.

 So what might TransactionScope look like with Spring? Listing 6.4 takes a stab at it.

package my.custom;

public class TransactionScope implements Scope {
 private final ThreadLocal<Map<String, Object>> instances
 = new ThreadLocal<Map<String, Object>>();

 public Object get(String key, ObjectFactory unscoped) {
 Map<String, Object> map = instances.get();

 if (null == map)
 throw new IllegalStateException("no transaction is active");

 if (!map.containsKey(key)) {
 map.put(key, unscoped.getObject());
 }

 return map.get(key);

 }

 public void beginScope() {
 instances.set(new HashMap<String, Object>());
 }

 public void endScope() {
 instances.remove();
 }

 public Object remove(String key) {
 if (null == instances.get())
 throw new IllegalStateException("no transaction is active");

 return instances.get().remove(key);
 }

 public String getConversationId() {
 if (null == instances.get())
 throw new IllegalStateException("no transaction is active");

 return instances.get().toString();
 }

 public void registerDestructionCallback(String key,
 Runnable destructionCallback) {
 ...
 }
}

Listing 6.4’s TransactionScope is very similar to Guice’s TransactionScope. The
major difference is the three additional methods that Spring requires. For the conver-
sation ID, I return the hash table itself (in String form). This is a simple hack for

Listing 6.4 Transaction scope implemented as a custom scope in Spring

Scoped
instances
provider
method

Starts scope
context

Disposes current
scope context

Disposes a specific key
from current context

A unique string
identifying the hash
table (context)

166 CHAPTER 6 More use cases in scoping
identifying a context. Depending on the kind of Map, this may or may not have good
results. You will want to generate a more appropriate identifier in a production ver-
sion. I also perform a sanity check every time scoping methods are called:

 if (null == instances.get())
 throw new IllegalStateException("no transaction is active");

This is important because it fails fast with a clear and easily identifiable IllegalState-
Exception. Countless hours have been wasted because failing code does not indicate
exactly what was wrong and where.

 Registering this scope with the injector is straightforward, and it involves a bit of
simple cut-and-paste code in your injector configuration:

<beans ...>
 <bean

➥ class="org.springframework.beans.factory.config.CustomScopeConfigurer">
 <property name="scopes">
 <map>
 <entry key="transaction">
 <bean class="my.custom.TransactionScope"/>
 </entry>
 </map>
 </property>
 </bean>

 ...
</beans>

Then you are free to use it just like any other scope when declaring keys:

<bean id="gauge" class="nuclear.Gauge" scope="transaction">
 ...
</bean>

Now your new scoped objects can be injected and used as needed. The next section
switches around and looks at problems you can encounter when creating your own
scopes. It is essential to understand these before you go off and create your own scopes.

6.2 Pitfalls and corner cases in scoping
Letting the injector manage the state of your objects is a wonderful thing when
applied properly, but it also attracts danger. Scopes are extremely powerful because
they invert the responsibility of managing state, and the injector takes care of passing
it around to dependents. It keeps objects free of such concerns and makes them more
focused and testable. However, this same power can lead to very grave pitfalls.

 Many of these have to do with thread-safety. Some are about construction of object
graphs that are striped with objects of different scopes. These pitfalls can lead to a
range of unrelated problems that are not immediately apparent, for example, mem-
ory leaks, poor performance, or even erratic behavior. The counter to this latent peril
is a thorough understanding of problem cases. With that said, let’s start with scoping
and thread-safety.

167Pitfalls and corner cases in scoping
6.2.1 Singletons must be thread-safe

Singletons absolutely must be thread-safe —no exceptions.
Any serious application has several threads of execu-
tion that are continually operating. They may be ser-
vicing different users, timers, remote clients, or any of
a number of other purposes. A singleton-scoped key
directly implies that only one shared instance of an
object exists in the entire injector (and consequently
the application). Multiple threads often end up
accessing singleton instances and may even do so con-
currently. Chapter 9 discusses the intricacies of thread-
ing and objects in detail (with a particular emphasis on
Java’s thread and memory model).

 There are two ways in which you can create thread-
safe classes. The simpler and more straightforward is
to make them immutable, as shown in figure 6.5.

 The fields of the following class are immutable
(see how this might look for threads accessing it in fig-
ure 6.6):

import net.jcip.annotations.Immutable;
...

@Immutable @Singleton
public class MySafeObject{
 private final Dependency dep1;
 private final Dependency dep2;

 @Inject
 public MySafeObject(Dependency dep1, Dependency dep2) {
 this.dep1 = dep1;
 this.dep2 = dep2;
 }

 public Dependency getDep1() { return dep1; }

 public Dependency getDep2() { return dep2; }

 ...
}

Notice that MySafeObject has no setters and no methods that can alter or affect its
dependencies’ state. This is good immutable design. The marker annotation @Immu-
table is merely a tag that documents the behavior of MySafeObject (it has no effect in
practice). Place it on classes that you have designed to be immutable. Don’t be con-
fused by its proximity to @Singleton; it is there only as documentation. It helps unfa-
miliar pairs of eyes read, understand, and reason about your classes. It also reduces
confusion about intent. This is especially useful when you have bugs, since a colleague
can spot the bug and know immediately that it violates design intent.

(immutable)

Thread #1

Thread #2

Thread #3

Figure 6.5 Multiple threads may
safely use an immutable object.

168 CHAPTER 6 More use cases in scoping
TIP @Immutable and other thread-safety–related annotations are available
from the Java Concurrency in Practice website.1 They are downloadable at
the site and provided under a flexible open source license. Neither
Guice nor any other injector or production library reacts to the @Immu-
table annotation.

If their values never change, there is no risk of
one thread modifying a value that’s out of sync
with its rivals. As figure 6.6 shows, mutable single-
tons, if not properly guarded, can get out of sync
between threads.

 With immutable objects, the order of thread
execution is irrelevant, so you have fewer prob-
lems to design for. Try very hard to make single-
ton objects immutable. This is by far the simplest
and best approach.

 Of course, not every singleton can be made
immutable. Sometimes you may need to alter the
object’s state (for example, in a counter or accu-
mulator). If you decide to use setter injection to
resolve circular dependencies or the in-construc-
tion problem (see chapter 3), you cannot make the
class immutable. In these cases, you must carefully
design the object and all of its dependencies to be
thread-safe. Here I have the same class; it is no longer immutable but thread-safe insofar
as it guarantees that all of its dependencies will be visible to all threads:

import net.jcip.annotations.ThreadSafe;

@ThreadSafe @Singleton
public class MySafeObject2{
 private volatile Dependency dep1;
 private volatile Dependency dep2;

 @Inject
 public void set(Dependency dep1, Dependency dep2) {
 this.dep1 = dep1;
 this.dep2 = dep2;
 }

 public Dependency getDep1() { return dep1; }

 public Dependency getDep2() { return dep2; }

 ...
}

@ThreadSafe, like @Immutable, is intended to convey information about the class’s
design, nothing more. Java’s volatile keyword ensures that the value of a field is kept

1 Find out more at http://jcip.net. Chapter 9 has a lot of detailed information on concurrency and good class
and object design. Jump ahead if you are curious.

Thread #1

Thread #2

Thread #3

Thread #1’s
unsynced copy

Thread #3’s
unsynced copy

Figure 6.6 All visibility bets are off
with multiple threads accessing a
mutable object.

169Pitfalls and corner cases in scoping
coherent with all threads. In other words, when MySafeObject2’s dependencies are
changed using the set() method, they are immediately visible to all threads. This is a
very important point, and you will appreciate why when @ThreadSafe is contrasted
with the following class:

import net.jcip.annotations.NotThreadSafe;

@NotThreadSafe @Singleton
public class MyUnsafeObject {
 private Dependency dep1;
 private Dependency dep2;

 @Inject
 public void set(Dependency dep1, Dependency dep2) {
 this.dep1 = dep1;
 this.dep2 = dep2;
 }

 public Dependency getDep1() { return dep1; }

 public Dependency getDep2() { return dep2; }

 ...
}

MyUnsafeObject is critically flawed, because the Java language makes no guarantees
that any thread other than the one that set its dependencies will see the dependencies
(without additional synchronization). In other words, the memory between threads in
non-final, non-volatile fields may be incoherent. The subtle reason has to do with
the way Java Virtual Machines (JVM) are designed to manage threads. Threads may
keep local, cached copies of non-volatile fields that can quickly get out of sync with
one another unless they are synchronized correctly. We’ll study this problem and its
solutions in greater detail in chapter 9.

 Making a class thread-safe is often a difficult and involved process. No simple lit-
mus test exists to say a class is completely thread-safe. Even the best of us can get
tripped up when dealing with apparently simple threading and concurrency issues.
Your best bet is to reason carefully about a class and its threading environment.
Explore plenty of scenarios both common and atypical where a singleton may be
used. Try to convince at least one other person of the safety of your code. Actively
hunt for flaws; never assume they don’t exist. Always validate your assumptions. Test!
Test! And test again until you’re satisfied.

 Thread-safety problems can also present in other ways, particularly when dealing
with dependencies that cross scoping boundaries. This is an especially tricky situation
called scope widening, which we’ll explore in detail in the next section.

6.2.2 Perils of scope-widening injection

I’ve mentioned a problem called scope-widening injection a few times so far in this
book. It came up particularly when wider scoped objects depended on narrower
scoped objects, such as a singleton that depends on a no-scoped or request-scoped
object. When such a situation is encountered, you end up with a no-scoped (or

170 CHAPTER 6 More use cases in scoping
request-scoped) object that is held by the singleton, and it no longer comes under the
purview of its original scope. That means when the context ends, the instance contin-
ues to exist as a dependency of the singleton. As you can imagine, this causes a whole
swathe of knotty problems that can go undetected. Worse, they won’t necessarily cause
errors or exceptions to be raised and may appear to be functioning correctly, when
really they’re opening up a whole bunch of unintended semantics and consequences.

 Scope widening also applies to any scopes that are logically of different con-
texts—even those that may belong to the same scope but refer to separate contexts, such
as two separate user sessions. While this kind of scope widening is less likely (due to the
walling off between contexts by the injector), it can still occur if a singleton is used to
bridge them. I should really say, if a singleton is abused as a bridge. Not only does it break
the semantics of the scope as understood at the time of its definition, it also can lead to
serious performance, maintenance, and correctness problems. Scope widening is tricky,
since it cannot easily be addressed by testing either. The simplest kind of peril in scope
widening is an object whose scope has ended. This gremlin is called an out-of-scope object.
BEWARE THE OUT-OF-SCOPE OBJECT!

Instances that are out of scope present the most serious difficulty of the scope-widening
cases. This naïve singleton class depends on a no-scoped component:

@Singleton
public class TextReader {
 private final WordCounter counter;

 @Inject
 public TextReader(WordCounter counter) {
 this.counter = counter;
 }

 public void scan(List<String> strings) {

 for(String string : strings)
 counter.count(string);

 System.out.println("Total words: " + counter.words());
 }
}

TextReader is simple; its method scan() accepts a list of strings and prints the total
number of words. Its dependency WordCounter counts the number of words it has
received so far:

public class WordCounter {
 private int count;

 public void count(String text) {
 count += text.split(" ").length;
 }

 public int words() {
 return count;
 }
}

Count words
in all strings

Split string
around spaces

171Pitfalls and corner cases in scoping
So far, so good. Let’s try using the TextReader to count a few example string sets:

Injector injector = Guice.createInjector();
TextReader reader = injector.getInstance(TextReader.class);
reader.scan(Arrays.asList("Dependency injection is good!",
 "Really, it is!"));

This code correctly prints a total word count of 7.

Total words: 7

Now lets extend the example and give it more to do:

Injector injector = Guice.createInjector();
TextReader reader = injector.getInstance(TextReader.class);

reader.scan(Arrays.asList("Dependency injection is good!",
 "Really, it is!"));
reader.scan(Arrays.asList("Dependency injection is terrific!",
 "Use it more!"));

What does the program print now?

Total words: 7
Total words: 14

What went wrong? The second count should have been the same as the first. Double-
check the words: There are only seven in both sets. We’ve been had by scope-widening
injection. While you would normally expect the no-scoped WordCounter to be
disposed of after the first call to scan() and a new instance to take its place subse-
quently, what really happened is that TextReader has held onto the original instance.
This situation would not improve even if we were to obtain TextReader itself twice
from the injector:

Injector injector = Guice.createInjector();
TextReader reader = injector.getInstance(TextReader.class);
reader.scan(Arrays.asList("Dependency injection is good!",
 "Really, it is!"));

TextReader reader2 = injector.getInstance(TextReader.class);
reader2.scan(Arrays.asList("Dependency injection is terrific!",
 "Use it more!"));

This program still prints an incorrect result:

Total words: 7
Total words: 14

The first run is okay, since at that time all instances (TextReader and WordCounter)
are new ones. But the second run uses the old instance of WordCounter as well and so
ends up accumulating the word count. If we added a third line this accumulation
would continue (visualized in figure 6.7):

Injector injector = Guice.createInjector();
TextReader reader = injector.getInstance(TextReader.class);

reader.scan(Arrays.asList("Dependency injection is good!",

172 CHAPTER 6 More use cases in scoping
 "Really, it is!"));

TextReader reader2 = injector.getInstance(TextReader.class);
reader2.scan(Arrays.asList("Dependency injection is terrific!",
 "Use it more!"));

TextReader reader3 = injector.getInstance(TextReader.class);
reader3.scan(Arrays.asList("The quick brown fox", "is really annoying!"));

This should print three sets of 7, but instead it prints

Total words: 7
Total words: 14
Total words: 21

There are a couple of really easy solutions. The simpler is to remove the discrepancy
in scope between TextReader and WordCounter by choosing the narrowest scope for
both, in other words, make TextReader no scoped:

public class TextReader { .. }

Note the missing @Singleton annotation, implying no scope. This is shown in figure 6.8.
 Now, the program can remain as is:

Counter

<< no scoped >>

WordCounteTextReader

Call #1

Call #2

Call #3

<< singleton >>

Figure 6.7 WordCounter’s scope is
widened since it is held by singleton-
scoped TextReader.

WordCounter

<< no scoped >>

WordCounteTextReader

Call #2

<< no-scoped >>

Counter

<< no scoped >>

WordCounteTextReader

Call #1

<< no-scoped >>

WordCounter

<< no scoped >>

WordCounteTextReader

Call #3

<< no-scoped >>

Figure 6.8 Both TextReader and its
dependent have the same scope and are
safe from scope widening.

173Pitfalls and corner cases in scoping
Injector injector = Guice.createInjector();
TextReader reader = injector.getInstance(TextReader.class);

reader.scan(Arrays.asList("Dependency injection is good!",
 "Really, it is!"));

TextReader reader2 = injector.getInstance(TextReader.class);
reader2.scan(Arrays.asList("Dependency injection is terrific!",
 "Use it more!"));

TextReader reader3 = injector.getInstance(TextReader.class);
reader3.scan(Arrays.asList("The quick brown fox", "is really annoying!"));

And it correctly prints the three independent word counts:

Total words: 7
Total words: 7
Total words: 7

This is an example of scope-widening injection that could not be caught with a unit
test. Any test of WordCounter would pass, since it does correctly count the number of
words in a string. Any test of TextReader would also pass, since a mocked WordCoun-
ter would only assert that correct calls were made to it around its behavior rather than
around its state.

 Well, this solution works, but by making TextReader no scoped rather than fixing
the problem of scope widening, you might say I’ve sidestepped it. While this is a legiti-
mate solution, there are times when this doesn’t work. You need a singleton, and it
depends on a no-scoped instance, or, more generally, a wider-scoped object depends
on a narrower-scoped object.

 Scope widening viewed in this light is a form of the reinjection problem (see chapter 3).
We can use the same solution to mitigate scope widening. By replacing the narrower-
scoped dependency with a provider (and fetching it each time), we allow the injector
to intervene when new instances are required:

@Singleton
public class TextReader {
 private final Provider<WordCounter> counterProvider;

 @Inject
 public TextReader(Provider<WordCounter> counterProvider) {
 this. counterProvider = counterProvider;
 }

 public void scan(List<String> strings) {
 WordCounter counter = counterProvider.get();

 for(String string : strings)
 counter.count(string);

 System.out.println("Total words: " + counter.words());
 }
}

TextReader can now go back to being a singleton but continue depending on a no-
scoped object without any scope-widening effects. Figure 6.9 imagines how this
might work.

174 CHAPTER 6 More use cases in scoping
Running the program yields the correct word counts:

Total words: 7
Total words: 7
Total words: 7

One subtle thing to note is that in the new TextReader’s scan() method we retrieve
WordCounter once per method rather than once per use. If we had done this instead:

 public void scan(List<String> strings) {
 for(String string : strings)
 counterProvider.get().count(string);

 System.out.println("Total words: " +
 counterProvider.get().words());
 }

we would have ended up with a very different (and rather obnoxious) result:

Total words: 0
Total words: 0
Total words: 0

There’s nothing wrong with the coding of Word-
Counter or its logic, and that’s fine. It’s just that
the statement that prints the count uses a new
instance of WordCounter, discarding the one that
has just run a count. This is one of the perils of
stateful behavior. It would probably have had you
looking everywhere except where the fault was
(that is, in the scoping).
NO, REALLY: BEWARE THE OUT-OF-SCOPE OBJECT!

Out-of-scope objects can also cause bugs in
other areas. One common version is the use of
an out-of-scope object between (or before)
scope contexts (see figure 6.10).

WordCounter

WordCounter

WordCounter

<< new >>

<< new >>

<< new >>

ProviderTextReader

<< thread >>

<< thread >>

<< thread >>

Figure 6.9 A provider acts as an intermediary and prevents widening WordCounter’s scope.

Injector

Scope
context active

Scope
context active
(again)

(use scoped
key)

Figure 6.10 Beware of out-of-scope
objects used between contexts of a
scope.

175Pitfalls and corner cases in scoping
 This is a common problem that users of guice-servlet and Guice post about on the
community mailing lists. Consider a servlet managed by guice-servlet:

import com.google.inject.servlet.RequestScoped;

@RequestScoped
public class HelloServlet extends HttpServlet {
 public void init(ServletConfig config) { .. }

 ...
}

and its injector configuration:

Guice.createInjector(new ServletModule() {
 protected void configureServlets() {

 serve("/hello").with(HelloServlet.class);
 }
});

Now there is one method of note in HelloServlet: init(), which is called by the
guice-servlet on startup of the web application. What’s interesting is that HelloServ-
let is itself request scoped. The servlet lifecycle methods are fired when the web
application starts and there are no active requests at the time. The injector (via
request scope) immediately detects that there is no active request, so it aborts with an
OutOfScopeException (as shown in figure 6.11). This happens at the earliest point of
the application’s life, so it fails to load the entire web app.

 Session scoping a servlet will sim-
ilarly fail because no user session
can be found under which to bring
the key into scope. These are all
cases of objects being used out of
scope and represent serious flaws in
the design of a program. In other
words, HelloServlet is unavailable
for the application to start up. We
can use one of the mitigants of the
reinjection problem, the Adapter
pattern, to solve this problem. Con-
sider this rather plain but func-
tional version of HelloServlet

bound with an Adapter:

@Singleton
public class HelloServletAdapter extends HttpServlet {
 private final Provider<HelloServlet> delegate;

 public void init(ServletConfig config) {
 //do init work
 }

 public void service(HttpServletRequest request,

Injector

HelloServlet

(init fired)

request

H

request

Figure 6.11 Request-scoped HelloServlet is used
out of scope, that is, before any requests arrive.

176 CHAPTER 6 More use cases in scoping
 HttpServletResponse response) throws IOException,

➥ ServletException {
 delegate.get().service(request, response);
 }
 ...
}

Also the modified injector configuration, using the Adapter instead:

Guice.createInjector(new ServletModule() {
 protected void configureServlets() {

 serve("/hello").with(HelloServletAdapter.class);
 }
});

HelloServletAdapter is a singleton wrap-
per around HelloServlet that acts as a go-
between. It solves the out-of-scope prob-
lem (figure 6.12) by moving the logic for
the portions that are outside the scope of
HelloServlet into itself. Any calls to its
service() method are delegated down to
the request-scoped HelloServlet.

 Since service() is called only during a
request, we can rest assured that HelloS-
ervlet will always be inside a valid request.
Now HelloServlet can keep its scope and
still effectively function as expected. Now
that we’ve seen all the domestic problems
of scope widening, let’s shift gears and
look at the truly nasty pitfalls—ones that
involve multiple threads and objects in
widened scopes.
THREAD-SAFETY REVISITED

Scope widening can also lead to concurrency problems. Wiring any singleton with a
narrower-scoped dependency means that it automatically becomes accessible to all the
dependents of that singleton. If multiple threads access the singleton object, they are
likely to modify its nonsingleton dependencies. If they are not immutable or thread-
safe, you may see erratic and unpredictable behavior. Even if they are, they may be
underperforming. Thread-safety is a particularly tough subject, since there are so
many nuances to the concurrent modification (and access) of state. One of these is
the issue of safe publication, which is dealt with in chapter 9.

 You must take particular care to ensure that singletons never depend on objects
that are not thread-safe, or if they do, that these dependencies are guarded prop-
erly. Here’s an example of a class, scoped as a singleton, that depends on a count-
ing service:

Injector

HelloServlet

(init fired)

request

H

HelloServlet

request

H

HelloServletAdapter

Figure 6.12 A wrapping singleton
HelloServletAdapter mitigates
the out-of-scope problem.

177Pitfalls and corner cases in scoping
@Singleton
public class TextPrinter {
 private final Counter counter;

 public void print(String text) {
 System.out.println(text);

 counter.increment();

 if (counter.getCount() == 100)
 System.out.println("done!");
 }
}

TextPrinter has a thread unsafe dependency, Counter, which looks like this:

@NotThreadSafe
public class Counter {
 private long count;

 public void increment() {
 count++;
 }

 public long getCount() {
 return count;
 }
}

Because many threads hit TextPrinter’s methods, print() and printCount(), they
also increment and read Counter concurrently. When the number of lines printed hits
100, it prints "done!" Unfortunately, the way things stand this may never happen. The
counter keeps incrementing, no matter how many threads hit it, so it is logical to assume
that counter must reach 100 at some point (when a hundred lines are printed):

 if (counter.getCount() == 100)
 System.out.println("done!");

So what’s the problem? Right away there is the problem of memory coherency. Class
Counter is not a singleton and so has been designed without thread-safety in mind.
That would be fine were it used at any scope other than singleton (or more strictly,
any scope that is confined to single threads). In practice, however, Counter has had its
scope widened by being wired to TextPrinter, which is a singleton. One fix we can try
is to make count volatile (as we did in a similar example not long ago):

//@ThreadSafe?
public class Counter {
 private volatile long count;

 public void increment() {
 count++;
 }

 public long getCount() {
 return count;
 }
}

178 CHAPTER 6 More use cases in scoping
Now, at last, all threads see the same value of count. However, this isn’t quite enough.
It is conceivable that two threads could run through the print() method at
once—the first thread incrementing count to 100 and the second to 101. Then if
either the first or second continues down the print() method, it will hit the state-
ment testing whether count is 100. But the count has already hit 101, so the statement
evaluates to false and keeps on going. Our base case is never reached, and the pro-
gram never prints "done!"

 Clearly, concurrent access to the counter is not desirable—at least not willy-nilly.
To fix this problem, we need to ensure that each thread sees not only the latest value
of count but also the value that it has set. In other words, each thread must have
access to the counter exclusively. This is known as mutual exclusion and is achieved as
follows (also illustrated in figure 6.13):

@ThreadSafe @Singleton
public class TextPrinter {
 private final Counter counter;

 public synchronized void print(String text) {
 System.out.println(text);

 counter.increment();

 if (counter.getCount() == 100)
 System.out.println("done!");
 }
}

The synchronized keyword ensures
that no two threads execute method
print() concurrently.

 Threads queue up behind one
another and execute print() one by
one, ensuring that calls to getCount()
always return the value set by the same
thread in counter.increment() just
above. Can we now call Counter thread-safe? It has proper visibility across threads, and
it works in singletons that guarded it appropriately. But we can’t quite go that far. As a
dependency, it can still be used in a thread-unsafe manner. So we must leave it thus:

@NotThreadSafe
public class Counter {
 private long count;

 public void increment() {
 count++;
 }

 public long getCount() {
 return count;
 }
}

Text
Printer

Counter

<< @NotThreadSafe >>
<< singleton >> << no-scoped >>

<< guards >>

<< @ThreadSafe >>

Figure 6.13 Singleton TextPrinter must
guard access to its unsafe dependencies.

179Pitfalls and corner cases in scoping
Thread-safety is an eternally difficult problem, and it’s especially subtle in the case of
scope widening since it is hard to detect. Good documentation and modular design
will help you go a long way to avert its issues. Scope widening can also create nasty
problems that don’t involve threads, particularly with memory usage. In the next sec-
tion we’ll look at how this edge case can rear its ugly head and how to solve it.
SCOPE WIDENING AND MEMORY LEAKS

Scope-widening injection certainly has a lot of pitfalls! In Java, a garbage collector
runs behind your programs, periodically checking for objects that are no longer in
use, reclaiming the memory they occupy. Garbage collection is a wonderful feature of
modern languages that frees you from having to worry about a large number of mem-
ory issues. Memory is automatically allocated to objects when they come into instance.
When they’re no longer in use, that memory is claimed for reuse.

 Memory reclamation is a vital process that helps ensure programs run smoothly
and that they can stay up for indefinite periods. Next to hardware failure, memory
leaks are the greatest threat to this ability. Memory is said to leak when a programmer
expects an object to be reclaimed but the garbage collector can’t do so. Usually this is
because of programmer oversights (like scope-widening injection). These unreclaim-
able zombie objects no longer serve any purpose, yet they cannot be claimed by the
garbage collector because it cannot verify that they are not in use. Over time these
objects can accumulate and consume all of a machine’s memory, causing loss of per-
formance and even program crashes.

 So how does scope widening feed this problem? Take the case of a singleton. A sin-
gleton is held by an injector forever, that is, for the injector’s (and usually the applica-
tion’s) entire life span. Therefore, a singleton is never reclaimed during the life of an
application. Singletons are generally reclaimed only on shutdown. If any nonsingle-
tons are accidentally wired to a singleton through scope-widening injection, it follows
that these objects are also (indirectly) held forever. Here’s a naïve example of a servlet
that holds onto no-scoped instances on every request:

@Singleton
public class BadServlet extends HttpServlet {
 public final Provider<WebPage> page;
 public final List<WebPage> pages = new ArrayList<WebPage>();

 public void service(HttpServletRequest request,
 HttpServletResponse response) {
 pages.add(page.get());

 pages.get(0).handle(request, response);
 }
}

BadServlet is a frivolous example, but it serves to illustrate how a no-scoped depen-
dency (WebPage) can be scope widened and held by a singleton, as shown in figure 6.14.

 If you continually refresh the URL served by this servlet, your web server will even-
tually run out of memory and die with an OutOfMemoryError.

 A simple solution is to discard instances as soon as they are used:

180 CHAPTER 6 More use cases in scoping
@Singleton
public class GoodServlet extends HttpServlet {
 public final Provider<WebPage> page;

 public void service(HttpServletRequest request,
 HttpServletResponse response) {
 page.get().handle(request, response);
 }
}

The following method uses a no-scoped dependency but discards it immediately:

public void service(HttpServletRequest request, HttpServletResponse

➥ response) .. {
 page.get().handle(request, response);
}

GoodServlet servlet is properly behaved and allows instances of WebPage to be
reclaimed by the garbage collector, and all is well with the universe. Scope-widening
injection contains many such dangers. Avoid it where possible and try to use simpler
designs, either by using the narrowest scope available or by choosing the Provider and
Adapter design patterns as we’ve seen.

6.3 Leveraging the power of scopes
If there’s one feature of dependency injection that you can’t do without (besides wir-
ing), it would be scope. Scopes apply the Hollywood Principle to the state of objects.
They are a powerful way of removing boilerplate and infrastructure logic from your
code. The importance of this cannot be understated, since it means your code is eas-
ier to read and test. Scopes also reduce objects’ dependence on one another and
therefore simplify your object graphs.

BadServet

<< singleton >>

WebPage

etc.

<< no-scoped >>

WebPage

<< no-scoped >>

List<WebPage>

Figure 6.14 Scope widening can cause memory
leaks when holding onto no-scoped instances.

181Leveraging the power of scopes
 While many DI libraries provide scopes out of the box, and some web frameworks
round out the complement with advanced scopes (like flash and conversation), there’s
still plenty of room for innovation. We saw just how a custom transaction scope can help
make components easier to code and test. By pulling the menial labor into behind-the-
scenes code, you save yourself a tremendous amount of repetition, coupling, and extra
testing. That being said, here are some ideas for leveraging the power of scope.

6.3.1 Cache scope

Objects that are expensive to create (or data that is expensive to retrieve from a store)
are especially conducive to in-memory caching. Caching is the idea that an object is
kept around after its initial fetch, so that additional requests for it can use the cached
copy rather than go through the (potentially expensive) process of obtaining it again.

 A cache, specifically a disk cache, is powerful in that it can maintain the state of
certain important objects across multiple lives of an injector (and, indeed, an applica-
tion). A particular state can be restored this way for continuing work. In a computer
game you play through several difficult levels, then are called away to more mundane
pursuits, and so have to close down the game. But you don’t want to play through all
those levels again. A disk cache can let the application save game state for later
resumption. Figure 6.15 imagines how this might look.

This works in any scenario where long-lived data needs to be saved across injectors. A
cache is also powerful for keeping a handle on data constants (such as a list of coun-
tries) that rarely change. As the application requests cached items by wiring them in as
dependencies, the injector goes to an external store (or creates an instance) for the
object. Any subsequent wiring is much faster using the cached copy.

6.3.2 Grid scope

A data grid is very much like a cache in that it is an in-memory store of frequently used
data. However, it is a cache that is common across a large number of physical (or logi-
cal) machines. These individual machines share objects and act in concert as a grid.
Grids are sometimes referred to as cluster caches. Some sophisticated grids (like Ora-
cle Coherence) do much more than spread objects across a cluster, however. Coher-
ence features querying and updating operations, very much like a database. Grids can
also hold objects for very long periods of time, since they are able to distribute the
storage load across many more machines than single-disk caches. As a result, they are
also often faster and more flexible in clustered applications.

Cache
Scope
Cache(dependent)

Injector
injects

No-scope
Provider

create
& cache

No-scope

(use cached)

Figure 6.15 The injector obtains instances transparently from the cache scope.

182 CHAPTER 6 More use cases in scoping
 A grid scope that takes advantage of persisting instances in a data grid has no
end of useful applications. Grid scoping allows you to transparently cluster a massive
number of stateful services and data. This is done transparently so that the load is
efficiently balanced across machines without tedious clustering logic and extra
service programming. Figures 6.16 and 6.17 show how an instance can be injected
in one node and transparently distributed across the grid, to be used by depen-
dents anywhere.

 The simplest use case is replication of user credentials across a cluster. A user
logged into a single machine may have some relevant data stored in an HTTP session,
but if the application is backed by several machines in a cluster, you need to ensure
the credentials are also clustered correctly. Grid scoping is a compelling way of creat-
ing single-sign-on semantics across even different kinds of applications. Single sign-on is
the idea that you log in once, on any application in a domain, and you are logged in
to all applications on that domain. Here’s how you might share a user’s relevant infor-
mation across a data grid:

A
injected

Step #1:

(Dependent)

A

Step #2:
available across grid

A

A

Figure 6.16 Key A (new instance) is
provided to a dependent in one node.

Figure 6.17 Now a grid-scoped
instance of A is transparently
available to the entire grid.

183Leveraging the power of scopes
@GridScoped @ThreadSafe
public class Users {
 private final Map<String, UserContext> users;

 ...
}

@NotThreadSafe
public class UserContext {
 private String username;
 private boolean isActive;
 private Preferences prefs;

 ...
}

Thereafter, servlets, EJBs, service objects, mail components, and many others can all
share a user’s information by simply injecting the Users object. Of all the powerful
applications of scope, grid scope is perhaps the most interesting since it offers so
much potential for horizontally scaling applications.

6.3.3 Transparent grid computing with DI

The possibilities for client applications to scale and grow are endless, with SOA and
enterprise systems cleverly using dependency injection’s wonderful design patterns.
We’ve seen the modularity and separation of responsibilities that this can bring. We’ve
also seen how this can help us scale by moving applications off to dedicated hardware.
And we’ve seen the flexibility it can bring in terms of accommodating new business
processes and even interbusiness collaboration.

 There are a few more exciting possibilities. The kind of scaling we’ve seen thus far,
adding stronger hardware to individual layers of an application, is known as vertical
scaling or tiering. You will often hear architectures referred to as an n-tiered or verti-
cally tiered system. This kind of scaling has its advantages, but it can get expensive very
quickly. And for very large amounts of traffic, it can even become untenable. An
increasingly popular alternative system is known as horizontal scaling.

 Horizontal scaling refers to an architecture that increases its processing capacity by
the addition of any number of homogenous nodes, each capable of performing the
same function as any other. Incoming traffic is evenly distributed across several of
these worker machines from a few strong-load distributors. This kind of hardware is
both cheap and easily replaceable. And as it turns out, it is extremely powerful when
scaling to very large loads.

 Apache’s Hadoop project is an example of one such homogenous cluster-comput-
ing system. It consists of a master machine that distributes a single, computationally
expensive task across a number of worker slaves. Then it gathers results from each one
and recombines (or reduces) them into an expected total order. This is incredibly
useful for searching across large datasets and performing expensive computations
that can be broken down into simpler ones.

184 CHAPTER 6 More use cases in scoping
 One possible use of DI would be to apply a similar abstraction over the grid com-
puting network, where one interface and one method call are orchestrated across sev-
eral machines using a grid service proxy, in much the same way as we used a remote
proxy in the SOA case. There are early attempts at performing this sort of orchestra-
tion, but most of the effort has been focused on transparent slicing and distribution of
tasks around the cluster rather than architectural design patterns for clients of such
services. A library like that combined with a thin integration layer for clients could
really make dependency injection shine.

6.4 Summary
Injectors are extensible via the definition of custom scopes. These are scopes that
match some particular context of a problem domain that would benefit from the
application of the Hollywood Principle. Database transaction scope is one such exam-
ple. Keys bound within this scope return the same instance while a transaction is active
in the current thread but return new instances in other transactions (either subse-
quent or concurrent). Be careful when crafting your own scopes, and adhere to the
following principles:

■ Define the context of a scope clearly and succinctly.
■ Try to keep contexts confined to a single thread.
■ Assess whether your scope improves testability of components. If not, stay away!

There is no end to the pain that can be caused by a presumed performance or
development improvement that ends up not being easy to test.

Custom scopes really require a lot of thought and planning. Objects wired across scop-
ing boundaries can cause serious problems that can go undetected even with compre-
hensive unit testing.

 The problem of “crossing” a scoping boundary is very serious indeed—wiring a
narrow-scoped object (that is, a no-scoped one) to a wider-scoped object (a singleton)
entirely changes the assumptions about that narrower scope. The instance becomes
held by the singleton and effectively lives for the same amount of time. You should try
to design an architecture so this scope-widening injection is rare. Binding all keys in
the object graph under the narrowest scope is one simple mitigation. However, this
doesn’t work for all cases; sometimes you need a singleton that depends on a no-
scoped (or narrower-scoped) object. You can solve problems in this case by applying
the Provider design pattern from chapter 3.

 Another issue with scope widening is objects that are out of scope. An out-of-scope
object is one for which a key is requested when its bound scope is not active, for exam-
ple, a request-scoped key wired outside an HTTP request (say, during application
startup). Such problems represent design flaws. Rethink the architecture of your long-
lived components and their collaborators. If you must, solve the problem with the
Adapter pattern, as shown in chapter 3.

 A third issue that arises from scope-widening injection is thread-safety. Keys of
narrower scope, when wired to a singleton, are susceptible to the action of multiple

185Summary
concurrent threads. It is not enough to secure the singleton component alone; you must
guard access to its narrower-scoped dependencies or ensure that they are immutable.
This problem often goes undetected and can lead to erratic, unpredictable behavior
(without any specific errors being raised), which can be a nightmare to debug. There
is no easy way to detect thread-safety issues in scope-widened cases, since unit tests (and
even integration tests) are not reliable in this regard. Think about your object graphs
and convince yourself (and preferably an educated colleague) that they are thread-safe.
Better yet, avoid scope-widening injection altogether.

 Finally, scope-widening injection can cause memory leaks if the wider-scoped
object holds onto its narrower-scoped dependencies. Memory leaking is impossibly
hard to detect and results in arbitrary application crashes, which can be disastrous in
production environments.

