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Introduction

Twisted has recently celebrated its sweet sixteen birthday. It has been around for a 

while; and in that time, it grew to be a powerful library. In that time, some interesting 

applications have been built on top of it. In that time, many of us learned a lot about how 

to use Twisted well, how to think about networking code, and how to architect event- 

based programs.

After going through the introductory materials that we have on the Twisted site, 

a common thing to hear is “What now? How can I learn more about Twisted?” The 

usual way we answered that question is with a question: “What do you want to do with 

Twisted?” This book shows how to do interesting things with Twisted.

Each of the contributors to this book has done slightly different things with Twisted 

and learned different lessons. We are excited to present all of these lessons, with the 

goals of making them common knowledge in the community.

Enjoy!



PART 1

Foundations
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CHAPTER 1

An Introduction to  
Event- Driven 
Programming with Twisted
Twisted is a powerful, well-tested, and mature concurrent networking library and 

framework. As we’ll see in this book, many projects and individuals have used it to great 

effect for more than a decade.

At the same time, Twisted is large, complicated, and old. Its lexicon teems with 

strange names, like “reactor,” “protocol,” “endpoint,” and “Deferred.” These describe a 

philosophy and architecture that have baffled both newcomers and old hands with years 

of Python experience.

Two fundamental programming paradigms inform Twisted’s pantheon of APIs: 

event-driven programming and asynchronous programming. The rise of JavaScript 

and the introduction of asyncio into the Python standard library have brought both 

further into the mainstream, but neither paradigm dominates Python programming 

so completely that merely knowing the language makes them familiar. They remain 

specialized topics reserved for intermediate or advanced programmers.

This chapter and the next introduce the motivations behind event-driven and 

asynchronous programming, and then show how Twisted employs these paradigms. 

They lay the foundation for later chapters that explore real-world Twisted programs.

We’ll begin by exploring the nature of event-driven programming outside of the 

context of Twisted. Once we have a sense of what defines event-driven programming, 

we’ll see how Twisted provides software abstractions that help developers write clear 

and effective event-driven programs. We’ll also stop along the way to learn about 

some of the unique parts of those abstractions, like interfaces, and explore how they’re 

documented on Twisted’s website.
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By the end of this chapter you’ll know Twisted terminology: protocols, transports, 

reactors, consumers, and producers. These concepts form the foundation of Twisted’s 

approach to event-driven programming, and knowing them is essential to writing useful 

software with Twisted.

 A Note About Python Versions
Twisted itself supports Python 2 and 3, so all code examples in this chapter are written 

to work on both Python 2 and 3. Python 3 is the future, but part of Twisted’s strength is 

its rich history of protocol implementations; for that reason, it’s important that you’re 

comfortable with code that runs on Python 2, even if you never write it.

 What Is Event-Driven Programming?
An event is something that causes an event-driven program to perform an action. 

This broad definition allows many programs to be understood as event-driven; 

consider, for example, a simple program that prints either Hello or World! 

depending on user input:

import sys

line = sys.stdin.readline().strip()

if line == "h":

     print("Hello")

else:

     print("World")

The availability of a line of input over standard input is an event. Our program 

pauses on sys.stdin.readline(), which asks the operating system to allow the user to 

input a complete line. Until one is received, our program can make no progress. When 

the operating system receives input, and Python’s internals determine it’s a line, sys.

stdin.readline() resumes our program by returning that data to it. This resumption 

is the event that drives our program forward. Even this simple program, then, can be 

understood as an event-driven one.

Chapter 1  an IntroduCtIon to event- drIven programmIng wIth twIsted 
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 Multiple Events
A program that receives a single event and then exits doesn’t benefit from an event- 

driven approach. Programs in which more than one thing can happen at a time, 

however, are more naturally organized around events. A graphical user interface implies 

just such a program: at any moment, a user might click a button, select an item from a 

menu, scroll through a text widget, and so on.

Here’s a version of our previous program with a Tkinter GUI:

from six.moves import tkinter

from six.moves.tkinter import scrolledtext

class Application(tkinter.Frame):

    def __init__ (self, root):

        super(Application,self). __init__ (root)

        self.pack()

        self.helloButton = tkinter.Button(self,

                                      text="Say Hello",

                                      command=self.sayHello)

        self.worldButton = tkinter.Button(self,

                                        text="Say World",

                                        command=self.sayWorld)

         self.output = scrolledtext.ScrolledText(master=self)

         self.helloButton.pack(side="top")

        self.worldButton.pack(side="top")

         self.output.pack(side="top")

    def outputLine(self, text):

        self.output.insert(tkinter.INSERT, text+ '\n')

    def sayHello(self):

        self.outputLine("Hello")

    def sayWorld(self):

        self.outputLine("World")

Chapter 1  an IntroduCtIon to event- drIven programmIng wIth twIsted 
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 Application(tkinter.Tk()).mainloop()
This version of our program presents the user with two buttons, either of which can 

generate an independent click event. This differs from our previous program, where only 

sys.stdin.readline could generate the single “line ready” event.

We cope with the possible occurrence of either button’s event by associating event 

handlers with each one. Tkinter buttons accept a callable command to invoke when they 

are clicked. When the button labeled “Say Hello” generates a click event, that event 

drives our program to call Application.sayHello as shown in Figure 1-1. This, in turn, 

outputs a line consisting of Hello to a scrollable text widget. The same process applies to 

the button labeled “Say Hello” and Application.sayWorld.

Figure 1-1. Our Tkinter GUI application after a series of clicks of “Say Hello” and 
“Say World”

tkinter.Frame’s mainloop method, which our Application class inherits, waits 

until a button bound to it generates an event and then runs the associated event handler. 

After each event handler has run, tkinter.Frame.mainloop again begins waiting for new 

events. A loop that monitors event sources and dispatches their associated handlers is 

typical of event-driven programs, and is known as an event loop.

Chapter 1  an IntroduCtIon to event- drIven programmIng wIth twIsted 
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These concepts are the core of event-driven programming:

 1. Events represent that something has occurred and to which the 

program should react. In both our examples, events correspond 

naturally to program input, but as we’ll see, they can represent 

anything that causes our program to perform some action.

 2. Event handlers constitute the program’s reactions to events. 

Sometimes an event’s handler just consists of a sequence of 

code, as in our sys.stdin.readline example, but more often 

it’s encapsulated by a function or method, as in our tkinter 

example.

 3. An event loop waits for events and invokes the event handler 

associated with each. Not all event-driven programs have an event 

loop; our sys.stdin.readline example did not because it only 

responds to a single event. However, most resemble our tkinter 

example in that they process many events before finally exiting. 

These kinds of programs use an event loop.

 Multiplexing and Demultiplexing
The way event loops wait for events affects the way we write event-driven programs, so 

we must take a closer look at them. Consider our tkinter example and its two buttons; 

the event loop inside mainloop must wait until the user has clicked at least one button. 

A naive implementation might look like this:

def mainloop(self):

    while self.running:

         ready = [button for button in self.buttons if button.hasEvent()]

         if ready:

            self.dispatchButtonEventHandlers(ready)

mainloop continually polls each button for a new event, dispatching event handlers 

only for those that have an event ready. When no events are ready, the program makes 

no progress because no action has been taken that requires a response. An event-driven 

program must suspend its execution during these periods of inactivity.

Chapter 1  an IntroduCtIon to event- drIven programmIng wIth twIsted 
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The while loop in our mainloop example suspends its program until one of the 

buttons has been clicked and sayHello or sayWorld should run. Unless the user is 

supernaturally fast with a mouse, this loop spends most of its time checking buttons that 

haven’t been clicked. This is known as a busy wait because the program is actively busy 

waiting.

A busy wait like this pauses a program’s overall execution until one of its event 

sources reports an event, and so it suffices as a mechanism to pause an event loop.

The inner list comprehension that powers our implementation’s busy wait asks 

a critical question: Has anything happened? The answer comes from the ready 

variable, which contains all buttons that have been clicked in a single place. The 

truthiness of ready decides the answer to the event loop’s question: when ready is 

empty and thus falsey, no buttons have been clicked and so nothing has happened. 

When it’s truthy, however, at least one has been clicked, and so something has 

happened.

The list comprehension that constructs ready coalesces many separate inputs 

into one. This is known as multiplexing, while the inverse process of separating 

different inputs out from a single coalesced input is known as demultiplexing. 

The list comprehension multiplexes our buttons into ready while the 

dispatchButtonEventHandlers method demultiplexes them out by invoking each 

event’s handler.

We can now refine our understanding of event loops by precisely describing how 

they wait for events:

• An event loop waits for events by multiplexing their sources into a 

single input. When that input indicates that events have occurred, the 

event loop demultiplexes it into its constituent inputs and invokes the 

event handler associated with each.

Our mainloop multiplexer wastes most of its time polling buttons that haven’t 

been clicked. Not all multiplexers are so inefficient. tkinter.Frame.mainloop’s 

actual implementation employs a similar multiplexer that polls all widgets unless the 

operating system provides more efficient primitives. To improve its efficiency, mainloop’s 

multiplexer exploits the insight that computers can check a GUI’s widgets faster than a 

person can interact with them, and inserts a sleep call that pauses the entire program 

for several milliseconds. This allows the program to spend part of its busy-wait loop 

passively rather than actively do nothing, saving CPU time and energy at the expense of 

negligible latency.

Chapter 1  an IntroduCtIon to event- drIven programmIng wIth twIsted 
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While Twisted can integrate with graphical user interfaces, and in fact has special 

support for tkinter, it is at its heart a networking engine. Sockets, not buttons, are the 

fundamental object in networking, and operating systems expose efficient primitives for 

multiplexing socket events. Twisted’s event loop uses these primitives to wait for events. 

To understand Twisted’s approach to event-driven programming, we must understand 

the interaction between these sockets and these multiplexing networking primitives.

 The select Multiplexer
 Its History, Its Siblings, and Its Purpose
Almost all modern operating systems support the select multiplexer. select gets its 

name from its ability to take a list of sockets and “select” only those that have events 

ready to be handled.

select was born in 1983, when computers were capable of far less. Consequently, its 

interface prevents it from operating at maximum efficiency, especially when multiplexing 

a large number of sockets. Each operating system family provides its own, more efficient 

multiplexer, such as BSD’s kqueue and Linux’s epoll, but no two interoperate. Luckily 

their principles are similar enough to select that we can generalize their behavior from 

select’s. We’ll use select to explore how these socket multiplexers behave.

 select and Sockets
The code that follows omits error handling and will break on many edge cases that occur 

in practice. It is intended only as a teaching tool. Do not use it in real applications. 
Use Twisted instead. Twisted strives to correctly handle errors and edge cases; that’s 

part of why its implementation is so complicated.

With that disclaimer out of the way, let’s begin an interactive Python session and 

create sockets for select to multiplex:

>>> import socket

>>> listener = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

>>> listener.bind(('127.0.0.1', 0))

>>> listener.listen(1)

>>> client = socket.create_connection(listener.getsockname())

>>> server, _ = listener.accept()

Chapter 1  an IntroduCtIon to event- drIven programmIng wIth twIsted 
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A full explanation of the socket API is beyond the scope of this book. Indeed, we 

expect that the parts we discuss will lead you to prefer Twisted! The preceding code, 

however, contains more fundamental concepts than irrelevant details:

 1. listener - This socket can accept incoming connections. It is an 

internet (socket.AF_INET) and TCP (socket.SOCK_STREAM) socket 

accessible by clients on the internal, local-only network interface 

(which conventionally has an address of 127.0.0.1) and on a port 

randomly assigned by the operating system (0). This listener can 

perform the setup necessary for one incoming connection and 

enqueue it until we’re reading for it (listen(1)).

 2. client - This socket is an outgoing connection. Python’s socket.

create_connection function accepts a (host, port) tuple 

representing the listening socket to which to connect and returns 

a socket connected to it. Because our listening socket is in the 

same process and named listener, we can retrieve its host and 

port with the listener.getsockname().

 3. server - The server’s incoming connection. Once client has 

connected to our host and port, we must accept the connection 

from listener’s queue of length 1. listener.accept returns a 

(socket, address) tuple; we only need the socket, so we discard 

the address. A real program might log the address or use it to track 

connection metrics. The listening queue, which we set to 1 via the 

socket’s listen method, holds this socket for us before we call 

accept and allows create_connection to return.

client and server are two ends of the same TCP connection. An established TCP 

connection has no concept of “client” and “server”; our client socket has the same 

privileges to read, write, or close the connection as our server:

>>> data = b"xyz"

>>> client.sendall(data)

>>> server.recv(1024) == data

True

>>> server.sendall(data)

>>> client.recv(1024) == data

True

Chapter 1  an IntroduCtIon to event- drIven programmIng wIth twIsted 
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 The How and Why of Socket Events
Under the hood, the operating system maintains read and write buffers for each TCP 

socket to account for network unreliability and clients and servers that read and write 

at different speeds. If server became temporarily unable to receive data, the b"xyz" 

we passed client.sendall would remain in its write buffer until server again became 

active. Similarly, if we were too busy to call client.recv to receive the b"xyz" server.

sendall sent, client's read buffer would hold onto it until we got around to receiving 

it. The number that we pass recv represents the maximum data we’re willing to remove 

from the read buffer. If the read buffer has less than the maximum, as it does in our 

example, recv will remove all the data from the buffer and return it.

Our sockets’ bidirectionality implies two possible events:

 1. A readable event, which means the socket has something available 

for us. A connected server socket generates this event when  

data has landed in the socket’s receive buffer, so that calling  

recv after a readable event will immediately return that data.  

A disconnection is represented by recving no data. By convention, 

a listening socket generates this event when we can accept a new 

connection.

 2. A writable event, which means space is available in the socket’s 

write buffer. This is a subtle point: as long as the socket receives 

acknowledgment from the server for the data it’s transmistted 

across the network faster than we add it to the send buffer, it 

remains writable.

select’s interface reflects these possible events. It accepts up to four arguments:

 1. a sequence of sockets to monitor for readable events;

 2. a sequence of sockets to monitor for writable events;

 3. a sequence of sockets to monitor for “exceptional events.” In our 

examples, no exceptional events will occur, so we will always pass 

an empty list here;

 4. An optional timeout. This is the number of seconds select will 

wait for one of the monitor sockets to generate an event. Omitting 

this argument will cause select to wait forever.

Chapter 1  an IntroduCtIon to event- drIven programmIng wIth twIsted 
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We can ask select about the events our sockets have just generated:

>>> import select

>>> maybeReadable = [listener, client, server]

>>> maybeWritable = [client, server]

>>> readable, writable, _ = select.select(maybeReadable, maybeWritable, [], 0)

>>> readable

[]

>>> writable == maybeWritable and writable == [client, server]

True

We instruct select not to wait for any new events by providing a timeout of 0. As 

explained above, our client and server sockets might be readable or writable, while 

our listener, which can only accept incoming connections, can only be readable.

If we had omitted the timeout, select would pause our program until one of the 

sockets it monitored became readable or writable. This suspension of execution is 

analogous to the multiplexing busy-wait that polled all buttons in our naive mainloop 

implementation above.

Invoking select multiplexes sockets more efficiently than a busy wait because 

the operating system will only resume our program when at least one event has been 

generated; inside the kernel an event loop, not unlike our select, waits for events from 

the network hardware and dispatches them to our application.

 Handling Events
select returns a tuple with three lists, in the same order as its arguments. Iterating 

over each returned list demultiplexes select’s return value. None of our sockets have 

generated readable events, even though we’ve written data to both client and server; 

our preceding calls to recv emptied their read buffers, and no new connections have 

arrived for listener since we accepted server. Both client and server have generated 

a writable event, however, because there’s space available in their send buffers.

Sending data from client to server causes server to generate a readable event, so 

select places it in the readables list:

>>> client.sendall(b'xyz')

>>> readable, writable, _ = select.select(maybeReadable, maybeWritable, [], 0)

>>> readable == [server]

True
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The writable list, interestingly, once again contains our client and server sockets:

>>> writable == maybeWritable and writable == [client, server]

True

If we called select again, our server socket would again be in readable and our 

client and server sockets again in writable. The reason is simple: as long as data 

remains in a socket’s read buffer, it will continuously generate a readable event, and as 

long as space remains in a socket’s write buffer, it will generate a writable event. We can 

confirm this by recving the data client sent to server and calling select again for new 

events:

>>> server.recv(1024) == b'xyz'

True

>>> readable, writable, _ = select.select(maybeReadable, maybeWritable,  

[], 0)

>>> readable

[]

>>> writable == maybeWritable and writable == [client, server]

True

Emptying server’s read buffer has caused it to stop generating readable events, and 

client and server continue to generate writable events because there’s still space in 

their write buffers.

 An Event Loop with select
We now know how select multiplexes sockets:

 1. Different sockets generate readable or writable events to indicate 

that an event-driven program should accept incoming data or 

connections, or write outgoing data.

 2. select multiplexes sockets by monitoring them for readable 

or writable events, pausing the program until at least one is 

generated or the optional timeout has elapsed.

 3. Sockets continue generating readable and writable events until 

the circumstances that led to those events changes: a socket 

with readable data emits readable events until its read buffer 
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is emptied; a listening socket emits readable events until all 

incoming connections have been accepted; and a writable socket 

emits writable events until its write buffer is filled.

With this knowledge, we can sketch an event loop around select:

import select

class Reactor(object):

    def __init__ (self):

        self._readers = {}

        self._writers = {}

    def addReader(self, readable, handler):

        self._readers[readable] = handler

    def addWriter(self, writable, handler):

        self._writers[writable] = handler

    def removeReader(self, readable):

        self._readers.pop(readable,None)

    def removeWriter(self, writable):

        self._writers.pop(writable,None)

    def run(self):

        while self._readers or self._writers:

             r, w, _ = select.select(list(self._readers), list 

(self._writers), [])

            for readable in r:

                self._readers[readable](self, readable)

            for writable in w:

                if writable in self._writers:

                   self._writers[writable](self, writable)

We call our event loop a reactor because it reacts to socket events. We can request 

our Reactor call readable event handlers on sockets with addReader and writable event 

handlers with addWriter. Event handlers accept two arguments: the reactor itself and 

the socket that generated the event.

The loop inside the run method multiplexes our sockets with select, then 

demultiplexes the result between sockets that have generated a read event and sockets 

that have generated a write event. The event handlers for each readable socket run 

first. Then, the event loop checks that each writable socket is still registered as a writer 
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before running its event handler. This check is necessary because closed connections 

are represented as read events, so a read handler run immediately prior might remove a 

closed socket from the readers and writers. By the time its writable event handler runs, 

the closed socket would be removed from the _writers dictionary.

 Event-Driven Clients and Servers
This simple event loop suffices for implementing a client that continually writes data to a 

server. We’ll begin with the event handlers:

def accept(reactor, listener):

    server, _ = listener.accept()

    reactor.addReader(server, read)

def read(reactor, sock):

    data = sock.recv(1024)

    if data:

        print("Server received", len(data),"bytes.")

    else:

        sock.close()

        print("Server closed.")

        reactor.removeReader(sock)

DATA=[b"*",  b"*"]

def write(reactor, sock):

    sock.sendall(b"".join(DATA))

    print("Client wrote", len(DATA)," bytes.")

    DATA.extend(DATA)

The accept function handles a readable event on a listening socket by accepting the 

incoming connection and requesting the reactor monitor it for readable events. These 

are handled by the read function.

The read function handles a readable event on a socket by attempting to receive 

a fixed amount of data from the socket’s receive buffer. The length of any received 

data is printed – remember, the amount passed to recv represents an upper bound on 

the number of bytes returned. If no data is received on a socket that has generated a 

readable event, then the other side of the connection has closed its socket, and the read 
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function responds by closing its side of the socket and removing it from the set of sockets 

monitored by the reactor for readable events. Closing the socket deallocates its operating 

system resources, while removing it from the reactor ensures the select multiplexer 

does not attempt to monitor a socket that will never be active again.

The write function writes a sequence of asterisk (*) to a socket that generated a 

write event. After each successful write, the amount of data is doubled. This simulates 

the behavior of real network applications that do not consistently write the same amount 

of data to a connection. Consider a web browser: some outgoing requests contain a small 

amount of form data typed in by a user, while others upload a large file to a remote server.

Note that these are module-level functions and not methods on our Reactor class. 

They’re instead associated with the reactor by registering them as readers or writers 

because TCP sockets are only one kind of socket, and the way we must handle their 

events differs from the way we would handle other sockets’ events. select, however, 

works the same way no matter what sockets it’s given, so the logic that runs event 

handlers on the lists of sockets it returns should be encapsulated by the Reactor class. 

We’ll look at how important encapsulation and the interfaces it implies are to event- 

driven programs later.

We can now establish a listener and a client and allow the event loop to drive 

the acceptance of a connection and the transmission of data from client to the server 

socket.

import socket

listener = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

listener.bind(('127.0.0.1',0))

listener.listen(1)

client = socket.create_connection(listener.getsockname())

loop = Reactor()

loop.addWriter(client, write)

loop.addReader(listener, accept)

loop.run()

Running this shows both success and failure:

Client wrote 2 bytes.

Server received 2 bytes.

Client wrote 4 bytes.

Server received 4 bytes.

Chapter 1  an IntroduCtIon to event- drIven programmIng wIth twIsted 



17

Client wrote 8 bytes.

Server received 8 bytes.

...

Client wrote 524288 bytes.

Server received 1024 bytes.

Client wrote 1048576 bytes.

Server received 1024 bytes.

^CTraceback (most recent call last):

  File "example.py", line 53, in <module>

    loop.run()

  File "example.py", line 25, in run

    writeHandler(self, writable)

  File "example.py", line 33, in write

    sock.sendall(b"".join(DATA))

KeyboardInterrupt

The success is clear enough: data passes from the client socket to the server. This 

behavior follows the path laid out by the accept, read, and write event handlers. As 

expected, the client begins by sending two bytes of b'*'to the server, which in turn 

receives those two bytes.

The simultaneity of client and server demonstrates the power of event-driven 

programming. Where our GUI application could respond to events from two 

different buttons, this small network server can now respond to events from a client 

or server, allowing us to colocate both in a single process. The multiplexing abilities 

of select provide a single point in our programs event loop where it can respond to 

either.

The failure is also clear: after a certain number of repetitions, our program 

freezes until it’s interrupted via the keyboard. A clue to this failure lies in our 

program’s output; after a while, the client sends many times the amount of data the 

server receives, and the KeyboardInterrupt’s traceback leads right to our write 

handler’s sock.sendall call.

Our client has overwhelmed our server, with the result that most of the data the 

client has attempted to send remains in its socket’s send buffer. The default behavior of 

sendall is to pause or block the program when called on a socket that has no room left in 

its send buffer. Now, if sendall had not blocked and our event loop had been allowed to 

run, the socket would not have come up as writable, and the blocking sendall call would 

Chapter 1  an IntroduCtIon to event- drIven programmIng wIth twIsted 



18

not have run; however, we cannot guarantee that a given send call will write enough 

just to fill up a socket’s send buffer, so that sendall does not block, the write handler 

runs to completion, and select prevents further writes from occurring until the buffer 

has drained. The nature of networks is that we only know about an issue like this after it 

happens.

All of the events we’ve covered so far prompt our program to do something. None of 

them can prompt it to stop doing something. We need a new kind of event.

 Non-blocking I/O
 Knowing When to Stop
Sockets by default block a program that begins an operation that cannot be completed 

until the remote end does something. We can cause a socket to emit an event in this 

situation by requesting the operating system make it non-blocking.

Let’s return to an interactive Python session and again construct a connection 

between a client and server socket. This time, we will make the client non-blocking 

and attempt to write an infinite stream of data to it.

>>> import socket

>>> listener = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

>>> listener.bind(( '127.0.0.1',0))

>>> listener.listen(1)

>>> client=socket.create_connection(listener.getsockname())

>>> server, _ = listener.accept()

>>> client.setblocking(False)

>>> while True: client.sendall(b"*"*1024)

...

Traceback (most recent call last):

  File"<stdin>", line1, in <module>

BlockingIOError: [Errno11] Resource temporarily unavailable

We have again filled client’s send buffer, but instead of pausing the process, 

sendall has raised an exception. The type of the exception varies between Python 2  

and 3; here, we show Python 3’s BlockingIOError, while on Python 2, it would be the 
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more general socket.error. In both versions of Python, the exception’s errno attribute 

will be set to errno.EAGAIN:

>>> import errno, socket

>>> try:

...    while True: client.sendall(b"*"*1024)

... except socket.error as e:

...    print(e.errno == errno.EAGAIN)

True

The exception represents an event generated by the operating system indicating that 

we should stop writing. This is almost enough to fix our client and server.

 Tracking State
Handling this exception, however, requires we answer a new question: How much of the 

data we attempted to write made it into the socket’s send buffer? We cannot know what 

data we actually sent without answering this question, and without knowing that we 

cannot write correct programs with non-blocking sockets. A web browser, for example, 

must track how much of a file it has uploaded, or it risks corrupting the contents in 

transit.

client.sendall could have placed any number of bytes in its write buffer before 

generating the EAGAIN event that became our exception. We must switch from the 

sendall method of socket objects to the send method, which returns the amount of data 

written to the socket’s send buffer. We can demonstrate this with our server socket:

>>> server.setblocking(False)

>>> try:

...    while True: print(server.send(b"*" * 1024))

... except socket.error as e:

...     print("Terminated with EAGAIN:", e.errno == errno.EAGAIN)

1024

1024

...

1024

952

Terminated with EAGAIN:True
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We mark server as non-blocking, so that it generates an EAGAIN event when its 

send buffer is full. The while loop then calls server.send. Calls that return 1024 have 

written all the provided bytes to the socket’s send buffer. Eventually the socket’s write 

buffer fills up, and an exception representing the EAGAIN event terminates the loop. The 

last successful send call before the loop’s termination, however, returns 952, and here 

send has simply discarded the remaining 72 bytes. This is known as a short write. This 

happens with blocking sockets as well! Because they block when no space is available in 

their send buffer instead of raising an exception, sendall can and does contain a loop 

that checks the return value of the underlying send call and re-invokes it until all data 

has been sent.

In this case, the socket’s send buffer was not a multiple of 1024, so we were not able 

to fit an even number of send calls’ worth of data in before hitting EAGAIN. In the real 

world, however, the socket’s send buffer changes size in response to conditions within the 

network and applications send varying amounts of data across connections. Programs 

that use non-blocking I/O, like our hypothetical web browser, must regularly deal with 

short writes like this.

We can use send’s return value to make sure we write all our data to the 

connection. We maintain our own buffer that contains the data we want to write. 

Every time select emits a writable event for that socket, we attempt to send the data 

currently in the buffer; if the send call completes without raising EAGAIN, we note the 

amount returned and remove that number of bytes from the beginning of our buffer, 

because send writes data into the send buffer from the beginning of the byte sequence 

it’s passed. If, on the other hand, send raises an EAGAIN exception indicating the send 

buffer is completely full and cannot accept more data, we leave the buffer as it is. We 

proceed this way until our own buffer is empty, at which point we know all our data 

has been placed in the socket’s send buffer. After that it’s up to the operating system to 

send it to connection’s receiving end.

We can now fix our simple client-server example by splitting its write function into 

one that initiates writing the data and an object that manages the buffer on top of send:

import errno

import socket

class BuffersWrites(object):

    def __init__ (self, dataToWrite, onCompletion):

        self._buffer = dataToWrite
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        self._onCompletion = onCompletion

    def bufferingWrite(self, reactor, sock):

        if self._buffer:

            try:

                written = sock.send(self._buffer)

            except socket.error as e:

                if e.errno != errno.EAGAIN:

                    raise

                return

            else:

                print("Wrote", written,"bytes")

                self._buffer = self._buffer[written:]

        if not self._buffer:

                reactor.removeWriter(sock)

                self._onCompletion(reactor, sock)

DATA=[b"*", b"*"]

def write(reactor, sock):

    writer = BuffersWrites(b"".join(DATA), onCompletion=write)

    reactor.addWriter(sock, writer.bufferingWrite)

    print("Client buffering", len(DATA),"bytes to write.")

    DATA.extend(DATA)

BuffersWrites’s initializer first argument is the bytes it will write, which it uses as 

the initial value for its buffer, while its second argument, onCompletion, is a callable 

object. As its name implies, onCompletion will be called when the provided data has 

been completely written.

The bufferingWrite method’s signature is what we expect from a writable event 

handler suitable for passing Reactor.addWriter. As described, it attempts to send any 

buffered data to the socket it’s passed, saving the returned number that indicates the 

amount written. If send raises an EAGAIN exception, bufferingWrite suppresses it and 

returns; otherwise it propagates the exception. In both cases. self._buffer remains 

unchanged.

If send succeeds, a number of bytes equal to the amount written is sliced off the 

beginning of self._buffer and bufferingWrite returns. For example, if the send call 

wrote only 952 out of 1024 bytes, self_buffer would contain the final 73 bytes.
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Finally, if the buffer’s empty then all the requested data has been written, and 

there’s no work left for the BuffersWrites instance left to do. It requests that the reactor 

stop monitoring its socket for writable events and then calls onCompletion because 

data it was provided has been completely written. Note that this check occurs in an if 

statement that’s independent of the first if self._buffer statement. The preceding 

code might have run and emptied the buffer; if the final code were within an else block 

attached to the if self._buffer statement, it would not run until the next time the 

reactor detected a writable event on this socket. To simplify resource management, we 

perform the check within this method.

The write function looks similar to our previous version except now it delegates 

sending the data to BuffersWrites via its bufferingWrite method. Most notably, 

write passes itself to BuffersWrites as the onCompletion callable. This creates the 

same looping effect as the previous version via indirect recursion. write never calls 

itself directly, but instead passes itself to an object that our reactor eventually calls. This 

indirection allows this sequence to continue without overflowing the call stack.

With these modifications, our client-server program no longer blocks. Instead it fails 

for another reason: eventually, DATA becomes too large to fit inside your computer’s 

available memory! Here’s an example from the author’s computer:

Client buffering 2 bytes to write.

Wrote 2 bytes

Client buffering 4 bytes to write.

Server received 2 bytes.

Wrote 4 bytes

...

Client buffering 2097152 bytes to write.

Server received 1024 bytes.

Wrote 1439354 bytes

Server received 1024 bytes.

Server received 1024 bytes.

....

Wrote 657798 bytes

Server received 1024 bytes.

Server received 1024 bytes.

....
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Client buffering 268435456 bytes to write.

Traceback (most recent call last):

  File "example.py", line 76, in <module>

    loop.run()

  File "example.py", line 23, in run

    writeHandler(self, writable)

  File "example.py", line 57, in bufferingWrite

    self._onCompletion(reactor, sock)

  File "example.py", line 64, in write

    DATA.extend(DATA)

MemoryError

 State Makes Programs Complex
Despite this problem, we have successfully written an event-driven network program 

that uses non-blocking IO to control socket writes. The code, however, is a mess: 

indirection from write through BuffersWrites, then the reactor, and finally back to 

write obscures the logical flow of outbound data, and it’s clear that implementing 

anything more complicated than a simple stream of asterisks would involve extending 

ad hoc classes and interfaces beyond their breaking points. For example, how can we 

address the MemoryError? Our approach will not scale to real applications.

 Managing Complexity with Transports and Protocols
Programming with non-blocking I/O is undoubtedly complicated. The UNIX authority 

W. Richard Stevens writes the following about the matter in volume one of his seminal 

Unix Network Programming series:

But, is it worth the effort to code an application using non- 

blocking I/O, given the complexity of the resulting code? The 

answer is no.

(UNIX Network Programming, Volume 1. 2nd ed. p. 446)

The complexity of our code seems to prove Stevens correct. The right abstractions, 

however, can encapsulate complexity within a manageable interface. Our example 

already has reusable code: any new unit of code that writes to a socket will need to 
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use the core logic of BuffersWrites. We have encapsulated the complexity of writing 

to a non-blocking socket. Building on this insight we can distinguish between two 

conceptual domains:

 1. Transports: BuffersWrites manages the process of writing 

output to a non-blocking socket regardless of the contents of 

that that output. It can send photos, or music, or anything we 

can imagine, so long as it’s expressible as bytes. BuffersWrites 

is a transport because it is a means of transportation for bytes. 

Transports encapsulate the process of reading data from a 

socket, as well as accepting a new connection. It represents the 

cause of actions in our program and it is the recipient of our 

program’s own actions.

 2. Protocols: Our example program generates data with a trivial 

algorithm and merely counts what it receives. More complicated 

programs might generate web pages or process voice phone 

calls into text. As long as they can accept and emit bytes, they 

can work in concert with what we described as a transport. They 

might also direct the behavior of their transport, such as closing 

an active connection upon receipt of invalid data. The field of 

telecommunications describes rules like this that define how data 

can be exchanged as a protocol. A protocol, then, defines how to 

generate and process input and output. It encapsulates the effect of 

our program.

 Reactors: Working with Transports
We begin by changing our Reactor to work in terms of transports:

import select

class Reactor(object):

    def __init__ (self):

        self._readers = set()

        self._writers = set()

    def addReader(self, transport):

        self._readers.add(transport)
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    def addWriter(self, transport):

        self._writers.add(transport)

    def removeReader(self, readable):

        self._readers.discard(readable)

    def removeWriter(self, writable):

        self._writers.discard(writable)

    def run(self):

        while self._readers or self._writers:

            r, w, _ = select.select(self._readers,self._writers, [])

            for readable in r:

                readable.doRead()

            for writable in w:

                if writable in self._writers:

                    writable.doWrite()

Where our readable and writable events’ handlers were previously functions, they 

are now methods on transport objects: doRead and doWrite. Furthermore, the reactor 

no longer tracks sockets – it directly selects transports. From the reactor’s perspective, 

then, the transport’s interface consists of:

 1. doRead,

 2. doWrite,

 3. something that makes the transport’s state visible to select: a 

fileno() method that returns a number that select understands 

as a reference to a socket.

 Transports: Working with Protocols
Next, we will consider a protocol implementation by going back to our read and write 

functions. The read function had two responsibilities:

 1. Counting the number of bytes received on the socket.

 2. Responding to a closed connection.

The write function had one responsibility: enqueue data to be written.

From this we can sketch a first draft of a Protocol interface:
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class Protocol(object):

    def makeConnection(self, transport):

        ...

    def dataReceived(self, data):

        ...

    def connectionLost(self, exceptionOrNone):

        ...

We’ve split read’s two responsibilities into two methods: dataReceived and 

connectionLost. The former’s signature is self explanatory, while the latter receives 

one argument: an exception object if the connection was closed because of that 

exception (e.g., because of ECONNRESET), or None if it was closed without one (e.g., with 

an empty read because of a passive close). Note that our protocol interface lacks a write 

method. That’s because writing data, which involves transporting bytes, falls within the 

transport’s domain. As a result, a Protocol instance must have access to a transport that 

represents the underlying network connection, and which will have a write method. 

The assocation between the two happens via makeConnection, which accepts a transport 

as its argument.

Why not pass the transport as an argument to Protocols initializer? A separate 

method might seem clumsier, but it affords us greater flexibility; for example, you 

can imagine how this method would allow us to introduce Protocol caching. 

Furthermore, we’ll see that because a transport invokes a protocol’s dataReceived 

and connectionLost methods, it too must be associated with a protocol. If both our 

Transport and Protocol classes required their peer in their initializer, we would have 

a circular relationship that prevented both from being instantiated. We choose to make 

our Protocol accept its transport via a separate method to break this cycle because of 

the flexibility it affords.

 Playing Ping-Pong with Protocols and Transports
This is enough for us to write a more complicated protocol that exercises this new 

interface. Our previous client-server example simply had the client send larger and 

larger sequences of bytes to the server; we can augment this so that the two send bytes 

back and forth, up to an optional maximum, after which the sender that’s exceeded the 

maximum closes the connection.
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class PingPongProtocol(object):

    def __init__ (self, identity, maximum=None):

        self._identity = identity

        self._received = 0

        self._maximum = maximum

    def makeConnection(self, transport):

        self.transport = transport

        self.transport.write(b'*')

    def dataReceived(self, data):

        self._received += len(data)

        if self._maximum is not None and self._received >= self._maximum:

            print(self._identity,"is closing the connection")

            self.transport.loseConnection()

        else:

            self.transport.write(b'*')

            print(self._identity,"wrote a byte")

    def connectionLost(self, exceptionOrNone):

        print(self._identity,"lost the connection:", exceptionOrNone)

The initializer accepts an identity string used to identify the protocol instance and 

the optional maximum amount of data to accept before terminating the connection. 

makeConnection associates the PingPongProtocol with its transport and begins the 

exchange by sending a single byte. dataReceived records the amount of data it’s 

received; if the total amount exceeds the optional maximum, it tells the transport to lose 

its connection, or equivalently, to disconnect. Otherwise it continues the exchange by 

sending back a byte. Finally, connectionLost prints a message when the protocol’s side 

of the connection has been closed.

PingPongProtocol describes a set of behaviors whose complexity is meaningfully 

beyond what our previous attempt at a non-blocking client-server application was able 

to do. At the same time, its implementation reflects the prose description that precedes 

it, without becoming mired in the particulars of non-blocking I/O. We have been able to 

increase the complexity of our application while decreasing the complexity of its unique 

I/O management. We’ll return to explore the ramifications of this, but suffice it to say that 

narrowing our focus allows us to eliminate complexity in specific areas of our program.

We cannot use PingPongProtocol until we write Transport. We can, however, write 

a first draft of Transport’s interface:
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class Transport(object):

    def __init__ (self, sock, protocol):

        ...

    def doRead(self):

        ...

    def doWrite(self):

        ...

    def fileno(self):

        ...

    def write(self):

        ...

    def loseConnection(self):

        ...

The first argument to Transport’s initializer is the socket the instance wraps. This 

enforces Transport's encapsulation of sockets on which the Reactor now relies. The 

second argument is the protocol whose dataReceived will be called when new data 

is available and whose connectionLost will be called when the connection has been 

closed. The doRead and doWrite methods match the reactor-side transport interface we 

enumerated above. The new method fileno is also part of this interface; an object with 

a properly implemented fileno method can be passed to select. We will proxy calls to 

our Transport’s fileno down to the socket it wraps, making the two indistinguishable 

from select’s perspective.

The write method provides the interface on which our Protocol relies to send 

outgoing data. We have also added loseConnection, a new Protocol-side API that 

initiates the closing of a socket and represents the active-close side of our passive-close 

connectionLost method.

We can implement this interface by absorbing BuffersWrites and the socket 

handling in our read function:

import errno

class Transport(object):

    def __init__ (self, reactor, sock, protocol):

        self._reactor = reactor

        self._socket = sock

        self._protocol = protocol
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        self._buffer = b "

        self._onCompletion = lambda:None

    def doWrite(self):

        if self._buffer:

            try:

                written = self._socket.send(self._buffer)

            except socket.error as e:

                if e.errno != errno.EAGAIN:

                    self._tearDown(e)

                return

            else:

                print("Wrote", written,"bytes")

                self._buffer = self._buffer[written:]

         if not self._buffer:

             self._reactor.removeWriter(self)

             self._onCompletion()

    def doRead(self):

        data=self._socket.recv(1024)

        if data:

            self._protocol.dataReceived(data)

        else:

            self._tearDown(None)

    def fileno(self):

        return self._socket.fileno()

    def write(self, data):

        self._buffer += data

        self._reactor.addWriter(self)

        self.doWrite()

    def loseConnection(self):

        if self._buffer:

            def complete():

                self.tearDown(None)

            self._onCompletion = complete

        else:

            self._tearDown(None)
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    def _tearDown(self, exceptionOrNone):

        self._reactor.removeWriter(self)

        self._reactor.removeReader(self)

        self._socket.close()

        self._protocol.connectionLost(exceptionOrNone)

    def activate(self):

        self._socket.setblocking(False)

        self._protocol.makeConnection(self)

        self._reactor.addReader(self)

        self._reactor.addWriter(self)

doRead and doWrite mirror the socket manipulations in previous examples’ read 

and write functions as well as BuffersWrites. doRead also proxies any received data to 

the protocol’s dataReceived method or calls its connectionLost method upon receiving 

an empty read. Finally, fileno rounds out the interface that Reactor requires by making 

Transports selectable.

The write method buffers writes as before, but instead of delegating the process of 

writing to a separate class, it invokes its sibling doWrite method to flush its buffer to the 

socket. If the buffer is empty, a call to loseConnection tears down the connection by:

 1. removing the transport from the reactor;

 2. closing the underlying socket to release its resources back to the 

operating system;

 3. sending None to the protocol’s connectionLost to indicate that the 

connection was lost due to a passive close.

If the buffer is not empty then there is data to write, so loseConnection overwrites 

_onCompletion with a closure that tears down the connection following the same 

process as described above. As with BuffersWrites, Transport._onCompletion is 

called only when all bytes in our write buffer have been flushed to the underlying 

socket. loseConnection’s use of _onCompletion thus ensures that the underlying 

connection remains open until all data has been written. The default value of 

_onCompletion is set in Transport’s initializer to a lambda with no effect. This 

ensures mulitple calls to write can reuse the underlying connection. Together these 

implementations of write and loseConnection implement the transport interface 

required by Protocol.
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Finally, activate activates the transport by:

 1. preparing the wrapped socket for non-blocking I/O;

 2. passing the Transport instance to its protocol via Protocol.

makeConnection;

 3. and finally registering the transport with the reactor.

This completes the Transport’s encapsulation of its socket by wrapping the 

beginning of a connection’s life cycle, where the end is already encapsulated by 

loseConnection.

Where Protocol allowed us to expand our focus and add behaviors to our 

application via PingPongProtocol, Transport has narrowed it around the input-ouput 

life cycle of sockets. The reactor – our event loop – detects and dispatches events from 

their originating sockets, while the protocol contains our desired event handlers. The 

Transport mediates by translating socket events to protocol method calls and enforcing 

control flow between these method calls; for example, it ensures that a protocol’s 

makeConnection is called at the beginning of its life and loseConnection at the end. This 

is another improvement over our ad hoc client-server example; we have localized control 

flow around the sockets entirely within Transport, instead of spread out over unrelated 

functions and objects.

 Clients and Servers with Protocols and Transports
We can show the generality of Transport by defining a subtype, Listener, that accepts 

incoming connections and associate them with a unique PingPongProtocol instance:

class Listener(Transport):

    def activate(self):

        self._reactor.addReader(self)

    def doRead(self):

        server, _ = self._socket.accept()

        protocol = PingPongProtocol("Server")

        Transport(self._reactor, server, protocol).activate()

A listening socket emits no writable events, so we override activate to only add 

the transport as a reader. Our readable event handler, doRead, must accept a new client 

connection and protocol, then tie the two together with an activated Transport.
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The stage is now set for a client-server example powered by protocols and transports:

listenerSock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

listenerSock.bind(('127.0.0.1',0))

listenerSock.listen(1)

clientSock = socket.create_connection(listenerSock.getsockname())

loop = Reactor()

Listener(loop, listenerSock, None).activate()

Transport(loop, clientSock, PingPongProtocol("Client", maximum=100)).

activate()

loop.run()

The two will exchange single bytes until the client receives its maximum of 100, after 

which the client closes the connection:

Server wrote a byte

Client wrote a byte

Wrote 1 bytes

Server wrote a byte

Wrote 1 bytes

Client wrote a byte

Wrote 1 bytes

Server wrote a byte

Wrote 1 bytes

Client wrote a byte

Wrote 1 bytes

Server wrote a byte

Server wrote a byte

Client is closing the connection

Client lost the connection: None

Server lost the connection: None
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 Twisted and Reactors, Protocols, and Transports
We’ve come a long way: starting with select, we worked our way up to a set of interfaces 

around an event loop and its handlers that cleanly partition responsibilities. Our 

Reactor drives our program, with Transports dispatching socket events to application- 

level handlers defined on Protocols.

Our reactors, transports, and protocols are clearly toy implementations. For example, 

socket.create_connection blocks, and we haven’t investigated any non-blocking 

alternative. In fact, the underlying DNS resolution that create_connection implies 

might itself block!

As concepts, however, they are ready for serious use. Reactors, transports, and 

protocols are the foundation of Twisted’s event-driven architecture. As we’ve seen, 

their architecture in turn rests upon the realities of I/O multiplexing and non-blocking, 

enabling Twisted to operate efficiently.

Before we explore Twisted itself, however, we will consider our examples as a whole 

to evaluate the strengths and weaknesses of event-driven programming.

 The Value of Event-Driven Programming
W. Richard Stevens’s admonishment regarding the complexity of non-blocking I/O 

counts as an important criticism of the event-driven programming paradigm we’ve 

explored. It is not the only shortcoming, however: our event-driven paradigm does not 

perform well under high CPU loads.

The client-server example that wrote exponentially growing sequences of bytes 

naturally consumed large amounts of memory, but it also consumed a significant 

amount of CPU. The reason is the naivete of its buffer management: the socket simply 

cannot accept chunks of data larger than a certain size. Every time we call send with 

an amount as large or larger than that, the send call copies it into a memory location 

controlled by the kernel. Some portion of the data is then written, which we then slice 

off the buffer’s front; because bytes is immutable in Python, this implies another copy. 

If we attempt to send N bytes, we will copy the buffer once, then twice, and again and 

again up to N. Because each copy implies a traversal of the buffer, this process has a time 

complexity of O(n2).

Twisted’s own buffering mechanisms perform better at the expense of complexity 

beyond that appropriate to a readable introduction to event-driven programming. 

Not all computationally demanding tasks are as easily improved, however: Monte 
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Carlo simulation must repeatedly perform statistical analysis and random samples; a 

comparison-sorting algorithm must compare every pair of elements in a sequence; and 

so on.

Our event-driven programs all execute multiple logical behaviors – we have a 

client and a server communicating within one process. This communication happens 

concurrently: the client side of the connection makes a small amount of progress 

before pausing and allowing the server to make a small amount of progress. At no 

point are the client and server operating in parallel, as they would in separate Python 

interpreters, perhaps on separate computers linked by a network. When our naive buffer 

management executes a lengthy copy, no progress can be made until this completes, 

whereas if the client and server ran on separate computers, the server could accept 

new connections while the client laboriously shuffled bytes around. If we were instead 

running a computationally demanding algorithm in our process, our reactor could not 

call select to discover new events to which to react until after the completion of this 

algorithm.

Event-driven programming, then, is a poor match for computationally 

demanding tasks. Fortunately, many tasks make greater demands on input and 

output than computation. Network servers are a classic example of this; a chat 

server might have many thousands of users, but only a small portion are active at 

any time (and then usually not when you ask for help!). Event-driven programming 

consequently remains a powerful paradigm in networking.

Event-driven programming has a particular strength that more than makes up for 

this shortcoming: its emphasis on cause and effect. The generation of an event represents 

a cause, while that event’s handler represents the desired effect.

We codified this division in Transport and Protocol: transports represent the 

cause of actions – some input or socket output – while protocols encapsulate effects. 

Our PingPongProtocol interacts with its transport via a clearly delineated interface that 

exposes handlers to higher-level events – causes – such as the arrival of incoming bytes 

or the end of a connection. It then produces effects from those causes, which might in 

turn result in new causes, such as writing data to the transport. The distinction between 

the two is enforced by the respective interfaces.

This means we can replace one transport with another and simulate the execution of 

our protocol by calling the methods representing expected effects. This changes the core 

of our client-server into a unit of testable code.
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Consider a transport implementation built on BytesIOs that implements only the 

Protocol’s side of the Transport interface:

import io

class BytesTransport(object):

    def __init__ (self, protocol):

        self.protocol = protocol

        self.output = io.BytesIO()

    def write(self, data):

        self.output.write(data)

    def loseConnection(self):

        self.output.close()

        self.protocol.connectionLost(None)

We can use this to write a unit test suite for our PingPongProtocol:

import unittest

class PingPongProtocolTests(unittest.TestCase):

    def setUp(self):

        self.maximum = 100

        self.protocol = PingPongProtocol("client", maximum=self.maximum)

        self.transport = BytesTransport(self.protocol)

        self.protocol.makeConnection(self.transport)

    def test_firstByteWritten(self):

        self.assertEqual(len(self.transport.output.getvalue()), 1)

    def test_byteWrittenForByte(self):

        self.protocol.dataReceived(b"*")

        self.assertEqual(len(self.transport.output.getvalue()), 2)

    def test_receivingMaximumLosesConnection(self):

        self.protocol.dataReceived(b"*" * self.maximum)

        self.assertTrue(self.transport.output.closed)

This test asserts the requirements we laid out for our PingPongProtocol without 

setting up any sockets or performing any actual I/O. We can test the effect of our program 

without the concrete causes. Instead, we simulate the readable event by calling our 
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protocol instance’s dataReceived method with bytes, while the protocol generates a 

writable event by calling write on our bytes transport and a close request by calling 

loseConnection.

Twisted strives to separate cause and effect. The most obvious benefit, as 

demonstrated, is testability. Writing comprehensive tests for event-driven Twisted 

programs is easier to do because of the fundamental division between protocols and 

transports. Indeed, Twisted takes this distinction between responsibilities as a deep 

lesson in design, resulting in its large and sometimes arcane lexicon. Making so many 

things explicitly separate objects requires a wealth of names.

We are now ready to write an event-driven program with Twisted. We will encounter 

the same design issues we did in our toy examples, and the experience of writing those 

toys will elucidate the strategies Twisted offers for addressing those issues.

 Twisted and the Real World
We begin our exploration of Twisted with an implementation of our PingPongProtocol 

client and server:

from twisted.internet import protocol, reactor

class PingPongProtocol(protocol.Protocol):

    def __init__ (self):

        self._received = 0

    def connectionMade(self):

        self.transport.write(b'*')

    def dataReceived(self, data):

        self._received += len(data)

         if self.factory._maximum is not None and self._received >= self.

factory._maximum:

            print(self.factory._identity, "is closing the connection")

            self.transport.loseConnection()

        else:

            self.transport.write(b'*')

            print(self.factory._identity,"wrote a byte")
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    def connectionLost(self, exceptionOrNone):

         print(self.factory._identity,"lost the connection:", 

exceptionOrNone)

class PingPongServerFactory(protocol.Factory):

    protocol = PingPongProtocol

    _identity = "Server"

    def __init__ (self, maximum=None):

        self._maximum = maximum

class PingPongClientFactory(protocol.ClientFactory):

    protocol = PingPongProtocol

    _identity = "Client"

    def __init__ (self, maximum=None):

        self._maximum = maximum

    listener=reactor.listenTCP(port=0,

                               factory=PingPongServerFactory(),

                               interface='127.0.0.1')

    address = listener.getHost()

    reactor.connectTCP(host=address.host,

                       port=address.port,

                       factory=PingPongClientFactory(maximum=100))

    reactor.run()

Our PingPongProtocol class is nearly identical to our toy implementation. There are 

three changes:

 1. We inherit from twisted.internet.protocol.Protocol. This 

class provides useful default implementations of important 

functionality. At the time Twisted’s transports and protocols 

were first designed, inheritance was a fashionable approach 

to code reuse. The difficulties around public and private APIs 

and separation of concerns have rightly led to a decline in its 

popularity. A complete discussion of inheritance’s shortcomings 

is beyond the scope of this chapter, but we do not recommend 

writing new APIs that rely on inheritance!
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 2. We have replaced makeConnection with connectionMade, which is 

an event handler that Twisted calls when the underlying connection 

is ready. Twisted’s Protocol class implements makeConnection 

for us and leaves connectionMade as a stub that we can fill in. In 

practice, we do not want to change the way a transport is associated 

with a protocol, but we do often want code to run as soon as a 

connection is ready. This handler provides a way to do so.

 3. The maximum number of bytes and the protocol’s identity are 

no longer instance variables; instead, they’re attributes on a new 

factory instance variable.

Protocol factories mediate the creation of protocols and their binding to transports. 

This is our first example of how Twisted localizes responsibility to classes. Protocol 

factories come in two basic flavors: server and client. As their names imply, one manages 

the creation of server-side protocols, while the other manages the creation of client-side 

protocols. Both create protocol instances by calling their protocol attribute with no 

arguments. This is why PingPongProtocol’s initializer accepts no arguments.

PingPongServerFactory subclasses twisted.internet.protocol.Factory and sets 

its _identity attribute to "Server." Its initializer accepts the reactor as an argument 

and the optional maximum. It then relies on its superclass’s implementation to create 

instances of its protocol – set at the class level to PingPongProtocol – and associate them 

with itself. This is why PingPongProtocol instances has a factory attribute: Factory 

creates it for us by default.

PingPongClientFactory subclasses twisted.internet.protocol.ClientFactory 

and sets its _identity attribute to "Client." It is otherwise identical to 

PingPongServerFactory.

Factories provide a convenient place to store state that is shared across all protocol 

instances. Because protocol instances are unique to connections, they cease to exist 

when the connections do, and cannot persist state on their own. Moving settings like our 

maximum permissible value and our protocol client or server identity strings to their 

factories thus follows a common pattern in Twisted.

The reactor exposes listenTCP and connectTCP methods that associate factories 

with server and client connections. listenTCP returns a Port object whose getHost 

method is analogous to socket.getsockname. Instead of returning a tuple, however, 

it returns an instance of twisted.internet.address.IPv4Address, which in turn has 

convenient host and port attributes.
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Finally, we start the reactor by calling run, just like we did with our toy 

implementation. We’re greeted with output that’s similar to what our toy 

implementation printed:

Client wrote a byte

Server wrote a byte

Client wrote a byte

Server wrote a byte

Client wrote a byte

Server wrote a byte

Client wrote a byte

Server wrote a byte

Client is closing the connection

Client lost the connection: [Failure instance: ...: Connection was closed 

cleanly.

]

Server lost the connection: [Failure instance: ...: Connection was closed 

cleanly.

]

Leaving aside the Failure object passed to connectionLost, which we will 

cover in our discussion of asynchronous programming in Twisted, this output 

seems to demonstrate that our new implementation’s behavior matches our old 

implementation’s.

We can do better than comparing outputs, however, by adapting our protocol test:

from twisted.trial import unittest

from twisted.test.proto_helpers import StringTransportWithDisconnection, 

MemoryReactor

class PingPongProtocolTests(unittest.SynchronousTestCase):

    def setUp(self):

        self.maximum = 100

        self.reactor = MemoryReactor()

        self.factory = PingPongClientFactory(self.reactor,self.maximum)

        self.protocol = self.factory.buildProtocol(address.IPv4Address(

            "TCP","localhost",1234))
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        self.transport = StringTransportWithDisconnection()

        self.protocol.makeConnection(self.transport)

        self.transport.protocol = self.protocol

    def test_firstByteWritten(self):

        self.assertEqual(len(self.transport.value()), 1)

    def test_byteWrittenForByte(self):

        self.protocol.dataReceived(b"*")

        self.assertEqual(len(self.transport.value()), 2)

    def test_receivingMaximumLosesConnection(self):

        self.protocol.dataReceived(b"*" * self.maximum)

        self.assertFalse(self.transport.connected)

Twisted has its own test infrastructure that we will cover in our discussion of 

asynchronous programming; for now, we can treat SynchronousTestCase as equivalent 

to the standard library’s unittest.TestCase. Our setUp method now constructs 

a MemoryReactor fake, which stands in place of our real reactor. It passes this to 

PingPongClientFactory and then constructs a PingPongProtocol client by calling 

the buildProtocol method inherited from ClientFactory. This, in turn, requires an 

address argument, for which we supply another fake. We then use Twisted’s built-in 

StringTransportWithDisconnection, whose behavior and interface aligns with our toy 

BytesTransport implementation. Twisted calls this a StringTransport because at the 

time it was written, all released versions of Python had a default string type of bytes. In 

a world with Python 3, StringTransport has become a misnomer because it must still 

work in terms of bytes.

Our test methods adjust to StringTransportWithDisconnection’s interface: value 

returns the written content, while connected becomes False when the protocol calls 

loseConnection.

The Twisted implementation of a PingPongProtocol client and server makes the 

similarities between Twisted and our example code clear: the reactor multiplexes events 

from sockets and dispatches them via transports to protocols, which can then create new 

events via their transports.

While this dynamic forms the heart of Twisted’s event-driven architecture and 

informs its design decisions, it is relatively low level. Many programs never implement 

their own Protocol subclasses. We turn next to a kind of event that underlies patterns 

and APIs used directly in many Twisted programs.
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 Events in Time
All the events we’ve seen so far originate from inputs, such as a user clicking a button or 

new data arriving on a socket. Programs must often schedule actions to run at a point 

in the future, separate from any input. Consider a heartbeat: every 30 seconds or so, a 

network application will write a byte to its connections to ensure the remote end doesn’t 

close them because of inactivity.

Twisted provides a low-level interface to schedule future actions via reactor.

callLater. We usually do not call this API directly, but will do so now to explain how it 

works.

from twisted.internet import reactor

reactor.callLater(1.5, print,"Hello from the past.")

reactor.run()

reactor.callLater accepts a numeric delay and a callable. Any other positional or 

keyword arguments are passed to the callable when it’s invoked. Running this program 

will produce no output until approximately 1.5 seconds have passed, at which point 

Hello from the past will appear.

reactor.callLater returns a DelayedCall instance that can be canceled:

from twisted.internet import reactor

call = reactor.callLater(1.5, print,"Hello from the past.")

call.cancel()

reactor.run()

This program emits no output, because the DelayedCall is canceled before the 

reactor can run it.

Clearly reactor.callLater emits an event that indicates the specified time has 

elapsed and runs the callable it receives as that event’s handler. The mechanism by 

which this happens, however, is less clear.

Fortunately, the implementation is fundamentally simple and also makes it clear 

why the delay is only approximate. Recall that select accepts an optional timeout 

argument. When we wanted select to tell us immediately what events had been 

generated and not wait for new ones, we called it with 0 as a timeout. We can now use 
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this timeout to multiplex time-based events in addition to socket-based ones: to ensure 

that our DelayedCalls run, we can invoke select with a timeout equal to the delay of the 

next DelayedCall that should be scheduled, that is, the one that is nearest in time.

Imagine a program that contains the following:

reactor.callLater(2, functionB)

reactor.callLater(1, functionA)

reactor.callLater(3, functionC)

reactor.run()

The reactor records the DelayedCall in a min-heap, sorted by the wall clock time it’s 

scheduled to run:

def callLater(self, delay, f,*args,**kwargs):

    self._pendingCalls.append((time.time()+delay, f, args, kwargs)

    heapq.heapify(self._pendingCalls)

If the first reactor.callLater occurs at time t, and each call takes no time, then after 

all three calls, pendingCalls would appear as follows:

[

    (t+1, <DelayedCall: functionA>),

    (t+2, <DelayedCall: functionB>),

    (t+3, <DelayedCall: functionB>),

]

Adding an element to a heap has a time complexity of O(log n), so repeated 

callLater invocations have a total worst case time complexity of O(n log n). If the 

reactor instead sorted _pendingCalls, repeated callLater invocations would take O(n) 

* O(n log n) = O(n2).

Now, before the reactor enters select, it checks if there are any pending 

DelayedCalls; if there are, it extracts the top element of the heap and uses the difference 

between its target runtime and the current time as select’s timeout. Then, before 

handling any socket events, it pops each element off the heap whose time has passed 

and runs it, skipping canceled calls. If there are no pending DelayCalls, the reactor calls 

select with a timeout of None, representing no timeout.
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class Reactor(object):

    ...

    def run(self):

        while self.running:

            if self._pendingCalls:

                targetTime, _ = self._pendingCalls[0]

                delay=targetTime-time.time()

            else:

                targetTime = None

            r, w, _ = select.select(self.readers,self.writers, [], targetTime)

            now = time.time()

            while self._pendingCalls and (self._pendingCalls[0][0] <= now):

                targetTime, (f, args, kwargs) = heapq.heappop()

                if not call.cancelled:

                    f(*args,**kwargs)

            ...

Of our three reactor.callLater calls, functionA’s has the shortest delay, and 

thus sits at the top of the the pendingCalls heap. If our reactor’s run loop begins 

immediately afterwards (i.e., also at time t), the delay variable will then be (t + 1) - t = 1, 

and the select call will return no more than a second later. Now, time.time returns t + 

1, so functionA’s DelayedCall, and thus functionA, runs. The DelayedCalls for both 

functionB and functionC, however, still remain in the future, so the inner while loop 

ends and the process begins again.

The implementation reveals why DelayedCalls do not run immediately after their 

delay has elapsed: their invocation depends on their position in the pendingCalls heap 

and how long the preceding DelayedCalls take to complete. If functionA took longer 

than a second to run, functionB would run later than its deadline. This is especially 

likely for DelayedCalls delayed for the same amount of time.
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 Repeated Events with LoopingCall
reactor.callLater suffices to implement our heartbeat. We can define a function 

that calls callLater with itself, and then start the indirection recursion by calling the 

function directly once:

def f(reactor, delay)

    reactor.callLater(delay, f, reactor, delay)

f(reactor,1.0)

This works but only awkwardly. We cannot access the DelayedCall representing 

the next call to f after the initial call to f, so we cannot easily cancel it if the other side 

terminates the connection. We could track these calls by hand, but fortunately, Twisted 

provides a convenient wrapper around callLater that handles all this for us: twisted.

internet.task.LoopingCall. Here’s a protocol that uses LoopingCall to implement its 

heartbeat:

from twisted.internet import protocol, task

class HeartbeatProtocol(protocol.Protocol):

    def connectionMade(self):

        self._heartbeater = task.LoopingCall(self.transport.write, b"*")

        self._heartbeater.clock = self.factory._reactor

        self._heartbeater.start(interval=30.0)

    def connectionLost(self):

        self._heartbeater.stop()

class HeartbeatProtocolFactory(protocol.Factory):

    protocol = HeartbeatProtocol

    def __init__ (self, reactor):

        self._reactor = reactor

The protocol creates a new LoopingCall instance that will write a single asterisk 

to the protocol’s transport as the connection is established. It then replaces the 

LoopingCall’s clock with its factory’s reactor; as we’ll see soon, this indirection aids 

testing. Finally, the protocol starts the LoopingCall with an interval of 30 seconds, so 

that approximately every 30 seconds it will call transport.write with a single asterisk. 

At what point does the LoopingCall begin counting 30 seconds? Does it count from 0, in 
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which case it should call its function right away, or does it count from 1, in which case it 

should wait a full 30 seconds? The answer is up to the programmer. The second, optional 

now argument to LoopingCall.start dictates whether the function should be called 

as part of the call to start or after a full interval has passed. It defaults to True, so our 

heartbeater will immediately write a single asterisk to the transport.

Retrieving the reactor from its factory makes HeartbeatProtocol as easy to test as 

PingPongProtocol:

from twisted.trial import unittest

from twisted.internet import main, task

from twisted.test.proto_helpers import StringTransportWithDisconnection

class HeartbeatProtocolTests(unittest.SynchronousTestCase):

    def setUp(self):

        self.clock = task.Clock()

        self.factory = HeartbeatProtocolFactory(self.clock)

        self.protocol = self.factory.buildProtocol(address.IPv4Address(

            "TCP","localhost",1234))

        self.transport = StringTransportWithDisconnection()

        self.protocol.makeConnection(self.transport)

        self.transport.protocol = self.protocol

    def test_heartbeatWritten(self):

        self.assertEqual(len(self.transport.value()), 1)

        self.clock.advance(60)

        self.assertEqual(len(self.transport.value()), 2)

    def test_lostConnectionStopsHeartbeater(self):

        self.assertTrue(self.protocol._heartbeater.running)

        self.protocol.connectionLost(main.CONNECTION_DONE)

        self.assertFalse(self.protocol._heartbeater.running)

HeartbeatProtocolTest.setUp is nearly identical to PingPongProtocolTests.

setUp, except it uses twisted.internet.task.Clock instead of MemoryReactor. Clock, 

as its name implies, provides an implementation of a reactor’s time-related interfaces. 

Most importantly, it has a callLater method:

>>> from twisted.internet.task import Clock

>>> clock = Clock()

>>> clock.callLater(1.0, print,"OK")
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Because they’re intended to be used in unit tests, Clock instances naturally have no 

select loop of their own. We can simulate the expiration of a select timeout by calling 

advance:

>>> clock.advance(2)

OK

test_heartbeatWritten calls advance to cause its protocol’s LoopingCall to write a 

single byte. This is analogous to PingPongProtocolTests.test_byteWrittenForByte’s 

call to its protocol’s dataReceived; both simulate the occurrence of events that the 

reactor would have managed outside of these tests.

Twisted’s approach to event-driven programming depends on clearly delineated 

interfaces like Protocol’s and Clock’s. So far, however, we have taken the nature of each 

interface for granted: How can we know that Clock, or MemoryReactor, can replace the 

real reactor in a test suite? We can answer this by exploring the tools that Twisted uses to 

manage its interfaces.

 Event Interfaces with zope.interface
Twisted uses a package called zope.interface to formalize its internal interfaces, 

including those that describe its event-driven paradigm.

Zope is a venerable but still active project that has produced several web application 

frameworks, the oldest of which was first publicly released in 1998. Many technologies 

originated in Zope and were factored out for use in other projects. Twisted uses Zope’s 

interface package to define its interfaces.

A full explanation of zope.interface is beyond the scope of this book. However, 

interfaces play an important role in testing and documentation, so we introduce 

them by exploring the interfaces of the Twisted classes used in our preceding 

examples.

We begin by asking an instance of Clock what interfaces it provides:

>>> from twisted.internet.task import Clock

>>> clock = Clock()

>>> from zope.interface import providedBy

>>> list(providedBy(clock))

[<InterfaceClass twisted.internet.interfaces.IReactorTime>]
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First, we create an instance of Clock. We then retrieve providedBy from the zope.

interface package; because Twisted itself depends on zope.interface, it’s available for 

us to use in an interactive session. Calling providedBy on our Clock instance returns an 

iterable of the interfaces it provides.

Unlike interfaces in other languages, zope.interface’s interfaces can be 

implemented or provided. Individual objects that conform to an interface provide it, 

while things that create those interface-providing objects implement that interface. This 

subtle distinction matches Python’s “duck typing.” An interface definition might describe 

a call method and thus apply to a function object created with def or lambda. These 

syntactic elements cannot be marked as implementers of our interface, but the function 

objects themselves can be said to provide it.

An interface is a subclass of zope.interface.Interface that uses a special API to 

describe required methods and their signatures as well as attributes. Here’s an excerpt 

from the twisted.internet.interfaces.IReactorTime interface provided by our Clock:

class IReactorTime(Interface):

    """

    Time methods that a Reactor should implement.

    """

def callLater(delay, callable,*args,**kw):

    """

    Call a function later.

    @type delay:  C{float}

    @param delay: the number of seconds to wait.

    @param callable: the callable object to call later.

    @param args: the arguments to call it with.

    @param kw: the keyword arguments to call it with.

    @return: An object which provides L{IDelayedCall} and can be used to

             cancel the scheduled call, by calling its C{cancel()} method.

             It also may be rescheduled by calling its C{delay()} or

             C{reset()} methods.

    """
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Note that the callLater “method” has no self argument. This is a consequence of 

the fact that interfaces cannot be instantiated. It also lacks a body, and instead satisfies 

Python’s function definition syntax by providing only a docstring. Unlike abstract classes, 

such as those provided by the standard library’s abc module, they also cannot include 

any implementation code. Instead, they exist solely as markers that describe a subset of 

an object’s functionality.

Zope provides a helper named verifyObject that throws an exception if an object 

does not provide an interface:

>>> from zope.interface.verify import verifyObject

>>> from twisted.internet.interfaces import IReactorTime

>>> verifyObject(IReactorTime, clock)

True

>>> verifyObject(IReactorTime, object()))

Traceback (most recent call last):

  File"<stdin>", line1, in <module>

  ...

zope.interface.exceptions.DoesNotImplement: An object does not implement 

interface<Interface

We can use this to confirm that the reactor provides the same IReactorTime interface 

as a Clock instance:

>>> from twisted.internet import reactor

>>> verifyObject(IReactorTime, reactor) True

We’ll return to verifyObject later when we write our own interface 

implementations. For now, though, it’s enough to know that we can replace the reactor 

with a Clock instance anywhere we depend on IReactorTime.callLater. In general, 

if we know what interface an object provides includes the methods or attributes we 

depend on, we can replace that object with any other that provides the same interface. 

While we can discover an object’s provided interfaces interactively with providedBy, 

Twisted’s online documentation has special support for interfaces. Figure 1-2 depicts the 

documentation for Clock on Twisted’s website.
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The interfaces implemented by the Clock class are highlighted in the dotted 

rectangle. Clicking on each one leads to that interface’s documentation, which includes 

a list of all known implementers and providers. If you know what the object is, then you 

can determine its interfaces by visiting its documentation.

We turn next to a problem whose solution in Twisted involves defining implementers 

for interfaces.

 Flow Control in Event-Driven Programs
PingPongProtocol differs from the streaming protocol we wrote for our last non-Twisted 

event-driven example: each side in PingPongProtocol writes a byte in response to a 

received byte, whereas the streaming protocol had the client send increasingly large 

sequences of bytes to the server, pausing its writes as the server became overwhelmed. 

Adapting the rate at which the sender writes to match the rate at the recipient reads is 

known as flow control.

When combined with event-driven programming, non-blocking I/O enables 

us to write programs that can respond to many different events at any given time. 

Synchronous I/O, as we saw with our streaming client protocol implemented in terms 

Figure 1-2. twisted.internet.task.Clock documentation. The dashed box 
highlights the link to the IReactorTime interface.
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of sendall, pauses or blocks our program, preventing it from doing anything until 

the I/O operation completes. While this makes concurrency more difficult, it makes 

flow control much easier: a writer that outpaces its reader is simply paused by the 

operating system until the reader accepts pending data. In the case of our streaming 

client, this resulted in a deadlock, because the slow reader ran within the same 

process that was paused for writing too quickly, and thus could never run to catch 

up. The more common case has readers and writers run in separate processes, if not 

on separate machines, and their synchronous, blocking I/O naturally provides flow 

control.

