

Exploring Cloud Computing
Selected by Michael Wittig and Andreas Wittig

Manning Author Picks

 Copyright 2017 Manning Publications
To pre-order or learn more about these books go to www.manning.com

Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

http://www.manning.com/

For online information and ordering of these and other Manning books, please visit
www.manning.com. The publisher offers discounts on these books when ordered in quantity.

For more information, please contact

Special Sales Department
Manning Publications Co.
20 Baldwin Road
PO Box 761
Shelter Island, NY 11964
Email: orders@manning.com

©2017 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by means electronic, mechanical, photocopying, or otherwise, without prior written
permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial caps
or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books we publish printed on acid-free paper, and we exert our best efforts to that end.
Recognizing also our responsibility to conserve the resources of our planet, Manning books
are printed on paper that is at least 15 percent recycled and processed without the use of
elemental chlorine.

Manning Publications Co.
20 Baldwin Road Technical
PO Box 761
Shelter Island, NY 11964

Cover designer: Leslie Haimes

ISBN 9781617294877
Printed in the United States of America
1 2 3 4 5 6 7 8 9 10 - EBM - 21 20 19 18 17 16

Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

http://www.manning.com

iii

contents
Introduction iv

THE CLOUD AT YOUR SERVICE 1
What is cloud computing?
Chapter 1 from The Cloud at Your Service by Jothy Rosenberg 

and Arthur Mateos 2

AMAZON WEB SERVICES IN ACTION 20
What is Amazon Web Services?
Chapter 1 from Amazon Web Services in Action by Michael Wittig 

and Andreas Wittig. 21

GOOGLE CLOUD PLATFORM IN ACTION 53
Trying it out: Deploying Wordpress on Google Cloud
Chapter 2 from Google Cloud Platform in Action by JJ Geewax 54

SERVERLESS ARCHITECTURES ON AWS 71
Going serverless
Chapter 1 from Serverless Architectures on AWS by Peter Sbarski 

with Sam Kroonenburg 72

AWS LAMBDA IN ACTION 87
Running functions in the cloud
Chapter 1 from AWS Lambda in Action by Danilo Poccia 88

 index 109

Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

iv

introduction
Cloud Computing is enabling many trends in IT today: microservices, pay-as-you-go
pricing, and serverless architectures, to name three. The biggest player in the mar-
ket’s Amazon, who offers the most mature cloud systems through their Amazon Web
Services (AWS). Other companies are gaining traction as well: Google invests into
their Google Cloud Platform, and Microsoft entered the game with Azure.

 One key tenet of microservices is the ability to replace them easily with other
implementations, but that ability also requires that your infrastructure isn’t fixed. If
you add and remove microservices every few weeks, you need a dynamic infrastruc-
ture, and that dynamic infrastructure’s exactly what you get in the cloud.

 Using the cloud is like consuming power. At the end of the month you get a bill for
the resources you’ve consumed. You don’t need to buy resources upfront, and you can
stop using them whenever you want. There’s no capacity planning and no procure-
ment process anymore, which enables you to create SaaS offerings for your customers
with the same pricing model.

 The latest trend created by AWS is serverless computing. You can now run code in
the cloud without managing the underlying operating systems and execution plat-
forms. You upload your code and it’s executed in the cloud. You pay only for the time
the function executes. No more idle resources!

Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

Cloud Computing is a business changer. Today you can start a new busi-
ness that’s able to grow with minimal capital. The cloud provides shared and vir-
tualized resources to use the hardware better than you could personally.
Therefore, prices go down. Cloud environments can be fully automated because
you can programmatically talk to your infrastructure using APIs. Chapter 1 of
The Cloud at Your Services explains what Cloud Computing is about.

The Cloud
at Your Service
Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

https://www.manning.com/books/the-cloud-at-your-service

Chapter 1 from The Cloud at Your Service by
Jothy Rosenberg and Arthur Mateos

What is
cloud computing?
Cloud computing is the hottest buzzword in the IT world right now. Let’s understand
why this is and what this cloud computing hype is all about. A growing consensus
among cloud vendors, analysts, and users defines cloud computing at the highest
level as computing services offered by a third party, available for use when needed,
that can be scaled dynamically in response to changing needs. Cloud computing
represents a departure from the norm of developing, operating, and managing IT
systems. From the economic perspective, not only does adoption of cloud comput-
ing have the potential of providing enormous economic benefit, but it also pro-
vides much greater flexibility and agility. We’ll continue to refine and expand our

This chapter covers
 Defining the five main principles of cloud computing

 Benefiting from moving to the cloud

 How evolving IT led to cloud computing

 Discussing the different layers (types) of clouds
2

Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

https://www.manning.com/books/the-cloud-at-your-service

3

definition of cloud computing as well as your understanding of its costs and benefits
throughout this book.

 Not only are IT journals and IT conferences writing and talking about cloud com-
puting, but even mainstream business magazines and the mass media are caught up in
its storm. It may win the prize for the most over-hyped concept IT has ever had. Other
terms in this over-hyped category include Service-Oriented Architectures (SOA),
 application service providers, and artificial intelligence, to name a few. Because this
book is about cloud computing, we need to define it at a much more detailed level.
You need to fully understand its pros and cons, and when it makes sense to adopt it,
all of which we’ll explain in this chapter. We hope to cut through the hype; and to do
that we won’t merely repeat what you’ve been hearing but will instead give you a
framework to understand what the concept is all about and why it really is important.

 You may wonder what is driving this cloud hype. And it would be easy to blame
analysts and other prognosticators trying to promote their services, or vendors trying
to play up their capabilities to demonstrate their thought leadership in the market, or
authors trying to sell new books. But that would ignore a good deal of what is legiti-
mately fueling the cloud mania. All of the great expectations for it are based on the
facts on the ground.

 Software developers around the world are beginning to use cloud services. In the
first 18 months that it was open for use, the first public cloud offering from Amazon
attracted over 500,000 customers. This isn’t hype; these are facts. As figure 1.1 from
Amazon’s website shows, the bandwidth consumed by the company’s cloud has
quickly eclipsed that used by their online store. As the old adage goes, “where there’s
smoke, there must be a fire,” and clearly something is driving the rapid uptake in
usage from a cold start in mid-2006.

Figure 1.1 Amazon originally deployed a large IT infrastructure to support its
global e-commerce platform. In less than 18 months after making the platform
available as a cloud service to external users, its usage, as measured by amount
of bandwidth consumed, outstripped bandwidth used internally.
Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

4 CHAPTER 1 What is cloud computing?
Similar to the previous technology shifts—such as the move from mainframes to cli-
ent-server, and then from client-server to the internet—cloud computing will have
major implications on the business of IT. We hope to provide you with the back-
ground and perspective to understand how it can be effectively used as a component
of your overall IT portfolio.

 We’ll begin by expanding on our earlier definition of cloud computing in terms of
its five main principles.

1.1 Five main principles that define cloud computing
We can summarize the five main principles of cloud computing as follows:

 Pooled computing resources available to any subscribing users
 Virtualized computing resources to maximize hardware utilization
 Elastic scaling up or down according to need
 Automated creation of new virtual machines or deletion of existing ones
 Resource usage billed only as used

We assert, with very few notable exceptions called out later, that these five main princi-
ples are necessary components to call something cloud computing. They’re summarized
in table 1.1 with a brief explanation of each one for quick reference.

We’ll now discuss these principles in concrete terms, making sure you understand
what each one means and why it’s a pillar of cloud computing.

1.1.1 Pooled computing resources

The first characteristic of cloud computing is that it utilizes pooled computing assets
that may be externally purchased and controlled or may instead be internal resources
that are pooled and not dedicated. We further qualify these pooled computing
resources as contributing to a cloud if these resources are available to any subscribing
users. This means that anyone with a credit card can subscribe.

 If we consider a corporate website example, three basic operational deployment
options are commonly employed today. The first option is the self-hosting option. Here,

Table 1.1 The five main principles of cloud computing

Resource Explanation

Pooled resources Available to any subscribing users

Virtualization High utilization of hardware assets

Elasticity Dynamic scale without CAPEX

Automation Build, deploy, configure, provision, and move, all without manual
intervention

Metered billing Per-usage business model; pay only for what you use
Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

5Five main principles that define cloud computing
companies choose not to run their own data center and instead have a third party lease
them a server that the third party manages. Usually, managed hosting services lease cor-
porate clients a dedicated server that isn’t shared (but shared hosting is common as
well). On this single principle, cloud computing acts like a shared managed hosting service
because the cloud provider is a third party that owns and manages the physical comput-
ing resources which are shared with other users, but there the similarity ends.

 Independent of cloud computing, a shift from self-hosted IT to outsourced IT
resources has been underway for years. This has important economic implications.
The two primary implications are a shift of capital expenses (CAPEX) to operational
expenses (OPEX), and the potential reduction in OPEX associated with operating the
infrastructure. The shift from CAPEX to OPEX means a lowering of the financial bar-
rier for the initiation of a new project. (See the definition in section 3.1.)

 In the self-hosted model, companies have to allocate a budget to be spent up front
for the purchase of hardware and software licenses. This is a fixed cost regardless of
whether the project is successful. In an outsourced model (managed hosting), the
startup fees are typically equivalent to one month’s operational cost, and you must
commit to one year of costs up front. Typically, the one-year cost is roughly the same
or slightly lower than the CAPEX cost for an equivalent project, but this is offset by the
reduced OPEX required to operate the infrastructure. In sharp contrast, in a cloud
model, there are typically no initial startup fees. In fact, you can sign up, authorize a
credit card, and start using cloud services literally in less time than it would take to
read this chapter. Figure 1.2 showcases side by side the various application deploy-
ment models with their respective CAPEX and OPEX sizes.

 The drastic difference in economics that you see between the hosting models and
the cloud is due to the fact that the cost structures for cloud infrastructures are vastly
better than those found in other models. The reasons for the economies of scale are
severalfold, but the primary drivers are related to the simple economics of volume.
Walmart and Costco can buy consumer goods at a price point much lower than you or
I could because of their bulk purchases. In the world of computing, the “goods” are
computing, storage, power, and network capacity.