 Although scopes have many pitfalls that may scare you off writing your own, you
shouldn’t be afraid. These are some positive features of scope:

■ Reduction of boilerplate
■ Reduction of interdependent code
■ Reduction (or removal) of dependence on infrastructure
■ Logical use of the Hollywood Principle to create focused, concise code
■ Improved testability

The benefits vastly outweigh any perils. Consider the careful use of scopes, and design
them according to your problem domain. Scopes can make the use of caches, clusters,
and data grids transparent to vastly increase an application’s scalability and give it
powerful features such as stateful replication.

 We’ve spent two chapters studying the problems and benefits of scope. In the next
chapter let’s change the theme slightly and look at a broader topic, applicable to all
kinds of applications, object lifecycle.

From birth
 to death: object lifecycle
“I agree with everything you say, but I would attack to the death your right to say it.”
 —Tom Stoppard

Whether or not lifecycle is a part of dependency injection is a divisive issue. How-
ever, like scoping, it can be a powerful tool when used correctly, and it fits closely
with dependency injection. In this chapter we’ll look at the basic form of lifecycle
offered by the language runtime—constructors. We’ll also look at managed lifecy-
cle as offered by more elaborate frameworks like servlets and EJBs, to illustrate how
lifecycle is domain specific. On the way we’ll examine the pitfalls of relying on one-
size-fits-all lifecycle models.

 Finally, we’ll look at how to design and implement a custom lifecycle strategy
and design classes that are simple and easy to test. First, let’s start by looking at what
lifecycle is: events in the life of an application that an object is notified about.

This chapter covers:
■ Notifying objects of significant events
■ Understanding domain-specific lifecycle
■ Initializing lazy and eager singletons
■ Customizing lifecycle with multicasting
186

187Significant events in the life of objects
7.1 Significant events in the life of objects
Lifecycle and scope are closely related concepts, so much so that they are occasionally
confused with each other. An object’s longevity can be seen in these two dimensions.
Object longevity with regard to some context (duration, users, threads, and so on) is
its scope. Periods in this context indicate various things about an object, for instance,
whether it is ready to begin serving clients, or if the object represents a network
resource, whether that resource has been closed or abnormally interrupted.

 Clearly many of these states are specific to the nature of the object. A movie may
have a paused state in its life; a web application has a deployed state, a game has a game-
over state, and so on. The various states an object goes through in its life are collec-
tively known as its lifecycle. When an object transitions between such states, it is said to
undergo lifecycle changes. These are often modeled as events that an object responds
to (see figure 7.1).

 The most basic lifecycle events are create and destroy.

7.1.1 Object creation

Objects come into instance when they are created and are notified about this event by
a constructor. Language runtimes support this construct naturally, so this isn’t really
rocket science. After memory is allocated to an object, its constructor is called, which can
perform some initialization logic. Ideally, one would do everything that’s necessary on
construction (any computation, dependency wiring, and the like) to put an object into
a usable state. However, this isn’t always possible for reasons that we’ll discuss shortly.

 In chapter 3 we saw how the constructor is used to wire an object with its depen-
dencies. We saw that it is a powerful technique for creating objects that are good citi-
zens. Good citizenry naturally extends to the lifecycle of an object. Constructing an
object (with its dependencies) puts it in a usable state, and thus begins its lifecycle.

 Listing 7.1’s Transporter is notified via its constructor, so that it can prepare itself
for use.

public class Transporter {
 private final ControlPanel control;
 private final PowerCell cell;

Listing 7.1 Transporter’s lifecycle is begun with a call to its constructor

event #1

event #2

event #3

Object

Figure 7.1 An object is notified of
events as parts of its lifecycle.

188 CHAPTER 7 From birth to death: object lifecycle
 public Transporter(ControlPanel control, PowerCell cell) {
 this.control = control;
 this.cell = cell;

 cell.charge();
 control.activate();
}

 public void energize() { .. }

}

Figure 7.2 models these classes. In Trans-
porter’s case, it calls into its dependen-
cies first (as per figure 7.3).

 Following this, Transporter is in the
ready stage of its life. Method energize()
can be called safely, to send crew members
off on wild planetary adventures (see fig-
ure 7.4).

 Furthermore, any preparatory com-
putations are also a natural fit to the con-
structor:

 public Transporter(ControlPanel control, PowerCell cell) {
 this.control = control;
 this.cell = cell;

 cell.charge();
 control.activate();
 }

There’s nothing spectacular about this example or about using constructors to pre-
pare objects, but the example serves to illustrate the idea behind lifecycle with states

Constructor
is notified,
begins
lifecycle

Ready to be used

charge()

constructor call

Transporter PowerCell ControlPanel

activate()

<< return >>

<< return >>

<< ready >>

Figure 7.3 Sequence
of calls to initialize the
Transporter and its
dependencies in a
constructor

Transporter

PowerCell

- energize()

ControlPanel

Figure 7.2 A Transporter depends on a
PowerCell and ControlPanel.

189Significant events in the life of objects
and about certain tasks that need to be performed to put an object into such states.
Similarly, when a service is shut down, resources often need to be relinquished (mem-
ory reclaimed, sockets closed, and so on). This occurs when a service is destroyed.

7.1.2 Object destruction (or finalization)

In Java, the explicit task of allocating and reclaiming memory is taken care of by the
runtime environment. This frees you from having to worry about when to reclaim allo-
cated objects. Premanaged languages like C++ support an explicit destructor, which acts
as a counterpart to constructors. The destructor is a lifecycle event method, which
runs once, just prior to memory being freed. Java has something analogous: finalizers.
A finalizer is a method that runs just prior to an object being reclaimed by the run-
time garbage collector.

 Unlike in C++, in Java we cannot guarantee when an object will be reclaimed and
therefore when its finalizer runs. The only certainty is that a finalizer will be run
before the object is reclaimed. This may be often and early (in the case of aggressive
garbage collection), or rare and late, or even right at the shutdown of the application
itself, or never if the application exits abnormally. For these reasons, disposal of finite
resources (such as network sockets or database connections) inside a finalizer is not a
good idea.

 To illustrate why, let’s take the example of a file service that displays the contents of
various images in a directory (like a filmstrip preview). This service is described in list-
ing 7.2.

public class Thumbnail {
 private final FileSystem fileSystem;
 private InputStream data;

 public Thumbnail(FileSystem fileSystem) {
 this.fileSystem = fileSystem;
 }

 public Image display(String path) throws IOException {
 data = fileSystem.getPath(path).newInputStream();
 ...

Listing 7.2 This application displays impressions of images on a disk

Transporter
(after construction)

energize!

Figure 7.4 Once the constructor
lifecycle method runs, we are ready
for adventuring!

InputStream
opened on
display

190 CHAPTER 7 From birth to death: object lifecycle
 }

 @Override
 protected void finalize() throws Throwable {
 data.close();

 data = null;
 super.finalize();
 }
}

Each time the user flips to a new image, the Thumbnail object opens a new file and dis-
plays it. However, the input stream is closed only inside its finalize() method. Since
there is no guarantee of when an object may be reclaimed, it’s a real possibility that
the program will open too many files from the operating system and thus run out of
resources (see figure 7.5). This is obviously a poor use of the finalizer lifecycle.

 Most times, you will find a better lifecycle method to release finite resources than a
finalizer. So, should you never use finalizers? Not quite—there are some rare cases
when they come in handy. While you can’t rely on a finalizer to release finite resources,
you can use a finalizer to ensure that a resource has been released previously:

 @Override
 protected void finalize() throws Throwable {
 if (null != data) {
 logger.warning("unclosed thumbnail: " + this);
 data.close();
 }

 data = null;
 super.finalize();
 }

This is a sanity check that can help in cases where you mistrust clients of your code.
Strictly speaking, this isn’t common, but it’s occasionally useful. Alternatively, you
might use logging or profiling APIs inside a finalizer to test predictions about your
program’s performance.

 One other use case for finalizers is releasing memory in collaborating libraries
that are not managed. For example, memory resources of a native C library running
inside a Java program can be released inside a finalizer by calling a native method
(see figure 7.6).

 These are corner cases that you are unlikely to encounter in everyday program-
ming. However, it’s important to understand the role of finalizers and more important
to avoid abusing them. More on the pitfalls of finalization is presented in chapter 9.

InputStream closed
in finalizer (bad!)

Thumbnail

finalize()
& close file

Figure 7.5
Method finalize() may run
very late, so it’s unsuitable for
closing finite resources.

191One size doesn’t fit all (domain-specific lifecycle)
Construction and finalization are universal events that apply to any kind of object. But
most types of lifecycle apply only to specific classes of objects—and then only in cer-
tain application domains. Remember that not all lifecycle is universal and that events
are typically specific to particular problem domains.

7.2 One size doesn’t fit all (domain-specific lifecycle)
We’ve seen that constructors are a lifecycle hook on creating objects and that finaliz-
ers are their complement prior to destruction. We’ve also seen that finalizers don’t fit
all clean-up use cases. Constructors are a bit better, but they too don’t fit all initializa-
tion use cases. For example, a web application is deployed, and all its objects are con-
structed quite early. But it may only begin servicing requests at a much later time.

 The application doesn’t require many of its (finite) resources until that point. In
the Java Servlet Framework, this directly translates to a servlet’s init() method, where
resources such as database connections can be acquired and held. Similarly, a network
service may be created and configured but is not fully ready until a socket is opened.

 This leads to the conclusion that lifecycle events are not universal and that the
stages in an object’s life are specific to a problem domain. For instance, the lifecycle of
a servlet is very different from the lifecycle of a database connection or that of a movie
player. Consequently, the times and frequency of initialization and destruction are
dependent on the nature of the service. Web pages are created and destroyed fre-
quently (on each request), while database connection pools are created once and
held open almost indefinitely.

 In this chapter, we’ll look at some of these domains, how they differ, and how to
design with them in mind. Let’s start by contrasting two very common problem
domains that have very different lifecycles: web servlets and database connections.

7.2.1 Contrasting lifecycle scenarios: servlets vs. database connections

A servlet is a web component used to render web pages that has three major stages in
its lifecycle: constructed, ready to service, and destroyed. These are demarcated by two life-
cycle events: init and destroy. A servlet’s init() method is the lifecycle hook that’s called
to notify it of initialization. In other words, when the init() method returns, the serv-
let is expected to be ready for service. Similarly, method destroy() is called to notify a
servlet that its life has ended. Any cleanup of the servlet’s dependencies should be

Managed object

finalize()
& release memory

Native object

Figure 7.6 It’s sometimes
useful to release memory in
collaborating native libraries
with finalize().

192 CHAPTER 7 From birth to death: object lifecycle
performed here. Once destroyed, a servlet object is never called on to service requests
again. Listing 7.3 shows a servlet object that initializes itself in its constructor and
opens a connection to the database when notified of the init event. It releases this
connection on servlet destruction. This sequence is illustrated in figure 7.7.

public class NewsServlet extends HttpServlet {
 private Connection con;
 private final NewsService newsService;

 public NewsServlet() {
 newsService = new NewsService();
 }

 @Override
 public void init() throws ServletException {
 try {
 con = DriverManager.getConnection(..);
 } catch (SQLException e) {
 ...
 }
 }

 @Override
 public void service(ServletRequest req, ServletResponse res) { .. }

 @Override
 public void destroy() {
 try {
 con.close();
 con = null;
 } catch (SQLException e) {
 ...
 }
 }
}

There are some oddities about NewsServlet:
Because it is managed directly by the servlet
framework, it cannot benefit from depen-
dency injection. Its lifecycle (that is, init()
and destroy()) is managed entirely by the
servlet container. It introduces the need to
create dependencies by hand (or use a fac-
tory) and tightly couples the servlet to the
underlying data layer. By inserting an integra-
tion layer like guice-servlet, we can change all
that and have NewsServlet benefit from
dependency injection as well as receive the
servlet lifecycle events. Listing 7.4 reimagines
NewsServlet in this light.

Listing 7.3 A Java servlet that starts and cleans up its resources inside lifecycle hooks

Create nonfinite
dependencies

Open database
connection

Close and release connection

init()

constructed

destroy()

service()

reclaimed

Figure 7.7 Stages in a servlet’s lifecycle

193One size doesn’t fit all (domain-specific lifecycle)
@Singleton
public class NewsServlet extends HttpServlet {
 private final PersistenceService persistence;
 private final NewsService newsService;

 @Inject
 public NewsServlet(PersistenceService persistence,
 NewsService newsService) {
 this.persistence = persistence;
 this.newsService = newsService;
 }

 @Override
 public void init() {
 persistence.start();
 }

 @Override
 public void service(ServletRequest req, ServletResponse res) { .. }

 @Override
 public void destroy() {
 persistence.shutdown();
 }
}

This version of NewsServlet is much neater, not simply because it is injected, but also
because its lifecycle can naturally cascade to abstractions underneath. For example,
PersistenceService may represent a database connection, flat disk file, or even in-
memory network storage. Dependency injection in conjunction with the servlet lifecy-
cle makes for simpler, more testable code.

 Spring’s DispatcherServlet provides a similar facility for routing requests from
the servlet container to its own custom MVC framework. First you set up the Dis-
patcherServlet in web.xml. Then you hook it up to a custom Spring MVC controller
that does what you want (and is dependency injected by Spring):

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans-2.5.xsd">

 <bean name="/news.html" init-method="init" destroy-method="destroy"

➥ class="c7.NewsController">
 <constructor-arg ref="persistence"/>
 <constructor-arg ref="newsService"/>
 </bean>
 ...
</beans>

Here instead of implementing HttpServlet directly, we implement Spring’s Control-
ler interface:

Listing 7.4 A version of NewsServlet managed by Guice and guice-servlet

Abstract, nonfinite
dependencies are injected

Start persistence
service

Shut down
persistence service

194 CHAPTER 7 From birth to death: object lifecycle
import org.springframework.web.servlet.mvc.Controller;
...

public class NewsController implements Controller {
 private final PersistenceService persistence;
 private final NewsService newsService;

 public NewsController(PersistenceService persistence,
 NewsService newsService) {
 this.newsService = newsService; this.persistence = persistence;
 }

 public void init() {
 persistence.start();
 }

 public ModelAndView handleRequest(HttpServletRequest request,
 HttpServletResponse response) { .. }
 public void destroy() {
 persistence.shutdown();
 }
}

Except for the variant handleRequest() method, this is very similar to the previous
example.

NOTE Notice that we had to specify init-method and destroy-method in the
XML configuration; this is necessary since we’re moving from the servlet
container to Spring’s injector. While these do not exactly coincide (as in
the case of Guice Servlet), they perform the same function.

Contrast this with the lifecycle of a different service, such as a database connection.
Both can be managed by DI, and both have a role to play in web applications, but
they lead very different lives. Listing 7.5 describes a fictional, pooled database con-
nection class.

public class PooledConnection {
 private Connection conn;
 private ConnectionState state;

 public synchronized void open() throws SQLException {
 conn = DriverManager.getConnection(..);
 }

 public synchronized void onCheckout() {
 this.state = IN_USE;
 }

 public synchronized void onReturn() {
 this.state = IDLE;
 }

public synchronized void close() throws SQLException {
 if (IN_USE == state)

Listing 7.5 Connection wraps a raw database-driver connection for pooling purposes

Start persistence
service

Shut down
persistence service

Connection is
established

Connection is
checked out for use

Connection is
checked back in

Connection is
disposed, if not in use

195One size doesn’t fit all (domain-specific lifecycle)
 throw new IllegalStateException();

 conn.close();
 }
}

In listing 7.5, there are four lifecycle hooks:
open(), close(), onCheckout(), and onRe-

turn(). These refer to events in the life of the
database connection. open and close are self-
explanatory; onCheckout() refers to the connec-
tion being taken out of its pool for use. Think of
this as checking out a book from your local public
library. When notified, the pool-aware connec-
tion puts itself in an IN_USE state, which is used
to ensure that it isn’t accidentally closed while
serving data. Similarly, onReturn() is called when
the connection is checked back into its pool, set-
ting it into an IDLE state. Figure 7.8 is a flow chart
describing the sequence of events in Connec-
tion’s lifecycle.

 Idle connections are safe to close or to per-
form other background activity on (for exam-
ple, connection validation).

 The connection’s lifecycle hooks are called from an owning connection pool. As
previously said, its usage profile is significantly different from a servlet’s—and indeed
any other object managed by dependency injectors. The pool itself may be managed
by a servlet and cohere with its lifecycle; however, this is not particularly relevant to
the connection’s lifecycle.

Connection pooling and validation
Connections to RDBMS databases often have timeout values. After a certain period
of inactivity, a driver automatically releases a held connection in order to prevent zom-
bie connections from dragging down database performance. Since establishing new
connections is potentially expensive, applications create and hold them in pools (at
startup), taking the cost up front. Connections are then distributed from the pools to
clients and returned after use, avoiding the need to dispose and reestablish connec-
tions during the life of busy applications. This is known as connection pooling.

If a connection remains idle in a pool for any length of time, it’s in danger of being
timed out. To prevent this, connection pools execute dummy SQL statements at pe-
riodic delays to reset the timer and keep the connection alive. Often these are as sim-
ple as “SELECT 1 FROM DUAL”, which returns the number 1 from a numerical
sequence. This process is known as connection validation.

open()

constructed

close()

service

reclaimed

onCheckout()

onReturn()

Figure 7.8 Flow of stages in an example
database connection’s lifecycle

196 CHAPTER 7 From birth to death: object lifecycle
Just as it is difficult to fit connections and servlet into the same lifecycle, it is also diffi-
cult for any one lifecycle model to fit all use cases. Many programmers lead themselves
into trouble by trying to do just that. One such anti-pattern is trying to apply a converse
of the initialization lifecycle event to all services. I call this the destructor anti-pattern.

7.2.2 The Destructor anti-pattern

As we said earlier, finalizers are not well suited to freeing up finite resources in
languages with managed memory models. To solve this, many developers use an all-
purpose destroy lifecycle hook, which is called when the injector (or application itself)
is shut down. Spring and PicoContainer provide these all-purpose destroy methods,
which are called at some point in the application’s lifecycle but not necessarily just
when an object is being reclaimed. Here is the file service from earlier in the chapter,
modeled using Spring’s built-in destroy event:

<bean id="thumbnail" class="files.Thumbnail" destroy-method="close">
 <constructor-arg ref="fileSystem"/>
</bean>

The attribute destroy-method=".." refers to the name of a no-argument method to
be called when the injector is shut down. While these are often useful in particular
problem domains (such as the servlet lifecycle we saw previously), generalizing this
event is not always appropriate. Take the Thumbnail example at the head of the chap-
ter; the same problem occurs here as we saw with finalizers. Method close() is called
when the application exits (Spring’s injector calls destroy hooks when the JVM exits).
This means that file handles will be held open while images are being viewed. Once
again, you can very easily run out of finite OS resources without really using them.

 A more sensible solution would be to close each file handle after the image pre-
view has been extracted from it. There isn’t a clear way to do that using only the
destroy-method mechanism or, more generally, using the Destructor pattern.

 Thus, indiscriminate use of this all-purpose lifecycle hook can lead to unintuitive
designs. It’s not uncommon to see Java Swing windows being provided a destructor.
Often these are used to dispose of graphical widgets no longer needed within the win-
dow. The irony is that Swing widgets don’t need to be disposed explicitly. Like any
other Java object, Swing widgets are managed and reclaimed by the language runtime
and require no explicit memory management.

 Without a well-understood destruction hierarchy, it becomes difficult to predict
the order in which objects are destroyed. For example:

<bean id="thumbnail" class="files.Thumbnail" destroy-method="close">
 <constructor-arg ref="fileSystem"/>
</bean>

<bean id="fileSystem" class="files.ZipFileSystem" destroy-method="close"/>

It’s difficult to predict the order in which ZipFileSystem.close() and Thumb-
nail.close() will be called. If one depends on the other while shutting down, this
may lead to accidental illegal states where a dependency has already been closed but a

197One size doesn’t fit all (domain-specific lifecycle)
dependent still needs it to shut itself down. It’s not unusual to find conditions like the
following, to account for just such a scenario:

public void close() {
 if (null != reader) {
 if (reader.isOpen())
 reader.someLastMinuteLogic();

 reader = null;
 }

 shutdownMyself();
}

Such contortions are abstruse and unnecessary, especially when we have managed
memory models and patterns like DI to fall back on. In this light, I strongly discourage
using the jack-of-all-trades destroy method or the Destructor anti-pattern. A good
alternative is to pick domain-specific finalization patterns. For I/O, Java’s Closeable
interface functions nicely.

7.2.3 Using Java’s Closeable interface

Not all objects can be left to garbage collection to be disposed of. Often, an external
resource needs to be closed explicitly, at a time other than the application’s exit, as we
saw in the case of the thumbnail image viewer. Global, one-time destructors are ill-
suited for the reasons we’ve just seen.

 An object that acts as a data endpoint can be designed with closeability in mind if it
exposes the java.io.Closeable interface. Here’s a definition from the API documen-
tation:

“A Closeable is a source or destination of data that can be closed. The close method is
invoked to release resources that the object is holding (such as open files).”

Modeling finite resources (files, network sockets, and so on) as Closeables allows you
to redact them into lifecycle stages. For example, a look-ahead caching service could
open and read image data in the background. When they are finished being read, these
files would be placed into a queue to be closed periodically by a lower-priority thread:

@ThreadSafe
public class ResourceCloser implements Runnable {
 @GuardedBy ("lock")
 public final List<Closeable> toClose = new ArrayList<Closeable>();

 private final Object lock = new Object();

 public void run() {
 synchronized(lock) {
 for (Closeable resource : toClose) {
 try {
 resource.close();
 } catch (IOException e) {
 ...
 }

198 CHAPTER 7 From birth to death: object lifecycle
 }
 }
 }

 public void schedule(Closeable resource) {
 synchronized(lock) {
 toClose.add(resource);
 }
 }
}

NOTE The annotation @GuardedBy indicates that access to mutable list toClose
is guarded by a field named lock. Like @ThreadSafe, @GuardedBy is sim-
ply a documenting annotation and has no effect on program semantics.

Resources to be closed are enqueued via the schedule() method and closed periodi-
cally by the run() method. We won’t worry too much about how this method is sched-
uled to run or how often. Let it suffice to say that it happens periodically and at a
lower priority than other threads in the application. This satisfies the close lifecycle of
a file handle and doesn’t suffer the problems of destructors. So far, we’ve looked at
how lifecycle is domain-specific and that while objects share common events like con-
struction and finalization, they cannot be shoehorned into initialization and destruc-
tion patterns universally. To illustrate, let’s examine a scenario that highlights how
complex and specific lifecycle can get. Let’s look at stateful EJBs, which are common
in many real-world business applications.

7.3 A real-world lifecycle scenario: stateful EJBs
So far we’ve seen fairly simple lifecycle hooks in the form of constructors, some more
involved lifecycles with servlets and pooled database connections, and some pitfalls in
generalizing these models. Now let’s take a look at a more complex case: stateful EJBs.
EJBs are a programming model for business services. They are managed directly by an
application server (commonly, a Java EE application server), and as such their lifecycle
is also controlled by it. There are several types of EJBs, suited to various purposes such
as persistence, message-passing, and business services. Stateful EJBs at a particular
kind of business service are sometimes called stateful session beans.

 These are basically objects that interact with a client around some specific context.
They are called stateful because they can maintain this context across multiple inter-
actions from the same client, in much the same manner as an HTTP session does with
a browser client. As of this writing, the EJB specification is in version 3.0, which has
some dependency injection features, where EJBs can be provided to one another via
annotated fields. Similarly, they also have a controlled lifecycle, where the bean is noti-
fied of major events by the application server.

 Listing 7.6 is an example of a stateful EJB representing a shopping cart. Its clients
may be a website front end (like Amazon.com), a desktop application at a checkout
counter, or even another EJB.

199A real-world lifecycle scenario: stateful EJBs
@Remote
public interface ShoppingCart {
 void add(Item item);
 List<Item> list();
}

@Stateful
public class ShoppingCartEjb implements ShoppingCart {
 private List<Item> items = new ArrayList<Item>();
 private double discount;

 @EJB
 private InventoryEjb inventory;

 @PostConstruct
 public void prepareCart() {
 discount = inventory.todaysDiscount() * items.size();
 }

 @Remove
 public Status purchase() {
 return inventory.process(items, discount);
 }

 public void add(Item item) { items.add(item); }
 public List<Item> list() { return items; }
}

In listing 7.6’s ShoppingCartEjb, all methods except add() and list() are EJB lifecy-
cle hooks. Method prepareCart() is marked with @PostConstruct, indicating to the
EJB container that it should be called on initialization. purchase() performs a dual
role: It processes the order in the shopping cart, returning a status code, and also
tells the EJB container to end the stateful bean’s lifecycle. Another lifecycle hook,
@PreDestroy, is available for any explicit cleanup actions that need to occur on a
remove event.

NOTE The annotation @EJB is used in much the same manner as Guice’s
@Inject or Spring’s @Autowired but only on a field. This tells the EJB
container to look up the appropriate EJB and inject an instance. EJB pro-
vides basic dependency injection in this fashion. This is undesirable
because of the inability to replace with mock objects and for several other
reasons outlined in chapters 3 and 4 (EJB does not support constructor
injection as of version 3.0).

This is certainly quite a complex set of semantics for a simple shopping cart service.
But it gets better—because a stateful EJB is meant to keep a running conversation with
its client (until @Remove is reached), two more lifecycle hooks are available. These are
used to transition a stateful EJB from its active servicing state to a passive state (while
the client is off doing other things) and then back again to an active state when the cli-
ent has returned.

Listing 7.6 A stateful EJB representing a returning customer’s shopping cart

Injected by EJB container
Compute
initial
discount

Process purchase
and dispose EJB

Shopping cart
public methods

200 CHAPTER 7 From birth to death: object lifecycle
 During this passive time, it may be useful to have the shopping cart data stored in a
more permanent storage medium like a database or disk cache. EJB provides a @Pre-
Passivate lifecycle hook for this purpose:

@PrePassivate
public void passivate() {
 cache.store(items);
}

This is useful if there is some kind of failure in the application server. On reactivation,
you may want to refresh the items in the shopping cart or recompute discounts to
ensure that associated data have not become stale. An administrator may have modi-
fied the item’s price while the stateful EJB was passive. The @PostActivate lifecycle
hook is called by an EJB container every time a stateful EJB is reactivated:

@PostActivate
public void activate() {
 items = inventory.refresh(items);
}

While the EJB programming model is not a direct analog of dependency injectors, it
nonetheless serves to illustrate how complex, managed lifecycle can work. This entire
flow is illustrated in figure 7.9.

stored,
waiting

constructed

destroyed

@PostConstruct

add()

@PrePassivate

@PostActivate

add()

@Remove

checkout()

Database

Figure 7.9 The lifecycle of a stateful EJB that models a shopping cart for returning clients

201Lifecycle and lazy instantiation
You will frequently find the need to apply similar patterns to your own environment,
where objects are notified of significant events in their lifespan by an external actor or
framework. Keep these examples in mind when designing lifecycle models for your
own applications. Another important consideration when designing lifecycle is the
timing of events. Not all objects are constructed at the same time. It is often desirable
to delay construction until an object is needed. Among other things, this allows for
better startup performance and lower memory usage. This type of delayed construc-
tion is called lazy instantiation.

7.4 Lifecycle and lazy instantiation
Another concept closely related to lifecycle is
on-demand object construction. We saw this
earlier with bootstrapping injectors on
demand, per use. It’s more common to find
dependencies being constructed this way,
particularly singleton-scoped objects. Rather
than construct a dependency on injector
startup, it’s created when first needed for
injection. In other words, it’s created lazily
(see figure 7.10).

 Lazy creation of instances is useful when
one is unsure whether all injector-managed
services will be used early or used at all. If only a few objects are likely to be used early
on and the remainder may be used infrequently or at a much later time, it makes sense
to delay the work of creating them. This not only saves the injector from a lot of up-front
cost but potentially also saves on the amount of memory used. It is especially useful dur-
ing testing or debugging, where several configured services will probably never be used,
or in a desktop or embedded application where fast startup is important.

 The converse of lazy instantiation is eager
instantiation. This is where singleton-
scoped objects (in particular) are created
along with the injector’s bootstrap and
cached for later use. Eager instantiation is
very useful in large production systems
where the performance hit can be taken up
front, to make dependencies quickly avail-
able subsequently, as illustrated in fig-
ure 7.11.

 The Guice injector can be built with a
Stage directive, which tells it whether or
not to eagerly instantiate singletons:

Guice.createInjector(Stage.PRODUCTION, new MyModule());

Singletons eagerly
created

Application

Injector bootstrap

(lazy singleton
 created on first use)

(used) (used)

Figure 7.10 Lazily bound objects are created
when first used.

Application

Injector bootstrap

(eager singletons created)

Figure 7.11 Eagerly bound singletons are
created along with the injector itself.

202 CHAPTER 7 From birth to death: object lifecycle
Or the alternative:

Guice.createInjector(Stage.DEVELOPMENT, new MyModule());

You can also force certain keys to bind eagerly:

bind(MyServiceImpl.class).asEagerSingleton();

Or they can bind implicitly, by binding to a preexisting instance:

bind(MyService.class).toInstance(new MyServiceImpl());

Note that in the latter case, MyServiceImpl does not benefit from dependency injec-
tion itself, so this method should be avoided as much as possible. In Spring, this is
achieved using the lazy-init=".." attribute:

<bean id="slothful" class="sins.seven.Sloth" lazy-init="true">
...
</bean>

Singleton instance slothful is created only when it is first needed by the application.
By default, all singleton-scoped objects are created eagerly in Spring. Lazy instantia-
tion as a design idiom is quite common. Before you decide to use it, you should con-
sider issues of timing and performance, particularly during startup.

 This chapter has thus far dealt with lifecycle events provided by frameworks like
Spring and EJB. Now let’s explore how we can create our own kinds of lifecycle. The
simplest way to do this using a dependency injector is with post-processing.

7.5 Customizing lifecycle with postprocessing
As you’ve seen, lifecycle is specific to particular use cases and applications. In this case,
the injector cannot help you directly, since libraries cannot ship with all possible life-
cycle models (obviously). They can help, however, by providing a means for extending
the lifecycle model to suit your own requirements.

 Libraries like Spring and Guice allow an instance, once created, to be further pro-
cessed by some general logic. This may include additional wiring, computation, or
registering the instance for later retrieval. And it happens before the instance is
injected on dependents. This is called postprocessing and is perfect for creating a cus-
tom lifecycle model (see figure 7.12).

Singletons lazily
created

(dependent)

Injector
injects

post-process

y)
construct

Post
Processor

Figure 7.12 Dependencies are
passed through the postprocessor
prior to injection.

203Customizing lifecycle with postprocessing
Let’s take the example of a shopping arcade where there are several screens showing
advertisements and shopping-related information. At midnight, when the arcade
closes, these screens need to stop showing ads and display a notice saying that the mall
is closed. Each screen’s display is controlled from a separate set of feeds, based on
their location. Modeling this as lifecycle of a feed (or screen) gives us a flexible and
simple solution to the problem.

 At midnight a notification is sent to all screens, putting them into a suspended
state. Another notification is sent out the next morning when the mall reopens, so
that normal programming can resume. Listing 7.7 shows how this Screen class would
look in Java.

package arcade;

public class Screen {
 private final Feed daytimeFeed;
 private final Feed overnightFeed;

 public Screen(Feed daytime, Feed overnight) { .. }

 public void suspend() {
 show(overnightFeed);
 }

 public void resume() {
 show(daytimeFeed);
 }

 ...
}

Class Screen has two interesting methods that embody its
lifecycle:

■ suspend()—Switches the screen to its overnight
“mall closed” display

■ resume()—Restores normal commercial program-
ming

Both methods are specific to the shopping arcade problem
domain. We need them to be called at specific times (mid-
night and early morning) to manage the activity of screens
around the mall. The lifecycle sequence for this class is illus-
trated in figure 7.13.

 If all instances of Screen are created by a dependency
injector, it’s possible to postprocess each instance and reg
ister it for subsequent lifecycle notification. Here’s how a
postprocessor might look in Spring, along with three
independent Screens around the arcade:

Listing 7.7 A screen with a timed lifecycle, driven by video feeds

Figure 7.13 Scre
ens around the
mall move to a

different feed when

204 CHAPTER 7 From birth to death: object lifecycle
<beans ...>
 ...

 <bean class="arcade.LifecyclePostProcessor"/>

 <bean id="screen.corridor" class="arcade.Screen">
 <constructor-arg ref="daytimeFeed"/>
 <constructor-arg ref="overnightFeed"/>
 </bean>

 <bean id="screen.foodcourt" class="arcade.Screen">
 <constructor-arg ref="daytimeFeed"/>
 <constructor-arg ref="overnightFeed"/>
 </bean>

 <bean id="screen.entrance" class="arcade.Screen">
 <constructor-arg ref="daytimeFeed"/>
 <constructor-arg ref="overnightFeed"/>
 </bean>

</beans>

And the postprocessor implementation, which registers available screens for lifecycle
management, is as follows:

package arcade;

import org.springframework.beans.factory.config.BeanPostProcessor;
import org.springframework.beans.BeansException;

public class LifecyclePostProcessor implements BeanPostProcessor {
 private final List<Screen> screens = new ArrayList<Screen>();

 public Object postProcessAfterInitialization(
 Object object, String key) throws BeansException {

 if (object instanceof Screen)
 screens.add((Screen)object);

 return object;
 }

 public Object postProcessBeforeInitialization(
 Object object, String key) throws BeansException { .. }
}

To understand this, let’s dissect the BeanPostProcessor interface:

package org.springframework.beans.factory.config;

import org.springframework.beans.BeansException;

public interface BeanPostProcessor {
 Object postProcessAfterInitialization(
 Object object, String key) throws BeansException;

 Object postProcessBeforeInitialization(
 Object object, String key) throws BeansException;

}

Classes exposing this interface must implement the postprocess methods. Their signa-
tures are identical: Both take an instance to postprocess and the string key it is bound
to. They also return an Object, which is expected to be the postprocessed instance. To

205Customizing lifecycle with multicasting
return the instance unaffected (that is, as per normal), you simply return the object
that was passed in. For our purpose, this is exactly what we want. But first we register
the instance in a collection of Screens to be used later by the lifecycle system:

public Object postProcessAfterInitialization(
 Object object, String key) throws BeansException {

 if (object instanceof Screen)
 screens.add((Screen)object);

 return object;
 }

Notice that we’re only interested in instances of the Screen class. Subsequently, lifecy-
cle events can be fired on a timer trigger to all screens as necessary:

public class LifecyclePostProcessor implements BeanPostProcessor {
 private final List<Screen> screens = new ArrayList<Screen>();

 public void suspendAllScreens() {
 for (Screen screen : screens)
 screen.suspend();
 }

 public Object postProcessAfterInitialization(
 Object object, String key) throws BeansException { .. }

 public Object postProcessBeforeInitialization(
 Object object, String key) throws BeansException { .. }
}

Consider its complement, which is called by another timer, when the arcade reopens
next morning:

 public void resumeAllScreens() {
 for (Screen screen : screens)
 screen.resume();
 }

This process can go on continuously every day, so long as the timer thread is in good
health, and the screens will correctly switch feeds at the appropriate times. We didn’t
have to write a timer for each screen, nor did Screens have to keep track of the time
themselves. Our single lifecycle manager was sufficient to push events out at the cor-
rect time to all Screens. This means not only less code to write but also far less code to
test and fewer possible points of failure.

 Custom post-processing is thus a powerful and flexible technique for creating life-
cycle models suited to your application and its particular requirements. Another vari-
ant to building custom lifecycle is by multicasting a single method call to many
recipients. This system has the advantage of being able to pass arbitrary arguments
and even process returned values.

7.6 Customizing lifecycle with multicasting
Multicasting is very similar to what you just saw in section 7.5. Specifically, multicasting
is the process of dispatching a single method call to multiple recipients. As such, it is

Called at midnight, by timer

Suspend each screen, in turn

206 CHAPTER 7 From birth to death: object lifecycle
perfectly suited to sending lifecycle event notifications to objects managed by an injec-
tor. The primary difference between multicasting and the method we used with post-
processors is that the framework takes care of broadcasting the event across instances
in the injector. This is illustrated in figure 7.14.

