

Designing Scalable JavaScript Applications
Selections by Emmit A. Scott, Jr.

Manning Author Picks

 Copyright 2016 Manning Publications
To pre-order or learn more about these books go to www.manning.com
Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

http://www.manning.com/

For online information and ordering of these and other Manning books, please visit
www.manning.com. The publisher offers discounts on these books when ordered in quantity.

For more information, please contact

Special Sales Department
Manning Publications Co.
20 Baldwin Road
PO Box 761
Shelter Island, NY 11964
Email: orders@manning.com

©2016 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by means electronic, mechanical, photocopying, or otherwise, without prior written
permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial caps
or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books we publish printed on acid-free paper, and we exert our best efforts to that end.
Recognizing also our responsibility to conserve the resources of our planet, Manning books
are printed on paper that is at least 15 percent recycled and processed without the use of
elemental chlorine.

Manning Publications Co.
20 Baldwin Road Technical
PO Box 761
Shelter Island, NY 11964

Cover designer: Leslie Haimes

ISBN 9781617294174
Printed in the United States of America
1 2 3 4 5 6 7 8 9 10 - EBM - 21 20 19 18 17 16
Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

http://www.manning.com

contents

introduction iv

THE ROLE OF MV* FRAMEWORKS 1
The role of MV* frameworks
Chapter 2 from SPA Design and Architecture 2

EMBRACING MODULARITY AND DEPENDENCY MANAGEMENT 33
Embracing modularity and dependency management
Chapter 5 from JavaScript Application Design 34

DEALING WITH COLLECTIONS 67
Dealing with collections
Chapter 9 from Secrets of the JavaScript Ninja, Second Edition 68

GETTING STARTED WITH GULP 104
Getting started with Gulp
Chapter 2 from Front-End Tooling with Gulp, Bower, and Yeoman 105

index 125
iii

Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

introduction
If you’ve ever written a non-trivial JavaScript application, you know that creating a
code base that’s easy to maintain and scales well over time is no small feat. The com-
plexity only grows as the project becomes larger. While it’s impossible to plan for every
change that could possibly happen over the life of a project, you can help future-proof
your front-end architecture by designing software that’s pliable and easily extended.
This approach inherently leads to more sustainable code even in a constantly chang-
ing environment. Well-designed, extensible architecture can also help reduce devel-
opment and maintenance costs, as bug fixes, enhancements, and new technologies
can be incorporated more easily.

 So how do you begin? Spending more time up front on the design of your applica-
tion is a great start. This includes thinking about which tools and frameworks you’ll
use and which design patterns you’ll implement.

 This mini-book brings together excerpts from four different Manning titles. The
chapters selected are all great starting points for understanding how to build better
JavaScript applications. They’ll introduce you to some fundamental concepts for cre-
ating clean, loosely coupled code, and show you how to make your development pro-
cess more productive and efficient.
iv

Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

Although you can build nearly anything from scratch with JavaScript, most
of the time, starting with existing tools and frameworks is more efficient. Under-
standing how to take advantage of JavaScript frameworks is pivotal to building
better applications. Frameworks hide the complexity normally associated with
large projects and help to achieve a separation of concerns in an application’s
code base. They can be used with applications of any size, but are crucial for
large-scale application development. The following chapter introduces the role
of Model-View-Controller (MVC) and Model-View-ViewModel (MVVM) frame-
works and includes a complete working project built with three different frame-
works for comparison.

The role of MV*
frameworks

Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

Chapter 2 from SPA Design and Architecture
by Emmit A. Scott, Jr.

The role of
MV* frameworks
Probably one of the most difficult tasks a web developer faces is creating a code
base that can grow gracefully as the project grows. The larger and more compli-
cated a project becomes, the more difficult the task. Shaping a project’s code base
in a way that makes troubleshooting, maintenance, and enhancements easier, not
harder, is no small feat, though. This is true for even traditional web projects.

 In an SPA, keeping your code segregated based on its functionality is more than
just a good practice. It’s critical to being able to successfully implement an applica-
tion as a single page. The key to this is creating a separation of concerns within
your application. Having a separation of concerns within your code base means
that you’re making a concerted effort to separate the various aspects of the applica-
tion’s code based on the responsibility it has.

This chapter covers
■ An overview of UI design patterns
■ An introduction to MV* in the browser
■ Exposure to core MV* concepts
■ Benefits of MV* libraries/frameworks
■ A list of considerations when choosing a framework
2

Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

https://www.manning.com/books/spa-design-and-architecture

3

We can break the overall SPA into many application layers, on the server side as well as
in the client. Within the browser space, we can begin our quest for creating a separa-
tion of concerns in a fundamental way by first remembering the roles of our three pri-
mary languages: HTML, CSS, and JavaScript:

■ HTML—This is the scaffolding of your application. This code is primarily con-
cerned with the elements that provide placeholders for content, give the UI its
structure, and offer controls the user can interact with.

■ CSS—Style sheets describe the design of the UI, giving it its look and formatting.
■ JavaScript—In a general sense, the code in this layer represents the application’s

presentation logic. This layer is used to give a web application its dynamic
nature, providing behavior and programmatic control over the other two layers.

We’ve all worked with these three languages and understand the role of each. Even so,
because these three languages can easily be mixed together, your code can quickly
turn into spaghetti (see figure 2.1). This can make your project extremely challenging
to manage.

 It’s possible, however, to produce code written in a decoupled manner but still
achieve the same level of interactivity between each layer. Each part of your code can
be compartmentalized based on the purpose it serves.

 Additionally, this compartmentalization can be extended to encompass the applica-
tion’s data versus its presentation to the user. Data and events can be assigned to your
UI via mapping, instead of direct assignment in your business logic. The UI and the data
can both be observed for changes, allowing them to stay in sync and giving your logic
a means to react appropriately. So not only can the code itself be segregated based on
its responsibility, but your UI’s presentation and the data it represents can be disjoined.
This achieves yet another level of separation in your application (see figure 2.2).

Figure 2.1 Indiscriminately interweaving JavaScript, HTML, and CSS makes your project more difficult to manage
as it grows.

Inline style Embedded script

<button style="background-color: #ccc;" onClick="if(formValid && !formChanged){showConfirmation();}">
 Confirm
</button>

Data Presentation
How the user
sees and interacts
with the data

What the
data is

CSS

HTML

JavaScript

Figure 2.2 The data of your application can be separated from its representation in the UI.
Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

4 CHAPTER 2 The role of MV* frameworks
Although it’s entirely possible for you to create a homemade solution to manage all
these layers of separation, it’s probably not where you want to spend your develop-
ment time. Thankfully, though, a myriad of libraries and frameworks are ideal for just
such a task. If used in your application, they can play a key role in creating a successful
separation of concerns by externally managing the relationship between your logic,
data, and the UI. In varying degrees, they also provide many other features to assist
you in building your SPA.

 This chapter defines JavaScript MV*, briefly discusses its evolution from traditional
UI design patterns, and discusses what these frameworks do for us. The chapter also
breaks down some common MV* concepts, using three MV* frameworks to illustrate
different approaches to the same objective. As mentioned in chapter 1, not everything
is MV*. My focus in this book, however, is on the MV* style of frameworks.

 To further demonstrate how the same concepts are prevalent in MV*, even though
the approach may differ, you’ll create a small but reasonably realistic online directory
project with each framework. I’ll abbreviate the code samples in the text so the con-
cepts don’t get lost in the code. (The code for all three versions is available in appen-
dix A, with a complete code walk-through. And the code for each is available for
download online.)

 The end of the chapter includes a list of things to consider when selecting a frame-
work that’s right for you. Because all MV* implementations are different approaches
to the same problem, you’ll ultimately have to decide which one is the right fit for you.
There’s no clear right or wrong answer that fits all situations. Once you understand
the role of MV* and its underlying patterns, though, you’ll be able to select one that
best fits your environment. After all, no one knows your situation better than you do.
You know the factors that affect your project, your end users, your budget, your time-
lines, and your development resources.

2.1 What is MV*?
The term MV* represents a family of browser-based frameworks that provide support
for achieving a separation of concerns in your application’s code base, as discussed in
the introduction. These frameworks have their roots in traditional UI design patterns,
but the degree to which they follow a pattern varies from implementation to imple-
mentation.

 In MV*, the M stands for model and the V stands for view. Section 2.2 covers them in
depth, but for this discussion let’s briefly summarize each term:

■ Model—The model typically contains data, business logic, and validation logic.
Conceptually, it might represent something like a customer or a payment. The
model is never concerned with how data is presented.

■ View—The view is what the user sees and interacts with. It’s a visual representa-
tion of the model’s data. It can be a simple structure that relies on other parts
of the framework for updates and responses to user interactions or it can con-
tain logic, again depending on the MV* implementation.
Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

5What is MV*?
As you’ll see in section 2.1.1, traditional UI design patterns include a third compo-
nent, which helps manage the relationship between the model and the view, as well
their relationship with the application’s user. Although most modern browser-based
UI design frameworks based on MVC/MVVM have some notion of a model and a view,
it’s the third component that varies, in both name and the duty it performs. There-
fore, people have generally settled on the wildcard (*) to represent whatever the third
component might be.

 Section 2.1.2 presents a lot more about MV* in the browser. First, though, let’s find
out a little about traditional UI design patterns, which form the roots of MV*. Knowing
how we got here will help you get a better idea of why things work the way they do.

2.1.1 Traditional UI design patterns

Using architectural patterns to separate data, logic, and the resulting representation
of the output is a notion that has been around for a long, long time. Central to these
design patterns is the idea that an application’s code is easier to design, develop, and
maintain if it’s segmented based on the type of responsibility each layer has.

 This section details the three pat-
terns that have had the most influence
on client-side approaches: Model-
View-Controller (MVC), Model-View-
Presenter (MVP), and Model-View-
ViewModel (MVVM). After a proper
introduction to these design patterns,
you’ll see in section 2.1.2 how they
relate to the MV* frameworks we see in
the browser today.

MODEL-VIEW-CONTROLLER

Model-View-Controller (MVC) is one of
the oldest patterns to try to separate
data, logic, and presentation. MVC
was proposed by Trygve Reenskaug
and later implemented in the Small-
talk programming language in the
1970s.
 MVC was instrumental in the design
of graphical user interfaces then and
still is today. Since its inception, it and
its variants have become common
design patterns for all types of soft-
ware development. The MVC pattern
includes the model, the view, and a
controller (see figure 2.3):

Application

View

ModelController

Data

The controller processes user
input and sends commands for
the model to update its state.

The model notifies the
view of state changes.

The view observes the model
and gets new data when the
model's state changes.

Figure 2.3 The MVC design pattern has been used for many
years in the development of graphical user interfaces.
Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

6 CHAPTER 2 The role of MV* frameworks
■ Controller—The controller is the entry point for the application, receiving sig-
nals from controls in the UI. It also contains the logic that processes the user
input and sends commands to the model to update its state based on the input
received.

The interactions with the controller set off a chain of events that eventually lead to an
update of the view. The view is aware of the model in this pattern and is updated when
changes are observed.

MODEL-VIEW-PRESENTER

In 1996, a subsidiary of IBM called Taligent came up with a variation of MVC called
Model-View-Presenter, or MVP. The idea behind this pattern was to further decouple the
model from the other two components of MVC. Under MVP, a controller-like object
and the view would jointly represent the user interface, or presentation. The model
would continue to represent data management. As noted in figure 2.4, in MVP, there’s
no controller acting as a gatekeeper. Each view is backed by a component called a
presenter:

■ Presenter—The presenter contains the view’s presentation logic. The view
merely responds to user interactions by delegating responsibility to the pre-
senter. The presenter has direct access to the model for any necessary changes
and propagates data changes back to the view. In this way, it acts as a “middle-
man” between the model and the view.

Application

View
Presenter

Direct access

Notifications

View
interface

Model

Data

The view is the main entry
point for the interaction.
It delegates actions to
the presenter.

View updates
are done via a
view interface.

The presenter acts as a middleman
to completely decouple the view
and the model.

Figure 2.4 MVP is a variation of MVC. With this pattern, the view is the entry point, but its logic is
in the presenter.
Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

7What is MV*?
The presenter takes on the task of keeping the view and model updated. Having an
object in the middle allows the view and model to have more-focused responsibilities.

MODEL-VIEW-VIEWMODEL

Model-View-ViewModel (MVVM) was proposed by John Gossman in 2005 as a way to sim-
plify and standardize the process of creating user interfaces for use with Microsoft’s
Windows Presentation Foundation (WPF). It’s another design pattern that emerged to
try to organize the code associated with the UI into something sensible and manage-
able, while still keeping the various components of the process separate.

 As in MVP, the view itself is the point of entry. Also like MVP, this model has an
object that sits between the model and the view (see figure 2.5). The third component
in this pattern is called the ViewModel:

■ ViewModel—The ViewModel is a model or representation of the view in code, in
addition to being the middleman between the model and the view. Anything
needed to define and manage the view is contained within the ViewModel. This
includes data properties as well as presentation logic. Each data point in the
model that needs to be reflected in the view is mapped to a matching property
in the ViewModel. Like a presenter in MVP, each view is backed by a ViewModel.
It’s aware of changes in both the view and the model and keeps the two in sync.

Now that you know a little about traditional UI design patterns, you can better under-
stand browser-side MV* approaches. Let’s fast-forward, then, and talk about the MV*
we see in the browser.

2.1.2 MV* and the browser environment

Just like application code running on the server or natively as a desktop application,
code running in the browser can benefit from using good architectural design pat-
terns. In recent years, many frameworks have cropped up, aiming to fulfill this need.

Application

View ViewModel

Model changes

Model

Data

The ViewModel provides properties
and logic that model the view. It also
keeps the model and view in sync.

UI changes

Figure 2.5 In MVVM, the ViewModel is
aware of changes in both the model and
the view and keeps the two in sync.
Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

8 CHAPTER 2 The role of MV* frameworks
Most are based on MVC, MVP, or MVVM to some degree. The browser is a different sort
of environment, though, and we’re dealing with three languages at once (JavaScript,
HTML, and CSS). Therefore, it’s difficult to perfectly match a browser-side MV* frame-
work with a design pattern. Trying to pigeonhole them into one category or another
is, in most cases, a fruitless undertaking. Design patterns should be malleable strate-
gies, not inflexible directives.

 One of the reasons why the term MV* sprang up in the first place is that it’s often
hard to nail down what the third concept in the framework is. The term represents
sort of a compromise, to cease the endless disputes about whether particular frame-
works are more this pattern or more that pattern.

 The remnants of the traditional patterns are there but are loosely interpreted.
Each one has some form of the data model, whether it’s in the form of a POJO (plain
old JavaScript object) or some model structure dictated by the implementation. Each
also has some notion of a view. The third cog in the machine might be a little more
elusive, though. The framework might employ an explicit controller, presenter, or
ViewModel. But it might have some sort of hybrid or not have the third part at all!

 Derick Bailey, creator of Marionette.js for Backbone.js, put things rather elo-
quently in one of his online posts, titled “Backbone.js Is Not an MVC Framework”:

Ultimately, trying to cram Backbone into a pattern language that doesn’t fit is a bad
idea. We end up in useless arguments and overblown, wordy blog posts like this one,
because no one can seem to agree on which cookie-cutter pattern name something fits
into. Backbone, in my opinion, is not MVC. It’s also not MVP, nor is it MVVM (like
Knockout.js) or any other specific, well-known name. It takes bits and pieces from differ-
ent flavors of the MV* family and it creates a very flexible library of tools that we can use
to create amazing websites. So, I say we toss MVC/MVP/MVVM out the window and just
call it part of the MV* family.

Source: http://lostechies.com/derickbailey/2011/12/23/
backbone-js-is-not-an-mvc-framework/

Many other people share this same viewpoint about the fruitlessness of trying to one-
for-one match today’s MV* with a traditional design pattern. The idea of the useful-
ness of the framework taking priority over its categorization gained even more steam
when the AngularJS team weighed in with a similar conclusion about their framework.
Igor Minar (from the AngularJS team) famously blogged that developers will argue
endlessly about how to categorize a particular MV* framework. He went on to state
that AngularJS started out more like MVC, but over time it has become a little more
like MVVM. In truth, it’s a little like both. In this same blog entry, he proposes the term
MVW, which has since stuck:

I’d rather see developers build kick-ass apps that are well-designed and follow separation
of concerns than see them waste time arguing about MV* nonsense. And for this reason,
I hereby declare AngularJS to be MVW framework—Model-View-Whatever. Where What-
ever stands for whatever works for you.

Source: https://plus.google.com/+IgorMinar/posts/DRUAkZmXjNV
Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

http://lostechies.com/derickbailey/2011/12/23/backbone-js-is-not-an-mvc-framework/
https://plus.google.com/+IgorMinar/posts/DRUAkZmXjNV

9Common MV* concepts
Knowing that most MV* implementations only loosely base their design on the origi-
nal pattern helps us remember that it’s not so important to try to brand the frame-
work as one pattern or another.

2.2 Common MV* concepts
Now that you know what MV* is, let’s go over a few common concepts that are fre-
quently found, no matter the implementation. In the examples for each concept,
you’ll quickly begin to see that even though the syntax and approach may vary
between frameworks, the ideas are the same. Before we begin, let’s take a moment to
review at a high level the concepts covered in this section:

■ Models—Models represent the data of our application. They contain properties
and possibly logic to access and manage the data, including validation. The
model often contains business logic as well.

■ Views—Views are what the user sees and interacts with and are where models
are visually represented. In some MV* implementations, views may also contain
presentation logic.

■ Templates—Templates are the reusable building blocks for views when dynamic
content is needed. They contain placeholders for data, as well as other instruc-
tions for how content in the template should be rendered. One or more tem-
plates will be used to create a view in an SPA.

■ Binding—This term describes the process of associating the data from a model
with an element in a template. Some MV* implementations also provide other
types of binding, such as bindings for events and CSS styles.

Figure 2.6 gives a big-picture view of how these concepts relate to each other in an SPA.
These concepts are probably the least common denominator in building SPAs. Other
features, such as routing (covered in chapter 4), are also common (and necessary)
but may not be provided universally. Not to worry, though. I cover many of the other
concepts later in the book. We just need a sound foundation to begin with.

Model

(Binding)

+ =

[
 {"firstName":"Mary"},
 {"firstName":"Ted"},
 {"firstName":"Alice"}
]

Template View

Hello <%= firstName %>,
how are you?

Hello Mary, how
are you?

Hello Ted, how
are you?

Hello Alice, how
are you?

Figure 2.6 Data from models are combined (bound) with reusable templates to create
views that make up the SPA’s UI.
Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

10 CHAPTER 2 The role of MV* frameworks
2.2.1 Meet the frameworks

Because we’re using three frameworks for illustration in this section, some introduc-
tions are in order. Each represents a slightly different approach to these basic MV*
concepts. Seeing the different approaches, though, should give you a broader per-
spective ultimately. The three frameworks are as follows:

 Description: As mentioned before, Back-
bone.js doesn’t perfectly fit a traditional design
pattern but could be described as being some-
where between MVC and MVP. Backbone.js is
code driven. Models and views are created pro-
grammatically, using JavaScript code in this
framework, by extending Backbone.js objects. By extending core objects, you auto-
matically inherit a lot of built-in functionality. The framework also provides other
out-of-the-box features to make routine tasks easier. Backbone.js doesn’t provide
everything you’ll need in your SPA, though, so you must fill certain gaps using other
libraries or frameworks.

 Description: Knockout may not perfectly fit
with the original MVVM definition, but it’s fairly
close. In this framework, the model is any
source of data, not an explicit object structure
prescribed by the framework. Views and tem-
plates are created with plain HTML. The View-
Models that map model data to UI elements
and provide views with behavior are created programmatically using JavaScript code,
but most everything else is done declaratively by adding custom attributes to the HTML.
Knockout is mainly concerned with making the binding process clean and easy.
Though this makes the framework small and superbly focused, it leaves you to look to
other frameworks and libraries for all other SPA requirements.

 Description: AngularJS humbly describes
itself as the “Superheroic JavaScript MVW
Framework.” The creators of AngularJS
designed it to be a one-stop-shopping kind of
framework. Most, if not all, of your SPA needs
are covered by this framework. AngularJS mixes
and matches concepts that its creators liked
from traditional patterns, as well as from other popular frameworks, to come up with a
nicely balanced palette of out-of-the-box features. Part of your work in this framework
will be done programmatically via JavaScript code, and part will be done declaratively
using custom HTML attributes.

2.2.2 Meet our MV* project

To help illustrate our list of common concepts, you’ll create a simple online employee
directory. You’ll create it three ways, using each of the frameworks previously

URL: http://backbonejs.org

URL: http://knockoutjs.com

URL: https://angularjs.org
Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

http://backbonejs.org
http://knockoutjs.com
https://angularjs.org

11Common MV* concepts
described. Later in the book, you’ll learn about more-advanced topics, such as routing
and server transactions. For now, you’ll stick to the basics for this project. Our exam-
ple, though somewhat contrived, still covers basic CRUD operations over a list. That
should be sufficiently challenging for an introduction.

 Let’s go over our objectives for this example:
■ Create a simple SPA to enter employee information.
■ Build an easy-to-use UI for entering each employee’s first name, last name, title,

email, and phone.
■ Keep track of each entry as part of a list, with the screen split between the entry

form on the left and the directory’s entry list on the right.
■ Have two buttons on the entry side of the SPA: one to add a new entry and one

to clear the form.
■ Have one button next to each entry to remove the entry from the list.
■ Have indicators next to each entry field to denote whether the field’s entry

requirement has been met. (Each indicator should update as the user types.)

Now that you’ve reviewed the objectives, take a look at the screenshot of the final
product (see figure 2.7). The application will look and behave the same for each MV*
framework used.

Indicators change from “Required” to
“Invalid” if the user enters invalid data.

Clicking the X button
deletes the entry.

Figure 2.7 Screen capture of the online directory. The user enters information in the form on
the left. Valid entries appear in a list on the right.
Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

12 CHAPTER 2 The role of MV* frameworks
Throughout our discussion of MV* concepts, I’ll refer to this example. I’ll also talk
about how different philosophies by the framework creators affect the type of code
you’ll create. Although only certain parts of the code will be used for illustration, all of
the code for each MV* version is in appendix A and available for download.

2.2.3 Models

You know from our discussion of patterns that models often contain business logic
and validation. They also represent the data in your application. The data they con-
tain shouldn’t be a motley crew of unrelated information, though. They’re called mod-
els because they model a real-life entity that’s important to the application’s logic.

 For example, if you were building an online reservation system for a hotel, your
models might include the hotel, a room, an agent, a customer, the reservation, ameni-
ties, notes, invoices, receipts, and payments. What about a web-based application for
teachers? You’d need to have data representing the school, its teachers, the students,
courses, and grades, at a minimum. Each model in the application would represent a
real-world object. Consequently, the larger and more complex the system, the more
types of models you’ll have.

 Let’s see what a model’s data would look like for our online employee directory.
Remember that models mirror things in the real world. They contain not only data
but behavior as well. In this case, you’re going to model a directory listing. I’ll keep it
extremely simple to make sure the concept doesn’t get buried in too much code.
Here’s the information we’re going to keep track of in each model:

■ First name
■ Last name
■ Title
■ Email address
■ Phone number

The employee list inside the directory would be a collection (array) of these models.
Figure 2.8 illustrates what this would look like from a conceptual standpoint.

Employee record
(model)

validate()

First name
Last name
Title
Phone
Email

Employee record
(model)

validate()

First name
Last name
Title
Phone
Email

Employee record
(model)

validate()

First name
Last name
Title
Phone
Email

Data

Directory

Validation logic

Employee list

Figure 2.8 The application’s data in our online directory project is just an array of employee
models. Each model is an object that contains the employee information we’ll see onscreen.
Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

13Common MV* concepts
To help you visualize what the models will look like when they’re added to the collec-
tion and rendered in the view, you can look at the screenshot of the employee directory
application again (see figure 2.9). Remember, each model in the list is an object in an
array. In this version of the screenshot, I’ve superimposed a snapshot of the data inside
each model that has been added to our list. This will help you see the models in action.

 Now that you have a mental picture of how the employee models will be used, let’s
talk about how a model is defined in each type of framework. How you create a model
in an MV* application varies, depending on the framework you’re using. As I men-
tioned, the framework might not be an exact match for one of the traditional design
patterns, but the implementation will certainly be influenced by the pattern.

IMPLIED MODELS

In some MV* implementations, the model is just the data itself, not an explicit struc-
ture prescribed by the framework. This data can be from any source, including POJOs
and HTML form controls in the UI itself. There are no restrictions on what you can use

[{
 firstName : "Ana",
 lastName : "Perez",
 title : "Sr. Director, HR",
 phone : "555-555-1234",
 email : "Ana.Perez@someco.com"
},{
 firstName : "Taylor",
 lastName : "Martin",
 title : "Manager, HR",
 phone : "555-555-1231",
 email : "Taylor.Martin@someco.com"
}]

The list is
an array of
model data.

Model 1

Model 2

Figure 2.9 Screen capture of the online directory. Here you see that two instances of the employee
model have been added to the list.
Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

14 CHAPTER 2 The role of MV* frameworks
for the source data when the model is implicit. This is the case for both Knockout and
AngularJS.

 For example, in our fictitious employee directory, we need the data for the
employee model to come from the entry form the user fills out. So instead of creating
a JavaScript object or getting JSON from the server, we need to capture data directly
from the INPUT fields of our HTML form when creating each entry in the directory’s list.

 AngularJS provides an easy shortcut for this. If you need your model data to come
from an INPUT field, you can add a custom attribute called ng-model to each field (see
listing 2.1). The attribute declares that model data is sourced from the HTML form
element where the attribute is placed. The attribute magically establishes the form-
Entry model if it doesn’t already exist and gives it a property called firstName. Then
it ties formEntry.firstName to this INPUT field.

<input id="firstName" name="firstName" type="text"
ng-model="formEntry.firstName"
required
placeholder="First Name"/>

Once established, the model is readily available in your JavaScript code. One of the
many benefits of using an MV* framework is keeping the complex, boilerplate code
that marries the data and UI external to our application’s logic. This one attribute is a
great example.

 In Knockout, the model is again implied, not explicitly declared (see listing 2.2).
In this framework, you add custom attributes to each INPUT field just as we did in the
AngularJS version. This time, the attribute is called data-bind.

 With Knockout (in true MVVM fashion), the attribute ties the INPUT field with a
matching property in the ViewModel. In turn, our JavaScript code gains access to the
field through the ViewModel.

<input id="firstName" name="firstName" type="text"
data-bind="hasFocus: isFocused,
value: entry.firstName,
valueUpdate: 'afterkeydown'"
placeholder="First Name" />

With both AngularJS and Knockout, your model could have been any data source.
Because you’re working from an entry form, that’s where you needed your model’s
data to come from. In both cases, no model object was explicitly defined. Instead,
each framework provided a custom attribute you could add to the HTML to establish
the entry form as the source of the model’s data. Now let’s see how to create a model
in Backbone.js, where models are explicitly defined in code.

Listing 2.1 AngularJS model

Listing 2.2 Knockout model

ng-model is AngularJS’s
custom attribute

data-bind is Knockout’s
custom attribute

A matching property from
a ViewModel you’ll define in code
Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

15Common MV* concepts
EXPLICIT MODELS

In MV* implementations where an explicitly declared model is required by the frame-
work, the model is created as a JavaScript object. Backbone.js is a prime example of
this. Backbone.js models can have logic in addition to data, such as validation, default
data, and custom functions. You also inherit a lot of functionality. Just by extending
the framework’s model to create your own, you automatically receive a wide variety of
base functionality without even writing code.

 The ability to immediately inherit a lot of functionality makes creating a model in
these types of frameworks powerful and flexible. For example, in Backbone.js you can
create a bare-bones model in a single line of code:

var EmployeeRecord = Backbone.Model.extend({});

To use the object, you create a new instance of it and call any functions it has available
out of the box. With this single declaration, your model right away has a variety of
built-in behaviors such as validation, functions to execute RESTful services, and much
more. See the online documentation for the full list (http://backbonejs.org).

 It’s equally as easy to assign properties to a Backbone.js model. To create a new
property called firstName and set its value to Emmit, you can either pass in {first-
Name : "Emmit"} to the object’s constructor or use the model’s built-in set method:

var employee = new EmployeeRecord({});
employee.set({firstName : "Emmit"});

The following listing illustrates the Backbone.js version of the employee model for
our online directory. The validation needed for the directory example makes the
source for the model quite verbose.

var validators = {
 "*": [{
 expr: /\S/,
 message: "Required"
 }],
 "phone": [{
 expr: /^[0-9]{3}-[0-9]{3}-[0-9]{4}$/,
 message: "Invalid"
 }],
 "email": [{
 expr: /^[a-z0-9!#$%&'*+\/=?^_`{|}~-]+(?:\.
 [a-z0-9!#$%&'*+\/=?^_`{|}~-]+)*@
 (?:[a-z0-9](?:[a-z0-9-]*[a-z0-9])?\.)+[a-z0-9]
 (?:[a-z0-9-]*[a-z0-9])?$/i,
 message: "Invalid"
 }]
};

function validateField(value, key) {
 var rules = validators["*"].concat(validators[key] || []);

Listing 2.3 Backbone.js model

Define validation for data being
set on the model’s properties

Keep track of
specific errors
Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

http://backbonejs.org

16 CHAPTER 2 The role of MV* frameworks
 var broken =
 _.find(rules,function(rule) {return !rule.expr.test(value);});

 return broken ? {"attr":key,"error":broken.message} : null;
}

var EmployeeRecord = Backbone.Model.extend({
 validate: function(attrs) {
 var validated = _.mapObject(attrs, validateField);
 var attrsInError = _.compact(_.values(validated));
 return attrsInError.length ? attrsInError : null;
 },
 sync: function(method, model, options) {
 options.success();
 }
});

There seems to be a lot more going on than there is. We inherit the power of the
Backbone.js model just by extending its base object. But the framework leaves it up to
you as to how you want to validate the data. It gives you a couple of hooks with
validate(attrs, options), and you can fill in the rest however you want.