1.1.2 Virtualization of compute
resources

The second of the five main
principles of cloud computing
has to do with virtualization of
compute resources. Virtualiza-
tion is nothing new. Most enter-
prises have been shifting much
of their physical compute infra-
structure to virtualized for the
past 5 to 10 years. Virtualization
is vital to the cloud because the

Figure 1.2 IT organizations have several alternatives for
hosting applications. The choice of deployment model has
different implications for the amount of CAPEX (up-front
capital expenditure) and OPEX (ongoing operational costs).
The number of $ signs represent the relative level of CAPEX
and OPEX involved with the choice of deployment model.
Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

6 CHAPTER 1 What is cloud computing?
scale of cloud infrastructures has to be enormous, based on thousands of servers.
Each server takes up physical space and uses significant power and cooling. Getting
high utilization out of each and every server is vital to be cost effective.

 The recent technological breakthrough that enabled high utilization on commod-
ity hardware—and which is the single biggest factor behind the cloud being a recent
IT phenomenon—is virtualization where each physical server is partitioned into many
virtual servers. Each one acts like a real server that can run an operating system and a
full complement of applications.1 Virtualized servers are the primary units that can be
consumed as needed in the cloud. These virtualized servers constitute a large pool of
resources available when required. But having such a large pool will work only if appli-
cations can use more or less of the pool as demands placed on the applications grow
and shrink. As you’ll see in chapter 4, the notion of a private cloud softens this first
principal but keeps all the others.

1.1.3 Elasticity as resource demands grow and shrink

The fact that this large pool of resources exists enables a concept known as elasticity—
the third of our five main principles. Elasticity is such a key concept in cloud comput-
ing that Amazon decided to name its cloud Amazon Elastic Compute Cloud.

 Elasticity—a synonym for dynamic scaling—refers to the ability to dynamically
change how much resource is consumed in response to how much is needed. Typical
applications require a base level of resources under normal, steady-state conditions,
but need more resource under peak load conditions.

 In a non-cloud world, you would have to build sufficient capacity to not only per-
form adequately under baseline load conditions, but also handle peak load scenarios
with sufficiently good performance. In the case of a self-hosted model, this means
over-provisioning the amount of hardware for a given allocation. In the case of a man-
aged hosting deployment, you can start with a small set of resources and grow as the
requirements of the application grow. But provisioning for a new set of dedicated
hardware resources takes weeks or, in many larger organizations, months. Having
thousands of virtualized resources that can be harnessed and released in correlation
to application demand would be useless if such allocation and freeing required man-
ual intervention.

1.1.4 Automation of new resource deployment

The ability to automatically (via an API) provision and deploy a new virtual instance of
a machine, and, equivalently, to be able to free or de-provision an instance, is our
fourth principle of cloud computing. A cloud-deployed application can provision new
instances on an as-needed basis, and these resources are brought online within min-
utes. After the peak demand ebbs, and you don’t need the additional resources, these

1 The rapid shift to multicore servers only strengthens the impact of virtualization. Each virtual machine with
its operating system and full complement of applications can run on its own core simultaneously with all other
virtual machines on the same physical server.
Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

7Benefits that can be garnered from moving to the cloud
virtual instances can be taken offline and de-provisioned, and you will no longer be
billed. Your incremental cost is only for the hours that those additional instances were
in use and active.

1.1.5 Metered billing that charges only for what you use

The fifth distinguishing characteristic of cloud computing is a metered billing model.
In the case of managed hosting, as we mentioned before, there typically is an initial
startup fee and an annual contract fee. The cloud model breaks that economic barrier
because it’s a pay-as-you-go model. There is no annual contract and no commitment
for a specific level of consumption.

 Typically, you can allocate resources as needed and pay for them on an hourly
basis. This economic advantage benefits not only projects being run by IT organiza-
tions, but also innumerable entrepreneurs starting new businesses. Instead of needing
to raise capital as they might have in the past, they can utilize vast quantities of com-
pute resources for pennies per hour. For them, the cloud has drastically changed the
playing field and allowed the little guy to be on equal footing with the largest corpora-
tions.

1.2 Benefits that can be garnered from moving to the cloud
“I’ll never buy another server again,” said the Director of IT for a medium-sized
Software-as-a-Service (SaaS) company, only partially in jest, after recently completing
the deployment of a new corporate website for his organization. This website (a PHP-
based application with a MySQL backend) showcased the corporate brand and the
primary online lead-generation capability for the company’s business.

 Before the overhaul, it was run from a redundant pair of web servers hosted by one
of the leading managed-hosting service providers at a total cost of roughly 
$2,200/month. The company replaced the infrastructure for the original website with
a cloud implementation consisting of a pair of virtual server instances running for
roughly $250/month—almost a 90 percent savings! Its quality of service (QoS) team
monitored the performance and availability of the website before and after the
change and saw no measureable difference in the service quality delivered to end
users. Buoyed by the success with this initial project, this organization is looking at all
future initiatives for the possibility of deployment within the cloud, including a soft-
ware-build system and offsite backup.

1.2.1 Economic benefits of the change from capital to operational expenses

As we said when discussing the five main principles of cloud computing, the fundamen-
tal economic benefit that cloud computing brings to the table is related to the magical
conversion of CAPEX to OPEX. A pay-as-you-go model for resource use reshapes the
fundamental cost structure of building and operating applications. The initial barrier to
starting a project is drastically reduced; and until there is dramatic uptake in the use of
an application that has been developed, the costs for running it remain low.
Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

8 CHAPTER 1 What is cloud computing?
 The good news is that this isn’t the only cost advantage. By harnessing the cloud,
you can also take advantage of cloud providers’ economic leverage because of the vol-
ume at which they can purchase hardware, power, and bandwidth resources.

 In many cases, the economic benefits discussed here will pan out—but as you’ll see
later, there are always exceptions. For some situations and applications, it makes bet-
ter economic sense not to use cloud computing. It isn’t a panacea.

1.2.2 Agility benefits from not having to procure and provision servers

In addition to lowering the financial barrier to initiating new projects, the cloud
approach improves an organization’s agility. It comprehensively reduces the months
of planning, purchasing, provisioning, and configuring.

 Let’s take as an example a performance-testing project launching a new consumer-
facing website. In the old world, there were two ways to solve this problem, depending
on your timeframes and budget. The first involved purchasing a software license for a
load-testing tool like HP Mercury LoadRunner and purchasing the requisite servers to
run the load-testing software. At that point, you were ready to script your tests and run
your test plan. Alternatively, you could hire an outside consulting company that spe-
cialized in performance testing and have it run the tests for you. Both were time-con-
suming exercises, depending on how long it took to negotiate either the licensing
agreement for the software or the consulting agreement with the outside firm.

 Fast-forward to the new world of cloud computing. You have two new faster and more
flexible ways of accomplishing the same task: use an open-source load-testing application
installed on cloud instances, and use the cloud’s virtual machines to perform the load
test (on as many servers as you need). The time required to set up and begin applying
load to a system is under half an hour. This includes signing up for an account, as the
Python open source load-testing tool called Pylot demonstrates (see http://coreygold-
berg.blogspot.com/2009/02/pylot-web-load-testing-from-amazon.html).

 If you’re looking for a more packaged approach, you can use one of the SaaS offer-
ings that uses the cloud to generate traffic. They can automatically run tests in a coor-
dinated fashion across multiple instances running from multiple cloud operators, all
in an on-demand fashion. In either of these scenarios, the time to result is a matter of
hours or days, generating time, not to mention cost efficiencies. We’ll explore more
about cloud-based testing in chapter 7.

1.2.3 Efficiency benefits that may lead to competitive advantages

Adopting cloud technologies presents many opportunities to those who are able to
capitalize on them. As we have discussed, there are potential economic as well as time-
to-market advantages in using the technology. As organizations adopt cloud comput-
ing, they will realize efficiencies that organizations that are slower to move won’t real-
ize, putting them at an advantage competitively.
Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

http://coreygoldberg.blogspot.com/2009/02/pylot-web-load-testing-from-amazon.html
http://coreygoldberg.blogspot.com/2009/02/pylot-web-load-testing-from-amazon.html

9Evolution of IT leading to cloud computing
1.2.4 Security stronger and better in the cloud

Surprised by the heading? Don’t be: it’s true. As you’re aware, corporate buildings no
longer have electrical generators (which they used to) because we leave electricity
generation to the experts. If corporations have their own data centers, they have to
develop standard security operating procedures. But it’s not their core business to run
a secure data center. They can and will make mistakes. A lot of mistakes. The total
annual fraud and security breach tab is $1 trillion, according to cybersecurity research
firm Poneman (www.nationalcybersecurity.com).

 But first, as always, you must weigh the potential benefits against the potential
costs. You must take into account other factors, such as reliability and performance,
before making the leap into the clouds. In future chapters, we’ll address these issues;
but suffice it to say we believe that after you understand them and take the proper
measures, they can be managed. This done, you’ll be able to realize the full benefits of
moving to the cloud.

 In the next section, we’ll look at the evolution of technology that enabled cloud
computing. This short detour into history is important because you can learn from
previous platform shifts to understand what is similar and what is different this time.
That in turn can help you make informed decisions about your shift to this new evolu-
tion of IT—the cloud.

1.3 Evolution of IT leading to cloud computing
Cloud computing didn’t sprout fully formed from the technology ether in 2005. Its
technological underpinnings developed over the course of the last 40 or so years. The
technological process was evolutionary, across several disparate areas. But these
advances, aggregated into a bundle, represent a revolutionary change in the way IT
will be conducted in the future.

 Gillett and Kapor made the first known reference to cloud computing in 1996 in
an MIT paper (http://ccs.mit.edu/papers/CCSWP197/CCSWP197.html). Today’s
common understanding of cloud computing retains the original intent. It was a mere
decade later when a real-world instantiation of the cloud came into existence as Ama-
zon repurposed its latent e-commerce resources and went into the business of provid-
ing cloud services. From there, it was only a matter of a few months until the term
became commonplace in our collective consciousness and, as figure 1.3 shows, in our
Google search requests (they’re the same thing in today’s world, right?).