 This means that you can design your classes to be slightly more decoupled, with
less effort. And you can model them according to the traits they embody in a lifecycle
model. Listing 7.8 shows how the Screen would look if it were designed with multicast-
ing in mind.

package arcade;

public class Screen implements Suspendable, Resumable {
 private final Feed daytimeFeed;
 private final Feed overnightFeed;

 public Screen(Feed daytime, Feed overnight) { .. }

 public void suspend() {
 show(overnightFeed);
 }

 public void resume() {
 show(daytimeFeed);
 }

 ...
}

public interface Suspendable {
 void suspend();
}

public interface Resumable {
 void resume();
}

Here Suspendable and Resumable are two traits that a Screen possesses. In other
words, they are roles that the Screen can embody. This is very similar to the role inter-
faces that you saw with interface injection in chapter 3. Multicasting is supported in
PicoContainer’s Gems extension.1 Listing 7.9 describes a lifecycle manager that uses
multicasting to notify Screens.

Listing 7.8 A screen with a timed lifecycle, designed with lifecycle traits

1 Gems are simple, intuitive extensions to the PicoContainer core framework. Find out more at: http://
www.picocontainer.org.

Lifecycle

Multicast
proxy

<< calls >>

(instance)

...

<< calls >>

<< calls >>

<< calls >>

(instance)
Figure 7.14
A multicast proxy
promulgates a single
lifecycle call across all
managed instances.

207Summary
package arcade;

import com.thoughtworks.proxy.factory.StandardProxyFactory;
import org.picocontainer.gems.util.Multicaster;
import org.picocontainer.PicoContainer;

public class LifecycleManager {
 private final PicoContainer injector = ..;

 public void suspendAll() {
 Suspendable target = (Suspendable)
 Multicaster.object(injector, true,
 new StandardProxyFactory());

 target.suspend();
 }
}

First, we create a multicasting proxy. This is a dynamically generated implementation of
Suspendable that transparently delegates its method calls across every instance of
Suspendable available to the injector:

 Suspendable target = (Suspendable)
 Multicaster.object(injector, true, new
 StandardProxyFactory());

The first argument is the injector to inspect for Suspendables. The second tells the
multicaster to proceed in the order in which Suspendables were originally created by
the injector. The last argument is a factory utility, which is used to dynamically create
the proxy implementation of Suspendable:

 Suspendable target = (Suspendable)
 Multicaster.object(injector, true, new
 StandardProxyFactory());

StandardProxyFactory simply uses the JDK tool java.lang.reflect.Proxy to create
dynamic classes of type Suspendable.

 This is cool because now the same lifecycle manager can suspend and resume any
services that expose Suspendable and Resumable, not just Screens. And if the imple-
mentation logic of a screen changes (say you move the feed control out into a Hub),
you don’t have to worry about breaking the lifecycle model. Multicasting is thus an
evolved form of customizing lifecycle and probably the best choice in most cases.

7.7 Summary
While lifecycle isn’t an immediate part of dependency injection, the two are nonethe-
less closely related. Every object goes through a series of states from construction to
destruction that are demarcated by lifecycle events. In certain applications objects can
be notified of these events by a framework or assisting library.

 A class’s constructor is the most straightforward and ready form of lifecycle. It is
called after memory has been allocated for the object and used to perform some ini-
tialization logic, to put the object into a usable state. Dependency injectors often use

Listing 7.9 Lifecycle manager that suspends and resumes services via multicasting

208 CHAPTER 7 From birth to death: object lifecycle
constructors to provide objects with their dependencies. This is detailed further in
chapter 3.

 In Java, when an object is about to be reclaimed by the garbage collector, its final-
izer is called. A finalizer is called at an arbitrary, uncontrollable time, in a separate
thread. Finalizers may not run until an application shuts down, or not even then! As a
result, finalizers are unreliable for performing cleanup of finite system resources such
as file handles or network sockets. Finalizers may be useful in rare cases for sanity
checks or for reclaiming memory used in native libraries.

 Lifecycle is not a universal concept. Different applications have different require-
ments for the transitions in state of their services. Lifecycle is thus specific to particu-
lar problem domains. For example, servlets undergo a separate initialization step well
after deployment, to put them into a service-ready state. When a web application is
stopped, an explicit destroy event is sent to a servlet. This is very different from a data-
base connection’s lifecycle, which may include notifications to set it “idle” or “in use,”
so validations or disconnects can be performed safely.

 Some DI libraries provide a destroy-method hook, which is called by the injector on
application shutdown. This is unsuitable for most cases for the same reasons that final-
izers are. And more specific lifecycle models should be sought, rather than attempt to
use this “destructor” anti-pattern. Java’s Closeable interface is a suitable alternative
for releasing finite resources that are data sources or producers. This also indicates
that a service is designed with closeability in mind, as opposed to being an afterthought
as with destructors.

 Stateful EJBs are a programming model that supports a very complex lifecycle
model, where EJBs are notified by an application server (or EJB container) periodically.
Stateful EJBs are akin to HTTP sessions or “conversations” (see chapter 5), where clients
may resume a previous interaction with the EJB. These points of resumption and sus-
pension are modeled as lifecycle events to the EJB: postactivate and prepassivate.

 An object’s lifecycle is also related to timing—singleton-scoped objects can be cre-
ated immediately, upon injector bootstrap, or lazily, when first needed. Lazy instantia-
tion is useful when startup time is important, such as in a desktop application or when
debugging. Eager instantiation is the opposite form, where all singletons are created
when the injector starts up. This is useful in production servers where a performance
hit can be taken up front, if it means that services can be obtained faster during an
application’s active life.

 Customizing lifecycle is important, and it is useful in many applications. Post-pro-
cessing is an idiom where an object is passed to a post-processor, prior to being made
available for injection. These instances can be inspected and held in a registry for
later reference. When a notification needs to be sent, you simply iterate the registry
and notify each instance in turn. Spring offers postprocessing via an interface Bean-
PostProcessor.

 Lifecycle can also be customized using multicasting. This is very similar to the post-
processing technique, except that the framework is responsible for promulgating

209Summary
events to instances managed by the injector. A single method call on an interface is
transparently multicast to eligible instances. This is useful in designing more decou-
pled services that are easier to test and more amenable to refactoring.

 Custom lifecycle is a powerful and flexible idiom for reducing boilerplate code
and making your code tighter. It allows you to design classes that are more focused
and easier to test and maintain. Almost all problem domains have some kind of use
for framework lifecycle management. In the next chapter, we’ll look at modifying
object behavior by intercepting method calls. This can be thought of as the converse
of lifecycle, since it involves changing how objects react to their callers rather than
propagating events down to them as this chapter showed. As you will see, method
interception can be a powerful technique for achieving focused goals across a broad
spectrum of services.

Managing an
 object’s behavior
“Perfect behavior is born of complete indifference.”
 —Cesare Pavese

Often one finds that certain types of logic are repeated throughout a program.
Many separate parts of an application share similar concerns such as logging, secu-
rity, or transactions. These are known as crosscutting concerns.

 Rather than address these concerns in each individual class (as one would do
normally), it’s easier to address them all at once from a central location. Not only
does this reduce repetitive boilerplate code, but it also makes maintenance of exist-
ing code less complicated.

 Let’s look at an example. Brokerage is a class that places an order for stock
inside a database transaction. Traditionally, we would write code for starting and
ending a transaction around each business method:

This chapter covers:
■ Intercepting methods with AOP
■ Using transactions, security, and the like
■ Watching for perils of proxying
■ Avoiding corner cases
210

211Intercepting methods and AOP
public class Brokerage {
 private final TransactionManager txn;

 public void placeOrder(Order order) {
 txn.beginTransaction();
 try {
 ...
 } catch(DataException e) {
 txn.rollback();
 } finally {
 if(!txn.rolledBack())
 txn.commit();
 }
 }
}

This transaction logic uses a TransactionManager to start and end a transaction, roll-
ing back on an exception or committing as appropriate. This would be repeated in
every method that needed to be transactional.

 Now let’s look at this if transactions were described declaratively:

public class Brokerage {

 @Transactional
 public void placeOrder(Order order) {
 ...
 }
}

This is much simpler. By declaring method placeOrder() as @Transactional, we’re
able to strip out most of the boilerplate code to wrap an order inside a transaction.
Moreover, it removes Brokerage’s dependency on a TransactionManager, making
it simpler to code and test. Also, now all transaction-specific logic is centralized in
one place.

 @Transactional is a piece of metadata that allowed us to declare a transaction
around placeOrder(). What really happened underneath was that placeOrder() was
intercepted and wrapped inside a transaction before proceeding normally. This is
done via a technique known as aspect-oriented programming (AOP) and is the focus
of this chapter. In this chapter we’ll look at how to apply this technique to intercept
methods on objects that are created by dependency injection and how to insert new
behavior around each method. We’ll start by examining how method interception
is achieved.

8.1 Intercepting methods and AOP
Methods can be intercepted in a number of different ways, depending on the AOP
library:

■ At compile time, via a specialized compiler
■ At load time, by altering class definitions directly
■ At runtime, via dynamic proxying

212 CHAPTER 8 Managing an object’s behavior
This process is known as weaving, as in weaving in the new behavior. The introduced
behavior is called advice.

 Since we are concerned with dependency injection, we’ll focus on the runtime fla-
vor of weaving, which is done by the use of dynamic proxies.1 Since DI libraries are
responsible for creating objects, they are also able to intercede with proxies for inter-
cepting behavior. This is transparent to any client, since the proxies are merely sub-
classes of the original types.

Proxying is a powerful technique. We can use it to replace almost any object created
by an injector. Since a proxy possesses all the methods of the original type, it can alter
the behavior of any of them.

 Let’s look at one such scenario where we intercept methods to add logging func-
tionality using Guice.

8.1.1 A tracing interceptor with Guice

What we want to do here is trace the execution of every method on a certain class, by
printing something to the console. We want to do this using interception rather than
adding print statements to each method. Guice lets us do this by binding an intercep-
tor (a utility class containing the advice):

import org.aopalliance.intercept.MethodInterceptor;
import org.aopalliance.intercept.MethodInvocation;

public class TracingInterceptor implements MethodInterceptor {
 public Object invoke(MethodInvocation mi) throws Throwable {
 System.out.println("enter " + mi.getMethod().getName());
 try {
 return mi.proceed();
 } finally {
 System.out.println("exit " + mi.getMethod().getName());
 }
 }
}

This class is pretty simple; it contains one method—invoke()—which is called every
time an interception occurs. This method then does the following:

1 We encountered proxies in chapter 3 when dealing with the circular reference problem.

Dynamic proxies
A proxy is generated at runtime by a bytecode-generation library. The dynamic class-
loading system in Java allows new classes to be defined even at runtime. The JDK
core library also provides a utility for generating proxies. Several bytecode-manipula-
tion libraries also exist that are able to do more sophisticated forms of code genera-
tion and proxying.

213Intercepting methods and AOP
■ Prints an alert before proceeding to the intercepted method
■ Proceeds and returns the result from the intercepted method
■ Prints another alert before returning control to the caller

The last bit is done inside a finally block so that any exception thrown by the inter-
cepted method does not subvert the exit trace.

 Applying this interceptor is done via Guice’s binding API inside any Module class, as
shown in listing 8.1:

import static com.google.inject.matcher.Matchers.*;

public class MyModule extends AbstractModule {

 @Override
 protected void configure() {
 ...
 bindInterceptor(any(), any(), new TracingInterceptor());
 }
}

TIP The import static statement at the top of this class makes it possible to
omit the class name, Matchers, where the any() method is defined for con-
venience. It’s a more readable shorthand for writing Matchers.any().

The interesting part about this listing is how the interceptor is bound:

 bindInterceptor(any(), any(), new TracingInterceptor());

The first two parameters are passed any(), which represents any class and any method,
respectively. Guice uses these matchers to test for classes and methods to intercept. It
comes with several such matchers out of the box, or you can write your own.

 Now when we call any methods from objects wired by our injector, the methods
will be traced on the console. Let’s say Chef is one such class:

public class Chef {
 public void cook() {
 ...
 }

 public void clean() {
 ...
 }
}

Now calling Chef’s methods

Chef chef = Guice.createInjector(new MyModule())
 .getInstance(Chef.class);

chef.cook();
chef.clean();

produces the following output:

Listing 8.1 A module that applies TracingInterceptor to all methods

214 CHAPTER 8 Managing an object’s behavior
enter cook
exit cook
enter clean
exit clean

Chef still has no knowledge of how to print to console. Furthermore, inside a unit test,
methods are not intercepted, and your test code can focus purely on asserting the rel-
evant business logic.

In the next section, we’ll look at how to write the same tracing interceptor using a dif-
ferent framework. This will help you see the differences between the two major popu-
lar techniques.

8.1.2 A tracing interceptor with Spring

Spring uses a different AOP library (although it also supports the AopAlliance) but
works under similar principles. Spring’s library is AspectJ, which can itself be used inde-
pendently to provide a whole host of AOP features beyond method interception. For
our purposes we’ll focus on its Spring incarnation. We’ll use the same class Chef, but
this time we’ll intercept it with Spring and AspectJ, as shown in listing 8.2.

import org.aspectj.lang.ProceedingJoinPoint;
public class TracingInterceptor {
 public Object trace(ProceedingJoinPoint call) throws Throwable {
 System.out.println("enter " + call.toShortString());
 try {
 return call.proceed();
 } finally {
 System.out.println("exit " + call.toShortString());
 }
 }
}

It looks almost the same as our TracingInterceptor from Guice. The primary differ-
ence is that we do not implement any interface; rather we will tell the injector directly
about method trace(). This is achieved as shown in listing 8.3.

Listing 8.2 A tracing interceptor created as an aspect with Spring and AspectJ

AopAlliance and Guice
You’ll notice that we used an AopAlliance API in this example. The AopAlliance is a
public standard defined by many of the early AOP advocates and open source contrib-
utors. It’s a simple standard that focuses on strong use cases rather than giving you
the kitchen sink.

As such, it’s not as full featured as some of the other AOP libraries, but on the other
hand it’s more lightweight and streamlined.

215Intercepting methods and AOP
<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:aop="http://www.springframework.org/schema/aop"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans-2.5.xsd
 http://www.springframework.org/schema/aop
 http://www.springframework.org/schema/aop/spring-aop-2.5.xsd">

 <bean id="chef" class="example.Chef"/>

 <bean id="tracer" class="example.TracingInterceptor"/>

 <aop:config>
 <aop:aspect ref="tracer">
 <aop:pointcut id="pointcuts.anyMethod"
 expression="execution(* example.*.*(..))" />
 <aop:around pointcut-ref="pointcuts.anyMethod" method="trace"/>
 </aop:aspect>
 </aop:config>
</beans>

This looks like a complex bit of mumbo-jumbo, but it’s quite simple. First we declare
our TracingInterceptor in a <bean> tag, naming it "tracer":

 <bean id="tracer" class="example.TracingInterceptor"/>

Then we declare a pointcut using the <aop:pointcut> tag provided by Spring:

 <aop:pointcut id="pointcuts.anyMethod"
 expression="execution(* example.*.*(..))" />

The expression "execution(* example.*.*(..))" is written in the AspectJ pointcut
language and tells Spring to intercept the execution of any method with any visibility,
name, or arguments from the example package. This pointcut expression is the equiv-
alent in AspectJ of a matcher in Guice. Recall the binding expression for matching
any method from listing 8.1:

 bindInterceptor(any(), any(), new TracingInterceptor());

AspectJ’s pointcut language also allows you to declare matchers of your choosing.
Since it is a dedicated language, it doesn’t come with any matchers out of the box.

 The other tag worth mentioning in listing 8.3 is <aop:aspect ref="tracer">. This
is the declaration of an aspect, which is essentially a binding between a matcher (or
pointcut) and an interceptor (advice). It is the semantic equivalent of method bind-
Interceptor() shown earlier. Now running the example

BeanFactory injector = new FileSystemXmlApplicationContext("myAspect.xml");
Chef chef = (Chef) injector.getBean("chef");

chef.cook();
chef.clean();

produces the expected trace:

Listing 8.3 A tracing interceptor configuration with myAspect.xml

216 CHAPTER 8 Managing an object’s behavior
enter execution(cook)
exit execution(cook)
enter execution(clean)
exit execution(clean)

Now that you’ve seen how to apply method interception at a high level, let’s examine
how its internals work, by looking at how to work with dynamic proxies and their
semantics.

8.1.3 How proxying works

We said earlier that a dynamic proxy is a subclass that is generated at runtime. The
fact that it is of the same type means we can transparently replace the original imple-
mentation with a proxy and decorate its behavior as we please. Proxying is a tricky
subject. The best way to think of it is to imagine a handwritten subclass where all the
methods invoke an interceptor instead of doing any real work. The interceptor then
decides whether to proceed with the real invocation or effect some alternate behav-
ior instead.

 Listing 8.4 shows how such a proxy might look for Chef.

public class ChefProxy extends Chef {
 private final MethodInterceptor interceptor;
 private final Chef chef;

 public ChefProxy(MethodInterceptor interceptor, Chef chef) {
 this.interceptor = interceptor;
 this.chef = chef;
 }

 public void cook() {
 interceptor.invoke(new MethodInvocation() { ... });
 }

 public void clean() {
 interceptor.invoke(new MethodInvocation() { ... });
 }
}

Rather than delegate calls directly to the intercepted instance chef, this proxy calls
the interceptor with a control object, MethodInvocation. This control object can be
used by MethodInterceptor to decide when and how to pass through calls to the orig-
inal chef. These libraries are also able to generate the bytecode for ChefProxy on the
fly. Let’s look one such proxying mechanism.
PROXYING INTERFACES WITH JAVA PROXIES

The Java core library provides tools for dynamically generating proxies. It implements
the same design pattern we just saw with a proxy and interceptor pair and is provided
as part of the reflection toolset in java.lang.reflect. It’s limited to proxying inter-
faces, but this turns out to be sufficient for the majority of use cases. If we imagined
that Chef was an interface rather than a class,

Listing 8.4 A static (handwritten) proxy for Chef

217Intercepting methods and AOP
public interface Chef {
 public void cook();

 public void clean();
}

we could create a dynamic subclass of Chef the following way:

import java.lang.reflect.Proxy;
...
Chef proxy = (Chef) Proxy.newProxyInstance(Chef.class.getClassLoader(),
 new Class[] { Chef.class },
 invocationHandler);

The first argument to Proxy.newProxyInstance() is the classloader in which to define
the new proxy:

Proxy.newProxyInstance(Chef.class.getClassLoader(), ...)

Remember that this is not just a new object we’re creating but an entirely new class.
This can generally be the same as the default (context) classloader or, as in our exam-
ple, the classloader to which the original interface belongs. It is sometimes useful to
customize this, but for most cases you won’t need to. You’ll see more on this later in
the chapter.

 The second argument is an array of Class objects representing all the interfaces
you want this proxy to intercept. In our example, this is just the one interface, Chef:

Proxy.newProxyInstance(..., new Class[] { Chef.class }, ...);

And finally, the last argument is the invocation handler we want the proxy to use:

Proxy.newProxyInstance(..., invocationHandler);

It must be an object that implements interface InvocationHandler from the
java.lang.reflect package. As you can see, it is very similar to the AopAlliance’s
MethodInterceptor:

public interface InvocationHandler {
 Object invoke(Object proxy, Method method, Object[] args);
}

Here’s a reimagining of the method-tracing interceptor from earlier in this chapter,
using JDK Proxy and InvocationHandler with Chef:

public class TracingInterceptor implements InvocationHandler {
 private final Chef chef;

 public TracingInterceptor(Chef originalChef) {
 this.chef = originalChef;
 }

 public Object invoke(Object proxy, Method method, Object[] args)
 throws Throwable {
 System.out.println("enter " + method.getName());
 try {
 return method.invoke(chef, args);

218 CHAPTER 8 Managing an object’s behavior
 } finally {
 System.out.println("exit " + method.getName());
 }
 }
}

To run it, we use the proxy obtained from Proxy.newProxyInstance():

import java.lang.reflect.Proxy;
...
Chef proxy = (Chef) Proxy.newProxyInstance(Chef.class.getClassLoader(),
 new Class[] { Chef.class },
 new TracingInterceptor(originalChef));

proxy.cook();
proxy.clean();

This produces the expected trace:

enter cook
exit cook
enter clean
exit clean

By constructing TracingInterceptor with a constructor argument, originalChef, we
make it possible for the interceptor to proceed onto legitimate calls against the inter-
cepted instance should it need to. In our invoke() interception handler, this is illus-
trated by the reflective method invocation:

 Object invoke(Object proxy, Method method, Object[] args)
 throws Throwable {
 System.out.println("enter " + method.getName());
 try {
 return method.invoke(chef, args);
 } finally {
 System.out.println("exit " + method.getName());
 }
 }

This is akin to the AopAlliance’s MethodInvocation.proceed() and AspectJ’s Pro-
ceedingJoinPoint.proceed().

 Although Java provides a fairly powerful API for proxying interfaces, it provides no
mechanism for proxying classes, abstract or otherwise. This is where third-party bytecode
manipulation tools come in handy.
PROXYING CLASSES WITH CGLIB

A couple of useful libraries provide tools for proxying. Guice and Spring both use a
popular library called CGLib2 to generate proxies under the hood. CGLib fills in nicely
where Java’s proxy mechanism falls short. It’s able to generate the bytecode that
would dynamically extend an existing class and override all of its methods, dispatch-
ing them to an interceptor instead.

2 CGLib stands for Code Generation Library. Find out more about CGLib at http://cglib.sourceforge.net.

219Intercepting methods and AOP
 If we had a concrete class FrenchChef, we would generate a proxy for it as follows:

import net.sf.cglib.proxy.Enhancer;
...

Chef chef = (Chef) Enhancer.create(FrenchChef.class,
 new TracingInterceptor());

The corresponding TracingInterceptor follows the design pattern we’re intimately
familiar with by now:

public class TracingInterceptor implements MethodInterceptor {
 public Object intercept(Object proxy, Method method, Object[] args,
 MethodProxy methodProxy) throws Throwable {
 System.out.println("enter " + method.getName());
 try {
 return methodProxy.invokeSuper(proxy, args);
 } finally {
 System.out.println("exit " + method.getName());
 }
 }
}

The interesting part is that we no longer have to hold onto the original chef; CGLib
allows us to invoke the corresponding method directly on its superclass:

 return methodProxy.invokeSuper(proxy, args);

Class proxying can be very powerful if used correctly. It’s best used inside dependency
injectors (or similar tools) that need to enhance a class’s behavior. The consequences
of intercepting class methods can be tricky. We’ll look at some later in this chapter. It’s
always generally advisable to use interface proxying where possible, unless you’re con-
vinced of the need and its implications.

 Of course, there are other problems with interception. One can be too eager to
apply this technique. In the next section we’ll look at how this can lead to problems.

8.1.4 Too much advice can be dangerous!

As in real life, you can run into trouble when you listen to too much advice. One of the
important things to consider is that for each interception, you will incur the overhead
of advising methods running before and after the original method. This is generally not
an issue if you apply a few interceptors to a few methods. But when the chain gets longer,
and it crosscuts critical paths in the application, it can degrade performance.

 More important, the order of interception can play spoiler to program semantics.
Here is a simple case:

public class Template {
 private final String template = "Hello, :name!";

 public String process(String name) {
 return template.replaceAll(":name", name);
 }
}

220 CHAPTER 8 Managing an object’s behavior
Class Template converts a dynamically provided name into a string containing a greet-
ing. The following code

new Template().process("Josh");

returns a greeting to Josh:

Hello, Josh!

Now, using method interception, we can enhance this greeting by decorating it in
bold (let’s use HTML tags for familiarity):

import org.aopalliance.intercept.MethodInterceptor;

public class BoldDecoratingInterceptor implements MethodInterceptor {

 public Object invoke(MethodInvocation mi) throws Throwable {
 String processed = (String)mi.proceed();
 return "" + processed + "";
 }
}

We bind this in using a simple matcher:

import static com.google.inject.matcher.Matchers.*;
...

 bindInterceptor(subclassesOf(Template.class), any(), new
BoldDecoratingInterceptor());

Now when a client processes anything from a template, it will be decorated in bold:

Guice.createInjector(...)
 .getInstance(Template.class)
 .process("Bob");

This prints the following:

Hello, Bob!

So far, so good. Now let’s say we want to wrap this whole thing in HTML so it can be
rendered in a website. If we had several such templates, another interceptor would
save a lot of time and boilerplate code:

import org.aopalliance.intercept.MethodInterceptor;

public class HtmlDecoratingInterceptor implements MethodInterceptor {

 public Object invoke(MethodInvocation mi) throws Throwable {
 String processed = (String) mi.proceed();
 return "<html><body>" + processed + "</body></html>";
 }
}

Now we have two bits of advice. If you were to naïvely bind in this interceptor at any
arbitrary point, it could lead to very unexpected behavior:

import static com.google.inject.matcher.Matchers.*;
...

221Enterprise use cases for interception
 bindInterceptor(subclassesOf(Template.class), any(), new
 BoldDecoratingInterceptor());
 bindInterceptor(subclassesOf(Template.class), any(),
 new HtmlDecoratingInterceptor());

This would print the following:

<html><body>Hello, Bob!</body></html>

Obviously, the order of interception matters. In this trivial example, it’s easy for us to
see where the problem is and correct it:

import static com.google.inject.matcherMatchers.*;
...
 bindInterceptor(subclassesOf(Template.class), any(), new
 HtmlDecoratingInterceptor());
 bindInterceptor(subclassesOf(Template.class), any(), new
 BoldDecoratingInterceptor());

Now processing the interceptor chain renders our desired HTML correctly:

<html><body>Hello, Bob!</body></html>

This highlights a serious problem that would have gone undetected if we had assumed
unit tests were sufficient verification of application behavior. In our example, all inter-
ceptors were in the same spot, and it was easy to identify and fix the problem. In more
complex codebases, it may not be so straightforward. You should exercise caution
when using AOP. In our example, the bold decorator could probably have been writ-
ten without an interceptor. It probably would have worked better if we had folded it
into the template itself.

 Later in this chapter we’ll show how to protect against the “too much advice” prob-
lem with integration tests. For now, let it suffice to say that you should apply intercep-
tion only in valid use cases. In the next section we’ll look at these use cases as
applicable to enterprise applications.

8.2 Enterprise use cases for interception
The tracing example was fun, but it’s quite a trivial use case. The real advantage of
interception comes to light in enterprise use cases, particularly with transactions and
security. These may be database transactions or logical groupings of any kind of task.
And likewise with security—it may be about authorization to perform a particular
action or simply about barring users who aren’t logged in.

 By far, the most prolific and useful case of interception is to wrap database transac-
tions and reduce the overall level of boilerplate code in business logic methods. There
are several ways to go about this; both Guice and Spring provide modules that allow
you to use declarative transactions. It’s even possible to roll your own, but there are a
few edge cases that should lead you to use the library-provided ones, which are thor-
oughly tested. So let’s look at how to achieve transactions with the warp-persist mod-
ule for Guice.

222 CHAPTER 8 Managing an object’s behavior
8.2.1 Transactional methods with warp-persist

Like guice-servlet, which we encountered in chapter 5, warp-persist is a thin module
library for Guice that provides support for persistence and transactions. Warp-persist
provides integration with the following popular persistence engines:

■ Hibernate (a popular object/relational mapping tool)
■ Java Persistence API or JPA (a Java standard for object/relational mapping)
■ Db4objects (an object database)

Hibernate and JPA both provide a mapping layer between Java objects and relational
database tables (stored in an RDBMS like PostgreSQL). And Db4objects is a lightweight
object database, which can store and retrieve native objects directly.

 Warp-persist sits between the Guice injector and these frameworks, and it reduces
the burden on you to wrap and integrate them. It also provides an abstraction over
their particular transaction architectures and lets you use matchers to model transac-
tional methods declaratively. Let’s take the simple example of storing a new car in a
database inventory:

import javax.persistence.EntityManager;
import com.wideplay.warp.persist.Transactional;

public class CarInventory {
 private final EntityManager em;
 public CarInventory(EntityManager em) {
 this.em = em;
 }

 @Transactional
 public void newCar(Car car) {
 em.persist(car);
 }
}

When a new car arrives, its details are entered into a Car object, and it’s passed to
method newCar(), which stores it using the EntityManager. The EntityManager is an
interface provided by JPA that represents a session to the database. Entities (data)
may be stored, retrieved, or removed via the EntityManager from within transac-
tional methods.

 The other important part of CarInventory is method newCar(), which is anno-
tated @Transactional. This is an annotation provided by warp-persist that is used to
demarcate a method as being transactional. If we didn’t have the declarative approach
with @Transactional, we would have to write the transaction behavior by hand:

 public void newCar(Car car) {
 EntityTransaction txn = em.getTransaction();
 txn.begin();
 boolean succeed = true;
 try {
 em.persist(car);
 } catch (RuntimeException e) {
 txn.rollback();

223Enterprise use cases for interception
 succeed = false;
 } finally {
 if (succeed)
 txn.commit();
 }
 }

All of this code is required to correctly determine whether to roll back a transaction
and close it properly when finished. This is only a trivial case, since we aren’t consider-
ing the beginning and closing of the EntityManager itself. A session to the database
may also need to be opened and closed around transactions.

 In listing 8.5, the caught exception is being swallowed after a transaction rollback
without any significant action being taken. So, apart from saving yourself a world of
repetitive boilerplate, declarative transactions also give you semantic control over the
transactional state.

 Let’s look at how to tell the Guice injector that we’re going to use warp-persist (see
listing 8.5).

import com.wideplay.warp.persist.PersistenceService;
import com.wideplay.warp.persist.jpa.JpaUnit;

public class CarModule extends AbstractModule {

 @Override
 protected void configure() {
 ...
 install(PersistenceService.usingJpa()
 .buildModule());

 bindConstant().annotatedWith(JpaUnit.class).to("carDB");
 }
}

The method install() is a way of telling Guice to add another module to the current
one. It is exactly equivalent to passing in each module to the createInjector()
method individually:

Guice.createInjector(new CarModule(), PersistenceService.usingJpa()
 .buildModule());

The other important piece of configuration is the constant bound to "carDB":

 bindConstant().annotatedWith(JpaUnit.class).to("carDB");

This constant is used by warp-persist to determine which persistence unit to connect
against. Persistence units are specified in the accompanying persistence.xml configu-
ration file for JPA, which is typically placed in the META-INF/ directory. Here’s what it
might look like in our imaginary car inventory:

<?xml version="1.0" encoding="UTF-8" ?>
<persistence xmlns="http://java.sun.com/xml/ns/persistence"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

Listing 8.5 A module that configures warp-persist and @Transactional

224 CHAPTER 8 Managing an object’s behavior
 xsi:schemaLocation="http://java.sun.com/xml/ns/persistence
 http://java.sun.com/xml/ns/persistence/persistence_1_0.xsd"
 version="1.0">

 <!-- A JPA Persistence Unit -->
 <persistence-unit name="carDB" transaction-type="RESOURCE_LOCAL">
 <provider>org.hibernate.ejb.HibernatePersistence</provider>

 <!-- JPA entities must be registered here -->
 <class>example.Car</class>

 <properties>
 <!-- vendor-specific properties go here -->
 </properties>
 </persistence-unit>

</persistence>

Note that along with the name of the persistence unit, all the persistent classes are
listed here. These are classes mapped with JPA annotations, which tell the persistence
engine how to map an object to a row in the database. example.Car might look some-
thing like this:

@Entity
public class Car {
 @Id @GeneratedValue
 private Integer id;
 private String name;
 private String model;

 //get + set methods
}

When you run this application and call the newCar() method with a populated Car
object,

@Inject CarInventory inventory;
...

Car car = new Car("BMW", "325Ci");
inventory.newCar(car);

a transaction is automatically started and committed around the call to newCar(). This
ensures that the EntityManager enters the provided Car object into its corresponding
database table.

 Another interesting enterprise use case is that of security. Since interception can
be applied from one spot, many parts of an application can be secured with a single,
central step. In the following section, we’ll explore how to secure groups of methods
using Spring AOP and the Spring Security Framework.

8.2.2 Securing methods with Spring Security

Authorization is another common use case for intercepted methods. The pattern is
sometimes even applied to web applications where HTTP requests are intercepted by
servlet Filters and processed against security restrictions.

225Enterprise use cases for interception
Certain methods that provide privileged business functionality can come under the
crosscutting banner of security. Like transactions, these methods must first verify that
the user driving them has sufficient privileges to execute their functionality. This is a
repetitive task that can be moved to the domain of interceptors, which have the
rather elegant advantage of being able to suppress secured methods completely. They
also allow for declarative management of security across a set of business objects,
which is a useful model when applied in very large applications with similar, recurring
security concerns.

 Let’s look at how this is done using Spring Security, an extension to Spring that
provides many security features. First, Spring Security is meant primarily for web
applications, so enabling it requires a HTTP filter to be present. This gives us a hook
into Spring’s security stack. Draw up a web.xml like the following:

<filter>
 <filter-name>springSecurity</filter-name>
 <filter-class>org.springframework.web.filter.DelegatingFilterProxy</

filter-class>
</filter>

<filter-mapping>
 <filter-name>springSecurity</filter-name>
 <url-pattern>/*</url-pattern>
</filter-mapping>

Much like guice-servlet’s GuiceFilter (from chapter 5), this filter mapping tells the
servlet container to route all requests through Spring Security’s DelegatingFilter-
Proxy. This Spring-provided filter is able to call into Spring’s injector and determine
the correct set of security constraints to apply.

 Here’s a corresponding XML configuration for securing objects of an imaginary
class PhoneService, managed by the Spring injector:

JPA and object/relational mapping (ORM)
The Java Persistence API is a specification for mapping simple Java objects to rela-
tional database tables. It provides a set of standard annotations (@Entity, @Id, and
so on) that are used to map classes and fields to tables and columns. JPA has many
vendor implementations, including Hibernate, Oracle TopLink, and Apache OpenJpa.
All of these are available under open source licenses, free of charge.

JPA also includes tools for managing database transactions around local resources
using a programmatic API. Both Spring and Guice (via warp-persist) provide integra-
tion modules for JPA programming models and for declarative transactions; among
other niceties.

Find out more about the JPA standard at http://java.sun.com/developer/technical-
Articles/J2EE/jpa.

And check out the warp-persist JPA tutorial at http://www.wideplay.com/guiceweb-
extensions2.

226 CHAPTER 8 Managing an object’s behavior
<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:security="http://www.springframework.org/schema/security"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans-2.5.xsd
 http://www.springframework.org/schema/security

 http://www.springframework.org/schema/security/spring-security-

 ➥ 2.0.xsd">

 <security:http auto-config="true">
 <security:intercept-url pattern="/**" access="ROLE_USER" />
 </security:http>

 <security:authentication-provider>
 <security:user-service>
 <security:user name="josh" password="supersecret"
 authorities="ROLE_USER, ROLE_ADMIN" />
 <security:user name="bob" password="bobby"
 authorities="ROLE_USER" />
 </security:user-service>
 </security:authentication-provider>

 <security:global-method-security>
 <security:protect-pointcut
 expression="execution(* example.PhoneService.*(..))"
 access="ROLE_ADMIN" />
 </security:global-method-security>
</beans>

Wow, that’s quite a lot of configuration! Let’s look at what it all means. First, we set up
automatic configuration to use a whole bunch of defaults for customizable services
that Spring Security provides:

 <security:http auto-config="true">
 <security:intercept-url pattern="/**" access="ROLE_USER" />
 </security:http>

These are good for our purpose, where we only want to demonstrate security around
methods via interception as it applies to dependency injection.

 Here we’ve also asked Spring to intercept all requests coming in and allow access
only to users with the privilege ROLE_USER:

 <security:http auto-config="true">
 <security:intercept-url pattern="/**" access="ROLE_USER" />
 </security:http>

The path matcher pattern="/**" used by Spring Security3 is slightly different from
the conventional servlet pattern and is equivalent to a URL mapping of "/*" in servlet
parlance.

 Next, we set up two users, josh and bob, and gave them both ROLE_USER access:

3 If you’re familiar with Ant, note that Spring Security uses Ant-style paths to match against URIs. Ant is a pop-
ular build-scripting tool for Java from Apache: http://ant.apache.org/.

