
Expert Twisted
Event-Driven and Asynchronous
Programming with Python
—
Mark Williams
Cory Benfield
Brian Warner
Moshe Zadka
Dustin Mitchell
Kevin Samuel
Pierre Tardy

www.allitebooks.com

http://www.allitebooks.org

Expert Twisted
Event-Driven and Asynchronous

Programming with Python

Mark Williams
Cory Benfield
Brian Warner
Moshe Zadka
Dustin Mitchell
Kevin Samuel
Pierre Tardy

www.allitebooks.com

http://www.allitebooks.org

Expert Twisted

ISBN-13 (pbk): 978-1-4842-3741-0 ISBN-13 (electronic): 978-1-4842-3742-7
https://doi.org/10.1007/978-1-4842-3742-7

Library of Congress Control Number: 2018965166

Copyright © 2019 by Mark Williams, Cory Benfield, Brian Warner, Moshe Zadka,
Dustin Mitchell, Kevin Samuel, Pierre Tardy
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Jonathan Gennick
Development Editor: James Markham
Coordinating Editor: Jill Balzano

Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street,
6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-
sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole member
(owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a
Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit http://www.apress.com/
rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub via the book’s product page, located at www.apress.com/9781484237410. For more
detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

Mark Williams
Pasadena, CA, USA

Cory Benfield
London, UK

Brian Warner
New York, USA

Moshe Zadka
New York, USA

Dustin Mitchell
New York, USA

Pierre Tardy
Toulouse, France

Kevin Samuel
Nice, France

www.allitebooks.com

https://doi.org/10.1007/978-1-4842-3742-7
http://www.allitebooks.org

Dedicated to AZ, NZ, and TS: Twisted prevails,
and we're looking forward to the next

generation of maintainers.

 —Moshe Zadka

www.allitebooks.com

http://www.allitebooks.org

v

Table of Contents

Part 1: Foundations �� 1

Chapter 1: An Introduction to Event- Driven Programming with Twisted ����������������� 3

A Note About Python Versions ��� 4

What Is Event-Driven Programming? �� 4

Multiple Events ��� 5

Application(tkinter�Tk())�mainloop() ��� 6

Multiplexing and Demultiplexing ��� 7

The select Multiplexer ��� 9

Its History, Its Siblings, and Its Purpose��� 9

select and Sockets �� 9

The How and Why of Socket Events �� 11

Handling Events ��� 12

An Event Loop with select ��� 13

Event-Driven Clients and Servers �� 15

Non-blocking I/O ��� 18

Knowing When to Stop �� 18

Tracking State �� 19

State Makes Programs Complex ��� 23

Managing Complexity with Transports and Protocols ��� 23

Reactors: Working with Transports �� 24

About the Authors �� xiii

About the Technical Reviewers ���xv

Acknowledgments ���xvii

Introduction ��xix

www.allitebooks.com

http://www.allitebooks.org

vi

Transports: Working with Protocols��� 25

Playing Ping-Pong with Protocols and Transports ��� 26

Clients and Servers with Protocols and Transports ��� 31

Twisted and Reactors, Protocols, and Transports �� 33

The Value of Event-Driven Programming �� 33

Twisted and the Real World ��� 36

Events in Time ��� 41

Repeated Events with LoopingCall �� 44

Event Interfaces with zope�interface ��� 46

Flow Control in Event-Driven Programs �� 49

Flow Control in Twisted with Producers and Consumers �� 50

Push Producers ��� 51

Consumers �� 54

Pull Producers ��� 57

Summary��� 57

Chapter 2: An Introduction to Asynchronous Programming with Twisted ������������� 59

Event Handlers and Composition �� 59

What Is Asynchronous Programming? �� 63

Placeholders for Future Values ��� 63

Asynchronous Exception Handling �� 66

An Introduction to Twisted’s Deferred ��� 71

Callbacks ��� 71

Errbacks and Failures �� 73

Composing Deferreds �� 76

Generators and InlineCallbacks �� 80

yield ��� 80

send ��� 81

throw ��� 84

Asynchronous Programming with inlineCallbacks �� 85

Table of ConTenTs

vii

Coroutines in Python ��� 88

Coroutines with yield from �� 88

Coroutines async and await �� 90

Awaiting Deferreds ��� 95

Coroutines to Deferreds with ensureDeferred �� 97

Multiplexing Deferreds �� 99

Testing Deferreds �� 102

Summary��� 106

Chapter 3: Applications with treq and Klein ��� 109

Why Libraries? �� 109

Feed Aggregation �� 110

Introducing treq �� 111

Introducing Klein ��� 115

Klein and Deferreds ��� 117

Klein Templates with Plating ��� 118

A First Draft of Feed Aggregation �� 121

Test-Driven Development with Klein and treq��� 128

Running Test on an Installable Project �� 128

Testing Klein with StubTreq ��� 131

Testing treq with Klein ��� 140

Logging with twisted�logger �� 143

Running Twisted Applications with twist ��� 149

Summary��� 154

Part 2: Projects ��� 155

Chapter 4: Twisted in Docker �� 157

Intro to Docker �� 157

Containers ��� 157

Container Images �� 158

Runc and Containerd ��� 159

Table of ConTenTs

viii

Client ��� 159

Registry ��� 160

Build �� 160

Multi-stage Build ��� 161

Python on Docker �� 163

Deployment Options �� 163

Full env �� 163

Virtualenv �� 169

Pex ��� 170

Build Options ��� 172

One Big Bag ��� 172

Copying Wheels Between Stages �� 172

Copying Environment Between Stages�� 173

Copying the Pex Executable Between Stages ��� 173

Automation with Dockerpy �� 173

Twisted on Docker��� 174

ENTRYPOINT and PID 1 �� 174

Custom Plugins �� 174

NColony ��� 175

Summary��� 178

Chapter 5: Using Twisted as a WSGI Server �� 179

Introduction to WSGI ��� 179

PEP �� 180

Raw Example ��� 181

Reference Implementation �� 183

WebOb Example��� 185

Pyramid Example ��� 186

Getting Started �� 187

WSGI Server��� 188

Finding Code �� 191

Table of ConTenTs

ix

Default Path ��� 191

PYTHONPATH ��� 192

setup�py ��� 192

Why Twisted �� 192

Production vs� Development �� 192

TLS��� 194

Server Name Indication ��� 195

Static Files ��� 197

Resource Model ��� 197

Pure Static ��� 198

Combining Static Files with WSGI�� 200

Built-In Scheduled Tasks ��� 203

Control Channels ��� 206

Strategies for Using Multiple Cores �� 208

Load Balancer �� 208

Opening Socket in Shared Mode ��� 210

Other Options ��� 213

Dynamic Configuration �� 214

A/B Testable Pyramid App �� 214

Custom Plugin with AMP ��� 216

Control Program �� 219

Summary��� 221

Chapter 6: Tahoe-LAFS: The Least- Authority File System ������������������������������������ 223

How Tahoe-LAFS Works �� 224

System Architecture �� 227

How It Uses Twisted �� 229

Problems We’ve Run Into �� 230

Daemonization Tools �� 231

Internal FileNode Interfaces �� 232

Front-End Protocol Integration �� 233

Table of ConTenTs

x

The Web Front End �� 234

File Types, Content-Type, /name/ ��� 237

Saving to Disk �� 238

Range Headers �� 238

Error Conversion on the Return Side ��� 240

Rendering UI Elements: Nevow Templates �� 241

The FTP Front End ��� 242

The SFTP Front End ��� 248

Backward-Incompatible Twisted APIs ��� 248

Summary��� 251

References �� 251

Chapter 7: Magic Wormhole ��� 253

What It Looks Like ��� 254

How It Works ��� 255

Network Protocols, Transfer Latency, Client Compatibility �� 257

Network Protocols and Client Compatibility �� 258

Server Architecture ��� 260

Persistent Database �� 262

Transit Client: Cancelable Deferreds ��� 262

Transit Relay Server �� 265

Wormhole Client Architecture ��� 267

Deferreds vs State Machines, One-Shot Observer �� 268

One-Shot Observers �� 271

Promises/Futures vs� Deferreds �� 272

Eventual-Send, Synchronous Testing �� 275

Asynchronous Testing with Deferreds ��� 277

Synchronous Testing with Deferreds �� 278

Synchronous Testing and Eventual Send ��� 281

Summary��� 283

References �� 283

Table of ConTenTs

xi

Chapter 8: Push Data to Browsers and Micro-services with WebSocket ������������� 285

Why WebSocket? �� 285

WebSocket and Twisted �� 286

Raw WebSocket, from Python to Python ��� 288

Raw WebSocket, Between Python and JavaScript �� 292

More Powerful WebSocket with WAMP ��� 294

Summary��� 303

Chapter 9: Applications with asyncio and Twisted ��� 305

Core Concepts ��� 305

Promises ��� 306

Event Loops ��� 307

Guidelines ��� 308

Case Study: A Proxy with aiohttp and treq �� 312

Summary��� 316

Chapter 10: Buildbot and Twisted ��� 317

History of Buildbot �� 317

The Evolution of Buildbot’s Async Python �� 318

Migrating Synchronous APIs �� 321

Async Build Steps �� 322

Buildbot’s Code ��� 323

Async Utilities �� 323

Debounce �� 323

Async Services �� 324

LRU Cache ��� 326

Eventual ��� 327

Interfacing with Synchronous Code ��� 327

SQLAlchemy �� 328

requests ��� 329

Docker ��� 332

Concurrent Access to Shared Resources �� 333

Table of ConTenTs

xii

Yield as a Concurrency Barrier �� 333

Thread-Pool Functions Should Not Mutate State �� 334

DeferredLocks ��� 336

Testing ��� 336

Fakes ��� 338

Summary��� 338

Chapter 11: Twisted and HTTP/2��� 339

Introduction ��� 339

Design Goals ��� 341

Seamless Integration ��� 341

Most-Optimized Behavior by Default ��� 343

Separating Concerns and Reusing Code ��� 343

Implementation Concerns ��� 344

What Is a Connection Anyway? The Value of Standard Interfaces ��������������������������������������� 345

Multiplexing and Priority�� 348

Backpressure��� 355

Backpressure in Twisted ��� 356

Backpressure in HTTP/2 �� 359

Current Status and Future Expansion ��� 362

Summary��� 363

Chapter 12: Twisted and Django Channels ��� 365

Introduction ��� 365

Channels Building Blocks �� 367

Message Brokers and Queues �� 368

Distributed Multi-Layer Systems in Twisted ��� 369

Current Status and Future Expansion ��� 371

Summary��� 371

 Index ��� 373

Table of ConTenTs

xiii

About the Authors

Mark Williams works on Twisted. At eBay and PayPal, he worked on high-performance

Python web services (over a billion requests a day!), application and information

security, and porting enterprise, Java-only libraries to Python.

Cory Benfield is an open source Python developer heavily involved in the Python HTTP

community. He's a Requests core contributor, a urllib3 core contributor, and the lead

maintainer of the Hyper Project, a collection of HTTP and HTTP/2 tools for Python. For

his sins, he also helps out with the Python Cryptographic Authority on PyOpenSSL.

Brian Warner is a security engineer and software developer, having worked at Mozilla

on Firefox Sync, the Add-On SDK, and Persona. He is co-founder of the Tahoe-LAFS

distributed secure filesystem, and develops secure storage and communication tools.

Moshe Zadka has been part of the open source community since 1995, made his first

core Python contributions in 1998, and is a founding member of the Twisted open

source project. He also loves to teach Twisted and Python, having given tutorials at

several conferences as well as regularly blogging.

Dustin Mitchell has contributed to Buildbot and is a member of the TaskCluster team

at Mozilla, having also worked on the Release Engineering, Release Operations, and

Infrastructure teams.

Kevin Samuel has been a Dev and trainer since Python 2.4 and has been putting

his skills to work in East Europe, North America, Asia, and West Africa. He has been

working closely with the Crossbar.io team and is an active member of the French Python

community.

Pierre Tardy is a continuous integration specialist with Renault Software Labs, and he is

currently the lead committer for Buildbot.

xv

About the Technical Reviewers

Julian Berman is a New York-based software developer and

open source contributor. He is the author of the jsonschema

Python library, an occasional contributor to the Twisted

ecosystem, and an active member of the Python community.

Shawn Shojaie lives in the clement chaparral of California's Bay Area, where he works

as a back-end software engineer. He has worked at Intel, NetApp, and now SimpleLegal,

where he happily builds web-based applications for legal services. He spends weekdays

writing Django and tuning PostgreSQL, and his weekends contributing to open source

projects like django-pylint, occasionally editing technical essays. Find out more at him at

shawnshojaie.com.

Tom Most is a software engineer in the telecommunications industry. He is a Twisted

committer with 10 years of experience of applying Twisted to web services, client

libraries, and command-line applications. He is the maintainer of Afkak, the Twisted

Kafka client. He can be found online at freecog.net and reached at twm@freecog.net.

xvii

Acknowledgments

Thanks to my wife, Jennifer Zadka, without whose support I could not have done it.

Thanks to my parents, Yaacov and Pnina Zadka, who taught me how to learn.

Thanks to my advisor, Yael Karshon, for teaching me how to write.

Thanks to Mahmoud Hashemi, for inspiration and encouragement.

Thanks to Mark Williams, for always being there for me.

Thanks to Glyph Lefkowitz, for teaching me things about Python, about programming,

and about being a good person.

—Moshe Zadka

Thanks to Mahmoud Hashemi and David Karapetyan for their feedback. Thanks to

Annie for putting up with me while I wrote

—Mark Williams

xix

Introduction

Twisted has recently celebrated its sweet sixteen birthday. It has been around for a

while; and in that time, it grew to be a powerful library. In that time, some interesting

applications have been built on top of it. In that time, many of us learned a lot about how

to use Twisted well, how to think about networking code, and how to architect event-

based programs.

After going through the introductory materials that we have on the Twisted site,

a common thing to hear is “What now? How can I learn more about Twisted?” The

usual way we answered that question is with a question: “What do you want to do with

Twisted?” This book shows how to do interesting things with Twisted.

Each of the contributors to this book has done slightly different things with Twisted

and learned different lessons. We are excited to present all of these lessons, with the

goals of making them common knowledge in the community.

Enjoy!

PART 1

Foundations

3
© Mark Williams, Cory Benfield, Brian Warner, Moshe Zadka, Dustin Mitchell, Kevin Samuel, Pierre Tardy 2019
M. Williams et al., Expert Twisted, https://doi.org/10.1007/978-1-4842-3742-7_1

CHAPTER 1

An Introduction to
Event- Driven
Programming with Twisted
Twisted is a powerful, well-tested, and mature concurrent networking library and

framework. As we’ll see in this book, many projects and individuals have used it to great

effect for more than a decade.

At the same time, Twisted is large, complicated, and old. Its lexicon teems with

strange names, like “reactor,” “protocol,” “endpoint,” and “Deferred.” These describe a

philosophy and architecture that have baffled both newcomers and old hands with years

of Python experience.

Two fundamental programming paradigms inform Twisted’s pantheon of APIs:

event-driven programming and asynchronous programming. The rise of JavaScript

and the introduction of asyncio into the Python standard library have brought both

further into the mainstream, but neither paradigm dominates Python programming

so completely that merely knowing the language makes them familiar. They remain

specialized topics reserved for intermediate or advanced programmers.

This chapter and the next introduce the motivations behind event-driven and

asynchronous programming, and then show how Twisted employs these paradigms.

They lay the foundation for later chapters that explore real-world Twisted programs.

We’ll begin by exploring the nature of event-driven programming outside of the

context of Twisted. Once we have a sense of what defines event-driven programming,

we’ll see how Twisted provides software abstractions that help developers write clear

and effective event-driven programs. We’ll also stop along the way to learn about

some of the unique parts of those abstractions, like interfaces, and explore how they’re

documented on Twisted’s website.

4

By the end of this chapter you’ll know Twisted terminology: protocols, transports,

reactors, consumers, and producers. These concepts form the foundation of Twisted’s

approach to event-driven programming, and knowing them is essential to writing useful

software with Twisted.

 A Note About Python Versions
Twisted itself supports Python 2 and 3, so all code examples in this chapter are written

to work on both Python 2 and 3. Python 3 is the future, but part of Twisted’s strength is

its rich history of protocol implementations; for that reason, it’s important that you’re

comfortable with code that runs on Python 2, even if you never write it.

 What Is Event-Driven Programming?
An event is something that causes an event-driven program to perform an action.

This broad definition allows many programs to be understood as event-driven;

consider, for example, a simple program that prints either Hello or World!

depending on user input:

import sys

line = sys.stdin.readline().strip()

if line == "h":

 print("Hello")

else:

 print("World")

The availability of a line of input over standard input is an event. Our program

pauses on sys.stdin.readline(), which asks the operating system to allow the user to

input a complete line. Until one is received, our program can make no progress. When

the operating system receives input, and Python’s internals determine it’s a line, sys.

stdin.readline() resumes our program by returning that data to it. This resumption

is the event that drives our program forward. Even this simple program, then, can be

understood as an event-driven one.

Chapter 1 an IntroduCtIon to event- drIven programmIng wIth twIsted

5

 Multiple Events
A program that receives a single event and then exits doesn’t benefit from an event-

driven approach. Programs in which more than one thing can happen at a time,

however, are more naturally organized around events. A graphical user interface implies

just such a program: at any moment, a user might click a button, select an item from a

menu, scroll through a text widget, and so on.

Here’s a version of our previous program with a Tkinter GUI:

from six.moves import tkinter

from six.moves.tkinter import scrolledtext

class Application(tkinter.Frame):

 def __init__ (self, root):

 super(Application,self). __init__ (root)

 self.pack()

 self.helloButton = tkinter.Button(self,

 text="Say Hello",

 command=self.sayHello)

 self.worldButton = tkinter.Button(self,

 text="Say World",

 command=self.sayWorld)

 self.output = scrolledtext.ScrolledText(master=self)

 self.helloButton.pack(side="top")

 self.worldButton.pack(side="top")

 self.output.pack(side="top")

 def outputLine(self, text):

 self.output.insert(tkinter.INSERT, text+ '\n')

 def sayHello(self):

 self.outputLine("Hello")

 def sayWorld(self):

 self.outputLine("World")

Chapter 1 an IntroduCtIon to event- drIven programmIng wIth twIsted

6

 Application(tkinter.Tk()).mainloop()
This version of our program presents the user with two buttons, either of which can

generate an independent click event. This differs from our previous program, where only

sys.stdin.readline could generate the single “line ready” event.

We cope with the possible occurrence of either button’s event by associating event

handlers with each one. Tkinter buttons accept a callable command to invoke when they

are clicked. When the button labeled “Say Hello” generates a click event, that event

drives our program to call Application.sayHello as shown in Figure 1-1. This, in turn,

outputs a line consisting of Hello to a scrollable text widget. The same process applies to

the button labeled “Say Hello” and Application.sayWorld.

Figure 1-1. Our Tkinter GUI application after a series of clicks of “Say Hello” and
“Say World”

tkinter.Frame’s mainloop method, which our Application class inherits, waits

until a button bound to it generates an event and then runs the associated event handler.

After each event handler has run, tkinter.Frame.mainloop again begins waiting for new

events. A loop that monitors event sources and dispatches their associated handlers is

typical of event-driven programs, and is known as an event loop.

Chapter 1 an IntroduCtIon to event- drIven programmIng wIth twIsted

7

These concepts are the core of event-driven programming:

 1. Events represent that something has occurred and to which the

program should react. In both our examples, events correspond

naturally to program input, but as we’ll see, they can represent

anything that causes our program to perform some action.

 2. Event handlers constitute the program’s reactions to events.

Sometimes an event’s handler just consists of a sequence of

code, as in our sys.stdin.readline example, but more often

it’s encapsulated by a function or method, as in our tkinter

example.

 3. An event loop waits for events and invokes the event handler

associated with each. Not all event-driven programs have an event

loop; our sys.stdin.readline example did not because it only

responds to a single event. However, most resemble our tkinter

example in that they process many events before finally exiting.

These kinds of programs use an event loop.

 Multiplexing and Demultiplexing
The way event loops wait for events affects the way we write event-driven programs, so

we must take a closer look at them. Consider our tkinter example and its two buttons;

the event loop inside mainloop must wait until the user has clicked at least one button.

A naive implementation might look like this:

def mainloop(self):

 while self.running:

 ready = [button for button in self.buttons if button.hasEvent()]

 if ready:

 self.dispatchButtonEventHandlers(ready)

mainloop continually polls each button for a new event, dispatching event handlers

only for those that have an event ready. When no events are ready, the program makes

no progress because no action has been taken that requires a response. An event-driven

program must suspend its execution during these periods of inactivity.

Chapter 1 an IntroduCtIon to event- drIven programmIng wIth twIsted

8

The while loop in our mainloop example suspends its program until one of the

buttons has been clicked and sayHello or sayWorld should run. Unless the user is

supernaturally fast with a mouse, this loop spends most of its time checking buttons that

haven’t been clicked. This is known as a busy wait because the program is actively busy

waiting.

A busy wait like this pauses a program’s overall execution until one of its event

sources reports an event, and so it suffices as a mechanism to pause an event loop.

The inner list comprehension that powers our implementation’s busy wait asks

a critical question: Has anything happened? The answer comes from the ready

variable, which contains all buttons that have been clicked in a single place. The

truthiness of ready decides the answer to the event loop’s question: when ready is

empty and thus falsey, no buttons have been clicked and so nothing has happened.

When it’s truthy, however, at least one has been clicked, and so something has

happened.

The list comprehension that constructs ready coalesces many separate inputs

into one. This is known as multiplexing, while the inverse process of separating

different inputs out from a single coalesced input is known as demultiplexing.

The list comprehension multiplexes our buttons into ready while the

dispatchButtonEventHandlers method demultiplexes them out by invoking each

event’s handler.

We can now refine our understanding of event loops by precisely describing how

they wait for events:

• An event loop waits for events by multiplexing their sources into a

single input. When that input indicates that events have occurred, the

event loop demultiplexes it into its constituent inputs and invokes the

event handler associated with each.

Our mainloop multiplexer wastes most of its time polling buttons that haven’t

been clicked. Not all multiplexers are so inefficient. tkinter.Frame.mainloop’s

actual implementation employs a similar multiplexer that polls all widgets unless the

operating system provides more efficient primitives. To improve its efficiency, mainloop’s

multiplexer exploits the insight that computers can check a GUI’s widgets faster than a

person can interact with them, and inserts a sleep call that pauses the entire program

for several milliseconds. This allows the program to spend part of its busy-wait loop

passively rather than actively do nothing, saving CPU time and energy at the expense of

negligible latency.

Chapter 1 an IntroduCtIon to event- drIven programmIng wIth twIsted

9

While Twisted can integrate with graphical user interfaces, and in fact has special

support for tkinter, it is at its heart a networking engine. Sockets, not buttons, are the

fundamental object in networking, and operating systems expose efficient primitives for

multiplexing socket events. Twisted’s event loop uses these primitives to wait for events.

To understand Twisted’s approach to event-driven programming, we must understand

the interaction between these sockets and these multiplexing networking primitives.

 The select Multiplexer
 Its History, Its Siblings, and Its Purpose
Almost all modern operating systems support the select multiplexer. select gets its

name from its ability to take a list of sockets and “select” only those that have events

ready to be handled.

select was born in 1983, when computers were capable of far less. Consequently, its

interface prevents it from operating at maximum efficiency, especially when multiplexing

a large number of sockets. Each operating system family provides its own, more efficient

multiplexer, such as BSD’s kqueue and Linux’s epoll, but no two interoperate. Luckily

their principles are similar enough to select that we can generalize their behavior from

select’s. We’ll use select to explore how these socket multiplexers behave.

 select and Sockets
The code that follows omits error handling and will break on many edge cases that occur

in practice. It is intended only as a teaching tool. Do not use it in real applications.
Use Twisted instead. Twisted strives to correctly handle errors and edge cases; that’s

part of why its implementation is so complicated.

With that disclaimer out of the way, let’s begin an interactive Python session and

create sockets for select to multiplex:

>>> import socket

>>> listener = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

>>> listener.bind(('127.0.0.1', 0))

>>> listener.listen(1)

>>> client = socket.create_connection(listener.getsockname())

>>> server, _ = listener.accept()

Chapter 1 an IntroduCtIon to event- drIven programmIng wIth twIsted

10

A full explanation of the socket API is beyond the scope of this book. Indeed, we

expect that the parts we discuss will lead you to prefer Twisted! The preceding code,

however, contains more fundamental concepts than irrelevant details:

 1. listener - This socket can accept incoming connections. It is an

internet (socket.AF_INET) and TCP (socket.SOCK_STREAM) socket

accessible by clients on the internal, local-only network interface

(which conventionally has an address of 127.0.0.1) and on a port

randomly assigned by the operating system (0). This listener can

perform the setup necessary for one incoming connection and

enqueue it until we’re reading for it (listen(1)).

 2. client - This socket is an outgoing connection. Python’s socket.

create_connection function accepts a (host, port) tuple

representing the listening socket to which to connect and returns

a socket connected to it. Because our listening socket is in the

same process and named listener, we can retrieve its host and

port with the listener.getsockname().

 3. server - The server’s incoming connection. Once client has

connected to our host and port, we must accept the connection

from listener’s queue of length 1. listener.accept returns a

(socket, address) tuple; we only need the socket, so we discard

the address. A real program might log the address or use it to track

connection metrics. The listening queue, which we set to 1 via the

socket’s listen method, holds this socket for us before we call

accept and allows create_connection to return.

client and server are two ends of the same TCP connection. An established TCP

connection has no concept of “client” and “server”; our client socket has the same

privileges to read, write, or close the connection as our server:

>>> data = b"xyz"

>>> client.sendall(data)

>>> server.recv(1024) == data

True

>>> server.sendall(data)

>>> client.recv(1024) == data

True

Chapter 1 an IntroduCtIon to event- drIven programmIng wIth twIsted

11

 The How and Why of Socket Events
Under the hood, the operating system maintains read and write buffers for each TCP

socket to account for network unreliability and clients and servers that read and write

at different speeds. If server became temporarily unable to receive data, the b"xyz"

we passed client.sendall would remain in its write buffer until server again became

active. Similarly, if we were too busy to call client.recv to receive the b"xyz" server.

sendall sent, client's read buffer would hold onto it until we got around to receiving

it. The number that we pass recv represents the maximum data we’re willing to remove

from the read buffer. If the read buffer has less than the maximum, as it does in our

example, recv will remove all the data from the buffer and return it.

Our sockets’ bidirectionality implies two possible events:

 1. A readable event, which means the socket has something available

for us. A connected server socket generates this event when

data has landed in the socket’s receive buffer, so that calling

recv after a readable event will immediately return that data.

A disconnection is represented by recving no data. By convention,

a listening socket generates this event when we can accept a new

connection.

 2. A writable event, which means space is available in the socket’s

write buffer. This is a subtle point: as long as the socket receives

acknowledgment from the server for the data it’s transmistted

across the network faster than we add it to the send buffer, it

remains writable.

select’s interface reflects these possible events. It accepts up to four arguments:

 1. a sequence of sockets to monitor for readable events;

 2. a sequence of sockets to monitor for writable events;

 3. a sequence of sockets to monitor for “exceptional events.” In our

examples, no exceptional events will occur, so we will always pass

an empty list here;

 4. An optional timeout. This is the number of seconds select will

wait for one of the monitor sockets to generate an event. Omitting

this argument will cause select to wait forever.

Chapter 1 an IntroduCtIon to event- drIven programmIng wIth twIsted

12

We can ask select about the events our sockets have just generated:

>>> import select

>>> maybeReadable = [listener, client, server]

>>> maybeWritable = [client, server]

>>> readable, writable, _ = select.select(maybeReadable, maybeWritable, [], 0)

>>> readable

[]

>>> writable == maybeWritable and writable == [client, server]

True

We instruct select not to wait for any new events by providing a timeout of 0. As

explained above, our client and server sockets might be readable or writable, while

our listener, which can only accept incoming connections, can only be readable.

If we had omitted the timeout, select would pause our program until one of the

sockets it monitored became readable or writable. This suspension of execution is

analogous to the multiplexing busy-wait that polled all buttons in our naive mainloop

implementation above.

Invoking select multiplexes sockets more efficiently than a busy wait because

the operating system will only resume our program when at least one event has been

generated; inside the kernel an event loop, not unlike our select, waits for events from

the network hardware and dispatches them to our application.

 Handling Events
select returns a tuple with three lists, in the same order as its arguments. Iterating

over each returned list demultiplexes select’s return value. None of our sockets have

generated readable events, even though we’ve written data to both client and server;

our preceding calls to recv emptied their read buffers, and no new connections have

arrived for listener since we accepted server. Both client and server have generated

a writable event, however, because there’s space available in their send buffers.

Sending data from client to server causes server to generate a readable event, so

select places it in the readables list:

>>> client.sendall(b'xyz')

>>> readable, writable, _ = select.select(maybeReadable, maybeWritable, [], 0)

>>> readable == [server]

True

Chapter 1 an IntroduCtIon to event- drIven programmIng wIth twIsted

13

The writable list, interestingly, once again contains our client and server sockets:

>>> writable == maybeWritable and writable == [client, server]

True

If we called select again, our server socket would again be in readable and our

client and server sockets again in writable. The reason is simple: as long as data

remains in a socket’s read buffer, it will continuously generate a readable event, and as

long as space remains in a socket’s write buffer, it will generate a writable event. We can

confirm this by recving the data client sent to server and calling select again for new

events:

>>> server.recv(1024) == b'xyz'

True

>>> readable, writable, _ = select.select(maybeReadable, maybeWritable,

[], 0)

>>> readable

[]

>>> writable == maybeWritable and writable == [client, server]

True

Emptying server’s read buffer has caused it to stop generating readable events, and

client and server continue to generate writable events because there’s still space in

their write buffers.

 An Event Loop with select
We now know how select multiplexes sockets:

 1. Different sockets generate readable or writable events to indicate

that an event-driven program should accept incoming data or

connections, or write outgoing data.

 2. select multiplexes sockets by monitoring them for readable

or writable events, pausing the program until at least one is

generated or the optional timeout has elapsed.

 3. Sockets continue generating readable and writable events until

the circumstances that led to those events changes: a socket

with readable data emits readable events until its read buffer

Chapter 1 an IntroduCtIon to event- drIven programmIng wIth twIsted

14

is emptied; a listening socket emits readable events until all

incoming connections have been accepted; and a writable socket

emits writable events until its write buffer is filled.

With this knowledge, we can sketch an event loop around select:

import select

class Reactor(object):

 def __init__ (self):

 self._readers = {}

 self._writers = {}

 def addReader(self, readable, handler):

 self._readers[readable] = handler

 def addWriter(self, writable, handler):

 self._writers[writable] = handler

 def removeReader(self, readable):

 self._readers.pop(readable,None)

 def removeWriter(self, writable):

 self._writers.pop(writable,None)

 def run(self):

 while self._readers or self._writers:

 r, w, _ = select.select(list(self._readers), list

(self._writers), [])

 for readable in r:

 self._readers[readable](self, readable)

 for writable in w:

 if writable in self._writers:

 self._writers[writable](self, writable)

We call our event loop a reactor because it reacts to socket events. We can request

our Reactor call readable event handlers on sockets with addReader and writable event

handlers with addWriter. Event handlers accept two arguments: the reactor itself and

the socket that generated the event.

The loop inside the run method multiplexes our sockets with select, then

demultiplexes the result between sockets that have generated a read event and sockets

that have generated a write event. The event handlers for each readable socket run

first. Then, the event loop checks that each writable socket is still registered as a writer

Chapter 1 an IntroduCtIon to event- drIven programmIng wIth twIsted

15

before running its event handler. This check is necessary because closed connections

are represented as read events, so a read handler run immediately prior might remove a

closed socket from the readers and writers. By the time its writable event handler runs,

the closed socket would be removed from the _writers dictionary.

 Event-Driven Clients and Servers
This simple event loop suffices for implementing a client that continually writes data to a

server. We’ll begin with the event handlers:

def accept(reactor, listener):

 server, _ = listener.accept()

 reactor.addReader(server, read)

def read(reactor, sock):

 data = sock.recv(1024)

 if data:

 print("Server received", len(data),"bytes.")

 else:

 sock.close()

 print("Server closed.")

 reactor.removeReader(sock)

DATA=[b"*", b"*"]

def write(reactor, sock):

 sock.sendall(b"".join(DATA))

 print("Client wrote", len(DATA)," bytes.")

 DATA.extend(DATA)

The accept function handles a readable event on a listening socket by accepting the

incoming connection and requesting the reactor monitor it for readable events. These

are handled by the read function.

The read function handles a readable event on a socket by attempting to receive

a fixed amount of data from the socket’s receive buffer. The length of any received

data is printed – remember, the amount passed to recv represents an upper bound on

the number of bytes returned. If no data is received on a socket that has generated a

readable event, then the other side of the connection has closed its socket, and the read

Chapter 1 an IntroduCtIon to event- drIven programmIng wIth twIsted

16

function responds by closing its side of the socket and removing it from the set of sockets

monitored by the reactor for readable events. Closing the socket deallocates its operating

system resources, while removing it from the reactor ensures the select multiplexer

does not attempt to monitor a socket that will never be active again.

The write function writes a sequence of asterisk (*) to a socket that generated a

write event. After each successful write, the amount of data is doubled. This simulates

the behavior of real network applications that do not consistently write the same amount

of data to a connection. Consider a web browser: some outgoing requests contain a small

amount of form data typed in by a user, while others upload a large file to a remote server.

Note that these are module-level functions and not methods on our Reactor class.

They’re instead associated with the reactor by registering them as readers or writers

because TCP sockets are only one kind of socket, and the way we must handle their

events differs from the way we would handle other sockets’ events. select, however,

works the same way no matter what sockets it’s given, so the logic that runs event

handlers on the lists of sockets it returns should be encapsulated by the Reactor class.

We’ll look at how important encapsulation and the interfaces it implies are to event-

driven programs later.

We can now establish a listener and a client and allow the event loop to drive

the acceptance of a connection and the transmission of data from client to the server

socket.

import socket

listener = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

listener.bind(('127.0.0.1',0))

listener.listen(1)

client = socket.create_connection(listener.getsockname())

loop = Reactor()

loop.addWriter(client, write)

loop.addReader(listener, accept)

loop.run()

Running this shows both success and failure:

Client wrote 2 bytes.

Server received 2 bytes.

Client wrote 4 bytes.

Server received 4 bytes.

Chapter 1 an IntroduCtIon to event- drIven programmIng wIth twIsted

17

Client wrote 8 bytes.

Server received 8 bytes.

...

Client wrote 524288 bytes.

Server received 1024 bytes.

Client wrote 1048576 bytes.

Server received 1024 bytes.

^CTraceback (most recent call last):

 File "example.py", line 53, in <module>

 loop.run()

 File "example.py", line 25, in run

 writeHandler(self, writable)

 File "example.py", line 33, in write

 sock.sendall(b"".join(DATA))

KeyboardInterrupt

The success is clear enough: data passes from the client socket to the server. This

behavior follows the path laid out by the accept, read, and write event handlers. As

expected, the client begins by sending two bytes of b'*'to the server, which in turn

receives those two bytes.

The simultaneity of client and server demonstrates the power of event-driven

programming. Where our GUI application could respond to events from two

different buttons, this small network server can now respond to events from a client

or server, allowing us to colocate both in a single process. The multiplexing abilities

of select provide a single point in our programs event loop where it can respond to

either.

The failure is also clear: after a certain number of repetitions, our program

freezes until it’s interrupted via the keyboard. A clue to this failure lies in our

program’s output; after a while, the client sends many times the amount of data the

server receives, and the KeyboardInterrupt’s traceback leads right to our write

handler’s sock.sendall call.

Our client has overwhelmed our server, with the result that most of the data the

client has attempted to send remains in its socket’s send buffer. The default behavior of

sendall is to pause or block the program when called on a socket that has no room left in

its send buffer. Now, if sendall had not blocked and our event loop had been allowed to

run, the socket would not have come up as writable, and the blocking sendall call would

Chapter 1 an IntroduCtIon to event- drIven programmIng wIth twIsted

18

not have run; however, we cannot guarantee that a given send call will write enough

just to fill up a socket’s send buffer, so that sendall does not block, the write handler

runs to completion, and select prevents further writes from occurring until the buffer

has drained. The nature of networks is that we only know about an issue like this after it

happens.

All of the events we’ve covered so far prompt our program to do something. None of

them can prompt it to stop doing something. We need a new kind of event.

 Non-blocking I/O
 Knowing When to Stop
Sockets by default block a program that begins an operation that cannot be completed

until the remote end does something. We can cause a socket to emit an event in this

situation by requesting the operating system make it non-blocking.

Let’s return to an interactive Python session and again construct a connection

between a client and server socket. This time, we will make the client non-blocking

and attempt to write an infinite stream of data to it.

>>> import socket

>>> listener = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

>>> listener.bind(('127.0.0.1',0))

>>> listener.listen(1)

>>> client=socket.create_connection(listener.getsockname())

>>> server, _ = listener.accept()

>>> client.setblocking(False)

>>> while True: client.sendall(b"*"*1024)

...

Traceback (most recent call last):

 File"<stdin>", line1, in <module>

BlockingIOError: [Errno11] Resource temporarily unavailable

We have again filled client’s send buffer, but instead of pausing the process,

sendall has raised an exception. The type of the exception varies between Python 2

and 3; here, we show Python 3’s BlockingIOError, while on Python 2, it would be the

Chapter 1 an IntroduCtIon to event- drIven programmIng wIth twIsted

19

more general socket.error. In both versions of Python, the exception’s errno attribute

will be set to errno.EAGAIN:

>>> import errno, socket

>>> try:

... while True: client.sendall(b"*"*1024)

... except socket.error as e:

... print(e.errno == errno.EAGAIN)

True

The exception represents an event generated by the operating system indicating that

we should stop writing. This is almost enough to fix our client and server.

 Tracking State
Handling this exception, however, requires we answer a new question: How much of the

data we attempted to write made it into the socket’s send buffer? We cannot know what

data we actually sent without answering this question, and without knowing that we

cannot write correct programs with non-blocking sockets. A web browser, for example,

must track how much of a file it has uploaded, or it risks corrupting the contents in

transit.

client.sendall could have placed any number of bytes in its write buffer before

generating the EAGAIN event that became our exception. We must switch from the

sendall method of socket objects to the send method, which returns the amount of data

written to the socket’s send buffer. We can demonstrate this with our server socket:

>>> server.setblocking(False)

>>> try:

... while True: print(server.send(b"*" * 1024))

... except socket.error as e:

... print("Terminated with EAGAIN:", e.errno == errno.EAGAIN)

1024

1024

...

1024

952

Terminated with EAGAIN:True

Chapter 1 an IntroduCtIon to event- drIven programmIng wIth twIsted

20

We mark server as non-blocking, so that it generates an EAGAIN event when its

send buffer is full. The while loop then calls server.send. Calls that return 1024 have

written all the provided bytes to the socket’s send buffer. Eventually the socket’s write

buffer fills up, and an exception representing the EAGAIN event terminates the loop. The

last successful send call before the loop’s termination, however, returns 952, and here

send has simply discarded the remaining 72 bytes. This is known as a short write. This

happens with blocking sockets as well! Because they block when no space is available in

their send buffer instead of raising an exception, sendall can and does contain a loop

that checks the return value of the underlying send call and re-invokes it until all data

has been sent.

In this case, the socket’s send buffer was not a multiple of 1024, so we were not able

to fit an even number of send calls’ worth of data in before hitting EAGAIN. In the real

world, however, the socket’s send buffer changes size in response to conditions within the

network and applications send varying amounts of data across connections. Programs

that use non-blocking I/O, like our hypothetical web browser, must regularly deal with

short writes like this.

We can use send’s return value to make sure we write all our data to the

connection. We maintain our own buffer that contains the data we want to write.

Every time select emits a writable event for that socket, we attempt to send the data

currently in the buffer; if the send call completes without raising EAGAIN, we note the

amount returned and remove that number of bytes from the beginning of our buffer,

because send writes data into the send buffer from the beginning of the byte sequence

it’s passed. If, on the other hand, send raises an EAGAIN exception indicating the send

buffer is completely full and cannot accept more data, we leave the buffer as it is. We

proceed this way until our own buffer is empty, at which point we know all our data

has been placed in the socket’s send buffer. After that it’s up to the operating system to

send it to connection’s receiving end.

We can now fix our simple client-server example by splitting its write function into

one that initiates writing the data and an object that manages the buffer on top of send:

import errno

import socket

class BuffersWrites(object):

 def __init__ (self, dataToWrite, onCompletion):

 self._buffer = dataToWrite

Chapter 1 an IntroduCtIon to event- drIven programmIng wIth twIsted

21

 self._onCompletion = onCompletion

 def bufferingWrite(self, reactor, sock):

 if self._buffer:

 try:

 written = sock.send(self._buffer)

 except socket.error as e:

 if e.errno != errno.EAGAIN:

 raise

 return

 else:

 print("Wrote", written,"bytes")

 self._buffer = self._buffer[written:]

 if not self._buffer:

 reactor.removeWriter(sock)

 self._onCompletion(reactor, sock)

DATA=[b"*", b"*"]

def write(reactor, sock):

 writer = BuffersWrites(b"".join(DATA), onCompletion=write)

 reactor.addWriter(sock, writer.bufferingWrite)

 print("Client buffering", len(DATA),"bytes to write.")

 DATA.extend(DATA)

BuffersWrites’s initializer first argument is the bytes it will write, which it uses as

the initial value for its buffer, while its second argument, onCompletion, is a callable

object. As its name implies, onCompletion will be called when the provided data has

been completely written.

The bufferingWrite method’s signature is what we expect from a writable event

handler suitable for passing Reactor.addWriter. As described, it attempts to send any

buffered data to the socket it’s passed, saving the returned number that indicates the

amount written. If send raises an EAGAIN exception, bufferingWrite suppresses it and

returns; otherwise it propagates the exception. In both cases. self._buffer remains

unchanged.

If send succeeds, a number of bytes equal to the amount written is sliced off the

beginning of self._buffer and bufferingWrite returns. For example, if the send call

wrote only 952 out of 1024 bytes, self_buffer would contain the final 73 bytes.

Chapter 1 an IntroduCtIon to event- drIven programmIng wIth twIsted

22

Finally, if the buffer’s empty then all the requested data has been written, and

there’s no work left for the BuffersWrites instance left to do. It requests that the reactor

stop monitoring its socket for writable events and then calls onCompletion because

data it was provided has been completely written. Note that this check occurs in an if

statement that’s independent of the first if self._buffer statement. The preceding

code might have run and emptied the buffer; if the final code were within an else block

attached to the if self._buffer statement, it would not run until the next time the

reactor detected a writable event on this socket. To simplify resource management, we

perform the check within this method.

The write function looks similar to our previous version except now it delegates

sending the data to BuffersWrites via its bufferingWrite method. Most notably,

write passes itself to BuffersWrites as the onCompletion callable. This creates the

same looping effect as the previous version via indirect recursion. write never calls

itself directly, but instead passes itself to an object that our reactor eventually calls. This

indirection allows this sequence to continue without overflowing the call stack.

With these modifications, our client-server program no longer blocks. Instead it fails

for another reason: eventually, DATA becomes too large to fit inside your computer’s

available memory! Here’s an example from the author’s computer:

Client buffering 2 bytes to write.

Wrote 2 bytes

Client buffering 4 bytes to write.

Server received 2 bytes.

Wrote 4 bytes

...

Client buffering 2097152 bytes to write.

Server received 1024 bytes.

Wrote 1439354 bytes

Server received 1024 bytes.

Server received 1024 bytes.

....

Wrote 657798 bytes

Server received 1024 bytes.

Server received 1024 bytes.

....

Chapter 1 an IntroduCtIon to event- drIven programmIng wIth twIsted

23

Client buffering 268435456 bytes to write.

Traceback (most recent call last):

 File "example.py", line 76, in <module>

 loop.run()

 File "example.py", line 23, in run

 writeHandler(self, writable)

 File "example.py", line 57, in bufferingWrite

 self._onCompletion(reactor, sock)

 File "example.py", line 64, in write

 DATA.extend(DATA)

MemoryError

 State Makes Programs Complex
Despite this problem, we have successfully written an event-driven network program

that uses non-blocking IO to control socket writes. The code, however, is a mess:

indirection from write through BuffersWrites, then the reactor, and finally back to

write obscures the logical flow of outbound data, and it’s clear that implementing

anything more complicated than a simple stream of asterisks would involve extending

ad hoc classes and interfaces beyond their breaking points. For example, how can we

address the MemoryError? Our approach will not scale to real applications.

 Managing Complexity with Transports and Protocols
Programming with non-blocking I/O is undoubtedly complicated. The UNIX authority

W. Richard Stevens writes the following about the matter in volume one of his seminal

Unix Network Programming series:

But, is it worth the effort to code an application using non-

blocking I/O, given the complexity of the resulting code? The

answer is no.

(UNIX Network Programming, Volume 1. 2nd ed. p. 446)

The complexity of our code seems to prove Stevens correct. The right abstractions,

however, can encapsulate complexity within a manageable interface. Our example

already has reusable code: any new unit of code that writes to a socket will need to

Chapter 1 an IntroduCtIon to event- drIven programmIng wIth twIsted

24

use the core logic of BuffersWrites. We have encapsulated the complexity of writing

to a non-blocking socket. Building on this insight we can distinguish between two

conceptual domains:

 1. Transports: BuffersWrites manages the process of writing

output to a non-blocking socket regardless of the contents of

that that output. It can send photos, or music, or anything we

can imagine, so long as it’s expressible as bytes. BuffersWrites

is a transport because it is a means of transportation for bytes.

Transports encapsulate the process of reading data from a

socket, as well as accepting a new connection. It represents the

cause of actions in our program and it is the recipient of our

program’s own actions.

 2. Protocols: Our example program generates data with a trivial

algorithm and merely counts what it receives. More complicated

programs might generate web pages or process voice phone

calls into text. As long as they can accept and emit bytes, they

can work in concert with what we described as a transport. They

might also direct the behavior of their transport, such as closing

an active connection upon receipt of invalid data. The field of

telecommunications describes rules like this that define how data

can be exchanged as a protocol. A protocol, then, defines how to

generate and process input and output. It encapsulates the effect of

our program.

 Reactors: Working with Transports
We begin by changing our Reactor to work in terms of transports:

import select

class Reactor(object):

 def __init__ (self):

 self._readers = set()

 self._writers = set()

 def addReader(self, transport):

 self._readers.add(transport)

Chapter 1 an IntroduCtIon to event- drIven programmIng wIth twIsted

25

 def addWriter(self, transport):

 self._writers.add(transport)

 def removeReader(self, readable):

 self._readers.discard(readable)

 def removeWriter(self, writable):

 self._writers.discard(writable)

 def run(self):

 while self._readers or self._writers:

 r, w, _ = select.select(self._readers,self._writers, [])

 for readable in r:

 readable.doRead()

 for writable in w:

 if writable in self._writers:

 writable.doWrite()

Where our readable and writable events’ handlers were previously functions, they

are now methods on transport objects: doRead and doWrite. Furthermore, the reactor

no longer tracks sockets – it directly selects transports. From the reactor’s perspective,

then, the transport’s interface consists of:

 1. doRead,

 2. doWrite,

 3. something that makes the transport’s state visible to select: a

fileno() method that returns a number that select understands

as a reference to a socket.

 Transports: Working with Protocols
Next, we will consider a protocol implementation by going back to our read and write

functions. The read function had two responsibilities:

 1. Counting the number of bytes received on the socket.

 2. Responding to a closed connection.

The write function had one responsibility: enqueue data to be written.

From this we can sketch a first draft of a Protocol interface:

Chapter 1 an IntroduCtIon to event- drIven programmIng wIth twIsted

26

class Protocol(object):

 def makeConnection(self, transport):

 ...

 def dataReceived(self, data):

 ...

 def connectionLost(self, exceptionOrNone):

 ...

We’ve split read’s two responsibilities into two methods: dataReceived and

connectionLost. The former’s signature is self explanatory, while the latter receives

one argument: an exception object if the connection was closed because of that

exception (e.g., because of ECONNRESET), or None if it was closed without one (e.g., with

an empty read because of a passive close). Note that our protocol interface lacks a write

method. That’s because writing data, which involves transporting bytes, falls within the

transport’s domain. As a result, a Protocol instance must have access to a transport that

represents the underlying network connection, and which will have a write method.

The assocation between the two happens via makeConnection, which accepts a transport

as its argument.

Why not pass the transport as an argument to Protocols initializer? A separate

method might seem clumsier, but it affords us greater flexibility; for example, you

can imagine how this method would allow us to introduce Protocol caching.

Furthermore, we’ll see that because a transport invokes a protocol’s dataReceived

and connectionLost methods, it too must be associated with a protocol. If both our

Transport and Protocol classes required their peer in their initializer, we would have

a circular relationship that prevented both from being instantiated. We choose to make

our Protocol accept its transport via a separate method to break this cycle because of

the flexibility it affords.

 Playing Ping-Pong with Protocols and Transports
This is enough for us to write a more complicated protocol that exercises this new

interface. Our previous client-server example simply had the client send larger and

larger sequences of bytes to the server; we can augment this so that the two send bytes

back and forth, up to an optional maximum, after which the sender that’s exceeded the

maximum closes the connection.

Chapter 1 an IntroduCtIon to event- drIven programmIng wIth twIsted

27

class PingPongProtocol(object):

 def __init__ (self, identity, maximum=None):

 self._identity = identity

 self._received = 0

 self._maximum = maximum

 def makeConnection(self, transport):

 self.transport = transport

 self.transport.write(b'*')

 def dataReceived(self, data):

 self._received += len(data)

 if self._maximum is not None and self._received >= self._maximum:

 print(self._identity,"is closing the connection")

 self.transport.loseConnection()

 else:

 self.transport.write(b'*')

 print(self._identity,"wrote a byte")

 def connectionLost(self, exceptionOrNone):

 print(self._identity,"lost the connection:", exceptionOrNone)

The initializer accepts an identity string used to identify the protocol instance and

the optional maximum amount of data to accept before terminating the connection.

makeConnection associates the PingPongProtocol with its transport and begins the

exchange by sending a single byte. dataReceived records the amount of data it’s

received; if the total amount exceeds the optional maximum, it tells the transport to lose

its connection, or equivalently, to disconnect. Otherwise it continues the exchange by

sending back a byte. Finally, connectionLost prints a message when the protocol’s side

of the connection has been closed.

PingPongProtocol describes a set of behaviors whose complexity is meaningfully

beyond what our previous attempt at a non-blocking client-server application was able

to do. At the same time, its implementation reflects the prose description that precedes

it, without becoming mired in the particulars of non-blocking I/O. We have been able to

increase the complexity of our application while decreasing the complexity of its unique

I/O management. We’ll return to explore the ramifications of this, but suffice it to say that

narrowing our focus allows us to eliminate complexity in specific areas of our program.

We cannot use PingPongProtocol until we write Transport. We can, however, write

a first draft of Transport’s interface:

Chapter 1 an IntroduCtIon to event- drIven programmIng wIth twIsted

28

class Transport(object):

 def __init__ (self, sock, protocol):

 ...

 def doRead(self):

 ...

 def doWrite(self):

 ...

 def fileno(self):

 ...

 def write(self):

 ...

 def loseConnection(self):

 ...

The first argument to Transport’s initializer is the socket the instance wraps. This

enforces Transport's encapsulation of sockets on which the Reactor now relies. The

second argument is the protocol whose dataReceived will be called when new data

is available and whose connectionLost will be called when the connection has been

closed. The doRead and doWrite methods match the reactor-side transport interface we

enumerated above. The new method fileno is also part of this interface; an object with

a properly implemented fileno method can be passed to select. We will proxy calls to

our Transport’s fileno down to the socket it wraps, making the two indistinguishable

from select’s perspective.

The write method provides the interface on which our Protocol relies to send

outgoing data. We have also added loseConnection, a new Protocol-side API that

initiates the closing of a socket and represents the active-close side of our passive-close

connectionLost method.

We can implement this interface by absorbing BuffersWrites and the socket

handling in our read function:

import errno

class Transport(object):

 def __init__ (self, reactor, sock, protocol):

 self._reactor = reactor

 self._socket = sock

 self._protocol = protocol

Chapter 1 an IntroduCtIon to event- drIven programmIng wIth twIsted

29

 self._buffer = b "

 self._onCompletion = lambda:None

 def doWrite(self):

 if self._buffer:

 try:

 written = self._socket.send(self._buffer)

 except socket.error as e:

 if e.errno != errno.EAGAIN:

 self._tearDown(e)

 return

 else:

 print("Wrote", written,"bytes")

 self._buffer = self._buffer[written:]

 if not self._buffer:

 self._reactor.removeWriter(self)

 self._onCompletion()

 def doRead(self):

 data=self._socket.recv(1024)

 if data:

 self._protocol.dataReceived(data)

 else:

 self._tearDown(None)

 def fileno(self):

 return self._socket.fileno()

 def write(self, data):

 self._buffer += data

 self._reactor.addWriter(self)

 self.doWrite()

 def loseConnection(self):

 if self._buffer:

 def complete():

 self.tearDown(None)

 self._onCompletion = complete

 else:

 self._tearDown(None)

Chapter 1 an IntroduCtIon to event- drIven programmIng wIth twIsted

30

 def _tearDown(self, exceptionOrNone):

 self._reactor.removeWriter(self)

 self._reactor.removeReader(self)

 self._socket.close()

 self._protocol.connectionLost(exceptionOrNone)

 def activate(self):

 self._socket.setblocking(False)

 self._protocol.makeConnection(self)

 self._reactor.addReader(self)

 self._reactor.addWriter(self)

doRead and doWrite mirror the socket manipulations in previous examples’ read

and write functions as well as BuffersWrites. doRead also proxies any received data to

the protocol’s dataReceived method or calls its connectionLost method upon receiving

an empty read. Finally, fileno rounds out the interface that Reactor requires by making

Transports selectable.

The write method buffers writes as before, but instead of delegating the process of

writing to a separate class, it invokes its sibling doWrite method to flush its buffer to the

socket. If the buffer is empty, a call to loseConnection tears down the connection by:

 1. removing the transport from the reactor;

 2. closing the underlying socket to release its resources back to the

operating system;

 3. sending None to the protocol’s connectionLost to indicate that the

connection was lost due to a passive close.

If the buffer is not empty then there is data to write, so loseConnection overwrites

_onCompletion with a closure that tears down the connection following the same

process as described above. As with BuffersWrites, Transport._onCompletion is

called only when all bytes in our write buffer have been flushed to the underlying

socket. loseConnection’s use of _onCompletion thus ensures that the underlying

connection remains open until all data has been written. The default value of

_onCompletion is set in Transport’s initializer to a lambda with no effect. This

ensures mulitple calls to write can reuse the underlying connection. Together these

implementations of write and loseConnection implement the transport interface

required by Protocol.

Chapter 1 an IntroduCtIon to event- drIven programmIng wIth twIsted

31

Finally, activate activates the transport by:

 1. preparing the wrapped socket for non-blocking I/O;

 2. passing the Transport instance to its protocol via Protocol.

makeConnection;

 3. and finally registering the transport with the reactor.

This completes the Transport’s encapsulation of its socket by wrapping the

beginning of a connection’s life cycle, where the end is already encapsulated by

loseConnection.

Where Protocol allowed us to expand our focus and add behaviors to our

application via PingPongProtocol, Transport has narrowed it around the input-ouput

life cycle of sockets. The reactor – our event loop – detects and dispatches events from

their originating sockets, while the protocol contains our desired event handlers. The

Transport mediates by translating socket events to protocol method calls and enforcing

control flow between these method calls; for example, it ensures that a protocol’s

makeConnection is called at the beginning of its life and loseConnection at the end. This

is another improvement over our ad hoc client-server example; we have localized control

flow around the sockets entirely within Transport, instead of spread out over unrelated

functions and objects.

 Clients and Servers with Protocols and Transports
We can show the generality of Transport by defining a subtype, Listener, that accepts

incoming connections and associate them with a unique PingPongProtocol instance:

class Listener(Transport):

 def activate(self):

 self._reactor.addReader(self)

 def doRead(self):

 server, _ = self._socket.accept()

 protocol = PingPongProtocol("Server")

 Transport(self._reactor, server, protocol).activate()

A listening socket emits no writable events, so we override activate to only add

the transport as a reader. Our readable event handler, doRead, must accept a new client

connection and protocol, then tie the two together with an activated Transport.

Chapter 1 an IntroduCtIon to event- drIven programmIng wIth twIsted

32

The stage is now set for a client-server example powered by protocols and transports:

listenerSock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

listenerSock.bind(('127.0.0.1',0))

listenerSock.listen(1)

clientSock = socket.create_connection(listenerSock.getsockname())

loop = Reactor()

Listener(loop, listenerSock, None).activate()

Transport(loop, clientSock, PingPongProtocol("Client", maximum=100)).

activate()

loop.run()

The two will exchange single bytes until the client receives its maximum of 100, after

which the client closes the connection:

Server wrote a byte

Client wrote a byte

Wrote 1 bytes

Server wrote a byte

Wrote 1 bytes

Client wrote a byte

Wrote 1 bytes

Server wrote a byte

Wrote 1 bytes

Client wrote a byte

Wrote 1 bytes

Server wrote a byte

Server wrote a byte

Client is closing the connection

Client lost the connection: None

Server lost the connection: None

Chapter 1 an IntroduCtIon to event- drIven programmIng wIth twIsted

33

 Twisted and Reactors, Protocols, and Transports
We’ve come a long way: starting with select, we worked our way up to a set of interfaces

around an event loop and its handlers that cleanly partition responsibilities. Our

Reactor drives our program, with Transports dispatching socket events to application-

level handlers defined on Protocols.

Our reactors, transports, and protocols are clearly toy implementations. For example,

socket.create_connection blocks, and we haven’t investigated any non-blocking

alternative. In fact, the underlying DNS resolution that create_connection implies

might itself block!

As concepts, however, they are ready for serious use. Reactors, transports, and

protocols are the foundation of Twisted’s event-driven architecture. As we’ve seen,

their architecture in turn rests upon the realities of I/O multiplexing and non-blocking,

enabling Twisted to operate efficiently.

Before we explore Twisted itself, however, we will consider our examples as a whole

to evaluate the strengths and weaknesses of event-driven programming.

 The Value of Event-Driven Programming
W. Richard Stevens’s admonishment regarding the complexity of non-blocking I/O

counts as an important criticism of the event-driven programming paradigm we’ve

explored. It is not the only shortcoming, however: our event-driven paradigm does not

perform well under high CPU loads.

The client-server example that wrote exponentially growing sequences of bytes

naturally consumed large amounts of memory, but it also consumed a significant

amount of CPU. The reason is the naivete of its buffer management: the socket simply

cannot accept chunks of data larger than a certain size. Every time we call send with

an amount as large or larger than that, the send call copies it into a memory location

controlled by the kernel. Some portion of the data is then written, which we then slice

off the buffer’s front; because bytes is immutable in Python, this implies another copy.

If we attempt to send N bytes, we will copy the buffer once, then twice, and again and

again up to N. Because each copy implies a traversal of the buffer, this process has a time

complexity of O(n2).

Twisted’s own buffering mechanisms perform better at the expense of complexity

beyond that appropriate to a readable introduction to event-driven programming.

Not all computationally demanding tasks are as easily improved, however: Monte

Chapter 1 an IntroduCtIon to event- drIven programmIng wIth twIsted

34

Carlo simulation must repeatedly perform statistical analysis and random samples; a

comparison-sorting algorithm must compare every pair of elements in a sequence; and

so on.

Our event-driven programs all execute multiple logical behaviors – we have a

client and a server communicating within one process. This communication happens

concurrently: the client side of the connection makes a small amount of progress

before pausing and allowing the server to make a small amount of progress. At no

point are the client and server operating in parallel, as they would in separate Python

interpreters, perhaps on separate computers linked by a network. When our naive buffer

management executes a lengthy copy, no progress can be made until this completes,

whereas if the client and server ran on separate computers, the server could accept

new connections while the client laboriously shuffled bytes around. If we were instead

running a computationally demanding algorithm in our process, our reactor could not

call select to discover new events to which to react until after the completion of this

algorithm.

Event-driven programming, then, is a poor match for computationally

demanding tasks. Fortunately, many tasks make greater demands on input and

output than computation. Network servers are a classic example of this; a chat

server might have many thousands of users, but only a small portion are active at

any time (and then usually not when you ask for help!). Event-driven programming

consequently remains a powerful paradigm in networking.

Event-driven programming has a particular strength that more than makes up for

this shortcoming: its emphasis on cause and effect. The generation of an event represents

a cause, while that event’s handler represents the desired effect.

We codified this division in Transport and Protocol: transports represent the

cause of actions – some input or socket output – while protocols encapsulate effects.

Our PingPongProtocol interacts with its transport via a clearly delineated interface that

exposes handlers to higher-level events – causes – such as the arrival of incoming bytes

or the end of a connection. It then produces effects from those causes, which might in

turn result in new causes, such as writing data to the transport. The distinction between

the two is enforced by the respective interfaces.

This means we can replace one transport with another and simulate the execution of

our protocol by calling the methods representing expected effects. This changes the core

of our client-server into a unit of testable code.

Chapter 1 an IntroduCtIon to event- drIven programmIng wIth twIsted

35

Consider a transport implementation built on BytesIOs that implements only the

Protocol’s side of the Transport interface:

import io

class BytesTransport(object):

 def __init__ (self, protocol):

 self.protocol = protocol

 self.output = io.BytesIO()

 def write(self, data):

 self.output.write(data)

 def loseConnection(self):

 self.output.close()

 self.protocol.connectionLost(None)

We can use this to write a unit test suite for our PingPongProtocol:

import unittest

class PingPongProtocolTests(unittest.TestCase):

 def setUp(self):

 self.maximum = 100

 self.protocol = PingPongProtocol("client", maximum=self.maximum)

 self.transport = BytesTransport(self.protocol)

 self.protocol.makeConnection(self.transport)

 def test_firstByteWritten(self):

 self.assertEqual(len(self.transport.output.getvalue()), 1)

 def test_byteWrittenForByte(self):

 self.protocol.dataReceived(b"*")

 self.assertEqual(len(self.transport.output.getvalue()), 2)

 def test_receivingMaximumLosesConnection(self):

 self.protocol.dataReceived(b"*" * self.maximum)

 self.assertTrue(self.transport.output.closed)

This test asserts the requirements we laid out for our PingPongProtocol without

setting up any sockets or performing any actual I/O. We can test the effect of our program

without the concrete causes. Instead, we simulate the readable event by calling our

Chapter 1 an IntroduCtIon to event- drIven programmIng wIth twIsted

36

protocol instance’s dataReceived method with bytes, while the protocol generates a

writable event by calling write on our bytes transport and a close request by calling

loseConnection.

Twisted strives to separate cause and effect. The most obvious benefit, as

demonstrated, is testability. Writing comprehensive tests for event-driven Twisted

programs is easier to do because of the fundamental division between protocols and

transports. Indeed, Twisted takes this distinction between responsibilities as a deep

lesson in design, resulting in its large and sometimes arcane lexicon. Making so many

things explicitly separate objects requires a wealth of names.

We are now ready to write an event-driven program with Twisted. We will encounter

the same design issues we did in our toy examples, and the experience of writing those

toys will elucidate the strategies Twisted offers for addressing those issues.

 Twisted and the Real World
We begin our exploration of Twisted with an implementation of our PingPongProtocol

client and server:

from twisted.internet import protocol, reactor

class PingPongProtocol(protocol.Protocol):

 def __init__ (self):

 self._received = 0

 def connectionMade(self):

 self.transport.write(b'*')

 def dataReceived(self, data):

 self._received += len(data)

 if self.factory._maximum is not None and self._received >= self.

factory._maximum:

 print(self.factory._identity, "is closing the connection")

 self.transport.loseConnection()

 else:

 self.transport.write(b'*')

 print(self.factory._identity,"wrote a byte")

Chapter 1 an IntroduCtIon to event- drIven programmIng wIth twIsted

37

 def connectionLost(self, exceptionOrNone):

 print(self.factory._identity,"lost the connection:",

exceptionOrNone)

class PingPongServerFactory(protocol.Factory):

 protocol = PingPongProtocol

 _identity = "Server"

 def __init__ (self, maximum=None):

 self._maximum = maximum

class PingPongClientFactory(protocol.ClientFactory):

 protocol = PingPongProtocol

 _identity = "Client"

 def __init__ (self, maximum=None):

 self._maximum = maximum

 listener=reactor.listenTCP(port=0,

 factory=PingPongServerFactory(),

 interface='127.0.0.1')

 address = listener.getHost()

 reactor.connectTCP(host=address.host,

 port=address.port,

 factory=PingPongClientFactory(maximum=100))

 reactor.run()

Our PingPongProtocol class is nearly identical to our toy implementation. There are

three changes:

 1. We inherit from twisted.internet.protocol.Protocol. This

class provides useful default implementations of important

functionality. At the time Twisted’s transports and protocols

were first designed, inheritance was a fashionable approach

to code reuse. The difficulties around public and private APIs

and separation of concerns have rightly led to a decline in its

popularity. A complete discussion of inheritance’s shortcomings

is beyond the scope of this chapter, but we do not recommend

writing new APIs that rely on inheritance!

Chapter 1 an IntroduCtIon to event- drIven programmIng wIth twIsted

38

 2. We have replaced makeConnection with connectionMade, which is

an event handler that Twisted calls when the underlying connection

is ready. Twisted’s Protocol class implements makeConnection

for us and leaves connectionMade as a stub that we can fill in. In

practice, we do not want to change the way a transport is associated

with a protocol, but we do often want code to run as soon as a

connection is ready. This handler provides a way to do so.

 3. The maximum number of bytes and the protocol’s identity are

no longer instance variables; instead, they’re attributes on a new

factory instance variable.

Protocol factories mediate the creation of protocols and their binding to transports.

This is our first example of how Twisted localizes responsibility to classes. Protocol

factories come in two basic flavors: server and client. As their names imply, one manages

the creation of server-side protocols, while the other manages the creation of client-side

protocols. Both create protocol instances by calling their protocol attribute with no

arguments. This is why PingPongProtocol’s initializer accepts no arguments.

PingPongServerFactory subclasses twisted.internet.protocol.Factory and sets

its _identity attribute to "Server." Its initializer accepts the reactor as an argument

and the optional maximum. It then relies on its superclass’s implementation to create

instances of its protocol – set at the class level to PingPongProtocol – and associate them

with itself. This is why PingPongProtocol instances has a factory attribute: Factory

creates it for us by default.

PingPongClientFactory subclasses twisted.internet.protocol.ClientFactory

and sets its _identity attribute to "Client." It is otherwise identical to

PingPongServerFactory.

Factories provide a convenient place to store state that is shared across all protocol

instances. Because protocol instances are unique to connections, they cease to exist

when the connections do, and cannot persist state on their own. Moving settings like our

maximum permissible value and our protocol client or server identity strings to their

factories thus follows a common pattern in Twisted.

The reactor exposes listenTCP and connectTCP methods that associate factories

with server and client connections. listenTCP returns a Port object whose getHost

method is analogous to socket.getsockname. Instead of returning a tuple, however,

it returns an instance of twisted.internet.address.IPv4Address, which in turn has

convenient host and port attributes.

Chapter 1 an IntroduCtIon to event- drIven programmIng wIth twIsted

39

Finally, we start the reactor by calling run, just like we did with our toy

implementation. We’re greeted with output that’s similar to what our toy

implementation printed:

Client wrote a byte

Server wrote a byte

Client wrote a byte

Server wrote a byte

Client wrote a byte

Server wrote a byte

Client wrote a byte

Server wrote a byte

Client is closing the connection

Client lost the connection: [Failure instance: ...: Connection was closed

cleanly.

]

Server lost the connection: [Failure instance: ...: Connection was closed

cleanly.

]

Leaving aside the Failure object passed to connectionLost, which we will

cover in our discussion of asynchronous programming in Twisted, this output

seems to demonstrate that our new implementation’s behavior matches our old

implementation’s.

We can do better than comparing outputs, however, by adapting our protocol test:

from twisted.trial import unittest

from twisted.test.proto_helpers import StringTransportWithDisconnection,

MemoryReactor

class PingPongProtocolTests(unittest.SynchronousTestCase):

 def setUp(self):

 self.maximum = 100

 self.reactor = MemoryReactor()

 self.factory = PingPongClientFactory(self.reactor,self.maximum)

 self.protocol = self.factory.buildProtocol(address.IPv4Address(

 "TCP","localhost",1234))

Chapter 1 an IntroduCtIon to event- drIven programmIng wIth twIsted

40

 self.transport = StringTransportWithDisconnection()

 self.protocol.makeConnection(self.transport)

 self.transport.protocol = self.protocol

 def test_firstByteWritten(self):

 self.assertEqual(len(self.transport.value()), 1)

 def test_byteWrittenForByte(self):

 self.protocol.dataReceived(b"*")

 self.assertEqual(len(self.transport.value()), 2)

 def test_receivingMaximumLosesConnection(self):

 self.protocol.dataReceived(b"*" * self.maximum)

 self.assertFalse(self.transport.connected)

Twisted has its own test infrastructure that we will cover in our discussion of

asynchronous programming; for now, we can treat SynchronousTestCase as equivalent

to the standard library’s unittest.TestCase. Our setUp method now constructs

a MemoryReactor fake, which stands in place of our real reactor. It passes this to

PingPongClientFactory and then constructs a PingPongProtocol client by calling

the buildProtocol method inherited from ClientFactory. This, in turn, requires an

address argument, for which we supply another fake. We then use Twisted’s built-in

StringTransportWithDisconnection, whose behavior and interface aligns with our toy

BytesTransport implementation. Twisted calls this a StringTransport because at the

time it was written, all released versions of Python had a default string type of bytes. In

a world with Python 3, StringTransport has become a misnomer because it must still

work in terms of bytes.

Our test methods adjust to StringTransportWithDisconnection’s interface: value

returns the written content, while connected becomes False when the protocol calls

loseConnection.

The Twisted implementation of a PingPongProtocol client and server makes the

similarities between Twisted and our example code clear: the reactor multiplexes events

from sockets and dispatches them via transports to protocols, which can then create new

events via their transports.

While this dynamic forms the heart of Twisted’s event-driven architecture and

informs its design decisions, it is relatively low level. Many programs never implement

their own Protocol subclasses. We turn next to a kind of event that underlies patterns

and APIs used directly in many Twisted programs.

Chapter 1 an IntroduCtIon to event- drIven programmIng wIth twIsted

41

 Events in Time
All the events we’ve seen so far originate from inputs, such as a user clicking a button or

new data arriving on a socket. Programs must often schedule actions to run at a point

in the future, separate from any input. Consider a heartbeat: every 30 seconds or so, a

network application will write a byte to its connections to ensure the remote end doesn’t

close them because of inactivity.

Twisted provides a low-level interface to schedule future actions via reactor.

callLater. We usually do not call this API directly, but will do so now to explain how it

works.

from twisted.internet import reactor

reactor.callLater(1.5, print,"Hello from the past.")

reactor.run()

reactor.callLater accepts a numeric delay and a callable. Any other positional or

keyword arguments are passed to the callable when it’s invoked. Running this program

will produce no output until approximately 1.5 seconds have passed, at which point

Hello from the past will appear.

reactor.callLater returns a DelayedCall instance that can be canceled:

from twisted.internet import reactor

call = reactor.callLater(1.5, print,"Hello from the past.")

call.cancel()

reactor.run()

This program emits no output, because the DelayedCall is canceled before the

reactor can run it.

Clearly reactor.callLater emits an event that indicates the specified time has

elapsed and runs the callable it receives as that event’s handler. The mechanism by

which this happens, however, is less clear.

Fortunately, the implementation is fundamentally simple and also makes it clear

why the delay is only approximate. Recall that select accepts an optional timeout

argument. When we wanted select to tell us immediately what events had been

generated and not wait for new ones, we called it with 0 as a timeout. We can now use

Chapter 1 an IntroduCtIon to event- drIven programmIng wIth twIsted

42

this timeout to multiplex time-based events in addition to socket-based ones: to ensure

that our DelayedCalls run, we can invoke select with a timeout equal to the delay of the

next DelayedCall that should be scheduled, that is, the one that is nearest in time.