It is rare, however, to encounter plain blocking I/O in network applications. Even the 

simplest must manage two things at once for each connection: the communication of 

data and timeouts associated with each I/O operation. Python’s socket module allows 

programmers to set these timeouts on recv and sendall operations, but behind the 

scenes this is implemented by calling select with a timeout!

We have the events necessary to implement flow control. select informs us of 

writable events, while EAGAIN indicates that a socket’s send buffer is full, and thus 

indirectly that the receiver is overwhelmed. We can compose these to pause and resume 

writers and achieve flow control comparable to what blocking I/O provides.

 Flow Control in Twisted with Producers 
and Consumers
There are two components in Twisted’s flow control system: producers and consumers. 

Producers write data to consumers by calling a consumer’s write method. Consumers 

wrap producers; each consumer can be associated with a single producer. This 

relationship ensures the consumer has access to its producer, so that it can place 

back pressure on it by calling certain methods on the producer to regulate the flow 

of data. Common transports, such as the TCP transport bound to protocols like our 

PingPongProtocol, can be both consumers and producers.

We explore the interaction between producers and consumers by reimplementing 

our pre-Twisted streaming client example.
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 Push Producers
We begin with the client’s producer:

from twisted.internet.interfaces import IPushProducer

from twisted.internet.task import LoopingCall

from zope.interface import implementer

@implementer(IPushProducer)

class StreamingProducer(object):

    INTERVAL=0.001

    def __init__ (self, reactor, consumer):

        self._data = [b"*", b"*"]

        self._loop = LoopingCall(self._writeData, consumer.write)

        self._loop.clock = reactor

    def resumeProducing(self):

        print("Resuming client producer.")

        self._loop.start(self.INTERVAL)

    def pauseProducing(self):

        print("Pausing client producer.")

        self._loop.stop()

    def stopProducing(self):

        print("Stopping client producer.")

        if self._loop.running:

            self._loop.stop()

    def _writeData(self, write):

        print("Client producer writing", len(self._data),"bytes.")

        write(b"".join(self._data))

        self._data.extend(self._data)

Our producer, StreamingProducer, implements twisted.internet.interfaces.

IPushProducer. This interface describes producers that continuously write data to their 

consumer until it pauses them. The following methods on StreamingProducer satisfy the 

IPushProducer interface:

• resumeProducing: This resumes or initiates the process of writing 

data to the consumer. Because our implementation generates its 

data by doubling a sequence of bytes after every write, it requires 
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some kind of loop to feed a continuous stream to its consumer. A 

simple while loop would not work: without returning control to 

the reactor, the program could not process new events until the 

loop has terminated. An event-driven program such a web browser 

would effectively pause its execution during a large file upload. 

StreamingProducer avoids this by delegating the write loop to the 

reactor via a LoopingCall instance, and so its resumeProducing 

method starts that LoopingCall. The interval of one millisecond is 

arbitrarily low. Our producer cannot write data any faster than that, 

so the interval is a source of latency, and one millisecond minimizes 

it acceptably.

• pauseProducing: This pauses the process of writing data to 

the consumer. The consumer calls this to indicate it has been 

overwhelmed and cannot accept more data. It suffices in our 

implementation to stop the underlying LoopingCall. The 

consumer may call resumeProducing later when the underlying 

resource can accept more data. This cycle of resumeProducing and 

pauseProducing calls constitutes flow control.

• stopProducing: This terminates the production of data. This 

differs from pauseProducing because the consumer can never call 

resumeProducing to receive more data after calling stopProducing. 

Most obviously, it is called when a socket connection is closed. 

StreamingProducer’s implementation only differs from its 

pauseProducing method in that it must first check if the looping 

call is running. This is because the consumer might request that no 

further data be written while the producer is already paused. More 

complicated push producers would perform additional clean up; for 

example, a producer that streams data from a file would need to close 

it here to release its resources back to the operating system.

Note that IPushProducer does not specify how its implementer writes data to a 

consumer or even gets access to it. This makes the interface flexible, but also makes it 

more difficult to implement. StreamingProducer follows a typical pattern by accepting 

the consumer in its initializer. We’ll cover the full consumer interface shortly, but for 

now, it’s enough to know that consumers must provide a write method.
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We can test that StreamingProducer implements the intended behavior of an 

IPushProducer:

from twisted.internet.interfaces import IPushProducer

from twisted.internet.task import Clock

from twisted.trial import unittest

from zope.interface.verify import verifyObject

class FakeConsumer(object):

    def __init__ (self, written):

        self._written = written

    def write(self, data):

        self._written.append(data)

class StreamingProducerTests(unittest.TestCase):

    def setUp(self):

        self.clock = Clock()

        self.written = []

        self.consumer = FakeConsumer(self.written)

        self.producer = StreamingProducer(self.clock,self.consumer)

    def test_providesIPushProducer(self):

        verifyObject(IPushProducer,self.producer)

    def test_resumeProducingSchedulesWrites(self):

        self.assertFalse(self.written)

        self.producer.resumeProducing()

        writeCalls = len(self.written)

        self.assertEqual(writeCalls,1)

        self.clock.advance(self.producer.INTERVAL)

        newWriteCalls = len(self.written)

        self.assertGreater(newWriteCalls, writeCalls)

    def test_pauseProducingStopsWrites(self):

        self.producer.resumeProducing()

        writeCalls = len(self.written)

        self.producer.pauseProducing()

        self.clock.advance(self.producer.INTERVAL)

        self.assertEqual(len(self.written), writeCalls)
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    def test_stopProducingStopsWrites(self):

        self.producer.resumeProducing()

        writeCalls = len(self.written)

        self.producer.stopProducing()

        self.clock.advance(self.producer.INTERVAL)

        self.assertEqual(len(self.written), writeCalls)

FakeConsumer accepts a list to which each write call appends the data it received. 

This allows the test suite to assert that StreamingProducer has called its consumer’s 

write method when expected.

test_providesIPushProducer ensures that StreamingProducer defines the methods 

required by IPushProducer. If it did not, this test would fail with zope.interface.

exceptions.DoesNotImplement. Tests like this that assert implementations satisfy their 

interfaces are a useful high-pass filter in development and refactoring.

test_resumeProducingSchedulesWrites asserts that calling resumeProducing 

implies writing data to the consumer, and that each time the specified interval 

has passed, more data is written. test_pauseProducingStopsWrites and test_

stopProducingStopsWrites both assert the opposite: calling pauseProducing and 

stopProducing prevent further writes from occurring after every interval has elapsed.

 Consumers
StreamingProducer emits data but has nowhere to put it. To complete our streaming 

client, we need a consumer. StreamingProducer’s initializer makes it clear that the 

consumer’s interface must provide a write method, and the overview indicated 

that additional consumer methods managed interactions with producers. twisted.

internet.interfaces.IConsumer requires that implementers implement three methods:

• write: This accepts data from a producer. This is the only method 

provided by FakeConsumer in our tests above, because it is the only 

part of the IConsumer interface IPushProducer calls.

• registerProducer: This associates a producer with the consumer, 

ensuring that it can call the producer’s resumeProducing and 

pauseProducing to regulate the flow of data and stopProducing to 

terminate it. This accepts two arguments: the producer and a streaming 

flag. We will explain the purpose of this second argument later; for now, 

it is enough to know that our streaming client will set this to True.
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• unregisterProducer: This dissociates a producer from the 

consumer. A consumer might accept data from multiple producers 

throughout its lifetime; consider again a web browser, which might 

upload multiple files over a single connection to a server.

It is no coincidence that both IConsumer implementers and transports both expose 

write methods; as mentioned above, the TCP transport bound to connected protocols is 

a consumer with which we can register a StreamingProducer instance. We can adapt our 

PingPongProtocol example to register StreamingProducer with its underlying transport 

upon a successful connection:

from twisted.internet import protocol, reactor

from twisted.internet.interfaces import IPushProducer

from twisted.internet.task import LoopingCall

from zope.interface import implementer

@implementer(IPushProducer)

class StreamingProducer(object):

    INTERVAL=0.001

    def __init__ (self, reactor, consumer):

        self._data = [b"*", b"*"]

        self._loop = LoopingCall(self._writeData, consumer.write)

        self._loop.clock = reactor

    def resumeProducing(self):

        print("Resuming client producer.")

        self._loop.start(self.INTERVAL)

    def pauseProducing(self):

        print("Pausing client producer.")

        self._loop.stop()

    def stopProducing(self):

        print("Stopping client producer.")

        if self._loop.running:

            self._loop.stop()

    def _writeData(self, write):

        print("Client producer writing", len(self._data),"bytes.")

        write(b"".join(self._data))

        self._data.extend(self._data)
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class StreamingClient(protocol.Protocol):

    def connectionMade(self):

        streamingProducer = StreamingProducer(

            self.factory._reactor,self.transport)

        self.transport.registerProducer(streamingProducer,True)

        streamingProducer.resumeProducing()

class ReceivingServer(protocol.Protocol):

    def dataReceived(self, data):

        print("Server received", len(data),"bytes.")

class StreamingClientFactory(protocol.ClientFactory):

    protocol = StreamingClient

    def __init__ (self, reactor):

        self._reactor = reactor

class ReceivingServerFactory(protocol.Factory):

    protocol = ReceivingServer

listener = reactor.listenTCP(port=0,

                           factory=ReceivingServerFactory(),

                           interface='127.0.0.1')

address = listener.getHost()

reactor.connectTCP(host=address.host,

                   port=address.port,

                   factory=StreamingClientFactory(reactor))

reactor.run()

The StreamingClient protocol creates a StreamingProducer that it then 

registers with its transport. As promised, the second argument to registerProducer 

is True. Registering a producer does not automatically resume it, however, so we 

must begin StreamingProducer’s write loop by calling resumeProducing. Note that 

StreamingClient never calls stopProducing on its producer: transports calls this on 

behalf of their protocols when the reactor signals a disconnection.

Running this produces output like the following:

Resuming client producer.

Client producer writing 2 bytes.

Server received 2 bytes.
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Client producer writing 4 bytes.

Server received 4 bytes.

Client producer writing 8 bytes.

Server received 8 bytes.

...

Client producer writing 524288 bytes.

Pausing client producer.

Server received 65536 bytes.

Server received 65536 bytes.

Server received 65536 bytes.

Server received 65536 bytes.

Resuming client producer.

Client producer writing 1048576 bytes.

Pausing client producer.

...

Eventually the program will consume all available memory, constituting a successful 

experiment in flow control.

 Pull Producers
A second producer interface exists: twisted.internet.interfaces.IPullProducer. 

Unlike IPushProducer, it only writes to its consumer when its resumeProducing method 

is called. This is the purpose of the second argument to IConsumer.registerProducer: 

IPullProducers require that streaming be False. Don’t write IPullProducers! Most 

transports behave like sockets and generate writable events that obviate the need for 

a write loop like StreamingProducer’s. When data must be manually pumped out of a 

source, it is easier to write and test a LoopingCall instead.

 Summary
We’ve seen how event-driven programming divides programs into events and their 

handlers. Anything that happens to a program can be modeled as an event: input 

from a user, data received over a socket, or even the passage of time. An event 

loop uses a multiplexer to wait for any of the possible events to occur, running 
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the appropriate handlers for those that did. Operating systems provide low-level 

interfaces, such as select, to multiplex network socket I/O events. Event-driven 

network programming with select is most effective with non-blocking, which 

generates events for operations like send and recv that indicate the program should 

stop running an event handler.

The stop event – EAGAIN – emitted by non-blocking sockets results in complex 

code without the right abstractions. Protocols and transports divide the program’s code 

between causes and effects: transports translate read, write, and stop events into higher- 

level causes that protocols can respond to, generating new events in turn. This division 

of responsibility between protocols and transports allows implementing event handlers 

that are easily tested by replacing transports with in-memory fakes. Later on, we’ll see 

other practical benefits of the protocol-transport split.

Protocols, transports, and reactors – its name for event loops – are fundamental 

to Twisted’s operation and inform its overall architecture. Twisted’s reactor can react 

to non-I/O events, such as the passage of time. Testing these is no more difficult than 

testing protocols because reactors, like transports, have in-memory fakes. Twisted 

formalizes the interfaces that reactors and other objects must implement by means 

of zope.interface. By determining what interfaces an object provides, it’s possible 

to select a replacement suitable for testing that’s guaranteed to be equivalent because 

it provides the same interfaces. Twisted’s online documentation makes discovering 

interfaces easier than inspecting live objects in a Python session.

A practical use for interfaces comes in Twisted’s solution to something that event- 

driven network programming makes difficult: flow control. IPushProducer and 

IConsumer define a set of behaviors that allow the receiver of streaming data to pause the 

source when it’s overwhelmed.

This introduction suffices to explain the core principles of event-driven 

programming in Twisted. There’s much more, however: in the next chapter, we’ll learn 

how Twisted eases event-driven programming further by allowing programs to work 

with values that have yet to be computed.
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CHAPTER 2

An Introduction to  
Asynchronous 
Programming with 
Twisted
The previous chapter derived Twisted’s event-driven architecture from first principles. 

Twisted programs, like all event-driven programs, make concurrency easier at the 

expense of making data flow control more difficult. An event-driven program does not 

automatically have its execution suspended by blocking I/O when it sends more data 

than a receiving party can handle. It is the program’s responsibility to determine when 

this occurs and how to deal with it.

The way data flows between communicating parties also affects the way that it flows 

within a single program. As a result, the strategies for composing different components of 

an event-driven applications differ from those used in blocking programs.

 Event Handlers and Composition
Consider a program that is not event-driven and uses blocking I/O to perform a network 

operation:

def requestField(url, field):

    results = requests.get(url).json()

    return results[field]
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requestField retrieves a URL with the requests HTTP library, decodes the 

response’s body as JSON, and then returns the value of the requested field property 

from the resulting dictionary. requests uses blocking I/O, so a call to requestField 

pauses the entire program until the network operations required by the HTTP request 

complete. The function can thus assume that before it returns, results will be available 

for manipulation. Callers of this function can make the same assumption because 

requestField will block them until it has computed its result:

def someOtherFunction(...):

    ...

    url = calculateURL(...)

    value = requestField(url, 'someInteger')

    return value + 1

x = someOtherFunction(...)

Neither someOtherFunction nor the top-level x assignment can finish until 

requestField has retrieved the URL and extracted the value for the someInteger 

property from the JSON response. This is a kind composition: someOtherFunction 

invokes requestField to complete part of its own execution. We can make this clearer 

with explicit function composition:

def someOtherFunction(value):

    return value + 1

x = someOtherFunction(requestField(calculateURL(...), 'someInteger'))

This code replaces someOtherFunction’s local variables with nested function calls, 

but is otherwise equivalent.

Function composition is a fundamental tool for organizing programs. It allows a 

program to be factored, or split into separate units that form a whole whose behave 

exactly matches the non-factored version. This improves readability, reusability, and 

testability.

Unfortunately, event handlers cannot be composed like someOtherFunction, 

requestField, and calculateURL. Consider a hypothetical, non-blocking version of 

requestField:

def requestField(url, field):

    ??? = nonblockingGet(url)
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What could replace the ??? in a non-blocking version of requestField? This is a 

difficult question to answer because nonblockingGet does not suspend the program’s 

execution to complete the network operations that constitute an HTTP request to url; 

instead, an event loop outside requestField multiplexes readable and writable events, 

calling event handlers to send and receive data as soon as it becomes possible to do so. 

There is not an obvious way to return the event handlers' value from our hypothetical 

nonblockingGet function.

Fortunately, by representing event handlers as functions, we can use the 

generality of function composition to factor an event-driven program into separate 

components. Let’s assume that the hypothetical nonblockingGet function itself 

accepts an event handler function as an argument that it invokes when the request’s 

completion event occurs. This higher-level event would be synthesized out of lower-

level events, analogous to the way that we saw transports emit a connectionLost 

event for the sake of their protocols in Chapter 1. We can then rewrite requestField 

to take advantage of this new argument:

def requestField(url, field):

    def onCompletion(response):

        document = json.loads(response)

        value = response[field]

    nonblockingGet(url, onCompletion=onCompletion)

onCompletion is a callback, or a callable object passed as an argument to some 

other callable that performs some desired operation. When that operation completes, 

the callback is called with some pertinent argument or arguments. In this case, 

nonblockingGet invokes its onCompletion callback when its HTTP request resolves to a 

complete response object. We saw an equivalent onCompletion callback in the previous 

chapter’s BuffersWrites implementation; there, it was invoked when all buffered data 

had been written to the socket.

Callbacks compose internally where other functions, like our someOtherFunction 

example above, compose externally; values are made available to callbacks within the 

execution of the callable that achieves the desired result, instead of being returned from 

that callable.
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In the same way that nonblockingGet factors out the event-driven HTTP request 

code, requestField can factor out the way the extracted field is used by accepting its 

own callback. We’ll have requestField accept a useField callback, and then have the 

onCompletion callback invoke it:

def requestField(url, field, useField):

    def onCompletion(response):

        document = json.loads(response)

        value = response[field]

        useField(value)

    nonblockingGet(url, onCompletion=onCompletion)

We can pass someOtherFunction as the useField callback to write an event-driven 

program that’s equivalent to our blocking I/O version:

def someOtherFunction(useValue):

    url = calculateURL(...)

    def addValue(value):

        useValue(value + 1)

    requestField(url,"someInteger", useField=addValue)

someOtherFunction in turn must also compose internally by accepting its own 

callback, in contrast to calculateURL that composes externally as before. This callback- 

driven approach suffices to write any program; in fact, in the study of computer science, 

callbacks can be refined into control-flow primitives called continuations and used in a 

technique called continuation-passing style, in which functions terminate by invoking 

their continuations with a result. Continuation-passing style has been used in various 

language compilers to enable program analyses and optimizations.

Despite the theoretical power of continuation-passing style, it is awkward to read and 

write. Furthermore, external composition – as with requestField and calculateURL – 

and internal composition – as with requestField and useField – do not obviously 

compose with each other. It is difficult, for example, to imagine how calculateURL could 

be passed as a callback. Finally, error handling is a critical causality; imagine how we 

would handle exceptions in continuation-passing style! We have intentionally omitted 

any error handling in this example to keep the code short enough to read.

Fortunately, asynchronous programming provides a powerful abstraction that eases 

the composition of event handlers and addresses these problems.
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 What Is Asynchronous Programming?
Our initial implementation of requestField is synchronous because the entire 

program’s execution linearly progresses with the passage of time. For example, given 

two calls to request.get, the first will complete before the second. Synchronous 

programming is a common paradigm that is congruent with blocking I/O. Most 

programming languages, including Python, default to synchronous operations that are 

enabled by blocking I/O.

The continuation-passing style of our event-driven requestField is a kind 

of asynchronous programming: while the logical flow through nonblockingGet’s 

callbacks is paused until the necessary data becomes available, the overall program’s 

execution continues. The executions of two separate nonblockingGet invocations 

will interleave without any guaranteed order to their completion; beginning one 

earlier than the other does not ensure that it will finish first. This is the definition of 

concurrency.

An event-driven program that utilizes non-blocking I/O is necessarily asynchronous, 

because all I/O operations proceed on the basis of events that can arrive at any time 

and in any order. It’s important to note that an asynchronous program does not require 

event-driven I/O; different platforms provide I/O and scheduling patterns based on 

fundamentally different primitives. Windows, for example, provides I/O Completion 

Ports (IOCP), which inform programs of the completion of a requested operation, not 

the opportunity to perform an operation. For example, a program that requests the IOCP 

infrastructure perform a read on a socket will be notified when and with what data the 

read completes. Twisted has some support for this in the form of its IOCP reactor, but 

for our purposes, we can understand asynchronous programming as a consequence of 

the event-driven paradigm’s disjointed and piecemeal execution in the same way that 

synchronous programming is a consequence of blocking I/O.

 Placeholders for Future Values
Callbacks in event-driven programs obscure control flow because they compose 

internally; rather than returning a value to their caller, they forward results to callbacks 

they received as arguments. This results in a mix of application logic and control flow 

that makes refactoring difficult, and a disconnection between the point where errors 

occur and the code that is interested in them.
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Introducing an object that represents a value that has yet to be calculated allows 

callbacks to be composed externally. Consider how our non-blocking requestField 

example changes when it’s allowed to return this kind of placeholder:

def requestField(url, field):

    def onCompletion(response):

        document = json.load(response)

    return jsonDoc[field]

placeholder = nonblockingGet(url)

return placeholder.addCallback(onCompletion)

nonblockingGet now returns a placeholder that is not the response, but rather a 

container into which the response will be placed when it’s ready. A container with 

no operations would not provide much benefit, so this placeholder accepts callbacks 

it invokes when its value is ready. Instead of passing the onCompletion directly to 

nonblockingGet, we attach it as a callback to the placeholder nonblockingGet returns. 

The internal onCompletion callback’s implementation can now return a value – the 

extracted field from the JSON document – which will become available as the argument 

to subsequent callbacks.

requestField can now transitively eliminate its own callback argument and return 

the placeholder to someOtherFunction, which can add its own callback:

def someOtherFunction(...):

    url = calculateURL(...)

    def addValue(value)

        return value + 1

    placeholder = requestField(url,"someInteger")

    return placeHolder.addCallback(addValue)

Our placeholder value has not eliminated callbacks entirely. Instead, it provides a 

control-flow abstraction that localizes callbacks to their originating scope, so that they 

can be composed externally. This becomes clearer when multiple callbacks process an 

asynchronous result. Consider the following internally composed callbacks:

def manyCallbacks(url, useValue, ...):

    def addValue(result):

        return divideValue(result + 2)
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    def divideValue(result):

        return multiplyValue(result // 3)

    def multiplyValue(result):

        return useValue(result * 4)

    requestField(url, "someInteger", onCompletion=addValue)

Control flows from addValue to divideValue and finally exits from multiplyValue 

into the useValue callback provided by manyCallbacks’s caller. Changing the order of 

the three internal callbacks would require rewriting each one. A placeholder object, 

however, moves that order out of each callback:

def manyCallbacks(url, ...):

    def addValue(result):

        return result + 2

    def divideValue(result):

        return result // 3

    def multiplyValue(result):

        return result * 4

placeholder = requestField(url, "someInteger")

placeholder.addCallback(addValue)

placeholder.addCallback(divideValue)

placeholder.addCallback(multiplyValue)

return placeholder

divideValue no longer depends directly on multiplyValue, so it can be moved 

before multiplyValue or even removed without changing it or multiplyValue.

The actual composition of callbacks happens within the placeholder object, the 

core implementation of which is fundamentally simple. We’ll name our placeholder 

class Deferred because it represents a deferred value – one that is not yet ready:

class Deferred(object):

    def __init__ (self):

        self._callbacks = []

    def addCallback(self, callback):

        self._callbacks.append(callback)

    def callback(self, result):

        for callback in self._callbacks:

            result = callback(result)
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The creator of the Deferred instance invokes callback with the result when it 

becomes available. Each callback is invoked with the current result, and its return value 

becomes the result passed to the next callback. This is how the onCompletion above can 

change the HTTP response into only JSON field of interest.

The control flow imposed by Deferred’s for loop suffices to invoke each callback 

in turn, but cannot handle exceptions any better than internally composed callbacks. 

Addressing this requires adding some kind of branching logic to detect and reroute 

exceptions to their destinations.

 Asynchronous Exception Handling
Synchronous Python code handles exceptions with try and except:

def requestField(url):

    response = requests.get(url).content

    try:

        return response.decode('utf-8')

    except UnicodeDecodeError:

        # Handle this case

A callback added to a Deferred via its addCallback method runs when no exception 

occurs, and thus is the asynchronous equivalent of the try block. We can add error 

handling by introducing an analogous callback for the except block that accepts the 

exception raised as its argument. A callback like this that is invoked with an exception is 

known as an errback.

Synchronous code can choose to let an exception travel upward to its caller 

by omitting try and except. Deferred’s control flow, however, would allow an 

exception raised by a callback to move up from the for loop and back to the invoker 

of Deferred.callback. That would be the wrong place to put exception handling 

because the code that provides the Deferred with a value cannot know the error 

handling behavior intended by the code that added its callbacks. Encapsulating this 

error handling inside errbacks that we pass to Deferreds allows those Deferreds 

to invoke them at the right time instead of troubling the invoker of Deferred.

callback.
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At each step in the callback chain, then, the loop must catch any exception and 

forward it to the next errback. Because each step may call either a callback or an errback, 

our callbacks list will change to contain (callback, errback) pairs:

def passthrough(obj):

    return obj

class Deferred(object):

    def __init__ (self):

        self._callbacks = []

    def addCallback(self, callback):

        self._callbacks.append((callback, passthrough))

    def addErrback(self, errback):

        self._callbacks.append((passthrough, errback))

    def callback(self, result):

        for callback, errback in self._callbacks:

            if isinstance(result,BaseException):

                handler = errback

            else:

                handler = callback

            try:

                result = handler(result)

            except BaseExceptionas e:

                result = e

Each iteration of the loop inspects the current result. Exceptions are passed 

to the next errback, while everything else is passed to the next callback as it was 

before. Any exception raised by either an errback or callback becomes a result to 

be handled by the errback that comes next in the chain. This makes the following 

Deferred code:

someDeferred = Deferred()

someDeferred.addCallback(callback)

someDeferred.addErrback(errback)

someDeferred.callback(value)
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equivalent to this synchronous code:

try:

    callback(value)

except BaseExceptionas e:

    errback(e)

Errbacks propagate exceptions by returning them and suppress them by returning 

any value that is not an exception. The following Deferred code filters out ValueErrors 

while letting all other exceptions propagate to the next errback:

def suppressValueError(exception):

    if not isinstance(exception, ValueError):

        return exception

someDeferred.addErrback(suppressValueError)

suppressValueError implicitly returns None when isinstance(exception, 

ValueError) evaluates to True, so the exception check in Deferred’s callback 

loop passes None to the next callback. Every other exception returns out of 

suppressValueError, into the for loop, and on to the next errback. The total effect is 

equivalent to the following synchronous code:

try:

    callback(value)

except ValueError:

    pass

A convenient consequence of Deferred’s new control flow becomes apparent when 

we consider the two places it can encounter exceptions:

 1. Any callback in a Deferred’s list of callbacks might raise an 

exception. For example, a bug in our manyCallback function’s 

sequence of callbacks might result in addValue returning None, in 

which case divideValue would raise a TypeError.

 2. The code that would pass the actual value to a Deferred’s 

callback method might instead raise an exception. Imagine, 

for example, that nonblockingGet attempts to decode the 

HTTP response’s body as UTF-8 and call back a Deferred with 
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the result. If the body contains non-UTF-8-byte sequences, a 

UnicodeDecodeError would be raised. Such an exception means 

that the actual value can never be computed, an error condition of 

which the Deferred’s errbacks should be aware.

Deferred now handles both cases; the first is clearly addressed by running each 

callback and errback inside a try block, while the second can be handled by catching 

and forwarding the exception to Deferred.callback. Consider an HTTP protocol 

implementation that attempts to invoke a Deferred’s callback with a UTF-8 decoded 

response body:

class HTTP(protocol.Protocol):

    def dataReceived(self, data):

        self._handleData(data)

        if self.state == "BODY_READY":

            try:

                result = data.decode('utf-8')

            except Exceptionas e:

                result = e

            self.factory.deferred.callback(e)

class HTTPFactory(protocol.Factory)

    protocol = HTTP

    def __init__ (self, deferred):

        self.deferred = deferred

def nonblockingGet(url):

    deferred = Deferred()

    factory = HTTPFactory(deferred)

    ...

    return deferred

This works because Deferred’s for loop begins each iteration by checking the nature 

of the current result. The first time through the loop, the result is whatever the caller 

provided callback; in the event of encoding Exception, the above code provides that 

exception to callback instead.
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Exception handling can now be localized in errbacks just as application logic was 

localized in callbacks. This allows us to translate from synchronous to asynchronous 

exception control flow. This code:

def requestField(url, field):

    results = requests.get(url).json()

    return results[field]

def manyOperations(url):

    result = requestField(url, field)

    try:

        result += 2

        result //= 3

        result *= 4

    except TypeError:

        return -1

    return result

becomes this code:

def manyCallbacks(url):

    def addValue(result):

        return result + 2

    def divideValue(result):

        return result // 3

    def multiplyValue(result):

        return result * 4

    def onTypeError(exception):

        if isinstance(exception,TypeError):

            return -1

        else:

            return exception

    deferred = requestField(url, "someInteger")

    deferred.addCallback(addValue)

    deferred.addCallback(divideValue)

    deferred.addCallback(multiplyValue)

    deferred.addErrback(onTypeError)

    return deferred
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Twisted provides a Deferred implementation whose API is a superset of the one 

shown here; as we’ll see in the next section, the real Deferred composes with itself and 

provides additional features such as timeouts and cancellation. At its core, however, its 

behavior matches our toy implementation.

 An Introduction to Twisted’s Deferred
The best way to get to know Twisted’s Deferred is to play with it in a Python session. 

We’ll begin by importing it from twisted.internet.defer:

>>> from twisted.internet.defer import Deferred

 Callbacks
Like our toy implementation, twisted.internet.defer.Deferred’s addCallback 

method accepts a callback to add to the instance’s callbacks list. Unlike our 

implementation, Twisted’s also accepts positional and keyword arguments that will be 

passed to the callback:

>>> d = Deferred()

>>> def cbPrint(result, positional, **kwargs):

...     print("result =", result, "positional =", positional,

...           "kwargs =", kwargs)

...

>>> d.addCallback(cbPrint, "positional", keyword=1) is d

True

>>> d.callback("result")

result = result positional = positinal, kwargs = {'keyword': 1}

We create a Deferred named d, add cbPrint as a callback, then call back d with 

"result". d passes this through to cbPrint as its first positional argument, while the 

additional arguments to d.addCallback are passed as its remaining arguments.

Note that d.addCallback returns d itself, which allows chained expressions like

d.addCallback(...).addCallback(...).addCallback(...).
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Now that d has now been called back with a value, it cannot be called back again:

>>> d.callback("whoops")

Traceback (most recent call last):

  File "<stdin>", line 1, in <module>

  File "site-packages/twisted/internet/defer.py", line 459, in callback

    self._startRunCallbacks(result)

   File "site-packages/twisted/internet/defer.py", line 560,  

in _startRunCallbacks

    raise AlreadyCalledError

twisted.internet.defer.AlreadyCalledError

This is because Deferreds remember the value with which they’ve been called back:

>>> d2 = Deferred()

>>> d2.callback("the result")

<Deferred at 0x12345 current result: 'the result'>

The fact that Deferreds store results raises a question: What happens when a 

Deferred with a result has a callback added to it?

>>> d2.addCallback(print)

the result

The print runs as soon as it’s added as a callback to d2. A Deferreds that has a result 

immediately runs callbacks added to it. It’s tempting to imagine that Deferreds always 

represent a value that is not yet available. Code that assumes this, however, is wrong and 

a source of frustrating bugs. Consider the following:

class ReadyOK(twisted.internet.protocol.Protocol):

    def connectionMade(self):

        someDeferred = someAPI()

        def checkAndWriteB(ignored):

            self.transport.write(b"OK\n")

        someDeferred.addCallback(checkAndWriteB)

        self.transport.write(b"READY\n")

As its name implies, this ReadyOK protocol should greet new connections with a 

READY line, only writing OK and disconnecting when someAPI calls back its Deferred. 

READY will appear before OK when someDeferred has not been called back until after 
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connectionMade returns, but this is not guaranteed; if someAPI returns someDeferred 

with a result, then OK appears before READY. This reversal of the expected order of lines 

would break clients that correctly required READY be sent first.

The solution in this case is to move self.transport.write(b"READY\n") before 

someDeferred = someAPI(). You might need to similarly reorganize your own code to 

ensure Deferreds with results do not violate invariants.

 Errbacks and Failures
Deferreds also have errbacks that handle exceptions raised by callbacks and the code 

that calls provide Deferred.callback. We consider the first case first:

>>> d3 = Deferred()

>>> def cbWillFail(number):

...     1 / number

...

>>> d3.addCallback(cbWillFail)

<Deferred at 0x123456>

>>> d3.addErrback(print)

<Deferred at 0x123456>

>>> d3.callback(0)

[Failure instance: Traceback: <class 'ZeroDivisionError'>: division by zero

<stdin>:1:<module>

site-packages/twisted/internet/defer.py:459:callback

site-packages/twisted/internet/defer.py:567:_startRunCallbacks

--- <exception caught here> ---

site-packages/twisted/internet/defer.py:653:_runCallbacks

<stdin>:2:cbWillFail

]

The d3 Deferred has a callback that divides 1 by its argument and the built-in 

print function as an errback, so any exception raised by the callback will appear in our 

interactive session. Calling d3 back with 0 naturally produces a ZeroDivisionError, 

but produces something else as well: a Failure instance. Note that Failure string 

representation is wrapped in brackets ([. . . ]). The errback printed a single failure, not a 

list with one Failure!
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Exception objects in Python 2 do not contain tracebacks or other information about 

their origin. In an attempt to provide as much context as possible, Twisted introduced 

Failures as a container type for asynchronous exceptions that records tracebacks. A 

Failure constructed in an except block absorbs the active exception and its traceback:

>>> from twisted.python.failure import Failure

>>> try:

...     1 /0

... except:

...     f = Failure()

...

>>> f

<twisted.python.failure.Failure builtins.ZeroDivisionError: division by 

zero>

>>> f.value ZeroDivisionError('division  by  zero',)

>>> f.getTracebackObject()

<traceback object at 0x1234567>

>>> print(f.getTraceback())

Traceback (most recent call last):

--- <exception caught here> ---

  File "<stdin>", line 2, in <module>

builtins.ZeroDivisionError: division by zero

The Failure instance stores the actual exception object under its value attribute and 

makes the traceback itself available in several different ways.

Failures also have convenience methods that ease interacting with them in 

errbacks. The check method accepts multiple exception classes and returns the one 

belonging to Failure’s exception or None:

>>> f.check(ValueError)

>>> f.check(ValueError, ZeroDivisionError)

<class 'ZeroDivisionError'>

Chapter 2  an IntroduCtIon to asynChronous programmIng wIth twIsted 



75

Failure.trap behaves like check, except that it re-raises the Failure’s exception 

if it does not match any provided exception class. This allows errbacks to replicate the 

behavior of filtering except clauses:

>>> d4 = Deferred()

>>> def cbWillFail(number):

...     1 / 0

...

>>> def ebValueError(failure):

...     failure.trap(ValueError):

...     print("Failure was ValueError")

...

>>> def ebTypeErrorAndZeroDivisionError(failure):

...     exceptionType = failure.trap(TypeError, ZeroDivisionError):

...     print("Failure was", exceptionType)

...

>>> d4.addCallback(cbWillFail)

<Deferred at 0x12345678>

>>> d4.addErrback(ebValueError)

<Deferred at 0x12345678>

>>> d4.addErrback(ebTypeErrorAndZeroDivisionError)

<Deferred at 0x12345678>

>>> d4.callback(0)

Failure was <class 'ZeroDivisionError'>

ebValueError and ebTypeErrorAndZeroDivisionError together function like the two 

except blocks in this synchronous code:

try:

    1/0

except ValueError:

    print("Failure was ValueError")

except (TypeError,ZeroDivisionError) as e:

    exceptionType = type(e)

    print("Failure was", exceptionType)
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Finally, Deferreds can be provided a Failure or can synthesize one from the current 

exception.

Calling back a Deferred with a Failure instance begins executing its errbacks. 

someDeferred.callback(Failure()) is thus analogous to passing our toy 

implementation’s callback an exception.

Deferreds also expose an errback method. Passing this a Failure instance has 

the same effect as passing callback one; however, calling Deferred.errback with no 

arguments constructs a failure, making it easy to capture an exception for asynchronous 

handling:

>>> d5 = Deferred()

>>> d5.addErrback(print)

<Deferred at 0x12345678>

>>> try:

...    1/0

... except:

...    d.errback()

...

[Failure  instance:  Traceback:<  class 'ZeroDivisionError'>:  division   

by  zero

---<exception caught here>---

<stdin>:2:<module>

]

 Composing Deferreds
Deferreds are a control-flow abstraction that enable the composition of callbacks 

and errbacks. They also compose with themselves, so that a Deferred can wait on a 

Deferred.

Consider a Deferred named outerDeferred with the following sequence of 

callbacks, one of which returns innerDeferred, which has its own callbacks:
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>>> outerDeferred = Deferred()

>>> def printAndPassThrough(result, *args):

...     print("printAndPassThrough",

...           " ".join(args), "received", result)

...     return result

...

>>> outerDeferred.addCallback(printAndPassThrough, '1')

<Deferred at 0x12345678>

>>> innerDeferred = Deferred()

>>> innerDeferred.addCallback(printAndPassThrough,  '2',  'a')

<Deferred at 0x123456789>

>>> innerDeferred.addCallback(printAndPassThrough,  '2',  'b')

<Deferred at 0x123456789>

>>> def returnInnerDeferred(result, number):

...     print("returnInnerDeferred #", number, "received", result)

...     print("Returning innerDeferred...")

...     return innerDeferred

...

>>> outerDeferred.addCallback(returnInnerDeferred, '2')

<Deferred at 0x12345678>

>>> outerDeferred.addCallback(printAndPassThrough, '3')

<Deferred at 0x12345678>

>>> outerDeferred.addCallback(printAndPassThrough, '4')

<Deferred at 0x12345678>

Calling back outerDeferred clearly invokes the printAndPassThrough callback with 

an identifier 1, but what happens when control reaches returnInnerDeferred?

We can answer this with a visual representation of flow of execution in Figure 2-1.
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The box labeled A represents the outerDeferred.callback('result') call that 

starts outerDeferred’s callback loop, while the dotted and solid arrows show the flow of 

execution and data respectively.

The first callback – printAndPassThrough with an identifier of 1 – receives 'result' as 

its first argument and prints out a message. Because it returns 'result', outerDeferred 

calls the next callback with that same object. returnInnerDeferred prints its identifier 

and a message that it’s returning innerDeferred before doing so:

>>> outerDeferred.callback("result")

printAndPassThrough 1 received result

returnInnerDeferred 2 received result

Returning innerDeferred...

Figure 2-1. Execution and data flow between outerDeferred and 
innerDeferred. Execution follows the dotted arrows, while the data flow follows 
the solid arrows.
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The callback loop inside outerDeferred detects that returnInnerDeferred has 

returned a Deferred instead of an actual value, and pauses its own callback loop until 

innerDeferred resolves to a value. The dotted arrow in Figure 2-1 shows that execution 

has transferred to innerDeferred, as does outerDeferred’s repr:

>>> outerDeferred

<Deferred at 0x12345678 waiting on Deferred at 0x123456789>

The box labeled B represents the innerDeferred.callback('result') call that 

resumes execution. Naturally, innerDeferred’s own callbacks, printAndPassThroughs 

with identifiers 2 a and 2 b, now run.

Once innerDeferred has run all its callbacks, execution returns to outerDeferred’s 

callback loop, where printAndPassThroughs 3 and 4 execute with the value returned by 

innerDeferred’s last callback.

>>> innerDeferred.callback('inner result')

printAndPassThrough 2 a received inner result

printAndPassThrough 2 b received inner result

printAndPassThrough 3 received inner result

printAndPassThrough 4 received inner result

In effect, then, printAndPassThrough 3 and 4 became innerDeferred’s callbacks. If 

any innerDeferred’s own callbacks returned Deferreds, its callback loop would pause in 

the same way outerDeferred’s did.

The ability to return Deferreds from callbacks (and errbacks as well) allows 

externally composing functions that return Deferreds:

def copyURL(sourceURL, targetURL):

    downloadDeferred = retrieveURL(sourceURL)

    def uploadResponse(response):

        return uploadToURL(targetURL, response)

    return downloadDeferred.addCallback(uploadResponse)

copyURL uses two hypothetical APIs: retrieveURL, which retrieves the contents 

of a URL; and uploadToURL, which uploads data to a target URL. The uploadResponse 

callback added to the Deferred returned by retrieveURL invokes uploadResponse 

with the data from the source URL and returns the resulting Deferred. Remember 

that a Deferred’s addCallback returns that same instance, so copyURL returns 

downloadDeferred to its caller.
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Users of copyURL wait first for the download and then for the upload as intended. 

copyURL’s implementation composes the functions that return Deferreds in the same 

way it composes callbacks without any special-purpose APIs.

The basic interface of Twisted’s Deferreds allows its users to compose callbacks, 

errbacks, and Deferreds externally, easing the construction of asynchronous 

programs.

Deferreds are not the only way that asynchronous programs can externally 

compose their event handlers. In the nearly two decades since Twisted’s Deferreds were 

introduced, Python has developed language-level mechanisms to suspend and resume 

special types of functions.

 Generators and InlineCallbacks
 yield
Python has supported generators since version 2.5. Generators are functions and 

methods that use a yield expression in their body. Calling a generator returns an 

iterable generator object. Iterating over this executes the body of the generator until the 

next yield expression, at which point execution pauses and the iterator evaluates to the 

yield expression’s operand.

Consider the execution of the following generator:

>>> def generatorFunction():

...     print("Begin")

...     yield 1

...     print("Continue")

...     yield 2

...

>>> g = generatorFunction()

>>> g

<generator object generatorFunction at 0x12345690>

>>> result = next(g)

Begin

>>> result

1
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generatorFunction returns a new generator object when called. Note that no 

part of generatorFunction’s body has run yet. The built-in next function advances an 

iterator; advancing the generator object g begins executing generatorFunction’s body, 

outputting Begin into our interactive Python session. Execution pauses upon reaching 

the first yield expression, and the value provided to yield becomes the next call’s 

return value. Calling next again resumes executing the generator until it reaches the 

second yield:

>>> nextResult = next(g)

Continue

>>> nextResult

2

Another call to next resumes the generator. This time its entire body has executed. 

There are no further yields at which to pause so the generator object cannot provide 

another value to a subsequent next call. In according with Python’s iteration protocol, 

calling next on the generato object raises StopIteration to indicate that it has been 

exhausted:

>>> next(g)

Traceback (most recent call last):

  File "<stdin>", line 1, in <module>

StopIteration

Generators thus follow the same API as any other iterator: values are returned 

either by explicit calls to next like the ones above or by implicit ones like those in for 

loops, while a StopIteration exception indicates that no more values can be returned. 

However, generators implement more than just the iteration API.

 send
Generators can accept values as well as emit them. The yield operand can appear as the 

right-hand side of an assignment statement. The yield expression at which a generator 

is paused can be made to evaluate to something by passing that value to the generator’s 

send method. Given the following yield expression in a generator gPrime:

def gPrime():

    a = yield 4
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gPrime.send(5) causes the yield on the right-hand side of the assignment to 

evaluate to 5, so that the code within the generator becomes equivalent to this:

def gPrime():

    a = 5

As a result, the generator-local variable a takes on the value 5. At the same time, the 

gPrime().send(5) call advances the generator and evaluates to 4. Let’s explore send’s 

control flow in more detail by examining a fully worked example and its visualization in 

Figure 2-2.

>>> def receivingGenerator():

...     print("Begin")

...     x = 1

...     y = yield x

...     print("Continue")

...     z = yield x + y

...     print(x + y + z)

...

>>> g = receivingGenerator()

>>> result = next(g) # A Begin

>>> result

1

>>> nextResult = g.send(2) # B

Continue

>>> nextResult

3

>>> g.send(3) # C

6

Traceback (most recent call last):

  File "<stdin>", line 1, in <module>

StopIteration
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We begin execution of receivingGenerator with next, the same way that we began 

execution of generatorFunction; generators must always be started by iterating over 

them once. The box marked A in Figure 2-2 indicates this initial call to next. As before, 

g runs until pausing on its first yield expression, and this next call evaluates to that 

yield’s operand. Because that operand is the local variable x, which was assigned 1, the 

next call evaluates to 1. The black arrow out from yield x, through box A, traces the 

value 1 as it leaves the generator through next.

Now that the generator has started we can resume it again with send, as indicated 

by box B. g.send(2) passes the value 2 into the generator, which assigns it to the variable 

y. Execution continues, past print("Continue"), until pausing on the next yield. The 

operand here is the expression x + y, which evaluates to 3 and returns back through 

g.send(2). The black arrow that travels from x + y through box B shows the exit path 

taken by the result 3.

Calling g.send(3), represented by box C, sends 3 into the generator and resumes 

execution again, printing x + y + z = 6 to the session. However, the generator cannot 

pause its execution as it did before, because there are no further yield expressions 

in receivingGenerator. Because generators follow the iteration protocol, they raise 

StopIteration when exhausted; g.send(3) thus raises StopIteration instead of 

evaluating to a value, as indicated in Figure 2-2 and demonstrated in the  

example code.

Figure 2-2. Execution of and data flow into and out of receivingGenerator. 
Execution moves downward, while the data flow follows the solid arrows.
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 throw
Just as send allows passing values into generators, throw allows raising exceptions within 

them. Consider the following code:

>>> def failingGenerator():

...     try:

...         value = yield

...     except ValueError:

...         print("Caught ValueError")

...

>>> tracebackG = failingGenerator()

>>> next(tracebackG)

>>> tracebackG.throw(TypeError())

Traceback (most recent call last):

  File "<stdin>", line 1, in <module>

  File "<stdin>", line 3, in failingGenerator

TypeError

>>> catchingG = failingGenerator()

>>> next(catchingG)

>>> catchingG.throw(ValueError())

Caught ValueError

Traceback (most recent call last):

  File "<stdin>", line 1, in <module>

StopIteration

failingGenerator wraps its yield expression in a try block whose except catches 

ValueError and then prints a message. All other exceptions pass back to the caller.

We create a new generator by calling failingGenerator and naming it tracebackG. 

We start things as usual with a call to next. Note that failingGenerator’s yield lacks an 

operand; Python represents the absence of a value with None, so next evaluates to None 

(interative Python sessions do not print None when it’s returned by a function). Inside the 

generator the first yield itself evaluates to None, because next cannot not send any value 

into the generator. As a result, g.send(None) is equivalent to next(g). This equivalence 

will become significant when we look into coroutines.
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Next, we throw TypeError into tracebackG via its throw method. The generator 

is resumed at its yield expression, but instead of evaluating to a value, that yield 

raises the TypeError passed by throw. The resulting traceback terminates inside 

failingGenerator. What’s less clear from the traceback is that the TypeError rises back 

up from tracebackG.throw. This makes sense: the throw call caused the resumption 

of the generator, which in turn raised TypeError, and it’s natural that unhandled 

exceptions return up the call stack.

A new generator named catchingG demonstrates what happens when 

failingGenerator’s except block encounters a ValueError. As expected, the yield 

raises the exception passed to throw, and as expected from Python’s exception 

handling, the except block catches the ValueError and prints its message. However, 

there are no further yields on which to pause the generator, so this time throw raises a 

StopIteration indicating the exhaustion of failingGenerator.

 Asynchronous Programming with inlineCallbacks
Generators’ suspension and resumption of execution corresponds to Deferred’s 

execution of callbacks and errbacks:

• A generator pauses its execution when it reaches a yield expression, 

while a Deferred pauses its callbacks and errbacks when one returns 

another Deferred;

• A paused generator can be resumed with a value via its send method, 

while a Deferred waiting on another Deferred resumes executing its 

callbacks when that Deferred resolves to a value;

• A paused generator can receive and catch an exception via its throw 

method, while a Deferred waiting on another Deferred resumes 

executing its errbacks when that Deferred resolves to an exception.

We can see these equivalences in action by comparing the following two code 

examples:

def requestFieldDeferred(url, field):

    d = nonblockingGet(url)

    def onCompletion(response):

        document = json.load(response)

        return jsonDoc[field]
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        def onFailure(failure):

            failure.trap(UnicodeDecodeError)

        d.addCallack(onCompletion)

        d.addErrback(onFailure)

        return d

    def requestFieldGenerator(url, field):

        try:

            document = yield nonblockingGet(url)

        except UnicodeDecodeError:

            pass

        document = json.load(response)

        return jsonDoc[field]

requestFieldDeferred attaches a callback to nonblockingGet’s response Deferred 

that decodes the response as JSON and extracts a property, and an errback that 

suppresses only UnicodeDecodeErrors.

requestFieldGenerator instead yields nonblockingGet’s Deferred. The generator 

can then be resumed with the response when it becomes available, or an exception 

if one occurs instead. Both the callback and errback have been moved into the same 

scope that calls nonblockingGet. Moving a function’s body into its caller is known as 

inlining.

We cannot use requestFieldGenerator as it is written: Python 2 does not allow 

generators to return values, and we need a wrapper that accepts the yielded Deferred 

and arranges to call the generator’s send or throw when that Deferred resolves to a value 

or exception.

Twisted provides this wrapper in twisted.internet.defer.inlineCallbacks. It 

decorates callables that return generators and invokes send and throw as each yielded 

Deferred resolves to a value or Exception. In turn, callers that invoke the decorated 

generator function or method receive a Deferred in lieu of a generator object. This 

ensures that existing APIs that expect Deferreds work seamlessly with inlineCallbacks.

Here’s our requestFieldGenerator decorated with inlineCallbacks:

from twisted.internet import defer

@defer.inlineCallbacks

def requestFieldGenerator(url, field):
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    try:

        document = yield nonblockingGet(url)

    except UnicodeDecodeError:

        pass

    document = json.load(response)

    defer.returnValue(jsonDoc[field])

def someCaller(url, ...):

    requestFieldDeferred = requestFieldGenerator(url,"someProperty")

    ...

The returnValue function throws a special exception that contains its argument; 

inlineCallbacks catches this and arranges to call back requestFieldGenerator 

with that value. A return statement in Python 3 raises an equivalent exception that 

inlineCallbacks also catches, so returnValue is not necessary in code that will only 

run under Python 3.

By bringing code back from callbacks and errbacks into a single local scope, 

generators make asynchronous Twisted programs read as though they were 

synchronous. Short programs especially benefit from the consequent reduction in 

function definitions and clearer control flow.

Generators exchange familiarity for new difficulties. Most critically, it is impossible 

for the caller of a generator function or method to know if the returned generator object 

will use the value sent into it with send or silently ignore it. These two generators, for 

example, offer the same interface:

def listensToSend():

    a = 1

    b = yield a

    print(a+b)

def ignoresSend():

    a = 1

    yield a

    print(a)

Accidentally replacing listensToSend with ignoreSend will lead to a subtle bug 

that’s difficult to diagnose. Both are valid Python code that are appropriate in distinct 

circumstances: listensToSend allows resumption with a value, making it suitable for 
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inlineCallbacks, while ignoreSend simply yields a value, as would befit a processing 

pipeline that operates on lines in a file. These two distinct use cases are blurred by the 

Python generator API.

Fortunately, recent versions of Python 3 provide new syntax tailor-made for 

inlineCallbacks-style generators.

 Coroutines in Python
In computer science, generators are a special case of coroutines, which can suspend 

themselves and pass execution on to any other coroutine, resuming when they receive 

back a value. Our inlineCallbacks decorated generator resembles a coroutine in 

that it can yield and receive values, but it unlike a coroutine, it cannot directly invoke 

another generator as it would any other function. Instead, it needs the machinery 

inside inlineCallbacks to hand off execution to another generator on its behalf. That 

machinery, which manages requests to execute code and routes results back to their 

requester, is known as a trampoline. To understand why, imagine execution as though it 

were bouncing off inlineCallbacks between different generators.

 Coroutines with yield from
Python 3.3 introduced a new syntax that allows a generator to directly delegate its 

execution to another generator: yield from. The following Python 3.3+- only code 

demonstrates the behavior of a generator that yields from another generator:

>>> def e():

...     a = yield 1

...     return a + 2

...

>>> def f():

...     print("Begin f")

...     c = yield from e()

...     print(c)

...

>>> g = f()

>>> g.send(None)
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Begin f

1

>>>  g.send(2)

4

Traceback (most recent call last):

  File "<stdin>", line 1, in <module>

StopIteration

The generator e behaves exactly as the generator functions described in the previous 

section: if we called it, we would then start the returned generator by calling next on it 

(or passing its send method None), which would return 1, the operand to its yield; we 

could then pass values back into the generator with send, which would return either 

the operand to the next yield expression or to the return statement (remember that 

generators can return values in Python 3).

The generator g returned by f yields from a generator returned by e, pausing to allow 

that sub-generator to execute. next, send, and throw calls issued against g are proxied 

through to the underlying e generator, so that generator g appears to be an e generator. 

In Figure 2-3, box A indicates the initial g.send(None) that begins execution of g. 

Execution moves through f()’s yield from to a generator returned by e(), pausing on 

the yield expression inside e’s body that sends 1 back to g.send(None).

A generator that delegates execution to another generator with yield from regains 

control when that sub-generator terminates. Box B in Figure 2-3 represents the second 

call to g.send(2) that passes the value 2 through the suspended f generator into the sub- 

generator e, which resumes and assigns the 2 to variable a. Execution proceeds to the 

return statement and the e sub-generator exits with a value of 4. Now f resumes on the 

Figure 2-3. Execution of and data flow into and out of e and f. Execution moves 
downward, while the data flow follows the solid arrows.

Chapter 2  an IntroduCtIon to asynChronous programmIng wIth twIsted 



90

left-hand side of its yield from expression, and assigns the received 4 to variable c. After 

the print call there’re no further yield or yield from expressions, so f() terminates, 

causing g.send(2) raises a StopIteration error.

This syntax eliminates the need for a trampoline like inlineCallbacks to dispatch calls 

from one generator to another, because it allows generators to directly delegate execution to 

other generators. With yield from, Python generators behave like true coroutines.

 Coroutines async and await
Unfortunately, yield from still suffers from the same ambiguity that yield did: 

generators that accept values and those that ignore them appear the same to calling 

code. Versions of Python after 3.5 address this ambiguity by introducing new syntactic 

features on top of yield from that distinguish coroutines: async and await.

When applied to a function or method definition, the async marker turns that 

function or method into a coroutine:

>>>  async def function(): pass

...

>>> c = function()

>>> c

<coroutine object function at 0x9876543210>

Coroutines, unlike generators, cannot be iterated over:

>>> list(function())

Traceback (most recent call last):

  File "<stdin>", line 1, in <module>

TypeError: 'coroutine' object is not iterable

>>> next(function())

Traceback (most recent call last):

  File "<stdin>", line 1, in <module>

TypeError: 'coroutine' object is not iterable

Like generators, coroutines have send and throw methods with which callers can 

resume them:

>>> function().send(None)

Traceback (most recent call last):
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  File "<stdin>", line 1, in <module>

StopIteration

>>> function().throw(Exception)

Traceback (most recent call last):

  File "<stdin>", line 1, in <module>

  File "<stdin>", line 1, in function

Exception

Coroutines can await other coroutines, with the same semantics as generators that 

yield from other generators:

>>> async def returnsValue(value):

...     return 1

...

>>> async def awaitsCoroutine(c):

...     value = await c

...     print(value)

...

>>> awaitsCoroutine(returnsValue(1)).send(None)

1

Traceback (most recent call last):

  File "<stdin>", line 1, in <module>

StopIteration

This behavior demonstrates the prerequisites to coroutine composition, but 

awaiting something that immediately returns a value doesn’t motivate their use in 

asynchronous programming. We need to be able to send an arbitrary value into a 

paused coroutine, but because the purpose of async and await is to present an API that’s 

incompatible with plain generators, we can neither await a plain generator, as we with 

yield from, nor omit its operand, as with yield:

>>> def plainGenerator():

...     yield 1

...

>>> async def brokenCoroutineAwaitsGenerator():

...     await plainGenerator()

...

Chapter 2  an IntroduCtIon to asynChronous programmIng wIth twIsted 



92

>>> brokenCoroutineAwaitsGenerator().send(None)

Traceback (most recent call last):

  File "<stdin>", line 1, in <module>

  File "<stdin>", line 2, in brokenCoroutineAwaitsGenerator

TypeError: object generator can't be used in 'await' expression

>>> async def brokenCoroutineAwaitsNothing():

...     await

  File "<stdin>", line 2

    await

        ^

SyntaxError: invalid syntax

To learn how to resume coroutines with values, we return to yield from. Our previous 

example provided yield from with another generator, so that calls to the wrapping 

generator’s send and throw methods were proxied through to the inner generator. There 

might have been many generators that each delegated execution to a successor via yield 

from, but at the bottom there would have to be something that yields values upward. 

Consider, for example, a stack of five generators, visualized in Figure 2-4.

>>> def g1(): yield from g2

...

>>> def g2(): yield from g3

...

>>> def g3(): yield from g4

...

>>> def g4(): yield from g5

...

>>> def g5(): yield 1

Figure 2-4. A stack of generators. g1 through g4 have delegated execution 
downward to g5.
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g1, g2, g3, and g4 cannot make any progress until g5 yields a value that will propagate 

from g4 up to g1. g5 need not be a generator, however; as the following example 

demonstrates, yield from merely requires an iterable object to advance its generator:

>>> def yieldsToIterable(o):

...     print("Yielding from object of type", type(o))

...     yield from o

...

>>> list(yieldsToIterable(range(3)))

Yielding from object of type <class 'range'>

[0, 1, 2]

yieldsToIterable delegates execution to its argument, which in this case is a 

range object. Iterating over the yieldsToIterable generator by building a list out of it 

demonstrates that the range object takes over iteration just as a generator would.

Coroutines defined with async def share their implementation with yield 

from, and so with the proper steps, they too can await special kinds of iterables and 

generators.

Contrary to what previous examples appeared to demonstrate, generators can 

be awaited as long as they are marked as coroutines with the types.coroutine 

decorator. A coroutine that awaits such a decorated generator receives that 

generator’s return value:

>>> import types

>>> @types.coroutine

... def makeBase():

...     return (yield "hello from a base object")

...

>>> async def awaitsBase(base):

...     value = await base

...     print("From awaitsBase:", value)

...

>>> awaiter = awaitsBase(makeBase())

>>> awaiter.send(None)

'hello from a base object'

>>> awaiter.send("the result")

From awaits base: the result
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Traceback (most recent call last):

  File "<stdin>", line 1, in <module>

StopIteration

Starting the awaitsBase coroutine with send(None) jumps to the base generator’s 

yield statement, and following the typical execution path for generators, returns "hello 

from base object." Now the coroutine has delegated execution to base, so send("the 

result") resumes base with that string. base immediately returns this value, which 

causes the coroutine’s await to resolve to its value.

Iterable objects can also be awaited if they implement a special __await__ method 

that returns an iterator. The final value of this iterator – that is, whatever it yields last or 

wraps in a StopIteration exception – will become the result passed to await. An object 

that conforms to this interface said to be future-like. When we explore asyncio later, we’ll 

see that its Futures provide this interface and so grant it their name.

A simple implementation of a future-like object demonstrates the control flow:

class FutureLike(object):

    _MISSING="MISSING"

    def __init__(self):

        self.result = self._MISSING

    def __next__(self):

        if self.result is self._MISSING:

            return self

        raise StopIteration(self.result)

    def __iter__(self):

        return self

    def __await__(self):

        return iter(self)

async def awaitFutureLike(obj):

    result = await obj

    print(result)

obj = FutureLike()

coro = awaitFutureLike(obj)

assert coro.send(None) is obj

obj.result = "the result"
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try:

    coro.send(None)

except StopIteration:

    pass

Instances of FutureLike are iterable because their __iter__ method returns an 

object that itself has a __next__ method. In this case, iterating over a FutureLike 

instance will produce that same instance over and over until its result attribute is set, 

at which point it will raise a StopIteration exception containing that value. This is 

equivalent to returning that value from a generator.

Instances of FutureLike are also future-like because their __await__ method returns 

an iterator, so awaitFutureLike can await an instance of FutureLike. As usual, the 

coroutine is started with send(None). This returns the FutureLike instance that the 

awaitFutureLike coroutine awaits, which is the same instance we passed to it. Setting 

the FutureLike object’s result attribute allows us to resume the coroutine by resolving 

its await to a value, which receives the result, prints it, and then terminates with a 

StopIteration exception.

Note that the second coro.send call also passes None to the coroutine. Coroutines 

that await Future-like objects resolve to the last value provided by those object’s 

iterators. They must still be resumed to make use of these values, but they necessarily 

ignore the argument to their send method.

Twisted provides an awaitable object and a coroutine adapter so that coroutines and 

existing APIs can interact seamlessly. As we’ve seen, coroutines are completely separate 

from asyncio, so the Twisted APIs we discuss in this section are insufficient to integrate 

the two. We’ll learn about the necessary additional APIs in a subsequent chapter.

 Awaiting Deferreds
As of Twisted 16.4.0, Deferreds are future-like objects providing conformant __next__, 

__iter__, and __await__ methods. This allows us to replace FutureLike in the 

preceding code with a Deferred:

from twisted.internet.defer import Deferred

async def awaitFutureLike(obj):

    result = await obj

    print(result)
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obj = Deferred()

coro = awaitFutureLike(obj)

assert coro.send(None) is obj

obj.callback("the result")

try:

    coro.send(None)

except StopIteration:

    pass

awaiting a Deferred resolves to whatever the Deferred does after its normal 

callback and errback processing loop:

>>> from twisted.internet.defer import Deferred

>>> import operator

>>> d = Deferred()

>>> d.addCallback(print, "was received by a callback")

<Deferred at 0x7eff85886160>

>>> d.addCallback(operator.add, 2)

<Deferred at 0x7eff85886160>

>>> async def awaitDeferred():

...     await d

...

>>> g = awaitDeferred()

>>> g.send(None)

<Deferred at 0x7eff85886160>

>>> d.callback(1)

1 was received by a callback

>>> g.send(None)

Traceback (most recent call last):

  File "<stdin>", line 1, in <module>

  File "<stdin>", line 2, in awaitDeferred

  File "twisted/src/twisted/internet/defer.py", line 746, in send

    raise result.value

TypeError: unsupported operand type(s) for +: 'NoneType' and 'int'
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Our Deferred’s print callback runs but returns None, causing its second callback 

to fail with a TypeError when it attempts to add 2 to its first argument. The resumed 

coroutine consequently fails with the TypeError stored in the Deferred.

In this case the composition of coroutines and Deferreds exposed a bug, but the 

code paths exercised demonstrate that errors and data flow naturally between the two.

Awaitable Deferreds allow us to call Twisted APIs in our coroutines, but what if we 

want Twisted APIs to use one of our coroutines?

 Coroutines to Deferreds with ensureDeferred
Twisted can wrap coroutines with Deferreds, allowing APIs that expect Deferreds to 

accept coroutines instead.

twisted.internet.defer.ensureDeferred accepts a coroutine object and returns a 

Deferred that will produce a result when the coroutine returns one:

>>> from twisted.internet.defer import Deferred, ensureDeferred

>>> async def asyncIncrement(d):

...     x = await d

...     return x + 1

...

>>> awaited = Deferred()

>>> addDeferred = ensureDeferred(asyncIncrement(awaited))

>>> addDeferred.addCallback(print)

<Deferred at0x12345>

>>> awaited.callback(1)

2

>>>
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Our coroutine asyncIncrement awaits an object that resolves to a number, 

then returns the sum of that number and 1. We convert this to a Deferred with 

ensureDeferred, assign it to addDeferred, and then add a print callback to it. Calling 

back the awaited Deferred on which asyncIncrement waits in turn calls back the 

addDeferred Deferred returned by ensureDeferred, without our needing to call send. 

In other words, addDeferred behaves the same as a manually constructed Deferred. 

Exception propagation also works the same way:

>>>from twisted.internet.defer import Deferred, ensureDeferred

>>> async def asyncAdd(d):

...     x = await d

...     return x + 1

...

>>>awaited = Deferred()

>>>addDeferred = ensureDeferred(asyncAdd(awaited))

>>>addDeferred.addErrback(print)

Unhandled error in Deferred:

<Deferred at0x7eff857f0470>

>>>awaited.callback(None)

[Failure  instance:  Traceback:<  class 'TypeError'>:  ...

...

<stdin>:3:asyncAdd

]

Coroutines resemble synchronous code more closely than Deferred-managed 

callbacks do, and Twisted makes it easy enough to use coroutines that you might wonder 

if Deferreds are ever the trouble. One obvious answer is that they’re already used; lots 

of Twisted code uses Deferreds, so even if you use them rarely, you’ll still need to be 

familiar with them. Another reason that you might not use coroutines is that you must 

write code that works on Python 2. This is becoming less of an issue as Python 2’s end of 

life approaches, and things like PyPy, an alternate Python runtime whose Just In Time 

(JIT) compiler can dramatically speed up pure Python code, expand their Python 3 

support.

There are less obvious and more durable reasons, however, why Twisted’s Deferreds 

remain valuable in a post-coroutine world.
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 Multiplexing Deferreds
What happens if we want the result of two asynchronous operations, either one of which 

might complete before the other? Suppose, for example, we write a program that issues 

two HTTP requests simultaneously:

def issueTwo(url1, url2):

    urlDeferreds = [retrieveURL(url1), retrieveURL(url2)]

    ...

A coroutine would let us wait for each one in turn:

async def issueTwo(url1, url2):

    urlDeferreds = [retrieveURL(url1),  retrieveURL(url2)]

    for d in urlDeferreds:

        result = await d

        doSomethingWith(result)

The reactor will progress in retrieving both url1 and url2 while issueTwo awaits 

the completion of either; waiting for url1’s retrieval to complete does not prevent the 

reactor from retrieving url2. This concurrency is indeed the point of asynchronous and 

event-driven programming!

This efficiency becomes less important, however, as the operations become more 

complicated. Imagine that we only wanted the URL that’s retrieved first. We cannot write 

a fastestOfTwo coroutine only using await because we don’t know which to await first. 

Only the reactor knows when the underlying events occur that indicate a coroutine’s 

value is ready, and if we only had coroutines, the event loop would have to expose a 

synchronization primitive that both simultaneously awaited multiple coroutines and 

checked if all had completed.

Fortunately, multiple Deferreds can easily be multiplexed into a single Deferred 

without a special reactor-level synchronization mechanism. At its simplest, a twisted.

internet.defer.DeferredList is a Deferred that accepts a list of Deferreds and calls 

itself back when all those Deferreds have a value.

Consider the following code:

>>> from twisted.internet.defer import Deferred, DeferredList

>>>  url1 = Deferred()

>>>  url2 = Deferred()
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>>> urlList = DeferredList([url1, url2])

>>> urlList.addCallback(print)

<Deferred at 0x123456>

>>> url2.callback("url2")

>>> url1.callback("url1")

[(True, "url1)", (True, "url2")]

The DeferredList urlList wraps the two url1 and url2 Deferreds and has as its 

own callback a print function. That callback only runs after both url1 and url2 have 

been called back, so urlList as written matches the all-or-nothing synchronization at 

play in the issueTwo coroutine above.

The first clue to DeferredList’s greater feature set lies in the list it returns to its 

callback. Each element is a tuple of length 2; the second element is clearly the value 

of the Deferred at the same index in the passed-in list, so that index 0’s second tuple 

member is "url1", corresponding to the url1 Deferred at index 0.

The first item in the tuple indicates whether or not the Deferred terminated 

successfully. Both url1 and url2 resolved to strings and not Failures, so the 

corresponding indices in the result list have True as their first element.

Causing at least one of a DeferredList’s Deferreds to fail demonstrates how 

Failures are communicated:

>>> succeeds = Deferred()

>>> fails = Deferred()

>>> listOfDeferreds = DeferredList([succeeds, fails])

>>> listOfDeferreds.addCallback(print)

<Deferred at 0x1234567>

>>> fails.errback(Exception())

>>> succeeds.callback("OK")

[(True, 'OK'), (False, <twisted.python.failure.Failure builtins.Exception: 

>)]

Now the second tuple in the returned list has False as its first element and a Failure 

representing the Exception that caused its Deferred to fail as its second item.

This special list of (success, value or Failure) pairs retains all possible 

information by using the traceback capturing facilities of Failures. As an example of the 

flexibility that this approach enables, users of DeferredList can easily filter aggregate 

results in a single callback.
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With the basic behavior of DeferredList out of the way, we can investigate 

additional features that will allow us to implement fastestOfTwo: fireOnOneCallback.

The fireOnOneCallback option instructs the DeferredList to call itself back when 

any one of the Deferreds in its list has a value:

>>> noValue = Deferred()

>>> getsValue = Deferred()

>>> waitsForOne = DeferredList([noValue, getsValue], fireOnOneCallback=True)

>>> waitsForOne.addCallback(print)

<Deferred at 0x12345678>

>>> getsValue.callback("the value")  

('the  value',  1)

Now waitsForOne’s print callback runs when only the getsValue Deferred resolves 

to a value. The value DeferredList passes to its callback is again a tuple of length 2, but 

this time, the first item is the value the corresponding Deferred resolved to, while the 

second item is its index in the list. getsValue was called back with "the value," and it 

was the second item in the list we passed DeferredList, so the callback receives ("the 

value," 1) as its result.

We can now implement fastestOfTwo:

def fastestOfTwo(url1, url2):

    def extractValue(valueAndIndex):

        value, index = valueAndIndex

        return value

    urlList = DeferredList([retrieveURL(url1), retrieveURL(url2)],

                          fireOnOneCallback=True,

                          fireOnOneErrback=True)

    return urlList.addCallback(extractValue)

DeferredList also allows analogous multiplexing of errors with fireOnOneErrback. 