227Enterprise use cases for interception
 <security:authentication-provider>
 <security:user-service>
 <security:user name="josh" password="supersecret"
 authorities="ROLE_USER, ROLE_ADMIN" />
 <security:user name="bob" password="bobby"
 authorities="ROLE_USER" />
 </security:user-service>
 </security:authentication-provider>

This means they will be able to access any page in the web application by default.
 Finally, we applied a method security constraint via a pointcut. Recall pointcuts

from the section early in this chapter on Spring AOP with AspectJ. This pointcut
expression matches any method in an imaginary class PhoneService:

 <security:global-method-security>
 <security:protect-pointcut
 expression="execution(* example.PhoneService.*(..))"
 access="ROLE_ADMIN" />
 </security:global-method-security>

This security pointcut prevents access to methods in PhoneService from anyone but
ROLE_ADMIN users. In our case only josh had this role:

 <security:user name="josh" password="supersecret"
 authorities="ROLE_USER, ROLE_ADMIN" />
 <security:user name="bob" password="bobby" authorities="ROLE_USER" />

Let’s imagine PhoneService to look something like this:

public class PhoneService {
 public Response call(String number) {
 ...
 }

 public void hangUp() {
 ...
 }
}

Now if any client code tries to access methods from this class via the Spring injector

<bean class="example.PhoneCaller">
 <constructor-arg><bean class="example.PhoneService"/></constructor-arg>
</bean>

and the corresponding class,

public class PhoneCaller {
 private final PhoneService phone;

 public PhoneCaller(PhoneService phone) {
 this.phone = phone;
 }

 public void doAction() {
 Response response = phone.call("555-1212");
 if (response.notBusy())

228 CHAPTER 8 Managing an object’s behavior
 phone.hangUp();
 }
}

when a user triggers this action (by, for example, clicking a button to call a recipient),
Spring Security intercepts calls to PhoneService.call() and PhoneService.hangUp()
and ensures that the user has the appropriate role. If not, an exception is raised and
the user is shown an authorization failure message. In this scenario, the target meth-
ods are never executed.

 This example requires a lot of delving into ancillary topics, such as Spring’s web
integration layer and related concerns. We’ve taken only the most cursory glance at
this security system, focusing instead on the method interception use case. For a more
thorough examination, consult the source code accompanying this chapter and visit
http://www.springsource.org for the Spring Security documentation.

 In the rest of this chapter, we’ll change gears and look at the flip side of all this
interception and how basic assumptions in design may need to change depending on
how you use AOP.

8.3 Pitfalls and assumptions about interception and proxying
As you saw earlier, proxying is an advanced topic and can involve some pretty low-level
semantics dealing with the internals of Java. Thus there are several pitfalls and mis-
taken assumptions that can lead you astray when working with proxied classes or inter-
faces. Ideally, a proxy should behave identically to its replaced counterpart. However,
this is not always the case.

 You can understand and avoid many of the pitfalls if you keep in mind that a proxy
is simply a subclass of the original type. Let’s look at some of these cases.

8.3.1 Sameness tests are unreliable

If you have a reference to an object, never rely on the sameness (==) test to assert that
it’s the object you’re expecting. An object created by the injector may have been prox-
ied, and though it appears to be the same as the original object, it isn’t. This is true
even in the case of singletons. Here’s such a scenario:

final Painting picasso = new Painting("Picasso");

Injector injector = Guice.createInjector(new AbstractModule() {
 protected void configure() {
 bind(Painting.class).toInstance(picasso);
 bindInterceptor(any(), any(), new TracingInterceptor());
 }
});

assert picasso == injector.getInstance(Painting.class); //will fail

In this case, we create an instance outside the injector and bind it via the
bind().toInstance() directive:

final Painting picasso = new Painting("Picasso");

Injector injector = Guice.createInjector(

229Pitfalls and assumptions about interception and proxying
 ...
 bind(Painting.class).toInstance(picasso);
 ...

This is an implicit singleton-scoped binding (since we’ve hand-created the only
instance).

 Next, we bound in a TracingInterceptor like the ones we’ve seen throughout this
chapter. This runs on all classes and all methods:

 bindInterceptor(any(), any(), new TracingInterceptor());

Now, we obtain the bound instance of Painting (picasso) from the injector and com-
pare it using a sameness assertion to the instance we already know about:

 assert picasso == injector.getInstance(Painting.class); //will fail

This assertion fails because even though we’re semantically talking about the same
instance, the physical instances are different. One has been proxied by the injector
and the other is a direct reference to the original instance.

 A related but much more common anti-pattern is to assume that the class of an
available object is the same as the one it is bound to. For example, many logging
frameworks publish log messages under the class of an object. Many people naively
make the following mistake:

import java.util.logging.*;

public class ANoisyService {
 public final Logger log = Logger.getLogger(getClass().getName());

 ...
}

This is a dangerous assumption because while it appears as though method get-
Class() will return Class<ANoisyService>, in reality it may return the class of the
dynamically generated proxy! So instead of logging under ANoisyLogger, your log
statements may be printing under some unintelligible, generated class name.

 Worse than this, if you use getClass() to make decisions on application logic, you
can find some very erratic and unexpected behavior. Here’s an example of a naïve
equals() method implementation that mistakenly precludes a proxied object from
an equality test:

public class EqualToNone {
 @Override
 public boolean equals(Object object) {
 if (object == null || object.getClass() != EqualsToNone.class)
 return false;

 ...
 }
}

This equals() method makes the assumption that subclass instances cannot be
semantically equivalent to superclass instances. This is a wrong assumption when any

230 CHAPTER 8 Managing an object’s behavior
proxied objects are involved. It’s not only dependency injectors that need to proxy
objects for dynamic behavior modification. Many web frameworks and persistence
libraries also employ this design pattern to provide dynamic behavior.

 To fix this problem, you should always assume that an object can be proxied and
program accordingly:

public class EqualToNone {
 @Override
 public boolean equals(Object object) {
 if (!(object instanceof EqualToNone))
 return false;

 ...
 }
}

This is a much better implementation that’s safe to proxying behavior. Similarly, you
should always be explicit about your sameness semantic:

import java.util.logging.*;

public class ANoisyService {
 public final Logger log = Logger.getLogger(ANoisySer-

vice.class.getName());

 ...
}

Now, ANoisyService will always publish under the correct logging category regardless
of whether or not it has been proxied. Another problem that arises from this situation
is the inability to intercept static methods.

8.3.2 Static methods cannot be intercepted

Since proxies are merely subclasses and Java doesn’t support overriding static meth-
ods, it follows that proxies cannot intercept static methods. However, something more
subtle is at work. If you try the following example,

public class Super {
 public static void babble() {
 System.out.println("yakity yak");
 }
}

public class Sub extends Super {
 public static void babble() {
 System.out.println("eternal quiet");
 }

 public static void main(String...args) {
 babble();
 }
}

and run class Sub from the command line, what do you think it will print? Will the
program even compile?

231Pitfalls and assumptions about interception and proxying
 Yes, it will compile! And it prints

eternal quiet

which appears to all eyes like an overridden static method. We declared a static method
babble() in Super and another static method babble() in Sub. When we ran babble()
from Sub, it used the subclass’s version. This looks very much like overriding instance
methods in subclasses. Fortunately there’s an explanation: What’s really happening is
that there are two static methods named babble() and the one in Sub is hiding the one
in Super via its lexical context. In other words, if you were to run this from anywhere
outside Sub or Super, you’d have to specify which method you were talking about:

import static Super.*;
...
babble();

This version correctly prints "yakity yak" as expected. So any code that statically
depends on Sub or Super must always be explicit about which one it is talking about,
meaning that there is no way to substitute a proxied subtype (even were it possible)
without the client itself doing so. When you want dynamic behavior, don’t place logic
in static methods.

 Private methods also face the same problem because they cannot be overridden.
Although they have access to dynamic state, they cannot be proxied.

8.3.3 Neither can private methods

In Java, methods can have private visibility. A method that is private can’t be called
from anywhere outside its owning class. This applies to subclasses too, which means
that dynamic proxies (which are just subclasses) cannot intercept private methods. If
we go back to our FrenchChef and alter the visibility of method clean() as follows,

public class FrenchChef {
 public void cook() {
 ...
 }

 private void clean() {
 ...
 }
}

and then run it by adding a main() method to its body,

 public static void main(String...args) {
 FrenchChef chef = Guice.createInjector(new AbstractModule() {

 @Override
 protected void configure() {
 bind(FrenchChef.class);
 bindInterceptor(any(), any(),
 new TracingInterceptor());
 }

 }).getInstance(FrenchChef.class);

Trace all methods

Obtain a proxied FrenchChef

232 CHAPTER 8 Managing an object’s behavior
 chef.cook();
 chef.clean();
 }

it will produce the following output

enter cook
exit cook

with no mention of clean(). This was not because clean did not run; we called it
from main(), after all. Rather it was because proxying doesn’t permit private methods
to be intercepted before they’re dispatched. A good solution to this problem is to ele-
vate the class’s visibility slightly:

public class FrenchChef {
 public void cook() {
 ...
 }

 protected void clean() {
 ...
 }
}

Protected methods are good candidates for proxying, since they’re hidden from all
external users except subclasses of the original type. Running the program again pro-
duces a more satisfying result:

enter cook
exit cook
enter clean
exit clean

This is probably the best solution for the majority of cases although it may not always
be ideal. While protected methods are hidden from classes outside the current hierar-
chy, they are still visible to nonproxy subclasses that may exist in different modules. If
this is undesirable, Java has yet another visibility level: package-local visibility. This
makes methods invisible to any code that’s outside the owning class’s package. Pack-
age-local4 visibility is perfect for hiding methods from subclasses that may extend your
class but for which you don’t want certain methods shown. These methods can still be
intercepted by proxies, because proxies are typically generated within the same pack-
age as the original class. Denote package-local visibility by omitting an access keyword:

public class FrenchChef {
 public void cook() {
 ...
 }

 void clean() {
 ...
 }
}

4 Package-local visibility is sometimes also called package-private or default visibility.

233Pitfalls and assumptions about interception and proxying
NOTE I say that proxies are typically generated within the same package, but
there are some cases where this may not be true. This behavior is depen-
dent on specific decisions made by the library you’re using. Keep an eye
out for such decisions. Most dependency injectors can be relied on to
place proxies within the same package as their parent classes.

Another variant of this problem (the inability to override certain methods) presents
itself when a method has specifically declared itself to be final.

8.3.4 And certainly not final methods!

Methods can be declared as final to prevent subclasses from overriding them. The
final keyword is not a visibility modifier, since it can be applied on public, protected,
or package-local methods:

public class FrenchChef {
 public final void cook() {
 ...
 }

 void clean() {
 ...
 }
}

However, it does prevent a subclass from redefining the method by overriding it. The
following code results in a compiler error:

public class FrenchSousChef extends FrenchChef {

 @Override
 public void cook() {
 ...
 }
}

Naturally, this means a proxy can’t override it either, and therefore a final method
can’t be intercepted for behavior modification. The solution in such cases is obvi-
ously to remove the final modifier. But if this can’t be done for some reason (per-
haps you don’t have access to the source code), you can wrap the method in a pass-
through delegator:

public class FrenchChefDelegator implements Chef {
 private final FrenchChef delegate;

 public void cook() {
 delegate.cook();
 }

 ...
}

This class can now be proxied for interception. Method cook() is not final so it can be
intercepted safely with a proxy. And the class FrenchChefDelegator implements Chef,
so clients of Chef are not impacted by the change.

Cannot override final method

Delegate to original class

234 CHAPTER 8 Managing an object’s behavior
TIP An even better solution would be to proxy the Chef interface directly and
pass calls through to the specific implementation. For example, Spring’s
AOP mechanism allows you to choose interface proxying as the default
method. This is also easily accomplished by hand.

The same principle applies to final classes. These are classes that cannot be extended.
Not only can their methods not be intercepted, but you can’t generate subclasses of
them at all:

public final class FrenchChef implements Chef {
 public void cook() {
 ...
 }

 public void clean() {
 ...
 }
}

The Delegator pattern also works well for this situation:

class FrenchChefDelegator implements Chef {
 private final FrenchChef delegate;

 ...

 public void cook() {
 delegate.cook();
 }

 public void clean() {
 delegate.clean();
 }

}

When in doubt always choose this method over inheritance—even simpler would be
proxying the interface directly. Just as final classes and methods cannot be intercepted
at runtime, neither can class member fields.

8.3.5 Fields are off limits

Certain flavors of AOP allow you to make deferred modifications to any parts of a
codebase. The build-time weaving from AspectJ allows you to alter fields, interfaces
implemented, and even static methods. However, neither Spring nor Guice provides
this kind of weaving. Almost all use cases for interception can be fulfilled with the run-
time weaving flavor that they do provide. However, it does mean that fields, any kind
of fields, are off limits with regard to interception.

 Let’s say FrenchChefs have a dependency on a RecipeBook:

public class FrenchChef implements Chef {
 private final RecipeBook recipes;

 public void cook() {
 ...
 }

Delegate to
original class

235Pitfalls and assumptions about interception and proxying
 public void clean() {
 ...
 }
}

An interceptor can only advise behavior on methods cook() and clean() but can-
not advise anything on recipes. Even if methods on recipes were called from cook()
or clean(), an interceptor declared on FrenchChef would not be able to trap spe-
cific behavior:

 private final RecipeBook recipes;

 public void cook() {
 recipes.read("ratatouille");
 ...
 }

And a tracing interceptor declared with the specific matcher

 bindInterceptor(subclassesOf(Chef.class), any(),
 new TracingInterceptor());

will ignore method calls on RecipeBook and trace only methods cook() and clean().
Of course, expanding the matching strategy will allow you to intercept RecipeBook’s
methods. The following matcher is much better suited:

 bindInterceptor(subclassesOf(Chef.class)

➥ .or(subclassesOf(RecipeBook.class)), any(), new TracingInterceptor());

The general one we have used earlier in the chapter

 bindInterceptor(any(), any(), new TracingInterceptor());

will also work nicely:

enter cook
enter read
exit read
exit cook
enter clean
exit clean

The limitation here is that any intercepted dependency must also have been provided
by dependency injection. No dependency injector can intercept methods on objects it
doesn’t create. For example, the following class

public class FrenchChef implements Chef {
 private final RecipeBook recipes = new RecipeBook();

 public void cook() {
 ...
 }

 public void clean() {
 ...
 }
}

236 CHAPTER 8 Managing an object’s behavior
creates its own dependency (see construction by hand from chapter 1) and therefore
subverts the interception mechanism. No matcher will be able to intercept method
calls on RecipeBook now:

enter cook
exit cook
enter clean
exit clean

Furthermore, any accesses to scalar fields like primitives or Strings are not open to
interception whether or not they are injected by the dependency injector:

public class FrenchChef implements Chef {
 private int dishesCooked;
 private BigInteger potsWashed;
 private String currently;

 public void cook() {
 dishesCooked++;
 currently = "cooking";
 }

 public void clean() {
 potsWashed = potsWashed.add(BigInteger.ONE);
 currently = "cleaning";
 }
}

None of these accesses—whether via method calls or directly by assignment—are visi-
ble to interceptors. Typically this is not a problem, but it’s something to keep in mind
when you’re designing services with scalar fields. Of course, not all dependencies will
necessarily need interception.

8.3.6 Unit tests and interception

One of the nice things about DI is that it doesn’t affect the way you write tests. If we
were to test a class with many complex dependencies, all we’d need to do would be
replace them with mock or stub equivalents. This principle can become somewhat
muddied when interception comes into play.

 While the imperative behavior of a class is the same in both test and application, its
semantic behavior can change advice introduced by AOP. For example, a theme park’s
ticket-purchase system collects money and dispenses a ticket:

public class TicketBooth {
 public Ticket purchase(Money money) {
 if (money.equals(Money.inDollars("200")))
 return new Ticket();

 return Ticket.INSUFFICIENT_FUNDS;
 }
}

We can write a unit test for this class quite easily:

237Pitfalls and assumptions about interception and proxying
public class TicketBoothTest {
 @Test
 public void purchaseATicketSuccessfully() {
 Ticket ticket = new TicketBooth().purchase(Money.inDollars("200"));

 assert Ticket.INSUFFICIENT_FUNDS != ticket;
 }
}

If you decided to modify this behavior by printing a discount coupon for every 100th
customer (via an interceptor), the original class’s semantic has changed:

public class DiscountingInterceptor implements MethodInterceptor {
 private int count;

 public Object invoke(MethodInvocation mi) throws Throwable {
 Ticket ticket = (Ticket)mi.proceed();

 if (Ticket.INSUFFICIENT_FUNDS != ticket
 && (++count % 100) == 0) {

 return new DiscountedTicket(ticket);
 }

 return ticket;
 }
}

The immediate solution that comes to mind is simply to write another unit test, this
time around the interceptor:

public class DiscountingInterceptorTest {
 @Test
 public void decorateEveryHundredthCall() throws Throwable {
 DiscountingInterceptor discounter = new DiscountingInterceptor();
 MockInvocation mi = new MockInvocation();

 for(int i = 1; i < 101; i++) {
 Object result = discounter.invoke(mi);

 if (i == 100)
 assert result instanceof DiscountedTicket;
 }
 }
}

But this is not where the difficulty lies. As you saw in “Too much advice can be danger-
ous!” the combination of two behavioral units can affect total semantic behavior and
belie the assertions of individual unit tests. One effective solution is to write an inte-
gration test that brings the relevant units together and tests them as they might
behave in the eventual application environment.

 This is different from a full acceptance test or QA pass, since we’re interested in
only a particular combination of behaviors and can restrict our attention to the classes
we expect to be intercepted:

public class DiscountingInterceptorIntegrationTest {
 @Test

Ensure this is
a valid ticket

If the customer count
is a multiple of 100

Return a
discounted ticket

Return a normal ticket

Call interceptor with
a mock invocation

On the 100th run, we
should see a discount

238 CHAPTER 8 Managing an object’s behavior
 public void discountEveryHundredthTicket() {
 Injector injector = Guice.createInjector(new AbstractModule() {
 @Override
 protected void configure() {
 bind(TicketBooth.class);
 bindInterceptor(any(), any(),
 new DiscountingInterceptor());
 }
 });

 TicketBooth booth = injector.getInstance(TicketBooth.class);

 for(int i = 1; i < 101; i++) {
 Ticket ticket =
 booth.purchase(Money.inDollars("200"));

 if (i == 100)
 assert ticket instanceof DiscountedTicket;
 }

 }
}

This test looks very similar to the unit test on the interceptor, but it gives us more con-
fidence about how these units come together. Notice that we call the Ticket-
Booth.purchase() method just as clients would in the real application. And its
behavior is decorated with interceptors that would also be present in the real app.
Where this gets really useful is if we add a second or a third interceptor (as we did in
“Too much advice can be dangerous!”); then the confidence that the integration test
provides is far greater than the sum of individual unit tests.

 When you have any sort of services in your program that rely on side effects like
these, it’s important to write vertical integration tests to give yourself some assurance
on their combined behavior. This will generally be in addition to any unit tests that
exist on individual classes. Neither is enough alone, but together they give us suffi-
cient breadth for verifying correct behavior.

8.4 Summary
In this chapter we encountered certain concerns that are global to a program. In tra-
ditional approaches, these are addressed individually with repetitive and boilerplate
code. A technique known as AOP allows us to centralize this code in one location and
apply it many times using a matcher (or pointcut). Matchers allow us to introduce
additional behavior before and after business methods execute in a dynamic and
declarative fashion. This introduced behavior is known as advice and is typically
applied in the form of interceptors.

 Interceptors trap the normal behavior of a method and decorate it with the pro-
vided advice. They are applied via the use of dynamic proxies, which are generated
subclasses of the original class that reroute method calls through an interceptor. The
Java core library provides a simple proxying mechanism for generating subclasses of
interfaces on the fly. More sophisticated proxy libraries are available for proxying con-
crete classes too (CGLib is one example).

Apply discount
interceptor

Call original
object 100 times

239Summary
 Because dependency injectors create the services used by an application, they are
able to intercede with a proxy that intercepts behavior when applicable. These inter-
ceptors can be turned on or off with simple configuration options in both Spring
and Guice.

 Intercepting methods is a powerful technique for adding dynamic behavior that
crosscuts a problem domain. Concerns like security, logging, and transactions are typ-
ical use cases for interception. However, it’s fraught with pitfalls and requires a thor-
ough understanding if it’s to be applied properly, and it has unintended
consequences. One pitfall is the order of interception: An interceptor that replaces
the returned value of methods (or their arguments) can unintentionally disrupt the
behavior of other interceptors yet to run. An integration test that puts together the
expected set of interceptors can be a good confidence booster in such cases.

 Warp-persist is an integration layer for Guice that allows you to apply transactions
declaratively to Hibernate-, JPA-, and Db4objects-driven applications. It provides an
@Transactional annotation that can be applied to introduce transactionality around
any method in an application. Of course, it supports interception without annota-
tions too.

 Similarly Spring Security is an AOP-based security framework for Spring applica-
tions. Spring Security allows you to declare users and roles and attach them to meth-
ods via the use of a pointcut (a matching expression). When a user who is logged into
the system executes these methods, an interceptor verifies that he has sufficient privi-
leges, blowing up with an exception if not.

 Other things to watch out for with proxies are sameness tests. The == operator tests
whether references are equal; it can lead you astray if you test a reference against its
intercepted equivalent, since the latter is a dynamically generated proxy. Semantically
they refer to the same instance underneath. Equality testing should be applied in such
cases. The same also applies to comparing classes of objects directly with the get-
Class() reflective method.

 There are several parts of a class and its behaviors that simply cannot be inter-
cepted with runtime proxies. For example, static methods are not attached to any
instance, so they cannot be intercepted. Similarly, fields and methods on objects
belonging to these fields are off-limits (unless they too have been injected). Methods
having private visibility or a final modifier are also ineligible for proxying and thus
behavior modification through interception.

 With all these corner cases and pitfalls in mind, you can still apply this technique
to great effect in your code. Reducing boilerplate and introducing behavior modifica-
tion to services late in the game can be a powerful tool. Use interception wisely.

 In the next chapter we’ll look at some more general design issues specific to very
large sets of applications that interact with one another, and we’ll show how to use
dependency injection in these environments.

Best practices
 in code design
“The effort to understand the universe is one of the very few things that lifts human
life a little above the level of farce and gives it some of the grace of tragedy.”

 —Steven Weinberg

It’s often a puzzle to programmers who are new to dependency injection about when
to apply it. When it wasn’t widely understood, even experienced practitioners applied
it too much or too sparingly. The immature state of libraries contributed to this fuzzy
application too, giving one the tools but not the discretion of its applicability.

 A more fundamental set of confusion arises from the best practices of the lan-
guage itself. Are these distinct from the patterns relevant to DI? Are they super-
seded? Or can they coexist (figure 9.1)?

This chapter covers:
■ Understanding publication and wiring
■ Designing objects to be thread-safe
■ Optimizing for concurrency
■ Dealing with type-safety
■ Using objects in collections
240

241Objects and visibility
 It turns out that such questions are based
on the wrong premise entirely. The best
practices portended by a language and its
engineering fundamentals are the same as
those proffered by dependency injection
(figure 9.2).

 In other words, design well for the lan-
guage and problem domain, and you will
have designed well for the principles of test-
ing, succinctness, and flexibility.

 One of the core problems in multi-
threaded object-oriented languages is that
of visibility. We showed in earlier chapters
that altering the state of an object in one
thread did not necessarily mean altering its
state for all threads. This was particularly rel-
evant with the problem of scope widening
discussed in chapters 5 and 6. A more subtle
incarnation of this problem occurs during
(and immediately after) the construction of
an object. Unless carefully designed, its
fields may not be properly visible to all
threads using it. This is a problem sometimes
known as unsafe publication, and it’s discussed
in the following section on object visibility.

9.1 Objects and visibility
In chapter 3 we said that a constructor is a special method that runs once immediately
after memory allocation of an object, in order to perform initialization work. As such,
the object allocated is generally not visible to any other threads of execution than the
one creating it. I say “generally,” as there are some special circumstances under which
objects can be visible.

 One of the best ways to understand visibility is to investigate a hashtable. A
hashtable is a flexible data structure, sometimes called an associative array, that’s used
to store key-value pairs. Hashtables are ideal for us because they give us a scenario
where one thread may come in and change values that are being read by other
threads simultaneously, introducing problems of ordering and visibility. Consider a
hashtable that stores email addresses by name (we’ll use Java’s java.util.HashMap):

Map<String, Email> emails = new HashMap<String, Email>();

emails.put("Dhanji", new Email("dhanji@gmail.com")); //yes, this is my
 //real email =)
emails.put("Josh", new Email("josh@noemail.com"));

Dependency
Injection

C#
Java

Best Practices

SOA
Patterns

Standards

GoF

Tra ning

???

Dependency
Injection

C#
Java

Best Practices

SOA
Patterns

Standards

GoF

Training

!
=

Figure 9.1 Best practices for the language,
or architecture with DI?

Figure 9.2 Best practices for the language
and dependency injection are the same.

242 CHAPTER 9 Best practices in code design
System.out.println("Dhanji's email address really is "
 + emails.get("Dhanji"));

Reading from this map is fairly straightforward, since there’s only one thread of exe-
cution through this program (the main thread). We can confidently say that email
address values are placed in the map before they’re read. This is satisfied by simple
lexical ordering. In other words, the put() method is called before the get(). The val-
ues are said to be safely published to the reader.

 We can elaborate on this example by introducing a second thread:

public class UnsafePublication {

 private Map<String, Email> emails = new HashMap<String, Email>();

 public void putEmails() {
 emails.put("Dhanji", new Email("dhanji@gmail.com"));

 emails.put("Josh", new Email("josh@noemail.com"));
 }

 public void read() {
 System.out.println("Dhanji's email address really is "
 + emails.get("Dhanji"));
 }

}

If method putEmails() is called by Thread A and method read() is called by Thread
B, there’s a danger that the values read() is looking for may not yet be available. This
problem cannot be solved by lexical ordering either (see listing 9.1).

public class Main {

 public static void main(String...args) {
 final UnsafePublication pub = new UnsafePublication();

 new Thread(new Runnable() {
 public void run() {
 pub.putEmails();
 }
 }).start();

 new Thread(new Runnable() {
 public void run() {
 pub.read();
 }
 }).start();
 }
}

In listing 9.1, two threads are started up in order. Thread A has the task of writing
emails into the hashtable, while Thread B calls read(), which prints them. Now, even
though it appears there is a lexical ordering, there’s no guarantee that Thread A will
run before Thread B. Several factors are at play. It may be that CPU scheduling pre-
empts the start of Thread A. Or it may be that the compiler believes reordering

Listing 9.1 Unsafe publication of hashtable values

Thread A

Thread B

243Objects and visibility
instructions will lead to better throughput. The point is, once you introduce multiple
threads accessing a shared resource, lexical guarantees are no longer valid.

 There’s a further subtlety with regard to unsafe publication. Even if Thread A did
execute on the CPU before Thread B, which we could presumably tell by adding the
following print statement,

public class UnsafePublication {

 private Map<String, Email> emails = new HashMap<String, Email>();

 public void putEmails() {
 emails.put("Dhanji", new Email("dhanji@gmail.com"));
 emails.put("Josh", new Email("josh@noemail.com"));

 System.out.println("Map updated.");
 }

 public void read() {
 System.out.println("Dhanji's email address really is "
 + emails.get("Dhanji"));
 }

}

there’s no guarantee that the program will behave properly. The following program’s
output is equally likely to happen:

Map updated.
Dhanji's email address really is null

What’s going on? The "Map updated." signal was printed in Thread A before the read.
We should quite certainly have my email address in the hashtable! We can further con-
found the issue as shown in listing 9.2.

public class UnsafePublication {

 private Map<String, Email> emails = new HashMap<String, Email>();

 public void putEmails() {
 emails.put("Dhanji", new Email("dhanji@gmail.com"));
 emails.put("Josh", new Email("josh@noemail.com"));

 System.out.println("Map updated.");
 read();
 }

 public void read() {
 System.out.println("Dhanji's email address really is "
 + emails.get("Dhanji"));
 }

}

What will this program print? Can it possibly print something as absurd as this?

Map updated.
Dhanji's email address really is dhanji@gmail.com
Dhanji's email address really is null

Listing 9.2 Unsafe publication of hashtable values even with apparent verification

Trace map update

Ensure map has
expected value

244 CHAPTER 9 Best practices in code design
Surely, not! In fact, it turns out this is quite possible because a guarantee of order
alone is insufficient for safe publication. This is another manifestation of the visibility
problems. There are several reasons why Thread B may see a null value, even though
as far as Thread A is concerned, the map has been updated. We encountered one of
these in an earlier chapter when looking at memory coherency. Without sufficient syn-
chronization, the JVM makes no guarantees about visibility of fields between threads.
This is a deliberate choice made by the language designers to allow for maximum flex-
ibility in optimizations on various platforms. Thread A’s updates to the hashtable may
not yet be synchronized with main memory. Thus, they’re not published to other
threads. So while a thread can see its own updates, there’s no assurance that others
will. Now let’s look at how to correctly publish to all threads.

9.1.1 Safe publication

It’s easy to see how this problem can creep into DI as well. Unless properly published,
objects may appear incompletely constructed to participating threads, with unavail-
able or partially constructed dependencies. Consider the equivalent of the hashtable
we just saw:

public class MoreUnsafePublication {

 private EmailDatabase service;

 public MoreUnsafePublication(EmailDatabase service) {
 this.service = service;
 }

 public void read() {
 System.out.println("Dhanji's email address really is "
 + service.get("Dhanji"));
 }
}

MoreUnsafePublication is a simple variant of the hashtable that reads an email
address using its dependency EmailDatabase. This time the issue of publication is not
with the hashtable values but with the EmailDatabase dependency itself. Threads that
call method read() cannot rely on the fact that the dependency is available. Without
sufficient synchronization, the thread creating the object does not safely publish its
fields to other threads. The following could easily result in a NullPointerException:

 public void read() {
 System.out.println("Dhanji's email address really is "
 + service.get("Dhanji"));
 }

Or worse, it could result in further corruption of the object graph. A very simple solu-
tion to this problem is to declare the field as final.1 Final fields are given the guarantee
of safe visibility to all threads concerned. Because these fields are generally always set in
the constructor, they’ll be visible to all threads once the constructor completes.

1 See this article on developerWorks for more information: http://www.ibm.com/developerworks/library/
j-jtp03304/

Potentially unsafe
publication

245Objects and visibility
public class SafePublication {

 private final EmailDatabase service;

 public SafePublication(EmailDatabase service) {
 this.service = service;
 }

 public void read() {
 System.out.println("Dhanji's email address really is "
 + service.get("Dhanji"));
 }
}

In SafePublication, threads may call read() and expect dependency EmailDatabase
to be set correctly. This holds for any thread, even those that did not construct the
instance. This is a very simple but powerful solution that’s an ideal choice for the vast
majority of multithreading problems. It’s good practice to declare fields final even if
you believe the instance will only ever participate in one thread, as this gives a clear
indication of intent.

 As we’ve stated in earlier chapters, thread-safety is a concept very relevant to
dependency injection. In the following section, we’ll look at exactly what these seman-
tics imply for wiring objects with dependencies.

9.1.2 Safe wiring

We’ve just seen how we can run into visibility problems between threads. One typically
encounters these problems only with singletons. This is because, in general, only sin-
gletons are shared by two (or more) threads. Final fields are a safe solution to this
problem if you can guarantee that a reference to the object does not escape during
construction (we’ll look at what escaping means shortly). Many dependency injectors
can also help by providing extra synchronization during the construction of single-
tons. For instance, PicoContainer can be put into a locking mode, which ensures
object creation happens in a synchronized state:

MutablePicoContainer injector = new DefaultPicoContainer();
injector.as(LOCK, CACHE).addComponent(MyObject.class);
MyObject obj1 = injector.getComponent(MyObject.class);
MyObject obj2 = injector.getComponent(MyObject.class);

Instances obj1 and obj2 are created in a synchronized fashion, so the dangers of visi-
bility are safely mitigated. The characteristics LOCK and CACHE instruct PicoContainer
to use locking and to create singletons. This would be equivalent to the following:

public class SynchronizedPublication {

 private Lock lock = new ReentrantLock();
 private MyObject obj;

 public void constructObj() {

 lock.lock();
 try {
 obj = new MyObject();
 } finally {

Only one thread may
execute at a time

246 CHAPTER 9 Best practices in code design
 lock.unlock();
 }

 //other threads can safely access obj's fields now
 }
}

Now, fields of MyObject are correctly set and visible to all threads regardless of
whether or not they are declared final:

public class MyObject {
 private Dependency dep;

 public MyObject(Dependency dep) {
 this.dep = dep;
 }

 ...
}

Guice also provides a similar guarantee for all of its singletons. However, despite these
niceties, one should not rely on the injector to do the work of safe wiring. If you design
your classes to be well behaved in threaded environments, they will be safe regardless
of whether or not you receive help from libraries. This is especially significant if you
want to reuse code in different environments. It’s also important when designing
objects for concurrency. Furthermore, it’s an implicit declaration of intent. When
someone comes across your code and the final class members, it’s very clear that they
weren’t meant to be changed. Even if you accidentally try to reassign field values after
construction, you can’t run afoul of mutability since the compiler alerts you to the
problem. Recall that any attempt to modify a final field after construction,

public class EarlyWarning {
 private final ImmutableDependency dep;

 public EarlyWarning(ImmutableDependency dep) {
 this.dep = dep;
 }

 public void setImmutableDependency(ImmutableDependency newDep) {
 this.dep = newDep;
 }
}

results in a clear, fast failure of compilation:

Information:Compilation completed with 1 error and 0 warnings
Information:1 error
Information:0 warnings
EarlyWarning.java
 Error:Error:line (9)cannot assign a value to final variable dep

The documenting thread-safety annotations, @Immutable, @ThreadSafe, @NotThread-
Safe, and @GuardedBy that we’ve used in earlier chapters are an additional clarifica-
tion of behavioral intent. While the injector can help in minor ways, it’s ultimately up
to you to create code that’s both safe and efficient.

Safely published
to all threads

Illegal
assignment

247Objects and design
 In fact, it’s a good principle to design without the injector in mind for all thread-
ing cases. DI is meant to help your code become more flexible and testable in design,
but it doesn’t relieve you of the burden of engineering good code. Or should I say joy?

 Another interesting but higher-level consideration is deciding when to use a
dependency injector and when not to. This can often be quite tricky, as simplistic as it
sounds. Ahead, we’ll look at rules of thumb that help in making this decision.

9.2 Objects and design
The question of which classes of objects to manage using dependency injection is
often a tricky one. Especially for programmers new to the technique, it can be quite a
double-edged sword. Some are overeager to apply it, creating everything with the
injector. Some are too careful and use DI sparingly, almost like a Factory or Service
Locator. Neither of these extremes is particularly prudent. And both are especially
counterproductive in large and complex codebases.

 Most of the time, it’s quite easy to determine what objects ought to be created and
managed by dependency injection. A rule of thumb is to leave anything that’s a ser-
vice or action component to the purview of the injector and any class that models data
to traditional, by-hand usage. Now let’s see that principle in practice, in dealing with a
specific example that uses data and service objects.

9.2.1 On data and services

Let’s take the case of an imaginary online auction house. Here you have several
objects for managing users, bids, list items, reconciliation, and so forth. These are
couched as three primary services, as shown in figure 9.3:

■ AuctionManager—Manages bids and auction status
■ ItemManager—Manages list items and descriptions
■ UserManager—Manages user accounts and history

These three services are classes with several dependencies of their own. For example,
UserManager needs a DAO to read and write user details to a data store:

public class UserManager {
 private final UserDao userDao;

 public UserManager(UserDao userDao) {
 this.userDao = userDao;
 }

 //operations on user...
}

ItemManager UserManager

$

Auction
Manager Figure 9.3 Three foundational

services of the auction house
application

248 CHAPTER 9 Best practices in code design
UserDao, in the example, is our interface to the data store. UserManager uses it to create
new users, update details such as name and password, and in rare cases mark the account
as inactive. Listing 9.3 shows the same class in some detail (also see figure 9.4).

public class UserManager {
 private final UserDao userDao;

 public UserManager(UserDao userDao) {
 this.userDao = userDao;
 }

 public void createNewUser(User user) {
 validate(user);
 userDao.save(user);
 }

 public void updatePassword(long userId,
 String password) {
 User user = userDao.read(userId);
 user.setPassword(password);

 validate(user);
 userDao.save(user);
 }

 public void deactivate(long userId) {
 User user = userDao.read(userId);
 user.deactivate();

 userDao.save(user);
 }

 ...
}

In listing 9.3, we have three methods
that perform some kind of manipula-
tion of the User data object. create-
NewUser() registers a new user (repre-
sented by an instance of the User
object) by saving it to a data store:

 public void createNewUser(User user) {
 validate(user);
 userDao.save(user);
 }

This method also validates the instance of user, ensuring that all the data going in is
correct. We don’t deal with reporting validation errors at this juncture, since it is
already assumed this has been done at the presentation layer (that is, the website).
This validation step is purely a safeguard against programmer error. Once we’re sure
the data is valid, it’s passed to UserDao to be saved.