Imagine a program that contains the following:

reactor.callLater(2, functionB)

reactor.callLater(1, functionA)

reactor.callLater(3, functionC)

reactor.run()

The reactor records the DelayedCall in a min-heap, sorted by the wall clock time it’s

scheduled to run:

def callLater(self, delay, f,*args,**kwargs):

 self._pendingCalls.append((time.time()+delay, f, args, kwargs)

 heapq.heapify(self._pendingCalls)

If the first reactor.callLater occurs at time t, and each call takes no time, then after

all three calls, pendingCalls would appear as follows:

[

 (t+1, <DelayedCall: functionA>),

 (t+2, <DelayedCall: functionB>),

 (t+3, <DelayedCall: functionB>),

]

Adding an element to a heap has a time complexity of O(log n), so repeated

callLater invocations have a total worst case time complexity of O(n log n). If the

reactor instead sorted _pendingCalls, repeated callLater invocations would take O(n)

* O(n log n) = O(n2).

Now, before the reactor enters select, it checks if there are any pending

DelayedCalls; if there are, it extracts the top element of the heap and uses the difference

between its target runtime and the current time as select’s timeout. Then, before

handling any socket events, it pops each element off the heap whose time has passed

and runs it, skipping canceled calls. If there are no pending DelayCalls, the reactor calls

select with a timeout of None, representing no timeout.

Chapter 1 an IntroduCtIon to event- drIven programmIng wIth twIsted

43

class Reactor(object):

 ...

 def run(self):

 while self.running:

 if self._pendingCalls:

 targetTime, _ = self._pendingCalls[0]

 delay=targetTime-time.time()

 else:

 targetTime = None

 r, w, _ = select.select(self.readers,self.writers, [], targetTime)

 now = time.time()

 while self._pendingCalls and (self._pendingCalls[0][0] <= now):

 targetTime, (f, args, kwargs) = heapq.heappop()

 if not call.cancelled:

 f(*args,**kwargs)

 ...

Of our three reactor.callLater calls, functionA’s has the shortest delay, and

thus sits at the top of the the pendingCalls heap. If our reactor’s run loop begins

immediately afterwards (i.e., also at time t), the delay variable will then be (t + 1) - t = 1,

and the select call will return no more than a second later. Now, time.time returns t +

1, so functionA’s DelayedCall, and thus functionA, runs. The DelayedCalls for both

functionB and functionC, however, still remain in the future, so the inner while loop

ends and the process begins again.

The implementation reveals why DelayedCalls do not run immediately after their

delay has elapsed: their invocation depends on their position in the pendingCalls heap

and how long the preceding DelayedCalls take to complete. If functionA took longer

than a second to run, functionB would run later than its deadline. This is especially

likely for DelayedCalls delayed for the same amount of time.

Chapter 1 an IntroduCtIon to event- drIven programmIng wIth twIsted

44

 Repeated Events with LoopingCall
reactor.callLater suffices to implement our heartbeat. We can define a function

that calls callLater with itself, and then start the indirection recursion by calling the

function directly once:

def f(reactor, delay)

 reactor.callLater(delay, f, reactor, delay)

f(reactor,1.0)

This works but only awkwardly. We cannot access the DelayedCall representing

the next call to f after the initial call to f, so we cannot easily cancel it if the other side

terminates the connection. We could track these calls by hand, but fortunately, Twisted

provides a convenient wrapper around callLater that handles all this for us: twisted.

internet.task.LoopingCall. Here’s a protocol that uses LoopingCall to implement its

heartbeat:

from twisted.internet import protocol, task

class HeartbeatProtocol(protocol.Protocol):

 def connectionMade(self):

 self._heartbeater = task.LoopingCall(self.transport.write, b"*")

 self._heartbeater.clock = self.factory._reactor

 self._heartbeater.start(interval=30.0)

 def connectionLost(self):

 self._heartbeater.stop()

class HeartbeatProtocolFactory(protocol.Factory):

 protocol = HeartbeatProtocol

 def __init__ (self, reactor):

 self._reactor = reactor

The protocol creates a new LoopingCall instance that will write a single asterisk

to the protocol’s transport as the connection is established. It then replaces the

LoopingCall’s clock with its factory’s reactor; as we’ll see soon, this indirection aids

testing. Finally, the protocol starts the LoopingCall with an interval of 30 seconds, so

that approximately every 30 seconds it will call transport.write with a single asterisk.

At what point does the LoopingCall begin counting 30 seconds? Does it count from 0, in

Chapter 1 an IntroduCtIon to event- drIven programmIng wIth twIsted

45

which case it should call its function right away, or does it count from 1, in which case it

should wait a full 30 seconds? The answer is up to the programmer. The second, optional

now argument to LoopingCall.start dictates whether the function should be called

as part of the call to start or after a full interval has passed. It defaults to True, so our

heartbeater will immediately write a single asterisk to the transport.

Retrieving the reactor from its factory makes HeartbeatProtocol as easy to test as

PingPongProtocol:

from twisted.trial import unittest

from twisted.internet import main, task

from twisted.test.proto_helpers import StringTransportWithDisconnection

class HeartbeatProtocolTests(unittest.SynchronousTestCase):

 def setUp(self):

 self.clock = task.Clock()

 self.factory = HeartbeatProtocolFactory(self.clock)

 self.protocol = self.factory.buildProtocol(address.IPv4Address(

 "TCP","localhost",1234))

 self.transport = StringTransportWithDisconnection()

 self.protocol.makeConnection(self.transport)

 self.transport.protocol = self.protocol

 def test_heartbeatWritten(self):

 self.assertEqual(len(self.transport.value()), 1)

 self.clock.advance(60)

 self.assertEqual(len(self.transport.value()), 2)

 def test_lostConnectionStopsHeartbeater(self):

 self.assertTrue(self.protocol._heartbeater.running)

 self.protocol.connectionLost(main.CONNECTION_DONE)

 self.assertFalse(self.protocol._heartbeater.running)

HeartbeatProtocolTest.setUp is nearly identical to PingPongProtocolTests.

setUp, except it uses twisted.internet.task.Clock instead of MemoryReactor. Clock,

as its name implies, provides an implementation of a reactor’s time-related interfaces.

Most importantly, it has a callLater method:

>>> from twisted.internet.task import Clock

>>> clock = Clock()

>>> clock.callLater(1.0, print,"OK")

Chapter 1 an IntroduCtIon to event- drIven programmIng wIth twIsted

46

Because they’re intended to be used in unit tests, Clock instances naturally have no

select loop of their own. We can simulate the expiration of a select timeout by calling

advance:

>>> clock.advance(2)

OK

test_heartbeatWritten calls advance to cause its protocol’s LoopingCall to write a

single byte. This is analogous to PingPongProtocolTests.test_byteWrittenForByte’s

call to its protocol’s dataReceived; both simulate the occurrence of events that the

reactor would have managed outside of these tests.

Twisted’s approach to event-driven programming depends on clearly delineated

interfaces like Protocol’s and Clock’s. So far, however, we have taken the nature of each

interface for granted: How can we know that Clock, or MemoryReactor, can replace the

real reactor in a test suite? We can answer this by exploring the tools that Twisted uses to

manage its interfaces.

 Event Interfaces with zope.interface
Twisted uses a package called zope.interface to formalize its internal interfaces,

including those that describe its event-driven paradigm.

Zope is a venerable but still active project that has produced several web application

frameworks, the oldest of which was first publicly released in 1998. Many technologies

originated in Zope and were factored out for use in other projects. Twisted uses Zope’s

interface package to define its interfaces.

A full explanation of zope.interface is beyond the scope of this book. However,

interfaces play an important role in testing and documentation, so we introduce

them by exploring the interfaces of the Twisted classes used in our preceding

examples.

We begin by asking an instance of Clock what interfaces it provides:

>>> from twisted.internet.task import Clock

>>> clock = Clock()

>>> from zope.interface import providedBy

>>> list(providedBy(clock))

[<InterfaceClass twisted.internet.interfaces.IReactorTime>]

Chapter 1 an IntroduCtIon to event- drIven programmIng wIth twIsted

47

First, we create an instance of Clock. We then retrieve providedBy from the zope.

interface package; because Twisted itself depends on zope.interface, it’s available for

us to use in an interactive session. Calling providedBy on our Clock instance returns an

iterable of the interfaces it provides.

Unlike interfaces in other languages, zope.interface’s interfaces can be

implemented or provided. Individual objects that conform to an interface provide it,

while things that create those interface-providing objects implement that interface. This

subtle distinction matches Python’s “duck typing.” An interface definition might describe

a call method and thus apply to a function object created with def or lambda. These

syntactic elements cannot be marked as implementers of our interface, but the function

objects themselves can be said to provide it.

An interface is a subclass of zope.interface.Interface that uses a special API to

describe required methods and their signatures as well as attributes. Here’s an excerpt

from the twisted.internet.interfaces.IReactorTime interface provided by our Clock:

class IReactorTime(Interface):

 """

 Time methods that a Reactor should implement.

 """

def callLater(delay, callable,*args,**kw):

 """

 Call a function later.

 @type delay: C{float}

 @param delay: the number of seconds to wait.

 @param callable: the callable object to call later.

 @param args: the arguments to call it with.

 @param kw: the keyword arguments to call it with.

 @return: An object which provides L{IDelayedCall} and can be used to

 cancel the scheduled call, by calling its C{cancel()} method.

 It also may be rescheduled by calling its C{delay()} or

 C{reset()} methods.

 """

Chapter 1 an IntroduCtIon to event- drIven programmIng wIth twIsted

48

Note that the callLater “method” has no self argument. This is a consequence of

the fact that interfaces cannot be instantiated. It also lacks a body, and instead satisfies

Python’s function definition syntax by providing only a docstring. Unlike abstract classes,

such as those provided by the standard library’s abc module, they also cannot include

any implementation code. Instead, they exist solely as markers that describe a subset of

an object’s functionality.

Zope provides a helper named verifyObject that throws an exception if an object

does not provide an interface:

>>> from zope.interface.verify import verifyObject

>>> from twisted.internet.interfaces import IReactorTime

>>> verifyObject(IReactorTime, clock)

True

>>> verifyObject(IReactorTime, object()))

Traceback (most recent call last):

 File"<stdin>", line1, in <module>

 ...

zope.interface.exceptions.DoesNotImplement: An object does not implement

interface<Interface

We can use this to confirm that the reactor provides the same IReactorTime interface

as a Clock instance:

>>> from twisted.internet import reactor

>>> verifyObject(IReactorTime, reactor) True

We’ll return to verifyObject later when we write our own interface

implementations. For now, though, it’s enough to know that we can replace the reactor

with a Clock instance anywhere we depend on IReactorTime.callLater. In general,

if we know what interface an object provides includes the methods or attributes we

depend on, we can replace that object with any other that provides the same interface.

While we can discover an object’s provided interfaces interactively with providedBy,

Twisted’s online documentation has special support for interfaces. Figure 1-2 depicts the

documentation for Clock on Twisted’s website.

Chapter 1 an IntroduCtIon to event- drIven programmIng wIth twIsted

49

The interfaces implemented by the Clock class are highlighted in the dotted

rectangle. Clicking on each one leads to that interface’s documentation, which includes

a list of all known implementers and providers. If you know what the object is, then you

can determine its interfaces by visiting its documentation.

We turn next to a problem whose solution in Twisted involves defining implementers

for interfaces.

 Flow Control in Event-Driven Programs
PingPongProtocol differs from the streaming protocol we wrote for our last non-Twisted

event-driven example: each side in PingPongProtocol writes a byte in response to a

received byte, whereas the streaming protocol had the client send increasingly large

sequences of bytes to the server, pausing its writes as the server became overwhelmed.

Adapting the rate at which the sender writes to match the rate at the recipient reads is

known as flow control.

When combined with event-driven programming, non-blocking I/O enables

us to write programs that can respond to many different events at any given time.

Synchronous I/O, as we saw with our streaming client protocol implemented in terms

Figure 1-2. twisted.internet.task.Clock documentation. The dashed box
highlights the link to the IReactorTime interface.

Chapter 1 an IntroduCtIon to event- drIven programmIng wIth twIsted

50

of sendall, pauses or blocks our program, preventing it from doing anything until

the I/O operation completes. While this makes concurrency more difficult, it makes

flow control much easier: a writer that outpaces its reader is simply paused by the

operating system until the reader accepts pending data. In the case of our streaming

client, this resulted in a deadlock, because the slow reader ran within the same

process that was paused for writing too quickly, and thus could never run to catch

up. The more common case has readers and writers run in separate processes, if not

on separate machines, and their synchronous, blocking I/O naturally provides flow

control.

It is rare, however, to encounter plain blocking I/O in network applications. Even the

simplest must manage two things at once for each connection: the communication of

data and timeouts associated with each I/O operation. Python’s socket module allows

programmers to set these timeouts on recv and sendall operations, but behind the

scenes this is implemented by calling select with a timeout!

We have the events necessary to implement flow control. select informs us of

writable events, while EAGAIN indicates that a socket’s send buffer is full, and thus

indirectly that the receiver is overwhelmed. We can compose these to pause and resume

writers and achieve flow control comparable to what blocking I/O provides.

 Flow Control in Twisted with Producers
and Consumers
There are two components in Twisted’s flow control system: producers and consumers.

Producers write data to consumers by calling a consumer’s write method. Consumers

wrap producers; each consumer can be associated with a single producer. This

relationship ensures the consumer has access to its producer, so that it can place

back pressure on it by calling certain methods on the producer to regulate the flow

of data. Common transports, such as the TCP transport bound to protocols like our

PingPongProtocol, can be both consumers and producers.

We explore the interaction between producers and consumers by reimplementing

our pre-Twisted streaming client example.

Chapter 1 an IntroduCtIon to event- drIven programmIng wIth twIsted

51

 Push Producers
We begin with the client’s producer:

from twisted.internet.interfaces import IPushProducer

from twisted.internet.task import LoopingCall

from zope.interface import implementer

@implementer(IPushProducer)

class StreamingProducer(object):

 INTERVAL=0.001

 def __init__ (self, reactor, consumer):

 self._data = [b"*", b"*"]

 self._loop = LoopingCall(self._writeData, consumer.write)

 self._loop.clock = reactor

 def resumeProducing(self):

 print("Resuming client producer.")

 self._loop.start(self.INTERVAL)

 def pauseProducing(self):

 print("Pausing client producer.")

 self._loop.stop()

 def stopProducing(self):

 print("Stopping client producer.")

 if self._loop.running:

 self._loop.stop()

 def _writeData(self, write):

 print("Client producer writing", len(self._data),"bytes.")

 write(b"".join(self._data))

 self._data.extend(self._data)

Our producer, StreamingProducer, implements twisted.internet.interfaces.

IPushProducer. This interface describes producers that continuously write data to their

consumer until it pauses them. The following methods on StreamingProducer satisfy the

IPushProducer interface:

• resumeProducing: This resumes or initiates the process of writing

data to the consumer. Because our implementation generates its

data by doubling a sequence of bytes after every write, it requires

Chapter 1 an IntroduCtIon to event- drIven programmIng wIth twIsted

52

some kind of loop to feed a continuous stream to its consumer. A

simple while loop would not work: without returning control to

the reactor, the program could not process new events until the

loop has terminated. An event-driven program such a web browser

would effectively pause its execution during a large file upload.

StreamingProducer avoids this by delegating the write loop to the

reactor via a LoopingCall instance, and so its resumeProducing

method starts that LoopingCall. The interval of one millisecond is

arbitrarily low. Our producer cannot write data any faster than that,

so the interval is a source of latency, and one millisecond minimizes

it acceptably.

• pauseProducing: This pauses the process of writing data to

the consumer. The consumer calls this to indicate it has been

overwhelmed and cannot accept more data. It suffices in our

implementation to stop the underlying LoopingCall. The

consumer may call resumeProducing later when the underlying

resource can accept more data. This cycle of resumeProducing and

pauseProducing calls constitutes flow control.

• stopProducing: This terminates the production of data. This

differs from pauseProducing because the consumer can never call

resumeProducing to receive more data after calling stopProducing.

Most obviously, it is called when a socket connection is closed.

StreamingProducer’s implementation only differs from its

pauseProducing method in that it must first check if the looping

call is running. This is because the consumer might request that no

further data be written while the producer is already paused. More

complicated push producers would perform additional clean up; for

example, a producer that streams data from a file would need to close

it here to release its resources back to the operating system.

Note that IPushProducer does not specify how its implementer writes data to a

consumer or even gets access to it. This makes the interface flexible, but also makes it

more difficult to implement. StreamingProducer follows a typical pattern by accepting

the consumer in its initializer. We’ll cover the full consumer interface shortly, but for

now, it’s enough to know that consumers must provide a write method.

Chapter 1 an IntroduCtIon to event- drIven programmIng wIth twIsted

53

We can test that StreamingProducer implements the intended behavior of an

IPushProducer:

from twisted.internet.interfaces import IPushProducer

from twisted.internet.task import Clock

from twisted.trial import unittest

from zope.interface.verify import verifyObject

class FakeConsumer(object):

 def __init__ (self, written):

 self._written = written

 def write(self, data):

 self._written.append(data)

class StreamingProducerTests(unittest.TestCase):

 def setUp(self):

 self.clock = Clock()

 self.written = []

 self.consumer = FakeConsumer(self.written)

 self.producer = StreamingProducer(self.clock,self.consumer)

 def test_providesIPushProducer(self):

 verifyObject(IPushProducer,self.producer)

 def test_resumeProducingSchedulesWrites(self):

 self.assertFalse(self.written)

 self.producer.resumeProducing()

 writeCalls = len(self.written)

 self.assertEqual(writeCalls,1)

 self.clock.advance(self.producer.INTERVAL)

 newWriteCalls = len(self.written)

 self.assertGreater(newWriteCalls, writeCalls)

 def test_pauseProducingStopsWrites(self):

 self.producer.resumeProducing()

 writeCalls = len(self.written)

 self.producer.pauseProducing()

 self.clock.advance(self.producer.INTERVAL)

 self.assertEqual(len(self.written), writeCalls)

Chapter 1 an IntroduCtIon to event- drIven programmIng wIth twIsted

54

 def test_stopProducingStopsWrites(self):

 self.producer.resumeProducing()

 writeCalls = len(self.written)

 self.producer.stopProducing()

 self.clock.advance(self.producer.INTERVAL)

 self.assertEqual(len(self.written), writeCalls)

FakeConsumer accepts a list to which each write call appends the data it received.

This allows the test suite to assert that StreamingProducer has called its consumer’s

write method when expected.

test_providesIPushProducer ensures that StreamingProducer defines the methods

required by IPushProducer. If it did not, this test would fail with zope.interface.

exceptions.DoesNotImplement. Tests like this that assert implementations satisfy their

interfaces are a useful high-pass filter in development and refactoring.

test_resumeProducingSchedulesWrites asserts that calling resumeProducing

implies writing data to the consumer, and that each time the specified interval

has passed, more data is written. test_pauseProducingStopsWrites and test_

stopProducingStopsWrites both assert the opposite: calling pauseProducing and

stopProducing prevent further writes from occurring after every interval has elapsed.

 Consumers
StreamingProducer emits data but has nowhere to put it. To complete our streaming

client, we need a consumer. StreamingProducer’s initializer makes it clear that the

consumer’s interface must provide a write method, and the overview indicated

that additional consumer methods managed interactions with producers. twisted.

internet.interfaces.IConsumer requires that implementers implement three methods:

• write: This accepts data from a producer. This is the only method

provided by FakeConsumer in our tests above, because it is the only

part of the IConsumer interface IPushProducer calls.

• registerProducer: This associates a producer with the consumer,

ensuring that it can call the producer’s resumeProducing and

pauseProducing to regulate the flow of data and stopProducing to

terminate it. This accepts two arguments: the producer and a streaming

flag. We will explain the purpose of this second argument later; for now,

it is enough to know that our streaming client will set this to True.

Chapter 1 an IntroduCtIon to event- drIven programmIng wIth twIsted

55

• unregisterProducer: This dissociates a producer from the

consumer. A consumer might accept data from multiple producers

throughout its lifetime; consider again a web browser, which might

upload multiple files over a single connection to a server.

It is no coincidence that both IConsumer implementers and transports both expose

write methods; as mentioned above, the TCP transport bound to connected protocols is

a consumer with which we can register a StreamingProducer instance. We can adapt our

PingPongProtocol example to register StreamingProducer with its underlying transport

upon a successful connection:

from twisted.internet import protocol, reactor

from twisted.internet.interfaces import IPushProducer

from twisted.internet.task import LoopingCall

from zope.interface import implementer

@implementer(IPushProducer)

class StreamingProducer(object):

 INTERVAL=0.001

 def __init__ (self, reactor, consumer):

 self._data = [b"*", b"*"]

 self._loop = LoopingCall(self._writeData, consumer.write)

 self._loop.clock = reactor

 def resumeProducing(self):

 print("Resuming client producer.")

 self._loop.start(self.INTERVAL)

 def pauseProducing(self):

 print("Pausing client producer.")

 self._loop.stop()

 def stopProducing(self):

 print("Stopping client producer.")

 if self._loop.running:

 self._loop.stop()

 def _writeData(self, write):

 print("Client producer writing", len(self._data),"bytes.")

 write(b"".join(self._data))

 self._data.extend(self._data)

Chapter 1 an IntroduCtIon to event- drIven programmIng wIth twIsted

56

class StreamingClient(protocol.Protocol):

 def connectionMade(self):

 streamingProducer = StreamingProducer(

 self.factory._reactor,self.transport)

 self.transport.registerProducer(streamingProducer,True)

 streamingProducer.resumeProducing()

class ReceivingServer(protocol.Protocol):

 def dataReceived(self, data):

 print("Server received", len(data),"bytes.")

class StreamingClientFactory(protocol.ClientFactory):

 protocol = StreamingClient

 def __init__ (self, reactor):

 self._reactor = reactor

class ReceivingServerFactory(protocol.Factory):

 protocol = ReceivingServer

listener = reactor.listenTCP(port=0,

 factory=ReceivingServerFactory(),

 interface='127.0.0.1')

address = listener.getHost()

reactor.connectTCP(host=address.host,

 port=address.port,

 factory=StreamingClientFactory(reactor))

reactor.run()

The StreamingClient protocol creates a StreamingProducer that it then

registers with its transport. As promised, the second argument to registerProducer

is True. Registering a producer does not automatically resume it, however, so we

must begin StreamingProducer’s write loop by calling resumeProducing. Note that

StreamingClient never calls stopProducing on its producer: transports calls this on

behalf of their protocols when the reactor signals a disconnection.

Running this produces output like the following:

Resuming client producer.

Client producer writing 2 bytes.

Server received 2 bytes.

Chapter 1 an IntroduCtIon to event- drIven programmIng wIth twIsted

57

Client producer writing 4 bytes.

Server received 4 bytes.

Client producer writing 8 bytes.

Server received 8 bytes.

...

Client producer writing 524288 bytes.

Pausing client producer.

Server received 65536 bytes.

Server received 65536 bytes.

Server received 65536 bytes.

Server received 65536 bytes.

Resuming client producer.

Client producer writing 1048576 bytes.

Pausing client producer.

...

Eventually the program will consume all available memory, constituting a successful

experiment in flow control.

 Pull Producers
A second producer interface exists: twisted.internet.interfaces.IPullProducer.

Unlike IPushProducer, it only writes to its consumer when its resumeProducing method

is called. This is the purpose of the second argument to IConsumer.registerProducer:

IPullProducers require that streaming be False. Don’t write IPullProducers! Most

transports behave like sockets and generate writable events that obviate the need for

a write loop like StreamingProducer’s. When data must be manually pumped out of a

source, it is easier to write and test a LoopingCall instead.

 Summary
We’ve seen how event-driven programming divides programs into events and their

handlers. Anything that happens to a program can be modeled as an event: input

from a user, data received over a socket, or even the passage of time. An event

loop uses a multiplexer to wait for any of the possible events to occur, running

Chapter 1 an IntroduCtIon to event- drIven programmIng wIth twIsted

58

the appropriate handlers for those that did. Operating systems provide low-level

interfaces, such as select, to multiplex network socket I/O events. Event-driven

network programming with select is most effective with non-blocking, which

generates events for operations like send and recv that indicate the program should

stop running an event handler.

The stop event – EAGAIN – emitted by non-blocking sockets results in complex

code without the right abstractions. Protocols and transports divide the program’s code

between causes and effects: transports translate read, write, and stop events into higher-

level causes that protocols can respond to, generating new events in turn. This division

of responsibility between protocols and transports allows implementing event handlers

that are easily tested by replacing transports with in-memory fakes. Later on, we’ll see

other practical benefits of the protocol-transport split.

Protocols, transports, and reactors – its name for event loops – are fundamental

to Twisted’s operation and inform its overall architecture. Twisted’s reactor can react

to non-I/O events, such as the passage of time. Testing these is no more difficult than

testing protocols because reactors, like transports, have in-memory fakes. Twisted

formalizes the interfaces that reactors and other objects must implement by means

of zope.interface. By determining what interfaces an object provides, it’s possible

to select a replacement suitable for testing that’s guaranteed to be equivalent because

it provides the same interfaces. Twisted’s online documentation makes discovering

interfaces easier than inspecting live objects in a Python session.

A practical use for interfaces comes in Twisted’s solution to something that event-

driven network programming makes difficult: flow control. IPushProducer and

IConsumer define a set of behaviors that allow the receiver of streaming data to pause the

source when it’s overwhelmed.

This introduction suffices to explain the core principles of event-driven

programming in Twisted. There’s much more, however: in the next chapter, we’ll learn

how Twisted eases event-driven programming further by allowing programs to work

with values that have yet to be computed.

Chapter 1 an IntroduCtIon to event- drIven programmIng wIth twIsted

59
© Mark Williams, Cory Benfield, Brian Warner, Moshe Zadka, Dustin Mitchell, Kevin Samuel, Pierre Tardy 2019
M. Williams et al., Expert Twisted, https://doi.org/10.1007/978-1-4842-3742-7_2

CHAPTER 2

An Introduction to
Asynchronous
Programming with
Twisted
The previous chapter derived Twisted’s event-driven architecture from first principles.

Twisted programs, like all event-driven programs, make concurrency easier at the

expense of making data flow control more difficult. An event-driven program does not

automatically have its execution suspended by blocking I/O when it sends more data

than a receiving party can handle. It is the program’s responsibility to determine when

this occurs and how to deal with it.

The way data flows between communicating parties also affects the way that it flows

within a single program. As a result, the strategies for composing different components of

an event-driven applications differ from those used in blocking programs.

 Event Handlers and Composition
Consider a program that is not event-driven and uses blocking I/O to perform a network

operation:

def requestField(url, field):

 results = requests.get(url).json()

 return results[field]

60

requestField retrieves a URL with the requests HTTP library, decodes the

response’s body as JSON, and then returns the value of the requested field property

from the resulting dictionary. requests uses blocking I/O, so a call to requestField

pauses the entire program until the network operations required by the HTTP request

complete. The function can thus assume that before it returns, results will be available

for manipulation. Callers of this function can make the same assumption because

requestField will block them until it has computed its result:

def someOtherFunction(...):

 ...

 url = calculateURL(...)

 value = requestField(url, 'someInteger')

 return value + 1

x = someOtherFunction(...)

Neither someOtherFunction nor the top-level x assignment can finish until

requestField has retrieved the URL and extracted the value for the someInteger

property from the JSON response. This is a kind composition: someOtherFunction

invokes requestField to complete part of its own execution. We can make this clearer

with explicit function composition:

def someOtherFunction(value):

 return value + 1

x = someOtherFunction(requestField(calculateURL(...), 'someInteger'))

This code replaces someOtherFunction’s local variables with nested function calls,

but is otherwise equivalent.

Function composition is a fundamental tool for organizing programs. It allows a

program to be factored, or split into separate units that form a whole whose behave

exactly matches the non-factored version. This improves readability, reusability, and

testability.

Unfortunately, event handlers cannot be composed like someOtherFunction,

requestField, and calculateURL. Consider a hypothetical, non-blocking version of

requestField:

def requestField(url, field):

 ??? = nonblockingGet(url)

Chapter 2 an IntroduCtIon to asynChronous programmIng wIth twIsted

61

What could replace the ??? in a non-blocking version of requestField? This is a

difficult question to answer because nonblockingGet does not suspend the program’s

execution to complete the network operations that constitute an HTTP request to url;

instead, an event loop outside requestField multiplexes readable and writable events,

calling event handlers to send and receive data as soon as it becomes possible to do so.

There is not an obvious way to return the event handlers' value from our hypothetical

nonblockingGet function.

Fortunately, by representing event handlers as functions, we can use the

generality of function composition to factor an event-driven program into separate

components. Let’s assume that the hypothetical nonblockingGet function itself

accepts an event handler function as an argument that it invokes when the request’s

completion event occurs. This higher-level event would be synthesized out of lower-

level events, analogous to the way that we saw transports emit a connectionLost

event for the sake of their protocols in Chapter 1. We can then rewrite requestField

to take advantage of this new argument:

def requestField(url, field):

 def onCompletion(response):

 document = json.loads(response)

 value = response[field]

 nonblockingGet(url, onCompletion=onCompletion)

onCompletion is a callback, or a callable object passed as an argument to some

other callable that performs some desired operation. When that operation completes,

the callback is called with some pertinent argument or arguments. In this case,

nonblockingGet invokes its onCompletion callback when its HTTP request resolves to a

complete response object. We saw an equivalent onCompletion callback in the previous

chapter’s BuffersWrites implementation; there, it was invoked when all buffered data

had been written to the socket.

Callbacks compose internally where other functions, like our someOtherFunction

example above, compose externally; values are made available to callbacks within the

execution of the callable that achieves the desired result, instead of being returned from

that callable.

Chapter 2 an IntroduCtIon to asynChronous programmIng wIth twIsted

62

In the same way that nonblockingGet factors out the event-driven HTTP request

code, requestField can factor out the way the extracted field is used by accepting its

own callback. We’ll have requestField accept a useField callback, and then have the

onCompletion callback invoke it:

def requestField(url, field, useField):

 def onCompletion(response):

 document = json.loads(response)

 value = response[field]

 useField(value)

 nonblockingGet(url, onCompletion=onCompletion)

We can pass someOtherFunction as the useField callback to write an event-driven

program that’s equivalent to our blocking I/O version:

def someOtherFunction(useValue):

 url = calculateURL(...)

 def addValue(value):

 useValue(value + 1)

 requestField(url,"someInteger", useField=addValue)

someOtherFunction in turn must also compose internally by accepting its own

callback, in contrast to calculateURL that composes externally as before. This callback-

driven approach suffices to write any program; in fact, in the study of computer science,

callbacks can be refined into control-flow primitives called continuations and used in a

technique called continuation-passing style, in which functions terminate by invoking

their continuations with a result. Continuation-passing style has been used in various

language compilers to enable program analyses and optimizations.

Despite the theoretical power of continuation-passing style, it is awkward to read and

write. Furthermore, external composition – as with requestField and calculateURL –

and internal composition – as with requestField and useField – do not obviously

compose with each other. It is difficult, for example, to imagine how calculateURL could

be passed as a callback. Finally, error handling is a critical causality; imagine how we

would handle exceptions in continuation-passing style! We have intentionally omitted

any error handling in this example to keep the code short enough to read.

Fortunately, asynchronous programming provides a powerful abstraction that eases

the composition of event handlers and addresses these problems.

Chapter 2 an IntroduCtIon to asynChronous programmIng wIth twIsted

63

 What Is Asynchronous Programming?
Our initial implementation of requestField is synchronous because the entire

program’s execution linearly progresses with the passage of time. For example, given

two calls to request.get, the first will complete before the second. Synchronous

programming is a common paradigm that is congruent with blocking I/O. Most

programming languages, including Python, default to synchronous operations that are

enabled by blocking I/O.

The continuation-passing style of our event-driven requestField is a kind

of asynchronous programming: while the logical flow through nonblockingGet’s

callbacks is paused until the necessary data becomes available, the overall program’s

execution continues. The executions of two separate nonblockingGet invocations

will interleave without any guaranteed order to their completion; beginning one

earlier than the other does not ensure that it will finish first. This is the definition of

concurrency.

An event-driven program that utilizes non-blocking I/O is necessarily asynchronous,

because all I/O operations proceed on the basis of events that can arrive at any time

and in any order. It’s important to note that an asynchronous program does not require

event-driven I/O; different platforms provide I/O and scheduling patterns based on

fundamentally different primitives. Windows, for example, provides I/O Completion

Ports (IOCP), which inform programs of the completion of a requested operation, not

the opportunity to perform an operation. For example, a program that requests the IOCP

infrastructure perform a read on a socket will be notified when and with what data the

read completes. Twisted has some support for this in the form of its IOCP reactor, but

for our purposes, we can understand asynchronous programming as a consequence of

the event-driven paradigm’s disjointed and piecemeal execution in the same way that

synchronous programming is a consequence of blocking I/O.

 Placeholders for Future Values
Callbacks in event-driven programs obscure control flow because they compose

internally; rather than returning a value to their caller, they forward results to callbacks

they received as arguments. This results in a mix of application logic and control flow

that makes refactoring difficult, and a disconnection between the point where errors

occur and the code that is interested in them.

Chapter 2 an IntroduCtIon to asynChronous programmIng wIth twIsted

64

Introducing an object that represents a value that has yet to be calculated allows

callbacks to be composed externally. Consider how our non-blocking requestField

example changes when it’s allowed to return this kind of placeholder:

def requestField(url, field):

 def onCompletion(response):

 document = json.load(response)

 return jsonDoc[field]

placeholder = nonblockingGet(url)

return placeholder.addCallback(onCompletion)

nonblockingGet now returns a placeholder that is not the response, but rather a

container into which the response will be placed when it’s ready. A container with

no operations would not provide much benefit, so this placeholder accepts callbacks

it invokes when its value is ready. Instead of passing the onCompletion directly to

nonblockingGet, we attach it as a callback to the placeholder nonblockingGet returns.

The internal onCompletion callback’s implementation can now return a value – the

extracted field from the JSON document – which will become available as the argument

to subsequent callbacks.

requestField can now transitively eliminate its own callback argument and return

the placeholder to someOtherFunction, which can add its own callback:

def someOtherFunction(...):

 url = calculateURL(...)

 def addValue(value)

 return value + 1

 placeholder = requestField(url,"someInteger")

 return placeHolder.addCallback(addValue)

Our placeholder value has not eliminated callbacks entirely. Instead, it provides a

control-flow abstraction that localizes callbacks to their originating scope, so that they

can be composed externally. This becomes clearer when multiple callbacks process an

asynchronous result. Consider the following internally composed callbacks:

def manyCallbacks(url, useValue, ...):

 def addValue(result):

 return divideValue(result + 2)

Chapter 2 an IntroduCtIon to asynChronous programmIng wIth twIsted

65

 def divideValue(result):

 return multiplyValue(result // 3)

 def multiplyValue(result):

 return useValue(result * 4)

 requestField(url, "someInteger", onCompletion=addValue)

Control flows from addValue to divideValue and finally exits from multiplyValue

into the useValue callback provided by manyCallbacks’s caller. Changing the order of

the three internal callbacks would require rewriting each one. A placeholder object,

however, moves that order out of each callback:

def manyCallbacks(url, ...):

 def addValue(result):

 return result + 2

 def divideValue(result):

 return result // 3

 def multiplyValue(result):

 return result * 4

placeholder = requestField(url, "someInteger")

placeholder.addCallback(addValue)

placeholder.addCallback(divideValue)

placeholder.addCallback(multiplyValue)

return placeholder

divideValue no longer depends directly on multiplyValue, so it can be moved

before multiplyValue or even removed without changing it or multiplyValue.

The actual composition of callbacks happens within the placeholder object, the

core implementation of which is fundamentally simple. We’ll name our placeholder

class Deferred because it represents a deferred value – one that is not yet ready:

class Deferred(object):

 def __init__ (self):

 self._callbacks = []

 def addCallback(self, callback):

 self._callbacks.append(callback)

 def callback(self, result):

 for callback in self._callbacks:

 result = callback(result)

Chapter 2 an IntroduCtIon to asynChronous programmIng wIth twIsted

66

The creator of the Deferred instance invokes callback with the result when it

becomes available. Each callback is invoked with the current result, and its return value

becomes the result passed to the next callback. This is how the onCompletion above can

change the HTTP response into only JSON field of interest.

The control flow imposed by Deferred’s for loop suffices to invoke each callback

in turn, but cannot handle exceptions any better than internally composed callbacks.

Addressing this requires adding some kind of branching logic to detect and reroute

exceptions to their destinations.

 Asynchronous Exception Handling
Synchronous Python code handles exceptions with try and except:

def requestField(url):

 response = requests.get(url).content

 try:

 return response.decode('utf-8')

 except UnicodeDecodeError:

 # Handle this case

A callback added to a Deferred via its addCallback method runs when no exception

occurs, and thus is the asynchronous equivalent of the try block. We can add error

handling by introducing an analogous callback for the except block that accepts the

exception raised as its argument. A callback like this that is invoked with an exception is

known as an errback.

Synchronous code can choose to let an exception travel upward to its caller

by omitting try and except. Deferred’s control flow, however, would allow an

exception raised by a callback to move up from the for loop and back to the invoker

of Deferred.callback. That would be the wrong place to put exception handling

because the code that provides the Deferred with a value cannot know the error

handling behavior intended by the code that added its callbacks. Encapsulating this

error handling inside errbacks that we pass to Deferreds allows those Deferreds

to invoke them at the right time instead of troubling the invoker of Deferred.

callback.

Chapter 2 an IntroduCtIon to asynChronous programmIng wIth twIsted

67

At each step in the callback chain, then, the loop must catch any exception and

forward it to the next errback. Because each step may call either a callback or an errback,

our callbacks list will change to contain (callback, errback) pairs:

def passthrough(obj):

 return obj

class Deferred(object):

 def __init__ (self):

 self._callbacks = []

 def addCallback(self, callback):

 self._callbacks.append((callback, passthrough))

 def addErrback(self, errback):

 self._callbacks.append((passthrough, errback))

 def callback(self, result):

 for callback, errback in self._callbacks:

 if isinstance(result,BaseException):

 handler = errback

 else:

 handler = callback

 try:

 result = handler(result)

 except BaseExceptionas e:

 result = e

Each iteration of the loop inspects the current result. Exceptions are passed

to the next errback, while everything else is passed to the next callback as it was

before. Any exception raised by either an errback or callback becomes a result to

be handled by the errback that comes next in the chain. This makes the following

Deferred code:

someDeferred = Deferred()

someDeferred.addCallback(callback)

someDeferred.addErrback(errback)

someDeferred.callback(value)

Chapter 2 an IntroduCtIon to asynChronous programmIng wIth twIsted

68

equivalent to this synchronous code:

try:

 callback(value)

except BaseExceptionas e:

 errback(e)

Errbacks propagate exceptions by returning them and suppress them by returning

any value that is not an exception. The following Deferred code filters out ValueErrors

while letting all other exceptions propagate to the next errback:

def suppressValueError(exception):

 if not isinstance(exception, ValueError):

 return exception

someDeferred.addErrback(suppressValueError)

suppressValueError implicitly returns None when isinstance(exception,

ValueError) evaluates to True, so the exception check in Deferred’s callback

loop passes None to the next callback. Every other exception returns out of

suppressValueError, into the for loop, and on to the next errback. The total effect is

equivalent to the following synchronous code:

try:

 callback(value)

except ValueError:

 pass

A convenient consequence of Deferred’s new control flow becomes apparent when

we consider the two places it can encounter exceptions:

 1. Any callback in a Deferred’s list of callbacks might raise an

exception. For example, a bug in our manyCallback function’s

sequence of callbacks might result in addValue returning None, in

which case divideValue would raise a TypeError.

 2. The code that would pass the actual value to a Deferred’s

callback method might instead raise an exception. Imagine,

for example, that nonblockingGet attempts to decode the

HTTP response’s body as UTF-8 and call back a Deferred with

Chapter 2 an IntroduCtIon to asynChronous programmIng wIth twIsted

69

the result. If the body contains non-UTF-8-byte sequences, a

UnicodeDecodeError would be raised. Such an exception means

that the actual value can never be computed, an error condition of

which the Deferred’s errbacks should be aware.

Deferred now handles both cases; the first is clearly addressed by running each

callback and errback inside a try block, while the second can be handled by catching

and forwarding the exception to Deferred.callback. Consider an HTTP protocol

implementation that attempts to invoke a Deferred’s callback with a UTF-8 decoded

response body:

class HTTP(protocol.Protocol):

 def dataReceived(self, data):

 self._handleData(data)

 if self.state == "BODY_READY":

 try:

 result = data.decode('utf-8')

 except Exceptionas e:

 result = e

 self.factory.deferred.callback(e)

class HTTPFactory(protocol.Factory)

 protocol = HTTP

 def __init__ (self, deferred):

 self.deferred = deferred

def nonblockingGet(url):

 deferred = Deferred()

 factory = HTTPFactory(deferred)

 ...

 return deferred

This works because Deferred’s for loop begins each iteration by checking the nature

of the current result. The first time through the loop, the result is whatever the caller

provided callback; in the event of encoding Exception, the above code provides that

exception to callback instead.

Chapter 2 an IntroduCtIon to asynChronous programmIng wIth twIsted

70

Exception handling can now be localized in errbacks just as application logic was

localized in callbacks. This allows us to translate from synchronous to asynchronous

exception control flow. This code:

def requestField(url, field):

 results = requests.get(url).json()

 return results[field]

def manyOperations(url):

 result = requestField(url, field)

 try:

 result += 2

 result //= 3

 result *= 4

 except TypeError:

 return -1

 return result

becomes this code:

def manyCallbacks(url):

 def addValue(result):

 return result + 2

 def divideValue(result):

 return result // 3

 def multiplyValue(result):

 return result * 4

 def onTypeError(exception):

 if isinstance(exception,TypeError):

 return -1

 else:

 return exception

 deferred = requestField(url, "someInteger")

 deferred.addCallback(addValue)

 deferred.addCallback(divideValue)

 deferred.addCallback(multiplyValue)

 deferred.addErrback(onTypeError)

 return deferred

Chapter 2 an IntroduCtIon to asynChronous programmIng wIth twIsted

71

Twisted provides a Deferred implementation whose API is a superset of the one

shown here; as we’ll see in the next section, the real Deferred composes with itself and

provides additional features such as timeouts and cancellation. At its core, however, its

behavior matches our toy implementation.

 An Introduction to Twisted’s Deferred
The best way to get to know Twisted’s Deferred is to play with it in a Python session.

We’ll begin by importing it from twisted.internet.defer:

>>> from twisted.internet.defer import Deferred

 Callbacks
Like our toy implementation, twisted.internet.defer.Deferred’s addCallback

method accepts a callback to add to the instance’s callbacks list. Unlike our

implementation, Twisted’s also accepts positional and keyword arguments that will be

passed to the callback:

>>> d = Deferred()

>>> def cbPrint(result, positional, **kwargs):

... print("result =", result, "positional =", positional,

... "kwargs =", kwargs)

...

>>> d.addCallback(cbPrint, "positional", keyword=1) is d

True

>>> d.callback("result")

result = result positional = positinal, kwargs = {'keyword': 1}

We create a Deferred named d, add cbPrint as a callback, then call back d with

"result". d passes this through to cbPrint as its first positional argument, while the

additional arguments to d.addCallback are passed as its remaining arguments.

Note that d.addCallback returns d itself, which allows chained expressions like

d.addCallback(...).addCallback(...).addCallback(...).

Chapter 2 an IntroduCtIon to asynChronous programmIng wIth twIsted

72

Now that d has now been called back with a value, it cannot be called back again:

>>> d.callback("whoops")

Traceback (most recent call last):

 File "<stdin>", line 1, in <module>

 File "site-packages/twisted/internet/defer.py", line 459, in callback

 self._startRunCallbacks(result)

 File "site-packages/twisted/internet/defer.py", line 560,

in _startRunCallbacks

 raise AlreadyCalledError

twisted.internet.defer.AlreadyCalledError

This is because Deferreds remember the value with which they’ve been called back:

>>> d2 = Deferred()

>>> d2.callback("the result")

<Deferred at 0x12345 current result: 'the result'>

The fact that Deferreds store results raises a question: What happens when a

Deferred with a result has a callback added to it?

>>> d2.addCallback(print)

the result

The print runs as soon as it’s added as a callback to d2. A Deferreds that has a result

immediately runs callbacks added to it. It’s tempting to imagine that Deferreds always

represent a value that is not yet available. Code that assumes this, however, is wrong and

a source of frustrating bugs. Consider the following:

class ReadyOK(twisted.internet.protocol.Protocol):

 def connectionMade(self):

 someDeferred = someAPI()

 def checkAndWriteB(ignored):

 self.transport.write(b"OK\n")

 someDeferred.addCallback(checkAndWriteB)

 self.transport.write(b"READY\n")

As its name implies, this ReadyOK protocol should greet new connections with a

READY line, only writing OK and disconnecting when someAPI calls back its Deferred.

READY will appear before OK when someDeferred has not been called back until after

Chapter 2 an IntroduCtIon to asynChronous programmIng wIth twIsted

73

connectionMade returns, but this is not guaranteed; if someAPI returns someDeferred

with a result, then OK appears before READY. This reversal of the expected order of lines

would break clients that correctly required READY be sent first.

The solution in this case is to move self.transport.write(b"READY\n") before

someDeferred = someAPI(). You might need to similarly reorganize your own code to

ensure Deferreds with results do not violate invariants.

 Errbacks and Failures
Deferreds also have errbacks that handle exceptions raised by callbacks and the code

that calls provide Deferred.callback. We consider the first case first:

>>> d3 = Deferred()

>>> def cbWillFail(number):

... 1 / number

...

>>> d3.addCallback(cbWillFail)

<Deferred at 0x123456>

>>> d3.addErrback(print)

<Deferred at 0x123456>

>>> d3.callback(0)

[Failure instance: Traceback: <class 'ZeroDivisionError'>: division by zero

<stdin>:1:<module>

site-packages/twisted/internet/defer.py:459:callback

site-packages/twisted/internet/defer.py:567:_startRunCallbacks

--- <exception caught here> ---

site-packages/twisted/internet/defer.py:653:_runCallbacks

<stdin>:2:cbWillFail

]

The d3 Deferred has a callback that divides 1 by its argument and the built-in

print function as an errback, so any exception raised by the callback will appear in our

interactive session. Calling d3 back with 0 naturally produces a ZeroDivisionError,

but produces something else as well: a Failure instance. Note that Failure string

representation is wrapped in brackets ([. . .]). The errback printed a single failure, not a

list with one Failure!

Chapter 2 an IntroduCtIon to asynChronous programmIng wIth twIsted

74

Exception objects in Python 2 do not contain tracebacks or other information about

their origin. In an attempt to provide as much context as possible, Twisted introduced

Failures as a container type for asynchronous exceptions that records tracebacks. A

Failure constructed in an except block absorbs the active exception and its traceback:

>>> from twisted.python.failure import Failure

>>> try:

... 1 /0

... except:

... f = Failure()

...

>>> f

<twisted.python.failure.Failure builtins.ZeroDivisionError: division by

zero>

>>> f.value ZeroDivisionError('division by zero',)

>>> f.getTracebackObject()

<traceback object at 0x1234567>

>>> print(f.getTraceback())

Traceback (most recent call last):

--- <exception caught here> ---

 File "<stdin>", line 2, in <module>

builtins.ZeroDivisionError: division by zero

The Failure instance stores the actual exception object under its value attribute and

makes the traceback itself available in several different ways.

Failures also have convenience methods that ease interacting with them in

errbacks. The check method accepts multiple exception classes and returns the one

belonging to Failure’s exception or None:

>>> f.check(ValueError)

>>> f.check(ValueError, ZeroDivisionError)

<class 'ZeroDivisionError'>

Chapter 2 an IntroduCtIon to asynChronous programmIng wIth twIsted

75

Failure.trap behaves like check, except that it re-raises the Failure’s exception

if it does not match any provided exception class. This allows errbacks to replicate the

behavior of filtering except clauses:

>>> d4 = Deferred()

>>> def cbWillFail(number):

... 1 / 0

...

>>> def ebValueError(failure):

... failure.trap(ValueError):

... print("Failure was ValueError")

...

>>> def ebTypeErrorAndZeroDivisionError(failure):

... exceptionType = failure.trap(TypeError, ZeroDivisionError):

... print("Failure was", exceptionType)

...

>>> d4.addCallback(cbWillFail)

<Deferred at 0x12345678>

>>> d4.addErrback(ebValueError)

<Deferred at 0x12345678>

>>> d4.addErrback(ebTypeErrorAndZeroDivisionError)

<Deferred at 0x12345678>

>>> d4.callback(0)

Failure was <class 'ZeroDivisionError'>

ebValueError and ebTypeErrorAndZeroDivisionError together function like the two

except blocks in this synchronous code:

try:

 1/0

except ValueError:

 print("Failure was ValueError")

except (TypeError,ZeroDivisionError) as e:

 exceptionType = type(e)

 print("Failure was", exceptionType)

Chapter 2 an IntroduCtIon to asynChronous programmIng wIth twIsted

76

Finally, Deferreds can be provided a Failure or can synthesize one from the current

exception.

Calling back a Deferred with a Failure instance begins executing its errbacks.

someDeferred.callback(Failure()) is thus analogous to passing our toy

implementation’s callback an exception.

Deferreds also expose an errback method. Passing this a Failure instance has

the same effect as passing callback one; however, calling Deferred.errback with no

arguments constructs a failure, making it easy to capture an exception for asynchronous

handling:

>>> d5 = Deferred()

>>> d5.addErrback(print)

<Deferred at 0x12345678>

>>> try:

... 1/0

... except:

... d.errback()

...

[Failure instance: Traceback:< class 'ZeroDivisionError'>: division

by zero

---<exception caught here>---

<stdin>:2:<module>

]

 Composing Deferreds
Deferreds are a control-flow abstraction that enable the composition of callbacks

and errbacks. They also compose with themselves, so that a Deferred can wait on a

Deferred.

Consider a Deferred named outerDeferred with the following sequence of

callbacks, one of which returns innerDeferred, which has its own callbacks:

Chapter 2 an IntroduCtIon to asynChronous programmIng wIth twIsted

77

>>> outerDeferred = Deferred()

>>> def printAndPassThrough(result, *args):

... print("printAndPassThrough",

... " ".join(args), "received", result)

... return result

...

>>> outerDeferred.addCallback(printAndPassThrough, '1')

<Deferred at 0x12345678>

>>> innerDeferred = Deferred()

>>> innerDeferred.addCallback(printAndPassThrough, '2', 'a')

<Deferred at 0x123456789>

>>> innerDeferred.addCallback(printAndPassThrough, '2', 'b')

<Deferred at 0x123456789>

>>> def returnInnerDeferred(result, number):

... print("returnInnerDeferred #", number, "received", result)

... print("Returning innerDeferred...")

... return innerDeferred

...

>>> outerDeferred.addCallback(returnInnerDeferred, '2')

<Deferred at 0x12345678>

>>> outerDeferred.addCallback(printAndPassThrough, '3')

<Deferred at 0x12345678>

>>> outerDeferred.addCallback(printAndPassThrough, '4')

<Deferred at 0x12345678>

Calling back outerDeferred clearly invokes the printAndPassThrough callback with

an identifier 1, but what happens when control reaches returnInnerDeferred?

We can answer this with a visual representation of flow of execution in Figure 2-1.

Chapter 2 an IntroduCtIon to asynChronous programmIng wIth twIsted

78

The box labeled A represents the outerDeferred.callback('result') call that

starts outerDeferred’s callback loop, while the dotted and solid arrows show the flow of

execution and data respectively.

The first callback – printAndPassThrough with an identifier of 1 – receives 'result' as

its first argument and prints out a message. Because it returns 'result', outerDeferred

calls the next callback with that same object. returnInnerDeferred prints its identifier

and a message that it’s returning innerDeferred before doing so:

>>> outerDeferred.callback("result")

printAndPassThrough 1 received result

returnInnerDeferred 2 received result

Returning innerDeferred...

Figure 2-1. Execution and data flow between outerDeferred and
innerDeferred. Execution follows the dotted arrows, while the data flow follows
the solid arrows.

Chapter 2 an IntroduCtIon to asynChronous programmIng wIth twIsted

79

The callback loop inside outerDeferred detects that returnInnerDeferred has

returned a Deferred instead of an actual value, and pauses its own callback loop until

innerDeferred resolves to a value. The dotted arrow in Figure 2-1 shows that execution

has transferred to innerDeferred, as does outerDeferred’s repr:

>>> outerDeferred

<Deferred at 0x12345678 waiting on Deferred at 0x123456789>

The box labeled B represents the innerDeferred.callback('result') call that

resumes execution. Naturally, innerDeferred’s own callbacks, printAndPassThroughs

with identifiers 2 a and 2 b, now run.

Once innerDeferred has run all its callbacks, execution returns to outerDeferred’s

callback loop, where printAndPassThroughs 3 and 4 execute with the value returned by

innerDeferred’s last callback.

>>> innerDeferred.callback('inner result')

printAndPassThrough 2 a received inner result

printAndPassThrough 2 b received inner result

printAndPassThrough 3 received inner result

printAndPassThrough 4 received inner result

In effect, then, printAndPassThrough 3 and 4 became innerDeferred’s callbacks. If

any innerDeferred’s own callbacks returned Deferreds, its callback loop would pause in

the same way outerDeferred’s did.

The ability to return Deferreds from callbacks (and errbacks as well) allows

externally composing functions that return Deferreds:

def copyURL(sourceURL, targetURL):

 downloadDeferred = retrieveURL(sourceURL)

 def uploadResponse(response):

 return uploadToURL(targetURL, response)

 return downloadDeferred.addCallback(uploadResponse)

copyURL uses two hypothetical APIs: retrieveURL, which retrieves the contents

of a URL; and uploadToURL, which uploads data to a target URL. The uploadResponse

callback added to the Deferred returned by retrieveURL invokes uploadResponse

with the data from the source URL and returns the resulting Deferred. Remember

that a Deferred’s addCallback returns that same instance, so copyURL returns

downloadDeferred to its caller.

Chapter 2 an IntroduCtIon to asynChronous programmIng wIth twIsted

80

Users of copyURL wait first for the download and then for the upload as intended.

copyURL’s implementation composes the functions that return Deferreds in the same

way it composes callbacks without any special-purpose APIs.

The basic interface of Twisted’s Deferreds allows its users to compose callbacks,

errbacks, and Deferreds externally, easing the construction of asynchronous

programs.

Deferreds are not the only way that asynchronous programs can externally

compose their event handlers. In the nearly two decades since Twisted’s Deferreds were

introduced, Python has developed language-level mechanisms to suspend and resume

special types of functions.

 Generators and InlineCallbacks
 yield
Python has supported generators since version 2.5. Generators are functions and

methods that use a yield expression in their body. Calling a generator returns an

iterable generator object. Iterating over this executes the body of the generator until the

next yield expression, at which point execution pauses and the iterator evaluates to the

yield expression’s operand.

Consider the execution of the following generator:

>>> def generatorFunction():

... print("Begin")

... yield 1

... print("Continue")

... yield 2

...

>>> g = generatorFunction()

>>> g

<generator object generatorFunction at 0x12345690>

>>> result = next(g)

Begin

>>> result

1

Chapter 2 an IntroduCtIon to asynChronous programmIng wIth twIsted

81

generatorFunction returns a new generator object when called. Note that no

part of generatorFunction’s body has run yet. The built-in next function advances an

iterator; advancing the generator object g begins executing generatorFunction’s body,

outputting Begin into our interactive Python session. Execution pauses upon reaching

the first yield expression, and the value provided to yield becomes the next call’s

return value. Calling next again resumes executing the generator until it reaches the

second yield:

>>> nextResult = next(g)

Continue

>>> nextResult

2

Another call to next resumes the generator. This time its entire body has executed.

There are no further yields at which to pause so the generator object cannot provide

another value to a subsequent next call. In according with Python’s iteration protocol,

calling next on the generato object raises StopIteration to indicate that it has been

exhausted:

>>> next(g)

Traceback (most recent call last):

 File "<stdin>", line 1, in <module>

StopIteration

Generators thus follow the same API as any other iterator: values are returned

either by explicit calls to next like the ones above or by implicit ones like those in for

loops, while a StopIteration exception indicates that no more values can be returned.

However, generators implement more than just the iteration API.

 send
Generators can accept values as well as emit them. The yield operand can appear as the

right-hand side of an assignment statement. The yield expression at which a generator

is paused can be made to evaluate to something by passing that value to the generator’s

send method. Given the following yield expression in a generator gPrime:

def gPrime():

 a = yield 4

Chapter 2 an IntroduCtIon to asynChronous programmIng wIth twIsted

82

gPrime.send(5) causes the yield on the right-hand side of the assignment to

evaluate to 5, so that the code within the generator becomes equivalent to this:

def gPrime():

 a = 5

As a result, the generator-local variable a takes on the value 5. At the same time, the

gPrime().send(5) call advances the generator and evaluates to 4. Let’s explore send’s

control flow in more detail by examining a fully worked example and its visualization in

Figure 2-2.

>>> def receivingGenerator():

... print("Begin")

... x = 1

... y = yield x

... print("Continue")

... z = yield x + y

... print(x + y + z)

...

>>> g = receivingGenerator()

>>> result = next(g) # A Begin

>>> result

1

>>> nextResult = g.send(2) # B

Continue

>>> nextResult

3

>>> g.send(3) # C

6

Traceback (most recent call last):

 File "<stdin>", line 1, in <module>

StopIteration

Chapter 2 an IntroduCtIon to asynChronous programmIng wIth twIsted

83

We begin execution of receivingGenerator with next, the same way that we began

execution of generatorFunction; generators must always be started by iterating over

them once. The box marked A in Figure 2-2 indicates this initial call to next. As before,

g runs until pausing on its first yield expression, and this next call evaluates to that

yield’s operand. Because that operand is the local variable x, which was assigned 1, the

next call evaluates to 1. The black arrow out from yield x, through box A, traces the

value 1 as it leaves the generator through next.

Now that the generator has started we can resume it again with send, as indicated

by box B. g.send(2) passes the value 2 into the generator, which assigns it to the variable

y. Execution continues, past print("Continue"), until pausing on the next yield. The

operand here is the expression x + y, which evaluates to 3 and returns back through

g.send(2). The black arrow that travels from x + y through box B shows the exit path

taken by the result 3.

Calling g.send(3), represented by box C, sends 3 into the generator and resumes

execution again, printing x + y + z = 6 to the session. However, the generator cannot

pause its execution as it did before, because there are no further yield expressions

in receivingGenerator. Because generators follow the iteration protocol, they raise

StopIteration when exhausted; g.send(3) thus raises StopIteration instead of

evaluating to a value, as indicated in Figure 2-2 and demonstrated in the

example code.

Figure 2-2. Execution of and data flow into and out of receivingGenerator.
Execution moves downward, while the data flow follows the solid arrows.

Chapter 2 an IntroduCtIon to asynChronous programmIng wIth twIsted

84

 throw
Just as send allows passing values into generators, throw allows raising exceptions within

them. Consider the following code:

>>> def failingGenerator():

... try:

... value = yield

... except ValueError:

... print("Caught ValueError")

...

>>> tracebackG = failingGenerator()

>>> next(tracebackG)

>>> tracebackG.throw(TypeError())

Traceback (most recent call last):

 File "<stdin>", line 1, in <module>

 File "<stdin>", line 3, in failingGenerator

TypeError

>>> catchingG = failingGenerator()

>>> next(catchingG)

>>> catchingG.throw(ValueError())

Caught ValueError

Traceback (most recent call last):

 File "<stdin>", line 1, in <module>

StopIteration

failingGenerator wraps its yield expression in a try block whose except catches

ValueError and then prints a message. All other exceptions pass back to the caller.

We create a new generator by calling failingGenerator and naming it tracebackG.

We start things as usual with a call to next. Note that failingGenerator’s yield lacks an

operand; Python represents the absence of a value with None, so next evaluates to None

(interative Python sessions do not print None when it’s returned by a function). Inside the

generator the first yield itself evaluates to None, because next cannot not send any value

into the generator. As a result, g.send(None) is equivalent to next(g). This equivalence

will become significant when we look into coroutines.

Chapter 2 an IntroduCtIon to asynChronous programmIng wIth twIsted

85

Next, we throw TypeError into tracebackG via its throw method. The generator

is resumed at its yield expression, but instead of evaluating to a value, that yield

raises the TypeError passed by throw. The resulting traceback terminates inside

failingGenerator. What’s less clear from the traceback is that the TypeError rises back

up from tracebackG.throw. This makes sense: the throw call caused the resumption

of the generator, which in turn raised TypeError, and it’s natural that unhandled

exceptions return up the call stack.

A new generator named catchingG demonstrates what happens when

failingGenerator’s except block encounters a ValueError. As expected, the yield

raises the exception passed to throw, and as expected from Python’s exception

handling, the except block catches the ValueError and prints its message. However,

there are no further yields on which to pause the generator, so this time throw raises a

StopIteration indicating the exhaustion of failingGenerator.

 Asynchronous Programming with inlineCallbacks
Generators’ suspension and resumption of execution corresponds to Deferred’s

execution of callbacks and errbacks:

• A generator pauses its execution when it reaches a yield expression,

while a Deferred pauses its callbacks and errbacks when one returns

another Deferred;

• A paused generator can be resumed with a value via its send method,

while a Deferred waiting on another Deferred resumes executing its

callbacks when that Deferred resolves to a value;

• A paused generator can receive and catch an exception via its throw

method, while a Deferred waiting on another Deferred resumes

executing its errbacks when that Deferred resolves to an exception.

We can see these equivalences in action by comparing the following two code

examples:

def requestFieldDeferred(url, field):

 d = nonblockingGet(url)

 def onCompletion(response):

 document = json.load(response)

 return jsonDoc[field]

Chapter 2 an IntroduCtIon to asynChronous programmIng wIth twIsted

86

 def onFailure(failure):

 failure.trap(UnicodeDecodeError)

 d.addCallack(onCompletion)

 d.addErrback(onFailure)

 return d

 def requestFieldGenerator(url, field):

 try:

 document = yield nonblockingGet(url)

 except UnicodeDecodeError:

 pass

 document = json.load(response)

 return jsonDoc[field]

requestFieldDeferred attaches a callback to nonblockingGet’s response Deferred

that decodes the response as JSON and extracts a property, and an errback that

suppresses only UnicodeDecodeErrors.

requestFieldGenerator instead yields nonblockingGet’s Deferred. The generator

can then be resumed with the response when it becomes available, or an exception

if one occurs instead. Both the callback and errback have been moved into the same

scope that calls nonblockingGet. Moving a function’s body into its caller is known as

inlining.

We cannot use requestFieldGenerator as it is written: Python 2 does not allow

generators to return values, and we need a wrapper that accepts the yielded Deferred

and arranges to call the generator’s send or throw when that Deferred resolves to a value

or exception.

Twisted provides this wrapper in twisted.internet.defer.inlineCallbacks. It

decorates callables that return generators and invokes send and throw as each yielded

Deferred resolves to a value or Exception. In turn, callers that invoke the decorated

generator function or method receive a Deferred in lieu of a generator object. This

ensures that existing APIs that expect Deferreds work seamlessly with inlineCallbacks.

Here’s our requestFieldGenerator decorated with inlineCallbacks:

from twisted.internet import defer

@defer.inlineCallbacks

def requestFieldGenerator(url, field):

Chapter 2 an IntroduCtIon to asynChronous programmIng wIth twIsted

87

 try:

 document = yield nonblockingGet(url)

 except UnicodeDecodeError:

 pass

 document = json.load(response)

 defer.returnValue(jsonDoc[field])

def someCaller(url, ...):

 requestFieldDeferred = requestFieldGenerator(url,"someProperty")

 ...

The returnValue function throws a special exception that contains its argument;

inlineCallbacks catches this and arranges to call back requestFieldGenerator

with that value. A return statement in Python 3 raises an equivalent exception that

inlineCallbacks also catches, so returnValue is not necessary in code that will only

run under Python 3.

By bringing code back from callbacks and errbacks into a single local scope,

generators make asynchronous Twisted programs read as though they were

synchronous. Short programs especially benefit from the consequent reduction in

function definitions and clearer control flow.

Generators exchange familiarity for new difficulties. Most critically, it is impossible

for the caller of a generator function or method to know if the returned generator object

will use the value sent into it with send or silently ignore it. These two generators, for

example, offer the same interface:

def listensToSend():

 a = 1

 b = yield a

 print(a+b)

def ignoresSend():

 a = 1

 yield a

 print(a)

Accidentally replacing listensToSend with ignoreSend will lead to a subtle bug

that’s difficult to diagnose. Both are valid Python code that are appropriate in distinct

circumstances: listensToSend allows resumption with a value, making it suitable for

Chapter 2 an IntroduCtIon to asynChronous programmIng wIth twIsted

88

inlineCallbacks, while ignoreSend simply yields a value, as would befit a processing

pipeline that operates on lines in a file. These two distinct use cases are blurred by the

Python generator API.

Fortunately, recent versions of Python 3 provide new syntax tailor-made for

inlineCallbacks-style generators.

 Coroutines in Python
In computer science, generators are a special case of coroutines, which can suspend

themselves and pass execution on to any other coroutine, resuming when they receive

back a value. Our inlineCallbacks decorated generator resembles a coroutine in

that it can yield and receive values, but it unlike a coroutine, it cannot directly invoke

another generator as it would any other function. Instead, it needs the machinery

inside inlineCallbacks to hand off execution to another generator on its behalf. That

machinery, which manages requests to execute code and routes results back to their

requester, is known as a trampoline. To understand why, imagine execution as though it

were bouncing off inlineCallbacks between different generators.

 Coroutines with yield from
Python 3.3 introduced a new syntax that allows a generator to directly delegate its

execution to another generator: yield from. The following Python 3.3+- only code

demonstrates the behavior of a generator that yields from another generator:

>>> def e():

... a = yield 1

... return a + 2

...

>>> def f():

... print("Begin f")

... c = yield from e()

... print(c)

...

>>> g = f()

>>> g.send(None)

Chapter 2 an IntroduCtIon to asynChronous programmIng wIth twIsted

89

Begin f

1

>>> g.send(2)

4

Traceback (most recent call last):

 File "<stdin>", line 1, in <module>

StopIteration

The generator e behaves exactly as the generator functions described in the previous

section: if we called it, we would then start the returned generator by calling next on it

(or passing its send method None), which would return 1, the operand to its yield; we

could then pass values back into the generator with send, which would return either

the operand to the next yield expression or to the return statement (remember that

generators can return values in Python 3).

The generator g returned by f yields from a generator returned by e, pausing to allow

that sub-generator to execute. next, send, and throw calls issued against g are proxied

through to the underlying e generator, so that generator g appears to be an e generator.

In Figure 2-3, box A indicates the initial g.send(None) that begins execution of g.

Execution moves through f()’s yield from to a generator returned by e(), pausing on

the yield expression inside e’s body that sends 1 back to g.send(None).

A generator that delegates execution to another generator with yield from regains

control when that sub-generator terminates. Box B in Figure 2-3 represents the second

call to g.send(2) that passes the value 2 through the suspended f generator into the sub-

generator e, which resumes and assigns the 2 to variable a. Execution proceeds to the

return statement and the e sub-generator exits with a value of 4. Now f resumes on the

Figure 2-3. Execution of and data flow into and out of e and f. Execution moves
downward, while the data flow follows the solid arrows.

Chapter 2 an IntroduCtIon to asynChronous programmIng wIth twIsted

90

left-hand side of its yield from expression, and assigns the received 4 to variable c. After

the print call there’re no further yield or yield from expressions, so f() terminates,

causing g.send(2) raises a StopIteration error.

This syntax eliminates the need for a trampoline like inlineCallbacks to dispatch calls

from one generator to another, because it allows generators to directly delegate execution to

other generators. With yield from, Python generators behave like true coroutines.

 Coroutines async and await
Unfortunately, yield from still suffers from the same ambiguity that yield did:

generators that accept values and those that ignore them appear the same to calling

code. Versions of Python after 3.5 address this ambiguity by introducing new syntactic

features on top of yield from that distinguish coroutines: async and await.

When applied to a function or method definition, the async marker turns that

function or method into a coroutine:

>>> async def function(): pass

...

>>> c = function()

>>> c

<coroutine object function at 0x9876543210>

Coroutines, unlike generators, cannot be iterated over:

>>> list(function())

Traceback (most recent call last):

 File "<stdin>", line 1, in <module>

TypeError: 'coroutine' object is not iterable

>>> next(function())

Traceback (most recent call last):

 File "<stdin>", line 1, in <module>

TypeError: 'coroutine' object is not iterable

Like generators, coroutines have send and throw methods with which callers can

resume them:

>>> function().send(None)

Traceback (most recent call last):

Chapter 2 an IntroduCtIon to asynChronous programmIng wIth twIsted

91

 File "<stdin>", line 1, in <module>

StopIteration

>>> function().throw(Exception)

Traceback (most recent call last):

 File "<stdin>", line 1, in <module>

 File "<stdin>", line 1, in function

Exception

Coroutines can await other coroutines, with the same semantics as generators that

yield from other generators:

>>> async def returnsValue(value):

... return 1

...

>>> async def awaitsCoroutine(c):

... value = await c

... print(value)

...

>>> awaitsCoroutine(returnsValue(1)).send(None)

1

Traceback (most recent call last):

 File "<stdin>", line 1, in <module>

StopIteration

This behavior demonstrates the prerequisites to coroutine composition, but

awaiting something that immediately returns a value doesn’t motivate their use in

asynchronous programming. We need to be able to send an arbitrary value into a

paused coroutine, but because the purpose of async and await is to present an API that’s

incompatible with plain generators, we can neither await a plain generator, as we with

yield from, nor omit its operand, as with yield:

>>> def plainGenerator():

... yield 1

...

>>> async def brokenCoroutineAwaitsGenerator():

... await plainGenerator()

...

Chapter 2 an IntroduCtIon to asynChronous programmIng wIth twIsted

92

>>> brokenCoroutineAwaitsGenerator().send(None)

Traceback (most recent call last):

 File "<stdin>", line 1, in <module>

 File "<stdin>", line 2, in brokenCoroutineAwaitsGenerator

TypeError: object generator can't be used in 'await' expression

>>> async def brokenCoroutineAwaitsNothing():

... await

 File "<stdin>", line 2

 await

 ^

SyntaxError: invalid syntax

To learn how to resume coroutines with values, we return to yield from. Our previous

example provided yield from with another generator, so that calls to the wrapping

generator’s send and throw methods were proxied through to the inner generator. There

might have been many generators that each delegated execution to a successor via yield

from, but at the bottom there would have to be something that yields values upward.

Consider, for example, a stack of five generators, visualized in Figure 2-4.

>>> def g1(): yield from g2

...

>>> def g2(): yield from g3

...

>>> def g3(): yield from g4

...

>>> def g4(): yield from g5

...

>>> def g5(): yield 1

Figure 2-4. A stack of generators. g1 through g4 have delegated execution
downward to g5.

Chapter 2 an IntroduCtIon to asynChronous programmIng wIth twIsted

93

g1, g2, g3, and g4 cannot make any progress until g5 yields a value that will propagate

from g4 up to g1. g5 need not be a generator, however; as the following example

demonstrates, yield from merely requires an iterable object to advance its generator:

>>> def yieldsToIterable(o):

... print("Yielding from object of type", type(o))

... yield from o

...

>>> list(yieldsToIterable(range(3)))

Yielding from object of type <class 'range'>

[0, 1, 2]

yieldsToIterable delegates execution to its argument, which in this case is a

range object. Iterating over the yieldsToIterable generator by building a list out of it

demonstrates that the range object takes over iteration just as a generator would.

Coroutines defined with async def share their implementation with yield

from, and so with the proper steps, they too can await special kinds of iterables and

generators.

Contrary to what previous examples appeared to demonstrate, generators can

be awaited as long as they are marked as coroutines with the types.coroutine

decorator. A coroutine that awaits such a decorated generator receives that

generator’s return value:

>>> import types

>>> @types.coroutine

... def makeBase():

... return (yield "hello from a base object")

...

>>> async def awaitsBase(base):

... value = await base

... print("From awaitsBase:", value)

...

>>> awaiter = awaitsBase(makeBase())

>>> awaiter.send(None)

'hello from a base object'

>>> awaiter.send("the result")

From awaits base: the result

Chapter 2 an IntroduCtIon to asynChronous programmIng wIth twIsted

94

Traceback (most recent call last):

 File "<stdin>", line 1, in <module>

StopIteration

Starting the awaitsBase coroutine with send(None) jumps to the base generator’s

yield statement, and following the typical execution path for generators, returns "hello

from base object." Now the coroutine has delegated execution to base, so send("the

result") resumes base with that string. base immediately returns this value, which

causes the coroutine’s await to resolve to its value.

Iterable objects can also be awaited if they implement a special __await__ method

that returns an iterator. The final value of this iterator – that is, whatever it yields last or

wraps in a StopIteration exception – will become the result passed to await. An object

that conforms to this interface said to be future-like. When we explore asyncio later, we’ll

see that its Futures provide this interface and so grant it their name.