2.2.4 Bindings

The term binding is another concept you should understand if you plan on using an
MV* framework. This term is used frequently when talking about UI development. In
plain English, it means to tie or connect two things together. In UI development,
whether we’re talking about desktop programming with a language like .NET or web
development with MV*, we mean linking a UI element in the view (such as a user input
control) to something in our code (for example, a model’s data).

 It doesn’t have to be just data, though. Different libraries and frameworks offer dif-
ferent types of bindings. Styles, attributes, and events such as click are just a sampling
of what can be bound to the UI. The binding types that are available vary, depending
on the framework. You’ll look at the code for a few approaches in this section, just to
illustrate.

 How exactly do we declare a binding in our application? MV* frameworks make
binding something in our code to an element in the UI simple. Understanding how to
declare a binding starts with getting to know the syntax.

BINDING SYNTAX

Binding syntax comes in two flavors:

■ Expressions, which are special characters that wrap/delimit the bound item
■ HTML attributes (called directives in AngularJS or bindings in Knockout)

With both types, the binding syntax is freely mixed with the HTML of the template.
Table 2.1 lists a few examples of the binding syntax used by some popular libraries/
frameworks. This is by no means an exhaustive list, but it should give you a general idea.

Create the model
Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

17Common MV* concepts
 Keep in mind, also, that the table is using simple text bindings to illustrate syntax
styles. As noted previously, things other than data, such as events and CSS styles, may
also be supported. See the documentation for each library/framework to see the com-
plete list of bindings supported and additional usage instructions.

After you look at the documentation of the framework or library to get a feel for the
syntax, the next thing to understand about binding is the directional flow of data in
the binding.

BINDING DIRECTION

Binding something in our code to a visual element in the view can be bidirectional,
single-directional, or a one-time binding. The type of binding relationship is also
established via the MV* framework.

TWO-WAY BINDING

In bidirectional, or two-way, binding, after the binding link is established, changes on
either end cause updates on the opposite side. This keeps the two sides in sync. In a
web application, two-way binding is associated with UI controls, like those in a form,
that support user input.

 Knockout is a great library to illustrate the concept of two-way binding. Binding is,
after all, this library’s main purpose. As you saw previously, creating a binding is as easy
as typing a custom attribute called data-bind right in the HTML. The data-bind attri-
bute tells Knockout that something in the UI is going to be bound to a property in a
ViewModel. In the following example, we’re binding the value of an INPUT control to a
ViewModel property called firstName:

<input data-bind="value: firstName" />

Table 2.1 Binding is in the form of either an attribute or an expression. AngularJS supports both styles
 to some extent.

Framework/library Type Example

Knockout
http://knockout.com

Attribute data-bind="text: firstName"

AngularJS (type 1)
https://angularjs.org

Attribute ng-bind="firstName"

AngularJS (type 2) Expression {{ firstName }}

Mustache
http://mustache.github.io

Expression {{ firstName }}

Handlebars
http://handlebarsjs.com

Expression {{ firstName }}

Underscore.js (default)
http://underscorejs.org

Expression <%= firstName %>
Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

18 CHAPTER 2 The role of MV* frameworks
For the other half of the two-way binding relationship, you tell Knockout you want the
property to be observed for any changes by wrapping its data in a Knockout observ-
able object. (Remember observables from the Observer pattern?)

var myViewModelObject = {
 firstName : ko.observable("Emmit")
};

Because of the two-way binding established by this small amount of code, these two
items will stay in sync automatically.

 Binding is just as easy, or more so, with AngularJS. You already saw AngularJS’s two-
way binding in action during our discussion of models. You add the attribute ng-
model to the HTML of the INPUT tag:

<input ng-model="firstName" />

On the JavaScript code side, you have a $scope object instead of a ViewModel. Scopes
are similar in that they sit between the view and our JavaScript code and give us access
to the model.

 One nice thing about this framework is that AngularJS’s magic automates a lot of
the two-way setup. First, the $scope object automatically monitors models for changes.
Second, you don’t even have to create the $scope object; AngularJS will hand it to you,
if you ask for it. Then, in your code, you can refer to the property via the $scope
object like this:

$scope.firstName

That’s it. Now both the INPUT field and the property are bidirectionally bound.
Changes on either side affect the other. Pretty easy, huh?

 You’ve seen the approaches to two-way binding from two different frameworks.
Even so, the concept remains the same in both. Now let’s take a quick look at binding
in a single direction.

ONE-WAY BINDING

When binding is single-directional, or one-way, changes in the state of the source
affect the target but not the other way around. This type of binding is normally associ-
ated with HTML elements that don’t require any input from the user, such as a DIV or
SPAN tag. With these types of elements, you’re interested in its text, not its value. You
still access the data on the JavaScript side in the same manner, but in the template you
choose the attribute specifically for one-way text binding.

 With Knockout, you change the word value to text:

In AngularJS, the attribute itself changes from ng-model to ng-bind:

Once again, you can see that the binding concept remains the same even though
you’re looking at different MV* frameworks.
Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

19Common MV* concepts
TIP Knockout provides an additional way to make even bindings for user
input one-way, in case you need that behavior. You just remove the observable
“wrapper” from the ViewModel property like this: firstName : "Emmit".

You might be wondering at this point, why bother with the one-way types? Why not use
two-way binding always? Well, usually something as magical as automatic, two-way bind-
ing comes at a cost. Two-way binding has slightly more overhead. No need to panic and
avoid it, though. For most views, this overhead is negligible. But if you have a ton of
bindings throughout your application, you should use any means to save on overhead.

 If your view receives input from the user, and you need the data and view to stay
constantly in sync, use two-way binding. When you have read-only UI elements, use
one-way binding. One-way will keep the view updated when the model changes but
doesn’t bother with trying to monitor the view side, because the element is read-only.

ONE-TIME BINDING

One-time binding is a type of one-way binding that happens only once. Nothing is
automatically observed for changes. No subsequent updates occur if the source
changes or the target changes.

 With one-time binding, after the template and the data are combined and ren-
dered as the view, the process is done. If new changes need to be applied to the view,
the entire process starts over. The previous view is destroyed, and the new data is com-
bined with the same template to generate the view anew.

 I’ve saved Backbone.js for this section. The typical approach for rendering tem-
plates when using Backbone.js is through one-time binding (though some Backbone-
compatible libraries and plugins offer the other two types). With AngularJS and
Knockout, after the bindings are established, they’re reused. In Backbone.js, the gen-
eral idea is that when new data is needed, the view is destroyed (with the bindings)
and re-created. I’ll talk more specifically about templates in the next section.

NOTE Backbone.js doesn’t have templating/binding capabilities built in but
instead lets you pick the outside library of your choice for the task. Its default
is the utility library Underscore.js.

To recap the types of bindings we discussed, consider table 2.2.

In the next section, you’ll see binding in action with template examples from our
online employee directory.

Table 2.2 Bindings can be two-way, one-way, or one-time.

Binding type Behavior

Two-way Bidirectional—keeps data and view constantly in sync.

One-way Single-directional, or one-way—changes in the state of the source affect
the target, but not the other way around.

One-time One-way—occurs only once at render time, from model to view.
Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

20 CHAPTER 2 The role of MV* frameworks
2.2.5 Templates

A template is a section of HTML that acts as a pattern for how our view is rendered. This
pattern can additionally contain various types of bindings and other instructions that
dictate how the template and its model data get processed. A template is also reusable,
like a stencil.

 One or more templates are used to create a view, with complex views often having
multiple rendered templates on the screen at the same time. The part of the MV*
framework, whether built in or via an outside library, that marries the template and
the model’s data is generally referred to as a template engine. Figure 2.10 illustrates the
marriage of data from the employee directory form (our model) and a template to
arrive at what the user sees onscreen.

 You should now be able to recognize bindings when you see them, so let’s take a
look at some real examples of templates and their bindings taken from our MV* proj-
ect. I’ve highlighted the bindings so you can easily see which part of the template is
the binding and which part is just the HTML.

WHAT TEMPLATES LOOK LIKE

One thing all templates have in common is that they represent some part of our view.
What this means for you as a developer is that, apart from the binding syntax, views

{
 firstName : "Ana",
 lastName : "Perez",
 title : "Sr. Director, HR",
 phone : "555-555-1234",
 email : "Ana.Perez@someco.com"
{

The template engine marries the
data and template to arrive at
what the user sees onscreen.

Data

<div class="entry">
 <%= lastName %>, <%= firstName %>
 <button type="button" class=”removeButton”> X
 </button>

 Title: <%= title %>

 Phone: <%= phone %>

 Email: <%= email %>
</div>

Template

Figure 2.10 The fully rendered template, created by a template engine
Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

21Common MV* concepts

Calls a f
pas

entr
are just HTML. This also means that if you have a web designer on the team, views can
be constructed by the designer as well.

 The following listing shows our Knockout template. Notice that it has custom attri-
butes, but apart from that it’s normal HTML.

<li class="entry">
 <button type="button" class="remove-entry"
 data-bind="click: removeEntry">╳</button>

 ,

 Title:

 Phone:

 Email:

Do you remember from our discussion of binding syntax that with AngularJS we could
use either expressions or attributes? For the online directory project, we’re using
expressions just to demonstrate those (see the following listing). You can use ng-bind
if you prefer the attribute style.

<li class="entry" ng-repeat="entry in entries">

 <button type="button" class="remove-entry"
 ng-click="removeEntry(entry)">╳</button>

 {{entry.lastName}}, {{entry.firstName}}

 Title: {{entry.title}}

 Phone: {{entry.phone}}

 Email: {{entry.email}}

What’s neat about templates in Backbone.js is that you aren’t confined to a particular
template syntax, because there’s no built-in template library. Backbone.js allows you to
use the template engine of your choice. In our directory project, we’re using the
default, which is Underscore.js (see the following listing). Underscore.js has a default

Listing 2.4 Knockout template

Listing 2.5 AngularJS template

This click
binding

removes
the entry Data bindings link our form

fields to the ViewModel’s data

Stamps out this template
for every entry object
in the list of entriesunction,

sing the
current
y object
Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

22 CHAPTER 2 The role of MV* frameworks

Tran
mod
a JS
delimiter of <%= %> for its expressions, but the delimiters can be anything you want
(including {{ }}).

<button type="button" class="remove-entry">╳</button>
<%= lastName %>, <%= firstName %>

Title: <%= title %>

Phone: <%= phone %>

Email: <%= email %>

These examples provide a good introduction to templates and the various binding
styles that are used. One thing we haven’t talked about yet, though, is how the process
gets triggered.

TEMPLATE RENDERING

In AngularJS, the rendering of a template happens automatically, as soon as the appli-
cation starts. AngularJS searches through the DOM for its custom attributes, including
those for binding templates.

 In other frameworks, this step isn’t difficult but may be a little more explicit.
Knockout, for example, requires a one-liner in your JavaScript code for each View-
Model to activate the bindings:

knockout.applyBindings(myViewModel, $("#someElement")[0])

Knockout has a special function you call, applyBindings, which renders the template
with the model data supplied by the ViewModel. The first parameter is the ViewModel
itself. The second is the place in the DOM you want Knockout to start looking for bind-
ings for the given ViewModel. The second parameter is optional, but for efficiency you
should use it in order to confine the binding process to a particular parent element.

TIP $("#someElement")[0] is the way in jQuery to access the underlying
DOM object referenced in its selector, because jQuery doesn’t know how
many elements will be a match for a given selector. You can also use the Java-
Script document.getElementById("someElement") method as the second
parameter.

In Backbone.js, rendering the template is a bit more of a manual process. The frame-
work provides template and render as hooks for the external template engine of your
choice. To render the template to the screen, you have to run it through the compile-
and-render process. You’ll see the view in its entirety in the next section, but for now
let’s focus on the rendering of the template, as shown in the following listing.

template : _.template(templateHTML),
render : function() {
 var modelAsJSON = this.model.toJSON();

Listing 2.6 Backbone.js template using the Underscore.js template library

Listing 2.7 Backbone.js template compile and render

We’re sticking with the default
Underscore.js as the template engine,
but we could substitute a different one

Compiles the template
into a reusable functionslates the

el data to
ON string
Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

23Common MV* concepts

M
data
 var renderedHTML = this.template(modelDataAsJSON);
 this.$el.html(renderedHTML);
 return this;
}

The preceding code seems quite verbose when compared to the other two frameworks.
The ability to choose whichever template engine you want is a great trade-off, though.

 You now know what templates are and how to create them. The lingering question
you might have is where do you keep their source code?

WHERE TO KEEP TEMPLATES

Templates can either be included in the initial download of your SPA (inline) or down-
loaded on demand as external partials (or fragments).

INLINE TEMPLATES

If your template uses the expression style of binding syntax and isn’t downloaded on
demand, you’ll need to place it inside SCRIPT tags. You use SCRIPT tags to avoid acci-
dentally showing the user the binding code before the render process happens. The
browser won’t try to display code within the SCRIPT tags.

 To prevent the browser from trying to execute the script as JavaScript code, you’ll
need to give the SCRIPT tag’s Multipurpose Internet Mail Extensions (MIME) type
something other than text/javascript or application/javascript, as shown in the
following listing.

<script type="text/template" id="myTemplate">
 Hello, <%= firstName %>, how are you?
</script>

If your inline template uses attributes for its binding syntax, there’s nothing else spe-
cial you need to do. SCRIPT tags aren’t needed. Also, because attributes aren’t dis-
played anyway, there’s no chance the user will accidently see the bindings before the
view is rendered.

TEMPLATE PARTIALS

If you download the template on demand, there’s no need for SCRIPT tags, even if
you’re using expressions. The dynamically fetched template can be used directly by
the template engine, which avoids the issue altogether.

 As noted previously, these on-demand templates are sometimes referred to as par-
tials or fragments. They’re not part of the initial HTML document that’s loaded with
your application. Instead, they’re fetched as snippets of source code directly from the
server at runtime.

 Now that you have a good idea about models, binding, and templates, you need to
finally see how they culminate into the view the user sees and interacts with. In the
next section, you’ll look at how MV* frameworks approach views.

Listing 2.8 Inline template

arries the
and HTML Replaces the element’s content

with the rendered HTML

Wrapping a template in SCRIPT tags
hides its source. Non-JavaScript MIME
types aren’t treated as JavaScript code.
Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

24 CHAPTER 2 The role of MV* frameworks

Def
eleme

Comp
te
2.2.6 Views

As you saw during our discussion of templates, frameworks such as Knockout and
AngularJS use declarative bindings in their templates, usually in the form of special
attributes added to HTML elements. In these frameworks, the templates and views are
pretty much the same thing. Thus, when composing views in these frameworks, you
need to decide only whether the templates will be kept inline or downloaded on
demand. This is more of a design issue.

 In a code-driven framework like Backbone.js, the approach is to programmatically
create the view. The following listing is an example from our directory application of a
Backbone.js view. Don’t worry if you don’t understand everything in the example right
now. When you’re ready, appendix A contains a complete walk-through of the code.

var Employee = Backbone.View.extend({
 tagName: "li",
 template: _.template(templateHTML),
 render: function() {
 this.$el.html(this.template(this.model.toJSON()));
 return this;
 },
 events: {
 "click .remove-entry": "removeEntry"
 },
 removeEntry: function() {
 this.model.destroy();
 this.remove();
 }
});

Backbone.js allows you to define traits for your view, such as its CSS class name and the
type of element it will be. Additionally, you’re given the freedom to define key mile-
stones in the life of the view, such as its rendering and removal, in any manner you wish.

 The discussion on views rounds out our conversation of basic MV* concepts. It’s
great to understand the concepts, but what does an MV* framework do for us? In the
next section, I’ll discuss how using an MV* framework can make our lives as SPA devel-
opers much easier and our code much cleaner.

2.3 Why use an MV* framework?
Deciding to use any external software in your project shouldn’t be taken lightly. You
are, after all, introducing a dependency. That being said, however, when its benefits
exceed the costs, a new dependency is worth considering. This section presents some
of the key benefits of using MV* frameworks.

Listing 2.9 Backbone.js view example

Extend the built-in
Backbone.js view object

ine the
nt type

ile the
mplate Render the view and

attach it to the DOM

Define the behavior
for the click event

Perform some cleanup
anytime the view is removed
Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

25Why use an MV* framework?
2.3.1 Separation of concerns

As mentioned previously, MV* frameworks provide a means to segregate JavaScript
objects into their basic roles based on their underlying design pattern or patterns.
Each part of the code can be focused on a particular responsibility to the application.

 This overarching concept of separation of concerns helps us design objects with a
particular purpose. Models can be dedicated to data, views can be dedicated to the
presentation of data, and components such as controllers, presenters, and ViewMod-
els can keep these two parts communicating with one another without being joined at
the hip. The more dedicated an object is to a singular purpose, the easier it is to code,
test, and update after it’s in production.

 MV* frameworks also reduce the tendency to write spaghetti code by providing
framework elements that require us to write code in a particular way to facilitate
loose coupling. This keeps our HTML as clean as possible by removing embedded
JavaScript and CSS code. It also keeps our JavaScript free from deep coupling with
DOM elements.

 Here’s a classic AngularJS example
demonstrating how MV* can make our
code cleaner. Figure 2.11 shows a SPAN tag
(right) mirroring what’s being typed into
an INPUT field (left).

 Let’s create the example from figure
2.11, first written as spaghetti code and
then with AngularJS. Listing 2.10 is the
source code, written as tightly coupled
HTML and JavaScript. Tightly coupling means making direct references or calls from
one function or component to another. This joins them at the hip, so to speak.

 Writing code this way works, but it can prove to be difficult to read and a pain to
update later. If an entire single-page application were written like this, you can imag-
ine how monumentally difficult it would be to maintain.

<html>
<body>
 <input id="name"
 onKeyUp="document.getElementById('output').innerHTML
 = document.getElementById('name').value">

</body>
</html>

WARNING The code in listing 2.10 dynamically updates the SPAN as you type
but is hard to read and difficult to maintain.

Listing 2.10 Tightly coupled HTML and JavaScript

Figure 2.11 In this example, a SPAN tag’s
contents are being updated dynamically as the
user types into an INPUT field.

Don’t do this!
Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

26 CHAPTER 2 The role of MV* frameworks
Now, in the following listing, we use the AngularJS framework’s ability to abstract away
much of the boilerplate code needed to achieve the same results.

<html>
<body ng-app>
 <input ng-model="name">
 {{name}}
 <script src="js/thirdParty/angular.min.js"></script>
</body>
</html>

Believe it or not, that small bit of code is all that’s needed. Of course, this is a con-
trived example. Even using a framework as powerful as AngularJS, complicated appli-
cations will have complicated logic. For all the reasons I just mentioned, though,
you’ll spend more of your time writing business logic, not the low-level, routine
plumbing.

2.3.2 Routine tasks simplified

MV* frameworks also simplify some of the tasks we as developers deal with on a regular
basis. Take, for instance, repetitively printing out the data from a list, complete with
HTML markup, to the screen. That’s a run-of-the-mill task, but the mechanics involved
take a good deal of code to pull it off. Moreover, we find ourselves repeating the same
code over and over every time we need to do this.

 Let’s consider the employee directory from the beginning of the chapter. One of
the requirements is to be able to add an employee’s data as an entry to a list. If you
had to code all the mechanics by hand, you’d find yourself manually creating DOM
elements for each entry in a JavaScript loop. The code wouldn’t be pretty, and
chances are it wouldn’t be reusable for other tasks.

 MV* frameworks take the drudge work out of tasks like this. Take the code in list-
ings 2.12 and 2.13. This is how we’re adding entries to our list using Knockout. Listing
2.12 is from the HTML side of things. For brevity, this isn’t the entire source code, only
the portion to add to the directory’s employee listing. The complete source code can
be found in appendix A.

<ul class="entry-list" id="entryList"
 data-bind="foreach: entries">

Notice that we don’t have any JavaScript code in our HTML. The following listing
shows the ViewModel backing this section of the template.

Listing 2.11 AngularJS example

Listing 2.12 Employee list HTML

The AngularJS framework marries the INPUT
field with the SPAN tag, removing the need
to put JavaScript code in your HTML

An empty UL and a foreach binding
to iteratively build our list
Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

L

Cre
wh
bu
27Why use an MV* framework?

self.entries = ko.observableArray();
self.addEntry = function(e) {
 var newEntry = {
 firstName : self.entry.firstName(),
 lastName : self.entry.lastName(),
 title : self.entry.title(),
 phone : self.entry.phone(),
 email : self.entry.email()
 };
 self.entries.push(newEntry);
};

With a few subtle attributes and a minimal amount of code, we were able to accom-
plish our list of management needs. Taking the grunt work out of routine tasks like
this greatly simplifies life as a programmer.

2.3.3 Productivity gains

From a development standpoint, being able to devote your time and energy to your
business logic is a definite boost to productivity. When we do decide to use an external
library or framework, we’re removing the burdens of having to maintain that part of
the code base ourselves. We also use the expertise of their authors in the areas that the
particular framework covers. Sure, you could create your own routines to do the same
thing, but it would take an enormous effort to get it to the level of the MV* implemen-
tations out there.

 You also have an incredible amount of community-based knowledge on the web
for most libraries/frameworks, should you run into problems. Most authors of MV*
have mechanisms for reporting bugs too. This means that periodically code fixes are
tested and released, without you having to spend your time on the issue.

 If you’re doing everything yourself, you’re maintaining your own business logic,
plus the extra bug fixes and testing for all of the structural code provided from exter-
nal libraries/frameworks.

2.3.4 Standardization

As you’ll hear me repeat throughout this book, writing a robust web application with a
clean, scalable code base is already difficult. This difficulty can be compounded in a
single-page app. So the last thing you need is to have everyone on the development
team writing code in completely different styles.

 You want to be able to read your teammate’s code as if it were your own. Other-
wise, you’ll continuously waste time deciphering some “foreign” style of coding before
you can get around to updating it. Even if you’re alone, not working with a team, hav-
ing uniform code standards will help you when it’s time to revisit something you wrote
to make changes.

Listing 2.13 Employee list JavaScript

Special Knockout array that keeps
the array data in sync with the HTM

ate a new entry
enever the Add
tton is clicked

Add the entry to the array, and
Knockout takes care of the rest
Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

28 CHAPTER 2 The role of MV* frameworks
 MV* libraries and frameworks have certain conventions that must be followed in
order to use the software. This will compel you to write your application’s code in a
more formal, standardized way.

2.3.5 Scalability

As discussed previously, MV* frameworks inherently promote the separation-of-
concerns concept. This, in turn, also makes a project more scalable, because loosely
coupled objects can be reworked with minimal effect on other objects.

 Objects can also be swapped out entirely to make room for new functionality with-
out causing a huge ripple effect throughout the project. This allows the project to
grow more gracefully, because code changes tend to have much less negative impact.

 Now that you’ve seen some of the core MV* features, which style seems easier?
Which is more difficult to use? You’ll have to be the judge. Some people don’t like
having the declarative style of bindings freely mixed with the HTML page itself as you
see with MVVM. Others prefer it over having to use so much boilerplate code to create
the view.

 Although you’ll ultimately have to decide which framework is right for you and
your project, section 2.4 will give you a few things to think about as you’re making
your decision.

2.4 Choosing a framework
After you’ve decided you do want to use an MV* library or framework, you have a lot to
choose from. Even if you decide on a particular style you like better, you’ll still have a
lot of candidates to weed through. Just to give you an idea, here are some popular cli-
ent-side MV* options available at the time of this writing:

■ AngularJS (https://angularjs.org)
■ Agility.js (http://agilityjs.com)
■ Backbone.js (http://backbonejs.org)
■ CanJS (http://canjs.com)
■ Choco (https://github.com/ahe/choco)
■ Dojo Toolkit (http://dojotoolkit.org)
■ Ember.js (http://emberjs.com)
■ Ext JS (www.sencha.com/products/extjs)
■ Jamal (https://github.com/adcloud/jamal)
■ JavaScriptMVC (http://javascriptmvc.com)
■ Kendo UI (www.telerik.com/kendo-ui)
■ Knockout (http://knockoutjs.com)
■ Spine (http://spinejs.com)

As you can see, you have quite a few choices. And those are the libraries/frameworks
themselves. If you decide to choose a framework that’s not all-inclusive, the lists of
Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

https://angularjs.org
http://agilityjs.com
http://backbonejs.org
http://canjs.com
https://github.com/ahe/choco
http://dojotoolkit.org
http://emberjs.com
www.sencha.com/products/extjs
https://github.com/adcloud/jamal
http://javascriptmvc.com
www.telerik.com/kendo-ui
http://knockoutjs.com
http://spinejs.com
https://github.com/ahe/choco

29Choosing a framework
libraries and frameworks to handle the other features, such as routing and view
management, are nearly as long. In a few years, we went from relatively few choices to
an overwhelming number of them.

 It’s rather unproductive to try to point out which ones are “better” than others. It’s
all a matter of opinion. Also, because they’re all different and have a different number
of features and styles, it’s hard to make an apples-to-apples comparison. But I can
offer a list of things to keep in mind as you’re making your decision:

■ A la carte or one-stop shopping—This is completely subjective, but do you want a
framework that has everything built in? Or do you prefer something that’s as
small as possible and focused on a few core features? There are arguments for
both. Some people would rather not have to worry about finding other libraries
for missing features. That’s just more dependencies to worry about and more
potential points of failure. You’d also have to be versed in software from various
providers instead of just one. But some people point out the other side of the
coin: by going with an all-inclusive solution, you’re “putting all your eggs in one
basket.” If the framework ever stops being supported, it’ll be tougher to replace
everything than a single supporting library. Smaller offerings, such as Knockout
and Backbone.js, are great if you want to go minimal, but you’ll have to look
elsewhere to fill in any gaps when writing your SPA. Frameworks such as
Ember.js, Kendo UI, and AngularJS plug most gaps but hide a lot of what’s going
on with their framework magic. This is a negative for some people who want
more control.

■ Licensing and support—Budget is always a factor. For your project, do you have
money to spend on a framework, or do you need something that’s free? Are you
required by your company to purchase a commercial product? Does your com-
pany require you to be able to purchase a certain level of support for any soft-
ware used in its projects? Is your project mission critical? Is a minimum
turnaround required for bug fixes and updates?

■ Programming style preference—Knockout and Kendo UI fall squarely in the MVVM
camp. Others, including Backbone.js and Ember.js, are more MVC and/or MVP.
AngularJS is a little more MVVM but still retains some MVC-like features. Any of
these can be used to create large, robust applications. Your selection boils down
to your personal preference after you’ve tried a few of them.

■ Learning curve—This might be a minor point to some, because given enough time
you can learn to use any framework. Some are definitely more difficult to wrap
your head around than others. You might not have months to get up to speed.

■ Number of bugs and fix rate—All software has a certain number of bugs at any
given time. That’s just the way things are. But what you can factor into your
decision is the percentage of high and critical bugs the software experiences
over time. Also, how fast are they being fixed? If a large number of important
bugs have been sitting there for a long time, that’s probably a red flag.
Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

30 CHAPTER 2 The role of MV* frameworks
■ Documentation—How good is their documentation? How up to date is it? Some
MV* providers offer free online videos and interactive training. Are there code
examples to go along with the API documentation?

■ Maturity—We can’t judge how good the framework is by how mature it is. We
can, however, get a warm and fuzzy that it’s here for the foreseeable future if it’s
pretty mature. If software is fairly new, it’s probably still going through “growing
pains.” That might be tolerable for applications that aren’t a high priority. If the
software is constantly changing, though, it would be nearly impossible to create
a mission-critical application with it.

■ Community—This aspect is sometimes overlooked, but if you plan on including
third-party software as a dependency, it’s nice if it has a large community follow-
ing. There’s strength in numbers. Sooner or later, you’ll run into situations that
aren’t covered in the documentation. Finding help in online forums and blogs
can be a lifesaver.

■ How opinionated is it?—For routine tasks, such as creating objects and lists or
sending, receiving, and processing server requests, how flexible is it? Does it
limit you by imposing strict guidelines (and are you OK with that)? How well
does it play with any other libraries/frameworks in your arsenal?