Listing 9.3 UserManager performs many operations on user data

Registers a new user

Updates an existing
user’s password

Sets an account
as inactive

UserDao

UserManager

- createNewUser()
- updatePassword()
- deactivate()

- userDao

Figure 9.4 A class model of UserManager and its
dependency, UserDao

249Objects and design
 Similarly, method updatePassword() performs data manipulation on User, but
this time it’s of an instance that already exists. The specific user is identified by a
numeric userId, and it’s the job of UserDao to locate and retrieve the relevant
instance from the data store:

 public void updatePassword(long userId, String password) {
 User user = userDao.read(userId);
 user.setPassword(password);

 validate(user);
 userDao.save(user);
 }

We then set the new password on this instance, signaling a change of password, and
resave the details in the same fashion.

 The third method in our set of operations deactivates a user account (presumably
due to inactivity or violation of terms of use). Aptly named, method deactivate()
takes in the numeric userId, deactivates it, and saves the relevant instance:

 public void deactivate(long userId) {
 User user = userDao.read(userId);
 user.deactivate();

 userDao.save(user);
 }

We don’t need to validate the User this time since we aren’t modifying any data in it
with untrusted data received from actual user input.

 One thing that’s clear to us from these three operations
is that UserDao and UserManager are services. The common
thread that runs through them is that they perform opera-
tions on instances of the User class, which is data. Clearly,
UserDao and UserManager are appropriate to be constructed
and tested with DI. Class User, on the other hand, is con-
structed often at the presentation layer and has no depen-
dencies. Listing 9.4 describes this data model class (also
shown in figure 9.5).

public class User {
 private long userId;
 private String name;
 private String password;
 private boolean active = true;

 public User(long userId, String name) {
 this.userId = userId;
 this.name = name;
 }

 public long getUserId() {

Listing 9.4 The User data model class

User

- name
- password
- active

Figure 9.5 Class model of
User and its properties

250 CHAPTER 9 Best practices in code design
 return userId;
 }

 public String getName() {
 return name;
 }

 public void setName(String name) {
 this.name = name;
 }

 public String getPassword() {
 return password;
 }

 public void setPassword(String password) {
 this.password = password;
 }

 public boolean isActive() {
 return active;
 }

 public void deactivate() {
 this.active = false;
 }
}

In listing 9.4, all four fields are scalar data types. In other words, they are fields of type
String, boolean, or long. And each datum has no real domain semantics. There’s
nothing special about Strings, booleans, or longs insofar as an auction house is con-
cerned. Consider this in contrast to User, which is itself a data type, but one that’s spe-
cific to the problem domain we’re concerned with. It also captures specific operations
around that domain (for example, deactivating user accounts).

 Apart from having no real dependency structure, another interesting point about
the User class is that almost all of its fields are mutable. Setter methods exist for name,
password, and the active flag. This is because User models the real-world state of a
user’s account. Several instances of this class exist, and the specific values of each
instance may change gradually over time, that is, when someone changes his password
or has his account deactivated.

 Clearly, User objects are not ideal to be instantiated by DI. There’s no gain to be
had from interception or lifecycle for Users. Scope also doesn’t quite fit in this sce-
nario, since all Users are no scoped, but at the same time it can persist forever in a
data store. Furthermore, there isn’t anything significant to test in User code. Most
methods are dumb setters or accessors, so it’s appropriate to create and manage them
by hand, like any other scalar object. Listing 9.5 is an example of doing just that from
a new-user registration page.

@RequestScoped
public class NewUserPage {
 private final UserManager userManager;

 @Inject

251Objects and design
 public NewUserPage(UserManager userManager) {
 this.userManager = userManager;
 }

 public HTML registerNewUser(String name) {
 userManager.createNewUser(new User(nextUserId(), name));

 ...
 }
}

NewUserPage represents a web page on the auction website where new users sign up to
list and bid on items (see figure 9.6).

It is HTTP request scoped as is marked by the @RequestScoped annotation (recall guice-
servlet and web scopes from chapter 5):

@RequestScoped
public class NewUserPage {
 private final UserManager userManager;

 ...
}

NewUserPage also takes data coming in from browser data entry and converts it into a
created user by passing it on to the UserManager:

 public HTML registerNewUser(String name) {
 userManager.createNewUser(new User(nextUserId(), name));

 ...
 }

UserManager is a singleton service that’s shared by all instances of the NewUserPage
and is called at various data points for purposes like creating users, deactivating their
accounts, or changing their details.

 The other services, AuctionManager and ItemManager, also model actions on data
model objects relating to auctions, list items, and so forth. Here too, the data model
objects can be separated from their operations along simple lines (see figure 9.7).

 Auctions, Items, ShoppingCarts, Money, and Users are all data classes that are
operated on by the aforementioned singleton services and web pages. We can thus
make an easy distinction between these classes and those that can benefit from
dependency injection.

 Another important design principle is encapsulation, sometimes called information
hiding. In the following section, we’ll look at how this applies to DI and techniques for
taking advantage of it.

UserManager UserDao
save()

NewUserPage
reg s er ewUser()i t N

user

save()

user

Figure 9.6 Creating a
new User with relevant
services

252 CHAPTER 9 Best practices in code design
9.2.2 On better encapsulation

One of the core principles of OOP is encapsulation, that is, the hiding of any informa-
tion within a component that is relevant only to that component. In classes, this takes
the form of marking members as private. Not only does this make sense in terms of
hiding information that’s irrelevant to anyone else, it also ensures against accidental
leaking of semantics.

 Leaking of private member fields can be very dangerous since it can lead to tight
coupling between components. A class making use of a specific kind of messaging
service (say, email messaging) should not expose its implementation details to the
outside world. If other classes mistakenly begin using its dependencies, this can lead
to tight coupling. Let’s take the case of a Messager service represented by the follow-
ing interface

public interface Messager {
 void send(Message msg);
}

and its email-backed implementation:

public class Emailer implements Messager {

 public void send(Message msg) {
 //send message via email...
 }
}

Emailer converts the incoming generic message into an email and sends it away to
recipients. So far so good. Now let’s see what happens if we accidentally leak this
abstraction:

public interface Messager {
 void send(EmailMessage msg);
}
public class Emailer implements Messager {

 public void send(EmailMessage msg) {

ItemManager

UserManager

$

Auction
Manager

services data
Figure 9.7 Separate data
from operations on data.

253Objects and design
 //send message via email...
 }
}

Now, both Messaging and Emailer send EmailMessages in method sendMessage().
While this may seem okay at first glance, a closer examination reveals otherwise. Say
you wrote a new kind of messaging service that used the popular Jabber instant messag-
ing protocol to send messages:

public class JabberMessager implements Messager {

 public void send(JabberMessage msg) {
 //send message via jabber...
 }

 ...
}

Because of the leaked abstraction, method send() in JabberMessager does not actu-
ally implement send() from the Messager interface. Fortunately, this code will fail on
compilation, complaining that the Messager interface is not fully implemented. But
we’re still stuck with the problem of not being able to change the messaging service’s
transport—stuck with email, that is. This highlights what is an extremely poor abstrac-
tion that has pretty much destroyed our encapsulation. We have effectively exposed the
internals of the Emailer class directly and rendered the Messager interface irrelevant.

 Of course, this is easily fixed in our case by reverting to the original implementation:

public interface Messager {
 void send(Message msg);
}

public class Emailer implements Messager {

 public void send(Message msg) {
 EmailMessage email = convert(msg);

 //send message via email...
 }
}

This version of Emailer correctly converts the incoming implementation-neutral Mes-
sage object into an EmailMessage, which can be sent over email. Now it’s easy for us
to create and swap in a JabberMessager system with little difficulty and no impact to
client code:

public class JabberMessager implements Messager {

 public void send(Message msg) {
 JabberMessage jab = convert(msg);

 //send message via jabber...
 }

 ...
}

Does not implement
interface method

Converts to email-
specific message

Converts to Jabber-
specific message

254 CHAPTER 9 Best practices in code design
JabberMessager now successfully compiles, and the system behaves as expected.
 We can take the idea of encapsulation a step further. It isn’t always possible to

make implementation details private—sometimes implementation classes need to
share functionality among themselves. For example, a JabberMessager interface may
depend on a JabberMessageConverter and a JabberTransport in order to convert
and send the message:

public class JabberMessager implements Messager {
 private final JabberTransport transport;
 private final JabberMessageConverter converter;

 public void send(Message msg) {
 ...
 }
}

These are dependencies that exist as public classes. And therefore they can be
accessed, subclassed, and used by anyone, leading to a potential horde of tight cou-
pling. In Java, there’s an extra layer of visibility that we can take advantage of to pre-
vent anyone outside a package (namespace) from knowing or using classes. This is
sometimes called package-privacy or package-local access. Package-local access has no
special keyword and is denoted by the lack of an access specifier. Dependency injec-
tors allow us to take advantage of this special visibility by exposing only service inter-
faces and configuration from each package, hiding any implementation details within.
Let’s apply this to the Jabber example with Guice; see listing 9.5.

package example.messaging;

public interface Messager {
 void send(Message msg);
}

class JabberMessager implements Messager {
 private final JabberTransport transport;
 private final JabberMessageConverter converter;

 public void send(Message msg) {
 ...
 }
}

class JabberTransport {
 ...
}

class JabberMessageConverter {
 ...
}

In listing 9.5, all of the implementation classes are declared package-local. They can’t
be seen from outside the example.messaging package by any classes. Moreover, all com-
munication and use of Jabber services must occur through the Messager interface. This

Listing 9.5 Package encapsulation of the Jabber services

Jabber-specific
dependencies

255Objects and design
allows us a degree of control over the contract and behavior of our messaging module.
It’s also easy to specify API behavior to clients, and the documentation for this module
is ridiculously simple (nothing more than the single-method Messager interface).

 All we need to do to expose Jabber messaging to clients is place a single Guice
module in the package, which contains all the nitty-gritty binding details:

public class MessagingModule extends AbstractModule {

 @Override
 protected void configure() {
 bind(Messager.class).to(JabberMessager.class);
 }
}

The messaging module does nothing more than instruct the injector to use Jabber-
Messager wherever Messaging services are needed. Here’s such a user of Jabber
messaging:

public class MessageClient {
 private final Messager messager;

 public MessageClient(Messager messager) {
 this.messager = messager;
 }

 public void go() {
 messager.send(new Message("Dhanji", "Hi there!"));
 }
}

This ensures loose coupling between client code and the messaging module, since cli-
ents need only attach to the Messaging interface. We can even use multiple imple-
mentations this way and distinguish between them using binding annotations:

public class MessagingModule extends AbstractModule {

 @Override
 protected void configure() {
 bind(Messager.class).annotated-

With(Im.class).to(JabberMessager.class);
 bind(Messager.class).annotatedWith(Mail.class).to(Emailer.class);
 }
}

Now clients can choose which implementation to use without coupling to any internals:

public class MessageClient {
 private final Messager mailMessager;
 private final Messager imMessager;

 public MessageClient(@Im Messager imMessager, @Mail Messager
 mailMessager) {
 this.imMessager = imMessager;
 this.mailMessager = mailMessager;
 }

 public void go() {

256 CHAPTER 9 Best practices in code design
 Message msg = new Message("Dhanji", "Hi there!");

 imMessager.send(msg);
 mailMessager.send(msg);
 }
}

And all is well with the world.
 A good example of this kind of encapsulation can be found in the warp-persist inte-

gration library we explored in chapter 8. Figure 9.8 is a screenshot of warp-persist’s
package tree. Notice the classes with a hollow bullet point to the left of them—these are
package-local. Public components are restricted to hardly any public classes at all, thus
vastly reducing the potential for tight coupling and abstraction leaking.

 This is directly reflected in the API documentation for warp-persist. Look at the
resulting streamlined and simple Javadoc frame in figure 9.9.

Figure 9.8 Screenshot of
warp-persist’s package tree
(hollow bullets are package-
private classes)

257Objects and concurrency
Neat! A good rule of thumb is to apply package privacy to anything that’s not an inter-
face, enum, annotation, or abstract class because these types have very low potential
for leaking abstraction logic. You can apply these principles and take advantage of
dependency injection to get better encapsulation at the package and module levels.

 In previous chapters, we looked at safe design with respect to multiple threads.
This often meant correct synchronization. Earlier in this chapter we also looked at vis-
ibility. In the following section, we’ll take a more performance-focused approach and
look at the action of multiple threads concurrently.

9.3 Objects and concurrency
Concurrency is increasingly a very important aspect of modern applications. As we
scale to higher levels of traffic and demand, there’s a greater need for multiple con-
current threads of execution. Thus, the role of objects managed by the dependency
injector is extremely important. Singletons are a particularly significant example of
this need.

 In a large web application handling several hundreds of requests per minute, a
poorly designed singleton can be a serious bottleneck. It introduces ceilings on
concurrent performance and can even render the application unscalable under cer-
tain conditions.

 Poor concurrent behavior is also more common than you might think. And since
its effects are highlighted only during performance testing, it can be difficult to
identify and mitigate, so it’s quite relevant for us to study the effects of concurrency
on singletons.

 Mutability is an essential variable in this problem, so let’s start with that.

Figure 9.9 Javadoc of warp-persist’s main package consisting
of only enums, annotations, interfaces, and abstract classes

258 CHAPTER 9 Best practices in code design
9.3.1 More on mutability

Earlier in this chapter we explored the dangers of mutable objects as they manifested
in visibility and publication problems. We also established that declaring fields final
and making objects immutable was an efficient and robust solution to the thread-
safety question. Now we’ll explore exactly what it means to be immutable. Some pit-
falls are contained within the idea of immutability too. To change things up, let’s
explore this as a series of puzzles.
IMMUTABLITY PUZZLE 1

Is the following class, Book, immutable?

public class Book {
 private String title;

 public String getTitle() {
 return title;
 }

 public void setTitle(String title) {
 this.title = title;
 }
}

ANSWER 1

This one’s easy: no. The value of its title field can be changed arbitrarily by calling
setTitle(), so it is clearly not immutable. We can make Book immutable by declaring
title final:

public class ImmutableBook {
 private final String title;

 public ImmutableBook(String title) {
 this.title = title;
 }

 public String getTitle() {
 return title;
 }
}

Once set in the constructor, the value of title cannot change.
IMMUTABLITY PUZZLE 2

Is the following class, AddressBook, immutable?

public class AddressBook {
 private final String[] names;

 public AddressBook(String[] names) {
 this.names = names;
 }

 public String[] getNames() {
 return names;
 }
}

259Objects and concurrency
ANSWER 2

The value of the names field is set once in the constructor and is declared final. So
AddressBook should be immutable, right? No! In fact, the subtle point is that since
names is an array, only the reference to it is immutable by declaring it final. The follow-
ing code is perfectly legal and can potentially lead to a world of hurt where multiple
threads are concerned:

public class AddressBookMutator {
 private final AddressBook book;

 @Inject
 public AddressBookMutator(AddressBook book) {
 this.book = book;
 }

 public void mutate() {
 String[] names = book.getNames();

 for (int i = 0; i < names.length; i++)
 names[i] = "Censored!";

 for (int i = 0; i < names.length; i++)
 System.out.println(book.getNames()[i]);
 }
}

Method mutate() destructively updates the array, even though field names is
unchangeable. If you run the program, it prints "Censored!" for every name in the
book. The only real solution to this problem is not to use arrays—or to use them very
sparingly behind well-understood safeguards and documentation. Choose library col-
lections (such as those found in java.util) classes where possible as these can be
guarded by unmodifiable wrappers. See puzzle 3 for an illustration of using
java.util.List instead of an array.
IMMUTABLITY PUZZLE 3

Is the following class, BetterAddressBook, immutable?

public class BetterAddressBook {
 private final List<String> names;

 public BetterAddressBook(List<String> names) {
 this.names = Collections.unmodifiableList(names);
 }

 public List<String> getNames() {
 return names;
 }
}

ANSWER 3

Thankfully, yes; BetterAddressBook is immutable. The wrapper provided by the Col-
lections library ensures that no updates can be made to the list once it has been set.
The following code, though it compiles, results in an exception at runtime:

BetterAddressBook book = new BetterAddressBook(Arrays.asList(
 "Landau", "Weinberg", "Hawking"));
book.getNames().add(0, "Montana");

260 CHAPTER 9 Best practices in code design
IMMUTABLITY PUZZLE 4

This is a variant on puzzle 3. Take the same BetterAddressBook class we saw earlier. Is
it at all possible to construct it in such a way that I can mutate it? You’re not allowed to
change the code of BetterAddressBook.
ANSWER 4

The answer is simple, if a bit confounding:

List<String> physicists = new ArrayList<String>();
physicists.addAll(Arrays.asList("Landau", "Weinberg", "Hawking"));

BetterAddressBook book = new BetterAddressBook(physicists);

physicists.add("Einstein");

Now an iteration through BetterAddressBook’s list of names

for (String name : book.getNames())
 System.out.println(name);

actually produces the mutated list:

Landau
Weinberg
Hawking
Einstein

So, really, we must revise what we said in the answer to puzzle 3. BetterAddressBook is
immutable only if its dependency list is not leaked anywhere else. Better yet, you can
rewrite a completely safe version of it by copying the list at the time of its construction:

@Immutable
public class BestAddressBook {
 private final List<String> names;

 public BestAddressBook(List<String> names) {
 this.names = Collections.unmodifiableList(
 new ArrayList<String>(names));
 }

 public List<String> getNames() {
 return names;
 }
}

Now you’re free to leak and mutate the original list,

List<String> physicists = new ArrayList<String>();
physicists.addAll(Arrays.asList("Landau", "Weinberg", "Hawking"));

BetterAddressBook book = new BetterAddressBook(physicists);

physicists.clear();
physicists.add("Darwin");
physicists.add("Wallace");
physicists.add("Dawkins");

for (String name : book.getNames())
 System.out.println(name);

261Objects and concurrency
and BestAddressBook remains unaffected:

Landau
Weinberg
Hawking

While it may not always be necessary to take such a cautious approach, it’s advisable to
copy argument lists if you’re at all unsure about them escaping into other uses subse-
quent to construction of the immutable object.
IMMUTABLITY PUZZLE 5

Is the following class, Library, immutable? (Recall Book from puzzle 1.)

public class Library {
 private final List<Book> books;

 public Library(List<Book> books) {
 this.books = Collections.unmodifiableList(
 new ArrayList<Book>(books));
 }

 public List<Book> getBooks() {
 return books;
 }
}

ANSWER 5

Library depends on a list of Books, but it takes care to wrap the incoming list in an
unmodifiable wrapper and copies it prior to doing so. Of course, its only field is final
too. Everything looks right—or does it? It turns out that Library is mutable! While
the collection of books is unchangeable, there’s still the Book object itself, which, as
you may recall from the first puzzle, allows its title to be set:

Book book = new Book();
book.setTitle("Dependency Injection");

Library library = new Library(Arrays.asList(book));

library.getBooks().get(0).setTitle("The Tempest"); //mutates Library

The golden rule with immutability and object graphs is that every dependency of an
object must also be immutable. In the case of BestAddressBook, we got lucky, since
Strings in Java are already immutable. Take care to ensure that every dependency
you have is safely immutable before declaring an object as such. The @Immutable
annotations mentioned in chapter 6 help a great deal in conveying and documenting
this intent.

 While immutability is a desirable goal, often you need to change state in order to
do useful work. In the next section we’ll look at how to do this and also keep our code
performant.

9.3.2 Synchronization vs. concurrency

Sometimes it just happens that you really need mutable objects. It isn’t always possible
to make everything immutable (though it would be nice!). This need usually arises

262 CHAPTER 9 Best practices in code design
when you have to maintain some kind of central state in a system that’s shared
between many or all threads. This is fairly common in large applications. You may
need a counter to keep track of the number of requests to a particular resource, or
you may be caching heavyweight data in application memory to avoid expensive trips
to a database.

 Generally, you want to isolate any such use cases and design them very carefully,
giving yourself ample slack to test and reason about these multithreaded services.
Essentially, such services need to synchronize the data between threads in such a way
that the data remains coherent and that threads are not paused for long periods await-
ing data. These are two very different problems, with quite different solutions. And
they are classed under the headings of synchronization and concurrency, respectively.
THREAD-SAFE COUNTING

Consider a simple counter. Every time a message is received, it increments the count
by one. There are several message handler threads, and they must all update the same
counter. If they updated separate counters, there would be no thread-safety problem,
but we’d be unable to tell what the total count was. So here’s what such a counter
might look like:

public class MessageCounter {
 private int count;

 public void messageReceived() {
 count++;
 }
}

Method messageReceived() is called by each message-handling thread upon receiv-
ing a message to increment the count. Now, variable count is not final and is updated
concurrently by more than one thread. So it is very possible that it will get out of sync
and read an invalid or corrupt count. A simple solution is to synchronize the counter
so that only one thread may increment the count at any given time:

public class MessageCounter {
 private int count = 0;

 public synchronized void messageReceived() {
 count++;
 }
}

In this version, the singleton-scoped instance of MessageCounter itself acts as the lock.
Each message-receiving thread must wait its turn in order to acquire the lock, increment
the count, and release it. This solution works, and we are assured that the count never
goes out of sync and that each increment is published safely to all threads.

 For this very simple case, the synchronization solution is probably good enough.
But think about what happens when there is an enormous number of threads going
through the counter. Every one of them must wait to acquire and release the lock
before it can proceed with handling the message. This can lead to a serious bottle-
neck. The problem gets even worse if additional work needs to be done before the

263Objects and concurrency
counter can be incremented (say, looking up who sent the message from a hashtable).
All threads must wait inexorably, until the one holding the lock can finish. This can
lead to very poor throughput.
CONCURRENT COUNTING

Concurrent algorithms and data structures are designed with speed and scalability in
mind. Multiple threads may liberally hit the critical code without suffering the single-
file throughput problems of synchronization. This is accomplished in many ways, pri-
marily by taking advantage of some special atomic operations provided by modern CPUs.
Atomic operations execute in one go on the CPU and cannot be interrupted by another
thread being prioritized while they’re executing. Atomic operations are thus somewhat
like a very small block of synchronized code that performs just one instruction.

 In Java, these are modeled by the java.util.concurrent.atomic library and asso-
ciated data structures found in the java.util.concurrent package. Using these we
can rewrite the counter to be concurrent rather than sequential:

public class MessageCounter {
 private final AtomicInteger count = new AtomicInteger(0);

 public void messageReceived() {
 count.incrementAndGet();
 }
}

The method incrementAndGet() executes atomically. This is opposed to count++,
which is actually three operations masquerading as one:

1 Read value from count.
2 Increment value by one.
3 Write new value back to count.

In the non-atomic situation, intervening threads can easily alter count concurrently
and corrupt its value. With the atomic incrementAndGet()this cannot happen.

 Furthermore, if a thread is slow in incrementing its count (due to additional work
that it’s doing, perhaps), this doesn’t block other threads from making progress in the
meantime as synchronization would. This leads to real concurrency of threads and a
substantial increase in throughput.

 The value of concurrent data structures becomes more readily apparent when
dealing with more complex forms of data, such as those stored in hashtables. Con-
sider the second use case we mentioned, where data is placed into a cache and then
looked up by multiple threads to prevent expensive trips to a database. Using a tradi-
tional synchronized hashtable this would look as follows:

public class SimpleCache {
 private final Map<String, Data> map =
 Collections.synchronizedMap(new HashMap<String, Data>());

 public void set(String key, Data val) {
 map.put(key, val);
 }

264 CHAPTER 9 Best practices in code design
 public Data get(String key) {
 return map.get(key);
 }
}

SimpleCache uses a synchronized wrapper around a simple hashtable. This wrapper
has a single lock that is acquired on every get() and every put() operation. This is
done to safely publish values (as we discussed early in this chapter) to all threads.
However, SimpleCache is extremely slow since every thread must wait for the hashmap
to perform a lookup operation and release the lock held by the current thread. put()
operations can be even worse since they can involve resizing the underlying array
when it becomes full. In any high-traffic environment, this is unacceptably underper-
formant. What we need is for threads to be able to look up values concurrently and
perhaps wait only when there are many insertions going on. What we need is a concur-
rent hashtable:

import java.util.concurrent.ConcurrentHashMap;

public class ConcurrentCache {
 private final Map<String, Data> map
 = new ConcurrentHashMap<String, Data>();

 public void set(String key, Data val) {
 map.put(key, val);
 }

 public Data get(String key) {
 return map.get(key);
 }
}

This is a special hashtable implementation because it doesn’t use locking to read from
the map at all! It allows multiple threads to make progress to the same values without
requiring a coarse-grained lock as synchronized hashtables do. Instead it locks only on
insertion operations but using more fine-grained locks distributed across the hashtable.
The keys are partitioned along a configurable number of stripes. Each stripe is assigned
a lock, and any concurrent insertions to keys in the same stripe must wait for sequential
access (just like synchronization). Dividing the table into even a small number of stripes
is several times more efficient than locking the entire table every time.

 Opt for concurrent data structures wherever you can. And reason carefully about
the semantics of making any object a singleton, because you will have to worry about
thread safety and concurrency. Finally, conquer your problem by assessing it through
the three cordons of immutability, safe publication, and concurrency.

9.4 Summary
This chapter was a thorough workout in best practices and concurrency. Architectur-
ally, the best practices portended by a language and its design patterns are the same as
those required by dependency injection. Where possible you should design with test-
ability in mind but not rely on the behavior of an injector.

265Summary
 One of the primary problems to face with singletons and objects shared between
threads is that of visibility. Dependencies set on an object need to be visible to all
threads that use the object. This is known as safe publication. One way to guarantee
proper visibility is to make objects immutable. This involves plenty more than merely
declaring fields final, as you saw with a series of five puzzles on the topic. Immutability
requires that every object in a graph be immutable and that no dependencies
“escape” after construction.

 Designing objects for better encapsulation is also very important. Dependency
injectors like Guice allow you to hide implementation classes in package privacy and
expose only interfaces to clients. This helps prevent tight coupling and the accidental
leakage of internals. Another important design question is which objects to create and
manage via the injector. A rule of thumb is to ask whether an object is a service com-
ponent or whether it models data. If the latter, there’s no benefit to be gained from
dependency injection, lifecycle, scope, and so on, and you’re better served working
with them by hand.

 Finally, we explored what it means to be thread-safe in mutable cases. This was
especially tricky, since synchronization through locks is insufficient in all cases. In
high-traffic environments, you cannot afford to let threads queue up, waiting to
acquire a single global lock to a shared resource. The answer is to use concurrent data
structures such as those provided by the java.util.concurrent library. These data
structures purport atomic operations and more fine-grained locking, which allows for
better throughput in systems that require a high level of concurrency.

 This chapter gave you a solid, low-level grounding in designing code for safe,
highly performant Java applications using dependency injection. Next we’ll take a
broader view and look at how to integrate an application with other libraries and util-
ity frameworks.

Integrating with
 third-party frameworks
“No, no, you’re not thinking! You’re just being logical.”
 —Niels Bohr

Our investigation of application design has led us to dependency injection in
various forms and working with environments such as web applications, data per-
sistence, filesystems, and GUIs. The techniques we’ve examined help us tie
together the otherwise disparate parts into cohesive modules that are easy to test
and maintain.

 Such scenarios typically call for the use of utility libraries that facilitate better
application design. When you work with persistence, you use an ORM tool like
Hibernate. When you work with service clusters, it may be Oracle Coherence.

This chapter covers:
■ Exploring lessons for framework designers
■ Exploring framework anti-patterns
■ Dealing with type-safety
■ Dealing with framework interoperability
266

267Fragmentation of DI solutions
 One of the major impediments to smooth integration between a dependency
injector and a given library is that many of these libraries already provide a minimal
form of IoC. In other words, they provide some means, usually half baked, to construct
and wire objects with dependencies. Generally, these are specific to their areas of
need, such as a pluggable connection manager in the case of a persistence engine or a
strategy for listening to certain events in the case of a graphical user interface GUI.

 Most of the time these solutions focus on only a very specific area and ignore
broader requirements for testing and component encapsulation. These typically come
with restrictions that make testing and integration difficult—and downright impossi-
ble in certain cases. In this chapter, we’ll show how this lack of architectural foresight
can lead to very poor extensibility solutions and how, with a little bit of thought, a
library can be very flexible and easy to integrate with. We’ll study popular frameworks
that have made the wrong choice by either hiding too much of the component model
or by creating their own.

 We’ll now do a short analysis of how frameworks create fragmentation by each cre-
ating its own partial dependency injection idiom.

10.1 Fragmentation of DI solutions
Nearly every application these days does some form of DI. That is, it moves part of its
object construction and wiring responsibilities off to configured library code. This can
take many forms. In the Java Servlet framework, a very primitive form of this is evident
with the registration of servlets and filters in web.xml, as shown in listing 10.1.

<?xml version="1.0" encoding="UTF-8"?>
<web-app version="2.4"
 xmlns="http://java.sun.com/xml/ns/j2ee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee
 http://java.sun.com/xml/ns/j2ee/web-app_2_4.xsd" >

 <filter>
 <filter-name>webFilter</filter-name>
 <filter-class>
 com.wideplay.example.RequestPrintingFilter
 </filter-class>
 </filter>

 <filter-mapping>
 <filter-name>webFilter</filter-name>
 <url-pattern>/*</url-pattern>
 </filter-mapping>

 <servlet>
 <servlet-name>helloServlet</servlet-name>
 <servlet-class>
 com.wideplay.example.servlets.HelloServlet
 </servlet-class>
 </servlet>

Listing 10.1 web.xml is a precursor to solutions using DI

268 CHAPTER 10 Integrating with third-party frameworks
 <servlet-mapping>
 <servlet-name>helloServlet</servlet-name>
 <url-pattern>/hi/*</url-pattern>
 </servlet-mapping>
</web-app>

In listing 10.1, we have a web.xml configuration file for the servlet container that con-
figures a single web application with

■ A filter—com.wideplay.example.RequestPrintingFilter

■ An HTTP servlet—com.wideplay.example.servlets.HelloServlet

The filter is a subclass of javax.servlet.Filter and performs the simple task of tracing
each request by printing its contents. It’s configured with the <filter> tag as follows:

<filter>
 <filter-name>webFilter</filter-name>
 <filter-class>com.wideplay.example.RequestPrintingFilter</filter-class>
</filter>

This is reminiscent of Spring’s <bean> tag, where a similar kind of configuration
occurs. By analogy that might be:

<bean id="webFilter" class="com.wideplay.example.RequestPrintingFilter"/>

Similarly, there’s a <servlet> tag that allows you to map a javax.servlet.http.
HttpServlet to a string identifier and URL pattern. The essential difference between
this solution and that offered by Spring, Guice, or any other dependency injector is that
the servlet framework does not allow you to configure any dependencies for servlets or
filters. This is a rather poor state of affairs, since we can virtually guarantee that any seri-
ous web application will have many dependencies.

 This configuration is fairly restrictive on the structure of servlets (and filters):

■ A servlet must have a public, nullary (zero-argument) constructor.
■ A servlet class must itself be public and be a concrete type (rather than an inter-

face or abstract class).
■ A servlet’s methods cannot be intercepted for behavior modification (see chap-

ter 8).
■ A servlet must effectively have singleton scope.

We can already see that this is getting to be an inexorable set of restrictions on the
design of our application. If all servlets are singletons with nullary constructors, then
testing them is very painful.1 As a result of this and other deficiencies in the program-
ming model, many alternative web frameworks have arisen on top of the servlet frame-
work. These aim to simplify and alleviate the problems portended by the
restrictiveness of the servlet programming model, not the least of which has to do with
DI (see table 10.1 for a comparison of these solutions).

1 See the problems with testing singletons described in chapter 1 and more comprehensively in chapter 5.

269Fragmentation of DI solutions
As you can see from table 10.1, there isn’t a standard programming model for inte-
grating dependency injectors with libraries based around servlets. Only Apache
Struts2 and Google Sitebricks fully integrate Guice and Spring.

 The situation doesn’t get much better with other types of libraries either. The stan-
dard EJBs programming model provides its own form of dependency injection that
supports direct field injection and basic interception via the javax.interceptor
library. Direct field injection, as we discussed in chapter 3, is very difficult to test and
mandates the presence of nullary constructors, which also means that controlling
scope is not an option—all stateless session EJBs (service objects) exist for the dura-
tion of a method call. Stateful session EJBs are somewhat longer lived, as you saw in
chapter 7. But these too are scoped outside your direct control and only marginally
longer lived.

 Why are we at such a sorry circumstance? Frameworks ought to simplify our lives,
not complicate them. The reasons are numerous, but essentially it boils down to the
fact that we are only recently learning the value of testability, loose-coupling, scope,
and the other benefits ascribed to DI. Moreover, the awareness of how to go about
designing with these principles in mind is still maturing. Guice is only a little over two
years old itself. PicoContainer’s and Spring’s modern incarnations are even more
recent than that.

Table 10.1 Java web frameworks (based on servlet) and their solutions for DI

Library
Out-of-box
solution

Integrates
Spring/Guice/others?

Website

Apache Wicket Custom fac-
tory, no DI

Partially through plug-in.a http://wicket.apache.org

Apache Struts2
(formerly WebWork)

Custom fac-
tory, no DI

Fully, depending on plug-in. http://struts.apache.org

Apache Tapestry 4 Apache
HiveMind

Extension integrates Spring
through HiveMind lookups.

http://tapestry.apache.org/
tapestry4.1

Apache Tapestry 5 TapestryIoC
injector

Partially via extension.b http://tapestry.apache.org

JavaServer
Faces 1.2

Built-in, very
limited DIc

Extension integrates vari-
able lookups in Spring.

http://java.sun.com/javaee/
javaserverfaces

Spring MVC Spring IoC Pretty much tied to Spring. http://www.springframework.org

Google Sitebricks Google Guice Integrates Spring fully via
Guice’s Spring module.

http://code.google.com/p/
google-sitebricks

a. I say partially because Wicket’s page objects cannot be constructed by DI libraries (and are therefore constructor
injected), even with plug-ins.
b. Tapestry’s Spring integration requires special annotations when looking up Spring beans. There is no official support for
Guice.
c. JSF’s built-in injector lacks support for constructor injection and interception, and it has limitations object identifiers that
prevent the use of namespaces (see chapter 2 for an examination of namespaces in dependency identifiers).

270 CHAPTER 10 Integrating with third-party frameworks
 That having been said, let’s look at what future frameworks and libraries can do to
avoid these traps and prevent this sort of unnecessary fragmentation.

10.2 Lessons for framework designers
Most of the critical problems with integration can be avoided if framework designers
keep one fundamental principle in mind: testability. This means that every bit of client
and service code that a framework interacts with ought to be easy to test. This natu-
rally leads to broader concepts like loose coupling, scoping, and modular design.
Library components should be easily replaced with mock counterparts. And plugga-
ble functionality should not mandate unnecessary restrictions on user code (servlets
requiring a public, nullary constructor, for example).

 Replacement with mocks is at once the most essential and most overlooked feature
in framework designs. While most frameworks are themselves rigorously tested, they
often fail to consider that it is equally important that client code be conducive to test-
ing. This means considering the design of client code as much as the design of APIs
and of implementation logic. Frameworks designed with such a leaning often turn out
to be easier to use and understand, since there are fewer points of integration, and
these are naturally more succinct. Another significant problem is encapsulation—you
saw this in the previous chapter when considering the design of your classes. The
more public classes you expose, the more danger there is that clients will begin to
extend and use them. If you want to make major changes to your framework’s archi-
tecture or internal design, this process is difficult if your users are heavily tied to sev-
eral parts of your framework. The Spring Framework’s SpringMVC suffers from this.
Every single class is public and nonfinal. This means users can bind to any of this
code, and it can never change without breaking a lot of client applications.

 Even many of Spring’s modules extend and use other parts of the framework. This
is why people find it very difficult to use Spring modules outside the Spring injector.
Spring Security is a classic example of this—many of its components rely strongly on
Spring’s lifecycle system and on JavaBeans property editors, which make it difficult to
port for use with any other dependency injection system or even to use by hand.

 Forcing users to extend framework base classes for functionality is also problem-
atic because it blurs the lines between a dependency and a parent class. Composition
is a preferable option, because a delegate is easily replaced with a mock or stub for
unit and integration testing. Parent class methods are harder to mock and therefore
less conducive to testing.

 These problems can be classified broadly into three categories:

■ Those that prevent testing or make it very difficult
■ Those that restrict functionality by subverting interception and scope
■ Those that make integration difficult or impossible (the most egregious)

None of these is particularly unavoidable or even necessary, especially if you carefully
consider them early in the life of your framework.

271Lessons for framework designers
 Let’s start by looking at an egregious instance, the rigid configuration anti-pattern,
which makes both testing and integration difficult.

10.2.1 Rigid configuration anti-patterns

Most frameworks provide some form of customization of behavior. This is really a
major part of their appeal—for example, Hibernate allows you to use a variety of data-
bases, connection pools, transaction strategies, and so on, taking the basic behavior of
the library to the breadth of various use cases. Often this is done via the use of exter-
nal resource bundles such as .properties or XML files. Most of this configuration is gen-
erally about specifying a certain amount or type of something (max_connections=.. ;
or, timeout=.. ; or, enable_logging=true; and so on). So this kind of configuration
is appropriate.