A simple implementation of a future-like object demonstrates the control flow:

class FutureLike(object):

 _MISSING="MISSING"

 def __init__(self):

 self.result = self._MISSING

 def __next__(self):

 if self.result is self._MISSING:

 return self

 raise StopIteration(self.result)

 def __iter__(self):

 return self

 def __await__(self):

 return iter(self)

async def awaitFutureLike(obj):

 result = await obj

 print(result)

obj = FutureLike()

coro = awaitFutureLike(obj)

assert coro.send(None) is obj

obj.result = "the result"

Chapter 2 an IntroduCtIon to asynChronous programmIng wIth twIsted

95

try:

 coro.send(None)

except StopIteration:

 pass

Instances of FutureLike are iterable because their __iter__ method returns an

object that itself has a __next__ method. In this case, iterating over a FutureLike

instance will produce that same instance over and over until its result attribute is set,

at which point it will raise a StopIteration exception containing that value. This is

equivalent to returning that value from a generator.

Instances of FutureLike are also future-like because their __await__ method returns

an iterator, so awaitFutureLike can await an instance of FutureLike. As usual, the

coroutine is started with send(None). This returns the FutureLike instance that the

awaitFutureLike coroutine awaits, which is the same instance we passed to it. Setting

the FutureLike object’s result attribute allows us to resume the coroutine by resolving

its await to a value, which receives the result, prints it, and then terminates with a

StopIteration exception.

Note that the second coro.send call also passes None to the coroutine. Coroutines

that await Future-like objects resolve to the last value provided by those object’s

iterators. They must still be resumed to make use of these values, but they necessarily

ignore the argument to their send method.

Twisted provides an awaitable object and a coroutine adapter so that coroutines and

existing APIs can interact seamlessly. As we’ve seen, coroutines are completely separate

from asyncio, so the Twisted APIs we discuss in this section are insufficient to integrate

the two. We’ll learn about the necessary additional APIs in a subsequent chapter.

 Awaiting Deferreds
As of Twisted 16.4.0, Deferreds are future-like objects providing conformant __next__,

__iter__, and __await__ methods. This allows us to replace FutureLike in the

preceding code with a Deferred:

from twisted.internet.defer import Deferred

async def awaitFutureLike(obj):

 result = await obj

 print(result)

Chapter 2 an IntroduCtIon to asynChronous programmIng wIth twIsted

96

obj = Deferred()

coro = awaitFutureLike(obj)

assert coro.send(None) is obj

obj.callback("the result")

try:

 coro.send(None)

except StopIteration:

 pass

awaiting a Deferred resolves to whatever the Deferred does after its normal

callback and errback processing loop:

>>> from twisted.internet.defer import Deferred

>>> import operator

>>> d = Deferred()

>>> d.addCallback(print, "was received by a callback")

<Deferred at 0x7eff85886160>

>>> d.addCallback(operator.add, 2)

<Deferred at 0x7eff85886160>

>>> async def awaitDeferred():

... await d

...

>>> g = awaitDeferred()

>>> g.send(None)

<Deferred at 0x7eff85886160>

>>> d.callback(1)

1 was received by a callback

>>> g.send(None)

Traceback (most recent call last):

 File "<stdin>", line 1, in <module>

 File "<stdin>", line 2, in awaitDeferred

 File "twisted/src/twisted/internet/defer.py", line 746, in send

 raise result.value

TypeError: unsupported operand type(s) for +: 'NoneType' and 'int'

Chapter 2 an IntroduCtIon to asynChronous programmIng wIth twIsted

97

Our Deferred’s print callback runs but returns None, causing its second callback

to fail with a TypeError when it attempts to add 2 to its first argument. The resumed

coroutine consequently fails with the TypeError stored in the Deferred.

In this case the composition of coroutines and Deferreds exposed a bug, but the

code paths exercised demonstrate that errors and data flow naturally between the two.

Awaitable Deferreds allow us to call Twisted APIs in our coroutines, but what if we

want Twisted APIs to use one of our coroutines?

 Coroutines to Deferreds with ensureDeferred
Twisted can wrap coroutines with Deferreds, allowing APIs that expect Deferreds to

accept coroutines instead.

twisted.internet.defer.ensureDeferred accepts a coroutine object and returns a

Deferred that will produce a result when the coroutine returns one:

>>> from twisted.internet.defer import Deferred, ensureDeferred

>>> async def asyncIncrement(d):

... x = await d

... return x + 1

...

>>> awaited = Deferred()

>>> addDeferred = ensureDeferred(asyncIncrement(awaited))

>>> addDeferred.addCallback(print)

<Deferred at0x12345>

>>> awaited.callback(1)

2

>>>

Chapter 2 an IntroduCtIon to asynChronous programmIng wIth twIsted

98

Our coroutine asyncIncrement awaits an object that resolves to a number,

then returns the sum of that number and 1. We convert this to a Deferred with

ensureDeferred, assign it to addDeferred, and then add a print callback to it. Calling

back the awaited Deferred on which asyncIncrement waits in turn calls back the

addDeferred Deferred returned by ensureDeferred, without our needing to call send.

In other words, addDeferred behaves the same as a manually constructed Deferred.

Exception propagation also works the same way:

>>>from twisted.internet.defer import Deferred, ensureDeferred

>>> async def asyncAdd(d):

... x = await d

... return x + 1

...

>>>awaited = Deferred()

>>>addDeferred = ensureDeferred(asyncAdd(awaited))

>>>addDeferred.addErrback(print)

Unhandled error in Deferred:

<Deferred at0x7eff857f0470>

>>>awaited.callback(None)

[Failure instance: Traceback:< class 'TypeError'>: ...

...

<stdin>:3:asyncAdd

]

Coroutines resemble synchronous code more closely than Deferred-managed

callbacks do, and Twisted makes it easy enough to use coroutines that you might wonder

if Deferreds are ever the trouble. One obvious answer is that they’re already used; lots

of Twisted code uses Deferreds, so even if you use them rarely, you’ll still need to be

familiar with them. Another reason that you might not use coroutines is that you must

write code that works on Python 2. This is becoming less of an issue as Python 2’s end of

life approaches, and things like PyPy, an alternate Python runtime whose Just In Time

(JIT) compiler can dramatically speed up pure Python code, expand their Python 3

support.

There are less obvious and more durable reasons, however, why Twisted’s Deferreds

remain valuable in a post-coroutine world.

Chapter 2 an IntroduCtIon to asynChronous programmIng wIth twIsted

99

 Multiplexing Deferreds
What happens if we want the result of two asynchronous operations, either one of which

might complete before the other? Suppose, for example, we write a program that issues

two HTTP requests simultaneously:

def issueTwo(url1, url2):

 urlDeferreds = [retrieveURL(url1), retrieveURL(url2)]

 ...

A coroutine would let us wait for each one in turn:

async def issueTwo(url1, url2):

 urlDeferreds = [retrieveURL(url1), retrieveURL(url2)]

 for d in urlDeferreds:

 result = await d

 doSomethingWith(result)

The reactor will progress in retrieving both url1 and url2 while issueTwo awaits

the completion of either; waiting for url1’s retrieval to complete does not prevent the

reactor from retrieving url2. This concurrency is indeed the point of asynchronous and

event-driven programming!

This efficiency becomes less important, however, as the operations become more

complicated. Imagine that we only wanted the URL that’s retrieved first. We cannot write

a fastestOfTwo coroutine only using await because we don’t know which to await first.

Only the reactor knows when the underlying events occur that indicate a coroutine’s

value is ready, and if we only had coroutines, the event loop would have to expose a

synchronization primitive that both simultaneously awaited multiple coroutines and

checked if all had completed.

Fortunately, multiple Deferreds can easily be multiplexed into a single Deferred

without a special reactor-level synchronization mechanism. At its simplest, a twisted.

internet.defer.DeferredList is a Deferred that accepts a list of Deferreds and calls

itself back when all those Deferreds have a value.

Consider the following code:

>>> from twisted.internet.defer import Deferred, DeferredList

>>> url1 = Deferred()

>>> url2 = Deferred()

Chapter 2 an IntroduCtIon to asynChronous programmIng wIth twIsted

100

>>> urlList = DeferredList([url1, url2])

>>> urlList.addCallback(print)

<Deferred at 0x123456>

>>> url2.callback("url2")

>>> url1.callback("url1")

[(True, "url1)", (True, "url2")]

The DeferredList urlList wraps the two url1 and url2 Deferreds and has as its

own callback a print function. That callback only runs after both url1 and url2 have

been called back, so urlList as written matches the all-or-nothing synchronization at

play in the issueTwo coroutine above.

The first clue to DeferredList’s greater feature set lies in the list it returns to its

callback. Each element is a tuple of length 2; the second element is clearly the value

of the Deferred at the same index in the passed-in list, so that index 0’s second tuple

member is "url1", corresponding to the url1 Deferred at index 0.

The first item in the tuple indicates whether or not the Deferred terminated

successfully. Both url1 and url2 resolved to strings and not Failures, so the

corresponding indices in the result list have True as their first element.

Causing at least one of a DeferredList’s Deferreds to fail demonstrates how

Failures are communicated:

>>> succeeds = Deferred()

>>> fails = Deferred()

>>> listOfDeferreds = DeferredList([succeeds, fails])

>>> listOfDeferreds.addCallback(print)

<Deferred at 0x1234567>

>>> fails.errback(Exception())

>>> succeeds.callback("OK")

[(True, 'OK'), (False, <twisted.python.failure.Failure builtins.Exception:

>)]

Now the second tuple in the returned list has False as its first element and a Failure

representing the Exception that caused its Deferred to fail as its second item.

This special list of (success, value or Failure) pairs retains all possible

information by using the traceback capturing facilities of Failures. As an example of the

flexibility that this approach enables, users of DeferredList can easily filter aggregate

results in a single callback.

Chapter 2 an IntroduCtIon to asynChronous programmIng wIth twIsted

101

With the basic behavior of DeferredList out of the way, we can investigate

additional features that will allow us to implement fastestOfTwo: fireOnOneCallback.

The fireOnOneCallback option instructs the DeferredList to call itself back when

any one of the Deferreds in its list has a value:

>>> noValue = Deferred()

>>> getsValue = Deferred()

>>> waitsForOne = DeferredList([noValue, getsValue], fireOnOneCallback=True)

>>> waitsForOne.addCallback(print)

<Deferred at 0x12345678>

>>> getsValue.callback("the value")

('the value', 1)

Now waitsForOne’s print callback runs when only the getsValue Deferred resolves

to a value. The value DeferredList passes to its callback is again a tuple of length 2, but

this time, the first item is the value the corresponding Deferred resolved to, while the

second item is its index in the list. getsValue was called back with "the value," and it

was the second item in the list we passed DeferredList, so the callback receives ("the

value," 1) as its result.

We can now implement fastestOfTwo:

def fastestOfTwo(url1, url2):

 def extractValue(valueAndIndex):

 value, index = valueAndIndex

 return value

 urlList = DeferredList([retrieveURL(url1), retrieveURL(url2)],

 fireOnOneCallback=True,

 fireOnOneErrback=True)

 return urlList.addCallback(extractValue)

DeferredList also allows analogous multiplexing of errors with fireOnOneErrback.

Firing the DeferredList on the first error and and unwrapping its value is a common

enough pattern that Twisted provides a convenient wrapper in twisted.internet.

defer.gatherResults:

>>> from twisted.internet.defer import Deferred, gatherResults

>>> d1, d2 = Deferred(), Deferred()

>>> results = gatherResults([d1, d2])

Chapter 2 an IntroduCtIon to asynChronous programmIng wIth twIsted

102

>>> results.addCallback(print)

<Deferred at 0x123456789>

>>> d1.callback(1)

>>> d2.callback(2)

>>> [1, 2]

>>> d1, d2 = Deferred(), Deferred()

>>> fails = gatherResults([d1, d2])

>>> fails.addErrback(print)

<Deferred at 0x1234567890>

>>> d1.errback(Exception())

[[Failure instance: Traceback ...: <class 'Exception'>:]]

Recall that Failure’s __str__ method returns a string that begins and ends in [], so

the printed failure appears with two sets of brackets: one from its __str__ and another

from its enclosing list.

Note also that gatherResults awaits all successful Deferreds, so it cannot be used

for fastestOfTwo

DeferredList and gatherResults offer higher-level APIs that allow sophisticated

behaviors but imply branching; the output of each depends on interaction between

their own options and the output of the Deferreds they wrap. A change in any one might

result in an unexpected output and thus an unpleasant bug.

This is beyond the general indirection that comes with Deferreds: because

Deferred.callback is almost always called by the reactor and not by code user code that

indirectly manipulates a socket, there can be a gap between the source of an exception

and its ultimate cause.

Twisted addresses these difficulties inherent to asynchronous code by providing

special support for testing Deferreds.

 Testing Deferreds
In the previous chapter, we saw that Twisted’s trial.unittest package provides

a SynchronousTestCase whose API mimics unittest.TestCase’s. In fact,

SynchronousTestCase’s API is a superset of unittest.TestCases, and an important part

of its additional features involve assertions about Deferreds.

Chapter 2 an IntroduCtIon to asynChronous programmIng wIth twIsted

103

We can explore these features by writing tests for the fastestOfTwo function defined

in the previous section. First, we’ll generalize it to accept any two Deferreds instead of

retrieving URLs itself:

def fastestOfTwo(d1, d2):

 def extractValue(valueAndIndex):

 value, index = valueAndIndex

 return value

 urlList = DeferredList([d1, d2],

 fireOnOneCallback=True,

 fireOnOneErrback=True)

 return urlList.addCallback(extractValue)

The first test we can write for this new version of fastestOfTwo asserts that the

Deferred it returns does not resolve to a value when neither of its Deferreds have

resolved to a value:

from twisted.internet import defer

from twisted.trial import unittest

class FastestOfTwoTests(unittest.SynchronousTestCase):

 def test_noResult(self):

 d1 = defer.Deferred()

 self.assertNoResult(d1)

 d2=defer.Deferred()

 self.assertNoResult(d2)

 self.assertNoResult(fastestOfTwo(d1, d2))

As its name suggests, SynchronousTestCase.assertNoResult asserts that the

Deferred it’s passed has no result, and is a valuable tool to ensure the matches your

expections execution follows.

Deferreds, however, are most useful when they do have a result. In the case of

fastestOfTwo, we expect the returned Deferred to take the value of the first of the two

Deferreds that resolve:

def test_resultIsFirstDeferredsResult(self):

 getsResultFirst = defer.Deferred()

 neverGetsResult = defer.Deferred()

 fastestDeferred = fastestOfTwo(getsResultFirst, neverGetsResult)

Chapter 2 an IntroduCtIon to asynChronous programmIng wIth twIsted

104

 self.assertNoResult(fastestDeferred)

 result = "the result"

 getsResultFirst.callback(result)

 actualResult = self.successResultOf(fastestDeferred)

 self.assertIs(result, actualResult)

SynchronousTestCase.successResultOf either returns a Deferred’s current result

or causes its test to fail. Our test uses this to extract "the result" from fastestDeferred

after calling back getsResultFirst with it, so that the test can assert that fastestOfTwo

did in fact return the first available result.

Note that we still assert that the Deferred returned by fastestOfTwo has no

result before we callback getsResultFirst. This may seem redundant given that

test_noResult already makes this assertion, but remember that Deferreds can be

called back before your code adds callbacks or errbacks. In this case, fastestOfTwo

could erroneously return a Deferred that was already called back with 'the result',

disregarding the passed-in Deferreds, and yet our test would still pass. That’s unlikely

in such simple code, but implicit assumptions about when a Deferred gets a result

can creep into code and cause tests to pass over bugs. It’s good practice to assert that

Deferreds are, in fact, in a given state and not assume so to avoid these bugs, and it is

even better practice to test your code against a Deferred that already has a result as well

as one that doesn’t.

We can add a test that asserts fastestOfTwo works even when a Deferred has fired:

def test_firedDeferredIsFirstResult(self):

 result = "the result"

 fastestDeferred = fastestOfTwo(defer.Deferred(),

 defer.succeed(result))

 actualResult = self.successResultOf(fastestDeferred)

 self.assertIs(result, actualResult)

The twisted.internet.defer.succeed function accepts an argument and returns

a Deferred that’s immediately called back with that argument, so the second argument

to fastestOfTwo is a Deferred that’s been called back with 'the result' before any of

fastestOfTwo runs.

Chapter 2 an IntroduCtIon to asynChronous programmIng wIth twIsted

105

For completeness, we might also test what happens when fastestOfTwo receives two

Deferreds that have already been called back:

def test_bothDeferredsFired(self):

 first = "first"

 second = "second"

 fastestDeferred = fastestOfTwo(defer.succeed(first),

 defer.succeed(second))

 actualResult = self.successResultOf(fastestDeferred)

 self.assertIs(first, actualResult)

The underlying DeferredList adds its internal processing callbacks to each

Deferreds in its list in order. With fireOnOneCallback=True, the earliest Deferred in the

list with a result calls back the Deferred representing the list. In our test, then, we expect

first to be the value with which fastestDeferred is called back.

Error handling is a critical part of testing, so our tests for fastestDeferred should

also test how it handles Failure. We’ll show only the case when a Deferred has failed

before being passed to fastestOfTwo to keep the test short:

def test_failDeferred(self):

 class ExceptionType(Exception):

 pass

fastestDeferred = fastestOfTwo(defer.fail(ExceptionType()),

 defer.Deferred())

failure = self.failureResultOf(fastestDeferred)

failure.trap(defer.FirstError)

failure.value.subFailure.trap(ExceptionType)

Like SynchronousTestCase.successResultOf, SynchronousTestCase.

failureResultOf returns the current Failure from a Deferred; if the Deferred hasn’t

been called back yet or has a non-Failure result, failureResultOf causes the test to fail.

Because the returned object is a Failure, all the methods and attributes we can

use in errbacks are available in our tests. DeferredList with fireOnOneErrback=True

wraps failures in twisted.internet.defer.FirstError exception, so we trap this type

in our test; if the Failure wrapped any other exception, the trap would re-raise it. The

underlying Failure that caused the FirstError is accessible on its subFailure attribute,

and since we passed in an instance of ExceptionType, we trap that next to assert the first

Deferred failed for the expected reason.

Chapter 2 an IntroduCtIon to asynChronous programmIng wIth twIsted

106

assertNoResult with successResultOf and failureResultOf encourage writing

tests with explicit assumptions about the state of Deferreds. As fastestOfTwo

demonstrates, even simple uses of Deferreds must be tested for implicit ordering

dependencies and error handling. These are also concerns for coroutines, and any other

concurrency primitive. Twisted’s test suite naturally has the best tools for dealing with

common concurrency issues in the context of Deferreds.

 Summary
The chapter picked up event-driven programming where the previous left off by

explaining that event handlers are a kind of _callback_. Programs of great complexity

can be expressed with callbacks because of theoretical power of continuation-passing

style. Callbacks pass values to other callbacks by invoking them directly instead of

returning to their caller. We named this kind composition internal composition because

it happens within the body of each callback.

Internal composition makes maintaining callback-driven programs hard: each

callback must know the name and signature of its successor so that it can call it.

Reordering a sequence of callbacks or eliminating one might involve modifying several.

A solution lies in the paradigm of asynchronous programming, which allows programs to

proceed before all inputs are ready. A placeholder value that represents an asynchronous

result can collect callbacks and then run them when the real value becomes available.

This placeholder allows callbacks to return values and thus compose externally, and

in turn enables logical units to remain ignorant of how and where they’re used. Event-

driven code that uses these asynchronous placeholders can be factored in the ways that

non-callback-driven code is.

Twisted’s asynchronous placeholder value is the Deferred. We saw that Deferreds

run their callbacks in a loop, passing the result of one to the next and invoking error

handlers, or error backs, upon any exception. This processing loop inside Deferreds

makes them a powerful control-flow abstraction.

An important part of that control-flow abstraction is responding to different errors

in different ways. Twisted’s Failure class captures traceback information along with the

raised exception and exposes utility methods that allow errbacks to filter and re-raise

exceptions. We saw how callbacks and errbacks can completely represent synchronous

code that uses try and except.

Chapter 2 an IntroduCtIon to asynChronous programmIng wIth twIsted

107

Just as Deferreds allow callbacks to compose, they compose with themselves. When

a callback or errback returns a Deferred’s, that callback or errback’s own Deferred

pauses its execution until the new Deferred completes. This means that functions and

methods that return Deferreds can be used as callbacks and errbacks without any

special effort on developers’ part.

As powerful as Deferreds are, they are not the only way to compose asynchronous

actions. Python’s generators can suspend their execution and resume it after receiving

values from external sources. This control flow maps onto that provided by Deferreds,

and callbacks and errbacks can be moved into a generator by using inlineCallbacks.

Generators, however, are ambiguous in that they may represent simple iterators or

Deferred-like control flows. Python 3.5 added special support for coroutines, which are

control-flow focused generators that can suspend themselves by delegating execution to

other coroutines without the need for inlineCallbacks. Coroutines can await Twisted’s

Deferreds directly and can be turned into Deferreds with ensureDeferred. These APIs

allow Twisted to use coroutines seamlessly.

Not all programs can be expressed directly with coroutines: our fastestOfTwo

example requires waiting on two things at once. Fortunately, DeferredList, an

abstraction built on top of Deferreds, allows Twisted to multiplex asynchronous results.

Twisted also has special support for testing Deferreds. SynchronousTestCase

provides assertNoResult, successResultOf, and failureResultOf, which allows tests

to make precise assertions about the state of Deferreds. Concurrency issues that affect

all primitives – coroutines, generators, and Deferreds – can be tested with this suite of

tools.

Chapter 2 an IntroduCtIon to asynChronous programmIng wIth twIsted

109
© Mark Williams, Cory Benfield, Brian Warner, Moshe Zadka, Dustin Mitchell, Kevin Samuel, Pierre Tardy 2019
M. Williams et al., Expert Twisted, https://doi.org/10.1007/978-1-4842-3742-7_3

CHAPTER 3

Applications with
treq and Klein
The previous chapters explained Twisted’s fundamentals in depth. Familiarity with these

core concepts is necessary but insufficient to write real applications. In this chapter,

we’ll explore modern, high-level APIs and whole program design by building a feed

aggregator with two powerful Twisted web libraries: treq and Klein.

treq (https://treq.readthedocs.io) wraps twisted.web.client.Agent with an

API inspired by the popular synchronous HTTP library requests. Its convenient and

secure defaults make it easy to send asynchronous HTTP requests, while the fakes

provided by treq.testing simplify and standardize writing tests.

Klein (https://klein.readthedocs.io) is a user-friendly wrapper around Twisted’s

venerable twisted.web.server web framework. It allows developing dynamic,

asynchronous web applications with a familiar routing paradigm borrowed from

Werkzeug (https://werkzeug.readthedocs.io/).

 Why Libraries?
Twisted itself provides the core functionality of both Klein and treq. Why not just use

those parts of Twisted directly, then? Both libraries’ interfaces differ significantly from

Twisted’s own; twisted.web, for example, uses object traversal instead of routing to

associate URL paths with Python code. A twisted.web.server.Site does not match

a request’s path and query string against a string template like “/some/”; instead, it

matches path segments to nested Resource objects. This was the prevailing paradigm in

Python web application frameworks at the time twisted.web was designed. Rather than

add a new routing abstraction to Twisted itself, the authors of Klein opted to experiment

https://treq.readthedocs.io
https://klein.readthedocs.io
https://werkzeug.readthedocs.io/

110

with a different approach in a separate code base. Their result was successful, and Klein’s

independent existence has allowed it to grow and adapt without breaking applications

that depend on twisted.web.server.

Similarly, treq encapsulates common twisted.web.client.Agent usage

patterns in high-level APIs; for example, Agent requires expressing all request

bodies, including payloads short enough to be expressed as byte strings, as

IBodyProducer objects, while treq’s request methods accept byte string bodies

directly. Using treq doesn’t preclude you from using Agent, the full power of which

remains accessible within Twisted.

pip, the tool used to install third-party Python packages, works well enough these

days that additional requirements don’t impose an undue burden on developers.

We’ll also see in a later chapter how Docker can be used to make development

and deployment of Twisted applications that use third-party libraries robust and

repeatable. Finally, both Klein and treq fall under the Twisted GitHub organization,

and are developed and used by Twisted’s core contributors. They’re as low-risk as

libraries can be.

 Feed Aggregation
Web syndication dates back to a different, more open era of the internet’s history. In its

heyday, sites served feed files over HTTP that organized their content in a structured

way so other sites could consume them for a variety of purposes. Open standards like

RSS (Really Simple Syndication or Rich Document Format Site Summary) and Atom

describe these structures and have allowed anyone to write consumers of these feeds.

Services that aggregated many sites’ feeds in a single place became a popular way for

users to stay up-to-date on news and blogs. Extensions to these formats, such as RSS’s

enclosures, allowed feeds to reference external media, enabling the rise of things like

podcasting.

The demise of Google Reader in 2013 coincided with a decline in the popularity

of feeds. Sites removed their feeds and some consumer software lost the ability to

consume them. Despite this decline, there is no single substitute for feed-based web

syndication, and it remains an effective way to organize content from many different

online sources.

Chapter 3 appliCations with treq and Klein

111

Many standards define variations on RSS. Where it’s necessary to work directly with

the feed format, we’ll only support the following subset of RSS 2.0 as defined by Harvard

University’s Berkman Center (http://cyber.harvard.edu/rss/rss.html):

 1. A <channel> is the root element of an RSS 2.0 feed file and is

described by its <title> and <link> elements;

 2. Web pages within a <channel> are described by <item>s each with

their own <title> and <link> elements.

We’ll use test-driven development to write a feed aggregator with Klein and treq.

Before we do that, however, we’ll learn about them and the problem space that defines

feed aggregation by writing exploratory programs. We’ll then use what we learn to

design, implement, and iteratively refine our application. Because we can’t display feeds

without first downloading them, we’ll begin by exploring how to send HTTP requests

with treq.

 Introducing treq
A feed aggregator must download feeds before it can show them, so we’ll begin by

exploring treq. Note that the examples that follow should work on Python 2 and 3.

Create a new virtual environment with your preferred tool and install treq from

PyPI into it. There are many tools to accomplish this; in the interest of generality, we

recommend using virtualenv (https://virtualenv.pypa.io/en/stable/) and pip

(https://pip.pypa.io/en/stable/) like so:

$ virtualenv treq-experiment-env

...

$./treq-experiment-env/bin/pip install treq

...

$./treq-experiment-env/bin/python experiment.py

where experiment.py contains the following code:

from argparse import ArgumentParser

from twisted.internet import defer, task

from twisted.web import http

import treq

Chapter 3 appliCations with treq and Klein

http://cyber.harvard.edu/rss/rss.html
https://virtualenv.pypa.io/en/stable/
https://pip.pypa.io/en/stable/

112

@defer.inlineCallbacks

def download(reactor):

 parser = ArgumentParser()

 parser.add_argument("url")

 arguments = parser.parse_args()

 response = yield treq.get(

 arguments.url, timeout=30.0, reactor=reactor)

 if response.code != http.OK:

 reason = http.RESPONSES[response.code]

 raise RuntimeError("Failed:{}{}".format(response.code,

 reason))

 content = yield response.content()

 print(content)

task.react(download)

The download function extracts a URL command-line argument with the standard

library’s argparse module and then uses treq.get to GET it. treq’s client API accepts

bytes or unicode URLs, encoding the latter according to the complicated rules that

define text URLs. This makes our program easier to write, because ArgumentParser.

parse_args returns str objects representing command-line arguments on both Python

2 and 3; on Python 2 these are byte strings, while on Python 3 they’re unicode strings. We

don’t have to worry about encoding or decoding the URL str to the type appropriate to a

particular version of Python because treq will do so correctly for us.

treq’s client API accepts a timeout parameter that terminates requests that fail to

begin within the specified timeout. The reactor argument specifies which reactor object

to use for networking and internal bookkeeping. This is a form dependency injection:

treq depends on the reactor, but rather than importing twisted.internet.reactor

itself, treq can be provided this dependency. We’ll see later how dependency injection

makes testing and factoring our code easier.

treq.get returns a Deferred that resolves to a treq.response._Response object

(the underscore in its name implies that we shouldn’t construct instances on our own,

not that we shouldn’t interact with it). This implements the twisted.web.iweb.IRequest

interface, so it contains the response’s status code in its code attribute. Our example

program checks the value of this to ensure that the server’s response indicates our

Chapter 3 appliCations with treq and Klein

113

request was successful; if it wasn’t, it raises a RuntimeError with the response’s status

code and its corresponding status phrase, courtesy of the twisted.web.http.RESPONSES

dictionary that maps one to the other.

The Deferred can also resolve to a Failure. If, for example, the amount of time

specified by the timeout parameter elapses before the Response object can be

constructed, the Deferred will fail with a CancelledError.

treq’s responses also have additional methods that make interacting with them

more convenient. One of these is content, which returns a Deferred that resolves to

the entire body of the request as a single bytes object. treq handles all the details of

collecting the response behind the scenes for us.

Finally, our example never calls reactor.run or reactor.stop directly. Instead,

it uses a Twisted library function we haven’t seen before: twisted.internet.task.

react. react handles starting and stopping the reactor for us. It accepts as its only

required argument a callable that it invokes with the running reactor; the callable itself

must return a Deferred that causes the reactor to stop when it resolves to a value or

Failure. The download function returns just such a Deferred courtesy of its twisted.

internet.defer.inlineCallbacks decorator. Because react itself accepts a callable

as its first argument, it too can be used as a decorator. We could have written our

example like so:

..

from twisted.internet import defer, task

...

@task.react

@defer.inlineCallbacks

def main(reactor):

 ...

This is in fact a popular way to write short scripts with Twisted. Going forward, when

we do use react, we’ll use it as a decorator.

Running this treq example program against a web feed’s URL retrieves that feed’s

content. We can modify our program to use the Python feedparser library to print a

summary of a feed. First, install feedparser into your virtual environment with pip:

$./treq-experiment-env/bin/pip install feedparser

Chapter 3 appliCations with treq and Klein

114

Then, save the following program to feedparser_experiment.py and run it against

an RSS URL:

$./treq-experiment-env/bin/python feedparser_experiment.py

http://planet.twistedmatrix.com

from __future__ import print_function

from argparse import ArgumentParser

import feedparser

from twisted.internet import defer, task

from twisted.web import http

import treq

@task.react

@defer.inlineCallbacks

def download(reactor):

 parser = ArgumentParser()

 parser.add_argument("url")

 arguments = parser.parse_args()

 response = yield treq.get(arguments.url, reactor=reactor)

 if response.code != http.OK:

 reason = http.RESPONSES[response.code]

 raise RuntimeError("Failed:{}{}".format(response.code,

 reason))

 content = yield response.content()

 parsed = feedparser.parse(content)

 print(parsed['feed']['title'])

 print(parsed['feed']['description'])

 print("*** ENTRIES ***")

 for entry in parsed['entries']:

 print(entry['title'])

Running this should result in output like the following:

Planet Twisted

Planet Twisted - http://planet.twistedmatrix.com/

Chapter 3 appliCations with treq and Klein

115

*** ENTRIES ***

Moshe Zadka: Exploration Driven Development

Hynek Schlawack: Python Application Deployment with Native Packages

Hynek Schlawack: Python Hashes and Equality

...

 Introducing Klein
Now that we have an idea of how to retrieve and parse feeds with treq, we need to learn

enough about Klein to render them within a website.

To keep our experiments organized, create a new virtual environment for Klein and

install it with pip install Klein. Then, run the following example:

import klein

application = klein.Klein()

@application.route('/')

def hello(request):

 return b'Hello!'

application.run("localhost",8080)

Now visit http://localhost:8080/ in your favorite web browser. (You might have to

change 8080 to another port if there’s already a program bound to it.) You’ll see the string

Hello! returned from our program’s hello route handler.

A Klein application begins with an instance of the Klein class. Callables are

associated with routes by using Klein.route method as a decorator. The first argument

to route is a Werkzeug-style URL pattern; the possible format directives match those in

Werkzeug’s routing documentation, available here: http://werkzeug.readthedocs.io/

en/latest/routing/. Let’s modify our program to use one such directive to extract an

integer from the path:

import klein

application = klein.Klein()

Chapter 3 appliCations with treq and Klein

http://werkzeug.readthedocs.io/en/latest/routing/
http://werkzeug.readthedocs.io/en/latest/routing/

116

@application.route('/<int:amount>')

def increment(request, amount):

 newAmount = amount + 1

 message = 'Hello! Your new amount is:{} '.format(newAmount)

 return message.encode('ascii')

application.run("localhost",8080)

Running this program and visiting http://localhost:8080/1 results in a web page

that looks like Figure 3-1.

A URL pattern specifies a path component that Klein extracts, converts to the

specified Python type, and passes to the handler function as a positional argument.

The amount argument is the first path element, and it must be an integer; otherwise

the request will fail with a 404. A list of converters is available from the Werkzeug

documentation.

Also note that handlers cannot return a unicode string; on Python 3; this means

that native strings must be encoded to byte strings before they’re returned from a Klein

route’s handler. We thus encode the message variable as ascii after we’ve performed

string formatting. On Python 3.5 and later, we could have used byte string formatting, but

at the time of this writing, Python 3.4 is still commonly used. Also, this code implicitly

decodes message as ascii on Python 2. This unfortunate behavior results in a strange

error message when used with anything other than the ascii encoding, but is a common

pattern in Twisted code for dealing with native strings that only contain ASCII and that

must work on both Python 2 and 3.

Figure 3-1. increment.png

Chapter 3 appliCations with treq and Klein

117

 Klein and Deferreds
Klein is a Twisted project, so it naturally has special support for Deferreds. Handler

functions that return Deferreds result in a response that waits for that Deferred to

resolve to a value or Failure. We can see this in action by modifying our program to

simulate a slow network operation by returning a Deferred that fires at least one second

after the request is received:

from twisted.internet import task

from twisted.internet import reactor

import klein

application = klein.Klein()

@application.route('/<int:amount>')

def slowIncrement(request, amount):

 newAmount = amount + 1

 message = 'Hello! Your new amount is:{} '.format(newAmount)

 return task.deferLater(reactor,1.0, str.encode, message, 'ascii')

application.run("localhost",8080)

As expected, this program only responds to http://localhost:8080/1 after a

second has elapsed. It achieves this by using twisted.internet.task.deferLater

which accepts a twisted.internet.interfaces.IReactorTime provider, a delay, and

then a function and arguments that will be applied to the function after the delay has

passed. Note that our choice of function and arguments makes use of the fact that

instance methods are stored on their classes, and their first argument must be the

instance to which they’re bound; as a result, str.encode(message, 'ascii'), where

message is a str, is equivalent to message.encode('ascii'). This is another pattern that

occurs in Twisted code.

This last example demonstrates a limitation inherent to using decorators as a way

to register routes: the arguments to the decorated function must be entirely provided by

the routing framework. This makes it difficult to write handler functions that reference

some state or depend on some existing object. In our example, our code depends on

the reactor to satisfy deferLater’s API, but we cannot pass the reactor to our handler

because only Klein can call it. Of the many ways this might be solved, Klein has special

support for one: instance-specific Klein applications. We’ll rewrite our slowIncrement

example again to make use of this feature.

Chapter 3 appliCations with treq and Klein

118

from twisted.internet import task

from twisted.internet import reactor

import klein

class SlowIncrementWebService(object):

 application = klein.Klein()

 def init (self, reactor):

 self._reactor = reactor

 @application.route('/<int:amount>')

 def slowIncrement(self, request, amount):

 newAmount = amount + 1

 message = 'Hello! Your new amount is:{} '.format(newAmount)

 return task.deferLater(self._reactor,1.0, str.encode, message,

'ascii')

webService = SlowIncrementWebService(reactor) webService.application.

run("localhost",8080)

The SlowIncrementWebService class has a Klein application assigned to its

application class-level variable. We can decorate methods on this class by with

that variable’s route method, in the same way we decorated the module-level

slowIncrement function with the module-level Klein object’s route method. Because

we’re now decorating instance methods, we can access instance variables, such as

reactor. This allows us to parameterize our web applications without relying on

module-level objects.

Klein objects themselves localize their internal state by implementing the

descriptor protocol. webService.application returns a request-specific instance

of Klein that contains all the routes and their handlers that we registered with

SlowIncrementWebService’s application. As a result, Klein maintains robust

encapsulation and minimizes shared mutable state.

 Klein Templates with Plating
The last thing we need before we’re ready to build a simple version of our feed

aggregator is a web page templating system. We could use Jinja2, or Mako, or any other

Python templating system intended for generating web pages, but Klein comes with its

Chapter 3 appliCations with treq and Klein

119

own templating facility called Plating. Let’s modify SlowIncrementWebService example

to use klein.Plating to generate a more readable response:

from twisted.internet import task, reactor

from twisted.web.template import tags, slot

from klein import Klein, Plating

class SlowIncrementWebService(object):

 application = Klein()

 commonPage = Plating(

 tags=tags.html(tags.head(

 tags.title(slot("title")),

 tags.style("#amount { font-weight: bold; }"

 "#message { font-style: italic; }")),

 tags.body(

 tags.div(slot(Plating.CONTENT)))))

 def __init__ (self, reactor):

 self._reactor = reactor

 @commonPage.routed(

 application.route('/<int:amount>'),

 tags.div(

 tags.span("Hello! Your new amount is: ", id="message"),

 tags.span(slot("newAmount"), id="amount")),

)

 def slowIncrement(self, request, amount):

 slots = {

 "title":"Slow Increment",

 "newAmount": amount + 1,

 }

 return task.deferLater(self._reactor,1.0, lambda: slots)

webService=SlowIncrementWebService(reactor)

webService.application.run("localhost",8080)

The new commonPage Plating object represents the fundamental change to our

SlowIncrementWebService. Because Plating is built on top of Twisted’s own venerable

twisted.web.template system, we must learn its fundamentals before we can proceed.

Chapter 3 appliCations with treq and Klein

120

twisted.templates are constructed of twisted.web.template.Tag and twisted.

web.template.slot instances. Tags represent HTML tags like html, body, and div. They

are created by accessing their names as methods on a tag factory instance available as

twisted.web.template.tags. This, call, for example:

tags.div()

represents a div tag that will be rendered like this:

<div></div>

The positional arguments to these instance methods represent their tag’s children,

so we can add a span to our div by nesting their method calls:

tags.div(tags.span("A span."))

This simple tag tree will be rendered like this:

<div>A span.</div>

Note that the textual content of a tag is also represented as a child.

The keyword arguments to these methods represent their attributes, so we can

include an image inside our div tree:

tags.div(tags.img(src="picture.png"), tags.span("A span."))

When rendered, this tree looks like this:

<div>A span.</div>

twisted.web.template reserves one keyword argument for internal use: render.

This is a string that names a special render method that will be used to render the tag to

HTML. We’ll see an example of a Klein-specific render method in a moment.

Sometimes it’s more readable to write a tag’s attributes before its children, but

keyword arguments must always come before positional arguments. To provide this

readability improvement without violating Python’s syntax, tags can be called with their

children. We can rewrite our tag tree so that its children are added that way:

tags.div()(tags.img(src="picture.png"), tags.span("A span."))

Chapter 3 appliCations with treq and Klein

121

slots are placeholders that can be filled in by name during template rendering as

we’ll see later. They allow us to parameterize both tag contents and attributes. Given this

tag tree, then:

tags.div(tags.img(src=slot('imageURL')), tags.span(slot("spanText")))

we can provide “anotherimage.png” as the value for the imageURL slot and “Different

text.” for the spanText slot, resulting in the following:

<div>Different text.</div>

When slots are filled in with strings that contain HTML literals, twisted.

web.template escapes them to avoid misinterpreting user data as templating directives.

This in turn mitigates common web application bugs, such as cross-site scripting (XSS)

attacks. However, slots can be filled in with other tags, enabling sophisticated template

reuse patterns. These rules mean that this tree:

tags.div(slot("child")).fillSlots(child="<div>")

Renders to:

<div><div></div>

While this tree:

tags.div(slot("child")).fillSlots(child=tags.div())

Renders to:

<div><div></div></div>

 A First Draft of Feed Aggregation
Now that we’re familiar with the fundamentals of twisted.web.template, we can return

to our example application’s klein.Plating object:

commonPage = Plating(

 tags=tags.html(

 tags.head(

 tags.title(slot("title")),

Chapter 3 appliCations with treq and Klein

122

 tags.style("#amount { font-weight: bold; }"

 "#message { font-style: italic; }")),

 tags.body(

 tags.div(slot(Plating.CONTENT)))))

The tag tree passed as the tags argument describes the structure of all HTML pages

this Plating instance will render. It includes two slots: title and Plating.CONTENT. The

title slot is just like any other; we will have to provide a value for this slot any time we

want to render a page that’s part of this tag tree. The Plating.CONTENT slot, however,

represents the location in the tag tree into which Plating will insert page-specific

content. Our example application renders only one page derived from commonPage:

@commonPage.routed(

 application.route('/<int:amount>'),

 tags.div(

 tags.span("Hello! Your new amount is: ", id="message"),

 tags.span(slot("newAmount"), id="amount")),

)

def slowIncrement(self, request, amount):

 slots={

 "title":"Slow Increment",

 "newAmount": amount+1,

 }

 return task.deferLater(self._reactor,1.0, lambda: slots)

We represent a derived page by wrapping a Klein route with the base page’s routed

decorator. The second positional argument to the routed decorator represents the tag

tree that will fill the base page’s Klein.CONTENT slot. This slowIncrement page wraps the

same route we defined before, and specifies as its content a tag tree that includes a slot

for the incremented amount.

In Klein, slots are filled in by returning a dictionary that maps their names to values

from the page’s handler, or a Deferred that resolves to one. This handler remains slow by

using deferLater to put off returning the slot dictionary until a second has passed.

The result is a web page with more personality as seen in Figure 3-2.

Klein’s plating offers a unique feature: you can request that the slots dictionary be

returned as serialized JSON by specifying the json query parameter. In Figure 3-3, We

can see what our “Slow Increment” page looks like when this parameter is provided.

Chapter 3 appliCations with treq and Klein

123

This allows Plating users to write handlers that render both to HTML and JSON,

serving as simple pages in their own right or providing the back end for sophisticated

Single Page Applications (SPA) or native mobile applications. Our feed aggregator’s

HTML front end won’t become a SPA because this is a book on Twisted and not

 JavaScript, but we’ll continue to support and explore JSON serialization as we develop

our application.

We can now write a simple version of our feed aggregator to explore its design. We’ll

write a SimpleFeedAggregation class that accepts feed URLs and uses treq to retrieve

them when a user visits the root URL. We’ll render each feed as a table whose heading

links to the feed and whose rows link to each feed item.

Begin by installing feedparser and treq into your Klein virtual environment the same

way you did in your treq virtual environment.

Figure 3-2. Increment in style

Figure 3-3. Increment as JSON

import feedparser

from twisted.internet import defer, reactor

from twisted.web.template import tags, slot

from twisted.web import http

from klein import Klein, Plating

import treq

Chapter 3 appliCations with treq and Klein

124

class SimpleFeedAggregation(object):

 application = Klein()

 commonPage = Plating(

 tags=tags.html(

 tags.head(

 tags.title("Feed Aggregator 1.0")),

 tags.body(

 tags.div(slot(Plating.CONTENT)))))

 def __init__ (self, reactor, feedURLs):

 self._reactor = reactor

 self._feedURLs = feedURLs

 @defer.inlineCallbacks

 def retrieveFeed(self, url):

 response = yield treq.get(url, timeout=30.0, reactor=self._reactor)

 if response.code != http.OK:

 reason = http.RESPONSES[response.code]

 raise RuntimeError("Failed:{}{}".format(response.code,

 reason))

 content = yield response.content()

 defer.returnValue(feedparser.parse(content))

@commonPage.routed(

 application.route('/'),

 tags.div(render="feeds:list")(slot("item")))

def feeds(self, request):

 def renderFeed(feed):

 feedTitle = feed[u"feed"][u"title"]

 feedLink = feed[u"feed"][u"link"]

 return tags.table(

 tags.tr(tags.th(tags.a(feedTitle, href=feedLink)))

)([

 tags.tr(tags.td(tags.a(entry[u'title'], href=entry[u'link'])))

 for entry in feed[u'entries']

])

Chapter 3 appliCations with treq and Klein

125

 return {

 u"feeds": [

 self.retrieveFeed(url).addCallback(renderFeed)

 for url in self._feedURLs

]

 }

webService = SimpleFeedAggregation(reactor,

 ["http://feeds.bbci.co.uk/news/technology/

rss.xml",

 "http://planet.twistedmatrix.com/rss20.xml"])

webService.application.run("localhost",8080)

The retrieveFeed method resembles the download function from our first treq

program, while the feeds method begins with a Plating decorator that resembles our

slowIncrement Klein application. In the case of feeds, however, the route-specific

template consists of a div tag with special render method. Klein interprets feeds:list as

a direction to duplicate the div tag for each item in the list and place it in the item slot. If,

for example, our feeds method were to return the following dictionary:

{"feeds": ["first","second","third"]}

Klein would render the following HTML for the feeds route:

<div>first</div><div>second</div>third</div>

Our feeds method not only returns a slot dictionary whose feeds key does return

a list, but one that contains Deferreds. This leverages twisted.web.template's unique

ability to render the results of Deferreds: when one is encountered, rendering pauses

until it resolves to a value, which is then rendered, or a failure occurs.

Each Deferred in our feeds list originates with a retrieveURL call that creates

a parsed feed for a URL courtesy of treq and feedparser. The renderFeed callback

transforms a parsed feed into a tag tree that renders the feed into a table of links. This

makes use of twisted.web.template’s ability to embed tag elements within slots.

Visiting this page in a browser renders the BBC feed first, then the larger and slower

Twisted Matrix feed, as seen in in Figures 3-4 and 3-5.

Our SimpleFeedAggregation class successfully retrieves and renders feeds. Its

basic design reflects the flow of data through the service: given an iterable of feed URLs,

retrieve them concurrently on every request to our service by applying treq.get to each.

Data flow often informs the design of Twisted programs.

Chapter 3 appliCations with treq and Klein

126

Our implementation, however, is lacking:

 1. Its error reporting is poor. While the RuntimeError raised by

SimpleFeedAggregation.retrieveFeed is informative, it’s

presented to users in way that’s unactionable, especially to those

that have requested JSON.

Figure 3-4. An incomplete page with just the BBC feed

Chapter 3 appliCations with treq and Klein

127

 2. It has bugs. Users can’t actually request JSON, because the tag

trees representing each feed aren’t JSON serializable.

Before we address these and other issues, we need a test suite. We’ll ensure that the

next implementation of our feed aggregator matches our expectations by using test-

driven development to guide us.

Figure 3-5. A complete page with both the BBC and Twisted Matrix feeds

Chapter 3 appliCations with treq and Klein

128

 Test-Driven Development with Klein and treq
Writing tests takes time and effort. Test-driven development eases this by making tests

part of the development process. We begin with an interface that some unit of code

should implement. Next, we write an empty implementation, such as a class with empty

method bodies, and then tests that verify the desired outputs for that implementation

given known inputs. Running these tests should fail at first, and development becomes

a process of filling in the implementation so that the tests pass. As a result, we find out

if one part of the implementation conflicts with other parts early on, and at the end we

have a complete test suite.

Tests take time to write, so it’s important to start at the most valuable interface. For a

web application, that’s the HTTP interface clients will use, so our firsts tests will involve

using an in-memory HTTP client against our FeedAggregation Klein application.

 Running Test on an Installable Project
Test-driven development requires running a project’s tests repeatedly, so before we

begin writing any, we need to set things up so that trial, Twisted’s test runner, can find

them.

The trial command accepts as its only mandatory argument the fully qualified

path name of something that contains or represents runnable test cases. trial’s

design follows the same xUnit-influenced pattern as Python’s unittest, so its test

cases are subclasses of twisted.trial.unittest.TestCase or twisted.trial.

unittest.SynchronousTestCase. These names are themselves fully qualified path

names, or FQPNs; beginning with the top-most package, they specify the attribute

access path downward to a specific function, class, or method. The following

command line, for example, runs the test_sillyEmptyThing method of the

ParsingTests test case that resides in Twisted’s own test suite for the Asynchronous

Message Protocol (AMP):

trial twisted.test.test_amp.ParsingTests.test_sillyEmptyThing

Given a shorter and consequently more general FQPN, trial recurs into the module

and package tree looking for tests, just like python -m unittest discover. For example,

you can run all of Twisted’s own tests with trial twisted.

Chapter 3 appliCations with treq and Klein

129

Because tests are specified with FQPNs, they must be importable. trial goes beyond

this by requiring that they also reside under one of the Python runtime’s module search

paths. This aligns with Twisted’s convention of including tests within library code under

special test subpackages.

Python allows programmers to influence its search paths in several ways. Setting

the PYTHONPATH environment variable or directly manipulating sys.path both allow

it to import code from project-specific locations. However, telling Python about

new locations in which it can find code is brittle, because it depends on bespoke

configuration and particular runtime entry points. A better approach is to rely on virtual

environments to localize Python’s search paths to a project-specific directory tree, and to

then install the project and its dependencies into that. Managing our own applications

the same way we manage its dependencies gives us greater consistency by leveraging the

same tools and patterns.

A full discussion of virtual environments and Python packaging is beyond the scope

of this book. Instead, we’ll outline a minimal project layout and configuration, show

how to link our project into a virtual environment, and then provide a sample trial

invocation for an empty test suite.

The project’s directory structure is as follows:

Figure 3-6. Feed Aggregation project directory structure

Chapter 3 appliCations with treq and Klein

130

That is, under some directory taken as the present working one, there exists a

setup.py and src/ directory. The src/ directory in turn contains the top-level feed_

aggregation package and a _service submodule. feed_aggregation.test.test_

service will house the test cases for the code in _service.

src/twisted/plugins/feed_aggregation_plugin.py will contain a Twisted

application plugin that will make running our Klein application easier.

We’ll put our FeedAggregation class in feed_aggregation._service:

class FeedAggregation(object):

 pass

This is a private module, so we’ll make our class publicly accessible by exporting it in

feed_aggregation/__init__.py:

from feed_aggregation._service import FeedAggregation

__all__ =["FeedAggregation"]

Placing the implementation in a private submodule and then exposing it in the

top-level package’s __init__ .py is a common pattern in Twisted code. It ensures that

documentation tools, linters, and IDEs see the origin of public APIs as public packages,

limiting the exposure of private implementation details.

We’ll leave feedaggregation/test/ __init__ .py empty but put a trivial subclass

of SynchronousTestCase into feed_aggregation/test/test_service.py so that trial

has something to run after we’ve finished our setup:

from twisted.trial.unittest import SynchronousTestCase

class FeedAggregationTests(SynchronousTestCase):

 def test_nothing(self):

 pass

Leaving twisted/plugins/feed_aggregation_plugin.py empty as well, we’re ready

to consider setup.py:

from setuptools import setup, find_packages

setup(

 name="feed_aggregation",

 install_requires=["feedparser", "Klein", "Twisted", "treq"],

Chapter 3 appliCations with treq and Klein

131

 package_dir={"": "src"},

 packages=find_packages("src") + ["twisted.plugins"],

)

This declares our project’s name to be feed_aggregation and its dependencies to be

feedparser (for parsing feeds), Klein (for our web application), Twisted (for trial), and

treq (for retrieving feeds). It also instructs setuptools to look for packages under src,

and include feed_aggregation_plugin.py under twisted/plugins.

Supposing we have a fresh virtual environment activated for our project and we’re in

the project root, we can now run this:

pip install -e .

The -e flag instructs pip install to perform an editable installation of our project,

which places a pointer from the virtual environment back into our project root’s directory.

As a result, edits will appear within the virtual environment as soon as we save them.

Finally, trial feed_aggregation should display the following:

feed_aggregation.test.test_service

 FeedAggregationTests

 test_nothing ... [OK]

Ran 1 tests in 0.001s

PASSED (successes=1)

demonstrating that we have in fact made our project available to trial via our virtual

environment.

 Testing Klein with StubTreq
Now we that can run tests, we can replace FeedAggregationTests.test_nothing with

methods that test something. That something, as discussed above, should be the HTTP

interface our Klein application will present to clients.

One way to test HTTP services is to run a web server as it would be for a live service,

perhaps bound to localhost on a predictable port, and use an HTTP client library to

connect to it. This can be slow, and worse still, ports are an operating system resource

whose scarcity can cause instability in tests that acquire them.

Chapter 3 appliCations with treq and Klein

132

Fortunately, the power of Twisted’s transports and protocols allows us to run an in-

memory HTTP client and server pair within our tests. In particular, treq comes with a

powerful testing utility in treq.testing.StubTreq. Instances of the StubTreq expose the

same interface as the treq module, so that code that acquires treq through dependency

injection can instead use this stub implementation in tests. It’s up to the treq project to

verify that StubTreq conforms to the same API as the treq module; we don’t have to do

this in our tests.

StubTreq takes as its first argument a twisted.web.resource.Resource whose

responses determine the outcome of various treq calls. Because Klein instances expose

a resource() method that generates a twisted.web.resource.Resource, we can bind a

StubTreq to our web application to get an in-memory HTTP client suitable for our tests.

Let’s replace test_nothing with a method that uses StubTreq to request our service’s

root URL:

src/feed_aggregation/tests/test_service.py

from twisted.trial.unittest import SynchronousTestCase

from twisted.internet import defer

from treq.testing import StubTreq

from .. import FeedAggregation

class FeedAggregationTests(SynchronousTestCase):

 def setUp(self):

 self.client = StubTreq(FeedAggregation().resource())

 @defer.inlineCallbacks

 def test_requestRoot(self):

 response = yield self.client.get(u'http://test.invalid/')

 self.assertEqual(response.code,200)

The setUp method creates a StubTreq instance bound to the twisted.web.

resource.Resource for our FeedAggregation’s Klein application. test_requestRoot

uses this client to issue a GET request against that Klein resource, verifying that it received

a successful response.

Note that only the path portion of the URL passed to self.client.get matters for

our test. treq, and thus StubTreq, can only issues requests against a complete web URL

with a scheme and netloc, so we use a .invalid domain to satisfy this requirement. The

.invalid top-level domain is defined to never resolve to an actual internet address,

making it a perfect choice for our tests.

Chapter 3 appliCations with treq and Klein

133

Running this new version of FeedAggregationTests with trial feed_aggregation

fails with an AttributeError because instances of our FeedAggregation class don’t have

a resource method. Adding the correct implementation of this won’t make the test pass,

however; we also need to construct a Klein application that responds to a request for /.

We’ll modify the _service module to satisfy both of these requirements.

src/feed_aggregation/_service.py

from klein import Klein

class FeedAggregation(object):

 _app=Klein()

 def resource(self):

 return self._app.resource()

 @_app.route("/")

 def root(self, request):

 return b""

The new resource instance method delegates its calls to the Klein application

associated with the class. This is an example of the law of Demeter, a principle in

software development that argues against calling methods on instance attributes;

instead, delegation methods like FeedAggregation.resource wrap these attributes’

methods, so that code that uses FeedAggregation remains ignorant of its internal

implementation. We’ve named our Klein application _app to make it clear that it’s part of

FeedAggregation’s internal, private API.

The root method acts as a trivial handler for the root URL path /, and together with

FeedAggregation.resource, makes FeedAggregation.test_requestRoot pass.

We’ve now completed a single test-driven development cycle. We began with

by writing a minimal failing test and then made it pass with a minimal amount of

application code.

Let’s skip ahead and replace FeedAggregationTests with a more complete test suite

that exercises both the HTML and JSON feed renderings.

src/feed_aggregation/test/test_service.py

import json

from lxml import html

from twisted.internet import defer

Chapter 3 appliCations with treq and Klein

134

from twisted.trial.unittest import SynchronousTestCase

from treq.testing import StubTreq

from .. import FeedAggregation

class FeedAggregationTests(SynchronousTestCase):

 def setUp(self):

 self.client = StubTreq(FeedAggregation().resource())

 @defer.inlineCallbacks

 def get(self, url):

 response = yield self.client.get(url)

 self.assertEqual(response.code,200)

 content = yield response.content()

 defer.returnValue(content)

 def test_renderHTML(self):

 content = self.successResultOf(self.get(u"http://test.invalid/"))

 parsed = html.fromstring(content)

 self.assertEqual(parsed.xpath(u'/html/body/div/table/tr/th/a/text()'),

 [u"First feed",u"Second feed"])

 self.assertEqual(parsed.xpath('/html/body/div/table/tr/th/a/@href'),

 [u"http://feed-1/",u"http://feed-2/"])

 self.assertEqual(parsed.xpath('/html/body/div/table/tr/td/a/text()'),

 [u"First item",u"Second item"])

 self.assertEqual(parsed.xpath('/html/body/div/table/tr/td/a/@href'),

 [u"#first",u"#second"])

 def test_renderJSON(self):

 content = self.successResultOf(self.get(u"http://test.

invalid/?json=true"))

 parsed = json.loads(content)

 self.assertEqual(

 parsed,

 {u"feeds": [{u"title": u"First feed", u"link": u"http://feed- 1/",

 u"items": [{u"title": u"First item",u"link": u"#first"}]},

 {u"title": u"Second feed", u"link": u"http://feed-2/",

 u"items": [{u"title": u"Second item", u"link": u"#second"}]}]})

Chapter 3 appliCations with treq and Klein

135

There’s a lot going on in this test case. There are two tests, test_renderHTML and

test_renderJSON, which verify the structure and content of the HTML and JSON

we expect our FeedAggregation web service to return. test_requestRoot has been

replaced with a get method that can be used by both test_renderHTML and test_

renderJSON to retrieve a particular URL for our Klein application. Both test_renderHTML

and test_renderJSON use SynchronousTestCase.successResultOf to assert that the

Deferred returned by get has fired and extracted the value.

test_renderHTML uses the lxml library (https://lxml.de/) to parse and inspect the

HTML returned by our Klein application. As a result, we must add lxml to the install_

requires list in our setup.py. Note that you can synchronize your virtual environment

with your project’s dependencies by running pip install -e . again.

XPaths locate and extract the contents and attributes of specific elements within the

DOM. The implied table structure matches what we developed in our prototype: feeds

reside in tables whose headers are links to the feed’s home page and whose rows link to

each feed’s items.

test_renderJSON requests the feeds rendered as JSON, parses it into a dictionary,

and then asserts that it’s equal to the expected output.

These new tests naturally fail because the existing FeedAggregation merely returns a

response with an empty body. Let’s make them pass by replacing FeedAggregation with

the minimum necessary implementation.

src/feed_aggregation/_service.py

from klein import Klein, Plating

from twisted.web.template import tags as t, slot

class FeedAggregation(object):

 _app = Klein()

 _plating = Plating(

 tags=t.html(

 t.head(t.title("Feed Aggregator 2.0")),

 t.body(slot(Plating.CONTENT))))

 def resource(self):

 return self._app.resource()

 @_plating.routed(

Chapter 3 appliCations with treq and Klein

https://lxml.de/

136

 _app.route("/"),

 t.div(render="feeds:list")(slot("item")),

)

 def root(self, request):

 return {u"feeds": [

 t.table(t.tr(t.th(t.a(href=u"http://feed-1/")(u"First feed"))),

 t.tr(t.td(t.a(href=u"#first")(u"First item")))),

 t.table(t.tr(t.th(t.a(href=u"http://feed-2/")(u"Second feed"))),

 t.tr(t.td(t.a(href=u"#second")(u"Second item"))))

]}

Because we haven’t written tests for feed retrieval, this implementation doesn’t

yet retrieve RSS feeds. Instead it satisfies our tests by returning hard-coded data that

matches our assertions. Aside from this, it resembles our prototype: a root method

handles the root URL path that uses Klein’s :list renderer to turn a sequence of

twisted.web.template.tags into HTML.

This version of FeedAggregation passes test_renderHTML but fails on test_

renderJSON:

(feed_aggregation) $ trial feed_aggregation

feed_aggregation.test.test_service

 FeedAggregationTests

 test_renderHTML ... [OK]

 test_renderJSON ... [ERROR]

 [ERROR]

===

[ERROR]

Traceback (most recent call last):

...

exceptions.TypeError: Tag('table', ...) not JSON serializable

feed_aggregation.test.test_service.FeedAggregationTests.test_renderJSON

===

[ERROR]

Traceback (most recent call last):

...

Chapter 3 appliCations with treq and Klein

137

twisted.trial.unittest.FailTest: 500 != 200

feed_aggregation.test.test_service.FeedAggregationTests.test_renderJSON

Ran 2 tests in 0.029s

FAILED (failures=1, errors=1, successes=1)

The second error corresponds to self.assertEqual(response.code, 200) in

FeedAggregationTests.get, while the first indicates the real problem: Klein can’t

serialize the tags returned by FeedAggregation.root to JSON.

The simplest solution consists of detecting when a request should be serialized

to JSON and returning a serializable dictionary instead. The current design would

require copying the data necessary to satisfy the tests, so while we address the bug,

let’s also add container classes that store the feed data, and a top-level class that

stores the feed’s provenance and controls its presentation. These will allow us to

define the data once but render it to both HTML and JSON. Indeed, we can arrange

for FeedAggregation to accept instances of the top-level feed container class in

its initializer, so that the tests can instead use their own fixture data. Let’s rewrite

_service.py following this approach. We’ll use Hynek Schlawack’s attrs (https://

attrs.readthedocs.io) library to keep our code short and clear; be sure to add it to

your setup.py’s install_requires.

src/feed_aggregation/_service.py

import attr

from klein import Klein, Plating

from twisted.web.template import tags as t, slot

@attr.s(frozen=True)

class Channel(object):

 title = attr.ib()

 link = attr.ib()

 items = attr.ib()

@attr.s(frozen=True)

class Item(object):

 title = attr.ib()

 link = attr.ib()

Chapter 3 appliCations with treq and Klein

https://attrs.readthedocs.io
https://attrs.readthedocs.io

138

@attr.s(frozen=True)

class Feed(object):

 _source = attr.ib()

 _channel = attr.ib()

 def asJSON(self):

 return attr.asdict(self._channel)

 def asHTML(self):

 header = t.th(t.a(href=self._channel.link)

 (self._channel.title))

 return t.table(t.tr(header))(

 [t.tr(t.td(t.a(href=item.link)(item.title)))

 for item in self._channel.items])

@attr.s

class FeedAggregation(object):

 _feeds = attr.ib()

 _app = Klein()

 _plating = Plating(

 tags=t.html(

 t.head(t.title("Feed Aggregator 2.0")),

 t.body(slot(Plating.CONTENT))))

def resource(self):

 return self._app.resource()

@_plating.routed(

 _app.route("/"),

t.div(render="feeds:list")(slot("item")),

)

def root(self, request):

 jsonRequested = request.args.get(b"json")

 def convert(feed):

 return feed.asJSON() if jsonRequested else feed.asHTML()

 return {"feeds": [convert(feed) for feed in self._feeds]}

Using attrs makes it easy to define container classes like Channel and Item. In its

most basic operation, the attr.s class decorator generates an init method that sets

instance variables corresponding to the class’s attr.ib variables.

Chapter 3 appliCations with treq and Klein

139

attrs also makes it easy to define classes whose instances are immutable via its

decorator’s frozen argument. Immutablity is a good match for our container classes

because they represent external data; changing it after we’ve received it would certainly

be a bug. attrs, lxml, must be added to the install_requires list inside setup.py.

The Feed class wraps a feed’s source URL and the Channel instance representing

its contents, and exposes two presentation methods. asJSON uses attrs.asdict to

recursively convert the channel instance to a JSON-serializable dictionary, while asHTML

returns a tree of twisted.web.template.tags to be rendered by Klein’s Plating system.

FeedAggregation.root now checks the request’s json query parameter, available in

the args dictionary, to determine whether the response should be rendered as JSON or

HTML, and invokes asJSON or asHTML as appropriate.

Finally, FeedAggregation is now itself an attrs decorated class whose initializer

accepts an iterable of Feed objects to render.

As a result, FeedAggregationTests.setUp must be refactored to pass an iterable of

Feed objects to its FeedAggregation instance:

src/feed_aggregation/test/test_service.py

...

from .._service import Feed, Channel, Item

FEEDS = (

 Feed("http://feed-1.invalid/rss.xml",

 Channel(title="First feed", link="http://feed-1/",

 items=(Item(title="First item", link="#first"),))),

 Feed("http://feed-2.invald/rss.xml",

 Channel(title="Second feed", link="http://feed-2/",

 items=(Item(title="Second item", link="#second"),))),

)

class FeedAggregationTests(SynchronousTestCase):

 def setUp(self):

 self.client = StubTreq(FeedAggregation(FEEDS).resource())

...

This latest version has its benefits: most obviously, the test_renderJSON now passes,

but additionally the fixture’s data now resides in the same place as the tests, so that it will

be easier to keep in sync with their assertions.

Chapter 3 appliCations with treq and Klein

140

It also has its downsides. Not only is FeedAggregation useless as a feed aggregation

service without the ability to retrieve RSS feeds, but the tests now import and depend on

our container classes. Tests that depend on internal implementation details like these

are brittle and hard to refactor.

We’ll address both of these shortcomings by writing the feed retrieval logic.

 Testing treq with Klein
We used StubTreq to test our Klein application in the previous section. Reversing the

relationship allows us to succinctly test treq code.

Once again, we’ll begin by writing tests. We’ll add them to the test_service module,

with new imports shown at the top, and our new test case at the bottom.

src/feed_aggregation/test/test_service.py

import attr

...

from hyperlink import URL

from klein import Klein

from lxml.builder import E

from lxml.etree import tostring

...

from .. import FeedRetrieval

@attr.s

class StubFeed(object):

 _feeds = attr.ib()

 _app = Klein()

 def resource(self):

 return self._app.resource()

 @_app.route("/rss.xml")

 def returnXML(self, request):

 host = request.getHeader(b 'host')

 try:

 return self._feeds[host]

 except KeyError:

 request.setResponseCode(404)

 return b'Unknown host: ' +host

Chapter 3 appliCations with treq and Klein

141

def makeXML(feed):

 channel = feed._channel

 return tostring(

 E.rss(E.channel(E.title(channel.title), E.link(channel.link),

 *[E.item(E.title(item.title), E.link(item.link))

 for item in channel.items],

 version = u"2.0")))

class FeedRetrievalTests(SynchronousTestCase):

 def setUp(self):

 service = StubFeed(

 {URL.from_text(feed._source).host.encode('ascii'): makeXML(feed)

 for feed in FEEDS})

 treq = StubTreq(service.resource())

 self.retriever = FeedRetrieval(treq=treq)

 def test_retrieve(self):

 for feed in FEEDS:

 parsed = self.successResultOf(

 self.retriever.retrieve(feed._source))

 self.assertEqual(parsed, feed)

The FeedRetrievalTests class, like FeedAggregationTests before it, depends on

some new concepts. StubFeed is a Klein application whose /rss.xml route returns an

XML document specific to the request’s host. This allows it to return different responses

for http://feed-1.invalid and http://feed-2.invalid. As a precaution, requests for

an unknown host result in an informative 404 “Not Found” response.

The makeXML function transforms a Feed and its associated Items into an RSS

2.0-compliant XML document. We use lxml.builder’s E tag factory, whose API

resembles twisted.web.template.tags, as an XML templating system, and serialize

its tag tree to bytes with lxml.etree.tostring (despite its name, it does return bytes on

Python 3).

The FeedRetrievalTests.setUp fixture method creates a list of Feeds and passes

them to a StubFeed instance, which it them associates with a StubTreq instance. This in

turn is passed to a FeedRetrieval instance, which will contain our feed retrieval code.

Parameterizing this class on a treq implementation is an example dependency injection

easing the process of writing tests.

Chapter 3 appliCations with treq and Klein

http://feed-1.invalid/
http://feed-2.invalid/

142

Note that we derive the host for each feed from the URL in its link element by using

hyperlink.URL. Hyperlink (https://hyperlink.readthedocs.io) URLs are immutable

objects that represent parsed URLs. The Hyperlink library was abstracted out from

Twisted’s own twisted.python.url module and provides a superset of that original

API. As a result, Twisted now depends on it, so it’s implicitly available to any project

that depends on Twisted. The best practice with any dependency, however, is to make it

explicit, so we must add the hyperlink package to our setup.py’s install_requires list.

Here’s what our setup.py should look like now:

setup.py

from setuptools import setup, find_packages

setup(

 name="feed_aggregation",

 install_requires=["attrs","feedparser","hyperlink","Klein",

 "lxml","Twisted","treq"],

 package_dir={"":"src"},

 packages=find_packages("src")+["twisted.plugins"],

)

(Remember that we we added attrs and lxml above.)

The one test in our FeedAggregationTests test case, test_retrieve, asserts that

FeedRetrieval.retrieve parses a feed retrieved from its _source URL into a Feed object

that matches its XML representation.

Now that we have a test for a feed retriever, we can implement one. First, we’ll add

FeedRetrieval to src/feed_aggregation/__init__.py so that it can be imported

without interacting with private APIs:

src/feed_aggregation/ init .py

from ._service import FeedAggregation, FeedRetrieval

 __all__ = ["FeedAggregation","FeedRetrieval"]

Now we can implement the minimum code necessary to make the tests pass:

src/feed_aggregation/_service.py

...

import treq

import feedparser

Chapter 3 appliCations with treq and Klein

https://hyperlink.readthedocs.io

143

@attr.s

class FeedRetrieval(object):

 _treq = attr.ib()

 def retrieve(self, url):

 feedDeferred = self._treq.get(url)

 feedDeferred.addCallback(treq.content)

 feedDeferred.addCallback(feedparser.parse)

 def toFeed(parsed):

 feed = parsed[u'feed']

 entries = parsed[u'entries']

 channel = Channel(feed[u'title'], feed[u'link'],

 tuple(Item(e[u'title'], e[u'link'])

 for e in entries))

 return Feed(url, channel)

 feedDeferred.addCallback(toFeed)

 return feedDeferred

As expected, FeedRetrieval accepts a treq implementation as its only argument via the

attr.s class decorator and a _treq attr.ib. Its retrieve method follows the same pattern

as our exploratory program’s: first it uses treq to retrieve the provided URL and collect its

body, then it uses feedparser to parse the collected XML into a Python dictionary.

Next, toFeed extracts the feed’s title, link, and its items’ titles and links, and then

assembles them into a Channel, Items, and a Feed.

This version of FeedRetrieval makes our test pass, but it lacks error handling.

What if a feed has been removed or the returned XML is invalid? As it stands, the

Deferred returned by FeedRetrieval.retrieve will fail with an exception, which will be

FeedAggregation’s problem.

Neither a website nor a JSON service should display tracebacks. At the same time,

something should record any tracebacks to aid debugging. Fortunately, Twisted has a

sophisticated logging system that we can use to track our application’s behavior.

 Logging with twisted.logger
Twisted has provided its own logging system for many releases. As of Twisted 15.2.0,

twisted.logger has become the preferred method for recording events in Twisted

programs.

Chapter 3 appliCations with treq and Klein

144

Like the standard library’s logging module, applications emit log messages at

various levels by calling the appropriate methods on a twisted.logger.Logger instance.

The following code emits a message at the info level.

from twisted.logger import Logger

Logger().info("A message with{key}", key="value")

Like logging, emission methods like Logger.info accept a format string and values

to interpolate; unlike logging, this is a new style formatting string, and it’s sent along

in the underlying log event. Also unlike Python’s standard logging system, twisted.

logger.Loggers are not hierarchical, but instead route their messages through

observers. The fact that the format string is preserved enables one of twisted.logger’s

most powerful features: it can emit log messages in the traditional format intended

for human consumption, and it can emit them as JSON-serialized objects. The latter

allows sophisticated filtering and collection in systems like Kibana. We’ll see how to

switch between these formats when we write a Twisted application plugin for our feed

aggregation application.

Loggers also use the descriptor protocol to capture information about an associated

class, so we’ll create a Logger for our FeedRetrieval class. We’ll then arrange

for messages to be emitted before a feed is requested and when it’s either parsed

successfully or fails with an exception. Before we can do so, however, we must decide

what FeedRetrieval.retrieve’s Deferred should resolve to when an exception occurs.

It cannot be a Feed instance, because there won’t be any XML to parse into a Channel

instance; but FeedAggregation expects an object that provides asJSON and asHTML

methods, the only implementations of which exist on Feed.

We can solve this problem with polymorphism. We can define a new class,

FailedFeed, that represents FeedRetrieval’s failure to retrieve a feed. It will satisfy

the same interface as Feed by implementing its own asJSON and asHTML methods that

present the error in the appropriate format.