■ POC (proof of concept)—Once you’ve narrowed down your choices to a select few,
do a POC for each to get a feel for it in practice. You’ll always encounter situa-
tions in your real project that you didn’t anticipate and be forced to search for
workarounds. That’s just the nature of the beast. But by doing a simple POC
with at least basic CRUD functionality, you’ll be able to make a decision. Prefera-
bly, your CRUD operations will include a list of objects so you can get a feel for
how easy it is to manage a collection as well.

As you can see, you have many factors to think about when choosing an MV* frame-
work. But you’re now acquainted with the traditional design patterns and the basic
core concepts. You’ve also been exposed to some of the design differences of MV*
libraries/frameworks. With that and this list of points to consider, you’ll be able to
make a more informed choice when the time comes.

2.5 Chapter challenge
Now here’s a challenge for you, to see what you’ve learned in this chapter. Let’s see if
you, on your own, can use one-way bindings to create a simple view. Let’s pretend that
your local library wants to begin offering e-books online and has reached out to the
community for help. The library already has converted its first set of books to e-books
but needs someone with web development skills to set up the e-book site. Pick any one
of the three MV* frameworks from this chapter (or a different one if you prefer) and
create a view that’s contains a list of a few books. The view should have the following
format:

■ Header—The header should contain the library name, address, and phone
number. It should also display the name of the user logged in. For the user,
Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

31Summary
create a JavaScript variable and use your name as its value. Then create a simple
binding to display this value in the view’s header.

■ Body—Create a list of book objects (book title, author, and simple description)
in JavaScript. In the body, choose a binding that prints each book in the list iter-
atively.

2.6 Summary
Understanding the information in this chapter will help you going forward. Let’s
review:

■ The traditional design patterns that had a major influence on MV* libraries/
frameworks are MVC (Model-View-Controller), MVP (Model-View-Presenter),
and MVVM (Model-View-ViewModel).

■ The model represents your data. In MVVM, this object is mainly just data. In the
other two patterns, the model also contains other kinds of logic, including logic
to manage the data.

■ The view represents the part of the application that the user sees and interacts
with.

■ The third object, the controller or presenter or ViewModel, is an intermediary
object of one degree or another, keeping the model and the view decoupled
but interactive.

■ Each pattern must be adaptable to its environment. The authors of MV* librar-
ies/frameworks have had to take various liberties with traditional patterns in
order to create solutions that work in a browser setting.

■ Some basic MV* concepts to know are models, bindings, templates, and views.
■ You should keep a variety of considerations in mind when choosing an MV*

framework: a la carte or one-stop shopping, licensing and support, program-
ming style preference, learning curve, bugs and fix rate, documentation, matu-
rity, community support, and how opinionated it is.

■ When you narrow your choices to two or three, try doing a proof of concept
with each to get a feel for its use in your project.

Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

 The next step in the development of web-based soft-
ware, single-page web applications deliver the sleekness
and fluidity of a native desktop application in a
browser. If you’re ready to make the leap from tradi-
tional web applications to SPAs but don’t know where
to begin, this book will get you going.

 SPA Design and Architecture teaches you the design
and development skills you need to create SPAs. You’ll
start with an introduction to the SPA model and see
how it builds on the standard approach using linked
pages. The author guides you through the practical
issues of building an SPA, including an overview of MV*

frameworks, unit testing, routing, layout management, data access, pub/sub, and
client-side task automation. This book is full of easy-to-follow examples you can apply
to the library or framework of your choice.

What’s inside

■ Working with modular JavaScript
■ Understanding MV* frameworks
■ Layout management
■ Client-side task automation
■ Testing SPAs

This book assumes you are a web developer and know JavaScript basics.
Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

https://www.manning.com/books/spa-design-and-architecture
https://www.manning.com/books/spa-design-and-architecture

 .

Modularity is another key element to building large, modern JavaScript
applications. Using a modular approach leads to better-designed code that’s
more manageable and testable. The following chapter provides key insight into
using JavaScript modules with an eye towards large-scale application design.

Embracing modularity
and dependency

management
Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

Chapter 5 from JavaScript Application Design
by Nicolas G. Bevacqua

Embracing modularity and
dependency management
Now that we’re done with the Build First crash course, you’ll notice a decline in
Grunt tasks, though you’ll definitely continue to improve your build. In contrast,
you’ll see more examples discussing the tradeoffs between different ways you can
work with the JavaScript code underlying your apps. This chapter focuses on modu-
lar design, driving down the code complexity of applications by separating concerns
into different modules of interconnected, small pieces of code that do one thing
well and are easily testable. You’ll manage complexity in asynchronous code flows,
client-side JavaScript patterns and practices, and various kinds of testing in chapters
6, 7, and 8, respectively.

 Part 2 boils down to increasing the quality in your application designs through
separation of concerns. To improve your ability to separate concerns, I’ll teach you

This chapter covers
■ Working with code encapsulation
■ Understanding modularity in JavaScript
■ Incorporating dependency injection
■ Using package management
■ Trying out ECMAScript 6
34

Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

https://www.manning.com/books/javascript-application-design

35
all about modularity, shared rendering, and asynchronous JavaScript development. To
increase the resiliency of your applications, you should test your JavaScript, as well,
which is the focus of chapter 8. While this is a JavaScript-focused book, it’s crucial that
you understand REST API design principles to improve communication across pieces
of your application stack, and that’s exactly the focus of chapter 9.

 Figure 5.1 shows how these bits and pieces of the second half of the book relate to
each other.

Modularity
Improves testability and maintainability

Design
Architecture concerns

Asynchronous code
Services, events, timing

External
package

managers

Dependencies are injected
into consuming modules.

Dependencies might
be local, too (also injected).

Component

Shared rendering
in the server and client

Test individual modules in isolation,
faking their dependencies.

Test the application as a whole,
including services, dependencies,

and client-side HTML/CSS/JavaScript.

Types of asynchronous
flow control techniques

Automates updates
and isolates

external dependencies.

Component

Dependency A

Dependency B

Module A Module B Module C

MVC architecture

Asynchronous operations

Model View Controller

Services Events Callbacks Promises

Events Generator

Testing practices
Testability concerns

Unit tests
Integration

tests

Application

Dependencies

Services

Modules

Browser DOM

Module A

Module B

Ch 7

Ch 8

Ch 6

Figure 5.1 Modularity, good architecture, and testing are fundamentals of designing
maintainable applications.
Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

36 CHAPTER 5 Embracing modularity and dependency management
Applications typically depend on external libraries (such as jQuery, Underscore, or
AngularJS), which should be handled and updated by using package managers, rather
than manually downloaded. Similarly, your application can also be broken down into
smaller pieces that interact with each other, and that’s another focus of this chapter.

 You’ll learn the art of code encapsulation, treating your code as self-contained
components; designing great interfaces and arranging them precisely; and informa-
tion hiding to reveal everything the consumer needs, but nothing else. I’ll spend a
good number of words explaining elusive concepts such as scoping, which determines
where variables belong; the this keyword, which you must understand; and closures,
which help you hide information.

 Then we’ll look at dependency resolution as an alternative to maintaining a sorted
list of script tags by hand. Afterward, we’ll jump to package management, which is
how you’ll install and upgrade third-party libraries and frameworks. Last, we’ll look at
the upcoming ECMAScript 6 specification, which has a few nice new tricks in store for
building modular applications.

5.1 Working with code encapsulation
Encapsulation means keeping functionality self-contained and hiding implementa-
tion details from consumers of a given piece of code (those who access it). Each piece,
whether a function or an entire module, should have a clearly defined responsibility,
hide implementation details, and expose a succinct API to satisfy its consumers’ needs.
Self-contained functionality is easier to understand and change than code that has
many responsibilities.

5.1.1 Understanding the Single Responsibility Principle

In the Node.js community, inspired by the UNIX philosophy of keeping programs con-
cise and self-contained, packages are well known for having a specific purpose. The
high availability of coherent packages that don’t go overboard with features plays a big
role in making the npm package manager great. For the most part, package authors
accomplish this by following the Single Responsibility Principle (SRP): build packages
that do one thing, and do it well. SRP doesn’t apply only to packages as a whole; you
should follow SRP at the module and method levels, as well. SRP helps your code stay
readable and maintainable by keeping it simple and concise.

 Consider the following use case. You need to build a component that takes a string
and returns a hyphenated representation. It will be helpful when generating semantic
links in web applications such as blogging platforms. This component might take blog
post titles such as 'Some Piece Of Text', and convert them to 'some-piece-of-
text'. This is called slugging.

 Suppose you start with the following listing (available as ch05/01_single-
responsibility-principle in the samples). It uses a two-step process in which it first nor-
malizes all nonalphanumeric character sequences into single dashes and then
removes leading and trailing dashes. Then it lowercases the string. Exactly what you
need but nothing else.
Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

37Working with code encapsulation

function getSlug (text) {
 var separator = /[^a-z0-9]+/ig;
 var drop = /^-|-$/g;
 return text
 .replace(separator, '-')
 .replace(drop, '')
 .toLowerCase();
}
var slug = getSlug('Some Piece Of Text');
// <- 'some-piece-of-text'

The first expression, /[^a-z0-9]+/ig is used to find sequences of one or more char-
acters that aren’t alphanumerical, such as spaces, dashes, or exclamation points.
These expressions are replaced by dashes. The second expression looks for dashes at
either end of the string. Combining these two, you can build a URL-safe version of
blog post titles.

In the previous example, the separator variable is a simple regular expression that
will match sequences of non-letter, non-numeric characters. For example, in the
'Cats, Dogs and Zebras!' string, it will match the first comma and space as a single
occurrence, both spaces around 'and', and the '!' at the end. The second regular
expression matches dashes at either end of the string, so that the resulting slug begins
and ends with words, especially because you’re converting any nonalphanumeric char-
acters into dashes in the previous step. Combining these two steps is enough to pro-
duce a decent slugging function for your component.

 Imagine a feature request for which you need to add a timestamp of the publica-
tion date to the slug. An optional argument in the slugging method to turn on this
functionality might be tempting, but it would also be wrong: your API would become
more confusing to use, harder to refactor (change its code without breaking other
components, detailed in chapter 8 when we discuss testing), and even more difficult
to document. It would be more sensible to build your component by following the SRP
principle using a composition pattern instead. Composition only means applying

Listing 5.1 Converting text using slugging

Understanding regular expressions

Although you don’t need to know regular expressions to understand this example, I
encourage you learn the basics. Regular expressions are used to find patterns in
strings, and they can also be used to replace those occurrences with something else.
These expressions are supported in virtually all major languages.

Expressions such as /[^a-z0-9]+/ig can be confusing to look at, but they aren’t
that hard to write! My blog has an entry-level article you can read if the subject interests
you.a

a You can find the article on my blog at http://bevacqua.io/bf/regex.
Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

http://bevacqua.io/bf/regex

38 CHAPTER 5 Embracing modularity and dependency management
functions in sequence, rather than mashing their functionality together. So first you'd
apply slugging and then you could add a timestamp to the slugs, as shown in the fol-
lowing code snippet:

function stamp (date) {
 return date.valueOf();
}
var article = {
 title: 'Some Piece Of Text',
 date: new Date()
};
var slug = getSlug(article.title);
var time = stamp(article.date);
var url = '/' + time + '/' + slug;
// <- '/1385757733922/some-piece-of-text'

Now, imagine that your Search Engine Optimization (SEO) expert comes along, and
he wants you to exclude irrelevant words from your URL slugs so you get better repre-
sentation in search results. You might be tempted to do that right in the getSlug func-
tion, but here are a few reasons why that would be wrong in this case, too:

■ It would become harder to test the slugging functionality on its own, because
you’d have logic that doesn’t have anything to do with the slugging.

■ The exclusion code might become more advanced as time goes on, but it’d still
be contained in getSlug.

If you’re cautious, you’ll code a function aimed at the expert’s requirements, which
looks like the following code snippet:

function filter (text) {
 return text.replace(keywords, '');
}
var keywords = /\bsome|the|by|for|of\b/ig; // match stopwords
var filtered = filter(article.title);
var slug = getSlug(filtered);
var time = stamp(article.date);
var url = '/' + time + '/' + slug;
// <- '/1385757733922/piece-text'

That looks fairly clean! By giving each method a clear responsibility, you extended your
functionality without complicating matters too much. In addition, you uncovered the
possibility of reuse. You might use the SEO expert’s filtering functionality all over an
application, and that would be easy to extract from your slugging module, because it
doesn’t depend on that. Similarly, testing each of these three methods will be easy. For
now, it should be enough to say that keeping code succinct and to the point and doing
exactly what the function name implies is one of the fundamental aspects of maintain-
able, testable code. In chapter 8 you’ll learn more about unit testing.

 Splitting functionality in a modular way is important, but it’s not enough. If you’re
building a typical component, which has a few methods but shouldn’t expose its vari-
ables, you need to hide this information from the public interface. I’ll discuss the
importance of information hiding next.
Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

39Working with code encapsulation
5.1.2 Information hiding and interfaces

As you’re building out an application, code will invariably grow in both volume and
complexity. This can eventually turn your code base into an unapproachable tangle,
but you can help it by writing more straightforward code and making it easier to fol-
low the flow of code. One way to drive down the complexity creep is to hide away
unnecessary information, keeping it inaccessible on the interface. This way only what
matters gets exposed; the rest is considered to be irrelevant to the consumer, and it’s
often referred to as implementation details. You don’t want to expose elements such as
state variables you use while computing a result or the seed for a random number gen-
erator. This has to be done at every level; each function in every module should
attempt to hide everything that isn’t relevant to its consumers. In doing this, you’ll do
fellow developers and your future self a favor by reducing the amount of guesswork
involved in figuring out how a particular method or module works.

 As an example, consider the following listing illustrating how you might build an
object to calculate a simple average sum. The listing (found as ch05/02_information-
hiding in the samples) uses a constructor function and augments the prototype so
Average objects have an add method and a calc method.

function Average () {
 this.sum = 0;
 this.count = 0;
}

Average.prototype.add = function (value) {
 this.sum += value;
 this.count++;
};

Average.prototype.calc = function () {
 return this.sum / this.count;
};

All that’s left to do is create an Average object, add values to it, and calculate the aver-
age. The problem in this approach is that you might not want people directly access-
ing your private data, such as Average.count. Maybe you’d rather hide those values
from the API consumers using the techniques we’ll cover soon. An even simpler
approach might be to ditch the object entirely and use a function instead. You could
use the .reduce method (found on the Array prototype, new in ES5) to apply an accu-
mulator function on an array of values to calculate the average:

function average (values) {
 var sum = values.reduce(function (accumulator, value) {
 return accumulator + value;
 }, 0);

 return sum / values.length;
}

Listing 5.2 Calculating an average sum
Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

40 CHAPTER 5 Embracing modularity and dependency management
The upside of this function is that it does exactly what you want. It takes an array of
values, and it returns the average, as its name indicates. In addition, it doesn’t keep
any state variables the way your prototypical implementation did, effectively hiding
any information about its inner workings. This is what’s called a pure function: the
result can only depend on the arguments passed to it, and it can’t depend on state
variables, services, or objects that aren’t part of the argument body. Pure functions
have another property: they don’t produce any side effects other than the result they
provide. These two properties combined make pure functions good interfaces; they
are self-contained and easily testable. Because they have no side effects or external
dependencies, you can refactor their contents as long as the relationship between
input and output doesn’t change.

FUNCTIONAL FACTORIES

An alternative implementation might use a functional factory. That’s a function that,
when executed, returns a function that does what you want. As you’ll better under-
stand in the next section, anything you declare in the factory function is private to the
factory, and the function that resides within. This is easier to understand after reading
the following code:

function averageFactory () {
 var sum = 0;
 var count = 0;
 return function (value) {
 sum += value;
 count++;
 return sum / count;
 };
}

The sum and count variables are only available to instances of the function returned
by averageFactory; furthermore, each instance has access only to its own context,
those variables that were declared within that instance, but not to the context of other
instances. Think of it like a cookie cutter. The averageFactory is the cookie cutter,
and it cuts cookies (your function) that take a value and return the cumulative aver-
age (so far). As an example, here’s how its use might look:

var avg = averageFactory();
// <- function
avg(1);
// <- 1
avg(3);
// <- 2

Much like using your cookie cutter to cut out new cookies won’t affect existing cook-
ies, creating more instances won’t have any effect on existing ones. This coding style is
similar to what you did previously using a prototype, with the difference that sum and
count can’t be accessed from anywhere other than the implementation. Consumers
can’t access these variables, effectively making them an implementation detail of the
API. Implementation details don’t only introduce noise; they can also potentially
Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

41Working with code encapsulation
present security concerns: you wouldn’t want to grant the outside world the ability to
modify the inner state of your components.

 Understanding variable scopes, which define where variables are accessible, and
this keyword, which provides context about the caller of a function, is essential in
building solid structures that can hide information properly. Properly scoping vari-
ables enables you to hide the information that consumers of an interface aren’t sup-
posed to know about.

5.1.3 Scoping and this keyword

In his undisputed classic, JavaScript: The Good Parts (O’Reilly Media, 2008),1 Douglas
Crockford explains many of the quirks of the language, and encourages us to avoid the
“bad parts,” such as with blocks, eval statements, and type-coercing equality operators
(== and !=). If you’ve never read his book, I recommend you do so sooner rather than
later. Crockford says that new and this are tricky to understand, and he suggests avoid-
ing them entirely. I say you need to understand them. I’ll describe what this repre-
sents, and then I’ll explain how it can be manipulated and assigned. In any given piece
of JavaScript code, the context is made up of the current function scope, and this.

 If you’re used to server-side languages, such as Java or C#, then you’re used to
thinking of a scope: the bag where variables are contained, which starts and ends
whenever a curly brace is opened and closed, respectively. In JavaScript, scoping hap-
pens at the function level (called lexical scoping), rather than at the block level.

1 You can find JavaScript: The Good Parts at Amazon following this link: http://bevacqua.io/bf/goodparts.

Scoping in C#
Block scoping

public void NullGuard (thing)
{
 if (thing == null)
 {
 var message = "Reference must be non-null!";
 throw new ArgumentNullException(message);
 }
}

Message is unavailable
outside of the block it

was defined in.

Scoping in JavaScript
Lexical scoping

function NullGuard (thing) {
 if (thing == null) {
 var message = "Reference must be non-null!";
 throw new Error(message);
 }
}

Message is hoisted to the top
of the lexical scope, becoming
available to the entire function.

Figure 5.2 Discrepancies in scoping across languages
Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

http://bevacqua.io/bf/goodparts

42 CHAPTER 5 Embracing modularity and dependency management
Figure 5.2 disambiguates lexical scoping from block scoping by comparing C#, which
has block scoping (other examples include Java, Perl, C, and C++) with JavaScript,
which has lexical scoping (R is another example).

 In the figure, a message variable is used in both examples. In the first example,
message is only available inside the if statement block, while in the second example
message is available to the entire function, thanks to lexical scoping. As you’ll learn,
this has both benefits and drawbacks.

VARIABLE SCOPING IN JAVASCRIPT

An understanding of how scopes work will set you up to understand the module pat-
tern, which we’ll visit in section 5.2 as a way of componentizing your code base. In
JavaScript, function is a first-class citizen, and it’s treated like any other object. Nested
functions each come with their own scope, and inner functions have access to the par-
ent scope up until the global space. Consider the getCounter function in the follow-
ing code:

function getCounter () {
 var counter = 0;
 return function () {
 return counter++;
 };
}

In this example, the counter variable is context-bound to the getCounter function.
The returned function can access counter, because it’s part of the parent scope. But
nothing outside getCounter can create a reference to counter; access to it has been
shut down and only the privileged children of getCounter can manipulate it. If you
introduce a console.log(this) statement at either scoping level, you’ll see in both
cases the global Window object instance is referenced. This is the true “bad part;” by
default, the this keyword will be a reference to the global object, as demonstrated in
the following listing.

function scoping () {
 console.log(this);

 return function () {
 console.log(this);
 };
}
scoping()();
// <- Window
// <- Window

There are different ways we can manipulate the this keyword. The most common way
to assign a this context is to invoke methods on an object. For example, when doing
'Hello'.toLowerCase(), 'Hello' will be used as the this context for the function call.

Listing 5.3 Understanding the this keyword
Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

43Working with code encapsulation
GETTING TO THE CALL SITE

When functions are invoked directly as properties on an object, the object will
become the this reference. If the method is in the object’s prototype—for example
Object.prototype.toString—this will also be the object the method has been
invoked on. Note that this is a fragile behavior; if you get a direct reference to a
method and invoke that, then this won’t be the parent anymore but rather the
global object once again. To illustrate, let me show you another listing.

var parent = {
 method: function () {
 console.log(this);
 }
};
parent.method();
// <- parent
var parentless = parent.method;
parentless();
// <- Window

Under strict mode, this will default to undefined, instead of Window. Outside strict
mode, this is always an object; it’s the provided object if it’s called with an object ref-
erence; it’s a boxed representation if it’s called with a primitive boolean, string, or
numeric value; or it’s the global object (again, undefined under strict mode) if it’s
called with either undefined or null, either by getting a direct reference to the
method or by using any one of these: .apply, .call, or .bind. The value passed as
this to a function in strict mode isn’t boxed into an object. We’ll get to what else strict
mode does shortly.

 Other than what happens out of the box when invoking functions, you can use dif-
ferent methods to assign a value to this; it’s not entirely out of your control. In fact,
you could use .bind to create a function that will always have the this value provided
to it. Alternative ways of executing a method include .apply, .call, and the new oper-
ator. Here’s a cheat sheet so you can see the methods in action:

Array.prototype.slice.call([9, 5, 7], 1, 2)
// <- [5]

String.prototype.split.apply('13.12.02', ['.'])// <- ['13', '12', '02']

var data = [1, 2];
var add = Array.prototype.push.bind(data, 3);

add(); // effectively the same as data.push(3)
add(4); // effectively the same as data.push(3, 4)

console.log(data);
// <- [1, 2, 3, 3, 4]

Listing 5.4 Scoping the this keyword

When the method’s call site is on a
parent object, then that object is used.

If there’s no parent object, then
we fall back to the default context.
Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

44 CHAPTER 5 Embracing modularity and dependency management
In JavaScript, variables fill a scope in the following order:

■ Scope context variables: this and arguments
■ Named function parameters: function (these, variable, names)
■ Function expressions: function something () {}
■ Local scope variables: var foo

If you’re not experimenting or following along with a JavaScript interpreter by your
side, make sure to look at the code sample (ch05/03_context-scoping); I’ve included
these examples in the source code provided with the book, and they have a few inline
comments if you have trouble understanding. Let’s now discuss what the strict mode
entails.

5.1.4 Strict mode

When enabled, strict mode modifies semantics in the way your code works, reducing
the leniency toward missing var statements and similarly error-prone practices, sort of
complementary to using a linter.2 Strict mode can be enabled on individual functions
or on an entire script.

 For client-side code, the function form is preferred. To turn on strict mode, put the
'use strict'; statement (double quotes work, too) at the top of a file or function:

function () {
 'use strict';
 // here lies strict mode
}

Aside from this defaulting to undefined, rather than the global object, strict is less
tolerant of mistakes, turning them into errors rather than correcting them. Restric-
tions also include banning the with statement, octal notation, and preventing key-
words such as eval and arguments to be assigned.

'use strict';
foo = 'bar' // ReferenceError foo is not defined

Under strict mode, the engine also throws an exception if you attempt to write on
read-only properties, delete undeletable properties, instantiate an object with dupli-
cate property keys, or declare a function with duplicate argument names. This kind of
intolerance helps catch issues due to sloppy coding.

 The last quirk I want to cover while we’re on the topic of scoping is something
that’s commonly referred to as hoisting. Understanding hoisting is important if you’re
to write complex JavaScript applications sensibly.

2 Get a detailed explanation of strict mode in Mozilla Developer Network at http://bevacqua.io/bf/strict.
Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

http://bevacqua.io/bf/strict

45Working with code encapsulation
5.1.5 Variable hoisting

A large number of JavaScript interview questions can be answered with an understand-
ing of scoping, how this works, and hoisting. We’ve covered the first two, but what
exactly is hoisting? In JavaScript, hoisting means that variable declarations are pulled
to the beginning of a scope. This explains the unexpected behavior you can observe
in certain situations.

 Function expressions are hoisted entirely: the function body is also hoisted, not
only their declaration. If I had a single thing to take away from The Good Parts, it would
be learning about hoisting; it changed the way I write code, and reason about it.

 Hoisting is the reason invoking function expressions before declaring them works
as expected. Assigning functions to a variable won’t do the trick, because the variable
won’t be assigned by the time you want to invoke the function. The following code is
one example; you’ll find more examples in the accompanying source code, listed as
ch05/04_hoisting:

var value = 2;

test();

function test () {
 console.log(typeof value);
 console.log(value);
 var value = 3;
}

You might expect the method to print 'number' first, and 2 afterward, or maybe 3.
Try running it! Why does it print 'undefined' and then undefined? Well, hello hoist-
ing! It’ll be easier to picture if you rearrange the code the way it ends up after hoisting
takes place. Let’s look at the following listing.

var value;

function test () {
 var value;
 console.log(typeof value);
 console.log(value);
 value = 3;
}

value = 2;
test();

The value declaration at the end of the test function got hoisted to the top of the
scope, and it’s also why test didn’t give a TypeError exception, warning that unde-
fined isn’t a function. Keep in mind that if you used the variable form of declaring
the test function, you would, in fact, have gotten that error, because although var
test would be hoisted, the assignment wouldn’t be, effectively becoming the code in
the following listing.

Listing 5.5 Using hoisting
Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

46 CHAPTER 5 Embracing modularity and dependency management

var value;
var test;

value = 2;
test();

test = function () {
 var value;
 console.log(typeof value);
 console.log(value);
 value = 3;
};

The code in listing 5.6 won’t work as expected, because test won’t be defined by the
time you want to invoke it. It’s important to learn what gets hoisted and what doesn’t.
If you make a habit of writing code as if it were already hoisted, pulling variable dec-
larations and functions to the top of their scope, you’ll run into fewer problems than
you might run into otherwise. At this point you should feel comfortable with scoping
and the this keyword. It’s time to talk about closures and modular patterns in
JavaScript.

5.2 JavaScript modules
Up to this point, you’ve looked at the single responsibility principle, information hid-
ing, and how to apply those in JavaScript. You also have a decent idea of how variables
are scoped and hoisted. Let’s move on to closures. These will help you create new
scopes and prevent variables from leaking information.

5.2.1 Closures and the module pattern

Functions are also referred to as closures, particularly when focusing on the fact that
functions create new scopes. An IIFE is a function that you execute immediately. The
term IIFE stands for Immediately-Invoked Function Expression. Using an IIFE is useful
when all you want is a closure. The following code is an example IIFE:

(function () {
 // a new scope
})();

Note the parentheses wrapping the function. These tell the interpreter you’re not
only declaring an anonymous function, but also using it as a value. These expressions
can also be used in assignments, which are useful if you need variables accessible by
the exported return value. This is commonly referred to as the module pattern, as
shown in the following code (labeled ch05/05_closures in the samples):

var api = (function () {
 var local = 0; // private and in-place!
 var publicInterface = {
 counter: function () {
 return ++local;
 }

Listing 5.6 Hoisting var test
Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

47JavaScript modules
 };
 return publicInterface;
})();
api.counter();
// <- 1

A common variant to the previous code doesn’t rely on anything outside of the clo-
sure, but instead imports the variables it’s going to use. If it wants to expose a public
API, then it imports the global object. I tend to favor this approach because everything
is nicely wrapped by a closure, and you can instruct JSHint to blow up on issues due to
undeclared variables. Without a closure and JSHint, these would inadvertently become
globals. To illustrate, look at the following code:

(function (window) {
 var privateThing;

 function privateMethod () {
 }

 window.api = {
 // public interface
 };
})(window);

Let’s consider prototypal modularity, which augments a prototype rather than using clo-
sures, as a complementary alternative to IIFE expressions. Using prototypes provides
performance gains, as many objects can share the same prototype and adding func-
tions on the prototype provides the functionality to all the objects that inherit from it.

5.2.2 Prototypal modularity

Depending on your use case, prototypes might be exactly what you need. Think of
prototypes as JavaScript’s way of declaring classes, even though it’s an entirely differ-
ent model, because prototypes are simply links, and you can’t override properties
unless you replace them entirely (and do the overriding by hand). In short, don’t try
to treat prototypes as classes, because it will assuredly result in maintainability issues.
Prototypes are most useful when you expect to have multiple instances of your mod-
ule. For example, all JavaScript strings share the String prototype. A good use for
prototypes is when interacting with DOM nodes. Sometimes I find myself declaring
prototypal modules inside a closure and then keeping private state in the closure, out-
side the prototype. The following listing shows pseudo-code, but please look at the
accompanying code sample listed as ch05/06_prototypal-modularity for a fully work-
ing example and to get a better understanding of the pattern.

var lastId = 0;
var data = {};

function Lib () {
 this.id = ++lastId;
 data[this.id] = {

Listing 5.7 Using pseudo-code for prototypes
Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

48 CHAPTER 5 Embracing modularity and dependency management
 thing: 'secret'
 };
}

Lib.prototype.getPrivateThing = function () {
 return data[this.id].thing;
};

This is one way to keep data safe from consumers; many scenarios exist when data
privatization isn’t necessary and where allowing consumers to manipulate your
instance data might be a good thing. You should wrap all of this in a closure so your
private data doesn’t leak out. I believe prototypes in JavaScript are most useful when
dealing with DOM interaction, as we’ll investigate in chapter 7. That’s because when
dealing with DOM objects, you usually have to work with many elements at the same
time; prototypes improve performance because their methods aren’t replicated on
each instance, saving resources.