Firing the DeferredList on the first error and and unwrapping its value is a common 

enough pattern that Twisted provides a convenient wrapper in twisted.internet.

defer.gatherResults:

>>> from twisted.internet.defer import Deferred, gatherResults

>>> d1, d2 = Deferred(), Deferred()

>>> results = gatherResults([d1, d2])
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>>> results.addCallback(print)

<Deferred at 0x123456789>

>>> d1.callback(1)

>>> d2.callback(2)

>>> [1, 2]

>>> d1, d2 = Deferred(), Deferred()

>>> fails = gatherResults([d1,  d2])

>>> fails.addErrback(print)

<Deferred at 0x1234567890>

>>> d1.errback(Exception())

[[Failure instance: Traceback ...: <class 'Exception'>: ]]

Recall that Failure’s __str__ method returns a string that begins and ends in [], so 

the printed failure appears with two sets of brackets: one from its __str__ and another 

from its enclosing list.

Note also that gatherResults awaits all successful Deferreds, so it cannot be used 

for fastestOfTwo

DeferredList and gatherResults offer higher-level APIs that allow sophisticated 

behaviors but imply branching; the output of each depends on interaction between 

their own options and the output of the Deferreds they wrap. A change in any one might 

result in an unexpected output and thus an unpleasant bug.

This is beyond the general indirection that comes with Deferreds: because 

Deferred.callback is almost always called by the reactor and not by code user code that 

indirectly manipulates a socket, there can be a gap between the source of an exception 

and its ultimate cause.

Twisted addresses these difficulties inherent to asynchronous code by providing 

special support for testing Deferreds.

 Testing Deferreds
In the previous chapter, we saw that Twisted’s trial.unittest package provides 

a SynchronousTestCase whose API mimics unittest.TestCase’s. In fact, 

SynchronousTestCase’s API is a superset of unittest.TestCases, and an important part 

of its additional features involve assertions about Deferreds.
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We can explore these features by writing tests for the fastestOfTwo function defined 

in the previous section. First, we’ll generalize it to accept any two Deferreds instead of 

retrieving URLs itself:

def fastestOfTwo(d1, d2):

    def extractValue(valueAndIndex):

        value, index = valueAndIndex

        return value

    urlList = DeferredList([d1, d2],

                          fireOnOneCallback=True,

                          fireOnOneErrback=True)

    return urlList.addCallback(extractValue)

The first test we can write for this new version of fastestOfTwo asserts that the 

Deferred it returns does not resolve to a value when neither of its Deferreds have 

resolved to a value:

from twisted.internet import defer

from twisted.trial import unittest

class FastestOfTwoTests(unittest.SynchronousTestCase):

    def test_noResult(self):

        d1 = defer.Deferred()

        self.assertNoResult(d1)

        d2=defer.Deferred()

        self.assertNoResult(d2)

        self.assertNoResult(fastestOfTwo(d1, d2))

As its name suggests, SynchronousTestCase.assertNoResult asserts that the 

Deferred it’s passed has no result, and is a valuable tool to ensure the matches your 

expections execution follows.

Deferreds, however, are most useful when they do have a result. In the case of 

fastestOfTwo, we expect the returned Deferred to take the value of the first of the two 

Deferreds that resolve:

def test_resultIsFirstDeferredsResult(self):

    getsResultFirst = defer.Deferred()

    neverGetsResult = defer.Deferred()

    fastestDeferred = fastestOfTwo(getsResultFirst, neverGetsResult)
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    self.assertNoResult(fastestDeferred)

    result = "the result"

    getsResultFirst.callback(result)

    actualResult = self.successResultOf(fastestDeferred)

    self.assertIs(result, actualResult)

SynchronousTestCase.successResultOf either returns a Deferred’s current result 

or causes its test to fail. Our test uses this to extract "the result" from fastestDeferred 

after calling back getsResultFirst with it, so that the test can assert that fastestOfTwo 

did in fact return the first available result.

Note that we still assert that the Deferred returned by fastestOfTwo has no 

result before we callback getsResultFirst. This may seem redundant given that 

test_noResult already makes this assertion, but remember that Deferreds can be 

called back before your code adds callbacks or errbacks. In this case, fastestOfTwo 

could erroneously return a Deferred that was already called back with 'the result', 

disregarding the passed-in Deferreds, and yet our test would still pass. That’s unlikely 

in such simple code, but implicit assumptions about when a Deferred gets a result 

can creep into code and cause tests to pass over bugs. It’s good practice to assert that 

Deferreds are, in fact, in a given state and not assume so to avoid these bugs, and it is 

even better practice to test your code against a Deferred that already has a result as well 

as one that doesn’t.

We can add a test that asserts fastestOfTwo works even when a Deferred has fired:

def test_firedDeferredIsFirstResult(self):

    result = "the result"

    fastestDeferred = fastestOfTwo(defer.Deferred(),

                                 defer.succeed(result))

    actualResult = self.successResultOf(fastestDeferred)

    self.assertIs(result, actualResult)

The twisted.internet.defer.succeed function accepts an argument and returns 

a Deferred that’s immediately called back with that argument, so the second argument 

to fastestOfTwo is a Deferred that’s been called back with 'the result' before any of 

fastestOfTwo runs.
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For completeness, we might also test what happens when fastestOfTwo receives two 

Deferreds that have already been called back:

def test_bothDeferredsFired(self):

    first = "first"

    second = "second"

    fastestDeferred = fastestOfTwo(defer.succeed(first),

                                 defer.succeed(second))

    actualResult = self.successResultOf(fastestDeferred)

    self.assertIs(first, actualResult)

The underlying DeferredList adds its internal processing callbacks to each 

Deferreds in its list in order. With fireOnOneCallback=True, the earliest Deferred in the 

list with a result calls back the Deferred representing the list. In our test, then, we expect 

first to be the value with which fastestDeferred is called back.

Error handling is a critical part of testing, so our tests for fastestDeferred should 

also test how it handles Failure. We’ll show only the case when a Deferred has failed 

before being passed to fastestOfTwo to keep the test short:

def test_failDeferred(self):

    class ExceptionType(Exception):

        pass

fastestDeferred = fastestOfTwo(defer.fail(ExceptionType()),

                             defer.Deferred())

failure = self.failureResultOf(fastestDeferred)

failure.trap(defer.FirstError)

failure.value.subFailure.trap(ExceptionType)

Like SynchronousTestCase.successResultOf, SynchronousTestCase.

failureResultOf returns the current Failure from a Deferred; if the Deferred hasn’t 

been called back yet or has a non-Failure result, failureResultOf causes the test to fail.

Because the returned object is a Failure, all the methods and attributes we can 

use in errbacks are available in our tests. DeferredList with fireOnOneErrback=True 

wraps failures in twisted.internet.defer.FirstError exception, so we trap this type 

in our test; if the Failure wrapped any other exception, the trap would re-raise it. The 

underlying Failure that caused the FirstError is accessible on its subFailure attribute, 

and since we passed in an instance of ExceptionType, we trap that next to assert the first 

Deferred failed for the expected reason.
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assertNoResult with successResultOf and failureResultOf encourage writing 

tests with explicit assumptions about the state of Deferreds. As fastestOfTwo 

demonstrates, even simple uses of Deferreds must be tested for implicit ordering 

dependencies and error handling. These are also concerns for coroutines, and any other 

concurrency primitive. Twisted’s test suite naturally has the best tools for dealing with 

common concurrency issues in the context of Deferreds.

 Summary
The chapter picked up event-driven programming where the previous left off by 

explaining that event handlers are a kind of _callback_. Programs of great complexity 

can be expressed with callbacks because of theoretical power of continuation-passing 

style. Callbacks pass values to other callbacks by invoking them directly instead of 

returning to their caller. We named this kind composition internal composition because 

it happens within the body of each callback.

Internal composition makes maintaining callback-driven programs hard: each 

callback must know the name and signature of its successor so that it can call it. 

Reordering a sequence of callbacks or eliminating one might involve modifying several. 

A solution lies in the paradigm of asynchronous programming, which allows programs to 

proceed before all inputs are ready. A placeholder value that represents an asynchronous 

result can collect callbacks and then run them when the real value becomes available. 

This placeholder allows callbacks to return values and thus compose externally, and 

in turn enables logical units to remain ignorant of how and where they’re used. Event- 

driven code that uses these asynchronous placeholders can be factored in the ways that 

non-callback-driven code is.

Twisted’s asynchronous placeholder value is the Deferred. We saw that Deferreds 

run their callbacks in a loop, passing the result of one to the next and invoking error 

handlers, or error backs, upon any exception. This processing loop inside Deferreds 

makes them a powerful control-flow abstraction.

An important part of that control-flow abstraction is responding to different errors 

in different ways. Twisted’s Failure class captures traceback information along with the 

raised exception and exposes utility methods that allow errbacks to filter and re-raise 

exceptions. We saw how callbacks and errbacks can completely represent synchronous 

code that uses try and except.
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Just as Deferreds allow callbacks to compose, they compose with themselves. When 

a callback or errback returns a Deferred’s, that callback or errback’s own Deferred 

pauses its execution until the new Deferred completes. This means that functions and 

methods that return Deferreds can be used as callbacks and errbacks without any 

special effort on developers’ part.

As powerful as Deferreds are, they are not the only way to compose asynchronous 

actions. Python’s generators can suspend their execution and resume it after receiving 

values from external sources. This control flow maps onto that provided by Deferreds, 

and callbacks and errbacks can be moved into a generator by using inlineCallbacks.

Generators, however, are ambiguous in that they may represent simple iterators or 

Deferred-like control flows. Python 3.5 added special support for coroutines, which are 

control-flow focused generators that can suspend themselves by delegating execution to 

other coroutines without the need for inlineCallbacks. Coroutines can await Twisted’s 

Deferreds directly and can be turned into Deferreds with ensureDeferred. These APIs 

allow Twisted to use coroutines seamlessly.

Not all programs can be expressed directly with coroutines: our fastestOfTwo 

example requires waiting on two things at once. Fortunately, DeferredList, an 

abstraction built on top of Deferreds, allows Twisted to multiplex asynchronous results.

Twisted also has special support for testing Deferreds. SynchronousTestCase 

provides assertNoResult, successResultOf, and failureResultOf, which allows tests 

to make precise assertions about the state of Deferreds. Concurrency issues that affect 

all primitives – coroutines, generators, and Deferreds – can be tested with this suite of 

tools.
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CHAPTER 3

Applications with  
treq and Klein
The previous chapters explained Twisted’s fundamentals in depth. Familiarity with these 

core concepts is necessary but insufficient to write real applications. In this chapter, 

we’ll explore modern, high-level APIs and whole program design by building a feed 

aggregator with two powerful Twisted web libraries: treq and Klein.

treq (https://treq.readthedocs.io) wraps twisted.web.client.Agent with an 

API inspired by the popular synchronous HTTP library requests. Its convenient and 

secure defaults make it easy to send asynchronous HTTP requests, while the fakes 

provided by treq.testing simplify and standardize writing tests.

Klein (https://klein.readthedocs.io) is a user-friendly wrapper around Twisted’s 

venerable twisted.web.server web framework. It allows developing dynamic, 

asynchronous web applications with a familiar routing paradigm borrowed from 

Werkzeug (https://werkzeug.readthedocs.io/).

 Why Libraries?
Twisted itself provides the core functionality of both Klein and treq. Why not just use 

those parts of Twisted directly, then? Both libraries’ interfaces differ significantly from 

Twisted’s own; twisted.web, for example, uses object traversal instead of routing to 

associate URL paths with Python code. A twisted.web.server.Site does not match 

a request’s path and query string against a string template like “/some/”; instead, it 

matches path segments to nested Resource objects. This was the prevailing paradigm in 

Python web application frameworks at the time twisted.web was designed. Rather than 

add a new routing abstraction to Twisted itself, the authors of Klein opted to experiment 
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with a different approach in a separate code base. Their result was successful, and Klein’s 

independent existence has allowed it to grow and adapt without breaking applications 

that depend on twisted.web.server.

Similarly, treq encapsulates common twisted.web.client.Agent usage 

patterns in high-level APIs; for example, Agent requires expressing all request 

bodies, including payloads short enough to be expressed as byte strings, as 

IBodyProducer objects, while treq’s request methods accept byte string bodies 

directly. Using treq doesn’t preclude you from using Agent, the full power of which 

remains accessible within Twisted.

pip, the tool used to install third-party Python packages, works well enough these 

days that additional requirements don’t impose an undue burden on developers. 

We’ll also see in a later chapter how Docker can be used to make development 

and deployment of Twisted applications that use third-party libraries robust and 

repeatable. Finally, both Klein and treq fall under the Twisted GitHub organization, 

and are developed and used by Twisted’s core contributors. They’re as low-risk as 

libraries can be.

 Feed Aggregation
Web syndication dates back to a different, more open era of the internet’s history. In its 

heyday, sites served feed files over HTTP that organized their content in a structured  

way so other sites could consume them for a variety of purposes. Open standards like 

RSS (Really Simple Syndication or Rich Document Format Site Summary) and Atom 

describe these structures and have allowed anyone to write consumers of these feeds. 

Services that aggregated many sites’ feeds in a single place became a popular way for 

users to stay up-to-date on news and blogs. Extensions to these formats, such as RSS’s 

enclosures, allowed feeds to reference external media, enabling the rise of things like 

podcasting.

The demise of Google Reader in 2013 coincided with a decline in the popularity 

of feeds. Sites removed their feeds and some consumer software lost the ability to 

consume them. Despite this decline, there is no single substitute for feed-based web 

syndication, and it remains an effective way to organize content from many different 

online sources.
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Many standards define variations on RSS. Where it’s necessary to work directly with 

the feed format, we’ll only support the following subset of RSS 2.0 as defined by Harvard 

University’s Berkman Center (http://cyber.harvard.edu/rss/rss.html):

 1. A <channel> is the root element of an RSS 2.0 feed file and is 

described by its <title> and <link> elements;

 2. Web pages within a <channel> are described by <item>s each with 

their own <title> and <link> elements.

We’ll use test-driven development to write a feed aggregator with Klein and treq. 

Before we do that, however, we’ll learn about them and the problem space that defines 

feed aggregation by writing exploratory programs. We’ll then use what we learn to 

design, implement, and iteratively refine our application. Because we can’t display feeds 

without first downloading them, we’ll begin by exploring how to send HTTP requests 

with treq.

 Introducing treq
A feed aggregator must download feeds before it can show them, so we’ll begin by 

exploring treq. Note that the examples that follow should work on Python 2 and 3.

Create a new virtual environment with your preferred tool and install treq from 

PyPI into it. There are many tools to accomplish this; in the interest of generality, we 

recommend using virtualenv (https://virtualenv.pypa.io/en/stable/) and pip 

(https://pip.pypa.io/en/stable/) like so:

$ virtualenv treq-experiment-env

...

$ ./treq-experiment-env/bin/pip install treq

...

$ ./treq-experiment-env/bin/python experiment.py

where experiment.py contains the following code:

from argparse import ArgumentParser

from twisted.internet import defer, task

from twisted.web import http

import treq
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@defer.inlineCallbacks

def download(reactor):

    parser = ArgumentParser()

    parser.add_argument("url")

    arguments = parser.parse_args()

    response = yield treq.get(

        arguments.url, timeout=30.0, reactor=reactor)

    if response.code != http.OK:

        reason = http.RESPONSES[response.code]

    raise RuntimeError("Failed:{}{}".format(response.code,

                                            reason))

    content = yield response.content()

    print(content)

task.react(download)

The download function extracts a URL command-line argument with the standard 

library’s argparse module and then uses treq.get to GET it. treq’s client API accepts 

bytes or unicode URLs, encoding the latter according to the complicated rules that 

define text URLs. This makes our program easier to write, because ArgumentParser.

parse_args returns str objects representing command-line arguments on both Python 

2 and 3; on Python 2 these are byte strings, while on Python 3 they’re unicode strings. We 

don’t have to worry about encoding or decoding the URL str to the type appropriate to a 

particular version of Python because treq will do so correctly for us.

treq’s client API accepts a timeout parameter that terminates requests that fail to 

begin within the specified timeout. The reactor argument specifies which reactor object 

to use for networking and internal bookkeeping. This is a form dependency injection: 

treq depends on the reactor, but rather than importing twisted.internet.reactor 

itself, treq can be provided this dependency. We’ll see later how dependency injection 

makes testing and factoring our code easier.

treq.get returns a Deferred that resolves to a treq.response._Response object  

(the underscore in its name implies that we shouldn’t construct instances on our own,  

not that we shouldn’t interact with it). This implements the twisted.web.iweb.IRequest 

interface, so it contains the response’s status code in its code attribute. Our example 

program checks the value of this to ensure that the server’s response indicates our 
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request was successful; if it wasn’t, it raises a RuntimeError with the response’s status 

code and its corresponding status phrase, courtesy of the twisted.web.http.RESPONSES 

dictionary that maps one to the other.

The Deferred can also resolve to a Failure. If, for example, the amount of time 

specified by the timeout parameter elapses before the Response object can be 

constructed, the Deferred will fail with a CancelledError.

treq’s responses also have additional methods that make interacting with them 

more convenient. One of these is content, which returns a Deferred that resolves to 

the entire body of the request as a single bytes object. treq handles all the details of 

collecting the response behind the scenes for us.

Finally, our example never calls reactor.run or reactor.stop directly. Instead, 

it uses a Twisted library function we haven’t seen before: twisted.internet.task.

react. react handles starting and stopping the reactor for us. It accepts as its only 

required argument a callable that it invokes with the running reactor; the callable itself 

must return a Deferred that causes the reactor to stop when it resolves to a value or 

Failure. The download function returns just such a Deferred courtesy of its twisted.

internet.defer.inlineCallbacks decorator. Because react itself accepts a callable 

as its first argument, it too can be used as a decorator. We could have written our 

example like so:

..

from twisted.internet import defer, task

...

@task.react

@defer.inlineCallbacks

def main(reactor):

    ...

This is in fact a popular way to write short scripts with Twisted. Going forward, when 

we do use react, we’ll use it as a decorator.

Running this treq example program against a web feed’s URL retrieves that feed’s 

content. We can modify our program to use the Python feedparser library to print a 

summary of a feed. First, install feedparser into your virtual environment with pip:

$ ./treq-experiment-env/bin/pip install feedparser
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Then, save the following program to feedparser_experiment.py and run it against 

an RSS URL:

$ ./treq-experiment-env/bin/python feedparser_experiment.py  

http://planet.twistedmatrix.com

from __future__ import print_function

from argparse import ArgumentParser

import feedparser

from twisted.internet import defer, task

from twisted.web import http

import treq

@task.react

@defer.inlineCallbacks

def download(reactor):

    parser = ArgumentParser()

    parser.add_argument("url")

    arguments = parser.parse_args()

    response = yield treq.get(arguments.url, reactor=reactor)

    if response.code != http.OK:

        reason = http.RESPONSES[response.code]

        raise RuntimeError("Failed:{}{}".format(response.code,

                                                reason))

    content = yield response.content()

    parsed = feedparser.parse(content)

    print(parsed['feed']['title'])

    print(parsed['feed']['description'])

    print("*** ENTRIES ***")

    for entry in parsed['entries']:

        print(entry['title'])

Running this should result in output like the following:

Planet Twisted

Planet Twisted - http://planet.twistedmatrix.com/
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Hynek Schlawack: Python Hashes and Equality

...

 Introducing Klein
Now that we have an idea of how to retrieve and parse feeds with treq, we need to learn 

enough about Klein to render them within a website.

To keep our experiments organized, create a new virtual environment for Klein and 

install it with pip install Klein. Then, run the following example:

import klein

application = klein.Klein()

@application.route('/')

def hello(request):

    return b'Hello!'

application.run("localhost",8080)

Now visit http://localhost:8080/ in your favorite web browser. (You might have to 

change 8080 to another port if there’s already a program bound to it.) You’ll see the string 

Hello! returned from our program’s hello route handler.

A Klein application begins with an instance of the Klein class. Callables are 

associated with routes by using Klein.route method as a decorator. The first argument 

to route is a Werkzeug-style URL pattern; the possible format directives match those in 

Werkzeug’s routing documentation, available here: http://werkzeug.readthedocs.io/

en/latest/routing/. Let’s modify our program to use one such directive to extract an 

integer from the path:

import klein

application = klein.Klein()
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@application.route('/<int:amount>')

def increment(request, amount):

    newAmount = amount + 1

    message = 'Hello! Your new amount is:{} '.format(newAmount)

    return message.encode('ascii')

application.run("localhost",8080)

Running this program and visiting http://localhost:8080/1 results in a web page 

that looks like Figure 3-1.

A URL pattern specifies a path component that Klein extracts, converts to the 

specified Python type, and passes to the handler function as a positional argument. 

The amount argument is the first path element, and it must be an integer; otherwise 

the request will fail with a 404. A list of converters is available from the Werkzeug 

documentation.

Also note that handlers cannot return a unicode string; on Python 3; this means 

that native strings must be encoded to byte strings before they’re returned from a Klein 

route’s handler. We thus encode the message variable as ascii after we’ve performed 

string formatting. On Python 3.5 and later, we could have used byte string formatting, but 

at the time of this writing, Python 3.4 is still commonly used. Also, this code implicitly 

decodes message as ascii on Python 2. This unfortunate behavior results in a strange 

error message when used with anything other than the ascii encoding, but is a common 

pattern in Twisted code for dealing with native strings that only contain ASCII and that 

must work on both Python 2 and 3.

Figure 3-1. increment.png
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 Klein and Deferreds
Klein is a Twisted project, so it naturally has special support for Deferreds. Handler 

functions that return Deferreds result in a response that waits for that Deferred to 

resolve to a value or Failure. We can see this in action by modifying our program to 

simulate a slow network operation by returning a Deferred that fires at least one second 

after the request is received:

from twisted.internet import task

from twisted.internet import reactor

import klein

application = klein.Klein()

@application.route('/<int:amount>')

def slowIncrement(request, amount):

    newAmount = amount + 1

    message = 'Hello! Your new amount is:{} '.format(newAmount)

    return task.deferLater(reactor,1.0, str.encode, message, 'ascii')

application.run("localhost",8080)

As expected, this program only responds to http://localhost:8080/1 after a 

second has elapsed. It achieves this by using twisted.internet.task.deferLater 

which accepts a twisted.internet.interfaces.IReactorTime provider, a delay, and 

then a function and arguments that will be applied to the function after the delay has 

passed. Note that our choice of function and arguments makes use of the fact that 

instance methods are stored on their classes, and their first argument must be the 

instance to which they’re bound; as a result, str.encode(message, 'ascii'), where 

message is a str, is equivalent to message.encode('ascii'). This is another pattern that 

occurs in Twisted code.

This last example demonstrates a limitation inherent to using decorators as a way 

to register routes: the arguments to the decorated function must be entirely provided by 

the routing framework. This makes it difficult to write handler functions that reference 

some state or depend on some existing object. In our example, our code depends on 

the reactor to satisfy deferLater’s API, but we cannot pass the reactor to our handler 

because only Klein can call it. Of the many ways this might be solved, Klein has special 

support for one: instance-specific Klein applications. We’ll rewrite our slowIncrement 

example again to make use of this feature.
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from twisted.internet import task

from twisted.internet import reactor

import klein

class SlowIncrementWebService(object):

    application = klein.Klein()

    def init (self, reactor):

        self._reactor = reactor

    @application.route('/<int:amount>')

    def slowIncrement(self, request, amount):

        newAmount = amount + 1

        message = 'Hello! Your new amount is:{} '.format(newAmount)

         return task.deferLater(self._reactor,1.0, str.encode, message, 

'ascii')

webService = SlowIncrementWebService(reactor) webService.application.

run("localhost",8080)

The SlowIncrementWebService class has a Klein application assigned to its 

application class-level variable. We can decorate methods on this class by with 

that variable’s route method, in the same way we decorated the module-level 

slowIncrement function with the module-level Klein object’s route method. Because 

we’re now decorating instance methods, we can access instance variables, such as 

reactor. This allows us to parameterize our web applications without relying on 

module-level objects.

Klein objects themselves localize their internal state by implementing the 

descriptor protocol. webService.application returns a request-specific instance 

of Klein that contains all the routes and their handlers that we registered with 

SlowIncrementWebService’s application. As a result, Klein maintains robust 

encapsulation and minimizes shared mutable state.

 Klein Templates with Plating
The last thing we need before we’re ready to build a simple version of our feed 

aggregator is a web page templating system. We could use Jinja2, or Mako, or any other 

Python templating system intended for generating web pages, but Klein comes with its 
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own templating facility called Plating. Let’s modify SlowIncrementWebService example 

to use klein.Plating to generate a more readable response:

from twisted.internet import task, reactor

from twisted.web.template import tags, slot

from klein import Klein, Plating

class SlowIncrementWebService(object):

    application = Klein()

    commonPage = Plating(

        tags=tags.html( tags.head(

            tags.title(slot("title")),

            tags.style("#amount { font-weight: bold; }"

                       "#message { font-style: italic; }")),

            tags.body(

                tags.div(slot(Plating.CONTENT)))))

    def __init__ (self, reactor):

        self._reactor = reactor

    @commonPage.routed(

        application.route('/<int:amount>'),

        tags.div(

            tags.span("Hello! Your new amount is: ", id="message"),

            tags.span(slot("newAmount"), id="amount")),

    )

    def slowIncrement(self, request, amount):

        slots = {

            "title":"Slow Increment",

            "newAmount": amount + 1,

    }

    return task.deferLater(self._reactor,1.0, lambda: slots)

webService=SlowIncrementWebService(reactor)  

webService.application.run("localhost",8080)

The new commonPage Plating object represents the fundamental change to our 

SlowIncrementWebService. Because Plating is built on top of Twisted’s own venerable 

twisted.web.template system, we must learn its fundamentals before we can proceed.
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twisted.templates are constructed of twisted.web.template.Tag and twisted.

web.template.slot instances. Tags represent HTML tags like html, body, and div. They 

are created by accessing their names as methods on a tag factory instance available as 

twisted.web.template.tags. This, call, for example:

tags.div()

represents a div tag that will be rendered like this:

<div></div>

The positional arguments to these instance methods represent their tag’s children, 

so we can add a span to our div by nesting their method calls:

tags.div(tags.span("A span."))

This simple tag tree will be rendered like this:

<div><span>A span.</span></div>

Note that the textual content of a tag is also represented as a child.

The keyword arguments to these methods represent their attributes, so we can 

include an image inside our div tree:

tags.div(tags.img(src="picture.png"), tags.span("A span."))

When rendered, this tree looks like this:

<div><img src="picture.png"><span>A span.</span></div>

twisted.web.template reserves one keyword argument for internal use: render. 

This is a string that names a special render method that will be used to render the tag to 

HTML. We’ll see an example of a Klein-specific render method in a moment.

Sometimes it’s more readable to write a tag’s attributes before its children, but 

keyword arguments must always come before positional arguments. To provide this 

readability improvement without violating Python’s syntax, tags can be called with their 

children. We can rewrite our tag tree so that its children are added that way:

tags.div()(tags.img(src="picture.png"), tags.span("A span."))
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slots are placeholders that can be filled in by name during template rendering as 

we’ll see later. They allow us to parameterize both tag contents and attributes. Given this 

tag tree, then:

tags.div(tags.img(src=slot('imageURL')), tags.span(slot("spanText")))

we can provide “anotherimage.png” as the value for the imageURL slot and “Different 

text.” for the spanText slot, resulting in the following:

<div><img src="anotherimage.png"><span>Different text.</span></div>

When slots are filled in with strings that contain HTML literals, twisted.

web.template escapes them to avoid misinterpreting user data as templating directives. 

This in turn mitigates common web application bugs, such as cross-site scripting (XSS) 

attacks. However, slots can be filled in with other tags, enabling sophisticated template 

reuse patterns. These rules mean that this tree:

tags.div(slot("child")).fillSlots(child="<div>")

Renders to:

<div>&lt;div&gt;</div>

While this tree:

tags.div(slot("child")).fillSlots(child=tags.div())

Renders to:

<div><div></div></div>

 A First Draft of Feed Aggregation
Now that we’re familiar with the fundamentals of twisted.web.template, we can return 

to our example application’s klein.Plating object:

commonPage = Plating(

    tags=tags.html(

        tags.head(

            tags.title(slot("title")),

Chapter 3  appliCations with treq and Klein 



122

            tags.style("#amount { font-weight: bold; }"

                       "#message { font-style: italic; }")),

            tags.body(

                tags.div(slot(Plating.CONTENT)))))

The tag tree passed as the tags argument describes the structure of all HTML pages 

this Plating instance will render. It includes two slots: title and Plating.CONTENT. The 

title slot is just like any other; we will have to provide a value for this slot any time we 

want to render a page that’s part of this tag tree. The Plating.CONTENT slot, however, 

represents the location in the tag tree into which Plating will insert page-specific 

content. Our example application renders only one page derived from commonPage:

@commonPage.routed(

    application.route('/<int:amount>'),

    tags.div(

        tags.span("Hello!    Your new amount is: ", id="message"),

        tags.span(slot("newAmount"), id="amount")),

)

def slowIncrement(self, request, amount):

    slots={

        "title":"Slow Increment",

        "newAmount": amount+1,

    }

    return task.deferLater(self._reactor,1.0, lambda: slots)

We represent a derived page by wrapping a Klein route with the base page’s routed 

decorator. The second positional argument to the routed decorator represents the tag 

tree that will fill the base page’s Klein.CONTENT slot. This slowIncrement page wraps the 

same route we defined before, and specifies as its content a tag tree that includes a slot 

for the incremented amount.

In Klein, slots are filled in by returning a dictionary that maps their names to values 

from the page’s handler, or a Deferred that resolves to one. This handler remains slow by 

using deferLater to put off returning the slot dictionary until a second has passed.

The result is a web page with more personality as seen in Figure 3-2.

Klein’s plating offers a unique feature: you can request that the slots dictionary be 

returned as serialized JSON by specifying the json query parameter. In Figure 3-3, We 

can see what our “Slow Increment” page looks like when this parameter is provided.
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This allows Plating users to write handlers that render both to HTML and JSON, 

serving as simple pages in their own right or providing the back end for sophisticated 

Single Page Applications (SPA) or native mobile applications. Our feed aggregator’s 

HTML front end won’t become a SPA because this is a book on Twisted and not 

 JavaScript, but we’ll continue to support and explore JSON serialization as we develop 

our application.

We can now write a simple version of our feed aggregator to explore its design. We’ll 

write a SimpleFeedAggregation class that accepts feed URLs and uses treq to retrieve 

them when a user visits the root URL. We’ll render each feed as a table whose heading 

links to the feed and whose rows link to each feed item.

Begin by installing feedparser and treq into your Klein virtual environment the same 

way you did in your treq virtual environment.

Figure 3-2. Increment in style

Figure 3-3. Increment as JSON

import feedparser

from twisted.internet import defer, reactor

from twisted.web.template import tags, slot

from twisted.web import http

from klein import Klein, Plating

import treq
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class SimpleFeedAggregation(object):

    application = Klein()

    commonPage = Plating(

        tags=tags.html(

            tags.head(

                tags.title("Feed Aggregator 1.0")),

            tags.body(

                tags.div(slot(Plating.CONTENT)))))

    def __init__ (self, reactor, feedURLs):

        self._reactor = reactor

        self._feedURLs = feedURLs

    @defer.inlineCallbacks

    def retrieveFeed(self, url):

        response = yield treq.get(url, timeout=30.0, reactor=self._reactor)

        if response.code != http.OK:

            reason = http.RESPONSES[response.code]

            raise RuntimeError("Failed:{}{}".format(response.code,

                                                    reason))

        content = yield response.content()

        defer.returnValue(feedparser.parse(content))

@commonPage.routed(

    application.route('/'),

    tags.div(render="feeds:list")(slot("item")))

def feeds(self, request):

    def renderFeed(feed):

        feedTitle = feed[u"feed"][u"title"]

        feedLink = feed[u"feed"][u"link"]

        return tags.table(

            tags.tr(tags.th(tags.a(feedTitle, href=feedLink)))

        )([

            tags.tr(tags.td(tags.a(entry[u'title'], href=entry[u'link'])))

            for entry in feed[u'entries']

        ])
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    return {

            u"feeds": [

                self.retrieveFeed(url).addCallback(renderFeed)

                for url in self._feedURLs

            ]

        }

webService = SimpleFeedAggregation(reactor,

                              [ "http://feeds.bbci.co.uk/news/technology/

rss.xml",

                               "http://planet.twistedmatrix.com/rss20.xml"])

webService.application.run("localhost",8080)

The retrieveFeed method resembles the download function from our first treq 

program, while the feeds method begins with a Plating decorator that resembles our 

slowIncrement Klein application. In the case of feeds, however, the route-specific 

template consists of a div tag with special render method. Klein interprets feeds:list as 

a direction to duplicate the div tag for each item in the list and place it in the item slot. If, 

for example, our feeds method were to return the following dictionary:

{"feeds": ["first","second","third"]}

Klein would render the following HTML for the feeds route:

<div>first</div><div>second</div>third</div>

Our feeds method not only returns a slot dictionary whose feeds key does return 

a list, but one that contains Deferreds. This leverages twisted.web.template's unique 

ability to render the results of Deferreds: when one is encountered, rendering pauses 

until it resolves to a value, which is then rendered, or a failure occurs.

Each Deferred in our feeds list originates with a retrieveURL call that creates 

a parsed feed for a URL courtesy of treq and feedparser. The renderFeed callback 

transforms a parsed feed into a tag tree that renders the feed into a table of links. This 

makes use of twisted.web.template’s ability to embed tag elements within slots.

Visiting this page in a browser renders the BBC feed first, then the larger and slower 

Twisted Matrix feed, as seen in in Figures 3-4 and 3-5.

Our SimpleFeedAggregation class successfully retrieves and renders feeds. Its 

basic design reflects the flow of data through the service: given an iterable of feed URLs, 

retrieve them concurrently on every request to our service by applying treq.get to each. 

Data flow often informs the design of Twisted programs.
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Our implementation, however, is lacking:

 1. Its error reporting is poor. While the RuntimeError raised by 

SimpleFeedAggregation.retrieveFeed is informative, it’s 

presented to users in way that’s unactionable, especially to those 

that have requested JSON.

Figure 3-4. An incomplete page with just the BBC feed
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 2. It has bugs. Users can’t actually request JSON, because the tag 

trees representing each feed aren’t JSON serializable.

Before we address these and other issues, we need a test suite. We’ll ensure that the 

next implementation of our feed aggregator matches our expectations by using test- 

driven development to guide us.

Figure 3-5. A complete page with both the BBC and Twisted Matrix feeds
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 Test-Driven Development with Klein and treq
Writing tests takes time and effort. Test-driven development eases this by making tests 

part of the development process. We begin with an interface that some unit of code 

should implement. Next, we write an empty implementation, such as a class with empty 

method bodies, and then tests that verify the desired outputs for that implementation 

given known inputs. Running these tests should fail at first, and development becomes 

a process of filling in the implementation so that the tests pass. As a result, we find out 

if one part of the implementation conflicts with other parts early on, and at the end we 

have a complete test suite.

Tests take time to write, so it’s important to start at the most valuable interface. For a 

web application, that’s the HTTP interface clients will use, so our firsts tests will involve 

using an in-memory HTTP client against our FeedAggregation Klein application.

 Running Test on an Installable Project
Test-driven development requires running a project’s tests repeatedly, so before we 

begin writing any, we need to set things up so that trial, Twisted’s test runner, can find 

them.

The trial command accepts as its only mandatory argument the fully qualified 

path name of something that contains or represents runnable test cases. trial’s 

design follows the same xUnit-influenced pattern as Python’s unittest, so its test 

cases are subclasses of twisted.trial.unittest.TestCase or twisted.trial.

unittest.SynchronousTestCase. These names are themselves fully qualified path 

names, or FQPNs; beginning with the top-most package, they specify the attribute 

access path downward to a specific function, class, or method. The following 

command line, for example, runs the test_sillyEmptyThing method of the 

ParsingTests test case that resides in Twisted’s own test suite for the Asynchronous 

Message Protocol (AMP):

trial twisted.test.test_amp.ParsingTests.test_sillyEmptyThing

Given a shorter and consequently more general FQPN, trial recurs into the module 

and package tree looking for tests, just like python -m unittest discover. For example, 

you can run all of Twisted’s own tests with trial twisted.
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Because tests are specified with FQPNs, they must be importable. trial goes beyond 

this by requiring that they also reside under one of the Python runtime’s module search 

paths. This aligns with Twisted’s convention of including tests within library code under 

special test subpackages.

Python allows programmers to influence its search paths in several ways. Setting 

the PYTHONPATH environment variable or directly manipulating sys.path both allow 

it to import code from project-specific locations. However, telling Python about 

new locations in which it can find code is brittle, because it depends on bespoke 

configuration and particular runtime entry points. A better approach is to rely on virtual 

environments to localize Python’s search paths to a project-specific directory tree, and to 

then install the project and its dependencies into that. Managing our own applications 

the same way we manage its dependencies gives us greater consistency by leveraging the 

same tools and patterns.

A full discussion of virtual environments and Python packaging is beyond the scope 

of this book. Instead, we’ll outline a minimal project layout and configuration, show 

how to link our project into a virtual environment, and then provide a sample trial 

invocation for an empty test suite.

The project’s directory structure is as follows:

Figure 3-6. Feed Aggregation project directory structure
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That is, under some directory taken as the present working one, there exists a 

setup.py and src/ directory. The src/ directory in turn contains the top-level feed_

aggregation package and a _service submodule. feed_aggregation.test.test_

service will house the test cases for the code in _service.

src/twisted/plugins/feed_aggregation_plugin.py will contain a Twisted 

application plugin that will make running our Klein application easier.

We’ll put our FeedAggregation class in feed_aggregation._service:

class FeedAggregation(object):

    pass

This is a private module, so we’ll make our class publicly accessible by exporting it in 

feed_aggregation/__init__.py:

from feed_aggregation._service import FeedAggregation

__all__ =["FeedAggregation"]

Placing the implementation in a private submodule and then exposing it in the 

top-level package’s __init__ .py is a common pattern in Twisted code. It ensures that 

documentation tools, linters, and IDEs see the origin of public APIs as public packages, 

limiting the exposure of private implementation details.

We’ll leave feedaggregation/test/ __init__ .py empty but put a trivial subclass 

of SynchronousTestCase into feed_aggregation/test/test_service.py so that trial 

has something to run after we’ve finished our setup:

from twisted.trial.unittest import SynchronousTestCase

class FeedAggregationTests(SynchronousTestCase):

    def test_nothing(self):

        pass

Leaving twisted/plugins/feed_aggregation_plugin.py empty as well, we’re ready 

to consider setup.py:

from setuptools import setup, find_packages

setup(

    name="feed_aggregation",

    install_requires=["feedparser", "Klein", "Twisted", "treq"],
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    package_dir={"": "src"},

    packages=find_packages("src") + ["twisted.plugins"],

)

This declares our project’s name to be feed_aggregation and its dependencies to be 

feedparser (for parsing feeds), Klein (for our web application), Twisted (for trial), and 

treq (for retrieving feeds). It also instructs setuptools to look for packages under src, 

and include feed_aggregation_plugin.py under twisted/plugins.

Supposing we have a fresh virtual environment activated for our project and we’re in 

the project root, we can now run this:

pip install -e .

The -e flag instructs pip install to perform an editable installation of our project, 

which places a pointer from the virtual environment back into our project root’s directory. 

As a result, edits will appear within the virtual environment as soon as we save them.

Finally, trial feed_aggregation should display the following:

feed_aggregation.test.test_service

  FeedAggregationTests

    test_nothing ... [OK]

---------------------------------------------------------------------------

Ran 1 tests in 0.001s

PASSED (successes=1)

demonstrating that we have in fact made our project available to trial via our virtual 

environment.

 Testing Klein with StubTreq
Now we that can run tests, we can replace FeedAggregationTests.test_nothing with 

methods that test something. That something, as discussed above, should be the HTTP 

interface our Klein application will present to clients.

One way to test HTTP services is to run a web server as it would be for a live service, 

perhaps bound to localhost on a predictable port, and use an HTTP client library to 

connect to it. This can be slow, and worse still, ports are an operating system resource 

whose scarcity can cause instability in tests that acquire them.
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Fortunately, the power of Twisted’s transports and protocols allows us to run an in- 

memory HTTP client and server pair within our tests. In particular, treq comes with a 

powerful testing utility in treq.testing.StubTreq. Instances of the StubTreq expose the 

same interface as the treq module, so that code that acquires treq through dependency 

injection can instead use this stub implementation in tests. It’s up to the treq project to 

verify that StubTreq conforms to the same API as the treq module; we don’t have to do 

this in our tests.

StubTreq takes as its first argument a twisted.web.resource.Resource whose 

responses determine the outcome of various treq calls. Because Klein instances expose 

a resource() method that generates a twisted.web.resource.Resource, we can bind a 

StubTreq to our web application to get an in-memory HTTP client suitable for our tests.

Let’s replace test_nothing with a method that uses StubTreq to request our service’s 

root URL:

# src/feed_aggregation/tests/test_service.py

from twisted.trial.unittest import SynchronousTestCase

from twisted.internet import defer

from treq.testing import StubTreq

from .. import FeedAggregation

class FeedAggregationTests(SynchronousTestCase):

    def setUp(self):

        self.client = StubTreq(FeedAggregation().resource())

    @defer.inlineCallbacks

    def test_requestRoot(self):

        response = yield self.client.get(u'http://test.invalid/')

        self.assertEqual(response.code,200)

The setUp method creates a StubTreq instance bound to the twisted.web.

resource.Resource for our FeedAggregation’s Klein application. test_requestRoot 

uses this client to issue a GET request against that Klein resource, verifying that it received 

a successful response.

Note that only the path portion of the URL passed to self.client.get matters for 

our test. treq, and thus StubTreq, can only issues requests against a complete web URL 

with a scheme and netloc, so we use a .invalid domain to satisfy this requirement. The 

.invalid top-level domain is defined to never resolve to an actual internet address, 

making it a perfect choice for our tests.
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Running this new version of FeedAggregationTests with trial feed_aggregation 

fails with an AttributeError because instances of our FeedAggregation class don’t have 

a resource method. Adding the correct implementation of this won’t make the test pass, 

however; we also need to construct a Klein application that responds to a request for /. 

We’ll modify the _service module to satisfy both of these requirements.

# src/feed_aggregation/_service.py

from klein import Klein

class FeedAggregation(object):

    _app=Klein()

    def resource(self):

        return self._app.resource()

    @_app.route("/")

    def root(self, request):

        return b""

The new resource instance method delegates its calls to the Klein application 

associated with the class. This is an example of the law of Demeter, a principle in 

software development that argues against calling methods on instance attributes; 

instead, delegation methods like FeedAggregation.resource wrap these attributes’ 

methods, so that code that uses FeedAggregation remains ignorant of its internal 

implementation. We’ve named our Klein application _app to make it clear that it’s part of 

FeedAggregation’s internal, private API.

The root method acts as a trivial handler for the root URL path /, and together with 

FeedAggregation.resource, makes FeedAggregation.test_requestRoot pass.

We’ve now completed a single test-driven development cycle. We began with 

by writing a minimal failing test and then made it pass with a minimal amount of 

application code.

Let’s skip ahead and replace FeedAggregationTests with a more complete test suite 

that exercises both the HTML and JSON feed renderings.

# src/feed_aggregation/test/test_service.py

import json

from lxml import html

from twisted.internet import defer
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from twisted.trial.unittest import SynchronousTestCase

from treq.testing import StubTreq

from .. import FeedAggregation

class FeedAggregationTests(SynchronousTestCase):

    def setUp(self):

        self.client = StubTreq(FeedAggregation().resource())

    @defer.inlineCallbacks

    def get(self, url):

        response = yield self.client.get(url)

        self.assertEqual(response.code,200)

        content = yield response.content()

        defer.returnValue(content)

    def test_renderHTML(self):

        content = self.successResultOf(self.get(u"http://test.invalid/"))

        parsed = html.fromstring(content)

        self.assertEqual(parsed.xpath(u'/html/body/div/table/tr/th/a/text()'),

                        [u"First feed",u"Second feed"])

        self.assertEqual(parsed.xpath('/html/body/div/table/tr/th/a/@href'),

                        [u"http://feed-1/",u"http://feed-2/"])

        self.assertEqual(parsed.xpath('/html/body/div/table/tr/td/a/text()'),

                        [u"First item",u"Second item"])

        self.assertEqual(parsed.xpath('/html/body/div/table/tr/td/a/@href'),

                        [u"#first",u"#second"])

    def test_renderJSON(self):

        content =  self.successResultOf(self.get(u"http://test.

invalid/?json=true"))

        parsed = json.loads(content)

        self.assertEqual(

            parsed,

            {u"feeds": [{u"title": u"First feed", u"link": u"http://feed- 1/",

             u"items": [{u"title": u"First item",u"link": u"#first"}]},

            {u"title": u"Second feed", u"link": u"http://feed-2/",

             u"items": [{u"title": u"Second item", u"link": u"#second"}]}]})
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There’s a lot going on in this test case. There are two tests, test_renderHTML and 

test_renderJSON, which verify the structure and content of the HTML and JSON 

we expect our FeedAggregation web service to return. test_requestRoot has been 

replaced with a get method that can be used by both test_renderHTML and test_

renderJSON to retrieve a particular URL for our Klein application. Both test_renderHTML 

and test_renderJSON use SynchronousTestCase.successResultOf to assert that the 

Deferred returned by get has fired and extracted the value.

test_renderHTML uses the lxml library (https://lxml.de/) to parse and inspect the 

HTML returned by our Klein application. As a result, we must add lxml to the install_

requires list in our setup.py. Note that you can synchronize your virtual environment 

with your project’s dependencies by running pip install -e .  again.

XPaths locate and extract the contents and attributes of specific elements within the 

DOM. The implied table structure matches what we developed in our prototype: feeds 

reside in tables whose headers are links to the feed’s home page and whose rows link to 

each feed’s items.

test_renderJSON requests the feeds rendered as JSON, parses it into a dictionary, 

and then asserts that it’s equal to the expected output.

These new tests naturally fail because the existing FeedAggregation merely returns a 

response with an empty body. Let’s make them pass by replacing FeedAggregation with 

the minimum necessary implementation.

# src/feed_aggregation/_service.py

from klein import Klein, Plating

from twisted.web.template import tags as t, slot

class FeedAggregation(object):

    _app = Klein()

    _plating = Plating(

        tags=t.html(

            t.head(t.title("Feed Aggregator 2.0")),

            t.body(slot(Plating.CONTENT))))

    def resource(self):

        return self._app.resource()

    @_plating.routed(
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        _app.route("/"),

        t.div(render="feeds:list")(slot("item")),

    )

    def root(self, request):

        return {u"feeds": [

    t.table(t.tr(t.th(t.a(href=u"http://feed-1/")(u"First feed"))),

            t.tr(t.td(t.a(href=u"#first")(u"First item")))),

    t.table(t.tr(t.th(t.a(href=u"http://feed-2/")(u"Second feed"))),

            t.tr(t.td(t.a(href=u"#second")(u"Second item"))))

]}

Because we haven’t written tests for feed retrieval, this implementation doesn’t 

yet retrieve RSS feeds. Instead it satisfies our tests by returning hard-coded data that 

matches our assertions. Aside from this, it resembles our prototype: a root method 

handles the root URL path that uses Klein’s :list renderer to turn a sequence of 

twisted.web.template.tags into HTML.

This version of FeedAggregation passes test_renderHTML but fails on test_

renderJSON:

(feed_aggregation) $ trial feed_aggregation

feed_aggregation.test.test_service

  FeedAggregationTests

    test_renderHTML ...                                           [OK]

    test_renderJSON ...                                        [ERROR]

                                                               [ERROR]

======================================================================= 

[ERROR]

Traceback (most recent call last):

...

exceptions.TypeError: Tag('table', ...) not JSON serializable

feed_aggregation.test.test_service.FeedAggregationTests.test_renderJSON

======================================================================= 

[ERROR]

Traceback (most recent call last):

...
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twisted.trial.unittest.FailTest: 500 != 200

feed_aggregation.test.test_service.FeedAggregationTests.test_renderJSON

-----------------------------------------------------------------------

Ran 2 tests in 0.029s

FAILED (failures=1, errors=1, successes=1)

The second error corresponds to self.assertEqual(response.code, 200) in 

FeedAggregationTests.get, while the first indicates the real problem: Klein can’t 

serialize the tags returned by FeedAggregation.root to JSON.

The simplest solution consists of detecting when a request should be serialized 

to JSON and returning a serializable dictionary instead. The current design would 

require copying the data necessary to satisfy the tests, so while we address the bug, 

let’s also add container classes that store the feed data, and a top-level class that 

stores the feed’s provenance and controls its presentation. These will allow us to 

define the data once but render it to both HTML and JSON. Indeed, we can arrange 

for FeedAggregation to accept instances of the top-level feed container class in 

its initializer, so that the tests can instead use their own fixture data. Let’s rewrite 

_service.py following this approach. We’ll use Hynek Schlawack’s attrs (https://

attrs.readthedocs.io) library to keep our code short and clear; be sure to add it to 

your setup.py’s install_requires.

# src/feed_aggregation/_service.py

import attr

from klein import Klein, Plating

from twisted.web.template import tags as t, slot

@attr.s(frozen=True)

class Channel(object):

    title = attr.ib()

    link = attr.ib()

    items = attr.ib()

@attr.s(frozen=True)

class Item(object):

    title = attr.ib()

    link = attr.ib()
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@attr.s(frozen=True)

class Feed(object):

    _source = attr.ib()

    _channel = attr.ib()

    def asJSON(self):

        return attr.asdict(self._channel)

    def asHTML(self):

        header = t.th(t.a(href=self._channel.link)

                    (self._channel.title))

        return t.table(t.tr(header))(

                [t.tr(t.td(t.a(href=item.link)(item.title)))

                 for item in self._channel.items])

@attr.s

class FeedAggregation(object):

    _feeds = attr.ib()

    _app = Klein()

    _plating = Plating(

        tags=t.html(

        t.head(t.title("Feed Aggregator 2.0")),

        t.body(slot(Plating.CONTENT))))

def resource(self):

    return self._app.resource()

@_plating.routed(

    _app.route("/"), 

t.div(render="feeds:list")(slot("item")),

)

def root(self, request):

    jsonRequested = request.args.get(b"json")

    def convert(feed):

        return feed.asJSON() if jsonRequested else feed.asHTML()

    return {"feeds": [convert(feed) for feed in self._feeds]}

Using attrs makes it easy to define container classes like Channel and Item. In its 

most basic operation, the attr.s class decorator generates an init method that sets 

instance variables corresponding to the class’s attr.ib variables.
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attrs also makes it easy to define classes whose instances are immutable via its 

decorator’s frozen argument. Immutablity is a good match for our container classes 

because they represent external data; changing it after we’ve received it would certainly 

be a bug. attrs, lxml, must be added to the install_requires list inside setup.py.

The Feed class wraps a feed’s source URL and the Channel instance representing 

its contents, and exposes two presentation methods. asJSON uses attrs.asdict to 

recursively convert the channel instance to a JSON-serializable dictionary, while asHTML 

returns a tree of twisted.web.template.tags to be rendered by Klein’s Plating system.

FeedAggregation.root now checks the request’s json query parameter, available in 

the args dictionary, to determine whether the response should be rendered as JSON or 

HTML, and invokes asJSON or asHTML as appropriate.

Finally, FeedAggregation is now itself an attrs decorated class whose initializer 

accepts an iterable of Feed objects to render.

As a result, FeedAggregationTests.setUp must be refactored to pass an iterable of 

Feed objects to its FeedAggregation instance:

# src/feed_aggregation/test/test_service.py

...

from .._service import Feed, Channel, Item

FEEDS = (

    Feed("http://feed-1.invalid/rss.xml",

         Channel(title="First feed", link="http://feed-1/",

                 items=(Item(title="First item", link="#first"),))),

    Feed("http://feed-2.invald/rss.xml",

         Channel(title="Second feed", link="http://feed-2/",

                 items=(Item(title="Second item", link="#second"),))),

)

class FeedAggregationTests(SynchronousTestCase):

    def setUp(self):

        self.client = StubTreq(FeedAggregation(FEEDS).resource())

...

This latest version has its benefits: most obviously, the test_renderJSON now passes, 

but additionally the fixture’s data now resides in the same place as the tests, so that it will 

be easier to keep in sync with their assertions.
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It also has its downsides. Not only is FeedAggregation useless as a feed aggregation 

service without the ability to retrieve RSS feeds, but the tests now import and depend on 

our container classes. Tests that depend on internal implementation details like these 

are brittle and hard to refactor.

We’ll address both of these shortcomings by writing the feed retrieval logic.

 Testing treq with Klein
We used StubTreq to test our Klein application in the previous section. Reversing the 

relationship allows us to succinctly test treq code.

Once again, we’ll begin by writing tests. We’ll add them to the test_service module, 

with new imports shown at the top, and our new test case at the bottom.

# src/feed_aggregation/test/test_service.py

import attr

...

from hyperlink import URL

from klein import Klein

from lxml.builder import E

from lxml.etree import tostring

...

from .. import FeedRetrieval

@attr.s

class StubFeed(object):

    _feeds = attr.ib()

    _app = Klein()

    def resource(self):

        return self._app.resource()

    @_app.route("/rss.xml")

    def returnXML(self, request):

        host = request.getHeader(b    'host')

        try:

            return self._feeds[host]

        except KeyError:

            request.setResponseCode(404)

            return b'Unknown host: ' +host
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def makeXML(feed):

    channel = feed._channel

    return tostring(

    E.rss(E.channel(E.title(channel.title), E.link(channel.link),

                    *[E.item(E.title(item.title), E.link(item.link))

                      for item in channel.items],

          version = u"2.0")))

class FeedRetrievalTests(SynchronousTestCase):

    def setUp(self):

        service = StubFeed(

            {URL.from_text(feed._source).host.encode('ascii'): makeXML(feed)

             for feed in FEEDS})

        treq = StubTreq(service.resource())

        self.retriever = FeedRetrieval(treq=treq)

    def test_retrieve(self):

        for feed in FEEDS:

            parsed = self.successResultOf(

                self.retriever.retrieve(feed._source))

            self.assertEqual(parsed, feed)

The FeedRetrievalTests class, like FeedAggregationTests before it, depends on 

some new concepts. StubFeed is a Klein application whose /rss.xml route returns an 

XML document specific to the request’s host. This allows it to return different responses 

for http://feed-1.invalid and http://feed-2.invalid. As a precaution, requests for 

an unknown host result in an informative 404 “Not Found” response.

The makeXML function transforms a Feed and its associated Items into an RSS 

2.0-compliant XML document. We use lxml.builder’s E tag factory, whose API 

resembles twisted.web.template.tags, as an XML templating system, and serialize 

its tag tree to bytes with lxml.etree.tostring (despite its name, it does return bytes on 

Python 3).

The FeedRetrievalTests.setUp fixture method creates a list of Feeds and passes 

them to a StubFeed instance, which it them associates with a StubTreq instance. This in 

turn is passed to a FeedRetrieval instance, which will contain our feed retrieval code. 

Parameterizing this class on a treq implementation is an example dependency injection 

easing the process of writing tests.
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Note that we derive the host for each feed from the URL in its link element by using 

hyperlink.URL. Hyperlink (https://hyperlink.readthedocs.io) URLs are immutable 

objects that represent parsed URLs. The Hyperlink library was abstracted out from 

Twisted’s own twisted.python.url module and provides a superset of that original 

API. As a result, Twisted now depends on it, so it’s implicitly available to any project 

that depends on Twisted. The best practice with any dependency, however, is to make it 

explicit, so we must add the hyperlink package to our setup.py’s install_requires list. 

Here’s what our setup.py should look like now:

# setup.py

from setuptools import setup, find_packages

setup(

    name="feed_aggregation",

    install_requires=["attrs","feedparser","hyperlink","Klein",

                      "lxml","Twisted","treq"],

    package_dir={"":"src"},

    packages=find_packages("src")+["twisted.plugins"],

)

(Remember that we we added attrs and lxml above.)

The one test in our FeedAggregationTests test case, test_retrieve, asserts that 

FeedRetrieval.retrieve parses a feed retrieved from its _source URL into a Feed object 

that matches its XML representation.

Now that we have a test for a feed retriever, we can implement one. First, we’ll add 

FeedRetrieval to src/feed_aggregation/__init__.py so that it can be imported 

without interacting with private APIs:

# src/feed_aggregation/ init .py

from ._service import FeedAggregation, FeedRetrieval

 __all__ = ["FeedAggregation","FeedRetrieval"]

Now we can implement the minimum code necessary to make the tests pass:

# src/feed_aggregation/_service.py

...

import treq

import feedparser
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@attr.s

class FeedRetrieval(object):

    _treq = attr.ib()

    def retrieve(self, url):

        feedDeferred = self._treq.get(url)

        feedDeferred.addCallback(treq.content)

        feedDeferred.addCallback(feedparser.parse)

    def toFeed(parsed):

        feed = parsed[u'feed']

        entries = parsed[u'entries']

        channel = Channel(feed[u'title'], feed[u'link'],

                          tuple(Item(e[u'title'], e[u'link'])

                              for e in entries))

        return Feed(url, channel)

        feedDeferred.addCallback(toFeed)

        return feedDeferred

As expected, FeedRetrieval accepts a treq implementation as its only argument via the 

attr.s class decorator and a _treq attr.ib. Its retrieve method follows the same pattern 

as our exploratory program’s: first it uses treq to retrieve the provided URL and collect its 

body, then it uses feedparser to parse the collected XML into a Python dictionary.

Next, toFeed extracts the feed’s title, link, and its items’ titles and links, and then 

assembles them into a Channel, Items, and a Feed.

This version of FeedRetrieval makes our test pass, but it lacks error handling. 

What if a feed has been removed or the returned XML is invalid? As it stands, the 

Deferred returned by FeedRetrieval.retrieve will fail with an exception, which will be 

FeedAggregation’s problem.

Neither a website nor a JSON service should display tracebacks. At the same time, 

something should record any tracebacks to aid debugging. Fortunately, Twisted has a 

sophisticated logging system that we can use to track our application’s behavior.

 Logging with twisted.logger
Twisted has provided its own logging system for many releases. As of Twisted 15.2.0, 

twisted.logger has become the preferred method for recording events in Twisted 

programs.
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Like the standard library’s logging module, applications emit log messages at 

various levels by calling the appropriate methods on a twisted.logger.Logger instance. 

The following code emits a message at the info level.

from twisted.logger import Logger

Logger().info("A message with{key}", key="value")

Like logging, emission methods like Logger.info accept a format string and values 

to interpolate; unlike logging, this is a new style formatting string, and it’s sent along 

in the underlying log event. Also unlike Python’s standard logging system, twisted.

logger.Loggers are not hierarchical, but instead route their messages through 

observers. The fact that the format string is preserved enables one of twisted.logger’s 

most powerful features: it can emit log messages in the traditional format intended 

for human consumption, and it can emit them as JSON-serialized objects. The latter 

allows sophisticated filtering and collection in systems like Kibana. We’ll see how to 

switch between these formats when we write a Twisted application plugin for our feed 

aggregation  application.

Loggers also use the descriptor protocol to capture information about an associated 

class, so we’ll create a Logger for our FeedRetrieval class. We’ll then arrange 

for messages to be emitted before a feed is requested and when it’s either parsed 

successfully or fails with an exception. Before we can do so, however, we must decide 

what FeedRetrieval.retrieve’s Deferred should resolve to when an exception occurs. 

It cannot be a Feed instance, because there won’t be any XML to parse into a Channel 

instance; but FeedAggregation expects an object that provides asJSON and asHTML 

methods, the only implementations of which exist on Feed.

We can solve this problem with polymorphism. We can define a new class, 

FailedFeed, that represents FeedRetrieval’s failure to retrieve a feed. It will satisfy 

the same interface as Feed by implementing its own asJSON and asHTML methods that 

present the error in the appropriate format.

As usual, we’ll begin by writing tests. The exception conditions FeedRetrieval.

retrieve might encounter can be divided into two categories: a response with any 

status code other than 200, and any other exception. We’ll model the first with a 

custom exception type, ResponseNotOK, that retrieve will raise and handle internally 

and which we can solicit in our tests by requesting a feed from a host StubFeed doesn’t 

know about. The latter can be solicited by providing StubFeed with a host that returns 

the empty string, which feedparser will fail to parse. Let’s add some tests to our 

FeedRetrievalTests class.
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# src/feed_aggregation/test/test_service.py

from .. import FeedRetrieval

from .._service import Feed, Channel, Item, ResponseNotOK

from xml.sax import SAXParseException

...

class FeedRetrievalTests(SynchronousTestCase):

    ...

    def assertTag(self, tag, name, attributes, text):

        self.assertEqual(tag.tagName, name)

        self.assertEqual(tag.attributes, attributes)

        self.assertEqual(tag.children, [text])

    def test_responseNotOK(self):

        noFeed = StubFeed({})

        retriever = FeedRetrieval(StubTreq(noFeed.resource()))

        failedFeed = self.successResultOf(

            retriever.retrieve("http://missing.invalid/rss.xml"))

        self.assertEqual(

            failedFeed.asJSON(),

            {"error":"Failed to load http://missing.invalid/rss.xml: 404"}

        )

        self.assertTag(failedFeed.asHTML(),

            "a", {"href":"http://missing.invalid/rss.xml"},

            "Failed to load feed: 404")

    def test_unexpectedFailure(self):

        empty = StubFeed({b"empty.invalid": b""})

        retriever = FeedRetrieval(StubTreq(empty.resource()))

        failedFeed = self.successResultOf(

             retriever.retrieve("http://empty.invalid/rss.xml"))

        msg = "SAXParseException('no element found',)"

        self.assertEqual(

            failedFeed.asJSON(),

            {"error":"Failed to load http://empty.invalid/rss.xml: " + msg}

        )
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        self.assertTag(failedFeed.asHTML(),

           "a", {"href": "http://empty.invalid/rss.xml"},

           "Failed to load feed: " + msg)

        self.assertTrue(self.flushLoggedErrors(SAXParseException))

The assertTag method ensures that a twisted.web.template tag tree of depth one 

has the given name, attributes, and children, simplifying the test_responseNotOK and 

test_unexpectedFailure methods.

The test_responseNotOK method creates an empty StubFeed application, which 

will respond with a 404 to any request the test makes. It then asserts that retrieving a 

URL results in a fired Deferred, and renders the resulting FailedFeed to both JSON and 

a tag tree. The JSON should contain the URL and the HTTP status code, while the HTML 

should link to the feed that failed and also contain the status code.

The test_unexpectedFailure method creates a StubFeed that responds to requests 

for empty.invalid with an empty string. The HTML and JSON renders of the resulting 

FailedFeed instance checked for the source URL as well as the repr of the exception 

that caused to the failure. We choose the repr because many exceptions’ messages, like 

KeyError’s, are incomprehensible without their class name.

The last line of test_unexpectedFailure is worth special attention. trial, unlike 

Python’s unittest, fails any test that doesn’t recover exceptions logged by the code it 

calls. Note that this does not include errors raised by the test itself.

SynchronousTestCase.flushLoggedErrors returns a list of twisted.python.

failure.Failures that have been logged up until that point; if exception types are 

passed as arguments, only Failures matching those types are returned. The “flush” in 

flushLoggedErrors means that it’s a destructive call, so that a given Failure cannot 

appear in the lists returned by two consecutive calls. A test fails when it completes with a 

non-empty list of logged errors. Our tests’ assertion that at least one SAXParseException 

was raised by feedparser has the side effect of clearing the logged error list, which 

should allow the test to pass.

Let’s write the code necessary to make these new tests pass. We’ll show the new 

version of the FeedRetrieval in its entirety so its error handling can be seen in context.
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# src/feed_aggregation/_service.py

...

import treq import feedparser

from twisted.logger import Logger

from functools import partial

...

@attr.s(frozen=True)

class FailedFeed(object):

    _source = attr.ib()

    _reason = attr.ib()

    def asJSON(self):

        return {"error":"Failed to load{}:{}".format(

            self._source,self._reason)}

    def asHTML(self):

        return t.a(href=self._source)(

            "Failed to load feed:{}.".format(self._reason))

class ResponseNotOK(Exception):

    """A response returned a non-200 status code."""

@attr.s

class FeedRetrieval(object):

    _treq = attr.ib()

    _logger = Logger()

    def retrieve(self, url):

        self._logger.info("Downloading feed{url}", url=url)

        feedDeferred = self._treq.get(url)

        def checkCode(response):

            if response.code != 200:

                raise ResponseNotOK(response.code)

            return response

        feedDeferred.addCallback(checkCode)

        feedDeferred.addCallback(treq.content)

        feedDeferred.addCallback(feedparser.parse)
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        def toFeed(parsed):

            if parsed[u'bozo']:

                raise parsed[u'bozo_exception']

            feed=parsed[u'feed']

            entries = parsed[u'entries']

            channel = Channel(feed[u'title'], feed[u'link'],

                            tuple(Item(e[u'title'], e[u'link'])

                                  for e in entries))

            return Feed(url, channel)

        feedDeferred.addCallback(toFeed)

        def failedFeedWhenNotOK(reason):

            reason.trap(ResponseNotOK)

            self._logger.error("Could not download feed{url}:{code}",

                               url=url, code=str(reason.value))

            return FailedFeed(url, str(reason.value))

        def failedFeedOnUnknown(failure):

            self._logger.failure("Unexpected failure downloading{url}",

                                 failure=failure, url=url)

            return FailedFeed(url, repr(failure.value))

        feedDeferred.addErrback(failedFeedWhenNotOK)

        feedDeferred.addErrback(failedFeedOnUnknown)

        return feedDeferred

The FailedFeed class implements asJSON and asHTML in accordance with Feed’s 

interface. Because the initializer is private, we can define a new reason argument that 

explains why the feed failed to download.

The ResponseNotOK exception represents the category of errors arising from a non- 

200 status code. This is also the first change to the retrieve itself: a checkCode callback 

raises ResponseNotOK when the status code of the response returned by treq.get 

indicates a failure, passing the code to the exception.

toFeed has also changed to accommodate feedparser’s awkward error reporting 

API. feedparser's approach to lenient parsing means that feedparser.parse never 

raise an exception directly; instead, it set the bozo key in the returned dictionary to True 

and the bozo_exception key to the actual exception.
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This second raise falls into the second category of unexpected errors. Of course, 

there are many more possible unexpected errors, and it’s important that we ensure our 

code handles these, too.

The failedFeedWhenNotOK errback handles the first category by trapping 

ResponseNotOK and logging an error message with the feed’s URL and the failing 

response code, while the failedFeedOnUnknown errback handles the second by logging 

a critical message that includes the failure’s traceback via the Logger.failure 

helper method. Both return a FailedFeed instance that renders their respective failures 

according to the expectations of the tests we added.

Both when we add the errbacks to feedDeferred and the order we add them are 

significant. Recall that when a callback raises an exception, the next registered errback 

handles it. By adding the errbacks after all callbacks, we make it clear that these handle 

any exception raised. Also, since an errback that raises its own exception effectively 

passes it to the next registered errback, we add the more specific failedFeedWhenNotOK 

before the catch-all failedFeedOnUnknown. The net effect of these errbacks is equivalent 

to the following synchronous code:

try:

...

except ResponseNotOK:

    self._logger.error(...)

    return FailedFeed(...)

except:

    self._logger.failure(...)

    return FailedFeed(...)

 Running Twisted Applications with twist
We’ve divided the project into two independent functional halves: FeedAggregation, 

which handles incoming web requests; and FeedRetrieval, which retrieves 

and parses RSS feeds. Feed and FailedFeed bind the two together by a common 

interface, but it’s not possible to compose the application into a working whole 

without one last change.

Just like our exploratory SimpleFeedAggregation program, FeedAggregation should 

drive FeedRetrieval when an incoming HTTP request arrives. This flow of control 

implies that a FeedAggregation instance should wrap a FeedRetrieval instance, 
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which we can achieve via dependency injection; instead of passing a list of Feed items 

to FeedAggregation, we can instead pass the retrieve method of a FeedRetrieval 

instance and a list of feed URLs to request. Let’s modify FeedAggregationTests to do 

that:

# src/feed_aggregation/test/test_service.py

...

class FeedAggregationTests(SynchronousTestCase):

    def setUp(self):

        service = StubFeed(

            {URL.from_text(feed._source).host.encode('ascii'): makeXML(feed)

             for feed in FEEDS})

        treq = StubTreq(service.resource())

        urls = [feed._source for feed in FEEDS]

        retriever = FeedRetrieval(treq)

        self.client = StubTreq(

            FeedAggregation(retriever.retrieve, urls).resource())

        ...

Now we can make FeedAggregation adhere to this new API:

# src/feed_aggregation/_service.py

@attr.s

class FeedAggregation(object):

    _retrieve = attr.ib()

    _urls = attr.ib()

    _app = Klein()

    _plating = Plating(

        tags=t.html(

            t.head(t.title("Feed Aggregator 2.0")),

            t.body(slot(Plating.CONTENT))))

    def resource(self):

        return self._app.resource()

    @_plating.routed(

        _app.route("/"),

        t.div(render="feeds:list")(slot("item")),

    )
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    def root(self, request):

        def convert(feed):

             return feed.asJSON() if request.args.get(b"json") else feed.

asHTML()

        return {"feeds": [self._retrieve(url).addCallback(convert)

                          for url in self._urls]}

The FeedAggregation initializer accepts two new arguments: a retrieve callable 

that accepts a URL and returns a Deferred that resolves to a Feed or FailedFeed 

instance, and a urls iterable representing the RSS feed URLs to retrieve. The root 

handler combines these two by applying the _retrieve callable to each of the provided 

_urls and then arranging to render the result via the convert callback.