As usual, we’ll begin by writing tests. The exception conditions FeedRetrieval.

retrieve might encounter can be divided into two categories: a response with any

status code other than 200, and any other exception. We’ll model the first with a

custom exception type, ResponseNotOK, that retrieve will raise and handle internally

and which we can solicit in our tests by requesting a feed from a host StubFeed doesn’t

know about. The latter can be solicited by providing StubFeed with a host that returns

the empty string, which feedparser will fail to parse. Let’s add some tests to our

FeedRetrievalTests class.

Chapter 3 appliCations with treq and Klein

145

src/feed_aggregation/test/test_service.py

from .. import FeedRetrieval

from .._service import Feed, Channel, Item, ResponseNotOK

from xml.sax import SAXParseException

...

class FeedRetrievalTests(SynchronousTestCase):

 ...

 def assertTag(self, tag, name, attributes, text):

 self.assertEqual(tag.tagName, name)

 self.assertEqual(tag.attributes, attributes)

 self.assertEqual(tag.children, [text])

 def test_responseNotOK(self):

 noFeed = StubFeed({})

 retriever = FeedRetrieval(StubTreq(noFeed.resource()))

 failedFeed = self.successResultOf(

 retriever.retrieve("http://missing.invalid/rss.xml"))

 self.assertEqual(

 failedFeed.asJSON(),

 {"error":"Failed to load http://missing.invalid/rss.xml: 404"}

)

 self.assertTag(failedFeed.asHTML(),

 "a", {"href":"http://missing.invalid/rss.xml"},

 "Failed to load feed: 404")

 def test_unexpectedFailure(self):

 empty = StubFeed({b"empty.invalid": b""})

 retriever = FeedRetrieval(StubTreq(empty.resource()))

 failedFeed = self.successResultOf(

 retriever.retrieve("http://empty.invalid/rss.xml"))

 msg = "SAXParseException('no element found',)"

 self.assertEqual(

 failedFeed.asJSON(),

 {"error":"Failed to load http://empty.invalid/rss.xml: " + msg}

)

Chapter 3 appliCations with treq and Klein

146

 self.assertTag(failedFeed.asHTML(),

 "a", {"href": "http://empty.invalid/rss.xml"},

 "Failed to load feed: " + msg)

 self.assertTrue(self.flushLoggedErrors(SAXParseException))

The assertTag method ensures that a twisted.web.template tag tree of depth one

has the given name, attributes, and children, simplifying the test_responseNotOK and

test_unexpectedFailure methods.

The test_responseNotOK method creates an empty StubFeed application, which

will respond with a 404 to any request the test makes. It then asserts that retrieving a

URL results in a fired Deferred, and renders the resulting FailedFeed to both JSON and

a tag tree. The JSON should contain the URL and the HTTP status code, while the HTML

should link to the feed that failed and also contain the status code.

The test_unexpectedFailure method creates a StubFeed that responds to requests

for empty.invalid with an empty string. The HTML and JSON renders of the resulting

FailedFeed instance checked for the source URL as well as the repr of the exception

that caused to the failure. We choose the repr because many exceptions’ messages, like

KeyError’s, are incomprehensible without their class name.

The last line of test_unexpectedFailure is worth special attention. trial, unlike

Python’s unittest, fails any test that doesn’t recover exceptions logged by the code it

calls. Note that this does not include errors raised by the test itself.

SynchronousTestCase.flushLoggedErrors returns a list of twisted.python.

failure.Failures that have been logged up until that point; if exception types are

passed as arguments, only Failures matching those types are returned. The “flush” in

flushLoggedErrors means that it’s a destructive call, so that a given Failure cannot

appear in the lists returned by two consecutive calls. A test fails when it completes with a

non-empty list of logged errors. Our tests’ assertion that at least one SAXParseException

was raised by feedparser has the side effect of clearing the logged error list, which

should allow the test to pass.

Let’s write the code necessary to make these new tests pass. We’ll show the new

version of the FeedRetrieval in its entirety so its error handling can be seen in context.

Chapter 3 appliCations with treq and Klein

147

src/feed_aggregation/_service.py

...

import treq import feedparser

from twisted.logger import Logger

from functools import partial

...

@attr.s(frozen=True)

class FailedFeed(object):

 _source = attr.ib()

 _reason = attr.ib()

 def asJSON(self):

 return {"error":"Failed to load{}:{}".format(

 self._source,self._reason)}

 def asHTML(self):

 return t.a(href=self._source)(

 "Failed to load feed:{}.".format(self._reason))

class ResponseNotOK(Exception):

 """A response returned a non-200 status code."""

@attr.s

class FeedRetrieval(object):

 _treq = attr.ib()

 _logger = Logger()

 def retrieve(self, url):

 self._logger.info("Downloading feed{url}", url=url)

 feedDeferred = self._treq.get(url)

 def checkCode(response):

 if response.code != 200:

 raise ResponseNotOK(response.code)

 return response

 feedDeferred.addCallback(checkCode)

 feedDeferred.addCallback(treq.content)

 feedDeferred.addCallback(feedparser.parse)

Chapter 3 appliCations with treq and Klein

148

 def toFeed(parsed):

 if parsed[u'bozo']:

 raise parsed[u'bozo_exception']

 feed=parsed[u'feed']

 entries = parsed[u'entries']

 channel = Channel(feed[u'title'], feed[u'link'],

 tuple(Item(e[u'title'], e[u'link'])

 for e in entries))

 return Feed(url, channel)

 feedDeferred.addCallback(toFeed)

 def failedFeedWhenNotOK(reason):

 reason.trap(ResponseNotOK)

 self._logger.error("Could not download feed{url}:{code}",

 url=url, code=str(reason.value))

 return FailedFeed(url, str(reason.value))

 def failedFeedOnUnknown(failure):

 self._logger.failure("Unexpected failure downloading{url}",

 failure=failure, url=url)

 return FailedFeed(url, repr(failure.value))

 feedDeferred.addErrback(failedFeedWhenNotOK)

 feedDeferred.addErrback(failedFeedOnUnknown)

 return feedDeferred

The FailedFeed class implements asJSON and asHTML in accordance with Feed’s

interface. Because the initializer is private, we can define a new reason argument that

explains why the feed failed to download.

The ResponseNotOK exception represents the category of errors arising from a non-

200 status code. This is also the first change to the retrieve itself: a checkCode callback

raises ResponseNotOK when the status code of the response returned by treq.get

indicates a failure, passing the code to the exception.

toFeed has also changed to accommodate feedparser’s awkward error reporting

API. feedparser's approach to lenient parsing means that feedparser.parse never

raise an exception directly; instead, it set the bozo key in the returned dictionary to True

and the bozo_exception key to the actual exception.

Chapter 3 appliCations with treq and Klein

149

This second raise falls into the second category of unexpected errors. Of course,

there are many more possible unexpected errors, and it’s important that we ensure our

code handles these, too.

The failedFeedWhenNotOK errback handles the first category by trapping

ResponseNotOK and logging an error message with the feed’s URL and the failing

response code, while the failedFeedOnUnknown errback handles the second by logging

a critical message that includes the failure’s traceback via the Logger.failure

helper method. Both return a FailedFeed instance that renders their respective failures

according to the expectations of the tests we added.

Both when we add the errbacks to feedDeferred and the order we add them are

significant. Recall that when a callback raises an exception, the next registered errback

handles it. By adding the errbacks after all callbacks, we make it clear that these handle

any exception raised. Also, since an errback that raises its own exception effectively

passes it to the next registered errback, we add the more specific failedFeedWhenNotOK

before the catch-all failedFeedOnUnknown. The net effect of these errbacks is equivalent

to the following synchronous code:

try:

...

except ResponseNotOK:

 self._logger.error(...)

 return FailedFeed(...)

except:

 self._logger.failure(...)

 return FailedFeed(...)

 Running Twisted Applications with twist
We’ve divided the project into two independent functional halves: FeedAggregation,

which handles incoming web requests; and FeedRetrieval, which retrieves

and parses RSS feeds. Feed and FailedFeed bind the two together by a common

interface, but it’s not possible to compose the application into a working whole

without one last change.

Just like our exploratory SimpleFeedAggregation program, FeedAggregation should

drive FeedRetrieval when an incoming HTTP request arrives. This flow of control

implies that a FeedAggregation instance should wrap a FeedRetrieval instance,

Chapter 3 appliCations with treq and Klein

150

which we can achieve via dependency injection; instead of passing a list of Feed items

to FeedAggregation, we can instead pass the retrieve method of a FeedRetrieval

instance and a list of feed URLs to request. Let’s modify FeedAggregationTests to do

that:

src/feed_aggregation/test/test_service.py

...

class FeedAggregationTests(SynchronousTestCase):

 def setUp(self):

 service = StubFeed(

 {URL.from_text(feed._source).host.encode('ascii'): makeXML(feed)

 for feed in FEEDS})

 treq = StubTreq(service.resource())

 urls = [feed._source for feed in FEEDS]

 retriever = FeedRetrieval(treq)

 self.client = StubTreq(

 FeedAggregation(retriever.retrieve, urls).resource())

 ...

Now we can make FeedAggregation adhere to this new API:

src/feed_aggregation/_service.py

@attr.s

class FeedAggregation(object):

 _retrieve = attr.ib()

 _urls = attr.ib()

 _app = Klein()

 _plating = Plating(

 tags=t.html(

 t.head(t.title("Feed Aggregator 2.0")),

 t.body(slot(Plating.CONTENT))))

 def resource(self):

 return self._app.resource()

 @_plating.routed(

 _app.route("/"),

 t.div(render="feeds:list")(slot("item")),

)

Chapter 3 appliCations with treq and Klein

151

 def root(self, request):

 def convert(feed):

 return feed.asJSON() if request.args.get(b"json") else feed.

asHTML()

 return {"feeds": [self._retrieve(url).addCallback(convert)

 for url in self._urls]}

The FeedAggregation initializer accepts two new arguments: a retrieve callable

that accepts a URL and returns a Deferred that resolves to a Feed or FailedFeed

instance, and a urls iterable representing the RSS feed URLs to retrieve. The root

handler combines these two by applying the _retrieve callable to each of the provided

_urls and then arranging to render the result via the convert callback.

Now that we can compose the service half of application with the retrieval half,

we can write a Twisted application plugin in the file src/twisted/plugins/feed_

aggregation_plugin.py that loads and runs our feed aggregation service.

Twisted’s twist command-line program allows users to run a variety of Twisted

services out of the box, like a static web server with twist web --path=/path/to/serve.

It’s also extensible via Twisted’s plugin mechanism. Let’s write a plugin that runs our

feed aggregation web service.

src/twisted/plugins/feed_aggregation_plugin.py

from twisted import plugin

from twisted.application import service, strports

from twisted.python.usage import Options

from twisted.web.server import Site

import treq

from feed_aggregation import FeedAggregation, FeedRetrieval

from zope.interface import implementer

class FeedAggregationOptions(Options):

 optParameters = [["listen", "l", "tcp:8080", "How to listen for requests"]]

@implementer(plugin.IPlugin, service.IServiceMaker)

class FeedAggregationServiceMaker(service.Service):

 tapname = "feed"

 description = "Aggregate RSS feeds."

 options = FeedAggregationOptions

Chapter 3 appliCations with treq and Klein

152

 def makeService(self, config):

 urls = ["http://feeds.bbci.co.uk/news/technology/rss.xml",

 "http://planet.twistedmatrix.com/rss20.xml"]

 aggregator = FeedAggregation(FeedRetrieval(treq).retrieve, urls)

 factory = Site(aggregator.resource())

 return strports.service(config['listen'], factory)

makeFeedService = FeedAggregationServiceMaker()

A twisted.application.service.IService is the unit of code run by twist, while

a twisted.application.service.IServiceMaker allows twist to discover IService

providers, and a twisted.plugin.IPlugin allows twisted.plugin to discover plugins.

The FeedAggregationServiceMaker class implements both of these interfaces, so that

instances of it within twisted/plugins are picked up by twist.

The tapname attribute represents the name of the twist subcommand under which

our service will be available, while the description attribute is the documentation

that twist will present command users. The options attribute contains an instance of

 twisted.python.usage.Options that parses command-line options into a dictionary

that’s passed to the makeService method. Our FeedAggregationOptions subclass

contains one command-line option, --listen or -l, which represents an endpoint string

description that defaults to tcp:8080. We’ll explain what these are and how they work

shortly.

FeedAggregationServiceMaker.makeService accepts the parsed configuration

return by our Options class and returns an IService provider that runs our

FeedAggregation web service. We construct a FeedAggregation instance here the same

way we did in our tests, except this time, we provide the actual treq implementation to

FeedRetrieval.

The twisted.web.server.Site class is actually a factory that knows how to

respond to HTTP requests. It accepts as its first argument a twisted.web.resource.

Resource that will respond to incoming requests, just like StubTreq did in our tests, and

so we again use FeedAggregation.resource to create one from the underlying Klein

application.

The strports.service function parses the endpoint string description into an

IService provider that manages the specified port. Endpoint string descriptions afford

Twisted applications great flexibility in how they listen for clients by leveraging protocols

and transports.

Chapter 3 appliCations with treq and Klein

153

The default of tcp:8080 causes Twisted to bind TCP port 8080 on all available

interfaces and will associate a TCP transport with protocol instances created by the

Site factory. It could be switched, however, to ssl:port=8443;privateKey=server.

pem, which set up an TLS listener on port 8443 that used the server.pem certificate to

establish connections. Protocols created by the Site factory would then be bound to

TLS-wrapped transports that automatically encrypted and decrypted connections with

clients. The strports parsers are extendable by third-party plugins, as well; txtorcon

(https://txtorcon.readthedocs.io/en/latest/), for instance, allows starting a TOR

server via the onion: endpoint string description.

We can now invoke our feed aggregation service with the twist program within our

virtual environment:

$ twist feed

2018-02-01T12:12:12-0800 [-] Site starting on 8080

2018-02-01T12:12:12-0800 [twisted.web.server.Site#info] Starting factory

<twisted.web.serve

2018-02-01T12:12:12-0800 [twisted.application.runner._runner.Runner#info]

Starting reactor.

2018-02-01T12:13:13-0800 [feed_aggregation._service.FeedRetrieval#info]

Downloading feed

2018-02-01T12:13:13-0800 [feed_aggregation._service.FeedRetrieval#info]

Downloading feed

...

twist sets up twisted.logger to format and print log messages to standard out. The

FeedRetrieval messages correspond to the info message emitted in FeedRetrieval.

retrieve and imply that a client accessed our application.

twist can also emit log messages as JSON objects with the --log-format=json

command line option:

$ twist --log-format=json feed

...

{"log_namespace": "...FeedRetrieval", "url": "http://feeds.bbci.co.uk/news/

technology/rss.x

{"log_namespace": "...FeedRetrieval", "url": "http://planet.twistedmatrix.

com/rss20.xml", .

...

Chapter 3 appliCations with treq and Klein

https://txtorcon.readthedocs.io/en/latest/

154

We’ve omitted many details to make the output more readable. Notice, however, that

the url parameter to FeedRetrieval._retrieve’s info call is a property on the returned

JSON objects. This allows a log aggregation service to extract data from log messages

without heuristics like regular expressions. Like strports, this change in behavior did

not require us to alter our application code at all.

 Summary
This chapter introduced Klein and treq. These two libraries provide high-level wrappers

around Twisted’s web APIs that ease common development patterns.

We wrote an RSS 2.0 feed aggregation service using the venerable feedparser library,

beginning with a simple prototype and then using test-driven development to build a

fully functional Twisted application runnable with the twist command-line program.

We used treq.testing.StubTreq to test our web service without any actual network

requests and SynchronousTestCase to verify that our concurrent operations complete

deterministically given various inputs. Along the way we saw how Klein’s Plating feature

enables us to build web services that can respond with both JSON and HTML, and how

we can log structured data with twisted.logger.

The use of third-party libraries that have no assumptions about concurrency, like

feedparser, lxml, and attrs, demonstrates how Twisted programs integrate with the

modern Python ecosystem. At the same time, our program used classic Twisted concepts

like Deferreds; our feed aggregation service shows the the power combining Python’s

vast libraries with Twisted’s own concepts and code.

Chapter 3 appliCations with treq and Klein

PART 2

Projects

157
© Mark Williams, Cory Benfield, Brian Warner, Moshe Zadka, Dustin Mitchell, Kevin Samuel, Pierre Tardy 2019
M. Williams et al., Expert Twisted, https://doi.org/10.1007/978-1-4842-3742-7_4

CHAPTER 4

Twisted in Docker
Docker is often used in micro-services architectures. Those are based on different

components communicating over a network. Twisted, with its native support for several

networking paradigms, is often a good fit for Docker-based architectures.

Docker, and containers in general, are new. Both the tooling and the consensus

on how to use the tooling are evolving fast. We are giving here the foundations on

how to use Docker, so we can build the understanding of how to use Twisted in

Docker on top of it.

Note that Docker is a Linux-based technology. Though other operating systems have

similar facilities, Docker is built on taking advantage of specific Linux-kernel facilities.

Docker for Windows does have the ability to run “Windows Containers,” but this is

beyond the scope of this chapter.

Docker for Mac and Docker for Windows use a Virtual Machine running Linux, and

have just enough integration with the host OS (OS X and Windows, respectively) to make

the interaction seamless. However, it is important to remember that a Docker container

is always running on a Linux kernel, even when running it on a Mac or Windows laptop.

 Intro to Docker
Because Docker is both new and popular, several distinct things are called “Docker.”

Understanding exactly what Docker is itself is nontrivial. We try to break “Docker” here

into distinct concepts. Note that each of these is often referred to as “Docker,” as well as

the whole comprising them.

 Containers
Containers are processes that are run with more isolation than is possible in traditional

UNIX processes.

158

In a container, the only processes visible are those started by the root process of the

container that appears as process ID 1 inside the container. Note that this is optional: a

container can share the host’s process IDs. Using the Docker command line, this is done

with the argument --pid host.

Likewise, containers will have their own network address. This means processes

inside the container can listen on a given port, without coordinating with the host or

other running containers. Again, a container can be run with a special argument, --net

host, in order to share the host network namespace.

Finally, each container has its own filesystem. For example, this means we can install

different Pythons in different containers without any concerns – or even conflicting

Python packages. Sharing the host filesystem directly is tricky.

However, we can use Docker’s “volume mount” option. The volume mount option

asks to make a directory from the host accessible (“mount”) inside the container. The

syntax for the option is to separate the directory from the host (on the left) and the

directory it will be “mounted into” in the container (on the right) with a colon.

Thus, running Docker with --volume /:/from-host will make all the host’s files

accessible. Note that they will be accessible, inside the container, not in their usual

location, but in the /from-host directory.

Containers are isolated exactly to the extent they are desired to be isolated. This is

similar to the clone system call’s flags indicating what is shared between parent and child

processes: for example, the CLONE_FILES flag indicating a shared file descriptor table.

 Container Images
While containers are running, isolated, sets of processes, container images allow us to

instantiate a container – they are the equivalent of an executable image.

Internally, a container image is made of layers, each of which represents a file

system. The final file system the container will see (often referred to as a union

filesystem) is the combination of all layers, with higher ones overriding lower ones.

An upper layer can modify, add, or even “delete” files from a previous layer. While

the lower layer will not be affected, the final file system visible inside the container

will be affected.

This is important, since it means deleting files in an upper layer does not save

space. For example, if the first layer has a tarball, and then it is expanded, the tarball is

often redundant. An upper layer will often have rm/path/to/file.tar.gz or a similar

Chapter 4 twisted in doCker

159

command. This is good insofar as that filename will not be visible – however, in the final

size of the entire container image – for example, how many bytes need to be downloaded

to run it – the tarball will still be included.

Container images are named (or more precisely tagged) after their ultimate location.

The usual naming scheme is [optional host/][optional user/]name[:optional

tag]. Images that are never meant to leave the host they are built on will usually omit the

host and user parts, though there are exceptions.

If the tag is left off, the default is :latest. If the host is left off, the default is docker.io.

Note that the same container image can have multiple tags.

Container images move between registries and hosts: they can be “pushed” to

registries and “pulled” to hosts.

 Runc and Containerd
In order to run a container from an image, a special program called runc (“run

container”) is used. This program is in charge of setting up the proper isolation

mechanisms: it uses Linux kernel facilities, such as cgroups and namespaces, in order to

properly isolate the filesystem, process namespace, and network addresses.

Usually, container users do not interact with runc directly. It is used under the

covers, however, by both the Docker stack as well as almost all alternative container

stacks, such as Rocket.

In order to manage running containers, it is necessary to know which containers

are running, and what their states are. For this reason, one “daemon” program, called

containerd, spawns all containers from images by calling runc.

Note that in previous versions of Docker, runc was embedded into containerd – and

so a lot of materials still refer to the “Docker daemon” as running containers.

 Client
The command-line docker run, contrary to what might be expected, does not run

containers. Instead, it communicates with the containerd daemon, and asks it to run

containers with runc.

By default, it uses a UNIX domain socket to communicate with the server. UNIX

domain sockets are a special interprocess communication facility on UNIX-based

operating systems. Their API resembles that of TCP sockets, but they are only used for

Chapter 4 twisted in doCker

160

communication inside the same machine, allowing the kernel to make some shortcuts.

Instead of IP addresses and ports, UNIX domain sockets use file paths as their addresses.

This allows the usual UNIX file permission model to apply.

By default, the UNIX domain socket to which docker connects is /var/run/docker.

sock. Depending on the exact details of the Docker installation, it might be accessible

by the docker group or the root group. The Docker client can also connect to the server

using TLS over TCP, mutually authenticating using TLS certificates.

This is also true for all other subcommands of docker, such as build, images, etc.

(Note that docker login is an exception, but the explanation of how remote registry

login works is beyond our current scope.)

Because the command-line docker is mostly used to send Remote Procedure Calls to

the daemon, we call it “the client.”

 Registry
Docker saves images in a (usually remote) registry. The registry stores each image as

some metadata, plus a set of layers. The metadata notes the layer order, as well as some

details about the container image.

Note that because of this storage method, the same layer will only be stored once.

The usual case where several images share layers will be by having common ancestry –

meaning, multiple images built from a common base image will not require their own

copy of that image.

Also note that the default registry docker.io is built into the software – if no registry

is specified, the default registry is assumed – usually referred to as “DockerHub.”

This is a slightly distinct usage of the word “Docker,” which again should be noted as

potentially confusing terminology.

 Build
The usual way to build images is to use the docker build command line. This uses a

configuration file referred to as a Dockerfile. The Dockerfile begins with a FROM line.

The FROM identifies the ancestor image. If an empty image is desired, FROM scratch will

use the scratch image, which has no layers. However, this is rare.

Usually, builds will start with a common Linux distribution, which are all available

from the default Docker registry, DockerHub. For example, Debian, Ubuntu, and CentOS

are all available.

Chapter 4 twisted in doCker

161

Every following line in the Dockerfile is a “build stage.” Every build stage creates

a layer, and layers are cached. This means that when modifying a Dockerfile, only

changed lines (and ones following them) will be executed.

The following example is such a Dockerfile that will run the Twisted web demo

server.

FROM debian:latest

RUN python3 -m pip install --user Twisted

ENTRYPOINT ["python3", "-m", "twisted", "web"]

This does not demonstrate best practices, which we will cover as we look at more

sophisticated features, but it does show three important parts that will almost always be

present in a Dockerfile:

• The FROM line. Here, we ask for the latest version of debian. Note

that because we are not using a name with slashes, this is from the

“library” on DockerHub – a set of semi-official base images.

• The RUN line runs a command inside the container being built, with

the usual effect to mutate it in some way. In this case, we install

Twisted into a user installation.

• The ENTRYPOINT line sets the program that will run when the

container launches.

 Multi-stage Build
The explanation above is missing an important new feature, added in mid-2017, in

docker build. These are the multi-stage builds. A multi-stage build happens when there

is more than one FROM line in the Dockerfile.

When this happens, the build process starts to build a new image – and at the end of

the build, all nonfinal images will be discarded. However, while the build is running, the

other images are accessible to one Dockerfile command – COPY.

When using COPY --from=<image>, it will copy file not from the context, but from a

previous image. Although in theory, multi-stage builds can have any number of stages, it

is very rare to need more than two. The sequencing of images uses 0-based numbering.

Most “multistage” builds are really “two-stage” builds. The first stage will build all the

Chapter 4 twisted in doCker

162

artifacts, using a “thick” image full of compilers and build tools. The second stage picks

up all the artifacts from the first stage and produces the final image to distribute. Because

of this, the usual form a COPY instruction between stages takes is COPY --from=0.

This comes in useful when needing a sophisticated build environment to generate

some of the products that will be deployed – and it is better not to ship a sophisticated

build environment in the final runtime container: this reduces the size, number of layers,

and potential security risks.

The following is an example of a multistage build. Note that in this case, the final

output is not intended to be used directly, but to be built upon in other builds. This is

a common pattern: building standard bases that have common elements has several

advantages – for example, this saves space in both the registry and in the running server

(if multiple different images are running on one server, as they often are). Another

advantage is that there is one place to upgrade base packages when bugs are fixed in

those.

FROM python:3

RUN mkdir /wheels

RUN pip wheel --wheel-dir /wheels pyrsistent

FROM python:3-slim

COPY --from=0 /wheels /wheels

RUN pip install --no-index --find-links /wheel pyrsistent

Again, we’ll go line by line to explain what is going on here:

FROM python:3

The python:3 base is another example of a standard “DockerHub library” base. It

includes Python 3, but it also includes enough tools to build native-code wheels – at least

simple ones, without further dependencies.

RUN mkdir /wheels

We create the directory to store the wheels in. Note that because this stage is not

going to be in the final output, we are not sensitive to creating extra layers. In fact, extra

layers are good – they create more caching points. This is less interesting in this case, but

often the build base includes installing many more build dependencies.

RUN pip wheel --wheel-dir /wheels pyrsistent

Chapter 4 twisted in doCker

163

The pip wheel subcommand is useful in multi-stage builds. It builds a wheel for the

specified requirements, and all of their dependencies. It will use a binary wheel from

PyPI built for manylinux, if the platform is compatible – but this behavior can be turned

off, if desired, with pip wheel --no-binary :all.

FROM python:3-slim

The python:3-slim base is similar to python:3 but does not include the complicated

set of build-time dependencies. Note that many :code:setup.py in Python distributions

auto-detect lack of compilers or dependencies, and will silently turn off native-

code modules build. pyrsistent, for example, has a C-optimized persistent vector

implementation, which we want in our image. Therefore, we do not want to install

pyrsistent from sources in this stage.

COPY --from=0 /wheels /wheels

We copy the pyrsistent wheel we just built, and any dependencies from the first

stage (stage 0) to the current stage. The second FROM line indicates this is a multi-stage

build – but this COPY line is the one that makes the multi-stage build useful.

RUN pip install --no-index --find-links /wheel pyrsistent

Finally, we install the library into the local Python environment. We are careful to

specify the --no-index and --find-links options to pip so that it will use the wheels

from the first stage, instead of getting fresh distributions from PyPI.

 Python on Docker
There is a huge variety of ways to deploy Python applications on Docker – like there is

on any UNIX platform. They are not all equivalent – some are better than others. We will

survey the options that tend to work well.

 Deployment Options
 Full env

A “full environment” deployment means that there is a custom Python interpreter

installed exactly for the use of the application. This Python can be either custom built

from source, as part of the Docker build process or before it –or it can come from a meta-

distribution –such as conda or nix.

Chapter 4 twisted in doCker

164

Installing a custom Python interpreter is often useful: we can customize the

build options on it, pin the interpreter version and even, in especially extreme cases,

apply custom patches. However, this means we have taken on the task of keeping the

interpreter up to date.

However we install this interpreter, it will be used exactly for our application. We use

pip install to install packages in it – or, if it comes from a meta-distribution (such as

conda or nix), we can also install packages from the meta-distribution. This is especially

useful with conda, since many data science-related Python packages are available to be

installed.

Here is an example Dockerfile that builds a custom Python interpreter, loaded with

the necessary packages.

FROM buildpack-deps:stretch

ENV PYTHON_VERSION 3.6.4

ENV PREFIX https://www.python.org/ftp/python

ENV LANG C.UTF-8

ENV GPG_KEY 0D96DF4D4110E5C43FBFB17F2D347EA6AA65421D

RUN apt-get update

RUN apt-get install -y --no-install-recommends \

 tcl \

 tk \

 dpkg-dev \

 tcl-dev \

 tk-dev

RUN wget -O python.tar.xz \

 "$PREFIX/${PYTHON_VERSION%%[a-z]*}/Python-$PYTHON_VERSION.tar.xz"

RUN wget -O python.tar.xz.asc \

 "$PREFIX/${PYTHON_VERSION%%[a-z]*}/Python-$PYTHON_VERSION.tar.xz.asc"

RUN export GNUPGHOME="$(mktemp -d)" && \

 gpg --keyserver ha.pool.sks-keyservers.net --recv-keys "$GPG_KEY" && \

 gpg --batch --verify python.tar.xz.asc python.tar.xz

RUN mkdir -p /usr/src/python

RUN tar -xJC /usr/src/python --strip-components=1 -f python.tar.xz

Chapter 4 twisted in doCker

165

WORKDIR /usr/src/python

RUN gnuArch="$(dpkg-architecture --query DEB_BUILD_GNU_TYPE)"

RUN ./configure \

 --build="$gnuArch" \

 --enable-loadable-sqlite-extensions \

 --enable-shared \

 --prefix=/opt/custom-python/

RUN make -j

RUN make install

RUN ldconfig /opt/custom-python/lib

RUN /opt/custom-python/bin/python3 –m pip install twisted

FROM debian:stretch

COPY --from=0 /opt/custom-python /opt/custom-python

RUN apt-get update && \

 apt-get install libffi6 libssl1.1 && \

 ldconfig /opt/custom-python/lib

ENTRYPOINT ["/opt/custom-python/bin/python3", "-m", "twisted", "web"]

Building custom Python interpreters, though useful, is not trivial. We go through this

file line by line:

FROM buildpack-deps:stretch

The buildpack-deps is a useful base image for building. Since we are going to be

using Debian “stretch” as our deployment version, being the latest stable Debian version

at time of writing, we get the stretch-compatible buildpack.

ENV PYTHON_VERSION 3.6.4

ENV PREFIX https://www.python.org/ftp/python

Setting those allows us to easily modify which Python version we use – this is

essential to getting new security fixes and bug fixes from upstream. The easier we make it

to upgrade Python, the better off we are.

ENV LANG C.UTF-8

Chapter 4 twisted in doCker

166

Setting the language to explicitly UTF-8 is necessary to avoid an obscure bug in the

Python build process. While not illuminating pedagogically, this is useful as a place to

put these work-arounds. Putting those details in the Dockerfile is a convenient place to

make sure builds succeed – whether on a continuous integration system or locally.

ENV GPG_KEY 0D96DF4D4110E5C43FBFB17F2D347EA6AA65421D

This is the GnuPG public key that corresponds to the private key that signs the Python

tarball uploads. Gnu Privacy Guard is a tool that uses cryptography to achieve security

guarantees. In this case, the key allows us to know that the source has not been tampered

with. It is a good idea to add defense-in-depth and to use multiple ways to verify that

our sources are authentic. This Dockerfile, or ones similar to it, are often used in

Continuous Integration environments, where they are run repeatedly and automatically.

It only takes a one-time breach to severely compromise infrastructure. Ensuring the build

fails if the source is not guaranteed can eliminate a costly production breach.

Keeping the key fingerprint in the Dockerfile, which is probably checked into source

control, is a way to root the trust in checked-in code.

RUN apt-get update

RUN apt-get install -y --no-install-recommends \

 tcl \

 tk \

 dpkg-dev \

 tcl-dev \

 tk-dev

Above and beyond the buildpack, we need some extra libraries. We install those here.

RUN wget -O python.tar.xz \

 "$PREFIX/${PYTHON_VERSION%%[a-z]*}/Python-$PYTHON_VERSION.tar.xz"

Next, we download the Python source tarball. Defining the variables above allows

us to keep this line short and succinct. In addition, even though not necessary for stable

releases, this command line will work line for versions like 3.6.1rc2 – necessary if we

want to use this Dockerfile, with only minor changes, to test compatibility with release

candidate releases.

RUN wget -O python.tar.xz.asc \

 "$PREFIX/${PYTHON_VERSION%%[a-z]*}/Python-$PYTHON_VERSION.tar.xz.asc"

Chapter 4 twisted in doCker

167

We download the detached public key signature. Though we download both

from TLS-enabled website, one that is prefixed with https and not http, checking the

signature is a good defense-in-depth measure.

RUN export GNUPGHOME="$(mktemp -d)" && \

 gpg --keyserver ha.pool.sks-keyservers.net --recv-keys "$GPG_KEY" && \

 gpg --batch --verify python.tar.xz.asc python.tar.xz

This command line verifies the public key. Note that this is an example of a

command that does not change the local state. However, since any failing command will

stop the docker build process, a key verification error will lead to a halted build.

RUN mkdir -p /usr/src/python

We create a directory for the unpacked source code. Note that since this is a multi-

stage build, we are not concerned about the eventual cleanup of this directory – the

entire container will be cleaned up!

RUN tar -xJC /usr/src/python --strip-components=1 -f python.tar.xz

We unpack the Python tarball into the newly created directory.

WORKDIR /usr/src/python

We set the current working directory to the source code directory. This makes the

subsequent build instructions, which need to be run from inside of it, shorter and easier

to understand.

RUN gnuArch="$(dpkg-architecture --query DEB_BUILD_GNU_TYPE)" && \

 ./configure \

 --build="$gnuArch" \

 --enable-loadable-sqlite-extensions \

 --enable-shared \

 --prefix=/opt/custom-python/

We run the ./configure script, with a custom prefix. The custom prefix, /opt/custom-

python, is what ensures us that we will be in a pristine directory. We also give a few

options to make sure our Python build is correct:

• The architecture is calculated using dpkg-architecture and passed

to the configure script explicitly. This is more reliable than having the

configure script auto-detect it.

Chapter 4 twisted in doCker

168

• We enable the sqlite module. Since it is a built-in, many third-party

modules will depend on it without declaring a dependency, so it is

important to make sure it is part of the installation.

• We enable the shared library. This is not strictly necessary in our

example, but it allows cases of embedding Python.

RUN make -j

Calculating the exact number of CPUs is nontrivial. In this example, we just run

make with maximum parallelism. This is what the -j flag does. Note that in general,

it is recommended to set the parallelism to a reasonable level, by giving -j a number

parameter, for example, -j 4.

RUN make install

This stage will copy the files, with correct permissions, into the installation directory.

RUN ldconfig /opt/custom-python/lib

We add the directory to our library search path – otherwise Python (which is

dynamically linked) cannot run.

RUN /opt/custom-python/bin/python3 -m pip install twisted

We install Twisted. Among many other benefits of Twisted, it contains a convenient

default web server, which is useful for demos.

FROM debian:stretch

For the production build, we start with a suitably minimal Debian distribution –

keeping it as a matching version to the buildpack.

COPY --from=0 /opt/custom-python /opt/custom-python

We copy the entire environment – including the installed third-party libraries: in this

case, Twisted and its dependencies.

RUN apt-get update && \

 apt-get install libffi6 libssl1.1 && \

 ldconfig /opt/custom-python/lib

Chapter 4 twisted in doCker

169

We install necessary libraries and run ldconfig in the production image.

ENTRYPOINT ["/opt/custom-python/bin/python3", "-m", "twisted", "web"]

We set the entry point to run the demo web server built into Twisted. If we build and

run this docker image, the web server will be running – and if we export the port, we can

even check it with our browser.

 Virtualenv
The alternative to a full environment is a “lightweight” environment – or as they have

come to be known, a virtual environment. When using Python 2.7, we create a virtual

environment using the virtualenv package. It is possible to install virtualenv using

pip, but this has issues: after all, if the reason to create a virtual environment is to avoid

changing the real environment, this undoes the benefit. One way is to get virtualenv the

same way we got Python. Another one is to install it using

pip install --user virtualenv

This will put it under the user directory (on Docker, usually under /root). It often

means virtualenv is not on the default shell path – but since it is on the Python path,

python -m virtualenv <directory>

will still work and create a virtual environment.

When using Python 3.x, these concerns are moot: python -m venv is the best way

to create a virtual environment for Python 3.x. Note that some documentation has not

been updated, and virtualenv does work on Python 3.x – which makes it harder to make

sure all of these are up to date. However, the existence of a venv built-in module highly

simplifies bootstrapping virtual environments.

One of the benefits of installing code in a virtual environment is that we know

that the virtual environment’s directory contains no more than what is necessary

to run it – except for the interpreter. This feature will come in handy when we build

Docker images.

Putting all these ideas together, we might end up with a Dockerfile like this:

FROM python:3

Chapter 4 twisted in doCker

170

Since we are going to build a virtual environment, we need to have a full

environment already installed. One of the easiest ways to do it is to start with the python

container.

RUN python -m venv /opt/venv-python

We create a virtual environment in /opt/venv-python.

RUN /opt/venv-python/bin/pip install Twisted

We install Twisted in it. Note that installing Twisted means installing a few packages

with C extensions – this stage requires a C compiler. The python:3 container image has

all the tooling needed for building C extensions.

FROM python:3-slim

The python:3-slim container image has no build tools. Since this is the image we

will ship, this means we do not ship a C compiler to production.

COPY --from=0 /opt/venv-python /opt/venv-python

We copy the virtual environment. Note that virtual environments have several hard-

coded paths in them. This is why we make sure to create it with the same path where it

will be deployed.

ENTRYPOINT ["/opt/venv-python/bin/python", "-m", "twisted", "web"]

The entry point is nearly identical to the one before. The only difference is the path –

this time pointing to a virtual environment, not a full one.

 Pex
The most self-contained option is that of Pex – a Python executable format

pioneered by Twitter. Pex uses a combination of features of UNIX, Python, and Zip

archives to have a one-file format that contains all application code and third-party

dependencies.

A Pex file is supposed to be marked executable at the file system level, using chmod

+x, for example, and is produced with a shebang line (!#) that calls a Python interpreter.

Since Zip archives have the unique property that they are detected, and parsed, by their

final bytes – and not their first bytes – the rest of the file is a Zip file.

Chapter 4 twisted in doCker

171

When the Python interpreter accepts a Zip file, or a Zip file with arbitrary content

prepended, it treats it as a sys.path addition, and will additionally execute the __main

__.py file in the archive. Pex files generate a custom __main__ .py that calls either an

entry point or executes a Python module, depending on the parameters passed to the

Pex builder.

Pex can be built either by using the pex command line (installed with pip install

pex), by using pex as a Python library and using its creation API, or by most modern

metabuilders –Pants, Bazel, and Buck all have the ability to generate Pex output.

FROM python:3

RUN python -m venv /opt/venv-python

We create a virtual environment. While we are not going to ship this environment, it

will help us build the Pex file.

RUN /opt/venv-python/bin/pip install pex

We install the pex utility.

RUN mkdir /opt/wheels /opt/pex

We create two directories to contain different kind of products.

RUN /opt/venv-python/bin/pip wheel --wheel-dir /opt/wheels Twisted

We use pip to build the wheels. This means we are going to use the pip dependency

resolution algorithm. While not objectively better than the pex algorithm, it is the

one used everywhere else. This means that if packages run into problems with the

pip dependency resolution process, they will add whatever hints they need to install

correctly. There is no such guarantee about pex, which is less frequently used.

RUN /opt/venv-python/bin/pex --find-links /opt/wheels --no-index \

 Twisted -m twisted -o /opt/pex/twisted.pex

We build the Pex file. Note that we tell pex to ignore the PyPI index, and only collect

packages from a specific directory – the one where pip put all the wheels it built. We

configure the Pex file to behave as though we run Python with -m twisted, and we

put the output in /opt/pex. While the suffix is not strictly necessary, it is useful when

inspecting Docker container images to help understand how things are running.

FROM python:3-slim

Chapter 4 twisted in doCker

172

Once again, we avoid shipping build tools to production using a second-stage slim

image.

COPY --from=0 /opt/pex /opt/pex

We copy the directory – which, this time, only has one file. Also note that this

time, the file is relocatable: it is possible (though we do not do this here) to copy to a

different path.

ENTRYPOINT ["/opt/pex/twisted.pex", "web"]

Some of the logic that in the previous examples resides in the ENTRYPOINT (that we

want to run python -m twisted) is now built into the Pex file. Our ENTRYPOINT is now

shorter.

 Build Options
Regardless of the way Python is run, the way the Docker container is built also has a lot

of options.

 One Big Bag
One way is to eschew a multi-stage build altogether and build a container with whatever

tools we need to build the environment. This often means containers that are big and

have many layers.

While this approach is certainly simple, straightforward, and easy to debug, it does

have downsides. The container size can easily start being a problem in production. The

number of layers, similarly, slows down container deployment. Finally, putting a lot of

packages in a container that is exposed to potentially hostile user input can lead to more

attack vectors than are necessary.

 Copying Wheels Between Stages
Another way is to build all wheels in the build stage, including any binary wheels, and

then copy them over to the production stage. The production stage still needs, in this

case, enough tooling to create a virtual environment and install those wheels in it –

although since venv is a Python built-in module in Python 3, this is no longer usually a

hardship.

Chapter 4 twisted in doCker

173

There are two other issues: the wheels stay around after being installed, since it is

impossible to really remove a file after switching layers; and it often creates extra layers

(though with clever reordering and backslash-continued lines, this can sometimes be

avoided).

 Copying Environment Between Stages
Another deployment option is to copy an environment (which could be full or virtual)

from the build stage to the production stage. This has the advantage of being fast

and straightforward, but the disadvantage that there is no compatibility checking,

dependency checking, or location checking. Still, if there are decent tests for the

resulting container, those will usually find basic incompatibility issues.

 Copying the Pex Executable Between Stages
Finally, if a Pex executable file is produced in the build stage, copying it is

straightforward. The Pex file, of course, will look for dependencies at runtime.

However, it will do a reliable check, so even starting the container is enough to test

for that.

It is also relocatable, so it does not matter where it is copied from – or where to.

Pex and Docker are often a good pairing. However, the inherent limitations of Pex (for

example, poor pre-build binary wheels support or poor PyPy support) sometimes make

it a nonstarter.

 Automation with Dockerpy
A package called dockerpy allows automation of Docker steps with Python. While

usually for running containers in production, we will use an orchestration framework,

this is often useful to build and test containers. The dockerpy library allows us to

carefully fine-tune the context we send to the Docker daemon – using the tarfile

Python module, it is possible to craft exactly the context needed.

Chapter 4 twisted in doCker

174

 Twisted on Docker
 ENTRYPOINT and PID 1
The process in Docker’s ENTRYPOINT Dockerfile instruction will have, inside the

container, process ID 1. Process ID 1 has a special responsibility on Linux. When a

process’s parent dies before it dies, PID 1 “adopts” it – becomes its parent. This means

that when the child process dies, PID 1 needs to “reap it” – wait on its exit status in order

to clear out the process entry from the process table.

This responsibility is a little weird, and many programs are not set up for it. When

running a program that does not reap adopted children, the process table will fill up. In

the best case, this will crash the container. In the worst case, when process limits have

not been carefully set up, this can crash the entire machine (virtual or physical) the

container is running on.

Luckily, any Twisted program is set up to be PID 1. This is because Twisted’s process

infrastructure will automatically reap both expected and unexpected children.

This means when building a container, if we are using it to run WSGI

applications, or Klein applications, or a Buildbot master, it is fine to have it be the

entry point.

In fact, for this reason, if there is any custom start-up code to do, consider

implementing it a tap plugin. This way, Twisted can still be the entry point.

 Custom Plugins
When writing a Twisted application to run in Docker, we almost always want to deliver it

as a custom tap plugin. This allows the ENTRYPOINT to be simply

["/path/to/python", "-m", "twisted", "custom_plugin"]

This means the plugin can get any arguments passed to the docker run

command – since those arguments are directly added to the ENTRYPOINT arguments.

It also means the plugin can directly read any environment variables passed to the

docker run via --env.

In a plugin, the makeService function is the one that returns the running service.

Note that the plugin can do any initialization it wants in that function – the event loop is

not yet running at that point.

Chapter 4 twisted in doCker

175

 NColony
Sometimes, it is necessary to run more than one process inside a Docker container.

Perhaps some side process to do file cleanup, or maybe a multi-process setup in order

to use more than one CPU. In those cases, a process supervisor is useful – to run several

processes, monitor them, and restart them if necessary.

NColony is a Twisted-based process supervisor. It is a small shim around

twisted.runner.procmon, which allows several flexible configuration options.

NColony consumes configuration as a directory of JSON-formatted files describing

processes.

Of course, it is possible to create those files directly by opening a file and writing

JSON into it. However, NColony also comes with a command-line utility – python -m

ncolony ctl – to create such files as well as a Python library – ncolony.ctllib.

One advantage of the directory model is that it means it interacts well with the

layer model of Docker container. A local base container can have an ENTRYPOINT of

["python", "-m", "twisted", "ncolony", ...], and even several base processes

in the configuration directory – typically /var/run/ncolony/config/. Then, specific

containerd can dump their own files, created in the build stage of the container using, for

example, python -m ncolony ctl, in this directory. The resulting container would run

both the side process and the main one.

Here is an example putting much of what has been talked about this chapter into

concrete detail:

FROM python:3

RUN python3 -m venv /application/env

RUN /application/env/bin/pip install ncolony

RUN mkdir /application/config /application/messages

RUN /application/env/bin/python -m ncolony \

 --config /application/config \

 --messages /application/messages \

 ctl \

 --cmd /application/env/bin/python \

 --arg=-m \

 --arg=twisted \

 --arg=web

Chapter 4 twisted in doCker

176

FROM python:3-slim

COPY --from=0 /application/ /application/

ENTRYPOINT ["/application/env/bin/python", \

 "-m", \

 "twisted", \

 "ncolony", \

 "--config", "/application/config", \

 "--messages", "/application/messages"]

We go over this line by line – there is a lot packed here.

FROM python:3

One way to get our Python environment is to use the official Docker (“library”)

image. This is based on the Debian distribution, and has Python – as well as all tools

needed to build Python, and Python extension modules, in it.

RUN python3 -m venv /application/env

We create a virtual environment in /application/env. As mentioned before, Python

3 makes virtual environments a built-in notion, and we take full advantage of it.

RUN /application/env/bin/pip install ncolony

For better reproducible builds, it would be better to copy a requirements file in –

ideally one that also has hashes – and pip install that. However, it is easier to see what

is going on when we directly use a package name.

RUN mkdir /application/config /application/messages

NColony needs two directories to function properly: one for configuration and one

for messages. We create both of them under /application. Configuration is the set of

processes that need to be run, and their parameters. Messages are transient requests –

usually ones to restart one or more processes.

RUN /application/env/bin/python -m ncolony \

We run a subcommand from the NColony we have installed inside the /

application/env virtual environment.

--config /application/config \

--messages /application/messages \

Chapter 4 twisted in doCker

177

We pass the parameters of NColony. Though in this case the messages directory is

not used, it is good to pass them both to all commands.

ctl \

Control (ctl) is the NColony subcommand that controls configuration.

--cmd /application/env/bin/python \

We run the same Python we were run with. Note that in general, this is not necessary

for NColony. However, it would be confusing to write code that uses radically different

interpreters for different uses.

--arg=-m \

--arg=twisted \

The process NColony is monitoring does not have to be a Twisted process, but in our

case, it is going to be a Twisted process – in fact, another tap plugin.

--arg=web

When no arguments are given, the web tap plugin displays a demo web application.

It is surprisingly useful for quick demos and checks – as in this case.

FROM python:3-slim

The second FROM line begins the production Docker image. Note – everything built

up to this point will be thrown away when the build is done. The only reason the earlier

steps exist is to copy from that ephemeral stage. This source image is a minimal Debian,

plus an installed Python 3.

COPY --from=0 /application/ /application/

We copy the entire application directory. Since this directory has both the virtual

environment and the NColony configuration, there is nothing else we need. The

simplicity of this line explains the value of all the careful work we did to set this

directory up.

ENTRYPOINT ["/application/env/bin/python", \ "-m", \

 "twisted", \ "ncolony", \

 "--config", "/application/config", \

 "--messages", "/application/messages"]

Chapter 4 twisted in doCker

178

Finally, we configure the entry point. Since NColony itself is a tap plugin, once again

the command we run is python -m twisted <plugin>.

In this example we could have run the web server directly as the entry point.

However, a more realistic example that really needs several processes would obscure the

basic mechanics of getting NColony to run in Docker.

 Summary
Docker, Python, and Twisted are complementary technologies. Docker, with multi-

stage builds and registries, gives Python a standardized way to specify build process and

packaging. Twisted, with its process management primitives, gives Docker a useful PID

1 that either does useful work by itself – for example, a web server – or a powerful base

layer – with NColony being a good fit for the Docker layer model.

Docker is a practical way to build, package, and run Twisted applications, and

Twisted is a useful thing to run inside Docker.

Chapter 4 twisted in doCker

179
© Mark Williams, Cory Benfield, Brian Warner, Moshe Zadka, Dustin Mitchell, Kevin Samuel, Pierre Tardy 2019
M. Williams et al., Expert Twisted, https://doi.org/10.1007/978-1-4842-3742-7_5

CHAPTER 5

Using Twisted as a
WSGI Server
 Introduction to WSGI
WSGI – the Web Standard Gateway Interface – is a Python standard. It is loosely based

on the CGI – common gateway interface – standard, which web servers used to interact

with scripts. With higher loads came the need to have a persistent Python process,

inside the web server. Originally, each server had its own unique way of running Python

applications. That meant each application had to decide on a web server and could not

move away. WSGI was designed as a low-level standard for web applications written

in Python to interact with web servers that can run Python internally (either by being

written in Python themselves, or by embedding the Python interpreter).

The WSGI standard defines an interface between two things: the WSGI web

application and the WSGI web server.

Twisted has a web server that, while implementing its own unique web-based APIs,

also implements the WSGI standard. Because it implements the WSGI standard, it can

run any Python web application that supports WSGI.

Usually, Python web applications will not interact with WSGI directly. Instead, it is

the responsibility of web frameworks – such as Django, Flask, or Pyramid – to interface to

WSGI as applications, and present a higher-level interface to the web application. These

interfaces are specific to the web framework – it is not expected that an application will

be easy to port from, say Django to Pyramid.

As an analogy, think of the choice of the web framework as similar to the choice

of a programming language, and the choice of a web server as similar to choosing an

operating system. We expect that moving between operating systems will allow us to

keep most code intact (portability) but we do not expect the same when switching

programming language.

180

From the point of view of web servers, supporting WSGI means that they are agnostic

to the web framework used – running a Pyramid application is the same as running

Flask. From the point of view of web frameworks, supporting WSGI means that they are

agnostic to the web server used – running on top of Apache is the same as running on

top of uwsgi.

WSGI was not born in a vacuum. At the time it was designed, there were already

many servers and many Python web frameworks. Because of this, WSGI was designed

to be easy to implement – both on the side of the servers, and on the side of the web

frameworks. Indeed, its similarity to CGI is the result. Many of these frameworks already

supported CGI, and adding WSGI support included little work.

WSGI was designed in 2003. The names of many of the frameworks it mentions –

Quixote and Webware, for example – are now relics of early experimentation with web

frameworks. Though it does not explicitly mention it by name, the only server that

mattered back then was Apache – which has fallen dramatically in popularity since.

However, despite the fact that both the popular frameworks and popular servers are

more recent, the WSGI standard has endured remarkably well.

The definition of the WSGI API is subtle. The standard it is trying to abstract, HTTP,

is complex. Modern web applications need access to much of that complexity. The

definition spans two documents and can sometimes appear overwhelming.

This section will break down WSGI and explain the parts that make it up.

 PEP
All major enhancements to Python go through a PEP (Python Enhancement Proposal)

process. WSGI, as a major feature, was originally described in PEP 0333. PEP 0333 was

originally created in December of 2003 and finalized in August of 2004.

While this PEP is still correct for Python 2.x, PEP 3333 describes how to implement

WSGI for both Python 2.x and Python 3.x. PEP 3333 was created in September of 2010

and finalized in October of 2010.

It was a fairly minor change to PEP 0333, dealing with proper implementation of

WSGI across Python 2.x and Python 3.x. In order to understand why it was necessary, it

is important to understand what changed between Python 2.x and Python 3.x.

One of the major changes between Python 2.x and Python 3.x was the handling

of unicode – and specifically, the bytes, string, and unicode types saw major changes.

WSGI, as a standard dealing with (ultimately) transmitting bytes over TCP connections,

needed to be refined to clarify which types belong where in Python 3.x.

Chapter 5 Using twisted as a wsgi server

181

While a detailed explanation of those changes is beyond our current scope, some

explanation is important to clarify those issues. Both Python 2.7+ and Python 3.x have

a bytes type, which is a sequence of bytes, and a unicode type, which is a sequence of

unicode code points. The string type, however, is equivalent to the bytes type in Python

2.7+ and to unicode in Python 3.x.

An encoding is a (possibly partial) map between bytes and unicode. ASCII is one

such encoding – mapping bytes under 128 to unicode points of the same value, and

declaring all other bytes to be invalid. Latin-1 (or ISO-8859-1) is an encoding that maps

all bytes to unicode points of the same value – and if no unicode point of that value

exists, declares the byte to be invalid.

In HTTP, the protocol that governs the web, it is divided into headers, followed by a

body; and if the body is textual, the headers will indicate what encoding it is in.

The issue of encoding the headers themselves is subtle: PEP 3333 treats them as

Latin-1 (also known as ISO-8859-1), while Twisted encodes them as UTF-8. The safest

thing to do is to make sure that all headers stick to the common subset of UTF-8 and

Latin-1: ASCII. This makes sure that no matter what encoding/decoding our headers go

through, they will remain intact.

In PEP 3333, the headers are expected to be the native string type – bytes for

Python 2.x and unicode for Python 3.x – while the content is always expected to be

bytes.

PEP 3333, as well as PEP 0333, also describes the idea of WSGI middleware –

something that looks like a server to the application, and like the application to the

server. While some WSGI middleware exists, note that some popular frameworks –

Django and Pyramid, notably – have their own native notions of middleware. Flask,

however, relies on WSGI middleware.

 Raw Example
The simplest WSGI application is simple indeed:

def application(

 environment,

 start_response):

 start_response('200 OK', [('Content-Type', 'text/html')])

 return [b'hello world']

Chapter 5 Using twisted as a wsgi server

182

We will go line by line and explain the three main parts that every WSGI application

should have:

def application(

In Python, function definitions accomplish two things:

• Create a function object.

• Assign it to a name.

This function definition, in particular, creates a function object and assigns it to the

name application.

This means that application now points to a callable object. That is what WSGI

applications are, a per PEP 3333: callable objects.

environment,

The first parameter is the so-called “environment.” This name hearkens back to

WSGI’s origins as a quick adaptation of the CGI standard.

The CGI standard deals with how web servers execute scripts. A part of this standard

defines the environment variables that those scripts have access to. Indeed, most of the

data about the web request is available from environment variables under CGI. The

WSGI standard took the same variable names, and the notion of an environment, and

called it the first parameter to the WSGI application.

The environment parameter is a Python dictionary, mapping specified names to

data about the web request. In the example application above, this parameter was

ignored, since we always use a constant value. If this was all we needed to do, we

would just have a static HTML page – most real applications depend, in some way,

on user input.

start_response):

The second parameter, conventionally known as start_response, is a subtle – and

often misunderstood – parameter. It is a callable accepting two arguments: the HTTP

response code and the HTTP headers.

start_response('200 OK', [('Content-Type', 'text/html')])

Chapter 5 Using twisted as a wsgi server

183

The first thing we do is call the start_response callable. The first argument is 200

OK, indicating a regular successful HTTP response. The second argument is a list of

headers. In this case, the only header we send is the Content-Type header. This indicates

that our response should be interpreted by the browser as HTML text.

return [b'hello world']

The next line returns a list of byte strings. Since we did not include an explicit

encoding in our Content-Type, the browser will use its default encoding. This is

reasonably safe in this case – modern browsers’ encoding detection will always work

correctly with bytes in the ASCII range.

In general, depending on browsers to be smart is not a good idea: the best approach

is to usually to use UTF-8, and indicate it clearly in the Content-Type.

This is important, since HTML is always defined in terms of unicode. The browser

will translate this to the unicode string u'hello world', which will display the greeting

message to the user.

We will assume, for the rest of this chapter, that this code is in a file called

wsgi_hello.py.

 Reference Implementation
Although PEP 333 (and 3333) has suggested that there is no need to implement WSGI in

core Python, experience proved differently. The module wsgiref implements a simple

web server, which can support WSGI applications.

The following command line will work in any bash-like shell, where quoting allows

lines to be broken. This is done for readability – substituting semicolons for the first two

line breaks, and removing the rest, would result in a completely portable command –

that is, however, harder to read and explain line by line.

python -c '

from wsgiref import simple_server

import wsgi_hello

simple_server.make_server(

 "127.0.0.1",

 8000,

 wsgi_hello.application

).serve_forever()

'

Chapter 5 Using twisted as a wsgi server

184

We will go through this line by line:

python -c '

Python has an option -c, which treats the next argument as Python code and

executes it. This is a convenient way to execute short programs without having to put the

code in a separate file.

from wsgiref import simple_server

Import the wsgiref.simple_server module. This module implements a single-

threaded single-process synchronous web server. While this server is not up to

production, it is sometimes convenient for simple demonstrations.

import wsgi_hello

The assumption that the code above was in a file called wsgi_hello.py is important

here. It is also important that:

• The file is in the current working directory.

• The current working directory is on the Python module path when

using -c.

This will become important later, in the discussion about the subtleties of finding the

WSGI application code.

simple_server.make_server(

This is the main function in the simple_server module – the one that creates a

simple server.

"127.0.0.1",

Many examples (including the one in the official documentation) will use "" here.

This will cause the WSGI server to bind to 0.0.0.0, the so-called “any” interface. Note

that wsgiref is not a production server – but even if it was, we are using it here to run test

and example code. Binding it to the any interface means that potentially, depending on

firewall settings, outsiders can connect to the code.

Instead, in this example we bind to "127.0.0.1," the local interface. Only programs

running on the same machine can connect now. This is useful – we can easily test the

running server with a browser, but only one running on the same machine as the server.

8000,

Chapter 5 Using twisted as a wsgi server

185

The standard web port is 80, as defined by the IANA standard. However, on UNIX

systems, ports below 1024 are reserved for the administrator (root) user account. This

prevents unprivileged users from “hijacking” system ports. While the specific thread

model that leads this need is receding in importance, now that it is uncommon to have

many unprivileged users to directly log in to the system running the web server, it is still

a component of threat mitigation and, most importantly, still enforced on modern UNIX-

like systems such as Linux.

It became a tradition in development to bind to a port that “looks similar,” such as 80,

8888, or 8080.

wsgi_hello.application

This is the actual WSGI application. As we mentioned, a WSGI application is a

callable Python object.

).serve_forever()

Having created the server, we run it in an infinite loop.

This is an easy way to quickly run WSGI applications, for testing, with no

dependencies other than Python’s standard library.

 WebOb Example
The WebOb package is an example of a low-level web framework. It is usually not used

directly, although it is certainly possible to do so.

import webob

def application(environment, start_response):

 request = webob.Request(environment)

 response = webob.Response(

 text='Hello world!')

 return response(environment, start_response)

Here is the line-by-line explanation:

import webob

The WebOb library is small enough so that everything we need is at the top level.

def application(environment, start_response):

Chapter 5 Using twisted as a wsgi server

186

The WSGI application itself, in this case, is just a regular function – as though we

were not using any framework.

request = webob.Request(environment)

The request object is built from the WSGI environment dictionary. Though this

application does not inspect the request object, it has a parsed view of many parameters:

URLs and query parameters, as well as cookies and more.

response = webob.Response(

We create the response object. Creating the response object frees us from dealing

with some lower-level details.

text='Hello world!')

For example, here we set the text property, without having to care about

transforming it to a list of byte strings.

return response(environment, start_response)

The response object knows how to call start_response and write out its body.

 Pyramid Example
Pyramid is a framework intended to impose minimal overhead but scale well to large

projects.

from pyramid import config, response

def hello_world(request):

 return response.Response('Hello World!')

with config.Configurator() as conf:

 conf.add_route('hello', '/')

 conf.add_view(hello_world, route_name='hello')

 application = conf.make_wsgi_app()

We go through the application line by line.

from pyramid import config, response

Chapter 5 Using twisted as a wsgi server

187

Pyramid has quite a few moving parts. For this example, we only need these two

modules.

def hello_world(request):

Note how hello_world is a regular Python function. It is not wrapped in any way.

This makes it easier to reuse it: for example, we can write tests for it, or use it in a

different function.

return response.Response('Hello World!')

We create a response object, similar to using WebOb or werkzeug.

with config.Configurator() as conf:

Using the configurator as a context manager means that at the end of the block,

assuming no exceptions were raised, it will automatically commit the configuration and

end it.

conf.add_route('hello', '/')

Routing in Pyramid is a two-step process. Mapping a URL to a “logical name” is the

first one.

conf.add_view(hello_world, route_name='hello')

The second step is to map the logical name to a view.

application = conf.make_wsgi_app()

Finally, we ask the configuration to represent itself as a WSGI application.

 Getting Started
While the documentation for running WSGI applications through Twisted is all correct,

it is distributed through a handful of documents. Here we will show a complete working

example for running a WSGI application, building it one block at a time.

Chapter 5 Using twisted as a wsgi server

188

 WSGI Server
The Twisted WSGI server is an option on the web tap plugin. In the demonstrations here,

we will use uniquely the python -m twisted way of invoking the plugin. Though it is a

little more long winded, it ends up being a useful thing to use in production.

Though it is not using WSGI, it is useful to see how to run the web plugin in general –

many of the options will end up being relevant to operating a WSGI server, and it is

useful to be able to operate the “listening side” on its own for troubleshooting.

Assuming Twisted is installed in the environment, it is possible to run:

$ python -m twisted web --port tcp:8000

and get a web server running the so-called “demo.” The demo web application just greets

with a hello message – in this case, on port 8000.

Running a WSGI application is easy – we have six of them above!

$ python -m twisted web --port tcp:8000 --wsgi wsgi_hello.application

$ python -m twisted web --port tcp:8000 --wsgi werkzeug_hello.application

$ python -m twisted web --port tcp:8000 --wsgi flask_hello.application

$ python -m twisted web --port tcp:8000 --wsgi webob_hello.application

$ python -m twisted web --port tcp:8000 --wsgi pyramid_hello.application

$ python -m twisted web --port tcp:8000 --wsgi django_hello.application

It is important to note that this was actually easier than using the reference

implementation. For the reference implementation, we had to write a little shell script

that included a 4-statement Python blob as a -c argument. While it is nice that the

Python command line and the UNIX shell cooperate to give those useful facilities, it is

nice to be able to do without them.

The --port option is actually more powerful than it seems.

$ python -m twisted web --port tcp:8000:interface=127.0.0.1 \

 --wsgi wsgi_hello.application

This will run the web server only on the local host interface, and make it unreachable

from the outside. Probably something good when developing your next-gen web

application using a coffee shop’s network!

The full power of endpoints is available in the --port command-line option,

including plugins. Some endpoint plugins will be important enough to merit a special

mention later.

Chapter 5 Using twisted as a wsgi server

189

Note that unlike other full-featured WSGI servers, Twisted does not have a

configuration file. There are a handful of options on the command line for small tweaks,

but a lot of things just assume the defaults – for example, the size of the WSGI thread

pool.

Customizing those is done via a custom plugin.

put in twisted/plugins/twisted_book_wsgi.py

from zope import interface

from twisted.python import usage, threadpool

from twisted import plugin

from twisted.application import service, strports

from twisted.web import wsgi, server

from twisted.internet import reactor

import wsgi_hello

@interface.implementer(service.IServiceMaker, plugin.IPlugin)

class ServiceMaker(object):

 tapname = "twisted_book_wsgi"

 description = "WSGI for book"

 class options(usage.Options): pass

 def makeService(self, options):

 pool = threadpool.ThreadPool(minthreads=1, maxthreads=100)

 reactor.callWhenRunning(pool.start)

 reactor.addSystemEventTrigger('after', 'shutdown', pool.stop)

 root = wsgi.WSGIResource(reactor, pool, wsgi_hello.application)

 site = server.Site(root)

 return strports.service('tcp:8000', site)

 serviceMaker = ServiceMaker()

We go through the non-import lines one by one:

@interface.implementer(service.IServiceMaker, plugin.IPlugin)

This is in general how to write a Twisted tap plugin. It marks a class as

• Something that is a plugin (plugin.IPlugin);

• Something that knows how to transform a command line to a service

(service.IServiceMaker).

Chapter 5 Using twisted as a wsgi server

190

It does so by using the zope.interface framework, which allows explicit marking

of interfaces and their implementations – as well as programmatic access to that

information. This programmatic interface is what allows the Twisted plugin system to

work.

class ServiceMaker(object):

The name of the class is actually not important. The only important thing is that the

name of the instance is serviceMaker.

tapname = "twisted_book_wsgi"

This is the name of the plugin to be used as the first argument to python -m

twisted.

description = "WSGI for book"

Usually the description should be more informative, since this appears in the help

text when running python -m twisted without an argument.

class options(usage.Options): pass

Since this is a minimal plugin, we “hard code” everything. It is not really hard

coding – at some point, the decision of which port, and which app, has to be made.

Making it at plugin writing time often makes sense, especially if using something like

twelve-factors and querying all configurations from environment variables.

However, it is often useful to at least make the port option available from the

command line.

def makeService(self, options):

This function accepts the options instance after it has parsed the command line.

pool = threadpool.ThreadPool(minthreads=1, maxthreads=100)

This is not an example of a good configuration. In fact, this is almost certain to be

a bad thread pool configuration. However, often some fine-tuning of the number of

threads does make sense. This obviously depends on the application, machines, and

usage characteristics.

reactor.callWhenRunning(pool.start)

Chapter 5 Using twisted as a wsgi server

191

Start the pool when the reactor starts.

reactor.addSystemEventTrigger('after', 'shutdown', pool.stop)

Shut down the pool when the reactor finishes.

root = wsgi.WSGIResource(reactor, pool, wsgi_hello.application)

Build the root resource. Here is where we combine a specific thread pool with a

specific WSGI application.

site = server.Site(root)

Build the Site object, which actually understands HTTP, from the resource object.

return strports.service('tcp:8000', site)

Build an endpoint and listen for HTTP protocol.

serviceMaker = ServiceMaker()

As mentioned, the actual plugin depends on an instance – not a class. We create an

instance of the class we defined.

This allows us to run the same hello world application with a better (or, in this case,

worse) tuned thread pool. It is also possible to build a plugin for many other reasons –

some of them we will cover in the rest of the chapter.

 Finding Code
The single most important thing the Twisted WSGI server needs to be able to do is to find

the WSGI application it needs to run. However, this has been traditionally a tricky thing.

 Default Path
When starting up Python using -c or -m, the current directory, . is on the import path.

Above, when using the reference implementation, we used -c, and when using the

Twisted WSGI server, we used -m.

However, when running a Python directly with a script, the script's directory, not

the current directory, is added to the path instead. Since this is how console scripts entry

points work, if we use twist, instead of python -m twisted, the current directory is no

longer on the import path.

Chapter 5 Using twisted as a wsgi server

192

Relying on the current directory being in the path works – right up to when it

does not, for seemingly small reasons. While it is fine for demonstration purposes, for

production uses, we need something stronger.

 PYTHONPATH
One way is to set the environment variable PYTHONPATH to a value. The first question

is which value: some do PYTHONPATH=., whereas others PYTHONPATH=$(pwd). The first

option has the advantage that it can follow around on the shell – but that strength is

equally its weakness, because something as simple as cd can break it.

The next one has the advantage of being concrete – but again, has the problem of action

at a distance, where running Python at some later time can suddenly import an old WSGI

app. This is especially a problem for projects that look for things on the Python path – like

Twisted’s plugin implementation. Having an extra plugin show up can be quite surprising.

 setup.py
The best solution is to write a setup.py file and turn the code into a proper package.

A name will have to be chosen, true, but usually the name of the topmost module will

be good enough. A version has to be chosen, but if no intent to distribute it exists,

0.0.0dev1 is an easy, safe choice.

For development purposes, it is often easiest to install it into a virtual environment

with pip install -e .. This will track changes as these are made to source files,

allowing minimal hassle while integrating with the virtual environment system – or any

other virtualenv-like system, such as Nix or Conda.

 Why Twisted
Twisted is certainly not the only option for running WSGI applications. Gunicorn, uwsgi,

and Apache’s mod_wsgi can all do that. However, Twisted has a few specific benefits.

 Production vs. Development
Most web frameworks come with their own built-in server, often based on the wsgiref

implementation. Without fail, those web servers will have warnings on them like “DO

NOT USE THIS SERVER IN A PRODUCTION SETTING. It has not gone through security

Chapter 5 Using twisted as a wsgi server

193

audits or performance tests.” (This is a quotation from Django’s documentation.) In the

worst cases, these warnings are not heeded – for ignorance or expediency –and websites

go live on top of development servers.

In the best cases, these warnings are addressed, and developers use the development

server, while production uses a production-grade server. This leads to environment

drift – some subtle differences in the implementation of WSGI, for example, means some

behavior in production does not reproduce in development. On top of that, developers

will not be familiar with the regular operations of the production-grade web server.

The logs, the error messages, and the failure modes will all be unique – often leading to

disconnect between developers and operations.

Last, but not least, when using two web servers, there needs to be some logic

deciding when to run where. Often tooling can get confused and accidentally run the

development server in production. Since the development server is not completely

broken, this often does not result in immediate breakage, but a weird pattern of

problems – perhaps some obscure performance issue.

Twisted, in contrast, is usable for both development and production usage.

It is possible to use Twisted directly from the command line, as we have done

above, passing just the name of the application. If, later on, it turns out to be

useful to write a custom plugin, it is usually the case that this plugin can be used

in development as well. This allows eliminating much potential production/

development drift.

Some of the more advanced development servers do support a useful feature –

automatic reloading of the code. However, with a little bit of configuration, this is

possible with Twisted too. The first step is to install our code with pip install -e, so

that merely restarting the server will be enough. Then, instead of running the server

directly, we run

$ watchmedo shell-command \

 --patterns="*.py" \

 --recursive \

 --command='python -m twisted web --wsgi=wsgi_hello.application' \

 .

This will automatically restart the server whenever a file changes. It takes advantage

of the watchdog PyPI package.

Chapter 5 Using twisted as a wsgi server

194

 TLS
TLS (Transport Layer Security) is the latest version of what used to be called SSL (Secure

Socket Layer). TLS is an encryption and key-exchange protocol that works on top of TCP.

TLS does two things:

• Encryption: communication using TLS is resistant to wire-taps.

• Endpoint authentication: when using TLS, it is possible to verify we

are talking to the endpoint we expect.

While the first one often is popular in explanation of the importance of TLS, the

second one is even more important. It is possible that some WSGI applications hold

little sensitive data: however, since they send HTML, JavaScript, and CSS to potentially

vulnerable browsers, making sure that no malware is delivered over the lines is always

important.

The way TLS authenticates endpoints is by checking certificates, signed by certificate

authorities. In general, the two ways to get a certificate authority to sign a certificate

are either to convince it that you are the legitimate endpoint, or to create your own

certificate authority. While creating a real certificate authority is nigh impossible, this

if often the preferred solution inside data centers, where the same person, or group, is

responsible for both ends of the connection.

Assuming the key is in key.pem and the certificate is in cert.pem,

$ python -m twisted web \

 --port ssl:port=8443:privateKey=key.pem:certKey=cert.pem \

 --wsgi wsgi_hello.application

will run a TLS server with the application. Note that in this case, the environment

dictionary will set wsgi.url_scheme to "https." WSGI applications can check that to see

if they are behind TLS.

This is one advantage of directly implementing TLS in the WSGI server. Otherwise,

obscure and nonstandard HTTP headers need to be consulted to know if the request is

secure or not.

Chapter 5 Using twisted as a wsgi server

195

 Server Name Indication
WSGI applications have access to the headers, which include the Host header. This

means a WSGI application can use the host the client accessed it on as one of its

parameters – say, serve different content on example.com and m.example.com, as a way

to support mobile browsers.

Assuming we want the application to still have TLS, which verifies the host- name,

this means we need to have certificates for both m.example.com and example.com, and

know which one to serve. TLS supports an extension called “Server Name Indication,”

which allows the client to indicate which name the server should prove it owns.

In order to support SNI in WSGI, we need to do several things:

• Get the relevant certificates and keys.

• For each host name, concatenate the certificate and key into one file

(often using the UNIX command cat). This file should be named

<host>.pem, e.g., m.example.com.pem.