 Now that you have a clearer understanding of how scoping, hoisting, and closures
work, we can move on to how modules are meant to interact with one another. First,
let’s look at CommonJS modules: a way to keep code well-organized and deal with
dependency injection (DI) at once.

5.2.3 CommonJS modules

CommonJS (CJS) is a specification adopted by Node.js, among others, which allows you
to write modular JavaScript files. Each module is defined by a single file, and if you assign
a value to module.exports, it becomes that module’s public interface. To consume a
module, you call require with the relative path from the consumer to the dependency.

 Let’s look at a quick example, labeled ch05/07_commonjs-modules in the samples:

// file at './lib/simple.js'
module.exports = 'this is a really simple module';

// file at './app.js'
var simple = require('./lib/simple.js');

console.log(simple);
// <- 'this is a really simple module'

One of the most useful advantages of these modules is that variables don’t leak to the
global object: you have no need to wrap your code in a closure. The variables that are
declared on the top-most scope (such as the simple variable in the previous snippet)
are merely available in that module. If you want to expose something, you need to
make that intent explicit by adding it to module.exports.

 At this point you might think I went off the trail with CJS, given that it’s not sup-
ported natively in browsers any more than are CoffeeScript and TypeScript. You’ll
soon learn how to compile these modules using Browserify, a popular library designed
to compile CJS modules to something browsers can deal with. CJS has the following
benefits over the way browsers behave:

■ No global variables, less cognitive load
■ Straightforward process to expose an API and consume a module
Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

49Using dependency management
■ Easier to test modules by mocking dependencies
■ Access to packages on npm, thanks to Browserify
■ Modularity, which translates into testability
■ Easy to share code between client and server, if you’re using Node.js

You’ll learn more about package management solutions (npm, Bower, and Compo-
nent) in section 5.4. Before we get there, we’ll look at dependency management, or how
to deal with the components needed by your application, and how different libraries
can help manage them.

5.3 Using dependency management
We’ll discuss two kinds of dependency management here: internal and external. When
talking about internal dependencies, I’m referring to those that are part of the pro-
gram you’re writing. Most frequently, these are a one-to-one mapping to physical files,
but you might also have multiple modules in a single file. By modules I mean pieces of
code that have a single responsibility, regardless of them being services, factories, mod-
els, controllers, or something else. External dependencies are, in contrast, those in
which the code isn’t governed by your application itself. You may own or have authored
the package, but the code belongs to a different repository altogether, regardless.

 I’ll explain what dependency graphs are, and then we’ll investigate ways of working
through them, such as the caveats with resorting to the RequireJS module loader, the
innocent straightforwardness made available by CommonJS, and the elegant way
AngularJS (a Model-View-Controller framework built by Google) resolves dependen-
cies while keeping everything modular and testable.

5.3.1 Dependency graphs

When writing out a module which depends on something else, the most common
approach is to have your module create an instance of the object you depend on. To
illustrate the point, bear with me through a little Java code; it should be easy to wrap
your head around. The following listing displays a UserService class, which has the
purpose of serving any data requests from a domain logic layer. It could consume any
IUserRepository implementation which is tasked with retrieving the data from a
repository such as a MySQL database or a Redis store. This listing is labeled ch05/08_
dependency-graphs in the samples.

public class UserService {
 private IUserRepository _userRepository;

 public UserService () {
 _userRepository = new UserMySqlRepository();
 }

 public User getUserById (int id) {
 return _userRepository.getById(id);
 }
}

Listing 5.8 Using a module to create an object
Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

50 CHAPTER 5 Embracing modularity and dependency management
But that doesn’t cut it; if your service is supposed to use any repository that conforms
to the interface, why are you hard-coding UserMySqlRepository that way? Hard-
coded dependencies make it more difficult to test a module, because you wouldn’t
merely test against the interface, but rather against a concrete implementation. A bet-
ter approach, which is coincidentally more testable, might be passing that depen-
dency through the constructor, as shown in the following listing. This pattern is often
referred to as dependency injection, which is a smart-sounding alternative to giving an
object its instance variables.

public class UserService {
 private IUserRepository _userRepository;

 public UserService (IUserRepository userRepository) {
 if (userRepository == null) {
 throw new IllegalArgumentException();
 }
 _userRepository = userRepository;
 }

 public User getUserById (int id) {
 return _userRepository.getById(id);
 }
}

This way, you can build out your service the way it was intended, as a consumer of any
repository conforming to the IUserRepository interface without any knowledge of
implementation specifics. Creating a UserService might not sound like such a great
deal, but it gets harder as soon as you take into consideration its dependencies, and its
dependencies’ dependencies. This is called a dependency tree. The following snippet is
certainly unappealing:

String connectionString = "SOME_CONNECTION_STRING";
SqlConnectionString connString = new SqlConnectionString(connectionString);
SqlDbConnection conn = new SqlDbConnection(connString);
IUserRepository repo = new UserMySqlRepository(conn);
UserService service = new UserService(repo);

The code shows inversion of control (IoC),3 which is a wordy definition for something
rather simple. IoC means that instead of making an object responsible for the instanti-
ation of its dependencies, or getting references to them, the object is given the depen-
dencies through its constructor or through public properties. Figure 5.3 examines the
benefits of using an IoC pattern.

Listing 5.9 Using dependency injection

3 Read a primer on inversion of control and dependency injection by Martine Fowler at http://bevacqua.io/
bf/ioc.
Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

http://bevacqua.io/bf/ioc
http://bevacqua.io/bf/ioc

51Using dependency management
The IOC code (at the bottom of the figure) is easier to test, more loosely coupled, and
easier to maintain as a result, than the classic dependency management code shown at
the top of the figure.

 IoC frameworks are used to address dependency resolution and mitigate depen-
dency hell. The basic gist of these frameworks is that you ditch the new keyword and
rely on an IoC container. The IoC container is a registry that has knowledge about how
to instantiate your services, repositories, and any other modules. Learning how to con-
figure a traditional IoC container (such as Spring in the case of Java, or Castle Wind-
sor for C#) is outside of the scope of this book, but a top-level view of the issue is
required to pave the road ahead.

IS IOC IMPORTANT FOR TESTABILITY?

Ultimately, the importance of avoiding hard-coded dependencies lies in the ability to
easily mock them when unit testing, as you’ll see in chapter 8.

 Unit testing is about asserting whether interfaces work as expected, regardless of
how they’re implemented. Mocks are stubs that implement the interface, but don’t do
anything other than the bare minimum to conform to them. For example, a mocked
user repository might always return the same hard-coded User object. This is useful in
the context of unit testing, where you might want to test the UserService class on its
own, but don’t need details about its inner workings, much less how its dependencies
are implemented!

 Great! Enough Java for now, though. What does any of this have to do with JavaScript
Application Design? Understanding testability principles is required if you hope to

Classical dependency management
You create your own instances.

function Thing () {
 this.basket = new Basket();
 this.piece = new Piece();
}

new Thing();

Harder to test in
isolation, because you

don’t have a mechanism to
stub the dependencies.

Inversion of control (IoC)
Improves separation of concerns, testability.

function Thing (Basket, piece) {
 //Dependency instances are handed to you
}

new Thing(new Basket(), new Piece());

Much easier to test,
as you can easily provide
fake implementations of

each dependency.

Figure 5.3 Classical dependencies compared with using IoC to improve testability
Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

52 CHAPTER 5 Embracing modularity and dependency management
write testable code. Although you may not agree with the Test-Driven Development
movement, it’s undeniable that code that isn’t written with testability in mind is much
harder to write tests for. When speaking about client-side JavaScript, you have an addi-
tional layer of complexity: networking. Modules aren’t immediately available unless
your code is bundled together the way you learned to do it in chapter 2.

 Next, I’ll introduce you to RequireJS, an asynchronous module loader, which is a
better option than the classical approach of having an unmanaged dependency soup.

5.3.2 Introducing RequireJS

RequireJS is a JavaScript asynchronous module loader (AMD) that allows you to define
modules and have them depend on one another. The following code (found as ch05/
09_requirejs-usage in the samples) is an example usage of AMD, depicting a module
that depends on something else:

require(['lib/text'], function(text) {
 var result = text('foo bar');
 console.log(result);
 // <- 'FOO BAR'
});

By convention, 'lib/text' looks for the file that can be found at the ./lib/text.js
path, relative to the JavaScript directory root. That resource will be requested, inter-
preted, and once all dependencies have been loaded, the module’s function will be
invoked, getting its dependencies as arguments to the module’s function, much like
the Java code I talked about in section 5.3.1. The sample 'lib/text' module is
defined as follows:

define([], function () {
 return function (input) {
 return input.toUpperCase();
 };
});

Next, let’s analyze where RequireJS is better than the alternatives, and where it falls
short.

BENEFITS AND DRAWBACKS OF REQUIREJS

In this case, the definition uses an empty array because it has no dependencies. The
returned function is the public interface provided by the 'lib/text' module. The
use of RequireJS has a few benefits:

■ Dependency graph is automatically resolved. No more worrying about ordering
script tags!

■ Asynchronous module loading is included.
■ A compile step isn’t required during development.
■ It’s unit testable, so you only load the module that needs to be tested.
■ Closures are enforced, because your module is defined in a function.
Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

53Using dependency management
These are all true and nice to have, but drawbacks exist. If a package your code
depends on isn’t wrapped in AMD magic, you have no option other than adding a
compile step to bundle everything together. Unless you bundle your modules
together, RequireJS will create an HTTP request cascade to fetch each dependency,
which would be too slow in production systems. Many of the benefits of AMD came
from the lack of a compile step, so you’re left with a glorified dependency graph
resolver packed with the following drawbacks:

■ Asynchronous loading functionality is unavailable if you use the bundler.
■ It requires vendors to conform to the AMD model.
■ It clutters your code with AMD wrappers.
■ Production needs compilation.
■ Code in release environments diverges from local development.

It’s been a while since we spoke of Grunt in chapter 4, and you wouldn’t want to
release a bunch of unoptimized scripts! Grunt will help compile AMD modules during
your builds so they don’t need to be fetched asynchronously.

 To compile4 AMD modules through r.js, the RequireJS optimizer, using Grunt,
you can use the grunt-contrib-requirejs package. That package allows you to pass
options through to r.js. The following listing is the pertinent task configuration.
You’ll set default options that apply to every target in Grunt and tweak the debug tar-
get. This is useful when you’d otherwise have to repeat parts of the configuration,
breaking the DRY principle.

requirejs: {
 options: {
 name: 'app',
 baseUrl: 'js/amd',
 out: 'build/js/app.min.js'
 },
 debug: {
 options: {
 preserveLicenseComments: false,
 generateSourceMaps: true,
 optimize: 'none'
 }
 },
 release: {}
}

In the debug distribution you generate a source map,5 which helps browsers map what
they’re executing to the source code you used to compile it. This is useful when

4 Check out the accompanying code sample that shows how to compile RJS modules at http://bevacqua.io/bf/
requirejs.

Listing 5.10 Using Grunt to configure a module

5 For more information on source maps, refer to this introductory article on HTML5Rocks at http://
bevacqua.io/bf/sourcemap.
Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

http://bevacqua.io/bf/requirejs
http://bevacqua.io/bf/requirejs
http://bevacqua.io/bf/sourcemap
http://bevacqua.io/bf/sourcemap

54 CHAPTER 5 Embracing modularity and dependency management
debugging, as you’ll get stack traces that point to the source code rather than hard-to-
debug compilation results. The release target doesn’t have any additional configura-
tion, because it merely uses the defaults provided previously. It’ll be easier for you to
visualize the configuration if you take a look at the directory structure in the accompa-
nying samples, which looks like the one in figure 5.4.

NOTE A sample that integrates RequireJS with Grunt can be found in the
book’s source code at ch05/10_requirejs-grunt. It contains detailed infor-
mation about the meaning of each option used to configure the RequireJS
build task.

Not having to add script tags in a specific order is a nice feature to have, and you have
a few ways to accomplish that. If you’re not entirely sold on the AMD solution, or if
you’re curious, read on for an explanation of how you could bring CommonJS mod-
ules to the browser, as an alternative.

5.3.3 Browserify: CJS in the browser

In section 5.2.3 I explained the benefits of CJS, the module system used in Node.js
packages. These modules also have a place in the browser, thanks to Browserify. This
option is frequently pitched as an alternative to AMD, although opinions vary. As
you’re following a Build First approach, compiling CJS modules for the browser won’t
be a big deal; it’s another step in your build process!

 In addition to the advantages described in section 5.2.3, such as no implicit
globals, CJS offers a terse alternative to AMD in that you don’t need all the clutter and

Figure 5.4 Typical file structure
when using RequireJS during
Grunt builds
Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

55Using dependency management
boilerplate needed by AMD to define a module. A continuously improving trait in
favor of CJS modules is immediate access to any package in the npm registry out of the
box. In 2013, the npm registry grew by an order of magnitude (or 10x), and at the
time of this writing, it boasts well more than 100,000 registered packages.

 Browserify will recursively analyze all the require() calls in your app to build a
bundle that you can serve up to the browser in a single <script> tag. As you might
expect, Grunt has numerous plugins eager to compile your CJS modules into a Brow-
serify bundle, and one such plugin is grunt-browserify. Configuring it is more akin
to what you saw in chapter 2, where you provided a filename declaring the entry point
of your CJS module and an output filename as well:

browserify: {
 debug: {
 files: { 'build/js/app.js': 'js/app.js' },
 options: { debug: true }
 },
 release: {
 files: { 'build/js/app.js': 'js/app.js' }
 }
}

I think most of the mental load in taking this approach won’t come from Browserify,
but rather learning about require and modularity in CJS modules. Luckily, you
already used CJS modules when configuring Grunt tasks throughout part 1, and that
should give you insight into CJS, as well as a bunch of code samples to look at! A fully
working example of how to compile CJS modules, using grunt-browserify, can be
found at ch05/11_browserify-cjs in the accompanying code samples. Next up, we’ll
look at how AngularJS deals with dependency resolution, as a third (and last) way to
deal with dependency management.

5.3.4 The Angular way

Angular is an innovative client-side Model-View-Controller (MVC) framework developed
at Google. In chapter 7 you’ll use another popular JavaScript MVC framework called
Backbone. But Angular’s dependency resolver deserved a mention in this section.6

LEVERAGING DEPENDENCY INJECTION IN ANGULAR

Angular has a fairly elaborate dependency injection solution in place, so we won’t get
into the details. Luckily for us, it’s abstracted well enough that it’s easy to use. I’ve per-
sonally used many different DI frameworks, and Angular makes it feel natural: you don’t
even realize you’re doing DI, similarly to Java and RequireJS. Let’s walk together
through a contrived example, which can be found at ch05/12_angularjs-dependencies
in the samples. It’s convenient to keep the module declaration in its own file, some-
thing like this:

angular.module('buildfirst', []);

6 Angular’s documentation has an extensive guide explaining how DI works in Angular at http://bevacqua.io/
bf/angular-di.
Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

http://bevacqua.io/bf/angular-di
http://bevacqua.io/bf/angular-di

56 CHAPTER 5 Embracing modularity and dependency management
Then each of the different pieces of a module, such as services or controllers, are reg-
istered as extensions to that module, which you previously declared. Note that you’re
passing an empty array to the angular.module function so your module doesn’t
depend on any other modules:

var app = angular.module('buildfirst');

app.factory('textService', [
 function () {
 return function (input) {
 return input.toUpperCase();
 };
 }
]);

Registering controllers is also similar; in the following example you’ll use the
textService service you created. This works in a similar way to RequireJS, because
you need to use the name you gave to the service:

var app = angular.module('buildfirst');
app.controller('testController', [
 'textService',
 function (text) {
 var result = text('foo bar');
 console.log(result);
 // <- 'FOO BAR'
 }
]);

Next up, let’s compare Angular to RJS in a nutshell.

COMPARING ANGULAR AND REQUIREJS

Angular is different from RequireJS in that, rather than acting as a module loader,
Angular worries about the dependency graph. You need to add a script tag for each
file you’re using, unlike with AMD, which dealt with that for you.

 In the case of Angular you see an interesting behavior where script order isn’t all
that relevant. As long as you have Angular on top and then the script that declares
your module, the rest of the scripts can be in whatever order you want, and Angular
will deal with that for you. You need code such as the following on top of your script
tag list, which is why the module declaration needs its own file:

<script src='js/vendor/angular.js'></script>
<script src='js/app.js'></script>

The rest of the scripts, which are part of the app module (or whatever name you give
it), can be loaded in any order, as long as they come after the module declaration:

<!--
 These could actually be in any order!
-->
<script src='js/app/testController.js'></script>
<script src='js/app/textService.js'></script>

Let’s draw a few quick conclusions on the current state of module systems in JavaScript.
Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

57Understanding package management
BUNDLING ANGULAR COMPONENTS USING GRUNT

As a side note, when preparing a build, you can explicitly add Angular and the mod-
ule to the top, and then glob for the rest of the pieces of the puzzle. Here’s how you
might configure the files array passed to a bundling task, such as the ones in the
grunt-contrib-concat or grunt-contrib-uglify packages:

files: [
 'src/public/js/vendor/angular.js',
 'src/public/js/app.js',
 'src/public/js/app/**/*.js'
]

You might not want to commit to the full-featured framework that is AngularJS, and
you’re not about to include it in your project for its dependency resolution capabili-
ties! As a closing thought, I’d like to add that there’s no right choice, which is why I
presented these three methods:

■ RequireJS modules, using AMD definitions
■ CommonJS modules, and then compiling them with Browserify
■ AngularJS, where modules will resolve the dependency graph for you

If your project uses Angular, that’s good enough that you wouldn’t need either AMD
or CJS, because Angular provides a sufficiently modular structure. If you’re not using
Angular, then I’d probably go for CommonJS, mostly because of the abundance of
npm packages you can potentially take advantage of.

 The next section sheds light on other package managers, and as you did for npm,
teaches you how to leverage them in your client-side projects.

5.4 Understanding package management
One of the drawbacks of using package managers is that they tend to organize depen-
dencies using a certain structure. For example, npm uses node_modules to store
installed packages, and Bower uses bower_components. One of the great advantages to
Build First is that’s not a problem, because you can add references to those files in
your builds and that’s that! The original location of the packages won’t matter at all.
That’s a huge reason to use a Build First approach.

 I want to discuss two popular front-end package managers in this section: Bower
and Component. We’ll consider the tradeoffs in each and compare them to npm.

5.4.1 Introducing Bower

Although npm is an extraordinary package manager, it isn’t fit for all package man-
agement needs: virtually all of the packages published to it are CJS modules, because
it’s ingrained into the Node ecosystem. Although I chose to use Browserify so that I
could write modular front-end code under the CJS format, this might not be the
choice for every project you work on.

 Bower is a package manager for the web, created at Twitter, and it’s content agnostic,
meaning it doesn’t matter whether authors pack up images, style sheets, or JavaScript
Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

58 CHAPTER 5 Embracing modularity and dependency management
code. By now you should be accustomed to the way npm tracks packages and version
numbers, using the package.json manifest. Bower has a bower.json manifest that’s
similar to package.json. Bower is installed through npm:

npm install -g bower

Installing packages with bower is fast and straightforward; all you need to do is specify
the name or a git remote endpoint. The first thing you’ll need to do on a given proj-
ect is run bower init. Bower will ask you a few questions (you can press Enter because
the defaults are fine), and then it’ll create a bower.json manifest for you, as in
figure 5.5.

Once that’s out of the way, installing packages is a breeze. The following example
installs Lo-Dash, a utility library similar to Underscore, but more actively maintained.
It will download the scripts and place them in a bower_components directory, as shown
in figure 5.6.

bower install --save lodash

Figure 5.5 Using bower init to create a bower.json manifest file

Figure 5.6 Using bower install --save to fetch a dependency and add it to the manifest
Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

59Understanding package management
That’s it! You should have scripts in the bower_components/lodash directory. Includ-
ing them in your builds is a matter of adding the file to your distribution configura-
tion. As usual, this example can be found in the accompanying source code; look for
ch05/13_bower-packages.

 Bower is arguably the second-largest package manager, with close to 20,000 pack-
ages in its registry, and behind npm, which has more than 100,000. Component,
another package management solution, lags behind with nearly 3,000 packages under
its belt, but it offers a more modular alternative and a more comprehensive solution
to client-side package management. Let’s take a look!

5.4.2 Big libraries, small components

Huge libraries such as jQuery do everything you need, as well as things you don’t
need. For instance, you might not need the animations or the AJAX that come with it.
In this sense, struggling to keep pieces out of jQuery using custom builds is an uphill
battle; automating the process isn’t trivial, and you’re doing more to get less, which I
guess is what the “write less, do more” slogan refers to.

 Component is a tool that’s all about small components that do one thing only but
do it well. Rather than using a big library for all your needs, TJ Holowaychuk,7 prolific
open source author, advocates using multiple small blocks to build exactly what you
need in a modular way and without any added bloat.

 The first thing you’ll need to do, as usual, is install the CLI tool from npm:

npm install -g component

If you’re consuming components, you can get away with a manifest with the bare min-
imum valid JSON. Let’s create that, too:

echo "{}" > component.json

Installing components such as Lo-Dash works similarly to what you did previously with
Bower. The main difference is that rather than using a registry whose sole purpose is
tracking packages, like Bower does, Component uses GitHub as its default registry.
Specifying the username and repository, as shown in the following command, is
enough to fetch a component:

component install lodash/lodash

In contrast with what other libraries do, Component will always update the manifest,
adding the packages you install. You must also add the entry point to the scripts field
in the component manifest.

"scripts": ["js/app/app.js"]

Another difference you can find in Component is that it has an additional build step,
which will bundle any components you’ve installed into a single build.js concate-

7 Read an introduction to Component on Holowaychuk’s blog at http://bevacqua.io/bf/component.
Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

http://bevacqua.io/bf/component

60 CHAPTER 5 Embracing modularity and dependency management
nated file. Given that components use CommonJS-style require calls, the necessary
require function will also be provided.

component build

I encourage you to look at a pair of accompanying samples, which might help you
learn how to use Component. The first one, ch05/14_adopting-component, is a fully
working example of what has been described here.

 The second, ch05/15_automate-component-build, explains how to automate the
build step with Grunt, using the grunt-component-build package. Such a build step
is particularly useful if your code is also treated as components.

 To wrap things up, I’ll give you an overview of each of the systems we’ve discussed,
which might help you decide on a package manager or module system.

5.4.3 Choosing the right module system

Component has the right idea behind it—modular pieces of code that do one thing
well—but it has subtle drawbacks, as well. For instance, it has an unnecessary build
step in component install. Executing component install should build everything
you need for the components to work, the way npm does. It’s also kind of mystical to
configure, and the documentation is hard to find. Poor naming is a huge drawback in
this regard, as you can’t do a web search for Component and not get unrelated results,
making it hard to find the documentation you want.

 Bower is fine if you don’t buy into the CJS concept, and it’s certainly better than
downloading code and placing it into directories by yourself and dealing with version
upgrades on your own. Bower is fine for fetching packages, but it does little to help
you with modularity, and that’s where it falls short.

 As far as Browserify goes, at the moment it’s the best option that’s available to us, if
you’re willing to concede that CJS is the simplest module format available today. The
lack of a package manager embedded into Browserify is a good thing, because it
doesn’t matter which source you pick for modules you consume. They can come from
npm, Bower, GitHub, or somewhere else.

 Browserify provides mechanisms for both bringing vendor code into the CJS for-
mat and exporting a CJS formatted application into a single file. As we discussed in
5.3.3, Browserify can produce source maps that help debug during development, and
using it gives you access to any CJS modules originally written for Node development.

 Last, AMD modules might be a good fit for using Bower, because they don’t inter-
fere with each other. The benefit here is that you don’t have to learn the CJS
approach, although I would argue that there isn’t all that much to learn about it.

 Before discussing the changes coming to the JavaScript language in ECMAScript 6,
there’s one more topic we need to tend to. That’s the topic of circular dependencies,
such as a chicken depending on an egg that depends on a chicken.
Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

61Understanding package management
5.4.4 Learning about circular dependencies

Circular dependencies, explained previously as a chicken depending on an egg that
depends on a chicken, are a tough nut to crack, and they’re straight up unsupported
by many module systems. In this brief section I aim to dispel any issues you have by
answering the following questions:

■ Is there a good reason to use circular dependencies?
■ What patterns can you use to avoid them?
■ How do the solutions we’ve talked about handle circular dependencies?

Components that depend on each other represent a code smell, meaning there might
be a deeper problem in your code. The best approach to circular dependencies is to
avoid them altogether. You can use a few patterns to avoid them. If two components
are talking to each other, it might be a sign that they need to communicate through a
service they both consume, for example. That way, it’ll be easier to reason about (and
write code for) the affected components. In chapter 7, you’ll look at the ways you can
avoid these chicken-and-egg type of situations when using AngularJS in client-side
applications.

 Using a service as a middleman is one of many ways to solve circular dependencies.
You might have your chicken module depend on egg and talk to it directly, but if egg
wants to talk to chicken, then it should use the callbacks chicken gives to it. An even
simpler approach is to have instances of your modules depend on each other. Have a
chicken and an egg depending on each other, rather than the entire families, and the
problem is circumvented.

 You also need to take into account that different systems deal with circular depen-
dencies differently. If you try to resolve a circular dependency in Angular, it will throw
an error. Angular doesn’t provide any mechanisms to deal with circular dependencies
at the module level. You can get around this by using their dependency resolver. Once
an egg module that depends on the chicken module is resolved, then the chicken
module can fetch the egg module when it’s used.

 In the case of AMD modules, if you define a circular dependency such that chicken
needs egg and egg needs chicken, then when egg’s module function is called, it will
get an undefined value for chicken. egg can fetch chicken later, after modules have
been defined by using the require method.

 CommonJS allows circular dependencies by pausing module resolution whenever
a require call is made. If a chicken module requires an egg module, then interpreta-
tion of the chicken module is halted. When the egg module requires chicken, it will
get the partial representation of the chicken module, until the require call is made.
Then the chicken module will finish being interpreted. The code sample labeled
ch05/16_circular-dependencies illustrates this point.

 The bottom line is that you should avoid circular dependencies like the plague.
Circular dependencies introduce unnecessary complexity into your programs,
Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

62 CHAPTER 5 Embracing modularity and dependency management
module systems don’t have a standard way of dealing with them, and they can always
be avoided by writing code in a more organized way.

 To wrap up this chapter, we’ll go through a few changes coming to the language in
ECMAScript 6, and what they bring to the table when it comes to modular component
design.

5.5 Harmony: a glimpse of ECMAScript 6
As you might know, ECMAScript (ES) is the spec that defines the behavior of JavaScript
code. ES6, also known as Harmony, is the (long-awaited) upcoming version of the
spec. Once ES6 lands, you’ll benefit from hundreds of small and large improvements
to the language, part of which I’ll cover in this section. At the time of this writing,
parts of Harmony are in Chrome Canary, the edge version of Google Chrome, and
also in the Firefox Nightly build. In Node, you can use the --harmony flag when invok-
ing the node process to enable ES6 language features.

 Please note that ES6 features are highly experimental and subject to change; the
spec is constantly in flux. Take what’s discussed in this section with a pinch of salt. I’ll
introduce you to concepts and syntax in the upcoming language release; features pro-
posed as part of ES6 at this point are unlikely to change, but specific syntax is more
likely to be tweaked.

 Google has made an interesting effort in popularizing ES6 learning through their
Traceur project, which compiles ES6 down to ES3 (a generally available spec version),
allowing you to write code in ES6 and then execute the resulting ES3. Although Tra-
ceur doesn’t support every feature in Harmony, it’s one of the most featured compil-
ers available.

5.5.1 Traceur as a Grunt task

Traceur is available as a Grunt task, thanks to a package called grunt-traceur. You
can use the following configuration to set it up. It will compile each file individually
and place the results in a build directory:

traceur: {
 build: {
 src: 'js/**/*.js',
 dest: 'build/'
 }
}

With the help of this task, you can compile a few of the ES6 Harmony examples I’ll
show you along the way. Naturally, the accompanying code samples have a working
example of this Grunt task, as well as a few different snippets of what you can do with
Harmony, so be sure to check out ch05/17_harmony-traceur and skim through those
samples. Chapters 6 and 7 also contain more pieces of ES6 code, to give you a better
picture of what features are coming to the language.

 Now that you know of a few ways to turn ES6 features on, let’s dive into Harmony’s
way of doing modules.
Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

63Harmony: a glimpse of ECMAScript 6
5.5.2 Modules in Harmony

Throughout this chapter, you’ve navigated different module systems and learned
about modular design patterns. Input from both AMD and CJS have influenced the
design decisions behind Harmony modules, in a way that aims to please proponents
of either system. These modules have their own scope; they export public API mem-
bers using the export keyword, which can later be imported individually using the
import keyword. An optional explicit module declaration allows for file concatenation.