1.3.1 Origin of the “cloud” metaphor

One common question people ask is, “Where did the term cloud come from?” The
answer is that for over a decade, whenever people drew pictures of application archi-
tectures that involved the internet, they inevitably represented the internet with a
cloud, as shown in figure 1.4.
Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

www.nationalcybersecurity.com
www.nationalcybersecurity.com
www.nationalcybersecurity.com

http://ccs.mit.edu/papers/CCSWP197/CCSWP197.html

http://ccs.mit.edu/papers/CCSWP197/CCSWP197.html

10 CHAPTER 1 What is cloud computing?
Figure 1.3 Cloud computing as a concept entered our collective consciousness
in mid-2007. This figure shows the rapid rise in popularity of the search term cloud
computing as measured by Google. The labels correspond to major cloud
announcements. A: Microsoft announces it will rent cloud computing space; B:
Philadelphia Inquirer reports, “Microsoft’s cloud computing system grow is
growing up”; C: Winnipeg Free Press reports, “Google looks to be cloud-computing
rainmaker.” Source: Google Trends (www.google.com/trends), on the term cloud
computing.

Figure 1.4 A picture of a cloud is a ubiquitous representation of the internet and is used almost
universally in discussions or drawings of computer architecture.

 The cloud in the diagram is meant to convey that anonymous people are sitting at
browsers accessing the internet, and somehow their browser visits a site and begins to
access its infrastructure and applications. From “somewhere out there” you get visitors
who can become users who may buy products or services from you. Unlike internal
customers to whom you may provide IT applications and services, this constituency
exists “somewhere else,” outside of your firewall, and hence outside of your domain of
Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

www.google.com/trends

11Evolution of IT leading to cloud computing
control. The image of a cloud is merely a way to represent this vast potential base of
anonymous users coming from the internet.

 Those users must log in from a PC to access the internet. Technically, each one
needs an Internet Service Provider (ISP) that may be a telecom company, their
employer, or a dedicated internet access company (such as AOL). Each ISP needs a
bank of machines that people can access and that in turn has access to the internet.

 Simply put, the earliest concept of the cloud consisted of large aggregations of
computers with access to the internet, accessed by people through their browsers. The
concept has remained surprisingly true to that early vision but has evolved and
matured in important ways. We’ll explore those ways in detail in this book.

1.3.2 Major computing paradigm shifts: mainframes to client-server to web

In the 1960s, we saw the development of the first commercial mainframes. In the
beginning, these were single-user systems, but they evolved in the 1970s to systems
that were time-shared. In this model, the large computing resource was virtualized,
and a virtual machine was allocated to individual users who were sharing the system
(but to each, it seemed that they had an entire dedicated machine).

 Virtual instances were accessed in a thin-client model by green-screen terminals.
This mode of access can be seen as a direct analog of the concept of virtualized
instances in the cloud, although then a single machine was divided among users. In
the cloud, it’s potentially many thousands of machines. The scarcity of the computing
resource in the past drove the virtualization of that resource so that it could be shared,
whereas now, the desire to fully utilize physical compute resources is driving cloud vir-
tualization.

 As we evolved and entered the client-server era, the primacy of the mainframe as
the computing center of the universe dissolved. As computing power increased, work
gradually shifted away from centralized computing resources toward increasingly pow-
erful distributed systems. In the era of the PC-based desktop applications, this shift
was nearly complete: computing resources for many everyday computing tasks moved
to the desktop and became thick client applications (such as Microsoft Office). The
mainframe retained its primacy only for corporate or department-wide applications,
relegating it to this role alone.

 The standardization of networking technology simplified the ability to connect sys-
tems as TCP/IP became the protocol of the burgeoning internet in the 1980s. The
ascendancy of the web and HTTP in the late 1990s swung the pendulum back to a
world where the thin-client model reigned supreme. The world was now positioned to
move into the era of cloud computing . The biggest stages of the evolution of IT are dia-
grammed vertically in a timeline in figure 1.5.

 The computing evolution we are still in the midst of has had many stages. Platform
shifts like mainframe to client-server and then client-server to web were one dimen-
sion of the evolution. One that may be less apparent but that is having as profound an
Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

12 CHAPTER 1 What is cloud computing?
impact is the evolution of the data center and how physical computing resources are
housed, powered, maintained, and upgraded.

Figure 1.5 Cloud computing is best understood as an evolutionary change.
The key elements and concepts of cloud computing emerged gradually over
several decades through the various predominant computing paradigms.

1.3.3 Housing of physical computing resources: data center evolution

Over the past four decades, there have been tremendous changes in hardware capa-
bilities, specifically in computing power and storage. The ability to quickly process
prodigious amounts of data on inexpensive and mass-produced commodity servers
means that a few inexpensive racks of servers can handle problems that were tackled
on NSA-sized budgets as recently as the early 1990s.

 One measure of the progress in computational power is the cost in Floating Point
Operations Per Second, or FLOPS. FLOPS are simple mathematical operations (such
as addition, multiplication, and division) that can be performed in a single operation
by a computer. Comparing the number of operations that two computers can perform
in one second allows for a rough measure of their computational strength. In 1976,
the state-of-the-art Cray-1 was capable of delivering roughly 150 million FLOPS (mega-
FLOPS) at the price point of $5 million, or over $33,000/MegaFLOPS. A typical quad-
core-processor-based PC today can be purchased for under $1,000 and can perform 
50 GigaFLOPS (billion FLOPS), which comes out to about $0.02/MegaFLOPS.
Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

13Evolution of IT leading to cloud computing
 Similarly, the cost of storage has decreased dramatically over the last few decades
as the capacity to store data has kept pace with the ability to produce terabytes of digi-
tal content in the form of high-definition HD video and high-resolution imagery. In
the early 1980s, disk space costs exceeded $200/MB; today, this cost has come down to
under $0.01/MB.

 Network technologies have advanced as well, with modern bandwidth rates in the
100–1000 Gbps range commonplace in data centers today. As for WAN, the turn of
the millennium saw a massive build-out of dark fiber, bringing high-speed broadband
to most urban areas. More rural areas have satellite coverage, and on-the-go, high-
speed wireless networks mean almost ubiquitous broadband connectivity to the grid.

 To support the cloud, a huge data-center build-out is now underway. Google,
Microsoft, Yahoo!, Expedia, Amazon, and others are deploying massive data centers.
These are the engine rooms that power the cloud, and they now account for more
than 1.2 percent of the U.S.’s total electricity usage (including cooling and auxilia-
ries),1 which doubled over the period from 2000 to 2005. We’ll present the economies
of scale and much more detail about how these mega data centers are shaping up in
chapter 2.

1.3.4 Software componentization and remote access: SOA, virtualization, and SaaS

On the software side of the cloud evolution are three important threads of develop-
ment: virtualization, SOA, and SaaS. Two of these are technological, and the third
relates to the business model.

 The first important thread is virtualization. As discussed previously, virtualization
isn’t a new concept, and it existed in mainframe environments. The new innovation
that took place in the late 1990s was the extension of this idea to commodity hard-
ware. Virtualization as pioneered by VMware and others took advantage of the capac-
ity of modern multicore CPUs and made it possible to partition and time-slice the
operation of commodity servers. Large server farms based on these commodity servers
were partitioned for use across large populations of users.

 SOA is the second software concept necessary for cloud computing. We see SOA as
the logical extension of browser-based standardization applied to machine-to-machine
communication. Things that humans did through browsers that interacted with a web
server are now done machine-to-machine using the same web-based standard proto-
cols and are called SOA. SOA makes practical the componentization and composition
of services into applications, and hence it can serve as the architectural model for
building composite applications running on multiple virtualized instances.

 The final software evolution we consider most pertinent to the cloud is SaaS.
Instead of being a technological innovation, this is a business model innovation. His-
torically, enterprise software was sold predominantly in a perpetual license model. In
this model, a customer purchased the right to use a certain software application in

1 Jonathan G. Koomey, Ph.D. (www.koomey.com), Lawrence Berkeley National Laboratory & Stanford Univer-
sity.
Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

www.koomey.com

14 CHAPTER 1 What is cloud computing?
perpetuity for a fixed, and in many cases high, price. In subsequent years, they paid
for support and maintenance at typically around 18 percent of the original price. This
entitled the customer to upgrades of the software and help when they ran into diffi-
culty. In the SaaS model, you don’t purchase the software—you rent it. Typically, the
fee scales with the amount of use, so the value derived from the software is propor-
tional to the amount spent on it. The customer buys access to the software for a speci-
fied term, which may be days, weeks, months, or years, and can elect to stop paying
when they no longer need the SaaS offering. Cloud computing service providers have
adopted this pay-as-you-go or on-demand model.

 This brings up an important point we need to consider next. SaaS is one flavor or
layer in a stack of cloud types. A common mistake people make in these early days of
the cloud is to make an apples-to-oranges comparison of one type of cloud to another.
To avoid that, the next section will classify the different layers in the cloud stack and
how they compare and contrast.

1.4 Classifying cloud layers: different types for different uses
First, let’s learn a little more about how SaaS evolved and established itself, to set the
context for discussing the other classes of clouds.

 In the earliest days of commercially practicable computing, computer resources
were scarce, and the primary model for their use was much like a utility. But this was
different from the sense of utility that cloud computing offers today; it was more akin
to the community well in a village during a drought. Members of the community had
access to and were allocated a fixed amount of water. In the case of cloud computing
today, we’ve returned to the notion of computing being available as a utility, but with-
out the scarcity.

 The cloud movement was presaged by the shift in business model toward SaaS that
took over the software industry at the turn of the century. Before it was called SaaS, it
was an application rented from an Application Service Provider (ASP); here, the tradi-
tional enterprise license model was turned on its head, and you purchased in a pay-as-
you-go manner, with costs scaling with usage instead of having a large up-front capital
investment. You didn’t need to provision hardware and software; instead, the services
were turned on when needed. After this approach was renamed SaaS, it evolved into
several new kinds of offerings that we’ll explore next.