 But sometimes libraries also provide pluggable services. They allow you to customize
behavior by writing small components, usually adhering to a library interface, and
plugging them in. Sometimes they are called plug-ins, other times extensions. But
essentially the idea is the same—they are a user-provided dependency of the frame-
work. It is when these plug-ins are configured that things often go wrong in frame-
work integration. Many frameworks will use the same configuration mechanism (XML
file or resource bundle) to specify the plug-in. Generally this, too, takes the form of a
string name/value pair such as

extensibility.plugin=com.example.MyPlugin

The property extensibility.plugin identifies which plug-in component is being set.
On the right side is the name of the user-provided class. On the surface this looks like
a clean approach. It is concise, easy to understand, and specifies the needed extension
nicely. On closer inspection it reveals several problems that make it both difficult and
unwieldy to test and integrate.
TYPE UNSAFE CONFIGURATION ANTI-PATTERN

The gravest of these is probably the disregard for type-safety. Since resource bundles
are stored as raw strings, there’s no way to verify that the information is present in its
appropriate form. You could easily misspell or mistype the configuration parameter or
even leave it out completely.

 OSCache is a framework that provides real-time caching services for applications.
OSCache stores its configuration in a resource bundle named oscache.properties.
This is loaded by the cache controller when it is started up and then configured. A
sample configuration file for OSCache is shown in listing 10.2.

cache.memory=false
cache.use.host.domain.in.key=true
cache.path=/tmp

cache.persistence.class=com.opensymphony.oscache.plugins.diskpersistence.

➥ DiskPersistenceListener

Listing 10.2 A sample oscache.properties configuration file

272 CHAPTER 10 Integrating with third-party frameworks
cache.algorithm=com.opensymphony.oscache.base.algorithm.LRUCache
cache.blocking=false
cache.capacity=100
cache.unlimited.disk=false

In listing 10.2, we are shown a cache configuration that sets several routine options,
such as whether or not to use a disk cache

cache.path=/tmp

and where to store the files for this disk cache, its capacity, interaction model, and so on:

cache.path=/tmp
...
cache.blocking=false
cache.capacity=100
cache.unlimited.disk=false

And then, there’s one interesting line right in the middle that specifies the kind of
caching service to use. In this case it’s OSCache’s own DiskPersistenceListener:

cache.persistence.class=com.opensymphony.oscache.plugins.diskpersistence.

➥ DiskPersistenceListener

The problem with this is immediately obvious—we have no knowledge when coding
this property of whether OSCache supports a DiskPersistenceListener. It isn’t
checked by the compiler. A simple but all-too-common misspelling goes undetected
and leaves you with a runtime failure:

cache.persistence.class=com.opensymphony.oscache.plugins.diskpersistence.

➥ DiscPersistenceListener

This is very similar to the issues with string identifiers (keys) we encountered in chap-
ter 2. Furthermore, even if it is spelled correctly, things may not work as expected
unless it implements the correct interface:

package com.example.oscache.plugins;

public class MyPersistenceListener {
 ...
}

MyPersistenceListener is a custom plug-in I’ve written to persist cache entries in a
storage medium of my choice. We can configure OSCache by specifying the property
thusly:

cache.persistence.class=com.example.oscache.plugins.MyPersistenceListener

This is incorrect because MyPersistenceListener doesn’t implement Persistence-
Listener from OSCache. This error goes undetected until runtime, when the
OSCache engine attempts to instantiate MyPersistenceListener and use it. The cor-
rect code would be

package com.example.oscache.plugins;

import com.opensymphony.oscache.base.persistence.PersistenceListener;

273Lessons for framework designers
public class MyPersistenceListener implements PersistenceListener {
 ...
}

Now, you may be saying, this is only one location where things can go wrong and a bit
of extra vigilance is all right. You could write an integration test that will detect the prob-
lem—a somewhat verbose but passable solution if used sparingly. But now consider
what happens if you misspell the left-hand side of the same configuration property:

cache.persistance.class=com.example.oscache.plugins.MyPersistenceListener

(Persistence is spelled with an e.)
 In this case, not only is there no compile-time check, but any sanity check will

completely miss the error! This is because property cache.persistence.class, if not
explicitly set, will automatically use a default value. Everything appears to be fine, and
the configuration throws no errors even in an integration test because you’re freely
allowed to set as many unknown properties as you like, with no regard to their rele-
vance. Adding values for cache.persistence.class, jokers.friend.is.batman, and
my.neck.hurts are all valid properties that a resource bundle won’t complain about.

 This is a bad state of affairs, since even extra vigilance can let you down. It also
leads programmers to resort to things like copying and pasting known working config-
urations from previous projects or from tutorials.
UNWARRANTED CONSTRAINTS ANTI-PATTERN

This kind of name/value property mapping leads to strange restrictions on user code,
particularly, the plug-in code we have been studying—our plug-in is specified using a
fully qualified class name:

cache.persistence.class=com.example.oscache.plugins.MyPersistenceListener

The implication here is that MyPersistenceListener must implement interface Per-
sistenceListener (as we saw just earlier) but also that MyPersistenceListener must
have a public nullary constructor that throws no checked exceptions:

package com.example.oscache.plugins;

import com.opensymphony.oscache.base.persistence;

public class MyPersistenceListener implements PersistenceListener {

 public MyPersistenceListener() {
 }

 ...
}

This necessity arises from the fact that OSCache uses reflection to instantiate the MyPer-
sistenceListener class. Reflective code is used to read and manipulate objects whose
types are not immediately known. In our case, there’s no source code in OSCache
that’s aware of MyPersistenceListener, yet it must be usable by the original OSCache
code in order for plug-ins to work. Using reflection, OSCache is able to construct
instances of MyPersistenceListener (or any class named in the property) and use

274 CHAPTER 10 Integrating with third-party frameworks
them for persistence. Listing 10.3 shows an example of reflective code to create an
instance of an unknown class.

 String className = config.getProperty("cache.persistence.class");

 Class<?> listener;
 try {
 listener = Class.forName(className);

 } catch (ClassNotFoundException e) {
 throw new RuntimeException("failed to find specified class",
 e);
 }

 Object instance;
 try {
 instance = listener.getConstructor().newInstance();
 } catch (InstantiationException e) {
 throw new RuntimeException("failed to instantiate listener",
 e);

 } catch (IllegalAccessException e) {
 throw new RuntimeException("failed to instantiate listener",
 e);

 } catch (InvocationTargetException e) {
 throw new RuntimeException("failed to instantiate listener",
 e);

 } catch (NoSuchMethodException e) {
 throw new RuntimeException("failed to instantiate listener",
 e);

 }

Let’s break down this example. First, we need to obtain the name of the class from our
configuration property:

 String className = config.getProperty("cache.persistence.class");

This is done using a hypothetical config object, which returns values by name from a
resource bundle. The string value of our plug-in class is then converted to a
java.lang.Class, which gives us reflective access to the underlying type:

 Class<?> listener;
 try {
 listener = Class.forName(className);

 } catch (ClassNotFoundException e) {
 throw new RuntimeException("failed to find specified class",
 e);
 }

Class.forName() is a method that tries to locate and load the class by its fully quali-
fied name. If it is not found in the classpath of the application, an exception is thrown
and we terminate abnormally:

Listing 10.3 Creating an object of an unknown class via reflection

275Lessons for framework designers
 try {
 listener = Class.forName(className);

 } catch (ClassNotFoundException e) {
 throw new RuntimeException("failed to find specified class",
 e);
 }

Once the class is successfully loaded, we can try to create an instance of it by obtaining
its nullary constructor and calling the method newInstance():

 Object instance;
 try {
 instance = listener.getConstructor().newInstance();
 } catch (InstantiationException e) {
 throw new RuntimeException("failed to instantiate listener ",
 e);

 } catch (IllegalAccessException e) {
 throw new RuntimeException("failed to instantiate listener",
 e);

 } catch (InvocationTargetException e) {
 throw new RuntimeException("failed to instantiate listener",
 e);

 } catch (NoSuchMethodException e) {
 throw new RuntimeException("failed to instantiate listener",
 e);

 }

There are four reasons why creating the instance may fail. And this is captured by the
four catch clauses in the previous example:

■ InstantiationException—The specified class was really an interface or
abstract class.

■ IllegalAccessException—Access visibility from the current method is insuffi-
cient to call the relevant constructor.

■ InvocationTargetException—The constructor threw an exception before it
completed.

■ NoSuchMethodException—There is no nullary constructor on the given class.

If none of these four cases occurs, the plug-in can be created and used properly by the
framework. Looked at from another point of view, these four exceptions are four
restrictions on the design of plug-ins for extending the framework. In other words,
these are four restrictions placed on your code if you want to integrate or extend
OSCache (or any other library that uses this extensibility idiom):

■ You must create and expose a concrete class with public visibility.
■ This class must also have a public constructor.
■ This class should not throw checked exceptions.
■ It must have a nullary (zero-argument) constructor, which is public.

276 CHAPTER 10 Integrating with third-party frameworks
Apart from the restriction of not throwing checked exceptions, these seem to be fairly
restrictive. As you saw in the chapter 9, in the section “Objects and design,” it’s quite
desirable to hide implementation details in package-local or private access and expose
only interfaces and abstract classes. As you’ve seen throughout this book, both immu-
tability and testing suffer2 when you’re unable to set dependencies via constructor,
since you can’t declare them final and they’re hard to swap out with mocks.

 Without serious contortions like the use of statics and/or the singleton anti-pat-
tern, we are left with a plug-in that can’t benefit from DI. Not only does this spell bad
weather for testing, but it also means we lose many other benefits such as scoping and
interception.
CONSTRAINED LIFECYCLE ANTI-PATTERN

Without scoping or interception, your plug-in code loses much of the handy extra
functionality provided by integration libraries like warp-persist and Spring. A persis-
tence listener for cache entries can no longer take advantage of warp-persist’s @Trans-
actional interceptor, which intercedes in storage code and wraps tasks inside a
database transaction. You’re forced to write extra code to create and wrap data actions
inside a managed database transaction. This similarly applies to other AOP concerns
that we encountered in chapter 8, such as security and execution tracing.

 Security, transaction, and logging code can no longer be controlled from one
location (the interceptor) with configurable matchers and pointcuts. This leads to a
fragmentation of crosscutting code, which adds to the maintenance overhead of
your architecture.

 Scoping is similarly plagued since the one created instance of your plug-in is auto-
matically a singleton. Services that provide contextual database interactivity can no
longer be used, since they are dependencies created and managed by an injector
that’s unavailable to plug-in code. Data actions we perform routinely, like opening a
session to the database and storing or retrieving data around that session, cannot be
performed directly. This also means that sessions cannot be scoped around individual
HTTP requests.

 These are all unwarranted constraints placed on user code by a rigid configuration
system.

 Similarly, a class of anti-patterns that I classify as black box design makes integra-
tion and testing extremely difficult. I examine some of these in the following section.

10.2.2 Black box anti-patterns

Another commonly seen symptom of poor design in integration or framework
interoperability is the tendency toward black box systems. A black box system is some-
thing that completely hides how it works to the detriment of collaborators. This is not to
be confused with the beneficial practice of encapsulation, which involves hiding
implementation details to prevent accidental coupling.

2 For a thorough examination of this, see chapter 4’s investigation of testability and chapter 5’s section “The
singleton anti-pattern.”

277Lessons for framework designers
 Black box systems don’t so much hide the specific logic of their behaviors as they
hide the mechanism by which they operate. Think of this as a runtime analog rigid
configuration anti-pattern. Black box anti-patterns allow you to test in very limited
ways, and they prevent the use of certain design patterns and practices we’ve exam-
ined by the excessive use of static fields, or abstract base-class functionality.
FRAGILE BASE CLASS ANTI-PATTERN

Many programmers are taught to use inheritance as a means of reusing code. Why
rewrite all this great code you’ve done before? This is a noble enough idea in princi-
ple. When applied using class inheritance, it can lead to odd and often confounding
problems. The first of these problems is the fragile base class. When you create a sub-
class to share functionality, you’re creating a tight coupling between the new function-
ality and the base class. The more times you do this, the more tight couplings there
are to the base class.

 If you’re the world’s first perfect programmer, this isn’t an issue. You would write
the perfect base class that never needed to change, even if requirements did, and it
would contain all the possible code necessary for its subclasses’ evolution. Never mind
that it would be enormous and look horrible.

 But if you’re like everyone else, changes are coming. And they are likely to hurt a
lot. Changing functionality in the base class necessitates changing the behavior of all
classes that extend it. Furthermore, it’s very difficult to always design a correctly exten-
sible base class. Consider the simple case of a queue based on a array-backed list:

public class Queue<I> extends ArrayList<I> {
 private int end = -1;

 public void enqueue(I item) {
 super.add(0, item);
 end++;
 }

 public I dequeue() {
 if (end == -1) return null;

 end--;
 return super.get(end + 1);
 }
}

This is a pretty simple class. Queue uses ArrayList to represent items it stores. When
an item is enqueued (added to the back of the list), it is inserted at index 0 in the
ArrayList:

 public void enqueue(I item) {
 super.add(0, item);
 end++;
 }

We increment the end index, so we know what the length of the queue is currently.
Then when an item is removed from the queue, we decrement the end index and
return it:

Start with an
empty queue

Return null if
queue is empty

278 CHAPTER 10 Integrating with third-party frameworks
 public I dequeue() {
 if (end == -1) return null;

 end--;
 return super.get(end + 1);
 }

We need to return the item at (end + 1) because this is the last item in the list
(pointed at by end, before we decremented it). So far, so good; we saved ourselves a lot
of array insertion and retrieval code, but now look at what happens when we start
using this class in unintended ways:

Queue<String> q = new Queue<String>();
q.enqueue("Muse");
q.enqueue("Pearl Jam");
q.clear();
q.enqueue("Nirvana");

System.out.println(q.dequeue());

We expect this program to print out "Nirvana" and leave the queue in an empty state.
But really it throws an IndexOutOfBoundsException. Why? It’s the fragile base class
problem—we’ve used a method directly from the base class, ArrayList, which clears
every element in the queue. This seemed natural enough at the time. However, since
Queue doesn’t know about method clear(), except via its base class, it doesn’t update
index end when the list is emptied. When dequeue() is called, end points at index 2
since enqueue() has been called three times. In reality, end should be pointing at
index 0 since there’s only one item in the queue.

 This has left the queue in a corrupt state, even though the underlying ArrayList is
functioning as expected. How do we fix this? We could override method clear() and
have it reset the end index:

public class Queue<I> extends ArrayList<I> {
 private int end = -1;

 public void enqueue(I item) {
 super.add(0, item);
 end++;
 }

 public I dequeue() {
 if (end == -1) return null;

 end--;
 return super.get(end + 1);
 }

 @Override
 public void clear() {
 end = -1;

 super.clear();
 }
}

279Lessons for framework designers
That’s certainly an option, but what about other methods that ArrayList provides?
Should we override everything? If we do, we’re certainly assured that the behavior will
be correct, but then we’ve gained nothing from the inheritance. In fact, we’ve proba-
bly overridden a few methods that have no place in a Queue data structure anyway
(such as get(int index), which fetches entries by index). We’d have been much bet-
ter off making the ArrayList a dependency of Queue and using only those parts of it
that we require, as shown in listing 10.4.

public class Queue<I> {
 private int end = -1;
 private final ArrayList<I> list = new ArrayList<I>();

 public void enqueue(I item) {
 list.add(0, item);
 end++;
 }

 public I dequeue() {
 if (end == -1) return null;

 end--;
 return list.get(end + 1);
 }
}

Listing 10.4 shows how replacing inheritance with delegation helps solve the fragile base
class problem with a much more resilient design pattern. Now we can easily add function-
ality to the Queue with no danger of unintentionally leaking ArrayList functionality:

public class Queue<I> {
 private int end = -1;
 private final ArrayList<I> list;

 public Queue(ArrayList<I> list) {
 this.list = list;
 }

 public void enqueue(I item) {
 list.add(0, item);
 end++;
 }

 public I dequeue() {
 if (end == -1) return null;

 end--;
 return list.get(end + 1);
 }

 public void clear() {
 end = -1;

 list.clear();
 }
}

Listing 10.4 Replacing inheritance with delegation in class Queue

280 CHAPTER 10 Integrating with third-party frameworks
And now we can use it safely:

Queue<String> q = new Queue<String>(new ArrayList<String>());
q.enqueue("Muse");
q.enqueue("Pearl Jam");
q.clear();
q.enqueue("Nirvana");

System.out.println(q.dequeue());
assert null == q.dequeue();

This code correctly prints out "Nirvana" and leaves the queue empty, and it’s a more
satisfying solution.

 Several open source frameworks make liberal use of abstract base classes to share
functionality with little or no regard for the abstract base class problem. Another
problem with base classes for sharing code is that they cannot be replaced with a mock
object. This makes testing them tricky, especially when you have more than one level
of inheritance. The Apache CXF framework has some classes that sport four and five
levels of inheritance. Isolating problems can be very difficult in such cases.

 While these problems are pretty rough, they’re not all insurmountable. Good
design can overcome them and lead to the same amount of flexibility with no loss of
testing or integration capability. In the following section we’ll look at how program-
matic configuration can make life easier.

10.3 Programmatic configuration to the rescue
The solution to rigid configuration and black box anti-patterns is surprisingly simple:
programmatic configuration. Rather than shoehorn plug-in configuration via the
rather lean path of resource bundles (.properties, XML, or flat text files), program-
matic configuration takes the attitude that configuring plug-ins is the same as DI.

 If you start to look at the plug-in as a dependency of the framework, then it
becomes simple and natural to write integration between frameworks and injectors,
between frameworks and tests, and indeed between various frameworks.

10.3.1 Case study: JSR-303

Bean Validation is the common name for an implementation of the JSR-3033 specifica-
tion. Bean Validation is an initiative of the Java Community Process to create a flexible
standard for validating data model objects via declarative constraints.

 Listing 10.5 shows a typical data model object with annotations representing the
declarative constraints acted on by the JSR-303 runtime.

public class Person {
 @Length(max=150)
 private String name;

3 Find out more about JSR-303 at http://jcp.org/en/jsr/detail?id=303.

Listing 10.5 A data model object representing a person

281Programmatic configuration to the rescue
 @After("1900-01-01")
 private Date bornOn;

 @Email
 private String email;

 @Valid
 private Address home;

 public void setName(String name) {
 this.name = name;
 }

 public Date getBornOn() {
 return bornOn;
 }

 public void setBornOn(Date bornOn) {
 this.bornOn = bornOn;
 }

 public String getEmail() {
 return email;
 }

 public void setEmail(String email) {
 this.email = email;
 }

 public Address getHome() {
 return home;
 }

 public void setHome(Address home) {
 this.home = home;
 }
}

public class Address {
 @NotNull
 @Length(max=200)
 private String line1;

 @Length(max=200)
 private String line2;

 @Zip(message="Zipcode must be five digits exactly")
 private String zipCode;

 @NotNull
 private String city;

 @NotNull
 private String country;

 public String getLine1() {
 return line1;
 }

 public void setLine1(String line1) {
 this.line1 = line1;

282 CHAPTER 10 Integrating with third-party frameworks
 }

 public String getLine2() {
 return line2;
 }

 public void setLine2(String line2) {
 this.line2 = line2;
 }

 public String getZipCode() {
 return zipCode;
 }

 public void setZipCode(String zipCode) {
 this.zipCode = zipCode;
 }

 public String getCity() {
 return city;
 }

 public void setCity(String city) {
 this.city = city;
 }

 public String getCountry() {
 return country;
 }

 public void setCountry(String country) {
 this.country = country;
 }
}

Listing 10.5 is of class Person, which represents a person in a hypothetical roster. Each
of Person’s fields is tagged with an annotation representing a constraint to be applied
on instances of the object. Some have an optional message attribute, which can be
used to customize the error message reported on validation failure:

 @Zip(message="Zipcode must be five digits exactly")
 private String zipCode;

If all the constraints pass, then the instance is considered valid:

Person lincoln = new Person();
lincoln.setName("Abraham Lincoln");
lincoln.setBornOn(new Date());
lincoln.setEmail("abe@lincoln.nowhere");

Address address = new Address();
address.setLine1("1600 Pennsylvania Ave");
address.setZipCode("51245");
address.setCity("Washington, D.C.");
address.setCountry("USA");

lincoln.setHome(address);

List<InvalidValue> errors = validator.validate(lincoln);
System.out.println(String.format("There were %d error(s)", errors.size()));

283Programmatic configuration to the rescue
On running this code, you’ll see an output of how many errors there were (there were
none). Each of the constraints on the code is a custom annotation that we’ve made up
for the purposes of this demonstration. The constraints to which these annotations
are attached are determined by the annotation declaration itself. Listing 10.6 illus-
trates some of the annotations we’ve used in listing 10.5’s example of Person and
Address data classes.

import java.lang.reflect.ElementType
import java.lang.reflect.RetentionPolicy

@Target(ElementType.FIELD)
@Retention(RetentionPolicy.RUNTIME)
@ConstraintValidator(ZipConstraint.class)
public @interface Zip {
 String message() default "Zip invalid";
}

@Target(ElementType.FIELD)
@Retention(RetentionPolicy.RUNTIME)
@ConstraintValidator(LengthConstraint.class)
public @interface Length {
 int min();
 int max();
}

@Target(ElementType.FIELD)
@Retention(RetentionPolicy.RUNTIME)
@ConstraintValidator(NotNullConstraint.class)
public @interface NotNull {
 String message() default "Cannot be null";
}

The immediate thing that is apparent from listing 10.6 is that each of these annota-
tions refers to a real validator. In the case of @Zip, it refers to class ZipConstraint:

@Target(ElementType.FIELD)
@Retention(RetentionPolicy.RUNTIME)
@ConstraintValidator(ZipConstraint.class)
public @interface Zip {
 String message() default "Zip invalid";
}

Similarly, @Length, which validates that fields have a minimum and maximum length,
is bound to the LengthConstraint class:

@Target(ElementType.FIELD)
@Retention(RetentionPolicy.RUNTIME)
@ConstraintValidator(LengthConstraint.class)
public @interface Length {
 int min();
 int max();
}

Listing 10.6 Custom annotations that act as constraint-plug-in "configurators"

284 CHAPTER 10 Integrating with third-party frameworks
Essentially, this is JSR-303’s plug-in configuration mechanism. You use the class name
in a meta-annotation, to specify which validator plug-in it should use. This is a type-safe
meta-annotation that prevents you from registering anything but a subtype of
java.beans.validation.Constraint, which the validation framework expects.

 This is simple and yet quite powerful. We mitigate the problems of misspelling the
class name and property name and of specifying the wrong plug-in type all in one
stroke. Furthermore, JSR-303 doesn’t mandate the use of reflection to create instances
of user plug-ins. Unlike the recalcitrants we encountered earlier in this chapter, JSR-303
doesn’t have a rigid configuration mechanism and so places no restrictions on your
plug-in code.

 This is achieved by providing the runtime with a user-written ConstraintFactory.
This is a simple interface that JSR-303 runtimes use to obtain plug-in instances from
your code:

/**
* This class manages the creation of constraint validators.
*/
public interface ConstraintFactory {
 /**
 * Instantiate a Constraint.
 *
 * @return Returns a new Constraint instance
 * The ConstraintFactory is not responsible for calling

Constraint#initialize
 */
 <T extends Constraint> T getInstance(Class<T> constraintClass);
}

To take advantage of a dependency injector, you simply register an instance of Con-
straintFactory that obtains Constraints from the injector. Here’s a very simple
Guice-based implementation that creates an injector and uses it to produce con-
straints when called on by the JSR-303 runtime:

public class GuiceConstraintFactory implements ConstraintFactory {
 private final Injector injector = Guice.createInjector(new MyModule());

 public <T extends Constraint> T getInstance(Class<T> constraintKey) {
 return injector.getInstance(constraintKey);
 }
}

This allows you to create constraint plug-ins with their own dependencies and lifecy-
cle, and they can be capable of interception if needed. Let’s take a look at an example
of the LengthConstraint, which was tied to the @Length annotation, ensuring a maxi-
mum length for strings in listing 10.7.

/**
 * Check that a string length is between min and max
 *

Listing 10.7 A sample LengthConstraint plug-in for checking a string’s length

285Programmatic configuration to the rescue
 */
public class LengthConstraint implements Constraint<Length> {
 private int min;
 private int max;

 private final StringTools tools;

 @Inject
 public LengthConstraint(StringTools tools) {
 this.tools = tools;
 }

 /**
 * Configure the constraint validator based on the elements
 * specified at the time it was defined.
 *
 * @param constraint the constraint definition
 */
 public void initialize(Length constraint) {
 min = constraint.min();
 max = constraint.max();
 }

 /**
 * Validate a specified value.
 * returns false if the specified value does not conform to the

➥ definition
 * @exception IllegalArgumentException if the object is not of type

➥ String
 */
 public boolean isValid(Object value) {
 if (value == null) return true;

 if (!(value instanceof String))
 throw new IllegalArgumentException("Expected String type");

 String string = (String) value;
 return tools.isLengthBetween(min, max, string);
 }
}

In listing 10.7, LengthConstraint is dependency injected with StringTools, a reus-
able utility that does the dirty work of checking string length for us. We’re able to take
advantage of Guice’s constructor injection because of the flexibility that JSR-303’s
ConstraintFactory affords us:

public class LengthConstraint implements Constraint<Length> {
 private int min;
 private int max;

 private final StringTools tools;

 @Inject
 public LengthConstraint(StringTools tools) {
 this.tools = tools;
 }

 ...
}

Inject a string
checking utility

Use dependency
to check length

286 CHAPTER 10 Integrating with third-party frameworks
LengthConstraint dutifully ensures that it’s working with a String before passing
this on to its dependency to do the hard yards. LengthConstraint is itself config-
ured using an interface method initialize() that provides it with the relevant
annotation instance:

 /**
 * Configure the constraint validator based on the elements
 * specified at the time it was defined.
 *
 * @param constraint the constraint definition
 */
 public void initialize(Length constraint) {
 min = constraint.min();
 max = constraint.max();
 }

Recall that we set this value in the Person class for field name to be between 0 and 150
(see listing 10.5 for the complete Person class):

public class Person {
 @Length(max=150)
 private String name;

 ...
}

Now, every time the validator runs over an instance of Person,

Person lincoln = new Person();
lincoln.setName("Abraham Lincoln");
...

Address address = new Address();
...
lincoln.setHome(address);

List<InvalidValue> errors = validator.validate(lincoln);

the LengthConstraint plug-in we wrote will be run. Being flexible in providing us an
extension point with the ConstraintFactory and the @ConstraintValidator meta-
annotation, JSR-303 rids itself of all the nasty perils of rigid configuration internals. It
encourages user code that’s easy to test, read, and maintain. And it allows for maxi-
mum reuse of service dependencies without any of the encumbering ill effects of
static singletons or black box systems.

 JSR-303 is an excellent lesson for framework designers who are looking to make
their libraries easy to integrate and elegant to work with.

10.4 Summary
In this chapter we looked at the burgeoning problem of integration with third-party
frameworks and libraries. Most of the work in software engineering today is done via the
use of powerful third-party frameworks, many of which are designed and provided by
open source communities such as the Apache Software Foundation or OpenSymphony.

287Summary
Many companies (like Google and ThoughtWorks) are releasing commercially devel-
oped libraries as open source for the good of the community at large.

 Leveraging these frameworks within an application is an often tedious and difficult
task. They’re generally designed with a specific type of usage in mind, and integrating
them is often a matter of some complexity. The better-designed frameworks provide
simple, flexible, and type-safe configuration options that allow you to interact with the
framework as you would with any one of your services. Extending such frameworks is
typically done via the use of pluggable user code that conforms to a standard interface
shipped along with the library. Frameworks that sport rigid configuration such as via
the use of resource bundles (.properties, XML, or flat text files) cause problems
because they place undue restrictions on the classes written for plug-in extensions.
Because they are simple strings in a text file, these class names are also prone to mis-
spelling and improper typing and are forced to be publicly accessible.

 Moreover, since they’re instantiated using reflection, these plug-in classes must
have at least one public constructor that accepts no arguments (a nullary constructor).
This immediately places unwarranted constraints on your code—you cannot declare
fields final in your plug-in class. Not only does this have grave consequences for visi-
bility, but it also makes your classes hard to test and swap out with mocked dependen-
cies. The restriction on who creates your plug-in class also means that your code
cannot take advantage of any of the other benefits of dependency injection. Lifecycle,
scoping, and AOP interception must all be given up. This is particularly egregious in a
scenario where your plug-in uses the same kind of services that your application does,
for instance, a database-backed persistence system. Transactions, database connectiv-
ity, and security must all be managed independently from the application by your
plug-in code.

 The alternative is to share services via the use of static state and the singleton anti-
pattern. This has negative consequences for testing, as you saw in chapter 5.

 A well-designed framework, on the other hand, is cognizant of the testability mantra
and allows you to configure plug-ins programmatically; that is, within the application
itself. JSR-303 is a validation framework that allows you to create constraint plug-ins that
are tied to declarative constraints placed on data model objects. These plug-ins are

Other random indispensable pieces of advice
“When wrestling for possession of a sword, the man with the handle always wins.”

—Neal Stephenson (in Snow Crash)

“Technical people are better off not looking at patents. If somebody sues you, you
change the algorithm or you just hire a hit-man to whack the stupid git. ”

—Linus Torvalds

“One should always play fairly when one has the winning cards.”
 —Oscar Wilde

288 CHAPTER 10 Integrating with third-party frameworks
applied universally based on annotation metadata and help specify the validity of a data
object. JSR-303’s constraint plug-ins are created and configured via the use of a custom
ConstraintFactory interface. ConstraintFactory is a plug-in factory that you provide,
which creates instances of the actual constraint plug-ins for JSR-303’s runtime.

 Programmatic configuration means that your plug-in configuration code is type-
safe, contract-safe, and well-defined within the bounds of the framework’s usage
parameters. It also means that you can control the creation and wiring of your own
code, giving it dependencies, scoping, and rigorous testability. This makes it open to
all the great benefits of dependency injection that you’ve so come to love!

 In the next chapter you’ll apply many of the patterns you’ve learned up to this
point and create a fully functional, running demo application.

Dependency
 injection in action!
“A computer lets you make more mistakes faster than any invention in human
history—with the possible exceptions of handguns and tequila.”

 —Mitch Radcliffe

In this chapter we’ll put all of the things you’ve learned so far in this book into
practice in a real, working application. While there probably aren’t enough pages
to demonstrate a large enterprise application, we’ll look at a succinct application
that gives us all the salient features of a broader program.

 This program will start from bootstrapping the injector in a web application
and walk through designing services for persistence, transactions, and user inter-
activity. We’ll also show how to apply some useful design patterns (such as the

This chapter covers:
■ Building a complete web application from scratch
■ Seeing DI principles in a working application
■ Applying useful design patterns
■ Solving many common problems
289

290 CHAPTER 11 Dependency injection in action!
Provider pattern from chapter 5) and ways to properly leverage scope, lifecycle, and
interception (AOP).

 Let’s start by defining what this program will be.

11.1 Crosstalk: a Twitter clone!
I’ve chosen to do a simple, trivial clone of the popular microblogging service Twitter.
(This isn’t in the least bit because I spend large chunks of my day on Twitter!) While I
was writing this chapter, I thought crosstalk was cool code name.

 Crosstalk serves as a good illustration of a straightforward yet vastly scalable website
that has plenty of user interactivity and data processing needs. These make it an ideal
problem domain to showcase the wonderful patterns of dependency injection.

 Its requirements are diverse—ranging from persistence and presentation to secu-
rity and user management. This gives us a good basis for drawing an illustrative archi-
tecture from start to finish, in a few pages. First, let’s look at these requirements.

11.1.1 Crosstalk’s requirements

Our thesis is fairly straightforward: crosstalk allows users to write short text messages
(called tweets) on their home page. This engenders some broad requirements. We
need to

■ Authenticate users when they log on
■ Secure their home pages
■ Persist tweets in a database

We also need to ensure that the site is scalable and concurrent. In other words, it must
be easily tolerant to many users accessing their home pages at once. Given all these
requirements, it follows that crosstalk has several layers:

■ The presentation layer (website)
■ The persistence layer (database mechanism)
■ The security layer (authentication and securing pages)

We’ll build this application using Google Guice as the injector and Google Sitebricks
as the web application framework. Google Sitebricks is a simple, statically typed devel-
opment system for rendering web pages. It follows the REST idiom, which makes it
ideal for building HTML websites.

 For persistence, we’ll use Hibernate and warp-persist (seen in chapter 8) as the
integration bridge with Guice. Let’s get started.

11.2 Setting up the application
First, we’ll need a layout and structure for the crosstalk application. This needs to follow
the Java Servlet standard so that it can be deployed in a servlet container like Apache
Tomcat or Mort Bay Jetty. We’ll use Jetty for this illustration, since it’s very simple to get
up and running with. And as the database, we’ll go with Hypersonic (sometimes called
HSQL), which is an in-memory SQL database that’s easy to set up and configure.

291Setting up the application
 Here’s the structure we’ll start out with for the project (see figure 11.1):

■ src—The main source directory, with all our classes
■ test—A test sources directory, for our Jetty launcher
■ web—The directory for all the web resources (HTML templates, CSS stylesheets)
■ web/WEB-INF—A directory required by the servlet container to look for deploy-

ment descriptors

The file web.xml is a deployment
descriptor that instructs the servlet con-
tainer about how to configure this web
application. We’ll use a web.xml file
very similar to the one used in chapter 5,
when we were dealing with web scopes.

 Once you have that layout set up (see
figure 11.1), open a project in your
favorite IDE and add the libraries shown
in table 11.1 to the classpath:

Table 11.1 Libraries

Library Description

guice-2.0.jar Google Guice core
http://code.google.com/p/google-guice/

aopalliance.jar Guice AOP interface (included with Guice)

google-sitebricks.jar Google’s Sitebricks web framework
http://code.google.com/p/google-sitebricks/

guice-servlet-2.0.jar Servlet integration for Guice (included with Guice

hibernate3.jar Hibernate core persistence framework
https://www.hibernate.org/

hibernate-annotations.jar Annotations for Hibernate
https://www.hibernate.org/

ejb3-persistence.jar Annotations for Hibernate (included with Hibernate Annotations)

dom4j-1.6.1.jar Dom4j XML parser (included with Hibernate)

jta.jar Java Transaction API (included with Hibernate)

cglib-nodep-2.1_3.jar CGLib used by Hibernate to proxy objects

antlr-2.7.5h3.jar Antlr compiler library (included with Hibernate)

commons-collections.jar Apache Collections library (included with Hibernate)

commons-logging.jar Apache Commons-Logging (required by Hibernate for log output)

warp-persist-2.0-20090214.jar Warp-persist integrates Hibernate with Guice
http://www.wideplay.com/guicewebextensions2

Figure 11.1 The layout of directories for the
crosstalk application

292 CHAPTER 11 Dependency injection in action!
TIP To add these libraries to the classpath in IntelliJ IDEA, open Settings >
Project Settings and select the main (crosstalk) module. Then open the
Dependencies tab and click Add. Now select Project Library and Add Jar
Directory, choosing the directory where all these jars reside (or add them
individually using the single-entry module library option).

Once you have all of those lined up, you should be good to go. If you aren’t using an
IDE, you can place all the jars in a lib directory and specify them individually on the
command line.

 Now the central configuration for our application will reside in CrosstalkBoot-
strap. This is a simple Java class, a subclass of GuiceServletContextListener, from
which we’ll tell Guice how to wire our services together, as shown in listing 11.1.

public final class CrosstalkBootstrap extends GuiceServletContextListener {

 @Override
 protected Injector getInjector() {

 //bind in all of our service dependencies
 final Module services = new ServicesModule();

 //tell Sitebricks to scan this package
 final Module sitebricks = new SitebricksModule() {
 protected void configureSitebricks() {
 scan(CrosstalkBootstrap.class.getPackage());
 }
 };

 //map all incoming requests through the PersistenceFilter
 final Module servlets = new ServletModule() {
 protected void configureServlets() {
 filter("/*").through(PersistenceFilter.class);

 install(sitebricks);
 }
 };

hsqldb.jar Hypersonic In-Memory SQL database
http://hsqldb.org/

servlet-api-2.5-6.1.9.jar Java Servlet API (included with Jetty)

jetty-6.1.9.jar Mort Bay Jetty
http://www.mortbay.org/jetty

jetty-util-6.1.9.jar Utilities for working with Jetty

jcip-annotations.jar The set of annotations used in chapter 10 for thread-safety documentation
http://www.javaconcurrencyinpractice.com/

Listing 11.1 The Guice configuration for crosstalk (also creates the injector)

Table 11.1 Libraries (continued)

Library Description

293Setting up the application
 //finally, create the injector with all our configuration
 return Guice.createInjector(services, servlets);
 }
}

It looks pretty simple, but let’s examine what this does. By subclassing GuiceServlet-
ContextListener, we’re able to create and register our own injector with guice-servlet
and the servlet container itself. This listener must also be registered in web.xml so that
it can be called when the application is deployed and made ready to run, as shown in
listing 11.2.