Now that we can compose the service half of application with the retrieval half, 

we can write a Twisted application plugin in the file src/twisted/plugins/feed_

aggregation_plugin.py that loads and runs our feed aggregation service.

Twisted’s twist command-line program allows users to run a variety of Twisted 

services out of the box, like a static web server with twist web --path=/path/to/serve. 

It’s also extensible via Twisted’s plugin mechanism. Let’s write a plugin that runs our 

feed aggregation web service.

# src/twisted/plugins/feed_aggregation_plugin.py

from twisted import plugin

from twisted.application import service, strports

from twisted.python.usage import Options

from twisted.web.server import Site

import treq

from feed_aggregation import FeedAggregation, FeedRetrieval

from zope.interface import implementer

class FeedAggregationOptions(Options):

    optParameters = [["listen", "l", "tcp:8080", "How to listen for requests"]]

@implementer(plugin.IPlugin, service.IServiceMaker)

class FeedAggregationServiceMaker(service.Service):

    tapname = "feed"

    description = "Aggregate RSS feeds."

    options = FeedAggregationOptions
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    def makeService(self, config):

        urls = ["http://feeds.bbci.co.uk/news/technology/rss.xml",

                "http://planet.twistedmatrix.com/rss20.xml"]

        aggregator = FeedAggregation(FeedRetrieval(treq).retrieve, urls)

        factory = Site(aggregator.resource())

        return strports.service(config['listen'], factory)

makeFeedService = FeedAggregationServiceMaker()

A twisted.application.service.IService is the unit of code run by twist, while 

a twisted.application.service.IServiceMaker allows twist to discover IService 

providers, and a twisted.plugin.IPlugin allows twisted.plugin to discover plugins. 

The FeedAggregationServiceMaker class implements both of these interfaces, so that 

instances of it within twisted/plugins are picked up by twist.

The tapname attribute represents the name of the twist subcommand under which 

our service will be available, while the description attribute is the documentation 

that twist will present command users. The options attribute contains an instance of 

 twisted.python.usage.Options that parses command-line options into a dictionary 

that’s passed to the makeService method. Our FeedAggregationOptions subclass 

contains one command-line option, --listen or -l, which represents an endpoint string 

description that defaults to tcp:8080. We’ll explain what these are and how they work 

shortly.

FeedAggregationServiceMaker.makeService accepts the parsed configuration 

return by our Options class and returns an IService provider that runs our 

FeedAggregation web service. We construct a FeedAggregation instance here the same 

way we did in our tests, except this time, we provide the actual treq implementation to 

FeedRetrieval.

The twisted.web.server.Site class is actually a factory that knows how to 

respond to HTTP requests. It accepts as its first argument a twisted.web.resource.

Resource that will respond to incoming requests, just like StubTreq did in our tests, and 

so we again use FeedAggregation.resource to create one from the underlying Klein 

application.

The strports.service function parses the endpoint string description into an 

IService provider that manages the specified port. Endpoint string descriptions afford 

Twisted applications great flexibility in how they listen for clients by leveraging protocols 

and transports.
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The default of tcp:8080 causes Twisted to bind TCP port 8080 on all available 

interfaces and will associate a TCP transport with protocol instances created by the 

Site factory. It could be switched, however, to ssl:port=8443;privateKey=server.

pem, which set up an TLS listener on port 8443 that used the server.pem certificate to 

establish connections. Protocols created by the Site factory would then be bound to 

TLS-wrapped transports that automatically encrypted and decrypted connections with 

clients. The strports parsers are extendable by third-party plugins, as well; txtorcon 

(https://txtorcon.readthedocs.io/en/latest/), for instance, allows starting a TOR 

server via the onion: endpoint string description.

We can now invoke our feed aggregation service with the twist program within our 

virtual environment:

$ twist feed

2018-02-01T12:12:12-0800 [-] Site starting on 8080

2018-02-01T12:12:12-0800 [twisted.web.server.Site#info] Starting factory 

<twisted.web.serve

2018-02-01T12:12:12-0800 [twisted.application.runner._runner.Runner#info] 

Starting reactor.

2018-02-01T12:13:13-0800 [feed_aggregation._service.FeedRetrieval#info] 

Downloading feed

2018-02-01T12:13:13-0800 [feed_aggregation._service.FeedRetrieval#info] 

Downloading feed

...

twist sets up twisted.logger to format and print log messages to standard out. The 

FeedRetrieval messages correspond to the info message emitted in FeedRetrieval.

retrieve and imply that a client accessed our application.

twist can also emit log messages as JSON objects with the --log-format=json

command line option:

$ twist --log-format=json feed

...

{"log_namespace": "...FeedRetrieval", "url": "http://feeds.bbci.co.uk/news/

technology/rss.x

{"log_namespace": "...FeedRetrieval", "url": "http://planet.twistedmatrix.

com/rss20.xml", .

...
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We’ve omitted many details to make the output more readable. Notice, however, that 

the url parameter to FeedRetrieval._retrieve’s info call is a property on the returned 

JSON objects. This allows a log aggregation service to extract data from log messages 

without heuristics like regular expressions. Like strports, this change in behavior did 

not require us to alter our application code at all.

 Summary
This chapter introduced Klein and treq. These two libraries provide high-level wrappers 

around Twisted’s web APIs that ease common development patterns.

We wrote an RSS 2.0 feed aggregation service using the venerable feedparser library, 

beginning with a simple prototype and then using test-driven development to build a 

fully functional Twisted application runnable with the twist command-line program. 

We used treq.testing.StubTreq to test our web service without any actual network 

requests and SynchronousTestCase to verify that our concurrent operations complete 

deterministically given various inputs. Along the way we saw how Klein’s Plating feature 

enables us to build web services that can respond with both JSON and HTML, and how 

we can log structured data with twisted.logger.

The use of third-party libraries that have no assumptions about concurrency, like 

feedparser, lxml, and attrs, demonstrates how Twisted programs integrate with the 

modern Python ecosystem. At the same time, our program used classic Twisted concepts 

like Deferreds; our feed aggregation service shows the the power combining Python’s 

vast libraries with Twisted’s own concepts and code.
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CHAPTER 4

Twisted in Docker
Docker is often used in micro-services architectures. Those are based on different 

components communicating over a network. Twisted, with its native support for several 

networking paradigms, is often a good fit for Docker-based architectures.

Docker, and containers in general, are new. Both the tooling and the consensus 

on how to use the tooling are evolving fast. We are giving here the foundations on 

how to use Docker, so we can build the understanding of how to use Twisted in 

Docker on top of it.

Note that Docker is a Linux-based technology. Though other operating systems have 

similar facilities, Docker is built on taking advantage of specific Linux-kernel facilities. 

Docker for Windows does have the ability to run “Windows Containers,” but this is 

beyond the scope of this chapter.

Docker for Mac and Docker for Windows use a Virtual Machine running Linux, and 

have just enough integration with the host OS (OS X and Windows, respectively) to make 

the interaction seamless. However, it is important to remember that a Docker container 

is always running on a Linux kernel, even when running it on a Mac or Windows laptop.

 Intro to Docker
Because Docker is both new and popular, several distinct things are called “Docker.” 

Understanding exactly what Docker is itself is nontrivial. We try to break “Docker” here 

into distinct concepts. Note that each of these is often referred to as “Docker,” as well as 

the whole comprising them.

 Containers
Containers are processes that are run with more isolation than is possible in traditional 

UNIX processes.
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In a container, the only processes visible are those started by the root process of the 

container that appears as process ID 1 inside the container. Note that this is optional: a 

container can share the host’s process IDs. Using the Docker command line, this is done 

with the argument --pid host.

Likewise, containers will have their own network address. This means processes 

inside the container can listen on a given port, without coordinating with the host or 

other running containers. Again, a container can be run with a special argument, --net 

host, in order to share the host network namespace.

Finally, each container has its own filesystem. For example, this means we can install 

different Pythons in different containers without any concerns – or even conflicting 

Python packages. Sharing the host filesystem directly is tricky.

However, we can use Docker’s “volume mount” option. The volume mount option 

asks to make a directory from the host accessible (“mount”) inside the container. The 

syntax for the option is to separate the directory from the host (on the left) and the 

directory it will be “mounted into” in the container (on the right) with a colon.

Thus, running Docker with --volume /:/from-host will make all the host’s files 

accessible. Note that they will be accessible, inside the container, not in their usual 

location, but in the /from-host directory.

Containers are isolated exactly to the extent they are desired to be isolated. This is 

similar to the clone system call’s flags indicating what is shared between parent and child 

processes: for example, the CLONE_FILES flag indicating a shared file descriptor table.

 Container Images
While containers are running, isolated, sets of processes, container images allow us to 

instantiate a container – they are the equivalent of an executable image.

Internally, a container image is made of layers, each of which represents a file 

system. The final file system the container will see (often referred to as a union 

filesystem) is the combination of all layers, with higher ones overriding lower ones. 

An upper layer can modify, add, or even “delete” files from a previous layer. While 

the lower layer will not be affected, the final file system visible inside the container 

will be affected.

This is important, since it means deleting files in an upper layer does not save 

space. For example, if the first layer has a tarball, and then it is expanded, the tarball is 

often redundant. An upper layer will often have rm/path/to/file.tar.gz or a similar 
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command. This is good insofar as that filename will not be visible – however, in the final 

size of the entire container image – for example, how many bytes need to be downloaded 

to run it – the tarball will still be included.

Container images are named (or more precisely tagged) after their ultimate location. 

The usual naming scheme is [optional host/][optional user/]name[:optional 

tag]. Images that are never meant to leave the host they are built on will usually omit the 

host and user parts, though there are exceptions.

If the tag is left off, the default is :latest. If the host is left off, the default is docker.io.

Note that the same container image can have multiple tags.

Container images move between registries and hosts: they can be “pushed” to 

registries and “pulled” to hosts.

 Runc and Containerd
In order to run a container from an image, a special program called runc (“run 

container”) is used. This program is in charge of setting up the proper isolation 

mechanisms: it uses Linux kernel facilities, such as cgroups and namespaces, in order to 

properly isolate the filesystem, process namespace, and network addresses.

Usually, container users do not interact with runc directly. It is used under the 

covers, however, by both the Docker stack as well as almost all alternative container 

stacks, such as Rocket.

In order to manage running containers, it is necessary to know which containers 

are running, and what their states are. For this reason, one “daemon” program, called 

containerd, spawns all containers from images by calling runc.

Note that in previous versions of Docker, runc was embedded into containerd – and 

so a lot of materials still refer to the “Docker daemon” as running containers.

 Client
The command-line docker run, contrary to what might be expected, does not run 

containers. Instead, it communicates with the containerd daemon, and asks it to run 

containers with runc.

By default, it uses a UNIX domain socket to communicate with the server. UNIX 

domain sockets are a special interprocess communication facility on UNIX-based 

operating systems. Their API resembles that of TCP sockets, but they are only used for 
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communication inside the same machine, allowing the kernel to make some shortcuts. 

Instead of IP addresses and ports, UNIX domain sockets use file paths as their addresses. 

This allows the usual UNIX file permission model to apply.

By default, the UNIX domain socket to which docker connects is /var/run/docker.

sock. Depending on the exact details of the Docker installation, it might be accessible 

by the docker group or the root group. The Docker client can also connect to the server 

using TLS over TCP, mutually authenticating using TLS certificates.

This is also true for all other subcommands of docker, such as build, images, etc. 

(Note that docker login is an exception, but the explanation of how remote registry 

login works is beyond our current scope.)

Because the command-line docker is mostly used to send Remote Procedure Calls to 

the daemon, we call it “the client.”

 Registry
Docker saves images in a (usually remote) registry. The registry stores each image as 

some metadata, plus a set of layers. The metadata notes the layer order, as well as some 

details about the container image.

Note that because of this storage method, the same layer will only be stored once. 

The usual case where several images share layers will be by having common ancestry – 

meaning, multiple images built from a common base image will not require their own 

copy of that image.

Also note that the default registry docker.io is built into the software – if no registry 

is specified, the default registry is assumed – usually referred to as “DockerHub.”

This is a slightly distinct usage of the word “Docker,” which again should be noted as 

potentially confusing terminology.

 Build
The usual way to build images is to use the docker build command line. This uses a 

configuration file referred to as a Dockerfile. The Dockerfile begins with a FROM line. 

The FROM identifies the ancestor image. If an empty image is desired, FROM scratch will 

use the scratch image, which has no layers. However, this is rare.

Usually, builds will start with a common Linux distribution, which are all available 

from the default Docker registry, DockerHub. For example, Debian, Ubuntu, and CentOS 

are all available.
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Every following line in the Dockerfile is a “build stage.” Every build stage creates 

a layer, and layers are cached. This means that when modifying a Dockerfile, only 

changed lines (and ones following them) will be executed.

The following example is such a Dockerfile that will run the Twisted web demo 

server.

FROM debian:latest

RUN python3 -m pip install --user Twisted

ENTRYPOINT ["python3", "-m", "twisted", "web"]

This does not demonstrate best practices, which we will cover as we look at more 

sophisticated features, but it does show three important parts that will almost always be 

present in a Dockerfile:

• The FROM line. Here, we ask for the latest version of debian. Note 

that because we are not using a name with slashes, this is from the 

“library” on DockerHub – a set of semi-official base images.

• The RUN line runs a command inside the container being built, with 

the usual effect to mutate it in some way. In this case, we install 

Twisted into a user installation.

• The ENTRYPOINT line sets the program that will run when the 

container launches.

 Multi-stage Build
The explanation above is missing an important new feature, added in mid-2017, in 

docker build. These are the multi-stage builds. A multi-stage build happens when there 

is more than one FROM line in the Dockerfile.

When this happens, the build process starts to build a new image – and at the end of 

the build, all nonfinal images will be discarded. However, while the build is running, the 

other images are accessible to one Dockerfile command – COPY.

When using COPY --from=<image>, it will copy file not from the context, but from a 

previous image. Although in theory, multi-stage builds can have any number of stages, it 

is very rare to need more than two. The sequencing of images uses 0-based numbering. 

Most “multistage” builds are really “two-stage” builds. The first stage will build all the 
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artifacts, using a “thick” image full of compilers and build tools. The second stage picks 

up all the artifacts from the first stage and produces the final image to distribute. Because 

of this, the usual form a COPY instruction between stages takes is COPY --from=0.

This comes in useful when needing a sophisticated build environment to generate 

some of the products that will be deployed – and it is better not to ship a sophisticated 

build environment in the final runtime container: this reduces the size, number of layers, 

and potential security risks.

The following is an example of a multistage build. Note that in this case, the final 

output is not intended to be used directly, but to be built upon in other builds. This is 

a common pattern: building standard bases that have common elements has several 

advantages – for example, this saves space in both the registry and in the running server 

(if multiple different images are running on one server, as they often are). Another 

advantage is that there is one place to upgrade base packages when bugs are fixed in 

those.

FROM python:3

RUN mkdir /wheels

RUN pip wheel --wheel-dir /wheels pyrsistent

FROM python:3-slim

COPY --from=0 /wheels /wheels

RUN pip install --no-index --find-links /wheel pyrsistent

Again, we’ll go line by line to explain what is going on here:

FROM python:3

The python:3 base is another example of a standard “DockerHub library” base. It 

includes Python 3, but it also includes enough tools to build native-code wheels – at least 

simple ones, without further dependencies.

RUN mkdir /wheels

We create the directory to store the wheels in. Note that because this stage is not 

going to be in the final output, we are not sensitive to creating extra layers. In fact, extra 

layers are good – they create more caching points. This is less interesting in this case, but 

often the build base includes installing many more build dependencies.

RUN pip wheel --wheel-dir /wheels pyrsistent

Chapter 4  twisted in doCker



163

The pip wheel subcommand is useful in multi-stage builds. It builds a wheel for the 

specified requirements, and all of their dependencies. It will use a binary wheel from 

PyPI built for manylinux, if the platform is compatible – but this behavior can be turned 

off, if desired, with pip wheel --no-binary :all.

FROM python:3-slim

The python:3-slim base is similar to python:3 but does not include the complicated 

set of build-time dependencies. Note that many :code:setup.py in Python distributions 

auto-detect lack of compilers or dependencies, and will silently turn off native- 

code modules build. pyrsistent, for example, has a C-optimized persistent vector 

implementation, which we want in our image. Therefore, we do not want to install 

pyrsistent from sources in this stage.

COPY --from=0 /wheels /wheels

We copy the pyrsistent wheel we just built, and any dependencies from the first 

stage (stage 0) to the current stage. The second FROM line indicates this is a multi-stage 

build – but this COPY line is the one that makes the multi-stage build useful.

RUN pip install --no-index --find-links /wheel pyrsistent

Finally, we install the library into the local Python environment. We are careful to 

specify the --no-index and --find-links options to pip so that it will use the wheels 

from the first stage, instead of getting fresh distributions from PyPI.

 Python on Docker
There is a huge variety of ways to deploy Python applications on Docker – like there is 

on any UNIX platform. They are not all equivalent – some are better than others. We will 

survey the options that tend to work well.

 Deployment Options
 Full env

A “full environment” deployment means that there is a custom Python interpreter 

installed exactly for the use of the application. This Python can be either custom built 

from source, as part of the Docker build process or before it –or it can come from a meta- 

distribution –such as conda or nix.
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Installing a custom Python interpreter is often useful: we can customize the 

build options on it, pin the interpreter version and even, in especially extreme cases, 

apply custom patches. However, this means we have taken on the task of keeping the 

interpreter up to date.

However we install this interpreter, it will be used exactly for our application. We use 

pip install to install packages in it – or, if it comes from a meta-distribution (such as 

conda or nix), we can also install packages from the meta-distribution. This is especially 

useful with conda, since many data science-related Python packages are available to be 

installed.

Here is an example Dockerfile that builds a custom Python interpreter, loaded with 

the necessary packages.

FROM buildpack-deps:stretch

ENV PYTHON_VERSION 3.6.4

ENV PREFIX https://www.python.org/ftp/python

ENV LANG C.UTF-8

ENV GPG_KEY 0D96DF4D4110E5C43FBFB17F2D347EA6AA65421D

RUN apt-get update

RUN apt-get install -y --no-install-recommends \

        tcl \

        tk \

        dpkg-dev \

        tcl-dev \

        tk-dev

RUN wget -O python.tar.xz \

    "$PREFIX/${PYTHON_VERSION%%[a-z]*}/Python-$PYTHON_VERSION.tar.xz"

RUN wget -O python.tar.xz.asc \

    "$PREFIX/${PYTHON_VERSION%%[a-z]*}/Python-$PYTHON_VERSION.tar.xz.asc"

RUN export GNUPGHOME="$(mktemp -d)" && \

    gpg --keyserver ha.pool.sks-keyservers.net --recv-keys "$GPG_KEY" && \

    gpg --batch --verify python.tar.xz.asc python.tar.xz

RUN mkdir -p /usr/src/python

RUN tar -xJC /usr/src/python --strip-components=1 -f python.tar.xz
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WORKDIR /usr/src/python

RUN gnuArch="$(dpkg-architecture --query DEB_BUILD_GNU_TYPE)"

RUN ./configure \

    --build="$gnuArch" \

    --enable-loadable-sqlite-extensions \

    --enable-shared \

        --prefix=/opt/custom-python/

RUN make -j

RUN make install

RUN ldconfig /opt/custom-python/lib

RUN /opt/custom-python/bin/python3 –m pip install twisted

FROM debian:stretch

COPY --from=0 /opt/custom-python /opt/custom-python

RUN apt-get update && \

    apt-get install libffi6 libssl1.1 && \

    ldconfig /opt/custom-python/lib

ENTRYPOINT ["/opt/custom-python/bin/python3", "-m", "twisted", "web"]

Building custom Python interpreters, though useful, is not trivial. We go through this 

file line by line:

FROM buildpack-deps:stretch

The buildpack-deps is a useful base image for building. Since we are going to be 

using Debian “stretch” as our deployment version, being the latest stable Debian version 

at time of writing, we get the stretch-compatible buildpack.

ENV PYTHON_VERSION 3.6.4

ENV PREFIX https://www.python.org/ftp/python

Setting those allows us to easily modify which Python version we use – this is 

essential to getting new security fixes and bug fixes from upstream. The easier we make it 

to upgrade Python, the better off we are.

ENV LANG C.UTF-8
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Setting the language to explicitly UTF-8 is necessary to avoid an obscure bug in the 

Python build process. While not illuminating pedagogically, this is useful as a place to 

put these work-arounds. Putting those details in the Dockerfile is a convenient place to 

make sure builds succeed – whether on a continuous integration system or locally.

ENV GPG_KEY 0D96DF4D4110E5C43FBFB17F2D347EA6AA65421D

This is the GnuPG public key that corresponds to the private key that signs the Python 

tarball uploads. Gnu Privacy Guard is a tool that uses cryptography to achieve security 

guarantees. In this case, the key allows us to know that the source has not been tampered 

with. It is a good idea to add defense-in-depth and to use multiple ways to verify that 

our sources are authentic. This Dockerfile, or ones similar to it, are often used in 

Continuous Integration environments, where they are run repeatedly and automatically. 

It only takes a one-time breach to severely compromise infrastructure. Ensuring the build 

fails if the source is not guaranteed can eliminate a costly production breach.

Keeping the key fingerprint in the Dockerfile, which is probably checked into source 

control, is a way to root the trust in checked-in code.

RUN apt-get update

RUN apt-get install -y --no-install-recommends \

        tcl \

        tk \

        dpkg-dev \

        tcl-dev \

        tk-dev

Above and beyond the buildpack, we need some extra libraries. We install those here.

RUN wget -O python.tar.xz \

    "$PREFIX/${PYTHON_VERSION%%[a-z]*}/Python-$PYTHON_VERSION.tar.xz"

Next, we download the Python source tarball. Defining the variables above allows 

us to keep this line short and succinct. In addition, even though not necessary for stable 

releases, this command line will work line for versions like 3.6.1rc2 – necessary if we 

want to use this Dockerfile, with only minor changes, to test compatibility with release 

candidate releases.

RUN wget -O python.tar.xz.asc \

    "$PREFIX/${PYTHON_VERSION%%[a-z]*}/Python-$PYTHON_VERSION.tar.xz.asc"
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We download the detached public key signature. Though we download both 

from TLS-enabled website, one that is prefixed with https and not http, checking the 

signature is a good defense-in-depth measure.

RUN export GNUPGHOME="$(mktemp -d)" && \

    gpg --keyserver ha.pool.sks-keyservers.net --recv-keys "$GPG_KEY" && \

    gpg --batch --verify python.tar.xz.asc python.tar.xz

This command line verifies the public key. Note that this is an example of a 

command that does not change the local state. However, since any failing command will 

stop the docker build process, a key verification error will lead to a halted build.

RUN mkdir -p /usr/src/python

We create a directory for the unpacked source code. Note that since this is a multi- 

stage build, we are not concerned about the eventual cleanup of this directory – the 

entire container will be cleaned up!

RUN tar -xJC /usr/src/python --strip-components=1 -f python.tar.xz

We unpack the Python tarball into the newly created directory.

WORKDIR /usr/src/python

We set the current working directory to the source code directory. This makes the 

subsequent build instructions, which need to be run from inside of it, shorter and easier 

to understand.

RUN gnuArch="$(dpkg-architecture --query DEB_BUILD_GNU_TYPE)" && \

  ./configure \

    --build="$gnuArch" \

    --enable-loadable-sqlite-extensions \

    --enable-shared \

        --prefix=/opt/custom-python/

We run the ./configure script, with a custom prefix. The custom prefix, /opt/custom- 

python, is what ensures us that we will be in a pristine directory. We also give a few 

options to make sure our Python build is correct:

• The architecture is calculated using dpkg-architecture and passed 

to the configure script explicitly. This is more reliable than having the 

configure script auto-detect it.
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• We enable the sqlite module. Since it is a built-in, many third-party 

modules will depend on it without declaring a dependency, so it is 

important to make sure it is part of the installation.

• We enable the shared library. This is not strictly necessary in our 

example, but it allows cases of embedding Python.

RUN make -j

Calculating the exact number of CPUs is nontrivial. In this example, we just run 

make with maximum parallelism. This is what the -j flag does. Note that in general, 

it is recommended to set the parallelism to a reasonable level, by giving -j a number 

parameter, for example, -j 4.

RUN make install

This stage will copy the files, with correct permissions, into the installation directory.

RUN ldconfig /opt/custom-python/lib

We add the directory to our library search path – otherwise Python (which is 

dynamically linked) cannot run.

RUN /opt/custom-python/bin/python3 -m pip install twisted

We install Twisted. Among many other benefits of Twisted, it contains a convenient 

default web server, which is useful for demos.

FROM debian:stretch

For the production build, we start with a suitably minimal Debian distribution – 

keeping it as a matching version to the buildpack.

COPY --from=0 /opt/custom-python /opt/custom-python

We copy the entire environment – including the installed third-party libraries: in this 

case, Twisted and its dependencies.

RUN apt-get update && \

    apt-get install libffi6 libssl1.1 && \

    ldconfig /opt/custom-python/lib
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We install necessary libraries and run ldconfig in the production image.

ENTRYPOINT ["/opt/custom-python/bin/python3", "-m", "twisted", "web"]

We set the entry point to run the demo web server built into Twisted. If we build and 

run this docker image, the web server will be running – and if we export the port, we can 

even check it with our browser.

 Virtualenv
The alternative to a full environment is a “lightweight” environment – or as they have 

come to be known, a virtual environment. When using Python 2.7, we create a virtual 

environment using the virtualenv package. It is possible to install virtualenv using 

pip, but this has issues: after all, if the reason to create a virtual environment is to avoid 

changing the real environment, this undoes the benefit. One way is to get virtualenv the 

same way we got Python. Another one is to install it using

pip install --user virtualenv

This will put it under the user directory (on Docker, usually under /root). It often 

means virtualenv is not on the default shell path – but since it is on the Python path,

python -m virtualenv <directory>

will still work and create a virtual environment.

When using Python 3.x, these concerns are moot: python -m venv is the best way 

to create a virtual environment for Python 3.x. Note that some documentation has not 

been updated, and virtualenv does work on Python 3.x – which makes it harder to make 

sure all of these are up to date. However, the existence of a venv built-in module highly 

simplifies bootstrapping virtual environments.

One of the benefits of installing code in a virtual environment is that we know 

that the virtual environment’s directory contains no more than what is necessary 

to run it – except for the interpreter. This feature will come in handy when we build 

Docker images.

Putting all these ideas together, we might end up with a Dockerfile like this:

FROM python:3
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Since we are going to build a virtual environment, we need to have a full 

environment already installed. One of the easiest ways to do it is to start with the python 

container.

RUN python -m venv /opt/venv-python

We create a virtual environment in /opt/venv-python.

RUN /opt/venv-python/bin/pip install Twisted

We install Twisted in it. Note that installing Twisted means installing a few packages 

with C extensions – this stage requires a C compiler. The python:3 container image has 

all the tooling needed for building C extensions.

FROM python:3-slim

The python:3-slim container image has no build tools. Since this is the image we 

will ship, this means we do not ship a C compiler to production.

COPY --from=0 /opt/venv-python /opt/venv-python

We copy the virtual environment. Note that virtual environments have several hard- 

coded paths in them. This is why we make sure to create it with the same path where it 

will be deployed.

ENTRYPOINT ["/opt/venv-python/bin/python", "-m", "twisted", "web"]

The entry point is nearly identical to the one before. The only difference is the path – 

this time pointing to a virtual environment, not a full one.

 Pex
The most self-contained option is that of Pex – a Python executable format 

pioneered by Twitter. Pex uses a combination of features of UNIX, Python, and Zip 

archives to have a one-file format that contains all application code and third-party 

dependencies.

A Pex file is supposed to be marked executable at the file system level, using chmod 

+x, for example, and is produced with a shebang line (!#) that calls a Python interpreter. 

Since Zip archives have the unique property that they are detected, and parsed, by their 

final bytes – and not their first bytes – the rest of the file is a Zip file.
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When the Python interpreter accepts a Zip file, or a Zip file with arbitrary content 

prepended, it treats it as a sys.path addition, and will additionally execute the __main 

__.py file in the archive. Pex files generate a custom __main__ .py that calls either an 

entry point or executes a Python module, depending on the parameters passed to the 

Pex builder.

Pex can be built either by using the pex command line (installed with pip install 

pex), by using pex as a Python library and using its creation API, or by most modern 

metabuilders –Pants, Bazel, and Buck all have the ability to generate Pex output.

FROM python:3

RUN python -m venv /opt/venv-python

We create a virtual environment. While we are not going to ship this environment, it 

will help us build the Pex file.

RUN /opt/venv-python/bin/pip install pex

We install the pex utility.

RUN mkdir /opt/wheels /opt/pex

We create two directories to contain different kind of products.

RUN /opt/venv-python/bin/pip wheel --wheel-dir /opt/wheels Twisted

We use pip to build the wheels. This means we are going to use the pip dependency 

resolution algorithm. While not objectively better than the pex algorithm, it is the 

one used everywhere else. This means that if packages run into problems with the 

pip dependency resolution process, they will add whatever hints they need to install 

correctly. There is no such guarantee about pex, which is less frequently used.

RUN /opt/venv-python/bin/pex --find-links /opt/wheels --no-index \

                             Twisted -m twisted -o /opt/pex/twisted.pex

We build the Pex file. Note that we tell pex to ignore the PyPI index, and only collect 

packages from a specific directory – the one where pip put all the wheels it built. We 

configure the Pex file to behave as though we run Python with -m twisted, and we 

put the output in /opt/pex. While the suffix is not strictly necessary, it is useful when 

inspecting Docker container images to help understand how things are running.

FROM python:3-slim
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Once again, we avoid shipping build tools to production using a second-stage slim 

image.

COPY --from=0 /opt/pex /opt/pex

We copy the directory – which, this time, only has one file. Also note that this 

time, the file is relocatable: it is possible (though we do not do this here) to copy to a 

different path.

ENTRYPOINT ["/opt/pex/twisted.pex", "web"]

Some of the logic that in the previous examples resides in the ENTRYPOINT (that we 

want to run python -m twisted) is now built into the Pex file. Our ENTRYPOINT is now 

shorter.

 Build Options
Regardless of the way Python is run, the way the Docker container is built also has a lot 

of options.

 One Big Bag
One way is to eschew a multi-stage build altogether and build a container with whatever 

tools we need to build the environment. This often means containers that are big and 

have many layers.

While this approach is certainly simple, straightforward, and easy to debug, it does 

have downsides. The container size can easily start being a problem in production. The 

number of layers, similarly, slows down container deployment. Finally, putting a lot of 

packages in a container that is exposed to potentially hostile user input can lead to more 

attack vectors than are necessary.

 Copying Wheels Between Stages
Another way is to build all wheels in the build stage, including any binary wheels, and 

then copy them over to the production stage. The production stage still needs, in this 

case, enough tooling to create a virtual environment and install those wheels in it – 

although since venv is a Python built-in module in Python 3, this is no longer usually a 

hardship.
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There are two other issues: the wheels stay around after being installed, since it is 

impossible to really remove a file after switching layers; and it often creates extra layers 

(though with clever reordering and backslash-continued lines, this can sometimes be 

avoided).

 Copying Environment Between Stages
Another deployment option is to copy an environment (which could be full or virtual) 

from the build stage to the production stage. This has the advantage of being fast 

and straightforward, but the disadvantage that there is no compatibility checking, 

dependency checking, or location checking. Still, if there are decent tests for the 

resulting container, those will usually find basic incompatibility issues.

 Copying the Pex Executable Between Stages
Finally, if a Pex executable file is produced in the build stage, copying it is 

straightforward. The Pex file, of course, will look for dependencies at runtime. 

However, it will do a reliable check, so even starting the container is enough to test 

for that.

It is also relocatable, so it does not matter where it is copied from – or where to. 

Pex and Docker are often a good pairing. However, the inherent limitations of Pex (for 

example, poor pre-build binary wheels support or poor PyPy support) sometimes make 

it a nonstarter.

 Automation with Dockerpy
A package called dockerpy allows automation of Docker steps with Python. While 

usually for running containers in production, we will use an orchestration framework, 

this is often useful to build and test containers. The dockerpy library allows us to 

carefully fine-tune the context we send to the Docker daemon – using the tarfile 

Python module, it is possible to craft exactly the context needed.
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 Twisted on Docker
 ENTRYPOINT and PID 1
The process in Docker’s ENTRYPOINT Dockerfile instruction will have, inside the 

container, process ID 1. Process ID 1 has a special responsibility on Linux. When a 

process’s parent dies before it dies, PID 1 “adopts” it – becomes its parent. This means 

that when the child process dies, PID 1 needs to “reap it” – wait on its exit status in order 

to clear out the process entry from the process table.

This responsibility is a little weird, and many programs are not set up for it. When 

running a program that does not reap adopted children, the process table will fill up. In 

the best case, this will crash the container. In the worst case, when process limits have 

not been carefully set up, this can crash the entire machine (virtual or physical) the 

container is running on.

Luckily, any Twisted program is set up to be PID 1. This is because Twisted’s process 

infrastructure will automatically reap both expected and unexpected children.

This means when building a container, if we are using it to run WSGI 

applications, or Klein applications, or a Buildbot master, it is fine to have it be the 

entry point.

In fact, for this reason, if there is any custom start-up code to do, consider 

implementing it a tap plugin. This way, Twisted can still be the entry point.

 Custom Plugins
When writing a Twisted application to run in Docker, we almost always want to deliver it 

as a custom tap plugin. This allows the ENTRYPOINT to be simply

["/path/to/python", "-m", "twisted", "custom_plugin"]

This means the plugin can get any arguments passed to the docker run 

command – since those arguments are directly added to the ENTRYPOINT arguments. 

It also means the plugin can directly read any environment variables passed to the 

docker run via --env.

In a plugin, the makeService function is the one that returns the running service. 

Note that the plugin can do any initialization it wants in that function – the event loop is 

not yet running at that point.
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 NColony
Sometimes, it is necessary to run more than one process inside a Docker container. 

Perhaps some side process to do file cleanup, or maybe a multi-process setup in order 

to use more than one CPU. In those cases, a process supervisor is useful – to run several 

processes, monitor them, and restart them if necessary.

NColony is a Twisted-based process supervisor. It is a small shim around 

twisted.runner.procmon, which allows several flexible configuration options. 

NColony consumes configuration as a directory of JSON-formatted files describing 

processes.

Of course, it is possible to create those files directly by opening a file and writing 

JSON into it. However, NColony also comes with a command-line utility – python -m 

ncolony ctl – to create such files as well as a Python library – ncolony.ctllib.

One advantage of the directory model is that it means it interacts well with the 

layer model of Docker container. A local base container can have an ENTRYPOINT of 

["python", "-m", "twisted", "ncolony", ...], and even several base processes 

in the configuration directory – typically /var/run/ncolony/config/. Then, specific 

containerd can dump their own files, created in the build stage of the container using, for 

example, python -m ncolony ctl, in this directory. The resulting container would run 

both the side process and the main one.

Here is an example putting much of what has been talked about this chapter into 

concrete detail:

FROM python:3

RUN python3 -m venv /application/env

RUN /application/env/bin/pip install ncolony

RUN mkdir /application/config /application/messages

RUN /application/env/bin/python -m ncolony \

    --config /application/config \

    --messages /application/messages \

    ctl \

    --cmd /application/env/bin/python \

    --arg=-m \

    --arg=twisted \

    --arg=web
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FROM python:3-slim

COPY --from=0 /application/ /application/

ENTRYPOINT ["/application/env/bin/python", \

            "-m", \

            "twisted", \

            "ncolony", \

            "--config", "/application/config", \

            "--messages", "/application/messages"]

We go over this line by line – there is a lot packed here.

FROM python:3

One way to get our Python environment is to use the official Docker (“library”) 

image. This is based on the Debian distribution, and has Python – as well as all tools 

needed to build Python, and Python extension modules, in it.

RUN python3 -m venv /application/env

We create a virtual environment in /application/env. As mentioned before, Python 

3 makes virtual environments a built-in notion, and we take full advantage of it.

RUN /application/env/bin/pip install ncolony

For better reproducible builds, it would be better to copy a requirements file in – 

ideally one that also has hashes – and pip install that. However, it is easier to see what 

is going on when we directly use a package name.

RUN mkdir /application/config /application/messages

NColony needs two directories to function properly: one for configuration and one 

for messages. We create both of them under /application. Configuration is the set of 

processes that need to be run, and their parameters. Messages are transient requests – 

usually ones to restart one or more processes.

RUN /application/env/bin/python -m ncolony \

We run a subcommand from the NColony we have installed inside the /

application/env virtual environment.

--config /application/config \

--messages /application/messages \
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We pass the parameters of NColony. Though in this case the messages directory is 

not used, it is good to pass them both to all commands.

ctl \

Control (ctl) is the NColony subcommand that controls configuration.

--cmd /application/env/bin/python \

We run the same Python we were run with. Note that in general, this is not necessary 

for NColony. However, it would be confusing to write code that uses radically different 

interpreters for different uses.

--arg=-m \

--arg=twisted \

The process NColony is monitoring does not have to be a Twisted process, but in our 

case, it is going to be a Twisted process – in fact, another tap plugin.

--arg=web

When no arguments are given, the web tap plugin displays a demo web application. 

It is surprisingly useful for quick demos and checks – as in this case.

FROM python:3-slim

The second FROM line begins the production Docker image. Note – everything built 

up to this point will be thrown away when the build is done. The only reason the earlier 

steps exist is to copy from that ephemeral stage. This source image is a minimal Debian, 

plus an installed Python 3.

COPY --from=0 /application/ /application/

We copy the entire application directory. Since this directory has both the virtual 

environment and the NColony configuration, there is nothing else we need. The 

simplicity of this line explains the value of all the careful work we did to set this 

directory up.

ENTRYPOINT ["/application/env/bin/python", \ "-m", \

            "twisted", \ "ncolony", \

            "--config", "/application/config", \

            "--messages", "/application/messages"]
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Finally, we configure the entry point. Since NColony itself is a tap plugin, once again 

the command we run is python -m twisted <plugin>.

In this example we could have run the web server directly as the entry point. 

However, a more realistic example that really needs several processes would obscure the 

basic mechanics of getting NColony to run in Docker.

 Summary
Docker, Python, and Twisted are complementary technologies. Docker, with multi- 

stage builds and registries, gives Python a standardized way to specify build process and 

packaging. Twisted, with its process management primitives, gives Docker a useful PID 

1 that either does useful work by itself – for example, a web server – or a powerful base 

layer – with NColony being a good fit for the Docker layer model.

Docker is a practical way to build, package, and run Twisted applications, and 

Twisted is a useful thing to run inside Docker.
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CHAPTER 5

Using Twisted as a  
WSGI Server
 Introduction to WSGI
WSGI – the Web Standard Gateway Interface – is a Python standard. It is loosely based 

on the CGI – common gateway interface – standard, which web servers used to interact 

with scripts. With higher loads came the need to have a persistent Python process, 

inside the web server. Originally, each server had its own unique way of running Python 

applications. That meant each application had to decide on a web server and could not 

move away. WSGI was designed as a low-level standard for web applications written 

in Python to interact with web servers that can run Python internally (either by being 

written in Python themselves, or by embedding the Python interpreter).

The WSGI standard defines an interface between two things: the WSGI web 

application and the WSGI web server.

Twisted has a web server that, while implementing its own unique web-based APIs, 

also implements the WSGI standard. Because it implements the WSGI standard, it can 

run any Python web application that supports WSGI.

Usually, Python web applications will not interact with WSGI directly. Instead, it is 

the responsibility of web frameworks – such as Django, Flask, or Pyramid – to interface to 

WSGI as applications, and present a higher-level interface to the web application. These 

interfaces are specific to the web framework – it is not expected that an application will 

be easy to port from, say Django to Pyramid.

As an analogy, think of the choice of the web framework as similar to the choice 

of a programming language, and the choice of a web server as similar to choosing an 

operating system. We expect that moving between operating systems will allow us to 

keep most code intact (portability) but we do not expect the same when switching 

programming language.
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From the point of view of web servers, supporting WSGI means that they are agnostic 

to the web framework used – running a Pyramid application is the same as running 

Flask. From the point of view of web frameworks, supporting WSGI means that they are 

agnostic to the web server used – running on top of Apache is the same as running on 

top of uwsgi.

WSGI was not born in a vacuum. At the time it was designed, there were already 

many servers and many Python web frameworks. Because of this, WSGI was designed 

to be easy to implement – both on the side of the servers, and on the side of the web 

frameworks. Indeed, its similarity to CGI is the result. Many of these frameworks already 

supported CGI, and adding WSGI support included little work.

WSGI was designed in 2003. The names of many of the frameworks it mentions – 

Quixote and Webware, for example – are now relics of early experimentation with web 

frameworks. Though it does not explicitly mention it by name, the only server that 

mattered back then was Apache – which has fallen dramatically in popularity since.

However, despite the fact that both the popular frameworks and popular servers are 

more recent, the WSGI standard has endured remarkably well.

The definition of the WSGI API is subtle. The standard it is trying to abstract, HTTP, 

is complex. Modern web applications need access to much of that complexity. The 

definition spans two documents and can sometimes appear overwhelming.

This section will break down WSGI and explain the parts that make it up.

 PEP
All major enhancements to Python go through a PEP (Python Enhancement Proposal) 

process. WSGI, as a major feature, was originally described in PEP 0333. PEP 0333 was 

originally created in December of 2003 and finalized in August of 2004.

While this PEP is still correct for Python 2.x, PEP 3333 describes how to implement 

WSGI for both Python 2.x and Python 3.x. PEP 3333 was created in September of 2010 

and finalized in October of 2010.

It was a fairly minor change to PEP 0333, dealing with proper implementation of 

WSGI across Python 2.x and Python 3.x. In order to understand why it was necessary, it 

is important to understand what changed between Python 2.x and Python 3.x.

One of the major changes between Python 2.x and Python 3.x was the handling 

of unicode – and specifically, the bytes, string, and unicode types saw major changes. 

WSGI, as a standard dealing with (ultimately) transmitting bytes over TCP connections, 

needed to be refined to clarify which types belong where in Python 3.x.
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While a detailed explanation of those changes is beyond our current scope, some 

explanation is important to clarify those issues. Both Python 2.7+ and Python 3.x have 

a bytes type, which is a sequence of bytes, and a unicode type, which is a sequence of 

unicode code points. The string type, however, is equivalent to the bytes type in Python 

2.7+ and to unicode in Python 3.x.

An encoding is a (possibly partial) map between bytes and unicode. ASCII is one 

such encoding – mapping bytes under 128 to unicode points of the same value, and 

declaring all other bytes to be invalid. Latin-1 (or ISO-8859-1) is an encoding that maps 

all bytes to unicode points of the same value – and if no unicode point of that value 

exists, declares the byte to be invalid.

In HTTP, the protocol that governs the web, it is divided into headers, followed by a 

body; and if the body is textual, the headers will indicate what encoding it is in.

The issue of encoding the headers themselves is subtle: PEP 3333 treats them as 

Latin-1 (also known as ISO-8859-1), while Twisted encodes them as UTF-8. The safest 

thing to do is to make sure that all headers stick to the common subset of UTF-8 and 

Latin-1: ASCII. This makes sure that no matter what encoding/decoding our headers go 

through, they will remain intact.

In PEP 3333, the headers are expected to be the native string type – bytes for 

Python 2.x and unicode for Python 3.x – while the content is always expected to be 

bytes.

PEP 3333, as well as PEP 0333, also describes the idea of WSGI middleware – 

something that looks like a server to the application, and like the application to the 

server. While some WSGI middleware exists, note that some popular frameworks – 

Django and Pyramid, notably – have their own native notions of middleware. Flask, 

however, relies on WSGI middleware.

 Raw Example
The simplest WSGI application is simple indeed:

def application(

                environment,

                start_response):

    start_response('200 OK', [('Content-Type', 'text/html')])

    return [b'hello world']
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We will go line by line and explain the three main parts that every WSGI application 

should have:

def application(

In Python, function definitions accomplish two things:

• Create a function object.

• Assign it to a name.

This function definition, in particular, creates a function object and assigns it to the 

name application.

This means that application now points to a callable object. That is what WSGI 

applications are, a per PEP 3333: callable objects.

environment,

The first parameter is the so-called “environment.” This name hearkens back to 

WSGI’s origins as a quick adaptation of the CGI standard.

The CGI standard deals with how web servers execute scripts. A part of this standard 

defines the environment variables that those scripts have access to. Indeed, most of the 

data about the web request is available from environment variables under CGI. The 

WSGI standard took the same variable names, and the notion of an environment, and 

called it the first parameter to the WSGI application.

The environment parameter is a Python dictionary, mapping specified names to 

data about the web request. In the example application above, this parameter was 

ignored, since we always use a constant value. If this was all we needed to do, we 

would just have a static HTML page – most real applications depend, in some way, 

on user input.

start_response):

The second parameter, conventionally known as start_response, is a subtle – and 

often misunderstood – parameter. It is a callable accepting two arguments: the HTTP 

response code and the HTTP headers.

start_response('200 OK', [('Content-Type', 'text/html')])
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The first thing we do is call the start_response callable. The first argument is 200 

OK, indicating a regular successful HTTP response. The second argument is a list of 

headers. In this case, the only header we send is the Content-Type header. This indicates 

that our response should be interpreted by the browser as HTML text.

return [b'hello world']

The next line returns a list of byte strings. Since we did not include an explicit 

encoding in our Content-Type, the browser will use its default encoding. This is 

reasonably safe in this case – modern browsers’ encoding detection will always work 

correctly with bytes in the ASCII range.

In general, depending on browsers to be smart is not a good idea: the best approach 

is to usually to use UTF-8, and indicate it clearly in the Content-Type.

This is important, since HTML is always defined in terms of unicode. The browser 

will translate this to the unicode string u'hello world', which will display the greeting 

message to the user.

We will assume, for the rest of this chapter, that this code is in a file called

wsgi_hello.py.

 Reference Implementation
Although PEP 333 (and 3333) has suggested that there is no need to implement WSGI in 

core Python, experience proved differently. The module wsgiref implements a simple 

web server, which can support WSGI applications.

The following command line will work in any bash-like shell, where quoting allows 

lines to be broken. This is done for readability – substituting semicolons for the first two 

line breaks, and removing the rest, would result in a completely portable command – 

that is, however, harder to read and explain line by line.

python -c '

from wsgiref import simple_server

import wsgi_hello

simple_server.make_server(

       "127.0.0.1",

       8000,

       wsgi_hello.application

).serve_forever()

'
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We will go through this line by line:

python -c '

Python has an option -c, which treats the next argument as Python code and 

executes it. This is a convenient way to execute short programs without having to put the 

code in a separate file.

from wsgiref import simple_server

Import the wsgiref.simple_server module. This module implements a single- 

threaded single-process synchronous web server. While this server is not up to 

production, it is sometimes convenient for simple demonstrations.

import wsgi_hello

The assumption that the code above was in a file called wsgi_hello.py is important 

here. It is also important that:

• The file is in the current working directory.

• The current working directory is on the Python module path when 

using -c.

This will become important later, in the discussion about the subtleties of finding the 

WSGI application code.

simple_server.make_server(

This is the main function in the simple_server module – the one that creates a 

simple server.

"127.0.0.1",

Many examples (including the one in the official documentation) will use "" here. 

This will cause the WSGI server to bind to 0.0.0.0, the so-called “any” interface. Note 

that wsgiref is not a production server – but even if it was, we are using it here to run test 

and example code. Binding it to the any interface means that potentially, depending on 

firewall settings, outsiders can connect to the code.

Instead, in this example we bind to "127.0.0.1," the local interface. Only programs 

running on the same machine can connect now. This is useful – we can easily test the 

running server with a browser, but only one running on the same machine as the server.

8000,
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The standard web port is 80, as defined by the IANA standard. However, on UNIX 

systems, ports below 1024 are reserved for the administrator (root) user account. This 

prevents unprivileged users from “hijacking” system ports. While the specific thread 

model that leads this need is receding in importance, now that it is uncommon to have 

many unprivileged users to directly log in to the system running the web server, it is still 

a component of threat mitigation and, most importantly, still enforced on modern UNIX- 

like systems such as Linux.

It became a tradition in development to bind to a port that “looks similar,” such as 80, 

8888, or 8080.

wsgi_hello.application

This is the actual WSGI application. As we mentioned, a WSGI application is a 

callable Python object.

).serve_forever()

Having created the server, we run it in an infinite loop.

This is an easy way to quickly run WSGI applications, for testing, with no 

dependencies other than Python’s standard library.

 WebOb Example
The WebOb package is an example of a low-level web framework. It is usually not used 

directly, although it is certainly possible to do so.

import webob

def application(environment, start_response):

    request = webob.Request(environment)

    response = webob.Response(

                     text='Hello world!')

    return response(environment, start_response)

Here is the line-by-line explanation:

import webob

The WebOb library is small enough so that everything we need is at the top level.

def application(environment, start_response):
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The WSGI application itself, in this case, is just a regular function – as though we 

were not using any framework.

request = webob.Request(environment)

The request object is built from the WSGI environment dictionary. Though this 

application does not inspect the request object, it has a parsed view of many parameters: 

URLs and query parameters, as well as cookies and more.

response = webob.Response(

We create the response object. Creating the response object frees us from dealing 

with some lower-level details.

text='Hello world!')

For example, here we set the text property, without having to care about 

transforming it to a list of byte strings.

return response(environment, start_response)

The response object knows how to call start_response and write out its body.

 Pyramid Example
Pyramid is a framework intended to impose minimal overhead but scale well to large 

projects.

from pyramid import config, response

def hello_world(request):

    return response.Response('Hello World!')

with config.Configurator() as conf:

    conf.add_route('hello',  '/')

    conf.add_view(hello_world, route_name='hello')

    application = conf.make_wsgi_app()

We go through the application line by line.

from pyramid import config, response
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Pyramid has quite a few moving parts. For this example, we only need these two 

modules.

def hello_world(request):

Note how hello_world is a regular Python function. It is not wrapped in any way. 

This makes it easier to reuse it: for example, we can write tests for it, or use it in a 

different function.

return response.Response('Hello World!')

We create a response object, similar to using WebOb or werkzeug.

with config.Configurator() as conf:

Using the configurator as a context manager means that at the end of the block, 

assuming no exceptions were raised, it will automatically commit the configuration and 

end it.

conf.add_route('hello', '/')

Routing in Pyramid is a two-step process. Mapping a URL to a “logical name” is the 

first one.

conf.add_view(hello_world, route_name='hello')

The second step is to map the logical name to a view.

application = conf.make_wsgi_app()

Finally, we ask the configuration to represent itself as a WSGI application.

 Getting Started
While the documentation for running WSGI applications through Twisted is all correct, 

it is distributed through a handful of documents. Here we will show a complete working 

example for running a WSGI application, building it one block at a time.
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 WSGI Server
The Twisted WSGI server is an option on the web tap plugin. In the demonstrations here, 

we will use uniquely the python -m twisted way of invoking the plugin. Though it is a 

little more long winded, it ends up being a useful thing to use in production.

Though it is not using WSGI, it is useful to see how to run the web plugin in general – 

many of the options will end up being relevant to operating a WSGI server, and it is 

useful to be able to operate the “listening side” on its own for troubleshooting.

Assuming Twisted is installed in the environment, it is possible to run:

$ python -m twisted web --port tcp:8000

and get a web server running the so-called “demo.” The demo web application just greets 

with a hello message – in this case, on port 8000.

Running a WSGI application is easy – we have six of them above!

$ python -m twisted web --port tcp:8000 --wsgi wsgi_hello.application

$ python -m twisted web --port tcp:8000 --wsgi werkzeug_hello.application

$ python -m twisted web --port tcp:8000 --wsgi flask_hello.application

$ python -m twisted web --port tcp:8000 --wsgi webob_hello.application

$ python -m twisted web --port tcp:8000 --wsgi pyramid_hello.application

$ python -m twisted web --port tcp:8000 --wsgi django_hello.application

It is important to note that this was actually easier than using the reference 

implementation. For the reference implementation, we had to write a little shell script 

that included a 4-statement Python blob as a -c argument. While it is nice that the 

Python command line and the UNIX shell cooperate to give those useful facilities, it is 

nice to be able to do without them.

The --port option is actually more powerful than it seems.

$ python -m twisted web --port tcp:8000:interface=127.0.0.1 \

                        --wsgi wsgi_hello.application

This will run the web server only on the local host interface, and make it unreachable 

from the outside. Probably something good when developing your next-gen web 

application using a coffee shop’s network!

The full power of endpoints is available in the --port command-line option, 

including plugins. Some endpoint plugins will be important enough to merit a special 

mention later.
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Note that unlike other full-featured WSGI servers, Twisted does not have a 

configuration file. There are a handful of options on the command line for small tweaks, 

but a lot of things just assume the defaults – for example, the size of the WSGI thread 

pool.

Customizing those is done via a custom plugin.

# put in twisted/plugins/twisted_book_wsgi.py

from zope import interface

from twisted.python import usage, threadpool

from twisted import plugin

from twisted.application import service, strports

from twisted.web import wsgi, server

from twisted.internet import reactor

import wsgi_hello

@interface.implementer(service.IServiceMaker, plugin.IPlugin)

class ServiceMaker(object):

    tapname = "twisted_book_wsgi"

    description = "WSGI for book"

    class options(usage.Options): pass

    def makeService(self, options):

        pool = threadpool.ThreadPool(minthreads=1, maxthreads=100)

        reactor.callWhenRunning(pool.start)

        reactor.addSystemEventTrigger('after', 'shutdown', pool.stop)

        root = wsgi.WSGIResource(reactor, pool, wsgi_hello.application)

        site = server.Site(root)

        return strports.service('tcp:8000', site)

        serviceMaker = ServiceMaker()

We go through the non-import lines one by one:

@interface.implementer(service.IServiceMaker, plugin.IPlugin) 

This is in general how to write a Twisted tap plugin. It marks a class as

• Something that is a plugin (plugin.IPlugin);

• Something that knows how to transform a command line to a service 

(service.IServiceMaker).
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It does so by using the zope.interface framework, which allows explicit marking 

of interfaces and their implementations – as well as programmatic access to that 

information. This programmatic interface is what allows the Twisted plugin system to 

work.

class ServiceMaker(object):

The name of the class is actually not important. The only important thing is that the 

name of the instance is serviceMaker.

tapname = "twisted_book_wsgi"

This is the name of the plugin to be used as the first argument to python -m 

twisted.

description = "WSGI for book"

Usually the description should be more informative, since this appears in the help 

text when running python -m twisted without an argument.

class options(usage.Options): pass

Since this is a minimal plugin, we “hard code” everything. It is not really hard 

coding – at some point, the decision of which port, and which app, has to be made. 

Making it at plugin writing time often makes sense, especially if using something like 

twelve-factors and querying all configurations from environment variables.

However, it is often useful to at least make the port option available from the 

command line.

def makeService(self, options):

This function accepts the options instance after it has parsed the command line.

pool = threadpool.ThreadPool(minthreads=1, maxthreads=100)

This is not an example of a good configuration. In fact, this is almost certain to be 

a bad thread pool configuration. However, often some fine-tuning of the number of 

threads does make sense. This obviously depends on the application, machines, and 

usage characteristics.

reactor.callWhenRunning(pool.start)
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Start the pool when the reactor starts.

reactor.addSystemEventTrigger('after', 'shutdown', pool.stop)

Shut down the pool when the reactor finishes.

root = wsgi.WSGIResource(reactor, pool, wsgi_hello.application)

Build the root resource. Here is where we combine a specific thread pool with a 

specific WSGI application.

site = server.Site(root)

Build the Site object, which actually understands HTTP, from the resource object.

return strports.service('tcp:8000', site)

Build an endpoint and listen for HTTP protocol.

serviceMaker = ServiceMaker()

As mentioned, the actual plugin depends on an instance – not a class. We create an 

instance of the class we defined.

This allows us to run the same hello world application with a better (or, in this case, 

worse) tuned thread pool. It is also possible to build a plugin for many other reasons – 

some of them we will cover in the rest of the chapter.

 Finding Code
The single most important thing the Twisted WSGI server needs to be able to do is to find 

the WSGI application it needs to run. However, this has been traditionally a tricky thing.

 Default Path
When starting up Python using -c or -m, the current directory, . is on the import path. 

Above, when using the reference implementation, we used -c, and when using the 

Twisted WSGI server, we used -m.

However, when running a Python directly with a script, the script's directory, not 

the current directory, is added to the path instead. Since this is how console scripts entry 

points work, if we use twist, instead of python -m twisted, the current directory is no 

longer on the import path.
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Relying on the current directory being in the path works – right up to when it 

does not, for seemingly small reasons. While it is fine for demonstration purposes, for 

production uses, we need something stronger.

 PYTHONPATH
One way is to set the environment variable PYTHONPATH to a value. The first question 

is which value: some do PYTHONPATH=., whereas others PYTHONPATH=$(pwd). The first 

option has the advantage that it can follow around on the shell – but that strength is 

equally its weakness, because something as simple as cd can break it.

The next one has the advantage of being concrete – but again, has the problem of action 

at a distance, where running Python at some later time can suddenly import an old WSGI 

app. This is especially a problem for projects that look for things on the Python path – like 

Twisted’s plugin implementation. Having an extra plugin show up can be quite surprising.

 setup.py
The best solution is to write a setup.py file and turn the code into a proper package. 

A name will have to be chosen, true, but usually the name of the topmost module will 

be good enough. A version has to be chosen, but if no intent to distribute it exists, 

0.0.0dev1 is an easy, safe choice.

For development purposes, it is often easiest to install it into a virtual environment 

with pip install -e .. This will track changes as these are made to source files, 

allowing minimal hassle while integrating with the virtual environment system – or any 

other virtualenv-like system, such as Nix or Conda.

 Why Twisted
Twisted is certainly not the only option for running WSGI applications. Gunicorn, uwsgi, 

and Apache’s mod_wsgi can all do that. However, Twisted has a few specific benefits.

 Production vs. Development
Most web frameworks come with their own built-in server, often based on the wsgiref 

implementation. Without fail, those web servers will have warnings on them like “DO 

NOT USE THIS SERVER IN A PRODUCTION SETTING. It has not gone through security 
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audits or performance tests.” (This is a quotation from Django’s documentation.) In the 

worst cases, these warnings are not heeded – for ignorance or expediency –and websites 

go live on top of development servers.

In the best cases, these warnings are addressed, and developers use the development 

server, while production uses a production-grade server. This leads to environment 

drift – some subtle differences in the implementation of WSGI, for example, means some 

behavior in production does not reproduce in development. On top of that, developers 

will not be familiar with the regular operations of the production-grade web server. 

The logs, the error messages, and the failure modes will all be unique – often leading to 

disconnect between developers and operations.

Last, but not least, when using two web servers, there needs to be some logic 

deciding when to run where. Often tooling can get confused and accidentally run the 

development server in production. Since the development server is not completely 

broken, this often does not result in immediate breakage, but a weird pattern of 

problems – perhaps some obscure performance issue.

Twisted, in contrast, is usable for both development and production usage. 

It is possible to use Twisted directly from the command line, as we have done 

above, passing just the name of the application. If, later on, it turns out to be 

useful to write a custom plugin, it is usually the case that this plugin can be used 

in development as well. This allows eliminating much potential production/

development drift.

Some of the more advanced development servers do support a useful feature – 

automatic reloading of the code. However, with a little bit of configuration, this is 

possible with Twisted too. The first step is to install our code with pip install -e, so 

that merely restarting the server will be enough. Then, instead of running the server 

directly, we run

$ watchmedo shell-command \

     --patterns="*.py" \

     --recursive \

     --command='python -m twisted web --wsgi=wsgi_hello.application' \

     .

This will automatically restart the server whenever a file changes. It takes advantage 

of the watchdog PyPI package.
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 TLS
TLS (Transport Layer Security) is the latest version of what used to be called SSL (Secure 

Socket Layer). TLS is an encryption and key-exchange protocol that works on top of TCP.

TLS does two things:

• Encryption: communication using TLS is resistant to wire-taps.

• Endpoint authentication: when using TLS, it is possible to verify we 

are talking to the endpoint we expect.

While the first one often is popular in explanation of the importance of TLS, the 

second one is even more important. It is possible that some WSGI applications hold 

little sensitive data: however, since they send HTML, JavaScript, and CSS to potentially 

vulnerable browsers, making sure that no malware is delivered over the lines is always 

important.

The way TLS authenticates endpoints is by checking certificates, signed by certificate 

authorities. In general, the two ways to get a certificate authority to sign a certificate 

are either to convince it that you are the legitimate endpoint, or to create your own 

certificate authority. While creating a real certificate authority is nigh impossible, this 

if often the preferred solution inside data centers, where the same person, or group, is 

responsible for both ends of the connection.

Assuming the key is in key.pem and the certificate is in cert.pem,

$ python -m twisted web \

            --port ssl:port=8443:privateKey=key.pem:certKey=cert.pem \

            --wsgi wsgi_hello.application

will run a TLS server with the application. Note that in this case, the environment 

dictionary will set wsgi.url_scheme to "https." WSGI applications can check that to see 

if they are behind TLS.

This is one advantage of directly implementing TLS in the WSGI server. Otherwise, 

obscure and nonstandard HTTP headers need to be consulted to know if the request is 

secure or not.
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 Server Name Indication
WSGI applications have access to the headers, which include the Host header. This 

means a WSGI application can use the host the client accessed it on as one of its 

parameters – say, serve different content on example.com and m.example.com, as a way 

to support mobile browsers.

Assuming we want the application to still have TLS, which verifies the host- name, 

this means we need to have certificates for both m.example.com and example.com, and 

know which one to serve. TLS supports an extension called “Server Name Indication,” 

which allows the client to indicate which name the server should prove it owns.

In order to support SNI in WSGI, we need to do several things:

• Get the relevant certificates and keys.

• For each host name, concatenate the certificate and key into one file 

(often using the UNIX command cat). This file should be named 

<host>.pem, e.g., m.example.com.pem.

• Put all those files in one directory, say /var/lib/keys.

• Install the txsni package from PyPI.

• Run.

$ python -m twisted web \

            --port txsni:/var/lib/keys:tcp:8443 \

            --wsgi wsgi_hello.application

This example would work well for the case where we want to serve the same content 

(securely) from two different domain names – for example, example.com and www.

example.com.

If we want to serve different content for different subdomains, for example, app.

example.com for the dynamic application and static.example.com for the static files, 

we could use the same port argument with a custom plugin that creates a twisted.web.

vhost.NameVirtualHost resource.

Here is an example plugin that does exactly that:

from zope import interface
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from twisted.python import usage, threadpool

from twisted import plugin

from twisted.application import service, strports

from twisted.web import wsgi, server, static, vhost

from twisted.internet import reactor

import wsgi_hello

@interface.implementer(service.IServiceMaker, plugin.IPlugin)

class ServiceMaker(object):

    tapname = "twisted_book_vhost"

    description = "Virtual hosting for book"

    class options(usage.Options):

        optParameters = [["port", "p", None,

                          "strports description of the port to "

                          "start the server on."]]

    def makeService(self, options):

        application = wsgi_hello.application

        pool = threadpool.ThreadPool(minthreads=1, maxthreads=100)

        reactor.callWhenRunning(pool.start)

        reactor.addSystemEventTrigger('after', 'shutdown', pool.stop)

        dynamic = wsgi.WSGIResource(reactor, pool, application)

        files = static.File('static')

        root = vhost.NameVirtualHost()

        root.addHost(b'app.example.org', dynamic)

        root.addHost(b'static.example.org', files)

        site = server.Site(root)

        return strports.service(options['port'], site)

serviceMaker = ServiceMaker()

The interesting lines are

root = vhost.NameVirtualHost()

root.addHost(b'app.example.org', dynamic)

root.addHost(b'static.example.org', files)
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This creates a root resource that redirects all requests for app.example.org to the 

dynamic resource, and all requests for static.example.org to the static one. Note that 

because we chose example.org, it is safe to point those names, for testing purposes, to 

127.0.0.1 in your hosts file.

Note that in this case, we did not choose a default. Going to a site via a different 

name (e.g., localhost) would cause a 404 error. It is possible to set the default property 

on a NameVirtualHost to set a default root for all other names.

 Static Files
One thing that using Twisted as a WSGI server allows us to do is to serve static assets, as 

well as dynamic applications, from the same web server. This includes images, JavaScript 

files, and CSS files, as well as any other files.

Twisted is was originally built to be a high-performance networking application, and 

the Twisted web server, when serving static files, can keep up with all but the most taxing 

needs. When serving those needs, however, most applications will be served behind a 

Content Distribution Network (CDN).

The CDN will mean any differences in how fast static files are served are irrelevant. 

However, in those cases, being able to set the Cache-Control headers from Python code 

is convenient. Teams that write WSGI applications in Python are usually proficient in 

Python and prefer using it to learn another highly-specific domain language such as 

most servers’ built-in configuration language.

However, to understand how to do that, it is important to delve deeper into how 

the Twisted web server API – and, as a side effect, understand a little more some of the 

things that were laid out earlier with little explanation.

 Resource Model
Most modern web application servers, if they have a routing model at all, have a pattern 

match routing model. Flask, Django, and Pyramid, as we have seen earlier, all map URL 

patterns to code in some way.

Twisted web predates all of those. Before URL pattern matching became popular, 

treating the web resources as a tree was also an alternative – and this is the alternative 

that Twisted web took. As a result, it has a model of resources that have children.
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This is not too important as long as we only used WSGI: the WSGI resource marks 

itself with isLeaf = True. This means it does not have children, and tree traversal is 

stopped when it is reached. This allows the WSGI resource to pass the path to the web 

application framework, for its own routing. Since we used a WSGI resource as the root 

resource – the one passed directly to the Site constructor – it meant that the resource 

tree model was only theoretical.

However, when combining different resources together, the details of this model are 

crucially important.

 Pure Static
In order to understand how to do static file serving with Twisted web, it is worthwhile to 

first write a plugin to do just that – with no dynamic resources.

from zope import interface

from twisted.python import usage, threadpool

from twisted import plugin

from twisted.application import service, strports

from twisted.web import static, server

from twisted.internet import reactor

@interface.implementer(service.IServiceMaker, plugin.IPlugin)

class ServiceMaker(object):

    tapname = "twisted_book_static"

    description = "Static for book"

    class options(usage.Options):

        pass

    def makeService(self, options):

        root = static.File('static')

        site = server.Site(root)

        return strports.service('tcp:8000', site)

serviceMaker = ServiceMaker()

The only line that is new here is

root = static.File('static')
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This defines a File resource. The File resource is also a leaf resource, which will 

map the rest of the URL to a path on the disk. This uses a relative path, static, to 

the current working directory. This works wonderfully for illustration purposes, but 

production applications usually will use a full path.

One way to get a full path is to package the files directly with the Python code. It takes 

a little setup hacking to package it, as well as to find it at runtime.

Here is an example setup.py, and the plugin that uses it:

import setuptools

setuptools.setup(

    name='static_server',

    license='MIT',

    description="Server: Static",

    long_description="Static, the web server",

    version="0.0.1",

    author="Moshe Zadka",

    author_email="zadka.moshe@gmail.com",

    packages=setuptools.find_packages(where='src') + ['twisted/plugins'],

    package_dir={"": "src"},

    include_package_data=True,

    install_requires=['twisted', 'setuptools'],

) 

The most interesting line is include_package_data=True. In order to actually have 

some interesting data, we need a manifest: in MANIFEST.in, we put

include src/static_server/a_file.html

The plugin to serve this file (in this case, on /) looks like this:

import pkg_resources

from zope import interface

from twisted.python import usage, threadpool

from twisted import plugin

from twisted.application import service, strports

from twisted.web import static, server, resource

from twisted.internet import reactor
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@interface.implementer(service.IServiceMaker, plugin.IPlugin)

class ServiceMaker(object):

    tapname = "twisted_book_pkg_resources"

    description = "Static for book"

    class options(usage.Options):

        pass

    def makeService(self, options):

        root = resource.Resource()

        fname = pkg_resources.resource_filename("static_server",

                                                "a_file.html")

        static_resource = static.File(fname)

        root.putChild(“, static_resource)

        site = server.Site(root)

        return strports.service('tcp:8000', site)

serviceMaker = ServiceMaker()

The interesting new line here is:

fname = pkg_resources.resource_filename("static_server",

                                        "a_file.html")

static_resource = static.File(fname)

This uses the pkg_resources package, a part of setuptools, to find the filename at 

runtime.

Note that this will work even if, say, our package is deployed directly as a zip using 

a tool like pex (or the built-in zipapp): pkg_resources is smart enough to transparently 

unpack the file before giving the filename.

This technique is also useful for including template files when using a system like 

Jinja2 or Chameleon.