 We can classify cloud computing several ways. In this book, we present a taxonomy
where cloud services are described generically as “X as a Service,” where X can take on
values such as Hardware, Infrastructure, Platform, Framework, Application, and even
Datacenter. Vendors aren’t in agreement about what these designations mean, nor are
they consistent in describing themselves as belonging to these categories. Despite this,
we’ll reproduce one interesting hierarchy that illustrates the use of these terms, with
representative vendors (some at this point only historical) populating the diagram in
figure 1.6.
Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

15Classifying cloud layers: different types for different uses
Figure 1.6 Cloud technologies are evolving as various vendors attempt to provide services populating the cloud
ecosystem. These services run the gamut from the hardware systems used to build cloud infrastructure to
integration services and cloud-based applications. Source: Peter Laird, http://peterlaird.blogspot.com.
Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

http://peterlaird.blogspot.com

16 CHAPTER 1 What is cloud computing?
 A more simplified representation of the cloud types shown in figure 1.7 highlights
important aspects and key characteristics of different kinds of cloud offerings.

Figure 1.7 In the X-as-a-Service taxonomy, cloud services are classified by
the level of prepackaging offered to the consumer of the specific service. An
IaaS provides computing capabilities in the rawest form and hence offers the
greatest flexibility. At the highest layers, there is less flexibility but also less
complexity to be managed.

What does XaaS mean generically? It means on demand, requiring little or no capital
expenditure. It means consumable remotely and across any mode of access over the
internet, and in a metered billing model. Let’s now go through the boxes represent-
ing the different classes of clouds in figure 1.7. First up is IaaS.

1.4.1 Infrastructure as a Service (IaaS)

The lowest level of XaaS is known as IaaS, or sometimes as Hardware as a Service
(HaaS). A good example of IaaS is the Amazon Elastic Compute Cloud (EC2).

 A user of IaaS is operating at the lowest level of granularity available and with the
least amount of prepackaged functionality. An IaaS provider supplies virtual machine
images of different operating system flavors. These images can be tailored by the
developer to run any custom or packaged application. These applications can run
natively on the chosen OS and can be saved for a particular purpose. The user can
bring online and use instances of these virtual machine images when needed. Use of
these images is typically metered and charged in hour-long increments.

 Storage and bandwidth are also consumable commodities in an IaaS environment,
with storage typically charged per gigabyte per month and bandwidth charged for
transit into and out of the system.
Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

17Classifying cloud layers: different types for different uses
 IaaS provides great flexibility and control over the cloud resources being consumed,
but typically more work is required of the developer to operate effectively in the envi-
ronment. In chapter 2, we’ll delve into IaaS and see how it works in greater detail.

1.4.2 Platform as a Service (PaaS)

PaaS’s fundamental billing quantities are somewhat similar to those of IaaS: consump-
tion of CPU, bandwidth, and storage operates under similar models. Examples of
PaaS include Google AppEngine and Microsoft Azure. The main difference is that
PaaS requires less interaction with the bare metal of the system. You don’t need to
directly interact with or administer the virtual OSs. Instead, you can let the platform
abstract away that interaction and concentrate specifically on writing the application.
This simplification generally comes at the cost of less flexibility and the requirement
to code in the specific languages supported by the particular PaaS provider.

1.4.3 Software as a Service (SaaS) and Framework as a Service (FaaS)

SaaS, as described earlier in the chapter, refers to services and applications that are
available on an on-demand basis. Salesforce.com is an example. FaaS is an environ-
ment adjunct to a SaaS offering and allows developers to extend the prebuilt function-
ality of the SaaS applications. Force.com is an example of a FaaS that extends the
Salesforce.com SaaS offering.

 FaaS offerings are useful specifically for augmenting and enhancing the capabili-
ties of the base SaaS system. You can use FaaS for creating either custom, specialized
applications for a specific organization, or general-purpose applications that can be
made available to any customer of the SaaS offering. Like a PaaS environment, a
developer in a FaaS environment can only use the specific languages and APIs pro-
vided by the FaaS.

1.4.4 Private clouds as precursors of public clouds

In addition to the classifications we discussed earlier, we should introduce some
important concepts relative to the different classifications of clouds. Private clouds are
a variant of generic cloud computing where internal data-center resources of an
enterprise or organization aren’t made available to the general public—that is, these
pooled computing resources are actually not available to any subscribing users but are
instead controlled by an organization for the benefit of other members of that organi-
zation. The public clouds of providers such as Amazon and Google were originally
used as private clouds by those companies for other lines of business (book retailing
and internet search, respectively).

 If an organization has sufficient users and enough overall capacity, a private cloud
implementation can behave much like a public cloud, albeit on a reduced scale.
There has been a tremendous amount of capital investment in data-center resources
over the past decade, and one of the important movements is the reorienting of these
assets toward cloud-usage models.
Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

18 CHAPTER 1 What is cloud computing?
 Hybrid clouds combine private and public clouds. You can use them in cases where
the capacity of a private cloud is exhausted and excess capacity needs to be provi-
sioned elsewhere.

1.5 Summary
The cloud offers the illusion of infinite resources, available on demand. You no longer
need to play the guessing game of how many users need to be supported and how scal-
able the application is. The cloud takes care of the peaks and troughs of utilization
times. In the world of the cloud, you pay for only the resources you use, when you use
them. This is the revolutionary change: the ability to handle scale without paying a
premium. In this realm of true utility computing, resource utilization mirrors the way
we consume electricity or water.

 In this chapter, we defined the cloud as computing services that are offered by a
third party, are available for use when needed, and can be scaled dynamically in
response to changing need. We then touched briefly on the evolution of computing
and the developments that led to where we are today. Finally, we looked at a simple
cloud classification that should help you understand the various flavors of cloud offer-
ings that are available in the market today and should prevent you from making
apples-and-oranges comparisons between incompatible classes of clouds.

 As we delve deeper in the next chapter and look at how the cloud works, you’ll
gain a better understanding of these types of clouds and when it makes sense to use
each kind.
Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

19Summary

Practically unlimited storage, instant scalability, zero-
downtime upgrades, low start-up costs, plus pay-only-
for-what-you-use without sacrificing security or perfor-
mance are all benefits of cloud computing. How do
you make it work in your enterprise? What should you
move to the cloud? How? And when?

 The Cloud at Your Service answers these questions and
more. Written for IT pros at all levels, this book finds
the sweet spot between rapidly changing details and
hand-waving hype. It shows you practical ways to work
with current services like Amazon's EC2 and S3. You'll
also learn the pros and cons of private clouds, the truth

about cloud data security, and how to use the cloud for high scale applications.

What's inside

 How to build scalable and reliable applications
 The state of the art in technology, vendors, practices
 What to keep in-house and what to offload
 How to migrate existing IT to the cloud
 How to build secure applications and data centers

Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

https://www.manning.com/books/the-cloud-at-your-service
https://www.manning.com/books/the-cloud-at-your-service

What’s the biggest advantage of using Amazon Web Services (AWS)? For
us it’s being able to automate every part of your cloud infrastructure. AWS offers
an API, and lots of tools to launch, configure, modify, and delete computing,
storage, and networking infrastructure. Our book, Amazon Web Services in Action,
provides a deep introduction into the most important services and architecture
principles. Chapter 1 answers the question: What is Amazon Web Services? You’ll
learn about the concepts behind AWS and gain a brief overview of what you can
do with AWS.

Amazon Web Services
in Action
Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

http://manning.com/books/amazon-web-services-in-action

Chapter 1 from Amazon Web Services in Action by
Michael Wittig and Andreas Wittig.

What is
 Amazon Web Services?
Amazon Web Services (AWS) is a platform of web services offering solutions for
computing, storing, and networking, at different layers of abstraction. You can use
these services to host web sites, run enterprise applications, and mine tremendous
amounts of data. The term web service means services can be controlled via a web
interface. The web interface can be used by machines or by humans via a graphical
user interface. The most prominent services are EC2, which offers virtual servers,
and S3, which offers storage capacity. Services on AWS work well together; you can

This chapter covers
 Overview of Amazon Web Services

 Benefits of using Amazon Web Services

 Examples of what you can do with Amazon Web
Services

 Creating and setting up an Amazon Web Services
account
21

Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

https://manning.com/books/amazon-web-services-in-action

22 CHAPTER 1 What is Amazon Web Services?
use them to replicate your existing on-premises setup or design a new setup from
scratch. Services are charged for on a pay-per-use pricing model.

 As an AWS customer, you can choose among different data centers. AWS data cen-
ters are distributed in the United States, Europe, Asia, and South America. For exam-
ple, you can start a virtual server in Japan in the same way you can start a virtual server
in Ireland. This enables you to serve customers worldwide with a global infrastructure.

 The map in figure 1.1 shows the data centers available to all customers.

In more general terms, AWS is known as a cloud computing platform.1

Germany
Ireland

Japan

Brazil
Australia

Singapore

U.S. East

U.S. West 1

U.S. West 2

Figure 1.1 AWS data center locations

1.1 What is cloud computing?
Almost every IT solution is labeled with the term cloud computing or just cloud nowa-
days. A buzzword may help to sell, but it’s hard to work with in a book.

 Cloud computing, or the cloud, is a metaphor for supply and consumption of IT
resources. The IT resources in the cloud aren’t directly visible to the user; there are
layers of abstraction in between. The level of abstraction offered by the cloud may vary

Which hardware powers AWS?
AWS keeps secret the hardware used in its data centers. The scale at which AWS
operates computing, networking, and storage hardware is tremendous. It probably
uses commodity components to save money compared to hardware that charges
extra for a brand name. Handling of hardware failure is built into real-world processes
and software.1

AWS also uses hardware especially developed for its use cases. A good example is
the Xeon E5-2666 v3 CPU from Intel. This CPU is optimized to power virtual servers
from the c4 family.

1 Bernard Golden, “Amazon Web Services (AWS) Hardware,” For Dummies, http://mng.bz/k6lT.
Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

http://mng.bz/k6lT

23What can you do with AWS?
from virtual hardware to complex distributed systems. Resources are available on
demand in enormous quantities and paid for per use.
Here's a more official definition from the National Institute of Standards and
Technology:

Cloud computing is a model for enabling ubiquitous, convenient, on-demand network
access to a shared pool of configurable computing resources (e.g., networks, servers,
storage, applications, and services) that can be rapidly provisioned and released with
minimal management effort or service provider interaction.