 What follows is an example of how these mechanics work. I’m using the latest syn-
tax available8 at the time of this writing. The syntax comes from a meeting held in
March 2013 by TC39, the technical committee in charge of moving the language for-
ward. If I were you, I wouldn’t focus too much on the specifics, only the general idea.

 To begin with, you’ll define a basic module with a couple of exported methods:

// math.js

export var pi = 3.141592;

export function circumference (radius) {
 return 2 * pi * radius;
}

Consuming these methods is a matter of referencing them in an import statement, as
shown in the following code snippet. These statements can choose to import one,
many, or all the exports found in a module. The following statement imports the cir-
cumference export into the local module:

import { circumference } from "math";

If you want to import multiple exports, you comma-separate them:

import { circumference, pi } from "math";

Importing every export from a module in an object, rather than directly on the local
context, can be done using the as syntax:

import "math" as math;

If you want to define modules explicitly, rather than having them be defined implic-
itly, for release scenarios where you’re going to bundle your scripts in a single file,
there’s a literal way in which you can define a module:

module "math" {
 export // etc...
};

If you’re interested in the module system in ES6, you should read an article9 that
encompasses what you’ve learned so far about ES6, and sheds light on the module

8 Find the ES6 article at http://bevacqua.io/bf/es6-modules.
9 Find this ES6 article at http://bevacqua.io/bf/es6-modules.
Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

http://bevacqua.io/bf/es6-modules
http://bevacqua.io/bf/es6-modules

64 CHAPTER 5 Embracing modularity and dependency management
system’s extensibility. Always keep in mind that the syntax is subject to change. Before
heading to chapter 6, I have one last little ES6 feature to touch on with regard to mod-
ularity. That’s the let keyword.

5.5.3 Let there be block scope

The ES6 let keyword is an alternative to var statements. You may remember that var
is function scoped, as you analyzed in section 5.1.3. With let, you get block scoping
instead, which is more akin to the scoping rules found in traditional languages. Hoist-
ing plays an important role when it comes to variable declaration, and let is a great
way to get around the limitations of function scoping in certain cases.

 Consider, for instance, the scenario below, a typical situation where you condition-
ally want to declare a variable. Hoisting makes it awkward to declare the variable
inside the if, because you know it’ll get hoisted to the top of the scope, and keeping it
inside the if block might cause trouble if someday you decide to use the same vari-
able name in the else block.

function processImage (image, generateThumbnail) {
 var thumbnailService;
 if (generateThumbnail) {
 thumbnailService = getThumbnailService();
 thumbnailService.generate(image);
 }

 return process(image);
}

Using the let keyword you could get away with declaring it in the if block, not worry-
ing about it leaking outside of that block, and without the need to split the variable
declaration from its assignment:

function processImage (image, generateThumbnail) {
 if (generateThumbnail) {
 let thumbnailService = getThumbnailService();
 thumbnailService.generate(image);
 }

 return process(image);
}

The difference is subtle in this case, but getting away from having a long list of vari-
ables listed on the top of a function scope, which might only be used in one of the
code paths, is a code smell in current JavaScript implementations using var. It’s a code
smell that could easily be avoided by using the let keyword, keeping variables in the
block scope they belong to.

5.6 Summary
At long last, you’re done with scoping, module systems, and so on!

■ You learned that keeping code self-contained that has a clear purpose, as well as
information hiding, can greatly improve your interface designs.
Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

65Summary
■ Scoping, this, and hoisting are much clearer now, which will help you design
code that fits the JavaScript paradigm better, without even realizing it.

■ Using closures and the module pattern taught you how module systems work.
■ You compared how CommonJS, RequireJS, and Angular deal with module load-

ing, and how they handle circular dependencies.
■ You learned about the importance of testability, which we’ll expand on in chap-

ter 8, and how the Inversion of Control pattern can make your code more test-
able.

■ We discussed how to leverage npm packages in the browser thanks to Browser-
ify, downloading dependencies with Bower, and the UNIX philosophy of writing
modular code with Component.

■ You saw what’s coming in ES6, such as the module system and the let keyword,
and you learned how to play around with ES6 using the Traceur compiler.
Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

The fate of most applications is often sealed before a
single line of code has been written. How is that possi-
ble? Simply, bad design assures bad results. Good
design and effective processes are the foundation on
which maintainable applications are built, scaled, and
improved. For JavaScript developers, this means discov-
ering the tooling, modern libraries, and architectural
patterns that enable those improvements.

 JavaScript Application Design: A Build First Approach
introduces techniques to improve software quality and
development workflow. You’ll begin by learning how to
establish processes designed to optimize the quality of

your work. You’ll execute tasks whenever your code changes, run tests on every com-
mit, and deploy in an automated fashion. Then you’ll focus on designing modular
components and composing them together to build robust applications.

What’s inside

■ Automated development, testing, and deployment processes
■ JavaScript fundamentals and modularity best practices
■ Modular, maintainable, and well-tested applications
■ Master asynchronous flows, embrace MVC, and design a REST API

This book assumes readers understand the basics of JavaScript.
Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

https://www.manning.com/books/javascript-application-design
https://www.manning.com/books/javascript-application-design

As applications grow in size, the amount of data they have to deal with
often grows as well. Learning how to manage and manipulate collections of data
is essential. The following outstanding chapter takes a deep dive into working
with JavaScript collections and includes two new ES6 collections: maps and sets.

Dealing with
collections
Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

Chapter 9 from Secrets of the JavaScript Ninja,
Second Edition
by John Resig, Bear Bibeault, and Josip Maras

Dealing with collections
Now that we’ve spent some time wrangling the particularities of object-orientation
in JavaScript, we’ll move on to a closely related topic: collections of items. We’ll
start with arrays, the most basic type of collection in JavaScript, and look at some
array peculiarities you may not expect if your programming background is in
another programming language. We’ll continue by exploring some of the built-in
array methods that will help you write more elegant array-handling code.

 Next, we’ll discuss two new ES6 collections: maps and sets. Using maps, you can
create dictionaries of a sort that carry mappings between keys and values—a collec-
tion that’s extremely useful in certain programming tasks. Sets, on the other hand,
are collections of unique items in which each item can’t occur more than once.

 Let’s begin our exploration with the simplest and most common of all collec-
tions: arrays.

This chapter covers
■ Creating and modifying arrays
■ Using and reusing array functions
■ Creating dictionaries with maps
■ Creating collections of unique objects with sets
68

Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

https://www.manning.com/books/secrets-of-the-javascript-ninja-second-edition
https://www.manning.com/books/secrets-of-the-javascript-ninja-second-edition

69Arrays
 .

What are some of the common pitfalls of using objects as
dictionaries or maps?

Do you know? What value types can a key/value pair have in a Map?
Must the items in a Set be of the same type?

 .

9.1 Arrays
Arrays are one of the most common data types. Using them, you can handle collec-
tions of items. If your programming background is in a strongly typed language such
as C, you probably think of arrays as sequential chunks of memory that house items of
the same type, where each chunk of memory is of fixed size and has an associated
index through which you can easily access it.

 But as with many things in JavaScript, arrays come with a twist: They’re just objects.
Although this leads to some unfortunate side effects, primarily in terms of perfor-
mance, it also has some benefits. For example, arrays can access methods, like other
objects—methods that will make our lives a lot easier.

 In this section, we’ll first look at ways to create arrays. Then we’ll explore how to add
items to and remove items from different positions in an array. Finally, we’ll examine
the built-in array methods that will make our array-handling code much more elegant.

9.1.1 Creating arrays

There are two fundamental ways to create new arrays:

■ Using the built-in Array constructor
■ Using array literals []

Let’s start with a simple example in which we create an array of ninjas and an array of
samurai.

const ninjas = ["Kuma", "Hattori", "Yagyu"];
const samurai = new Array("Oda", "Tomoe");

assert(ninjas.length === 3, "There are three ninjas");
assert(samurai.length === 2, "And only two samurai");

assert(ninjas[0] === "Kuma", "Kuma is the first ninja");
assert(samurai[samurai.length-1] === "Tomoe",
 "Tomoe is the last samurai");

assert(ninjas[4] === undefined,
 "We get undefined if we try to access an out of bounds index");

Listing 9.1 Creating arrays

To create an array, we can
use an array literal [] …… or the

built-in Array
constructor.

The length
property tells
us the size of

the array.

We access array
items with index
notation: The first
item is indexed
with 0, and the
last with
array.length – 1.

Reading items
outside the array
bounds results in

“undefined”.
Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

70 CHAPTER 9 Dealing with collections
ninjas[4] = "Ishi";
assert(ninjas.length === 5,
 "Arrays are automatically expanded");

ninjas.length = 2;
assert(ninjas.length === 2, "There are only two ninjas now");
assert(ninjas[0] === "Kuma" && ninjas[1] === "Hattori",
 "Kuma and Hattori");
assert(ninjas[2] === undefined, "But we've lost Yagyu");

In listing 9.1, we start by creating two arrays. The ninjas array is created with a simple
array literal:

const ninjas = ["Kuma", "Hattori", "Yagyu"];

It’s immediately prefilled with three ninjas: Kuma, Hattori, and Yagyu. The samurai
array is created using the built-in Array constructor:

const samurai = new Array("Oda", "Tomoe");

Regardless of how we create it, each array has a length property that specifies the size
of the array. For example, the length of the ninjas array is 3, and it contains 3 ninjas.
We can test this with the following assertions:

assert(ninjas.length === 3, "There are three ninjas");
assert(samurai.length === 2, "And only two samurai");

As you probably know, you access array items by using index notation, where the first
item is positioned at index 0 and the last item at index array.length – 1. But if we try
to access an index outside those bounds—for example, with ninjas[4] (remember,
we have only three ninjas!), we won’t get the scary “Array index out of bounds” excep-
tion that we receive in most other programming languages. Instead, undefined is
returned, signaling that there’s nothing there:

assert(ninjas[4] === undefined,
 "We get undefined if we try to access an out of bounds index");

Writing to indexes outside
the array bounds extends
the array.

Manually overriding the length property
with a lower value deletes the excess items.

Array literals vs. the Array constructor
Using array literals to create arrays is preferred over creating arrays with the Array
constructor. The primary reason is simplicity: [] versus new Array() (2 characters
versus 11 characters—hardly a fair contest). In addition, because JavaScript is highly
dynamic, nothing stops someone from overriding the built-in Array constructor,
which means calling new Array() doesn’t necessarily have to create an array. Thus
we recommend that you generally stick to array literals.
Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

71Arrays
This behavior is a consequence of the fact that JavaScript arrays are objects. Just as
we’d get undefined if we tried to access a nonexistent object property, we get unde-
fined when accessing a nonexistent array index.

 On the other hand, if we try to write to a position outside of array bounds, as in

ninjas[4] = "Ishi";

the array will expand to accommodate the new situation. For example, see figure 9.1:
We’ve essentially created a hole in the array, and the item at index 3 is undefined.
This also changes the value of the length property, which now reports a value of 5,
even though one array item is undefined.

Unlike in most other languages, in JavaScript, arrays also exhibit a peculiar feature
related to the length property: Nothing stops us from manually changing its value.
Setting a value higher than the current length will expand the array with undefined
items, whereas setting the value to a lower value will trim the array, as in
ninjas.length = 2;.

 Now that we’ve gone through the basics of array creation, let’s go through some of
the most common array methods.

9.1.2 Adding and removing items at either end of an array

Let’s start with the following simple methods we can use to add items to and remove
items from an array:

■ push adds an item to the end of the array.
■ unshift adds an item to the beginning of the array.
■ pop removes an item from the end of the array.
■ shift removes an item from the beginning of the array.

You’ve probably already used these methods, but just in case, let’s make sure we’re on
the same page by exploring the following listing.

var ninjas = ["Kuma", "Hattori", "Yagyu"]

"Kuma"

0

"Hattori"

1

"Yagyu"

2 length: 3

ninjas[4] = "Ishi";

"Kuma"

0

"Hattori"

1

"Yagyu"

2

undefined

3

"Ishi"

4 length: 5

Figure 9.1 Writing to an array index outside of array bounds expands the array.
Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

72 CHAPTER 9 Dealing with collections

.
const ninjas = [];
assert(ninjas.length === 0, "An array starts empty");

ninjas.push("Kuma");
assert(ninjas[0] === "Kuma",
 "Kuma is the first item in the array");
assert(ninjas.length === 1, "We have one item in the array");

ninjas.push("Hattori");
assert(ninjas[0] === "Kuma",
 "Kuma is still first");
assert(ninjas[1] === "Hattori",
 "Hattori is added to the end of the array");
assert(ninjas.length === 2,
 "We have two items in the array!");

ninjas.unshift("Yagyu");
assert(ninjas[0] === "Yagyu",
 "Now Yagyu is the first item");
assert(ninjas[1] === "Kuma",
 "Kuma moved to the second place");
assert(ninjas[2] === "Hattori",
 "And Hattori to the third place");
assert(ninjas.length === 3,
 "We have three items in the array!");

const lastNinja = ninjas.pop();
assert(lastNinja === "Hattori",
 "We've removed Hattori from the end of the array");
assert(ninjas[0] === "Yagyu",
 "Now Yagyu is still the first item");
assert(ninjas[1] === "Kuma,
 "Kuma is still in second place");
assert(ninjas.length === 2,
 "Now there are two items in the array");

const firstNinja = ninjas.shift();
assert(firstNinja === "Yagyu",
 "We've removed Yagyu from the beginning of the array");
assert(ninjas[0] === "Kuma",
 "Kuma has shifted to the first place");
assert(ninjas.length === 1,
 "There's only one ninja in the array");

In this example, we first create a new, empty ninjas array:

ninjas = [] // ninjas: []

In each array, we can use the built-in push method to append an item to the end of
the array, changing its length in the process:

ninjas.push("Kuma"); // ninjas: ["Kuma"];
ninjas.push("Hattori"); // ninjas: ["Kuma", "Hattori"];

Listing 9.2 Adding and removing array items

Creates a new,
empty array.

Pushes a new
item to the end
of the array.

Pushes another
item to the end
of the array.

Uses the built-in unshift
method to insert the item
at the beginning of the
array. Other items are
adjusted accordingly.

Pops the last item
from the array.

Removes the first
item from the array
Other items are
moved to the left
accordingly.
Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

73Arrays
We can also add new items to the beginning of the array by using the built in unshift
method:

ninjas.unshift("Yagyu");// ninjas: ["Yagyu", "Kuma", "Hattori"];

Notice how existing array items are adjusted. For example, before calling the unshift
method, "Kuma" was at index 0, and afterward it’s at index 1.

 We can also remove elements from either the end or the beginning of the array.
Calling the built-in pop method removes an element from the end of the array, reduc-
ing the array’s length in the process:

var lastNinja = ninjas.pop(); // ninjas:["Yagyu", "Kuma"]
 // lastNinja: "Hattori"

We can also remove an item from the beginning of the array by using the built-in
shift method:

var firstNinja = ninjas.shift(); //ninjas: ["Kuma"]
 //firstNinja: "Yagyu"

Figure 9.2 shows how push, pop, shift, and unshift modify arrays.

push

Argument

pop

Before After

push and pop
modify the back
of the array.

unshift

Argument

shift

unshift and shift
modify the front
of the array.

Figure 9.2 The push and pop methods modify the end of an array, whereas shift and unshift
modify the array’s beginning.
Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

74 CHAPTER 9 Dealing with collections
9.1.3 Adding and removing items at any array location

The previous example removed items from the beginning and end of the array. But this
is too constraining—in general, we should be able to remove items from any array loca-
tion. One straightforward approach for doing this is shown in the following listing.

const ninjas = ["Yagyu", "Kuma", "Hattori", "Fuma"];

delete ninjas[1];

assert(ninjas.length === 4,
 "Length still reports that there are 4 items");

assert(ninjas[0] === "Yagyu", "First item is Yagyu");
assert(ninjas[1] === undefined, "We've simply created a hole");
assert(ninjas[2] === "Hattori", "Hattori is still the third item");
assert(ninjas[3] === "Fuma", "And Fuma is the last item");

This approach to deleting an item from an array doesn’t work. We effectively only cre-
ate a hole in the array. The array still reports that it has four items, but one of them—
the one we wanted to delete—is undefined (see figure 9.3).

Listing 9.3 Naïve way to remove an array item

Performance considerations: pop and push vs. shift and unshift
The pop and push methods only affect the last item in an array: pop by removing the
last item, and push by inserting an item at the end of the array. On the other hand,
the shift and unshift methods change the first item in the array. This means the
indexes of any subsequent array items have to be adjusted. For this reason, push
and pop are significantly faster operations than shift and unshift, and we recom-
mend using them unless you have a good reason to do otherwise.

Uses the delete command to delete an item.

We deleted an item, but the array still reports that it
has 4 items. We’ve only created a hole in the array.

var ninjas = ["Yagyu", "Kuma", "Hattori", "Fuma"]

"Yagyu" "Kuma" "Hattori" "Fuma"

delete ninjas[1]

"Yagyu" undefined "Hattori" "Fuma"
Figure 9.3 Deleting an item from
an array creates a hole in the array.
Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

75Arrays
Similarly, if we wanted to insert an item at an arbitrary position, where would we even
start? As an answer to these problems, all JavaScript arrays have access to the splice
method: Starting from a given index, this method removes and inserts items. Check
out the following example.

const ninjas = ["Yagyu", "Kuma", "Hattori", "Fuma"];

var removedItems = ninjas.splice(1, 1);

assert(removedItems.length === 1, "One item was removed");
assert(removedItems[0] === "Kuma");

assert(ninjas.length === 3,
 "There are now three items in the array");
assert(ninjas[0] === "Yagyu",
 "The first item is still Yagyu");
assert(ninjas[1] === "Hattori",
 "Hattori is now in the second place");
assert(ninjas[2] === "Fuma",
 "And Fuma is in the third place");

removedItems = ninjas.splice(1, 2, "Mochizuki", "Yoshi", "Momochi");
assert(removedItems.length === 2, "Now, we've removed two items");
 assert(removedItems[0] === "Hattori", "Hattori was removed");
assert(removedItems[1] === "Fuma", "Fuma was removed");
assert(ninjas.length === 4, "We've inserted some new items");
assert(ninjas[0] === "Yagyu", "Yagyu is still here");
assert(ninjas[1] === "Mochizuki", "Mochizuki also");
assert(ninjas[2] === "Yoshi", "Yoshi also");
assert(ninjas[3] === "Momochi", "and Momochi");

We begin by creating a new array with four items:

var ninjas = ["Yagyu", "Kuma", "Hattori", "Fuma"];

Then we call the built-in splice method:

var removedItems = ninjas.splice(1,1);//ninjas:["Yagyu","Hattori", "Fuma"];
 //removedItems: ["Kuma"]

In this case, splice takes two arguments: the index from which the splicing starts, and
the number of elements to be removed (if we leave out this argument, all elements to
the end of the array are removed). In this case, the element with index 1 is removed
from the array, and all subsequent elements are shifted accordingly.

Listing 9.4 Removing and adding items at arbitrary positions

Creates a new array
with four items. Uses the built-in

splice method to
remove one element,

starting at index 1.

splice returns an array
of the removed items.

In this case, we
removed one item.

The ninja array no
longer contains Kuma;
subsequent items were

automatically shifted.

We can insert an element at a position
by adding arguments to the splice call.
Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

76 CHAPTER 9 Dealing with collections
 In addition, the splice method returns an array of items that have been removed.
In this case, the result is an array with a single item: "Kuma".

 Using the splice method, we can also insert items into arbitrary positions in an
array. For example, consider the following code:

removedItems = ninjas.splice(1, 2, "Mochizuki", "Yoshi", "Momochi");
//ninjas: ["Yagyu", "Mochizuki", "Yoshi", "Momochi"]

//removedItems: ["Hattori", "Fuma"]

Starting from index 1, it first removes two items and then adds three items: "Mochi-
zuki", "Yoshi", and "Momochi".

 Now that we’ve given you a refresher on how arrays work, let’s continue by study-
ing some common operations that are often performed on arrays. These will help you
write more elegant array-handling code.

9.1.4 Common operations on arrays

In this section, we’ll explore some of the most common operations on arrays:

■ Iterating (or traversing) through arrays
■ Mapping existing array items to create a new array based on them
■ Testing array items to check whether they satisfy certain conditions
■ Finding specific array items
■ Aggregating arrays and computing a single value based on array items (for exam-

ple, calculating the sum of an array)

We’ll start with the basics: array iterations.

ITERATING OVER ARRAYS

One of the most common operations is iterating over an array. Going back to Com-
puter Science 101, an iteration is most often performed in the following way:

const ninjas = ["Yagyu", "Kuma", "Hattori"];

for(let i = 0; i < ninjas.length; i++){
 assert(ninjas[i] !== null, ninjas[i]);
}

This example is as simple as it looks. It uses a
for loop to check every item in the array; the
results are shown in figure 9.4.

 You’ve probably written something like
this so many times that you don’t even have to
think about it anymore. But just in case, let’s
take a closer look at the for loop.

 To go through an array, we have to set up a
counter variable, i, specify the number up to
which we want to count (ninjas.length), and

Reports the value
of each ninja

Figure 9.4 The output of checking the ninjas
with a for loop
Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

77Arrays
define how the counter will be modified (i++). That’s an awful lot of bookkeeping to
perform such a common action, and it can be a source of annoying little bugs. In addi-
tion, it makes our code more difficult to read. Readers have to look closely at every part
of the for loop, just to be sure it goes through all the items and doesn’t skip any.

 To make life easier, all JavaScript arrays have a built-in forEach method we can use
in such situations. Look at the following example.

const ninjas = ["Yagyu", "Kuma", "Hattori"];

ninjas.forEach(ninja => {
 assert(ninja !== null, ninja);
));

We provide a callback (in this case, an arrow function) that’s called immediately, for
each item in the array. That’s it—no more fussing about the start index, the end con-
dition, or the exact nature of the increment. The JavaScript engine takes care of all
that for us, behind the scenes. Notice how much easier to understand this code is, and
how it has fewer bug-spawning points.

 We’ll continue by taking things up a notch and seeing how we can map arrays to
other arrays.

MAPPING ARRAYS

Imagine that you have an array of ninja objects. Each ninja has a name and a favorite
weapon, and you want to extract an array of weapons from the ninjas array. Armed
with the knowledge of the forEach method, you might write something like the fol-
lowing listing.

const ninjas = [
 {name: "Yagyu", weapon: "shuriken"},
 {name: "Yoshi", weapon: "katana"},
 {name: "Kuma", weapon: "wakizashi"}
];

const weapons = [];
ninjas.forEach(ninja => {
 weapons.push(ninja.weapon);
});

assert(weapons[0] === "shuriken"
 && weapons[1] === "katana"
 && weapons[2] === "wakizashi"
 && weapons.length === 3,
 "The new array contains all weapons");

Listing 9.5 Using the forEach method

Listing 9.6 Naïve extraction of a weapons array

Uses the built-in
forEach method to
iterate over the array

Creates a new array and uses
a forEach loop over ninjas to
extract individual ninja weapons
Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

78 CHAPTER 9 Dealing with collections
This isn’t all that bad: We create a new, empty array, and use the forEach method to
iterate over the ninjas array. Then, for each ninja object, we add the current weapon
to the weapons array.

 As you might imagine, creating new arrays based on the items in an existing array is
surprisingly common—so common that it has a special name: mapping an array. The idea
is that we map each item from one array to a new item of a new array. Conveniently,
JavaScript has a map function that does exactly that, as shown in the following listing.

const ninjas = [
 {name: "Yagyu", weapon: "shuriken"},
 {name: "Yoshi", weapon: "katana"},
 {name: "Kuma", weapon: "wakizashi"}
];

const weapons = ninjas.map(ninja => ninja.weapon);

assert(weapons[0] === "shuriken"
 && weapons[1] === "katana"
 && weapons[2] === "wakizashi"
 && weapons.length == 3, "The new array contains all weapons");

The built-in map method constructs a completely new array and then iterates over the
input array. For each item in the input array, map places exactly one item in the newly
constructed array, based on the result of the callback provided to map. The inner work-
ings of the map function are shown in figure 9.5.

Listing 9.7 Mapping an array

The built-in map method
takes a function that’s
called for each item in
the array.

const weapons = ninjas.map(ninja => ninja.weapon);

The map callback function is immediately
called for each item in an array.

map function

ninjas

name:
 "Yagyu"
weapon:
 "shuriken"

name:
 "Yoshi"
weapon:
 "katana"

name:
 "Kuma"
weapon:
 "wakizashi"

weapons

"shuriken" "katana" "wakizashi" "shuriken" "katana" "wakizashi"

fc

fc

name:
 "Yagyu"
weapon:
 "shuriken"

fcfc

name:
 "Yoshi"
weapon:
 "katana"

name:
 "Kuma"
weapon:
 "wakizashi"

Figure 9.5 The map function calls the provided callback function (fc) on each array item, and creates a new array
with callback return values.
Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

79Arrays
Now that we know how to map arrays, let’s see how to test array items for certain
conditions.

TESTING ARRAY ITEMS

When working with collections of items, we’ll often run into situations where we need
to know whether all or at least some of the array items satisfy certain conditions. To
write this code as efficiently as possible, all JavaScript arrays have access to the built-in
every and some methods, shown next.

const ninjas = [
 {name: "Yagyu", weapon: "shuriken"},
 {name: "Yoshi" },
 {name: "Kuma", weapon: "wakizashi"}
];

const allNinjasAreNamed = ninjas.every(ninja => "name" in ninja);
const allNinjasAreArmed = ninjas.every(ninja => "weapon" in ninja);

assert(allNinjasAreNamed, "Every ninja has a name");
assert(!allNinjasAreArmed, "But not every ninja is armed");

const someNinjasAreArmed = ninjas.some(ninja => "weapon" in ninja);
assert(someNinjasAreArmed, "But some ninjas are armed");

Listing 9.8 shows an example where we have a collection of ninja objects but are
unsure of their names and whether all of them are armed. To get to the root of this
problem, we first take advantage of every:

var allNinjasAreNamed = ninjas.every(ninja => "name" in ninja);

The every method takes a callback that, for each ninja in the collection, checks
whether we know the ninja’s name. every returns true only if the passed-in callback
returns true for every item in the array. Figure 9.6 shows how every works.

 In other cases, we only care whether some array items satisfy a certain condition.
For these situations, we can use the built-in method some:

const someNinjasAreArmed = ninjas.some(ninja => "weapon" in ninja);

Starting from the first array item, some calls the callback on each array item until an
item is found for which the callback returns a true value. If such an item is found, the
return value is true; if not, the return value is false.

Listing 9.8 Testing arrays with the every and some methods

The built-in every method takes a
callback that’s called for each array
item. It returns true if the callback
returns a true value for all array
items, or false otherwise.

The built-in some method also takes a callback. It
returns true if the callback returns a true value for at
least one array item, or false otherwise.
Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

80 CHAPTER 9 Dealing with collections
Figure 9.7 shows how some works under the hood: We search an array in order to find
out whether some or all of its items satisfy a certain condition.

 Next we’ll explore how to search an array to find a particular item.

const allNinjasAreNamed = ninjas.every(ninja => "name" in ninja);

The every callback function is
immediately called for each item
in an array, until false is returned.

If one callback returns false,
subsequent items are not even
examined.

every function

ninjas

name:
 "Yagyu"
weapon:
 "shuriken"

name:
 "Yoshi"

name:
 "Kuma"
weapon:
 "wakizashi"

allNinjasAreNamed: true true true true

fc

fc

name:
 "Yagyu"
weapon:
 "shuriken"

fcfc

name:
 "Yoshi"

name:
 "Kuma"
weapon:
 "wakizashi"

const allNinjasAreArmed = ninjas.every(ninja => "weapon" in ninja);

every function

ninjas

name:
 "Yagyu"
weapon:
 "shuriken"

name:
 "Yoshi"

name:
 "Kuma"
weapon:
 "wakizashi"

allNinjasAreArmed: false true false

fc

fc

name:
 "Yagyu"
weapon:
 "shuriken"

fc

name:
 "Yoshi"

name:
 "Kuma"
weapon:
 "wakizashi"

Figure 9.6 The every method tests whether all items in an array satisfy a certain condition represented by a
callback.
Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

81Arrays

SEARCHING ARRAYS

Another common operation that you’re bound to use, sooner rather than later, is
finding items in an array. Again, this task is greatly simplified with another built-in
array method: find. Let’s study the following listing.

const ninjas = [
 {name: "Yagyu", weapon: "shuriken"},
 {name: "Yoshi" },
 {name: "Kuma", weapon: "wakizashi"}
];

const ninjaWithWakizashi = ninjas.find(ninja => {
 return ninja.weapon === "wakizashi";
});

assert(ninjaWithWakizashi.name === "Kuma"
 && ninjaWithWakizashi.weapon === "wakizashi",
 "Kuma is wielding a wakizashi");

NOTE The built-in find method is part of the ES6 standard. For
current browser compatibility, see http://mng.bz/U532.