 Combining Static Files with WSGI
We can also serve static resources for a WSGI application through Twisted’s own 

web server.

import os

from zope import interface

from twisted.python import usage, threadpool

from twisted import plugin
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from twisted.application import service, strports

from twisted.web import wsgi, server, static, resource

from twisted.internet import reactor

import wsgi_hello

class DelegatingResource(resource.Resource):

    def __init__ (self, wsgi_resource):

        resource.Resource. __init__ (self)

        self._wsgi_resource = wsgi_resource

    def getChild(self, name, request):

        request.prepath = []

        request.postpath.insert(0, name)

        return self._wsgi_resource

@interface.implementer(service.IServiceMaker, plugin.IPlugin)

class ServiceMaker(object):

    tapname = "twisted_book_combined"

    description = "twisted_book_combined"

    class options(usage.Options): pass

    def makeService(self, options):

        application = wsgi_hello.application

        pool = threadpool.ThreadPool()

        reactor.callWhenRunning(pool.start)

        reactor.addSystemEventTrigger('after', 'shutdown', pool.stop)

        wsgi_resource = wsgi.WSGIResource(reactor, pool, application)

        static_resource = static.File('.')

        root = DelegatingResource(wsgi_resource)

        root.putChild('static', static_resource)

        site = server.Site(root)

        return strports.service('tcp:8000', site)

serviceMaker = ServiceMaker()

We go line by line over the new code:

class DelegatingResource(resource.Resource):

We define a class called DelegatingResource. This is going to be our root. It inherits 

from resource.Resource. Note that it is not a leaf resource – and so the site will traverse it.

def __init__ (self, wsgi_resource):
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We initialize the delegator with a WSGI resource.

resource.Resource. __init__ (self)

As appropriate, we call the superclass constructor. This is crucially important – 

Resource would not function correctly without its constructor.

self.wsgi_resource = wsgi_resource

We save the WSGI resource in an attribute.

def getChild(self, name, request):

The name of getChild is a bit confusing. The semantics are of getting a dynamic 

child. A static child, that is, one which has been manually added to a Resource, will 

prevent this method from being called. The root will never be called to render: even a 

URL like / will result in a child traversal with an empty string as name.

request.prepath = []

request.postpath.insert(0, name)

We move the name from the prepath to the postpath, thus tricking the delegated – to 

resource that is the root. Note that this trick works only if this resource is at root.

return self.wsgi_resource

After tricking the path to pretend one less traversal has been done, we return the 

WSGI resource.

static_resource = static.File('.')

We create the static resource. This is no different from the pure static resource case.

root = DelegatingResource(wsgi_resource)

We create the delegating resource as our root resource. 

root.putChild('static', static_resource)

As indicated earlier, the manually introduced child will override the getChild 

method. So for any path that starts with /static/, a static resource will be served.
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 Built-In Scheduled Tasks
For the following example, we want a WSGI app that depends on a parameter we can 

change.

class _Application(object):

    def __init__ (self, greeting='hello world'):

        self.greeting = greeting

    def __call__ (self, environment, start_response):

        start_response('200 OK', [('Content-Type',

                                   'text/html; charset=utf-8')])

        return [self.greeting.encode('utf-8')]

application = _Application()

We will go through the code line by line:

class _Application(object):

As mentioned earlier, the only assumption about WSGI applications is that they 

are callable objects. In this case, we create a callable object by defining a class with a 

__call__ method.

def __init__ (self, greeting='hello world'):

We initialize with a greeting, with the standard default.

self.greeting = greeting

In the constructor, we do not do anything more interesting than setting attributes.

def __call__ (self, environment, start_response):

Since this is a WSGI application, it is called with the standard parameter.

start_response('200 OK', [('Content-Type',

                           'text/html; charset=utf-8')])

This is the same start_response call as before, with the exception of the addition of 

an explicit character set. Since it is possible for the creator to pass arbitrary unicode strings, 

and we encode them to utf-8, we need to let the browser know this is what we do.

return [self.greeting.encode('utf-8')]
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We want to be able to set greetings as strings. Therefore, this must encode them to 

bytes.

application = _Application()

We do not care about the class – what we want is an instance of it as the application.

import time

from zope import interface

from twisted.python import usage, reflect, threadpool, filepath

from twisted import plugin

from twisted.application import service, strports, internet

from twisted.web import wsgi, server, static

from twisted.internet import reactor

import wsgi_param

def update(application, reactor):

    stamp = time.ctime(reactor.seconds())

    application.greeting = "hello world, it's {}".format(stamp)

@interface.implementer(service.IServiceMaker, plugin.IPlugin)

class ServiceMaker(object):

    tapname = "twisted_book_scheduled"

    description = "Changing application"

    class options(usage.Options): pass

    def makeService(self, options):

        s = service.MultiService()

        pool = threadpool.ThreadPool()

        reactor.callWhenRunning(pool.start)

        reactor.addSystemEventTrigger('after', 'shutdown', pool.stop)

        root = wsgi.WSGIResource(reactor, pool, wsgi_param.application)

        site = server.Site(root)

        strports.service('tcp:8000', site).setServiceParent(s)

        ts = internet.TimerService(1, update, wsgi_param.application, reactor)

        ts.setServiceParent(s)

        return s

serviceMaker = ServiceMaker()

def update(application, reactor):
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This function will be called periodically to update the application.

stamp = time.ctime(reactor.seconds())

We use reactor.seconds() here, rather than time.time(). If this code were to grow 

bigger, this would aid in testability.

application.greeting = "hello world, it's {}".format(stamp)

This sets the application greeting attribute. Since it is public, it is considered part of 

the class’s API.

Note: this is taking advantage of mutable global state, which in general is a 

dangerous pattern – doubly so in the case of threads. While the main loop of Twisted 

features no threads, WSGI works all run inside of Twisted’s thread pool.

However, in this specific case, the change is safe – a thread will either see the old 

greeting or a new one. This is because of Python’s global interpreter lock, which ensures 

Python threads see a consistent state – and because this is just replacing one string with 

another.

s = service.MultiService()

This creates a service that starts multiple services. It allows us to do both the web 

serving, and the updating, from the same service.

strports.service('tcp:8000', site).setServiceParent(s)

This time, instead of returning the strports.service result, we set its parent to the 

MultiService. This will attach it to the MultiService as a child.

ts = internet.TimerService(1, update, wsgi_param.application, reactor)

Here we create a timer that fires every 1 second and calls the function update with 

the parameters wsgi_param.application and reactor.

ts.setServiceParent(s)

Attach the timer to the return value.

return s

And return the MultiService.
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While this is definitely not the best way to display a clock, there are many cases 

where this separation between retrieval of a value and displaying it make sense. Imagine 

a stock ticker application: it is better to retrieve the stock price once a second, and 

display a value from memory when a web request happens, rather make every web 

request wait for a (potentially slow) back-end service.

This shows the benefits of the scheduled service running in process. Of course, 

even things that do not have to be in process can be scheduled this way – log cleanup, 

for example. This allows application configuration to be kept in one place, rather than 

having to add a dependency on a service like cron.

 Control Channels
Often it is useful to modify the configuration of web applications at runtime, without 

restarting or rebuilding. Some examples of this are:

• Modifying debugging levels when troubleshooting a problem.

• Modifying control/test percentage in an A/B test.

• Switching a “feature flag” off if customers are reporting issues.

This means that besides the “application channel,” over which the application 

end user is interacting with the application, we want a side channel, a “control 

channel,” that will modify the behavior. Having this channel available via a different 

port, and potentially a different protocol, is much safer – the attack vector of an 

unauthorized user getting access to the control channel can be mitigated with 

conventional firewalls and network configuration, rather than only through 

application-level access control.

Since Twisted is, at heart, a networking event framework, it is ideally suited for 

adding control channels to WSGI applications. Since such control channels, by nature, 

cross thread boundaries, it is necessary to take care and think about thread safety.

However, it does allow interesting behaviors to be added to WSGI applications.

The following plugin shows a way to control the greeting using the network.

from zope import interface

from twisted.python import usage, reflect, threadpool, filepath

from twisted import plugin

from twisted.application import service, strports, internet
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from twisted.web import wsgi, server, static

from twisted.internet import reactor, protocol

from twisted.protocols import basic

import wsgi_param

class UpdateMessage(basic.LineReceiver):

    def lineReceived(self, line):

        self.factory.application.greeting = line.decode('utf-8')

        self.transport.writeSequence([b"greeting is now: ", line, b"\r\n"])

        self.transport.loseConnection()

@interface.implementer(service.IServiceMaker, plugin.IPlugin)

class ServiceMaker(object):

    tapname = "twisted_book_control"

    description = "Changing application"

    class options(usage.Options): pass

    def makeService(self, options):

        s = service.MultiService()

        pool = threadpool.ThreadPool()

        reactor.callWhenRunning(pool.start)

        reactor.addSystemEventTrigger('after', 'shutdown', pool.stop)

        root = wsgi.WSGIResource(reactor, pool, wsgi_param.application)

        site = server.Site(root)

        strports.service('tcp:8000', site).setServiceParent(s)

        factory = protocol.Factory.forProtocol(UpdateMessage)

        factory.application = wsgi_param.application

        strports.service('tcp:8001',factory).setServiceParent(s)

        return s

serviceMaker = ServiceMaker()

We go through the new code line by line:

class UpdateMessage(basic.LineReceiver):

This defines a subclass of the protocol basic.LineReceiver. It chunks messages into 

lines, allowing us to easily delimit messages.

def lineReceived(self, line):
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This will be called when a line is received – note that the line will not contain the 

termination character (by default, carriage return followed by a newline, \r\n).

self.factory.application.greeting = line

We set the greeting to the incoming line.

factory = protocol.Factory.forProtocol(UpdateMessage)

We create the factory that will produce instances of UpdateMessage upon client 

connection.

factory.application = wsgi_param.application

We set the application on the factory to the WSGI application. This allows the 

protocol object to have access to the application, in order to change the greeting.

strports.service('tcp:8001',factory).setServiceParent(s)

We bind this protocol to one port higher.

 Strategies for Using Multiple Cores
The one limitation Twisted as a WSGI server has is that it runs one process. Since 

Python has the global interpreter lock, this means that on a multi-core machine, 

only one core will be used for WSGI. Frequently, this is not a problem: in some 

environments, a lower layer will present a one-core “machine” to applications. 

For example, this is the case when using a virtualization platform or a container 

orchestration framework.

However, for many reasons, sometimes the correct multi-process solution needs to 

be solved at the application layer. Here we showcase some of these approaches.

 Load Balancer
The simplest way is to start multiple Twisted WSGI processes, and put a load balancer 

in front of them. One popular load balancer is HAProxy. Having a complete HAProxy 

tutorial is beyond our scope, but the following is an example HAProxy configuration. In 

order to simplify the configuration, the configuration is for plain-text HTTP – although 

HAProxy is often used to terminate SSL.
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defaults

    log     global

    mode    http

frontend localnodes

    bind *:8080

    mode http

    default_backend nodes

backend nodes

    mode http

    balance roundrobin

    option forwardfor

    http-request set-header X-Forwarded-Port %[dst_port]

    http-request add-header X-Forwarded-Proto https if { ssl_fc }

    option httpchk HEAD / HTTP/1.1\r\nHost:localhost

    server web01 127.0.0.1:9000 check

    server web02 127.0.0.1:9001 check

    server web03 127.0.0.1:9002 check

The last three lines are the most important: they forward to three different local web 

servers.

Now, we need something to run all four processes – HAProxy and the three web 

servers. In this example, we will use ncolony.

$ alias add="python -m ncolony --messages /var/run/messages \

                               --config /var/run config add"

$ add --cmd haproxy --arg=-f --arg=/my/haproxy.cfg haproxy

$ add --cmd python --arg=-m --arg=twisted \

                   --arg=web --arg=--wsgi \

                   --arg=wsgi_hello.application \

                   --arg=--port --arg=tcp:9001 web1

$ add --cmd python --arg=-m --arg=twisted \

                   --arg=web --arg=--wsgi \

                   --arg=wsgi_hello.application \

                   --arg=--port --arg=tcp:9002 web2

$ add --cmd python --arg=-m --arg=twisted \

                   --arg=web --arg=--wsgi \
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                   --arg=wsgi_hello.application \

                   --arg=--port --arg=tcp:9003 web3

$ python -m twisted ncolony --messages /var/run/messages \

                          --config /var/run config add

 Opening Socket in Shared Mode
A fairly recent feature of Linux kernels is the SO_REUSEPORT socket option. This allows 

several servers to listen on the same port. However, since the feature is fairly recent, 

Twisted does not support it out of the box.

In order to take advantage of it, we will need to plug into the lower layers of Twisted.

import socket

import attr

from zope import interface

from twisted.python import usage, threadpool

from twisted import plugin

from twisted.application import service, internet as tainternet

from twisted.web import wsgi, server

from twisted.internet import reactor, tcp, interfaces as tiinterfaces, 

defer

import wsgi_hello

@interface.implementer(tiinterfaces.IStreamServerEndpoint)

@attr.s

class ListenerWithReuseEndPoint(object):

    port = attr.ib()

    reactor = attr.ib(default=None)

    backlog = attr.ib(default=50)

    interface = attr.ib(default=“)

    def listen(self, protocolFactory):

        p = tcp.Port(self.port, protocolFactory, self.backlog, self.interface,

                     self.reactor)

        self._sock = sock = p.createInternetSocket()
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        sock.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEPORT, 1)

        sock.bind((self.interface, self.port))

        sock.listen(self.backlog)

        return defer.succeed(reactor.adoptStreamPort(sock.fileno(),

                                                     p.addressFamily,

                                                     protocolFactory))

@interface.implementer(service.IServiceMaker, plugin.IPlugin)

class ServiceMaker(object):

    tapname = "twisted_book_reuseport"

    description = "Reuse port"

    class options(usage.Options): pass

    def makeService(self, options):

        application = wsgi_hello.application

        pool = threadpool.ThreadPool(minthreads=1, maxthreads=100)

        reactor.callWhenRunning(pool.start)

        reactor.addSystemEventTrigger('after', 'shutdown', pool.stop)

        root = wsgi.WSGIResource(reactor, pool, application)

        site = server.Site(root)

        endpoint = ListenerWithReuseEndPoint(8000)

        service = tainternet.StreamServerEndpointService(endpoint, site)

        return service

serviceMaker = ServiceMaker()

This has certainly been the most complicated plugin we have written so far. In 

production code, this would be too big for a plugin – certainly most of the logic should 

be broken out.

However, for illustration purposes, showing all the code close together serves to 

make it clearer.

@interface.implementer(tiinterfaces.IStreamServerEndpoint)

The module name seems strange. Twisted’s deep module hierarchy means some 

names are repeated at different points in the hierarchy. A useful convention is to import 

the module with some letters of the hierarchy still there, in order to make the purpose 

clearer. In this case, tiinterfaces stands for twisted.internet.interfaces.
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We implement the IStreamServerEndpoint interface, as we need to implement a 

new kind of endpoint – one that opens sockets in REUSEPORT mode.

@attr.s

Since this class has a lot of data members, we use the attrs package to make the 

code simpler.

class ListenerWithReuseEndPoint(object):

    port = attr.ib()

    reactor = attr.ib(default=None)

    backlog = attr.ib(default=50)

    interface = attr.ib(default=")

We accept exactly the same arguments as the reactor.listenTCP call. This is 

intentional.

def listen(self, protocolFactory):

This is the sole method in the IStreamServerEndpoint interface.

p = tcp.Port(self.port, protocolFactory, self.backlog, self.interface,

             self.reactor)

self._sock = sock = p.createInternetSocket()

Twisted’s lower-level TCP facilities, in tcp.Port, make sure that the right options 

for non-blocking will be set on the socket. We keep a reference to the socket object, in 

order to keep it from being collected. This is important, since we will be creating a new 

Python-level socket object from the same file descriptor.

sock.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEPORT, 1)

This is the real reason for all this rigamarole – to set the SO_REUSEPORT option.

sock.bind((self.interface, self.port))

We bind to the interface.

sock.listen(self.backlog)

We start listening.

Chapter 5  Using twisted as a wsgi server 



213

return defer.succeed(reactor.adoptStreamPort(sock.fileno(),

                                             p.addressFamily,

                                             protocolFactory))

We take the file descriptor from the socket object and allow Twisted to “adopt” it. 

This returns an IListeningPort. Since the contract for listen is to return a deferred, we 

wrap it in defer.succeed.

In order to put this in production, we can use ncolony again.

$ alias add="python -m ncolony --messages /var/run/messages \

                               --config /var/run config add"

$ add --cmd python --arg=-m --arg=twisteded \

                   --arg=twisted_book_reuseport web1

$ add --cmd python --arg=-m --arg=twisteded \

                   --arg=twisted_book_reuseport web2

$ add --cmd python --arg=-m --arg=twisteded \

                   --arg=twisted_book_reuseport web3

$ python -m twist ncolony --messages /var/run/messages \

                          --config /var/run config add

As in the last example, we run three web workers. Note that this time, the command- 

line for all three is identical – and the need for a load balancer is gone.

 Other Options
There are, in general, a few other options for multi-processing in Twisted. It is possible 

to create a socket, and then spawn processes that will listen on it. This means tying in the 

process management and the listening code in somewhat awkward ways. For example, 

using ncolony is no longer possible – nor is using twisted.runner.procmon – to monitor 

the processes. If the “parent” process dies, we are left with the dilemma of whether to 

restart it, and kill all existing children, or wait for all children to die first.

Another option is to listen in one process, but then pass the file descriptors over a 

UNIX domain socket. This is nontrivial to do portably and requires quite a bit of delving 

into a socket system call esoterica.
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In general, the options for port reuse or for load balancing are superior. Note that, 

like any performance improvement, the effect of a specific choice (such as port reuse 

vs. load balancing) should be measured in an environment that, as much as possible, 

approximates the production environment.

 Dynamic Configuration
As noted earlier, using Twisted as a WSGI server allows adding control channels to your 

applications, allowing reconfiguration at runtime. Here we show a full-fledged example 

of such control, using the Asynchronous Messaging Protocol (AMP) as our control 

protocol. The example includes both the application and the control application.

 A/B Testable Pyramid App
A/B testing means showing one version of a web application to some users and a 

different version to others – and checking the effect on various metrics. For example, 

an e-commerce application might experiment with the placement of the “Checkout” 

button, and test its effect on how many customers check out.

There are many full-featured A/B testing options for Python web frameworks. 

Here we do not have the scope to write a full-featured alternative, but we will show 

one of the basic pieces: varying the output. In general, the output should be constant 

when shown to a given user, but that requires a coherent session construct, again 

beyond our scope.

Our “test” will just be per request, deciding which version to show. We will do this 

based on a random choice. However, we will adopt an important feature of A/B test 

frameworks – biased choice. If we think the test might have a detrimental effect on users, 

we often run it on a small percentage.

Our default is to run the tests on 0% of users. We will depend on an external 

mechanism to increase those percentages.

import random

from pyramid import config, response

FEATURES = dict(capitalize=0.0, exclaim=0.0)
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def hello_world(request):

    if random.random() < FEATURES['capitalize']:

         message = 'Hello world'

     else:

         message = 'hello world'

     if random.random() < FEATURES['exclaim']:

        message += '!'

    return response.Response(message)

with config.Configurator() as conf:

    conf.add_route('hello', '/')

    conf.add_view(hello_world, route_name='hello')

    application = conf.make_wsgi_app()

We go over the new code line by line:

FEATURES = dict(capitalize=0.0, exclaim=0.0)

We allow two “features” – capitalize, whether to capitalize our greeting; and 

exclaim, whether to add an exclamation mark. Note that these features, in the example, 

are independent: users can be exposed to four different greetings.

This is, in the small, a good simulation of actual environments that do A/B testing – 

in which users can often be, in theory, exposed to any of the 2**n possible options when 

running n experiments.

if random.random() < FEATURES['capitalize']:

This is the basic logic of a so-called “biased coin toss” in Python. It will result in True 

about FEATURES['capitalize'] on average.

message = 'Hello world'

Capitalized message.

else:

    message = 'hello world'

Lowercase message.

if random.random() < FEATURES['exclaim']:

    message += '!'

If exclamation is on, add an exclamation mark.
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 Custom Plugin with AMP
In order to be able to adjust the percentages, we use the AMP protocol. There are many 

alternative options, but this one balances flexibility and demonstrability. One nice thing 

is that support for AMP is built into Twisted, so no third-party packages are needed.

from zope import interface

from twisted.python import usage, threadpool

from twisted import plugin

from twisted.application import service, strports

from twisted.web import wsgi, server

from twisted.internet import reactor, protocol

from twisted.protocols import amp

import pyramid_dynamic

class GetCapitalize(amp.Command):

    arguments = []

    response = [(b'value', amp.Float())]

class GetExclaim(amp.Command):

    arguments = []

    response = [(b'value',  amp.Float())]

class SetCapitalize(amp.Command):

    arguments = [(b'value', amp.Float())]

    response = []

class SetExclaim(amp.Command):

    arguments = [(b'value',  amp.Float())]

    response = []

class AppConfiguration(amp.CommandLocator):

    @GetCapitalize.responder

    def get_capitalize(self):

        return {'value':  pyramid_dynamic.FEATURES['capitalize']} 
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    @GetExclaim.responder

    def get_exclaim(self):

        return {'value':  pyramid_dynamic.FEATURES['exclaim']}

    @SetCapitalize.responder

    def set_capitalize(self, value):

        pyramid_dynamic.FEATURES['capitalize'] = value

        return {}

    @SetExclaim.responder

    def set_exclaim(self, value):

        pyramid_dynamic.FEATURES['exclaim'] = value

        return {}

@interface.implementer(service.IServiceMaker, plugin.IPlugin)

class ServiceMaker(object):

    tapname = "twisted_book_configure"

    description = "WSGI for book"

    class options(usage.Options):

        pass

    def makeService(self, options):

        application = pyramid_dynamic.application

        pool = threadpool.ThreadPool(minthreads=1, maxthreads=100)

        reactor.callWhenRunning(pool.start)

        reactor.addSystemEventTrigger('after', 'shutdown', pool.stop)

        root = wsgi.WSGIResource(reactor, pool, application)

        site = server.Site(root)

        control = protocol.Factory()

        control.protocol = lambda: amp.AMP(locator=AppConfiguration())

        ret = service.MultiService()

        strports.service('tcp:8000', site).setServiceParent(ret)

        strports.service('tcp:8001', control).setServiceParent(ret) 

        return ret

serviceMaker = ServiceMaker()
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We will go over the new code:

class GetCapitalize(amp.Command):

    arguments = []

    response = [(b'value',  amp.Float())]

class GetExclaim(amp.Command):

    arguments = []

    response = [(b'value',  amp.Float())]

class SetCapitalize(amp.Command):

    arguments = [(b'value',  amp.Float())]

    response = []

class SetExclaim(amp.Command):

    arguments = [(b'value',  amp.Float())]

    response = []

These define AMP commands. Commands are the basic messages in AMP. While in 

theory, commands can be sent both ways, in most cases, they will be sent from the client 

to the server.

We intentionally made the commands for get/set allow only one field at a time, in order 

to be clear that no atomicity is guaranteed. Indeed, since it is hard to guarantee atomicity on 

the dictionary access without much more machinery, it is useful to indicate in the API that it 

is impossible to, say, set capitalize to 1 and guarantee that at the same time, exclaim is 0.

We could have made an API with claims to atomicity: for example, setting both 

attributes at once. We could even implement it in a way that would look atomic: for 

example, replacing the FEATURES dictionary wholesale, so that the access would be to 

either the old dictionary or a new one, and there was no intermediate step. However, a 

thread switch could happen between the line

if random.random() < FEATURES['capitalize']:

and the line

if random.random() < FEATURES['exclaim']:

which would render the atomicity pretense a lie. Instead, we choose to make it explicit 

that updates are not atomic,

class AppConfiguration(amp.CommandLocator):
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    @GetCapitalize.responder

    def get_capitalize(self):

        return {'value': pyramid_dynamic.FEATURES['capitalize']}

    @GetExclaim.responder

    def get_exclaim(self):

        return {'value': pyramid_dynamic.FEATURES['exclaim']}

    @SetCapitalize.responder

    def set_capitalize(self, value):

        pyramid_dynamic.FEATURES['capitalize'] = value

        return {}

    @SetExclaim.responder

    def set_exclaim(self, value):

        pyramid_dynamic.FEATURES['exclaim'] = value

        return {}

We write a simple class that bridges the command to the pyramid_dynamic.

FEATURES dictionary, setting and getting the fields appropriately.

control = protocol.Factory()

control.protocol = lambda: amp.AMP(locator=AppConfiguration())

The control factory sets protocol to a function that creates a new amp.AMP with a 

custom locator. There are other ways to bind an AMP protocol to the specific locator, but 

this puts as much power at the hands of the integrator – the programmer who is writing 

the plugin, as opposed to the one who is writing the command handling itself.

 Control Program
Perhaps in other places, the control code itself would be using a synchronous style and 

blocking network calls. However, in this book, this is an opportunity to show how to write 

clients using Twisted. We chose to write this code in a way that is compatible with both 

Python 2 and Python 3.

from twisted.internet import task, defer, endpoints, protocol

from twisted.protocols import amp

from twisted.plugins import twisted_book_configure
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@task.react

@defer.inlineCallbacks

def main(reactor):

    endpoint = endpoints.TCP4ClientEndpoint(reactor, "127.0.0.1", 8001)

    prot = yield endpoint.connect(protocol.Factory.forProtocol(amp.AMP))

    res1 = yield prot.callRemote(twisted_book_configure.GetCapitalize)

    res2 = yield prot.callRemote(twisted_book_configure.GetExclaim)

    print(res1['value'],  res2['value'])

    yield prot.callRemote(twisted_book_configure.SetCapitalize, value=0.5)

    yield prot.callRemote(twisted_book_configure.SetExclaim, value=0.5)

    res1 = yield prot.callRemote(twisted_book_configure.GetCapitalize)

    res2 = yield prot.callRemote(twisted_book_configure.GetExclaim)

    print(res1['value'],  res2['value'])

@task.react

The react decorator will run the main function, immediately, with a reactor 

argument.

@defer.inlineCallbacks

We use an inlineCallbacks decorator to allow the code to flow better.

def main(reactor):

Note that here we accept the reactor as an argument, rather than importing it.

endpoint = endpoints.TCP4ClientEndpoint(reactor, "127.0.0.1", 8001)

Create client endpoint.

prot = yield endpoint.connect(protocol.Factory.forProtocol(amp.AMP)) 

Create client factory, and connect.

res1 = yield prot.callRemote(twisted_book_configure.GetCapitalize)

res2 = yield prot.callRemote(twisted_book_configure.GetExclaim)

Retrieve the values. Note that we are using the previously-defined command classes.

print(res1['value'], res2['value'])
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Show value before the change

yield prot.callRemote(twisted_book_configure.SetCapitalize, value=0.5)

yield prot.callRemote(twisted_book_configure.SetExclaim, value=0.5)

Set the values

res1 = yield prot.callRemote(twisted_book_configure.GetCapitalize)

res2 = yield prot.callRemote(twisted_book_configure.GetExclaim)

print(res1['value'],  res2['value'])

Get them again. This verifies they have changed.

Those three parts together – the application, the plugin, and the control program – 

give us a web server whose internal parameters we can configure dynamically.

 Summary
The Twisted WSGI server is easy to install and use in development – in fact, even easier 

than the reference implementation. Despite this ease of use, it is perfectly suitable to 

be used in production. This makes it handy in order to avoid differences between the 

development environment and the production one – differences that often make it hard 

to reproduce production issues.

Since it is based on the Twisted Web server, it inherits features like production-grade 

TLS implementations –which support features like SNI and Let’s Encrypt, as well as 

HTTP/2 protocol support. It can also be configured as a static file web server, allowing it 

to serve the static assets, like images, JavaScript, and CSS files, from the same process as 

the dynamic application – thus avoiding a mismatch between the static assets and what 

the application accepts.

It does not define any configuration file format. Instead, for any configuration deeper 

than setting the listening port or naming the WSGI application, it is possible to write a 

Twisted plugin – which allows ultimate configuration in a language that, regardless of the 

web framework, all engineers who work on the application know and use.

The biggest perceived downside of Twisted as a WSGI container is taking advantage 

of multiple core machines. For this, it is possible – via several different configurations – 

to set up multiple WSGI processes. In general, separating the concerns of “how to listen 

on a socket” from “how to manage multiple processes” allows finding good solutions for 

each one – instead of having to bind together process management and socket code.
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CHAPTER 6

Tahoe-LAFS: The Least- 
Authority File System
Tahoe-LAFS is a distributed storage system, started in 2006 as a robust back end for a 

personal-backup company named AllMyData (long since defunct). Before shutting 

down, the company open sourced the code, and now a community of hackers improves 

and maintains the project.

The system allows you to upload data from your computer into a network of servers 

called a “grid,” and then retrieve your data from the grid later. In addition to providing a 

backup (e.g., in case your laptop hard drive fails), it offers flexible ways to share specific 

files or directories with other users on the same grid. In this way, it behaves somewhat 

like a “network drive” (SMB or NFS), or a file-transfer protocol (FTP or HTTP).

Tahoe’s special feature is “provider-independent security.” All files are encrypted 

and cryptographically hashed locally, before leaving your computer. The storage servers 

never get to see the plaintext (because of the encryption), nor can they make undetected 

changes (because of the hashes). In addition, the ciphertext is erasure coded into 

redundant shares, and uploaded to multiple independent servers. This means your data 

can survive the loss of a few servers, to improve durability and availability.

As a result, you can pick storage servers purely on the basis of their performance, 

cost, and uptime, without also needing to rely upon them for security. Most other 

network drives are entirely vulnerable to the servers: an attacker who compromises 

the hosting provider gets to see or modify your data, or delete it entirely. Tahoe’s 

confidentiality and integrity are entirely independent of the storage providers, and the 

availability is improved too.
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 How Tahoe-LAFS Works
A Tahoe “grid” consists of one or more Introducers, some Servers, and some Clients.

• Clients know how to upload and download data.

• Servers hold the encrypted shares.

• Introducers help Clients and Servers find and connect to each other.

The three node types communicate using a special protocol named “Foolscap,” 

which is descended from Twisted’s “Perspective Broker,” but with added security and 

flexibility.

Tahoe uses “capability strings” to identify and access all files and directories. 

These are random-looking chunks of base32 data that contain the encryption key, 

integrity- protecting hashes, and share-location information. We abbreviate these as 

“filecaps” when they refer to a file, or “dircaps” for directories.

Figure 6-1. Tahoe-LAFS Grid Diagram
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(The examples in this chapter are shortened for readability, but filecaps are normally 

about 100 characters long.)

They sometimes come in multiple flavors: a “writecap” gives whoever knows it the 

ability to change a file, whereas a “readcap” only lets them read the contents. There’s 

even a “verifycap,” which allows the holder to verify the encrypted server-side shares 

(and generate new ones if some have been lost), but not to read or modify the plaintext. 

You can safely give these to a delegated repair agent to maintain your files while your 

own computer is offline.

Tahoe’s simplest API call is a command-line PUT that accepts plaintext data, uploads 

it into a brand-new immutable file, and returns the generated filecap:

$ tahoe put kittens.jpg

200 OK

URI:CHK:bz3lwnno6stuspjq5a:mwmb5vaecnd3jz3qc:2:3:3545

This filecap is the only way in the world to retrieve the file. You could write it down, or 

store it in another file, or store it in a Tahoe directory, but this string is both necessary and 

sufficient to recover the file. Downloads look like this (the tahoe get command writes the 

downloaded data to stdout, so we use the “>” shell syntax to redirect this into a file):

$ tahoe get URI:CHK:bz3lwnno6stuspjq5a:mwmb5vaecnd3jz3qc:2:3:3545 

>downloaded.jpg

We frequently (and perhaps erroneously) refer to filecaps as URIs in many places, 

including the filecap strings themselves. “CHK” stands for “Content-Hash Key,” which 

describes the specific kind of immutable file encoding we use: other kinds of caps have 

different identifiers. Immutable filecaps are always readcaps: nobody in the world can 

modify the file once it’s been uploaded, even the original uploader.

Tahoe also offers mutable files, which means we can change the contents later. These 

have three API calls: create generates a mutable slot, publish writes new data into the 

slot (overwriting whatever was there before), and retrieve returns the current contents 

of the slot.

Mutable slots have both writecaps and readcaps. create gives you the writecap, but 

anyone who knows the writecap can “attenuate” it down into a readcap. This lets you 

share the readcap with others, but reserves the write authority for yourself.

In Tahoe, directories are just files that contain a specially encoded table, which maps 

a child name to a filecap or dircap of the child. Think of these directories as intermediate 

nodes in a directed graph.
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We can create one with the mkdir command. This defaults to creating a mutable 

directory (but we could also create fully-populated immutable directories, if we wanted 

to). Tahoe has cp and ls commands to copy files and list directories, and these know 

how to handle slash-delimited file paths as usual.

The CLI also tool offers “aliases,” which simply store a “rootcap” directory in a local 

file (~/.tahoe/private/aliases), allowing other commands to abbreviate the dircap 

with a prefix that looks a lot like a network drive indicator (e.g., the Windows E: drive). 

This reduces typing and makes commands much easier to use:

$ tahoe mkdir

URI:DIR2:ro76sdlt25ywixu25:lgxvueurtm3

$ tahoe add-alias mydrive URI:DIR2:ro76sdlt25ywixu25:lgxvueurtm3

Alias 'mydrive' added

$ tahoe cp kittens.jpg dogs.jpg mydrive:

Success: files copied

Figure 6-2. Graph of Rootcap, Directories, and Files
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$ tahoe ls URI:DIR2:ro76sdlt25ywixu25:lgxvueurtm3

kittens.jpg

dogs.jpg

$ tahoe mkdir mydrive:music

$ tahoe cp piano.mp3 mydrive:music

$ tahoe ls mydrive:

kittens.jpg

music

dogs.jpg

$ tahoe ls mydrive:music

piano.mp3

$ tahoe cp mydrive:dogs.jpg /tmp/newdogs.jpg

$ ls /tmp

newdogs.jpg

The command-line tools are built on top of the HTTP API, which we’ll explore later.

 System Architecture
The Client node is a long-lived gateway daemon, which accepts upload and download 

requests from a “front-end” protocol. The most basic front end is an HTTP server that 

listens on the loopback interface (127.0.0.1).

An HTTP GET is used to retrieve data, which involves multiple steps:

• parse the filecap to extract the decryption key and storage index;

• identify which pieces of each share we need to satisfy the client 

request, including both the share data and the intermediate hash tree 

nodes;

• use the storage index to identify which servers might have shares for 

this file;

• send download requests to those servers;

• track requests we’ve sent and requests that have completed, to avoid 

duplicate requests unless necessary;

• track server response time, to prefer faster servers;
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• verify shares and reject corrupt ones;

• switch to faster servers when available or when connections are lost;

• reassemble shares into ciphertext;

• decrypt ciphertext and deliver plaintext to the front-end client.

This is managed by an event loop that is constantly ready to accept new read() 

requests from the front-end managers, or responses from servers, or timer expirations 

that indicate it’s time to give up on a server and try a different one. This loop will juggle 

dozens or even hundreds of simultaneous connections and timers, and activity on any 

one them will cause things to happen on the others. Twisted’s event loop is ideal for 

this design.

In the other direction, the HTTP PUT and POST actions cause data to be uploaded, 

which does many of the same steps, but backward:

• the client node accepts data from the front-end protocol and buffers 

it in a temporary file;

• the file is hashed to build the “convergent encryption key,” which also 

serves to deduplicate files;

• the encryption key is hashed to form the storage index;

• the storage index identifies which servers we should try to use (the 

server list is sorted a different way for each storage index, and this list 

provides a priority ordering);

• send upload requests to those servers;

• if the file was uploaded earlier, the server will tell us they already have 

a share, in which case we don’t need to store that one again;

• if a server rejects our request (not enough disk space), or doesn’t 

answer fast enough, try a different server;

• gather responses until each share is mapped to a server;

• encrypt and encode each segment of plaintext, which takes a lot of 

CPU (at least compared to the network activity), so we push it off to a 

separate thread to take advantage of multiple cores;
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• after encoding is done, upload the shares to the previously mapped 

servers;

• when all servers acknowledge receipt, build the final hash trees;

• build the filecap from the root of the hash tree and the encryption key;

• return the filecap in the HTTP response body.

Clients also implement other (non-HTTP) front-end protocols:

• FTP: by supplying a config file of usernames, passwords, and 

rootcaps, the Tahoe client node can pretend to be an FTP server with 

a separate virtual directory for each user;

• SFTP: like FTP, but layered on top of SSH;

• Magic-Folder: a Dropbox-like two-way directory synchronization tool.

Clients speak Foolscap to the Introducer, to learn about servers. They also speak 

Foolscap to the servers themselves.

The Tahoe-LAFS storage server can store the shares on local disk, or it can send them 

to a remote commodity storage service like S3 or Azure. The server speaks Foolscap on 

the front side, and, for example, HTTP-based S3 commands on the back.

On the storage server, the node must accept connections from an arbitrary number 

of clients, each of which will send overlapping share upload/download requests. For 

remote back ends like S3, each client-side request can provoke multiple S3-side API calls, 

each of which might fail or timeout (and need to be retried).

All node types also run an HTTP service for status and management. This currently 

renders using Nevow, but we intend to switch to Twisted’s built-in HTTP templating 

facilities (twisted.web.template).

 How It Uses Twisted
Tahoe-LAFS uses Twisted extensively: it’s hard for us to imagine how we could have 

written it any other way.

The application is structured around a Twisted MultiService hierarchy, which 

controls startup and shutdown of the Uploader, the Downloader, the IntroducerClient, 

etc. This lets us start individual services during unit tests, without needing to launch an 

entire node each time.
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The largest Service is the Node, which represents an entire Client, Server, or 

Introducer. This is the parent MultiService for everything else. Shutting down the service 

(and waiting for all network activity to come to a halt) is as easy as calling stopService() 

and waiting for the Deferred to fire. Nodes listen on ephemerally allocated ports by 

default, and announce their location to the Introducer. All state is restricted to the node’s 

“base directory.” This makes it easy to launch multiple clients/servers in a single process, 

for testing an entire grid at once. Contrast this to an earlier architecture, in which each 

storage server required a separate MySQL database and used fixed TCP ports. In that 

system, it was impossible to perform a realistic test without at least 5 distinct computers. 

In Tahoe, the integration test suite will spin up a grid with 10 servers, all in a single 

process, exercise some feature, then shut everything down again, in just a few seconds. 

This happens dozens of times whenever you run tox to run the test suite.

The variety of front-end interfaces are enabled by Twisted’s robust suite of well- 

integrated protocol implementations. We didn’t have to write an HTTP client, or server, or 

the FTP server, or the SSH/SFTP server: these all come “batteries included” with Twisted.

 Problems We’ve Run Into
Our use of Twisted has been fairly smooth. If we were to start again today, we would still 

begin with Twisted. Our regrets have been minor:

• dependency load: some users (usually packagers) feel that Tahoe 

depends upon too many libraries. For many years, we tried to 

avoid adding dependencies because Python’s packaging tools were 

immature, but now pip makes this much easier;

• packaging/distribution: it is difficult to build a single-file executable 

out of a Python application, so currently users must know about 

Python-specific tools like pip and virtualenv to get Tahoe installed 

on their home computers;

• Python 3: Twisted now has excellent support for Python 3, but this 

took many years of effort. During this time, we became complacent, 

and the code freely intermixes machine-readable bytes with human- 

readable strings. Now that py3 is the preferred implementation (and 

the 2020 end-of-life deadline for py2 is looming), we’re struggling to 

update our code to work under py3.
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 Daemonization Tools
Twisted provides a convenient tool named twistd, which allows long-running 

applications to be written as plugins, making Twisted responsible for the platform- 

specific details of daemonization (such as detaching from the controlling tty, logging 

to a file instead of stdout, and potentially switching to a non-root user after opening 

privileged listening TCP ports). When Tahoe was started, neither “pip” nor “virtualenv” 

existed yet, so we built something like them. To combine daemonization with this 

bespoke dependency installer/manager, the Tahoe command-line tool includes the 

tahoe start and tahoe stop subcommands.

These days, we’d probably omit these subcommands, and have users run twistd 

or twist (the non-daemonizing form) instead. We would also look for ways to avoid 

needing a daemon at all.

In the beginning, twistd wasn’t as easy to manage, so Tahoe used “.tap” files 

to control it. This was a holdover from a pattern I used in Buildbot, where the first 

versions regrettably used “.tap” files to record state (a sort of “freeze-dried” copy of the 

application, which could be thawed out again the next time you wanted to launch it). 

Tahoe never put dynamic state in there, but the tahoe create-node process would 

create a .tap file with the right initialization code to instantiate and launch the new 

node. Then tahoe start was a simple wrapper around twistd -y node.tap.

Different kinds of .tap files were used to launch different kinds of nodes (Clients, 

Servers, Introducers, etc.). This was a bad decision. The .tap files contained just a few 

lines: an import statement and code to instantiate an Application object. Both ended up 

limiting our ability to rearrange the code base or change its behavior: simply renaming 

the Client class would break all existing deployments. We’d accidentally created a 

public API (with all the compatibility issues that implies), where the “public” were all the 

old .tap files used by earlier Tahoe installs.

We fixed this by having tahoe start ignore the contents of the .tap file, and only 

pay attention to its filename. Most of the node’s configuration was already stored in a 

separate INI-style file named tahoe.cfg, so the transition was pretty easy. When tahoe 

start sees client.tap, it creates a Client instance (as opposed to an Introducer/etc.), 

initializes it with the config file, and sets the daemon running.
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 Internal FileNode Interfaces
Internally, Tahoe defines FileNode objects, which can be created from filecap strings for 

existing files, or from scratch by uploading some data for the first time. These offer a few 

simple methods that hide all the details of encryption, erasure coding, server selection, 

and integrity checking. The download methods are defined in an Interface named 

IReadable:

class IReadable(Interface):

    def get_size():

        """Return the length (in bytes) of this readable object."""

    def read(consumer, offset=0, size=None):

         """Download a portion (possibly all) of the file's contents, 

making them available to the given IConsumer. Return a Deferred 

that fires (with the consumer) when the consumer is unregistered 

(either because the last byte has been given to it, or because the 

consumer threw an exception during write(), possibly because it no 

longer wants to receive data). The portion downloaded will start at 

'offset' and contain 'size' bytes (or the remainder of the file if 

size==None). """

Twisted uses zope.interface for the classes that support Interface definitions 

(that Interface is really zope.interface.Interface). We use these as a form of type 

checking: the front end can assert that the object being read is a provider of IReadable. 

There are multiple kinds of FileNodes, but they all implement the IReadable interface, 

and the front-end code only uses methods defined on that interface.

The read() interface doesn’t return the data directly: instead, it accepts a 

“consumer” to which it can feed the data as it arrives. This uses Twisted’s Producer/

Consumer system (described in Chapter 1) to stream data without unnecessary 

buffering. This allows Tahoe to deliver multi-gigabyte files without using gigabytes  

of memory.

DirectoryNode objects can be created similarly. These also have methods (defined 

in IDirectoryNode) to list their children, or follow a child link (by name) to some other 

node. Mutable directories include methods to add or replace a child by name.
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class IDirectoryNode(IFilesystemNode):

     """I represent a filesystem node that is a container, with a name-

to- child mapping, holding the tahoe equivalent of a directory. All 

child names are unicode strings, and all children are some sort of 

IFilesystemNode (a file, subdirectory, or unknown node).

    """

    def list():

         """I return a Deferred that fires with a dictionary mapping child 

name (a unicode string) to (node, metadata_dict) tuples, in which 

'node' is an IFilesystemNode and 'metadata_dict' is a dictionary of 

metadata."""

    def get(name):

         """I return a Deferred  that fires with a specific named child 

node, which is an IFilesystemNode. The child name must be a unicode 

string. I raise NoSuchChildError if I do not have a child by that 

name."""

Note that these methods return Deferreds. Directories are stored in files, and files 

are stored in shares, and shares are stored on servers. We don’t know exactly when those 

servers will respond to our download requests, so we use a Deferred to “wait” for the 

data to be available.

This graph of node objects is used by each front-end protocol.

 Front-End Protocol Integration
To explore how Tahoe takes advantage of Twisted’s diverse protocol support, we’ll look at 

several “front-end protocols.” These provide a bridge between external programs and the 

internal IFileNode/IDirectoryNode/IReadable interfaces.

All the protocol handlers make use of an internal object named Client, whose most 

important method is create_node_from_uri. This takes a filecap or directorycap (as a 

string), and returns the corresponding FileNode or DirectoryNode object. From here, 

the caller can use its methods to read or modify the underlying distributed file.
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 The Web Front End
The Tahoe-LAFS client daemon provides a local HTTP service to control most of its operations. 

This includes both a human-oriented web application to browse files and folders (“WUI”: 

Web User Interface), and a machine-oriented control interface (“WAPI”: Web Application 

Programming Interface), which we affectionately pronounce “wooey” and “wappy.”

Both are implemented through Twisted’s built-in twisted.web server. A hierarchy 

of “Resource” objects route requests to some leaf, which implements methods like 

render_GET to process the request details and provide a response. By default, this 

listens on port 3456, but this can be configured in the tahoe.cfg file, by providing a 

different endpoint descriptor.

Tahoe actually uses the “Nevow” project, which provides a layer on top of raw 

twisted.web, but these days Twisted’s built-in functionality is powerful enough on its 

own, so we’re slowly removing Nevow from the code base.

The simplest WAPI call is the GET that retrieves a file. The HTTP client submits a 

filecap, Tahoe turns this into a FileNode, downloads the contents, and returns the data 

in the HTTP response. The request looks like:

curl -X GET http://127.0.0.1:3456/uri/URI:CHK:bz3lwnno6stus:mwmb5vae...

This results in a twisted.web.http.Request with a “path” array that has two 

elements: the literal string “uri,” and the filecap. Twisted’s web server starts with a root 

resource, upon which you can attach handlers for different names. Our Root resource is 

instantiated with the Client object described above, and configured with a handler for 

the uri name:

from twisted.web.resource import Resource

class Root(Resource):

    def __init__(self, client):

        ...

        self.putChild("uri", URIHandler(client))

All requests that start with uri/ will get routed to this URIHandler resource. When 

these requests have additional path components (i.e., our filecap), they’ll cause the 

getChild method to be called, which is responsible for finding the right Resource to 

handle the request. We’ll create a FileNode or DirectoryNode from the given filecap/

dircap, and then we’ll wrap it in a web-specific handler object that knows how to deal 

with HTTP requests:
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class URIHandler(Resource):

    def __init__ (self, client):

        self.client = client

    def getChild(self, path, request):

        # 'path' is expected to be a filecap or dircap

        try:

            node = self.client.create_node_from_uri(path)

            return directory.make_handler_for(node,self.client)

        except (TypeError,AssertionError):

            raise WebError("'%s' is not a valid file- or directory- cap" %name)

node is the FileNode object that wraps the filecap from the GET request. The handler 

comes from a helper function that inspects the node’s available interfaces and decides 

what sort of wrapper to create:

def make_handler_for(node, client, parentnode=None, name=None):

    if parentnode:

       assert IDirectoryNode.providedBy(parentnode)

    if IFileNode.providedBy(node):

       return FileNodeHandler(client, node, parentnode, name)

    if IDirectoryNode.providedBy(node):

       return DirectoryNodeHandler(client, node, parentnode, name)

    return UnknownNodeHandler(client, node, parentnode, name)

For our example, this returns the FileNodeHandler. This handler has a lot of options, 

and the actual code in web/filenode.py looks quite different, but a simplified form 

would read like this:

class FileNodeHandler(Resource):

    def __init__ (self, client, node, parentnode=None, name=None):

        self.node = node

        ...

    @inlineCallbacks

    def render_GET(self, request):

        version = yield self.node.get_best_readable_version()

        filesize = version.get_size()
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        first, size, contentsize = 0, None, filesize

        ... # these will be modified by a Range header, if present

        request.setHeader("content-length", b"%d" % contentsize)

        yield version.read(request, first, size)

Twisted’s native web server doesn’t allow Resource objects to return Deferreds, but 

Nevow’s does, which is convenient. Here’s basically what happens:

• First, we ask the FileNode for its best readable version. This isn’t 

needed on immutable files (for which there’s only one version 

anyways), but mutable files might have multiple versions on the grid. 

“Best” means the most recent. We get back a “version” object that 

provides the IReadable interface.

• Next, we compute the size of the file. For immutable files, the size is 

embedded in the filecap, so the get_size() method lets us compute 

this immediately. For mutable files, the size was determined when we 

retrieved the version object.

• We use the file’s size and a Range header (if provided) to figure out 

how much data to read, and what offset to start from.

• We set the Content-Length header to tell the HTTP client how much 

data to expect.

• The IReadable’s read() method is called to begin the download. The 

Request object is also an IConsumer, and the download code builds 

an IProducer to attach to it. This returns a Deferred that will fire when 

the last byte of the file has been delivered to the consumer.

• When the last Deferred fires, the server knows it can close the TCP 

connection, or reset it for the next request.

We’ve elided many of the details, which are expanded below.
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 File Types, Content-Type, /name/
Tahoe’s storage model maps filecaps to bytestrings, without names, dates, or other 

metadata. Directories contain names and dates, in the table entries that point to their 

children, but a basic filecap just gives you a bunch of bytes.

However, the HTTP protocol includes a Content-Type for each download, which 

allows the browser to figure out how to render the page (HTML, JPG, or PNG), or what 

OS metadata to record when saving it to disk. In addition, most browsers assume the last 

component of the URL path is a filename, and the “save-to-disk” feature will use it as the 

default filename.

To deal with this mismatch, Tahoe’s WAPI has a feature to let you download a filecap 

with an arbitrary name in the last element of the path. The WUI directory browser puts 

these special URLs in the HTML of the directory page, so “Save Link As..” works correctly. 

The full URL looks like this:

http://127.0.0.1:3456/named/URI:CHK:bz3lwnno6stus:mwmb5vae../kittens.jpg

This looks a lot like a directory and a child inside it. To avoid visual confusion, we 

usually insert an extra funny-looking string into such URLs:

http://127.0.0.1:3456/named/URI:CHK:bz3lwn../@@named=/kittens.jpg

This is implemented with a Named Resource that creates a FileNodeHandler, but 

also remembers the last component of the URL path in self.filename (ignoring any 

intermediate components, like that @@named= string). Then, when we run render_GET, 

we pass this filename into a Twisted utility that maps the filename suffix to a type string, 

using the equivalent of /etc/mime.types. From this, we can set the Content-Type and 

Content-Encoding headers.

# from twisted.web import static

ctype, encoding = static.getTypeAndEncoding(

    self.filename,

    static.File.contentTypes,

    static.File.contentEncodings,

    defaultType="text/plain")

request.setHeader("content-type", ctype)

if encoding:

    request.setHeader("content-encoding", encoding)
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 Saving to Disk
When you click on a link, the browser will try to render the document that comes back: 

HTML goes through layout, images get drawn in the window, audio files get played, etc. 

If it doesn’t recognize the file type, it will offer to save the file to disk instead. Tahoe’s 

“WUI” HTML front end offers a way to force this save-to-disk behavior: for any URL that 

points at a file, just append a ?save=True query argument to the URL. The web server 

acts on this by adding a Content-Disposition header, which instructs the browser to 

always save the response, instead of trying to render it:

if boolean_of_arg(get_arg(request,"save","False")):

    request.setHeader("content-disposition",

                      'attachment; filename="%s"' % self.filename)

 Range Headers
The web front end allows HTTP clients to request just a subset of the file by providing a 

Range header. This is frequently used by streaming media players (like VLC or iTunes) 

when the “scrubber” control is used to jump around in a movie or audio file. Tahoe’s 

encoding scheme was specifically designed to support this sort of random-access 

efficiently, by using Merkle hash trees.

Merkle hash trees start by chopping up the data into segments and applying a 

cryptographic hash function (SHA256) to each segment. Then we hash each pair of 

segment hashes into a second layer (half the length of the first). This reduction process 

is repeated until we have a single “root hash” at the top of a binary tree of intermediate 

hash nodes, with the segments at the bottom. The root hash is stored in the filecap, 

and we send everything else (segments and intermediate hashes) to the server. 

During retrieval, any single segment can be validated against the stored root without 

downloading all the other segments, by asking the server to provide the companion 

hash nodes for the path from that segment up to the root. This enables fast validation of 

arbitrary segments with minimum data transfer.

The web front end handles this by parsing the request’s Range header, setting the 

response’s Content-Range and Content-Length headers, and modifying the first and 

size values that we pass into the read() method.
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Parsing the Range header is nontrivial, since it can include a list of (potentially 

overlapping) ranges, which might include the beginning or end of the file, and it might 

be expressed in various units (not just bytes). Fortunately, servers are allowed to ignore 

unparsable Range specifications: it’s not efficient, but they can just return the entire file, 

as if the Range header didn’t exist. The client is then obligated to ignore the portions of 

the data they didn’t want.

first, size, contentsize = 0,None, filesize

request.setHeader("accept-ranges","bytes")

rangeheader = request.getHeader('range')

if rangeheader:

    ranges = self.parse_range_header(rangeheader)

    # ranges = None means the header didn't parse, so ignore

    # the header as if it didn't exist. If is more than one

    # range, then just return the first for now, until we can

    # generate multipart/byteranges.

    if ranges is not None:

        first, last = ranges[0]

        if first >= filesize:

            raise WebError('First beyond end of file',

                           http.REQUESTED_RANGE_NOT_SATISFIABLE)

        else:

            first = max(0, first)

            last = min(filesize-1, last)

            request.setResponseCode(http.PARTIAL_CONTENT)

            request.setHeader('content-range',"bytes %s-%s/%s" %

                              (str(first), str(last),

                              str(filesize)))

            contentsize = last – first + 1

            size = contentsize

request.setHeader("content-length", b"%d" % contentsize) 
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 Error Conversion on the Return Side
Tahoe’s internal API throws a variety of exceptions when something goes wrong. For 

example, if too many servers have failed, the file may not be recoverable (at least not 

until some servers come back online). We try to map these exceptions into sensible 

HTTP error codes with an exception handler that runs at the end of the HTTP processing 

chain. The core of this handler is named humanize_failure(), and looks at the twisted.

python.failure.Failure object that wraps all exceptions raised during the processing 

of a Deferred:

def humanize_failure(f):

    # return text, responsecode

    if f.check(EmptyPathnameComponentError):

        return ("The webapi does not allow empty pathname components, "

                "i.e. a double slash" , http.BAD_REQUEST)

    if f.check(ExistingChildError):

      return ("There was already a child by that name, and you asked me "

              "to not replace it." , http.CONFLICT)

    if f.check(NoSuchChildError):

        quoted_name = quote_output(f.value.args[0], encoding="utf-8")

        return ("No such child: %s" % quoted_name, http.NOT_FOUND)

    if f.check(NotEnoughSharesError):

        t = ("NotEnoughSharesError: This indicates that some "

             "servers were unavailable, or that shares have been "

             "lost to server departure, hard drive failure, or disk "

             "corruption. You should perform a filecheck on "

             "this object to learn more.\n\nThe full error message is:\n"

             "%s" ) % str(f.value)

        return (t, http.GONE)

    ...

The first half of the return value is a string to put into the HTTP response body; the 

second is the HTTP error code itself.
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 Rendering UI Elements: Nevow Templates
Tahoe’s WUI provides a file-browser interface: directory panels, file listings, upload/

download selectors, delete buttons, etc. These are made up of HTML, rendered on the 

server side from Nevow templates.

The web/ directory contains an XHTML file for each page, with placeholders that 

are filled in with variables by the DirectoryNodeHandler class. Each placeholder is 

a namespaced XML element that names a “slot.” The directory listing template looks 

like this:

<table class="tahoe-directory"n:render="sequence"n:data="children" >

  <tr n:pattern="header">

    <th>Type</th>

    <th>Filename</th>

    <th>Size</th>

  </tr>

  <tr n:pattern="item"n:render="row" >

    <td><n:slot name="type"/></td>

    <td><n:slot name="filename"/></td>

    <td align="right"><n:slot name="size"/></td>

  </tr>

The code that populates this form, in directory.py, loops over all children of the 

directory being rendered, examines its type, and uses a ctx “context” object to fill in each 

slot by name. For files, the T.a Nevow tag produces a hyperlink, with the href= attribute 

pointing at a download URL using the /named/ prefix described earlier:

...

elif IImmutableFileNode.providedBy(target):

    dlurl = "%s/named/%s/@@named=/%s"%(root, quoted_uri, nameurl)

    ctx.fillSlots("filename", T.a(href=dlurl, rel="noreferrer")[name])

    ctx.fillSlots("type","FILE")

    ctx.fillSlots("size", target.get_size())

Nevow also offers tools to build HTML input forms. These are used to construct the 

upload file-picker form, and the “make directory” name input element.
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 The FTP Front End
The front-end protocols allow other applications to access this internal file graph, in 

some form that matches their existing data model. For example, the FTP front end 

assigns each “account” (a username / password pair) to a root dircap. When an FTP 

client connects to this account, they are presented with a filesystem that starts at this 

directory node, and only extends downward (into child files and subdirectories). In a 

normal FTP server, all accounts see the same filesystem, but with different permissions 

(Alice cannot read Bob’s files), and different starting directories (Alice starts in /home/

alice, Bob starts in /home/bob). In the Tahoe FTP server, Alice and Bob will have entirely 

distinct views of the filesystem, which may not overlap at all (unless they have arranged 

to share some portion of their space).

Tahoe’s FTP front end builds upon Twisted’s FTP server (twisted.protocols.ftp). 

The FTP server uses Twisted’s “Cred” framework for account management (which involves 

“Portals,” “Realms,” and “Avatars”). As a result, the server is made up of several components:

• Endpoint: This defines what TCP port the server will listen on, along 

with options like which network interfaces to use (e.g., the server can 

be restricted to only listen on 127.0.0.1, the loopback interface).

• FTPFactory (twisted.protocols.ftp.FTPFactory): This provides 

the overall FTP server. It is a “protocol factory,” so it will be invoked 

each time a new client connects, and it is responsible for building the 

Protocol instance that manages that specific connection. When you 

tell the Endpoint to start listening, you give it a factory object.

• Checker: This is an object that implements ICredentialsChecker 

and handles authentication, by examining some credentials and 

(if successful) returning an “Avatar ID.” In the FTP protocol, the 

credentials are a username and password supplied by the user. 

In SFTP, they include an SSH public key. The “Avatar ID” is just a 

username. The Tahoe FTP front end can be configured to use an 

AccountFileChecker (in auth.py), which stores the username/

password/rootcap mapping in a local file. It can also use an 

AccountURLChecker, which queries an HTTP server (it POSTs 

the username and password, and gets the rootcap back in the 

response). The AccountURLChecker was used for centralized account 

management back at AllMyData.
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• Avatar: This is the server-side object that handles a specific user’s 

experience. It is also specific to a service type, so it must implement 

some particular Interface, in this case a Twisted interface named 

IFTPShell (which has methods like makeDirectory, stat, list, and 

openForReading).

• Realm: This is any object that implements Twisted’s IRealm interface, 

and is responsible for turning an Avatar ID into an Avatar. The Realm 

API also deals with multiple interfaces: a client that needs a specific 

kind of access can ask for a specific Interface, and the Realm might 

return a different Avatar depending on what they ask for. In the Tahoe 

FTP front end, the realm is a class named Dispatcher that knows 

how to create a root directory node from the account information 

and wrap it in a handler.

• Portal (twisted.cred.portal.Portal): This is a Twisted object that 

manages the Checkers and the Realms. The FTPFactory is configured 

with a Portal instance at construction time, and everything involving 

authorization is delegated to the portal.

• Handler (allmydata.frontends.ftpd.Handler): This is a Tahoe 

object that implements Twisted’s IFTPShell and translates FTP 

concepts into Tahoe concepts.

The Tahoe FTP server code does the following:

• create a MultiService that hangs off the top-level Node multiservice;

• hang a strports.service off that, listening on the FTP server port;

• configure that listener with an FTPFactory;

• configure the factory with a Portal;

• create a Dispatcher for use as the Portal’s “realm”;

• add an AccountFileChecker and/or an AccountURLChecker to the 

Portal.
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When an FTP client connects, the username and password are submitted to the 

AccountFileChecker, which had previously parsed the accounts file into memory. The 

account lookup is pretty simple:

class FTPAvatarID:

    def __init__ (self, username, rootcap):

        self.username = username

        self.rootcap = rootcap

@implementer(checkers.ICredentialsChecker)

class AccountFileChecker(object):

    def requestAvatarId(self, creds):

        if credentials.IUsernamePassword.providedBy(creds):

            return self._checkPassword(creds)

        ...

    def _checkPassword(self, creds):

        try:

            correct = self.passwords[creds.username]

        except KeyError:

            return defer.fail(error.UnauthorizedLogin())

        d = defer.maybeDeferred(creds.checkPassword, correct)

        d.addCallback(self._cbPasswordMatch, str(creds.username))

        return d

    def _cbPasswordMatch(self, matched, username):

        if matched:

            return self._avatarId(username)

        raise error.UnauthorizedLogin

    def _avatarId(self, username):

        return FTPAvatarID(username,self.rootcaps[username])

If the username is not on the list, or if the password doesn’t match, requestAvatarId 

will return a Deferred that errbacks with UnauthorizedLogin, and the FTPFactory will 

return the appropriate FTP error code. If both are good, it returns an FTPAvatarID object 

that encapsulates the username and the account’s rootcap URI (which is just a string).
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When this succeeds, the Portal asks its Realm (i.e., our Dispatcher object) to turn the 

Avatar ID into a handler. Our realm is also pretty simple:

@implementer(portal.IRealm)

class Dispatcher(object):

    def __init__ (self, client):

        self.client = client

    def requestAvatar(self, avatarID, mind, interface):

        assert interface == ftp.IFTPShell

        rootnode = self.client.create_node_from_uri(avatarID.rootcap)

        convergence = self.client.convergence

        s = Handler(self.client, rootnode, avatarID.username, convergence)

        def logout(): pass

        return (interface, s,None)

First, we assert that we’re being asked for an IFTPShell, not some other interface 

(which we don’t know how to deal with). Then, we use the Tahoe file-graph API to convert 

the rootcap URI into a directory node. The “convergence secret” is outside the scope of this 

chapter, but it exists to provide safe deduplication, and is provided to the Handler to let us 

extend the interface to use distinct convergence secrets for each account.

Then, we build a Handler around the Client (which provides methods to create 

brand new filenodes) and the rootnode (which provides access to the user’s “home 

directory” and everything below it), and return this to the portal. That’s enough to get the 

FTP server connected.

Later, when the client performs an “ls” command, our handler’s list() method will 

get invoked. Our implementation is responsible for translating the FTP notion of listing a 

directory (it gets a list of path-name components, relative to the root) into Tahoe’s notion 

(which does a step-wise traversal from the root directory node down into some other 

dirnode).

def list(self, path, keys=()):

    d = self._get_node_and_metadata_for_path(path)

    def _list((node, metadata)):

        if IDirectoryNode.providedBy(node):

            return node.list()

        return { path[-1]: (node, metadata) }

    d.addCallback(_list)
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    def _render(children):

        results = []

        for (name, childnode) in children.iteritems():

            results.append( (name.encode("utf-8"),

                             self._populate_row(keys, childnode) ) )

        return results

    d.addCallback(_render)

    d.addErrback(self._convert_error)

    return d

We start with a common “follow the path from the root” helper method, which 

returns a Deferred that eventually fires with the node and metadata for the file or 

directory named by the path (if the path is foo/bar, then we’ll ask our root dirnode 

for its foo child, expect that child to be a directory, then ask that subdirectory for its 

bar child). If the path pointed to a directory, we use the Tahoe IDirectoryNode’s node.

list() method to gets its children: this returns a dictionary that maps child name to 

(child node, metadata) tuples. If the path pointed to a file, we pretend that it pointed to a 

directory with only the one file in it.

Then we need to turn this dictionary of children into something the FTP server can 

accept. In the FTP protocol, the LIST command can ask for different attributes: sometimes 

the client wants owner/group names, sometimes it wants permissions, sometimes all it 

cares about is the list of child names. Twisted’s IFTPShell interface expresses this by giving 

the list() method a sequence of “keys” (strings) to indicate which values it wants. Our 

_populate_row() method turns one child+metadata pair into the correct list of values.

def _populate_row(self, keys, (childnode, metadata)):

    values = []

    isdir = bool(IDirectoryNode.providedBy(childnode))

    for key in keys:

        if key == "size":

            if isdir:

                value = 0

            else:

                value = childnode.get_size() or 0

        elif key == "directory":

            value = isdir
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        elif key == "permissions":

            value = IntishPermissions(0600)

        elif key == "hardlinks":

            value = 1

        elif key == "modified":

            if "linkmotime" in metadata.get("tahoe", {}):

                value = metadata["tahoe"]["linkmotime"]

            else:

                value = metadata.get("mtime",0)

        elif key == "owner":

            value = self.username

        elif key == "group":

            value = self.username

        else:

            value = "??"

        values.append(value)

    return values

For each key that Twisted wants, we translate this into something we can get from 

Tahoe’s IFileNode or IDirectoryNode interfaces. Most of these are simple lookups in the 

metadata, or are obtained by calling a method on the Node object. One unusual case is 

permissions: see below for details.

The last step is to attach _convert_error as an errback handler. This converts some 

Tahoe-specific errors into their closest FTP equivalent, which is more useful than the 

“internal server error” that the client would get if they weren’t converted.

def _convert_error(self, f):

    if f.check(NoSuchChildError):

        childname = f.value.args[0].encode("utf-8")

        msg = "'%s' doesn't exist" % childname

        raise ftp.FileNotFoundError(msg)

    if f.check(ExistingChildError):

        msg = f.value.args[0].encode("utf-8")

        raise ftp.FileExistsError(msg)

    return f
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 The SFTP Front End
SFTP is a file-transfer protocol built upon the SSH secure shell encryption layer. It 

exposes a very POSIX-like API to remote clients: open, seek, read, and write, all on the 

same filehandle. FTP, on the other hand, only offers all-or-nothing transfer of individual 

files. FTP is a much better fit for Tahoe’s file model, but SFTP is more secure when 

speaking to remote servers.

The advantage of using Cred is that the same authentication mechanism can 

be reused with other protocols. FTP and SFTP, despite their differences, use the 

same basic access model: clients are identified by some credentials, and this gives 

access to a particular home directory. In Tahoe, both FTP and SFTP use the same 

FTPAvatarID and AccountFileChecker classes above. AccountFileChecker defines 

“credentialInterfaces” to cover all the kinds of authentication that might be 

presented: IUsernamePassword, IUsernameHashedPassword, and ISSHPrivateKey (this 

is specific to SFTP, and allows users to be identified by their SSH public key, instead of a 

password).

They only differ in the Realm (our Dispatcher class), which returns a different kind 

of handler for the two protocols.

 Backward-Incompatible Twisted APIs
Tahoe has no notion of Access Control Lists (ACLs), usernames, or read/write/execute 

permission bits: it follows the object-capability discipline of “if you can reference an 

object, you can use it.” Filecaps are unguessable, so the only way to reference a file is 

by knowing the filecap, which can only come from someone who uploaded the file 

originally, or from someone else who learned it from the uploader.

Most files are stored in directories, so access control is managed through directory 

traversal, which is safe because Tahoe directories do not have “parent” links. You can 

share one of your own directories with someone else by simply giving them a link: they 

cannot use this to reach anything “above” the one directory you gave them.

As a result, the FTP server always returns “0600” for the “permissions” field, which 

means “read and write by the current user only.” This value is mostly cosmetic: FTP 

clients only use it to populate the “mode” column of a long-form (ls -l) directory 

listing. We could be more accurate here, returning “0400” for immutable objects, but we 

didn’t really care enough to make the change.
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However, even a static value caused problems when one of Twisted’s APIs changed 

unexpectedly. In the early days, Twisted used integers to represent file modes/

permissions (just like the Unix kernel, and most C programs). Eventually folks realized 

that this is pretty unix-centric, so in Twisted-11.1.0, a nice, clean filepath.Permissions 

class was created to hold this kind information as a collections of Booleans.

But the FTP server wasn’t updated to use it until much later. Up until Twisted-14.0.2, 

the “permissions” value of list() was expected to return an integer. From 

Twisted-15.0.0 and onward, it was expected to return a Permissions instance. Moreover, 

it only accepted a Permissions instance: returning an integer would cause an exception.

In effect, the IFTPShell interface changed abruptly between 14.0.2 and 15.0.0, which 

we discovered when we started getting bug reports about FTP ls commands failing for 

folks who had upgraded (we didn’t have end-to-end test coverage for this front end, 

and our personal manual tests were still using Twisted-14.0.2, so we didn’t notice the 

problem ourselves).

Twisted usually does a fantastic job of deprecating APIs for a couple releases before 

making incompatible changes, but this one slipped through the cracks, probably 

because the most common implementation of IFTPShell is Twisted’s built-in FTPShell 

class, which was updated at the same time. So, another way to describe the problem was 

that IFTPShell was modified without a deprecation period, as if it were a private internal 

API, but in fact it was public.

The easiest way to resolve this would have been to make Tahoe’s setup.py require 

Twisted >= 15.0.0, and change the code to return a Permissions object. But this 

would have made life more difficult for folks building Tahoe on Linux distributions 

that included a version of Twisted that was a few years out of date. (Debian 8.0 “jessie” 

was released in 2015 with Twisted-14.0.2, and wasn’t replaced until 2017.) Back then, 

Tahoe was trying to be compatible with a wide range of Twisted versions. We felt bad 

about asking users to upgrade their system Twisted just to satisfy Tahoe’s enthusiasm for 

modern fashions.

So, to allow Tahoe work with both old and new Twisteds, we needed to return 

something that behaved like an integer when necessary, but could behave like a 

Permissions too. When we examined the way that Twisted-14.0.2 used the value, we 

found that it always did a bitwise AND of the value during the formatting process:

# twisted-14.0.2: twisted/protocols/ftp.py line 428

def formatMode(mode):

    return ''.join([mode&(256>>n) and 'rwx'[n % 3] or '-' for n in range(9)])
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This let us build a helper class that inherited from Permissions, but overrode the 

binary and method to return an integer if it got used by the older Twisted:

# filepath.Permissions was added in Twisted-11.1.0, which we require.

# Twisted <15.0.0 expected an int, and only does '&' on it. Twisted

# >=15.0.0 expects a filepath.Permissions. This satisfies both.

class IntishPermissions(filepath.Permissions):

    def __init__ (self, statModeInt):

        self._tahoe_statModeInt = statModeInt

        filepath.Permissions.__init__(self, statModeInt)

    def __and__ (self, other):

        return self._tahoe_statModeInt&other

These days, the situation is different. We no longer recommend that users install 

Tahoe (or any Python application) into a system-wide location like /usr/local/bin, nor 

do we recommend that Tahoe be run against system-provided Python libraries. Instead, 

users who build from source should be installing Tahoe into a new virtualenv, where it 

is easy to simply install the latest versions of all dependencies, and they can be safely 

isolated from the system python.