• Put all those files in one directory, say /var/lib/keys.

• Install the txsni package from PyPI.

• Run.

$ python -m twisted web \

 --port txsni:/var/lib/keys:tcp:8443 \

 --wsgi wsgi_hello.application

This example would work well for the case where we want to serve the same content

(securely) from two different domain names – for example, example.com and www.

example.com.

If we want to serve different content for different subdomains, for example, app.

example.com for the dynamic application and static.example.com for the static files,

we could use the same port argument with a custom plugin that creates a twisted.web.

vhost.NameVirtualHost resource.

Here is an example plugin that does exactly that:

from zope import interface

Chapter 5 Using twisted as a wsgi server

196

from twisted.python import usage, threadpool

from twisted import plugin

from twisted.application import service, strports

from twisted.web import wsgi, server, static, vhost

from twisted.internet import reactor

import wsgi_hello

@interface.implementer(service.IServiceMaker, plugin.IPlugin)

class ServiceMaker(object):

 tapname = "twisted_book_vhost"

 description = "Virtual hosting for book"

 class options(usage.Options):

 optParameters = [["port", "p", None,

 "strports description of the port to "

 "start the server on."]]

 def makeService(self, options):

 application = wsgi_hello.application

 pool = threadpool.ThreadPool(minthreads=1, maxthreads=100)

 reactor.callWhenRunning(pool.start)

 reactor.addSystemEventTrigger('after', 'shutdown', pool.stop)

 dynamic = wsgi.WSGIResource(reactor, pool, application)

 files = static.File('static')

 root = vhost.NameVirtualHost()

 root.addHost(b'app.example.org', dynamic)

 root.addHost(b'static.example.org', files)

 site = server.Site(root)

 return strports.service(options['port'], site)

serviceMaker = ServiceMaker()

The interesting lines are

root = vhost.NameVirtualHost()

root.addHost(b'app.example.org', dynamic)

root.addHost(b'static.example.org', files)

Chapter 5 Using twisted as a wsgi server

197

This creates a root resource that redirects all requests for app.example.org to the

dynamic resource, and all requests for static.example.org to the static one. Note that

because we chose example.org, it is safe to point those names, for testing purposes, to

127.0.0.1 in your hosts file.

Note that in this case, we did not choose a default. Going to a site via a different

name (e.g., localhost) would cause a 404 error. It is possible to set the default property

on a NameVirtualHost to set a default root for all other names.

 Static Files
One thing that using Twisted as a WSGI server allows us to do is to serve static assets, as

well as dynamic applications, from the same web server. This includes images, JavaScript

files, and CSS files, as well as any other files.

Twisted is was originally built to be a high-performance networking application, and

the Twisted web server, when serving static files, can keep up with all but the most taxing

needs. When serving those needs, however, most applications will be served behind a

Content Distribution Network (CDN).

The CDN will mean any differences in how fast static files are served are irrelevant.

However, in those cases, being able to set the Cache-Control headers from Python code

is convenient. Teams that write WSGI applications in Python are usually proficient in

Python and prefer using it to learn another highly-specific domain language such as

most servers’ built-in configuration language.

However, to understand how to do that, it is important to delve deeper into how

the Twisted web server API – and, as a side effect, understand a little more some of the

things that were laid out earlier with little explanation.

 Resource Model
Most modern web application servers, if they have a routing model at all, have a pattern

match routing model. Flask, Django, and Pyramid, as we have seen earlier, all map URL

patterns to code in some way.

Twisted web predates all of those. Before URL pattern matching became popular,

treating the web resources as a tree was also an alternative – and this is the alternative

that Twisted web took. As a result, it has a model of resources that have children.

Chapter 5 Using twisted as a wsgi server

198

This is not too important as long as we only used WSGI: the WSGI resource marks

itself with isLeaf = True. This means it does not have children, and tree traversal is

stopped when it is reached. This allows the WSGI resource to pass the path to the web

application framework, for its own routing. Since we used a WSGI resource as the root

resource – the one passed directly to the Site constructor – it meant that the resource

tree model was only theoretical.

However, when combining different resources together, the details of this model are

crucially important.

 Pure Static
In order to understand how to do static file serving with Twisted web, it is worthwhile to

first write a plugin to do just that – with no dynamic resources.

from zope import interface

from twisted.python import usage, threadpool

from twisted import plugin

from twisted.application import service, strports

from twisted.web import static, server

from twisted.internet import reactor

@interface.implementer(service.IServiceMaker, plugin.IPlugin)

class ServiceMaker(object):

 tapname = "twisted_book_static"

 description = "Static for book"

 class options(usage.Options):

 pass

 def makeService(self, options):

 root = static.File('static')

 site = server.Site(root)

 return strports.service('tcp:8000', site)

serviceMaker = ServiceMaker()

The only line that is new here is

root = static.File('static')

Chapter 5 Using twisted as a wsgi server

199

This defines a File resource. The File resource is also a leaf resource, which will

map the rest of the URL to a path on the disk. This uses a relative path, static, to

the current working directory. This works wonderfully for illustration purposes, but

production applications usually will use a full path.

One way to get a full path is to package the files directly with the Python code. It takes

a little setup hacking to package it, as well as to find it at runtime.

Here is an example setup.py, and the plugin that uses it:

import setuptools

setuptools.setup(

 name='static_server',

 license='MIT',

 description="Server: Static",

 long_description="Static, the web server",

 version="0.0.1",

 author="Moshe Zadka",

 author_email="zadka.moshe@gmail.com",

 packages=setuptools.find_packages(where='src') + ['twisted/plugins'],

 package_dir={"": "src"},

 include_package_data=True,

 install_requires=['twisted', 'setuptools'],

)

The most interesting line is include_package_data=True. In order to actually have

some interesting data, we need a manifest: in MANIFEST.in, we put

include src/static_server/a_file.html

The plugin to serve this file (in this case, on /) looks like this:

import pkg_resources

from zope import interface

from twisted.python import usage, threadpool

from twisted import plugin

from twisted.application import service, strports

from twisted.web import static, server, resource

from twisted.internet import reactor

Chapter 5 Using twisted as a wsgi server

200

@interface.implementer(service.IServiceMaker, plugin.IPlugin)

class ServiceMaker(object):

 tapname = "twisted_book_pkg_resources"

 description = "Static for book"

 class options(usage.Options):

 pass

 def makeService(self, options):

 root = resource.Resource()

 fname = pkg_resources.resource_filename("static_server",

 "a_file.html")

 static_resource = static.File(fname)

 root.putChild(“, static_resource)

 site = server.Site(root)

 return strports.service('tcp:8000', site)

serviceMaker = ServiceMaker()

The interesting new line here is:

fname = pkg_resources.resource_filename("static_server",

 "a_file.html")

static_resource = static.File(fname)

This uses the pkg_resources package, a part of setuptools, to find the filename at

runtime.

Note that this will work even if, say, our package is deployed directly as a zip using

a tool like pex (or the built-in zipapp): pkg_resources is smart enough to transparently

unpack the file before giving the filename.

This technique is also useful for including template files when using a system like

Jinja2 or Chameleon.

 Combining Static Files with WSGI
We can also serve static resources for a WSGI application through Twisted’s own

web server.

import os

from zope import interface

from twisted.python import usage, threadpool

from twisted import plugin

Chapter 5 Using twisted as a wsgi server

201

from twisted.application import service, strports

from twisted.web import wsgi, server, static, resource

from twisted.internet import reactor

import wsgi_hello

class DelegatingResource(resource.Resource):

 def __init__ (self, wsgi_resource):

 resource.Resource. __init__ (self)

 self._wsgi_resource = wsgi_resource

 def getChild(self, name, request):

 request.prepath = []

 request.postpath.insert(0, name)

 return self._wsgi_resource

@interface.implementer(service.IServiceMaker, plugin.IPlugin)

class ServiceMaker(object):

 tapname = "twisted_book_combined"

 description = "twisted_book_combined"

 class options(usage.Options): pass

 def makeService(self, options):

 application = wsgi_hello.application

 pool = threadpool.ThreadPool()

 reactor.callWhenRunning(pool.start)

 reactor.addSystemEventTrigger('after', 'shutdown', pool.stop)

 wsgi_resource = wsgi.WSGIResource(reactor, pool, application)

 static_resource = static.File('.')

 root = DelegatingResource(wsgi_resource)

 root.putChild('static', static_resource)

 site = server.Site(root)

 return strports.service('tcp:8000', site)

serviceMaker = ServiceMaker()

We go line by line over the new code:

class DelegatingResource(resource.Resource):

We define a class called DelegatingResource. This is going to be our root. It inherits

from resource.Resource. Note that it is not a leaf resource – and so the site will traverse it.

def __init__ (self, wsgi_resource):

Chapter 5 Using twisted as a wsgi server

202

We initialize the delegator with a WSGI resource.

resource.Resource. __init__ (self)

As appropriate, we call the superclass constructor. This is crucially important –

Resource would not function correctly without its constructor.

self.wsgi_resource = wsgi_resource

We save the WSGI resource in an attribute.

def getChild(self, name, request):

The name of getChild is a bit confusing. The semantics are of getting a dynamic

child. A static child, that is, one which has been manually added to a Resource, will

prevent this method from being called. The root will never be called to render: even a

URL like / will result in a child traversal with an empty string as name.

request.prepath = []

request.postpath.insert(0, name)

We move the name from the prepath to the postpath, thus tricking the delegated – to

resource that is the root. Note that this trick works only if this resource is at root.

return self.wsgi_resource

After tricking the path to pretend one less traversal has been done, we return the

WSGI resource.

static_resource = static.File('.')

We create the static resource. This is no different from the pure static resource case.

root = DelegatingResource(wsgi_resource)

We create the delegating resource as our root resource.

root.putChild('static', static_resource)

As indicated earlier, the manually introduced child will override the getChild

method. So for any path that starts with /static/, a static resource will be served.

Chapter 5 Using twisted as a wsgi server

203

 Built-In Scheduled Tasks
For the following example, we want a WSGI app that depends on a parameter we can

change.

class _Application(object):

 def __init__ (self, greeting='hello world'):

 self.greeting = greeting

 def __call__ (self, environment, start_response):

 start_response('200 OK', [('Content-Type',

 'text/html; charset=utf-8')])

 return [self.greeting.encode('utf-8')]

application = _Application()

We will go through the code line by line:

class _Application(object):

As mentioned earlier, the only assumption about WSGI applications is that they

are callable objects. In this case, we create a callable object by defining a class with a

__call__ method.

def __init__ (self, greeting='hello world'):

We initialize with a greeting, with the standard default.

self.greeting = greeting

In the constructor, we do not do anything more interesting than setting attributes.

def __call__ (self, environment, start_response):

Since this is a WSGI application, it is called with the standard parameter.

start_response('200 OK', [('Content-Type',

 'text/html; charset=utf-8')])

This is the same start_response call as before, with the exception of the addition of

an explicit character set. Since it is possible for the creator to pass arbitrary unicode strings,

and we encode them to utf-8, we need to let the browser know this is what we do.

return [self.greeting.encode('utf-8')]

Chapter 5 Using twisted as a wsgi server

204

We want to be able to set greetings as strings. Therefore, this must encode them to

bytes.

application = _Application()

We do not care about the class – what we want is an instance of it as the application.

import time

from zope import interface

from twisted.python import usage, reflect, threadpool, filepath

from twisted import plugin

from twisted.application import service, strports, internet

from twisted.web import wsgi, server, static

from twisted.internet import reactor

import wsgi_param

def update(application, reactor):

 stamp = time.ctime(reactor.seconds())

 application.greeting = "hello world, it's {}".format(stamp)

@interface.implementer(service.IServiceMaker, plugin.IPlugin)

class ServiceMaker(object):

 tapname = "twisted_book_scheduled"

 description = "Changing application"

 class options(usage.Options): pass

 def makeService(self, options):

 s = service.MultiService()

 pool = threadpool.ThreadPool()

 reactor.callWhenRunning(pool.start)

 reactor.addSystemEventTrigger('after', 'shutdown', pool.stop)

 root = wsgi.WSGIResource(reactor, pool, wsgi_param.application)

 site = server.Site(root)

 strports.service('tcp:8000', site).setServiceParent(s)

 ts = internet.TimerService(1, update, wsgi_param.application, reactor)

 ts.setServiceParent(s)

 return s

serviceMaker = ServiceMaker()

def update(application, reactor):

Chapter 5 Using twisted as a wsgi server

205

This function will be called periodically to update the application.

stamp = time.ctime(reactor.seconds())

We use reactor.seconds() here, rather than time.time(). If this code were to grow

bigger, this would aid in testability.

application.greeting = "hello world, it's {}".format(stamp)

This sets the application greeting attribute. Since it is public, it is considered part of

the class’s API.

Note: this is taking advantage of mutable global state, which in general is a

dangerous pattern – doubly so in the case of threads. While the main loop of Twisted

features no threads, WSGI works all run inside of Twisted’s thread pool.

However, in this specific case, the change is safe – a thread will either see the old

greeting or a new one. This is because of Python’s global interpreter lock, which ensures

Python threads see a consistent state – and because this is just replacing one string with

another.

s = service.MultiService()

This creates a service that starts multiple services. It allows us to do both the web

serving, and the updating, from the same service.

strports.service('tcp:8000', site).setServiceParent(s)

This time, instead of returning the strports.service result, we set its parent to the

MultiService. This will attach it to the MultiService as a child.

ts = internet.TimerService(1, update, wsgi_param.application, reactor)

Here we create a timer that fires every 1 second and calls the function update with

the parameters wsgi_param.application and reactor.

ts.setServiceParent(s)

Attach the timer to the return value.

return s

And return the MultiService.

Chapter 5 Using twisted as a wsgi server

206

While this is definitely not the best way to display a clock, there are many cases

where this separation between retrieval of a value and displaying it make sense. Imagine

a stock ticker application: it is better to retrieve the stock price once a second, and

display a value from memory when a web request happens, rather make every web

request wait for a (potentially slow) back-end service.

This shows the benefits of the scheduled service running in process. Of course,

even things that do not have to be in process can be scheduled this way – log cleanup,

for example. This allows application configuration to be kept in one place, rather than

having to add a dependency on a service like cron.

 Control Channels
Often it is useful to modify the configuration of web applications at runtime, without

restarting or rebuilding. Some examples of this are:

• Modifying debugging levels when troubleshooting a problem.

• Modifying control/test percentage in an A/B test.

• Switching a “feature flag” off if customers are reporting issues.

This means that besides the “application channel,” over which the application

end user is interacting with the application, we want a side channel, a “control

channel,” that will modify the behavior. Having this channel available via a different

port, and potentially a different protocol, is much safer – the attack vector of an

unauthorized user getting access to the control channel can be mitigated with

conventional firewalls and network configuration, rather than only through

application-level access control.

Since Twisted is, at heart, a networking event framework, it is ideally suited for

adding control channels to WSGI applications. Since such control channels, by nature,

cross thread boundaries, it is necessary to take care and think about thread safety.

However, it does allow interesting behaviors to be added to WSGI applications.

The following plugin shows a way to control the greeting using the network.

from zope import interface

from twisted.python import usage, reflect, threadpool, filepath

from twisted import plugin

from twisted.application import service, strports, internet

Chapter 5 Using twisted as a wsgi server

207

from twisted.web import wsgi, server, static

from twisted.internet import reactor, protocol

from twisted.protocols import basic

import wsgi_param

class UpdateMessage(basic.LineReceiver):

 def lineReceived(self, line):

 self.factory.application.greeting = line.decode('utf-8')

 self.transport.writeSequence([b"greeting is now: ", line, b"\r\n"])

 self.transport.loseConnection()

@interface.implementer(service.IServiceMaker, plugin.IPlugin)

class ServiceMaker(object):

 tapname = "twisted_book_control"

 description = "Changing application"

 class options(usage.Options): pass

 def makeService(self, options):

 s = service.MultiService()

 pool = threadpool.ThreadPool()

 reactor.callWhenRunning(pool.start)

 reactor.addSystemEventTrigger('after', 'shutdown', pool.stop)

 root = wsgi.WSGIResource(reactor, pool, wsgi_param.application)

 site = server.Site(root)

 strports.service('tcp:8000', site).setServiceParent(s)

 factory = protocol.Factory.forProtocol(UpdateMessage)

 factory.application = wsgi_param.application

 strports.service('tcp:8001',factory).setServiceParent(s)

 return s

serviceMaker = ServiceMaker()

We go through the new code line by line:

class UpdateMessage(basic.LineReceiver):

This defines a subclass of the protocol basic.LineReceiver. It chunks messages into

lines, allowing us to easily delimit messages.

def lineReceived(self, line):

Chapter 5 Using twisted as a wsgi server

208

This will be called when a line is received – note that the line will not contain the

termination character (by default, carriage return followed by a newline, \r\n).

self.factory.application.greeting = line

We set the greeting to the incoming line.

factory = protocol.Factory.forProtocol(UpdateMessage)

We create the factory that will produce instances of UpdateMessage upon client

connection.

factory.application = wsgi_param.application

We set the application on the factory to the WSGI application. This allows the

protocol object to have access to the application, in order to change the greeting.

strports.service('tcp:8001',factory).setServiceParent(s)

We bind this protocol to one port higher.

 Strategies for Using Multiple Cores
The one limitation Twisted as a WSGI server has is that it runs one process. Since

Python has the global interpreter lock, this means that on a multi-core machine,

only one core will be used for WSGI. Frequently, this is not a problem: in some

environments, a lower layer will present a one-core “machine” to applications.

For example, this is the case when using a virtualization platform or a container

orchestration framework.

However, for many reasons, sometimes the correct multi-process solution needs to

be solved at the application layer. Here we showcase some of these approaches.

 Load Balancer
The simplest way is to start multiple Twisted WSGI processes, and put a load balancer

in front of them. One popular load balancer is HAProxy. Having a complete HAProxy

tutorial is beyond our scope, but the following is an example HAProxy configuration. In

order to simplify the configuration, the configuration is for plain-text HTTP – although

HAProxy is often used to terminate SSL.

Chapter 5 Using twisted as a wsgi server

209

defaults

 log global

 mode http

frontend localnodes

 bind *:8080

 mode http

 default_backend nodes

backend nodes

 mode http

 balance roundrobin

 option forwardfor

 http-request set-header X-Forwarded-Port %[dst_port]

 http-request add-header X-Forwarded-Proto https if { ssl_fc }

 option httpchk HEAD / HTTP/1.1\r\nHost:localhost

 server web01 127.0.0.1:9000 check

 server web02 127.0.0.1:9001 check

 server web03 127.0.0.1:9002 check

The last three lines are the most important: they forward to three different local web

servers.

Now, we need something to run all four processes – HAProxy and the three web

servers. In this example, we will use ncolony.

$ alias add="python -m ncolony --messages /var/run/messages \

 --config /var/run config add"

$ add --cmd haproxy --arg=-f --arg=/my/haproxy.cfg haproxy

$ add --cmd python --arg=-m --arg=twisted \

 --arg=web --arg=--wsgi \

 --arg=wsgi_hello.application \

 --arg=--port --arg=tcp:9001 web1

$ add --cmd python --arg=-m --arg=twisted \

 --arg=web --arg=--wsgi \

 --arg=wsgi_hello.application \

 --arg=--port --arg=tcp:9002 web2

$ add --cmd python --arg=-m --arg=twisted \

 --arg=web --arg=--wsgi \

Chapter 5 Using twisted as a wsgi server

210

 --arg=wsgi_hello.application \

 --arg=--port --arg=tcp:9003 web3

$ python -m twisted ncolony --messages /var/run/messages \

 --config /var/run config add

 Opening Socket in Shared Mode
A fairly recent feature of Linux kernels is the SO_REUSEPORT socket option. This allows

several servers to listen on the same port. However, since the feature is fairly recent,

Twisted does not support it out of the box.

In order to take advantage of it, we will need to plug into the lower layers of Twisted.

import socket

import attr

from zope import interface

from twisted.python import usage, threadpool

from twisted import plugin

from twisted.application import service, internet as tainternet

from twisted.web import wsgi, server

from twisted.internet import reactor, tcp, interfaces as tiinterfaces,

defer

import wsgi_hello

@interface.implementer(tiinterfaces.IStreamServerEndpoint)

@attr.s

class ListenerWithReuseEndPoint(object):

 port = attr.ib()

 reactor = attr.ib(default=None)

 backlog = attr.ib(default=50)

 interface = attr.ib(default=“)

 def listen(self, protocolFactory):

 p = tcp.Port(self.port, protocolFactory, self.backlog, self.interface,

 self.reactor)

 self._sock = sock = p.createInternetSocket()

Chapter 5 Using twisted as a wsgi server

211

 sock.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEPORT, 1)

 sock.bind((self.interface, self.port))

 sock.listen(self.backlog)

 return defer.succeed(reactor.adoptStreamPort(sock.fileno(),

 p.addressFamily,

 protocolFactory))

@interface.implementer(service.IServiceMaker, plugin.IPlugin)

class ServiceMaker(object):

 tapname = "twisted_book_reuseport"

 description = "Reuse port"

 class options(usage.Options): pass

 def makeService(self, options):

 application = wsgi_hello.application

 pool = threadpool.ThreadPool(minthreads=1, maxthreads=100)

 reactor.callWhenRunning(pool.start)

 reactor.addSystemEventTrigger('after', 'shutdown', pool.stop)

 root = wsgi.WSGIResource(reactor, pool, application)

 site = server.Site(root)

 endpoint = ListenerWithReuseEndPoint(8000)

 service = tainternet.StreamServerEndpointService(endpoint, site)

 return service

serviceMaker = ServiceMaker()

This has certainly been the most complicated plugin we have written so far. In

production code, this would be too big for a plugin – certainly most of the logic should

be broken out.

However, for illustration purposes, showing all the code close together serves to

make it clearer.

@interface.implementer(tiinterfaces.IStreamServerEndpoint)

The module name seems strange. Twisted’s deep module hierarchy means some

names are repeated at different points in the hierarchy. A useful convention is to import

the module with some letters of the hierarchy still there, in order to make the purpose

clearer. In this case, tiinterfaces stands for twisted.internet.interfaces.

Chapter 5 Using twisted as a wsgi server

212

We implement the IStreamServerEndpoint interface, as we need to implement a

new kind of endpoint – one that opens sockets in REUSEPORT mode.

@attr.s

Since this class has a lot of data members, we use the attrs package to make the

code simpler.

class ListenerWithReuseEndPoint(object):

 port = attr.ib()

 reactor = attr.ib(default=None)

 backlog = attr.ib(default=50)

 interface = attr.ib(default=")

We accept exactly the same arguments as the reactor.listenTCP call. This is

intentional.

def listen(self, protocolFactory):

This is the sole method in the IStreamServerEndpoint interface.

p = tcp.Port(self.port, protocolFactory, self.backlog, self.interface,

 self.reactor)

self._sock = sock = p.createInternetSocket()

Twisted’s lower-level TCP facilities, in tcp.Port, make sure that the right options

for non-blocking will be set on the socket. We keep a reference to the socket object, in

order to keep it from being collected. This is important, since we will be creating a new

Python-level socket object from the same file descriptor.

sock.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEPORT, 1)

This is the real reason for all this rigamarole – to set the SO_REUSEPORT option.

sock.bind((self.interface, self.port))

We bind to the interface.

sock.listen(self.backlog)

We start listening.

Chapter 5 Using twisted as a wsgi server

213

return defer.succeed(reactor.adoptStreamPort(sock.fileno(),

 p.addressFamily,

 protocolFactory))

We take the file descriptor from the socket object and allow Twisted to “adopt” it.

This returns an IListeningPort. Since the contract for listen is to return a deferred, we

wrap it in defer.succeed.

In order to put this in production, we can use ncolony again.

$ alias add="python -m ncolony --messages /var/run/messages \

 --config /var/run config add"

$ add --cmd python --arg=-m --arg=twisteded \

 --arg=twisted_book_reuseport web1

$ add --cmd python --arg=-m --arg=twisteded \

 --arg=twisted_book_reuseport web2

$ add --cmd python --arg=-m --arg=twisteded \

 --arg=twisted_book_reuseport web3

$ python -m twist ncolony --messages /var/run/messages \

 --config /var/run config add

As in the last example, we run three web workers. Note that this time, the command-

line for all three is identical – and the need for a load balancer is gone.

 Other Options
There are, in general, a few other options for multi-processing in Twisted. It is possible

to create a socket, and then spawn processes that will listen on it. This means tying in the

process management and the listening code in somewhat awkward ways. For example,

using ncolony is no longer possible – nor is using twisted.runner.procmon – to monitor

the processes. If the “parent” process dies, we are left with the dilemma of whether to

restart it, and kill all existing children, or wait for all children to die first.

Another option is to listen in one process, but then pass the file descriptors over a

UNIX domain socket. This is nontrivial to do portably and requires quite a bit of delving

into a socket system call esoterica.

Chapter 5 Using twisted as a wsgi server

214

In general, the options for port reuse or for load balancing are superior. Note that,

like any performance improvement, the effect of a specific choice (such as port reuse

vs. load balancing) should be measured in an environment that, as much as possible,

approximates the production environment.

 Dynamic Configuration
As noted earlier, using Twisted as a WSGI server allows adding control channels to your

applications, allowing reconfiguration at runtime. Here we show a full-fledged example

of such control, using the Asynchronous Messaging Protocol (AMP) as our control

protocol. The example includes both the application and the control application.

 A/B Testable Pyramid App
A/B testing means showing one version of a web application to some users and a

different version to others – and checking the effect on various metrics. For example,

an e-commerce application might experiment with the placement of the “Checkout”

button, and test its effect on how many customers check out.

There are many full-featured A/B testing options for Python web frameworks.

Here we do not have the scope to write a full-featured alternative, but we will show

one of the basic pieces: varying the output. In general, the output should be constant

when shown to a given user, but that requires a coherent session construct, again

beyond our scope.

Our “test” will just be per request, deciding which version to show. We will do this

based on a random choice. However, we will adopt an important feature of A/B test

frameworks – biased choice. If we think the test might have a detrimental effect on users,

we often run it on a small percentage.

Our default is to run the tests on 0% of users. We will depend on an external

mechanism to increase those percentages.

import random

from pyramid import config, response

FEATURES = dict(capitalize=0.0, exclaim=0.0)

Chapter 5 Using twisted as a wsgi server

215

def hello_world(request):

 if random.random() < FEATURES['capitalize']:

 message = 'Hello world'

 else:

 message = 'hello world'

 if random.random() < FEATURES['exclaim']:

 message += '!'

 return response.Response(message)

with config.Configurator() as conf:

 conf.add_route('hello', '/')

 conf.add_view(hello_world, route_name='hello')

 application = conf.make_wsgi_app()

We go over the new code line by line:

FEATURES = dict(capitalize=0.0, exclaim=0.0)

We allow two “features” – capitalize, whether to capitalize our greeting; and

exclaim, whether to add an exclamation mark. Note that these features, in the example,

are independent: users can be exposed to four different greetings.

This is, in the small, a good simulation of actual environments that do A/B testing –

in which users can often be, in theory, exposed to any of the 2**n possible options when

running n experiments.

if random.random() < FEATURES['capitalize']:

This is the basic logic of a so-called “biased coin toss” in Python. It will result in True

about FEATURES['capitalize'] on average.

message = 'Hello world'

Capitalized message.

else:

 message = 'hello world'

Lowercase message.

if random.random() < FEATURES['exclaim']:

 message += '!'

If exclamation is on, add an exclamation mark.

Chapter 5 Using twisted as a wsgi server

216

 Custom Plugin with AMP
In order to be able to adjust the percentages, we use the AMP protocol. There are many

alternative options, but this one balances flexibility and demonstrability. One nice thing

is that support for AMP is built into Twisted, so no third-party packages are needed.

from zope import interface

from twisted.python import usage, threadpool

from twisted import plugin

from twisted.application import service, strports

from twisted.web import wsgi, server

from twisted.internet import reactor, protocol

from twisted.protocols import amp

import pyramid_dynamic

class GetCapitalize(amp.Command):

 arguments = []

 response = [(b'value', amp.Float())]

class GetExclaim(amp.Command):

 arguments = []

 response = [(b'value', amp.Float())]

class SetCapitalize(amp.Command):

 arguments = [(b'value', amp.Float())]

 response = []

class SetExclaim(amp.Command):

 arguments = [(b'value', amp.Float())]

 response = []

class AppConfiguration(amp.CommandLocator):

 @GetCapitalize.responder

 def get_capitalize(self):

 return {'value': pyramid_dynamic.FEATURES['capitalize']}

Chapter 5 Using twisted as a wsgi server

217

 @GetExclaim.responder

 def get_exclaim(self):

 return {'value': pyramid_dynamic.FEATURES['exclaim']}

 @SetCapitalize.responder

 def set_capitalize(self, value):

 pyramid_dynamic.FEATURES['capitalize'] = value

 return {}

 @SetExclaim.responder

 def set_exclaim(self, value):

 pyramid_dynamic.FEATURES['exclaim'] = value

 return {}

@interface.implementer(service.IServiceMaker, plugin.IPlugin)

class ServiceMaker(object):

 tapname = "twisted_book_configure"

 description = "WSGI for book"

 class options(usage.Options):

 pass

 def makeService(self, options):

 application = pyramid_dynamic.application

 pool = threadpool.ThreadPool(minthreads=1, maxthreads=100)

 reactor.callWhenRunning(pool.start)

 reactor.addSystemEventTrigger('after', 'shutdown', pool.stop)

 root = wsgi.WSGIResource(reactor, pool, application)

 site = server.Site(root)

 control = protocol.Factory()

 control.protocol = lambda: amp.AMP(locator=AppConfiguration())

 ret = service.MultiService()

 strports.service('tcp:8000', site).setServiceParent(ret)

 strports.service('tcp:8001', control).setServiceParent(ret)

 return ret

serviceMaker = ServiceMaker()

Chapter 5 Using twisted as a wsgi server

218

We will go over the new code:

class GetCapitalize(amp.Command):

 arguments = []

 response = [(b'value', amp.Float())]

class GetExclaim(amp.Command):

 arguments = []

 response = [(b'value', amp.Float())]

class SetCapitalize(amp.Command):

 arguments = [(b'value', amp.Float())]

 response = []

class SetExclaim(amp.Command):

 arguments = [(b'value', amp.Float())]

 response = []

These define AMP commands. Commands are the basic messages in AMP. While in

theory, commands can be sent both ways, in most cases, they will be sent from the client

to the server.

We intentionally made the commands for get/set allow only one field at a time, in order

to be clear that no atomicity is guaranteed. Indeed, since it is hard to guarantee atomicity on

the dictionary access without much more machinery, it is useful to indicate in the API that it

is impossible to, say, set capitalize to 1 and guarantee that at the same time, exclaim is 0.

We could have made an API with claims to atomicity: for example, setting both

attributes at once. We could even implement it in a way that would look atomic: for

example, replacing the FEATURES dictionary wholesale, so that the access would be to

either the old dictionary or a new one, and there was no intermediate step. However, a

thread switch could happen between the line

if random.random() < FEATURES['capitalize']:

and the line

if random.random() < FEATURES['exclaim']:

which would render the atomicity pretense a lie. Instead, we choose to make it explicit

that updates are not atomic,

class AppConfiguration(amp.CommandLocator):

Chapter 5 Using twisted as a wsgi server

219

 @GetCapitalize.responder

 def get_capitalize(self):

 return {'value': pyramid_dynamic.FEATURES['capitalize']}

 @GetExclaim.responder

 def get_exclaim(self):

 return {'value': pyramid_dynamic.FEATURES['exclaim']}

 @SetCapitalize.responder

 def set_capitalize(self, value):

 pyramid_dynamic.FEATURES['capitalize'] = value

 return {}

 @SetExclaim.responder

 def set_exclaim(self, value):

 pyramid_dynamic.FEATURES['exclaim'] = value

 return {}

We write a simple class that bridges the command to the pyramid_dynamic.

FEATURES dictionary, setting and getting the fields appropriately.

control = protocol.Factory()

control.protocol = lambda: amp.AMP(locator=AppConfiguration())

The control factory sets protocol to a function that creates a new amp.AMP with a

custom locator. There are other ways to bind an AMP protocol to the specific locator, but

this puts as much power at the hands of the integrator – the programmer who is writing

the plugin, as opposed to the one who is writing the command handling itself.

 Control Program
Perhaps in other places, the control code itself would be using a synchronous style and

blocking network calls. However, in this book, this is an opportunity to show how to write

clients using Twisted. We chose to write this code in a way that is compatible with both

Python 2 and Python 3.

from twisted.internet import task, defer, endpoints, protocol

from twisted.protocols import amp

from twisted.plugins import twisted_book_configure

Chapter 5 Using twisted as a wsgi server

220

@task.react

@defer.inlineCallbacks

def main(reactor):

 endpoint = endpoints.TCP4ClientEndpoint(reactor, "127.0.0.1", 8001)

 prot = yield endpoint.connect(protocol.Factory.forProtocol(amp.AMP))

 res1 = yield prot.callRemote(twisted_book_configure.GetCapitalize)

 res2 = yield prot.callRemote(twisted_book_configure.GetExclaim)

 print(res1['value'], res2['value'])

 yield prot.callRemote(twisted_book_configure.SetCapitalize, value=0.5)

 yield prot.callRemote(twisted_book_configure.SetExclaim, value=0.5)

 res1 = yield prot.callRemote(twisted_book_configure.GetCapitalize)

 res2 = yield prot.callRemote(twisted_book_configure.GetExclaim)

 print(res1['value'], res2['value'])

@task.react

The react decorator will run the main function, immediately, with a reactor

argument.

@defer.inlineCallbacks

We use an inlineCallbacks decorator to allow the code to flow better.

def main(reactor):

Note that here we accept the reactor as an argument, rather than importing it.

endpoint = endpoints.TCP4ClientEndpoint(reactor, "127.0.0.1", 8001)

Create client endpoint.

prot = yield endpoint.connect(protocol.Factory.forProtocol(amp.AMP))

Create client factory, and connect.

res1 = yield prot.callRemote(twisted_book_configure.GetCapitalize)

res2 = yield prot.callRemote(twisted_book_configure.GetExclaim)

Retrieve the values. Note that we are using the previously-defined command classes.

print(res1['value'], res2['value'])

Chapter 5 Using twisted as a wsgi server

221

Show value before the change

yield prot.callRemote(twisted_book_configure.SetCapitalize, value=0.5)

yield prot.callRemote(twisted_book_configure.SetExclaim, value=0.5)

Set the values

res1 = yield prot.callRemote(twisted_book_configure.GetCapitalize)

res2 = yield prot.callRemote(twisted_book_configure.GetExclaim)

print(res1['value'], res2['value'])

Get them again. This verifies they have changed.

Those three parts together – the application, the plugin, and the control program –

give us a web server whose internal parameters we can configure dynamically.

 Summary
The Twisted WSGI server is easy to install and use in development – in fact, even easier

than the reference implementation. Despite this ease of use, it is perfectly suitable to

be used in production. This makes it handy in order to avoid differences between the

development environment and the production one – differences that often make it hard

to reproduce production issues.

Since it is based on the Twisted Web server, it inherits features like production-grade

TLS implementations –which support features like SNI and Let’s Encrypt, as well as

HTTP/2 protocol support. It can also be configured as a static file web server, allowing it

to serve the static assets, like images, JavaScript, and CSS files, from the same process as

the dynamic application – thus avoiding a mismatch between the static assets and what

the application accepts.

It does not define any configuration file format. Instead, for any configuration deeper

than setting the listening port or naming the WSGI application, it is possible to write a

Twisted plugin – which allows ultimate configuration in a language that, regardless of the

web framework, all engineers who work on the application know and use.

The biggest perceived downside of Twisted as a WSGI container is taking advantage

of multiple core machines. For this, it is possible – via several different configurations –

to set up multiple WSGI processes. In general, separating the concerns of “how to listen

on a socket” from “how to manage multiple processes” allows finding good solutions for

each one – instead of having to bind together process management and socket code.

Chapter 5 Using twisted as a wsgi server

223
© Mark Williams, Cory Benfield, Brian Warner, Moshe Zadka, Dustin Mitchell, Kevin Samuel, Pierre Tardy 2019
M. Williams et al., Expert Twisted, https://doi.org/10.1007/978-1-4842-3742-7_6

CHAPTER 6

Tahoe-LAFS: The Least-
Authority File System
Tahoe-LAFS is a distributed storage system, started in 2006 as a robust back end for a

personal-backup company named AllMyData (long since defunct). Before shutting

down, the company open sourced the code, and now a community of hackers improves

and maintains the project.

The system allows you to upload data from your computer into a network of servers

called a “grid,” and then retrieve your data from the grid later. In addition to providing a

backup (e.g., in case your laptop hard drive fails), it offers flexible ways to share specific

files or directories with other users on the same grid. In this way, it behaves somewhat

like a “network drive” (SMB or NFS), or a file-transfer protocol (FTP or HTTP).

Tahoe’s special feature is “provider-independent security.” All files are encrypted

and cryptographically hashed locally, before leaving your computer. The storage servers

never get to see the plaintext (because of the encryption), nor can they make undetected

changes (because of the hashes). In addition, the ciphertext is erasure coded into

redundant shares, and uploaded to multiple independent servers. This means your data

can survive the loss of a few servers, to improve durability and availability.

As a result, you can pick storage servers purely on the basis of their performance,

cost, and uptime, without also needing to rely upon them for security. Most other

network drives are entirely vulnerable to the servers: an attacker who compromises

the hosting provider gets to see or modify your data, or delete it entirely. Tahoe’s

confidentiality and integrity are entirely independent of the storage providers, and the

availability is improved too.

224

 How Tahoe-LAFS Works
A Tahoe “grid” consists of one or more Introducers, some Servers, and some Clients.

• Clients know how to upload and download data.

• Servers hold the encrypted shares.

• Introducers help Clients and Servers find and connect to each other.

The three node types communicate using a special protocol named “Foolscap,”

which is descended from Twisted’s “Perspective Broker,” but with added security and

flexibility.

Tahoe uses “capability strings” to identify and access all files and directories.

These are random-looking chunks of base32 data that contain the encryption key,

integrity- protecting hashes, and share-location information. We abbreviate these as

“filecaps” when they refer to a file, or “dircaps” for directories.

Figure 6-1. Tahoe-LAFS Grid Diagram

Chapter 6 tahoe-LaFS: the LeaSt- authority FiLe SyStem

225

(The examples in this chapter are shortened for readability, but filecaps are normally

about 100 characters long.)

They sometimes come in multiple flavors: a “writecap” gives whoever knows it the

ability to change a file, whereas a “readcap” only lets them read the contents. There’s

even a “verifycap,” which allows the holder to verify the encrypted server-side shares

(and generate new ones if some have been lost), but not to read or modify the plaintext.

You can safely give these to a delegated repair agent to maintain your files while your

own computer is offline.

Tahoe’s simplest API call is a command-line PUT that accepts plaintext data, uploads

it into a brand-new immutable file, and returns the generated filecap:

$ tahoe put kittens.jpg

200 OK

URI:CHK:bz3lwnno6stuspjq5a:mwmb5vaecnd3jz3qc:2:3:3545

This filecap is the only way in the world to retrieve the file. You could write it down, or

store it in another file, or store it in a Tahoe directory, but this string is both necessary and

sufficient to recover the file. Downloads look like this (the tahoe get command writes the

downloaded data to stdout, so we use the “>” shell syntax to redirect this into a file):

$ tahoe get URI:CHK:bz3lwnno6stuspjq5a:mwmb5vaecnd3jz3qc:2:3:3545

>downloaded.jpg

We frequently (and perhaps erroneously) refer to filecaps as URIs in many places,

including the filecap strings themselves. “CHK” stands for “Content-Hash Key,” which

describes the specific kind of immutable file encoding we use: other kinds of caps have

different identifiers. Immutable filecaps are always readcaps: nobody in the world can

modify the file once it’s been uploaded, even the original uploader.

Tahoe also offers mutable files, which means we can change the contents later. These

have three API calls: create generates a mutable slot, publish writes new data into the

slot (overwriting whatever was there before), and retrieve returns the current contents

of the slot.

Mutable slots have both writecaps and readcaps. create gives you the writecap, but

anyone who knows the writecap can “attenuate” it down into a readcap. This lets you

share the readcap with others, but reserves the write authority for yourself.

In Tahoe, directories are just files that contain a specially encoded table, which maps

a child name to a filecap or dircap of the child. Think of these directories as intermediate

nodes in a directed graph.

Chapter 6 tahoe-LaFS: the LeaSt- authority FiLe SyStem

226

We can create one with the mkdir command. This defaults to creating a mutable

directory (but we could also create fully-populated immutable directories, if we wanted

to). Tahoe has cp and ls commands to copy files and list directories, and these know

how to handle slash-delimited file paths as usual.

The CLI also tool offers “aliases,” which simply store a “rootcap” directory in a local

file (~/.tahoe/private/aliases), allowing other commands to abbreviate the dircap

with a prefix that looks a lot like a network drive indicator (e.g., the Windows E: drive).

This reduces typing and makes commands much easier to use:

$ tahoe mkdir

URI:DIR2:ro76sdlt25ywixu25:lgxvueurtm3

$ tahoe add-alias mydrive URI:DIR2:ro76sdlt25ywixu25:lgxvueurtm3

Alias 'mydrive' added

$ tahoe cp kittens.jpg dogs.jpg mydrive:

Success: files copied

Figure 6-2. Graph of Rootcap, Directories, and Files

Chapter 6 tahoe-LaFS: the LeaSt- authority FiLe SyStem

227

$ tahoe ls URI:DIR2:ro76sdlt25ywixu25:lgxvueurtm3

kittens.jpg

dogs.jpg

$ tahoe mkdir mydrive:music

$ tahoe cp piano.mp3 mydrive:music

$ tahoe ls mydrive:

kittens.jpg

music

dogs.jpg

$ tahoe ls mydrive:music

piano.mp3

$ tahoe cp mydrive:dogs.jpg /tmp/newdogs.jpg

$ ls /tmp

newdogs.jpg

The command-line tools are built on top of the HTTP API, which we’ll explore later.

 System Architecture
The Client node is a long-lived gateway daemon, which accepts upload and download

requests from a “front-end” protocol. The most basic front end is an HTTP server that

listens on the loopback interface (127.0.0.1).

An HTTP GET is used to retrieve data, which involves multiple steps:

• parse the filecap to extract the decryption key and storage index;

• identify which pieces of each share we need to satisfy the client

request, including both the share data and the intermediate hash tree

nodes;

• use the storage index to identify which servers might have shares for

this file;

• send download requests to those servers;

• track requests we’ve sent and requests that have completed, to avoid

duplicate requests unless necessary;

• track server response time, to prefer faster servers;

Chapter 6 tahoe-LaFS: the LeaSt- authority FiLe SyStem

228

• verify shares and reject corrupt ones;

• switch to faster servers when available or when connections are lost;

• reassemble shares into ciphertext;

• decrypt ciphertext and deliver plaintext to the front-end client.

This is managed by an event loop that is constantly ready to accept new read()

requests from the front-end managers, or responses from servers, or timer expirations

that indicate it’s time to give up on a server and try a different one. This loop will juggle

dozens or even hundreds of simultaneous connections and timers, and activity on any

one them will cause things to happen on the others. Twisted’s event loop is ideal for

this design.

In the other direction, the HTTP PUT and POST actions cause data to be uploaded,

which does many of the same steps, but backward:

• the client node accepts data from the front-end protocol and buffers

it in a temporary file;

• the file is hashed to build the “convergent encryption key,” which also

serves to deduplicate files;

• the encryption key is hashed to form the storage index;

• the storage index identifies which servers we should try to use (the

server list is sorted a different way for each storage index, and this list

provides a priority ordering);

• send upload requests to those servers;

• if the file was uploaded earlier, the server will tell us they already have

a share, in which case we don’t need to store that one again;

• if a server rejects our request (not enough disk space), or doesn’t

answer fast enough, try a different server;

• gather responses until each share is mapped to a server;

• encrypt and encode each segment of plaintext, which takes a lot of

CPU (at least compared to the network activity), so we push it off to a

separate thread to take advantage of multiple cores;

Chapter 6 tahoe-LaFS: the LeaSt- authority FiLe SyStem

229

• after encoding is done, upload the shares to the previously mapped

servers;

• when all servers acknowledge receipt, build the final hash trees;

• build the filecap from the root of the hash tree and the encryption key;

• return the filecap in the HTTP response body.

Clients also implement other (non-HTTP) front-end protocols:

• FTP: by supplying a config file of usernames, passwords, and

rootcaps, the Tahoe client node can pretend to be an FTP server with

a separate virtual directory for each user;

• SFTP: like FTP, but layered on top of SSH;

• Magic-Folder: a Dropbox-like two-way directory synchronization tool.

Clients speak Foolscap to the Introducer, to learn about servers. They also speak

Foolscap to the servers themselves.

The Tahoe-LAFS storage server can store the shares on local disk, or it can send them

to a remote commodity storage service like S3 or Azure. The server speaks Foolscap on

the front side, and, for example, HTTP-based S3 commands on the back.

On the storage server, the node must accept connections from an arbitrary number

of clients, each of which will send overlapping share upload/download requests. For

remote back ends like S3, each client-side request can provoke multiple S3-side API calls,

each of which might fail or timeout (and need to be retried).

All node types also run an HTTP service for status and management. This currently

renders using Nevow, but we intend to switch to Twisted’s built-in HTTP templating

facilities (twisted.web.template).

 How It Uses Twisted
Tahoe-LAFS uses Twisted extensively: it’s hard for us to imagine how we could have

written it any other way.

The application is structured around a Twisted MultiService hierarchy, which

controls startup and shutdown of the Uploader, the Downloader, the IntroducerClient,

etc. This lets us start individual services during unit tests, without needing to launch an

entire node each time.

Chapter 6 tahoe-LaFS: the LeaSt- authority FiLe SyStem

230

The largest Service is the Node, which represents an entire Client, Server, or

Introducer. This is the parent MultiService for everything else. Shutting down the service

(and waiting for all network activity to come to a halt) is as easy as calling stopService()

and waiting for the Deferred to fire. Nodes listen on ephemerally allocated ports by

default, and announce their location to the Introducer. All state is restricted to the node’s

“base directory.” This makes it easy to launch multiple clients/servers in a single process,

for testing an entire grid at once. Contrast this to an earlier architecture, in which each

storage server required a separate MySQL database and used fixed TCP ports. In that

system, it was impossible to perform a realistic test without at least 5 distinct computers.

In Tahoe, the integration test suite will spin up a grid with 10 servers, all in a single

process, exercise some feature, then shut everything down again, in just a few seconds.

This happens dozens of times whenever you run tox to run the test suite.

The variety of front-end interfaces are enabled by Twisted’s robust suite of well-

integrated protocol implementations. We didn’t have to write an HTTP client, or server, or

the FTP server, or the SSH/SFTP server: these all come “batteries included” with Twisted.

 Problems We’ve Run Into
Our use of Twisted has been fairly smooth. If we were to start again today, we would still

begin with Twisted. Our regrets have been minor:

• dependency load: some users (usually packagers) feel that Tahoe

depends upon too many libraries. For many years, we tried to

avoid adding dependencies because Python’s packaging tools were

immature, but now pip makes this much easier;

• packaging/distribution: it is difficult to build a single-file executable

out of a Python application, so currently users must know about

Python-specific tools like pip and virtualenv to get Tahoe installed

on their home computers;

• Python 3: Twisted now has excellent support for Python 3, but this

took many years of effort. During this time, we became complacent,

and the code freely intermixes machine-readable bytes with human-

readable strings. Now that py3 is the preferred implementation (and

the 2020 end-of-life deadline for py2 is looming), we’re struggling to

update our code to work under py3.

Chapter 6 tahoe-LaFS: the LeaSt- authority FiLe SyStem

231

 Daemonization Tools
Twisted provides a convenient tool named twistd, which allows long-running

applications to be written as plugins, making Twisted responsible for the platform-

specific details of daemonization (such as detaching from the controlling tty, logging

to a file instead of stdout, and potentially switching to a non-root user after opening

privileged listening TCP ports). When Tahoe was started, neither “pip” nor “virtualenv”

existed yet, so we built something like them. To combine daemonization with this

bespoke dependency installer/manager, the Tahoe command-line tool includes the

tahoe start and tahoe stop subcommands.

These days, we’d probably omit these subcommands, and have users run twistd

or twist (the non-daemonizing form) instead. We would also look for ways to avoid

needing a daemon at all.

In the beginning, twistd wasn’t as easy to manage, so Tahoe used “.tap” files

to control it. This was a holdover from a pattern I used in Buildbot, where the first

versions regrettably used “.tap” files to record state (a sort of “freeze-dried” copy of the

application, which could be thawed out again the next time you wanted to launch it).

Tahoe never put dynamic state in there, but the tahoe create-node process would

create a .tap file with the right initialization code to instantiate and launch the new

node. Then tahoe start was a simple wrapper around twistd -y node.tap.

Different kinds of .tap files were used to launch different kinds of nodes (Clients,

Servers, Introducers, etc.). This was a bad decision. The .tap files contained just a few

lines: an import statement and code to instantiate an Application object. Both ended up

limiting our ability to rearrange the code base or change its behavior: simply renaming

the Client class would break all existing deployments. We’d accidentally created a

public API (with all the compatibility issues that implies), where the “public” were all the

old .tap files used by earlier Tahoe installs.

We fixed this by having tahoe start ignore the contents of the .tap file, and only

pay attention to its filename. Most of the node’s configuration was already stored in a

separate INI-style file named tahoe.cfg, so the transition was pretty easy. When tahoe

start sees client.tap, it creates a Client instance (as opposed to an Introducer/etc.),

initializes it with the config file, and sets the daemon running.

Chapter 6 tahoe-LaFS: the LeaSt- authority FiLe SyStem

232

 Internal FileNode Interfaces
Internally, Tahoe defines FileNode objects, which can be created from filecap strings for

existing files, or from scratch by uploading some data for the first time. These offer a few

simple methods that hide all the details of encryption, erasure coding, server selection,

and integrity checking. The download methods are defined in an Interface named

IReadable:

class IReadable(Interface):

 def get_size():

 """Return the length (in bytes) of this readable object."""

 def read(consumer, offset=0, size=None):

 """Download a portion (possibly all) of the file's contents,

making them available to the given IConsumer. Return a Deferred

that fires (with the consumer) when the consumer is unregistered

(either because the last byte has been given to it, or because the

consumer threw an exception during write(), possibly because it no

longer wants to receive data). The portion downloaded will start at

'offset' and contain 'size' bytes (or the remainder of the file if

size==None). """

Twisted uses zope.interface for the classes that support Interface definitions

(that Interface is really zope.interface.Interface). We use these as a form of type

checking: the front end can assert that the object being read is a provider of IReadable.

There are multiple kinds of FileNodes, but they all implement the IReadable interface,

and the front-end code only uses methods defined on that interface.

The read() interface doesn’t return the data directly: instead, it accepts a

“consumer” to which it can feed the data as it arrives. This uses Twisted’s Producer/

Consumer system (described in Chapter 1) to stream data without unnecessary

buffering. This allows Tahoe to deliver multi-gigabyte files without using gigabytes

of memory.

DirectoryNode objects can be created similarly. These also have methods (defined

in IDirectoryNode) to list their children, or follow a child link (by name) to some other

node. Mutable directories include methods to add or replace a child by name.

Chapter 6 tahoe-LaFS: the LeaSt- authority FiLe SyStem

233

class IDirectoryNode(IFilesystemNode):

 """I represent a filesystem node that is a container, with a name-

to- child mapping, holding the tahoe equivalent of a directory. All

child names are unicode strings, and all children are some sort of

IFilesystemNode (a file, subdirectory, or unknown node).

 """

 def list():

 """I return a Deferred that fires with a dictionary mapping child

name (a unicode string) to (node, metadata_dict) tuples, in which

'node' is an IFilesystemNode and 'metadata_dict' is a dictionary of

metadata."""

 def get(name):

 """I return a Deferred that fires with a specific named child

node, which is an IFilesystemNode. The child name must be a unicode

string. I raise NoSuchChildError if I do not have a child by that

name."""

Note that these methods return Deferreds. Directories are stored in files, and files

are stored in shares, and shares are stored on servers. We don’t know exactly when those

servers will respond to our download requests, so we use a Deferred to “wait” for the

data to be available.

This graph of node objects is used by each front-end protocol.

 Front-End Protocol Integration
To explore how Tahoe takes advantage of Twisted’s diverse protocol support, we’ll look at

several “front-end protocols.” These provide a bridge between external programs and the

internal IFileNode/IDirectoryNode/IReadable interfaces.

All the protocol handlers make use of an internal object named Client, whose most

important method is create_node_from_uri. This takes a filecap or directorycap (as a

string), and returns the corresponding FileNode or DirectoryNode object. From here,

the caller can use its methods to read or modify the underlying distributed file.

Chapter 6 tahoe-LaFS: the LeaSt- authority FiLe SyStem

234

 The Web Front End
The Tahoe-LAFS client daemon provides a local HTTP service to control most of its operations.

This includes both a human-oriented web application to browse files and folders (“WUI”:

Web User Interface), and a machine-oriented control interface (“WAPI”: Web Application

Programming Interface), which we affectionately pronounce “wooey” and “wappy.”

Both are implemented through Twisted’s built-in twisted.web server. A hierarchy

of “Resource” objects route requests to some leaf, which implements methods like

render_GET to process the request details and provide a response. By default, this

listens on port 3456, but this can be configured in the tahoe.cfg file, by providing a

different endpoint descriptor.

Tahoe actually uses the “Nevow” project, which provides a layer on top of raw

twisted.web, but these days Twisted’s built-in functionality is powerful enough on its

own, so we’re slowly removing Nevow from the code base.

The simplest WAPI call is the GET that retrieves a file. The HTTP client submits a

filecap, Tahoe turns this into a FileNode, downloads the contents, and returns the data

in the HTTP response. The request looks like:

curl -X GET http://127.0.0.1:3456/uri/URI:CHK:bz3lwnno6stus:mwmb5vae...

This results in a twisted.web.http.Request with a “path” array that has two

elements: the literal string “uri,” and the filecap. Twisted’s web server starts with a root

resource, upon which you can attach handlers for different names. Our Root resource is

instantiated with the Client object described above, and configured with a handler for

the uri name:

from twisted.web.resource import Resource

class Root(Resource):

 def __init__(self, client):

 ...

 self.putChild("uri", URIHandler(client))

All requests that start with uri/ will get routed to this URIHandler resource. When

these requests have additional path components (i.e., our filecap), they’ll cause the

getChild method to be called, which is responsible for finding the right Resource to

handle the request. We’ll create a FileNode or DirectoryNode from the given filecap/

dircap, and then we’ll wrap it in a web-specific handler object that knows how to deal

with HTTP requests:

Chapter 6 tahoe-LaFS: the LeaSt- authority FiLe SyStem

235

class URIHandler(Resource):

 def __init__ (self, client):

 self.client = client

 def getChild(self, path, request):

 # 'path' is expected to be a filecap or dircap

 try:

 node = self.client.create_node_from_uri(path)

 return directory.make_handler_for(node,self.client)

 except (TypeError,AssertionError):

 raise WebError("'%s' is not a valid file- or directory- cap" %name)

node is the FileNode object that wraps the filecap from the GET request. The handler

comes from a helper function that inspects the node’s available interfaces and decides

what sort of wrapper to create:

def make_handler_for(node, client, parentnode=None, name=None):

 if parentnode:

 assert IDirectoryNode.providedBy(parentnode)

 if IFileNode.providedBy(node):

 return FileNodeHandler(client, node, parentnode, name)

 if IDirectoryNode.providedBy(node):

 return DirectoryNodeHandler(client, node, parentnode, name)

 return UnknownNodeHandler(client, node, parentnode, name)

For our example, this returns the FileNodeHandler. This handler has a lot of options,

and the actual code in web/filenode.py looks quite different, but a simplified form

would read like this:

class FileNodeHandler(Resource):

 def __init__ (self, client, node, parentnode=None, name=None):

 self.node = node

 ...

 @inlineCallbacks

 def render_GET(self, request):

 version = yield self.node.get_best_readable_version()

 filesize = version.get_size()

Chapter 6 tahoe-LaFS: the LeaSt- authority FiLe SyStem

236

 first, size, contentsize = 0, None, filesize

 ... # these will be modified by a Range header, if present

 request.setHeader("content-length", b"%d" % contentsize)

 yield version.read(request, first, size)

Twisted’s native web server doesn’t allow Resource objects to return Deferreds, but

Nevow’s does, which is convenient. Here’s basically what happens:

• First, we ask the FileNode for its best readable version. This isn’t

needed on immutable files (for which there’s only one version

anyways), but mutable files might have multiple versions on the grid.

“Best” means the most recent. We get back a “version” object that

provides the IReadable interface.

• Next, we compute the size of the file. For immutable files, the size is

embedded in the filecap, so the get_size() method lets us compute

this immediately. For mutable files, the size was determined when we

retrieved the version object.

• We use the file’s size and a Range header (if provided) to figure out

how much data to read, and what offset to start from.

• We set the Content-Length header to tell the HTTP client how much

data to expect.

• The IReadable’s read() method is called to begin the download. The

Request object is also an IConsumer, and the download code builds

an IProducer to attach to it. This returns a Deferred that will fire when

the last byte of the file has been delivered to the consumer.

• When the last Deferred fires, the server knows it can close the TCP

connection, or reset it for the next request.

We’ve elided many of the details, which are expanded below.

Chapter 6 tahoe-LaFS: the LeaSt- authority FiLe SyStem

237

 File Types, Content-Type, /name/
Tahoe’s storage model maps filecaps to bytestrings, without names, dates, or other

metadata. Directories contain names and dates, in the table entries that point to their

children, but a basic filecap just gives you a bunch of bytes.

However, the HTTP protocol includes a Content-Type for each download, which

allows the browser to figure out how to render the page (HTML, JPG, or PNG), or what

OS metadata to record when saving it to disk. In addition, most browsers assume the last

component of the URL path is a filename, and the “save-to-disk” feature will use it as the

default filename.

To deal with this mismatch, Tahoe’s WAPI has a feature to let you download a filecap

with an arbitrary name in the last element of the path. The WUI directory browser puts

these special URLs in the HTML of the directory page, so “Save Link As..” works correctly.

The full URL looks like this:

http://127.0.0.1:3456/named/URI:CHK:bz3lwnno6stus:mwmb5vae../kittens.jpg

This looks a lot like a directory and a child inside it. To avoid visual confusion, we

usually insert an extra funny-looking string into such URLs:

http://127.0.0.1:3456/named/URI:CHK:bz3lwn../@@named=/kittens.jpg

This is implemented with a Named Resource that creates a FileNodeHandler, but

also remembers the last component of the URL path in self.filename (ignoring any

intermediate components, like that @@named= string). Then, when we run render_GET,

we pass this filename into a Twisted utility that maps the filename suffix to a type string,

using the equivalent of /etc/mime.types. From this, we can set the Content-Type and

Content-Encoding headers.

from twisted.web import static

ctype, encoding = static.getTypeAndEncoding(

 self.filename,

 static.File.contentTypes,

 static.File.contentEncodings,

 defaultType="text/plain")

request.setHeader("content-type", ctype)

if encoding:

 request.setHeader("content-encoding", encoding)

Chapter 6 tahoe-LaFS: the LeaSt- authority FiLe SyStem

238

 Saving to Disk
When you click on a link, the browser will try to render the document that comes back:

HTML goes through layout, images get drawn in the window, audio files get played, etc.

If it doesn’t recognize the file type, it will offer to save the file to disk instead. Tahoe’s

“WUI” HTML front end offers a way to force this save-to-disk behavior: for any URL that

points at a file, just append a ?save=True query argument to the URL. The web server

acts on this by adding a Content-Disposition header, which instructs the browser to

always save the response, instead of trying to render it:

if boolean_of_arg(get_arg(request,"save","False")):

 request.setHeader("content-disposition",

 'attachment; filename="%s"' % self.filename)

 Range Headers
The web front end allows HTTP clients to request just a subset of the file by providing a

Range header. This is frequently used by streaming media players (like VLC or iTunes)

when the “scrubber” control is used to jump around in a movie or audio file. Tahoe’s

encoding scheme was specifically designed to support this sort of random-access

efficiently, by using Merkle hash trees.

Merkle hash trees start by chopping up the data into segments and applying a

cryptographic hash function (SHA256) to each segment. Then we hash each pair of

segment hashes into a second layer (half the length of the first). This reduction process

is repeated until we have a single “root hash” at the top of a binary tree of intermediate

hash nodes, with the segments at the bottom. The root hash is stored in the filecap,

and we send everything else (segments and intermediate hashes) to the server.

During retrieval, any single segment can be validated against the stored root without

downloading all the other segments, by asking the server to provide the companion

hash nodes for the path from that segment up to the root. This enables fast validation of

arbitrary segments with minimum data transfer.

The web front end handles this by parsing the request’s Range header, setting the

response’s Content-Range and Content-Length headers, and modifying the first and

size values that we pass into the read() method.

Chapter 6 tahoe-LaFS: the LeaSt- authority FiLe SyStem

239

Parsing the Range header is nontrivial, since it can include a list of (potentially

overlapping) ranges, which might include the beginning or end of the file, and it might

be expressed in various units (not just bytes). Fortunately, servers are allowed to ignore

unparsable Range specifications: it’s not efficient, but they can just return the entire file,

as if the Range header didn’t exist. The client is then obligated to ignore the portions of

the data they didn’t want.

first, size, contentsize = 0,None, filesize

request.setHeader("accept-ranges","bytes")

rangeheader = request.getHeader('range')

if rangeheader:

 ranges = self.parse_range_header(rangeheader)

 # ranges = None means the header didn't parse, so ignore

 # the header as if it didn't exist. If is more than one

 # range, then just return the first for now, until we can

 # generate multipart/byteranges.

 if ranges is not None:

 first, last = ranges[0]

 if first >= filesize:

 raise WebError('First beyond end of file',

 http.REQUESTED_RANGE_NOT_SATISFIABLE)

 else:

 first = max(0, first)

 last = min(filesize-1, last)

 request.setResponseCode(http.PARTIAL_CONTENT)

 request.setHeader('content-range',"bytes %s-%s/%s" %

 (str(first), str(last),

 str(filesize)))

 contentsize = last – first + 1

 size = contentsize

request.setHeader("content-length", b"%d" % contentsize)

Chapter 6 tahoe-LaFS: the LeaSt- authority FiLe SyStem

240

 Error Conversion on the Return Side
Tahoe’s internal API throws a variety of exceptions when something goes wrong. For

example, if too many servers have failed, the file may not be recoverable (at least not

until some servers come back online). We try to map these exceptions into sensible

HTTP error codes with an exception handler that runs at the end of the HTTP processing

chain. The core of this handler is named humanize_failure(), and looks at the twisted.

python.failure.Failure object that wraps all exceptions raised during the processing

of a Deferred:

def humanize_failure(f):

 # return text, responsecode

 if f.check(EmptyPathnameComponentError):

 return ("The webapi does not allow empty pathname components, "

 "i.e. a double slash" , http.BAD_REQUEST)

 if f.check(ExistingChildError):

 return ("There was already a child by that name, and you asked me "

 "to not replace it." , http.CONFLICT)

 if f.check(NoSuchChildError):

 quoted_name = quote_output(f.value.args[0], encoding="utf-8")

 return ("No such child: %s" % quoted_name, http.NOT_FOUND)

 if f.check(NotEnoughSharesError):

 t = ("NotEnoughSharesError: This indicates that some "

 "servers were unavailable, or that shares have been "

 "lost to server departure, hard drive failure, or disk "

 "corruption. You should perform a filecheck on "

 "this object to learn more.\n\nThe full error message is:\n"

 "%s") % str(f.value)

 return (t, http.GONE)

 ...

The first half of the return value is a string to put into the HTTP response body; the

second is the HTTP error code itself.

Chapter 6 tahoe-LaFS: the LeaSt- authority FiLe SyStem

241

 Rendering UI Elements: Nevow Templates
Tahoe’s WUI provides a file-browser interface: directory panels, file listings, upload/

download selectors, delete buttons, etc. These are made up of HTML, rendered on the

server side from Nevow templates.

The web/ directory contains an XHTML file for each page, with placeholders that

are filled in with variables by the DirectoryNodeHandler class. Each placeholder is

a namespaced XML element that names a “slot.” The directory listing template looks

like this:

<table class="tahoe-directory"n:render="sequence"n:data="children" >

 <tr n:pattern="header">

 <th>Type</th>

 <th>Filename</th>

 <th>Size</th>

 </tr>

 <tr n:pattern="item"n:render="row" >

 <td><n:slot name="type"/></td>

 <td><n:slot name="filename"/></td>

 <td align="right"><n:slot name="size"/></td>

 </tr>

The code that populates this form, in directory.py, loops over all children of the

directory being rendered, examines its type, and uses a ctx “context” object to fill in each

slot by name. For files, the T.a Nevow tag produces a hyperlink, with the href= attribute

pointing at a download URL using the /named/ prefix described earlier:

...

elif IImmutableFileNode.providedBy(target):

 dlurl = "%s/named/%s/@@named=/%s"%(root, quoted_uri, nameurl)

 ctx.fillSlots("filename", T.a(href=dlurl, rel="noreferrer")[name])

 ctx.fillSlots("type","FILE")

 ctx.fillSlots("size", target.get_size())

Nevow also offers tools to build HTML input forms. These are used to construct the

upload file-picker form, and the “make directory” name input element.

Chapter 6 tahoe-LaFS: the LeaSt- authority FiLe SyStem

242

 The FTP Front End
The front-end protocols allow other applications to access this internal file graph, in

some form that matches their existing data model. For example, the FTP front end

assigns each “account” (a username / password pair) to a root dircap. When an FTP

client connects to this account, they are presented with a filesystem that starts at this

directory node, and only extends downward (into child files and subdirectories). In a

normal FTP server, all accounts see the same filesystem, but with different permissions

(Alice cannot read Bob’s files), and different starting directories (Alice starts in /home/

alice, Bob starts in /home/bob). In the Tahoe FTP server, Alice and Bob will have entirely

distinct views of the filesystem, which may not overlap at all (unless they have arranged

to share some portion of their space).

Tahoe’s FTP front end builds upon Twisted’s FTP server (twisted.protocols.ftp).

The FTP server uses Twisted’s “Cred” framework for account management (which involves

“Portals,” “Realms,” and “Avatars”). As a result, the server is made up of several components:

• Endpoint: This defines what TCP port the server will listen on, along

with options like which network interfaces to use (e.g., the server can

be restricted to only listen on 127.0.0.1, the loopback interface).

• FTPFactory (twisted.protocols.ftp.FTPFactory): This provides

the overall FTP server. It is a “protocol factory,” so it will be invoked

each time a new client connects, and it is responsible for building the

Protocol instance that manages that specific connection. When you

tell the Endpoint to start listening, you give it a factory object.

• Checker: This is an object that implements ICredentialsChecker

and handles authentication, by examining some credentials and

(if successful) returning an “Avatar ID.” In the FTP protocol, the

credentials are a username and password supplied by the user.

In SFTP, they include an SSH public key. The “Avatar ID” is just a

username. The Tahoe FTP front end can be configured to use an

AccountFileChecker (in auth.py), which stores the username/

password/rootcap mapping in a local file. It can also use an

AccountURLChecker, which queries an HTTP server (it POSTs

the username and password, and gets the rootcap back in the

response). The AccountURLChecker was used for centralized account

management back at AllMyData.

Chapter 6 tahoe-LaFS: the LeaSt- authority FiLe SyStem

243

• Avatar: This is the server-side object that handles a specific user’s

experience. It is also specific to a service type, so it must implement

some particular Interface, in this case a Twisted interface named

IFTPShell (which has methods like makeDirectory, stat, list, and

openForReading).

• Realm: This is any object that implements Twisted’s IRealm interface,

and is responsible for turning an Avatar ID into an Avatar. The Realm

API also deals with multiple interfaces: a client that needs a specific

kind of access can ask for a specific Interface, and the Realm might

return a different Avatar depending on what they ask for. In the Tahoe

FTP front end, the realm is a class named Dispatcher that knows

how to create a root directory node from the account information

and wrap it in a handler.

• Portal (twisted.cred.portal.Portal): This is a Twisted object that

manages the Checkers and the Realms. The FTPFactory is configured

with a Portal instance at construction time, and everything involving

authorization is delegated to the portal.

• Handler (allmydata.frontends.ftpd.Handler): This is a Tahoe

object that implements Twisted’s IFTPShell and translates FTP

concepts into Tahoe concepts.

The Tahoe FTP server code does the following:

• create a MultiService that hangs off the top-level Node multiservice;

• hang a strports.service off that, listening on the FTP server port;

• configure that listener with an FTPFactory;

• configure the factory with a Portal;

• create a Dispatcher for use as the Portal’s “realm”;

• add an AccountFileChecker and/or an AccountURLChecker to the

Portal.

Chapter 6 tahoe-LaFS: the LeaSt- authority FiLe SyStem

244

When an FTP client connects, the username and password are submitted to the

AccountFileChecker, which had previously parsed the accounts file into memory. The

account lookup is pretty simple:

class FTPAvatarID:

 def __init__ (self, username, rootcap):

 self.username = username

 self.rootcap = rootcap

@implementer(checkers.ICredentialsChecker)

class AccountFileChecker(object):

 def requestAvatarId(self, creds):

 if credentials.IUsernamePassword.providedBy(creds):

 return self._checkPassword(creds)

 ...

 def _checkPassword(self, creds):

 try:

 correct = self.passwords[creds.username]

 except KeyError:

 return defer.fail(error.UnauthorizedLogin())

 d = defer.maybeDeferred(creds.checkPassword, correct)

 d.addCallback(self._cbPasswordMatch, str(creds.username))

 return d

 def _cbPasswordMatch(self, matched, username):

 if matched:

 return self._avatarId(username)

 raise error.UnauthorizedLogin

 def _avatarId(self, username):

 return FTPAvatarID(username,self.rootcaps[username])

If the username is not on the list, or if the password doesn’t match, requestAvatarId

will return a Deferred that errbacks with UnauthorizedLogin, and the FTPFactory will

return the appropriate FTP error code. If both are good, it returns an FTPAvatarID object

that encapsulates the username and the account’s rootcap URI (which is just a string).

Chapter 6 tahoe-LaFS: the LeaSt- authority FiLe SyStem

245

When this succeeds, the Portal asks its Realm (i.e., our Dispatcher object) to turn the

Avatar ID into a handler. Our realm is also pretty simple:

@implementer(portal.IRealm)

class Dispatcher(object):

 def __init__ (self, client):

 self.client = client

 def requestAvatar(self, avatarID, mind, interface):

 assert interface == ftp.IFTPShell

 rootnode = self.client.create_node_from_uri(avatarID.rootcap)

 convergence = self.client.convergence

 s = Handler(self.client, rootnode, avatarID.username, convergence)

 def logout(): pass

 return (interface, s,None)

First, we assert that we’re being asked for an IFTPShell, not some other interface

(which we don’t know how to deal with). Then, we use the Tahoe file-graph API to convert

the rootcap URI into a directory node. The “convergence secret” is outside the scope of this

chapter, but it exists to provide safe deduplication, and is provided to the Handler to let us

extend the interface to use distinct convergence secrets for each account.

Then, we build a Handler around the Client (which provides methods to create

brand new filenodes) and the rootnode (which provides access to the user’s “home

directory” and everything below it), and return this to the portal. That’s enough to get the

FTP server connected.

Later, when the client performs an “ls” command, our handler’s list() method will

get invoked. Our implementation is responsible for translating the FTP notion of listing a

directory (it gets a list of path-name components, relative to the root) into Tahoe’s notion

(which does a step-wise traversal from the root directory node down into some other

dirnode).

def list(self, path, keys=()):

 d = self._get_node_and_metadata_for_path(path)

 def _list((node, metadata)):

 if IDirectoryNode.providedBy(node):

 return node.list()

 return { path[-1]: (node, metadata) }

 d.addCallback(_list)

Chapter 6 tahoe-LaFS: the LeaSt- authority FiLe SyStem

246

 def _render(children):

 results = []

 for (name, childnode) in children.iteritems():

 results.append((name.encode("utf-8"),

 self._populate_row(keys, childnode)))

 return results

 d.addCallback(_render)

 d.addErrback(self._convert_error)

 return d

We start with a common “follow the path from the root” helper method, which

returns a Deferred that eventually fires with the node and metadata for the file or

directory named by the path (if the path is foo/bar, then we’ll ask our root dirnode

for its foo child, expect that child to be a directory, then ask that subdirectory for its

bar child). If the path pointed to a directory, we use the Tahoe IDirectoryNode’s node.

list() method to gets its children: this returns a dictionary that maps child name to

(child node, metadata) tuples. If the path pointed to a file, we pretend that it pointed to a

directory with only the one file in it.