Listing 9.9 Finding array items

const someNinjasAreArmed = ninjas.some(ninja => "weapon" in ninja);

If one callback returns true,
subsequent items are not even
examined.

some function

ninjas

name:
 "Yagyu"
weapon:
 "shuriken"

name:
 "Yoshi"

name:
 "Kuma"
weapon:
 "wakizashi"

someNinjasAreArmed: true true

fc

name:
 "Yagyu"
weapon:
 "shuriken"

fc

name:
 "Yoshi"

name:
 "Kuma"
weapon:
 "wakizashi"

Figure 9.7 The some method checks whether at least one array item satisfies a condition represented by the
passed-in callback.

Uses the find method to find the
first array item that satisfies a
certain condition, represented
by a passed-in callback.
Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

http://mng.bz/U532

82 CHAPTER 9 Dealing with collections
const ninjaWithKatana = ninjas.find(nina => {
 return ninja.weapon === "katana";
});

assert(ninjaWithKatana === undefined,
 "We couldn't find a ninja that wields a katana");

const armedNinjas = ninjas.filter(ninja => "weapon" in ninja);

assert(armedNinjas.length === 2, "There are two armed ninjas:");
assert(armedNinjas[0].name === "Yagyu"
 && armedNinjas[1].name === "Kuma", "Yagyu and Kuma");

It’s easy to find an array item that satisfies a certain condition: We use the built-in find
method, passing it a callback that’s invoked for each item in the collection until the
targeted item is found. This is indicated by the callback returning true. For example,
the expression

ninjas.find(ninja => ninja.weapon === "wakizashi");

finds Kuma, the first ninja in the ninjas array that’s wielding a wakizashi.
 If we’ve gone through the entire array without a single item returning true, the

final result of the search is undefined. For example, the code

ninjaWithKatana = ninjas.find(ninja => ninja.weapon === "katana");

returns undefined, because there isn’t a katana-wielding ninja. Figure 9.8 shows the
inner workings of the find function.

The find method returns
undefined if an item
can’t be found.

Use the filter method to find multiple
items that all satisfy a certain condition.

const ninjaWithWakizashi = ninjas.find(ninja => ninja.weapon == "wakizashi");

find function

ninjas

name:
 "Yagyu"
weapon:
 "shuriken"

name:
 "Yoshi"

name:
 "Kuma"
weapon:
 "wakizashi"

name:
 "Kuma"
weapon:
 "wakizashi"

name:
 "Kuma"
weapon:
 "wakizashi"ninjaWithWakizashi

false

fc

name:
 "Yagyu"
weapon:
 "shuriken"

fc

false

fc

true

fc

name:
 "Yoshi"

name:
 "Kuma"
weapon:
 "wakizashi"

Figure 9.8 The find function finds one item in an array: the first item for which the find callback returns true.
Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

83Arrays
If we need to find multiple items satisfying a certain criterion, we can use the filter
method, which creates a new array containing all the items that satisfy that criterion.
For example, the expression

const armedNinjas = ninjas.filter(ninja => "weapon" in ninja);

creates a new armedNinjas array that contains only ninjas with a weapon. In this case,
poor unarmed Yoshi is left out. Figure 9.9 shows how the filter function works.

Throughout this example, you’ve seen how to find particular items in an array, but in
many cases it might also be necessary to find the index of an item. Let’s take a closer
look, with the following example.

const ninjas = ["Yagyu", "Yoshi", "Kuma", "Yoshi"];

assert(ninjas.indexOf("Yoshi") === 1, "Yoshi is at index 1");
assert(ninjas.lastIndexOf("Yoshi") === 3, "and at index 3");

const yoshiIndex = ninjas.findIndex(ninja => ninja === "Yoshi");

assert(yoshiIndex === 1, "Yoshi is still at index 1");

To find the index of a particular item, we use the built-in indexOf method, passing it
the item whose index we want to find:

ninjas.indexOf("Yoshi")

Listing 9.10 Finding array indexes

const armedNinjas = ninjas.filter(ninja => "weapon" in ninja);

filter function

ninjas

name:
 "Yagyu"
weapon:
 "shuriken"

name:
 "Kuma"
weapon:
 "wakizashi"

name:
 "Yoshi"

name:
 "Kuma"
weapon:
 "wakizashi"

name:
 "Yagyu"
weapon:
 "shuriken"

name:
 "Kuma"
weapon:
 "wakizashi"armedNinjas

true

fc

name:
 "Yagyu"
weapon:
 "shuriken"

fc

false

fc

true

name:
 "Yagyu"
weapon:
 "shuriken"

fc

name:
 "Yoshi"

name:
 "Kuma"
weapon:
 "wakizashi"

Figure 9.9 The filter function creates a new array that contains all items for which the callback returns true.
Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

84 CHAPTER 9 Dealing with collections
In cases where a particular item can be found multiple times in an array (as is the case
with "Yoshi" and the ninjas array), we may also be interested in finding the last
index where Yoshi appears. For this, we can use the lastIndexOf method:

ninjas.lastIndexOf("Yoshi")

Finally, in the most-general case, when we don’t have a reference to the exact item
whose index we want to search for, we can use the findIndex method:

const yoshiIndex = ninjas.findIndex(ninja => ninja === "Yoshi");

The findIndex method takes a callback and returns the index of the first item for
which the callback returns true. In essence, it works a lot like the find method, the
only difference being that find returns a particular item, whereas findIndex returns
the index of that item.

SORTING ARRAYS

One of the most common array operations is sorting—arranging items systematically in
some order. Unfortunately, correctly implementing sorting algorithms isn’t the easiest
of programming tasks: We have to select the best sorting algorithm for the task, imple-
ment it, and tailor it to our needs, while, as always, being careful not to introduce subtle
bugs. To get this burden off our back, as you saw in chapter 3, all JavaScript arrays have
access to the built-in sort method, whose usage looks something like this:

array.sort((a, b) => a – b);

The JavaScript engine implements the sorting algorithm. The only thing we have to
provide is a callback that informs the sorting algorithm about the relationship
between two array items. The possible results are as follows:

■ If a callback returns a value less than 0, then item a should come before item b.
■ If a callback returns a value equal to 0, then items a and b are on equal footing

(as far as the sorting algorithm is concerned, they’re equal).
■ If a callback returns a value greater than 0, then item a should come after item b.

Figure 9.10 shows the decisions made by the sorting algorithm depending on the call-
back return value.

returnValue < 0
(a should come before b)

returnValue == 0
(a and b are on equal footing)

returnValue > 0
(b should come before a)

Leave as is

Leave as is

b should be moved before a

a should be moved before b

…

Leave as is

Leave as is

a … b … b … a
Figure 9.10 If the
callback returns a
value less than 0, the
first item should come
before the second. If
the callback returns 0,
both items should be
left as is. And if the
return value is greater
than 0, the first item
should come after the
second item.
Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

85Arrays
And that’s about all you need to know about the sorting algorithm. The actual sorting
is performed behind the scenes, without us having to manually move array items
around. Let’s look at a simple example.

const ninjas = [{name: "Yoshi"}, {name: "Yagyu"}, {name: "Kuma"}];

ninjas.sort(function(ninja1, ninja2){
 if(ninja1.name < ninja2.name) { return -1; }
 if(ninja1.name > ninja2.name) { return 1; }

 return 0;
});

assert(ninjas[0].name === "Kuma", "Kuma is first");
assert(ninjas[1].name === "Yagyu", "Yagyu is second");
assert(ninjas[2].name === "Yoshi", "Yoshi is third");

In listing 9.11 we have an array of ninja objects, where each ninja has a name. Our
goal is to sort that array lexicographically (in alphabetical order), according to ninja
names. For this, we naturally use the sort function:

ninjas.sort(function(ninja1, ninja2){
 if(ninja1.name < ninja2.name) { return -1; }
 if(ninja1.name > ninja2.name) { return 1; }

 return 0;
});

To the sort function we only need to pass a callback that’s used to compare two array
items. Because we want to make a lexical comparison, we state that if ninja1’s name is
“less” than ninja2’s name, the callback returns -1 (remember, this means ninja1 should
come before ninja2, in the final sorted order); if it’s greater, the callback returns 1
(ninja1 should come after ninja2); if they’re equal, the callback returns 0. Notice that we
can use simple less-than (<) and greater-than (>) operators to compare two ninja names.

 That’s about it! The rest of the nitty-gritty details of sorting are left to the
JavaScript engine, without us having to worry about them.

AGGREGATING ARRAY ITEMS

How many times have you written code like the following?

const numbers = [1, 2, 3, 4];
const sum = 0;

numbers.forEach(number => {
 sum += number;
});

assert(sum === 10, "The sum of first four numbers is 10");

Listing 9.11 Sorting an array

Passes a callback to the
built-in sort method to
specify a sorting order
Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

86 CHAPTER 9 Dealing with collections
This code has to visit every item in a collection and aggregate some value, in essence
reducing the entire array to a single value. Don’t worry—JavaScript has something to
help with this situation, too: the reduce method, as shown in the following example.

const numbers = [1, 2, 3, 4];

const sum = numbers.reduce((aggregated, number) =>
 aggregated + number, 0);

assert(sum === 10, "The sum of first four numbers is 10");

The reduce method works by taking the initial value (in this case, 0) and calling the call-
back function on each array item with the result of the previous callback invocation (or
the initial value) and the current array item as arguments. The result of the reduce
invocation is the result of the last callback, called on the last array item. Figure 9.11
sheds more light on the process.

 We hope we’ve convinced you that JavaScript contains some useful array methods that
can make our lives significantly easier and your code more elegant, without having to
resort to pesky for loops. If you’d like to find out more about these and other array meth-
ods, we recommend the Mozilla Developer Network explanation at http://mng.bz/cS21.

 Now we’ll take things a bit further and show you how to reuse these array methods
on your own, custom objects.

9.1.5 Reusing built-in array functions

There are times when we may want to create an object that contains a collection of data.
If the collection was all we were worried about, we could use an array. But in certain
cases, there may be more state to store than just the collection itself—perhaps we need
to store some sort of metadata regarding the collected items.

Listing 9.12 Aggregating items with reduce

Uses reduce to accumulate a
single value from an array

1

1

00

2 3 41 2 3 4

const sum = numbers.reduce((aggregated, number) =>
 aggregated + number, 0);

reduce function

sum

numbers

Initial value

fc

fc fc

3

fc

6 1010

fc

Figure 9.11 The reduce function applies a callback to an aggregated value and each item in
an array to reduce the array to a single value.
Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

http://mng.bz/cS21

87Arrays
One option may be to create a new array every time you wish to create a new version of
such an object, and add the metadata properties and methods to it. Remember, we
can add properties and methods to an object as we please, including arrays. Generally,
however, this can be slow, not to mention tedious.

 Let’s examine the possibility of using a normal object and giving it the functionality
we desire. Methods that know how to deal with collections already exist on the Array
object; can we trick them into working on our own objects? Turns out that we can, as
shown in the following listing.

<body>
 <input id="first"/>
 <input id="second"/>
 <script>
 const elems = {
 length: 0,
 add: function(elem){
 Array.prototype.push.call(this, elem);
 },
 gather: function(id){
 this.add(document.getElementById(id));
 },
 find: function(callback){
 return Array.prototype.find.call(this, callback);
 }
 };

 elems.gather("first");
 assert(elems.length === 1 && elems[0].nodeType,
 "Verify that we have an element in our stash");

 elems.gather("second");
 assert(elems.length === 2 && elems[1].nodeType,
 "Verify the other insertion");

 elems.find(elem => elem.id === "second");
 assert(found && found.id === "second",
 "We've found our element");
 </script>
</body>

In this example, we create a “normal” object and instrument it to mimic some of the
behaviors of an array. First we define a length property to record the number of ele-
ments that are stored, just like an array. Then we define a method to add an element
to the end of the simulated array, calling this method add:

add: function(elem){
 Array.prototype.push.call(this, elem);
}

Listing 9.13 Simulating array-like methods

Stores the count of
elements. The array
needs a place to store
the number of items
it’s storing.

Implements the method to
add elements to a collection.
The prototype for Array has a
method to do this, so why not
use it instead of reinventing
the wheel?

Implements the gather method to
find elements by their id values
and add them to the collection.

Implements the method
to find elements in the

collection. Similar to the
add method, it reuses

the existing find method
accessible to arrays.
Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

88 CHAPTER 9 Dealing with collections
Rather than write our own code, we can use a native method of JavaScript arrays:
Array.prototype.push.

 Normally, the Array.prototype.push method would operate on its own array via
its function context. But here, we’re tricking the method to use our object as its con-
text by using the call method (remember chapter 4) and forcing our object to be the
context of the push method. (Notice how we could’ve just as easily used the apply
method.) The push method, which increments the length property (thinking that it’s
the length property of an array), adds a numbered property to the object referencing
the passed element. In a way, this behavior is almost subversive (how fitting for nin-
jas!), but it exemplifies what we can do with mutable object contexts.

 The add method expects an element reference to be passed for storage. Although
sometimes we may have such a reference around, more often than not we won’t, so we
also define a convenience method, gather, that looks up the element by its id value
and adds it to storage:

gather: function(id){
 this.add(document.getElementById(id));
}

Finally, we also define a find method that lets us find an arbitrary item in our custom
object, by taking advantage of the built-in array find method:

find: function(callback){
 return Array.prototype.find.call(this, callback);
}

The borderline nefarious behavior we demonstrated in this section not only reveals
the power that malleable function contexts give us, but also shows how we can be
clever in reusing code that’s already written, instead of constantly reinventing the
wheel.

 Now that we’ve spent some time with arrays, let’s move on to two new types of col-
lections introduced by ES6: maps and sets.

9.2 Maps
Imagine that you’re a developer at freelanceninja.com, a site that wants to cater to a
more international audience. For each piece of text on the website—for example,
“Ninjas for hire”—you’d like to create a mapping to each targeted language, such as
“ レンタル用の忍者 ” in Japanese, “ 忍者出租 ” in Chinese, or “?? ??” in Korean (let’s
hope Google Translate has done an adequate job). These collections, which map a
key to a specific value, are called by different names in different programming lan-
guages, but most often they’re known as dictionaries or maps.

 But how do you efficiently manage this localization in JavaScript? One traditional
approach is to take advantage of the fact that objects are collections of named proper-
ties and values, and create something like the following dictionary:
Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

89Maps
const dictionary = {
 "ja": {
 "Ninjas for hire": "レンタル用の忍者 "
 },
 "zh": {
 "Ninjas for hire": "忍者出租 "
 },
 "ko": {
 "Ninjas for hire":"?? ??"
 }
}
assert(dictionary.ja["Ninjas for hire"] === "レンタル用の忍者 ");

At first glance, this may seem like a perfectly fine approach to this problem, and for
this example, it isn’t half bad. But unfortunately, in general, you can’t rely on it.

9.2.1 Don’t use objects as maps

Imagine that somewhere on our site we need to access the translation for the word
constructor, so we extend the dictionary example into the following code.

const dictionary = {
 "ja": {
 "Ninjas for hire": "レンタル用の忍者 "
 },
 "zh": {
 "Ninjas for hire": "忍者出租 "
 },
 "ko": {
 "Ninjas for hire":"?? ??"
 }
};

assert(dictionary.ja["Ninjas for hire"] === "レンタル用の忍者 ",
 "We know how to say 'Ninjas for hire' in Japanese!");

assert(typeof dictionary.ja["constructor"] === "undefined",
 dictionary.ja["constructor"]);

We try to access the translation for the
word constructor—a word that we foolishly
forgot to define in our dictionary. Nor-
mally, in such a case, we’d expect the dic-
tionary to return undefined. But that isn’t
the result, as you can see in figure 9.12.

 As you can see, by accessing the
constructor property, we obtain the
following string:

"function Object() { [native code] }"

Listing 9.14 Objects have access to properties that weren’t explicitly defined

Figure 9.12 Running listing 9.14 shows that
objects aren’t good maps, because they have access
to properties that weren’t explicitly defined (through
their prototypes).
Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

90 CHAPTER 9 Dealing with collections
What’s with this?
 As you learned in chapter 7, all objects have prototypes; even if we define new,

empty objects as our maps, they still have access to the properties of the prototype
objects. One of those properties is constructor (recall that constructor is the prop-
erty of the prototype object that points back to the constructor function), and it’s the
culprit behind the mess we now have on our hands.

 In addition, with objects, keys can only be string values; if you want to create a map-
ping for any other value, that value will be silently converted into a string without any-
one asking you anything! For example, imagine that we want to track some
information about HTML nodes, as in the following listing.

 <div id="firstElement"></div>
 <div id="secondElement"></div>
 <script>
 const firstElement = document.getElementById("firstElement");
 const secondElement = document.getElementById("secondElement");

 const map = {};

 map[firstElement] = { data: "firstElement"};
 assert(map[firstElement].data === "firstElement",
 "The first element is correctly mapped");

 map[secondElement] = { data: "secondElement"};
 assert(map[secondElement].data === "secondElement",
 "The second element is correctly mapped");

 assert(map[firstElement].data === "firstElement",
 "But now the firstElement is overriden!");
 </script>

In listing 9.15, we create two HTML elements, firstElement and secondElement,
which we then fetch from the DOM by using the document.getElementById method.
In order to create a mapping that will store additional information about each ele-
ment, we define a plain old JavaScript object:

const map = {};

Then we use the HTML element as a key for our mapping object and associate some
data with it:

map[firstElement] = { data: "firstElement"}

Listing 9.15 Mapping values to HTML nodes with objects

Defines two HTML elements and
fetches them by using the built-in

document.getElementById method.

Defines an
object that we’ll
use as a map to
store additional

information
about our HTML

elements. Stores information about the first element,
and checks that it was correctly stored.

Stores information
about the second

element, and checks
that it was correctly

stored. The mapping
for the first
element is

now invalid!
Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

91Maps
And we check that we can retrieve that data. Because that works as it should, we repeat
the entire process for the second element:

map[secondElement] = { data: "secondElement"};

Again, everything looks hunky dory; we’ve successfully associated some data with our
HTML element. But a problem occurs if we decide to revisit the first element:

map[firstElement].data

It would be normal to assume that we’d
again obtain the information about the
first element, but this isn’t the case.
Instead, as figure 9.13 shows, the infor-
mation about the second element is
returned.

 This happens because with objects,
keys are stored as strings. This means
when we try to use any non-string value,
such as an HTML element, as a property
of an object, that value is silently con-
verted to a string by calling its toString
method. Here, this returns the string
"[object HTMLDivElement]", and the
information about the first element is stored as the value of the [object HTMLDiv-
Element] property.

 Next, when we try to create a mapping for the second element, a similar thing hap-
pens. The second element, which is also an HTML div element, is also converted to a
string, and its additional data is also assigned to the [object HTMLDivElement] prop-
erty, overriding the value we set for the first element.

 For these two reasons—properties inherited through prototypes and support for
string-only keys—plain objects generally aren’t useful as maps. Due to this limitation,
the ECMAScript committee has specified a completely new type: Map.

9.2.2 Creating our first map

Creating maps is easy: We use a new, built-in Map constructor. Look at the following
example.

NOTE Maps are a part of the ES6 standard. For current browser
compatibility, see: http://mng.bz/JYYM.

Figure 9.13 Running the code from listing 9.15
shows that objects are converted to strings if we try
to use them as object properties.
Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

http://mng.bz/JYYM

92 CHAPTER 9 Dealing with collections

g
.

 const ninjaIslandMap = new Map();

 const ninja1 = { name: "Yoshi"};
 const ninja2 = { name: "Hatori"};
 const ninja3 = { name: "Kuma"};

 ninjaIslandMap.set(ninja1, { homeIsland: "Honshu"});
 ninjaIslandMap.set(ninja2, { homeIsland: "Hokkaido"});

 assert(ninjaIslandMap.get(ninja1).homeIsland === "Honshu",
 "The first mapping works");
 assert(ninjaIslandMap.get(ninja2).homeIsland === "Hokkaido",
 "The second mapping works");

 assert(ninjaIslandMap.get(ninja3) === undefined,
 "There is no mapping for the third ninja!");

 assert(ninjaIslandMap.size === 2,
 "We've created two mappings");

 assert(ninjaIslandMap.has(ninja1)
 && ninjaIslandMap.has(ninja2),
 "We have mappings for the first two ninjas");
 assert(!ninjaIslandMap.has(ninja3),
 "But not for the third ninja!");

 ninjaIslandMap.delete(ninja1);
 assert(!ninjaIslandMap.has(ninja1)
 && ninjaIslandMap.size() === 1,
 "There’s no first ninja mapping anymore!");

 ninjaIslandMap.clear();
 assert(ninjaIslandMap.size === 0,
 "All mappings have been cleared");

In this example, we create a new map by calling the built-in Map constructor:

const ninjaIslandMap = new Map();

Next, we create three ninja objects, cleverly called ninja1, ninja2, and ninja3. We
then use the built-in map set method:

ninjaIslandMap.set(ninja1, { homeIsland: "Honshu"});

This creates a mapping between a key—in this case, the ninja1 object—and a value—
in this case, an object carrying the information about the ninja’s home island. We do
this for the first two ninjas, ninja1 and ninja2.

Listing 9.16 Creating our first map

Uses the Map constructor
to create a map.

Defines three
ninja objects.

Creates a mapping for the
first two ninja objects by

using the map set method.

Gets the mapping
for the first two
ninja objects by

using the map get
method.

Checks that there’s no mappin
for the third ninja

Checks that the map contains mappings for the
first two ninjas, but not for the third one!

Uses the has method to
check whether a mapping
for a particular key exists.

Uses the delete method
to delete a key from the

map.

Uses the clear method to
completely clear the map.
Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

93Maps
 In the next step, we obtain the mapping for the first two ninjas by using another
built-in map method, get:

 assert(ninjaIslandMap.get(ninja1).homeIsland === "Honshu",
 "The first mapping works");

The mapping of course exists for the
first two ninjas, but it doesn’t exist
for the third ninja, because we
haven’t used the third ninja as an
argument to the set method. The
current state of the map is shown in
figure 9.14.

 In addition to get and set meth-
ods, every map also has a built-in
size property and has and delete
methods. The size property tells us
how many mappings we’ve created.
In this case, we’ve created only two
mappings.

 The has method, on the other
hand, notifies us whether a mapping
for a particular key already exists:

ninjaIslandMap.has(ninja1); //true
ninjaIslandMap.has(ninja3); //false

The delete method enables us to remove items from our map:

ninjaIslandMap.delete(ninja1);

One of the fundamental concepts when dealing with maps is determining when two
map keys are equal. Let’s explore this concept.

KEY EQUALITY

If you come from a bit more traditional background, such as C#, Java, or Python, you
may be surprised by the next example.

const map = new Map();
const currentLocation = location.href;

const firstLink = new URL(currentLocation);
const secondLink = new URL(currentLocation);

map.set(firstLink, { description: "firstLink"});
map.set(secondLink, { description: "secondLink"});

Listing 9.17 Key equality in maps

Uses the built-in location.href property
to get the current page URL.

Creates two links to
the current page.

Adds a mapping
for both links.

Keys

name:
 "Yoshi"

Ninja1

Ninja2

homeIsland:
 "Hokkaido"

name:
 "Hattori"

homeIsland:
 "Honshu"

Values

Map

Figure 9.14 A map is a collection of key-value pairs,
where a key can be anything—even another object.
Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

94 CHAPTER 9 Dealing with collections
assert(map.get(firstLink).description === "firstLink",
 "First link mapping");
assert(map.get(secondLink).description === "secondLink",
 "Second link mapping");
assert(map.size === 2, "There are two mappings");

In listing 9.17, we use the built-in
location.href property to obtain the
URL of the current page. Next, by
using the built-in URL constructor, we
create two new URL objects that link to
the current page. We then associate a
description object with each link.
Finally, we check that the correct map-
pings have been created, as shown in
figure 9.15.

 People who have mostly worked in
JavaScript may not find this result
unexpected: We have two different
objects for which we create two differ-
ent mappings. But notice that the two URL objects, even though they’re separate
objects, still point to the same URL location: the location of the current page. We
could argue that, when creating mappings, these two objects should be considered
equal. But in JavaScript, we can’t overload the equality operator, and the two objects,
even though they have the same content, are always considered different. This isn’t
the case with other languages, such as Java and C#, so be careful!

9.2.3 Iterating over maps

So far, you’ve seen some of the advantages of maps: You can be sure they contain only
items that you put in them, and you can use anything as a key. But there’s more!

 Because maps are collections, there’s nothing stopping us from iterating over
them with for...of loops. (Remember, we used the for...of loop to iterate over val-
ues created by generators in chapter 6.) You’re also guaranteed that these values will
be visited in the order in which they were inserted (something we can’t rely on when
iterating over objects using the for...in loop). Let’s look at the following example.

const directory = new Map();

directory.set("Yoshi", "+81 26 6462");
directory.set("Kuma", "+81 52 2378 6462");
directory.set("Hiro", "+81 76 277 46");

Listing 9.18 Iterating over maps

Each link gets its own
mapping, even though
they point to the same
page.

Creates a new map, just
as we’ve done so far.

Creates a ninja directory that
stores each ninja’s phone number.

Figure 9.15 If we run the code from listing 9.17,
we can see that key equality in maps is based on
object equality.
Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

95Sets
for(let item of directory){
 assert(item[0] !== null, "Key:" + item[0]);
 assert(item[1] !== null, "Value:" + item[1]);
}

for(let key of directory.keys()){
 assert(key !== null, "Key:" + key);
 assert(directory.get(key) != null,
 "Value:" + directory.get(key));
}

for(var value of directory.values()){
 assert(value !== null, "Value:" + value);
}

As the previous listing shows, once we’ve created a mapping, we can easily iterate over
it using the for...of loop:

for(var item of directory){
 assert(item[0] !== null, "Key:" + item[0]);
 assert(item[1] !== null, "Value:" + item[1]);

}

In each iteration, this gives a two-item array, where the first item is a key and the sec-
ond item is the value of an item from our directory map. We can also use the keys and
values methods to iterate over, well, keys and values contained in a map.

 Now that we’ve looked at maps, let’s visit another newcomer to JavaScript: sets,
which are collections of unique items.

9.3 Sets
In many real-world problems, we have to deal with collections of distinct items (mean-
ing each item can’t appear more than once) called sets. Up to ES6, this was something
you had to implement yourself by mimicking sets with standard objects. For a crude
example, see the next listing.

function Set(){
 this.data = {};
 this.length = 0;
}

Set.prototype.has = function(item){
 return typeof this.data[item] !== "undefined";
};

Set.prototype.add = function(item){
 if(!this.has(item)){
 this.data[item] = true;
 this.length++;
 }
};

Listing 9.19 Mimicking sets with objects

Iterates over each item in a dictionary
using the for...of loop. Each item is a
two-item array: a key and a value.

We can also iterate over
keys using the built-in
keys method…

…and over values using the
built-in values method.

Uses an object
to store items

Checks whether the
item is already stored

Adds an item only
if it isn’t already
contained in the set
Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

96 CHAPTER 9 Dealing with collections
Set.prototype.remove = function(item){
 if(this.has(item)){
 delete this.data[item];
 this.length--;
 }
};

const ninjas = new Set();
ninjas.add("Hattori");
ninjas.add("Hattori");

assert(ninjas.has("Hattori") && ninjas.length === 1,
 "Our set contains only one Hattori");

ninjas.remove("Hattori");
assert(!ninjas.has("Hattori") && ninjas.length === 0,
 "Our set is now empty");

Listing 9.19 shows a simple example of how sets can be mimicked with objects. We use
a data-storage object, data, to keep track of our set items, and we expose three meth-
ods: has, which checks whether an item is already contained in the set; add, which
adds an item only if the same item isn’t already contained in the set; and remove,
which removes an already-contained item from the set.

 But this is a poor doppelganger. Because with maps, you can’t really store objects—
only strings and numbers—and there’s always the risk of accessing prototype objects.
For these reasons, the ECMAScript committee decided to introduce a completely new
type of collection: sets.

9.3.1 Creating our first set

The cornerstone of creating sets is the newly introduced constructor function, conve-
niently named Set. Let’s look at an example.

const ninjas = new Set(["Kuma", "Hattori", "Yagyu", "Hattori"]);

assert(ninjas.has("Hattori"), "Hattori is in our set");
assert(ninjas.size === 3, "There are only three ninjas in our set!");

NOTE Sets are a part of the ES6 standard. For current browser
compatibility, see http://mng.bz/QRTS.

Listing 9.20 Creating a set

Removes an item it
it’s already contained
in the set

Tries to add
Hattori twice

Checks that Hattori
was added only once

Removes Hattori and
checks that he was
removed from the set

The Set constructor can take an array of
items with which the set is initialized.

Discards any duplicate items.
Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

http://mng.bz/QRTS

97Sets
assert(!ninjas.has("Yoshi"), "Yoshi is not in, yet..");
ninjas.add("Yoshi");
assert(ninjas.has("Yoshi"), "Yoshi is added");
assert(ninjas.size === 4, "There are four ninjas in our set!");

assert(ninjas.has("Kuma"), "Kuma is already added");
ninjas.add("Kuma");
assert(ninjas.size === 4, "Adding Kuma again has no effect");

for(let ninja of ninjas) {
 assert(ninja !== null, ninja);
}

Here we use the built-in Set constructor to create a new ninjas set that will contain
distinct ninjas. If we don’t pass in any arguments, an empty set is created. We can also
pass in an array, such as this, which pre-fills the set:

new Set(["Kuma", "Hattori", "Yagyu", "Hattori"]);

As we already mentioned, sets are collections of unique items, and their primary pur-
pose is to stop us from storing multiple occurrences of the same object. In this case,
this means "Hattori", which we tried to add twice, is added only once.