The pipsi tool makes this quite easy: pipsi install tahoe-lafs will create a 

Tahoe-specific virtualenv, install Tahoe and all its dependencies into it, then symlink just 

the tahoe executable into ~/.local/bin/tahoe where it will probably be on your $PATH. 

pipsi is now the recommended method to install Tahoe from a source tree.

A system-wide install should be done through the OS package manager. For 

example, apt install tahoe-lafs will get a working /usr/bin/tahoe on modern 

Debian and Ubuntu releases, and they’ll use system-wide dependencies (like Twisted) 

from /usr/lib/python2.7/dist-packages. The Debian developers (and other 

packagers) are responsible for making sure the system-wide libraries are compatible 

with all packaged applications: Tahoe, Magic-Wormhole, Buildbot, Mercurial, Trac, 

etc. When Tahoe bumps its dependency on Twisted, it is the packagers who must 

figure this stuff out. And if the system upgrades a library like Twisted, and it contains an 

unexpected incompatibility, that upgrade can be reverted until Tahoe can be patched to 

resolve the problem.
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 Summary
Tahoe-LAFS is a large project, started in 2006 when Twisted itself was not very old. It 

contains work-arounds for bugs that no longer exist, and techniques that have been 

superseded by new Twisted features. At times, the code might seem to reflect the 

developers’ historical fears and personal idiosyncrasies better than it serves as a good 

teaching example.

But it also embeds years of experience working with the Twisted code base “in 

anger” (not casually). And although Tahoe-LAFS might not be a household name, its 

core ideas have influenced and been incorporated into numerous other decentralized 

storage systems (written in Go, Node.js, Rust, and more).

Twisted’s central event loop, and the wealth of ready-to-use protocol 

implementations, have been critical to our feature set. If you really didn’t like event- 

driven systems, you might try to implement something similar with threads and locks 

(on the client, you’d need a separate thread for writing to each server, a second thread 

for receiving from each server, a third batch for each front-end request, all of which must 

carefully use locks against concurrent access). The chances of this working safely are 

pretty low.

The Python standard library includes some fine protocol implementations, but 

they’re almost all written in a blocking style, limiting them to programs that do only one 

thing at a time. Hopefully this will change as Python 3 and asyncio gather momentum. 

In the meantime, Twisted is the best tool for a project like this.

 References
Tahoe-LAFS home page: https://tahoe-lafs.org

• Tahoe-LAFS GitHub page: https://github.com/tahoe-lafs/

tahoe- lafs

• Nevow: https://github.com/twisted/nevow

• Foolscap: https://foolscap.lothar.com/

• pipsi: https://github.com/mitsuhiko/pipsi/
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CHAPTER 7

Magic Wormhole
Magic Wormhole is a secure file-transfer tool, whose motto is “get things from one computer 

to another, safely.” It is most useful for ad hoc one-shot transfer situations, such as:

• You’ve just sat down next to someone at a conference, and you want 

to give them a tarball of your favorite project from your laptop.

• You’re talking on the phone with someone and need to give them a 

picture that you’re looking at on your computer.

• You’ve just set up a new account for a coworker and need to get their 

SSH public key from their computer safely.

• You want to copy your GPG private key from your old computer to 

your new laptop.

• A colleague on IRC wants you to send them a logfile from your 

computer.

One distinctive feature of this tool is the use of a wormhole code: a short phrase like 

“4-bravado-waffle” that enables the transfer and must be conveyed from the sending 

client to the receiving one. When Alice sends a file to Bob, Alice’s computer will display 

this phrase. Alice must somehow get this phrase to Bob: typically, she would speak it to 

him over the phone, or type it to him over SMS or IRC. The code consists of a number 

and a few words, and is designed for easy and accurate transcription, even in a noisy 

environment.

These codes are single use. The security properties are simple: the first recipient 

who claims the code correctly will get the file, and nobody else. These properties are 

strong: nobody else can get the file because it is encrypted, and only the first correct 

claim can compute the decryption key. And they depend only upon the behavior of the 

client software: no server or internet eavesdropper can violate them. Magic Wormhole is 

unique in combining strong confidentiality with an easy workflow.

http://magic-wormhole.io/
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 What It Looks Like
Magic Wormhole is currently only available as a Python-based command-line tool, but 

ports to other languages and runtime environments are underway. The most important 

projects are to develop a GUI application (where you can drag and drop the files to be 

transferred), and a mobile app.

• 1: Alice runs wormhole send FILENAME on her computer, and it tells 

her the wormhole code (“4-bravado-waffle”).

• 2: She then dictates this to Bob over the phone.

• 3: Bob types the wormhole code into his computer.

• 4: The two computers connect, then encrypt and transfer the file.

Figure 7-1. Sender Screenshot

Figure 7-2. Receiver Screenshot
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 How It Works
Magic Wormhole clients (both sender and receiver) connect to the same Rendezvous 
Server and exchange a handful of short messages. These messages are used to 

run a special cryptographic key-agreement protocol named SPAKE2, which is an 

authenticated version of the basic Diffie-Hellman key-exchange protocol (see the 

references below for more detail).

Figure 7-3. Magic Wormhole Workflow Diagram
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Each side starts their half of the SPAKE2 protocol state machine by feeding it a 

password: the randomly-generated wormhole code. Their half produces a message 

to deliver to the other side. When that message is delivered, the other side combines 

it with their own internal state to produce a session key. When both sides used the 

same wormhole code, their two session keys will be identical. Each time the protocol 

is run, they’ll get a new random session key. They use this session key to encrypt all 

subsequent messages, providing a secure connection to figure out the rest of the file 

transfer details.

Figure 7-4. SPAKE2 Diagram

Any attacker who tries to intercept the connection will get only one chance to 

guess the code correctly. If they’re wrong, the two session keys will be completely 

different, and they attacker won’t be able to decrypt the rest of the messages. The real 

clients will notice the mismatch and exit with an error message before trying to send 

any file data.
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Once they establish the secure connection, the magic wormhole clients exchange 

information about what they want to transfer, and then they work together to establish 

a Transit connection over which the bulk data transfer will take place. This starts 

with both sides opening a listening TCP network socket. They figure out all the IP 

addresses that might refer to this socket (there could be multiple ones) and build a list 

of connection hints, which they encrypt with the session key and send through the 

rendezvous server to the other side.

Each side attempts to make a direct connection to every connection hint it receives. 

The first attempt that succeeds is used for the file transfer. This works if both sides are on 

the same local network (for example, when both computers are on the same conference 

WiFi). Since they both try to connect to each other (regardless of which side is sending the 

file), this also works if at least one of the machines is a server with a public IP address. In 

practice, this appears to establish a direct connection about two-thirds of the time.

If both machines are behind different NAT firewalls, all the direct connections will 

fail. In this case, they fall back to using a central transit relay server that basically glues 

the two inbound TCP connections together.

In all cases, the file data is encrypted by the session key, so neither the rendezvous 

server nor the transit relay gets to see the contents of the file.

This same protocol can be used in other applications by importing the wormhole 

library and making API calls. For example, an encrypted instant-messaging application 

like Signal or Wire could use this to securely add a friend’s public key to your address 

book: instead of copying a large key string, you would instead tell your friend a 

wormhole code.

 Network Protocols, Transfer Latency, Client 
Compatibility
The total transfer time, from the moment the sender launches the tool, to the last byte 

arriving at the receiver, is roughly the sum of three phases:

• waiting for the receiver to finish typing in the wormhole code;

• performing key agreement and negotiating a transit connection;

• transferring the file over the encrypted channel.

Chapter 7  MagiC WorMhole



258

The first phase depends upon the humans: the program will cheerfully wait several 

days for the receiver to finally type in the wormhole code. The last phase depends upon 

the size of the file and the speed of the network. Only the middle phase is really under 

the control of the protocol, so we want to make it as fast as possible. We try to minimize 

the number of messages that must be exchanged, and use a low-latency real-time 

protocol to accelerate this phase.

The rendezvous server effectively provides a persistent broadcast channel (i.e., a 

“pubsub” server) for each pair of clients. The sender connects first, leaves a message for 

the receiver, and waits for a response. Later, when the human on the receiving side finally 

starts up their wormhole program, the receiver will connect and collect that message, and 

send a few of its own. If either client has a network problem, their connection might get 

dropped, and it must be reestablished.

 Network Protocols and Client Compatibility
Twisted makes it quite easy to build custom protocols over TCP or UDP, as seen in 

the first chapter of this book. We could have built a simple TCP-based protocol for the 

rendezvous connection. But when we think about the future, we’d like to see Magic 

Wormhole clients in other languages and runtime environments, like web pages 

or mobile operating systems. The protocol we build for a command-line Twisted 

application might not be easy to implement in other languages, or it might require 

network access that’s forbidden to those programs:

• Web browsers can do WebSockets and WebRTC, but not raw TCP 

connections.

• Browser extensions can do everything a web page can, and more, 

but must be implemented in specialized JavaScript where binary 

protocols are not very natural.

• iOS/Android can do HTTP, but power management may prohibit 

long-lived connections, and non-HTTP requests might not activate 

the radios.

So, for cross-runtime compatibility, we must stick to things that a web browser 

can do.
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The simplest such protocol would do plain HTTP GETs and POSTs, using the 

excellent treq package, which provides a requests-like API to Twisted-based programs. 

However, it isn’t clear how frequently the client ought to poll the server: we might poll 

once per second, wasting a lot of bandwidth to check for a response that won’t happen 

for an hour. Or we might save bandwidth by only checking once a minute, at the cost 

of adding 60 seconds of latency to a utility that should only take a second or two. Even 

polling once per second adds an unnecessary delay. With a real-time connection, the 

connection completes as fast as the network can carry the messages.

One trick to reduce this latency is “HTTP long polling” (sometimes known as 

COMET). In this approach, the magic wormhole client would make a GET or a POST 

as usual, but the relay server would pretend to take a really long time to deliver the 

response (in fact, the server would just stall the response until the other client connects 

to receive the file). One limitation is that the server must usually respond somehow, 

usually with a “please try again” error, within 30–60 seconds, or the client HTTP library 

may give up. Also, back-to-back messages (like the second and third messages sent by 

the clients) aren’t delivered immediately: the time it takes to send a request must be 

added to the latency of each message.

Another web-compatible real-time technique is called “Server Sent Events,” which is 

exposed to web content as the EventSource JavaScript object. This is a more principled 

way to do long polling: the client does a regular GET, but sets the Accept request header 

to the special value text/event-stream to tell the server that the connection should be 

kept open. The response is expected to contain a stream of encoded events, each on a 

single line. This is pretty easy to implement on the server; however, there is no off-the- 

shelf library for Twisted. The messages only travel in one direction (server to client), but 

that’s all we need for our protocol because we can use POSTs in the upstream direction. 

The biggest downside is that some web browsers (in particular IE and Edge) don’t 

support it.

Our solution is to use WebSockets. This is a well-standardized protocol, 

implemented in most browsers, and available as a library in many programming 

languages. It’s easy to use from Python and Twisted, thanks to the excellent Autobahn 

library (described in the next chapter). The connection looks just like a long-lived 

HTTP session, which makes it easier to integrate with existing HTTP stacks (and makes 

it more likely to work through proxies and TLS terminators). Keepalives are handled 

automatically. And it is a fast, real-time protocol, so messages are delivered as quickly as 

possible.
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If we didn’t have Autobahn, we might reconsider. WebSockets are somewhat 

complicated to implement because they use a special kind of framing (to prevent 

confused servers from misinterpreting the traffic as some other protocol: you wouldn’t 

want an attacker’s web page to make your browser send DELETE commands to your 

company’s internal FTP server).

In the future, the rendezvous server will probably speak multiple protocols, not just 

WebSockets. WebRTC is the most compelling, because it includes support for ICE and 

STUN. These are protocols to perform “NAT hole-punching”, so two clients can make a 

direct Transit connection despite both of them being behind firewalls. WebRTC is mostly 

used for audio/videochat, but it includes APIs specifically for ordinary data transfer. And 

WebRTC is well-supported by most browsers. A browser-to-browser Magic Wormhole 

would be fairly easy to build and might perform better than the current CLI tool.

The problem is that support outside a browser environment is minimal, partially 

because of the audio/video focus. Most libraries seem to spend all their energy trying to 

support the audio codecs and video compression algorithms, leaving them less time for 

the basic connectivity layer. The most promising ones I’ve seen are written in C++, for 

which Python bindings are second class, making build and packaging difficult.

One other contender is the libp2p protocol developed for IPFS. This relies upon a 

swarm of nodes in a large distributed hash table (DHT), rather than a central server, 

but has been well tested, and has good implementations in at least Go and JavaScript. 

A Python version of libp2p could be very promising.

 Server Architecture
The Rendezvous Server is written as a twisted.application.service.MultiService, 

with a listening port for the main WebSocket connection.

WebSockets are basically HTTP, and the Autobahn library makes it possible to use 

the same port for both. In the future this will let us host the pages and other assets of a 

web-based version of Magic Wormhole from the same origin as the rendezvous service. 

To set this up, the Rendezvous Server looks like this:

from twisted.application import service

from twisted.web import static, resource

from autobahn.twisted.resource import WebSocketResource

from .rendezvous_websocket import WebSocketRendezvousFactory
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class Root(resource.Resource):

    def __init__ (self):

        resource.Resource. __init__ (self)

        self.putChild(b"", static.Data(b"Wormhole Relay\n", "text/plain"))

class RelayServer(service.MultiService):

    def __init__ (self, rendezvous_web_port):

        service.MultiService. __init__ (self)

        ...

        root = Root()

        wsrf = WebSocketRendezvousFactory(None,self._rendezvous)

        root.putChild(b"v1", WebSocketResource(wsrf))

self._rendezvous is our Rendezvous object that provides the internal API for the 

Rendezvous Server actions: adding messages to a channel, subscribing to channels, etc. 

When we add additional protocols, they will all use this same object.

WebSocketResource is Autobahn’s class for adding a WebSocket handler at any HTTP 

endpoint. We attach it as the “v1” child of Root, so if our server is on magic-wormhole.

io, then the Rendezvous service will live at a URL of ws://magic-wormhole.io/v1. We 

reserve v2/ and the like for future versions of the protocol.

The WebSocketResource must be given a factory: we use our WebSocketRendezvous 

Factory from a neighboring module. This factory produces Protocol instances of our 

WebSocketRendezvous class, which has an onMessage method that examines the payload of 

each message, parses the contents, and invokes the appropriate action:

def onMessage(self, payload, isBinary):

    msg = bytes_to_dict(payload)

    try:

        if "type" not in msg:

            raise Error("missing 'type'")

        self.send("ack", id=msg.get("id"))

        mtype = msg["type"]

        if mtype == "ping":

            return self.handle_ping(msg)

        if mtype == "bind":

            return self.handle_bind(msg)

        ...
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 Persistent Database
When both clients are connected at the same time, the rendezvous server delivers 

messages from one to the other right away. But at least the initial message must be 

buffered while waiting for the second client to connect: sometimes for just a few 

seconds, but sometimes for hours or days.

Early versions of the rendezvous server held these messages in memory. But then 

each time the host was rebooted (e.g., to upgrade the operating system), these messages 

were lost, and any clients waiting at that moment would fail.

To fix this, the server was rewritten to store all messages in an SQLite database. Every 

time a message arrives, the first thing the server does is to append it to a table. Once the 

message is safely stored, a copy is forwarded to the other client. The Rendezvous object 

wraps a database connection, and each method performs SELECTs and INSERTs.

The clients were also rewritten to tolerate losing a connection, as described in 

the next section, with state machines that retransmit any message that hasn’t been 

acknowledged by the server.

An interesting side effect of this work was that it enables an “offline mode”: two 

clients can exchange messages without ever being connected at the same time. 

While this doesn’t enable a direct file-exchange operation, it does allow use cases like 

exchanging public keys for a messaging application.

 Transit Client: Cancelable Deferreds
After a session key is computed, the wormhole clients can communicate securely, but 

all their data is still being relayed by the rendezvous server. This is too slow for the bulk 

file-transfer phase: every byte must go up to the server, and then back down to the other 

client. It would be faster (and cheaper) to use a direct connection. However, sometimes 

the clients cannot make a direct connection (e.g., they are both behind NAT boxes), in 

which case they must use a “transit relay” server. The Transit Client is responsible for 

making the best connection that is possible.

As described earlier, the clients each open a listening TCP port, figure out their IP 

addresses, then send the address+port to the other side (through the encrypted rendezvous 

channel). To accommodate future connection mechanisms (perhaps WebRTC), this is 

generalized as a set of “connection hints” of various types. The current client recognizes three 

kinds of hints: direct TCP, transit-relay TCP, and Tor  hidden- service TCP. Each hint includes a 

priority, so a client can encourage the use of cheaper connections.
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Both sides initiate connections to every hint that they can recognize, starting with the 

high-priority hints first. Any hints that use the transit relay are delayed by a few seconds, 

to favor a direct connection.

The first connection that completes the negotiation process will win the race, at 

which point we use defer.cancel() to abandon all the losers. Those might still be 

waiting to start (sitting in the two-second delay imposed on relay connections), or trying 

to complete DNS resolution, or connected but waiting for negotiation to finish.

Deferred cancellation neatly handles all of these cases, because it gives the original 

creator of the Deferred an opportunity to avoid doing some work that’s now going 

to be ignored anyway. And if the Deferred has chained to another, the cancel() call 

follows this chain and gets delivered to the first Deferred that has not yet fired. For us, 

that means canceling a contender that is waiting for a socket to connect will cancel the 

connection attempt. Or canceling one that is connected but still waiting for a connection 

handshake will shut down the connection instead.

By structuring each step of the process as another Deferred, we don’t need to keep 

track of those steps: a single cancel() will do the right thing.

We manage this race with a utility function in src/wormhole/transit.py:

class _ThereCanBeOnlyOne:

     """Accept a list of contender Deferreds, and return a summary Deferred. 

When the first contender fires successfully, cancel the rest and fire the 

summary with the winning contender's result. If all error, errback the summary.

    """

    def __init__ (self, contenders):

        self._remaining = set(contenders)

        self._winner_d = defer.Deferred(self._cancel)

        self._first_success = None

        self._first_failure = None

        self._have_winner = False

        self._fired = False

def _cancel(self, _):

    for d in list(self._remaining):

        d.cancel()

    # since that will errback everything in _remaining, we'll have

    # hit _maybe_done() and fired self._winner_d by this point
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    def run(self):

        for d in list(self._remaining):

            d.addBoth(self._remove, d)

            d.addCallbacks(self._succeeded,self._failed)

            d.addCallback(self._maybe_done)

        return self._winner_d

    def _remove(self, res, d):

        self._remaining.remove(d)

        return res

    def _succeeded(self, res):

        self._have_winner = True

        self._first_success = res

        for d in list(self._remaining):

            d.cancel()

    def _failed(self, f):

        if self._first_failure is None:

            self._first_failure = f

    def _maybe_done(self, _):

        if self._remaining:

            return

        if self._fired:

            return self._fired = True

        if self._have_winner:

            self._winner_d.callback(self._first_success)

        else:

            self._winner_d.errback(self._first_failure)

def there_can_be_only_one(contenders):

    return _ThereCanBeOnlyOne(contenders).run()

This is exposed as a function, not a class. We need to turn a collection of Deferreds 

into a single new Deferred, and a class constructor can only return the new instance 

(not a Deferred). If we exposed _ThereCanBeOnlyOne as the main API, callers would be 
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forced to use an awkward d = ClassXYZ(args).run() syntax (precisely the syntax we 

hide inside our function). This would add several opportunities for mistakes:

• What if they call run() twice?

• What if they subclass it? what sort of compatibility are we promising?

Note that if all the contender Deferreds fail, the summary Deferred will fail too. In 

this case, the errback function will receive whatever Failure instance was delivered with 

the first contender failure. The idea here is to report common-mode failures usefully. 

Each target will probably behave in one of three ways:

• successful connection (maybe fast or maybe slow);

• fail because of something specific to the target: it uses an IP address 

that we can’t reach, or a network filter blocks the packets;

• fail because of something not specific to the target, for example, we 

aren’t even connected to the internet;

If we’re in the latter case, all the connection failures will be the same, so it doesn’t 

matter which one we report. Recording the first should be enough to let the user figure 

out what went wrong.

 Transit Relay Server
The code for the Transit Relay is in the magic-wormhole-transit-relay package. It 

currently uses a custom TCP protocol, but I hope to add a WebSockets interface to 

enable browser-based clients to use it too.

The core of the relay is a Protocol for which pairs of instances (one per client) are 

linked together. Each instance has a “buddy,” and every time data arrives, that same data 

is written out to the buddy:

class TransitConnection(protocol.Protocol):

    def dataReceived(self, data):

        if self._sent_ok:

            self._total_sent += len(data)

            self._buddy.transport.write(data)

            return

        ...
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    def buddy_connected(self, them):

        self._buddy = them

        ...

        # Connect the two as a producer/consumer pair. We use streaming=True,

        # so this expects the IPushProducer interface, and uses

        # pauseProducing() to throttle, and resumeProducing() to unthrottle.

        self._buddy.transport.registerProducer(self.transport,True)

        # The Transit object calls buddy_connected() on both protocols, so

        # there will be two producer/consumer pairs.

    def buddy_disconnected(self):

        self._buddy = None

        self.transport.loseConnection()

    def connectionLost(self, reason):

        if self._buddy:

            self._buddy.buddy_disconnected()

        ...

The rest of the code has to do with identifying exactly which connections should 

be paired together. Transit clients write a handshake string as soon as they connect, 

and the relay looks for two clients that wrote the same handshake. The remainder of 

the dataReceived method implements a state machine that waits for the handshake to 

arrive, then compares it against other connections to find a match.

When the buddies are linked, we establish a Producer/Consumer relationship 

between them: Alice’s TCP transport is registered as a producer for Bob’s, and vice versa. 

When Alice’s upstream link is faster than Bob’s downstream link, the TCP Transport 

connected to Bob’s TransitConnection will fill up. It will then call pauseProducing() 

on Alice’s Transport, which will remove her TCP socket from the reactor’s readable list 

(until resumeProducing() is called). This means the relay won’t read from that socket for 

a while, causing the kernel’s inbound buffer to fill, at which point the kernel’s TCP stack 

shrinks the TCP window advertisement, which tells Alice’s computer to stop sending 

data until it catches up.

The net result is that Alice observes a transfer rate that is no greater than what Bob 

can handle. Without this Producer/Consumer linkage, Alice would write data to the relay 

as fast as her connection allows, and the relay would have to buffer all of it until Bob 

caught up. Before we added this, the relay would occasionally run out of memory when 

people sent very large files to very slow recipients.
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 Wormhole Client Architecture
On the client side, the wormhole package provides a Wormhole library to establish 

wormhole-style connections through the server, a Transit library to make encrypted 

direct TCP connections (possibly through a relay), and a command-line tool to drive the 

file-transfer requests. Most of the code is in the Wormhole library.

The Wormhole object is built with a simple factory function, and has a Deferred- 

based API to allocate a wormhole code, discover what code was selected, and then send/

receive messages:

import wormhole

@inlineCallbacks

def run():

    w = wormhole.create(appid, relay_url, reactor)

    w.allocate_code()

    code = yield w.get_code()

    print "wormhole code:", code

    w.send_message(b"outbound message")

    inbound = yield w.get_message()

    yield w.close()

We use a create factory function, not a class constructor, to build our Wormhole 

object. This lets us keep the actual class private, so we can change the implementation 

details without causing compability breaks in the future. For example, there are actually 

two flavors of Wormhole objects. The default has a Deferred-based interface, but if you 

pass an optional delegate= argument into create, you get an alternate one that makes 

calls to the delegate object intead of firing a Deferred.

create takes a Reactor, rather than importing one internally, to allow the calling 

application to control which type of reactor is used. This also makes unit tests easier to 

write, because we can pass in a fake reactor where, for example, network sockets are 

stubbed out, or one where we get explicit control over the clock.

Internally, our Wormhole object uses over a dozen small state machines, each of 

which is responsible for a small part of the connection and key-negotiation process. For 

example, the short integer at the beginning of a wormhole code (the “4” in 4-bravado- 

waffle) is called a Nameplate, and these are allocated, used, and released, all by a single 

dedicated state machine. Likewise, the server hosts a Mailbox where the two clients 
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can exchange messages: each client has a state machine that manages their view of 

this Mailbox, and knows when they want it to be opened or closed, and ensures that all 

messages are sent at the right time.

 Deferreds vs State Machines, One-Shot Observer
While the basic message flow is pretty simple, the full protocol is fairly complex. This 

complexity stems from a design goal of tolerating connection failures (and subsequent 

reconnections), as well as server shutdowns (and subsequent restarts).

Each resource that the client might allocate or reserve must be freed at the right time. 

So, the process of claiming Nameplates and Mailboxes is carefully designed to always 

move forward, despite connections coming and going.

It is further complicated by another design goal: applications that use the library can 

save their state to disk, shut down completely, then restart at a later time and pick up 

where they left off. This is intended for messaging applications that get started and shut 

down all the time. For this to work, the application needs to know when a wormhole 

message has arrived, and how to serialize the protocol’s state (along with everything else 

in the application). Such applications must use the Delegate API.

Deferreds are a good choice for dataflow-driven systems in which any given 

action can happen exactly once, but they are hard to serialize. And for states that 

might roll forward and then roll back, or for events which can occur multiple times 

(more of a “stream” interface), state machines might be better. Earlier versions of the 

wormhole code used more Deferreds, and it was harder to handle connections being 

lost and restarted. In the current version, Deferreds are only used for the top-level 

API. Everything else is a state machine.

The Wormhole object uses over a dozen interlocking state machines, all of which are 

implemented with Automat. Automat is not a part of Twisted per se, but it was written 

by members of the Twisted community, and one of its first use cases was Twisted’s 

ClientService (this is a utility that maintains a connection to a given endpoint, 

reconnecting any time the connection is lost, or when the connection process fails; 

Magic Wormhole uses ClientService for the connection to the Rendezvous server).

As a specific example, Figure 7-5 shows the Allocator state machine, which manages 

the allocation of Nameplates. These are allocated by the rendezvous server upon request 

by the sending side (unless the sender and receiver have decided upon a code offline, in 

which case both sides type the code into their clients directly).
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At any given moment, the connection to the rendezvous server is either established 

or not, and the transitions between these two states causes a connected or lost message 

to be dispatched to most state machines, including the Allocator. The allocator remains 

in one of the two “idle” states (S0A idle+disconnected, or S0B idle+connected) until/

unless it is needed. If the higher-level code decides that a nameplate is required, 

it sends the allocate event. If the Allocator was connected at that moment, it tells 

the Rendezvous Connector to transmit an allocate message (the box labelled  RC.

tx_allocate), then moves to state S1B where it waits for a response. When the response 

arrives (rx_allocated), it will choose random words that make up the rest of the code, 

inform the Code state machine that one has been allocated (C.allocated()), and move 

to the terminal S2: done state.

Until the rx_allocated response is received, we can’t know if the request was 

delivered successfully or not. So we must 1: make sure to retransmit the request each 

time the connection is reestablished; and 2: make sure the request is idempotent, so that 

the server reacts to two or more requests the same way it would react to a single request. 

This ensures that the server behaves correctly in both cases.

Figure 7-5. Allocator state machine
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We might be asked to allocate a nameplate before the connection has been 

established. The path from S1A to S1B is where the allocate request is transmitted in 

either case: connecting before discovering the need to allocate, and reconnecting after 

sending the allocation request but not yet hearing the response.

This pattern appears in most of our state machines. For more complex examples, 

look at the Nameplate or the Mailbox machines, which create or subscribe to a named 

channel on the rendezvous server. In both cases, the states line up into two columns: 

either “disconnected” on the left, or “connected” on the right. The vertical position 

within the column indicates what we’ve accomplished so far (or what we still need to 

do). Losing a connection moves us from right to left. Establishing a connection moves us 

from left to right, and generally sends a new request message (or retransmits an earlier 

one). Receiving a response moves us downward, as does being instructed to achieve 

something from a higher-level state machine.

The top-level Boss machine is where the state machines give way to Deferreds. 

Applications that import the magic wormhole library can ask for a Deferred that will fire 

when an important event occurs. For example, an application can create a Wormhole 

object and allocate a code like this:

from twisted.internet import reactor

from wormhole.cli.public_relay import RENDEZVOUS_RELAY

import wormhole

# set APPID to something application-specific

w = wormhole.create(APPID, RENDEZVOUS_RELAY, reactor)

w.allocate_code()

d = w.get_code()

def allocated_code(code):

    print("the wormhole code is:{}".format(code))

d.addCallback(allocated_code)

The Allocator state machine delivers the allocated messages to the Code machine 

(C.allocated). The Code machine will deliver the code to the Boss (B.got_code), the 

Boss machine will deliver it to the Wormhole object (W.got_code), and the Wormhole 

object will deliver it to any waiting Deferreds (which were constructed by calling get_

code()).
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 One-Shot Observers
The following excerpt from src/wormhole/wormhole.py shows the “one-shot observer” 

pattern used to manage the delivery of wormhole codes, both from allocation (described 

above) and interactive input:

@implementer(IWormhole, IDeferredWormhole)

class _DeferredWormhole(object):

    def __init__ (self):

        self._code = None

        self._code_observers = []

        self._observer_result = None

        ...

    def get_code(self):

        if self._observer_result is not None:

            return defer.fail(self._observer_result)

        if self._code is not None:

            return defer.succeed(self._code)

        d=defer.Deferred()

        self._code_observers.append(d)

        return d

    def got_code(self, code):

        self._code = code

        for d in self._code_observers:

            d.callback(code)

        self._code_observers[:] = []

    def closed(self, result):

        if isinstance(result,Exception):

            self._observer_result = failure.Failure(result)

        else:

            # pending Deferreds get an error

            self._observer_result = WormholeClosed(result)

        ...

        for d in self._code_observers:

            d.errback(self._observer_result)
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get_code() might be called any number of times. For the standard CLI filetransfer 

tool, the sending client allocates the code, and waits for get_code() to fire so it can 

display the code to the user (who must dictate it to the receiver). The receiving client 

is told the code (either as an invocation argument, or via interactive input, with tab 

completion on the words), so it doesn’t bother calling get_code(). Other applications 

might have reasons to call it multiple times.

We want all these queries to get the same answer (or error). And we want their 

callback chains to be independent.

 Promises/Futures vs. Deferreds
Futures come from the Actor model, by Carl Hewitt, and languages like Joule and E, 

and other early object-capability systems (in which they’re known as Promises). They 

represent a value that is not available yet, but which (might) resolve to something 

eventually, or might “break” and never refer to anything.

This lets programs talk about things that don’t yet exist. This might seem unhelpful, 

but there are plenty of useful things that can be done with not-yet-existent things. You 

can schedule work to happen when they do become available, and you can pass them 

into functions that can themselves schedule this work. In more advanced systems, 

Promise Pipelining lets you send messages to a Promise, and if that promise actually 

lives on a different computer entirely, the message will chase the promise to the target 

system, which can cut out several roundtrips. In general, they help programmers 

describe their future intentions to the compiler or interpreter, so it can better plan out 

what to do.

Deferreds are closely related, but are unique to Twisted. They serve more as a 

callback management tool than a fully fledged Promise. To explore how they differ, we 

should first explain how real Promises work.

In E, the object-capability language that most fully explored Promises, there is a 

function named makePromiseResolverPair(), which returns two separate objects: a 

Promise and a Resolver. The only way to resolve the promise is with the Resolver, and the 

only way to learn of the resolution is with the Promise. The language provides a special 

syntax, the “when” block, which lets the programmer write code that will execute only 

after the promise has been resolved to some concrete value. If Magic Wormhole were 

written in E, the get_code() method would return a Promise, and it would be displayed 

to the user like this:
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p = w.get_code();

when (p) {

    writeln("The code is:", p);

}

Promises are available in modern JavaScript (ES6), thanks to the sizable overlap 

between the object-capability community and the TC39 standards organization. These 

Promises do not have any special syntax to wait for resolution, instead relying upon 

JavaScript’s convenient anonymous functions (including the arrow function syntax 

introduced in ES6). The corresponding JavaScript code would look like:

p=w.get_code();

p.then(code=>{console.log("The code is:",code);});

A significant difference between E’s Promises, JS Promises, and Twisted’s Deferreds 

is in how you chain them together. The Javascript then() method returns a new 

Promise, which fires if and when the callback function finishes (if the callback returns an 

intermediate promise, the then() promise won’t fire until the intermediate one fires). So, 

given a single “parent” promise, you can build two separate processing chains like this:

p=w.get_code();

function format_code(code){

    return slow_formatter_that_returns_a_promise(code);

}

p.then(format_code).then(formatted => {console.log(formatted);});

function notify_user(code){

    return display_box_and_wait_for_approval(code);

}

p.then(notify_user).then(approved => {console.log("code delivered!");});

In JavaScript, these two actions will run “in parallel,” or at least neither will interfere 

with the other.

Twisted’s Deferreds, on the other hand, build a chain of callbacks without creating 

additional Deferreds.

d1=w.get_code()

d=d1.addCallback(format_code)

assert d1 is d # addCallback returns the same Deferred!

Chapter 7  MagiC WorMhole



274

This looks a bit like the JavaScript “attribute construction” pattern, common in web 

frameworks (e.g., d3.js, jQuery) that build up an object across many attribute-invocation 

calls:

s = d3.scale()

      .linear()

      .domain([0,100])

      .range([2,40]);

This chaining behavior of Deferreds can cause surprises, especially when trying to 

create parallel lines of execution:

d1 = w.get_code()

d1.addCallback(format_code).addCallback(print_formatted)

# wrong!

d1.addCallback(notify_user).addCallback(log_delivery)

In that example, notify_user is only called after print_formatted finishes, and 

it won’t be called with the code: instead it will get whatever value print_formatted 

returned. Our coding pattern (two lines, each of which starts with d1.addCallback) is 

deceptive. In fact, the code above is exactly equivalent to:

d1 = w.get_code()

d1.addCallback(format_code)

d1.addCallback(print_formatted)

d1.addCallback(notify_user) # even more obviously wrong!

d1.addCallback(log_delivery)

Instead, we need a new Deferred that will fire with the same value but lets us 

establish a new chain of execution:

def fanout(parent_deferred, count):

    child_deferreds = [Deferred() for i in range(count)]

    def fire(result):

        for d in child_deferreds:

            d.callback(result)

    parent_deferred.addBoth(fire)

    return child_deferreds
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d1 = w.get_code()

d2, d3 = fanout(d1,2)

d2.addCallback(format_code)

d2.addCallback(print_formatted)

d3.addCallback(notify_user)

d3.addCallback(log_delivery)

This is enough of a nuisance that in my projects, I usually create a utility class named 

OneShotObserverList. This “observer” has a when_fired() method (that returns a new, 

independent Deferred), and a fire() method (which fires them all). when_fired() can 

be called either before or after fire().

The Magic Wormhole code quoted above (get_code() / got_code()) is a subset 

of the full OneShotObserverList. There are several ways that the connection process 

might fail, but they all call closed() with a Failure instance (a successful/intentional 

close will call closed() with a non-Failure, which is then wrapped in a WormholeClosed 

exception). This code ensures that every Deferred returned by get_code() will be fired 

exactly once, with either success (and the code), or a Failure.

 Eventual-Send, Synchronous Testing
Another aspect of Promises that comes from E and the object-capability community is 

the eventual send. This is a facility to queue a method invocation for some subsequent 

turn of the event loop. In Twisted, this is basically a reactor.callLater(0, callable, 

argument). In E and JavaScript, Promises automatically provide this guarantee for their 

callbacks.

Eventual send is a simple and robust way to avoid a number of ordering hazards. For 

example, imagine a general observer pattern (with more functionality than the simple 

OneShotObserverList described above):

class Observer:

    def __init__ (self):

        self.observers = set()

    def subscribe(self, callback):

        self.observers.add(callback)

    def unsubscribe(self, callback):

        self.observers.remove(callback)
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    def publish(self, data):

        for ob in self.observers:

            ob(data)

Now, what happens if one of the callback functions invokes subscribe or 

unsubscribe, modifying the list of observers while in the middle of the loop? Depending 

upon how iteration works, the newly added callback might receive the current event, or it 

might not. In Java, the iterator might even throw a ConcurrentModificationException.

Reentrancy is another potential surprise: if some callback publishes a new message 

to the same observer, then the publish function will be invoked a second time while 

the first invocation is still running, which can violate many common assumptions 

the programmer might have made (especially if the function keeps state in instance 

variables). Finally, if a callback raises an exception, do the remaining observers see the 

event, or are they bypassed?

These unexpected interactions are collectively known as “plan-coordination 

hazards,” and the consequences include dropped events, duplicated events, non- 

deterministic ordering, and infinite loops.

Meticulous programming can avoid many of these failure modes: we could duplicate 

the observer list before iteration, catch/discard exceptions in the callbacks, and use a 

flag to detect reentrant calls. But it is far simpler and more robust to use an eventual send 

with each call:

def publish(self, data):

    for ob in self.observers:

        reactor.callLater(0, ob, data)

I’ve used this with great success in many projects (Foolscap, Tahoe-LAFS), and it 

removes entire classes of bugs. The downside is that testing becomes more difficult, 

since the effects of an eventual send cannot be checked synchronously. In addition, the 

lack of causal stack traces makes debugging tricky: if the callback raises an exception, 

the traceback doesn’t make it clear why that function was called. Deferreds have similar 

concerns, for which the defer.setDebugging(True) function can help.

With Magic Wormhole, I’ve been experimenting with using synchronous unit tests 

instead of eventual send.
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 Asynchronous Testing with Deferreds
Twisted has a unit test system named Trial, which builds upon the stdlib unittest 

package by providing specialized methods for handling Deferreds. The most obvious 

feature is that a test case can return a Deferred, and the test runner will wait for it to 

fire before declaring success (or allowing the next test to run). When combined with 

inlineCallbacks, this makes it easy to test that certain things happen in a specific order:

@inlineCallbacks

def test_allocate_default(self):

    w = wormhole.create(APPID,self.relayurl, reactor)

    w.allocate_code()

    code = yield w.get_code()

    mo = re.search(r"^\d+-\w+-\w+$", code)

    self.assert_(mo, code)

    # w.close() fails because we closed before connecting

    yield self.assertFailure(w.close(), LonelyError)

In that test, w.allocate_code() initiates the allocation of a code, and w.get_code() 

returns a Deferred that will eventually fire with the complete code. In between, the 

Wormhole object must contact the server and allocate a nameplate (the test launches a 

local rendezvous server in setUp(), rather than relying upon the real server). The yield 

w.get_code() takes that Deferred and waits for it to finish, then assigns the result to code 

so we can test its structure later.

Of course, what really happens is that the test function returns a Deferred and goes 

back to the event loop, then at some point in the future the server’s response arrives 

and causes the function to be resumed where it left off. If a bug prevents the get_code() 

Deferred from being fired, the test will wait quietly for two minutes (the default timeout), 

then declare an error.

The self.assertFailure() clause takes a Deferred and a list (*args) of exception 

types. It waits for the Deferred to resolve, then requires that it was errbacked with 

one of those exceptions: if the Deferred’s .callback() is invoked (i.e., not an error), 

assertFailure flunks the test. And if the Deferred’s .errback() is invoked with the 

wrong kind of error, it also flunks the test.
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For us, this serves three purposes. The Wormhole API requires that you call 

w.close() when you’re done, and close returns a Deferred that fires when everything 

is fully shut down. We use this to avoid moving on to the next test until everything has 

stopped moving from the previous one (all network sockets are shut down, all timers 

have been retired), which also avoids triggering an “unclean reactor” error from Trial.

This Deferred also gives applications a way to discover connection errors. In this test, 

we’re only running a single client, so there’s nobody for it to connect to, and the close 

Deferred will be errbacked with LonelyError. We use assertFailure to make sure that 

no other error happened, which catches all the usual coding errors that our unit tests are 

designed to find, like maybe a NameError because we misspelled a method somewhere.

The third purpose is that it keeps the overall test from being flunked. In other tests, 

where the wormhole connects successfully, we use a simple yield w.close() at the end 

of the test. But in this case, the LonelyError errback would look like a problem to Trial, 

which would mark the test as failed. Using assertFailure tells Trial that it’s ok for this 

Deferred to fail, as long as it fails in a very specific way.

 Synchronous Testing with Deferreds
test_allocate_default is really an integration test, which is exercising multiple 

pieces of the system at once (including the rendezvous server and the loopback network 

interface). These tests tend to be thorough but somewhat slow. They also don’t provide 

predictable coverage.

Tests that wait for a Deferred to happen (either by returning one from the test, 

yielding one in the middle of an @inlineCallbacks function, or calling assertFailure) 

imply that you aren’t entirely sure quite when that event will happen. This separation of 

concerns is fine when an application is waiting for a library to do something: the details 

of what will trigger the callback are the library’s job, not the application. But during unit 

tests, you should know exactly what to expect.

Trial offers three Deferred-managing tools that do not wait for the Deferred to 

fire: successResultOf, failureResultOf, and assertNoResult. These assert that the 

Deferred is currently in a specific state, rather than waiting for a transition to occur.

They are most commonly used with the Mock class, to reach “into” some code under 

test, to provoke specific internal transitions at a known time.
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As an example, we’ll look at the tests of Magic Wormhole’s tor support. This feature 

adds an argument to the command-line tools, which causes all connections to be routed 

through a Tor daemon, so wormhole send --tor won’t reveal your IP address to the 

rendezvous server (or the recipient). The details of finding (or launching) a suitable 

Tor daemon are encapsulated in a TorManager class, and depends upon the external 

txtorcon library. We can replace txtorcon with a Mock, then we exercise everything 

above it to make sure our TorManager code behaves as expected.

These tests exercise all of our Tor code, without actually talking to a real Tor daemon 

(which would clearly be slow, unreliable, and unportable). They accomplish this by 

assuming that txtorcon works as advertised. We don’t assert anything about what 

txtorcon actually does: instead we record and inspect everything we told txtorcon to 

do, then we simulate the correct txtorcon responses and examine everything that our 

own code does in reaction to those responses.

The simplest test checks to see what happens when txtorcon is not installed: normal 

operation should not be affected, but trying to use --tor should cause an error message. 

To make this easier to simulate, the tor_manager.py module is written to handle an 

import error by setting the txtorcon variable to None:

# tor_manager.py

try:

    import txtorcon

except ImportError:

    txtorcon = None

This module has a get_tor() function, which is defined to return a Deferred that 

either fires with a TorManager object, or with a NoTorError Failure. It returns a Deferred 

because, in normal use, it must establish a connection to the Tor control port before 

anything else can happen, and that takes time. But in this specific case, we know it 

should resolve immediately (with NoTorError), because we discover the ImportError 

without waiting for anything. So, the test looks like this:

from ..tor_manager import get_tor

class Tor(unittest.TestCase):

    def test_no_txtorcon(self):

        with mock.patch("wormhole.tor_manager.txtorcon",None):

            d = get_tor(None)

        self.failureResultOf(d, NoTorError)

Chapter 7  MagiC WorMhole



280

The mock.patch ensures that the txtorcon variable is None, even though the txtorcon 

package is always importable during tests (our setup.py marks txtorcon as a dependency 

in the [dev] extra). The Deferred returned by get_tor() is already in the errback state by 

the time our test regains control. self.failureResultOf(d, *errortypes) asserts that 

the given Deferred has already failed, with one of the given error classes. And because 

failureResultOf tests the Deferred immediately, it returns immediately. Our test_no_

txtorcon does not return a Deferred, nor does it use @inlineCallbacks.

A similar test exercises the precondition checks inside get_tor(). For each 

typecheck that this function does, we exercise it with a call. For example, the launch_

tor= argument is a Boolean flag that says whether the tor_manager should spawn a new 

copy of Tor, or try to use a preexisting one. If we pass in a value that isn’t True or False, 

we should expect the Deferred to fire with a TypeError:

def test_bad_args(self):

    d = get_tor(None, launch_tor="not boolean")

    f = self.failureResultOf(d,TypeError)

    self.assertEqual(str(f.value), "launch_tor= must be boolean")

This entire test runs synchronously, without waiting for any Deferreds. A collection 

of tests like this exercises every line and every branch in the tor_manager module in 11 

milliseconds.

Another common test is to make sure that a Deferred has not fired yet, because we 

haven’t yet triggered the condition that would allow it to fire. This is usually followed 

by a line that triggers the event, then an assertion that the Deferred is either resolved 

successfully (with some specific value), or has failed (with some specific exception).

The magic wormhole Transit class manages the (hopefully direct) client-to-client 

TCP connections used for bulk data transfer. Each side listens on a port and builds a list 

of “connection hints” based on every IP address it might possibly have (including several 

local addresses that are unlikely to be reachable). Each side then initiates connections 

to all of their peer’s hints at the same time. The first one to connect successfully and 

perform the right handshake is declared the winner, and all the others are canceled.

A utility function named there_can_be_only_one() (described earlier) is used 

to manage this race. It takes a number of individual Deferreds, and returns a single 

Deferred that fires when the first has succeeded. Twisted has some utility functions 

that do something similar (DeferredList has been around forever), but we needed 

something that would cancel all the losing contenders.
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To test this, we use Trial’s assertNoResult(d) and value = successResultOf(d)

features:

class Highlander(unittest.TestCase):

    def test_one_winner(self):

        cancelled = set()

        contenders = [Deferred(lambda d, i=i: cancelled.add(i))

                      for i in range(5)]

        d = transit.there_can_be_only_one(contenders)

        self.assertNoResult(d)

        contenders[0].errback(ValueError())

        self.assertNoResult(d)

        contenders[1].errback(TypeError())

        self.assertNoResult(d)

        contenders[2].callback("yay")

        self.assertEqual(self.successResultOf(d),"yay")

        self.assertEqual(cancelled, set([3,4]))

In this test, we make sure that the combined Deferred has not fired right away, and 

also that it does not fire even when some of the component Deferreds have failed. When 

a component member does succeed, we check that both the combined Deferred has 

fired with the correct value, and that the remaining contenders have been canceled.

successResultOf() and failureResultOf() have one catch: you can’t call them 

multiple times on the same Deferred, because internally they add a callback to the 

Deferred, which interferes with any subsequent callbacks (including additional calls to 

successResultOf). There’s no good reason to do this, but it might cause you some confusion 

if you have a subroutine that checks the state of a Deferred, and you use that subroutine 

multiple times. However, assertNoResult can be called as many times as you like.

 Synchronous Testing and Eventual Send
The Twisted community has been moving toward this immediate/mocked style for several 

years. I’ve only recently started using it, but I’m pleased with the results: my tests are faster, 

more thorough, and more deterministic. However I’m still torn: there’s a lot of value in 

using eventual send. In there_can_be_only_one(), the contender Deferreds are mostly 

independent of the callbacks attached to the result, but I’m still worried about bugs, and I’d 

feel more comfortable if the callback was executed on a different turn of the event loop.
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But anything involving the actual Reactor is difficult to test without waiting for a 

Deferred to fire. So, I’m looking for ways to combine this immediate test style with an 

eventual-send utility.

When I first started using eventual send, and Glyph saw what I was doing with 

reactor.callLater(0, f), he wrote me a better version, which we use in both Foolscap 

and Tahoe-LAFS. It maintains a separate queue of callbacks, and only has one callLater 

outstanding at any given moment: this is more efficient if there are thousands of active 

calls, and avoids depending upon reactor.callLater maintaining the activation order 

of equal-value timers.

The nice feature of his eventually() is that it comes with a special function named 

flushEventualQueue(), which repeatedly cycles the queue until it is empty. This should 

allow tests to be written like this:

class Highlander(unittest.TestCase):

    def test_one_winner(self):

        cancelled = set()

        contenders = [Deferred(lambda d, i=i: cancelled.add(i))

                      for i in range(5)]

        d = transit.there_can_be_only_one(contenders)

        flushEventualQueue()

        self.assertNoResult(d)

        contenders[0].errback(ValueError())

        flushEventualQueue()

        self.assertNoResult(d)

        contenders[1].errback(TypeError())

        flushEventualQueue()

        self.assertNoResult(d)

        contenders[2].callback("yay")

        flushEventualQueue()

        self.assertEqual(self.successResultOf(d),"yay")

        self.assertEqual(cancelled, set([3,4]))

The downside is that flushEventualQueue lives on a singleton instance of the 

eventual-send manager, which has all the problems of using an ambient reactor. 

To handle this cleanly, there_can_be_only_one() should be given this manager as 
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an argument, just like modern Twisted code passes the Reactor into functions that 

need it, rather than importing one directly. In fact, if we were to rely upon reactor.

callLater(0), we could test this code with a Clock() instance and manually cycle 

the time forward to flush the queue. Future versions of the code will probably use 

this pattern.

 Summary
Magic Wormhole is a file-transfer application with strong security properties that stem 

from the SPAKE2 cryptographic algorithm at its core, with a library API for embedding 

into other applications. It uses Twisted to manage multiple simultaneous TCP 

connections, which usually enables fast direct transfers between the two clients. The 

Autobahn library provides WebSocket connections that will enable compatibility with 

future browser-based clients. The test suite uses Twisted utility functions to examine the 

state of each Deferred as they are cycled through their operating phases, allowing fast 

synchronous tests.

 References
• Magic Wormhole home page: http://magic-wormhole.io

• GitHub development page:  https://github.com/warner/magic- 

wormhole

• SPAKE2: http://www.lothar.com/blog/54-spake2-random- elements/

• WebSockets: https://developer.mozilla.org/en-US/docs/Web/

API/WebSockets_API

• requests: http://python-requests.org/

• treq: https://github.com/twisted/treq

• Autobahn: https://crossbar.io/autobahn/

• libp2p: https://libp2p.io/

• Automat: https://github.com/glyph/Automat

• Futures: https://en.wikipedia.org/wiki/Future_(programming)

Chapter 7  MagiC WorMhole

http://magic-wormhole.io/
https://github.com/warner/magic-wormhole
https://github.com/warner/magic-wormhole
http://www.lothar.com/blog/54-spake2-random-elements/
https://developer.mozilla.org/en-US/docs/Web/API/WebSockets_API
https://developer.mozilla.org/en-US/docs/Web/API/WebSockets_API
http://python-requests.org/
https://github.com/twisted/treq
https://crossbar.io/autobahn/
https://libp2p.io/
https://github.com/glyph/Automat
https://en.wikipedia.org/wiki/Future_(programming)


284

• JavaScript Promises: https://developer.mozilla.org/en-US/docs/

Web/JavaScript/Guide/Using_promises

• E Promises: http://wiki.erights.org/wiki/Promise

• Eventual Send: https://en.wikipedia.org/wiki/E_(programming_

language)

• Plan-Coordination Hazards: http://erights.org/talks/thesis/

• eventual() utility:  https://github.com/warner/foolscap/blob/

master/src/foolscap/eventual.py

Chapter 7  MagiC WorMhole

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Using_promises
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Using_promises
http://wiki.erights.org/wiki/Promise
https://en.wikipedia.org/wiki/E_(programming_language)
https://en.wikipedia.org/wiki/E_(programming_language)
http://erights.org/talks/thesis/
https://github.com/warner/foolscap/blob/master/src/foolscap/eventual.py
https://github.com/warner/foolscap/blob/master/src/foolscap/eventual.py


285
© Mark Williams, Cory Benfield, Brian Warner, Moshe Zadka, Dustin Mitchell, Kevin Samuel, Pierre Tardy 2019 
M. Williams et al., Expert Twisted, https://doi.org/10.1007/978-1-4842-3742-7_8

CHAPTER 8

Push Data to Browsers 
and Micro-services 
with WebSocket
 Why WebSocket?
WebSocket started as a competitor of HTTP AJAX requests. When we needed real-time 

communication from the browser or data push from the server, they came out as a nice 

alternative to legacy solutions such as long polling or comet. Because they were using 

a persistent connection and no headers, they were the fastest and lightest option if you 

had a lot of small messages to exchange.

Today though, HTTP2 is being more and more adopted and does have a persistent 

connection and data push.

So why WebSocket?

Well, first, WebSocket APIs target application code, not just server code. So, on all 

implementations, you can hook on the connection life cycle, react to disconnection, 

attach data to the session, etc. A very handy feature to create robust interactions and 

pleasant user experiences.

Then, while HTTP2 does have compressed headers, WebSocket has no headers 

at all, making the whole footprint even lower. In fact, HTTP2 implementations force 

encryption even for non-sensitive data, while in WebSocket you have the choice on 

where and when to spend your machine resources, and activate SSL or not.

What’s more, HTTP2 servers tend to use push to send static resources (CSS, images, 

JS, etc.) to the browsers, but it’s not generally used for pushing application data. This is 

where WebSocket shines: pushing notifications to users, propagating events, signaling 

changes. . .
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However, there is one strange thing about WebSocket: it is not tied to a domain 

name, and browsers don’t need any special setup for doing CORS. You can actually 

connect from a web page to a local WebSocket server on your computer without any 

warning. It can be seen as a pro, or a con, depending on what you need to do.

All those characteristics make WebSocket a great tool for your website notifications, 

chat, trading, multi-player games, or real-time charts and graphs. Needing less to say, 

you don’t have to limit yourself to that, as you can leverage it as a link between all your 

components, and make it the communication layer that coordinates your whole system.

This means that your web server can talk to your caching processes or your 

authentication platform through WebSocket. Or that you can manage a herd of IoT1 

devices. After all, the Raspberry Pi has de facto Python support.

Overall, WebSocket is a safe bet now, as it is available in most major browsers, down 

to, and including IE10. That’s about 94% of the market, according to caniuse.com. Worst 

case scenario, you can find shims for the few remaining browsers. As the WebSocket and 

HTTP handshakes are compatible, it will likely work on any network that lets through 

HTTP. You can even share the 80 and 443 ports between the two protocols.

 WebSocket and Twisted
On the server side, WebSocket is now broadly supported by popular languages, but it 

does require asynchronous programming because of the persistent connections. Since 

you may end up with a lot of clients connected simultaneously, threads may not be the 

best solution to code a WebSocket server. Asynchronous IO, however, is a perfect fit; and 

Twisted is a welcoming platform in that regard.

The even better news is that you can use WebSocket outside the browser, so that all 

the components on your servers can talk to each other in real time. This will allow you 

to create your very own micro-service architecture, decoupling features to distribute 

them on smaller components, or propagating information instead of querying a central 

database for everything.

To demonstrate how to benefit from WebSocket in a Twisted environment, we are going 

to use the Autobahn ecosystem. Autobahn is a collection of libraries under MIT license, 

written in different languages, allowing you to create WebSocket clients and servers. It also 

comes with a test suite to check the level of standard compliance of any WebSocket system.

And there is more.

1 Internet of Things.
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You can, of course, build your own communication conventions using WebSocket; 

and Autobahn certainly helps you doing so. But eventually you’ll end up doing exactly 

the same as everyone else and reinvent a (most probably square) wheel.

Indeed, WebSocket use cases can broadly be classified in two categories:

• Calling remote code and getting a result. Like a better, faster, lighter 

AJAX. Well, it’s been done for decades, and it is called “RPC,” for 

Remote Procedure Calls.

• Sending messages to signal other parts of the system, something 

happened. Same here, it’s actually a very common pattern often 

called “PUB/SUB,” for Publish/Subscribe.

We’ll go into more details about what this means for you later. But for now, the 

important part is that doing this properly requires a lot of well-designed code to handle 

serialization, authentication, routing, error handling, and edge cases.

Knowing this, the authors of Autobahn decided to create a higher-level protocol, called 

WAMP, for “WebSocket Application Messaging Protocol”2. It’s a documented open standard 

registered by IANA[], and it can basically do all the heavy lifting for you, if you so desire.

The best thing is, you can use WAMP everywhere WebSocket is supported, which 

means pretty much everywhere, for everything. No need to mangle with HTTP here, 

MQTT there, and AMQP for the rest. One protocol to rule them all. And less hassle.

Luckily, the Python Autobahn library supports both raw WebSocket and WAMP, 

using Twisted. This is what we are going to go through with this chapter. Hence before 

we start, install the autobahn package, for example using pip:

pip install autobahn[twisted]

As usual, it’s recommended that you create a Python 3 virtualenv for this. The 

Autobahn version we are going to use for this chapter – 17.10.1 – will, anyway, work 

with Python 2.7 and 3.3+. It can even run on PyPy and Jython, and supports asyncio in 

case you don’t want to stick only to Twisted. For this chapter, of course, we will stick to 

Twisted, with Python 3 examples.

Since WebSocket is an interesting front-end technology for websites, we are going to 

use a bit of JavaScript later. However, WebSocket doesn’t need the web to be useful, as is 

a fine protocol to communicate between server processes on its own.

2 Not to be confused with the “Windows Apache MySQL PHP” stack that was popular during the 
pre-AJAX web.
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 Raw WebSocket, from Python to Python
The “hello world” from the network world, being an echo server, is what we are going to 

make first. While Twisted now supports async / await constructs, we are going to stick 

with coroutines to allow a broader range of Python 3 support.

Here is what a WebSocket echo server looks like, using autobahn:

import uuid

from autobahn.twisted.websocket import (

    WebSocketServerProtocol,

    WebSocketServerFactory

)

class EchoServerProtocol(WebSocketServerProtocol):

    def onConnect(self, request):

        """Called when a client is connecting to us"""

        # Print the IP address of the client this protocol instance is serving

        print(u"Client connecting:{0}".format(request.peer))

    def onOpen(self):

        """Called when the WebSocket connection has been opened"""

        print(u"WebSocket connection open.")

    def onMessage(self, payload, isBinary):

        """Called for each WebSocket message received from this client

            Params:

               payload (str|bytes): the content of the message

               isBinary (bool): whether the message contains (False) encoded text

                              or non-textual data (True). Default is False.

        """

        # Simply prints any message we receive

        if isBinary:

            # This is a binary message and can contain pretty much anything.

            # Here we recreate the UUID from the bytes the client sent us.

            uid=uuid.UUID(bytes=payload)
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            print(u"UUID received:{}".format(uid))

        else:

            # This is encoded text. Please note that it is NOT decoded for you,

            # isBinary is merely a courtesy flag manually set by the client

            # on each message. You must know the charset used (here utf8),

            # and call ".decode()" on the bytes object to get a string object.

           print(u"Text message received:{}".format(payload.decode( 'utf8')))

        # It's an echo server, so let's send back everything it receives

        self.sendMessage(payload, isBinary)

    def onClose(self, wasClean, code, reason):

        """Called when the WebSocket connection for this client closes

            Params:

                wasClean (bool): whether we were told the connection was going

                                to be closed or if it just happened.

                code (int): any code among WebSocketClientProtocol.CLOSE_*

                reason (str): a message stating the reason the connection

                              was closed, in plain English.

        """

        print(u"WebSocket connection closed:{0}".format(reason))

if __name__ == '__main__':

    from twisted.internet import reactor

    # The WebSocket protocol netloc is WS. So WebSocket URLs look exactly

    # like HTTP URLs, but replacing HTTP with WS.

    factory=WebSocketServerFactory(u"ws://127.0.0.1:9000")

    factory.protocol=EchoServerProtocol

    print(u"Listening on ws://127.0.0.1:9000")

    reactor.listenTCP(9000,  factory)

    reactor.run()
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Run it in a terminal by simply doing:

$ python echo_websocket_server.py

Listening on ws://127.0.0.1:9000

Assuming “echo_websocket_server.py” is the name you gave to the script, obviously.

Here is what a WebSocket echo client looks like, using autobahn:

# coding: utf8

import uuid

from autobahn.twisted.util import sleep

from autobahn.twisted.websocket import (

    WebSocketClientProtocol,

    WebSocketClientFactory

)

from twisted.internet.defer import Deferred, inlineCallbacks

class EchoClientProtocol(WebSocketClientProtocol):

    def onConnect(self, response):

        # Print the server ip address we are connected to

        print(u"Server connected:{0}".format(response.peer))

    @inlineCallbacks

    def onOpen(self):

        print("WebSocket connection open.")

        # Send messages every second

        i=0

        while True:

            # Send a text message. You MUST encode it manually.

            self.sendMessage(u"© Hellø wørld{}!".format(i).encode('utf8'))

            # If you send non-text data, signal it by setting "isBinary". Here

            # we create a unique random ID, and send it as bytes.

            self.sendMessage(uuid.uuid4().bytes, isBinary=True)

            i+=1

            yield sleep(1)
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    def onMessage(self, payload, isBinary):

        # Let's not convert the messages so you can see their raw form

        if isBinary:

            print(u"Binary message received:{!r}bytes".format(payload))

        else:

            print(u"Encoded text received:{!r}".format(payload))

    def onClose(self, wasClean, code, reason):

        print(u"WebSocket connection closed:{0}".format(reason))

if __name__ == '__main__':

    from twisted.internet import reactor

    factory=WebSocketClientFactory(u"ws://127.0.0.1:9000")

    factory.protocol=EchoClientProtocol

    reactor.connectTCP(u"127.0.0.1",9000, factory)

    reactor.run()

Run the code in a second terminal by doing:

python echo_websocket_client.py

It is important that you run the client after you started the server, as those simple 

examples don’t implement fancy connection detection or reconnection.

Immediately after that, you will see something like this on the client console:

WebSocket connection open.

Encoded text received: b'\xc2\xa9 Hell\xc3\xb8 w\xc3\xb8rld 0 !'

Binary message received: b'\xecA\xd9u\xa3\xa1K\xc3\x95\xd5\xba~\x11ss\xa6' bytes

Encoded text received: b'\xc2\xa9 Hell\xc3\xb8 w\xc3\xb8rld 1 !'

Binary message received: b'\xb3NAv\xb3OOo\x97\xaf\xde\xeaD\xc8\x92F' bytes

Encoded text received: b'\xc2\xa9 Hell\xc3\xb8 w\xc3\xb8rld 2 !'

Binary message received:  b'\xc7\xda\xb6h\xbd\xbaC\xe8\x84\x7f\xce:,\x15\

xc4$' bytes

Encoded text received: b'\xc2\xa9 Hell\xc3\xb8 w\xc3\xb8rld 3 !'

Binary message received: b'qw\x8c@\xd3\x18D\xb7\xb90;\xee9Y\x91z' bytes
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And on the server console:

WebSocket connection open.

Text message received: © Hellø wørld 0 !

UUID received: d5b48566-4b20-4167-8c18-3c5b7199860b

Text message received: © Hellø wørld 1 !

UUID received: 3e1c0fe6-ba73-4cd4-b7ea-3288eab5d9f6

Text message received: © Hellø wørld 2 !

UUID received: 40c3678a-e5e4-4fce-9be8-6c354ded9cbc

Text message received: © Hellø wørld 3 !

UUID received: eda0c047-468b-464e-aa02-1242e99a1b57

This means the server and the client are exchanging messages.

Also please note that in the server example, we only answered messages. 

Nonetheless, it’s allowed to call “self.sendMessage()” even when we have not received 

any message, therefore pushing data to the client.

Let’s do exactly that, but with a web example.

 Raw WebSocket, Between Python and JavaScript
Pushing data to the browser is a classic use case for WebSocket. The limited number of 

pages we have don’t not allow us to show off the traditional chat example. However, any 

chat needs to signal how many people are online. Here is what a naive implementation 

might look like.

First, let’s create a Python server.

from autobahn.twisted.websocket import (

    WebSocketServerProtocol,

    WebSocketServerFactory

)

class SignalingServerProtocol(WebSocketServerProtocol):

    connected_clients=[]

    def onOpen(self):

        # Every time we receive a WebSocket connection, we store the

        # reference to the connected client in a class attribute
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        # shared among all Protocol instances. It’s a naive implementation

        # but perfect as a simple example.

        self.connected_clients.append(self)

        self.broadcast(str(len(self.connected_clients)))

    def broadcast(self, message):

        """ Send a message to all connected clients

            Params:

                message (str): the message to send

        """

        for client in self.connected_clients:

            client.sendMessage(message.encode('utf8'))

    def onClose(self, wasClean, code, reason):

        # If a client disconnect, we remove the reference from the class

        # attribute.

        self.connected_clients.remove(self)

        self.broadcast(str(len(self.connected_clients)))

if __name__ == '__main__':

    from twisted.internet import reactor

    factory = WebSocketServerFactory(u"ws://127.0.0.1:9000")

    factory.protocol = SignalingServerProtocol

    print(u"Listening on ws://127.0.0.1:9000")

    reactor.listenTCP(9000, factory)

    reactor.run()

Again, run it doing:

python signaling_websocket_server.py

Now for the HTML + JS part:

<!DOCTYPEhtml> <html><head></head><body>

<h1>Connected users: <span id="count">...</span></h1>
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// Short url to a CDN version of the autobahn.js lib

// Visit https://github.com/crossbario/autobahn-js

// for the real deal

<script src="http://goo.gl/1pfDD1"></script>

<script>

  /* If you are using an old browser, this part of the code may look

    different. This will work starting from IE11

    and will require vendor prefixes or shims in other cases.*/

  var sock = new WebSocket("ws://127.0.0.1:9000");

  /* Like with the Python version, you can then hook on sock.onopen() or

    sock.onclose() if you wish. But for this example with only need

    to react to receiving messages: */

 sock.onmessage = function(e){

   var span = document.getElementById('count');

   span.innerHTML=e.data;

  }

</script>

</body></html>

All you have to do is to open the file with this HTML code in your web browser.

If you open this file in your browser, you will get a page stating “Connected users: x,” 

with x adjusting every time you open a new tab with the same page, or close one.

You’ll notice that even browsers with strict CORS policy, such as Google Chrome, 

are not preventing the connection from the “file://” protocol like they would do with 

an AJAX request. WebSocket works in any context, with remote or local domain names, 

even if the file is not served from a web server.

 More Powerful WebSocket with WAMP
WebSocket is a simple yet powerful tool; however, it’s still quite low level. Should you 

create a full-blown system using WebSocket, you’ll eventually end up coding:

• A way to pair up two messages, to mimic the HTTP request  

/ response cycle.
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• Some swappable back end for serialization, with JSON or msgpack, 

or else.

• A convention to manage errors, and a workflow to debug them.

• Boilerplate to broadcast messages, including only to a subset of 

clients.

• Authentication, and something to bridge your session ID from HTTP 

cookies / token to WebSocket.

• A permission system so that all clients can’t do or see everything.

And you would have rewritten a nonstandard, less documented, and untested 

alternative to WAMP.

WAMP is an answer to all of this, in a clean and proven way. It runs on top of 

WebSocket, so it shares all its characteristics and inherits from all its benefits. It also adds 

a lot of goodies:

• You can define functions and declare them public on the network. 

Then any client can call those functions from anywhere (yes, 

remotely) and get the result. It’s the RPC part of WAMP, and you 

can see it as a replacement for AJAX requests on steroids, or a much 

easier CORBA/XMLRPC/SOAP.

• You can define events. Some code can say “hey, I’m interested in 

that event” from anywhere (again, yes, remotely). Now another code 

anywhere can then say “hey, it happened,” and all interested clients 

are notified. It’s the PUB/SUB part of WAMP, and you can use it like 

an even easier RabbitMQ.

• All errors are automatically propagated through the network. So if 

your client X call a function on client Y that fails, you will get the error 

back in client X.

• Identification and Authentication are part of the specs and can blend 

in with your own HTTP session mechanism.

• Everything is namespaced. And you can filter on them, use wildcards, 

set permissions, and even add load balancing to the mix.
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Now we won’t see most of that in this short chapter, but at least I will try to give you a 

taste of what RPC and PUB/SUB can do for you.

WAMP is a routed protocol, which means that every time you make a WAMP call, 

it does not go directly to the code that will handle it. Instead, it goes through a WAMP 

compatible router, which then ensures the distribution of the messages back and forth to 

the proper pieces of code.

In that sense, WAMP is not a client-server architecture: any code that makes a WAMP 

call is a client. So, all your code, including web pages, processes on your servers, external 

service, anything that speaks WAMP, will be clients – or the WAMP router – talking to 

each other.

This makes the WAMP router a single point of failure, and a potential bottleneck for 

performance. Luckily the reference implementation, Crossbar.io, is a robust and fast 

Twisted powered software. It also means you can install it with a simple pip command, 

and to run our next example, you need to do so:

pip install crossbar

If you are using Windows, you may need the win32api dependency. In that case, 

install it as well before starting.3

The command crossbar should now be available to you4:

$ crossbar version

     __  __  __  __  __  __      __    __

    /  `|__)/  \/__`/__`|__) /\ |__) |/  \

    \__,|  \\__/.__/.__/|__)/~~\|  \.|\__/

 Crossbar.io      : 17.11.1 (Crossbar.io COMMUNITY)

   Autobahn       : 17.10.1 (with JSON, MessagePack, CBOR, UBJSON)

   Twisted        : 17.9.0-EPollReactor

   LMDB           : 0.93/lmdb-0.9.18

   Python         : 3.6.2/CPython

 OS               : Linux-4.4.0-98-generic-x86_64-with-Ubuntu-16.04-xenial

Machine           : x86_64

Release key       : RWT/n6IQ4dKesCP8YwwJiWH30ST8eq5D21ih4EFbJZazzsqEX6CmaT3k

3 Binaries are listed on the project page: https://github.com/mhammond/pywin32.
4 If you can’t or don’t want to install a crossbar instance, you can find one for demo purpose 
listed on https://crossbar.io/docs/Demo-Instance/. In that case, you can use it instead of 
“ws://127.0.0.1:8080/ws”. But you’ll still need to pip install pyopenssl service_identity to use it.
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Crossbar.io wears many hats and can do so many things, so a configuration file is 

needed to tell what you want to do. Thankfully, it can generate a basic one automatically:

crossbar init

This will create a web and .crossbar directories, as well as a README file. 