 —The NIST Definition of Cloud Computing,
 National Institute of Standards and Technology

Clouds are often divided into the following types:

 Public —A cloud managed by an organization and open to use by the general
public

 Private —A cloud that virtualizes and shares the IT infrastructure within a single
organization

 Hybrid —A mixture of a public and a private cloud

AWS is a public cloud. Cloud computing services also have several classifications:

 Infrastructure as a service (IaaS) —Offers fundamental resources like computing,
storage, and networking capabilities, using virtual servers such as Amazon EC2,
Google Compute Engine, and Microsoft Azure virtual machines

 Platform as a service (PaaS) —Provides platforms to deploy custom applications to
the cloud, such as AWS Elastic Beanstalk, Google App Engine, and Heroku

 Software as a service (SaaS) —Combines infrastructure and software running in
the cloud, including office applications like Amazon WorkSpaces, Google Apps
for Work, and Microsoft Office 365

The AWS product portfolio contains IaaS, PaaS, and SaaS. Let’s take a more concrete
look at what you can do with AWS.

1.2 What can you do with AWS?
You can run any application on AWS by using one or a combination of services. The
examples in this section will give you an idea of what you can do with AWS.

1.2.1 Hosting a web shop

John is CIO of a medium-sized e-commerce business. His goal is to provide his custom-
ers with a fast and reliable web shop. He decided to host the web shop on-premises,
and three years ago he rented servers in a data center. A web server handles requests
from customers, and a database stores product information and orders. John is evalu-
ating how his company can take advantage of AWS by running the same setup on AWS,
as shown in figure 1.2.

Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

24 CHAPTER 1 What is Amazon Web Services?
DatabaseWeb server

Maintenance free

On-premises server

DatabaseWeb
server

Managed by you with updates,
monitoring, and so on

Internet

User

Figure 1.2 Running a web shop
on-premises vs. on AWS

John realized that other options are available to improve his setup on AWS with addi-
tional services:

 The web shop consists of dynamic content (such as products and their prices)
and static content (such as the company logo). By splitting dynamic and static
content, John reduced the load for his web servers and improved performance
by delivering the static content over a content delivery network (CDN).

 John uses maintenance-free services including a database, an object store, and a
DNS system on AWS. This frees him from managing these parts of the system,
decreases operational costs, and improves quality.

 The application running the web shop can be installed on virtual servers. John
split the capacity of the old on-premises server into multiple smaller virtual serv-
ers at no extra cost. If one of these virtual servers fails, the load balancer will
send customer requests to the other virtual servers. This setup improves the web
shop’s reliability.

Figure 1.3 shows how John enhanced the web shop setup with AWS.
 John started a proof-of-concept project and found that his web application can be

transferred to AWS and that services are available to help improve his setup.

1.2.2 Running a Java EE application in your private network

Maureen is a senior system architect in a global corporation. She wants to move parts
of the business applications to AWS when the company’s data-center contract expires
in a few months, to reduce costs and gain flexibility. She found that it’s possible to run
enterprise applications on AWS.
Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

25What can you do with AWS?
Database

Internet
User

Load balancer DNS CDN

Object store

Dynamic

Web server

Static

Maintenance free Managed by you with updates,
monitoring, and so on

Improve
reliability

Improve
performance

Decrease
maintenance
costs

Figure 1.3 Running a web shop on AWS with CDN for better performance, a load balancer for
high availability, and a managed database to decrease maintenance costs

To do so, she defines a virtual network in the cloud and connects it to the corpo-
rate network through a virtual private network (VPN) connection. The company
can control access and protect mission-critical data by using subnets and control
traffic between them with access-control lists. Maureen controls traffic to the
internet using Network Address Translation (NAT) and firewalls. She installs
application servers on virtual machines (VMs) to run the Java EE application. Mau-
reen is also thinking about storing data in a SQL database service (such as Oracle
Database Enterprise Edition or Microsoft SQL Server EE). Figure 1.4 illustrates Mau-
reen’s architecture.

 Maureen has managed to connect the on-premises data center with a private net-
work on AWS. Her team has already started to move the first enterprise application to
the cloud.

1.2.3 Meeting legal and business data archival requirements

Greg is responsible for the IT infrastructure of a small law office. His primary goal is to
store and archive all data in a reliable and durable way. He operates a file server to
Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

26 CHAPTER 1 What is Amazon Web Services?
SQL database

Private subnet
10.10.2.0/24

Internet

Private subnet
10.10.1.0/24

Private subnet
10.10.0.0/24

Virtual network
10.10.0.0/16

Java EE server

NAT
Internet
gateway

VPN
gatewayCorporate network

10.20.0.0/16

VPN

Figure 1.4 Running a Java EE application with enterprise networking on AWS

offer the possibility of sharing documents within the office. Storing all the data is a
challenge for him:

 He needs to back up all files to prevent the loss of critical data. To do so, Greg
copies the data from the file server to another network-attached storage, so he
had to buy the hardware for the file server twice. The file server and the backup
server are located close together, so he is failing to meet disaster-recovery
requirements to recover from a fire or a break-in.

 To meet legal and business data archival requirements, Greg needs to store data
for a long time. Storing data for 10 years or longer is tricky. Greg uses an expen-
sive archive solution to do so.

To save money and increase data security, Greg decided to use AWS. He transferred
data to a highly available object store. A storage gateway makes it unnecessary to buy
and operate network-attached storage and a backup on-premises. A virtual tape deck
takes over the task of archiving data for the required length of time. Figure 1.5
shows how Greg implemented this use case on AWS and compares it to the
on-premises solution.

 Greg is fine with the new solution to store and archive data on AWS because he was
able to improve quality and he gained the possibility of scaling storage size.
Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

27What can you do with AWS?
User UserUser

Network-attached
storage (NAS)

Tape deck

Backup Archive

Archive

Synchronize

Local company network

Virtual
tape drive

Object
store

NAS (backup)

Data storage in a single
location is a disaster risk.

With high-availability
services, no backup
is required.

User UserUser

Storage gateway

Local company network

Internet

Maintenance free Managed by you with updates,
monitoring, and so on

Figure 1.5 Backing up and archiving data on-premises and on AWS

1.2.4 Implementing a fault-tolerant system architecture

Alexa is a software engineer working for a fast-growing startup. She knows that Mur-
phy’s Law applies to IT infrastructure: anything that can go wrong, will go wrong. Alexa
is working hard to build a fault-tolerant system to prevent outages from ruining the
business. She knows that there are two type of services on AWS: fault-tolerant services
and services that can be used in a fault-tolerant way. Alexa builds a system like the one
shown in figure 1.6 with a fault-tolerant architecture. The database service is offered
with replication and failover handling. Alexa uses virtual servers acting as web servers.
These virtual servers aren’t fault tolerant by default. But Alexa uses a load balancer and
can launch multiple servers in different data centers to achieve fault tolerance.

 So far, Alexa has protected the startup from major outages. Nevertheless, she and
her team are always planning for failure.

 You now have a broad idea of what you can do with AWS. Generally speaking, you
can host any application on AWS. The next section explains the nine most important
benefits AWS has to offer.
Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

28 CHAPTER 1 What is Amazon Web Services?
Data center A

Web server

Database
(master)

Load
balancer

Internet
User Data center B

Web server

Database
(standby)

Fault tolerant by default Fault tolerant usage possibleHighly available

Figure 1.6 Building a fault-tolerant system on AWS

1.3 How you can benefit from using AWS
What’s the most important advantage of using AWS? Cost savings, you might say. But
saving money isn’t the only advantage. Let’s look at other ways you can benefit from
using AWS.

1.3.1 Innovative and fast-growing platform

In 2014, AWS announced more than 500 new services and features during its yearly
conference, re:Invent at Las Vegas. On top of that, new features and improvements
are released every week. You can transform these new services and features into inno-
vative solutions for your customers and thus achieve a competitive advantage.

 The number of attendees to the re:Invent conference grew from 9,000 in 2013
to 13,500 in 2014.1 AWS counts more than 1 million businesses and government agen-
cies among its customers, and in its Q1 2014 results discussion, the company said it
will continue to hire more talent to grow even further.2 You can expect even more new
features and services in the coming years.

1 Greg Bensinger, “Amazon Conference Showcases Another Side of the Retailer’s Business,” Digits, Nov. 12, 2014,
http://mng.bz/hTBo.

2 “Amazon.com’s Management Discusses Q1 2014 Results - Earnings Call Transcript,” Seeking Alpha, April 24, 2014,
http://mng.bz/60qX.
Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

http://mng.bz/hTBo
http://mng.bz/60qX

29How you can benefit from using AWS
1.3.2 Services solve common problems

As you’ve learned, AWS is a platform of services. Common problems such as load bal-
ancing, queuing, sending email, and storing files are solved for you by services. You don’t
need to reinvent the wheel. It’s your job to pick the right services to build complex sys-
tems. Then you can let AWS manage those services while you focus on your customers.

1.3.3 Enabling automation

Because AWS has an API, you can automate everything: you can write code to create
networks, start virtual server clusters, or deploy a relational database. Automation
increases reliability and improves efficiency.

 The more dependencies your system has, the more complex it gets. A human can
quickly lose perspective, whereas a computer can cope with graphs of any size. You
should concentrate on tasks a human is good at—describing a system—while the com-
puter figures out how to resolve all those dependencies to create the system. Setting
up an environment in the cloud based on your blueprints can be automated with the
help of infrastructure as code, covered in chapter 4.

1.3.4 Flexible capacity (scalability)

Flexible capacity frees you from planning. You can scale from one server to thousands
of servers. Your storage can grow from gigabytes to petabytes. You no longer need to
predict your future capacity needs for the coming months and years.

 If you run a web shop, you have seasonal traffic patterns, as shown in figure 1.7.
Think about day versus night, and weekday versus weekend or holiday. Wouldn’t it be
nice if you could add capacity when traffic grows and remove capacity when traffic
shrinks? That’s exactly what flexible capacity is about. You can start new servers within
minutes and throw them away a few hours after that.