 A number of methods are accessible from every set. For example, the has method
checks whether an item is contained in the set:

ninjas.has("Hattori")

and the add method is used to add
unique items to the set:

ninjas.add("Yoshi");

If you’re curious about how many items
are in a set, you can always use the size
property.

 Similar to maps and arrays, sets are
collections, so we can iterate over
them with a for...of loop. As you
can see in figure 9.16, the items are
always iterated over in the order in
which they were inserted.

 Now that we’ve gone through the
basics of sets, let’s visit some common
operations on sets: unions, intersec-
tions, and differences.

9.3.2 Union of sets

A union of two sets, A and B, creates a new set that contains all elements from both A
and B. Naturally, each item can’t occur more than once in the new set.

We can add new
items that aren’t

already contained
in the set.

Adding existing
items has no effect.

Iterates through the
set with a for...of loop.

Figure 9.16 Running the code from listing 9.20
shows that the items in a set are iterated over in
the order in which they were inserted.
Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

98 CHAPTER 9 Dealing with collections
const ninjas = ["Kuma", "Hattori", "Yagyu"];
const samurai = ["Hattori", "Oda", "Tomoe"];

const warriors = new Set([...ninjas, ...samurai]);

assert(warriors.has("Kuma"), "Kuma is here");
assert(warriors.has("Hattori"), "And Hattori");
assert(warriors.has("Yagyu"), "And Yagyu");
assert(warriors.has("Oda"), "And Oda");
assert(warriors.has("Tomoe"), "Tomoe, last but not least");

assert(warriors.size === 5, "There are 5 warriors in total");

We first create an array of ninjas and an array of samurai. Notice that Hattori is lead-
ing a busy life: samurai by day, ninja by night. Now imagine that we need to create a
collection of people whom we can call to arms if a neighboring daimyo decides that
his province is a bit cramped. We create a new set, warriors, that includes all ninjas
and all samurai. Hattori is in both collections, but we want to include him only once—
it’s not like two Hattoris will respond to our call.

 In this case, a set is perfect! We don’t need to manually keep track of whether an item
has been already included: The set takes care of that by itself, automatically. When cre-
ating this new set, we use the spread operator [...ninjas, ...samurai] (remember
chapter 3) to create a new array that contains all ninjas and all samurai. In case you’re
wondering, Hattori is present twice in this new array. But when we finally pass that array
to the Set constructor, Hattori is included only once, as shown in figure 9.17.

Listing 9.21 Using sets to perform a union of collections
Creates an array of ninjas and
samurai. Notice that Hattori is
both a ninja and a samurai.

Creates a new set of
warriors by spreading
ninjas and samurai.

All the ninjas
and samurai are
included in the
new warriors set.

There are no duplicates in the new set. Even though Hattori is
in both the ninjas and samurai sets, he is included only once.

ninjas=["Kuma", "Hattori", "Yagyu"]

"Kuma"
Create two
arrays.

Merge them into
one array with the
spread operator.

"Hattori" "Yagyu"

new Set([…ninjas, …samurai])

"Kuma" "Hattori" "Yagyu"

samurai=["Hattori", "Oda", "Tomoe"]

"Hattori" "Oda" "Tomoe"

"Hattori" "Oda" "Tomoe"

"Oda" "Tomoe"

"Kuma"

Create a set from
the merged array.
This will remove
all duplicates!

"Hattori" "Yagyu"

[…ninjas, …samurai]

ninjas samurai

Figure 9.12 A union of two sets keeps the items from both collections (without duplicates, of course).
Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

99Sets
9.3.3 Intersection of sets

The intersection of two sets, A and B, creates a set that contains elements of A that are
also in B. For example, we can find ninjas that are also samurai, as shown next.

const ninjas = new Set(["Kuma", "Hattori", "Yagyu"]);
const samurai = new Set(["Hattori", "Oda", "Tomoe"]);

const ninjaSamurais = new Set(
 [...ninjas].filter(ninja => samurai.has(ninja))
);

assert(ninjaSamurais.size === 1, "There’s only one ninja samurai");
assert(ninjaSamurais.has("Hattori"), "Hattori is his name");

The idea behind listing 9.22 is to create a new set that contains only ninjas who are
also samurai. We do this by taking advantage of the array’s filter method, which, as
you’ll remember, creates a new array that contains only the items that match a certain
criterion. In this case, the criterion is that the ninja is also a samurai (is contained in
the set of samurai). Because the filter method can only be used on arrays, we have
to turn the ninjas set into an array by using the spread operator:

[...ninjas]

Finally, we check that we’ve found only one ninja who’s also a samurai: the Jack of all
trades, Hattori.

9.3.4 Difference of sets

The difference of two sets, A and B, contains all elements that are in set A but are not in
set B. As you might guess, this is similar to the intersection of sets, with one small but
significant difference. In the next listing, we want to find only true ninjas (not those
who also moonlight as samurai).

const ninjas = new Set(["Kuma", "Hattori", "Yagyu"]);
const samurai = new Set(["Hattori", "Oda", "Tomoe"]);

const pureNinjas = new Set(
 [...ninjas].filter(ninja => !samurai.has(ninja))
);

assert(pureNinjas.size === 2, "There’s only one ninja samurai");
assert(pureNinjas.has("Kuma"), "Kuma is a true ninja");
assert(pureNinjas.has("Yagyu"), "Yagyu is a true ninja");

The only change is to specify that we care only about the ninjas who are not also samu-
rai, by putting an exclamation mark (!) before the samurai.has(ninja) expression.

Listing 9.22 Intersection of sets

Listing 9.23 Difference of sets

Uses the spread operator to turn
our set into an array so we can
use the array’s filter method to
keep only ninjas that are
contained in the samurai set

With set difference,
we care only about
ninjas who are not
samurai!
Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

100 CHAPTER 9 Dealing with collections
9.4 Summary
■ Arrays are a special type of object with a length property and Array.prototype

as their prototype.
■ We can create new arrays using the array literal notation ([]) or by calling the

built-in Array constructor.
■ We can modify the contents of an array using several methods accessible from

array objects:
– The built-in push and pop methods add items to and remove items from the

end of the array.
– The built-in shift and unshift methods add items to and remove items

from the beginning of the array.
– The built-in splice method can be used to remove items from and add items

to arbitrary array positions.
■ All arrays have access to a number of useful methods:

– The map method creates a new array with the results of calling a callback on
every element.

– The every and some methods determine whether all or some array items sat-
isfy a certain criterion.

– The find and filter methods find array items that satisfy a certain condi-
tion.

– The sort method sorts an array.
– The reduce method aggregates all items in an array into a single value.

■ You can reuse the built-in array methods when implementing your own objects
by explicitly setting the method call context with the call or apply method.

■ Maps and dictionaries are objects that contain mappings between a key and a
value.

■ Objects in JavaScript are lousy maps because you can only use string values as
keys and because there’s always the risk of accessing prototype properties.
Instead, use the new built-in Map collection.

■ Maps are collections and can be iterated over using the for...of loop.
■ Sets are collections of unique items.

9.5 Exercises
1 What will be the content of the samurai array, after running the following code?

const samurai = ["Oda", "Tomoe"];
samurai[3] = "Hattori";

2 What will be the content of the ninjas array, after running the following code?

const ninjas = [];

ninjas.push("Yoshi");
Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

101Exercises
ninjas.unshift("Hattori");

ninjas.length = 3;

ninjas.pop();

3 What will be the content of the samurai array, after running the following code?

const samurai = [];

samurai.push("Oda");
samurai.unshift("Tomoe");
samurai.splice(1, 0, "Hattori", "Takeda");
samurai.pop();

4 What will be stored in variables first, second, and third, after running the fol-
lowing code?

const ninjas = [{name:"Yoshi", age: 18},
 {name:"Hattori", age: 19},
 {name:"Yagyu", age: 20}];

const first = persons.map(ninja => ninja.age);
const second = first.filter(age => age % 2 == 0);
const third = first.reduce((aggregate, item) => aggregate + item, 0);

5 What will be stored in variables first and second, after running the following
code?

const ninjas = [{ name: "Yoshi", age: 18 },
 { name: "Hattor", age: 19 },
 { name: "Yagyu", age: 20 }];

const first = ninjas.some(ninja => ninja.age % 2 == 0);
const second = ninjas.every(ninja => ninja.age % 2 == 0);

6 Which of the following assertions will pass?

const samuraiClanMap = new Map();

const samurai1 = { name: "Toyotomi"};
const samurai2 = { name: "Takeda"};
const samurai3 = { name: "Akiyama"};

const oda = { clan: "Oda"};
const tokugawa = { clan: "Tokugawa"};
const takeda ={clan: "Takeda"};

samuraiClanMap.set(samurai1, oda);
samuraiClanMap.set(samurai2, tokugawa);
samuraiClanMap.set(samurai2, takeda);
Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

102 CHAPTER 9 Dealing with collections
assert(samuraiClanMap.size === 3, "There are three mappings");
assert(samuraiClanMap.has(samurai1), "The first samurai has a mapping");
assert(samuraiClanMap.has(samurai3), "The third samurai has a mapping");

7 Which of the following assertions will pass?

const samurai = new Set("Toyotomi", "Takeda", "Akiyama", "Akiyama");
assert(samurai.size === 4, "There are four samurai in the set");

samurai.add("Akiyama");
assert(samurai.size === 5, "There are five samurai in the set");

assert(samurai.has("Toyotomi", "Toyotomi is in!");
assert(samurai.has("Hattori", "Hattori is in!");
Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

More than ever, the web is a universal platform for all
types of applications, and JavaScript is the language of
the web. If you’re serious about web development, it’s
not enough to be a decent JavaScript coder. You need
to be ninja-stealthy, efficient, and ready for anything.

Secrets of the JavaScript Ninja, Second Edition takes you
below the surface and helps you understand the decep-
tively complex world of JavaScript and browser-based
application development. You’ll skip the basics and
dive into core JavaScript concepts such as functions,
closures, objects, prototypes, promises, and so on. With
examples, illustrations, and insightful explanations,

you’ll benefit from the collective wisdom of seasoned experts John Resig, Bear
Bibeault, and Josip Maras.

What’s inside

■ Discover how the individual parts of a web application come together on the
browser as a platform

■ Learn how functions, objects, and closures work in JavaScript and how you can
use them to write simpler, more effective code

■ Anticipate common application pitfalls and discover how to avoid them
■ Write succinct code for text processing with regular expressions
■ Manage asynchronous code with promises
■ Use arrays efficiently, with a focus on succinct functionally-oriented API methods
■ Embrace the concepts from ES6
■ Grok the browser infrastructure for events, timers, web workers, and the DOM

so you can write more performant applications
■ Understand the difficulty of cross-browser development and learn techniques

for developing cross-browser strategies

This book is written for readers familiar with JavaScript who want to take the next step
toward ninjahood.

Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

https://www.manning.com/books/secrets-of-the-javascript-ninja-second-edition
https://www.manning.com/books/secrets-of-the-javascript-ninja-second-edition

To maximize your overall productivity and efficiency, you also need to learn
the concepts and tools associated with task automation and with creating a
client-side build process. The following chapter provides a comprehensive intro-
duction to Gulp.js, a Node.js-based task runner that can automate and simplify
even the most complex workflows.

Getting started
with Gulp
Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

Chapter 2 from Front-End Tooling with Gulp,
Bower, and Yeoman
by Stefan Baumgartner

Getting started with Gulp
You start your new workflow by concentrating on the build system. Although this
was the last step in the previous chapter, it serves as the necessary foundation for
the upcoming elements of our new workflow. The build system deals with a good
chunk of tasks that occur in our day-to-day workflow, like concatenating, minifying,
and testing our code. The build tool is initialized by the scaffolding tool and inte-
grates the dependency manager’s components into the project. Figure 2.1 shows
the part of the build tool in our tooling workflow again.

 Gulp is the foundation for your workflow automation. It’s the first element
that’s being initialized by the scaffolding tool, and it integrates components into
the project. Also, because it’s creating an actively used development environment,
it will become one of the most used and integral parts of your development cycles.

This chapter covers
 An introduction to Gulp

 The concepts of streams

 Creating simple tasks to automate tools

 Creating execution pipelines for
multifunctional tasks
105

Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

https://www.manning.com/books/front-end-tooling-with-gulp-bower-and-yeoman
https://www.manning.com/books/front-end-tooling-with-gulp-bower-and-yeoman

106 CHAPTER 2 Getting started with Gulp
Gulp is a build tool written in JavaScript and running on Node.js. Because Gulp is a
JavaScript program, and Gulp’s build instructions are also written in JavaScript, it’s
very close to the environment JavaScript developers use every day. This makes Gulp a
perfect choice for automating the daily tasks of a front end developer. In this chapter,
I’ll show you how to set up Gulp for your projects. You’ll learn about the individual
bits and pieces a Gulp setup consists of, and you’ll develop your own building instruc-
tions for your JavaScript applications and CSS files.

2.1 Setting up Gulp
Gulp as a Node.js tool is a conglomeration of little pieces that make up a whole. In this
section you’ll learn about the different building blocks of Gulp and how to install
both the command-line interface and the local Gulp installation.

Figure 2.1 Your workflow setup from chapter 1
Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

107Setting up Gulp

2.1.1 The building blocks of Gulp

Build tools in general consist of at least two parts: the tool executing the build and a
build file containing all the instructions for the build tool. Gulp is no exception: the
tool executing the build is called Gulp. Gulp’s build file is commonly referred to as a
Gulpfile. Gulp itself can be broken down in several other parts. Figure 2.2 shows a
quick overview of Gulp’s parts and how they interact.

Sample project and Node.js
For all the upcoming samples in this book, I’ve prepared a sample project, which you
can find under http://github.com/frontend-tooling/sample-project-gulp. If you’re
familiar with Git, you can use the clone command to get its contents. Otherwise,
there’s a Download Zip button on the website you can use to get the files onto your
system.

To re-create the samples, you need to have Node.js installed and ready on your sys-
tem. You’ll find the necessary binaries and installation instructions on
https://www.nodejs.org for your system (Windows, Linux, or Mac OSX).

The globally available Gulp CLI just
checks if the local Gulp’s available
at the current project. If so, it boots
up the local Gulp.

The local Gulp
installation has two
purposes:
1. it provides us with
the basic Gulp API
2. it loads our building
instructions and runs
the tasks which are
defined in there.

The gulpfile.js is a JavaScript file

where all the tasks we want to run

are defined. Those tasks use the Gulp

API provided by local Gulp

installation as well as the Gulp

plugins which are also installed.

Gulpfile.jsLocal Gulp

gulp plugin 1

gulp plugin 2

gulp plugin n

Gulp plugins are wrappers for the tasks

we are going to use. gulp-uglify for

instance runs the real uglify, but takes

care of Gulp compatible input and output.

1 3

2

3
1

Figure 2.2 The Gulp CLI starts the local Gulp installation with the parameters provided on the
command line. The local installation takes the local Gulpfile, which in turn loads Gulp plugins and
defines tasks using the Gulp API. Gulp itself runs and loads these tasks.
Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

http://github.com/frontend-tooling/sample-project-gulp
https://www.nodejs.org

108 CHAPTER 2 Getting started with Gulp
 So a complete Gulp installation consists of the following parts:

 The Gulp CLI—A command-line interface to start the build tool
 The local Gulp installation—The actual software running your build
 The Gulpfile—The building instructions that tell you how to build your software
 Gulp plugins—Lots and lots of tiny executables that know how to combine, mod-

ify, and assemble parts of your software

That’s quite a lot! But don’t worry; in this chapter we’ll deal with all of these. Let’s
start with the CLI.

2.1.2 The Gulp command-line interface

Node.js modules can be installed globally. That makes them usable as a command-line
executable tool. Or you can install modules locally as a library for your own projects.
Both ways are shown in figure 2.3.

The same goes for Gulp, with the exception that Gulp has two separate packages for
the global tool part and the library. One is the Gulp command-line interface; it’s
installed globally and can be executed from your terminal/bash/command prompt.
The other package is the local Gulp installation, which is the actual Gulp runtime,
handling all the tasks and providing the entire API. Gulp’s command-line interface
provides a global entry point for the local Gulp installation, forwarding all the parame-
ters entered to the local installation and kicking off the version of the runtime you’ve
installed for your project. From there on, the local installation takes the lead and exe-
cutes your build.

Global installations of Node.js

modules provide us with the Tool

part. Run from the command line,

we are able to apply this tools to

files located anywhere in our

file system

Local installations of Node.js

modules allow other programs to

use it as a library in their own code.

Figure 2.3 The two ways a Node.js module can be installed. If you install a module globally,
it just provides its functionality as an executable from the command line, working with the files
you want to change. It becomes a tool. Installed locally, you can use the same functionality
but in your own programs.
Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

109Setting up Gulp
 Gulp’s CLI is rather dumb, meaning that its only functionality is to check for a
local installation that it can execute. The reason behind this is to allow for a version-
independent execution. Image you have a project running the legacy version of Gulp
3.8. The CLI will be able to execute this project because the interface to the local
Gulp installation is the same. A newer project running on Gulp 4 can be executed
with the same CLI. In the end, you’ll most likely never update your command-line
interface but will be able to run all Gulp projects you’ll ever create, no matter which
local installation they require.

 To install it, boot up your bash, terminal, or Windows command prompt (it works
on all of them) and check to see if Node.js is installed:

$ node --version

If you have Node.js installed, this command should output the current version of your
installation. Next, you need to check for Node’s package manager, NPM. It comes
with Node.js; check for it with this command:

$ npm --version

Again, you should get a correct version output. Should one of those programs not be
available, please check appendix B for installation instructions or visit the Node.js
website at https://nodejs.org. With Node.js and NPM installed and your command
line booted up, install the Gulp CLI with

$ npm install -g gulp-cli

Note the -g parameter after install. It tells your Node package manager to make this
installation globally available. Once NPM has finished, you have a new command
available on your system. Type the following on your command line to make sure the
installation worked:

$ gulp --version

It should output something like this:

[12:04:15] CLI version 0.2.0

The first step is done. You have the Gulp CLI installed on your system! Let’s continue
with the local installation.

2.1.3 The local Gulp installation

The local Gulp installation has two main purposes: loading and executing the build-
ing instructions written in the Gulpfile and exposing an API that can be used by the
Gulpfile. The local Gulp installation is the actual software executing your builds. The
global installation just kicks off the local software installed separately for each project.
Figure 2.4 illustrates this.

 To install Gulp locally, open your command line and move to the directory where
you unzipped (or cloned) our sample project—not in the app folder directly but one
level up where the README.md file is located. There, promote the whole folder to a
Node module by typing
Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

110 CHAPTER 2 Getting started with Gulp
$ npm init

What follows is a short questionnaire asking you several pieces of information about
your project, but because you probably don’t want to publish your new module to the
NPM registry (at least not now), you can leave everything at its default value. Once
you’ve finished, you’ll see that a new file called package.json is available in your folder.
This file will store all the information on which Node modules are necessary for your
application—the so-called dependencies—and which version they have to be. This file
is the core of every Node project, and some plugins access it directly to get informa-
tion on installed modules.

 The package.json file stores the information of the Node modules your project
depends on. It divides this information into runtime dependencies (modules the proj-
ect needs to work properly) and development dependencies (modules you need to
develop your project). Because your build tool falls into the latter category, you install
the local Gulp installation with the following command:

$ npm install --save-dev gulp

Gulp is downloaded, and the save-dev parameter stores the correct version in your
package.json file:

{
 "name": "sample-project-gulp",

The local installation is the actual

software. It is meant to load the

building instructions saved in the

save folder.

It also can be used as module and

provides the Gulp API

The functionality of the global

Gulp installation is stripped down

to merely be runnable from the

command line.

Figure 2.4 The global installation of Gulp is the Gulp CLI. Its purpose is to check the
availability of a local installation, which it starts on call. The local Gulp is located in the local
node_modules folder of a JavaScript project. It contains all the necessary runtime functions
and provides an API for build files (Gulpfiles).
Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

111Creating Gulpfiles
 "version": "1.0.0",
 "description": "The sample project we will use throughout the Gulp chapters",
 ...
 "devDependencies": {
 "gulp": "^4.0.0"
 }
}

Doing a version check again (with gulp --version), you can see that the output has
changed. The Gulp CLI recognizes your local installation:

[20:40:12] CLI version 0.2.0
[20:40:12] Local version 4.0.0

You now have both the CLI and the local Gulp installed. The next step is working on
your Gulpfile.

2.2 Creating Gulpfiles
In the previous section you set up the basic software that runs Gulp. You installed
the global CLI and made sure that the local Gulp installation is available. The chain
up until now is to start the local Gulp installation with the globally available CLI
(figure 2.4). Now you’re ready for the next step in the chain: the Gulpfile.

2.2.1 A Gulp “Hello World” task

The Gulpfile is a JavaScript file containing all your building instructions. Building
instructions contain a series of commands that can be bundled into tasks. In Gulp, a
task is a plain JavaScript function containing all the commands you want to execute.
Any function will do, as long as it’s defined using the first method of Gulp’s API: the
gulp.task method. Figure 2.5 shows the method’s signature.

 The gulp.task method serves one purpose: it gives the task function—which is
just plain JavaScript—a unique name. This name pushes the function into Gulp’s exe-
cution space. In doing so, Gulp “knows” of this function’s existence and can use this

Gulp 4
This chapter and some parts of the book were written with the newest version of Gulp,
version 4, in mind. But at the time this book went into production, Gulp 4 was still in
a pre-release state. So we don’t know if at the time of this book’s release Gulp 4 will
have been released to the public. If gulp --version gives you a 3.x version number,
then Gulp 4 is still in the pre-release state. To install Gulp 4, use this command
instead:

$ npm install --save-dev gulpjs/gulp.git#4.0

This will download and install the pre-release branch.
Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

112 CHAPTER 2 Getting started with Gulp
reference to execute it. This means that gulp.task provides a direct interface from
the command line to that function.

 Let’s write your first task. In true programming tradition, you’ll go for the
output of “Hello World!” on the command line. Create a new, empty text file called
Gulpfile.js in the same folder where your package.json and node_modules folders are
located. The following listing shows the contents to add.

var gulp = require('gulp');

gulp.task('test', function () {

 console.log('Hello World!');

});

B In requiring the local Gulp installation in your Gulpfile, you have Gulp’s API avail-
able. C Gulp and the Gulpfile are here inherently connected: Gulp loads the Gulpfile
to know which tasks are available, and the Gulpfile loads Gulp to use its API. In defin-
ing the test task, the task is available within Gulp. The second parameter is the func-
tion you want to execute.

 Gulp and the Gulpfile share a unique connection: whereas Gulp needs the Gulp-
file to know which tasks are available and can be executed, the Gulpfile needs Gulp to
have access to the API. See figure 2.6 for details.

 With gulp.task, the first method provided by Gulp’s API, you can promote task
functions to Gulp tasks. In listing 2.1 you created the “Hello World” task that now runs
by the name test. This name is available in Gulp’s execution space, and you can refer
to it directly when calling Gulp from the command line. With the command

$ gulp test

Listing 2.1 Listing 2.1 Hello World in Gulp–Gulpfile.js

Figure 2.5 The signature of the gulp.task method

The second parameter is the task
function. It contains the set of
commands you want to execute
within this task

The name is any string you want
your task to be known in Gulp, as
long as it is unique. If you have

emas eht htiw sksat elpitlum denifed
name, the last one overwrites all the

.seno denifed suoiverp

Require the local Gulp installation in your GulpfileB

Define a new task named test.C
Print “Hello World!” on the command line
Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

113Creating Gulpfiles
you are able to execute this particular task. The various parts of executing tasks kick in
(as shown in figure 2.7) as follows:

1 The global Gulp CLI loads the local Gulp installation.
2 The local Gulp installation loads the Gulpfile.
3 The Gulpfile loads the local Gulp installation and defines a new task called

test.
4 The local Gulp installation is passed a command-line parameter. This is the

name of the task to execute.
5 Because the task of the same name is available, the local Gulp executes the

function attached to it.

Figure 2.6 The local Gulp installation interplays with the Gulpfile. It loads
the Gulpfile available in the project and executes the available tasks, as
instructed by the command-line interface. It also provides the Gulpfile with
a basic API, which is needed to create and define tasks.

Local Gulp loads the Gulpfile

available in the project. Gulp and

the Gulpfile need each other

vice-versa: Gulp executes the tasks

defined in the Gulpfile, the

Gulpfile uses Gulp’s API to work

loads Gulpfile

gulp.task

gulp.src

gulp.dest

Local Gulp

Gulp provides a rather basic

API to define tasks, and to

load save files.

This API is used by the

Gulpfile

Gulpfile.js

gulp.task(’task1’)

gulp.task(’task2’)

gulp.task(’task3’)

gulp.task(’task4’)

gulp.task(’task5’)

The Gulpfile is a JavaScript

file containing all the tasks

that are meant to be

executed
Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

114 CHAPTER 2 Getting started with Gulp
The output looks like this:

[15:01:06] Using gulpfile ~/Project/playground/test/gulpfile.js
[15:01:06] Starting 'test'...
Hello World
[15:01:06] Finished 'test' after 95 µss

You can now execute functions defined in your Gulpfile via the command line. Of
course, a “Hello World!” isn’t something you need a build tool for. Let’s do something
useful with it.

2.2.2 Dealing with streams

With Gulp, you want to read input files and transform them into the desired output,
loading lots of JavaScript files and combining them into one. The Gulp API provides
some methods for reading, transforming, and writing files, all using streams under the
hood.

 Streams are a fairly old concept in computing, originating from the early Unix
days in the 1960s. A stream is a sequence of data coming over time from a source and
running to a destination. The source can be of multiple types: files, the computer’s
memory, or input devices like a keyboard or a mouse. Once a stream is opened, data
flows in chunks from its origin to the process consuming it. Coming from a file, every
character or byte would be read one at a time; coming from the keyboard, every key-
stroke would transmit data over the stream. The biggest advantage compared to load-
ing all the data at once is that, in theory, the input can be endless and without limits.
Coming from a keyboard that makes total sense: why should anybody close the input

Figure 2.7 The global CLI kicks off the local Gulp. The local Gulp looks for a
Gulpfile and loads its contents.
Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

115Creating Gulpfiles
stream you’re using to control your computer? Input streams are also called readable
streams, indicating that they’re meant to read data from a source. On the other hand,
there are outbound streams or destinations: they can also be files, some place in mem-
ory, but also output devices like the command line, a printer, or your screen. They’re
also called writeable streams, meaning that they’re meant to store the data that comes
over the stream. Figure 2.8 illustrates how streams work.

 The data is a sequence of elements made available over time (like characters or
bytes). Readable streams can originate from different sources, such as input devices
(keyboards), files, or data stored in memory. Writeable streams can also end in differ-
ent places, such as files and memory again, but also the command line. Readable and
writeable streams can be interchanged: keyboard input can end up in a file, and file
input can end up on the command line.

 Not only is it possible to have an endless amount of input, but you also can com-
bine different readable and writeable streams. Key input can be directly stored into a
file, or you can print file input out to the command line or even a connected printer.
The interface stays the same no matter what the sources or destinations are.

2.2.3 Readable and writeable streams with Gulp

In Gulp, you can use the gulp.src method to create readable file streams. It allows
you to select which files you want to process in your task. Because you’re going to deal
with many different files and most likely won’t know how your files are called directly,
you can define some selection patterns using globs. The counterpart for gulp.src and
your writeable stream is gulp.dest. Here you define where you want to put your files.
The parameter gulp.dest takes is a simple string pointing to the directory, relative to
the directory where the Gulpfile is located. Should this directory not be available,
Gulp will create it accordingly. Figure 2.9 shows this process.

.

readable

writeable

> a b c

key input

console output

a b c

c

b

a

c

b

a

abc

file input

abc

file input

Figure 2.8 Streams can be of two types: readable streams, which access data,
and writeable streams, which write data.
Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

116 CHAPTER 2 Getting started with Gulp

So far you know that gulp.src reads files according to a pattern and gulp.dest stores
files in a certain directory. With this knowledge you can create your first Gulp task that
makes use of this part of Gulp’s API. gulp.src reads files and gulp.dest writes files,
so a combination of both copies files from one point to the other. See the next listing
for a sample implementation.

gulp.task(’copy’)

*.js

1

3

2

gulp.src

gulp.destWith gulp.dest we create a

writeable stream. The files we

selected earlier are meterialized

in the directory we specify here

With gulp.src we take all the

JavaScript files which match

our glob pattern.

We create a readable stream

consisting of file objects. Each

file object itself also consistes

of a readable stream allowing

us to access its contents

Figure 2.9 A basic Gulp task working with gulp.src and gulp.dest. You read files
from one place and pipe their contents to a destination.