Then we need to turn this dictionary of children into something the FTP server can

accept. In the FTP protocol, the LIST command can ask for different attributes: sometimes

the client wants owner/group names, sometimes it wants permissions, sometimes all it

cares about is the list of child names. Twisted’s IFTPShell interface expresses this by giving

the list() method a sequence of “keys” (strings) to indicate which values it wants. Our

_populate_row() method turns one child+metadata pair into the correct list of values.

def _populate_row(self, keys, (childnode, metadata)):

 values = []

 isdir = bool(IDirectoryNode.providedBy(childnode))

 for key in keys:

 if key == "size":

 if isdir:

 value = 0

 else:

 value = childnode.get_size() or 0

 elif key == "directory":

 value = isdir

Chapter 6 tahoe-LaFS: the LeaSt- authority FiLe SyStem

247

 elif key == "permissions":

 value = IntishPermissions(0600)

 elif key == "hardlinks":

 value = 1

 elif key == "modified":

 if "linkmotime" in metadata.get("tahoe", {}):

 value = metadata["tahoe"]["linkmotime"]

 else:

 value = metadata.get("mtime",0)

 elif key == "owner":

 value = self.username

 elif key == "group":

 value = self.username

 else:

 value = "??"

 values.append(value)

 return values

For each key that Twisted wants, we translate this into something we can get from

Tahoe’s IFileNode or IDirectoryNode interfaces. Most of these are simple lookups in the

metadata, or are obtained by calling a method on the Node object. One unusual case is

permissions: see below for details.

The last step is to attach _convert_error as an errback handler. This converts some

Tahoe-specific errors into their closest FTP equivalent, which is more useful than the

“internal server error” that the client would get if they weren’t converted.

def _convert_error(self, f):

 if f.check(NoSuchChildError):

 childname = f.value.args[0].encode("utf-8")

 msg = "'%s' doesn't exist" % childname

 raise ftp.FileNotFoundError(msg)

 if f.check(ExistingChildError):

 msg = f.value.args[0].encode("utf-8")

 raise ftp.FileExistsError(msg)

 return f

Chapter 6 tahoe-LaFS: the LeaSt- authority FiLe SyStem

248

 The SFTP Front End
SFTP is a file-transfer protocol built upon the SSH secure shell encryption layer. It

exposes a very POSIX-like API to remote clients: open, seek, read, and write, all on the

same filehandle. FTP, on the other hand, only offers all-or-nothing transfer of individual

files. FTP is a much better fit for Tahoe’s file model, but SFTP is more secure when

speaking to remote servers.

The advantage of using Cred is that the same authentication mechanism can

be reused with other protocols. FTP and SFTP, despite their differences, use the

same basic access model: clients are identified by some credentials, and this gives

access to a particular home directory. In Tahoe, both FTP and SFTP use the same

FTPAvatarID and AccountFileChecker classes above. AccountFileChecker defines

“credentialInterfaces” to cover all the kinds of authentication that might be

presented: IUsernamePassword, IUsernameHashedPassword, and ISSHPrivateKey (this

is specific to SFTP, and allows users to be identified by their SSH public key, instead of a

password).

They only differ in the Realm (our Dispatcher class), which returns a different kind

of handler for the two protocols.

 Backward-Incompatible Twisted APIs
Tahoe has no notion of Access Control Lists (ACLs), usernames, or read/write/execute

permission bits: it follows the object-capability discipline of “if you can reference an

object, you can use it.” Filecaps are unguessable, so the only way to reference a file is

by knowing the filecap, which can only come from someone who uploaded the file

originally, or from someone else who learned it from the uploader.

Most files are stored in directories, so access control is managed through directory

traversal, which is safe because Tahoe directories do not have “parent” links. You can

share one of your own directories with someone else by simply giving them a link: they

cannot use this to reach anything “above” the one directory you gave them.

As a result, the FTP server always returns “0600” for the “permissions” field, which

means “read and write by the current user only.” This value is mostly cosmetic: FTP

clients only use it to populate the “mode” column of a long-form (ls -l) directory

listing. We could be more accurate here, returning “0400” for immutable objects, but we

didn’t really care enough to make the change.

Chapter 6 tahoe-LaFS: the LeaSt- authority FiLe SyStem

249

However, even a static value caused problems when one of Twisted’s APIs changed

unexpectedly. In the early days, Twisted used integers to represent file modes/

permissions (just like the Unix kernel, and most C programs). Eventually folks realized

that this is pretty unix-centric, so in Twisted-11.1.0, a nice, clean filepath.Permissions

class was created to hold this kind information as a collections of Booleans.

But the FTP server wasn’t updated to use it until much later. Up until Twisted-14.0.2,

the “permissions” value of list() was expected to return an integer. From

Twisted-15.0.0 and onward, it was expected to return a Permissions instance. Moreover,

it only accepted a Permissions instance: returning an integer would cause an exception.

In effect, the IFTPShell interface changed abruptly between 14.0.2 and 15.0.0, which

we discovered when we started getting bug reports about FTP ls commands failing for

folks who had upgraded (we didn’t have end-to-end test coverage for this front end,

and our personal manual tests were still using Twisted-14.0.2, so we didn’t notice the

problem ourselves).

Twisted usually does a fantastic job of deprecating APIs for a couple releases before

making incompatible changes, but this one slipped through the cracks, probably

because the most common implementation of IFTPShell is Twisted’s built-in FTPShell

class, which was updated at the same time. So, another way to describe the problem was

that IFTPShell was modified without a deprecation period, as if it were a private internal

API, but in fact it was public.

The easiest way to resolve this would have been to make Tahoe’s setup.py require

Twisted >= 15.0.0, and change the code to return a Permissions object. But this

would have made life more difficult for folks building Tahoe on Linux distributions

that included a version of Twisted that was a few years out of date. (Debian 8.0 “jessie”

was released in 2015 with Twisted-14.0.2, and wasn’t replaced until 2017.) Back then,

Tahoe was trying to be compatible with a wide range of Twisted versions. We felt bad

about asking users to upgrade their system Twisted just to satisfy Tahoe’s enthusiasm for

modern fashions.

So, to allow Tahoe work with both old and new Twisteds, we needed to return

something that behaved like an integer when necessary, but could behave like a

Permissions too. When we examined the way that Twisted-14.0.2 used the value, we

found that it always did a bitwise AND of the value during the formatting process:

twisted-14.0.2: twisted/protocols/ftp.py line 428

def formatMode(mode):

 return ''.join([mode&(256>>n) and 'rwx'[n % 3] or '-' for n in range(9)])

Chapter 6 tahoe-LaFS: the LeaSt- authority FiLe SyStem

250

This let us build a helper class that inherited from Permissions, but overrode the

binary and method to return an integer if it got used by the older Twisted:

filepath.Permissions was added in Twisted-11.1.0, which we require.

Twisted <15.0.0 expected an int, and only does '&' on it. Twisted

>=15.0.0 expects a filepath.Permissions. This satisfies both.

class IntishPermissions(filepath.Permissions):

 def __init__ (self, statModeInt):

 self._tahoe_statModeInt = statModeInt

 filepath.Permissions.__init__(self, statModeInt)

 def __and__ (self, other):

 return self._tahoe_statModeInt&other

These days, the situation is different. We no longer recommend that users install

Tahoe (or any Python application) into a system-wide location like /usr/local/bin, nor

do we recommend that Tahoe be run against system-provided Python libraries. Instead,

users who build from source should be installing Tahoe into a new virtualenv, where it

is easy to simply install the latest versions of all dependencies, and they can be safely

isolated from the system python.

The pipsi tool makes this quite easy: pipsi install tahoe-lafs will create a

Tahoe-specific virtualenv, install Tahoe and all its dependencies into it, then symlink just

the tahoe executable into ~/.local/bin/tahoe where it will probably be on your $PATH.

pipsi is now the recommended method to install Tahoe from a source tree.

A system-wide install should be done through the OS package manager. For

example, apt install tahoe-lafs will get a working /usr/bin/tahoe on modern

Debian and Ubuntu releases, and they’ll use system-wide dependencies (like Twisted)

from /usr/lib/python2.7/dist-packages. The Debian developers (and other

packagers) are responsible for making sure the system-wide libraries are compatible

with all packaged applications: Tahoe, Magic-Wormhole, Buildbot, Mercurial, Trac,

etc. When Tahoe bumps its dependency on Twisted, it is the packagers who must

figure this stuff out. And if the system upgrades a library like Twisted, and it contains an

unexpected incompatibility, that upgrade can be reverted until Tahoe can be patched to

resolve the problem.

Chapter 6 tahoe-LaFS: the LeaSt- authority FiLe SyStem

251

 Summary
Tahoe-LAFS is a large project, started in 2006 when Twisted itself was not very old. It

contains work-arounds for bugs that no longer exist, and techniques that have been

superseded by new Twisted features. At times, the code might seem to reflect the

developers’ historical fears and personal idiosyncrasies better than it serves as a good

teaching example.

But it also embeds years of experience working with the Twisted code base “in

anger” (not casually). And although Tahoe-LAFS might not be a household name, its

core ideas have influenced and been incorporated into numerous other decentralized

storage systems (written in Go, Node.js, Rust, and more).

Twisted’s central event loop, and the wealth of ready-to-use protocol

implementations, have been critical to our feature set. If you really didn’t like event-

driven systems, you might try to implement something similar with threads and locks

(on the client, you’d need a separate thread for writing to each server, a second thread

for receiving from each server, a third batch for each front-end request, all of which must

carefully use locks against concurrent access). The chances of this working safely are

pretty low.

The Python standard library includes some fine protocol implementations, but

they’re almost all written in a blocking style, limiting them to programs that do only one

thing at a time. Hopefully this will change as Python 3 and asyncio gather momentum.

In the meantime, Twisted is the best tool for a project like this.

 References
Tahoe-LAFS home page: https://tahoe-lafs.org

• Tahoe-LAFS GitHub page: https://github.com/tahoe-lafs/

tahoe- lafs

• Nevow: https://github.com/twisted/nevow

• Foolscap: https://foolscap.lothar.com/

• pipsi: https://github.com/mitsuhiko/pipsi/

Chapter 6 tahoe-LaFS: the LeaSt- authority FiLe SyStem

https://tahoe-lafs.org
https://github.com/tahoe-lafs/tahoe-lafs
https://github.com/tahoe-lafs/tahoe-lafs
https://github.com/twisted/nevow
https://foolscap.lothar.com/
https://github.com/mitsuhiko/pipsi/

253
© Mark Williams, Cory Benfield, Brian Warner, Moshe Zadka, Dustin Mitchell, Kevin Samuel, Pierre Tardy 2019
M. Williams et al., Expert Twisted, https://doi.org/10.1007/978-1-4842-3742-7_7

CHAPTER 7

Magic Wormhole
Magic Wormhole is a secure file-transfer tool, whose motto is “get things from one computer

to another, safely.” It is most useful for ad hoc one-shot transfer situations, such as:

• You’ve just sat down next to someone at a conference, and you want

to give them a tarball of your favorite project from your laptop.

• You’re talking on the phone with someone and need to give them a

picture that you’re looking at on your computer.

• You’ve just set up a new account for a coworker and need to get their

SSH public key from their computer safely.

• You want to copy your GPG private key from your old computer to

your new laptop.

• A colleague on IRC wants you to send them a logfile from your

computer.

One distinctive feature of this tool is the use of a wormhole code: a short phrase like

“4-bravado-waffle” that enables the transfer and must be conveyed from the sending

client to the receiving one. When Alice sends a file to Bob, Alice’s computer will display

this phrase. Alice must somehow get this phrase to Bob: typically, she would speak it to

him over the phone, or type it to him over SMS or IRC. The code consists of a number

and a few words, and is designed for easy and accurate transcription, even in a noisy

environment.

These codes are single use. The security properties are simple: the first recipient

who claims the code correctly will get the file, and nobody else. These properties are

strong: nobody else can get the file because it is encrypted, and only the first correct

claim can compute the decryption key. And they depend only upon the behavior of the

client software: no server or internet eavesdropper can violate them. Magic Wormhole is

unique in combining strong confidentiality with an easy workflow.

http://magic-wormhole.io/

254

 What It Looks Like
Magic Wormhole is currently only available as a Python-based command-line tool, but

ports to other languages and runtime environments are underway. The most important

projects are to develop a GUI application (where you can drag and drop the files to be

transferred), and a mobile app.

• 1: Alice runs wormhole send FILENAME on her computer, and it tells

her the wormhole code (“4-bravado-waffle”).

• 2: She then dictates this to Bob over the phone.

• 3: Bob types the wormhole code into his computer.

• 4: The two computers connect, then encrypt and transfer the file.

Figure 7-1. Sender Screenshot

Figure 7-2. Receiver Screenshot

Chapter 7 MagiC WorMhole

255

 How It Works
Magic Wormhole clients (both sender and receiver) connect to the same Rendezvous
Server and exchange a handful of short messages. These messages are used to

run a special cryptographic key-agreement protocol named SPAKE2, which is an

authenticated version of the basic Diffie-Hellman key-exchange protocol (see the

references below for more detail).

Figure 7-3. Magic Wormhole Workflow Diagram

Chapter 7 MagiC WorMhole

256

Each side starts their half of the SPAKE2 protocol state machine by feeding it a

password: the randomly-generated wormhole code. Their half produces a message

to deliver to the other side. When that message is delivered, the other side combines

it with their own internal state to produce a session key. When both sides used the

same wormhole code, their two session keys will be identical. Each time the protocol

is run, they’ll get a new random session key. They use this session key to encrypt all

subsequent messages, providing a secure connection to figure out the rest of the file

transfer details.

Figure 7-4. SPAKE2 Diagram

Any attacker who tries to intercept the connection will get only one chance to

guess the code correctly. If they’re wrong, the two session keys will be completely

different, and they attacker won’t be able to decrypt the rest of the messages. The real

clients will notice the mismatch and exit with an error message before trying to send

any file data.

Chapter 7 MagiC WorMhole

257

Once they establish the secure connection, the magic wormhole clients exchange

information about what they want to transfer, and then they work together to establish

a Transit connection over which the bulk data transfer will take place. This starts

with both sides opening a listening TCP network socket. They figure out all the IP

addresses that might refer to this socket (there could be multiple ones) and build a list

of connection hints, which they encrypt with the session key and send through the

rendezvous server to the other side.

Each side attempts to make a direct connection to every connection hint it receives.

The first attempt that succeeds is used for the file transfer. This works if both sides are on

the same local network (for example, when both computers are on the same conference

WiFi). Since they both try to connect to each other (regardless of which side is sending the

file), this also works if at least one of the machines is a server with a public IP address. In

practice, this appears to establish a direct connection about two-thirds of the time.

If both machines are behind different NAT firewalls, all the direct connections will

fail. In this case, they fall back to using a central transit relay server that basically glues

the two inbound TCP connections together.

In all cases, the file data is encrypted by the session key, so neither the rendezvous

server nor the transit relay gets to see the contents of the file.

This same protocol can be used in other applications by importing the wormhole

library and making API calls. For example, an encrypted instant-messaging application

like Signal or Wire could use this to securely add a friend’s public key to your address

book: instead of copying a large key string, you would instead tell your friend a

wormhole code.

 Network Protocols, Transfer Latency, Client
Compatibility
The total transfer time, from the moment the sender launches the tool, to the last byte

arriving at the receiver, is roughly the sum of three phases:

• waiting for the receiver to finish typing in the wormhole code;

• performing key agreement and negotiating a transit connection;

• transferring the file over the encrypted channel.

Chapter 7 MagiC WorMhole

258

The first phase depends upon the humans: the program will cheerfully wait several

days for the receiver to finally type in the wormhole code. The last phase depends upon

the size of the file and the speed of the network. Only the middle phase is really under

the control of the protocol, so we want to make it as fast as possible. We try to minimize

the number of messages that must be exchanged, and use a low-latency real-time

protocol to accelerate this phase.

The rendezvous server effectively provides a persistent broadcast channel (i.e., a

“pubsub” server) for each pair of clients. The sender connects first, leaves a message for

the receiver, and waits for a response. Later, when the human on the receiving side finally

starts up their wormhole program, the receiver will connect and collect that message, and

send a few of its own. If either client has a network problem, their connection might get

dropped, and it must be reestablished.

 Network Protocols and Client Compatibility
Twisted makes it quite easy to build custom protocols over TCP or UDP, as seen in

the first chapter of this book. We could have built a simple TCP-based protocol for the

rendezvous connection. But when we think about the future, we’d like to see Magic

Wormhole clients in other languages and runtime environments, like web pages

or mobile operating systems. The protocol we build for a command-line Twisted

application might not be easy to implement in other languages, or it might require

network access that’s forbidden to those programs:

• Web browsers can do WebSockets and WebRTC, but not raw TCP

connections.

• Browser extensions can do everything a web page can, and more,

but must be implemented in specialized JavaScript where binary

protocols are not very natural.

• iOS/Android can do HTTP, but power management may prohibit

long-lived connections, and non-HTTP requests might not activate

the radios.

So, for cross-runtime compatibility, we must stick to things that a web browser

can do.

Chapter 7 MagiC WorMhole

259

The simplest such protocol would do plain HTTP GETs and POSTs, using the

excellent treq package, which provides a requests-like API to Twisted-based programs.

However, it isn’t clear how frequently the client ought to poll the server: we might poll

once per second, wasting a lot of bandwidth to check for a response that won’t happen

for an hour. Or we might save bandwidth by only checking once a minute, at the cost

of adding 60 seconds of latency to a utility that should only take a second or two. Even

polling once per second adds an unnecessary delay. With a real-time connection, the

connection completes as fast as the network can carry the messages.

One trick to reduce this latency is “HTTP long polling” (sometimes known as

COMET). In this approach, the magic wormhole client would make a GET or a POST

as usual, but the relay server would pretend to take a really long time to deliver the

response (in fact, the server would just stall the response until the other client connects

to receive the file). One limitation is that the server must usually respond somehow,

usually with a “please try again” error, within 30–60 seconds, or the client HTTP library

may give up. Also, back-to-back messages (like the second and third messages sent by

the clients) aren’t delivered immediately: the time it takes to send a request must be

added to the latency of each message.

Another web-compatible real-time technique is called “Server Sent Events,” which is

exposed to web content as the EventSource JavaScript object. This is a more principled

way to do long polling: the client does a regular GET, but sets the Accept request header

to the special value text/event-stream to tell the server that the connection should be

kept open. The response is expected to contain a stream of encoded events, each on a

single line. This is pretty easy to implement on the server; however, there is no off-the-

shelf library for Twisted. The messages only travel in one direction (server to client), but

that’s all we need for our protocol because we can use POSTs in the upstream direction.

The biggest downside is that some web browsers (in particular IE and Edge) don’t

support it.

Our solution is to use WebSockets. This is a well-standardized protocol,

implemented in most browsers, and available as a library in many programming

languages. It’s easy to use from Python and Twisted, thanks to the excellent Autobahn

library (described in the next chapter). The connection looks just like a long-lived

HTTP session, which makes it easier to integrate with existing HTTP stacks (and makes

it more likely to work through proxies and TLS terminators). Keepalives are handled

automatically. And it is a fast, real-time protocol, so messages are delivered as quickly as

possible.

Chapter 7 MagiC WorMhole

http://caniuse.com/eventsource

260

If we didn’t have Autobahn, we might reconsider. WebSockets are somewhat

complicated to implement because they use a special kind of framing (to prevent

confused servers from misinterpreting the traffic as some other protocol: you wouldn’t

want an attacker’s web page to make your browser send DELETE commands to your

company’s internal FTP server).

In the future, the rendezvous server will probably speak multiple protocols, not just

WebSockets. WebRTC is the most compelling, because it includes support for ICE and

STUN. These are protocols to perform “NAT hole-punching”, so two clients can make a

direct Transit connection despite both of them being behind firewalls. WebRTC is mostly

used for audio/videochat, but it includes APIs specifically for ordinary data transfer. And

WebRTC is well-supported by most browsers. A browser-to-browser Magic Wormhole

would be fairly easy to build and might perform better than the current CLI tool.

The problem is that support outside a browser environment is minimal, partially

because of the audio/video focus. Most libraries seem to spend all their energy trying to

support the audio codecs and video compression algorithms, leaving them less time for

the basic connectivity layer. The most promising ones I’ve seen are written in C++, for

which Python bindings are second class, making build and packaging difficult.

One other contender is the libp2p protocol developed for IPFS. This relies upon a

swarm of nodes in a large distributed hash table (DHT), rather than a central server,

but has been well tested, and has good implementations in at least Go and JavaScript.

A Python version of libp2p could be very promising.

 Server Architecture
The Rendezvous Server is written as a twisted.application.service.MultiService,

with a listening port for the main WebSocket connection.

WebSockets are basically HTTP, and the Autobahn library makes it possible to use

the same port for both. In the future this will let us host the pages and other assets of a

web-based version of Magic Wormhole from the same origin as the rendezvous service.

To set this up, the Rendezvous Server looks like this:

from twisted.application import service

from twisted.web import static, resource

from autobahn.twisted.resource import WebSocketResource

from .rendezvous_websocket import WebSocketRendezvousFactory

Chapter 7 MagiC WorMhole

261

class Root(resource.Resource):

 def __init__ (self):

 resource.Resource. __init__ (self)

 self.putChild(b"", static.Data(b"Wormhole Relay\n", "text/plain"))

class RelayServer(service.MultiService):

 def __init__ (self, rendezvous_web_port):

 service.MultiService. __init__ (self)

 ...

 root = Root()

 wsrf = WebSocketRendezvousFactory(None,self._rendezvous)

 root.putChild(b"v1", WebSocketResource(wsrf))

self._rendezvous is our Rendezvous object that provides the internal API for the

Rendezvous Server actions: adding messages to a channel, subscribing to channels, etc.

When we add additional protocols, they will all use this same object.

WebSocketResource is Autobahn’s class for adding a WebSocket handler at any HTTP

endpoint. We attach it as the “v1” child of Root, so if our server is on magic-wormhole.

io, then the Rendezvous service will live at a URL of ws://magic-wormhole.io/v1. We

reserve v2/ and the like for future versions of the protocol.

The WebSocketResource must be given a factory: we use our WebSocketRendezvous

Factory from a neighboring module. This factory produces Protocol instances of our

WebSocketRendezvous class, which has an onMessage method that examines the payload of

each message, parses the contents, and invokes the appropriate action:

def onMessage(self, payload, isBinary):

 msg = bytes_to_dict(payload)

 try:

 if "type" not in msg:

 raise Error("missing 'type'")

 self.send("ack", id=msg.get("id"))

 mtype = msg["type"]

 if mtype == "ping":

 return self.handle_ping(msg)

 if mtype == "bind":

 return self.handle_bind(msg)

 ...

Chapter 7 MagiC WorMhole

262

 Persistent Database
When both clients are connected at the same time, the rendezvous server delivers

messages from one to the other right away. But at least the initial message must be

buffered while waiting for the second client to connect: sometimes for just a few

seconds, but sometimes for hours or days.

Early versions of the rendezvous server held these messages in memory. But then

each time the host was rebooted (e.g., to upgrade the operating system), these messages

were lost, and any clients waiting at that moment would fail.

To fix this, the server was rewritten to store all messages in an SQLite database. Every

time a message arrives, the first thing the server does is to append it to a table. Once the

message is safely stored, a copy is forwarded to the other client. The Rendezvous object

wraps a database connection, and each method performs SELECTs and INSERTs.

The clients were also rewritten to tolerate losing a connection, as described in

the next section, with state machines that retransmit any message that hasn’t been

acknowledged by the server.

An interesting side effect of this work was that it enables an “offline mode”: two

clients can exchange messages without ever being connected at the same time.

While this doesn’t enable a direct file-exchange operation, it does allow use cases like

exchanging public keys for a messaging application.

 Transit Client: Cancelable Deferreds
After a session key is computed, the wormhole clients can communicate securely, but

all their data is still being relayed by the rendezvous server. This is too slow for the bulk

file-transfer phase: every byte must go up to the server, and then back down to the other

client. It would be faster (and cheaper) to use a direct connection. However, sometimes

the clients cannot make a direct connection (e.g., they are both behind NAT boxes), in

which case they must use a “transit relay” server. The Transit Client is responsible for

making the best connection that is possible.

As described earlier, the clients each open a listening TCP port, figure out their IP

addresses, then send the address+port to the other side (through the encrypted rendezvous

channel). To accommodate future connection mechanisms (perhaps WebRTC), this is

generalized as a set of “connection hints” of various types. The current client recognizes three

kinds of hints: direct TCP, transit-relay TCP, and Tor hidden- service TCP. Each hint includes a

priority, so a client can encourage the use of cheaper connections.

Chapter 7 MagiC WorMhole

263

Both sides initiate connections to every hint that they can recognize, starting with the

high-priority hints first. Any hints that use the transit relay are delayed by a few seconds,

to favor a direct connection.

The first connection that completes the negotiation process will win the race, at

which point we use defer.cancel() to abandon all the losers. Those might still be

waiting to start (sitting in the two-second delay imposed on relay connections), or trying

to complete DNS resolution, or connected but waiting for negotiation to finish.

Deferred cancellation neatly handles all of these cases, because it gives the original

creator of the Deferred an opportunity to avoid doing some work that’s now going

to be ignored anyway. And if the Deferred has chained to another, the cancel() call

follows this chain and gets delivered to the first Deferred that has not yet fired. For us,

that means canceling a contender that is waiting for a socket to connect will cancel the

connection attempt. Or canceling one that is connected but still waiting for a connection

handshake will shut down the connection instead.

By structuring each step of the process as another Deferred, we don’t need to keep

track of those steps: a single cancel() will do the right thing.

We manage this race with a utility function in src/wormhole/transit.py:

class _ThereCanBeOnlyOne:

 """Accept a list of contender Deferreds, and return a summary Deferred.

When the first contender fires successfully, cancel the rest and fire the

summary with the winning contender's result. If all error, errback the summary.

 """

 def __init__ (self, contenders):

 self._remaining = set(contenders)

 self._winner_d = defer.Deferred(self._cancel)

 self._first_success = None

 self._first_failure = None

 self._have_winner = False

 self._fired = False

def _cancel(self, _):

 for d in list(self._remaining):

 d.cancel()

 # since that will errback everything in _remaining, we'll have

 # hit _maybe_done() and fired self._winner_d by this point

Chapter 7 MagiC WorMhole

264

 def run(self):

 for d in list(self._remaining):

 d.addBoth(self._remove, d)

 d.addCallbacks(self._succeeded,self._failed)

 d.addCallback(self._maybe_done)

 return self._winner_d

 def _remove(self, res, d):

 self._remaining.remove(d)

 return res

 def _succeeded(self, res):

 self._have_winner = True

 self._first_success = res

 for d in list(self._remaining):

 d.cancel()

 def _failed(self, f):

 if self._first_failure is None:

 self._first_failure = f

 def _maybe_done(self, _):

 if self._remaining:

 return

 if self._fired:

 return self._fired = True

 if self._have_winner:

 self._winner_d.callback(self._first_success)

 else:

 self._winner_d.errback(self._first_failure)

def there_can_be_only_one(contenders):

 return _ThereCanBeOnlyOne(contenders).run()

This is exposed as a function, not a class. We need to turn a collection of Deferreds

into a single new Deferred, and a class constructor can only return the new instance

(not a Deferred). If we exposed _ThereCanBeOnlyOne as the main API, callers would be

Chapter 7 MagiC WorMhole

265

forced to use an awkward d = ClassXYZ(args).run() syntax (precisely the syntax we

hide inside our function). This would add several opportunities for mistakes:

• What if they call run() twice?

• What if they subclass it? what sort of compatibility are we promising?

Note that if all the contender Deferreds fail, the summary Deferred will fail too. In

this case, the errback function will receive whatever Failure instance was delivered with

the first contender failure. The idea here is to report common-mode failures usefully.

Each target will probably behave in one of three ways:

• successful connection (maybe fast or maybe slow);

• fail because of something specific to the target: it uses an IP address

that we can’t reach, or a network filter blocks the packets;

• fail because of something not specific to the target, for example, we

aren’t even connected to the internet;

If we’re in the latter case, all the connection failures will be the same, so it doesn’t

matter which one we report. Recording the first should be enough to let the user figure

out what went wrong.

 Transit Relay Server
The code for the Transit Relay is in the magic-wormhole-transit-relay package. It

currently uses a custom TCP protocol, but I hope to add a WebSockets interface to

enable browser-based clients to use it too.

The core of the relay is a Protocol for which pairs of instances (one per client) are

linked together. Each instance has a “buddy,” and every time data arrives, that same data

is written out to the buddy:

class TransitConnection(protocol.Protocol):

 def dataReceived(self, data):

 if self._sent_ok:

 self._total_sent += len(data)

 self._buddy.transport.write(data)

 return

 ...

Chapter 7 MagiC WorMhole

266

 def buddy_connected(self, them):

 self._buddy = them

 ...

 # Connect the two as a producer/consumer pair. We use streaming=True,

 # so this expects the IPushProducer interface, and uses

 # pauseProducing() to throttle, and resumeProducing() to unthrottle.

 self._buddy.transport.registerProducer(self.transport,True)

 # The Transit object calls buddy_connected() on both protocols, so

 # there will be two producer/consumer pairs.

 def buddy_disconnected(self):

 self._buddy = None

 self.transport.loseConnection()

 def connectionLost(self, reason):

 if self._buddy:

 self._buddy.buddy_disconnected()

 ...

The rest of the code has to do with identifying exactly which connections should

be paired together. Transit clients write a handshake string as soon as they connect,

and the relay looks for two clients that wrote the same handshake. The remainder of

the dataReceived method implements a state machine that waits for the handshake to

arrive, then compares it against other connections to find a match.

When the buddies are linked, we establish a Producer/Consumer relationship

between them: Alice’s TCP transport is registered as a producer for Bob’s, and vice versa.

When Alice’s upstream link is faster than Bob’s downstream link, the TCP Transport

connected to Bob’s TransitConnection will fill up. It will then call pauseProducing()

on Alice’s Transport, which will remove her TCP socket from the reactor’s readable list

(until resumeProducing() is called). This means the relay won’t read from that socket for

a while, causing the kernel’s inbound buffer to fill, at which point the kernel’s TCP stack

shrinks the TCP window advertisement, which tells Alice’s computer to stop sending

data until it catches up.

The net result is that Alice observes a transfer rate that is no greater than what Bob

can handle. Without this Producer/Consumer linkage, Alice would write data to the relay

as fast as her connection allows, and the relay would have to buffer all of it until Bob

caught up. Before we added this, the relay would occasionally run out of memory when

people sent very large files to very slow recipients.

Chapter 7 MagiC WorMhole

267

 Wormhole Client Architecture
On the client side, the wormhole package provides a Wormhole library to establish

wormhole-style connections through the server, a Transit library to make encrypted

direct TCP connections (possibly through a relay), and a command-line tool to drive the

file-transfer requests. Most of the code is in the Wormhole library.

The Wormhole object is built with a simple factory function, and has a Deferred-

based API to allocate a wormhole code, discover what code was selected, and then send/

receive messages:

import wormhole

@inlineCallbacks

def run():

 w = wormhole.create(appid, relay_url, reactor)

 w.allocate_code()

 code = yield w.get_code()

 print "wormhole code:", code

 w.send_message(b"outbound message")

 inbound = yield w.get_message()

 yield w.close()

We use a create factory function, not a class constructor, to build our Wormhole

object. This lets us keep the actual class private, so we can change the implementation

details without causing compability breaks in the future. For example, there are actually

two flavors of Wormhole objects. The default has a Deferred-based interface, but if you

pass an optional delegate= argument into create, you get an alternate one that makes

calls to the delegate object intead of firing a Deferred.

create takes a Reactor, rather than importing one internally, to allow the calling

application to control which type of reactor is used. This also makes unit tests easier to

write, because we can pass in a fake reactor where, for example, network sockets are

stubbed out, or one where we get explicit control over the clock.

Internally, our Wormhole object uses over a dozen small state machines, each of

which is responsible for a small part of the connection and key-negotiation process. For

example, the short integer at the beginning of a wormhole code (the “4” in 4-bravado-

waffle) is called a Nameplate, and these are allocated, used, and released, all by a single

dedicated state machine. Likewise, the server hosts a Mailbox where the two clients

Chapter 7 MagiC WorMhole

268

can exchange messages: each client has a state machine that manages their view of

this Mailbox, and knows when they want it to be opened or closed, and ensures that all

messages are sent at the right time.

 Deferreds vs State Machines, One-Shot Observer
While the basic message flow is pretty simple, the full protocol is fairly complex. This

complexity stems from a design goal of tolerating connection failures (and subsequent

reconnections), as well as server shutdowns (and subsequent restarts).

Each resource that the client might allocate or reserve must be freed at the right time.

So, the process of claiming Nameplates and Mailboxes is carefully designed to always

move forward, despite connections coming and going.

It is further complicated by another design goal: applications that use the library can

save their state to disk, shut down completely, then restart at a later time and pick up

where they left off. This is intended for messaging applications that get started and shut

down all the time. For this to work, the application needs to know when a wormhole

message has arrived, and how to serialize the protocol’s state (along with everything else

in the application). Such applications must use the Delegate API.

Deferreds are a good choice for dataflow-driven systems in which any given

action can happen exactly once, but they are hard to serialize. And for states that

might roll forward and then roll back, or for events which can occur multiple times

(more of a “stream” interface), state machines might be better. Earlier versions of the

wormhole code used more Deferreds, and it was harder to handle connections being

lost and restarted. In the current version, Deferreds are only used for the top-level

API. Everything else is a state machine.

The Wormhole object uses over a dozen interlocking state machines, all of which are

implemented with Automat. Automat is not a part of Twisted per se, but it was written

by members of the Twisted community, and one of its first use cases was Twisted’s

ClientService (this is a utility that maintains a connection to a given endpoint,

reconnecting any time the connection is lost, or when the connection process fails;

Magic Wormhole uses ClientService for the connection to the Rendezvous server).

As a specific example, Figure 7-5 shows the Allocator state machine, which manages

the allocation of Nameplates. These are allocated by the rendezvous server upon request

by the sending side (unless the sender and receiver have decided upon a code offline, in

which case both sides type the code into their clients directly).

Chapter 7 MagiC WorMhole

269

At any given moment, the connection to the rendezvous server is either established

or not, and the transitions between these two states causes a connected or lost message

to be dispatched to most state machines, including the Allocator. The allocator remains

in one of the two “idle” states (S0A idle+disconnected, or S0B idle+connected) until/

unless it is needed. If the higher-level code decides that a nameplate is required,

it sends the allocate event. If the Allocator was connected at that moment, it tells

the Rendezvous Connector to transmit an allocate message (the box labelled RC.

tx_allocate), then moves to state S1B where it waits for a response. When the response

arrives (rx_allocated), it will choose random words that make up the rest of the code,

inform the Code state machine that one has been allocated (C.allocated()), and move

to the terminal S2: done state.

Until the rx_allocated response is received, we can’t know if the request was

delivered successfully or not. So we must 1: make sure to retransmit the request each

time the connection is reestablished; and 2: make sure the request is idempotent, so that

the server reacts to two or more requests the same way it would react to a single request.

This ensures that the server behaves correctly in both cases.

Figure 7-5. Allocator state machine

Chapter 7 MagiC WorMhole

270

We might be asked to allocate a nameplate before the connection has been

established. The path from S1A to S1B is where the allocate request is transmitted in

either case: connecting before discovering the need to allocate, and reconnecting after

sending the allocation request but not yet hearing the response.

This pattern appears in most of our state machines. For more complex examples,

look at the Nameplate or the Mailbox machines, which create or subscribe to a named

channel on the rendezvous server. In both cases, the states line up into two columns:

either “disconnected” on the left, or “connected” on the right. The vertical position

within the column indicates what we’ve accomplished so far (or what we still need to

do). Losing a connection moves us from right to left. Establishing a connection moves us

from left to right, and generally sends a new request message (or retransmits an earlier

one). Receiving a response moves us downward, as does being instructed to achieve

something from a higher-level state machine.

The top-level Boss machine is where the state machines give way to Deferreds.

Applications that import the magic wormhole library can ask for a Deferred that will fire

when an important event occurs. For example, an application can create a Wormhole

object and allocate a code like this:

from twisted.internet import reactor

from wormhole.cli.public_relay import RENDEZVOUS_RELAY

import wormhole

set APPID to something application-specific

w = wormhole.create(APPID, RENDEZVOUS_RELAY, reactor)

w.allocate_code()

d = w.get_code()

def allocated_code(code):

 print("the wormhole code is:{}".format(code))

d.addCallback(allocated_code)

The Allocator state machine delivers the allocated messages to the Code machine

(C.allocated). The Code machine will deliver the code to the Boss (B.got_code), the

Boss machine will deliver it to the Wormhole object (W.got_code), and the Wormhole

object will deliver it to any waiting Deferreds (which were constructed by calling get_

code()).

Chapter 7 MagiC WorMhole

271

 One-Shot Observers
The following excerpt from src/wormhole/wormhole.py shows the “one-shot observer”

pattern used to manage the delivery of wormhole codes, both from allocation (described

above) and interactive input:

@implementer(IWormhole, IDeferredWormhole)

class _DeferredWormhole(object):

 def __init__ (self):

 self._code = None

 self._code_observers = []

 self._observer_result = None

 ...

 def get_code(self):

 if self._observer_result is not None:

 return defer.fail(self._observer_result)

 if self._code is not None:

 return defer.succeed(self._code)

 d=defer.Deferred()

 self._code_observers.append(d)

 return d

 def got_code(self, code):

 self._code = code

 for d in self._code_observers:

 d.callback(code)

 self._code_observers[:] = []

 def closed(self, result):

 if isinstance(result,Exception):

 self._observer_result = failure.Failure(result)

 else:

 # pending Deferreds get an error

 self._observer_result = WormholeClosed(result)

 ...

 for d in self._code_observers:

 d.errback(self._observer_result)

Chapter 7 MagiC WorMhole

272

get_code() might be called any number of times. For the standard CLI filetransfer

tool, the sending client allocates the code, and waits for get_code() to fire so it can

display the code to the user (who must dictate it to the receiver). The receiving client

is told the code (either as an invocation argument, or via interactive input, with tab

completion on the words), so it doesn’t bother calling get_code(). Other applications

might have reasons to call it multiple times.

We want all these queries to get the same answer (or error). And we want their

callback chains to be independent.

 Promises/Futures vs. Deferreds
Futures come from the Actor model, by Carl Hewitt, and languages like Joule and E,

and other early object-capability systems (in which they’re known as Promises). They

represent a value that is not available yet, but which (might) resolve to something

eventually, or might “break” and never refer to anything.

This lets programs talk about things that don’t yet exist. This might seem unhelpful,

but there are plenty of useful things that can be done with not-yet-existent things. You

can schedule work to happen when they do become available, and you can pass them

into functions that can themselves schedule this work. In more advanced systems,

Promise Pipelining lets you send messages to a Promise, and if that promise actually

lives on a different computer entirely, the message will chase the promise to the target

system, which can cut out several roundtrips. In general, they help programmers

describe their future intentions to the compiler or interpreter, so it can better plan out

what to do.

Deferreds are closely related, but are unique to Twisted. They serve more as a

callback management tool than a fully fledged Promise. To explore how they differ, we

should first explain how real Promises work.

In E, the object-capability language that most fully explored Promises, there is a

function named makePromiseResolverPair(), which returns two separate objects: a

Promise and a Resolver. The only way to resolve the promise is with the Resolver, and the

only way to learn of the resolution is with the Promise. The language provides a special

syntax, the “when” block, which lets the programmer write code that will execute only

after the promise has been resolved to some concrete value. If Magic Wormhole were

written in E, the get_code() method would return a Promise, and it would be displayed

to the user like this:

Chapter 7 MagiC WorMhole

273

p = w.get_code();

when (p) {

 writeln("The code is:", p);

}

Promises are available in modern JavaScript (ES6), thanks to the sizable overlap

between the object-capability community and the TC39 standards organization. These

Promises do not have any special syntax to wait for resolution, instead relying upon

JavaScript’s convenient anonymous functions (including the arrow function syntax

introduced in ES6). The corresponding JavaScript code would look like:

p=w.get_code();

p.then(code=>{console.log("The code is:",code);});

A significant difference between E’s Promises, JS Promises, and Twisted’s Deferreds

is in how you chain them together. The Javascript then() method returns a new

Promise, which fires if and when the callback function finishes (if the callback returns an

intermediate promise, the then() promise won’t fire until the intermediate one fires). So,

given a single “parent” promise, you can build two separate processing chains like this:

p=w.get_code();

function format_code(code){

 return slow_formatter_that_returns_a_promise(code);

}

p.then(format_code).then(formatted => {console.log(formatted);});

function notify_user(code){

 return display_box_and_wait_for_approval(code);

}

p.then(notify_user).then(approved => {console.log("code delivered!");});

In JavaScript, these two actions will run “in parallel,” or at least neither will interfere

with the other.

Twisted’s Deferreds, on the other hand, build a chain of callbacks without creating

additional Deferreds.

d1=w.get_code()

d=d1.addCallback(format_code)

assert d1 is d # addCallback returns the same Deferred!

Chapter 7 MagiC WorMhole

274

This looks a bit like the JavaScript “attribute construction” pattern, common in web

frameworks (e.g., d3.js, jQuery) that build up an object across many attribute-invocation

calls:

s = d3.scale()

 .linear()

 .domain([0,100])

 .range([2,40]);

This chaining behavior of Deferreds can cause surprises, especially when trying to

create parallel lines of execution:

d1 = w.get_code()

d1.addCallback(format_code).addCallback(print_formatted)

wrong!

d1.addCallback(notify_user).addCallback(log_delivery)

In that example, notify_user is only called after print_formatted finishes, and

it won’t be called with the code: instead it will get whatever value print_formatted

returned. Our coding pattern (two lines, each of which starts with d1.addCallback) is

deceptive. In fact, the code above is exactly equivalent to:

d1 = w.get_code()

d1.addCallback(format_code)

d1.addCallback(print_formatted)

d1.addCallback(notify_user) # even more obviously wrong!

d1.addCallback(log_delivery)

Instead, we need a new Deferred that will fire with the same value but lets us

establish a new chain of execution:

def fanout(parent_deferred, count):

 child_deferreds = [Deferred() for i in range(count)]

 def fire(result):

 for d in child_deferreds:

 d.callback(result)

 parent_deferred.addBoth(fire)

 return child_deferreds

Chapter 7 MagiC WorMhole

275

d1 = w.get_code()

d2, d3 = fanout(d1,2)

d2.addCallback(format_code)

d2.addCallback(print_formatted)

d3.addCallback(notify_user)

d3.addCallback(log_delivery)

This is enough of a nuisance that in my projects, I usually create a utility class named

OneShotObserverList. This “observer” has a when_fired() method (that returns a new,

independent Deferred), and a fire() method (which fires them all). when_fired() can

be called either before or after fire().

The Magic Wormhole code quoted above (get_code() / got_code()) is a subset

of the full OneShotObserverList. There are several ways that the connection process

might fail, but they all call closed() with a Failure instance (a successful/intentional

close will call closed() with a non-Failure, which is then wrapped in a WormholeClosed

exception). This code ensures that every Deferred returned by get_code() will be fired

exactly once, with either success (and the code), or a Failure.

 Eventual-Send, Synchronous Testing
Another aspect of Promises that comes from E and the object-capability community is

the eventual send. This is a facility to queue a method invocation for some subsequent

turn of the event loop. In Twisted, this is basically a reactor.callLater(0, callable,

argument). In E and JavaScript, Promises automatically provide this guarantee for their

callbacks.

Eventual send is a simple and robust way to avoid a number of ordering hazards. For

example, imagine a general observer pattern (with more functionality than the simple

OneShotObserverList described above):

class Observer:

 def __init__ (self):

 self.observers = set()

 def subscribe(self, callback):

 self.observers.add(callback)

 def unsubscribe(self, callback):

 self.observers.remove(callback)

Chapter 7 MagiC WorMhole

276

 def publish(self, data):

 for ob in self.observers:

 ob(data)

Now, what happens if one of the callback functions invokes subscribe or

unsubscribe, modifying the list of observers while in the middle of the loop? Depending

upon how iteration works, the newly added callback might receive the current event, or it

might not. In Java, the iterator might even throw a ConcurrentModificationException.

Reentrancy is another potential surprise: if some callback publishes a new message

to the same observer, then the publish function will be invoked a second time while

the first invocation is still running, which can violate many common assumptions

the programmer might have made (especially if the function keeps state in instance

variables). Finally, if a callback raises an exception, do the remaining observers see the

event, or are they bypassed?

These unexpected interactions are collectively known as “plan-coordination

hazards,” and the consequences include dropped events, duplicated events, non-

deterministic ordering, and infinite loops.

Meticulous programming can avoid many of these failure modes: we could duplicate

the observer list before iteration, catch/discard exceptions in the callbacks, and use a

flag to detect reentrant calls. But it is far simpler and more robust to use an eventual send

with each call:

def publish(self, data):

 for ob in self.observers:

 reactor.callLater(0, ob, data)

I’ve used this with great success in many projects (Foolscap, Tahoe-LAFS), and it

removes entire classes of bugs. The downside is that testing becomes more difficult,

since the effects of an eventual send cannot be checked synchronously. In addition, the

lack of causal stack traces makes debugging tricky: if the callback raises an exception,

the traceback doesn’t make it clear why that function was called. Deferreds have similar

concerns, for which the defer.setDebugging(True) function can help.

With Magic Wormhole, I’ve been experimenting with using synchronous unit tests

instead of eventual send.

Chapter 7 MagiC WorMhole

277

 Asynchronous Testing with Deferreds
Twisted has a unit test system named Trial, which builds upon the stdlib unittest

package by providing specialized methods for handling Deferreds. The most obvious

feature is that a test case can return a Deferred, and the test runner will wait for it to

fire before declaring success (or allowing the next test to run). When combined with

inlineCallbacks, this makes it easy to test that certain things happen in a specific order:

@inlineCallbacks

def test_allocate_default(self):

 w = wormhole.create(APPID,self.relayurl, reactor)

 w.allocate_code()

 code = yield w.get_code()

 mo = re.search(r"^\d+-\w+-\w+$", code)

 self.assert_(mo, code)

 # w.close() fails because we closed before connecting

 yield self.assertFailure(w.close(), LonelyError)

In that test, w.allocate_code() initiates the allocation of a code, and w.get_code()

returns a Deferred that will eventually fire with the complete code. In between, the

Wormhole object must contact the server and allocate a nameplate (the test launches a

local rendezvous server in setUp(), rather than relying upon the real server). The yield

w.get_code() takes that Deferred and waits for it to finish, then assigns the result to code

so we can test its structure later.

Of course, what really happens is that the test function returns a Deferred and goes

back to the event loop, then at some point in the future the server’s response arrives

and causes the function to be resumed where it left off. If a bug prevents the get_code()

Deferred from being fired, the test will wait quietly for two minutes (the default timeout),

then declare an error.

The self.assertFailure() clause takes a Deferred and a list (*args) of exception

types. It waits for the Deferred to resolve, then requires that it was errbacked with

one of those exceptions: if the Deferred’s .callback() is invoked (i.e., not an error),

assertFailure flunks the test. And if the Deferred’s .errback() is invoked with the

wrong kind of error, it also flunks the test.

Chapter 7 MagiC WorMhole

278

For us, this serves three purposes. The Wormhole API requires that you call

w.close() when you’re done, and close returns a Deferred that fires when everything

is fully shut down. We use this to avoid moving on to the next test until everything has

stopped moving from the previous one (all network sockets are shut down, all timers

have been retired), which also avoids triggering an “unclean reactor” error from Trial.

This Deferred also gives applications a way to discover connection errors. In this test,

we’re only running a single client, so there’s nobody for it to connect to, and the close

Deferred will be errbacked with LonelyError. We use assertFailure to make sure that

no other error happened, which catches all the usual coding errors that our unit tests are

designed to find, like maybe a NameError because we misspelled a method somewhere.

The third purpose is that it keeps the overall test from being flunked. In other tests,

where the wormhole connects successfully, we use a simple yield w.close() at the end

of the test. But in this case, the LonelyError errback would look like a problem to Trial,

which would mark the test as failed. Using assertFailure tells Trial that it’s ok for this

Deferred to fail, as long as it fails in a very specific way.

 Synchronous Testing with Deferreds
test_allocate_default is really an integration test, which is exercising multiple

pieces of the system at once (including the rendezvous server and the loopback network

interface). These tests tend to be thorough but somewhat slow. They also don’t provide

predictable coverage.

Tests that wait for a Deferred to happen (either by returning one from the test,

yielding one in the middle of an @inlineCallbacks function, or calling assertFailure)

imply that you aren’t entirely sure quite when that event will happen. This separation of

concerns is fine when an application is waiting for a library to do something: the details

of what will trigger the callback are the library’s job, not the application. But during unit

tests, you should know exactly what to expect.

Trial offers three Deferred-managing tools that do not wait for the Deferred to

fire: successResultOf, failureResultOf, and assertNoResult. These assert that the

Deferred is currently in a specific state, rather than waiting for a transition to occur.

They are most commonly used with the Mock class, to reach “into” some code under

test, to provoke specific internal transitions at a known time.

Chapter 7 MagiC WorMhole

279

As an example, we’ll look at the tests of Magic Wormhole’s tor support. This feature

adds an argument to the command-line tools, which causes all connections to be routed

through a Tor daemon, so wormhole send --tor won’t reveal your IP address to the

rendezvous server (or the recipient). The details of finding (or launching) a suitable

Tor daemon are encapsulated in a TorManager class, and depends upon the external

txtorcon library. We can replace txtorcon with a Mock, then we exercise everything

above it to make sure our TorManager code behaves as expected.

These tests exercise all of our Tor code, without actually talking to a real Tor daemon

(which would clearly be slow, unreliable, and unportable). They accomplish this by

assuming that txtorcon works as advertised. We don’t assert anything about what

txtorcon actually does: instead we record and inspect everything we told txtorcon to

do, then we simulate the correct txtorcon responses and examine everything that our

own code does in reaction to those responses.

The simplest test checks to see what happens when txtorcon is not installed: normal

operation should not be affected, but trying to use --tor should cause an error message.

To make this easier to simulate, the tor_manager.py module is written to handle an

import error by setting the txtorcon variable to None:

tor_manager.py

try:

 import txtorcon

except ImportError:

 txtorcon = None

This module has a get_tor() function, which is defined to return a Deferred that

either fires with a TorManager object, or with a NoTorError Failure. It returns a Deferred

because, in normal use, it must establish a connection to the Tor control port before

anything else can happen, and that takes time. But in this specific case, we know it

should resolve immediately (with NoTorError), because we discover the ImportError

without waiting for anything. So, the test looks like this:

from ..tor_manager import get_tor

class Tor(unittest.TestCase):

 def test_no_txtorcon(self):

 with mock.patch("wormhole.tor_manager.txtorcon",None):

 d = get_tor(None)

 self.failureResultOf(d, NoTorError)

Chapter 7 MagiC WorMhole

280

The mock.patch ensures that the txtorcon variable is None, even though the txtorcon

package is always importable during tests (our setup.py marks txtorcon as a dependency

in the [dev] extra). The Deferred returned by get_tor() is already in the errback state by

the time our test regains control. self.failureResultOf(d, *errortypes) asserts that

the given Deferred has already failed, with one of the given error classes. And because

failureResultOf tests the Deferred immediately, it returns immediately. Our test_no_

txtorcon does not return a Deferred, nor does it use @inlineCallbacks.

A similar test exercises the precondition checks inside get_tor(). For each

typecheck that this function does, we exercise it with a call. For example, the launch_

tor= argument is a Boolean flag that says whether the tor_manager should spawn a new

copy of Tor, or try to use a preexisting one. If we pass in a value that isn’t True or False,

we should expect the Deferred to fire with a TypeError:

def test_bad_args(self):

 d = get_tor(None, launch_tor="not boolean")

 f = self.failureResultOf(d,TypeError)

 self.assertEqual(str(f.value), "launch_tor= must be boolean")

This entire test runs synchronously, without waiting for any Deferreds. A collection

of tests like this exercises every line and every branch in the tor_manager module in 11

milliseconds.

Another common test is to make sure that a Deferred has not fired yet, because we

haven’t yet triggered the condition that would allow it to fire. This is usually followed

by a line that triggers the event, then an assertion that the Deferred is either resolved

successfully (with some specific value), or has failed (with some specific exception).

The magic wormhole Transit class manages the (hopefully direct) client-to-client

TCP connections used for bulk data transfer. Each side listens on a port and builds a list

of “connection hints” based on every IP address it might possibly have (including several

local addresses that are unlikely to be reachable). Each side then initiates connections

to all of their peer’s hints at the same time. The first one to connect successfully and

perform the right handshake is declared the winner, and all the others are canceled.

A utility function named there_can_be_only_one() (described earlier) is used

to manage this race. It takes a number of individual Deferreds, and returns a single

Deferred that fires when the first has succeeded. Twisted has some utility functions

that do something similar (DeferredList has been around forever), but we needed

something that would cancel all the losing contenders.

Chapter 7 MagiC WorMhole

281

To test this, we use Trial’s assertNoResult(d) and value = successResultOf(d)

features:

class Highlander(unittest.TestCase):

 def test_one_winner(self):

 cancelled = set()

 contenders = [Deferred(lambda d, i=i: cancelled.add(i))

 for i in range(5)]

 d = transit.there_can_be_only_one(contenders)

 self.assertNoResult(d)

 contenders[0].errback(ValueError())

 self.assertNoResult(d)

 contenders[1].errback(TypeError())

 self.assertNoResult(d)

 contenders[2].callback("yay")

 self.assertEqual(self.successResultOf(d),"yay")

 self.assertEqual(cancelled, set([3,4]))

In this test, we make sure that the combined Deferred has not fired right away, and

also that it does not fire even when some of the component Deferreds have failed. When

a component member does succeed, we check that both the combined Deferred has

fired with the correct value, and that the remaining contenders have been canceled.

successResultOf() and failureResultOf() have one catch: you can’t call them

multiple times on the same Deferred, because internally they add a callback to the

Deferred, which interferes with any subsequent callbacks (including additional calls to

successResultOf). There’s no good reason to do this, but it might cause you some confusion

if you have a subroutine that checks the state of a Deferred, and you use that subroutine

multiple times. However, assertNoResult can be called as many times as you like.

 Synchronous Testing and Eventual Send
The Twisted community has been moving toward this immediate/mocked style for several

years. I’ve only recently started using it, but I’m pleased with the results: my tests are faster,

more thorough, and more deterministic. However I’m still torn: there’s a lot of value in

using eventual send. In there_can_be_only_one(), the contender Deferreds are mostly

independent of the callbacks attached to the result, but I’m still worried about bugs, and I’d

feel more comfortable if the callback was executed on a different turn of the event loop.

Chapter 7 MagiC WorMhole

282

But anything involving the actual Reactor is difficult to test without waiting for a

Deferred to fire. So, I’m looking for ways to combine this immediate test style with an

eventual-send utility.

When I first started using eventual send, and Glyph saw what I was doing with

reactor.callLater(0, f), he wrote me a better version, which we use in both Foolscap

and Tahoe-LAFS. It maintains a separate queue of callbacks, and only has one callLater

outstanding at any given moment: this is more efficient if there are thousands of active

calls, and avoids depending upon reactor.callLater maintaining the activation order

of equal-value timers.

The nice feature of his eventually() is that it comes with a special function named

flushEventualQueue(), which repeatedly cycles the queue until it is empty. This should

allow tests to be written like this:

class Highlander(unittest.TestCase):

 def test_one_winner(self):

 cancelled = set()

 contenders = [Deferred(lambda d, i=i: cancelled.add(i))

 for i in range(5)]

 d = transit.there_can_be_only_one(contenders)

 flushEventualQueue()

 self.assertNoResult(d)

 contenders[0].errback(ValueError())

 flushEventualQueue()

 self.assertNoResult(d)

 contenders[1].errback(TypeError())

 flushEventualQueue()

 self.assertNoResult(d)

 contenders[2].callback("yay")

 flushEventualQueue()

 self.assertEqual(self.successResultOf(d),"yay")

 self.assertEqual(cancelled, set([3,4]))

The downside is that flushEventualQueue lives on a singleton instance of the

eventual-send manager, which has all the problems of using an ambient reactor.

To handle this cleanly, there_can_be_only_one() should be given this manager as

Chapter 7 MagiC WorMhole

283

an argument, just like modern Twisted code passes the Reactor into functions that

need it, rather than importing one directly. In fact, if we were to rely upon reactor.

callLater(0), we could test this code with a Clock() instance and manually cycle

the time forward to flush the queue. Future versions of the code will probably use

this pattern.

 Summary
Magic Wormhole is a file-transfer application with strong security properties that stem

from the SPAKE2 cryptographic algorithm at its core, with a library API for embedding

into other applications. It uses Twisted to manage multiple simultaneous TCP

connections, which usually enables fast direct transfers between the two clients. The

Autobahn library provides WebSocket connections that will enable compatibility with

future browser-based clients. The test suite uses Twisted utility functions to examine the

state of each Deferred as they are cycled through their operating phases, allowing fast

synchronous tests.

 References
• Magic Wormhole home page: http://magic-wormhole.io

• GitHub development page: https://github.com/warner/magic-

wormhole

• SPAKE2: http://www.lothar.com/blog/54-spake2-random- elements/

• WebSockets: https://developer.mozilla.org/en-US/docs/Web/

API/WebSockets_API

• requests: http://python-requests.org/

• treq: https://github.com/twisted/treq

• Autobahn: https://crossbar.io/autobahn/

• libp2p: https://libp2p.io/

• Automat: https://github.com/glyph/Automat

• Futures: https://en.wikipedia.org/wiki/Future_(programming)

Chapter 7 MagiC WorMhole

http://magic-wormhole.io/
https://github.com/warner/magic-wormhole
https://github.com/warner/magic-wormhole
http://www.lothar.com/blog/54-spake2-random-elements/
https://developer.mozilla.org/en-US/docs/Web/API/WebSockets_API
https://developer.mozilla.org/en-US/docs/Web/API/WebSockets_API
http://python-requests.org/
https://github.com/twisted/treq
https://crossbar.io/autobahn/
https://libp2p.io/
https://github.com/glyph/Automat
https://en.wikipedia.org/wiki/Future_(programming)

284

• JavaScript Promises: https://developer.mozilla.org/en-US/docs/

Web/JavaScript/Guide/Using_promises

• E Promises: http://wiki.erights.org/wiki/Promise

• Eventual Send: https://en.wikipedia.org/wiki/E_(programming_

language)

• Plan-Coordination Hazards: http://erights.org/talks/thesis/

• eventual() utility: https://github.com/warner/foolscap/blob/

master/src/foolscap/eventual.py

Chapter 7 MagiC WorMhole

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Using_promises
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Using_promises
http://wiki.erights.org/wiki/Promise
https://en.wikipedia.org/wiki/E_(programming_language)
https://en.wikipedia.org/wiki/E_(programming_language)
http://erights.org/talks/thesis/
https://github.com/warner/foolscap/blob/master/src/foolscap/eventual.py
https://github.com/warner/foolscap/blob/master/src/foolscap/eventual.py

285
© Mark Williams, Cory Benfield, Brian Warner, Moshe Zadka, Dustin Mitchell, Kevin Samuel, Pierre Tardy 2019
M. Williams et al., Expert Twisted, https://doi.org/10.1007/978-1-4842-3742-7_8

CHAPTER 8

Push Data to Browsers
and Micro-services
with WebSocket
 Why WebSocket?
WebSocket started as a competitor of HTTP AJAX requests. When we needed real-time

communication from the browser or data push from the server, they came out as a nice

alternative to legacy solutions such as long polling or comet. Because they were using

a persistent connection and no headers, they were the fastest and lightest option if you

had a lot of small messages to exchange.

Today though, HTTP2 is being more and more adopted and does have a persistent

connection and data push.

So why WebSocket?

Well, first, WebSocket APIs target application code, not just server code. So, on all

implementations, you can hook on the connection life cycle, react to disconnection,

attach data to the session, etc. A very handy feature to create robust interactions and

pleasant user experiences.

Then, while HTTP2 does have compressed headers, WebSocket has no headers

at all, making the whole footprint even lower. In fact, HTTP2 implementations force

encryption even for non-sensitive data, while in WebSocket you have the choice on

where and when to spend your machine resources, and activate SSL or not.

What’s more, HTTP2 servers tend to use push to send static resources (CSS, images,

JS, etc.) to the browsers, but it’s not generally used for pushing application data. This is

where WebSocket shines: pushing notifications to users, propagating events, signaling

changes. . .

286

However, there is one strange thing about WebSocket: it is not tied to a domain

name, and browsers don’t need any special setup for doing CORS. You can actually

connect from a web page to a local WebSocket server on your computer without any

warning. It can be seen as a pro, or a con, depending on what you need to do.

All those characteristics make WebSocket a great tool for your website notifications,

chat, trading, multi-player games, or real-time charts and graphs. Needing less to say,

you don’t have to limit yourself to that, as you can leverage it as a link between all your

components, and make it the communication layer that coordinates your whole system.

This means that your web server can talk to your caching processes or your

authentication platform through WebSocket. Or that you can manage a herd of IoT1

devices. After all, the Raspberry Pi has de facto Python support.

Overall, WebSocket is a safe bet now, as it is available in most major browsers, down

to, and including IE10. That’s about 94% of the market, according to caniuse.com. Worst

case scenario, you can find shims for the few remaining browsers. As the WebSocket and

HTTP handshakes are compatible, it will likely work on any network that lets through

HTTP. You can even share the 80 and 443 ports between the two protocols.

 WebSocket and Twisted
On the server side, WebSocket is now broadly supported by popular languages, but it

does require asynchronous programming because of the persistent connections. Since

you may end up with a lot of clients connected simultaneously, threads may not be the

best solution to code a WebSocket server. Asynchronous IO, however, is a perfect fit; and

Twisted is a welcoming platform in that regard.

The even better news is that you can use WebSocket outside the browser, so that all

the components on your servers can talk to each other in real time. This will allow you

to create your very own micro-service architecture, decoupling features to distribute

them on smaller components, or propagating information instead of querying a central

database for everything.

To demonstrate how to benefit from WebSocket in a Twisted environment, we are going

to use the Autobahn ecosystem. Autobahn is a collection of libraries under MIT license,

written in different languages, allowing you to create WebSocket clients and servers. It also

comes with a test suite to check the level of standard compliance of any WebSocket system.

And there is more.

1 Internet of Things.

Chapter 8 push Data to Browsers anD MiCro-serviCes with weBsoCket

287

You can, of course, build your own communication conventions using WebSocket;

and Autobahn certainly helps you doing so. But eventually you’ll end up doing exactly

the same as everyone else and reinvent a (most probably square) wheel.

Indeed, WebSocket use cases can broadly be classified in two categories:

• Calling remote code and getting a result. Like a better, faster, lighter

AJAX. Well, it’s been done for decades, and it is called “RPC,” for

Remote Procedure Calls.

• Sending messages to signal other parts of the system, something

happened. Same here, it’s actually a very common pattern often

called “PUB/SUB,” for Publish/Subscribe.

We’ll go into more details about what this means for you later. But for now, the

important part is that doing this properly requires a lot of well-designed code to handle

serialization, authentication, routing, error handling, and edge cases.

Knowing this, the authors of Autobahn decided to create a higher-level protocol, called

WAMP, for “WebSocket Application Messaging Protocol”2. It’s a documented open standard

registered by IANA[], and it can basically do all the heavy lifting for you, if you so desire.

The best thing is, you can use WAMP everywhere WebSocket is supported, which

means pretty much everywhere, for everything. No need to mangle with HTTP here,

MQTT there, and AMQP for the rest. One protocol to rule them all. And less hassle.

Luckily, the Python Autobahn library supports both raw WebSocket and WAMP,

using Twisted. This is what we are going to go through with this chapter. Hence before

we start, install the autobahn package, for example using pip:

pip install autobahn[twisted]

As usual, it’s recommended that you create a Python 3 virtualenv for this. The

Autobahn version we are going to use for this chapter – 17.10.1 – will, anyway, work

with Python 2.7 and 3.3+. It can even run on PyPy and Jython, and supports asyncio in

case you don’t want to stick only to Twisted. For this chapter, of course, we will stick to

Twisted, with Python 3 examples.

Since WebSocket is an interesting front-end technology for websites, we are going to

use a bit of JavaScript later. However, WebSocket doesn’t need the web to be useful, as is

a fine protocol to communicate between server processes on its own.

2 Not to be confused with the “Windows Apache MySQL PHP” stack that was popular during the
pre-AJAX web.

Chapter 8 push Data to Browsers anD MiCro-serviCes with weBsoCket

288

 Raw WebSocket, from Python to Python
The “hello world” from the network world, being an echo server, is what we are going to

make first. While Twisted now supports async / await constructs, we are going to stick

with coroutines to allow a broader range of Python 3 support.

Here is what a WebSocket echo server looks like, using autobahn:

import uuid

from autobahn.twisted.websocket import (

 WebSocketServerProtocol,

 WebSocketServerFactory

)

class EchoServerProtocol(WebSocketServerProtocol):

 def onConnect(self, request):

 """Called when a client is connecting to us"""

 # Print the IP address of the client this protocol instance is serving

 print(u"Client connecting:{0}".format(request.peer))

 def onOpen(self):

 """Called when the WebSocket connection has been opened"""

 print(u"WebSocket connection open.")

 def onMessage(self, payload, isBinary):

 """Called for each WebSocket message received from this client

 Params:

 payload (str|bytes): the content of the message

 isBinary (bool): whether the message contains (False) encoded text

 or non-textual data (True). Default is False.

 """

 # Simply prints any message we receive

 if isBinary:

 # This is a binary message and can contain pretty much anything.

 # Here we recreate the UUID from the bytes the client sent us.

 uid=uuid.UUID(bytes=payload)

Chapter 8 push Data to Browsers anD MiCro-serviCes with weBsoCket

289

 print(u"UUID received:{}".format(uid))

 else:

 # This is encoded text. Please note that it is NOT decoded for you,

 # isBinary is merely a courtesy flag manually set by the client

 # on each message. You must know the charset used (here utf8),

 # and call ".decode()" on the bytes object to get a string object.

 print(u"Text message received:{}".format(payload.decode('utf8')))

 # It's an echo server, so let's send back everything it receives

 self.sendMessage(payload, isBinary)

 def onClose(self, wasClean, code, reason):

 """Called when the WebSocket connection for this client closes

 Params:

 wasClean (bool): whether we were told the connection was going

 to be closed or if it just happened.

 code (int): any code among WebSocketClientProtocol.CLOSE_*

 reason (str): a message stating the reason the connection

 was closed, in plain English.

 """

 print(u"WebSocket connection closed:{0}".format(reason))

if __name__ == '__main__':

 from twisted.internet import reactor

 # The WebSocket protocol netloc is WS. So WebSocket URLs look exactly

 # like HTTP URLs, but replacing HTTP with WS.

 factory=WebSocketServerFactory(u"ws://127.0.0.1:9000")

 factory.protocol=EchoServerProtocol

 print(u"Listening on ws://127.0.0.1:9000")

 reactor.listenTCP(9000, factory)

 reactor.run()

Chapter 8 push Data to Browsers anD MiCro-serviCes with weBsoCket

290

Run it in a terminal by simply doing:

$ python echo_websocket_server.py

Listening on ws://127.0.0.1:9000

Assuming “echo_websocket_server.py” is the name you gave to the script, obviously.

Here is what a WebSocket echo client looks like, using autobahn:

coding: utf8

import uuid

from autobahn.twisted.util import sleep

from autobahn.twisted.websocket import (

 WebSocketClientProtocol,

 WebSocketClientFactory

)

from twisted.internet.defer import Deferred, inlineCallbacks

class EchoClientProtocol(WebSocketClientProtocol):

 def onConnect(self, response):

 # Print the server ip address we are connected to

 print(u"Server connected:{0}".format(response.peer))

 @inlineCallbacks

 def onOpen(self):

 print("WebSocket connection open.")

 # Send messages every second

 i=0

 while True:

 # Send a text message. You MUST encode it manually.

 self.sendMessage(u"© Hellø wørld{}!".format(i).encode('utf8'))

 # If you send non-text data, signal it by setting "isBinary". Here

 # we create a unique random ID, and send it as bytes.

 self.sendMessage(uuid.uuid4().bytes, isBinary=True)

 i+=1

 yield sleep(1)

Chapter 8 push Data to Browsers anD MiCro-serviCes with weBsoCket

291

 def onMessage(self, payload, isBinary):

 # Let's not convert the messages so you can see their raw form

 if isBinary:

 print(u"Binary message received:{!r}bytes".format(payload))

 else:

 print(u"Encoded text received:{!r}".format(payload))

 def onClose(self, wasClean, code, reason):

 print(u"WebSocket connection closed:{0}".format(reason))

if __name__ == '__main__':

 from twisted.internet import reactor

 factory=WebSocketClientFactory(u"ws://127.0.0.1:9000")

 factory.protocol=EchoClientProtocol

 reactor.connectTCP(u"127.0.0.1",9000, factory)

 reactor.run()

Run the code in a second terminal by doing:

python echo_websocket_client.py

It is important that you run the client after you started the server, as those simple

examples don’t implement fancy connection detection or reconnection.

Immediately after that, you will see something like this on the client console:

WebSocket connection open.

Encoded text received: b'\xc2\xa9 Hell\xc3\xb8 w\xc3\xb8rld 0 !'

Binary message received: b'\xecA\xd9u\xa3\xa1K\xc3\x95\xd5\xba~\x11ss\xa6' bytes

Encoded text received: b'\xc2\xa9 Hell\xc3\xb8 w\xc3\xb8rld 1 !'

Binary message received: b'\xb3NAv\xb3OOo\x97\xaf\xde\xeaD\xc8\x92F' bytes

Encoded text received: b'\xc2\xa9 Hell\xc3\xb8 w\xc3\xb8rld 2 !'

Binary message received: b'\xc7\xda\xb6h\xbd\xbaC\xe8\x84\x7f\xce:,\x15\

xc4$' bytes

Encoded text received: b'\xc2\xa9 Hell\xc3\xb8 w\xc3\xb8rld 3 !'

Binary message received: b'qw\x8c@\xd3\x18D\xb7\xb90;\xee9Y\x91z' bytes

Chapter 8 push Data to Browsers anD MiCro-serviCes with weBsoCket

292

And on the server console:

WebSocket connection open.

Text message received: © Hellø wørld 0 !

UUID received: d5b48566-4b20-4167-8c18-3c5b7199860b

Text message received: © Hellø wørld 1 !

UUID received: 3e1c0fe6-ba73-4cd4-b7ea-3288eab5d9f6

Text message received: © Hellø wørld 2 !

UUID received: 40c3678a-e5e4-4fce-9be8-6c354ded9cbc

Text message received: © Hellø wørld 3 !

UUID received: eda0c047-468b-464e-aa02-1242e99a1b57

This means the server and the client are exchanging messages.

Also please note that in the server example, we only answered messages.

Nonetheless, it’s allowed to call “self.sendMessage()” even when we have not received

any message, therefore pushing data to the client.

Let’s do exactly that, but with a web example.

 Raw WebSocket, Between Python and JavaScript
Pushing data to the browser is a classic use case for WebSocket. The limited number of

pages we have don’t not allow us to show off the traditional chat example. However, any

chat needs to signal how many people are online. Here is what a naive implementation

might look like.

First, let’s create a Python server.

from autobahn.twisted.websocket import (

 WebSocketServerProtocol,

 WebSocketServerFactory

)

class SignalingServerProtocol(WebSocketServerProtocol):

 connected_clients=[]

 def onOpen(self):

 # Every time we receive a WebSocket connection, we store the

 # reference to the connected client in a class attribute

Chapter 8 push Data to Browsers anD MiCro-serviCes with weBsoCket

293

 # shared among all Protocol instances. It’s a naive implementation

 # but perfect as a simple example.

 self.connected_clients.append(self)

 self.broadcast(str(len(self.connected_clients)))

 def broadcast(self, message):

 """ Send a message to all connected clients

 Params:

 message (str): the message to send

 """

 for client in self.connected_clients:

 client.sendMessage(message.encode('utf8'))

 def onClose(self, wasClean, code, reason):

 # If a client disconnect, we remove the reference from the class

 # attribute.

 self.connected_clients.remove(self)

 self.broadcast(str(len(self.connected_clients)))

if __name__ == '__main__':

 from twisted.internet import reactor

 factory = WebSocketServerFactory(u"ws://127.0.0.1:9000")

 factory.protocol = SignalingServerProtocol

 print(u"Listening on ws://127.0.0.1:9000")

 reactor.listenTCP(9000, factory)

 reactor.run()

Again, run it doing:

python signaling_websocket_server.py

Now for the HTML + JS part:

<!DOCTYPEhtml> <html><head></head><body>

<h1>Connected users: ...</h1>

Chapter 8 push Data to Browsers anD MiCro-serviCes with weBsoCket

294

// Short url to a CDN version of the autobahn.js lib

// Visit https://github.com/crossbario/autobahn-js

// for the real deal

<script src="http://goo.gl/1pfDD1"></script>

<script>

 /* If you are using an old browser, this part of the code may look

 different. This will work starting from IE11

 and will require vendor prefixes or shims in other cases.*/

 var sock = new WebSocket("ws://127.0.0.1:9000");

 /* Like with the Python version, you can then hook on sock.onopen() or

 sock.onclose() if you wish. But for this example with only need

 to react to receiving messages: */

 sock.onmessage = function(e){

 var span = document.getElementById('count');

 span.innerHTML=e.data;

 }

</script>

</body></html>

All you have to do is to open the file with this HTML code in your web browser.