12am 6pm6am

S
ys

te
m

 lo
ad

S
ys

te
m

 lo
ad

Thursday SundayMonday

S
ys

te
m

 lo
ad

DecemberJanuary

Figure 1.7 Seasonal traffic patterns for a web shop

 The cloud has almost no capacity constraints. You no longer need to think about
rack space, switches, and power supplies—you can add as many servers as you like. If
your data volume grows, you can always add new storage capacity.
Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

30 CHAPTER 1 What is Amazon Web Services?
Flexible capacity also means you can shut down unused systems. In one of our last proj-
ects, the test environment only ran from 7:00 a.m. to 8:00 p.m. on weekdays, allowing
us to save 60%.

1.3.5 Built for failure (reliability)

Most AWS services are fault-tolerant or highly available. If you use those services, you
get reliability for free. AWS supports you as you build systems in a reliable way. It pro-
vides everything you need to create your own fault-tolerant systems.

1.3.6 Reducing time to market

In AWS, you request a new virtual server, and a few minutes later that virtual server is
booted and ready to use. The same is true with any other AWS service available. You
can use them all on demand. This allows you to adapt your infrastructure to new
requirements very quickly.

 Your development process will be faster because of the shorter feedback loops. You
can eliminate constraints such as the number of test environments available; if you
need one more test environment, you can create it for a few hours.

1.3.7 Benefiting from economies of scale

At the time of writing, the charges for using AWS have been reduced 42 times since 2008:

 In December 2014, charges for outbound data transfer were lowered by up to 43%.
 In November 2014, charges for using the search service were lowered by 50%.
 In March 2014, charges for using a virtual server were lowered by up to 40%.

As of December 2014, AWS operated 1.4 million servers. All processes related to oper-
ations must be optimized to operate at that scale. The bigger AWS gets, the lower the
prices will be.

1.3.8 Worldwide

You can deploy your applications as close to your customers as possible. AWS has data
centers in the following locations:

 United States (northern Virginia, northern California, Oregon)
 Europe (Germany, Ireland)
 Asia (Japan, Singapore)
 Australia
 South America (Brazil)

With AWS, you can run your business all over the world.

1.3.9 Professional partner

AWS is compliant with the following:

 ISO 27001—A worldwide information security standard certified by an indepen-
dent and accredited certification body
Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

31How much does it cost?
 FedRAMP & DoD CSM —Ensures secure cloud computing for the U.S. Federal
Government and the U.S. Department of Defense

 PCI DSS Level 1 —A data security standard (DSS) for the payment card industry
(PCI) to protect cardholders data

 ISO 9001 —A standardized quality management approach used worldwide and
certified by an independent and accredited certification body

If you’re still not convinced that AWS is a professional partner, you should know that
Airbnb, Amazon, Intuit, NASA, Nasdaq, Netflix, SoundCloud, and many more are run-
ning serious workloads on AWS.

 The cost benefit is elaborated in more detail in the next section.

1.4 How much does it cost?
A bill from AWS is similar to an electric bill. Services are billed based on usage. You pay
for the hours a virtual server was running, the used storage from the object store (in
gigabytes), or the number of running load balancers. Services are invoiced on a
monthly basis. The pricing for each service is publicly available; if you want to calcu-
late the monthly cost of a planned setup, you can use the AWS Simple Monthly Calcu-
lator (http://aws.amazon.com/calculator).

1.4.1 Free Tier

You can use some AWS services for free during the first 12 months after you sign up.
The idea behind the Free Tier is to enable you to experiment with AWS and get some
experience. Here is what’s included in the Free Tier:

 750 hours (roughly a month) of a small virtual server running Linux or Win-
dows. This means you can run one virtual server the whole month or you can
run 750 virtual servers for one hour.

 750 hours (or roughly a month) of a load balancer.
 Object store with 5 GB of storage.
 Small database with 20 GB of storage, including backup.

If you exceed the limits of the Free Tier, you start paying for the resources you con-
sume without further notice. You’ll receive a bill at the end of the month. We’ll show
you how to monitor your costs before you begin using AWS. If your Free Tier ends
after one year, you pay for all resources you use.

 You get some additional benefits, as detailed at http://aws.amazon.com/free. This
book will use the Free Tier as much as possible and will clearly state when additional
resources are required that aren’t covered by the Free Tier.

1.4.2 Billing example

As mentioned earlier, you can be billed in several ways:

 Based on hours of usage —If you use a server for 61 minutes, that’s usually counted
as 2 hours.
Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

http://aws.amazon.com/calculator
http://aws.amazon.com/free

32 CHAPTER 1 What is Amazon Web Services?
 Based on traffic —Traffic can be measured in gigabytes or in number of requests.
 Based on storage usage —Usage can be either provisioned capacity (for example, 50 GB

volume no matter how much you use) or real usage (such as 2.3 GB used).

Remember the web shop example from section 1.2? Figure 1.8 shows the web shop
and adds information about how each part is billed.

Database

Internet
User

Load balancer DNS CDN

Object
storage

Web server

Billed by storage usageBilled by hours of usage Billed by traffic

Dynamic Static

Figure 1.8 Web shop billing example

Let’s assume your web shop started successfully in January, and you decided to run a
marketing campaign to increase sales for the next month. Lucky you: you were able to
increase the number of visitors of your web shop fivefold in February. As you already
know, you have to pay for AWS based on usage. Table 1.1 shows your bills for January
and February. The number of visitors increased from 100,000 to 500,000, and your
monthly bill increased from 142.37 USD to 538.09 USD, which is a 3.7-fold increase.
Because your web shop had to handle more traffic, you had to pay more for services,
such as the CDN, the web servers, and the database. Other services, like the storage of
static files, didn’t experience more usage, so the price stayed the same.

 With AWS, you can achieve a linear relationship between traffic and costs. And
other opportunities await you with this pricing model.
Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

33Comparing alternatives
1.4.3 Pay-per-use opportunities

The AWS pay-per-use pricing model creates new opportunities. You no longer need to
make upfront investments in infrastructure. You can start servers on demand and only
pay per hour of usage; and you can stop using those servers whenever you like and no
longer have to pay for them. You don’t need to make an upfront commitment regard-
ing how much storage you’ll use.

 A big server costs exactly as much as two smaller ones with the same capacity. Thus
you can divide your systems into smaller parts, because the cost is the same. This
makes fault tolerance affordable not only for big companies but also for smaller
budgets.

1.5 Comparing alternatives
AWS isn’t the only cloud computing provider. Microsoft and Google have cloud offer-
ings as well.

 OpenStack is different because it’s open source and developed by more than 200
companies including IBM, HP, and Rackspace. Each of these companies uses Open-
Stack to operate its own cloud offerings, sometimes with closed source add-ons. You
could run your own cloud based on OpenStack, but you would lose most of the bene-
fits outlined in section 1.3.

 Comparing cloud providers isn’t easy, because open standards are mostly missing.
Functionality like virtual networks and message queuing are realized differently. If you
know what features you need, you can compare the details and make your decision.

Table 1.1 How an AWS bill changes if the number of web shop visitors increases

Service January usage February usage February charge Increase

Visits to website 100,000 500,000

CDN 26 M requests +
25 GB traffic

131 M requests +
125 GB traffic

113.31 USD 90.64 USD

Static files 50 GB used 
storage

50 GB used 
storage

1.50 USD 0.00 USD

Load balancer 748 hours + 
50 GB traffic

748 hours + 
250 GB traffic

20.30 USD 1.60 USD

Web servers 1 server = 748
hours

4 servers = 2,992
hours

204.96 USD 153.72 USD

Database (748
hours)

Small server + 
20 GB storage

Large server + 
20 GB storage

170.66 USD 128.10 USD

Traffic (outgoing
traffic to internet)

51 GB 255 GB 22.86 USD 18.46 USD

DNS 2 M requests 10 M requests 4.50 USD 3.20 USD

Total cost 538.09 USD 395.72 USD
Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

34 CHAPTER 1 What is Amazon Web Services?
Otherwise, AWS is your best bet because the chances are highest that you’ll find a solu-
tion for your problem.

 Following are some common features of cloud providers:

 Virtual servers (Linux and Windows)
 Object store
 Load balancer
 Message queuing
 Graphical user interface
 Command-line interface

The more interesting question is, how do cloud providers differ? Table 1.2 compares
AWS, Azure, Google Cloud Platform, and OpenStack.

Table 1.2 Differences between AWS, Microsoft Azure, Google Cloud Platform, and OpenStack

AWS Azure
Google Cloud

Platform
OpenStack

Number of services Most Many Enough Few

Number of locations
(multiple data cen-
ters per location)

9 13 3 Yes (depends on the
OpenStack provider)

Compliance Common standards
(ISO 27001, HIPAA,
FedRAMP, SOC), IT
Grundschutz (Ger-
many), G-Cloud (UK)

Common standards
(ISO 27001, HIPAA,
FedRAMP, SOC), ISO
27018 (cloud pri-
vacy), G-Cloud (UK)

Common standards
(ISO 27001, HIPAA,
FedRAMP, SOC)

Yes (depends on the
OpenStack provider)

SDK languages Android, Browsers
(JavaScript), iOS,
Java, .NET, Node.js
(JavaScript), PHP,
Python, Ruby, Go

Android, iOS, Java,
.NET, Node.js (JavaS-
cript), PHP, Python,
Ruby

Java, Browsers
(JavaScript), .NET,
PHP, Python

-

Integration into
development 
process

Medium, not linked
to specific ecosys-
tems

High, linked to the
Microsoft ecosys-
tem (for example,
.NET development)

High, linked to the
Google ecosystem
(for example,
Android)

-

Block-level storage
(attached via net-
work)

Yes Yes (can be used by
multiple virtual serv-
ers simultaneously)

No Yes (can be used by
multiple virtual serv-
ers simultaneously)

Relational 
database

Yes (MySQL, Post-
greSQL, Oracle Data-
base, Microsoft SQL
Server)

Yes (Azure SQL Data-
base, Microsoft SQL
Server)

Yes (MySQL) Yes (depends on the
OpenStack provider)

NoSQL database Yes (proprietary) Yes (proprietary) Yes (proprietary) No

DNS Yes No Yes No
Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

35Exploring AWS services
In our opinion, AWS is the most mature cloud platform available at the moment.