You can ignore, or even delete web and README. What we are interested in is the 

.crossbar/config.json that has been created for us. You don’t need to modify it to run 

this example, as by default it just “allows everything.” If you open it, you’ll find a great 

number of settings that, without context, will be hard to make sense of. To understand 

the basics of WAMP though, you don’t need to dig that deep, so we will just carry on.

Next on our list is just to run the crossbar router. You need to run it on the same 

directory that contains the .crossbar directory:

$ crossbar start

2017-11-23T19:06:43+0200 [Controller  11424] New node key pair generated!

2017-11-23T19:06:43+0200 [Controller  11424] File permissions on node public key fixed!

2017-11-23T19:06:43+0200 [Controller  11424] File permissions on node private key fixed!

2017-11-23T19:06:43+0200 [Controller  11424]     __  __  __  __  __  __      __    __

2017-11-23T19:06:43+0200 [Controller  11424]    /  `|__)/  \/__`/__`|__) /\ |__) |/  \

2017-11-23T19:06:43+0200 [Controller  11424]    \__,|  \\__/.__/.__/|__)/~~\|  \.|\__/

2017-11-23T19:06:43+0200 [Controller  11424]

2017-11-23T19:06:43+0200 [Controller  11424] Version:   Crossbar.io COMMUNITY 17.11.1

2017-11-23T19:06:43+0200 [Controller  11424] Public Key: 

81da0aa76f36d4de2abcd1ce5b238d00a

...

You can picture Crossbar.io as Apache or Nginx: it’s a piece of software that you 

configure and then run, and the rest of your code revolves around it. Crossbar.io is 

actually perfectly capable of being a static web server, a WSGI server, and even a 

process manager. But we are just going to use it for its WAMP capabilities. And for 

that, you don’t need to do anything else. Let it run in the background, and focus on 

your client’s code.
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Now the beauty of WAMP is that the clients don’t need to know each other. They just 

need to know about the router. By default, it listens on localhost:8080 and defines a 

“realm” (a group of clients that can see each other) named realm1. So, all we have to do 

to use the router is connect to it using that information.

To illustrate the fact that WAMP clients don’t need to know each other, or that you 

are not in a client/server architecture anymore, I am going to use two web pages in our 

first example.

One page will have an input field and a “sum” button. The other one is another input 

field, and it declares a sum() function as available for remote calling. When you click on 

the “sum” button, it will send the value of the first input to the second page, which will 

call sum() on both the received value and the local one, then send back the result.

Without writing any server-side code

First page, first client:

<!DOCTYPEhtml> <html><head></head><body>

   <form name="sumForm"><input type="text"name="number"value="3"></form>

    <script src="http://goo.gl/1pfDD1"></script>

    <script>

    // Connection to the WAMP router

    var connection = new autobahn.Connection({

      url:"ws://127.0.0.1:8080/ws",

      realm:"realm1"

    });

    // Callback for when the connection is established

    connection.onopen = function (session,details){

      // We register a function under the name "sum", so that any WAMP

      // client on "realm1" can call it remotly. This is RPC.

      session.register('sum', function(a){

        // It's just a regular function, really. But the parameters and

        // return value must be serializable. By default to JSON.

        return parseInt(a) + parseInt(document.sumForm.number.value);

      });

    }
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    // Start the connection

    connection.open();

  </script>

</body></html>

If you open a file with this code in a web browser, you will notice that the Crossbar.io 

console logs something about a new connected client:

2017-11-23T20:11:41+0200 [Router 13613] session "5770155719510781" joined 

realm "realm1"

Now a second page, and another JS client:

<!DOCTYPEhtml> <html><head></head><body>

<form name="sumForm"method="post" >

  <input type="text"name="number"value="5">

  <button name="sumButton">Sum!</button>

  <span id="sumResult">...</span>

</form>

<script src="http://goo.gl/1pfDD1"></script>

<script>

  var connection = new autobahn.Connection({

    url:"ws://127.0.0.1:8080/ws",

    realm:"realm1"

  });

  connection.onopen = function (session,details){

    // When we submit the form (e.g: click on the button), call "sum()"

    // We don't need to know where "sum()" is declared or how it will run,

    // just that something exists under this name.

    document.sumForm.addEventListener('submit', function(e){

      e.preventDefault();

      // The first parameter is the namespace of the function. The second is

      // the arguments passed to the function. This returns a promise which

      // we use to set the value of our span when the results comes back

      session.call('sum',[document.sumForm.number.value]).then(
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        function(result){

          document.getElementById('sumResult').innerHTML = result;

      });

    })

  }

  connection.open();

</script>

</body></html>

Again, the router reacts.

You can now press the “Sum!” button from the second page, which will happily call 

the code from the second page and get the result almost immediately. This, of course, 

works from and to Python as well. Obviously, this example is a basic one and does not 

take into consideration robustness or security. But I hope you get the general picture. 

You can use this mechanism, routed RPC, to define and call code anywhere on any 

browser or any process on any server that is connected to the router.

Now RPC alone is useful, but its little sibling, PUB/SUB, is another nice tool on its 

own. To demonstrate it, I’ll add a Python client (which would actually be on the Crossbar 

server).

This Python client surveys a directory, and every second, scans all files in it. For each 

file extension it finds in the directory, it sends an event with a list of all matching files. 

Useless? Maybe. Very cool? Certainly!

import os

from twisted.internet.defer import inlineCallbacks

from twisted.logger import Logger

from autobahn.twisted.util import sleep

from autobahn.twisted.wamp import ApplicationSession

from autobahn.twisted.wamp import ApplicationRunner

class DirectoryLister(ApplicationSession):

    log = Logger()

    @inlineCallbacks
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    def onJoin(self, details):

        while True:

            # List files and group them by extension

            files = {}

            for f in os.listdir('.'):

                file, ext = os.path.splitext(f)

                if ext.strip():

                    files.setdefault(ext, []).append(f)

            # Send one event named "filewithext.xxx" for each file extension

            # with "xxx" being the extension. We attach the list of files

            # to the events so that every clients interested in the event

            # can get the file list.

            # This is the "publish" part of "PUB/SUB".

            for ext, names in files.items():

                # Note that there is no need to declare the event before

                # using it. You can publish events as you go.

                yield self.publish('filewithext' +ext , names)

            yield sleep(1)

# The ApplicationRunner will take care starting everything for us.

if __name__ == '__main__':

    runner=ApplicationRunner(url=u"ws://localhost:8080/ws", realm=u"realm1")

    print(u"Connecting to ws://localhost:8080/ws")

    runner.run(DirectoryLister)

Run the code as before with:

python directory_lister.py

It will start listing everything in the current directory and publish events about the 

files it finds.

Now we need a client to say it is interested in those events. We can create a Python 

one or a JS one. Since everything is a client in WAMP, let’s create a JS one to see clients 

from both languages.
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<!DOCTYPEhtml> <html><head></head><body>

  <div id="files">...</div>

  <script src="http://goo.gl/1pfDD1"></script>

  <script>

    // Connection to the WAMP router

    var connection = new autobahn.Connection({

      url:"ws://127.0.0.1:8080/ws",

      realm:"realm1"

    });

    connection.onopen = function (session,details){

      // Populate the HTML page with a list of files

      var div=document.getElementById('files');

      div.innerHTML="";

      function listFile(params,meta,event){

        var ul=document.getElementById(event.topic);

        if (!ul){

          div.innerHTML += "<ul id='" + event.topic + "'></ul>";

          ul=document.getElementById(event.topic);

        }

        ul.innerHTML="";

        params[0].forEach(function(f){

          ul.innerHTML += "<li>" + f + "</li>";

        })

      }

      // We tell the router we are interested in events with this name.

      // This is the "subscribe" part of "PUB/SUB".

      session.subscribe('filewithext.py',listFile);

      // Any client, like this Web page, can subscribe to an arbitrary number

      // of events. So here we say we are interested in events about files

      // with the ".py" extension and the ".txt" extension.

      session.subscribe('filewithext.txt',listFile);

    }
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    connection.open();

  </script>

</body></html>

In my directory, I then have at least a file with a .py extension and a file with an .html 

extension: my two clients. For the sake of the demonstration, I’ll create an empty text 

file called empty.txt next to them. This way we should at least have three events every 

second.

If you open this as a web page, you’ll notice it will start listing the files like:

• empty.txt

• directory_lister.py

If you add or remove files, you’ll see that change in real time. If you create a new JS 

client with a different set of subscriptions, it will display a different file listing.

 Summary
As you would expect, we only scratched the surface of what you can do with WebSocket, 

Twisted, Autobahn, and WAMP.

Try to edit the given examples to make them do more, or combine them, to get a 

sense of what’s going on. To feel more comfortable with this code, you should add some 

logging to it.

For the WebSocket examples, in the if __name__ == "__main__" section, add:

import sys

from twisted.python import log

log.startLogging(sys.stdout)

...

For the WAMP examples, in the body of the Application session class:

from twisted.logger import Logger

...

class TheAppClass(ApplicationSession):

    log=Logger()

    ...

Chapter 8  push Data to Browsers anD MiCro-serviCes with weBsoCket



304

If you want to explore further, here are some ideas:

• Convert the example to use async / await constructs for a more 

modern experience.

• Try other forms of messages such as streaming.

• Give more reliability to your code by leveraging auto-connect or load 

balancing (Twisted / WAMP only).

• Write a client in yet another language: Java, C#, PHP. You have 

WebSocket and WAMP clients for a lot of popular platforms.

• Look for security features: SSL, Authentication, Permissions. . . They 

are hard to set up, but quite solid.

• Learn more about Crossbar.io (which is also Twisted): process 

management, WSGI server, static file handling. You will be surprised 

by all the things it can do.
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CHAPTER 9

Applications with asyncio 
and Twisted
The asyncio package, included with Python implementations since version 3.4, 

standardizes a suite of APIs for asynchronous, event-driven network programs. In 

addition to shipping its own concurrency and networking primitives, asyncio also 

specifies an event loop interface that provides a common denominator for asynchronous 

libraries and frameworks. This shared substrate allows applications to use Twisted and 

asyncio together in the same process.

In this chapter, we’ll learn how to compose Twisted’s APIs with asyncio’s by writing 

a simple HTTP proxy with treq, a high-level HTTP client built on top of Twisted; and 

aiohttp, an HTTP client and server library built on top of asyncio.

asyncio and its ecosystem are still evolving. New APIs have been developed 

and idioms adopted as more people use asyncio in more situations. As a result, our 

HTTP proxy is a case study and not a recipe for integrating Twisted and asyncio. We’ll 

begin with an introduction to the fundamental and stable concepts that enable cross- 

compatibility between the two that lays out a path for integrating future iterations of 

asyncio and its libraries with Twisted.

 Core Concepts
asyncio and Twisted share many design and implementation details, partially because 

Twisted’s community participated in asyncio’s development. PEP 3156, which 

describes asyncio, drew from PEP 3153, which in turn was written by a member of 

Twisted’s development team. Consequently, asyncio borrows Twisted’s protocols, 

transports, producers, and consumers and presents a familiar environment to Twisted 

programmers.
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This common ancestry, however, is largely irrelevant to the process of integrating 

libraries that use asyncio with those that use Twisted. Instead, two concepts necessary 

to any event-driven framework form the interface at which they meet: promises that 

represent values before they’re available and event loops that schedule I/O.

 Promises
By now you’re familiar with Twisted’s Deferreds, which allow developers to associate 

business logic and error handling with values before they become available. Deferreds 

are known generically in computer science literature and other communities as 

promises. As Chapter 2 explains, promises ease the development of event-driven 

programs by externalizing the composition of callbacks without special support from the 

host language.

asyncio’s foundational promise implementation is its asyncio.Future class. 

Unlike Deferreds, Futures do not run their callbacks synchronously; instead, Future.

add_done_callback schedules a callback to be run in the next iteration of the event loop. 

Compare the behavior of Deferreds and Futures in the following example when run on 

Python 3.4 or later:

>>> from twisted.defer import Deferred

>>> d = Deferred()

>>> d.addCallback(print)

<Deferred at 0x1234567890>

>>> d.callback("value")

>>> value

>>> from asyncio import Future

>>> f.add_done_callback(print)

>>> f.set_result("value")

>>>

Deferred.addCallback and Future.add_done_callback both arrange for a function 

to be run against the value represented by the respective promise abstraction when that 

value becomes available. Deferred.callback, however, immediately runs all associated 

callbacks, while Future.set_result makes no progress until an event loop begins its 

next iteration.
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On the one hand, this eliminates the possibility for re-entrancy bugs that exist with 

Deferred, because all asyncio code can assume that adding a callback will not result 

in its being run immediately, even if the Future already has a value. On the other hand, 

all asyncio code must be run with an event loop, which complicates both its use and its 

design. For example: With what event loop did the Future we named f above schedule 

its print callback? We have to look at asyncio’s event loop system and how it differs 

from Twisted’s reactor to answer this question.

 Event Loops
As explained in Chapter 1, Twisted calls its event loop a reactor. In Chapter 3, we used 

twisted.internet.task.react and Twisted application framework to manage the 

creation and provisioning of the reactor for our feed aggregation application. Both of 

these ways to get a reactor are preferred to importing it in application code as twisted.

internet.reactor. That’s because the selection of a reactor depends on the context 

in which it’s used; different platforms provide their own I/O multiplexing primitives, 

so that Twisted applications that run on macOS should use kqueue while those run on 

Linux should use epoll; tests might prefer a stub reactor implementation to minimize 

the impact on shared operating resources; and, as we’ll see, applications might want 

to combine Twisted with other frameworks by running it on top of another event loop. 

Code that imports the reactor instead of accepting it as an argument to callables cannot 

itself be imported before reactor selection, which significantly complicates its use. For 

this reason, Twisted introduced APIs like react to facilitate parameterizing applications 

on a reactor.

While Twisted had to develop new APIs to manage reactor selection and installation, 

from the beginning asyncio included event loop policies that serve this purpose. asyncio 

includes a default policy that developers can replace with asyncio.set_event_loop_

policy and retrieve with asyncio.get_event_loop_policy.

The default policy ties event loops to threads; asyncio.get_event_loop returns the 

loop for the current thread, creating it if necessary, while asyncio.set_event_loop sets it.

This is how our example Future associated itself with an event loop. asyncio.Future 

initializer accepts an event loop via the keyword-only loop argument; if this remains None, 

the Future retrieves the default policy’s current loop with asyncio.get_event_loop.
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Historically asyncio expected its users to explicitly pass the current event loop where 

it was needed, with the result that a bug in get_event_loop caused unexpected behavior 

when the function was called anywhere below module level. As of Python 3.5.3, however, 

get_event_loop was made to reliably return the running event loop when run inside 

callbacks. More recent asyncio code favors get_event_loop over explicit references 

passed down through the call stack or set as instance variables.

In addition to their pervasiveness, asyncio’s event loops differ from Twisted’s reactors 

in terms of functionality. Reactors, for example, can run system event triggers at defined 

points in their life cycle. Twisted often manages resources that must be allocated before 

any application code is run and explicitly released before the process shuts down with 

IReactorCore.addSystemEventTrigger; for example, the lifetime of thread pool used by 

Twisted’s default DNS resolver is tied to the lifetime of the reactor via a shutdown event 

trigger. At the time of this writing, asyncio’s event loops do not have an equivalent API.

 Guidelines
Because of the differences between asyncio.Futures and Twisted’s Deferreds and 

between the two libraries’ event loops, it’s necessary to follow specific guidelines when 

combining the two.

 1. Always run the Twisted reactor on top of an asyncio event loop.

 2. When calling asyncio code from Twisted, convert Futures to 

Deferreds with Deferred.fromFuture. Wrap coroutines in 

asyncio.Tasks and convert these to Deferreds like Futures.

 3. When calling Twisted from asyncio, convert Deferreds to Futures 

with Deferred.asFuture. Pass the active asyncio event loop as 

this method’s argument.

The first guideline follows from the fact that IReactorCore’s API is larger than that of 

asyncio’s event loops. The second and third, however, require familiarity with asyncio’s 

coroutines, Futures, and Tasks and the differences between them.

We saw above that Futures function equivalently to Deferreds. We also learned 

in Chapter 2 that coroutines – functions and methods defined with async def – are a 

language feature; they are not implicitly tied to asyncio or Twisted or any other library. 

Recall that a coroutine may await a future-like object, and that Deferreds are future-like 

objects, so a coroutine may await a Deferred.
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Unsurprisingly, asyncio.Futures are also future-like objects, so coroutines can 

await them, too. Idiomatic asyncio code rarely explicitly creates Futures to await, 

however, preferring to directly await other coroutines. Consider the following example:

>>> import asyncio

>>> from twisted.internet import defer, task, reactor

>>> aiosleep=asyncio.sleep(1.0, loop=asyncio.get_event_loop())

>>> txsleep=task.deferLater(reactor,1.0, lambda:None)

>>> asyncio.iscoroutine(aiosleep)

True

>>> isinstance(txsleep, defer.Deferred)

True

aiosleep is an object that will pause an asyncio coroutine for at least one second, 

while txsleep does the same for Twisted code that uses Deferreds. While txsleep is a 

Deferred like any other, aiosleep is in fact a coroutine suitable for awaiting by other 

coroutines.

aiosleep, like all coroutines, must be awaited to make any progress. This makes 

them ill-suited for “fire and forget”-type background operations that should run 

without blocking their caller while they resolve to a value. This differs from the txsleep 

Deferred, which will fire after approximately 1 second regardless of whether or not it has 

any callbacks or errbacks.

asyncio provides a solution in the form of Tasks. A Task wraps a coroutine in a 

Future and awaits that Future on behalf of its creator. Tasks allow asyncio.gather to 

simultaenously await multiple coroutines. The following code, for example, will run only 

for 4 seconds instead of 6:

import asyncio

sleeps = asyncio.gather(asyncio.sleep(2), asyncio.sleep(4))

asyncio.get_event_loop().run_until_complete(sleeps)

Twisted’s Deferreds can be linked with asyncio’s Futures with Deferred.fromFuture 

and asFuture. Using asyncios Task creation APIs, like asyncio.AbstractEventLoop.

create_task and asyncio.ensure_future, enables coroutines that await asyncio 

objects to interoperate with Twisted through Deferred’s Future-aware interfaces.
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Exactly how asyncio and Twisted can be made to cooperate is best explained by an 

example. The following code demonstrates all three of our interoperability guidelines:

import asyncio

from twisted.internet import asyncioreactor

loop = asyncio.get_event_loop()

asyncioreactor.install(loop)

from twisted.internet import defer, task

originalFuture = asyncio.Future(loop=loop)

originalDeferred = defer.Deferred()

originalCoroutine = asyncio.sleep(3.0)

deferredFromFuture = defer.Deferred.fromFuture(originalFuture)

deferredFromFuture.addCallback(print,"from deferredFromFuture")

deferredFromCoroutine = defer.Deferred.fromFuture(

    loop.create_task(originalCoroutine))

deferredFromCoroutine.addCallback(print,"from deferredFromCoroutine")

futureFromDeferred = originalDeferred.asFuture(loop)

futureFromDeferred.add_done_callback(

    lambda result: print(result,"from futureFromDeferred"))

@task.react

def main(reactor):

    reactor.callLater(1.0, originalFuture.set_result, "1")

    reactor.callLater(2.0, originalDeferred.callback, "2")

    return deferredFromCoroutine

We begin by setting up Twisted’s asyncio reactor with asyncioreactor.install. 

This function accepts an asyncio event loop as its argument to which it will bind the 

Twisted reactor. As explained above, asyncio.get_event_loop requests that the global 

(and in this case default) event loop policy create and cache a new loop retrievable by 

later get_event_loop calls.

originalFuture, originalCoroutine, and originalDeferred represent the three 

kinds of objects we’ll convert to and from Deferreds: a Future, a coroutine that awaits 

asyncio code, and a Deferred.
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Next, we link originalFuture with a Deferred via the Deferred.fromFuture class 

method and add a print invocation as a callback to the new Deferred. Remember that 

the first argument to a callback is the Deferred’s result, while additional arguments are 

any passed to addCallback.

We have to wrap originalCoroutine in a Task with create_task before 

passing it to Deferred.fromFuture; after that, however, we proceed as we did with 

deferredFromFuture.

As we saw above, Futures, unlike Deferreds, only make progress when an 

asyncio event loop is running, and asyncio can have multiple event loops at any 

time. Associating originalDeferred with a Future via asFuture consequently 

requires an explicit reference to an event loop. After providing this, we arrange 

for an informative print callback to run when originalDeferred, and thus 

futureFromDeferred, resolves to a value. This is complicated by Future.add_done_

callback, which only accepts single-argument callbacks. We use a lambda to print 

both the result and an informative message.

None of these objects will make any progress without an event loop, so we use task.

react to run the reactor for us. We schedule originalFuture to resolve to "1" after at 

least one second and originalDeferred to resolve to "2" after at least two. Finally, we 

terminate the reactor when deferredFromCoroutine, and thus originalCoroutine, 

completes.

Running this program should produce the following output:

1 from deferredFromFuture

<Future finished result='2'> from futureFromDeferred

None from deferredFromCoroutine

The first line corresponds to the print callback we added to deferredFromFuture, 

the second to futureFromDeferred’s callback (note that Future callbacks receive their 

Future as their argument), and the third to deferredFromCoroutine’s callback.

This example illustrates the three guidelines necessary to integrating asyncio 

and Twisted in an abstract way that’s hard to apply to real-world problems. As we 

explained, however, it’s not possible to give more specific advice that’s still generally 

applicable. But since we now know the players, we can see how they perform together 

with a case study.
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 Case Study: A Proxy with aiohttp and treq
aiohttp (https://aiohttp.readthedocs.io) is a mature HTTP client and server library 

for asyncio that runs on Python 3.4 and later.

treq, as we saw in Chapter 3, is a high-level HTTP client library built on top of Twisted.

We can use these together to build a simple HTTP proxy. Clients configured to use 

an HTTP proxy send all requests to it; the proxy then relays these requests to the desired 

target and sends its response back to the client. We’ll use the server portion of aiohttp to 

talk to clients and treq to retrieve pages on their behalf.

HTTP proxies are used to filter and cache content and to mediate POSTs, PUTs, and 

all other HTTP methods. We’ll consider ours a success when it just relays GET requests 

back and forth to clients!

Let’s begin by running the simplest aiohttp server possible under Twisted. Create a 

new virtual environment with Python 3.4 or later, install aiohttp, Twisted, and treq, and 

then run the following program:

import asyncio

from twisted.internet import asyncioreactor

asyncioreactor.install(asyncio.get_event_loop())

from aiohttp import web

from twisted.internet import defer, task

app = web.Application()

async def handle(request):

    return web.Response(text=str(request.url))

app.router.add_get('/{path:.*}', handle)

async def serve():

    runner = web.AppRunner(app)

    await runner.setup()

    site = web.TCPSite(runner, 'localhost',8000)

    await site.start()

def asDeferred(f):

    return defer.Deferred.fromFuture(asyncio.ensure_future(f))
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@task.react

@defer.inlineCallbacks

def main(reactor):

    yield asDeferred(serve())

    yield defer.Deferred()

We begin, as we did in our previous example, by installing the asyncio Twisted 

reactor and wrapping it around a cached event loop.

Next, we import aiohttp’s web module and construct an Application, the 

fundamental web application abstraction provided by the library. We add a regular- 

expression route to it that matches all URLs (.*) and set the handle coroutine as its 

handler. This coroutine accepts a aiohttp.web.Request instance representing the 

client’s request as its argument and returns its URL as a response.

The serve coroutine contructs the AppRunner and Site objects necessary to set up 

our application and bind it to a network port.

Our application, its handler, and the serve coroutine are drawn directly from aiohttp’s 

documentation, and would remain exactly the same if we weren’t using Twisted at all. 

The interoperation that we started with our installation of the asyncio reactor is realized 

in the main function run by task.react. This, as usual, is a Deferred, though this time 

it is one that uses inlineCallbacks. We could have written this as a async def-style 

coroutine and converted it to a Deferred with ensureDeferred; we’ve chosen instead to 

use inlineCallbacks to show how different styles can be used interchangeably.

The asDeferred helper function accepts either a coroutine or a Future. It then uses 

asyncio.ensure_future to ensure that whatever it received becomes a Future; if it’s a 

coroutine, this evaluates to a Task, and if it’s a Future, it’s evaluated to the same object. 

The result can then be passed to Deferred.fromFuture.

We use this to wrap the serve coroutine in a Deferred, and then block the reactor 

forever by waiting on a Deferred that will never fire.

Running this program will run our simple URL echoing service under Twisted. 

Visiting http://localhost:8000 in a browser will return the URL you used to access it; 

adding path elements, like http://localhost:8000/a/b/c, will result in a different URL.

Now that we have the basics down, we can implement our proxy:

import asyncio

from twisted.internet import asyncioreactor

asyncioreactor.install(asyncio.get_event_loop())
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from aiohttp import web

from twisted.internet import defer, task

app = web.Application()

async def handle(request):

    url=str(request.url)

    headers = Headers({k: request.headers.getall(k)

                       for k in request.headers})

    proxyResponse = await asFuture(treq.get(url, headers=headers))

    print("URL:", url,"code:", proxyResponse.code)

    response = web.StreamResponse(status=proxyResponse.code)

    for key, values in proxyResponse.headers.getAllRawHeaders():

        for value in values:

            response.headers.add(key.decode(), value.decode())

    await response.prepare(request)

    body = await asFuture(proxyResponse.content())

    await response.write(body)

    await response.write_eof()

    return response

app.router.add_get('/{path:.*}', handle)

async def serve():

    runner = web.AppRunner(app)

    await runner.setup()

    site = web.TCPSite(runner, 'localhost',8000)

    await site.start()

def asFuture(d):

    return d.asFuture(asyncio.get_event_loop())

def asDeferred(f):

    return defer.Deferred.fromFuture(asyncio.ensure_future(f))

@task.react @defer.inlineCallbacks

def main(reactor):

    yield asDeferred(serve())

    yield defer.Deferred()
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The code above differs from our miminal aiohttp implementation in two places: the 

handle function and a new asFuture helper.

The handle function begins by extracting the target URL from the client’s request. 

Recall that clients of HTTP proxies specify their target by providing a full URL in their 

request line; aiohttp makes a parsed representation of this available as request.url.

Next, we recover all the client’s header values from the aiohttp request and convert 

them to a twisted.web.http_headers.Headers instance so that they can be included 

in the outbound treq request. HTTP headers can be multi-valued, and aiohttp handles 

this with a case-insensitive multi-dictionary; request.headers.getall(key) returns a 

list of all the values for that header key in the request. The resulting dictionary maps keys 

to lists of their values, which matches Twisted’s Headers initializer. Note that aiohttp 

decodes headers into text, while Twisted’s Headers work in terms of bytes; fortunately, 

Twisted will automatically encode textual header keys and values to bytes automatically.

Once we’ve prepared a replica of the client’s headers suitable for use with treq, we 

issue our GET request. At this point, the asyncio event loop is scheduling our handle 

coroutine, so whatever we await must be asyncio compatible. treq, however, works in 

terms of Deferreds, which can be awaited but fail with an error when asyncio attempts 

to schedule them. The solution is to wrap the Deferred in a Future associated with the 

same event loop that’s scheduled our handler.

This is exactly what the asFuture helper does. Because we bound our reactor to a 

global event loop with get_event_loop at the beginning of our program, all subsequent 

calls to get_event_loop will return the same loop. This includes calls inside aiohttp and 

calls inside our own code, which is how asFuture binds the enclosing Future with the 

correct event loop.

As we saw in our example, asyncio awaits Futures that wrap Deferreds exactly as 

Twisted would await the Deferreds themselves. Consequently, our handler resumes and 

assigns the treq response object to proxyResponse. At this point, we print out a message 

detailing the URL retrieved and its status code.

Next, we construct an aiohttp.web.StreamResponse and provide it with the same 

status code we received from the target URL so that the client will see the same code 

the proxy did. We also reverse the header translation, copying Twisted’s Header keys 

and values into our StreamResponse’s headers. twisted.web.http_headers.Headers.

getAllRawHeaders represents header keys and values as bytes, so we must decode them 

for StreamResponse’s sake.
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We then send the response’s envelope with StreamResponse.prepare back to 

the client. All that’s left is to receive and send back the body, which we do with treq’s 

Response’s content method; this is again a Deferred, so we have to wrap it in asFuture 

for asyncio’s sake.

Here an excerpt of what our program outputs when we configure a web browser to 

use it as an HTTP proxy and visit http://twistedmatrix.com/:

URL: http://twistedmatrix.com/ code: 200

URL: http://twistedmatrix.com/trac/chrome/common/css/bootstrap.min.css code:200

URL: http://twistedmatrix.com/trac/chrome/common/css/trac.css code: 200

...

 Summary
In this chapter we learned how to composed Twisted and asyncio in a single 

application. Because the two share the core concepts of promises and event loops, it’s 

possible to run Twisted on top of asyncio.

Using asyncio and Twisted together requires following three guidelines: Always run 

the reactor on top of asyncio’s event loop; convert Futures to Deferreds with Deferred.

asFuture when calling asyncio from Twisted; and vice versa with Deferred.fromFuture 

when calling Twisted from asyncio.

Because asyncio is still evolving, it’s not possible to provide more specific 

integration guidelines. Instead, we applied what we learned to a case study: a simple 

GET-only HTTP proxy with aiohttp and treq. While minimal, our proxy resembled a 

real application closely enough that we learned how to put those guidelines to work and 

bridged the gap between two of Python’s asynchronous programming communities.
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CHAPTER 10

Buildbot and Twisted
Buildbot is a framework for automating software build, test, and release processes. It 

is a popular choice for organizations and projects with complex and unusual build, 

test, and release requirements. The framework is heavily customizable and ships with 

“batteries included,” including support for lots of version-control systems, build and 

test frameworks, and status displays. Since it is written in Python, Buildbot can easily 

be extended with purpose-specific implementations of key components. We compare 

Buildbot to Django: it provides the basis on which to build complex, customized 

applications, but it is not as simple to set up or use as tools like Joomla or WordPress.

 History of Buildbot
Brian Warner wrote the predecessor to Buildbot in 2000–2001, when he was working 

at a router company. He was tired of hassling his coworkers each morning when they’d 

checked code into CVS that worked on their Solaris boxes but not on his Linux machine.

It was initially closed source, and used asyncore and pickle to implement an RPC 

system in which the workers drove the whole process. The central buildmaster only 

accepted status information from the workers to render it on a web-based waterfall 

display. It was modeled closely on Mozilla’s “Tinderbox.”

In the process of looking for examples of asyncore, Brian discovered Twisted, and 

found that it was already more advanced and growing quickly. After leaving the router 

company in early 2002, he built a clean re-implementation of the build system, in part as 

a way to learn Twisted, and the result became Buildbot.

Until about 2009, Buildbot had no database back end. Before that time, databases 

were fairly hard to deploy, and storing data directly on disk was not uncommon and 

seemed an efficient solution. Everything was smaller scale: disks were fast, networks 

were slow, and a “big” CI application only ran tens of parallel builds.
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Starting in 2009, Mozilla began using Buildbot, and the organization’s needs quickly 

outstripped this simple model. Within a few years, Mozilla was operating thousands 

of workers and more than 50 buildmasters. To support this, they engaged Brian to add 

a partial database back end to allow the buildmasters to coordinate their work. This 

database implementation did not store the results of builds – that remained in pickle 

files on individual buildmasters.

The web interface was entirely synchronous, rendering static HTML representations 

of build results. As such, displaying some pages could block the buildmaster for several 

minutes while it loaded results from the database and from pickle files. At Mozilla, just 

viewing a “waterfall” page could cause an outage, so access to those pages was not 

permitted.

About this time, Dustin Mitchell took over maintenance of the project and began 

organizing a long effort to modernize the application. This effort succeeded with the 

release of Buildbot 0.9.0 in October of 2016. The project aimed to refashion Buildbot as a 

database-backed server application presenting an HTTP API and hosting an interactive 

front-end web application. In a multi-master configuration, build results are now 

available from any master, updated “live” as results come in from workers. The HTTP API 

supports integration with other CI tools, and new well-defined, asynchronous interfaces 

support development of third-party plugins.

Nine was no easy project – it took a half decade of hard work by a team of developers 

including Pierre Tardy, Tom Prince, Amber Yust, and Mikhail Sobolev. It also involved 

solving a lot of tricky problems relating to asynchronous Python, as described in the rest 

of this chapter.

 The Evolution of Buildbot’s Async Python
Twisted already had good protocol support, including Perspective Broker, when Brian 

began writing Buildbot. Its reactor and Deferred handling were well-developed and 

built on solid theoretical foundations. However, “async” was still a relatively unknown 

concept in mainstream software development, and asynchronous code lived up to the 

name “Twisted Python.”

As an example, let’s look at Buildbot’s Builder.startBuild method, as it existed 

around 2005 (it has since been rewritten). It performed two asynchronous operations 

in sequence, first pinging the selected worker, then calling that worker’s startBuild 

method. This was implemented with a series of instance methods:
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# buildbot/process/builder.py @ 41cdf5a

class SlaveBuilder(pb.Referenceable):

    def attached(self, slave, remote, commands):

        # ...

        d = self.remote.callRemote("setMaster",self)

        d.addErrback(self._attachFailure,"Builder.setMaster")

        d.addCallback(self._attached2)

        return d

    def _attached2(self, res):

        d = self.remote.callRemote("print","attached")

        d.addErrback(self._attachFailure,"Builder.print 'attached'")

        d.addCallback(self._attached3)

        return d

    def _attached3(self, res):

        # now we say they're really attached

        return self

    def _attachFailure(self, why, where):

        assert type(where) is str

        log.msg(where)

        log.err(why)

        return why

This clunky syntax required careful threading of variables through multiple methods, 

made control flow hard to follow, and polluted the method namespace. This led to lots of 

interesting bugs with unhandled errors mysteriously disappearing or callbacks firing in 

unexpected order. Conditionals and loops that involved asynchronous operations were 

extremely difficult to get right and therefore, debug properly.

We are now accustomed to referring to functions as asynchronous (meaning they 

return a Deferred) and synchronous (meaning they do not). In these dark ages, the 

distinction was not so clear, and there were functions in Buildbot that could return a 

Deferred or an immediate value, depending on the circumstances. Needless to say, such 

functions were difficult to call correctly and were refactored to be strictly synchronous or 

asynchronous.
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As Twisted matured, and more importantly as Python grew additional features 

like generators, decorators, and yield expressions, the situation gradually improved. 

Twisted’s deferredGenerator allowed control flow to be written in a normal Python style 

with if, while, and for statements. Its syntax was still clunky, requiring three lines of 

code to perform an asynchronous operation and failing in obscure ways if any of those 

lines were omitted:

# buildbot/buildslave/base.py @ 8b4e7a9

class BotBase(service.MultiService):

    @defer.deferredGenerator

    def remote_setBuilderList(self, wanted):

        retval = {}

        # ...

        dl = defer.DeferredList([

            defer.maybeDeferred(self.builders[name].disownServiceParent)

            for name in to_remove])

        wfd = defer.waitForDeferred(dl)

        yield wfd

        wfd.getResult()

        # ...

        yield retval # return value

With Python 2.5 and the introduction of yield expressions, Twisted implemented 

inlineCallbacks. These are similar to deferredGenerator, but use only one line to 

perform an asynchronous operation:

# master/buildbot/data/buildrequests.py @ 8b4e7a9

class BuildRequestEndpoint(Db2DataMixin, base.Endpoint):

    @defer.inlineCallbacks

    def get(self, resultSpec, kwargs):

         buildrequest = yield self.master.db.buildrequests.getBuildRequest(k

wargs['buildrequestid

        if buildrequest:

            defer.returnValue((yield self.db2data(buildrequest)))

        defer.returnValue(None)
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This approach is much more forgiving, except that it is very easy to forget to yield a 

Deferred. Such errors cause the asynchronous operation to execute “in parallel” with 

the calling function, and often don’t cause any issues until that operation fails and the 

calling function continues undeterred. Several such insidious errors have survived 

extensive testing and persisted over Buildbot releases.

As Twisted and Buildbot move to Python 3, Python’s async/await syntax will provide 

a more natural way of writing asynchronous Python, although it will not solve the issue 

of a forgotten await. The function above reads even more naturally with this syntax:

class BuildRequestEndpoint(Db2DataMixin, base.Endpoint):

    async def get(self, resultSpec, kwargs):

          buildrequest = await self.master.db.buildrequests.getBuildRequest 

(kwargs['buildrequestid'])

         if buildrequest:

             return (await self.db2data(buildrequest))

         return None

Historically, asynchronous Python has been used only for performance-critical 

network applications, with the majority of Python applications built on a synchronous 

model. The NodeJS community has shown that standardized, interoperable 

asynchronous, can lead to a vibrant ecosystem of libraries, utilities, and frameworks 

that can be freely combined. Python now has async/await, and asyncio enables 

code written for Twisted to interoperate with code written for other asynchronous 

frameworks, facilitating similar growth.

 Migrating Synchronous APIs
In the early days, the Buildbot master ran as a single process and stored its status 

in pickle files on disk. It read from and wrote to those files synchronously, so most 

operations within the master did not involve Deferreds.

Around 2010, as continuous integration caught on in the software development 

community and Buildbot installations began to grow, pickle files did not scale. The time 

had come to add a database back end, and we were faced with a choice: convert all of 

those status functions to return Deferreds, or make synchronous database calls from 

the main thread, blocking other operations until they complete. The first option was 

appealing, but when a function is modified to return a Deferred, then every function 
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that calls it must also be modified to return a Deferred, rippling through the code base. 

Buildbot is a framework, so most installations contain lots of custom code that calls 

Buildbot functions. Making those functions return a Deferred constituted a breaking 

change and would require users to rewrite and retest their custom code.

In the interest of expediency, we decided to make most database calls on the main 

thread. Most of the data about build status – results, steps, and logs – was left on-disk. 

While this allowed us to ship the feature on time, it had predictable performance issues. 

In fact, in larger installations such as Mozilla’s, database queries could stall the master 

for so long that workers would time out, cancel running builds, and try to reconnect.

This situation repeated itself with many other APIs in Buildbot, as we added new 

functionality to code that was once simple and synchronous. If we could begin again 

without any compatibility requirements, we would make every exposed API method 

asynchronous, and accept a Deferred on every call into user code.

 Async Build Steps
Build steps were particularly difficult to make asynchronous. While Buildbot includes 

a number of “canned” build steps for common tasks, we allow users to implement 

their own steps as well. Such custom build steps call a number of methods as a step 

executes to add log output, update status, and so on. Historically, all of those calls were 

synchronous, since they updated state in memory that was later flushed to disk.

Buildbot 0.9 eliminated those on-disk data structures, and now stores everything in 

the database. It also provides “live” updates, so caching build step results until the step 

was completed was not an option. Thus, all of the synchronous methods to update status 

became asynchronous – but existing custom build steps called them synchronously!

Our approach to solving this problem was an unusual one: define “old-style” 

(synchronous) and “new-style” build steps, with different behavior for each. When 

executing old-style build steps, Buildbot gathers all of the otherwise-unhandled Deferreds 

from these methods and, when the step is otherwise complete, waits until all have fired. 

Since most of the methods are providing information about the step’s progress, callers do 

not expect any return value. We added a simple method to distinguish old and new build 

step implementations and only activate the compatibility mechanism for old steps. The 

strategy is remarkably successful, and for the minority of custom build steps for which it 

fails, the solution is easy: rewrite as a new-style build step.
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We developed this compatibility mechanism before rewriting the built-in build steps 

in the “new” style. This provided an opportunity to test and refine the mechanism before 

rewriting all of the built-in steps in the more reliable new style.

 Buildbot’s Code
Buildbot is unusual for an asynchronous application. Most such applications focus on 

a request/response cycle, with asynchronous programming permitting a much higher 

degree of parallelism than a thread-based, synchronous model. Buildbot, on the other 

hand, maintains long-term connections between the master and its attached workers 

and performs sequential operations on those workers. Even the process of accepting a 

new connection from a worker involves a complex sequence of operations to check for 

duplicate workers, interrogate the new worker’s features, and set it up to perform builds.

A synchronous approach to building this sort of application would involve a thread 

for each worker, plus threads for any other service objects such as schedulers or change 

sources. Even a modest installation of such an approach might then have thousands of 

threads, with all of the scheduling and concurrency issues that entails.

 Async Utilities
While Twisted provides a broad variety of useful asynchronous tools, Buildbot has 

found a few behaviors not supported by those tools. Just like queues and locks support 

building synchronous, threaded applications, these tools support building asynchronous 

applications.

 Debounce
A production-scale Buildbot master may be communicating with hundreds of workers, 

receiving events with updated status and log data. These events are often easy to 

coalesce – for example, several lines of log data can be combined into one chunk – but 

must be handled in a timely fashion to support live logging and dynamic status updates.

The fix is to “debounce” these events, calling the handler only once when several 

events occur in rapid succession. A debounced method specifies a delay, and guarantees 

that the decorated method will be called at least once within that period, but can 

coalesce multiple calls within that time.
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Debouncing can cause intermittent errors by allowing a method to execute at a 

time when it no longer makes sense. For example, it does not make sense to continue 

adding log lines to a build step if the step has been marked complete. To avoid this 

issue, debounced methods have a “stop” method that will wait (asynchronously) for any 

pending invocations, thus supporting clean state transitions.

 Async Services
As Buildbot is based on the excellent Twisted Application Framework, this framework 

provides (among other features) IService and IServiceCollection interfaces that can 

be used to create a hierarchy of services. Buildbot arranges the buildmaster service at 

the top of this hierarchy, with managers for workers, change sources, and so on, added 

as child services. Workers and change sources are added as children of their respective 

managers.

This design has been critical to the structure of Buildbot applications: supporting 

application startup and shutdown. More importantly, it allows Buildbot to dynamically 

reconfigure itself at runtime. For example, if the configuration is modified to add an 

additional worker, the reconfiguration process creates a new worker service and adds it 

as a child of the worker manager.

There’s just one problem with the application framework: startService is 

synchronous.

As we have services that handle talking to the database or to the message queue, it 

is critical for us that service startup is properly serialized by the Application framework. 

With this serialization, we can be sure that all the workers, builders, etc., are properly 

registered in the database, and listening to their requested message queues before we 

start the build requests distribution. For example, when a reconfiguration adds a new 

worker, that worker must be added to the database. The worker has not truly started until 

that asynchronous operation is complete.

While initialization dependency could be seen as an orthogonal problem as services 

dependencies, it has been quite handy for us to make startService asynchronous.

class AsyncMultiService(AsyncService, service.MultiService):

    def startService(self):

        service.Service.startService(self)

        dl = []
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        # if a service attaches another service during the reconfiguration

        # then the service will be started twice, so we don't use iter, but rather

        # copy in a list

        for svc in list(self):

            # handle any deferreds, passing up errors and success

            dl.append(defer.maybeDeferred(svc.startService))

        return defer.gatherResults(dl, consumeErrors=True)

    [...]

Buildbot adds an AsyncMultiService subclass of MultiService that supports 

asynchronous startService methods among its child services. It handles the edge cases 

around adding and removing services, meaning that addService, setServiceParent, 

and disownServiceParent are also made asynchronous.

We had the luxury of rewriting this functionality because we control all calls to 

addService and startService. Twisted itself could not easily make this change without 

introducing an entirely new, mutually incompatible class hierarchy.

In fact, since Twisted makes the call to the top-level service’s startService method, 

some care is required to handle asynchronous behavior in this case. Buildbot’s top-level 

service is BuildMaster, and its startService method returns a Deferred that never fails, 

using a try/except to catch any errors and stop the reactor. Since the reactor is not yet 

running at startup, startService begins by waiting for reactor startup:

class BuildMaster(...):

    @defer.inlineCallbacks

    def startService(self):

        [...]

        # we want to wait until the reactor is running, so we can call

        # reactor.stop() for fatal errors

        d = defer.Deferred()

        self.reactor.callWhenRunning(d.callback, None)

        yield d

        startup_succeed = False

        try:

            [...]

        except:
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            f = failure.Failure()

            log.err(f, 'while starting BuildMaster')

            self.reactor.stop()

What our system does not handle well is dependencies between peer services. For 

example, WorkerManager is dependent on the MessageQueueConnector, but both are 

children of the masterService. The MessageQueueConnector manages an externally 

backed message queue, and cannot accept any messages or registration request until 

the connection to the broker is done. Such registration requests are needed by the 

WorkerManager. Both services are started in parallel, being the children of the same 

service. As of now this has been resolved by optimistically queuing any messages 

or registration request until the connection is maintained. We could improve our 

system by adding an initialization dependency layer that is different from the service 

hierarchy. The design of such system is not easy to do if you want to have an efficient 

and simple interface, which does not require to rewrite all the startService of all 

our services.

An alternative design, one used in the ClientService class introduced in Twisted 

16.1.0, is to return immediately from startService while allowing the startup 

process to run in parallel. This design requires that service startup cannot fail, or 

that some other mechanism of communicating failure be developed. Buildbot relies 

on the straightforward error behavior of AsyncMultiService to handle runtime 

reconfigurations, which must fail gracefully when the new configuration has an error. 

For ClientService, connections retry indefinitely, so the startup process never truly 

fails, even if it never truly completes. The immediate-return approach also requires 

careful consideration of the case where a service’s method is called before startup has 

completed, generally by guarding each method to wait until startup has completed.

 LRU Cache
Caching is critical to scaling any application, and Buildbot is no different. A common 

cache eviction strategy is least-recently-used (LRU), where cache entries that have not 

been used recently are discarded when space is required for new entries. A cache “hit” 

occurs when a request can be satisfied from data in the cache; a cache “miss” requires 

fetching the data from its source.
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LRU caches are common, and several distributions are available on PyPI 

implementing them. However, at the time they were all synchronous and designed for 

use in a threaded environment.

In an asynchronous implementation, a cache miss will involve waiting for a fetch 

and additional requests for the same cache entry may arrive during the wait. These 

requests should not trigger additional fetches, but should wait for the same fetch to 

complete. This requires some careful handling of Deferreds, particularly around error 

handling.

 Eventual
There are lots of cases where we want to call some function but don’t care about the 

result or exactly when it is called. In an asynchronous system, it is best to invoke such 

functions later, when the current reactor iteration is complete. This allows a more fair 

distribution of work, with the reactor able to handle other events before invoking the 

functions.

A simple approach is to call reactor.callLater(0, callableForLater); this 

is equivalent to Node’s process.nextTick. However, this has the drawback of being 

difficult to test. Depending on the scheduling of the test, callableForLater may not be 

complete before the test finishes, resulting in intermittent test failures. This approach 

also fails to handle any exceptions or errbacks from callableForLater.

Buildbot’s buildbot.util.eventual.eventually wraps reactor.callLater. It 

provides an extra flushEventualQueue method that tests can use to wait for all pending 

function calls to complete. And it handles errors in the called functions by logging them 

to the Twisted log.

 Interfacing with Synchronous Code
Unlike the JS ecosystem, asynchronous is not the default and only way of doing I/O 

operations in Python. The Python ecosystem has grown over time with lots of very useful 

and well-thought-out libraries, and most of them are synchronous. Buildbot, being an 

integration tool, would have liked to use all these libraries.

We developed several best practices to use these synchronous libraries from our 

asynchronous core.
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 SQLAlchemy
SQLAlchemy is a well-known library that abstracts SQL to Python. It supports several 

SQL dialects, and make it easier to support several database back ends. SQLAlchemy 

provides a Pythonic SQL generation DSL (Domain Specific Language), which allows 

it to store and reuse SQL snippets, and also automatically handles the necessary SQL 

injection protection.

As of now, Buildbot supports SQLite, MySQL, and PostgreSQL.

SQLAlchemy has the concept of database connection pool; the SQL engine will 

reuse its connection to the database from request to request. In Buildbot, we map this 

connection pool to a threadpool, and each database operation is then operated inside 

a thread.

All of our database operations are implemented in a dedicated db module, and 

follow the same pattern.

• The database component code must derive from buildbot.db.base.

DBConnectorComponent.

• Each public method is meant to be called from asynchronous code, 

and returns a Deferred.

• We use a nested function that accesses the Python scope of the 

asynchronous method inside our sync code in order to avoid passing 

around our parameters.

• We jump from the asynchronous world to synchronous world using 

self.db.pool.do(..).

• We always prepend functions or methods names that are meant to be 

use blocking code with the thd prefix.

class StepsConnectorComponent(base.DBConnectorComponent):

    def getStep(self, stepid=None, buildid=None, number=None, name=None):

        # create shortcut handle to the database table

        tbl = self.db.model.steps

         # we precompute the query inside the mainthread to fast exit in 

case of error
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        if stepid is not None:

            wc = (tbl.c.id == stepid)

        else:

            if buildid is None:

                 return defer.fail(RuntimeError('must supply either stepid 

or buildid'))

            if number is not None:

                wc = (tbl.c.number == number)

            elif name is not None:

                wc = (tbl.c.name == name)

            else:

                 return defer.fail(RuntimeError('must supply either number 

or name'))

            wc = wc & (tbl.c.buildid == buildid)

         # this function could appear in a profile, so better give it a 

meaningful name

        def thdGetStep(conn):

            q = self.db.model.steps.select(whereclause=wc)

             # the next line does sync IO and block. That is why we need to 

be in a threadpool.

            res = conn.execute(q)

            row = res.fetchone()

            rv = None

            if row:

                rv = self._stepdictFromRow(row) res.close()

            return rv

        return self.db.pool.do(thdGetStep)

 requests
A lot of tools Buildbot interacts with are controllable via an HTTP API. Like Python’s 

urllib, Twisted has its own http client library, twisted.web.client. However, the 

excellent python-requests library has proven to be very well crafted. It has a very simple 

and powerful API emphasizing convention over configuration (hence the “HTTP for 

humans” motto), connection pooling, keepalive, proxy support, and – importantly for 

ensuring reliability in automation – automatic retries.
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Naturally, a Python programmer will want to use similar APIs within Buildbot. But 

requests is a synchronous API, because humans like synchronous.

There is the treq library that implements the requests API using Twisted client, but it 

does not have all the reliability features of requests yet.

Initially, the Buildbot community wrote the txrequests library, which is a simple 

wrapper around a requests session that makes every requests in a ThreadPool, similar to 

what we’ve done with SQLAlchemy. Then Buildbot implemented a HttpClientService 

that abstracts the requests API, and allows the choice of the treq or txrequests back end.

Several important features were implemented for HTTPClientService, which was 

the result of our experience writing code using txrequests: It abstracts the differences 

between the two implementations, using whichever is installed. The service includes a 

unit test framework, which allows us to test our components without relying on a fake 

HTTP server. It also supports sharing sessions between components, so, for example, 

two components that interface with GitHub can use the same HTTP sessions.

class GitHubStatusPush(http.HttpStatusPushBase):

    @defer.inlineCallbacks

    def reconfigService(self, token, startDescription=None,

                         endDescription=None, context=None, baseURL=None, 

verbose=False,**kwargs):

        yield http.HttpStatusPushBase.reconfigService(self,**kwargs)

        [...]

        self._http = yield httpclientservice.HTTPClientService.getService(

            self.master, baseURL, headers={

                'Authorization': 'token ' + token,

                'User-Agent': 'Buildbot'

            },

            debug=self.debug, verify=self.verify)

        self.verbose = verbose

    [...]

    def createStatus(self,

                     repo_user, repo_name, sha, state, target_url=None,

                     context=None, issue=None, description=None):

        payload = {'state': state}
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        if description is not None:

            payload['description'] = description

        if target_url is not None:

            payload['target_url'] = target_url

        if context is not None:

            payload['context'] = context

        return self._http.post(

            '/'.join(['/repos', repo_user, repo_name, 'statuses', sha]),

            json=payload)

    [...]

class TestGitHubStatusPush(unittest.TestCase, ReporterTestMixin):

    [...]

    @defer.inlineCallbacks

    def setUp(self):

        self.master = fakemaster.make_master(testcase=self,

                                              wantData=True, wantDb=True, 

wantMq=True)

        yield self.master.startService()

        # getFakeService will patch the HTTPClientService, and make sure any

        # further HTTPClientService configuration will have same arguments.

         self._http = yield fakehttpclientservice.HTTPClientService.

getFakeService(

            self.master,self,

            HOSTED_BASE_URL, headers={

                'Authorization': 'token XXYYZZ',

                'User-Agent': 'Buildbot'

            },

            debug=None, verify=None)

        self.sp = GitHubStatusPush('XXYYZZ')

        yield self.sp.setServiceParent(self.master)

    @defer.inlineCallbacks

    def test_basic(self):

        build = yield self.setupBuildResults(SUCCESS)
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        # we make sure proper calls to txrequests have been made

        self._http.expect(

            'post',

            '/repos/buildbot/buildbot/statuses/d34db33fd43db33f',

            json={'state': 'pending',

                  'target_url': 'http://localhost:8080/#builders/79/builds/0',

                   'description': 'Build started.', 'context': 'buildbot/

Builder0'})

     # this will eventually make a http request, which will be checked 

against expectations

    self.sp.buildFinished(build)

 Docker
Another example of a library we use is the official Python docker library. It is another 

synchronous library, which makes use of python-requests in order to implement the 

Docker HTTP protocol.

The Docker protocol is complex and might change frequently, so we decided against 

custom building a client using our HTTPClientService framework. But the official 

Docker API library is synchronous, so we needed to wrap it in such a way that it would 

not block the main thread.

We just used twisted.internet.threads.deferToThread to achieve this wrapping. 

This utility function uses the default shared thread pool, which Twisted manages 

automatically.

class DockerBaseWorker(AbstractLatentWorker): [...]

    def stop_instance(self, fast=False):

        if self.instance is None:

            # be gentle. Something may just be trying to alert us that an

            # instance never attached, and it's because, somehow, we never

            # started.

            return defer.succeed(None)

        instance = self.instance

        self.instance = None

        return threads.deferToThread(self._thd_stop_instance, instance, fast)

Chapter 10  BuildBot and twisted



333

    def _thd_stop_instance(self, instance, fast):

        docker_client = self._getDockerClient()

        log.msg('Stopping container %s... ' % instance[ 'Id'][:6])

        docker_client.stop(instance['Id'])

        if not fast:

            docker_client.wait(instance['Id'])

        docker_client.remove_container(instance['Id'], v=True, force=True)

        if self.image  is None:

            try:

                docker_client.remove_image(image=instance['image'])

            except docker.errors.APIError as e:

                log.msg('Error while removing the image: %s ', e)

 Concurrent Access to Shared Resources
Concurrent programming is a hard computer science domain, with lots of traps. When 

you run several programs in parallel, you need to make sure that they do not work on the 

same data at the same time. With Twisted, it is easy to have the same function running 

at the same time in two different deferred chains (or inlineCallbacks generators or 

coroutines). This typical problem is called re-entrancy. Of course, with asynchronous 

programming, the function will not really run twice at the same time. It runs in the 

“reactor” thread. So, in principle, you can do any read-modify-write of a shared state 

without having to care for concurrency.

That is true. . . until you reach the following limitations:

 Yield as a Concurrency Barrier
You can rationalize Twisted as cooperative multitasking, until you do some I/O 

operations. At that point, yield, await, and d.addCallback() become your 

concurrency barriers. You need to take care of not modifying shared state across those 

statements.

class MyClass(object):

    [...]

     # The following function cannot be called several times in parallel,  

as it will be modifying
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    # self.data attribute between "yield"

    # It is not safe for reentrancy

    def unsafeFetchAllData(self, n):

        self.data = []

        for i in range(n):

             # during the yield, the context of the main thread could change 

up to the

            # point where the function is called again.

            current_data = yield self.fetchOneData(i)

            # BAD! modifying the shared state accross yield!

            self.data.append(current_data)

        # A correct implementation which does not involve locks is

        def safeFetchAllData(self, n):

            # we prepare the data in a local variable

            data = []

            for i in range(n):

                current_data = yield self.fetchOneData(i)

                data.append(current_data)

             # even if several fetchAllData is called several times in 

parallel, self.data will always be coherent.

            self.data = data

 Thread-Pool Functions Should Not Mutate State
Sometimes you need to do some heavy calculation or use a library that is doing blocking 

I/O. You usually want to do those operations inside a helper thread different from the 

“reactor” thread, to avoid having to hang the reactor during the long processing.

So, when using threads, you have to think about protecting your shared state from 

concurrent access. There is, however, a simple rule that we follow in Buildbot in order 

to avoid using any kind of threading mutexes. All our functions or methods running in 

non-reactor threads must have no side effects on the application state. Instead, they 

communicate with the rest of the application only through function parameters and 

return values.
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from twisted.internet import defer

from twisted.internet import threads

class MyClass(object):

    [...]

    def unsafeFetchAllData(self, n):

        def thdfetchAllData():

            # BAD! modifying the shared state from a thread!

            self.data = []

            for i in range(n):

                with open("hugefile-{}.dat".format(i)) as f:

                    for line in f:

                        self.data.append(line)

        return threads.deferToThread(thdfetchAllData)

    @defer.inlineCallbacks

    def safeFetchAllData(self, n):

        def thdfetchAllData():

            data = []

            for i in range(n):

                with open("hugefile-{}.dat".format(i)) as f:

                    for line in f:

                        data.append(line)

             # we don't modify state, but rather pass the results to the 

main thread

            return data

        data = yield threads.deferToThread(thdfetchAllData)

        self.data = data

This example involves loading data from large files, but any synchronous operation, 

or any operation for which no asynchronous library is available, would follow the same 

pattern.
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 DeferredLocks
In our experience, following the two previous best practices will keep you safe from 99% 

of concurrency issues. For the remaining 1%, Twisted has great concurrency primitives. 

You should, however, think twice before using them as it often hides design issues.

• DeferredSemaphore implements a semaphore, the case where at 

most N concurrent access to the same resource can happen.

• DeferredLock implements a simple Lock. It is equivalent a 

DeferredSemaphore with N==1 but has a simpler implementation.

• DeferredQueue implements a queue that can be read via Deferred.

The source code for these classes is instructive and worth reading. Unlike their 

threaded counterparts, the implementations are very simple, thanks to asynchronous 

principles. In cases where they are missing features, it is usually simple to extend or 

re-implement them with the required features. For example, DeferredQueue does 

not provide a way to determine the length of a queue, a critical feature for monitoring 

production services.

 Testing
Automated testing is a necessity for any serious software engineering effort today, 

but this was not the case 15 years ago, especially in the open source world. Tools such 

as Buildbot, Jenkins, and Travis-CI have improved the situation dramatically, and it 

is now rare to find an open source library or application that does not have at least 

rudimentary tests.

Buildbot’s test suite has had a rocky history. Early versions of the application 

had a collection of integration-style tests, but were flaky, difficult to understand, and 

had poor code-base coverage. At some point, these proved more trouble than they 

were worth, and we chose to delete them entirely and began again with a unit-testing 

focus. We have since written new unit tests for some of the existing code, but more 

importantly, required that new or refactored code come with new tests. With several 

years of hard work, Buildbot’s line coverage is now about 90%, with much of the 

untested code being retained only for backward compatibility. Such coverage is critical 

for a framework like Buildbot, where no single installation exercises even a fraction of 

the framework’s code.
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Twisted’s testing framework, Trial is indispensable for testing a heavily asynchronous 

code base. With years of experience of asynchronous testing, Trial’s feature list sets the 

standard for asynchronous test frameworks.

Test cases are asynchronous by default, which means they can return a Deferred. 

The test framework makes sure the Deferred is waited for, and runs each test case 

within a new instance of the reactor infrastructure. Trial also has the concept of 

SynchronousTestCase, which skips the reactor setup and runs even faster.

Failing to handle a Deferred is a common mistake. Trial introduces the principle of 

the “dirty reactor” in order to try and catch a certain class of unhandled Deferred.

For example, consider this code:

@defer.inlineCallbcks

def writeRecord(self, record):

    db = yield self.getDbConnection()

    db.append(self.table, record) # BAD: forgotten yield

and accompanying test:

@defer.inlineCallbacks

def test_writeRecord(self):

    record = ('foo', 'bar')

    yield self.filer.writeRecord(record)

On completion of this test’s Deferred, Trial will examine the reactor’s list of pending 

I/O and timers. If the append operation has not yet completed, the pending socket read 

or write operation will cause a DirtyReactor exception. Any Deferred that is garbage 

collected in an unhandled failed state will also be flagged as a test failure. Unfortunately, 

if an unhandled operation completes successfully before the test does, Trial cannot 

detect the error. This makes unclean reactor errors intermittent, causing some 

frustration for users and developers.

Python 3.5’s coroutines add features in the language to better track such 

programming mistakes (RuntimeError: coroutine [...] was never awaited), but 

these will only work with coroutines.
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 Fakes
Unit testing requires good isolation of the units being tested. Most Buildbot components 

depend on other components, including the database, message queue, and data 

API. The convention in Buildbot is to include a reference to the BuildMaster instance 

as self.master on every service object. Other objects are then available via properties 

of the master such as self.master.data.buildrequests. For testing purposes, the 

buildbot.test.fake.fakemaster.FakeMaster class defines a fake master that can 

provide access to a similar array of fake components.

Many of these fake components are simple dummy classes instrumented for testing. 

The risk with such fakes is that they do not faithfully reproduce the behavior of the real 

component. For small components, this risk is generally small, and with due care we can 

be confident they are correct.

The database API, however, is a complex component with dozens of methods and 

complex interactions. One option is to always test against a database – Buildbot supports 

SQLite, which is built into Python, so this is not a great burden on developers. However, 

it is slow to tear down and set up even an in-memory database for each test. Instead, 

Buildbot sports a full implementation of the DB API using only simple Python data 

structures. To ensure its fidelity to the real database API, it must pass the same unit tests 

as the real implementation. The result is a fake that is guaranteed to give reliable results 

for unit tests of components that depend on it – a “verified fake.” This fake is faster than 

the production code, while also providing highly reliable test results.

 Summary
Buildbot is a large, mature code base that has grown up with Twisted since its early days. 

Its history demonstrates the journey – and some of the wrong turns – of asynchronous 

Python over the last decade. And its latest releases provide a trove of practical, real-life 

Twisted code.
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CHAPTER 11

Twisted and HTTP/2
 Introduction
HTTP/2 is the latest revision of the venerable protocol that underlies almost all of the 

world wide web: the HyperText Transfer Protocol, HTTP. Originally developed by Tim 

Berners-Lee at CERN (the European Organization for Nuclear Research) in 1989, HTTP 

has been the engine of the web ever since. The dominance of the protocol is so complete 

that almost everything that most people think of as “the Internet” is in fact part of the 

world wide web, and so uses HTTP.

At its core, HTTP is the protocol that allows your browser to communicate with a 

website. It provides a formal encoding for your browser to request “resources,” such 

as a web page or image, and for servers to provide those resources in response. It 

also supports uploading data. While its most common use is for websites, HTTP is 

also commonly used for machine-to-machine communication through the use of 

“web APIs,” which let programmers write applications that interact with data stored 

on other computers. Most major companies you have heard of run a web API!

Early on, the protocol went through multiple revisions, but the protocol solidified 

into its most common form in 1996 with the publication of RFC 1945 by the Internet 

Engineering Task Force (IETF). This represented a vision for the first long-term 

version of the protocol and established its well-known properties. These include 

its text- based, human-readable nature; its reliance on a dictionary of verbs with 

well-defined behaviors, such as GET, POST, and DELETE; and its tools for managing 

caching of content. HTTP/1.0 was followed swiftly by HTTP/1.1, an incremental 

release that provided a number of improvements to the expressiveness and efficiency 

of the protocol. HTTP/1.1 was first specified in RFC 2068 in 1997 and was updated 

in the famous RFC 2616 in 1999. This version of HTTP was then left almost entirely 
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unchanged for 15 years.1 All of the fantastic software and services that came of age in 

this time were built on top of this 1990s-era protocol.

Unfortunately, HTTP/1.1 has a number of shortcomings that rendered it increasingly 

ill-suited to the web of the 2010s. As a text-based protocol, it’s extremely verbose, 

requiring the transmission of many more bytes than are strictly required. It also lacks any 

form of multiplexing,2 meaning each HTTP request/response pair in flight at any time 

requires a dedicated TCP connection, which causes problems that are further explored 

below. It’s also complex and slow to parse in comparison to most binary protocols.

The combination of these shortcomings cause HTTP/1.1 connections to have 

problems with latency, bandwidth, and operating system resource usage. These concerns 

led Google to begin experimenting with alternatives to HTTP/1.1 that maintained the 

same semantics but used a different wire format to transmit the data. After a few years of 

testing this experimental protocol, called SPDY,3 it became clear that the protocol offered 

solutions to many of HTTP/1.1’s problems, and the IETF HTTP Working Group resolved to 

use SPDY as the basis of a new revision to the HTTP protocol: version 2.

HTTP/2 contains many improvements over HTTP/1.1. It changes the protocol from 

being text-based to using a stream of length-prefixed binary frames. It adds a special 

form of compression suitable for use with HTTP headers, vastly reducing the overhead 

associated with a given HTTP request or response. It provides multiplexing and flow 

control to allow multiple HTTP request/response dialogs to take place over a single 

TCP connection. And, finally, it adds explicit support for negotiating extensions, giving 

HTTP/2 the option of being much more easily extended in the future than HTTP/1.1 is.

1 HTTP/1.1 was updated in RFC 7230 and its related RFCs in 2014. This was not a substantial 
revision to the protocol: instead, the goal was to codify the way HTTP/1.1 had been deployed in 
the wild over the intervening 15 years.

2 HTTP/1.1 does define a concept called “pipelining,” which allows a user-agent to submit 
multiple requests without waiting for a response to the previous one. In principle, pipelining 
provides some form of multiplexing support. Unfortunately, pipelining is a bad solution to 
the issue and suffers from a number of problems. The most severe is that servers are required 
to respond to requests in the order they were delivered. If the server needs to generate a large 
response, this can cause long waits for a response to a subsequent request. Additionally, if a 
server receives a request that has a side effect (e.g., changing some data), it is required to stop 
processing all other requests on that pipelined connection until that request has been fully 
processed, unless it can prove those other requests are safe. In practice, these limitations are so 
onerous that none of the major browsers have enabled support for pipelining, and so it has never 
been widely deployed.

3 Pronounced “speedy.”
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Since being standardized in 2015, HTTP/2 has become extremely successful. All 

major browsers support it as do most major web servers, and it is rapidly becoming 

the primary protocol used on the web, supplanting HTTP/1.1. This wide deployment 

means that developers will want to be able to take advantage of the protocol in their own 

applications, including those built on Twisted directly.

Twisted contains a HTTP server. In 2016 work began to extend this HTTP server 

that provides HTTP/1.1 support to provide HTTP/2 support alongside it, with the 

initial release of this functionality landing in Twisted 16.3 in July 2016. The rest of this 

chapter will discuss how this implementation was built, its key features, and cover 

several useful techniques for asynchronous programming that this implementation 

uses.

 Design Goals
The HTTP/2 integration work in Twisted had a number of specific design goals from the 

very beginning.

 Seamless Integration
The first and most-important design goal of the HTTP/2 project was to integrate it as 

seamlessly as possible with Twisted’s existing web server, which is a part of twisted.

web. The ideal outcome for the project would be for existing Twisted Web applications 

to enable HTTP/2 support with zero code changes. This would enable the widest 

possible access to HTTP/2 for existing and new web applications with an extremely 

low barrier to entry.

Happily, HTTP/2 was designed to have the same “semantics” as HTTP/1.1. This 

means that any valid HTTP/1.1 message had to have at least one exactly equivalent 

representation in HTTP/2. Even though the specific arrangement of bytes sent on 

the network are different, the abstract meaning of the HTTP session can be conveyed 

exactly in both HTTP/1.1 and HTTP/2. This meant that it would be possible, at least in 

principle, to allow users of twisted.web to transparently enable HTTP/2 without any 

code changes.
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This kind of “seamless” integration is made possible in Twisted by the extensive use 

of interfaces to define an abstraction layer. An interface is a formal description of the 

functions you can call on a family of related objects. For example, you could describe a 

“vehicle” interface using zope.interface like so:

from zope.interface import interface

class IVehicle(Interface):

    def turn_on():

        pass

    def turn_off():

        pass

With this interface defined, you can write programs that can operate any kind 

of vehicle by programming against the interface, rather than against a specific 

implementation. Interfaces like this are a form of polymorphism (a term used in object- 

oriented programming) that is an alternative to class-based inheritance. This section 

will not explore the idea of interfaces for polymorphism any further, except to say that 

defining interfaces for your objects allows you to write code that can use alternative 

implementations of the same interface very gracefully.

In the case of HTTP, in principle we could define a set of interfaces for working with 

HTTP at the semantic level (without reference to the specific wire format) and have 

users write code against those interfaces. For example, you could have a HTTPServer 

interface that exposes an interface that operates in terms of general HTTPRequest and 

HTTPRespose objects, and that shields the user code from the specific properties of the 

underlying connection.