If you open this file in your browser, you will get a page stating “Connected users: x,”

with x adjusting every time you open a new tab with the same page, or close one.

You’ll notice that even browsers with strict CORS policy, such as Google Chrome,

are not preventing the connection from the “file://” protocol like they would do with

an AJAX request. WebSocket works in any context, with remote or local domain names,

even if the file is not served from a web server.

 More Powerful WebSocket with WAMP
WebSocket is a simple yet powerful tool; however, it’s still quite low level. Should you

create a full-blown system using WebSocket, you’ll eventually end up coding:

• A way to pair up two messages, to mimic the HTTP request

/ response cycle.

Chapter 8 push Data to Browsers anD MiCro-serviCes with weBsoCket

295

• Some swappable back end for serialization, with JSON or msgpack,

or else.

• A convention to manage errors, and a workflow to debug them.

• Boilerplate to broadcast messages, including only to a subset of

clients.

• Authentication, and something to bridge your session ID from HTTP

cookies / token to WebSocket.

• A permission system so that all clients can’t do or see everything.

And you would have rewritten a nonstandard, less documented, and untested

alternative to WAMP.

WAMP is an answer to all of this, in a clean and proven way. It runs on top of

WebSocket, so it shares all its characteristics and inherits from all its benefits. It also adds

a lot of goodies:

• You can define functions and declare them public on the network.

Then any client can call those functions from anywhere (yes,

remotely) and get the result. It’s the RPC part of WAMP, and you

can see it as a replacement for AJAX requests on steroids, or a much

easier CORBA/XMLRPC/SOAP.

• You can define events. Some code can say “hey, I’m interested in

that event” from anywhere (again, yes, remotely). Now another code

anywhere can then say “hey, it happened,” and all interested clients

are notified. It’s the PUB/SUB part of WAMP, and you can use it like

an even easier RabbitMQ.

• All errors are automatically propagated through the network. So if

your client X call a function on client Y that fails, you will get the error

back in client X.

• Identification and Authentication are part of the specs and can blend

in with your own HTTP session mechanism.

• Everything is namespaced. And you can filter on them, use wildcards,

set permissions, and even add load balancing to the mix.

Chapter 8 push Data to Browsers anD MiCro-serviCes with weBsoCket

296

Now we won’t see most of that in this short chapter, but at least I will try to give you a

taste of what RPC and PUB/SUB can do for you.

WAMP is a routed protocol, which means that every time you make a WAMP call,

it does not go directly to the code that will handle it. Instead, it goes through a WAMP

compatible router, which then ensures the distribution of the messages back and forth to

the proper pieces of code.

In that sense, WAMP is not a client-server architecture: any code that makes a WAMP

call is a client. So, all your code, including web pages, processes on your servers, external

service, anything that speaks WAMP, will be clients – or the WAMP router – talking to

each other.

This makes the WAMP router a single point of failure, and a potential bottleneck for

performance. Luckily the reference implementation, Crossbar.io, is a robust and fast

Twisted powered software. It also means you can install it with a simple pip command,

and to run our next example, you need to do so:

pip install crossbar

If you are using Windows, you may need the win32api dependency. In that case,

install it as well before starting.3

The command crossbar should now be available to you4:

$ crossbar version

 __ __ __ __ __ __ __ __

 / `|__)/ \/__`/__`|__) /\ |__) |/ \

 __,| __/.__/.__/|__)/~~\| \.|__/

 Crossbar.io : 17.11.1 (Crossbar.io COMMUNITY)

 Autobahn : 17.10.1 (with JSON, MessagePack, CBOR, UBJSON)

 Twisted : 17.9.0-EPollReactor

 LMDB : 0.93/lmdb-0.9.18

 Python : 3.6.2/CPython

 OS : Linux-4.4.0-98-generic-x86_64-with-Ubuntu-16.04-xenial

Machine : x86_64

Release key : RWT/n6IQ4dKesCP8YwwJiWH30ST8eq5D21ih4EFbJZazzsqEX6CmaT3k

3 Binaries are listed on the project page: https://github.com/mhammond/pywin32.
4 If you can’t or don’t want to install a crossbar instance, you can find one for demo purpose
listed on https://crossbar.io/docs/Demo-Instance/. In that case, you can use it instead of
“ws://127.0.0.1:8080/ws”. But you’ll still need to pip install pyopenssl service_identity to use it.

Chapter 8 push Data to Browsers anD MiCro-serviCes with weBsoCket

https://github.com/mhammond/pywin32.
https://crossbar.io/docs/Demo-Instance

297

Crossbar.io wears many hats and can do so many things, so a configuration file is

needed to tell what you want to do. Thankfully, it can generate a basic one automatically:

crossbar init

This will create a web and .crossbar directories, as well as a README file.

You can ignore, or even delete web and README. What we are interested in is the

.crossbar/config.json that has been created for us. You don’t need to modify it to run

this example, as by default it just “allows everything.” If you open it, you’ll find a great

number of settings that, without context, will be hard to make sense of. To understand

the basics of WAMP though, you don’t need to dig that deep, so we will just carry on.

Next on our list is just to run the crossbar router. You need to run it on the same

directory that contains the .crossbar directory:

$ crossbar start

2017-11-23T19:06:43+0200 [Controller 11424] New node key pair generated!

2017-11-23T19:06:43+0200 [Controller 11424] File permissions on node public key fixed!

2017-11-23T19:06:43+0200 [Controller 11424] File permissions on node private key fixed!

2017-11-23T19:06:43+0200 [Controller 11424] __ __ __ __ __ __ __ __

2017-11-23T19:06:43+0200 [Controller 11424] / `|__)/ \/__`/__`|__) /\ |__) |/ \

2017-11-23T19:06:43+0200 [Controller 11424] __,| __/.__/.__/|__)/~~\| \.|__/

2017-11-23T19:06:43+0200 [Controller 11424]

2017-11-23T19:06:43+0200 [Controller 11424] Version: Crossbar.io COMMUNITY 17.11.1

2017-11-23T19:06:43+0200 [Controller 11424] Public Key:

81da0aa76f36d4de2abcd1ce5b238d00a

...

You can picture Crossbar.io as Apache or Nginx: it’s a piece of software that you

configure and then run, and the rest of your code revolves around it. Crossbar.io is

actually perfectly capable of being a static web server, a WSGI server, and even a

process manager. But we are just going to use it for its WAMP capabilities. And for

that, you don’t need to do anything else. Let it run in the background, and focus on

your client’s code.

Chapter 8 push Data to Browsers anD MiCro-serviCes with weBsoCket

298

Now the beauty of WAMP is that the clients don’t need to know each other. They just

need to know about the router. By default, it listens on localhost:8080 and defines a

“realm” (a group of clients that can see each other) named realm1. So, all we have to do

to use the router is connect to it using that information.

To illustrate the fact that WAMP clients don’t need to know each other, or that you

are not in a client/server architecture anymore, I am going to use two web pages in our

first example.

One page will have an input field and a “sum” button. The other one is another input

field, and it declares a sum() function as available for remote calling. When you click on

the “sum” button, it will send the value of the first input to the second page, which will

call sum() on both the received value and the local one, then send back the result.

Without writing any server-side code

First page, first client:

<!DOCTYPEhtml> <html><head></head><body>

 <form name="sumForm"><input type="text"name="number"value="3"></form>

 <script src="http://goo.gl/1pfDD1"></script>

 <script>

 // Connection to the WAMP router

 var connection = new autobahn.Connection({

 url:"ws://127.0.0.1:8080/ws",

 realm:"realm1"

 });

 // Callback for when the connection is established

 connection.onopen = function (session,details){

 // We register a function under the name "sum", so that any WAMP

 // client on "realm1" can call it remotly. This is RPC.

 session.register('sum', function(a){

 // It's just a regular function, really. But the parameters and

 // return value must be serializable. By default to JSON.

 return parseInt(a) + parseInt(document.sumForm.number.value);

 });

 }

Chapter 8 push Data to Browsers anD MiCro-serviCes with weBsoCket

299

 // Start the connection

 connection.open();

 </script>

</body></html>

If you open a file with this code in a web browser, you will notice that the Crossbar.io

console logs something about a new connected client:

2017-11-23T20:11:41+0200 [Router 13613] session "5770155719510781" joined

realm "realm1"

Now a second page, and another JS client:

<!DOCTYPEhtml> <html><head></head><body>

<form name="sumForm"method="post" >

 <input type="text"name="number"value="5">

 <button name="sumButton">Sum!</button>

 ...

</form>

<script src="http://goo.gl/1pfDD1"></script>

<script>

 var connection = new autobahn.Connection({

 url:"ws://127.0.0.1:8080/ws",

 realm:"realm1"

 });

 connection.onopen = function (session,details){

 // When we submit the form (e.g: click on the button), call "sum()"

 // We don't need to know where "sum()" is declared or how it will run,

 // just that something exists under this name.

 document.sumForm.addEventListener('submit', function(e){

 e.preventDefault();

 // The first parameter is the namespace of the function. The second is

 // the arguments passed to the function. This returns a promise which

 // we use to set the value of our span when the results comes back

 session.call('sum',[document.sumForm.number.value]).then(

Chapter 8 push Data to Browsers anD MiCro-serviCes with weBsoCket

300

 function(result){

 document.getElementById('sumResult').innerHTML = result;

 });

 })

 }

 connection.open();

</script>

</body></html>

Again, the router reacts.

You can now press the “Sum!” button from the second page, which will happily call

the code from the second page and get the result almost immediately. This, of course,

works from and to Python as well. Obviously, this example is a basic one and does not

take into consideration robustness or security. But I hope you get the general picture.

You can use this mechanism, routed RPC, to define and call code anywhere on any

browser or any process on any server that is connected to the router.

Now RPC alone is useful, but its little sibling, PUB/SUB, is another nice tool on its

own. To demonstrate it, I’ll add a Python client (which would actually be on the Crossbar

server).

This Python client surveys a directory, and every second, scans all files in it. For each

file extension it finds in the directory, it sends an event with a list of all matching files.

Useless? Maybe. Very cool? Certainly!

import os

from twisted.internet.defer import inlineCallbacks

from twisted.logger import Logger

from autobahn.twisted.util import sleep

from autobahn.twisted.wamp import ApplicationSession

from autobahn.twisted.wamp import ApplicationRunner

class DirectoryLister(ApplicationSession):

 log = Logger()

 @inlineCallbacks

Chapter 8 push Data to Browsers anD MiCro-serviCes with weBsoCket

301

 def onJoin(self, details):

 while True:

 # List files and group them by extension

 files = {}

 for f in os.listdir('.'):

 file, ext = os.path.splitext(f)

 if ext.strip():

 files.setdefault(ext, []).append(f)

 # Send one event named "filewithext.xxx" for each file extension

 # with "xxx" being the extension. We attach the list of files

 # to the events so that every clients interested in the event

 # can get the file list.

 # This is the "publish" part of "PUB/SUB".

 for ext, names in files.items():

 # Note that there is no need to declare the event before

 # using it. You can publish events as you go.

 yield self.publish('filewithext' +ext , names)

 yield sleep(1)

The ApplicationRunner will take care starting everything for us.

if __name__ == '__main__':

 runner=ApplicationRunner(url=u"ws://localhost:8080/ws", realm=u"realm1")

 print(u"Connecting to ws://localhost:8080/ws")

 runner.run(DirectoryLister)

Run the code as before with:

python directory_lister.py

It will start listing everything in the current directory and publish events about the

files it finds.

Now we need a client to say it is interested in those events. We can create a Python

one or a JS one. Since everything is a client in WAMP, let’s create a JS one to see clients

from both languages.

Chapter 8 push Data to Browsers anD MiCro-serviCes with weBsoCket

302

<!DOCTYPEhtml> <html><head></head><body>

 <div id="files">...</div>

 <script src="http://goo.gl/1pfDD1"></script>

 <script>

 // Connection to the WAMP router

 var connection = new autobahn.Connection({

 url:"ws://127.0.0.1:8080/ws",

 realm:"realm1"

 });

 connection.onopen = function (session,details){

 // Populate the HTML page with a list of files

 var div=document.getElementById('files');

 div.innerHTML="";

 function listFile(params,meta,event){

 var ul=document.getElementById(event.topic);

 if (!ul){

 div.innerHTML += "<ul id='" + event.topic + "'>";

 ul=document.getElementById(event.topic);

 }

 ul.innerHTML="";

 params[0].forEach(function(f){

 ul.innerHTML += "" + f + "";

 })

 }

 // We tell the router we are interested in events with this name.

 // This is the "subscribe" part of "PUB/SUB".

 session.subscribe('filewithext.py',listFile);

 // Any client, like this Web page, can subscribe to an arbitrary number

 // of events. So here we say we are interested in events about files

 // with the ".py" extension and the ".txt" extension.

 session.subscribe('filewithext.txt',listFile);

 }

Chapter 8 push Data to Browsers anD MiCro-serviCes with weBsoCket

303

 connection.open();

 </script>

</body></html>

In my directory, I then have at least a file with a .py extension and a file with an .html

extension: my two clients. For the sake of the demonstration, I’ll create an empty text

file called empty.txt next to them. This way we should at least have three events every

second.

If you open this as a web page, you’ll notice it will start listing the files like:

• empty.txt

• directory_lister.py

If you add or remove files, you’ll see that change in real time. If you create a new JS

client with a different set of subscriptions, it will display a different file listing.

 Summary
As you would expect, we only scratched the surface of what you can do with WebSocket,

Twisted, Autobahn, and WAMP.

Try to edit the given examples to make them do more, or combine them, to get a

sense of what’s going on. To feel more comfortable with this code, you should add some

logging to it.

For the WebSocket examples, in the if __name__ == "__main__" section, add:

import sys

from twisted.python import log

log.startLogging(sys.stdout)

...

For the WAMP examples, in the body of the Application session class:

from twisted.logger import Logger

...

class TheAppClass(ApplicationSession):

 log=Logger()

 ...

Chapter 8 push Data to Browsers anD MiCro-serviCes with weBsoCket

304

If you want to explore further, here are some ideas:

• Convert the example to use async / await constructs for a more

modern experience.

• Try other forms of messages such as streaming.

• Give more reliability to your code by leveraging auto-connect or load

balancing (Twisted / WAMP only).

• Write a client in yet another language: Java, C#, PHP. You have

WebSocket and WAMP clients for a lot of popular platforms.

• Look for security features: SSL, Authentication, Permissions. . . They

are hard to set up, but quite solid.

• Learn more about Crossbar.io (which is also Twisted): process

management, WSGI server, static file handling. You will be surprised

by all the things it can do.

Chapter 8 push Data to Browsers anD MiCro-serviCes with weBsoCket

305
© Mark Williams, Cory Benfield, Brian Warner, Moshe Zadka, Dustin Mitchell, Kevin Samuel, Pierre Tardy 2019
M. Williams et al., Expert Twisted, https://doi.org/10.1007/978-1-4842-3742-7_9

CHAPTER 9

Applications with asyncio
and Twisted
The asyncio package, included with Python implementations since version 3.4,

standardizes a suite of APIs for asynchronous, event-driven network programs. In

addition to shipping its own concurrency and networking primitives, asyncio also

specifies an event loop interface that provides a common denominator for asynchronous

libraries and frameworks. This shared substrate allows applications to use Twisted and

asyncio together in the same process.

In this chapter, we’ll learn how to compose Twisted’s APIs with asyncio’s by writing

a simple HTTP proxy with treq, a high-level HTTP client built on top of Twisted; and

aiohttp, an HTTP client and server library built on top of asyncio.

asyncio and its ecosystem are still evolving. New APIs have been developed

and idioms adopted as more people use asyncio in more situations. As a result, our

HTTP proxy is a case study and not a recipe for integrating Twisted and asyncio. We’ll

begin with an introduction to the fundamental and stable concepts that enable cross-

compatibility between the two that lays out a path for integrating future iterations of

asyncio and its libraries with Twisted.

 Core Concepts
asyncio and Twisted share many design and implementation details, partially because

Twisted’s community participated in asyncio’s development. PEP 3156, which

describes asyncio, drew from PEP 3153, which in turn was written by a member of

Twisted’s development team. Consequently, asyncio borrows Twisted’s protocols,

transports, producers, and consumers and presents a familiar environment to Twisted

programmers.

306

This common ancestry, however, is largely irrelevant to the process of integrating

libraries that use asyncio with those that use Twisted. Instead, two concepts necessary

to any event-driven framework form the interface at which they meet: promises that

represent values before they’re available and event loops that schedule I/O.

 Promises
By now you’re familiar with Twisted’s Deferreds, which allow developers to associate

business logic and error handling with values before they become available. Deferreds

are known generically in computer science literature and other communities as

promises. As Chapter 2 explains, promises ease the development of event-driven

programs by externalizing the composition of callbacks without special support from the

host language.

asyncio’s foundational promise implementation is its asyncio.Future class.

Unlike Deferreds, Futures do not run their callbacks synchronously; instead, Future.

add_done_callback schedules a callback to be run in the next iteration of the event loop.

Compare the behavior of Deferreds and Futures in the following example when run on

Python 3.4 or later:

>>> from twisted.defer import Deferred

>>> d = Deferred()

>>> d.addCallback(print)

<Deferred at 0x1234567890>

>>> d.callback("value")

>>> value

>>> from asyncio import Future

>>> f.add_done_callback(print)

>>> f.set_result("value")

>>>

Deferred.addCallback and Future.add_done_callback both arrange for a function

to be run against the value represented by the respective promise abstraction when that

value becomes available. Deferred.callback, however, immediately runs all associated

callbacks, while Future.set_result makes no progress until an event loop begins its

next iteration.

Chapter 9 appliCations with asynCio and twisted

307

On the one hand, this eliminates the possibility for re-entrancy bugs that exist with

Deferred, because all asyncio code can assume that adding a callback will not result

in its being run immediately, even if the Future already has a value. On the other hand,

all asyncio code must be run with an event loop, which complicates both its use and its

design. For example: With what event loop did the Future we named f above schedule

its print callback? We have to look at asyncio’s event loop system and how it differs

from Twisted’s reactor to answer this question.

 Event Loops
As explained in Chapter 1, Twisted calls its event loop a reactor. In Chapter 3, we used

twisted.internet.task.react and Twisted application framework to manage the

creation and provisioning of the reactor for our feed aggregation application. Both of

these ways to get a reactor are preferred to importing it in application code as twisted.

internet.reactor. That’s because the selection of a reactor depends on the context

in which it’s used; different platforms provide their own I/O multiplexing primitives,

so that Twisted applications that run on macOS should use kqueue while those run on

Linux should use epoll; tests might prefer a stub reactor implementation to minimize

the impact on shared operating resources; and, as we’ll see, applications might want

to combine Twisted with other frameworks by running it on top of another event loop.

Code that imports the reactor instead of accepting it as an argument to callables cannot

itself be imported before reactor selection, which significantly complicates its use. For

this reason, Twisted introduced APIs like react to facilitate parameterizing applications

on a reactor.

While Twisted had to develop new APIs to manage reactor selection and installation,

from the beginning asyncio included event loop policies that serve this purpose. asyncio

includes a default policy that developers can replace with asyncio.set_event_loop_

policy and retrieve with asyncio.get_event_loop_policy.

The default policy ties event loops to threads; asyncio.get_event_loop returns the

loop for the current thread, creating it if necessary, while asyncio.set_event_loop sets it.

This is how our example Future associated itself with an event loop. asyncio.Future

initializer accepts an event loop via the keyword-only loop argument; if this remains None,

the Future retrieves the default policy’s current loop with asyncio.get_event_loop.

Chapter 9 appliCations with asynCio and twisted

308

Historically asyncio expected its users to explicitly pass the current event loop where

it was needed, with the result that a bug in get_event_loop caused unexpected behavior

when the function was called anywhere below module level. As of Python 3.5.3, however,

get_event_loop was made to reliably return the running event loop when run inside

callbacks. More recent asyncio code favors get_event_loop over explicit references

passed down through the call stack or set as instance variables.

In addition to their pervasiveness, asyncio’s event loops differ from Twisted’s reactors

in terms of functionality. Reactors, for example, can run system event triggers at defined

points in their life cycle. Twisted often manages resources that must be allocated before

any application code is run and explicitly released before the process shuts down with

IReactorCore.addSystemEventTrigger; for example, the lifetime of thread pool used by

Twisted’s default DNS resolver is tied to the lifetime of the reactor via a shutdown event

trigger. At the time of this writing, asyncio’s event loops do not have an equivalent API.

 Guidelines
Because of the differences between asyncio.Futures and Twisted’s Deferreds and

between the two libraries’ event loops, it’s necessary to follow specific guidelines when

combining the two.

 1. Always run the Twisted reactor on top of an asyncio event loop.

 2. When calling asyncio code from Twisted, convert Futures to

Deferreds with Deferred.fromFuture. Wrap coroutines in

asyncio.Tasks and convert these to Deferreds like Futures.

 3. When calling Twisted from asyncio, convert Deferreds to Futures

with Deferred.asFuture. Pass the active asyncio event loop as

this method’s argument.

The first guideline follows from the fact that IReactorCore’s API is larger than that of

asyncio’s event loops. The second and third, however, require familiarity with asyncio’s

coroutines, Futures, and Tasks and the differences between them.

We saw above that Futures function equivalently to Deferreds. We also learned

in Chapter 2 that coroutines – functions and methods defined with async def – are a

language feature; they are not implicitly tied to asyncio or Twisted or any other library.

Recall that a coroutine may await a future-like object, and that Deferreds are future-like

objects, so a coroutine may await a Deferred.

Chapter 9 appliCations with asynCio and twisted

309

Unsurprisingly, asyncio.Futures are also future-like objects, so coroutines can

await them, too. Idiomatic asyncio code rarely explicitly creates Futures to await,

however, preferring to directly await other coroutines. Consider the following example:

>>> import asyncio

>>> from twisted.internet import defer, task, reactor

>>> aiosleep=asyncio.sleep(1.0, loop=asyncio.get_event_loop())

>>> txsleep=task.deferLater(reactor,1.0, lambda:None)

>>> asyncio.iscoroutine(aiosleep)

True

>>> isinstance(txsleep, defer.Deferred)

True

aiosleep is an object that will pause an asyncio coroutine for at least one second,

while txsleep does the same for Twisted code that uses Deferreds. While txsleep is a

Deferred like any other, aiosleep is in fact a coroutine suitable for awaiting by other

coroutines.

aiosleep, like all coroutines, must be awaited to make any progress. This makes

them ill-suited for “fire and forget”-type background operations that should run

without blocking their caller while they resolve to a value. This differs from the txsleep

Deferred, which will fire after approximately 1 second regardless of whether or not it has

any callbacks or errbacks.

asyncio provides a solution in the form of Tasks. A Task wraps a coroutine in a

Future and awaits that Future on behalf of its creator. Tasks allow asyncio.gather to

simultaenously await multiple coroutines. The following code, for example, will run only

for 4 seconds instead of 6:

import asyncio

sleeps = asyncio.gather(asyncio.sleep(2), asyncio.sleep(4))

asyncio.get_event_loop().run_until_complete(sleeps)

Twisted’s Deferreds can be linked with asyncio’s Futures with Deferred.fromFuture

and asFuture. Using asyncios Task creation APIs, like asyncio.AbstractEventLoop.

create_task and asyncio.ensure_future, enables coroutines that await asyncio

objects to interoperate with Twisted through Deferred’s Future-aware interfaces.

Chapter 9 appliCations with asynCio and twisted

310

Exactly how asyncio and Twisted can be made to cooperate is best explained by an

example. The following code demonstrates all three of our interoperability guidelines:

import asyncio

from twisted.internet import asyncioreactor

loop = asyncio.get_event_loop()

asyncioreactor.install(loop)

from twisted.internet import defer, task

originalFuture = asyncio.Future(loop=loop)

originalDeferred = defer.Deferred()

originalCoroutine = asyncio.sleep(3.0)

deferredFromFuture = defer.Deferred.fromFuture(originalFuture)

deferredFromFuture.addCallback(print,"from deferredFromFuture")

deferredFromCoroutine = defer.Deferred.fromFuture(

 loop.create_task(originalCoroutine))

deferredFromCoroutine.addCallback(print,"from deferredFromCoroutine")

futureFromDeferred = originalDeferred.asFuture(loop)

futureFromDeferred.add_done_callback(

 lambda result: print(result,"from futureFromDeferred"))

@task.react

def main(reactor):

 reactor.callLater(1.0, originalFuture.set_result, "1")

 reactor.callLater(2.0, originalDeferred.callback, "2")

 return deferredFromCoroutine

We begin by setting up Twisted’s asyncio reactor with asyncioreactor.install.

This function accepts an asyncio event loop as its argument to which it will bind the

Twisted reactor. As explained above, asyncio.get_event_loop requests that the global

(and in this case default) event loop policy create and cache a new loop retrievable by

later get_event_loop calls.

originalFuture, originalCoroutine, and originalDeferred represent the three

kinds of objects we’ll convert to and from Deferreds: a Future, a coroutine that awaits

asyncio code, and a Deferred.

Chapter 9 appliCations with asynCio and twisted

311

Next, we link originalFuture with a Deferred via the Deferred.fromFuture class

method and add a print invocation as a callback to the new Deferred. Remember that

the first argument to a callback is the Deferred’s result, while additional arguments are

any passed to addCallback.

We have to wrap originalCoroutine in a Task with create_task before

passing it to Deferred.fromFuture; after that, however, we proceed as we did with

deferredFromFuture.

As we saw above, Futures, unlike Deferreds, only make progress when an

asyncio event loop is running, and asyncio can have multiple event loops at any

time. Associating originalDeferred with a Future via asFuture consequently

requires an explicit reference to an event loop. After providing this, we arrange

for an informative print callback to run when originalDeferred, and thus

futureFromDeferred, resolves to a value. This is complicated by Future.add_done_

callback, which only accepts single-argument callbacks. We use a lambda to print

both the result and an informative message.

None of these objects will make any progress without an event loop, so we use task.

react to run the reactor for us. We schedule originalFuture to resolve to "1" after at

least one second and originalDeferred to resolve to "2" after at least two. Finally, we

terminate the reactor when deferredFromCoroutine, and thus originalCoroutine,

completes.

Running this program should produce the following output:

1 from deferredFromFuture

<Future finished result='2'> from futureFromDeferred

None from deferredFromCoroutine

The first line corresponds to the print callback we added to deferredFromFuture,

the second to futureFromDeferred’s callback (note that Future callbacks receive their

Future as their argument), and the third to deferredFromCoroutine’s callback.

This example illustrates the three guidelines necessary to integrating asyncio

and Twisted in an abstract way that’s hard to apply to real-world problems. As we

explained, however, it’s not possible to give more specific advice that’s still generally

applicable. But since we now know the players, we can see how they perform together

with a case study.

Chapter 9 appliCations with asynCio and twisted

312

 Case Study: A Proxy with aiohttp and treq
aiohttp (https://aiohttp.readthedocs.io) is a mature HTTP client and server library

for asyncio that runs on Python 3.4 and later.

treq, as we saw in Chapter 3, is a high-level HTTP client library built on top of Twisted.

We can use these together to build a simple HTTP proxy. Clients configured to use

an HTTP proxy send all requests to it; the proxy then relays these requests to the desired

target and sends its response back to the client. We’ll use the server portion of aiohttp to

talk to clients and treq to retrieve pages on their behalf.

HTTP proxies are used to filter and cache content and to mediate POSTs, PUTs, and

all other HTTP methods. We’ll consider ours a success when it just relays GET requests

back and forth to clients!

Let’s begin by running the simplest aiohttp server possible under Twisted. Create a

new virtual environment with Python 3.4 or later, install aiohttp, Twisted, and treq, and

then run the following program:

import asyncio

from twisted.internet import asyncioreactor

asyncioreactor.install(asyncio.get_event_loop())

from aiohttp import web

from twisted.internet import defer, task

app = web.Application()

async def handle(request):

 return web.Response(text=str(request.url))

app.router.add_get('/{path:.*}', handle)

async def serve():

 runner = web.AppRunner(app)

 await runner.setup()

 site = web.TCPSite(runner, 'localhost',8000)

 await site.start()

def asDeferred(f):

 return defer.Deferred.fromFuture(asyncio.ensure_future(f))

Chapter 9 appliCations with asynCio and twisted

https://aiohttp.readthedocs.io

313

@task.react

@defer.inlineCallbacks

def main(reactor):

 yield asDeferred(serve())

 yield defer.Deferred()

We begin, as we did in our previous example, by installing the asyncio Twisted

reactor and wrapping it around a cached event loop.

Next, we import aiohttp’s web module and construct an Application, the

fundamental web application abstraction provided by the library. We add a regular-

expression route to it that matches all URLs (.*) and set the handle coroutine as its

handler. This coroutine accepts a aiohttp.web.Request instance representing the

client’s request as its argument and returns its URL as a response.

The serve coroutine contructs the AppRunner and Site objects necessary to set up

our application and bind it to a network port.

Our application, its handler, and the serve coroutine are drawn directly from aiohttp’s

documentation, and would remain exactly the same if we weren’t using Twisted at all.

The interoperation that we started with our installation of the asyncio reactor is realized

in the main function run by task.react. This, as usual, is a Deferred, though this time

it is one that uses inlineCallbacks. We could have written this as a async def-style

coroutine and converted it to a Deferred with ensureDeferred; we’ve chosen instead to

use inlineCallbacks to show how different styles can be used interchangeably.

The asDeferred helper function accepts either a coroutine or a Future. It then uses

asyncio.ensure_future to ensure that whatever it received becomes a Future; if it’s a

coroutine, this evaluates to a Task, and if it’s a Future, it’s evaluated to the same object.

The result can then be passed to Deferred.fromFuture.

We use this to wrap the serve coroutine in a Deferred, and then block the reactor

forever by waiting on a Deferred that will never fire.

Running this program will run our simple URL echoing service under Twisted.

Visiting http://localhost:8000 in a browser will return the URL you used to access it;

adding path elements, like http://localhost:8000/a/b/c, will result in a different URL.

Now that we have the basics down, we can implement our proxy:

import asyncio

from twisted.internet import asyncioreactor

asyncioreactor.install(asyncio.get_event_loop())

Chapter 9 appliCations with asynCio and twisted

314

from aiohttp import web

from twisted.internet import defer, task

app = web.Application()

async def handle(request):

 url=str(request.url)

 headers = Headers({k: request.headers.getall(k)

 for k in request.headers})

 proxyResponse = await asFuture(treq.get(url, headers=headers))

 print("URL:", url,"code:", proxyResponse.code)

 response = web.StreamResponse(status=proxyResponse.code)

 for key, values in proxyResponse.headers.getAllRawHeaders():

 for value in values:

 response.headers.add(key.decode(), value.decode())

 await response.prepare(request)

 body = await asFuture(proxyResponse.content())

 await response.write(body)

 await response.write_eof()

 return response

app.router.add_get('/{path:.*}', handle)

async def serve():

 runner = web.AppRunner(app)

 await runner.setup()

 site = web.TCPSite(runner, 'localhost',8000)

 await site.start()

def asFuture(d):

 return d.asFuture(asyncio.get_event_loop())

def asDeferred(f):

 return defer.Deferred.fromFuture(asyncio.ensure_future(f))

@task.react @defer.inlineCallbacks

def main(reactor):

 yield asDeferred(serve())

 yield defer.Deferred()

Chapter 9 appliCations with asynCio and twisted

315

The code above differs from our miminal aiohttp implementation in two places: the

handle function and a new asFuture helper.

The handle function begins by extracting the target URL from the client’s request.

Recall that clients of HTTP proxies specify their target by providing a full URL in their

request line; aiohttp makes a parsed representation of this available as request.url.

Next, we recover all the client’s header values from the aiohttp request and convert

them to a twisted.web.http_headers.Headers instance so that they can be included

in the outbound treq request. HTTP headers can be multi-valued, and aiohttp handles

this with a case-insensitive multi-dictionary; request.headers.getall(key) returns a

list of all the values for that header key in the request. The resulting dictionary maps keys

to lists of their values, which matches Twisted’s Headers initializer. Note that aiohttp

decodes headers into text, while Twisted’s Headers work in terms of bytes; fortunately,

Twisted will automatically encode textual header keys and values to bytes automatically.

Once we’ve prepared a replica of the client’s headers suitable for use with treq, we

issue our GET request. At this point, the asyncio event loop is scheduling our handle

coroutine, so whatever we await must be asyncio compatible. treq, however, works in

terms of Deferreds, which can be awaited but fail with an error when asyncio attempts

to schedule them. The solution is to wrap the Deferred in a Future associated with the

same event loop that’s scheduled our handler.

This is exactly what the asFuture helper does. Because we bound our reactor to a

global event loop with get_event_loop at the beginning of our program, all subsequent

calls to get_event_loop will return the same loop. This includes calls inside aiohttp and

calls inside our own code, which is how asFuture binds the enclosing Future with the

correct event loop.

As we saw in our example, asyncio awaits Futures that wrap Deferreds exactly as

Twisted would await the Deferreds themselves. Consequently, our handler resumes and

assigns the treq response object to proxyResponse. At this point, we print out a message

detailing the URL retrieved and its status code.

Next, we construct an aiohttp.web.StreamResponse and provide it with the same

status code we received from the target URL so that the client will see the same code

the proxy did. We also reverse the header translation, copying Twisted’s Header keys

and values into our StreamResponse’s headers. twisted.web.http_headers.Headers.

getAllRawHeaders represents header keys and values as bytes, so we must decode them

for StreamResponse’s sake.

Chapter 9 appliCations with asynCio and twisted

316

We then send the response’s envelope with StreamResponse.prepare back to

the client. All that’s left is to receive and send back the body, which we do with treq’s

Response’s content method; this is again a Deferred, so we have to wrap it in asFuture

for asyncio’s sake.

Here an excerpt of what our program outputs when we configure a web browser to

use it as an HTTP proxy and visit http://twistedmatrix.com/:

URL: http://twistedmatrix.com/ code: 200

URL: http://twistedmatrix.com/trac/chrome/common/css/bootstrap.min.css code:200

URL: http://twistedmatrix.com/trac/chrome/common/css/trac.css code: 200

...

 Summary
In this chapter we learned how to composed Twisted and asyncio in a single

application. Because the two share the core concepts of promises and event loops, it’s

possible to run Twisted on top of asyncio.

Using asyncio and Twisted together requires following three guidelines: Always run

the reactor on top of asyncio’s event loop; convert Futures to Deferreds with Deferred.

asFuture when calling asyncio from Twisted; and vice versa with Deferred.fromFuture

when calling Twisted from asyncio.

Because asyncio is still evolving, it’s not possible to provide more specific

integration guidelines. Instead, we applied what we learned to a case study: a simple

GET-only HTTP proxy with aiohttp and treq. While minimal, our proxy resembled a

real application closely enough that we learned how to put those guidelines to work and

bridged the gap between two of Python’s asynchronous programming communities.

Chapter 9 appliCations with asynCio and twisted

http://twistedmatrix.com/

317
© Mark Williams, Cory Benfield, Brian Warner, Moshe Zadka, Dustin Mitchell, Kevin Samuel, Pierre Tardy 2019
M. Williams et al., Expert Twisted, https://doi.org/10.1007/978-1-4842-3742-7_10

CHAPTER 10

Buildbot and Twisted
Buildbot is a framework for automating software build, test, and release processes. It

is a popular choice for organizations and projects with complex and unusual build,

test, and release requirements. The framework is heavily customizable and ships with

“batteries included,” including support for lots of version-control systems, build and

test frameworks, and status displays. Since it is written in Python, Buildbot can easily

be extended with purpose-specific implementations of key components. We compare

Buildbot to Django: it provides the basis on which to build complex, customized

applications, but it is not as simple to set up or use as tools like Joomla or WordPress.

 History of Buildbot
Brian Warner wrote the predecessor to Buildbot in 2000–2001, when he was working

at a router company. He was tired of hassling his coworkers each morning when they’d

checked code into CVS that worked on their Solaris boxes but not on his Linux machine.

It was initially closed source, and used asyncore and pickle to implement an RPC

system in which the workers drove the whole process. The central buildmaster only

accepted status information from the workers to render it on a web-based waterfall

display. It was modeled closely on Mozilla’s “Tinderbox.”

In the process of looking for examples of asyncore, Brian discovered Twisted, and

found that it was already more advanced and growing quickly. After leaving the router

company in early 2002, he built a clean re-implementation of the build system, in part as

a way to learn Twisted, and the result became Buildbot.

Until about 2009, Buildbot had no database back end. Before that time, databases

were fairly hard to deploy, and storing data directly on disk was not uncommon and

seemed an efficient solution. Everything was smaller scale: disks were fast, networks

were slow, and a “big” CI application only ran tens of parallel builds.

318

Starting in 2009, Mozilla began using Buildbot, and the organization’s needs quickly

outstripped this simple model. Within a few years, Mozilla was operating thousands

of workers and more than 50 buildmasters. To support this, they engaged Brian to add

a partial database back end to allow the buildmasters to coordinate their work. This

database implementation did not store the results of builds – that remained in pickle

files on individual buildmasters.

The web interface was entirely synchronous, rendering static HTML representations

of build results. As such, displaying some pages could block the buildmaster for several

minutes while it loaded results from the database and from pickle files. At Mozilla, just

viewing a “waterfall” page could cause an outage, so access to those pages was not

permitted.

About this time, Dustin Mitchell took over maintenance of the project and began

organizing a long effort to modernize the application. This effort succeeded with the

release of Buildbot 0.9.0 in October of 2016. The project aimed to refashion Buildbot as a

database-backed server application presenting an HTTP API and hosting an interactive

front-end web application. In a multi-master configuration, build results are now

available from any master, updated “live” as results come in from workers. The HTTP API

supports integration with other CI tools, and new well-defined, asynchronous interfaces

support development of third-party plugins.

Nine was no easy project – it took a half decade of hard work by a team of developers

including Pierre Tardy, Tom Prince, Amber Yust, and Mikhail Sobolev. It also involved

solving a lot of tricky problems relating to asynchronous Python, as described in the rest

of this chapter.

 The Evolution of Buildbot’s Async Python
Twisted already had good protocol support, including Perspective Broker, when Brian

began writing Buildbot. Its reactor and Deferred handling were well-developed and

built on solid theoretical foundations. However, “async” was still a relatively unknown

concept in mainstream software development, and asynchronous code lived up to the

name “Twisted Python.”

As an example, let’s look at Buildbot’s Builder.startBuild method, as it existed

around 2005 (it has since been rewritten). It performed two asynchronous operations

in sequence, first pinging the selected worker, then calling that worker’s startBuild

method. This was implemented with a series of instance methods:

Chapter 10 BuildBot and twisted

319

buildbot/process/builder.py @ 41cdf5a

class SlaveBuilder(pb.Referenceable):

 def attached(self, slave, remote, commands):

 # ...

 d = self.remote.callRemote("setMaster",self)

 d.addErrback(self._attachFailure,"Builder.setMaster")

 d.addCallback(self._attached2)

 return d

 def _attached2(self, res):

 d = self.remote.callRemote("print","attached")

 d.addErrback(self._attachFailure,"Builder.print 'attached'")

 d.addCallback(self._attached3)

 return d

 def _attached3(self, res):

 # now we say they're really attached

 return self

 def _attachFailure(self, why, where):

 assert type(where) is str

 log.msg(where)

 log.err(why)

 return why

This clunky syntax required careful threading of variables through multiple methods,

made control flow hard to follow, and polluted the method namespace. This led to lots of

interesting bugs with unhandled errors mysteriously disappearing or callbacks firing in

unexpected order. Conditionals and loops that involved asynchronous operations were

extremely difficult to get right and therefore, debug properly.

We are now accustomed to referring to functions as asynchronous (meaning they

return a Deferred) and synchronous (meaning they do not). In these dark ages, the

distinction was not so clear, and there were functions in Buildbot that could return a

Deferred or an immediate value, depending on the circumstances. Needless to say, such

functions were difficult to call correctly and were refactored to be strictly synchronous or

asynchronous.

Chapter 10 BuildBot and twisted

320

As Twisted matured, and more importantly as Python grew additional features

like generators, decorators, and yield expressions, the situation gradually improved.

Twisted’s deferredGenerator allowed control flow to be written in a normal Python style

with if, while, and for statements. Its syntax was still clunky, requiring three lines of

code to perform an asynchronous operation and failing in obscure ways if any of those

lines were omitted:

buildbot/buildslave/base.py @ 8b4e7a9

class BotBase(service.MultiService):

 @defer.deferredGenerator

 def remote_setBuilderList(self, wanted):

 retval = {}

 # ...

 dl = defer.DeferredList([

 defer.maybeDeferred(self.builders[name].disownServiceParent)

 for name in to_remove])

 wfd = defer.waitForDeferred(dl)

 yield wfd

 wfd.getResult()

 # ...

 yield retval # return value

With Python 2.5 and the introduction of yield expressions, Twisted implemented

inlineCallbacks. These are similar to deferredGenerator, but use only one line to

perform an asynchronous operation:

master/buildbot/data/buildrequests.py @ 8b4e7a9

class BuildRequestEndpoint(Db2DataMixin, base.Endpoint):

 @defer.inlineCallbacks

 def get(self, resultSpec, kwargs):

 buildrequest = yield self.master.db.buildrequests.getBuildRequest(k

wargs['buildrequestid

 if buildrequest:

 defer.returnValue((yield self.db2data(buildrequest)))

 defer.returnValue(None)

Chapter 10 BuildBot and twisted

321

This approach is much more forgiving, except that it is very easy to forget to yield a

Deferred. Such errors cause the asynchronous operation to execute “in parallel” with

the calling function, and often don’t cause any issues until that operation fails and the

calling function continues undeterred. Several such insidious errors have survived

extensive testing and persisted over Buildbot releases.

As Twisted and Buildbot move to Python 3, Python’s async/await syntax will provide

a more natural way of writing asynchronous Python, although it will not solve the issue

of a forgotten await. The function above reads even more naturally with this syntax:

class BuildRequestEndpoint(Db2DataMixin, base.Endpoint):

 async def get(self, resultSpec, kwargs):

 buildrequest = await self.master.db.buildrequests.getBuildRequest

(kwargs['buildrequestid'])

 if buildrequest:

 return (await self.db2data(buildrequest))

 return None

Historically, asynchronous Python has been used only for performance-critical

network applications, with the majority of Python applications built on a synchronous

model. The NodeJS community has shown that standardized, interoperable

asynchronous, can lead to a vibrant ecosystem of libraries, utilities, and frameworks

that can be freely combined. Python now has async/await, and asyncio enables

code written for Twisted to interoperate with code written for other asynchronous

frameworks, facilitating similar growth.

 Migrating Synchronous APIs
In the early days, the Buildbot master ran as a single process and stored its status

in pickle files on disk. It read from and wrote to those files synchronously, so most

operations within the master did not involve Deferreds.

Around 2010, as continuous integration caught on in the software development

community and Buildbot installations began to grow, pickle files did not scale. The time

had come to add a database back end, and we were faced with a choice: convert all of

those status functions to return Deferreds, or make synchronous database calls from

the main thread, blocking other operations until they complete. The first option was

appealing, but when a function is modified to return a Deferred, then every function

Chapter 10 BuildBot and twisted

322

that calls it must also be modified to return a Deferred, rippling through the code base.

Buildbot is a framework, so most installations contain lots of custom code that calls

Buildbot functions. Making those functions return a Deferred constituted a breaking

change and would require users to rewrite and retest their custom code.

In the interest of expediency, we decided to make most database calls on the main

thread. Most of the data about build status – results, steps, and logs – was left on-disk.

While this allowed us to ship the feature on time, it had predictable performance issues.

In fact, in larger installations such as Mozilla’s, database queries could stall the master

for so long that workers would time out, cancel running builds, and try to reconnect.

This situation repeated itself with many other APIs in Buildbot, as we added new

functionality to code that was once simple and synchronous. If we could begin again

without any compatibility requirements, we would make every exposed API method

asynchronous, and accept a Deferred on every call into user code.

 Async Build Steps
Build steps were particularly difficult to make asynchronous. While Buildbot includes

a number of “canned” build steps for common tasks, we allow users to implement

their own steps as well. Such custom build steps call a number of methods as a step

executes to add log output, update status, and so on. Historically, all of those calls were

synchronous, since they updated state in memory that was later flushed to disk.

Buildbot 0.9 eliminated those on-disk data structures, and now stores everything in

the database. It also provides “live” updates, so caching build step results until the step

was completed was not an option. Thus, all of the synchronous methods to update status

became asynchronous – but existing custom build steps called them synchronously!

Our approach to solving this problem was an unusual one: define “old-style”

(synchronous) and “new-style” build steps, with different behavior for each. When

executing old-style build steps, Buildbot gathers all of the otherwise-unhandled Deferreds

from these methods and, when the step is otherwise complete, waits until all have fired.

Since most of the methods are providing information about the step’s progress, callers do

not expect any return value. We added a simple method to distinguish old and new build

step implementations and only activate the compatibility mechanism for old steps. The

strategy is remarkably successful, and for the minority of custom build steps for which it

fails, the solution is easy: rewrite as a new-style build step.

Chapter 10 BuildBot and twisted

323

We developed this compatibility mechanism before rewriting the built-in build steps

in the “new” style. This provided an opportunity to test and refine the mechanism before

rewriting all of the built-in steps in the more reliable new style.

 Buildbot’s Code
Buildbot is unusual for an asynchronous application. Most such applications focus on

a request/response cycle, with asynchronous programming permitting a much higher

degree of parallelism than a thread-based, synchronous model. Buildbot, on the other

hand, maintains long-term connections between the master and its attached workers

and performs sequential operations on those workers. Even the process of accepting a

new connection from a worker involves a complex sequence of operations to check for

duplicate workers, interrogate the new worker’s features, and set it up to perform builds.

A synchronous approach to building this sort of application would involve a thread

for each worker, plus threads for any other service objects such as schedulers or change

sources. Even a modest installation of such an approach might then have thousands of

threads, with all of the scheduling and concurrency issues that entails.

 Async Utilities
While Twisted provides a broad variety of useful asynchronous tools, Buildbot has

found a few behaviors not supported by those tools. Just like queues and locks support

building synchronous, threaded applications, these tools support building asynchronous

applications.

 Debounce
A production-scale Buildbot master may be communicating with hundreds of workers,

receiving events with updated status and log data. These events are often easy to

coalesce – for example, several lines of log data can be combined into one chunk – but

must be handled in a timely fashion to support live logging and dynamic status updates.

The fix is to “debounce” these events, calling the handler only once when several

events occur in rapid succession. A debounced method specifies a delay, and guarantees

that the decorated method will be called at least once within that period, but can

coalesce multiple calls within that time.

Chapter 10 BuildBot and twisted

324

Debouncing can cause intermittent errors by allowing a method to execute at a

time when it no longer makes sense. For example, it does not make sense to continue

adding log lines to a build step if the step has been marked complete. To avoid this

issue, debounced methods have a “stop” method that will wait (asynchronously) for any

pending invocations, thus supporting clean state transitions.

 Async Services
As Buildbot is based on the excellent Twisted Application Framework, this framework

provides (among other features) IService and IServiceCollection interfaces that can

be used to create a hierarchy of services. Buildbot arranges the buildmaster service at

the top of this hierarchy, with managers for workers, change sources, and so on, added

as child services. Workers and change sources are added as children of their respective

managers.

This design has been critical to the structure of Buildbot applications: supporting

application startup and shutdown. More importantly, it allows Buildbot to dynamically

reconfigure itself at runtime. For example, if the configuration is modified to add an

additional worker, the reconfiguration process creates a new worker service and adds it

as a child of the worker manager.

There’s just one problem with the application framework: startService is

synchronous.

As we have services that handle talking to the database or to the message queue, it

is critical for us that service startup is properly serialized by the Application framework.

With this serialization, we can be sure that all the workers, builders, etc., are properly

registered in the database, and listening to their requested message queues before we

start the build requests distribution. For example, when a reconfiguration adds a new

worker, that worker must be added to the database. The worker has not truly started until

that asynchronous operation is complete.

While initialization dependency could be seen as an orthogonal problem as services

dependencies, it has been quite handy for us to make startService asynchronous.

class AsyncMultiService(AsyncService, service.MultiService):

 def startService(self):

 service.Service.startService(self)

 dl = []

Chapter 10 BuildBot and twisted

325

 # if a service attaches another service during the reconfiguration

 # then the service will be started twice, so we don't use iter, but rather

 # copy in a list

 for svc in list(self):

 # handle any deferreds, passing up errors and success

 dl.append(defer.maybeDeferred(svc.startService))

 return defer.gatherResults(dl, consumeErrors=True)

 [...]

Buildbot adds an AsyncMultiService subclass of MultiService that supports

asynchronous startService methods among its child services. It handles the edge cases

around adding and removing services, meaning that addService, setServiceParent,

and disownServiceParent are also made asynchronous.

We had the luxury of rewriting this functionality because we control all calls to

addService and startService. Twisted itself could not easily make this change without

introducing an entirely new, mutually incompatible class hierarchy.

In fact, since Twisted makes the call to the top-level service’s startService method,

some care is required to handle asynchronous behavior in this case. Buildbot’s top-level

service is BuildMaster, and its startService method returns a Deferred that never fails,

using a try/except to catch any errors and stop the reactor. Since the reactor is not yet

running at startup, startService begins by waiting for reactor startup:

class BuildMaster(...):

 @defer.inlineCallbacks

 def startService(self):

 [...]

 # we want to wait until the reactor is running, so we can call

 # reactor.stop() for fatal errors

 d = defer.Deferred()

 self.reactor.callWhenRunning(d.callback, None)

 yield d

 startup_succeed = False

 try:

 [...]

 except:

Chapter 10 BuildBot and twisted

326

 f = failure.Failure()

 log.err(f, 'while starting BuildMaster')

 self.reactor.stop()

What our system does not handle well is dependencies between peer services. For

example, WorkerManager is dependent on the MessageQueueConnector, but both are

children of the masterService. The MessageQueueConnector manages an externally

backed message queue, and cannot accept any messages or registration request until

the connection to the broker is done. Such registration requests are needed by the

WorkerManager. Both services are started in parallel, being the children of the same

service. As of now this has been resolved by optimistically queuing any messages

or registration request until the connection is maintained. We could improve our

system by adding an initialization dependency layer that is different from the service

hierarchy. The design of such system is not easy to do if you want to have an efficient

and simple interface, which does not require to rewrite all the startService of all

our services.

An alternative design, one used in the ClientService class introduced in Twisted

16.1.0, is to return immediately from startService while allowing the startup

process to run in parallel. This design requires that service startup cannot fail, or

that some other mechanism of communicating failure be developed. Buildbot relies

on the straightforward error behavior of AsyncMultiService to handle runtime

reconfigurations, which must fail gracefully when the new configuration has an error.

For ClientService, connections retry indefinitely, so the startup process never truly

fails, even if it never truly completes. The immediate-return approach also requires

careful consideration of the case where a service’s method is called before startup has

completed, generally by guarding each method to wait until startup has completed.

 LRU Cache
Caching is critical to scaling any application, and Buildbot is no different. A common

cache eviction strategy is least-recently-used (LRU), where cache entries that have not

been used recently are discarded when space is required for new entries. A cache “hit”

occurs when a request can be satisfied from data in the cache; a cache “miss” requires

fetching the data from its source.

Chapter 10 BuildBot and twisted

327

LRU caches are common, and several distributions are available on PyPI

implementing them. However, at the time they were all synchronous and designed for

use in a threaded environment.

In an asynchronous implementation, a cache miss will involve waiting for a fetch

and additional requests for the same cache entry may arrive during the wait. These

requests should not trigger additional fetches, but should wait for the same fetch to

complete. This requires some careful handling of Deferreds, particularly around error

handling.

 Eventual
There are lots of cases where we want to call some function but don’t care about the

result or exactly when it is called. In an asynchronous system, it is best to invoke such

functions later, when the current reactor iteration is complete. This allows a more fair

distribution of work, with the reactor able to handle other events before invoking the

functions.

A simple approach is to call reactor.callLater(0, callableForLater); this

is equivalent to Node’s process.nextTick. However, this has the drawback of being

difficult to test. Depending on the scheduling of the test, callableForLater may not be

complete before the test finishes, resulting in intermittent test failures. This approach

also fails to handle any exceptions or errbacks from callableForLater.

Buildbot’s buildbot.util.eventual.eventually wraps reactor.callLater. It

provides an extra flushEventualQueue method that tests can use to wait for all pending

function calls to complete. And it handles errors in the called functions by logging them

to the Twisted log.

 Interfacing with Synchronous Code
Unlike the JS ecosystem, asynchronous is not the default and only way of doing I/O

operations in Python. The Python ecosystem has grown over time with lots of very useful

and well-thought-out libraries, and most of them are synchronous. Buildbot, being an

integration tool, would have liked to use all these libraries.

We developed several best practices to use these synchronous libraries from our

asynchronous core.

Chapter 10 BuildBot and twisted

328

 SQLAlchemy
SQLAlchemy is a well-known library that abstracts SQL to Python. It supports several

SQL dialects, and make it easier to support several database back ends. SQLAlchemy

provides a Pythonic SQL generation DSL (Domain Specific Language), which allows

it to store and reuse SQL snippets, and also automatically handles the necessary SQL

injection protection.

As of now, Buildbot supports SQLite, MySQL, and PostgreSQL.

SQLAlchemy has the concept of database connection pool; the SQL engine will

reuse its connection to the database from request to request. In Buildbot, we map this

connection pool to a threadpool, and each database operation is then operated inside

a thread.

All of our database operations are implemented in a dedicated db module, and

follow the same pattern.

• The database component code must derive from buildbot.db.base.

DBConnectorComponent.

• Each public method is meant to be called from asynchronous code,

and returns a Deferred.

• We use a nested function that accesses the Python scope of the

asynchronous method inside our sync code in order to avoid passing

around our parameters.

• We jump from the asynchronous world to synchronous world using

self.db.pool.do(..).

• We always prepend functions or methods names that are meant to be

use blocking code with the thd prefix.

class StepsConnectorComponent(base.DBConnectorComponent):

 def getStep(self, stepid=None, buildid=None, number=None, name=None):

 # create shortcut handle to the database table

 tbl = self.db.model.steps

 # we precompute the query inside the mainthread to fast exit in

case of error

Chapter 10 BuildBot and twisted

329

 if stepid is not None:

 wc = (tbl.c.id == stepid)

 else:

 if buildid is None:

 return defer.fail(RuntimeError('must supply either stepid

or buildid'))

 if number is not None:

 wc = (tbl.c.number == number)

 elif name is not None:

 wc = (tbl.c.name == name)

 else:

 return defer.fail(RuntimeError('must supply either number

or name'))

 wc = wc & (tbl.c.buildid == buildid)

 # this function could appear in a profile, so better give it a

meaningful name

 def thdGetStep(conn):

 q = self.db.model.steps.select(whereclause=wc)

 # the next line does sync IO and block. That is why we need to

be in a threadpool.

 res = conn.execute(q)

 row = res.fetchone()

 rv = None

 if row:

 rv = self._stepdictFromRow(row) res.close()

 return rv

 return self.db.pool.do(thdGetStep)

 requests
A lot of tools Buildbot interacts with are controllable via an HTTP API. Like Python’s

urllib, Twisted has its own http client library, twisted.web.client. However, the

excellent python-requests library has proven to be very well crafted. It has a very simple

and powerful API emphasizing convention over configuration (hence the “HTTP for

humans” motto), connection pooling, keepalive, proxy support, and – importantly for

ensuring reliability in automation – automatic retries.

Chapter 10 BuildBot and twisted

330

Naturally, a Python programmer will want to use similar APIs within Buildbot. But

requests is a synchronous API, because humans like synchronous.

There is the treq library that implements the requests API using Twisted client, but it

does not have all the reliability features of requests yet.

Initially, the Buildbot community wrote the txrequests library, which is a simple

wrapper around a requests session that makes every requests in a ThreadPool, similar to

what we’ve done with SQLAlchemy. Then Buildbot implemented a HttpClientService

that abstracts the requests API, and allows the choice of the treq or txrequests back end.

Several important features were implemented for HTTPClientService, which was

the result of our experience writing code using txrequests: It abstracts the differences

between the two implementations, using whichever is installed. The service includes a

unit test framework, which allows us to test our components without relying on a fake

HTTP server. It also supports sharing sessions between components, so, for example,

two components that interface with GitHub can use the same HTTP sessions.

class GitHubStatusPush(http.HttpStatusPushBase):

 @defer.inlineCallbacks

 def reconfigService(self, token, startDescription=None,

 endDescription=None, context=None, baseURL=None,

verbose=False,**kwargs):

 yield http.HttpStatusPushBase.reconfigService(self,**kwargs)

 [...]

 self._http = yield httpclientservice.HTTPClientService.getService(

 self.master, baseURL, headers={

 'Authorization': 'token ' + token,

 'User-Agent': 'Buildbot'

 },

 debug=self.debug, verify=self.verify)

 self.verbose = verbose

 [...]

 def createStatus(self,

 repo_user, repo_name, sha, state, target_url=None,

 context=None, issue=None, description=None):

 payload = {'state': state}

Chapter 10 BuildBot and twisted

331

 if description is not None:

 payload['description'] = description

 if target_url is not None:

 payload['target_url'] = target_url

 if context is not None:

 payload['context'] = context

 return self._http.post(

 '/'.join(['/repos', repo_user, repo_name, 'statuses', sha]),

 json=payload)

 [...]

class TestGitHubStatusPush(unittest.TestCase, ReporterTestMixin):

 [...]

 @defer.inlineCallbacks

 def setUp(self):

 self.master = fakemaster.make_master(testcase=self,

 wantData=True, wantDb=True,

wantMq=True)

 yield self.master.startService()

 # getFakeService will patch the HTTPClientService, and make sure any

 # further HTTPClientService configuration will have same arguments.

 self._http = yield fakehttpclientservice.HTTPClientService.

getFakeService(

 self.master,self,

 HOSTED_BASE_URL, headers={

 'Authorization': 'token XXYYZZ',

 'User-Agent': 'Buildbot'

 },

 debug=None, verify=None)

 self.sp = GitHubStatusPush('XXYYZZ')

 yield self.sp.setServiceParent(self.master)

 @defer.inlineCallbacks

 def test_basic(self):

 build = yield self.setupBuildResults(SUCCESS)

Chapter 10 BuildBot and twisted

332

 # we make sure proper calls to txrequests have been made

 self._http.expect(

 'post',

 '/repos/buildbot/buildbot/statuses/d34db33fd43db33f',

 json={'state': 'pending',

 'target_url': 'http://localhost:8080/#builders/79/builds/0',

 'description': 'Build started.', 'context': 'buildbot/

Builder0'})

 # this will eventually make a http request, which will be checked

against expectations

 self.sp.buildFinished(build)

 Docker
Another example of a library we use is the official Python docker library. It is another

synchronous library, which makes use of python-requests in order to implement the

Docker HTTP protocol.

The Docker protocol is complex and might change frequently, so we decided against

custom building a client using our HTTPClientService framework. But the official

Docker API library is synchronous, so we needed to wrap it in such a way that it would

not block the main thread.

We just used twisted.internet.threads.deferToThread to achieve this wrapping.

This utility function uses the default shared thread pool, which Twisted manages

automatically.

class DockerBaseWorker(AbstractLatentWorker): [...]

 def stop_instance(self, fast=False):

 if self.instance is None:

 # be gentle. Something may just be trying to alert us that an

 # instance never attached, and it's because, somehow, we never

 # started.

 return defer.succeed(None)

 instance = self.instance

 self.instance = None

 return threads.deferToThread(self._thd_stop_instance, instance, fast)

Chapter 10 BuildBot and twisted

333

 def _thd_stop_instance(self, instance, fast):

 docker_client = self._getDockerClient()

 log.msg('Stopping container %s... ' % instance['Id'][:6])

 docker_client.stop(instance['Id'])

 if not fast:

 docker_client.wait(instance['Id'])

 docker_client.remove_container(instance['Id'], v=True, force=True)

 if self.image is None:

 try:

 docker_client.remove_image(image=instance['image'])

 except docker.errors.APIError as e:

 log.msg('Error while removing the image: %s ', e)

 Concurrent Access to Shared Resources
Concurrent programming is a hard computer science domain, with lots of traps. When

you run several programs in parallel, you need to make sure that they do not work on the

same data at the same time. With Twisted, it is easy to have the same function running

at the same time in two different deferred chains (or inlineCallbacks generators or

coroutines). This typical problem is called re-entrancy. Of course, with asynchronous

programming, the function will not really run twice at the same time. It runs in the

“reactor” thread. So, in principle, you can do any read-modify-write of a shared state

without having to care for concurrency.

That is true. . . until you reach the following limitations:

 Yield as a Concurrency Barrier
You can rationalize Twisted as cooperative multitasking, until you do some I/O

operations. At that point, yield, await, and d.addCallback() become your

concurrency barriers. You need to take care of not modifying shared state across those

statements.

class MyClass(object):

 [...]

 # The following function cannot be called several times in parallel,

as it will be modifying

Chapter 10 BuildBot and twisted

334

 # self.data attribute between "yield"

 # It is not safe for reentrancy

 def unsafeFetchAllData(self, n):

 self.data = []

 for i in range(n):

 # during the yield, the context of the main thread could change

up to the

 # point where the function is called again.

 current_data = yield self.fetchOneData(i)

 # BAD! modifying the shared state accross yield!

 self.data.append(current_data)

 # A correct implementation which does not involve locks is

 def safeFetchAllData(self, n):

 # we prepare the data in a local variable

 data = []

 for i in range(n):

 current_data = yield self.fetchOneData(i)

 data.append(current_data)

 # even if several fetchAllData is called several times in

parallel, self.data will always be coherent.

 self.data = data

 Thread-Pool Functions Should Not Mutate State
Sometimes you need to do some heavy calculation or use a library that is doing blocking

I/O. You usually want to do those operations inside a helper thread different from the

“reactor” thread, to avoid having to hang the reactor during the long processing.

So, when using threads, you have to think about protecting your shared state from

concurrent access. There is, however, a simple rule that we follow in Buildbot in order

to avoid using any kind of threading mutexes. All our functions or methods running in

non-reactor threads must have no side effects on the application state. Instead, they

communicate with the rest of the application only through function parameters and

return values.

Chapter 10 BuildBot and twisted

335

from twisted.internet import defer

from twisted.internet import threads

class MyClass(object):

 [...]

 def unsafeFetchAllData(self, n):

 def thdfetchAllData():

 # BAD! modifying the shared state from a thread!

 self.data = []

 for i in range(n):

 with open("hugefile-{}.dat".format(i)) as f:

 for line in f:

 self.data.append(line)

 return threads.deferToThread(thdfetchAllData)

 @defer.inlineCallbacks

 def safeFetchAllData(self, n):

 def thdfetchAllData():

 data = []

 for i in range(n):

 with open("hugefile-{}.dat".format(i)) as f:

 for line in f:

 data.append(line)

 # we don't modify state, but rather pass the results to the

main thread

 return data

 data = yield threads.deferToThread(thdfetchAllData)

 self.data = data

This example involves loading data from large files, but any synchronous operation,

or any operation for which no asynchronous library is available, would follow the same

pattern.

Chapter 10 BuildBot and twisted

336

 DeferredLocks
In our experience, following the two previous best practices will keep you safe from 99%

of concurrency issues. For the remaining 1%, Twisted has great concurrency primitives.

You should, however, think twice before using them as it often hides design issues.

• DeferredSemaphore implements a semaphore, the case where at

most N concurrent access to the same resource can happen.

• DeferredLock implements a simple Lock. It is equivalent a

DeferredSemaphore with N==1 but has a simpler implementation.

• DeferredQueue implements a queue that can be read via Deferred.

The source code for these classes is instructive and worth reading. Unlike their

threaded counterparts, the implementations are very simple, thanks to asynchronous

principles. In cases where they are missing features, it is usually simple to extend or

re-implement them with the required features. For example, DeferredQueue does

not provide a way to determine the length of a queue, a critical feature for monitoring

production services.

 Testing
Automated testing is a necessity for any serious software engineering effort today,

but this was not the case 15 years ago, especially in the open source world. Tools such

as Buildbot, Jenkins, and Travis-CI have improved the situation dramatically, and it

is now rare to find an open source library or application that does not have at least

rudimentary tests.

Buildbot’s test suite has had a rocky history. Early versions of the application

had a collection of integration-style tests, but were flaky, difficult to understand, and

had poor code-base coverage. At some point, these proved more trouble than they

were worth, and we chose to delete them entirely and began again with a unit-testing

focus. We have since written new unit tests for some of the existing code, but more

importantly, required that new or refactored code come with new tests. With several

years of hard work, Buildbot’s line coverage is now about 90%, with much of the

untested code being retained only for backward compatibility. Such coverage is critical

for a framework like Buildbot, where no single installation exercises even a fraction of

the framework’s code.

Chapter 10 BuildBot and twisted

337

Twisted’s testing framework, Trial is indispensable for testing a heavily asynchronous

code base. With years of experience of asynchronous testing, Trial’s feature list sets the

standard for asynchronous test frameworks.

Test cases are asynchronous by default, which means they can return a Deferred.

The test framework makes sure the Deferred is waited for, and runs each test case

within a new instance of the reactor infrastructure. Trial also has the concept of

SynchronousTestCase, which skips the reactor setup and runs even faster.

Failing to handle a Deferred is a common mistake. Trial introduces the principle of

the “dirty reactor” in order to try and catch a certain class of unhandled Deferred.

For example, consider this code:

@defer.inlineCallbcks

def writeRecord(self, record):

 db = yield self.getDbConnection()

 db.append(self.table, record) # BAD: forgotten yield

and accompanying test:

@defer.inlineCallbacks

def test_writeRecord(self):

 record = ('foo', 'bar')

 yield self.filer.writeRecord(record)

On completion of this test’s Deferred, Trial will examine the reactor’s list of pending

I/O and timers. If the append operation has not yet completed, the pending socket read

or write operation will cause a DirtyReactor exception. Any Deferred that is garbage

collected in an unhandled failed state will also be flagged as a test failure. Unfortunately,

if an unhandled operation completes successfully before the test does, Trial cannot

detect the error. This makes unclean reactor errors intermittent, causing some

frustration for users and developers.

Python 3.5’s coroutines add features in the language to better track such

programming mistakes (RuntimeError: coroutine [...] was never awaited), but

these will only work with coroutines.

Chapter 10 BuildBot and twisted

338

 Fakes
Unit testing requires good isolation of the units being tested. Most Buildbot components

depend on other components, including the database, message queue, and data

API. The convention in Buildbot is to include a reference to the BuildMaster instance

as self.master on every service object. Other objects are then available via properties

of the master such as self.master.data.buildrequests. For testing purposes, the

buildbot.test.fake.fakemaster.FakeMaster class defines a fake master that can

provide access to a similar array of fake components.

Many of these fake components are simple dummy classes instrumented for testing.

The risk with such fakes is that they do not faithfully reproduce the behavior of the real

component. For small components, this risk is generally small, and with due care we can

be confident they are correct.

The database API, however, is a complex component with dozens of methods and

complex interactions. One option is to always test against a database – Buildbot supports

SQLite, which is built into Python, so this is not a great burden on developers. However,

it is slow to tear down and set up even an in-memory database for each test. Instead,

Buildbot sports a full implementation of the DB API using only simple Python data

structures. To ensure its fidelity to the real database API, it must pass the same unit tests

as the real implementation. The result is a fake that is guaranteed to give reliable results

for unit tests of components that depend on it – a “verified fake.” This fake is faster than

the production code, while also providing highly reliable test results.

 Summary
Buildbot is a large, mature code base that has grown up with Twisted since its early days.

Its history demonstrates the journey – and some of the wrong turns – of asynchronous

Python over the last decade. And its latest releases provide a trove of practical, real-life

Twisted code.

Chapter 10 BuildBot and twisted

339
© Mark Williams, Cory Benfield, Brian Warner, Moshe Zadka, Dustin Mitchell, Kevin Samuel, Pierre Tardy 2019
M. Williams et al., Expert Twisted, https://doi.org/10.1007/978-1-4842-3742-7_11

CHAPTER 11

Twisted and HTTP/2
 Introduction
HTTP/2 is the latest revision of the venerable protocol that underlies almost all of the

world wide web: the HyperText Transfer Protocol, HTTP. Originally developed by Tim

Berners-Lee at CERN (the European Organization for Nuclear Research) in 1989, HTTP

has been the engine of the web ever since. The dominance of the protocol is so complete

that almost everything that most people think of as “the Internet” is in fact part of the

world wide web, and so uses HTTP.

At its core, HTTP is the protocol that allows your browser to communicate with a

website. It provides a formal encoding for your browser to request “resources,” such

as a web page or image, and for servers to provide those resources in response. It

also supports uploading data. While its most common use is for websites, HTTP is

also commonly used for machine-to-machine communication through the use of

“web APIs,” which let programmers write applications that interact with data stored

on other computers. Most major companies you have heard of run a web API!

Early on, the protocol went through multiple revisions, but the protocol solidified

into its most common form in 1996 with the publication of RFC 1945 by the Internet

Engineering Task Force (IETF). This represented a vision for the first long-term

version of the protocol and established its well-known properties. These include

its text- based, human-readable nature; its reliance on a dictionary of verbs with

well-defined behaviors, such as GET, POST, and DELETE; and its tools for managing

caching of content. HTTP/1.0 was followed swiftly by HTTP/1.1, an incremental

release that provided a number of improvements to the expressiveness and efficiency

of the protocol. HTTP/1.1 was first specified in RFC 2068 in 1997 and was updated

in the famous RFC 2616 in 1999. This version of HTTP was then left almost entirely

340

unchanged for 15 years.1 All of the fantastic software and services that came of age in

this time were built on top of this 1990s-era protocol.

Unfortunately, HTTP/1.1 has a number of shortcomings that rendered it increasingly

ill-suited to the web of the 2010s. As a text-based protocol, it’s extremely verbose,

requiring the transmission of many more bytes than are strictly required. It also lacks any

form of multiplexing,2 meaning each HTTP request/response pair in flight at any time

requires a dedicated TCP connection, which causes problems that are further explored

below. It’s also complex and slow to parse in comparison to most binary protocols.

The combination of these shortcomings cause HTTP/1.1 connections to have

problems with latency, bandwidth, and operating system resource usage. These concerns

led Google to begin experimenting with alternatives to HTTP/1.1 that maintained the

same semantics but used a different wire format to transmit the data. After a few years of

testing this experimental protocol, called SPDY,3 it became clear that the protocol offered

solutions to many of HTTP/1.1’s problems, and the IETF HTTP Working Group resolved to

use SPDY as the basis of a new revision to the HTTP protocol: version 2.

HTTP/2 contains many improvements over HTTP/1.1. It changes the protocol from

being text-based to using a stream of length-prefixed binary frames. It adds a special

form of compression suitable for use with HTTP headers, vastly reducing the overhead

associated with a given HTTP request or response. It provides multiplexing and flow

control to allow multiple HTTP request/response dialogs to take place over a single

TCP connection. And, finally, it adds explicit support for negotiating extensions, giving

HTTP/2 the option of being much more easily extended in the future than HTTP/1.1 is.

1 HTTP/1.1 was updated in RFC 7230 and its related RFCs in 2014. This was not a substantial
revision to the protocol: instead, the goal was to codify the way HTTP/1.1 had been deployed in
the wild over the intervening 15 years.