1.6 Exploring AWS services
Hardware for computing, storing, and networking is the foundation of the AWS cloud.
AWS runs software services on top of the hardware to provide the cloud, as shown in
figure 1.9. A web interface, the API, acts as an interface between AWS services and your
applications.

Administrator

Manage
services

Compute:
App:

Enterprise:
Deployment:

Storage:
Database:

Networking:

Virtual server
Queues, search
Directory service, mail
Access rights, monitoring
Object store, archiving
Relational, NoSQL
DNS, virtual network

Services

Compute

Software
Hardware

Storage
Network

API

Figure 1.9 The AWS cloud is composed of hardware and software services accessible via an API.

 You can manage services by sending requests to the API manually via a GUI or pro-
grammatically via a SDK. To do so, you can use a tool like the Management Console, a
web-based user interface, or a command-line tool. Virtual servers have a peculiarity:
you can connect to virtual servers through SSH, for example, and gain administrator

Virtual network Yes Yes No Yes

Pub/sub messag-
ing

Yes (proprietary, JMS
library available)

Yes (proprietary) Yes (proprietary) No

Machine-learning
tools

Yes Yes Yes No

Deployment tools Yes Yes Yes No

On-premises data-
center integration

Yes Yes Yes No

Table 1.2 Differences between AWS, Microsoft Azure, Google Cloud Platform, and OpenStack (continued)

AWS Azure
Google Cloud

Platform
OpenStack
Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

36 CHAPTER 1 What is Amazon Web Services?
access. This means you can install any software you like on a virtual server. Other ser-
vices, like the NoSQL database service, offer their features through an API and hide
everything that’s going on behind the scenes. Figure 1.10 shows an administrator
installing a custom PHP web application on a virtual server and managing dependent
services such as a NoSQL database used by the PHP web application.

Administrator

Manage
services

Install and configure
software remotely

API Services

Static file
storage

NoSQL
database

Sending
email

Virtual
server

Figure 1.10 Managing a custom application running on a virtual server and dependent services

 Users send HTTP requests to a virtual server. A web server is installed on this virtual
server along with a custom PHP web application. The web application needs to talk to
AWS services in order to answer HTTP requests from users. For example, the web
application needs to query data from a NoSQL database, store static files, and send
email. Communication between the web application and AWS services is handled by
the API, as figure 1.11 shows.

 The number of different services available can be scary at the outset. The following
categorization of AWS services will help you to find your way through the jungle:

 Compute services offer computing power and memory. You can start virtual serv-
ers and use them to run your applications.

 App services offer solutions for common use cases like message queues, topics,
and searching large amounts of data to integrate into your applications.
Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

37Exploring AWS services
Users

HTTP request

Virtual
server

API Services

Static file
storage

NoSQL
database

Sending
email

Figure 1.11 Handling an HTTP request with a custom web application using additional
AWS services

 Enterprise services offer independent solutions such as mail servers and directory
services.

 Deployment and administration services work on top of the services mentioned so
far. They help you grant and revoke access to cloud resources, monitor your vir-
tual servers, and deploy applications.

 Storage is needed to collect, persist, and archive data. AWS offers different stor-
age options: an object store or a network-attached storage solution for use with
virtual servers.

 Database storage has some advantages over simple storage solutions when you
need to manage structured data. AWS offers solutions for relational and NoSQL
databases.

 Networking services are an elementary part of AWS. You can define private net-
works and use a well-integrated DNS.

Be aware that we cover only the most important categories and services here. Other
services are available, and you can also run your own applications on AWS.

 Now that we’ve looked at AWS services in detail, it’s time for you to learn how to
interact with those services.
Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

38 CHAPTER 1 What is Amazon Web Services?
1.7 Interacting with AWS
When you interact with AWS to configure or use services, you make calls to the API.
The API is the entry point to AWS, as figure 1.12 demonstrates.

API

Manual

Automation

Services

Web-based
management

Console

Blueprints

SDKs for Java,
Python, JavaScript,...

Command-
line interface

Figure 1.12 Tools to interact with the AWS API

 Next, we’ll give you an overview of the tools available to make calls to the AWS API.
You can compare the ability of these tools to automate your daily tasks.

1.7.1 Management Console

You can use the web-based Management Console to interact with AWS. You can manu-
ally control AWS with this convenient GUI, which runs in every modern web browser
(Chrome, Firefox, Safari 5, IE 9); see figure 1.13.

 If you’re experimenting with AWS, the Management Console is the best place to
start. It helps you to gain an overview of the different services and achieve success
quickly. The Management Console is also a good way to set up a cloud infrastructure
for development and testing.

1.7.2 Command-line interface

You can start a virtual server, create storage, and send email from the command line.
With the command-line interface (CLI), you can control everything on AWS; see fig-
ure 1.14.
Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

39Interacting with AWS
Figure 1.13 Management Console

Figure 1.14 Command-line interface
Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

40 CHAPTER 1 What is Amazon Web Services?
The CLI is typically used to automate tasks on AWS. If you want to automate parts of
your infrastructure with the help of a continuous integration server like Jenkins, the
CLI is the right tool for the job. The CLI offers a convenient way to access the API and
combine multiple calls into a script.

 You can even begin to automate your infrastructure with scripts by chaining multi-
ple CLI calls together. The CLI is available for Windows, Mac, and Linux, and there’s
also a PowerShell version available.

1.7.3 SDKs

Sometimes you need to call AWS from within your application. With SDKs, you can use
your favorite programming language to integrate AWS into your application logic. AWS
provides SDKs for the following:

 Android  Node.js (JavaScript)

 Browsers (JavaScript)  PHP

 iOS  Python

 Java  Ruby

 .NET  Go

SDKs are typically used to integrate AWS services into applications. If you’re doing soft-
ware development and want to integrate an AWS service like a NoSQL database or a
push-notification service, an SDK is the right choice for the job. Some services, such as
queues and topics, must be used with an SDK in your application.

1.7.4 Blueprints

A blueprint is a description of your system containing all services and dependencies. The
blueprint doesn’t say anything about the necessary steps or the order to achieve the
described system. Figure 1.15 shows how a blueprint is transferred into a running system.

Database

Load balancer

Tool

CDN

Static files

Web servers

DNS
{
 infrastructure: {
 loadbalancer: {
 server: { ... }
 },
 cdn: { ... },
 database: { ... },
 dns: { ... },
 static: { ... }
 }
}

Figure 1.15 Infrastructure
automation with blueprints
Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

41Creating an AWS account
Consider using blueprints if you have to control many or complex environments.
Blueprints will help you to automate the configuration of your infrastructure in the
cloud. You can use blueprints to set up virtual networks and launch different servers
into that network, for example.

 A blueprint removes much of the burden from you because you no longer need to
worry about dependencies during system creation—the blueprint automates the
entire process. You’ll learn more about automating your infrastructure in chapter 4.

 It’s time to get started creating your AWS account and exploring AWS practice after
all that theory.

1.8 Creating an AWS account
Before you can start using AWS, you need to create an account. An AWS account is a
basket for all the resources you own. You can attach multiple users to an account if
multiple humans need access to the account; by default, your account will have one
root user. To create an account, you need the following:

 A telephone number to validate your identity
 A credit card to pay your bills

1.8.1 Signing up

The sign-up process consists of five steps:

1 Provide your login credentials.
2 Provide your contact information.
3 Provide your payment details.
4 Verify your identity.
5 Choose your support plan.

Point your favorite modern web browser to https://aws.amazon.com, and click the
Create a Free Account / Create an AWS Account button.

1. PROVIDING YOUR LOGIN CREDENTIALS

The Sign Up page, shown in figure 1.16, gives you two choices. You can either create
an account using your Amazon.com account or create an account from scratch. If you
create the account from scratch, follow along. Otherwise, skip to step 5.

 Fill in your email address, and select I Am a New User. Go on to the next step to cre-
ate your login credentials. We advise you to choose a strong password to prevent misuse

Using an old account?
You can use your existing AWS account while working on the examples in this book. In
this case, your usage may not be covered by the Free Tier, and you may have to pay for
your usage.

Also, if you created your existing AWS account before December 4, 2013, you should create
a new one: there are legacy issues that may cause trouble when you try our examples.
Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

https://aws.amazon.com

42 CHAPTER 1 What is Amazon Web Services?
of your account. We suggest a password with 16 characters, numbers, and symbols. If
someone gets access to your account, they can destroy your systems or steal your data.

Figure 1.16 Creating an
AWS account: Sign Up page

2. PROVIDING YOUR CONTACT INFORMATION

The next step, as shown in figure 1.17, is to provide your contact information. Fill in
all the required fields, and continue.

Figure 1.17 Creating an
AWS account: providing
your contact information
Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

43Creating an AWS account
3. PROVIDE YOUR PAYMENT DETAILS

Now the screen shown in figure 1.18 asks for your payment information. AWS supports
MasterCard and Visa. You can set your preferred payment currency later, if you don’t
want to pay your bills in USD; supported currencies are EUR, GBP, CHF, AUD, and some
others.

Figure 1.18 Creating an AWS account: providing your payment details

4. VERIFYING YOUR IDENTITY

The next step is to verify your identity. Figure 1.19 shows the first step of the process.
Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

44 CHAPTER 1 What is Amazon Web Services?
Figure 1.19 Creating an AWS account: verifying your identity (1 of 2)

After you complete the first part, you’ll receive a call from AWS. A robot voice will ask
you for your PIN, which will be like the one shown in figure 1.20. Your identity will be
verified, and you can continue with the last step.

Figure 1.20 Creating an AWS account: verifying your identity (2 of 2)
Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

45Creating an AWS account
5. CHOOSING YOUR SUPPORT PLAN

The last step is to choose a support plan; see figure 1.21. In this case, select the Basic
plan, which is free. If you later create an AWS account for your business, we recom-
mend the Business support plan. You can even switch support plans later.