Globs
Globs are a well-known concept in computer science and programming, and if you’ve
ever deleted all files of a certain type on your command line, then you’re familiar with
how they work. The asterisk in *.js stands for “everything” and is a wildcard. With
that, every JavaScript file in the app/scripts folder gets selected. Node globs are
more advanced, though, and allow for more sophisticated patterns. One such pattern
is the double asterisk right before the *.js part. This pattern, called globstar, is also
a wildcard that tells your selection engine to select practically everything, but in this
case you want to match for zero or more directories in that particular subdirectory.
For example, the glob app/scripts/*.js with a single wildcard before the filename
allows you to select any JavaScript file inside the scripts directory but not its subfold-
ers. Using the globstar pattern app/scripts/**/*.js, you include JavaScript files
in subdirectories.
Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

117Handling tasks with Gulp plugins

var gulp = require('gulp');

gulp.task('copy', function() {
 return gulp.src('app/scripts/**/*.js')
 .pipe(gulp.dest('dist'));
});

B In creating the copy task, the following function is available in Gulp’s task execu-
tion space. C The glob pattern provided selects all files ending with “js” in all subdi-
rectories of app/scripts (including files inside app/scripts). D You can pipe the
contents of a stream through to other functions. In this case, you pipe them through
Gulp’s gulp.dest function. This function materializes all files inside your stream in
the specified directory. In this case, you save them in the dist folder. If the folder isn’t
available, it will be created.

NOTE Running gulp copy from the command line kicks off your execution
chain again, this time running the copy task.

gulp.src opens a readable stream of files. The chunks of data processed are all the
files selected by the glob specified in the first parameter. Once this stream is opened,
you can steer your stream toward a certain process using a pipe. Pipes are not a Gulp
specialty per se but rather a concept used by Node streams in general. In listing 2.2
you piped the contents to the gulp.dest function. The gulp.dest function opens a
writeable stream. Writeable streams are meant as a sink for data, the end point for the
data to stay. This can be output on the screen but also in a file. In this case, it’s output
on the file system. The writeable stream created from gulp.dest accepts the same
type of data that the readable stream from gulp.src creates.

 So you read files from the file system and stored them back into the file system, cre-
ating a copy functionality. You’d agree that copying is essential but in the end boring.
Let’s spice it up with transformable streams in the next section.

2.3 Handling tasks with Gulp plugins
So far you’ve used Gulp as a layer for running functions from the command line and
reading files from one place on the file system and writing them back to another
place. But Gulp’s true power comes when you start to use Gulp plugins. Gulp plugins
are little pieces of software that allow you to transform the files in a stream. This sec-
tion shows you the possibilities and technologies used by Gulp.

2.3.1 Transforming data

Streams are not just good for transferring data between different input sources and
output destinations. With the data exposed once a stream is opened, developers can
transform the data that comes from the stream before it reaches its destination, such
as transforming all lowercase characters in a file to uppercase characters.

Listing 2.2 Copy files from one directory to the other—Gulpfile.js

Create a new task called copyB
Create a new readable
stream of file objects

C

Streams provide a pipe functionD
Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

118 CHAPTER 2 Getting started with Gulp
This is one of the greatest powers of streams. Once a stream is opened and you can
read the data piece by piece, you can slot different programs in between. Figure 2.10
illustrates this process.

 To modify data you add transformation blocks between the input and the output.
In this example you get your input data from different sources and channel it through
a toUpperCase transformation. This changes lowercase characters to their uppercase
equivalent. Those blocks can be defined once and reused for different input origins
and outputs.

 In Gulp, transformation is done via plugins. The Gulp ecosystem contains more
than 1500 plugins that allow you to transform data in various ways. Let’s see how you
can transform your JavaScript files using a common transformation in the JavaScript
world: Uglify.

 Uglify is a minification library written in JavaScript. It removes all unnecessary
white spaces, reduces variables and function names to a possible minimum while
keeping global APIs intact, and takes on every JavaScript code optimization in the
book (like writing true as !0, for example, because it saves 2 bytes!). Your code gets
reduced to an absolute minimum, which allows for faster parsing and transfer over
the network. For example, the popular jQuery library gets pared down from roughly
250 KB to 90 KB, which is a little more than a third of its original size. Once the pro-
cess runs, the code becomes unreadable by human eyes, hence the name Uglify.
Uglify has Gulp bindings you can install with

$ npm install --save-dev gulp-uglify

readable

transformable

writeable

> a b c

key input

c

b

a

c

b

a

toUpperCase

console output

ABC

abc

file input

c

b

a

c

b

a

file output

ABC

toUpperCase

Figure 2.10 Streams are good not only for transferring data but also for modifying it.
Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

119Handling tasks with Gulp plugins
This installs the Gulp plugin for Uglify to your Node modules and saves an entry in
the package.json file. You’re now able to use this plugin within your Gulpfile, as shown
in the following listing.

var gulp = require('gulp');
var uglify = require('gulp-uglify');

gulp.task('scripts', function() {
 return gulp.src('app/scripts/**/*.js')
 .pipe(uglify())
 .pipe(gulp.dest('dist'));
});

Each file gets piped through the Uglify process, transforming its contents accordingly.
If you run the task with gulp scripts and take a good look into the dest directory,
you’ll see that all the perfectly clear JavaScript from earlier is now an unreadable
mess. Mission accomplished!

2.3.2 Changing the file structure

When you want to load JavaScript applications over the wire, you want to make as few
requests as possible (see chapter 1 for the reasons). That’s why you want to combine
all JavaScript files into one file. This can be done using concatenation. Concatenation
combines the contents of many files into one. This new file contains all the contents
from the concatenated files and needs a new name that you can define. The same
goes for Gulp and the virtual file system.

 In standard streams, it’s usual to see the file just as a possible input source for the
real data, which has to be processed. All information on the origin, like the path or
filename, is lost once the stream has opened up. But because you’re not just working
with the contents of one or a few files, most likely with a huge amount of files, Gulp
needs this information. Think of having 20 JavaScript files and wanting to minify
them. You’d have to remember each filename separately and keep track of which data
belongs to which file to restore a connection once the output (the minified files of the
same name) must be saved.

 Luckily, Gulp takes care of that for you by creating both a new input source and a
data type that can be used for your streams: virtual file objects. You use a special sym-
bol for those objects, which is shown in figure 2.11.

 Once a Gulp stream is opened, all the original, physical files are wrapped in such a
virtual file object and handled in the virtual file system, or Vinyl, as the corresponding
software is called in Gulp.

 Vinyl objects, the file objects of your virtual file system, contain two types of infor-
mation: the path where the file originated, which becomes the file’s name, as well as a
stream exposing the file’s contents. Those virtual files are stored in your computer’s
memory, known for being the fastest way to process data. There all the modifications

Listing 2.3 Uglifying JavaScript—Gulpfile.js

Next to Gulp, you require the previously
installed gulp-uglify module. This allows
you to transform contents from Gulp’s
readable streams with the Uglify process.

You use this plugin directly after creating
the readable stream and before saving it
with a writeable stream. It’s as easy as
calling a function.
Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

120 CHAPTER 2 Getting started with Gulp
are done that would usually be made on your hard disk. By keeping everything in
memory and not having to perform expensive read and write operations in between
processes, Gulp can make changes extraordinarily fast.

 You can use this virtual file system to modify the structure of your files during the
Gulp task. During concatenation, you specify a new virtual file that contains all the
contents from the previous stream. You just have to give it a name. See the next listing
for more information.

var gulp = require('gulp');
var concat = require('gulp-concat');

gulp.task('scripts', function() {
 return gulp.src('app/scripts/**/*.js')
 .pipe(concat('bundle.js'))
 .pipe(gulp.dest('dist'));
});

B This module can be installed as before with npm install --save-dev gulp-con-
cat. C You pipe your contents (all JavaScript files) through the concat process. The
Concat plugin needs one parameter: the name of the new file. Internally, the Concat
plugin creates a new virtual file object with the name provided by the parameter. The
contents of this virtual file object are all contents from the stream files.

2.3.3 Chaining plugins

In the previous examples, you used different programs to transform the contents of a
certain input set before storing the result to the hard disk. The possibilities don’t end
here. You can slot in any number of programs before you get to the destination, pip-
ing your data stream through multiple transformation processes.

Listing 2.4 Concatenating files—Gulpfile.js

filename

contents

A virtual file object contains

the filename of the original

file, including its path.

This distinguishes it from

standard streams, which

forget all about file origin

once they’re opened
Every virtual file object has a

buffer available where the file

contents are stored.

Once loaded, they are available

in the computer’s memory.

Figure 2.11 The symbol of a virtual file object. A virtual file consists mainly of two parts: data about
the file’s path and name, as well as a buffer containing the original contents. Both types of information
are available in the computer’s memory.

Require a module called gulp-concat
that handles concatenationB

Use this module again after the readable
stream is created and before the writeable
stream is createdC
Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

121Handling tasks with Gulp plugins
 Transformation processes are meant to do just one thing and do that one thing
well. By compositing more of those processes by connecting them, you can create
more advanced and sophisticated programs. To quote Doug McIlroy, who created the
concept of streams back in 1964 for the Unix operating system:

We should have some ways of connecting programs like garden hose—screw in another
segment when it becomes necessary to massage data in another way.

Opening your data and piping it through a series of processes or subtasks is the very
essence of how Gulp works. See figure 2.12, where you use both uglify and concat
from the previous example in one process chain.

gulp.task(’scripts’)

3

1

5

2

4

The concat task takes all virtual
files and concatenates them in
memory. From now on, we only
have one virtual file; and it needs
a new name. That’s why we pass
the new file’s name as parameter
to concat(). Here, the contents
don’t change, but the file’s
structure

gulp.dest finally creates a
new physical file and puts
the ocntents back to the
folder passed as parameter.
The contents as well as the
name itself come from the
virtual file we had before.

bundle.js

gulp.dest

uglify()

concat(’bundle.js’)

gulp.src

With bulp.src we take all the
JavaScript files which match
our glob pattern.

gulp.src creates a virtual file for
every “physical” file on our file
system. From now on, we don’t
pass real files anymore but
representations in the memory.

Each virtual file holds the file’s
original name and a pointer to
its contents.

uglify() takes the contents of
our virtual file and runs the
minification Function.

The contents change, but not
the file structure itself.

*.js

Figure 2.12 Streams applied to the virtual file system and Gulp. With gulp.src you select a
sequence of files, promote them to the virtual file system as file objects, and access their contents
for a series of transformation processes provided by the Gulp plugins.
Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

122 CHAPTER 2 Getting started with Gulp
So you’re concatenating all files and then uglifying them right after. All of this is hap-
pening in the computer’s memory, without costly read and write operations from the
hard disk in between. This makes Gulp extremely fast and also exceptionally flexible.
You can now create advanced programs that take care of multiple things, just by chain-
ing the right plugins in order:

1 Create a scripts task that concatenates all files and then uglifies them.
2 Create a styles task that compiles the “less” files, minifies them, and then runs

Autoprefixer on it to automatically add vendor prefixes.
3 Create a test task that does some quality checks on your JavaScript files, mak-

ing sure you have a good coding style.

The following Gulpfile takes care of your scripts and stylesheets and also does some
extra testing. Install all necessary plugins as you did earlier with npm install --save-
dev <plugin-name>.

var gulp = require('gulp');
var jshint = require('gulp-jshint');
var uglify = require('gulp-uglify');
var concat = require('gulp-concat');
var less = require('gulp-less');
var minifyCSS = require('gulp-cssnano');
var prefix = require('gulp-autoprefixer');

gulp.task('scripts', function() {
 return gulp.src('app/scripts/**/*.js’)
 .pipe(concat('main.min.js'))
 .pipe(uglify())
 .pipe(gulp.dest('dist/scripts'));
});

gulp.task('styles', function() {
 return gulp.src('app/styles/main.less')
 .pipe(less())
 .pipe(minifyCSS())
 .pipe(prefix())
 .pipe(gulp.dest('dist/styles'));
});

Listing 2.5 A complete Gulpfile.js

Vendor prefixes
Vendor prefixes are used by browser vendors to denote experimental features, where
syntax or functionality is subject to change. Browser vendors use a specific abbrevi-
ation that’s put before JavaScript methods and CSS properties to differentiate
between other browser vendors’ implementations, their own, and the final specifica-
tion. For instance, -webkit-animation is the vendor-prefixed version of the CSS
animation property found in browsers using the WebKit rendering engine.

Require all the modules
necessary for this GulpfileB

The script taskC

The styles taskD
Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

123Summary
gulp.task('test', function() {
 return gulp.src(['app/scripts/**/*.js',

➥'!app/scripts/vendor/**/*.js'])#D
 .pipe(jshint())
 .pipe(jshint.reporter('default'))
 .pipe(jshint.reporter('fail'));
});

B Install each module with npm install --save-dev <plugin-name>. C The script
task loads all JavaScript files in the app’s scripts directory and combines them into one
uglified JavaScript file. D The styles task loads one LESS main file and pipes it
through three processes: LESS, CSS Minification with CSS Nano, and automatic ven-
dor prefix inclusion with Autoprefixer. E Like the script task, the test task loads all
scripts, but there’s a second glob excluding all the files in the vendor directory. This is
because you don’t want to have code style checks on third-party libraries in the vendor
directory, because those files most likely have a different coding style. F JSHint’s out-
put is not transformed files but a report telling you whether all style checks have been
passed. You can pass this report to the reporter plugins of JSHint.

 That’s quite a lot that you can achieve with just a few lines of code. Running gulp
scripts, gulp styles, or gulp test from the command line activates those specific
tasks. You now have a fully functioning build file that takes care of all your assets.

2.4 Summary
In this chapter, we introduced you to our building system, Gulp:

 Gulp’s runtime environment, Node.js, comes with a package manager called
NPM. NPM can install Node.js modules globally to be used as a tool and locally
to be used as a library. Gulp has both a command-line interface that’s to be
installed globally and a library that’s installed locally for every project.

 Gulpfiles are build instructions written in JavaScript. They use the local Gulp
installation to access an API. You can now require Node modules from within
JavaScript files and use them in your code.

 Gulp’s gulp.task API makes functions available and runnable from the com-
mand line. A call with gulp <taskname> executes the defined task in your file.

 gulp.src and gulp.dest create readable and writeable streams, allowing you to
copy files from one place in the file system to another.

 Plugins like Concat and Uglify allow you to transform your JavaScript contents.
 Plugin chaining allows more advanced software such as a script task that does

both uglification and concatenation or a styles task that takes care of running a
preprocessor, using CSS minification and automatic prefixing of properties.

 Code style checks with JSHint make sure your software is well written.

With this simple Gulpfile, you can process your source files as needed.

The test taskE

JSHint works a little differently
than the previous tasksF
Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

You need a great suite of tools to minimize the time
you spend on tedious non-coding tasks. Gulp is a build
system that lets you run a multitude of file transform-
ing processes with a single click. And with so many
libraries working together, a dependency manager
such as Bower can keep track of versions, notify you of
conflicts, and in some cases even fix them. Finally, a
scaffolding tool like Yeoman lets you create your appli-
cations and modules with just a single command.
These tools give you an efficient workflow that speeds
up the time it takes to get your applications running
and deployed.

 Front-End Tooling with Gulp, Bower, and Yeoman teaches you how to use and combine
these popular tools to set up a customized development workflow from start to finish.
Starting with the big picture of the development process, you’ll see how these tools
mesh together. Using patterns and examples, this in-depth book teaches you to use
each tool. The second half of the book takes you deeper, showing you how to inte-
grate and extend these tools even more in your development process. By the end of
this book, you’ll be skilled at using Gulp, Bower, and Yeoman and combining them to
create a powerful, tailored workflow for you and your team.

What’s inside

 Making advanced Gulp build files
 Creating and distributing components with Bower
 Building a distributed project generator for Yeoman
 Scaling workflows for groups

This book is suitable for front-end developers with JavaScript experience.
Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

https://www.manning.com/books/front-end-tooling-with-gulp-bower-and-yeoman
https://www.manning.com/books/front-end-tooling-with-gulp-bower-and-yeoman

index

Symbols

! character 99
!= operator 41
* character 116
< operator 85
<%= %> delimiters 22
== operator 41
> operator 85

A

add() method 88
aggregating array items 85–86
Agility.js 28
AMD (asynchronous module

loader) 52
Angular

bundling components using
Grunt 57

overview 55–56
RequireJS vs. 56

AngularJS
bindings in 17
overview 10

applyBindings function 22
armedNinjas array 83
array literals 69–70
Array object 69–70, 87
Array.prototype.push()

method 88
arrays 69–88

adding and removing items
at any array location
74–76

adding and removing items
at either end of 71–73

aggregating array items
85–86

creating 69–71
iterating over 76–77
mapping 77–79
reusing built-in array

functions 86–88
searching 81–84
sorting 84–85
testing array items 79–80

asterisk character 116
asynchronous module loader.

See AMD

B

Backbone.js
creating models in 15
overview 10
templating engine for 21

bindings
binding direction 17
binding syntax 16–17
one-time binding 19
one-way binding 18–19
overview 16
two-way binding 17–18

Bower 57–59
Browserify, dependency man-

agement using 54–55
browsers, MV* frameworks

and 7–9
built-in array functions,

reusing 86–88

C

call() method 88
CanJS 28
Cascading Style Sheets. See

CSS
chaining Gulp plugins

120–123
Choco 28
circular dependencies 61–62
CJS (CommonJS) 48–49
clone command 107
closures 46–47
collections

arrays 69–88
adding and removing items

at any array location
74–76

adding and removing items
at either end of 71–73

aggregating array
items 85–86

creating 69–71
iterating over 76–77
mapping 77–79
reusing built-in array

functions 86–88
searching 81–84
sorting 84–85
testing array items 79–80

maps 88–95
creating 91–94
iterating over 94–95
objects as 89–91
overview 88

sets 95–100
creating 96–97
125

Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

126 INDEX
collections, sets (continued)
difference of 99–100
intersection of 99
overview 95
union of 97–98

command-line interface,
Gulp 108–109

CommonJS. See CJS
composition 37
Concat plugin 120
constructor property 90
constructors 89
controllers 6
copy task 117
CSS (Cascading Style Sheets) 3

D

data object 96
data-bind attribute 17
delete method 93
dependency management

Angular way
bundling components using

Grunt 57
overview 55–56
RequireJS vs. 56

Browserify 54–55
circular dependencies 61–62
IoC and 49–52
overview 49–52
RequireJS 52–54

dictionaries. See maps
directives, AngularJS 16
distinct items 95
document.getElementById

method 90
Dojo Toolkit 28
Download Zip button, Git 107

E

ECMAScript
let keyword 64
modules in 63–64
overview 62
Traceur as Grunt task 62

Ember.js 28
encapsulation

functional factories 40–41
hiding information 39–40
scope 41–44
Single Responsibility

Principle 36–38
strict mode 44
this keyword 41–44
variable hoisting 45–46

equality operators 41
every method 79
exclamation mark 99
explicit models 15–16
export keyword 63
Ext JS 28

F

filter method 82–83, 99
find method 81–82, 84, 88
findIndex method 84
firstElement 90
for loop 76–77
forEach() method 77–78
fragments 23
functional factories 40–41
functions, simulating array

methods with 86

G

-g parameter, Gulp 109
gather() method 88
global CLI, Gulp 114
globs 115–116
globstar pattern 116
greater-than operator 85
Grunt

bundling Angular compo-
nents using 57

Traceur as task 62
Gulp 105–123

Gulpfiles 111–117
overview 111–114
streams 114–117

overview 105
plugins 117–123

chaining 120–123
changing file structure

119–120
transforming data 117–119

setting up 106–111
building blocks 107–108
command-line

interface 108–109
local Gulp installation

109–111
overview 106

gulp scripts 119
gulp --version check 111
gulp.dest method 115–117
gulp.src method 115–117, 121
gulp.task method 111–112

H

Handlebars, expressions in 17
--harmony flag 62
has method 92–93, 97
hoisting 45
HTML (Hypertext Markup

Language), purpose of in
SPA 3

I

IIFE (Immediately-Invoked
Function Expression) 46

implementation details 39
implied models 13–14
import keyword 63
indexOf method 83
inline templates 23
intersection, of sets 99
IoC (Inversion of Control)

49–52
iterating over maps 94–95

J

Jamal 28
JavaScript, purpose of in SPA 3
JavaScriptMVC 28

K

Kendo UI 28
keys method 95
Knockout

bindings in 17
overview 10

L

length property 69–71, 87–88
less-than operator 85
let keyword 64
local Gulp installation 109–111
location.href property 93–94
LoDash 58
Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

127INDEX
M

Map constructor 92
map function 78
mapping arrays 77–79
maps 88–95

creating 91–94
iterating over 94–95
objects as, don't use 89–91
overview 88

MIME (Multipurpose Internet
Mail Extensions) 23

mocks 51
models

defined 4
explicit 15–16
implied 13–14
overview 12–13

Model-View-Controller.
See MVC

Model-View-Presenter. See MVP
Model-View-ViewModel.

See MVVM
Model-View-Whatever. See MVW
modularity

closures 46–47
CommonJS 48–49
dependency management

Angular way 55–57
Browserify 54–55
IoC and 49–52
overview 49–52
RequireJS 52–54

ECMAScript 6 63–64
encapsulation

functional factories 40–41
hiding information 39–40
scope 41–44
Single Responsibility

Principle 36–38
strict mode 44
this keyword 41–44
variable hoisting 45–46

overview 34–36
package management

Bower 57–59
choosing system 60
circular dependencies

61–62
installing only needed

components 59–60
prototypes 47–48

Multipurpose Internet Mail
Extensions. See MIME

Mustache, expressions in 17

MV* frameworks
advantages of using

productivity gains 27
routine tasks simplified

26–27
scalability 28
separation of concerns

25–26
standardization 27–28

bindings
binding direction 17
binding syntax 16–17
one-time binding 19
one-way binding 18–19
overview 16
two-way binding 17–18

browser environment and
7–9

choosing framework 28–30
concepts 9–10
frameworks listing 10
importance of 2–4
models

explicit 15–16
implied 13–14
overview 12–13

MVC 5–6, 55
MVP 6–7
MVVM 7
MVW 8
overview 4–5
templates

example of 20–22
inline 23
overview 20
partials 23
rendering of 22–23
storage of 23

views 24
MVC (Model-View-

Controller) 5–6, 55
MVP (Model-View-

Presenter) 6–7
MVVM (Model-View-

ViewModel) 7
MVW (Model-View-Whatever)

8

N

ng-bind attribute 21
ng-model attribute 18
ninjas array 70, 72, 77–78, 82,

84

ninjas.length 76
Node.js 107

O

objects as maps, don’t use
89–91

octal notation 44
one-time binding 19
one-way binding 18–19

P

package management
Bower 57–59
choosing system 60
circular dependencies 61–62
installing only needed

components 59–60
package.json file 110, 119
partials 23
plugins, Gulp 117–123

chaining 120–123
changing file structure

119–120
transforming data 117–119

POJOs (plain old JavaScript
objects) 8

pop method 71, 73
presenter, defined 6
prototypes, modularity using

47–48
pure functions 40
push method 71–73, 88

R

readable streams, Gulp 115
README.md file, Gulp 109
reduce method 86
regular expressions 37
RequireJS

Angular vs. 56
dependency management

using 52–54

S

save-dev parameter, Gulp 110
scalability, advantages of using

MV* frameworks 28
scope 41–44
$scope object 18
scripts task, Gulp 122
Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

128 INDEX
searching arrays 81–84
secondElement 90
SEO (Search Engine

Optimization) 38
separation of concerns, advan-

tages of using MV*
frameworks 25–26

sets 95–100
creating 96–97
difference of 99–100
intersection of 99
overview 95
union of 97–98

shift method 71, 74
size property 93, 97
slugging 36
Smalltalk 5
some method 79, 81
sort method 84
sorting arrays 84–85
Spine 28
splice method 75–76
SRP (Single Responsibility

Principle) 36–38
standardization, advantages of

using MV* frameworks
27–28

streams, Gulp and 114–117
strict mode, encapsulation

and 44
stubs 51
styles task, Gulp 122

T

tasks, Gulp 111
TDD (Test-Driven

Development) 52
template engine 20
templates

example of 20–22
inline 23
overview 20
partials 23
rendering of 22–23
storage of 23

test task, Gulp 112, 122
testing array items 79–80
this keyword 41–44
tightly coupling 25
toString method 91
toUpperCase transformation

118
Traceur 62
transformation blocks 118
two-way binding 17–18
type-coercing 41
TypeError exception 45

U

Uglify 118
undefined 43–44

Underscore.js
delimiters in 21
expressions in 17
overview 58

union, of sets 97–98
unshift method 71–74

V

values method 95
variables

hoisting 45–46
scopes 41

vendor prefixes 122
ViewModel 7
views

defined 4
overview 24

Vinyl 119
virtual file system 119–121

W

with statement 44
WPF (Windows Presentation

Foundation) 7
writeable streams, Gulp 115
Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

For ordering information go to www.manning.com

SPA Design and Architecture
Understanding single-page web applications
by Emmit A. Scott, Jr.

ISBN: 9781617292439
312 pages, $49.99
November 2015

JavaScript Application Design
A Build First Approach
by Nicolas G. Bevacqua

ISBN: 9781617291951
344 pages, $39.99
January 2015

Secrets of the JavaScript Ninja,
Second Edition
by John Resig, Bear Bibeault, and Josip Maras

ISBN: 9781617292859
375 pages, $44.99
August 2016

Front-End Tooling with Gulp, Bower, and Yeoman
by Stefan Baumgartner

ISBN: 9781617292743
275 pages, $44.99
Fall 2016

Save 50% on these selected books—eBook, pBook, and MEAP. Just enter fejsapps in the
Promotional Code box when you check out. Only at manning.com.

http://manning.com
https://www.manning.com/books/front-end-tooling-with-gulp-bower-and-yeoman
https://www.manning.com/books/secrets-of-the-javascript-ninja-second-edition
https://www.manning.com/books/javascript-application-design
https://www.manning.com/books/spa-design-and-architecture
https://www.manning.com/books/spa-design-and-architecture
https://www.manning.com/books/javascript-application-design
https://www.manning.com/books/secrets-of-the-javascript-ninja-second-edition
https://www.manning.com/books/front-end-tooling-with-gulp-bower-and-yeoman
http://manning.com

	Designing Scalable JavaScript Applications
	contents
	introduction
	The role of MV* frameworks
	The role of MV* frameworks
	2.1 What is MV*?
	2.1.1 Traditional UI design patterns
	2.1.2 MV* and the browser environment

	2.2 Common MV* concepts
	2.2.1 Meet the frameworks
	2.2.2 Meet our MV* project
	2.2.3 Models
	2.2.4 Bindings
	2.2.5 Templates
	2.2.6 Views

	2.3 Why use an MV* framework?
	2.3.1 Separation of concerns
	2.3.2 Routine tasks simplified
	2.3.3 Productivity gains
	2.3.4 Standardization
	2.3.5 Scalability

	2.4 Choosing a framework
	2.5 Chapter challenge
	2.6 Summary
	What’s inside

	Embracing modularity and dependency management
	Embracing modularity and dependency management
	5.1 Working with code encapsulation
	5.1.1 Understanding the Single Responsibility Principle
	5.1.2 Information hiding and interfaces
	5.1.3 Scoping and this keyword
	5.1.4 Strict mode
	5.1.5 Variable hoisting

	5.2 JavaScript modules
	5.2.1 Closures and the module pattern
	5.2.2 Prototypal modularity
	5.2.3 CommonJS modules

	5.3 Using dependency management
	5.3.1 Dependency graphs
	5.3.2 Introducing RequireJS
	5.3.3 Browserify: CJS in the browser
	5.3.4 The Angular way

	5.4 Understanding package management
	5.4.1 Introducing Bower
	5.4.2 Big libraries, small components
	5.4.3 Choosing the right module system
	5.4.4 Learning about circular dependencies

	5.5 Harmony: a glimpse of ECMAScript 6
	5.5.1 Traceur as a Grunt task
	5.5.2 Modules in Harmony
	5.5.3 Let there be block scope

	5.6 Summary
	What’s inside

	Dealing with collections
	Dealing with collections
	9.1 Arrays
	9.1.1 Creating arrays
	9.1.2 Adding and removing items at either end of an array
	9.1.3 Adding and removing items at any array location
	9.1.4 Common operations on arrays
	9.1.5 Reusing built-in array functions

	9.2 Maps
	9.2.1 Don’t use objects as maps
	9.2.2 Creating our first map
	9.2.3 Iterating over maps

	9.3 Sets
	9.3.1 Creating our first set
	9.3.2 Union of sets
	9.3.3 Intersection of sets
	9.3.4 Difference of sets

	9.4 Summary
	9.5 Exercises
	What’s inside

	Getting started with Gulp
	Getting started with Gulp
	2.1 Setting up Gulp
	2.1.1 The building blocks of Gulp
	2.1.2 The Gulp command-line interface
	2.1.3 The local Gulp installation

	2.2 Creating Gulpfiles
	2.2.1 A Gulp “Hello World” task
	2.2.2 Dealing with streams
	2.2.3 Readable and writeable streams with Gulp

	2.3 Handling tasks with Gulp plugins
	2.3.1 Transforming data
	2.3.2 Changing the file structure
	2.3.3 Chaining plugins

	2.4 Summary
	What’s inside

	Symbols

	index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W