2 HTTP/1.1 does define a concept called “pipelining,” which allows a user-agent to submit
multiple requests without waiting for a response to the previous one. In principle, pipelining
provides some form of multiplexing support. Unfortunately, pipelining is a bad solution to
the issue and suffers from a number of problems. The most severe is that servers are required
to respond to requests in the order they were delivered. If the server needs to generate a large
response, this can cause long waits for a response to a subsequent request. Additionally, if a
server receives a request that has a side effect (e.g., changing some data), it is required to stop
processing all other requests on that pipelined connection until that request has been fully
processed, unless it can prove those other requests are safe. In practice, these limitations are so
onerous that none of the major browsers have enabled support for pipelining, and so it has never
been widely deployed.

3 Pronounced “speedy.”

Chapter 11 twisted and http/2

341

Since being standardized in 2015, HTTP/2 has become extremely successful. All

major browsers support it as do most major web servers, and it is rapidly becoming

the primary protocol used on the web, supplanting HTTP/1.1. This wide deployment

means that developers will want to be able to take advantage of the protocol in their own

applications, including those built on Twisted directly.

Twisted contains a HTTP server. In 2016 work began to extend this HTTP server

that provides HTTP/1.1 support to provide HTTP/2 support alongside it, with the

initial release of this functionality landing in Twisted 16.3 in July 2016. The rest of this

chapter will discuss how this implementation was built, its key features, and cover

several useful techniques for asynchronous programming that this implementation

uses.

 Design Goals
The HTTP/2 integration work in Twisted had a number of specific design goals from the

very beginning.

 Seamless Integration
The first and most-important design goal of the HTTP/2 project was to integrate it as

seamlessly as possible with Twisted’s existing web server, which is a part of twisted.

web. The ideal outcome for the project would be for existing Twisted Web applications

to enable HTTP/2 support with zero code changes. This would enable the widest

possible access to HTTP/2 for existing and new web applications with an extremely

low barrier to entry.

Happily, HTTP/2 was designed to have the same “semantics” as HTTP/1.1. This

means that any valid HTTP/1.1 message had to have at least one exactly equivalent

representation in HTTP/2. Even though the specific arrangement of bytes sent on

the network are different, the abstract meaning of the HTTP session can be conveyed

exactly in both HTTP/1.1 and HTTP/2. This meant that it would be possible, at least in

principle, to allow users of twisted.web to transparently enable HTTP/2 without any

code changes.

Chapter 11 twisted and http/2

342

This kind of “seamless” integration is made possible in Twisted by the extensive use

of interfaces to define an abstraction layer. An interface is a formal description of the

functions you can call on a family of related objects. For example, you could describe a

“vehicle” interface using zope.interface like so:

from zope.interface import interface

class IVehicle(Interface):

 def turn_on():

 pass

 def turn_off():

 pass

With this interface defined, you can write programs that can operate any kind

of vehicle by programming against the interface, rather than against a specific

implementation. Interfaces like this are a form of polymorphism (a term used in object-

oriented programming) that is an alternative to class-based inheritance. This section

will not explore the idea of interfaces for polymorphism any further, except to say that

defining interfaces for your objects allows you to write code that can use alternative

implementations of the same interface very gracefully.

In the case of HTTP, in principle we could define a set of interfaces for working with

HTTP at the semantic level (without reference to the specific wire format) and have

users write code against those interfaces. For example, you could have a HTTPServer

interface that exposes an interface that operates in terms of general HTTPRequest and

HTTPRespose objects, and that shields the user code from the specific properties of the

underlying connection.

Unfortunately defining interfaces in this way is not always simple to do, and in

practice a number of difficulties were encountered that needed to be resolved to make

this design goal achievable. These will be covered more later in this chapter. Once these

difficulties were resolved, however, we were able to construct a final implementation that

was almost completely seamlessly meshed with the existing HTTP/1.1 implementation.

The end result was that as of Twisted 16.3 any application using twisted.web could

get automatic HTTP/2 support by installing the optional http2 extra when installing

or upgrading Twisted. Twisted would then feature detect all of the relevant features

from the operating system and, assuming that everything was in order, HTTP/2 would

automatically be used where possible.

Chapter 11 twisted and http/2

343

 Most-Optimized Behavior by Default
HTTP/2 is a complex protocol with a number of tunable parameters that can affect the

efficiency of the protocol. Frame sizes, priority management, compression strategies,

concurrent stream limits, even buffer sizes all play a part in tuning the efficiency of the

protocol.

Because HTTP/2 support in Twisted was planned to be transparent to the user, it is

highly likely that the majority of users will not notice it is there. As a result, it is vitally

important that the protocol behave as efficiently as it can by default. This is because

if users are not aware that a feature is present, they cannot be expected to reasonably

configure that feature for their use case.

This is a general lesson with feature development that follows on from the previous

design goal: features that are intended to be completely seamless and transparent must

also have sensible defaults that apply to the widest range of use cases. If they do not,

users will experience suboptimal behavior from their software without knowing, and

if they are eventually made aware of this behavior, they’ll have to engage in complex

profiling and debugging in order to trace it.

For this reason, Twisted’s HTTP/2 support needs to tread a fine line. The default

configuration needs to perform well in almost all circumstances without substantial

overhead, with a minimal goal of performing at least as well as the HTTP/1.1

implementation. Otherwise this feature will end up punishing users that enable it,

making it completely worthless.

 Separating Concerns and Reusing Code
The final, and most important, design goal was to avoid reinventing too many wheels.

A substantial anti-pattern when designing networked applications is to build custom

components, rather than to glue in preexisting implementations of solved problems.

This is particularly tempting when working with frameworks like Twisted, which tend to

require care when integrating preexisting solutions to avoid blocking the event loop. The

reason for this is that the specific mechanisms to use to avoid blocking the event loop

usually differ from framework to framework, and so it is profoundly tempting to write

custom code for each framework: the cost of doing so is that it is impossible to reuse

large chunks of code across multiple frameworks.

Chapter 11 twisted and http/2

344

Fortunately, the Python ecosystem already contained a “sans-io” HTTP/2

implementation. This is a protocol stack that can be used to parse and serialize the

HTTP/2 protocol but that does not understand anything about I/O. Implementations

like this are designed to be glued into frameworks like Twisted, and they allow a

substantial amount of code reuse.

This is one of the most-important design patterns in network programming, and so

bears repeating: wherever possible, you should strive to separate your protocol parser

from your specific I/O implementation. Your protocol parser should operate only on

in-memory buffers of bytes, whether consuming or producing them, and should have no

mechanism to either obtain bytes from the network or provide them to the network. This

design pattern allows you to much more easily transport your protocol parser from one I/O

pattern to another, as well as making it vastly easier to test and extend your protocol parser.

Having this design goal changes the nature of the work. The Twisted HTTP/2

implementation handles the portions of the HTTP/2 protocol that require writing bytes

to and from the network, setting and handling timers, and translating the HTTP/2 events

into the twisted.web interface. The sans-io HTTP/2 implementation is responsible

for parsing the byte stream into HTTP/2 events, and turning the function calls from

twisted.web into bytes to emit.

This code reuse also allows more time to be spent optimizing the portions of the

implementation where Twisted can add the most value. Twisted’s implementation

focuses heavily on reducing the latency of data reaching the network, propagating

backpressure efficiently, and reducing unnecessary system calls or I/O overhead. This is

much easier to do when the core protocol logic is factored out into a separate project.

In general, when working on “standard” problems, this is the best approach to use.

It shrinks the size of the code base, avoids spending too much engineering time solving

problems that have already been solved, and allows you to focus on improving the

efficiency and scalability of your solution.

 Implementation Concerns
Once the design goals were decided, work could begin on the code. While for many

developers this is the fun part, it’s also often where a number of unforeseen surprises can

occur. Additionally, it’s common to find that there are aspects of a design that are simple

enough when discussed conceptually, but that become substantially more tricky when

they are translated into code. This section covers a number of specific concerns that

relate to the concrete implementation.

Chapter 11 twisted and http/2

345

 What Is a Connection Anyway? The Value of Standard
Interfaces
In twisted.web, there are a number of objects that cooperate to implement HTTP

support. The simplest version of this relates the underlying TCP Transport to the

HTTPChannel and Request objects. This relationship is shown in Figure 11-1.

Figure 11-1. The three most-important objects to provide HTTP support in Twisted

When implementing HTTP/2 support, we discovered that the standard Twisted

HTTP request handler (twisted.web.http.Request) expects to be passed a reference to

the HTTP connection handling object in the form of twisted.web.http.HTTPChannel

(or something with a similar interface: frustratingly, the expected interface was never

codified). In the constructor for Request it reached into the channel it was just passed

and pulled out the transport attribute to save on itself. All subsequent calls to Request.

write to write out the response body would be proxied through to transport.write.

transport.write would invoke the write function on whatever the transport object

was. This object will be something that implements twisted.internet.interfaces.

ITransport: another of those zope.interface interfaces used extensively within

Twisted. In this case, ITransport is a particularly common interface that is used to

represent any kind of writable data transport. This is commonly a low-level stream

Chapter 11 twisted and http/2

346

protocol such as TCP, but can in practice be anything that provides a stream writing

interface. In the old HTTP/1 model, this would almost always be the underlying TCP

transport.

This layering violation ends up working just fine for HTTP/1.1 because once the

response headers are sent, the response body can be treated as just an arbitrary byte

stream. However, this very much does not work for HTTP/2: multiplexing, priority, and

flow control all make it extremely important to prevent applications making arbitrary

writes to the TCP connection.

As part of the HTTP/2 work, then, we needed to clean this up. However, we couldn’t

simply remove these properties: they’re part of the public API of the Request and need to

be preserved.4

The most straightforward change was to make the HTTP/1.1 twisted.web.http.

HTTPChannel object an implementer of ITransport that proxied most of its methods

through to its underlying transport. This ensures that the HTTPChannel does a better job

of encapsulating its own resources by ensuring that users do not need to reach inside it to

write the response body, and also resolves some semantic issues with the previous design.

Essentially, a HTTPChannel should be a transport for responses, rather than an object that

has a transport down in which responses can be sent. Of course, due to the backward

compatibility policy, HTTPChannel could not have its transport property removed, so it

does not truly encapsulate the transport, but discouraging its use is an important first step.

Once this was done, the internal implementation of Request could be changed

to use the HTTPChannel for every call that originally went to the transport. Essentially

every instance of self.transport in the body of a Request method was changed to self.

channel. This ensured that Twisted’s default implementation of HTTP request handling

now appropriately respected the intended abstraction between TCP connection and

HTTP connection.

Unfortunately, we couldn’t create a clean break here due to Twisted’s compatibility

policy. A large number of HTTP/1.1 applications created with Twisted Web already

existed, and some number of them inevitably directly wrote to the transport (or

otherwise handled the transport, for example, to reach in and retrieve TLS certificates).

For this reason, the transport property could not be removed from the HTTPChannel

and would also need to be present on whatever object was provided as the HTTP/2

equivalent.

4 The virtues of backward compatibility are better explained in https://twistedmatrix.com/
documents/current/core/development/policy/compatibility-policy.html.

Chapter 11 twisted and http/2

https://twistedmatrix.com/documents/current/core/development/policy/compatibility-policy.html
https://twistedmatrix.com/documents/current/core/development/policy/compatibility-policy.html

347

As discussed in the previous section, the multiplexing in HTTP/2 requires multiple

cooperating objects to provide the needed abstractions. This also means that there

are two separate objects that together provide the same interface as HTTPChannel. The

Request only needs a subset of the HTTPChannel interface. That portion of the interface

was placed on the H2Stream for compatibility purposes.

Due to the need for Request to get the transport property from its channel,

H2Stream needs a transport property as well. However, there is no need for the HTTP/2

code to continue to make the same abstraction violation available as the HTTP/1.1

code has: given that there are no legacy API requirements, it just needs to be possible to

access the property. For this reason, all H2Stream objects have a transport property that

is always set to None.

This is a good example of a situation that could have been made much easier by

the existence of standard interfaces between the Request and HTTPChannel objects.

When originally created, it was not foreseen that it may be necessary to have each of

these objects support multiple possible implementations of their partner object, so the

interfaces used between these two objects were not formally defined. This lack of formal

definition means that the effective interface of these objects is their entire API surface: all

methods and all properties.

This kind of broad and implicit interface leads to enormous difficulty when

attempting to create extra abstraction layers. If the person re-implementing an object

needs to completely emulate its entire public API, it gets substantially harder to offer

alternative implementations and to build appropriate abstractions.

However, on the positive side, the majority of the effective interface that Request

needed from HTTPChannel was defined, in the form of ITransport. Because Request

spent the majority of its time writing to the transport of HTTPChannel, and because that

transport could only reasonably be assumed to be an implementer of ITransport, it was

very easy to identify what methods needed to be added to HTTPChannel and what their

behaviors should be. Once this was done, it was a simple matter to identify what the

effective API H2Stream needed to present was.

Due to a lack of focus on extensibility during the early years of Twisted Web,

integrating HTTP/2 was harder than it needed to be. However, it could have been a lot

worse: thanks to the wide usage of interfaces throughout all of Twisted’s code, fixing

these abstraction violations was a much more tractable problem than it could otherwise

have been.

Chapter 11 twisted and http/2

348

This should be an important lesson to future engineers: when the system is designed,

it will likely be designed in terms of high-level interfaces between components. These

interfaces should be codified in the code, because they provide extremely helpful

guidance about what each component expects of the others and allows much more

tractable extension and enhancement of components in future.

 Multiplexing and Priority
One of the most complex parts of HTTP/2 is its multiplexing support. This core feature

of HTTP/2 was introduced to allow multiple HTTP request/response pairs to use the

same TCP connection by sending and receiving them simultaneously on the same TCP

connection. This approach has a number of advantages over HTTP/1.1’s use of multiple

concurrent TCP connections:

 1. It uses fewer system resources. Each TCP connection takes up

a file descriptor in the operating system of both the client and

the server, which increases the amount of work both operating

systems must do to keep track of network connections. It also

increases the amount of memory used in both the kernel, which

must allocate data structures to keep track of the connections,

and in Twisted applications, which allocate a number of data

structures to manage each transport.

 2. It leads to better throughput and higher data transfer rates. The

most widely-deployed TCP congestion control algorithms were

designed with the expectation that there would be no more than

one TCP connection between any two hosts at any one time.5

The result of having many connections between the two hosts,

particularly if they’re all transmitting bulk data (a usage pattern

common on the web), is that the throughput of the multiple

concurrent connections fails to reach the maximum possible

throughput on the link.

5 More specifically, the algorithms assume that packet loss events for each TCP connection on the
system are independent: that a packet loss event on one connection does not have anything to
do with the behavior of the others. For multiple TCP connections between the same two hosts
doing bulk data transfer this assumption does not hold: packet loss events most often occur
because the link is saturated, and as a result packet loss will likely occur on most or all of the TCP
connections all at once. This causes all the TCP connections to halve their data throughput all at
once, leaving the link underutilized for long periods of time.

Chapter 11 twisted and http/2

349

 3. It keeps connections “hotter.” If TCP connections become idle

for a long period of time they are prone to being closed (either

by middleboxes or either peer) or to returning to a “slow-start”

state where previous knowledge of the congestion on the link

is discarded. In either case, when that connection comes to be

reused it will have a long period of low throughput as the TCP

slow-start phase progresses and, if the connection was closed, it

will also have the added latency of the TCP and TLS handshakes.

“Hot” connections, which are connections that are in constant or

almost-constant use, avoid both of these problems, which reduces

latency and increases throughput.

Multiplexing is achieved in HTTP/2 by dividing a single HTTP/2 connection into

a number of bidirectional “streams.” Each stream carries a single HTTP request and its

associated response. This is achieved very simply, by giving each stream a unique identifier

and ensuring that each frame of data that belongs to that stream carries that stream

identifier. This allows the single ordered stream of data provided by a TCP connection to be

divided up into multiple logical streams of data, as shown in Figure 11- 2.

Figure 11-2. Streams are interspersed blocks of data. They can be interleaved in
any order.

However, simply tagging all the data with its appropriate stream identifier is not

enough. To explain why, consider what might happen with a hypothetical website that

acts as a cloud picture gallery. This website has two purposes: it displays images, and it

accepts user input to make changes to them. Each user input triggers an API request/

response: additionally, the user scrolling or editing will cause the server to stream down

another image file.

Chapter 11 twisted and http/2

350

The API requests/responses will typically be very small: for example, they may be

JSON documents that consist of only a few hundred bytes. The images are proportionally

much larger: maybe many megabytes in size. Additionally, the images require no

computation to generate: they’re stored on disk, and so their data is constantly available

for the web server to serve.

A possible problem, then, is that the server may completely fill the HTTP/2

connection with data for the image streams, blocking the data for the API responses. The

API responses form a proportionally small fraction of the data that needs to be sent, but

that data is much higher priority than the data for the images. Users are probably willing

to wait for thumbnails to load, but they are much less likely to be willing to wait for all

the images to download until they see the effects of their UI interactions.

This problem exists for most multiplexed data transfer media: How do we ensure

that the highest priority data arrives as soon as possible while ensuring the connection

is always maximally utilized? There are many possible solutions to this problem, but

HTTP/2 uses a scheme that involves clients setting stream priorities.

Stream priorities allow clients to inform the server about the relative importance of

the data on different streams. The intent of this data is to allow servers to decide how to

apportion its scarce resources to the different requests the client is making. In general,

the primary resource that servers have to dole out is bandwidth, but more complex

servers can also use this information to portion out things like CPU time, file descriptors,

or disk space: really any limited resource.

The simplest possible stream priority scheme is to simply assign each stream a

numerical priority. A stream with a higher number is more important than one with a

lower number, and should be served first. This kind of scheme tends to struggle due to its

lack of expressiveness: while it allows you to indicate that some data is more important

than other data, it critically fails to allow you to express how much more important that

data is.

The simplest possible scheme that works pretty well is to give every stream a

numerical weight. This weight reflects the stream’s relative importance: if stream X has

twice the weight of stream Y, then it is roughly twice as important to serve. The advantage

of this approach is that it can be used to hand resources out proportionally: in the prior

example, stream X should be allocated twice the resources of stream Y. This allows

clients to signal that they believe that it is more important to get a timely response to

stream X than to stream Y, and exactly how important they believe it is.

Chapter 11 twisted and http/2

351

This simple approach was used by HTTP/2’s predecessor protocol, SPDY. However,

when it came time to specify HTTP/2, the HTTP Working Group believed that this

approach was insufficiently expressive and that it left a few use cases out. In particular,

it did not allow the client to easily express the constraint “only use your resources on

stream A if you cannot use them on stream B for some reason.” Put another way, this

allows the client to say “Stream A is worthless without the result of stream B, so don’t

spend any time on A unless stream B is blocked for some reason.”

For this reason, HTTP/2 has a much more complex priority system. This system

allows the client to specify a tree of priorities, where each node in the tree depends upon

its parent node above it. These priorities do not affect “control” data, such as HTTP

headers: they are only used to indicate the priority of the requested resource.

For Twisted’s web server, it is extremely difficult for us to apportion most of the

non-bandwidth resources discussed above, as we do not have sufficient insight into the

user’s application to know exactly what questions we should ask. As a result, we can only

divide up the bandwidth. To do this as performantly as possible in Twisted, we make a

simple approximation to dividing up the bandwidth: we divide up the frames instead.

For example, if we have streams A and B with weights 32 and 64 respectively, a perfect

implementation of the priority algorithm would allocate stream A 1/3 of the bandwidth

and stream B the other 2/3. Accurately doing this would require splitting up data that

arrives in each call the user makes to transport.write, which would entail repeatedly

copying that data into and out of buffers. This kind of repeated slicing and copying of

memory is extremely slow without a high-performance buffer to use for this purpose

(something not available in Twisted at the time of development and not in scope for this

work), which means we want to avoid it as much as possible.

To avoid doing this slicing we can keep the data as-written and instead give each

stream a number of frames equal to its relative weight. Each time there is room in the

send buffer for more data to be sent, the Twisted implementation will check which of

the streams that have data to send should send next, based on the stream weighting. We

then send a single data chunk up to the maximum frame size6 for that stream, and then

rinse and repeat. This kind of frame-based multiplexing is a common pattern in network

protocol design, and can be used for arbitrary framed protocols quite easily.

6 The eagle-eyed reader will note that Twisted sets no upper limit on the size of the data passed to
write(), which means that this data chunk may be larger than the HTTP/2 maximum frame size.
If this happens, we will have to do a memory copy anyway; it’s unavoidable.

Chapter 11 twisted and http/2

352

The building and maintaining of this priority tree are handled by the third-party

priority library. This library builds and maintains the priority state as sent by the client,

and provides an iterable that incrementally instructs the Twisted implementation which

stream should be served next. It also includes information from the Twisted application

about whether each stream has any data available to send. Streams that have no data

to send are considered blocked, and the fractions of the TCP connection that would

normally be assigned to those streams are instead split among the streams that are child

dependencies.

The need to run all data through a loop around the priority tree adds a wrinkle to the

data sending pipeline that doesn’t exist in the HTTP/1.1 implementation. For HTTP/1.1,

all writes of the response data can be passed directly through to the underlying TCP

connection object, which can be responsible for handling buffering and sending data.

For HTTP/2, we don’t want to do that because we need to interleave the writes according

to the relative stream priorities.

Even more importantly than that, the implementation needs to be responsive

to changes in the stream priorities sent by the client: if the client increases the

priority of a stream, we want that to be reflected in the data as soon as possible. If the

implementation eagerly writes all stream data to the TCP connection object it can lead

to a large buffer of data waiting to be sent that is allocated according to the old stream

priorities, rather than the new ones. For situations where the TCP throughput on the

connection is much lower than the rate data is generated in the Twisted application, this

can lead to multiple-second delays before the priority change is reflected in the actual

data: clearly unacceptable.

For this reason the Twisted HTTP/2 implementation needs to do its own internal

buffering of data and to send data asynchronously to the calls to transport.write. This

is done by repeatedly using IReactor.callLater to schedule a function that will send

the highest priority available chunk of data.

The use of callLater allows us to avoid overfilling the send buffer by paying attention

to backpressure from the TCP connection (see the next section for more details), as well as

to ensure that we send all available data without blocking any calls to write.

The core of the data sending function looks like this (with error handling and some

edge cases removed for clarity):

class H2Connection:

 def _sendPrioritisedData(self, *args):

 stream = None

Chapter 11 twisted and http/2

353

 while stream is None:

 try:

 stream = next(self.priority)

 except priority.DeadlockError:

 # All streams are currently blocked or not progressing. Wait

 # until a new one becomes available.

 self._sendingDeferred = Deferred()

 self._sendingDeferred.addCallback(self._sendPrioritisedData)

 return

 # Wait behind the transport. This is managed elsewhere in this class,

 # as part of the implementation of IPushProducer.

 if self._consumerBlocked is not None:

 self._consumerBlocked.addCallback(self._sendPrioritisedData)

 return

 remainingWindow = self.conn.local_flow_control_window(stream)

 frameData = self._outboundStreamQueues[stream].popleft()

 maxFrameSize = min(self.conn.max_outbound_frame_size, remainingWindow)

 if frameData is _END_STREAM_SENTINEL:

 # There's no error handling here even though this can throw

 # ProtocolError because we really shouldn't encounter this problem.

 # If we do, that's a nasty bug.

 self.conn.end_stream(stream)

 self.transport.write(self.conn.data_to_send())

 # Clean up the stream

 self._requestDone(stream)

 else:

 # Respect the max frame size.

 if len(frameData) > maxFrameSize:

 excessData = frameData[maxFrameSize:]

 frameData = frameData[:maxFrameSize]

 self._outboundStreamQueues[stream].appendleft(excessData)

 # If for whatever reason the max frame length is zero and so we

 # have no frame data to send, don't send any.

Chapter 11 twisted and http/2

354

 if frameData:

 self.conn.send_data(stream, frameData)

 self.transport.write(self.conn.data_to_send())

 # If there's no data left, this stream is now blocked.

 if not self._outboundStreamQueues[stream]:

 self.priority.block(stream)

 # Also, if the stream's flow control window is exhausted, tell it

 # to stop.

 if self.remainingOutboundWindow(stream) <= 0:

 self.streams[stream].flowControlBlocked()

 self._reactor.callLater(0, self._sendPrioritisedData)

This function can be broken into four logical parts. The first checks whether there

are any streams that are considered “able to progress” (that is, that have data available

to send and space in their flow control window7 to send it). If there aren’t then we don’t

have any data to send, so we set up a Deferred that will be called back when a stream

becomes unblocked for any reason.

The second part checks whether we have space in the send buffer. This is another bit

of signaling done by a Deferred: if there is a Deferred in self._consumerBlocked, then

Twisted has signaled to us that the send buffer is full and that we should avoid writing.

Again, we return without doing any work and ensure that when the Deferred fires, this

function will be called. In both of these cases the function will not be recalled until the

situation that blocked its progress has been resolved.

The third and fourth sections have to do with the sending of actual data. In this

case, we have a stream that has data available to send and room in the send buffer to

send it. We then pop a chunk of data (previously written in a call to write) off a deque.

If that object is the _END_STREAM_SENTINEL, then the body is complete, and we need to

complete sending the stream. Otherwise, we create a data frame that can send the data,

and optionally do some other state management.

As a final step, if we sent any data, we schedule this method to be recalled using

callLater, as noted earlier.

This approach, while dramatically more complex than the logic required to send

data for HTTP/1.1, is the core of the HTTP/2 multiplexing approach. This added

7 For more on flow control windows, see the next section on backpressure.

Chapter 11 twisted and http/2

355

computational complexity makes HTTP/2 slower in Python code than HTTP/1.1, but

vastly improves the network performance of the protocol.

The above approach is a model for how to handle complex multiplexed data sending or

any kind of buffered sending logic: a single function that can be repeatedly called each step of

the way and that can be rescheduled easily if for any reason it is unable to do any work (e.g.,

because the transport cannot accept more data, or because there is no data to send).

 Backpressure
A frequent mistake made by novice programmers when working with asynchronous

systems like Twisted is to not consider how they will handle overload conditions.

Asynchronous networking frameworks like Twisted vastly increase the amount of

network traffic an application can potentially handle, but the application code written by

developers using the framework may not be able to keep up with the amount of data that

Twisted and the operating system can process.

All networked applications are at risk of encountering a situation where work is

entering the system faster than it can be processed. A simple example of this is a web

application that can process a single request in 10 ms running on a single CPU core. If

this application is exposed to a constant load of less than 100 requests per second, then

everything is fine.

What happens when this exact same system is exposed to a level of load that exceeds

100 requests per second? There are many possible answers to this question, but the standard

behavior of most Twisted applications in this system is that they will buffer the data.8

This approach is often reasonable for “spiky” load: if the load on the system only

briefly exceeded 100 requests per second and then dropped back below that level, then

the requests will briefly see higher latencies (the time taken to respond to the request)

due to them sitting in the buffer for a while before they get processed, but the Twisted

application will serve the data out of the buffer faster than the new data arrives and so

the buffer will slowly become empty.

However, if the load exceeds 100 requests per second for a sustained period of time

or substantially exceeds that level (e.g., by hundreds or thousands of times), then the

buffering represents a problem. The latency seen by each request will climb, potentially

8 Well, mostly. It depends on what the 10 ms is spent doing. If most of this 10 ms is spent waiting
for other things to happen (e.g., database queries), then Twisted will buffer. If that 10 ms is spent
entirely doing computation on the CPU, then the behavior will be different. For now, we assume
that the former situation is what occurs.

Chapter 11 twisted and http/2

356

to a level that makes it indistinguishable from failure (most users will not wait more than

a second or two for a response to a request, so a 20-second request latency is equivalent

to request failure for these users). Worse is the fact that if the overload persists the buffer

will continue to grow, and if left unchecked will eventually consume all of the memory

in the system. The best possible outcome of this is that the operating system will kill the

process: in the worst case, the process will begin to swap, which will vastly slow down its

computation and reduce the processing speed of the application, making it even harder

for the application to handle the overload.

As a result, scalable Twisted applications need to be prepared for overload. The

most common way to handle this is to create systems that propagate backpressure.

Backpressure is a signal from one system to another that says “you are submitting work

faster than I can complete it, please slow down.” Correctly propagating backpressure

through an asynchronous application allows that application to communicate how

much work it can process through to the portions of the system that ingest work.

A good example of propagating backpressure is, ironically, blocking I/O. When

sending data over TCP with blocking I/O, if the remote peer is not reading data fast

enough, a call to send will eventually block until the remote peer consumes enough data

to allow your OS to continue sending. This forcibly slows down the sending application

such that it sends data no faster than the remote application can read it from the socket.

 Backpressure in Twisted
Currently, in Twisted, backpressure is propagated by having transports and protocols

implement two interfaces: IPushProducer and IConsumer. In general the Transport

implements IPushProducer and the Protocol implements IConsumer, though in more

complex systems (such as the HTTP/2 implementation in Twisted) the same object may

implement both IConsumer (for inbound data) and IPushProducer (for outbound data).

These two interfaces are very simple:

class IPushProducer(IProducer):

 """

 A push producer, also known as a streaming producer is expected to

produce (write to this consumer) data on a continuous basis, unless it

has been paused. A paused push producer will resume producing after its

resumeProducing() method is called. For a push producer which is not

pauseable, these functions may be noops.

 """

Chapter 11 twisted and http/2

357

 def pauseProducing():

 """

 Pause producing data.

 Tells a producer that it has produced too much data to process for

the time being, and to stop until resumeProducing() is called.

 """

 def resumeProducing():

 """

 Resume producing data.

 This tells a producer to re-add itself to the main loop and produce

more data for its consumer.

 """

class IProducer(Interface):

 """

 A producer produces data for a consumer.

 Typically producing is done by calling the write method of a class

implementing L{IConsumer}.

 """

 def stopProducing():

 """

 Stop producing data.

 This tells a producer that its consumer has died, so it must stop

producing data for good.

 """

class IConsumer(Interface):

 """

 A consumer consumes data from a producer.

 """

 def registerProducer(producer, streaming):

 """

 Register to receive data from a producer.

Chapter 11 twisted and http/2

358

 This sets self to be a consumer for a producer. When this object

runs out of data (as when a send(2) call on a socket succeeds in

moving the last data from a userspace buffer into a kernelspace

buffer), it will ask the producer to resumeProducing().

 For L{IPushProducer} providers, C{pauseProducing} will be called

whenever the write buffer fills up and C{resumeProducing} will only

be called when it empties.

 @type producer: L{IProducer} provider

 @type streaming: C{bool}

 @param streaming: C{True} if C{producer} provides L{IPushProducer},

 C{False} if C{producer} provides L{IPullProducer}.

 @raise RuntimeError: If a producer is already registered.

 @return: L{None}

 """

 def unregisterProducer():

 """

 Stop consuming data from a producer, without disconnecting.

 """

 def write(data):

 """

 The producer will write data by calling this method.

 The implementation must be non-blocking and perform whatever

buffering is necessary. If the producer has provided enough data

for now and it is a L{IPushProducer}, the consumer may call its

C{pauseProducing} method.

 """

The most-important parts of these interfaces are IPushProducer.pauseProducing,

IPushProducer.resumeProducing, and IConsumer.write. The rest are administrative,

relating to telling the consumer about the producer and telling the producer that the

consumer can no longer accept data.

Chapter 11 twisted and http/2

359

When an IConsumer is experiencing too much load, such that they would like data

to stop coming in to them, they can call pauseProducing on their registered producer.

When they’re ready to accept more work, they call resumeProducing. At this point, the

consumer’s registered producer will start calling write again until the IConsumer calls

pauseProducing again.

 Backpressure in HTTP/2
HTTP/2 has two signaling methods for backpressure, both using flow-control

algorithms. The first one is shared with HTTP/1.1, becuase it’s actually built into

TCP, which both HTTP/1.1 and HTTP/2 use. TCP maintains a receiver window that

communicates a receiver’s capacity back to the sender. If one end of the TCP connection

stops reading from the socket, the other end will eventually find that it is not allowed to

send further data.

Additionally, HTTP/2 maintains four further flow-control windows of its own: two

for the connection as a whole (one for data sent from the client to the server, and one

for data from the server to the client) and two for each stream (again, one for each

direction). These flow-control windows limit how much data each peer is allowed to

send: the stream windows manage how much data may be sent on a given stream, while

the connection window controls how much may be sent on the connection as a whole.

Each of these windows can also be used to propagate backpressure: letting any of

these window sizes go to zero will force the remote peer to stop sending some or all of its

data. This means that we want to be able to propagate these backpressure signals sent

from the client to the Twisted server. We also want to be able to propagate backpressure

signals from the Twisted application to the client: if the web application is processing

data more slowly than the client can send it, we should slow down data delivery

appropriately.9

The strategy for this is twofold: add support for the Twisted servers to both emit and

consume backpressure, and manage our HTTP/2 flow-control windows appropriately.

Let’s talk about emitting and consuming backpressure first.

9 Note that this is distinct from the case where a peer no longer wants the data at all. If a peer
simply no longer wants the HTTP/2 stream to continue any longer, it can outright cancel that
stream by means of a specific HTTP/2 frame, called RST_STREAM. This is not directly related to
backpressure, but is worth noting.

Chapter 11 twisted and http/2

360

One key wrinkle of the IConsumer/IPushProducer interface is that these two

interfaces are one-to-one. This means that each consumer can have only one producer,

and each producer can be producing for only one consumer at once. This is problematic

for HTTP/2, when we have multiple streams of data, each of which can propagate

backpressure individually.

The easiest way to work around this is to define a HTTP/2 connection in terms of two

objects, not one. The first object owns the underlying TCP transport, and registers itself

as both a producer to and consumer of that transport: in the code, this class is twisted.

web._http2.H2Connection.

When new streams are initiated by the client, this object creates a new object to

handle the stream data and to be both a producer to and consumer of the application

code: in the code, this class is twisted.web._http2.H2Stream. Between these two

objects we use a custom interface that exists only for HTTP/2 to allow the connection

to tell the stream when it should pause its producer because that stream can no

longer send (H2Stream.flowControlBlocked) and when the window size has been

changed (H2Stream.windowUpdated). The H2Stream converts these calls into calls to

pauseProducing & resumeProducing on its application. Similarly, the H2Stream allows

the application to call pauseProducing to prevent the stream from delivering more data.

When called, this will cause the H2Stream to begin to buffer data rather than deliver it to

the application.

This rather confusing relationship is diagrammed in Figure 11-3.

Chapter 11 twisted and http/2

361

A stream may become “blocked” if any of the flow-control windows associated

with it is zero. That is, if the TCP stream blocks (the transport calls pauseProducing

on the H2Connection), all of the H2Stream objects owned by that connection will

call pauseProducing on their applications. Additionally, if the connection flow-

control window goes to 0, all of the H2Stream objects will call pauseProducing on

their applications. Finally, if a stream-specific window goes to 0, the H2Stream object

associated with that stream will call pauseProducing on its application, but the others

will not.

Figure 11-3. The producer/consumer relationships between the various objects
in a HTTP/2 connection. Each line represents a single producer/consumer
relationship. Note that these relationships are not always implemented with the
IProducer/IConsumer interfaces, as discussed in this section.

Chapter 11 twisted and http/2

362

This buffer is not unbounded, however. It’s bounded by the stream flow-

control window. You see, the H2Connection also offers another API to the H2Stream:

H2Connection.openStreamWindow. This function is called by the H2Stream when it

has delivered data to the application, and not a moment before. This means that if

production is paused by the application, the stream window will not get opened, and so

will eventually be exhausted by the remote peer, which will be allowed to send no more

data on that stream until the application starts processing the backlog.

It is important to note that even if the application is unable to process more data, the

H2Connection does not prevent the client from sending more data on the TCP connection.

This is because HTTP/2 uses a number of control frames to manage flow- control windows

and connection state. These extra control frames cannot be used to cause excessive data

buffering, so there is no reason to prevent the client from sending them.

Applications that appropriately opt in to propagating backpressure are given a much

richer experience with HTTP/2 than they get with HTTP/1.1. Slower portions of the

application, or portions that are interacting with slower clients, can happily slow down

without limiting the overall concurrency of the system. This also ensures that applications

that serve data over HTTP/2 can handle overload gracefully and carefully, degrading their

service in a managed way that prevents them from being completely overwhelmed.

Applications can opt in to this signaling by ensuring that their request handler

registers an IPushProducer for each Request it handles. twisted.web.http.Request

provides IConsumer for exactly this purpose.

It should be noted that the IConsumer/IPushProducer interface is limited and does

not necessarily offer all of the richness that a backpressure-propagating API should

do. To see an example of a better interface that may eventually supplant IConsumer/

IPushProducer, take a look at tubes.10

 Current Status and Future Expansion
The Twisted HTTP/2 implementation was shipped in Twisted 16.3, which was released

in July of 2016. The implementation is gated behind a number of optional dependencies

that must be installed to enable it, as well as some requirements on the OpenSSL version

that Twisted is using. These gates effectively place the HTTP/2 support in an ongoing

“beta” state.

10 https://twisted.github.io/tubes/

Chapter 11 twisted and http/2

https://twisted.github.io/tubes/

363

Since the initial release, a number of enterprising users have opted in to the support

and have helped track down bugs and report issues. The result is that Twisted’s HTTP/2

stack is now running on an enormous number of machines with few to no problems.

This is an enormous success, and a very positive sign for the ongoing health of the

project.

There are a few natural directions for expansion of this work. The first and largest

is to tackle writing a HTTP/2 client that transparently shims into the current HTTP/1.1

client. This is a substantial chunk of work that has not yet been seriously attempted,

though some of the precursor work has been laid down.

The other major focus for work is to start exposing APIs for taking advantage

of HTTP/2’s features. In particular, HTTP/2 enables server push, which allows

servers to optimistically begin sending resources that a client may need to render

a page. An interesting future enhancement would be to allow Twisted applications

to programmatically emit pushed resources by exposing an appropriate API. This

could be extended with Link header parsing to support pushes from traditional WSGI

applications.

Finally, an API that allowed more configuration of the HTTP/2 stack would be a

useful extension. Currently there is no support for allowing Twisted applications to

modify the HTTP/2 configuration, either globally or on a per-connection basis. Adding

this support is a necessary evolution toward providing a fully feature-complete HTTP/2

implementation.

 Summary
In this chapter, we introduced the HTTP/2 protocol defined in RFC 7540. We discussed

the extension of twisted.web to support this protocol, focusing on the goals of the

design for that integration, as well as some of the specific concerns that arose during

the implementation. We also covered the importance of backpressure in concurrent

programming, as well as the importance of interface design to the extensibility of

interfaces. Finally, we summarized the current state and future direction of Twisted’s

HTTP/2 support.

Chapter 11 twisted and http/2

365
© Mark Williams, Cory Benfield, Brian Warner, Moshe Zadka, Dustin Mitchell, Kevin Samuel, Pierre Tardy 2019
M. Williams et al., Expert Twisted, https://doi.org/10.1007/978-1-4842-3742-7_12

CHAPTER 12

Twisted and Django
Channels
 Introduction
The following sections will dive into the structure of Django Channels and the

technologies used in building it, and will try to tease out useful design details that can be

used whenever you’re building complex multi-tier distributed applications intended to

scale horizontally.

Python was one of the earliest programming languages to define a standard interface

between web applications and web servers that wasn’t based on CGI, the Common

Gateway Interface. CGI, while effective, was not particularly fast or high performance,

so a need was identified to develop a richer interface between servers and applications,

ideally one that took advantage of language primitives and features.

In 2003 the Python core development team adopted PEP 333, which defined the Web

Server Gateway Interface (WSGI). WSGI is an API specification that allows web servers

that are capable of creating Python objects and calling Python functions (either from

Python or via the C API) to invoke web applications in a standardized way. The goal of

WSGI was to decouple web application frameworks from web servers, such that any web

server can run any Python web application.

From this perspective, WSGI was enormously successful. Most readers of this

book will not remember a world before WSGI, and so the above description will seem

perplexing: How could there be a world where web frameworks and web servers were

not decoupled? In the post-WSGI world the Python community has seen a proliferation

of great web application frameworks (such as Django and Flask) and great web servers

(such as uWSGI, gunicorn, and Twisted) build on top of WSGI’s flexibility.

366

However, it is not a perfect protocol. In particular, a WSGI server invokes a WSGI

application by calling a synchronous Python function and blocking execution until it

returns. This fundamentally synchronous invocation of a Python application in WSGI

means that WSGI applications cannot easily be written in an asynchronous manner. At

the surface level, this causes programmers some inconvenience: they can’t use Twisted

or the async and await keywords. At a more foundational level, however, it makes

Python web applications somewhat inefficient: each concurrent web request they

handle requires a brand new operating system thread to process. The inefficiency of this

approach is well-understood: after all, it’s part of why Twisted exists!

Django Channels represent an attempt to allow Django applications to be written

in a more concurrent manner, while retaining backward compatibility with WSGI

applications. This is quite a substantial chunk of work, and so “Django Channels”

actually cover a wide range of related technical projects. These include a new interface

for server-to-application communication, the Asynchronous Server Gateway Interface

(ASGI); a reference web server that implements the server portion of this interface

(Daphne); and a Django application that enables Django to handle ASGI requests.

The net effect of Django Channels is to refocus Django away from requests and

responses and toward “events.” This allows Channels-based applications to handle not

just HTTP requests and responses, but things like WebSockets or even plain TCP/UDP

data. This is achieved by dividing the complete web stack into three parts:

 1. An ASGI server. This server is responsible for accepting the

incoming connections and translating from the write protocol

(e.g., HTTP) to ASGI messages, placing those messages into

queues (“channels”), and receiving messages from those channels

and translating them back into wire protocol data. In the reference

implementation, this is Daphne, a Twisted-based web server.

 2. A “channel back end,” which is basically a data store that can be

used as a message broker. For trivial applications this can just be

some shared memory, but in larger applications this will usually

be a Redis deployment.

 3. One or more “workers.” These workers listen on some or all of the

channels and run relevant code when there are messages to process.

The workers may be sequential and threaded but also may not be.

This is where the traditional Django application code will run.

Chapter 12 twisted and django Channels

367

Of these three parts, both 1 and 3 can integrate with Twisted. However, most Django

users will stick with regular synchronous Django code for their worker code, at least for

the foreseeable future, so there is relatively little of interest to say on that point.

The more interesting thing to focus on is Daphne and the design of the Channels

system. Channels represents a useful worked example of how to structure complex

multi-layer distributed systems using Twisted and message brokering. This chapter will

use Channels in exactly this way. It will also discuss Channels as it relates to Autobahn, a

WebSocket implementation for Twisted.

 Channels Building Blocks
The fundamental components of Channels are a collection of well-known and trusted

software tools. This is a major advantage in the design of Channels. For software as

important and widely used as Django, it is important to favor reliability and certainty

over the “cool” factor of a software component.

As discussed earlier, Channels is divided into three components. Each of those

components is built on top of a single piece of core software.

The first component, Daphne, is a web server built on top of twisted.web. Daphne’s

operation goals also include supporting WebSockets, a protocol that is not supported in

Twisted core, so Daphne makes some modifications to twisted.web in order to also use

Autobahn to provide WebSocket support. It should be emphasized here that Daphne is a

surprisingly small chunk of code that is mostly responsible for translating the HTTP and

WebSocket protocols into Channels messages on queues, and handling reading from

queues to write data back to connections.

The third component, the Channels “workers,” are Python processes running the

Django web framework and the Channels application. This application is responsible

for listening on and sending to appropriate queues and generally hiding the Channels

abstraction from the application code. The magic here is that the regular Django-using

code base can be used almost without change, allowing for seamless upgrade from non-

Channels- using Django deployments.

The second component is the only non-Python component in the stack: Redis.

Redis is an open source in-memory key-value database that supports a number of data

structures. While its primary function is as a database, it has a number of properties that

make it useful as a message broker, including the ability to safely manage queues.

Chapter 12 twisted and django Channels

368

Each of these components can be deployed independently from the others, and

implements a different part of the Channels topology. Taken together they form the

complete web application, with Daphne handling the protocol support and talking to

clients, Django handling the business logic, and Redis providing its services as a message

broker between the other two services.

 Message Brokers and Queues
A key design feature of Django Channels is that all regular Django applications need to

continue to work as normal when running with Channels, but with one added feature:

the ability to scale horizontally independent of the web servers serving the HTTP traffic.

Essentially, regular Django applications that previously blocked the serving of web traffic

must suddenly become asynchronous, allowing the web server to avoid blocking while

it waits for the response to be delivered. How can this be achieved without changing any

lines of code?

The key is the addition of a message broker. A message broker, or queueing system,

is a common component in distributed systems. Its purpose is to route messages from

a number of message producers to a different number of message consumers, without

requiring those producers or consumers to know anything about how to find each other.

Generally message brokers use a FIFO queue as their core abstraction. Components of

the system that produce work do so by adding work items to the back of the FIFO queue.

These items are pulled off the front of the queue by one or more “worker processes” that

are responsible for taking some action based on the submitted work. This system has

many advantages: it can be used as a service discovery tool, and it also provides a useful

decoupling between the sender of a message and the receiver of that message.

The advantage of a message broker like this is that it separates the runtime of the

different components. In WSGI, the web application is tightly coupled with the execution

model of the web server, because the web server is required to call a Python function that

will block until execution completes. This tight integration means that the web server

and the web application cannot have different approaches to concurrency: both end up

being required to run single-threaded synchronous code.1

1 This is not quite true: twisted.web, an asynchronous webserver, is somehow able to run
synchronous blocking WSGI applications. It does this by invoking the WSGI application in a
background thread and using a Deferred to communicate the result of that invocation back to the
server. This does work, but it still means that the core of the business logic is being dispatched to a
synchronous pool of background threads: not ideal from the perspective of scaling!

Chapter 12 twisted and django Channels

369

With the addition of a message broker between the web server and web application,

each can have a different paradigm for execution. More than that, they can use whatever

paradigm will still allow them to submit work to and receive work from the message

broker. In this case Daphne, a Twisted-based asynchronous web server, can interact

with the message broker using its asynchronous programming model, while traditional

single-threaded synchronous Django handlers can run in the workers without getting in

the way.

More importantly, we can now have vastly more worker processes than web servers.

This greatly improves the performance of traditional web applications: rather than

taking up precious time holding Python’s Global Interpreter Lock, each invocation of the

application can be done in a separate process.

This allows Django applications to become synchronous but parallel. Each Django

request handler can be a regular synchronous blocking Python function, but the entire

application can run as many of these as necessary in as many processes as they like in

parallel. More importantly, the number of worker processes can be scaled dynamically

and independently of the number of web servers. This allows independent horizontal

scaling of each component of the application based on where bottlenecks are, which

grants much more efficient use of resources.

Message brokers are a commonly used tool to add asynchrony to fundamentally

synchronous programs. By allowing multiple instances of single-threaded synchronous

code to run at once in separate processes or threads, it becomes possible to increase the

amount of asynchrony in an application without needing to fundamentally rewrite it.

On top of that, message brokers allow you to avoid worrying about how to coordinate

these multiple parallel workers. Each worker acts as though it’s in its own little world,

adding and removing data from queues without worrying about where that data comes

from or goes. The message broker is responsible for ensuring that as many workers as

needed are able to access data and process it appropriately.

While message brokers are not a panacea, they are a great tool for enabling scale and

concurrency in non-concurrent programming models.

 Distributed Multi-Layer Systems in Twisted
Django Channels is not just a useful tool for deploying horizontally-scalable web

applications, it is also a useful example of a common construction of a distributed

multi- layer software system.

Chapter 12 twisted and django Channels

370

A distributed multi-layer software system is a system that is constructed by

separating the responsibilities of the system into “layers” that communicate among each

other using some kind of messaging bus. In the case of an application using Django

Channels, this will typically be a 3-layer architecture of Daphne, Django, and whatever

database is used to persist the Django models (e.g., MySQL or PostgreSQL), but the idea

of a multi-tiered architecture is substantially more general.

Asynchronous networking frameworks like Twisted are frequently a key component

of multi-tiered systems. This is largely because multi-tier systems inevitably incur

latency due to their use of either formalized or ad hoc RPC (“remote procedure call”)

mechanisms. As each node in a given tier in the system will want to use system resources

as effectively as possible, multi-tier systems that use asynchronous programming

techniques are vastly more scalable and efficient than those that do not.

The canonical multi-tier architecture divides the application into three tiers,

each responsible for a separate aspect of the application. Typically this involves one

tier devoted to storing data (a database), one tier devoted to performing application

or business logic, and one tier devoted to presentation. This kind of pattern is very

common, and in fact the very common “model-view-controller” pattern is closely

related to this canonical construction.

When writing multi-tiered applications in Twisted, it is necessary to define the

communication mechanism between the tiers. However, in all cases what ends up being

built is a form of RPC to allow the individual tiers to request that the other tiers do work.

Given that these applications require an RPC layer anyway, you’ll save yourself a lot of

time and effort by relying on some kind of standard RPC mechanism.

The most common choice for RPC is REST, an excellent choice given Twisted’s

excellent support for HTTP, but depending on your application any number of different

RPC mechanisms may be sensible choices. The key to this kind of architecture is to

know that the nature of Twisted application design lends itself very nicely to writing

RPC-based applications: once your core application expects asynchrony, adding more

layers of asynchrony is often relatively simple. With careful RPC choices and application

design, it becomes possible to allow arbitrary horizontal scaling of your application. The

world’s largest web projects are all built in this style, and it’s useful to know that Twisted

gives you plenty of tools to embrace it yourself.

Chapter 12 twisted and django Channels

371

 Current Status and Future Expansion
On September 9th, 2016, Channels was adopted as an official Django project. This

means that it is managed under the auspices of the Django project and the Django

Software Foundation, but it is not part of the core Django repository. The project remains

under active development and is production ready.

It now also supports most of the major features. HTTP/1.1, HTTP/2, and WebSockets

are all fully supported, though much like with core Twisted, some HTTP/2-only features

are not yet supported. Redis is supported as the primary channel back end, but in-

memory back ends are also supported for smaller deployments.

The future directions for Django Channels are many and varied. As a complex

framework for deploying concurrent web applications, there are multiple possible

directions for expansion. Additional channel back ends, alternative ASGI servers, and

even compatibility layers for different web frameworks: all of these and more could be

fruitful directions of enhancement. Wider support for alternative protocols would also

likely be of some value to the project.

Of course, the ideal long-term future would be to adopt the Channels model in

Django core as the default execution model. This would provide default support for

highly scalable application design in Django, helping ensure that developers build their

applications for future scalability from day one.

 Summary
In this chapter we introduced Django Channels, a framework that allows developing

web applications using the Django web application framework in a concurrent,

asynchronous programming model. We discussed the basic architecture of Channels

and introduced its building block technologies. We then discussed how these building

blocks can be repurposed for arbitrary multi-level distributed system design, and how

such a system could be designed to use Twisted to its fullest. Finally, we discussed the

future growth of Channels.

Chapter 12 twisted and django Channels

373
© Mark Williams, Cory Benfield, Brian Warner, Moshe Zadka, Dustin Mitchell, Kevin Samuel, Pierre Tardy 2019
M. Williams et al., Expert Twisted, https://doi.org/10.1007/978-1-4842-3742-7

Index

A
Access Control Lists (ACLs), 248
AccountFileChecker class, 244
AccountURLChecker, 242
aiohttp, 312
Allocator state machine, 268–270
asDeferred helper function, 313
assertNoResult, 278
async / await constructs, 288
Asynchronous exception handling

callback method, 66–67
deferred implementation, 70–71
encounter exceptions, 68–69
Errbacks, 68

Asynchronous Message Protocol
(AMP), 128, 214

commands, 218
custom plugin, 216–218

Asynchronous programming, 3, 63
Asynchronous Server Gateway Interface

(ASGI), 366
Asynchronous testing, deferreds, 277
asyncio package, 305
asyncio and Twisted

event loops, 306
asyncio.get_event_loop, 307
asyncio.set_event_loop, 307
epoll, Linux, 307
event loop policies, 307
kqueue, macOS, 307

reactor, 307
reactor selection, 307
system event triggers, 308
twisted.internet.reactor, 307

PEP 3156, 305
promises, 306

asyncio.Future class, 306
asyncio.get_event_loop_policy, 307
asyncio.set_event_loop_policy, 307
Async services, Buildbot’s code

addService, 325
AsyncMultiService, 325
ClientService class, 326
disownServiceParent, 325
IService, 324
IServiceCollection, 324
MessageQueueConnector, 326
orthogonal problem, 324
serialization, 324
setServiceParent, 325
startService, 324

Autobahn, 259, 286–287
Automat, 268

B
Biased coin toss, 215
Buildbot

defined, 317
history

async build steps, 322–323

https://doi.org/10.1007/978-1-4842-3742-7

374

Buildbot’s Async Python, evolution
(see Buildbot’s Async Python)

HTTP API, 318
Mozilla, 318
synchronous APIs, 321–322
Tinderbox, 317

request/response cycle, 323
synchronous approach, 323

Buildbot 0.9.0, 318
Buildbot’s Async Python

additional features, 320
async/await, 321
asyncio, 321
Builder.startBuild method, 318
callbacks, 319
Deferred, 319
deferredGenerator, 320
errors, 319
inlineCallbacks, 320
NodeJS, 321
synchronous model, 321
Twisted Python, 318

Buildbot’s code
asynchronous tools, 323
automated testing, 336
concurrency barriers, 333–334
db module, 328
DB API, 338
debouncing, 323–324
Deferred, testing, 337
Docker protocol, 332–333
fake components, 338
flushEventualQueue

method, 327
HTTP API, 329
HttpClientService, 330
HTTP sessions, 330–332

LRU caches, 327
reactor thread, 333
re-entrancy, 333
SQLAlchemy, 328–329
synchronous libraries, 327
thread-pool functions, 334–335
Trial, 337

buildbot.test.fake.fakemaster.FakeMaster
class, 338

C
callLater, 353

logical parts, 354–355
Canonical multi-tier architecture, 370
Case study, HTTP proxy with

aiohttp and treq
aiohttp server, 312
aiohttp.web.StreamResponse, 315
asFuture helper, 315
asyncio reactor, 313
coroutine, 313
Deferred.fromFuture, 313
ensureDeferred, 313
handler, 313
Twisted’s Headers, 315
HTTP headers, 315
inlineCallbacks, 313
proxy, implementation, 313–314
URL echoing service, 313
web browser, 316

CGI standard
environment parameter, 182
environment variables, 182

Clock() instance, 283
Common gateway interface (CGI), 179
Connection hints, 257
Content-Disposition header, 238

Buildbot (cont.)

Index

375

Content Distribution Network (CDN), 197
Content-hash key (CHK), 225
Continuation-passing style technique, 62
_convert_error, errback handler, 247
Coroutines

async method, 90
await methods, 91, 95, 97
ensureDeferred, 97–98
future-like object, 94–95
JIT, 98
in python, yields from

generator, 88–89
send, throw method, 90
stack of generators, 92

CORS policy, 294
Crossbar.io, 296–297, 299
Cryptographic hash function, 238

D
Daemonization tools

Tahoe command-line tool, 231
.tap files, 231

Daphne, 367
defer.cancel(), 263
Deferred.addCallback function, 306
Deferred.fromFuture class method, 311
DeferredLock, 336
DeferredQueue, 336
Deferreds, 272–274, 306

cancellation, 263
vs. state machines, 268

DeferredSemaphore, 336
Delegate API, 268
DelegatingResource, 201
Demultiplexing, 8
Dependency load, 230

Diffie-Hellman key-exchange protocol, 255
Dircap, 225
Distributed hash table (DHT), 260
Distributed multi-layer systems, 370
Django Channels, 365–366

components of, 367
current status, 371
future directions, 371

Docker, 157
build images, 160–161
client, 159
container images, 158–159
containers, 157–158
defining, 157
multi-stage build, 161–163
Python on

automation with dockerpy, 173
built options, 172
copying environment, stages, 173
copying Pex executable file,

stages, 173
copying wheels, stages, 172–173
full environment

deployment, 163, 165–168
Pex file, 170–171
virtualenv, 169–170

registry, 160
runc and containerd, 159
Twisted on

custom plugin, 174
ENTRYPOINT and PID 1, 174
NColony, 175–178

Docker API library, 332
Dynamic configuration

A/B testable pyramid app, 214–215
AMP, custom plugin, 216–219
control program, 219–220

Index

376

E
Event-driven programming, 3, 63

defining, 4
event handlers, 7
event loop, 7
events, 7
flow control, 49–50
value of, 33–34, 36

Event handlers, 6–7
requestField, 60

Event loop, 6–7
Events

interfaces with zope.interface,
46, 48–49

multiple, 5–7
in time

complexity, 42
DelayedCall instance, 41–43
with LoopingCall, 44–46
reactor.callLater, 41

F
failureResultOf(), 278, 281
Feed aggregation, 110–111

first draft
deferreds, 125
handlers, 123
implementation, 126–127
klein.Plating object, 121
Plating.CONTENT

slot, 122
render method, 125
retrieveFeed method, 125
SimpleFeedAggregation

class, 123–125
Slow Increment page, 122

project directory structure, 129

File resource, 199
Filecaps, 225
File-transfer protocol (FTP), 223
Flow control

event-driven programming, 49–50
Twisted

consumers, 54–57
push producers, 51–54, 57

flushEventualQueue() function, 282
Front-end protocols, 233
FTPAvatarID object, 244
FTP front end

avatar, 243
checker, 242
endpoint, 242
portal, 243
protocol factory, 242
realm, 243
root dircap, 242

Function composition tool, 60
Future.add_done_callback, 306
Futures, 272

G
Generators

generatorFunction, 81
send method, 81, 83
throw method, 84–85
yield expression, 80–81

get_size() method, 236
get_tor() function, 279–280
Guidelines, asyncio and Twisted

asyncio.Futures, 309
asyncio’s coroutines, 308
code, interoperability, 310
Deferreds, 308, 311
IReactorCore’s API, 308

Index

377

Task, 309
task.react, 311
Twisted’s asyncio reactor, 310
Twisted’s deferreds, 309

H
HAProxy, 208
H2Stream, 347
HTTP/2, 339–340

backpressure, 359–362
multiplexing, 348–350

problem, 350
priority, 351–352

HTTP AJAX request, 285
HTTP headers, 183
HTTP long polling, 259
HTTP processing chain, 240
HTTP protocol, 237
HTTP proxy, 305
HTTP PUT and POST actions, 228
HTTP response code, 183
HyperText Transfer Protocol (HTTP), 339

I
IANA standard, 185
inlineCallbacks

deferred execution, 85
requestFieldGenerator, 86–88

@inlineCallbacks function, 278
Integration test, 278
Interface, 342

polymorphism, 342
Internet Engineering Task Force

(IETF), 339
I/O Completion Ports (IOCP), 63
IPushProducer, 359–360, 362

IReactor, 353
IReactorCore.addSystemEventTrigger, 308
IReadable’s read() method, 236
ITransport, 345, 347

J
Jenkins, 336
Just In Time (JIT), 98

K
Klein, 109

amount argument, 116
decodes message, 116
decorator, 115
Deferreds, 117–118
templates with plating, 118–119, 121
test-driven development (see Test- driven

development)
URL pattern, 116
virtual environment, 115
Werkzeug’s routing documentation, 115

L
libp2p protocol, 260
list() method, 246
Load balancer, 208–210

M
Magic wormhole tool

code, 253
Python-based command-line tool, 254
receiver screenshot, 254
sender screenshot, 254
workflow diagram, 255
working, 255, 257

Index

378

makePromiseResolverPair() function, 272
Merkle hash trees, 238
Message broker/queueing system, 368–369
mkdir command, 226
Multiplexing

busy wait, 8
defining, 8
event loop, 8
mainloop, 7
sockets, 9

Mutable slots
readcaps, 225
writecaps, 225

MySQL, 328

N
NColony, 175–178
Network drive indicator, 226
Network protocols and client

compatibility, 258
Non-blocking IO

complex programs, 23
tracking state, 19–23
when to stop, 18–19

O
One-shot observers, 271–272
originalCoroutine object, 310
originalDeferred object, 310
originalFuture object, 310

P, Q
Packaging/distribution, 230
Pattern match routing model, 197
PEP 3153, 305
PEP 3156, 305

Pipeline, 272
pip tool, 110
_populate_row() method, 246
PostgreSQL, 328
Promises, 272

arrow function, 273
Deferred.addCallback, 306
Deferreds and Futures, behavior, 306
event loop, 307–308
TC39 standards organization, 273

Publish/Subscribe (PUB/SUB), 287, 300
Pyramid framework, 186–187
Python, 365

Autobahn library, 287
on Docker

automation with dockerpy, 173
built options, 172
copying environment, stages, 173
copying Pex executable file,

stages, 173
copying wheels, stages, 172–173
full environment

deployment, 163, 165–168
Pex file, 170–171
virtualenv, 169–170

versions, 4
Python 3, 230
Python and JavaScript, raw Websocket

HTML code, 293–294
Python server, 292–294

Python Enhancement Proposal
(PEP), 180–181

PYTHONPATH environment variable, 192
python-requests library, 329
Python to Python, raw Websocket

autobahn, 290–291
client console, 291
echo server, 288–289

Index

379

self.sendMessage(), 292
server console, 292

Python 3 virtualenv, 287

R
Raspberry Pi, 286
reactor.seconds(), 205
read() method, 238
Rendezvous server, 255

architecture, 260–261
database, 262

Request.write, 345

S
sans-io HTTP/2, 344
Secure Socket Layer (SSL), 194
select multiplexer

event-driven clients and servers, 15–18
event loop with, 13–15
handling events, 12–13
history, siblings, and purpose, 9
socket events, 11

client and server, 12
readable event, 11
timeout, 11
writable event, 11

and sockets, 9–10
self.assertFailure() clause, 277
Server name indication (SNI), 195, 197
Server sent events, 259
SFTP front end, 248
Single Page Applications (SPA), 123
SPAKE2 protocol

diagram, 256
protocol, 256

SQLite, 328

SSH secure shell encryption layer, 248
start_response parameter, 182
Static files

CDN, 197–198
leaf resource, 199
manifest, 199
postpath, 202
setup.py, 199
superclass constructor, 202
WSGI, 200–202

successResultOf(), 278, 281
sum() function, 298
SynchronousTestCase, 337
Synchronous testing

deferreds tools, 278
eventual send, 275–276, 281, 283

T, U, V
Tahoe-LAFS

architecture, 227–229
clients, 224
distributed storage system, 223
FTP, 223
grid diagram, 224
introducers, 224
servers, 224
twisted usage, 229–230

.tap files, 231
Test-driven development

installable project, test on, 128–131
interface, 128
Klein with StubTreq

Channel and Item classes, 138
FeedAggregation instance, 139
FeedAggregationTests, 133
HTML and JSON feed

renderings, 133, 135

Index

380

HTTP services, 131
implementation, 135, 136
law of Demeter, 133
resource() method, 132
root method, 133, 136
_service.py, 137, 138
setUp method, 132
solution, 137
XPaths, 135

logging with twisted.logger,
143–144, 146, 148

running twisted applications, 149–154
testing treq with Klein, 140–143

then() method, 273
Transit client, 262–265
Transit connection, 257
Transit relay server, 265–266
Transport layer security (TLS), 194

encryption, 194
endpoint authentication, 194

Transports and protocols
clients and servers, 31–32
dataReceived and connectionLost

methods, 26
interface, 25
managing complexity, 23–24
PingPongProtocol, 26

behaviors, 27
control flow, 31
dataReceived records, 27
doRead and doWrite

mirror, 30
identity string, 27
loseConnection, 30
_onCompletion, 30
read function, 28, 30
Transport’s interface, 27–28

write method, 28
Protocol interface, 25
reactors, 24–25
read function, 25
Twisted and reactors, 33

transport.write, 345, 353
Travis-CI, 336
treq, 109, 312

client API, 112
decorator, 113
Deferred, 112–113
dependency injection, 112
download function, 112
encapsulation, 110
feed aggregator, 111
feedparser, 113–114
library, 330
test-driven development (see Test-

driven development)
virtual environment

(virtualenv), 111, 112
Trial, 337
Twisted, 305

APIs
filepath permission, 250
IFTPShell interface, 249
pipsi tool, 250

on Docker
custom plugin, 174
ENTRYPOINT and PID 1, 174
NColony, 175–178

flow control system
consumers, 54–57
push producers, 51–54, 57

tap plugin, 189
and Real World, 36–38, 40

Twisted HTTP/2, 353
backpressure, 357, 359

Test-driven development (cont.)

Index

381

current status and future
expansion, 362–363

design goals
optimized behavior, 343
reusing code, 343–344
seamless integration, 341

objects of, 345
parameters affecting, 343

twisted.internet.task.react, 307
Twisted’s deferred

addCallback method, 71, 73
callbacks, 76, 78, 79
data flow, 78
errback method, 73, 76
event handlers

continuation-passing style, 62
function composition, 60–61
onCompletion callback, 62
requestField, 59–60

failures, 74
multiplexing, 99–101
placeholder, 63–64, 66
testing, 102, 104–106

txrequests library, 330
txtorcon variable, 279

W, X, Y, Z
Web Application Programming Interface

(WAPI), 234
Web front end

directories, 237
disk saving, 238
FileNodeHandler, 235
HTTP error codes, 240–241
Nevow, 236
range header, 238–239
root resource, 234

URIHandler resource, 234
WAPI call, 234

WebOb package, 185–186
Web Server Gateway Interface (WSGI), 365
WebSocket, 259

authentication platform, 286
caching processes, 286
defined, 286
propagating events, 285
pushing notifications, 285
signaling changes, 285
Twisted

Autobahn ecosystem, 286
autobahn, installing, 287
micro-service architecture, 286
remote code, 287
WAMP, 287

website notifications, 286
WebSocket Application Messaging

Protocol (WAMP), 287
authentication, 295
broadcast messages, 295
client call, 296
client code, 298
compatible router, 296
errors, 295
events, 295
html extension, 303
JS client, 299–301
manage errors, 295
pair up messages, 294
py extension, 303
Python client, 300–301
realm, 298
routed RPC, 300
RPC part, 295
serialization, 295
win32api, 296

Index

382

Web stack, divisions, 366
Web Standard Gateway Interface

(WSGI), 179
See also WSGI server

Web user interface (WUI), 234
Werkzeug, 109
Wormhole client

architecture, 267
mailbox, 267
Nameplate, 267

wsgiref module, 183–185

WSGI server, 297
application, 181–182
built-in scheduled tasks, 203, 205–206
callable Python object, 185
custom plugin, 189
default path, 191
demo web application, 188
--port option, 188
production vs. development, 192–193
python-m twisted, 188
setup.py, 192

Index

	Table of Contents
	About the Authors
	About the Technical Reviewers
	Acknowledgments
	Introduction
	Part 1: Foundations
	Chapter 1: An Introduction to Event-Driven Programming with Twisted
	A Note About Python Versions
	What Is Event-Driven Programming?
	Multiple Events
	Application(tkinter.Tk()).mainloop()
	Multiplexing and Demultiplexing
	The select Multiplexer
	Its History, Its Siblings, and Its Purpose
	select and Sockets
	The How and Why of Socket Events
	Handling Events
	An Event Loop with select
	Event-Driven Clients and Servers

	Non-blocking I/O
	Knowing When to Stop
	Tracking State
	State Makes Programs Complex

	Managing Complexity with Transports and Protocols
	Reactors: Working with Transports

	Transports: Working with Protocols
	Playing Ping-Pong with Protocols and Transports
	Clients and Servers with Protocols and Transports
	Twisted and Reactors, Protocols, and Transports

	The Value of Event-Driven Programming
	Twisted and the Real World
	Events in Time
	Repeated Events with LoopingCall

	Event Interfaces with zope.interface
	Flow Control in Event-Driven Programs
	Flow Control in Twisted with Producers and Consumers
	Push Producers
	Consumers
	Pull Producers

	Summary

	Chapter 2: An Introduction to Asynchronous Programming with Twisted
	Event Handlers and Composition
	What Is Asynchronous Programming?
	Placeholders for Future Values
	Asynchronous Exception Handling
	An Introduction to Twisted’s Deferred
	Callbacks
	Errbacks and Failures
	Composing Deferreds

	Generators and InlineCallbacks
	yield
	send
	throw
	Asynchronous Programming with inlineCallbacks

	Coroutines in Python
	Coroutines with yield from
	Coroutines async and await

	Awaiting Deferreds
	Coroutines to Deferreds with ensureDeferred
	Multiplexing Deferreds
	Testing Deferreds
	Summary

	Chapter 3: Applications with treq and Klein
	Why Libraries?
	Feed Aggregation
	Introducing treq
	Introducing Klein
	Klein and Deferreds
	Klein Templates with Plating

	A First Draft of Feed Aggregation
	Test-Driven Development with Klein and treq
	Running Test on an Installable Project
	Testing Klein with StubTreq
	Testing treq with Klein
	Logging with twisted.logger
	Running Twisted Applications with twist

	Summary

	Part 2: Projects
	Chapter 4: Twisted in Docker
	Intro to Docker
	Containers
	Container Images
	Runc and Containerd
	Client
	Registry
	Build
	Multi-stage Build

	Python on Docker
	Deployment Options
	Full env

	Virtualenv
	Pex
	Build Options
	One Big Bag
	Copying Wheels Between Stages
	Copying Environment Between Stages
	Copying the Pex Executable Between Stages
	Automation with Dockerpy

	Twisted on Docker
	ENTRYPOINT and PID 1
	Custom Plugins
	NColony

	Summary

	Chapter 5: Using Twisted as a WSGI Server
	Introduction to WSGI
	PEP
	Raw Example
	Reference Implementation
	WebOb Example
	Pyramid Example

	Getting Started
	WSGI Server
	Finding Code
	Default Path
	PYTHONPATH
	setup.py
	Why Twisted
	Production vs. Development
	TLS
	Server Name Indication
	Static Files
	Resource Model
	Pure Static
	Combining Static Files with WSGI
	Built-In Scheduled Tasks
	Control Channels

	Strategies for Using Multiple Cores
	Load Balancer
	Opening Socket in Shared Mode
	Other Options

	Dynamic Configuration
	A/B Testable Pyramid App
	Custom Plugin with AMP
	Control Program

	Summary

	Chapter 6: Tahoe-LAFS: The Least-Authority File System
	How Tahoe-LAFS Works
	System Architecture
	How It Uses Twisted
	Problems We’ve Run Into
	Daemonization Tools

	Internal FileNode Interfaces
	Front-End Protocol Integration
	The Web Front End
	File Types, Content-Type, /name/
	Saving to Disk
	Range Headers
	Error Conversion on the Return Side
	Rendering UI Elements: Nevow Templates

	The FTP Front End
	The SFTP Front End
	Backward-Incompatible Twisted APIs
	Summary
	References

	Chapter 7: Magic Wormhole
	What It Looks Like
	How It Works
	Network Protocols, Transfer Latency, Client Compatibility
	Network Protocols and Client Compatibility

	Server Architecture
	Persistent Database

	Transit Client: Cancelable Deferreds
	Transit Relay Server
	Wormhole Client Architecture
	Deferreds vs State Machines, One-Shot Observer
	One-Shot Observers
	Promises/Futures vs. Deferreds
	Eventual-Send, Synchronous Testing
	Asynchronous Testing with Deferreds
	Synchronous Testing with Deferreds
	Synchronous Testing and Eventual Send

	Summary
	References

	Chapter 8: Push Data to Browsers and Micro-services with WebSocket
	Why WebSocket?
	WebSocket and Twisted
	Raw WebSocket, from Python to Python
	Raw WebSocket, Between Python and JavaScript
	More Powerful WebSocket with WAMP
	Summary

	Chapter 9: Applications with asyncio and Twisted
	Core Concepts
	Promises
	Event Loops

	Guidelines
	Case Study: A Proxy with aiohttp and treq
	Summary

	Chapter 10: Buildbot and Twisted
	History of Buildbot
	The Evolution of Buildbot’s Async Python
	Migrating Synchronous APIs
	Async Build Steps

	Buildbot’s Code
	Async Utilities
	Debounce
	Async Services
	LRU Cache
	Eventual
	Interfacing with Synchronous Code
	SQLAlchemy
	requests
	Docker
	Concurrent Access to Shared Resources
	Yield as a Concurrency Barrier
	Thread-Pool Functions Should Not Mutate State
	DeferredLocks
	Testing
	Fakes

	Summary

	Chapter 11: Twisted and HTTP/2
	Introduction
	Design Goals
	Seamless Integration
	Most-Optimized Behavior by Default
	Separating Concerns and Reusing Code

	Implementation Concerns
	What Is a Connection Anyway? The Value of Standard Interfaces
	Multiplexing and Priority
	Backpressure
	Backpressure in Twisted
	Backpressure in HTTP/2

	Current Status and Future Expansion
	Summary

	Chapter 12: Twisted and Django Channels
	Introduction
	Channels Building Blocks
	Message Brokers and Queues
	Distributed Multi-Layer Systems in Twisted
	Current Status and Future Expansion
	Summary

	Index