Unfortunately defining interfaces in this way is not always simple to do, and in 

practice a number of difficulties were encountered that needed to be resolved to make 

this design goal achievable. These will be covered more later in this chapter. Once these 

difficulties were resolved, however, we were able to construct a final implementation that 

was almost completely seamlessly meshed with the existing HTTP/1.1 implementation.

The end result was that as of Twisted 16.3 any application using twisted.web could 

get automatic HTTP/2 support by installing the optional http2 extra when installing 

or upgrading Twisted. Twisted would then feature detect all of the relevant features 

from the operating system and, assuming that everything was in order, HTTP/2 would 

automatically be used where possible.
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 Most-Optimized Behavior by Default
HTTP/2 is a complex protocol with a number of tunable parameters that can affect the 

efficiency of the protocol. Frame sizes, priority management, compression strategies, 

concurrent stream limits, even buffer sizes all play a part in tuning the efficiency of the 

protocol.

Because HTTP/2 support in Twisted was planned to be transparent to the user, it is 

highly likely that the majority of users will not notice it is there. As a result, it is vitally 

important that the protocol behave as efficiently as it can by default. This is because 

if users are not aware that a feature is present, they cannot be expected to reasonably 

configure that feature for their use case.

This is a general lesson with feature development that follows on from the previous 

design goal: features that are intended to be completely seamless and transparent must 

also have sensible defaults that apply to the widest range of use cases. If they do not, 

users will experience suboptimal behavior from their software without knowing, and 

if they are eventually made aware of this behavior, they’ll have to engage in complex 

profiling and debugging in order to trace it.

For this reason, Twisted’s HTTP/2 support needs to tread a fine line. The default 

configuration needs to perform well in almost all circumstances without substantial 

overhead, with a minimal goal of performing at least as well as the HTTP/1.1 

implementation. Otherwise this feature will end up punishing users that enable it, 

making it completely worthless.

 Separating Concerns and Reusing Code
The final, and most important, design goal was to avoid reinventing too many wheels. 

A substantial anti-pattern when designing networked applications is to build custom 

components, rather than to glue in preexisting implementations of solved problems. 

This is particularly tempting when working with frameworks like Twisted, which tend to 

require care when integrating preexisting solutions to avoid blocking the event loop. The 

reason for this is that the specific mechanisms to use to avoid blocking the event loop 

usually differ from framework to framework, and so it is profoundly tempting to write 

custom code for each framework: the cost of doing so is that it is impossible to reuse 

large chunks of code across multiple frameworks.
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Fortunately, the Python ecosystem already contained a “sans-io” HTTP/2 

implementation. This is a protocol stack that can be used to parse and serialize the 

HTTP/2 protocol but that does not understand anything about I/O. Implementations 

like this are designed to be glued into frameworks like Twisted, and they allow a 

substantial amount of code reuse.

This is one of the most-important design patterns in network programming, and so 

bears repeating: wherever possible, you should strive to separate your protocol parser 

from your specific I/O implementation. Your protocol parser should operate only on 

in-memory buffers of bytes, whether consuming or producing them, and should have no 

mechanism to either obtain bytes from the network or provide them to the network. This 

design pattern allows you to much more easily transport your protocol parser from one I/O 

pattern to another, as well as making it vastly easier to test and extend your protocol parser.

Having this design goal changes the nature of the work. The Twisted HTTP/2 

implementation handles the portions of the HTTP/2 protocol that require writing bytes 

to and from the network, setting and handling timers, and translating the HTTP/2 events 

into the twisted.web interface. The sans-io HTTP/2 implementation is responsible 

for parsing the byte stream into HTTP/2 events, and turning the function calls from 

twisted.web into bytes to emit.

This code reuse also allows more time to be spent optimizing the portions of the 

implementation where Twisted can add the most value. Twisted’s implementation 

focuses heavily on reducing the latency of data reaching the network, propagating 

backpressure efficiently, and reducing unnecessary system calls or I/O overhead. This is 

much easier to do when the core protocol logic is factored out into a separate project.

In general, when working on “standard” problems, this is the best approach to use. 

It shrinks the size of the code base, avoids spending too much engineering time solving 

problems that have already been solved, and allows you to focus on improving the 

efficiency and scalability of your solution.

 Implementation Concerns
Once the design goals were decided, work could begin on the code. While for many 

developers this is the fun part, it’s also often where a number of unforeseen surprises can 

occur. Additionally, it’s common to find that there are aspects of a design that are simple 

enough when discussed conceptually, but that become substantially more tricky when 

they are translated into code. This section covers a number of specific concerns that 

relate to the concrete implementation.
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 What Is a Connection Anyway? The Value of Standard 
Interfaces
In twisted.web, there are a number of objects that cooperate to implement HTTP 

support. The simplest version of this relates the underlying TCP Transport to the 

HTTPChannel and Request objects. This relationship is shown in Figure 11-1.

Figure 11-1. The three most-important objects to provide HTTP support in Twisted

When implementing HTTP/2 support, we discovered that the standard Twisted 

HTTP request handler (twisted.web.http.Request) expects to be passed a reference to 

the HTTP connection handling object in the form of twisted.web.http.HTTPChannel 

(or something with a similar interface: frustratingly, the expected interface was never 

codified). In the constructor for Request it reached into the channel it was just passed 

and pulled out the transport attribute to save on itself. All subsequent calls to Request.

write to write out the response body would be proxied through to transport.write. 

transport.write would invoke the write function on whatever the transport object 

was. This object will be something that implements twisted.internet.interfaces.

ITransport: another of those zope.interface interfaces used extensively within 

Twisted. In this case, ITransport is a particularly common interface that is used to 

represent any kind of writable data transport. This is commonly a low-level stream 

Chapter 11  twisted and http/2



346

protocol such as TCP, but can in practice be anything that provides a stream writing 

interface. In the old HTTP/1 model, this would almost always be the underlying TCP 

transport.

This layering violation ends up working just fine for HTTP/1.1 because once the 

response headers are sent, the response body can be treated as just an arbitrary byte 

stream. However, this very much does not work for HTTP/2: multiplexing, priority, and 

flow control all make it extremely important to prevent applications making arbitrary 

writes to the TCP connection.

As part of the HTTP/2 work, then, we needed to clean this up. However, we couldn’t 

simply remove these properties: they’re part of the public API of the Request and need to 

be preserved.4

The most straightforward change was to make the HTTP/1.1 twisted.web.http.

HTTPChannel object an implementer of ITransport that proxied most of its methods 

through to its underlying transport. This ensures that the HTTPChannel does a better job 

of encapsulating its own resources by ensuring that users do not need to reach inside it to 

write the response body, and also resolves some semantic issues with the previous design. 

Essentially, a HTTPChannel should be a transport for responses, rather than an object that 

has a transport down in which responses can be sent. Of course, due to the backward 

compatibility policy, HTTPChannel could not have its transport property removed, so it 

does not truly encapsulate the transport, but discouraging its use is an important first step.

Once this was done, the internal implementation of Request could be changed 

to use the HTTPChannel for every call that originally went to the transport. Essentially 

every instance of self.transport in the body of a Request method was changed to self.

channel. This ensured that Twisted’s default implementation of HTTP request handling 

now appropriately respected the intended abstraction between TCP connection and 

HTTP connection.

Unfortunately, we couldn’t create a clean break here due to Twisted’s compatibility 

policy. A large number of HTTP/1.1 applications created with Twisted Web already 

existed, and some number of them inevitably directly wrote to the transport (or 

otherwise handled the transport, for example, to reach in and retrieve TLS certificates). 

For this reason, the transport property could not be removed from the HTTPChannel 

and would also need to be present on whatever object was provided as the HTTP/2 

equivalent.

4 The virtues of backward compatibility are better explained in https://twistedmatrix.com/
documents/current/core/development/policy/compatibility-policy.html.
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As discussed in the previous section, the multiplexing in HTTP/2 requires multiple 

cooperating objects to provide the needed abstractions. This also means that there 

are two separate objects that together provide the same interface as HTTPChannel. The 

Request only needs a subset of the HTTPChannel interface. That portion of the interface 

was placed on the H2Stream for compatibility purposes.

Due to the need for Request to get the transport property from its channel, 

H2Stream needs a transport property as well. However, there is no need for the HTTP/2 

code to continue to make the same abstraction violation available as the HTTP/1.1 

code has: given that there are no legacy API requirements, it just needs to be possible to 

access the property. For this reason, all H2Stream objects have a transport property that 

is always set to None.

This is a good example of a situation that could have been made much easier by 

the existence of standard interfaces between the Request and HTTPChannel objects. 

When originally created, it was not foreseen that it may be necessary to have each of 

these objects support multiple possible implementations of their partner object, so the 

interfaces used between these two objects were not formally defined. This lack of formal 

definition means that the effective interface of these objects is their entire API surface: all 

methods and all properties.

This kind of broad and implicit interface leads to enormous difficulty when 

attempting to create extra abstraction layers. If the person re-implementing an object 

needs to completely emulate its entire public API, it gets substantially harder to offer 

alternative implementations and to build appropriate abstractions.

However, on the positive side, the majority of the effective interface that Request 

needed from HTTPChannel was defined, in the form of ITransport. Because Request 

spent the majority of its time writing to the transport of HTTPChannel, and because that 

transport could only reasonably be assumed to be an implementer of ITransport, it was 

very easy to identify what methods needed to be added to HTTPChannel and what their 

behaviors should be. Once this was done, it was a simple matter to identify what the 

effective API H2Stream needed to present was.

Due to a lack of focus on extensibility during the early years of Twisted Web, 

integrating HTTP/2 was harder than it needed to be. However, it could have been a lot 

worse: thanks to the wide usage of interfaces throughout all of Twisted’s code, fixing 

these abstraction violations was a much more tractable problem than it could otherwise 

have been.
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This should be an important lesson to future engineers: when the system is designed, 

it will likely be designed in terms of high-level interfaces between components. These 

interfaces should be codified in the code, because they provide extremely helpful 

guidance about what each component expects of the others and allows much more 

tractable extension and enhancement of components in future.

 Multiplexing and Priority
One of the most complex parts of HTTP/2 is its multiplexing support. This core feature 

of HTTP/2 was introduced to allow multiple HTTP request/response pairs to use the 

same TCP connection by sending and receiving them simultaneously on the same TCP 

connection. This approach has a number of advantages over HTTP/1.1’s use of multiple 

concurrent TCP connections:

 1. It uses fewer system resources. Each TCP connection takes up 

a file descriptor in the operating system of both the client and 

the server, which increases the amount of work both operating 

systems must do to keep track of network connections. It also 

increases the amount of memory used in both the kernel, which 

must allocate data structures to keep track of the connections, 

and in Twisted applications, which allocate a number of data 

structures to manage each transport. 

 2. It leads to better throughput and higher data transfer rates. The 

most widely-deployed TCP congestion control algorithms were 

designed with the expectation that there would be no more than 

one TCP connection between any two hosts at any one time.5 

The result of having many connections between the two hosts, 

particularly if they’re all transmitting bulk data (a usage pattern 

common on the web), is that the throughput of the multiple 

concurrent connections fails to reach the maximum possible 

throughput on the link.

5 More specifically, the algorithms assume that packet loss events for each TCP connection on the 
system are independent: that a packet loss event on one connection does not have anything to 
do with the behavior of the others. For multiple TCP connections between the same two hosts 
doing bulk data transfer this assumption does not hold: packet loss events most often occur 
because the link is saturated, and as a result packet loss will likely occur on most or all of the TCP 
connections all at once. This causes all the TCP connections to halve their data throughput all at 
once, leaving the link underutilized for long periods of time.
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 3. It keeps connections “hotter.” If TCP connections become idle 

for a long period of time they are prone to being closed (either 

by middleboxes or either peer) or to returning to a “slow-start” 

state where previous knowledge of the congestion on the link 

is discarded. In either case, when that connection comes to be 

reused it will have a long period of low throughput as the TCP 

slow-start phase progresses and, if the connection was closed, it 

will also have the added latency of the TCP and TLS handshakes. 

“Hot” connections, which are connections that are in constant or 

almost-constant use, avoid both of these problems, which reduces 

latency and increases throughput. 

Multiplexing is achieved in HTTP/2 by dividing a single HTTP/2 connection into 

a number of bidirectional “streams.” Each stream carries a single HTTP request and its 

associated response. This is achieved very simply, by giving each stream a unique identifier 

and ensuring that each frame of data that belongs to that stream carries that stream 

identifier. This allows the single ordered stream of data provided by a TCP connection to be 

divided up into multiple logical streams of data, as shown in Figure 11- 2.

Figure 11-2. Streams are interspersed blocks of data. They can be interleaved in 
any order.

However, simply tagging all the data with its appropriate stream identifier is not 

enough. To explain why, consider what might happen with a hypothetical website that 

acts as a cloud picture gallery. This website has two purposes: it displays images, and it 

accepts user input to make changes to them. Each user input triggers an API request/

response: additionally, the user scrolling or editing will cause the server to stream down 

another image file.
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The API requests/responses will typically be very small: for example, they may be 

JSON documents that consist of only a few hundred bytes. The images are proportionally 

much larger: maybe many megabytes in size. Additionally, the images require no 

computation to generate: they’re stored on disk, and so their data is constantly available 

for the web server to serve.

A possible problem, then, is that the server may completely fill the HTTP/2 

connection with data for the image streams, blocking the data for the API responses. The 

API responses form a proportionally small fraction of the data that needs to be sent, but 

that data is much higher priority than the data for the images. Users are probably willing 

to wait for thumbnails to load, but they are much less likely to be willing to wait for all 

the images to download until they see the effects of their UI interactions.

This problem exists for most multiplexed data transfer media: How do we ensure 

that the highest priority data arrives as soon as possible while ensuring the connection 

is always maximally utilized? There are many possible solutions to this problem, but 

HTTP/2 uses a scheme that involves clients setting stream priorities.

Stream priorities allow clients to inform the server about the relative importance of 

the data on different streams. The intent of this data is to allow servers to decide how to 

apportion its scarce resources to the different requests the client is making. In general, 

the primary resource that servers have to dole out is bandwidth, but more complex 

servers can also use this information to portion out things like CPU time, file descriptors, 

or disk space: really any limited resource.

The simplest possible stream priority scheme is to simply assign each stream a 

numerical priority. A stream with a higher number is more important than one with a 

lower number, and should be served first. This kind of scheme tends to struggle due to its 

lack of expressiveness: while it allows you to indicate that some data is more important 

than other data, it critically fails to allow you to express how much more important that 

data is.

The simplest possible scheme that works pretty well is to give every stream a 

numerical weight. This weight reflects the stream’s relative importance: if stream X has 

twice the weight of stream Y, then it is roughly twice as important to serve. The advantage 

of this approach is that it can be used to hand resources out proportionally: in the prior 

example, stream X should be allocated twice the resources of stream Y. This allows 

clients to signal that they believe that it is more important to get a timely response to 

stream X than to stream Y, and exactly how important they believe it is.
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This simple approach was used by HTTP/2’s predecessor protocol, SPDY. However, 

when it came time to specify HTTP/2, the HTTP Working Group believed that this 

approach was insufficiently expressive and that it left a few use cases out. In particular, 

it did not allow the client to easily express the constraint “only use your resources on 

stream A if you cannot use them on stream B for some reason.” Put another way, this 

allows the client to say “Stream A is worthless without the result of stream B, so don’t 

spend any time on A unless stream B is blocked for some reason.”

For this reason, HTTP/2 has a much more complex priority system. This system 

allows the client to specify a tree of priorities, where each node in the tree depends upon 

its parent node above it. These priorities do not affect “control” data, such as HTTP 

headers: they are only used to indicate the priority of the requested resource.

For Twisted’s web server, it is extremely difficult for us to apportion most of the 

non-bandwidth resources discussed above, as we do not have sufficient insight into the 

user’s application to know exactly what questions we should ask. As a result, we can only 

divide up the bandwidth. To do this as performantly as possible in Twisted, we make a 

simple approximation to dividing up the bandwidth: we divide up the frames instead. 

For example, if we have streams A and B with weights 32 and 64 respectively, a perfect 

implementation of the priority algorithm would allocate stream A 1/3 of the bandwidth 

and stream B the other 2/3. Accurately doing this would require splitting up data that 

arrives in each call the user makes to transport.write, which would entail repeatedly 

copying that data into and out of buffers. This kind of repeated slicing and copying of 

memory is extremely slow without a high-performance buffer to use for this purpose 

(something not available in Twisted at the time of development and not in scope for this 

work), which means we want to avoid it as much as possible.

To avoid doing this slicing we can keep the data as-written and instead give each 

stream a number of frames equal to its relative weight. Each time there is room in the 

send buffer for more data to be sent, the Twisted implementation will check which of 

the streams that have data to send should send next, based on the stream weighting. We 

then send a single data chunk up to the maximum frame size6 for that stream, and then 

rinse and repeat. This kind of frame-based multiplexing is a common pattern in network 

protocol design, and can be used for arbitrary framed protocols quite easily.

6 The eagle-eyed reader will note that Twisted sets no upper limit on the size of the data passed to 
write(), which means that this data chunk may be larger than the HTTP/2 maximum frame size. 
If this happens, we will have to do a memory copy anyway; it’s unavoidable.
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The building and maintaining of this priority tree are handled by the third-party 

priority library. This library builds and maintains the priority state as sent by the client, 

and provides an iterable that incrementally instructs the Twisted implementation which 

stream should be served next. It also includes information from the Twisted application 

about whether each stream has any data available to send. Streams that have no data 

to send are considered blocked, and the fractions of the TCP connection that would 

normally be assigned to those streams are instead split among the streams that are child 

dependencies.

The need to run all data through a loop around the priority tree adds a wrinkle to the 

data sending pipeline that doesn’t exist in the HTTP/1.1 implementation. For HTTP/1.1, 

all writes of the response data can be passed directly through to the underlying TCP 

connection object, which can be responsible for handling buffering and sending data. 

For HTTP/2, we don’t want to do that because we need to interleave the writes according 

to the relative stream priorities.

Even more importantly than that, the implementation needs to be responsive 

to changes in the stream priorities sent by the client: if the client increases the 

priority of a stream, we want that to be reflected in the data as soon as possible. If the 

implementation eagerly writes all stream data to the TCP connection object it can lead 

to a large buffer of data waiting to be sent that is allocated according to the old stream 

priorities, rather than the new ones. For situations where the TCP throughput on the 

connection is much lower than the rate data is generated in the Twisted application, this 

can lead to multiple-second delays before the priority change is reflected in the actual 

data: clearly unacceptable.

For this reason the Twisted HTTP/2 implementation needs to do its own internal 

buffering of data and to send data asynchronously to the calls to transport.write. This 

is done by repeatedly using IReactor.callLater to schedule a function that will send 

the highest priority available chunk of data.

The use of callLater allows us to avoid overfilling the send buffer by paying attention 

to backpressure from the TCP connection (see the next section for more details), as well as 

to ensure that we send all available data without blocking any calls to write.

The core of the data sending function looks like this (with error handling and some 

edge cases removed for clarity):

class H2Connection:

    def _sendPrioritisedData(self, *args):

        stream = None
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        while stream is None:

            try:

                stream = next(self.priority)

            except priority.DeadlockError:

                # All streams are currently blocked or not progressing. Wait

                # until a new one becomes available.

                self._sendingDeferred = Deferred()

                self._sendingDeferred.addCallback(self._sendPrioritisedData)

                return

        # Wait behind the transport. This is managed elsewhere in this class,

        # as part of the implementation of IPushProducer.

        if self._consumerBlocked is not None:

            self._consumerBlocked.addCallback(self._sendPrioritisedData)

            return

        remainingWindow = self.conn.local_flow_control_window(stream)

        frameData = self._outboundStreamQueues[stream].popleft()

        maxFrameSize = min(self.conn.max_outbound_frame_size, remainingWindow)

        if frameData is _END_STREAM_SENTINEL:

            # There's no error handling here even though this can throw

            # ProtocolError because we really shouldn't encounter this problem.

            # If we do, that's a nasty bug.

            self.conn.end_stream(stream)

            self.transport.write(self.conn.data_to_send())

            # Clean up the stream

            self._requestDone(stream)

        else:

            # Respect the max frame size.

            if len(frameData) > maxFrameSize:

                excessData = frameData[maxFrameSize:]

                frameData = frameData[:maxFrameSize]

                self._outboundStreamQueues[stream].appendleft(excessData)

            # If for whatever reason the max frame length is zero and so we

            # have no frame data to send, don't send any.
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            if frameData:

                self.conn.send_data(stream, frameData)

                self.transport.write(self.conn.data_to_send())

            # If there's no data left, this stream is now blocked.

            if not self._outboundStreamQueues[stream]:

                self.priority.block(stream)

            # Also, if the stream's flow control window is exhausted, tell it

            # to stop.

            if self.remainingOutboundWindow(stream) <= 0:

                self.streams[stream].flowControlBlocked()

        self._reactor.callLater(0, self._sendPrioritisedData)

This function can be broken into four logical parts. The first checks whether there 

are any streams that are considered “able to progress” (that is, that have data available 

to send and space in their flow control window7 to send it). If there aren’t then we don’t 

have any data to send, so we set up a Deferred that will be called back when a stream 

becomes unblocked for any reason.

The second part checks whether we have space in the send buffer. This is another bit 

of signaling done by a Deferred: if there is a Deferred in self._consumerBlocked, then 

Twisted has signaled to us that the send buffer is full and that we should avoid writing. 

Again, we return without doing any work and ensure that when the Deferred fires, this 

function will be called. In both of these cases the function will not be recalled until the 

situation that blocked its progress has been resolved.

The third and fourth sections have to do with the sending of actual data. In this 

case, we have a stream that has data available to send and room in the send buffer to 

send it. We then pop a chunk of data (previously written in a call to write) off a deque. 

If that object is the _END_STREAM_SENTINEL, then the body is complete, and we need to 

complete sending the stream. Otherwise, we create a data frame that can send the data, 

and optionally do some other state management.

As a final step, if we sent any data, we schedule this method to be recalled using 

callLater, as noted earlier.

This approach, while dramatically more complex than the logic required to send 

data for HTTP/1.1, is the core of the HTTP/2 multiplexing approach. This added 

7 For more on flow control windows, see the next section on backpressure.
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computational complexity makes HTTP/2 slower in Python code than HTTP/1.1, but 

vastly improves the network performance of the protocol.

The above approach is a model for how to handle complex multiplexed data sending or 

any kind of buffered sending logic: a single function that can be repeatedly called each step of 

the way and that can be rescheduled easily if for any reason it is unable to do any work (e.g., 

because the transport cannot accept more data, or because there is no data to send).

 Backpressure
A frequent mistake made by novice programmers when working with asynchronous 

systems like Twisted is to not consider how they will handle overload conditions. 

Asynchronous networking frameworks like Twisted vastly increase the amount of 

network traffic an application can potentially handle, but the application code written by 

developers using the framework may not be able to keep up with the amount of data that 

Twisted and the operating system can process.

All networked applications are at risk of encountering a situation where work is 

entering the system faster than it can be processed. A simple example of this is a web 

application that can process a single request in 10 ms running on a single CPU core. If 

this application is exposed to a constant load of less than 100 requests per second, then 

everything is fine.

What happens when this exact same system is exposed to a level of load that exceeds 

100 requests per second? There are many possible answers to this question, but the standard 

behavior of most Twisted applications in this system is that they will buffer the data.8

This approach is often reasonable for “spiky” load: if the load on the system only 

briefly exceeded 100 requests per second and then dropped back below that level, then 

the requests will briefly see higher latencies (the time taken to respond to the request) 

due to them sitting in the buffer for a while before they get processed, but the Twisted 

application will serve the data out of the buffer faster than the new data arrives and so 

the buffer will slowly become empty.

However, if the load exceeds 100 requests per second for a sustained period of time 

or substantially exceeds that level (e.g., by hundreds or thousands of times), then the 

buffering represents a problem. The latency seen by each request will climb, potentially 

8 Well, mostly. It depends on what the 10 ms is spent doing. If most of this 10 ms is spent waiting 
for other things to happen (e.g., database queries), then Twisted will buffer. If that 10 ms is spent 
entirely doing computation on the CPU, then the behavior will be different. For now, we assume 
that the former situation is what occurs.
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to a level that makes it indistinguishable from failure (most users will not wait more than 

a second or two for a response to a request, so a 20-second request latency is equivalent 

to request failure for these users). Worse is the fact that if the overload persists the buffer 

will continue to grow, and if left unchecked will eventually consume all of the memory 

in the system. The best possible outcome of this is that the operating system will kill the 

process: in the worst case, the process will begin to swap, which will vastly slow down its 

computation and reduce the processing speed of the application, making it even harder 

for the application to handle the overload.

As a result, scalable Twisted applications need to be prepared for overload. The 

most common way to handle this is to create systems that propagate backpressure. 

Backpressure is a signal from one system to another that says “you are submitting work 

faster than I can complete it, please slow down.” Correctly propagating backpressure 

through an asynchronous application allows that application to communicate how 

much work it can process through to the portions of the system that ingest work.

A good example of propagating backpressure is, ironically, blocking I/O. When 

sending data over TCP with blocking I/O, if the remote peer is not reading data fast 

enough, a call to send will eventually block until the remote peer consumes enough data 

to allow your OS to continue sending. This forcibly slows down the sending application 

such that it sends data no faster than the remote application can read it from the socket.

 Backpressure in Twisted
Currently, in Twisted, backpressure is propagated by having transports and protocols 

implement two interfaces: IPushProducer and IConsumer. In general the Transport 

implements IPushProducer and the Protocol implements IConsumer, though in more 

complex systems (such as the HTTP/2 implementation in Twisted) the same object may 

implement both IConsumer (for inbound data) and IPushProducer (for outbound data).

These two interfaces are very simple:

class IPushProducer(IProducer):

    """

     A push producer, also known as a streaming producer is expected to 

produce (write to this consumer) data on a continuous basis, unless it 

has been paused. A paused push producer will resume producing after its 

resumeProducing() method is called. For a push producer which is not 

pauseable, these functions may be noops.

    """
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    def pauseProducing():

        """

        Pause producing data.

         Tells a producer that it has produced too much data to process for 

the time being, and to stop until resumeProducing() is called.

        """

    def resumeProducing():

        """

        Resume producing data.

         This tells a producer to re-add itself to the main loop and produce 

more data for its consumer.

        """

class IProducer(Interface):

    """

    A producer produces data for a consumer.

     Typically producing is done by calling the write method of a class 

implementing L{IConsumer}.

    """

    def stopProducing():

        """

        Stop producing data.

         This tells a producer that its consumer has died, so it must stop 

producing data for good.

        """

class IConsumer(Interface):

    """

    A consumer consumes data from a producer.

    """

    def registerProducer(producer, streaming):

        """

        Register to receive data from a producer.
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         This sets self to be a consumer for a producer. When this object 

runs out of data (as when a send(2) call on a socket succeeds in 

moving the last data from a userspace buffer into a kernelspace 

buffer), it will ask the producer to resumeProducing().

         For L{IPushProducer} providers, C{pauseProducing} will be called 

whenever the write buffer fills up and C{resumeProducing} will only 

be called when it empties.

        @type producer: L{IProducer} provider

        @type streaming: C{bool}

        @param streaming: C{True} if C{producer} provides L{IPushProducer},

        C{False} if C{producer} provides L{IPullProducer}.

        @raise RuntimeError: If a producer is already registered.

        @return: L{None}

        """

    def unregisterProducer():

        """

        Stop consuming data from a producer, without disconnecting.

        """

    def write(data):

        """

        The producer will write data by calling this method.

         The implementation must be non-blocking and perform whatever 

buffering is necessary. If the producer has provided enough data 

for now and it is a L{IPushProducer}, the consumer may call its 

C{pauseProducing} method. 

        """

The most-important parts of these interfaces are IPushProducer.pauseProducing, 

IPushProducer.resumeProducing, and IConsumer.write. The rest are administrative, 

relating to telling the consumer about the producer and telling the producer that the 

consumer can no longer accept data.
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When an IConsumer is experiencing too much load, such that they would like data 

to stop coming in to them, they can call pauseProducing on their registered producer. 

When they’re ready to accept more work, they call resumeProducing. At this point, the 

consumer’s registered producer will start calling write again until the IConsumer calls 

pauseProducing again.

 Backpressure in HTTP/2
HTTP/2 has two signaling methods for backpressure, both using flow-control 

algorithms. The first one is shared with HTTP/1.1, becuase it’s actually built into 

TCP, which both HTTP/1.1 and HTTP/2 use. TCP maintains a receiver window that 

communicates a receiver’s capacity back to the sender. If one end of the TCP connection 

stops reading from the socket, the other end will eventually find that it is not allowed to 

send further data.

Additionally, HTTP/2 maintains four further flow-control windows of its own: two 

for the connection as a whole (one for data sent from the client to the server, and one 

for data from the server to the client) and two for each stream (again, one for each 

direction). These flow-control windows limit how much data each peer is allowed to 

send: the stream windows manage how much data may be sent on a given stream, while 

the connection window controls how much may be sent on the connection as a whole.

Each of these windows can also be used to propagate backpressure: letting any of 

these window sizes go to zero will force the remote peer to stop sending some or all of its 

data. This means that we want to be able to propagate these backpressure signals sent 

from the client to the Twisted server. We also want to be able to propagate backpressure 

signals from the Twisted application to the client: if the web application is processing 

data more slowly than the client can send it, we should slow down data delivery 

appropriately.9

The strategy for this is twofold: add support for the Twisted servers to both emit and 

consume backpressure, and manage our HTTP/2 flow-control windows appropriately. 

Let’s talk about emitting and consuming backpressure first.

9 Note that this is distinct from the case where a peer no longer wants the data at all. If a peer 
simply no longer wants the HTTP/2 stream to continue any longer, it can outright cancel that 
stream by means of a specific HTTP/2 frame, called RST_STREAM. This is not directly related to 
backpressure, but is worth noting.
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One key wrinkle of the IConsumer/IPushProducer interface is that these two 

interfaces are one-to-one. This means that each consumer can have only one producer, 

and each producer can be producing for only one consumer at once. This is problematic 

for HTTP/2, when we have multiple streams of data, each of which can propagate 

backpressure individually.

The easiest way to work around this is to define a HTTP/2 connection in terms of two 

objects, not one. The first object owns the underlying TCP transport, and registers itself 

as both a producer to and consumer of that transport: in the code, this class is twisted.

web._http2.H2Connection.

When new streams are initiated by the client, this object creates a new object to 

handle the stream data and to be both a producer to and consumer of the application 

code: in the code, this class is twisted.web._http2.H2Stream. Between these two 

objects we use a custom interface that exists only for HTTP/2 to allow the connection 

to tell the stream when it should pause its producer because that stream can no 

longer send (H2Stream.flowControlBlocked) and when the window size has been 

changed (H2Stream.windowUpdated). The H2Stream converts these calls into calls to 

pauseProducing & resumeProducing on its application. Similarly, the H2Stream allows 

the application to call pauseProducing to prevent the stream from delivering more data. 

When called, this will cause the H2Stream to begin to buffer data rather than deliver it to 

the application.

This rather confusing relationship is diagrammed in Figure 11-3.

Chapter 11  twisted and http/2



361

A stream may become “blocked” if any of the flow-control windows associated 

with it is zero. That is, if the TCP stream blocks (the transport calls pauseProducing 

on the H2Connection), all of the H2Stream objects owned by that connection will 

call pauseProducing on their applications. Additionally, if the connection flow- 

control window goes to 0, all of the H2Stream objects will call pauseProducing on 

their applications. Finally, if a stream-specific window goes to 0, the H2Stream object 

associated with that stream will call pauseProducing on its application, but the others 

will not.

Figure 11-3. The producer/consumer relationships between the various objects 
in a HTTP/2 connection. Each line represents a single producer/consumer 
relationship. Note that these relationships are not always implemented with the 
IProducer/IConsumer interfaces, as discussed in this section.
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This buffer is not unbounded, however. It’s bounded by the stream flow- 

control window. You see, the H2Connection also offers another API to the H2Stream: 

H2Connection.openStreamWindow. This function is called by the H2Stream when it 

has delivered data to the application, and not a moment before. This means that if 

production is paused by the application, the stream window will not get opened, and so 

will eventually be exhausted by the remote peer, which will be allowed to send no more 

data on that stream until the application starts processing the backlog.

It is important to note that even if the application is unable to process more data, the 

H2Connection does not prevent the client from sending more data on the TCP connection. 

This is because HTTP/2 uses a number of control frames to manage flow- control windows 

and connection state. These extra control frames cannot be used to cause excessive data 

buffering, so there is no reason to prevent the client from sending them.

Applications that appropriately opt in to propagating backpressure are given a much 

richer experience with HTTP/2 than they get with HTTP/1.1. Slower portions of the 

application, or portions that are interacting with slower clients, can happily slow down 

without limiting the overall concurrency of the system. This also ensures that applications 

that serve data over HTTP/2 can handle overload gracefully and carefully, degrading their 

service in a managed way that prevents them from being completely overwhelmed.

Applications can opt in to this signaling by ensuring that their request handler 

registers an IPushProducer for each Request it handles. twisted.web.http.Request 

provides IConsumer for exactly this purpose.

It should be noted that the IConsumer/IPushProducer interface is limited and does 

not necessarily offer all of the richness that a backpressure-propagating API should 

do. To see an example of a better interface that may eventually supplant IConsumer/

IPushProducer, take a look at tubes.10

 Current Status and Future Expansion
The Twisted HTTP/2 implementation was shipped in Twisted 16.3, which was released 

in July of 2016. The implementation is gated behind a number of optional dependencies 

that must be installed to enable it, as well as some requirements on the OpenSSL version 

that Twisted is using. These gates effectively place the HTTP/2 support in an ongoing 

“beta” state.

10 https://twisted.github.io/tubes/
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Since the initial release, a number of enterprising users have opted in to the support 

and have helped track down bugs and report issues. The result is that Twisted’s HTTP/2 

stack is now running on an enormous number of machines with few to no problems. 

This is an enormous success, and a very positive sign for the ongoing health of the 

project.

There are a few natural directions for expansion of this work. The first and largest 

is to tackle writing a HTTP/2 client that transparently shims into the current HTTP/1.1 

client. This is a substantial chunk of work that has not yet been seriously attempted, 

though some of the precursor work has been laid down.

The other major focus for work is to start exposing APIs for taking advantage 

of HTTP/2’s features. In particular, HTTP/2 enables server push, which allows 

servers to optimistically begin sending resources that a client may need to render 

a page. An interesting future enhancement would be to allow Twisted applications 

to programmatically emit pushed resources by exposing an appropriate API. This 

could be extended with Link header parsing to support pushes from traditional WSGI 

applications.

Finally, an API that allowed more configuration of the HTTP/2 stack would be a 

useful extension. Currently there is no support for allowing Twisted applications to 

modify the HTTP/2 configuration, either globally or on a per-connection basis. Adding 

this support is a necessary evolution toward providing a fully feature-complete HTTP/2 

implementation.

 Summary
In this chapter, we introduced the HTTP/2 protocol defined in RFC 7540. We discussed 

the extension of twisted.web to support this protocol, focusing on the goals of the 

design for that integration, as well as some of the specific concerns that arose during 

the implementation. We also covered the importance of backpressure in concurrent 

programming, as well as the importance of interface design to the extensibility of 

interfaces. Finally, we summarized the current state and future direction of Twisted’s 

HTTP/2 support.
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CHAPTER 12

Twisted and Django 
Channels
 Introduction
The following sections will dive into the structure of Django Channels and the 

technologies used in building it, and will try to tease out useful design details that can be 

used whenever you’re building complex multi-tier distributed applications intended to 

scale horizontally.

Python was one of the earliest programming languages to define a standard interface 

between web applications and web servers that wasn’t based on CGI, the Common 

Gateway Interface. CGI, while effective, was not particularly fast or high performance, 

so a need was identified to develop a richer interface between servers and applications, 

ideally one that took advantage of language primitives and features.

In 2003 the Python core development team adopted PEP 333, which defined the Web 

Server Gateway Interface (WSGI). WSGI is an API specification that allows web servers 

that are capable of creating Python objects and calling Python functions (either from 

Python or via the C API) to invoke web applications in a standardized way. The goal of 

WSGI was to decouple web application frameworks from web servers, such that any web 

server can run any Python web application.

From this perspective, WSGI was enormously successful. Most readers of this 

book will not remember a world before WSGI, and so the above description will seem 

perplexing: How could there be a world where web frameworks and web servers were 

not decoupled? In the post-WSGI world the Python community has seen a proliferation 

of great web application frameworks (such as Django and Flask) and great web servers 

(such as uWSGI, gunicorn, and Twisted) build on top of WSGI’s flexibility.
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However, it is not a perfect protocol. In particular, a WSGI server invokes a WSGI 

application by calling a synchronous Python function and blocking execution until it 

returns. This fundamentally synchronous invocation of a Python application in WSGI 

means that WSGI applications cannot easily be written in an asynchronous manner. At 

the surface level, this causes programmers some inconvenience: they can’t use Twisted 

or the async and await keywords. At a more foundational level, however, it makes 

Python web applications somewhat inefficient: each concurrent web request they 

handle requires a brand new operating system thread to process. The inefficiency of this 

approach is well-understood: after all, it’s part of why Twisted exists!

Django Channels represent an attempt to allow Django applications to be written 

in a more concurrent manner, while retaining backward compatibility with WSGI 

applications. This is quite a substantial chunk of work, and so “Django Channels” 

actually cover a wide range of related technical projects. These include a new interface 

for server-to-application communication, the Asynchronous Server Gateway Interface 

(ASGI); a reference web server that implements the server portion of this interface 

(Daphne); and a Django application that enables Django to handle ASGI requests.

The net effect of Django Channels is to refocus Django away from requests and 

responses and toward “events.” This allows Channels-based applications to handle not 

just HTTP requests and responses, but things like WebSockets or even plain TCP/UDP 

data. This is achieved by dividing the complete web stack into three parts:

 1. An ASGI server. This server is responsible for accepting the 

incoming connections and translating from the write protocol 

(e.g., HTTP) to ASGI messages, placing those messages into 

queues (“channels”), and receiving messages from those channels 

and translating them back into wire protocol data. In the reference 

implementation, this is Daphne, a Twisted-based web server.

 2. A “channel back end,” which is basically a data store that can be 

used as a message broker. For trivial applications this can just be 

some shared memory, but in larger applications this will usually 

be a Redis deployment.

 3. One or more “workers.” These workers listen on some or all of the 

channels and run relevant code when there are messages to process. 

The workers may be sequential and threaded but also may not be. 

This is where the traditional Django application code will run. 
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Of these three parts, both 1 and 3 can integrate with Twisted. However, most Django 

users will stick with regular synchronous Django code for their worker code, at least for 

the foreseeable future, so there is relatively little of interest to say on that point.

The more interesting thing to focus on is Daphne and the design of the Channels 

system. Channels represents a useful worked example of how to structure complex 

multi-layer distributed systems using Twisted and message brokering. This chapter will 

use Channels in exactly this way. It will also discuss Channels as it relates to Autobahn, a 

WebSocket implementation for Twisted.

 Channels Building Blocks
The fundamental components of Channels are a collection of well-known and trusted 

software tools. This is a major advantage in the design of Channels. For software as 

important and widely used as Django, it is important to favor reliability and certainty 

over the “cool” factor of a software component.

As discussed earlier, Channels is divided into three components. Each of those 

components is built on top of a single piece of core software.

The first component, Daphne, is a web server built on top of twisted.web. Daphne’s 

operation goals also include supporting WebSockets, a protocol that is not supported in 

Twisted core, so Daphne makes some modifications to twisted.web in order to also use 

Autobahn to provide WebSocket support. It should be emphasized here that Daphne is a 

surprisingly small chunk of code that is mostly responsible for translating the HTTP and 

WebSocket protocols into Channels messages on queues, and handling reading from 

queues to write data back to connections.

The third component, the Channels “workers,” are Python processes running the 

Django web framework and the Channels application. This application is responsible 

for listening on and sending to appropriate queues and generally hiding the Channels 

abstraction from the application code. The magic here is that the regular Django-using 

code base can be used almost without change, allowing for seamless upgrade from non- 

Channels- using Django deployments.

The second component is the only non-Python component in the stack: Redis. 

Redis is an open source in-memory key-value database that supports a number of data 

structures. While its primary function is as a database, it has a number of properties that 

make it useful as a message broker, including the ability to safely manage queues.
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Each of these components can be deployed independently from the others, and 

implements a different part of the Channels topology. Taken together they form the 

complete web application, with Daphne handling the protocol support and talking to 

clients, Django handling the business logic, and Redis providing its services as a message 

broker between the other two services.

 Message Brokers and Queues
A key design feature of Django Channels is that all regular Django applications need to 

continue to work as normal when running with Channels, but with one added feature: 

the ability to scale horizontally independent of the web servers serving the HTTP traffic. 

Essentially, regular Django applications that previously blocked the serving of web traffic 

must suddenly become asynchronous, allowing the web server to avoid blocking while 

it waits for the response to be delivered. How can this be achieved without changing any 

lines of code?

The key is the addition of a message broker. A message broker, or queueing system, 

is a common component in distributed systems. Its purpose is to route messages from 

a number of message producers to a different number of message consumers, without 

requiring those producers or consumers to know anything about how to find each other.

Generally message brokers use a FIFO queue as their core abstraction. Components of 

the system that produce work do so by adding work items to the back of the FIFO queue. 

These items are pulled off the front of the queue by one or more “worker processes” that 

are responsible for taking some action based on the submitted work. This system has 

many advantages: it can be used as a service discovery tool, and it also provides a useful 

decoupling between the sender of a message and the receiver of that message.

The advantage of a message broker like this is that it separates the runtime of the 

different components. In WSGI, the web application is tightly coupled with the execution 

model of the web server, because the web server is required to call a Python function that 

will block until execution completes. This tight integration means that the web server 

and the web application cannot have different approaches to concurrency: both end up 

being required to run single-threaded synchronous code.1

1 This is not quite true: twisted.web, an asynchronous webserver, is somehow able to run 
synchronous blocking WSGI applications. It does this by invoking the WSGI application in a 
background thread and using a Deferred to communicate the result of that invocation back to the 
server. This does work, but it still means that the core of the business logic is being dispatched to a 
synchronous pool of background threads: not ideal from the perspective of scaling!
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With the addition of a message broker between the web server and web application, 

each can have a different paradigm for execution. More than that, they can use whatever 

paradigm will still allow them to submit work to and receive work from the message 

broker. In this case Daphne, a Twisted-based asynchronous web server, can interact 

with the message broker using its asynchronous programming model, while traditional 

single-threaded synchronous Django handlers can run in the workers without getting in 

the way.

More importantly, we can now have vastly more worker processes than web servers. 

This greatly improves the performance of traditional web applications: rather than 

taking up precious time holding Python’s Global Interpreter Lock, each invocation of the 

application can be done in a separate process.

This allows Django applications to become synchronous but parallel. Each Django 

request handler can be a regular synchronous blocking Python function, but the entire 

application can run as many of these as necessary in as many processes as they like in 

parallel. More importantly, the number of worker processes can be scaled dynamically 

and independently of the number of web servers. This allows independent horizontal 

scaling of each component of the application based on where bottlenecks are, which 

grants much more efficient use of resources.

Message brokers are a commonly used tool to add asynchrony to fundamentally 

synchronous programs. By allowing multiple instances of single-threaded synchronous 

code to run at once in separate processes or threads, it becomes possible to increase the 

amount of asynchrony in an application without needing to fundamentally rewrite it.

On top of that, message brokers allow you to avoid worrying about how to coordinate 

these multiple parallel workers. Each worker acts as though it’s in its own little world, 

adding and removing data from queues without worrying about where that data comes 

from or goes. The message broker is responsible for ensuring that as many workers as 

needed are able to access data and process it appropriately.

While message brokers are not a panacea, they are a great tool for enabling scale and 

concurrency in non-concurrent programming models.

 Distributed Multi-Layer Systems in Twisted
Django Channels is not just a useful tool for deploying horizontally-scalable web 

applications, it is also a useful example of a common construction of a distributed 

multi- layer software system.
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A distributed multi-layer software system is a system that is constructed by 

separating the responsibilities of the system into “layers” that communicate among each 

other using some kind of messaging bus. In the case of an application using Django 

Channels, this will typically be a 3-layer architecture of Daphne, Django, and whatever 

database is used to persist the Django models (e.g., MySQL or PostgreSQL), but the idea 

of a multi-tiered architecture is substantially more general.

Asynchronous networking frameworks like Twisted are frequently a key component 

of multi-tiered systems. This is largely because multi-tier systems inevitably incur 

latency due to their use of either formalized or ad hoc RPC (“remote procedure call”) 

mechanisms. As each node in a given tier in the system will want to use system resources 

as effectively as possible, multi-tier systems that use asynchronous programming 

techniques are vastly more scalable and efficient than those that do not.

The canonical multi-tier architecture divides the application into three tiers, 

each responsible for a separate aspect of the application. Typically this involves one 

tier devoted to storing data (a database), one tier devoted to performing application 

or business logic, and one tier devoted to presentation. This kind of pattern is very 

common, and in fact the very common “model-view-controller” pattern is closely 

related to this canonical construction.

When writing multi-tiered applications in Twisted, it is necessary to define the 

communication mechanism between the tiers. However, in all cases what ends up being 

built is a form of RPC to allow the individual tiers to request that the other tiers do work. 

Given that these applications require an RPC layer anyway, you’ll save yourself a lot of 

time and effort by relying on some kind of standard RPC mechanism.

The most common choice for RPC is REST, an excellent choice given Twisted’s 

excellent support for HTTP, but depending on your application any number of different 

RPC mechanisms may be sensible choices. The key to this kind of architecture is to 

know that the nature of Twisted application design lends itself very nicely to writing 

RPC-based applications: once your core application expects asynchrony, adding more 

layers of asynchrony is often relatively simple. With careful RPC choices and application 

design, it becomes possible to allow arbitrary horizontal scaling of your application. The 

world’s largest web projects are all built in this style, and it’s useful to know that Twisted 

gives you plenty of tools to embrace it yourself.
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 Current Status and Future Expansion
On September 9th, 2016, Channels was adopted as an official Django project. This 

means that it is managed under the auspices of the Django project and the Django 

Software Foundation, but it is not part of the core Django repository. The project remains 

under active development and is production ready.

It now also supports most of the major features. HTTP/1.1, HTTP/2, and WebSockets 

are all fully supported, though much like with core Twisted, some HTTP/2-only features 

are not yet supported. Redis is supported as the primary channel back end, but in- 

memory back ends are also supported for smaller deployments.

The future directions for Django Channels are many and varied. As a complex 

framework for deploying concurrent web applications, there are multiple possible 

directions for expansion. Additional channel back ends, alternative ASGI servers, and 

even compatibility layers for different web frameworks: all of these and more could be 

fruitful directions of enhancement. Wider support for alternative protocols would also 

likely be of some value to the project.

Of course, the ideal long-term future would be to adopt the Channels model in 

Django core as the default execution model. This would provide default support for 

highly scalable application design in Django, helping ensure that developers build their 

applications for future scalability from day one.

 Summary
In this chapter we introduced Django Channels, a framework that allows developing 

web applications using the Django web application framework in a concurrent, 

asynchronous programming model. We discussed the basic architecture of Channels 

and introduced its building block technologies. We then discussed how these building 

blocks can be repurposed for arbitrary multi-level distributed system design, and how 

such a system could be designed to use Twisted to its fullest. Finally, we discussed the 

future growth of Channels.

Chapter 12  twisted and django Channels



373
© Mark Williams, Cory Benfield, Brian Warner, Moshe Zadka, Dustin Mitchell, Kevin Samuel, Pierre Tardy 2019 
M. Williams et al., Expert Twisted, https://doi.org/10.1007/978-1-4842-3742-7

Index

A
Access Control Lists (ACLs), 248
AccountFileChecker class, 244
AccountURLChecker, 242
aiohttp, 312
Allocator state machine, 268–270
asDeferred helper function, 313
assertNoResult, 278
async / await constructs, 288
Asynchronous exception handling

callback method, 66–67
deferred implementation, 70–71
encounter exceptions, 68–69
Errbacks, 68

Asynchronous Message Protocol  
(AMP), 128, 214

commands, 218
custom plugin, 216–218

Asynchronous programming, 3, 63
Asynchronous Server Gateway Interface 

(ASGI), 366
Asynchronous testing, deferreds, 277
asyncio package, 305
asyncio and Twisted

event loops, 306
asyncio.get_event_loop, 307
asyncio.set_event_loop, 307
epoll, Linux, 307
event loop policies, 307
kqueue, macOS, 307

reactor, 307
reactor selection, 307
system event triggers, 308
twisted.internet.reactor, 307

PEP 3156, 305
promises, 306

asyncio.Future class, 306
asyncio.get_event_loop_policy, 307
asyncio.set_event_loop_policy, 307
Async services, Buildbot’s code

addService, 325
AsyncMultiService, 325
ClientService class, 326
disownServiceParent, 325
IService, 324
IServiceCollection, 324
MessageQueueConnector, 326
orthogonal problem, 324
serialization, 324
setServiceParent, 325
startService, 324

Autobahn, 259, 286–287
Automat, 268

B
Biased coin toss, 215
Buildbot

defined, 317
history

async build steps, 322–323

https://doi.org/10.1007/978-1-4842-3742-7


374

Buildbot’s Async Python, evolution 
(see Buildbot’s Async Python)

HTTP API, 318
Mozilla, 318
synchronous APIs, 321–322
Tinderbox, 317

request/response cycle, 323
synchronous approach, 323

Buildbot 0.9.0, 318
Buildbot’s Async Python

additional features, 320
async/await, 321
asyncio, 321
Builder.startBuild method, 318
callbacks, 319
Deferred, 319
deferredGenerator, 320
errors, 319
inlineCallbacks, 320
NodeJS, 321
synchronous model, 321
Twisted Python, 318

Buildbot’s code
asynchronous tools, 323
automated testing, 336
concurrency barriers, 333–334
db module, 328
DB API, 338
debouncing, 323–324
Deferred, testing, 337
Docker protocol, 332–333
fake components, 338
flushEventualQueue  

method, 327
HTTP API, 329
HttpClientService, 330
HTTP sessions, 330–332

LRU caches, 327
reactor thread, 333
re-entrancy, 333
SQLAlchemy, 328–329
synchronous libraries, 327
thread-pool functions, 334–335
Trial, 337

buildbot.test.fake.fakemaster.FakeMaster 
class, 338

C
callLater, 353

logical parts, 354–355
Canonical multi-tier architecture, 370
Case study, HTTP proxy with  

aiohttp and treq
aiohttp server, 312
aiohttp.web.StreamResponse, 315
asFuture helper, 315
asyncio reactor, 313
coroutine, 313
Deferred.fromFuture, 313
ensureDeferred, 313
handler, 313
Twisted’s Headers, 315
HTTP headers, 315
inlineCallbacks, 313
proxy, implementation, 313–314
URL echoing service, 313
web browser, 316

CGI standard
environment parameter, 182
environment variables, 182

Clock() instance, 283
Common gateway interface (CGI), 179
Connection hints, 257
Content-Disposition header, 238

Buildbot (cont.)

Index



375

Content Distribution Network (CDN), 197
Content-hash key (CHK), 225
Continuation-passing style technique, 62
_convert_error, errback handler, 247
Coroutines

async method, 90
await methods, 91, 95, 97
ensureDeferred, 97–98
future-like object, 94–95
JIT, 98
in python, yields from  

generator, 88–89
send, throw method, 90
stack of generators, 92

CORS policy, 294
Crossbar.io, 296–297, 299
Cryptographic hash function, 238

D
Daemonization tools

Tahoe command-line tool, 231
.tap files, 231

Daphne, 367
defer.cancel(), 263
Deferred.addCallback function, 306
Deferred.fromFuture class method, 311
DeferredLock, 336
DeferredQueue, 336
Deferreds, 272–274, 306

cancellation, 263
vs. state machines, 268

DeferredSemaphore, 336
Delegate API, 268
DelegatingResource, 201
Demultiplexing, 8
Dependency load, 230

Diffie-Hellman key-exchange protocol, 255
Dircap, 225
Distributed hash table (DHT), 260
Distributed multi-layer systems, 370
Django Channels, 365–366

components of, 367
current status, 371
future directions, 371

Docker, 157
build images, 160–161
client, 159
container images, 158–159
containers, 157–158
defining, 157
multi-stage build, 161–163
Python on

automation with dockerpy, 173
built options, 172
copying environment, stages, 173
copying Pex executable file,  

stages, 173
copying wheels, stages, 172–173
full environment  

deployment, 163, 165–168
Pex file, 170–171
virtualenv, 169–170

registry, 160
runc and containerd, 159
Twisted on

custom plugin, 174
ENTRYPOINT and PID 1, 174
NColony, 175–178

Docker API library, 332
Dynamic configuration

A/B testable pyramid app, 214–215
AMP, custom plugin, 216–219
control program, 219–220

Index



376

E
Event-driven programming, 3, 63

defining, 4
event handlers, 7
event loop, 7
events, 7
flow control, 49–50
value of, 33–34, 36

Event handlers, 6–7
requestField, 60

Event loop, 6–7
Events

interfaces with zope.interface,  
46, 48–49

multiple, 5–7
in time

complexity, 42
DelayedCall instance, 41–43
with LoopingCall, 44–46
reactor.callLater, 41

F
failureResultOf(), 278, 281
Feed aggregation, 110–111

first draft
deferreds, 125
handlers, 123
implementation, 126–127
klein.Plating object, 121
Plating.CONTENT  

slot, 122
render method, 125
retrieveFeed method, 125
SimpleFeedAggregation  

class, 123–125
Slow Increment page, 122

project directory structure, 129

File resource, 199
Filecaps, 225
File-transfer protocol (FTP), 223
Flow control

event-driven programming, 49–50
Twisted

consumers, 54–57
push producers, 51–54, 57

flushEventualQueue() function, 282
Front-end protocols, 233
FTPAvatarID object, 244
FTP front end

avatar, 243
checker, 242
endpoint, 242
portal, 243
protocol factory, 242
realm, 243
root dircap, 242

Function composition tool, 60
Future.add_done_callback, 306
Futures, 272

G
Generators

generatorFunction, 81
send method, 81, 83
throw method, 84–85
yield expression, 80–81

get_size() method, 236
get_tor() function, 279–280
Guidelines, asyncio and Twisted

asyncio.Futures, 309
asyncio’s coroutines, 308
code, interoperability, 310
Deferreds, 308, 311
IReactorCore’s API, 308

Index



377

Task, 309
task.react, 311
Twisted’s asyncio reactor, 310
Twisted’s deferreds, 309

H
HAProxy, 208
H2Stream, 347
HTTP/2, 339–340

backpressure, 359–362
multiplexing, 348–350

problem, 350
priority, 351–352

HTTP AJAX request, 285
HTTP headers, 183
HTTP long polling, 259
HTTP processing chain, 240
HTTP protocol, 237
HTTP proxy, 305
HTTP PUT and POST actions, 228
HTTP response code, 183
HyperText Transfer Protocol (HTTP), 339

I
IANA standard, 185
inlineCallbacks

deferred execution, 85
requestFieldGenerator, 86–88

@inlineCallbacks function, 278
Integration test, 278
Interface, 342

polymorphism, 342
Internet Engineering Task Force  

(IETF), 339
I/O Completion Ports (IOCP), 63
IPushProducer, 359–360, 362

IReactor, 353
IReactorCore.addSystemEventTrigger, 308
IReadable’s read() method, 236
ITransport, 345, 347

J
Jenkins, 336
Just In Time (JIT), 98

K
Klein, 109

amount argument, 116
decodes message, 116
decorator, 115
Deferreds, 117–118
templates with plating, 118–119, 121
test-driven development (see Test- driven 

development)
URL pattern, 116
virtual environment, 115
Werkzeug’s routing documentation, 115

L
libp2p protocol, 260
list() method, 246
Load balancer, 208–210

M
Magic wormhole tool

code, 253
Python-based command-line tool, 254
receiver screenshot, 254
sender screenshot, 254
workflow diagram, 255
working, 255, 257

Index



378

makePromiseResolverPair() function, 272
Merkle hash trees, 238
Message broker/queueing system, 368–369
mkdir command, 226
Multiplexing

busy wait, 8
defining, 8
event loop, 8
mainloop, 7
sockets, 9

Mutable slots
readcaps, 225
writecaps, 225

MySQL, 328

N
NColony, 175–178
Network drive indicator, 226
Network protocols and client 

compatibility, 258
Non-blocking IO

complex programs, 23
tracking state, 19–23
when to stop, 18–19

O
One-shot observers, 271–272
originalCoroutine object, 310
originalDeferred object, 310
originalFuture object, 310

P, Q
Packaging/distribution, 230
Pattern match routing model, 197
PEP 3153, 305
PEP 3156, 305

Pipeline, 272
pip tool, 110
_populate_row() method, 246
PostgreSQL, 328
Promises, 272

arrow function, 273
Deferred.addCallback, 306
Deferreds and Futures, behavior, 306
event loop, 307–308
TC39 standards organization, 273

Publish/Subscribe (PUB/SUB), 287, 300
Pyramid framework, 186–187
Python, 365

Autobahn library, 287
on Docker

automation with dockerpy, 173
built options, 172
copying environment, stages, 173
copying Pex executable file,  

stages, 173
copying wheels, stages, 172–173
full environment  

deployment, 163, 165–168
Pex file, 170–171
virtualenv, 169–170

versions, 4
Python 3, 230
Python and JavaScript, raw Websocket

HTML code, 293–294
Python server, 292–294

Python Enhancement Proposal  
(PEP), 180–181

PYTHONPATH environment variable, 192
python-requests library, 329
Python to Python, raw Websocket

autobahn, 290–291
client console, 291
echo server, 288–289

Index



379

self.sendMessage(), 292
server console, 292

Python 3 virtualenv, 287

R
Raspberry Pi, 286
reactor.seconds(), 205
read() method, 238
Rendezvous server, 255

architecture, 260–261
database, 262

Request.write, 345

S
sans-io HTTP/2, 344
Secure Socket Layer (SSL), 194
select multiplexer

event-driven clients and servers, 15–18
event loop with, 13–15
handling events, 12–13
history, siblings, and purpose, 9
socket events, 11

client and server, 12
readable event, 11
timeout, 11
writable event, 11

and sockets, 9–10
self.assertFailure() clause, 277
Server name indication (SNI), 195, 197
Server sent events, 259
SFTP front end, 248
Single Page Applications (SPA), 123
SPAKE2 protocol

diagram, 256
protocol, 256

SQLite, 328

SSH secure shell encryption layer, 248
start_response parameter, 182
Static files

CDN, 197–198
leaf resource, 199
manifest, 199
postpath, 202
setup.py, 199
superclass constructor, 202
WSGI, 200–202

successResultOf(), 278, 281
sum() function, 298
SynchronousTestCase, 337
Synchronous testing

deferreds tools, 278
eventual send, 275–276, 281, 283

T, U, V
Tahoe-LAFS

architecture, 227–229
clients, 224
distributed storage system, 223
FTP, 223
grid diagram, 224
introducers, 224
servers, 224
twisted usage, 229–230

.tap files, 231
Test-driven development

installable project, test on, 128–131
interface, 128
Klein with StubTreq

Channel and Item classes, 138
FeedAggregation instance, 139
FeedAggregationTests, 133
HTML and JSON feed  

renderings, 133, 135

Index



380

HTTP services, 131
implementation, 135, 136
law of Demeter, 133
resource() method, 132
root method, 133, 136
_service.py, 137, 138
setUp method, 132
solution, 137
XPaths, 135

logging with twisted.logger,  
143–144, 146, 148

running twisted applications, 149–154
testing treq with Klein, 140–143

then() method, 273
Transit client, 262–265
Transit connection, 257
Transit relay server, 265–266
Transport layer security (TLS), 194

encryption, 194
endpoint authentication, 194

Transports and protocols
clients and servers, 31–32
dataReceived and connectionLost 

methods, 26
interface, 25
managing complexity, 23–24
PingPongProtocol, 26

behaviors, 27
control flow, 31
dataReceived records, 27
doRead and doWrite  

mirror, 30
identity string, 27
loseConnection, 30
_onCompletion, 30
read function, 28, 30
Transport’s interface, 27–28

write method, 28
Protocol interface, 25
reactors, 24–25
read function, 25
Twisted and reactors, 33

transport.write, 345, 353
Travis-CI, 336
treq, 109, 312

client API, 112
decorator, 113
Deferred, 112–113
dependency injection, 112
download function, 112
encapsulation, 110
feed aggregator, 111
feedparser, 113–114
library, 330
test-driven development (see Test- 

driven development)
virtual environment  

(virtualenv), 111, 112
Trial, 337
Twisted, 305

APIs
filepath permission, 250
IFTPShell interface, 249
pipsi tool, 250

on Docker
custom plugin, 174
ENTRYPOINT and PID 1, 174
NColony, 175–178

flow control system
consumers, 54–57
push producers, 51–54, 57

tap plugin, 189
and Real World, 36–38, 40

Twisted HTTP/2, 353
backpressure, 357, 359

Test-driven development (cont.)

Index



381

current status and future  
expansion, 362–363

design goals
optimized behavior, 343
reusing code, 343–344
seamless integration, 341

objects of, 345
parameters affecting, 343

twisted.internet.task.react, 307
Twisted’s deferred

addCallback method, 71, 73
callbacks, 76, 78, 79
data flow, 78
errback method, 73, 76
event handlers

continuation-passing style, 62
function composition, 60–61
onCompletion callback, 62
requestField, 59–60

failures, 74
multiplexing, 99–101
placeholder, 63–64, 66
testing, 102, 104–106

txrequests library, 330
txtorcon variable, 279

W, X, Y, Z
Web Application Programming Interface 

(WAPI), 234
Web front end

directories, 237
disk saving, 238
FileNodeHandler, 235
HTTP error codes, 240–241
Nevow, 236
range header, 238–239
root resource, 234

URIHandler resource, 234
WAPI call, 234

WebOb package, 185–186
Web Server Gateway Interface (WSGI), 365
WebSocket, 259

authentication platform, 286
caching processes, 286
defined, 286
propagating events, 285
pushing notifications, 285
signaling changes, 285
Twisted

Autobahn ecosystem, 286
autobahn, installing, 287
micro-service architecture, 286
remote code, 287
WAMP, 287

website notifications, 286
WebSocket Application Messaging 

Protocol (WAMP), 287
authentication, 295
broadcast messages, 295
client call, 296
client code, 298
compatible router, 296
errors, 295
events, 295
html extension, 303
JS client, 299–301
manage errors, 295
pair up messages, 294
py extension, 303
Python client, 300–301
realm, 298
routed RPC, 300
RPC part, 295
serialization, 295
win32api, 296

Index



382

Web stack, divisions, 366
Web Standard Gateway Interface  

(WSGI), 179
See also WSGI server

Web user interface (WUI), 234
Werkzeug, 109
Wormhole client  

architecture, 267
mailbox, 267
Nameplate, 267

wsgiref module, 183–185

WSGI server, 297
application, 181–182
built-in scheduled tasks, 203, 205–206
callable Python object, 185
custom plugin, 189
default path, 191
demo web application, 188
--port option, 188
production vs. development, 192–193
python-m twisted, 188
setup.py, 192

Index


	Table of Contents
	About the Authors
	About the Technical Reviewers
	Acknowledgments
	Introduction
	Part 1: Foundations
	Chapter 1: An Introduction to Event-Driven Programming with Twisted
	A Note About Python Versions
	What Is Event-Driven Programming?
	Multiple Events
	Application(tkinter.Tk()).mainloop()
	Multiplexing and Demultiplexing
	The select Multiplexer
	Its History, Its Siblings, and Its Purpose
	select and Sockets
	The How and Why of Socket Events
	Handling Events
	An Event Loop with select
	Event-Driven Clients and Servers

	Non-blocking I/O
	Knowing When to Stop
	Tracking State
	State Makes Programs Complex

	Managing Complexity with Transports and Protocols
	Reactors: Working with Transports

	Transports: Working with Protocols
	Playing Ping-Pong with Protocols and Transports
	Clients and Servers with Protocols and Transports
	Twisted and Reactors, Protocols, and Transports

	The Value of Event-Driven Programming
	Twisted and the Real World
	Events in Time
	Repeated Events with LoopingCall

	Event Interfaces with zope.interface
	Flow Control in Event-Driven Programs
	Flow Control in Twisted with Producers and Consumers
	Push Producers
	Consumers
	Pull Producers

	Summary

	Chapter 2: An Introduction to Asynchronous Programming with Twisted
	Event Handlers and Composition
	What Is Asynchronous Programming?
	Placeholders for Future Values
	Asynchronous Exception Handling
	An Introduction to Twisted’s Deferred
	Callbacks
	Errbacks and Failures
	Composing Deferreds

	Generators and InlineCallbacks
	yield
	send
	throw
	Asynchronous Programming with inlineCallbacks

	Coroutines in Python
	Coroutines with yield from
	Coroutines async and await

	Awaiting Deferreds
	Coroutines to Deferreds with ensureDeferred
	Multiplexing Deferreds
	Testing Deferreds
	Summary

	Chapter 3: Applications with treq and Klein
	Why Libraries?
	Feed Aggregation
	Introducing treq
	Introducing Klein
	Klein and Deferreds
	Klein Templates with Plating

	A First Draft of Feed Aggregation
	Test-Driven Development with Klein and treq
	Running Test on an Installable Project
	Testing Klein with StubTreq
	Testing treq with Klein
	Logging with twisted.logger
	Running Twisted Applications with twist

	Summary


	Part 2: Projects
	Chapter 4: Twisted in Docker
	Intro to Docker
	Containers
	Container Images
	Runc and Containerd
	Client
	Registry
	Build
	Multi-stage Build

	Python on Docker
	Deployment Options
	Full env

	Virtualenv
	Pex
	Build Options
	One Big Bag
	Copying Wheels Between Stages
	Copying Environment Between Stages
	Copying the Pex Executable Between Stages
	Automation with Dockerpy

	Twisted on Docker
	ENTRYPOINT and PID 1
	Custom Plugins
	NColony

	Summary

	Chapter 5: Using Twisted as a WSGI Server
	Introduction to WSGI
	PEP
	Raw Example
	Reference Implementation
	WebOb Example
	Pyramid Example

	Getting Started
	WSGI Server
	Finding Code
	Default Path
	PYTHONPATH
	setup.py
	Why Twisted
	Production vs. Development
	TLS
	Server Name Indication
	Static Files
	Resource Model
	Pure Static
	Combining Static Files with WSGI
	Built-In Scheduled Tasks
	Control Channels

	Strategies for Using Multiple Cores
	Load Balancer
	Opening Socket in Shared Mode
	Other Options

	Dynamic Configuration
	A/B Testable Pyramid App
	Custom Plugin with AMP
	Control Program

	Summary

	Chapter 6: Tahoe-LAFS: The Least-Authority File System
	How Tahoe-LAFS Works
	System Architecture
	How It Uses Twisted
	Problems We’ve Run Into
	Daemonization Tools

	Internal FileNode Interfaces
	Front-End Protocol Integration
	The Web Front End
	File Types, Content-Type, /name/
	Saving to Disk
	Range Headers
	Error Conversion on the Return Side
	Rendering UI Elements: Nevow Templates

	The FTP Front End
	The SFTP Front End
	Backward-Incompatible Twisted APIs
	Summary
	References

	Chapter 7: Magic Wormhole
	What It Looks Like
	How It Works
	Network Protocols, Transfer Latency, Client Compatibility
	Network Protocols and Client Compatibility

	Server Architecture
	Persistent Database

	Transit Client: Cancelable Deferreds
	Transit Relay Server
	Wormhole Client Architecture
	Deferreds vs State Machines, One-Shot Observer
	One-Shot Observers
	Promises/Futures vs. Deferreds
	Eventual-Send, Synchronous Testing
	Asynchronous Testing with Deferreds
	Synchronous Testing with Deferreds
	Synchronous Testing and Eventual Send

	Summary
	References

	Chapter 8: Push Data to Browsers and Micro-services with WebSocket
	Why WebSocket?
	WebSocket and Twisted
	Raw WebSocket, from Python to Python
	Raw WebSocket, Between Python and JavaScript
	More Powerful WebSocket with WAMP
	Summary

	Chapter 9: Applications with asyncio and Twisted
	Core Concepts
	Promises
	Event Loops

	Guidelines
	Case Study: A Proxy with aiohttp and treq
	Summary

	Chapter 10: Buildbot and Twisted
	History of Buildbot
	The Evolution of Buildbot’s Async Python
	Migrating Synchronous APIs
	Async Build Steps

	Buildbot’s Code
	Async Utilities
	Debounce
	Async Services
	LRU Cache
	Eventual
	Interfacing with Synchronous Code
	SQLAlchemy
	requests
	Docker
	Concurrent Access to Shared Resources
	Yield as a Concurrency Barrier
	Thread-Pool Functions Should Not Mutate State
	DeferredLocks
	Testing
	Fakes

	Summary

	Chapter 11: Twisted and HTTP/2
	Introduction
	Design Goals
	Seamless Integration
	Most-Optimized Behavior by Default
	Separating Concerns and Reusing Code

	Implementation Concerns
	What Is a Connection Anyway? The Value of Standard Interfaces
	Multiplexing and Priority
	Backpressure
	Backpressure in Twisted
	Backpressure in HTTP/2

	Current Status and Future Expansion
	Summary

	Chapter 12: Twisted and Django Channels
	Introduction
	Channels Building Blocks
	Message Brokers and Queues
	Distributed Multi-Layer Systems in Twisted
	Current Status and Future Expansion
	Summary


	Index