<?xml version="1.0" encoding="UTF-8"?>
<web-app xmlns="http://java.sun.com/xml/ns/javaee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/javaee
 http://java.sun.com/xml/ns/javaee/web-app_2_5.xsd"
 version="2.5">

 <filter>
 <filter-name>guiceFilter</filter-name>
 <filter-class>com.google.inject.servlet.GuiceFilter</filter-class>
 </filter>

 <filter-mapping>
 <filter-name>guiceFilter</filter-name>
 <url-pattern>/*</url-pattern>
 </filter-mapping>

 <listener>
 <listener-class>com.wideplay.crosstalk.CrosstalkBootstrap</listener-

class>
 </listener>

</web-app>

Web.xml also creates a filter mapping so that all incoming requests are passed
through the guice-servlet GuiceFilter. This allows guice-servlet to reroute requests
through the filters and servlets configured in Guice’s servlet pipeline, allowing us to
take advantage of dependency injection idioms, lifecycle, scope and interception. We
saw a setup very similar to this in chapter 5. GuiceFilter is provided by guice-servlet
and requires no special treatment. We map it to /* to indicate that all URLs are to be
filtered through it:

<?xml version="1.0" encoding="UTF-8"?>
<web-app xmlns="http://java.sun.com/xml/ns/javaee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/javaee
 http://java.sun.com/xml/ns/javaee/web-app_2_5.xsd"
 version="2.5">

 <filter>
 <filter-name>guiceFilter</filter-name>
 <filter-class>com.google.inject.servlet.GuiceFilter</filter-class>

Listing 11.2 Web.xml config for guice-servlet and a crosstalk-specific listener

294 CHAPTER 11 Dependency injection in action!
 </filter>

 <filter-mapping>
 <filter-name>guiceFilter</filter-name>
 <url-pattern>/*</url-pattern>
 </filter-mapping>

...

</web-app>

This way, all incoming requests are rerouted through guice-servlet’s GuiceFilter,
allowing it to process requests that are specific to crosstalk and pass through requests
for static resources like CSS stylesheets and images. Application-specific requests are
handled by Google Sitebricks pages, which we’ll now go about setting up.

11.3 Configuring Google Sitebricks
Since we’ll be using the Google Sitebricks web framework, we’ll need to do extra con-
figuration to tell it how to behave. Google Sitebricks has a simple philosophy where
individual HTML pages are modeled as Java classes with a backing HTML template.
Each such page class is registered against URL patterns in much the same manner as a
servlet (or filter). We’ll see how this works in a second. But first, let’s tell guice-servlet
to route all requests through Google Sitebricks, as shown in listing 11.3.

public final class CrosstalkBootstrap extends

➥ GuiceServletContextListener {

 @Override
 protected Injector getInjector() {
...

 //map all incoming requests through PersistenceFilter
 final Module servlets = new ServletModule() {
 protected void configureServlets() {
 filter("/*").through(PersistenceFilter.class);

 install(sitebricks);
 }
 };

 //finally, create the injector with all our configuration
 return Guice.createInjector(services, servlets);
 }
}

The line in bold directs Guice to install our web framework, meaning that Google
Sitebricks gets a crack at all user requests and can decide which ones to process and
which ones it can safely pass on to the servlet container (such as static resources).

 Now, we can proceed to look at the Google Sitebricks configuration:

public final class CrosstalkBootstrap extends

➥ GuiceServletContextListener {

Listing 11.3 CrosstalkBootstrap from listing 11.1

295Crosstalk’s modularity and service coupling
 @Override
 protected Injector getInjector() {

...

 //tell sitebricks to scan this package
 final Module sitebricks = new SitebricksModule() {
 @Override
 protected void configureSitebricks() {
 scan(CrosstalkBootstrap.class.getPackage());
 }
 };
 ...
 }
}

The method scan(...) tells Google Sitebricks which packages to work with. You may
specify as many packages as needed this way.

 By providing it with CrosstalkBootstrap’s package, we tell Google Sitebricks to
scan the entire package tree beginning with com.wideplay.crosstalk and to look for
page classes and templates to serve.

 Finally, we install one more module in our injector, which will handle all applica-
tion services. This is, appropriately, the ServicesModule:

public final class CrosstalkBootstrap extends

➥ GuiceServletContextListener {

 @Override
 protected Injector getInjector() {

 //bind in all of our service dependencies
 final Module services = new ServicesModule();

...

 //finally, create the injector with all our configuration
 return Guice.createInjector(services, servlets);
 }
}

The Guice.createInjector() method is a varargs method, meaning that it takes any
number of arguments. This is convenient for us as we can pass in our two modules,
services and servlets, that configure our persistence and security, respectively.
Note that Google Sitebricks web pages are processed by the SitebricksModule. We’ll
look at the services module in some more detail shortly, but first, let’s examine the
application’s package structure.

11.4 Crosstalk’s modularity and service coupling
In this section, we’ll look at how crosstalk is broken down into modules by package,
service type, and contract. We’ll see some of the concepts presented in chapter 4 on
modularizing code and in the chapter 10 on packaging clean designs that separate
areas of concern.

296 CHAPTER 11 Dependency injection in action!
 Crosstalk’s packages also expose no imple-
mentation details, so that accidental coupling of
services does not occur. All collaboration
between modules happens through publicly
exposed interfaces, with well-defined contracts.
Let’s see how this structure is achieved.

 Crosstalk’s packages are organized very sim-
ply (shown in figure 11.2).

 They are divided among the core application
services, Google Sitebricks web pages, and any
data model classes:

■ com.wideplay.crosstalk.web—The presentation layer (all page classes go here)
■ com.wideplay.crosstalk.services—Persistence and security layer
■ com.wideplay.crosstalk.tweets—The domain model package

Notice that the services package exposes only interfaces (apart from the Guice Ser-
vicesModule configuration class). In chapter 4 we discussed the concept of loose cou-
pling. This allows us to modify specific implementation details without affecting the
presentation layer in any way. For example, we
may choose to persist the data in a cluster data
store rather than Hibernate and HSQL. By
changing the implementation of classes in the
services package, we can do this with no
impact to the rest of the application. All imple-
mentation classes are hidden away as package-
local. Figure 11.3 provides a complete picture of
this approach.

 You may also notice that the web pages and
the data model classes are public. This is
because they are used directly by the framework
(Google Sitebricks in the web pages’ case and
Hibernate in the data model’s) and configured
using flexible annotations, which already allevi-
ate any coupling perils.

 Now that we’ve taken a bird’s-eye tour of
the structure, let’s get down to it. First, the busi-
ness end of crosstalk, its user-facing presenta-
tion layer.

11.5 The presentation layer
Let’s look at some of crosstalk’s functionality. Crosstalk’s core requirement is the ability
to post tweets on a user’s home page. For this, we create a class HomePage, with a corre-
sponding template in the web/ resources directory. HomePage looks like figure 11.4.

Figure 11.2 The layout of packages in the
crosstalk application’s src directory

Figure 11.3 All the classes and packages
in the eventual crosstalk application

297The presentation layer
The Java source code behind HomePage is shown in listing 11.4.

package com.wideplay.crosstalk.web;

@At("/home") @Select("action") @RequestScoped
public class HomePage {
 //user context, tracks current user
 private User user;

 //page state variables
 private List<Tweet> tweets;
 private Tweet newTweet = new Tweet();

 //service dependencies
 private final TweetManager tweetManager;

 @Inject
 public HomePage(TweetManager tweetManager, User user) {
 this.tweetManager = tweetManager;
 this.user = user;
 }

 @Get("logout")
 public String logout() {
 user.logout();

 return "/login?message=Bye.";
 }

 @Get
 public String get() {

 //load tweets for current user

Listing 11.4 HomePage Sitebricks page class models a crosstalk user’s home page

Figure 11.4 A user’s home page with no content–it allows users to blog new tweets in a text box.

298 CHAPTER 11 Dependency injection in action!
 this.tweets = tweetManager.tweetsFor(user.getUsername());

 //stay on current page
 return null;
 }

 @Post
 public String post() {
 newTweet.setAuthor(user.getUsername());

 //contents are in newTweet, add it to the data store
 tweetManager.addTweet(newTweet);

 //redirect back to this page using a GET
 return "/home";
 }

 //getters/setters...

 public String getUser() {
 return user.getUsername();
 }

 public List<Tweet> getTweets() {
 return tweets;
 }

 public Tweet getNewTweet() {
 return newTweet;
 }
}

This looks pretty involved. Let’s see what each bit actually means. First, we annotate
the class with the @At annotation, which tells Google Sitebricks to serve this page at
the given URI:

@At("/home") @On("action") @RequestScoped
public class HomePage { .. }

Now, whenever a user types in URL http://localhost:8080/home (assuming the
application is deployed at localhost:8080), the HomePage will be served up by Google
Sitebricks. We also see the familiar @RequestScoped annotation, which tells Guice to
create a new instance of HomePage for every incoming request. This is important
because it allows us to work with state that’s specific to a user without stepping on
other users’ data, accidentally.

 Finally, the @On annotation is used to resolve events to fire against. For now, let it
suffice to say that @On controls which method annotated with @Get is called based on
an incoming request parameter named action.

 The visual companion to this page class is its HTML template. This template con-
tains what a user will see. Let’s see how it’s built.

11.5.1 The HomePage template

HomePage’s template is a very simple HTML file. It contains dynamic text, which is pro-
vided by binding its data to the request-scoped instance of class HomePage, as shown in
listing 11.5. It also contains a link to a stylesheet.

299The presentation layer
<html>
<head>
 <title>Tweets</title>

 <link rel="stylesheet" href="/crosstalk.css"/>
</head>
<body>
 <h2>Tweets by ${user}</h2>

 <div class="box">
 <div class="box-content">
 <div>What are you doing right now?</div>

 <form action="/home" method="post">
 <textarea name="newTweet.text" rows="5" cols="60" />
 <input type="submit" value="update"/>
 </form>
 </div>
 </div>

 @Repeat(items=tweets, var="tweet")
 <div class="box">
 <div class="box-content">
 ${tweet.text} (${tweet.createdOn})
 </div>
 </div>

 Help |
 Sign out
</body>
</html>

This line in particular is interesting because it resolves to a property of the HomePage
class (that is, one that is accessed via a getter method):

 <h2>Tweets by ${user}</h2>

This heading is dynamically evaluated at runtime by calling HomePage.getUser().
HomePage.getUser()returns the username of the current user logged in to crosstalk:

 public String getUser() {
 return user.getUsername();
 }

One other interesting part of the template is the @Repeat annotation:

 @Repeat(items=tweets, var="tweet")
 <div class="box">
 <div class="box-content">
 ${tweet.text} (${tweet.createdOn})
 </div>
 </div>

This tells Google Sitebricks to repeat the annotated tag (in this case, <div
class="box"> over all the items in HomePage’s property tweets. For each element in
tweets, Google Sitebricks will render out the div tags expanding tweet.text and

Listing 11.5 An HTML template that displays tweets, backed by HomePage

The input box
for new tweets

This div is repeated
for every tweet

300 CHAPTER 11 Dependency injection in action!
tweet.createdOn properties. In other words, this renders out the list of tweets posted
by a user on their home page (see figure 11.5).

 The other significant part of this template is the form. Users type their new tweets
into a text field and post them by submitting the form:

 <div>What are you doing right now?</div>

 <form action="/home" method="post">
 <textarea name="newTweet.text" rows="5" cols="60" />
 <input type="submit" value="update"/>
 </form>

Since the form’s textarea is bound to newTweet.text, Google Sitebricks will attempt
to write the incoming form post to HomePage’s property newTweet:

@At("/home") @On("action") @RequestScoped
public class HomePage {

 ...

 //page state variables
 private List<Tweet> tweets;
 private Tweet newTweet = new Tweet();

 ...
}

This is accomplished by navigating the getNewTweet() method to the appropriate set-
ter methods on class Tweet, in this case, setText(). We take care to create a new
instance of Tweet every time HomePage is created, thus every time it is requested,
ensuring that tweets are never overwritten by accident.

Figure 11.5 A user’s home page with blogged content

301The presentation layer
 Each new tweet entry by a user is recorded and modeled as an instance of class
Tweet.

11.5.2 The Tweet domain object

Tweet is the sole class in our domain model, and it consists of simple data fields
describing a message, its creation date, and its author, as shown in listing 11.6.

package com.wideplay.crosstalk.tweets;

@Entity
public class Tweet {
 @Id @GeneratedValue
 private Long id;

 private String author;
 private String text;
 private Date createdOn;

 public Tweet () {
 this.createdOn = new Date();
 }

 public String getAuthor() {
 return author;
 }

 public String getText() {
 return text;
 }

 public Date getCreatedOn() {
 return createdOn;
 }

 public void setAuthor(String author) {
 this.author = author;
 }

 public void setText(String text) {
 this.text = text;
 }

 ...

}

This class also contains a private field id, which is used by Hibernate to track tweets in
the database. This field is annotated with some boilerplate, identifying it as a primary
key that’s generated automatically:

 @Id @GeneratedValue
 private Long id;

The class itself is annotated with @Entity to indicate to Hibernate that this class is to
be treated as a data entity.

Listing 11.6 Tweet models a tweet message for capturing data and storing it

Timestamp new
tweets with “now”

Getters/setters for
each property

302 CHAPTER 11 Dependency injection in action!
NOTE Internally, @Entity helps Hibernate separate classes that are mapped to
tables from those that may be embedded as additional columns in a
larger database table.

All of Tweet’s properties have JavaBeans getter and setter methods as per the conven-
tion with Hibernate. So far we’ve seen how this models all of our data and keeps it
organized. We need to go a step further and provide equals() and hashCode() meth-
ods to ensure that instances of Tweet behave properly in collections. This is also
important for any class that Hibernate uses, since it will attempt to compare copies
when optimizing for cached access.

 equals() and hashCode() are quite straightforward, as shown in listing 11.7; they
take all three data fields into account since together they form the identity of the
Tweet.

 @Override
 public boolean equals(Object o) {
 if (this == o) return true;
 if (!(o instanceof Tweet)) return false;

 Tweet that = (Tweet) o;

 return this.author.equals(that.author)
 && this.createdOn.equals(that.createdOn)
 && this.text.equals(that.text);
 }

 @Override
 public int hashCode() {
 int result;

 result = (author != null ?
 ➥ author.hashCode() : 0);
 result = 31 * result + (text != null ? text.hashCode() : 0);
 result = 31 * result + (createdOn != null ?
 ➥ createdOn.hashCode() : 0);

 return result;
 }

The idea is that objects are considered equal if they have the same values for author,
text, and createdOn. Put another way, it’s impossible to have all three match for two
independent tweets. If two are posted at the same time, they will be from different
authors. And if they are from the same author, they will necessarily have different cre-
ation times.

11.5.3 Users and sessions

In order to track users across independent requests, we must use an HTTP session. How-
ever, rather than interact with it directly, crosstalk takes advantage of scoping. The class
User serves as a context for the current user of the system. Wherever it’s referenced

Listing 11.7 equals() and hashCode() for class Tweet, to compare instances

If all properties are
equal, return true

Hash code is computed
from properties and a
large prime

303The presentation layer
from, User points to the user whose HTTP session is currently active. In listing 11.8 we
mark User as scoped to the HTTP session by using the @SessionScoped annotation.

@SessionScoped @NotThreadSafe
public class User {
 private String username;

 public String getUsername() {
 return username;
 }

 //logs in a user, by setting username to the current session
 public void login(String username) {
 this.username = username;
 }

 //logs out a user, by clearing username from session
 public void logout() {
 this.username = null;
 }
}

User does nothing more than store a username for the user who logs in and clears that
name when the user logs out. Web page classes and services alike can check to find out
whether someone is logged in and, if so, who is logged in by querying this service.

 In HomePage, User is directly injected directly as a dependency:

@At("/home") @Select("action") @RequestScoped
public class HomePage {
 //user context, tracks current user
 private final User user;

 //page state variables
 private List<Tweet> tweets;
 private Tweet newTweet = new Tweet();

 //service dependencies
 private final TweetManager tweetManager;

 @Inject
 public HomePage(TweetManager tweetManager, User user) {
 this.tweetManager = tweetManager;
 this.user = user;
 }

 ...
}

This is safe because the session scope is wider than the request scope. This means that
HomePage instances are shorter lived than User instances and therefore run no risk of
scope-widening injection. HomePage retrieves a user’s tweets by querying the Tweet-
Manager for tweets by username:

 @Get
 public String get() {

Listing 11.8 Session-scoped User tracks information about the current user

304 CHAPTER 11 Dependency injection in action!
 //load tweets for current user
 this.tweets = tweetManager.tweetsFor(user.getUsername());

 //stay on current page
 return null;
 }

This method is called in normal operation when an HTTP GET request is received by
the web server. The annotation @Get indicates to Google Sitebricks to use this method
as an event handler prior to rendering the page. Once tweets are loaded (and stored
in the tweets field), the template is rendered displaying all of a user’s tweets. You may
also have noticed a “Sign out” link on the HomePage, which a user clicks to leave the
session:

Help |
Sign out

HomePage reacts to the sign-out action by logging the user out from the User service:
 @Get("logout")
 public String logout() {
 user.logout();

 return "/login?message=Bye.";
 }

Because of the @On("action") annotation at the top of the class, Google Sitebricks
knows to call a different event handler. This time, method logout() is called since it’s
annotated with the value-matching action (@Get("logout")). The logout() method
then redirects the user to a login page, where they must log in again to continue using
the site:

 @Get("logout")
 public String logout() {
 user.logout();

 return "/login?message=Bye.";
 }

The login page is both the exit and entry point for the crosstalk website and is also
modeled as a Google Sitebricks page.

11.5.4 Logging in and out

LoginPage, like HomePage, has a Java class and companion template, as shown in fig-
ure 11.6.
The template is fairly straightforward. It accepts a username and password, as shown
in listing 11.9 (see figure 11.6 for the web version).

<html>
<head>
 <title>Login</title>

Listing 11.9 An HTML template for LoginPage displays login input fields

305The presentation layer
 <link rel="stylesheet" href="/crosstalk.css"/>
</head>
<body>
 <h2>Please log in to crosstalk.</h2>

 <div class="box">
 <div class="box-content">

 <h3>${message}</h3>

 <form action="/login" method="post">
 <input name="username" type="text" />
 <input name="password" type="password" />

 <input type="submit" value="login"/>
 </form>
 </div>
 </div>

</body>
</html>

This form posts back to LoginPage with the entered credentials. LoginPage then
uses this information to authenticate the user against a UserManager, as shown in
listing 11.10.

@At("/login") @RequestScoped
public class LoginPage {
 private String username;

Listing 11.10 Page class LoginPage authenticates users logging into crosstalk

A dynamic success
or fail message

The login
form

Figure 11.6 All users must log in to use their home page on crosstalk.

306 CHAPTER 11 Dependency injection in action!
 private String password;

 private String message = "";

 //service dependencies
 private final UserManager userManager;
 private final User user;

 @Inject
 public LoginPage(UserManager userManager, User user) {
 this.userManager = userManager;
 this.user = user;
 }

 @Post
 public String login() {

 //attempt to authenticate the user
 if (userManager.authenticate(username, password))
 user.login(username);
 else {
 //clear user context from session
 user.logout();

 //stay on this page with error
 return "/login?message=Bad+credentials.";
 }

 //redirect to home page if successfully logged in
 return "/home";
 }

 //getters/setters...
 public void setUsername(String username) {
 this.username = username;
 }

 public void setPassword(String password) {
 this.password = password;
 }

 public String getMessage() {
 return message;
 }

 public void setMessage(String message) {
 this.message = message;
 }
}

LoginPage has the standard getters and setters to expose its properties to the template
and form input. Method login() asks UserManager (a data service) whether the
username and password are valid:

 @Post
 public String login() {

 //attempt to authenticate the user
 if (userManager.authenticate(username, password))
 user.login(username);

307The presentation layer
 else {
 //clear user context from session
 user.logout();

 //stay on this page with error
 return "/login?message=Bad+credentials.";
 }

 //redirect to home page if successfully logged in
 return "/home";
 }

If they are valid, login() logs the user in via the session-scoped User service shown
earlier. If not, a redirect is sent back to the login screen with an error message:

 @Post
 public String login() {

 //attempt to authenticate the user
 if (userManager.authenticate(username, password))
 user.login(username);
 else {
 //clear user context from session
 user.logout();
 return "/login?message=Bad+credentials.";
 }

 //redirect to home page if successfully logged in
 return "/home";
 }

This results in the “Bad credentials” error message as shown in figure 11.7.
 Once successfully logged in, the user is sent to their home page to tweet away.

Figure 11.7 Bad usernames or passwords are rejected, appropriately.

308 CHAPTER 11 Dependency injection in action!
11.6 The persistence layer
Data services that crosstalk uses are fairly simple. There’s one for managing users
(UserManager) and one for managing tweets (TweetManager)—not rocket science.
Their implementations are subtly different. Let’s look at the TweetManager implemen-
tation first, as shown in listing 11.11.

@Immutable @Singleton
class HibernateTweetManager implements TweetManager {

 //the provider pattern helps us prevent scope-widening of sessions
 private final Provider<Session> session;

 @Inject
 public HibernateTweetManager(Provider<Session> session) {
 this.session = session;
 }

 @Finder(query = "from Tweet where author = :author")
 public List<Tweet> tweetsFor(@Named("author") String author) {

 //this method is intercepted by warp-persist DynamicFinders
 // and converted into a query. So you should not see an empty
 // list unless the database contains no Tweets for 'author'.
 return Collections.emptyList();
 }

 public void addTweet(Tweet tweet) {
 session.get().save(tweet);
 }
}

HibernateTweetManager implements the TweetManager interface by storing and que-
rying tweets from the database using Hibernate’s services. To add a new tweet, we use
a session to the database and save a new instance of the Tweet data object:

 public void addTweet(Tweet tweet) {
 session.get().save(tweet);
 }

We use the Provider pattern here to avoid scope-widening the session, which is implic-
itly request scoped. I say implicitly, because its behavior is managed by warp-persist, as
you’ll see. HibernateTweetManager, like all other classes in the services package, is a
thread-safe, immutable singleton. Querying objects is taken care of us by warp-persist’s
Dynamic Finders utility. Annotating the method tweetsFor() with @Finder tells warp-
persist to intercept and replace the method with logic that runs the bound query:

 @Finder(query = "from Tweet where author = :author")
 public List<Tweet> tweetsFor(@Named("author") String author) {

 // this method is intercepted by warp-persist DynamicFinders
 // and converted into a query. So you should not see an empty
 // list unless the database contains no Tweets for 'author'.
 return Collections.emptyList();
 }

Listing 11.11 Implementation for the TweetManager interface using Hibernate

309The persistence layer
The string "from Tweet where author = :author" is an HQL (Hibernate Query Lan-
guage) query, which tells Hibernate to load all tweets with the matching author. The
method parameter author is annotated with an @Named("author") annotation, which
binds the parameter into the query at the label :author.

TIP For more information on warp-persist and dynamic finders, including
tutorials, visit http://www.wideplay.com.

The UserManager service by contrast, does not use Hibernate to store users in the
database. This is done as a matter of convenience to get us up and running quickly, as
shown in listing 11.12.

@Immutable @Singleton
class InMemoryUserManager implements UserManager {
 private final Map<String, String> users;

 public InMemoryUserManager() {
 final Map<String, String> users = new HashMap<String, String>();
 users.put("dhanji", "dirocks");

 //freeze the current hardcoded map so that it is thread-safe
 this.users = Collections.unmodifiableMap(users);
 }

//returns true if a username and password combination is valid
public boolean authenticate(String username, String password) {
 return users.containsKey(username)
 && users.get(username).equals(password);
 }
}

A simple hash table is stored in memory in this implementation, and the authenti-
cate() method checks values in this hash table. We ensure that this hash table is
immutable by wrapping it in an unmodifiable map. You should recall this best practice
from chapter 10.

 public InMemoryUserManager() {
 final Map<String, String> users = new HashMap<String, String>();
 users.put("dhanji", "dirocks");

 //freeze the current hardcoded map so that it is thread-safe
 this.users = Collections.unmodifiableMap(users);
 }

This ensures that InMemoryUserManager is both highly concurrent and thread-safe
(since it is immutable after construction). In a broader implementation, we’d use a
Hibernate version of UserManager and have a separate set of pages for users to regis-
ter and manage their accounts.

 Now, let’s look at interacting with a data store and retrieving and storing tweet
data.

Listing 11.12 A UserManager that uses hard-coded user credentials

310 CHAPTER 11 Dependency injection in action!
11.6.1 Configuring the persistence layer

As you saw in section 11.2, all the components in the services package are separately
configured. The ServicesModule takes care of this for us and is shown in listing 11.13.

package com.wideplay.crosstalk.services;

public final class ServicesModule extends AbstractModule {
 private static final String HIBERNATE_CONFIG = "hibernate.properties";

 @Override
 protected void configure() {

 //configure persistence services, using hibernate
 install(PersistenceService
 .usingHibernate()
 .across(UnitOfWork.REQUEST)
 .buildModule()
);

 //configure hibernate with our tweet data model class
 bind(Configuration.class).toInstance(new AnnotationConfiguration()
 .addAnnotatedClass(Tweet.class)
 .setProperties(loadProperties(HIBERNATE_CONFIG))
);

 //configure crosstalk data services
 bind(TweetManager.class).to(HibernateTweetManager.class);
 bind(UserManager.class).to(InMemoryUserManager.class);

 //configure the in-memory authenticator (with hard-coded users)
 final HttpSessionAuthenticationManager manager =
 new HttpSessionAuthenticationManager();
 bind(AuthenticationManager.class).toInstance(manager);

 //intercept any @Get or @Post method on any page except LoginPage
 bindInterceptor(
 not(subclassesOf(LoginPage.class)),
 annotatedWith(Get.class).or(annotatedWith(Post.class)),

 new SecurityInterceptor(manager)
);
 }

 private static Properties loadProperties(String props) {
 ...
 }
}

First up, we configure warp-persist to use Hibernate and provide us with a Hibernate
unit of work (session to the database) every time an HTTP request arrives:

 install(PersistenceService
 .usingHibernate()
 .across(UnitOfWork.REQUEST)
 .buildModule()
);

Listing 11.13 Security and persistence configuration (see also listing 11.1)

311The security layer
Then we configure Hibernate itself by binding the Configuration class to an annota-
tion-based implementation that contains our Tweet domain model class:

 bind(Configuration.class).toInstance(new AnnotationConfiguration()
 .addAnnotatedClass(Tweet.class)
 .setProperties(loadProperties(HIBERNATE_CONFIG))
);

To this configuration, we also add Hibernate configuration properties that tell it which
database to use and so on (see the source code accompanying the book for details). The
two data services, for users and tweets, are bound directly to their interfaces:

 bind(TweetManager.class).to(HibernateTweetManager.class);
 bind(UserManager.class).to(InMemoryUserManager.class);

All this is straightforward. Then we bind another service whose purpose we’ll see very
shortly:

 //configure the in-memory authenticator (with hard-coded users)
 final HttpSessionAuthenticationManager manager =
 new HttpSessionAuthenticationManager();
 bind(AuthenticationManager.class).toInstance(manager);

The AuthenticationManager is used by crosstalk’s security layer to detect whether a
user has been authenticated correctly. This level of indirection is required because we
can’t always directly inject User into our services. You’ll see why in a second. But first,
a SecurityInterceptor is bound to all methods annotated with @Get and @Post
except the LoginPage:

 //intercept any @Get or @Post method on any page except LoginPage
 bindInterceptor(
 not(subclassesOf(LoginPage.class)),
 annotatedWith(Get.class).or(annotatedWith(Post.class)),

 new SecurityInterceptor(manager)
);

This interceptor is used to secure parts of the website by intercepting requests for web
pages, allowing us to ensure that only public parts of the site (that is, the login page)
are seen by users who are not authenticated and also that only authenticated users
may post tweets to their home pages. Let’s see how this security interceptor works.

11.7 The security layer
SecurityInterceptor is an AOP interceptor that runs on every event method, as
shown in listing 11.14. It’s intended to guard web pages and prevent them from being
displayed to users who aren’t properly authenticated.

class SecurityInterceptor implements MethodInterceptor {
 private final AuthenticationManager authenticationManager;

 public SecurityInterceptor(

Listing 11.14 AopAlliance method interceptor applied across the app for security

312 CHAPTER 11 Dependency injection in action!
 AuthenticationManager authenticationManager) {
 this.authenticationManager = authenticationManager;
 }

 public Object invoke(MethodInvocation methodInvocation)
 throws Throwable {

 //proceed with normal execution if a user is logged in
 if (authenticationManager.isLoggedIn()) {
 return methodInvocation.proceed();
 }

 //redirect to login page if the user is not properly logged in!
 return "/login";
 }
}

SecurityInterceptor is an AopAlliance MethodInterceptor,1 which is triggered
every time an HTTP GET or POST handler method is fired by Google Sitebricks
(except on LoginPage). If a user is logged in, then the method proceeds as normal. If
not, a redirect is sent to the login page:

 public Object invoke(MethodInvocation methodInvocation)
 throws Throwable {
 ...

 //redirect to the login page if user is not properly logged in!
 return "/login";
 }

Method interceptors and their configuration are covered in chapter 8. If you’re
unsure of how the interception works, consult the section on proxying.

 In the next section you’ll see how the application’s lifespan can be tied to a servlet
engine so that it receives notifications about important events in its lifecycle.

11.8 Tying up to the web lifecycle
Our database persistence framework has several expensive operations it must perform
when starting up and several cleanup operations when shutting down. These are inde-
pendent of a unit of work and must occur outside the regular operational life of the
web application.

 Ideally, this coincides with the web application’s own lifecycle and the servlet’s
init() and destroy() events. Fortunately for us, warp-persist’s PersistenceFilter
handles all this hard work. On an init(), it triggers the creation of connection pools,
the creation of tables and resources, and so on. In our case, this also kick-starts the
Hypersonic HQSL database in memory. On shutdown of the filter (when destroy() is
called), it closes down the Hibernate SessionFactory.

 In addition, the PersistenceFilter is necessary to open and close Hibernate units
of work on every request. This filter must be registered before installing the Site-
bricksModule so that pages can benefit from the session to the database being open.

1 Refer to chapter 8 for details on AOP and interceptors.

313Finally: up and running!
 So far, we’ve looked at presentation, persistence and modularity. We’ve also used
interception to provide security and tied everything up with the web lifecycle. Let’s
now get crosstalk running and give it the real litmus test.

11.9 Finally: up and running!
To run crosstalk, we’ll create a simple class with a main method that fires up Jetty. We’ll
put this class in the test/ directory to distinguish it from the application proper. It
looks like this:

public class Crosstalk {
 public static void main(String... args) throws Exception {
 Server jetty = new Server(8080); //start at port 8080
 server.addHandler(new WebAppContext("web", "/"));

 jetty.start();
 jetty.join();
 }
}

Class Crosstalk creates an instance of Server, which represents the Jetty web server.
We configure it to listen at port 8080 and use the web/ directory as its resource root.
Finally, we also ask it to listen at the root URL context: "/".

 Once Jetty is started, it’s ready to begin servicing requests. We must use the join()
method subsequently to prevent the application from exiting too early:

 jetty.start();
 jetty.join();

Now you’re free to run the application (see figure 11.8). Point your browser to
http://localhost:8080/login to see the login page and start using crosstalk!

Figure 11.8 See ya!

314 CHAPTER 11 Dependency injection in action!
11.10 Summary
This chapter was an example walkthrough of a real, working web application that
embodies many of the concepts you’ve studied thus far in this book. I chose crosstalk
as the problem domain, which is a simple clone of the popular microblogging ser-
vice Twitter.

 Crosstalk starts life as a Guice-based application that uses Hibernate for persis-
tence and Google Sitebricks as the web framework to display web pages and react to
user input. We also use Mort Bay Jetty as the servlet container. The injector is boot-
strapped (as described in chapter 2) by using the guice-servlet integration layer that
allows us to create and configure the injector when the web application is deployed
to the servlet container.

 Crosstalk consists of three main packages:

■ web—Contains the web page classes and components
■ services—Contains the data and security services
■ tweets—Contains the domain model classes for data persistence

All the components of package services are exposed via interfaces, and their imple-
mentation details are hidden away as package-local. This is an example of good modu-
larity and loose coupling as shown in chapters 4 and 10.

 Web pages are all request-scoped and utilize class User, which is a session-scoped ser-
vice that tracks the current user who is logged in. LoginPage ensures that a username
is attached to the User service upon login, and HomePage signs a user out as appropriate.
These web components exemplify the ideas presented in chapters 5 and 6 on scoping.

 Since starting and stopping the persistence engine is an expensive operation and
ideally coincides with the start and close of the web application itself, we register a
wrapping PersistenceFilter that allows us to hook into the servlet lifecycle. Refer to
our investigation of lifecycle and its semantics in greater detail in chapter 7.

 The SecurityInterceptor was added to secure home pages from users who aren’t
logged in. This is an example of the behavior modification or AOP interception tech-
niques presented in chapter 8.

 Finally, we tied all of these patterns and techniques with the whole application to
realize the full benefits of dependency injection!

appendix A:
The Butterfly Container

Contributed by Jakob Jenkov

This appendix is about the Butterfly DI DSL called Butterfly Container Script (BCS). We
include this appendix to illustrate the last of the four configuration mechanisms
mentioned in chapter 2.

A.1 A DSL for dependency injection
What we show here is far from a complete listing of the capabilities of Butterfly
Container. Rather we show a few of Butterfly Container’s solutions; these problems
are also mentioned elsewhere in this book:

■ Contextual injection via input parameters
■ Reinjection via factory injection

This appendix also looks at a few features made possible by a DSL.

A.2 Application configuration
Butterfly Container is an open source project and is part of a growing collection of
components called Butterfly Components. Should you be interested in learning more,
you can find additional information at http://butterfly.jenkov.com.

A.2.1 The DSL basics

For reasons too involved to discuss here, Butterfly Container was designed to use a
DSL tailored to dependency injection for its configuration. This mechanism is
somewhat similar to the XML files of Spring, except BCS is not an XML format.

 Butterfly Container Script was designed to look like a cross between a standard
property file (name = value) and Java code. This was done to make it easier to read,
write, and learn since most Java developers are familiar with both Java and property
files. This language design also makes it feasible to use BCS files for application con-
figuration (explained later).
315

316 APPENDIX A The Butterfly Container
 A script file consists of one or more bean factories. It’s easiest to explain the basics
of BCS by using an example:

myBean1 = * com.myapp.MyBean();

This configuration consists of five parts:

■ A factory ID (myBean1)
■ An equals sign (=)
■ An instantiation mode (*)
■ A Factory chain (com.myapp.MyBean())
■ A semicolon (;)

The Factory ID identifies this Factory. This ID must be unique throughout the con-
tainer instance. You supply this ID to the container when obtaining an instance or
when referencing that factory from other factories.

 The equals sign indicates the beginning of the product part of the factory definition.
 The instantiation mode is also sometimes referred to as scope. However, not all

bean scopes in Butterfly Container are achieved using the instantiation mode. Some-
times a scope is achieved by combining the instantiation mode with a special bean fac-
tory, for instance your own bean factory.

 BCS currently includes the following instantiation modes:

■ *—A new instance is created on every call to a Factory.
■ 1—A singleton is created once and returned on every call to a Factory.
■ 1T—One singleton per thread-calling factory is created once and returned on

every call to a Factory.
■ 1F—Flyweight; one instance per provided input parameter is created once and

returned on every call to a Factory with same input parameter.

The Factory chain defines what object is to be returned by the Factory. In our example
that’s an instance of the class com.myapp.Bean. A Factory can create more than one
object when it executes but return only one of them. We’ll explain more about the
Factory chain later.

 The semicolon signals that the Factory chain is finished.

A.2.2 The Factory chain

In the Factory chain of a Factory definition you can call constructors, call methods,
and even define local bean factories not visible outside this factory definition. Here’s a
somewhat more complex example:

myBean1 = * com.myapp.MyBean1();
myBean2 = * com.myapp.MyBean2("A Text", myBean1)
 .setMoreText("more text");

This configuration consists of two Factories: myBean1 and myBean2. The definition of
myBean1 is pretty much the same as the first example. myBean2 shows a few new
things. First, it contains two constructor parameters to the constructor of the class

317Application configuration
com.myapp.MyBean2. The second constructor parameter references the myBean1 fac-
tory, meaning an instance obtained from this factory should be obtained and injected
into the constructor.

 The Factory chain contains the method call setMoreText("more text"). This call
further configures the MyBean2 instance before returning it. In fact, if the setMore-
Text() method had returned an object, it would be this object that was returned by
the myBean2 Factory and not the MyBean2 instance. Since the setMoreText() method
returns void, it’s interpreted as returning the instance the method was called on—the
MyBean2 instance, in other words. That also means that you can chain method calls on
methods returning void, like this:

myBean2 = * com.myapp.MyBean2("A Text", myBean1)
 .setMoreText("more text")
 .setAValue(1)
 .setMoreOfSomething("more...");

As you can see, the factory now consists of a chain of constructor/method calls, hence
the name Factory chain. The Factory chain can be as long as you need it to be.

 This is one of the advantages of having a tailored DSL: the freedom to add features
like method chaining on methods returning void.

A.2.3 Contextual injection via input parameters

BCS allows contextual injection by enabling factories to receive input parameters.
Here’s how that looks:

myBean1 = * com.myapp.MyBean($0).setValue($1);
myBean2 = * myBean1(com.myapp.SomeBean(), "Value Text");

The dollar sign ($) signals that an input parameter is to be injected. The number (0, 1,
and so on) specifies which input parameter to inject. As you can see, input parameters
are not named or typed. This can lead to type errors in your Factory definitions if you
aren’t careful. This is one of the limitations of a custom DSL. It’s only as advanced as you
make it; you don’t get Java’s full type checking. In reality this is a big problem, as you
might think. You can set up unit tests to check the validity of the factories, if you want to.

 The myBean2 Factory calls the myBean1 Factory and provides two input parameters
to it: a com.myapp.SomeBean instance and the string "Value Text". Notice that each
input parameter is itself a Factory chain, so you could also have provided input param-
eters to the SomeBean instance and called methods on it, like this:

myBean1 = * com.myapp.MyBean($0).setValue($1);
myBean2 = * myBean1(com.myapp.SomeBean("config", $0)
 .setTitle("The Title"),
 "Value Text");

The SomeBean constructor is now given two parameters: the string "config" and the
input parameter $0. This input parameter is not the same as the $0 of the myBean1
Factory. The $0 input parameter of the myBean1 Factory is the SomeBean instance. The
$0 input parameter of the myBean2 Factory is whatever you provide as first parameter
to the myBean2 Factory.

318 APPENDIX A The Butterfly Container
 You can also provide input parameters to a Factory when obtaining beans from the
container from Java code, like this:

MyBean myBean = (MyBean)
 container.instance("myBean1", new SomeBean(), "Value Text");

If the method you’re trying to inject parameters into is overloaded, it can be hard or
even impossible for the container to tell which of the overloaded methods to call. It’s
therefore possible to specify the type of the injected parameter, like this:

 myBean1 = * com.myapp.MyBean((long) $0).setValue((String) $1);

A.2.4 Reinjection via factory injection

BCS makes it possible to inject the Factory of a product rather than the product itself.
This is done by putting a # in front of the Factory name when referencing it, like this:

firstBean = * com.myapp.FirstBean($0).setValue($1);
secondBean = * com.myapp.SecondBean().setFirstBeanFactory(#firstBean);

In the secondBean Factory, the firstBean Factory is injected into the method set-
FirstBeanFactory(), by referencing the injected Factory as #firstBean.

 While you could declare the type of the Factory inside the SecondBean instance of
type com.jenkov.container.itf.factory.IGlobalFactory, this would result in a
hard reference in your code to a Butterfly Container class. You don’t want that.
Instead, Butterfly Container is capable of adapting the Factory to your own custom
interface as long as the interface has an instance() method. Here’s an example of
such an interface:

public interface FirstBeanFactory {
 public FirstBean instance();
}

In the SecondBean class you can now create a field of the type FirstBeanFactory, like
this:

public class SecondBean {
 protected FirstBeanFactory firstBeanFactory = null;

 public void setFirstBeanFactory(FirstBeanFactory factory){
 this.firstBeanFactory = factory;
 }

 public void doSomething(){
 FirstBean firstBean = this.firstBeanFactory.instance();
 }
}

Notice how the use of the FirstBeanFactory interface inside the SecondBean is per-
fectly type-safe: no casts and no references to any Butterfly Container–specific classes.
You can even specify typed parameters to the instance() method. If you look at the
Factory definition of firstBean, you can see that it actually takes two parameters. You
can add them to the instance() method like this:

319Application configuration
public interface FirstBeanFactory {

 public FirstBean instance(long constructorParam, String value);
}

These parameters are typed as well, making it easy for maintenance developers to see
what types are required by the firstBean factory.

 You could even call the instance() method by the name of the Factory in the con-
tainer to call, like so:

public interface FirstBeanFactory {

 public FirstBean firstBean(long constructorParam,
 String value);
}

This can be used to add several Factory methods to the same interface, referencing
different Factories in the container, for instance:

public interface BeanFactories {

 public long numberOfConnectionsInPool();
 public String dbUrl();
 public FirstBean firstBean(long constructorParam, String value);
 // etc...
}

The container would determine at runtime which Factory to obtain the object from by
matching the method name with a factory in the container. It doesn’t matter which
factory you inject. If your method is called instance(), the injected factory is called. If
your method is called something else, the Factory having the same name as the
method is called.

 While this is a powerful feature, you should use it with care. By using named Fac-
tory methods in your interface, you create a hard link between the method names and
the Factory names. If the Factory names are later changed, the interface methods will
stop working and you won’t know why, unless you have a unit test determining that it
works. You also have the slight disadvantage in that Java doesn’t allow the same charac-
ters in method names as Butterfly Container allows in Factory names. For instance, if
your Factory is named dao/projectDao, you cannot name a method in Java dao/pro-
jectDao(). You can still inject and call the Factory, however, using the method name
instance(). But then you can have only one method per interface. In most cases, this
is sufficient, so it’s not a big limitation.

appendix B:
SmartyPants

 for Adobe Flex
Contributed by Josh McDonald

SmartyPants-IOC is a dependency injection framework for use in building Adobe
Flex and Flash applications inspired by Google Guice for Java. It’s based on key
concepts:

■ The class+name key
■ Injector requests, usually specified via metadata
■ Injector rules, specified using an ActionScript-based DSL

B.1 The class+name key
Whether you’re telling SmartyPants-IOC what to provide or sitting around with
your hand out asking for a dependency, the key is the same: a combination of a
class and a name. You must specify the class, but the name is optional.

B.1.1 Injection annotations

How do you actually request that a field be injected? In most circumstances you
need to annotate your fields with ActionScript metadata. If you want to request an
instance of IServiceInterface, the syntax is simple:

[Inject]
public var myService:IServiceInterface;

Let’s say you want to look up a particular string, rather than just anything. For a
Web Services Description Language (WSDL) URL, or something along those lines,
use this syntax:

[Inject(name="mainWSDL")]
public var myServiceWSDL:String;
320

321Injector rules
These fields will be injected into your object when it’s constructed for you by Smarty-
Pants-IOC or when you call injector.injectInto(myInstance).

 SmartyPants-IOC also supports live injections, which when coupled with live rules
behave like the Flex SDK’s data-binding functionality:

//This will be set whenever the source changes
[Inject(name="userName",live)]
public var currentUsername:String;

B.2 Injector rules
The injector rules are akin to Guice’s bindings, but we use another term to avoid con-
fusion with the Flex SDK’s data-binding mechanism. You tell the injector what you’d
like it to do, using the DSL. Here are a couple of examples:

//Simple singleton rules:
injector.newRule().whenAskedFor(String).named("wsdl")
 .useInstance("http://www.server.com/soap/service.wsdl");
injector.newRule().whenAskedFor(IServiceInterface)
 .useSingletonOf(MyServiceImpl);
injector.newRule().whenAskedFor(MyConcreteClass).useSingleton();

//"Live" rules act just like <mx:Binding>
injector.newRule().whenAskedFor(String)
 .named("userId")
 .useBindableProperty(this, "userId");

B.2.1 But how do I kickstart the whole thing?

Good question! Two ways. First, in an MXML component, this code will inject into
your component on the CreationComplete event:

<?xml version="1.0" encoding="utf-8"?>
<mx:Canvas xmlns:mx="http://www.adobe.com/2006/mxml"

xmlns:smartypants="http://smartypants.expantra.net/2008">

 <smartypants:RequestInjection/>

 <!-- ...Regular code and MXML... -->

</mx:Canvas>

And in ActionScript it’s even simpler:

SmartyPants.injectInto(this);

 Hopefully this gives a little more insight into the style and ideas behind
SmartyPants-IOC. Be sure to check it out on the Google Code site!

 SmartyPants-IOC is hosted on Google Code: http://code.google.com/p/
smartypants-ioc/.

index
Symbols

@At annotation 298
@Autowired 199

annotation on constructor 34
@EJB 199
@Entity 301
@Get 298
@GuardedBy 198
@Immutable 246, 260–261
@Inject 199

@Autowired in place of 35
skip annotation 93

@On 298
@PostActivate 200
@PostConstruct 199
@PreDestroy 199
@PrePassivate 200
@Remove 199
@Repeat 299
@RequestScoped 298, 300, 303
@ScopingAnnotation 163
@SessionScoped 303
@Singleton 132, 145

missing 172
@ThreadSafe 168, 246
@Transactional 211, 222

A

Abstract Factory pattern. See
Factory pattern

abstract identity
referred to as a key 37

Acegi Security 149

ACID transactions 157
Adapter pattern 95, 119,

175, 180
Adobe Flex 320
advice 212

avoid too much 219
Algorithmic complexity 131
Amazon 198
annotations

feature of Java 26
Ant 226
anti-pattern 196, 271

black box 276–280
fragile base 277
lifecycle 276
rigid configuration 271
singleton 135, 276
type unsafe configuration 271
unwarranted constraints 273

AOP 16, 312
Guice’s approach 18
intercepting methods 211
interceptor 311
make deferred

modifications 234
use caution when using 221

AOP injection
See also method decoration 62

AopAlliance 18, 218
and Guice 214

Apache 269
Apache Avalon

earliest DI library 17
interface injection 61

Apache CXF 280

Apache Excalibur
Fortress 17

Apache Hadoop
cluster-computing 184

Apache HiveMind 18–19, 269
Apache James 17
Apache OpenJpa 225
Apache Tapestry 18, 269
Apache Tomcat 290
Apache Wicket 269
application logic 51

defined 51
separate from infrastructure

logic 52
application server 198, 200
AspectJ 18

build-time weaving 234
pointcut 215
Springs library 214

aspect-oriented programming.
See AOP

Assisted Injection pattern 86
AssistedInject. See Assisted

Injection
atomic operations 263
atomicity 157
autowiring

constructor 34

B

BCS
instantiation modes 316
not an XML format 315

Bean Validation 280
323

INDEX324
BeanFactoryAware 84
behaviorally consistent 109
Beust, Cedric 137
binding annotations 255
bindings

determine type 43
keys provide 37
wrong type 43

black box
anti-patterns 276
vs. encapsulation 276

boilerplate
removing 181

bootstrap
combined with

configuration 32
bootstrapping

the injector 22, 42
Builder pattern 16, 88
Butterfly Components 315
Butterfly Container 315

bean scopes 316
Butterfly Container Script. See

BCS

C

C# 14, 19, 46, 83
C++ 19

destructor 189
solves general problems 16

cache scoping. See singleton
caching

in-memory 181
Castle MicroKernel 19
CGLib

Guice and Spring 218
circular initialization

no injection solution 77
circular reference 71

solve with proxies 75
two solutions 72

circularity 71
breaking 73

class
testability 4

class name
fully qualified 273

classloader 217
classpath 274
client

definition 3
object is 2
testing 9
verify behavior 10

client code
not invoking injector 24

clients 198
Closeable 197

definition 197
cluster computing 184
coarse grained 157
code

behaviorally focused 22
modular design 22
separation of infrastructure

and application 15
testability 22
testable 100
thread-unsafe 113

combinatorial bindings
build in Spring JavaConfig 50

combinatorial keys 47, 161
benefits 48
drawback 48
Guice 49

complexity
algorithmic 131
linear 131

concurrency 10, 246, 257–265
vs. synchronization 262

concurrency problems
from scope widening 176

concurrent 136
concurrent access

to counter 178
configuration

combined with bootstrap 32
confined to single threads. See

thread confinement
connection pool 195
connection validation 195
consistency 157
ConstraintFactory. See JSR-303
construction by hand 5, 10

creating injector 28, 32
DI enables testability 13
manual DI 13
problems 6
toothpaste example 124
why so named 6

constructor
autowiring 34
initialization hook 56
purpose 55

constructor injection 74, 128
advantage 6
circular reference

problem 71

contextual 85
dominant form of idiom 65
first preference 81
leverages immutability 67
object validity 78
vs. setter injection 55, 66

constructor pyramid 69–71
constructor wiring 29

PicoContainer 33
context objects

set when needed 91
contextual injection

Builders 90
variation of partial

injection 84
contract

revelation of intent 110
cookie 154
Copland 19
crosscutting concern 210

logging 210
crosstalk 290

layers 290
modularity and services

coupling 295
presentation layer 296
requirements 290

custom annotations 283
custom scope 157–166

in Guice 160
registering in Guice 163
Spring 164

D

DAO 38, 247
Data Access Object. See DAO
data type

scalar 250
database 111, 123, 224, 292, 312

connection pool 129
map object to row 224
Oracle 111
pool of connections 130
PostgreSQL 111

Db4objects
warp-persist 222

decorate. See Decorator
Decorator Design pattern 62
Decorator pattern 16
delayed injection. See partial

injection
delegator 233
Delegator pattern 234

INDEX 325
dependencies 24
half-constructed 67
identifying for injection 36

dependency 3
dependency graph. See

dependency
dependency injection frame-

work. See dependency
injector

dependency injection. See DI
dependency injector 13, 15

features 37
dependent 3
deployment profiles 118
destroy lifecycle hook 196
destruction

times and frequency 191
Destructor anti-pattern 196

discourage use of 197
DI 1

DSL used in 16
helps loose coupling 111
infrastructure code 111
manual 13
not an invasive technique 28
not explicitly knowing 13
popular use 15
real world use 17
scoping 25
vs. IoC 15

DI library 52, 55
configuring the injector 26
method decoration

support 82
DI solutions

fragmentation 267–270
direct field injection

difficult to test 269
documentation 110
domain model 296, 301
Domain Specific Language. See

DSL
domain-specific scope 139

building web applications 140
downcast

defined 28
returned instance 32

downcasting
Provider pattern 83

DSL 16
for dependency injection 315
injection-oriented 26
solves specific problems 16

duck-typed 19
durability 157

Dynamic Finders 308
dynamic proxies

cannot intercept private
methods 231

See also proxy

E

eager instantiation 129
vs. lazy instantiation 201

EasyMock 114–115
EJB 12, 114, 182

does not support constructor
injection 199

lifecycle hook 200
stateful session 269

EJBs
stateful 198

Emailer
change behavior 5

encapsulation 5, 14, 252
class member 30
destroyed 253
at package and module

level 257
principles violated 7
vs. black box 276
warp-persist 256

Enterprise Java Bean. See EJB
EntityManager. See JPA
escape

during construction 245
execution context 25

F

Factory
equivalent of singleton

scoping 136
Factory chain 316
Factory pattern 7–11, 24

applied to Emailer 7
faulty configuration 67

causes heartache 68
field injection 65
filter

traces requests 268
FilterToBeanProxy 149
final fields

attempt to modify 246
finalization 189

domain-specific patterns 197
finalizer

can come in handy 190

finite resources
disposal of 189
freeing 196
modeling as Closeables 197

Fortress 17
Fowler, Martin 15
fragile base class anti-

pattern 277
framework

lessons for designers 270–280
framework design

replacement with mocks
essential 270

fully qualified class name 273
functionality

changing in base class 277
share 277

G

Gang of Four 88, 95, 128
garbage collection 189

finalizer before collector
runs 189

leads to memory leaks 179
garbage collector. See garbage

collection
Gin 18
Gmail 2
good key behavior 46

rules 47
Google 12
Google AdWords 18
Google Guice. See Guice
Google Sitebricks 269

configuring 294
Google Web Toolkit. See GWT
graphical user interface. See GUI
grid

computing 183
Oracle Coherence 182
sometimes called cluster

cache 182
grid scope 182
GUI 267
GUICE

AOP 291
Guice 294–295, 320

approach to AOP 18
binding scopes 147
bindings 45
binds under no scope 131
CGLib 218
combinatorial keys 49
compact setter injection 59

INDEX326
Guice (continued)
create Emailer 23
custom scope 160
doesn’t react tp

@Immutable 168
as injector 290
Jabber 254
key as binding 29
key as identifier 29
modules defined 30
nomenclature 127
Providers out of the box 83
request scoping 144
scopes 124
setter injection 87
singletons 246
testing matchers 213
transaction scope 161
warp-persist 222

Guice servlet 144
guice-servlet 25, 222, 291, 293
GWT 18

H

Half-Life 43
Hammant, Paul 15
hashtable 241, 244

no locking 264
synchronized wrapper

around 264
thread-local 162

Hellesøy, Aslak 15
Hibernate 266, 290–291

JPA 225
warp-persist 222

Hibernate Query Language. See
HQL

Hollywood Principle 15, 138
scopes apply to state of

objects 181
See also IoC

HomePage
sign out link 304

HQL 309
HSQL

database 312
See also Hypersonic

HTML
web applications 140

HTTP
request scoped 251

HTTP filter
with Spring Security 225

HTTP protocol
stateless 154

HTTP request 124, 276
scope 141

HTTP session scope 149
Hypersonic 290, 312

I

IDE
helps catch errors 45

identifier
combinatorial key 36

identifying by type 44
limitations 46

immutability 246
pitfalls 258

immutable
good design 167

immutable dependencies
create 66

in-construction
cannot break cycle 75

in-construction problem
in a nutshell 76
setter injection 76

infrastructure code 116
separating by area 102

infrastructure logic 15, 51
separate from application

logic 52
inheritance

replacing with delegation 279
initialization 196

called on 199
times and frequency 191

injection
scope widening 145, 169

injection idiom
choosing 65

injector
all-purpose 24
bootstrapping 22
configuration 26

injector configuration
changing at runtime 118
modifying 100

integration tests 112, 116
reveal configuration

quirks 118
for web application 117

IntelliJ IDEA 42, 292
intercepting methods 211
interception

lose 87

modifying behavior 37
use cases for 221, 234

interceptor 214, 217
bound 213
with Guice 212
with Spring 214

interceptor chain 221
interface injection 60

pro and con 62
invasive technique 28
Inversion of Control. See IoC
IoC 1, 14–15

container 15
several meanings 15

isolation 157

J

Jabber 253
Java 14, 46, 83, 197, 291

annotations 26
atomic library 263
birthplace of DI 17
C# and .NET 19
class member

encapsulation 30
Closeable interface 197
finalizer 189
garbage collector 179
hashtable 241
mock objects frameworks 114
no proxy for classes 218
package-local visibility 232
package-privacy 254
proxying interfaces 216
semantics 44
servlet filter 144
Set 38
statically typed 42
Strings immutable 261
volatile keyword 168

Java Community Process
Bean Validation 280

Java EE 17, 198
IoC 15

Java library
binary-tree 38
hash-table 38

Java Memory Model 79
Java Naming and Directory

Interface. See JNDI
Java Persistence API. See JPA
Java Servlet

registration of servlets and
filters 267

INDEX 327
Java Servlet Framework 191
detect browser capability 154

Java Servlet Specification 145
Java Swing 196
Java Virtual Machine. See JVM
java.lang.reflect. See reflection
java.lang.reflect.Proxy. See proxy
java.util.HashMap. See hashtable
JavaConfig 45
JavaServer Faces. See JSF
JBoss Seam 19
JDK Proxy. See proxy
JMock 114
JNDI 12
Johnson, Rod 15, 17
JPA

warp-persist 222
JSF 269
JSR-303 280

Bean Validation 280
doesn’t restrict plug-in

code 284
JUnit 137
JVM

manages threads 169

K

keys
bound improperly 13
class literal 46
combinatorial 47
good behavior 40, 43, 46

keyword
final 233

L

language
duck typed 19
dynamically typed 42
object-oriented 241
statically typed 42

latent state 124
lazy instantiation 201

vs. eager instantiation 201
leaking

of semantics 252
Lee, Bob 18
lexical ordering 242
libraries

provide pluggable
services 271

lifecycle 312
basic events 187
closely related to scope 187
customizing 202
customizing with

multicasting 205
customizing with

postprocessing 202
domain-specific 191
events 191, 205
hook 191
notification 203
notifying of events 37

lifecycle constrained anti-
pattern 276

lifecycle events
not universal 191

lifecycle hook
@PrePassivate 200
leads to unintuitive

designs 196
lifecycle scenarios

servlets vs. database
connections 191

linear complexity 131
locking 245
logging 212, 229–230
loose coupling 16, 270

example 107
with DI 111

M

manual dependency injection.
See construction by hand

matcher 220
memory complexity 129, 131
memory leaks

and scope-widening 179
memory reclamation 179
meta-annotation 163
metadata

externalized 93
injector configuration 26

method decoration 82
DI library support 82
fraught with pitfalls 64
variation on DI 62

method interception 214
enhance 220

methods
intercepting 211

mock objects 8, 114
useful 103

Mockito 114

modularilty 270
Module 30, 213
modules 118

defined 100
separation and

independence 101
Mort Bay Jetty 290, 313
Mozilla Thunderbird 2
multicasting 205

proxy 207
mutable singletons 168
mutual exclusion 178

N

namespaces
use of 38

NanoContainer 18
NASA Mars Rover 12
native method 190
.NET 19
network sockets 197
Nintendo Wii 43
no scope 125–128

vs. singleton 133
no-scoped 170
nullary constructor 273, 275

O

object
good citizen 66
out-of-scope 170
role of 100

object creation 187
object destruction. See finaliza-

tion
object graph 69

assembly 36
building 4
changing 13
complex 47
described in one place 111
description 3
emphasis on unit testing 21
Factory pattern 7
how to construct 6
offload burden 5
requires new factory 11
size and scope 130
structure may change 119
system of dependencies 3
tightly coupled 104

INDEX328
object/relational mapping. See
ORM

object-oriented languages 157
object-oriented programming.

See OOP
objects

relationship between 3
OOP 2

encapsulation 252
tight coupling 102
using constructor injection 6

Oracle 111, 157
Oracle Coherence 182, 266
Oracle TopLink

JPA 225
ORM tools

Hibernate 266
OSCache 271

uses reflection 273
out of scope 123, 139
out-of-container. See integration

test
OutOfMemoryError 180
out-of-scope 170

between scope contexts 175

P

package-local 232, 296
partial injection 81

contextual injection 84
pattern 127
patterns

Abstract Factory 7
Adapter 95, 119, 175, 180
Assisted Injection 86
Builder 16, 88
Decorator 16
Decorator Design 62
Delegator 234
Factory 7–11, 24
Provider 82, 127, 161,

180, 308
See also individual pattern

name 25–13
persistence 157, 272–273,

291, 296
persistence.xml. See JPA
PicoContainer 14–15, 19

all-purpose destroy
method 196

bias toward constructor
injection 18

cache scoping 129
greedy 33

identifying by type 46
injection 31
locking mode 245
multicasting 206
mutable injector 119
no scope 128
prefers constructor wiring 33

PicoContainer 2.0 32
PicoContainer Gems 206
pointcut 215, 226–227, 276

AspectJ 215
PostgreSQL 111, 157
postprocessing 202
power of scopes

leveraging 181–184
precompilation 19
presentation layer 248–249, 296
programmatic

configuration 280
programming to contract

108, 113
prototype scope

Spring’s name for no
scope 127

Provider pattern 82, 127, 161,
180, 308

implemented in Spring 164
proxy 230, 312

of class can be powerful 219
pitfalls 228
powerful technique 212
protected methods 232
resolving circular

references 74
Python 19

R

Rahien, Ayende 16
RDBMS 118
rebinding 118

closely tied to scope 119
with adapter 120

refactoring
possible cost 106

reflection 273
reinjection 81

method decoration 82
with Provider pattern 82

reinjection problem 161
scope widening 173
use mitigants 175

relational database 157
Remote Enterprise Java Bean.

See EJB

request scoped 251
each instance unique 150
objects not

multithreaded 149
Request scoping

in Spring 147
request scoping

in Guice 144
request-scoped. See request

scope
resource bundle 271
revelation of intent 108
rigid configuration anti-

pattern 271
role interface

uses 61
root object

obtained from injector 25
Ruby 19

S

safe publication 241
guarantee of order 244
subtlety 243
synchronization 244

scalar data type 250
scope 79–80, 87, 124–125

apply Hollywood
Principle 181

closely related to lifecycle 187
defined 123
domain-specific 139
general purpose 123
HTTP request 141, 157
HTTP session 149, 157
managing state 37
no scope 123
singleton 123
thread-confined 158

scope widening 172
form of reinjection

problem 173
and memory leaks 179
with thread-safety 179

scope-widening 170, 179, 241
domestic problems 176

scope-widening injection 145,
169–180

not caught with unit test 173
scoping 270

annotation 153
functionality 156
powerful feature of DI 25

INDEX 329
sealed code
Guice injects 93
injecting objects in 92

security 296, 311
service

identity of by key 13
service clusters

Oracle Coherence 266
Service Location pattern 25
Service Locator

JNDI 12
pass it a key 12
See also Service Locator

pattern
typical use 12

Service Locator pattern 12–13
service-client

relationship 3
services 295, 304

database-specific 141
decomposing into objects 3
definition 3
objects as 2
prefixes 38

services-oriented architecture.
See SOA

servlet
filter 144
livecycle stages 191
restrictive structure 268

servlet lifecycle
DI in conjunction with 193

session bean
stateful 198

session scope
each instance shared 150
HTTP 149
scoping annotation 153

setter injection 54, 56, 69, 168
can’t leverage

immutability 67
common idiom in use 60
dependencies wired 78
dominant form of idiom 65
false negative 68
no additional code 70
vs. constructor injection

55, 66
setter method 54, 136, 250
Ship, Howard Lewis 18
single-sign-on semantics 182
singleton 129

abused as a bridge 170
litmus test 130

must be thread-safe 167
mutuable 168
scoping 160
when reclaimed 179

singleton anti-pattern
135, 138, 276

See also singleton objects
singleton objects

make immutable 168
Singleton pattern 10
singleton scope 128

advantages over no scope 129
context is injector 128
vs. no scope 133
vs. singleton objects 135

singleton scoping
pool of database

connections 130
singleton-scoped objects

cached 201
eager instantiation in

Spring 202
Sitebricks

as web application
framework 290

SmartyPants 320
supports live injections 321

SOA 130, 183
source code generation 19
specification of behavior 108
spellchecker

creating one in French 8
Spring 14, 19, 83, 269

@Autowired 27
all-purpose destroy

method 196
autowiring 34
bean tag 268
beans are singletons 131
binding scopes 147
CGLib 218
check spelling 26
constructor injection 17
constructor wiring 29
custom scope 164
IntelliJ IDEA 42
JavaConfig 45
lifecycle support method 164
make aware of autowired

classes 35
namespaces 39
prototype scope 127
request scoping 147

scopes 124
setter injection 57, 72, 93
XML configuration 27

Spring 2.5 34
Spring Framework 17
Spring MVC 193, 269
Spring Security 149, 228, 270

requires HTTP filter 225
securing methods 224
uses Ant-style paths 226

Spring XML 104
binding explicit 29

SpringMVC 270
SQL 195, 290
Stage 201
stateful

context 156
stateful behavior

a peril 174
static methods

proxies cannot intercept 230
string identifier. See string keys
string keys 29

advantage over plain type 47
choose wisely 40
flexible but unsafe 47
identifying by 37
limitations 42

StructureMap 14, 19
Struts2 18, 269
Swing 196
synchronization 244–245

vs. concurrency 262
synchronized keyword 178

T

TCP connection 130
testability 4

very important 270
testable 104
testable code 100

crucial to writing 112
testing. See testability
TestNG 137
tests

automated unit 112
integration 112, 116

thread confinement 163
thread of execution 158
thread-local

hash table 162
thread-safe

in a class 169

INDEX330
thread-safe classes
creating 167

thread-safety
eternally difficult 179
scope-widening 179

thread-unsafe 178
tight coupling 104

perils 102
refactoring impacts 105

time complexity 131
Tirsen, Jon 15
tracing interceptor

with Guice 212
with Spring 214

transaction
ACID 157
specific context 158

transaction completes
commit 162
rollback 162

transaction scope 158, 181
apt fit 160
in Guice 161

transaction scoped
object sought outside a

transaction 163
wired 163

Tweet 300
Twitter 290
type

identifying by 44
resolution 42
specific class of data 42

type keys 46
refers to wrong type 45
safe but inflexible 47

type literals
analogous to string literals 44

type unsafe configuration anti-
pattern 271

type-safety
disregard for 271

U

unit test 109, 112
and interception 236
first line of defense 118
injector configuration 114
single concern 113
violated rules 117
writing 4

unwarranted constraints anti-
pattern 273

URL rewriting 154
use cases for interception 234

V

variant 49
using spellcheckers 39

viral injection 25
volatile 177

keyword 168

W

warp-persist 222, 256
@Transactional 222
Dynamic Finders 308

weaving 212
web applications 140

building practical 124
Web Services Description Lan-

guage. See WSDL
WebWork 269
wiring 245

absence of directive 35
after instance is

constructed 56
common forms 55
construction order 74
dependencies 55
repeat code 6
satisfies circularity 71

WSDL 320

X

XML 94
boilerplate schema 28
injection in Spring 27

Z

zombie connection 195
zombie objects

unreclaimable 179

	contents
	Dependency injection: what’s all the hype?
	1.1 Every solution needs a problem
	1.1.1 Seeing objects as services

	1.2 Pre-DI solutions
	1.2.1 Construction by hand
	1.2.2 The Factory pattern
	1.2.3 The Service Locator pattern

	1.3 Embracing dependency injection
	1.3.1 The Hollywood Principle
	1.3.2 Inversion of Control vs. dependency injection

	1.4 Dependency injection in the real world
	1.4.1 Java
	1.4.2 DI in other languages and libraries

	1.5 Summary

	Time for injection
	2.1 Bootstrapping the injector
	2.2 Constructing objects with dependency injection
	2.3 Metadata and injector configuration
	2.3.1 XML injection in Spring
	2.3.2 From XML to in-code configuration
	2.3.3 Injection in PicoContainer
	2.3.4 Revisiting Spring and autowiring

	2.4 Identifying dependencies for injection
	2.4.1 Identifying by string keys
	2.4.2 Limitations of string keys
	2.4.3 Identifying by type
	2.4.4 Limitations of identifying by type
	2.4.5 Combinatorial keys: a comprehensive solution

	2.5 Separating infrastructure and application logic
	2.6 Summary

	Investigating DI
	3.1 Injection idioms
	3.1.1 Constructor injection
	3.1.2 Setter injection
	3.1.3 Interface injection
	3.1.4 Method decoration (or AOP injection)

	3.2 Choosing an injection idiom
	3.2.1 Constructor vs. setter injection
	3.2.2 The constructor pyramid problem
	3.2.3 The circular reference problem
	3.2.4 The in-construction problem
	3.2.5 Constructor injection and object validity

	3.3 Not all at once: partial injection
	3.3.1 The reinjection problem
	3.3.2 Reinjection with the Provider pattern
	3.3.3 The contextual injection problem
	3.3.4 Contextual injection with the Assisted Injection pattern
	3.3.5 Flexible partial injection with the Builder pattern

	3.4 Injecting objects in sealed code
	3.4.1 Injecting with externalized metadata
	3.4.2 Using the Adapter pattern

	3.5 Summary

	Building modular applications
	4.1 Understanding the role of an object
	4.2 Separation of concerns (my pants are too tight!)
	4.2.1 Perils of tight coupling
	4.2.2 Refactoring impacts of tight coupling
	4.2.3 Programming to contract
	4.2.4 Loose coupling with dependency injection

	4.3 Testing components
	4.3.1 Out-of-container (unit) testing
	4.3.2 I really need my dependencies!
	4.3.3 More on mocking dependencies
	4.3.4 Integration testing

	4.4 Different deployment profiles
	4.4.1 Rebinding dependencies
	4.4.2 Mutability with the Adapter pattern

	4.5 Summary

	Scope: a fresh breath of state
	5.1 What is scope?
	5.2 The no scope (or default scope)
	5.3 The singleton scope
	5.3.1 Singletons in practice
	5.3.2 The singleton anti-pattern

	5.4 Domain-specific scopes: the web
	5.4.1 HTTP request scope
	5.4.2 HTTP session scope

	5.5 Summary

	More use cases in scoping
	6.1 Defining a custom scope
	6.1.1 A quick primer on transactions
	6.1.2 Creating a custom transaction scope
	6.1.3 A custom scope in Guice
	6.1.4 A custom scope in Spring

	6.2 Pitfalls and corner cases in scoping
	6.2.1 Singletons must be thread-safe
	6.2.2 Perils of scope-widening injection

	6.3 Leveraging the power of scopes
	6.3.1 Cache scope
	6.3.2 Grid scope
	6.3.3 Transparent grid computing with DI

	6.4 Summary

	From birth to death: object lifecycle
	7.1 Significant events in the life of objects
	7.1.1 Object creation
	7.1.2 Object destruction (or finalization)

	7.2 One size doesn’t fit all (domain-specific lifecycle)
	7.2.1 Contrasting lifecycle scenarios: servlets vs. database connections
	7.2.2 The Destructor anti-pattern
	7.2.3 Using Java’s Closeable interface

	7.3 A real-world lifecycle scenario: stateful EJBs
	7.4 Lifecycle and lazy instantiation
	7.5 Customizing lifecycle with postprocessing
	7.6 Customizing lifecycle with multicasting
	7.7 Summary

	Managing an object’s behavior
	8.1 Intercepting methods and AOP
	8.1.1 A tracing interceptor with Guice
	8.1.2 A tracing interceptor with Spring
	8.1.3 How proxying works
	8.1.4 Too much advice can be dangerous!

	8.2 Enterprise use cases for interception
	8.2.1 Transactional methods with warp-persist
	8.2.2 Securing methods with Spring Security

	8.3 Pitfalls and assumptions about interception and proxying
	8.3.1 Sameness tests are unreliable
	8.3.2 Static methods cannot be intercepted
	8.3.3 Neither can private methods
	8.3.4 And certainly not final methods!
	8.3.5 Fields are off limits
	8.3.6 Unit tests and interception

	8.4 Summary

	Best practices in code design
	9.1 Objects and visibility
	9.1.1 Safe publication
	9.1.2 Safe wiring

	9.2 Objects and design
	9.2.1 On data and services
	9.2.2 On better encapsulation

	9.3 Objects and concurrency
	9.3.1 More on mutability
	9.3.2 Synchronization vs. concurrency

	9.4 Summary

	Integrating with third-party frameworks
	10.1 Fragmentation of DI solutions
	10.2 Lessons for framework designers
	10.2.1 Rigid configuration anti-patterns
	10.2.2 Black box anti-patterns

	10.3 Programmatic configuration to the rescue
	10.3.1 Case study: JSR-303

	10.4 Summary

	Dependency injection in action!
	11.1 Crosstalk: a Twitter clone!
	11.1.1 Crosstalk’s requirements

	11.2 Setting up the application
	11.3 Configuring Google Sitebricks
	11.4 Crosstalk’s modularity and service coupling
	11.5 The presentation layer
	11.5.1 The HomePage template
	11.5.2 The Tweet domain object
	11.5.3 Users and sessions
	11.5.4 Logging in and out

	11.6 The persistence layer
	11.6.1 Configuring the persistence layer

	11.7 The security layer
	11.8 Tying up to the web lifecycle
	11.9 Finally: up and running!
	11.10 Summary

	appendix A: The Butterfly Container
	A.1 A DSL for dependency injection
	A.2 Application configuration
	A.2.1 The DSL basics
	A.2.2 The Factory chain
	A.2.3 Contextual injection via input parameters
	A.2.4 Reinjection via factory injection

	appendix B: SmartyPants for Adobe Flex
	B.1 The class+name key
	B.1.1 Injection annotations

	B.2 Injector rules
	B.2.1 But how do I kickstart the whole thing?

	index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X
	Z