 High five! You’re done. Now you can log in to your account with the AWS Manage-
ment Console.

Figure 1.21 Creating an AWS account: choosing your support plan

1.8.2 Signing In

You have an AWS account and are ready to sign in to the AWS Management Console at
https://console.aws.amazon.com. As mentioned earlier, the Management Console is
a web-based tool you can use to control AWS resources. The Management Console
Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

https://console.aws.amazon.com

46 CHAPTER 1 What is Amazon Web Services?
uses the AWS API to make most of the functionality available to you. Figure 1.22 shows
the Sign In page.

Figure 1.22 Sign in to the Management Console.

 Enter your login credentials and click Sign In Using Our Secure Server to see the
Management Console, shown in figure 1.23.

Figure 1.23 AWS Management Console
Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

47Creating an AWS account
The most important part is the navigation bar at the top; see figure 1.24. It consists of
six sections:

 AWS —Gives you a fast overview of all resources in your account.
 Services —Provides access to all AWS services.
 Custom section (Edit) —Click Edit and drag-and-drop important services here to

personalize the navigation bar.
 Your name —Lets you access billing information and your account, and also lets

you sign out.
 Your region —Lets you choose your region. You’ll learn about regions in section

3.5. You don’t need to change anything here now.
 Support —Gives you access to forums, documentation, and a ticket system.

Next, you’ll create a key pair so you can connect to your virtual servers.

1.8.3 Creating a key pair

To access a virtual server in AWS, you need a key pair consisting of a private key and a
public key. The public key will be uploaded to AWS and inserted into the virtual server.
The private key is yours; it’s like your password, but much more secure. Protect your
private key as if it’s a password. It’s your secret, so don’t lose it—you can’t retrieve it.

 To access a Linux server, you use the SSH protocol; you’ll authenticate with the
help of your key pair instead of a password during login. You access a Windows server
via Remote Desktop Protocol (RDP); you’ll need your key pair to decrypt the adminis-
trator password before you can log in.

 The following steps will guide you to the dashboard of the EC2 service, which offers
virtual servers, and where you can obtain a key pair:

1 Open the AWS Management Console at https://console.aws.amazon.com.
2 Click Services in the navigation bar, find the EC2 service, and click it.
3 Your browser shows the EC2 Management Console.

The EC2 Management Console, shown in figure 1.25, is split into three columns. The first
column is the EC2 navigation bar; because EC2 is one of the oldest services, it has many

Resource
overview

Jump to
a service

Quick access to services
(customizable)

Account and
billing

Region
selector

Help
section

Figure 1.24 AWS Management Console navigation bar
Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

https://console.aws.amazon.com

48 CHAPTER 1 What is Amazon Web Services?
features that you can access via the navigation bar. The second column gives you a brief
overview of all your EC2 resources. The third column provides additional information.

Figure 1.25 EC2 Management Console

 Follow these steps to create a new key pair:

1 Click Key Pairs in the navigation bar under Network & Security.
2 Click the Create Key Pair button on the page shown in figure 1.26.
3 Name the Key Pair mykey. If you choose another name, you must replace the

name in all the following examples!

During key-pair creation, you downloaded a file called mykey.pem. You must now pre-
pare that key for future use. Depending on your operating system, you may need to do
things differently, so please read the section that fits your OS.

Using your own key pair
It’s also possible to upload the public key part from an existing key pair to AWS. Doing
so has two advantages:

 You can reuse an existing key pair.
 You can be sure that only you know the private key part of the key pair. If you use

the Create Key Pair button, AWS knows (at least briefly) your private key.

We decided against that approach in this case because it’s less convenient to imple-
ment in a book.
Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

49Creating an AWS account
LINUX AND MAC OS X
The only thing you need to do is change the access rights of mykey.pem so that only
you can read the file. To do so, run chmod 400 mykey.pem in the terminal. You’ll learn
about how to use your key when you need to log in to a virtual server for the first time
in this book.

WINDOWS

Windows doesn’t ship a SSH client, so you need to download the PuTTY installer for
Windows from http://mng.bz/A1bY and install PuTTY. PuTTY comes with a tool
called PuTTYgen that can convert the mykey.pem file into a mykey.ppk file, which
you’ll need:

1 Run the application PuTTYgen. The screen shown in figure 1.27 opens.
2 Select SSH-2 RSA under Type of Key to Generate.
3 Click Load.
4 Because PuTTYgen displays only *.pkk files, you need to switch the file exten-

sion of the File Name field to All Files.
5 Select the mykey.pem file, and click Open.
6 Confirm the dialog box.
7 Change Key Comment to mykey.
8 Click Save Private Key. Ignore the warning about saving the key without a

passphrase.

Your .pem file is now converted to the .pkk format needed by PuTTY. You’ll learn how
to use your key when you need to log in to a virtual server for the first time in this book.

Figure 1.26 EC2 Management Console key pairs
Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

http://mng.bz/A1bY

50 CHAPTER 1 What is Amazon Web Services?
1.8.4 Creating a billing alarm

Before you use your AWS account in the next chapter, we advise you to create a billing
alarm. If you exceed the Free Tier, an email is sent to you. The book warns you when-
ever an example isn’t covered by the Free Tier. Please make sure that you carefully fol-
low the cleanup steps after each example. To make sure you haven’t missed something
during cleanup, please create a billing alarm as advised by AWS: http://mng.bz/M7Sj.

1.9 Summary
 Amazon Web Services (AWS) is a platform of web services offering solutions for

computing, storing, and networking that work well together.
 Cost savings aren’t the only benefit of using AWS. You’ll also profit from an

innovative and fast-growing platform with flexible capacity, fault-tolerant ser-
vices, and a worldwide infrastructure.

 Any use case can be implemented on AWS, whether it’s a widely used web appli-
cation or a specialized enterprise application with an advanced networking
setup.

Figure 1.27 PuTTYgen allows you to convert the downloaded .pem file into the .pkk
file format needed by PuTTY.
Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

http://mng.bz/M7Sj

51Summary
 You can interact with AWS in many different ways. You can control the different ser-
vices by using the web-based GUI; use code to manage AWS programmatically from
the command line or SDKs; or use blueprints to set up, modify, or delete your infra-
structure on AWS.

 Pay-per-use is the pricing model for AWS services. Computing power, storage,
and networking services are billed similarly to electricity.

 Creating an AWS account is easy. Now you know how to set up a key pair so you
can log in to virtual servers for later use.
Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

52 CHAPTER 1 What is Amazon Web Services?
Amazon Web Services in Action introduces you to comput-
ing, storing, and networking in the AWS cloud. The
book will teach you about the most important services
on AWS. You’ll also learn about best practices regard-
ing security, high availability and scalability. You'll start
with a broad overview of cloud computing and AWS
and learn how to spin-up servers manually and from
the command line. You'll learn how to automate your
infrastructure by programmatically calling the AWS API
to control every part of AWS. You’ll be introduced to
the concept of Infrastructure as Code with the help of
AWS CloudFormation. You’ll learn about different

approaches to deploy applications on AWS. You'll also learn how to secure your infra-
structure by isolating networks, controlling traffic and managing access to AWS
resources. Next, you'll learn options and techniques for storing your data. You’ll expe-
rience how to integrate AWS services into your own applications by the use of SDKs.
Finally, this book teaches you how to design for high availability, fault tolerance, and
scalability.

What's inside

 Overview of AWS cloud concepts and best practices
 Manage servers on EC2 for cost-effectiveness
 Infrastructure automation with Infrastructure as Code (AWS CloudFormation)
 Deploy applications on AWS
 Store data on AWS: SQL, NoSQL, object storage and block storage
 Integrate Amazon's pre-built services
 Architect highly available and fault tolerant systems

Written for developers and DevOps engineers moving distributed applications to the
AWS platform.
Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

https://www.manning.com/books/amazon-web-services-in-action
https://www.manning.com/books/amazon-web-services-in-action

Install a common web application and you’ll understand how a cloud pro-
vider works. JJ Geewax follows this approach in Chapter 2 of his book Google
Cloud Platform in Action. You can also get a good understanding of the differences
between cloud providers when you try to install the same application on each of
them.

Google Cloud
Platform in Action
Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

https://www.manning.com/books/google-cloud-platform-in-action
https://www.manning.com/books/google-cloud-platform-in-action

Chapter 2 from Google Cloud Platform in Action
by JJ Geewax

Trying it out: Deploying
Wordpress on Google Cloud
The pieces we’ll turn on here will be part of the free-trial from Google. If you leave
them running past your free trial, your system will cost about $50 (?) per month.

 If you’ve ever explored hosting your own website or blog, chances are you’ve
come across (or maybe even installed) Wordpress. There’s not much debate about
Wordpress’s popularity, with millions of websites relying on it for their websites or
blogs, but many public blogs are hosted by other companies such as HostGator,

This chapter covers
 What is Wordpress?

 Laying out the pieces of a Wordpress deployment

 Turning on a SQL database to store your data

 Turning on a VM to run Wordpress

 Turning everything off
54

Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

https://www.manning.com/books/google-cloud-platform-in-action

55Overall layout
BlueHost, or Wordpress’s own hosted service, WordPress.com (not to be confused
with the open source project WordPress.org).

 To demonstrate the simplicity of Google Cloud, this chapter is going to walk you
through deploying Wordpress using Google Compute Engine and Google Cloud SQL
to host your infrastructure.

 First, let’s put together an architectural plan for how we’ll deploy Wordpress using
all the cool new tools you learned in the last chapter.

2.1 Overall layout
Before we get down to the technical pieces of turning on machines, let’s start by look-
ing at what we need to turn on. The way we’ll do this is to look at the flow of an "ideal
request" through our future system. We’re going to imagine a person visiting our
future blog, and look at where their request needs to go in order to give them a great
experience.

 We’ll start with a single machine, because it’s the simplest possible configuration:
Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

http://dev.mysql.com/downloads/mysql/

56 CHAPTER 2 Trying it out: Deploying Wordpress on Google Cloud
 As you can see here, the flow is:

1 someone asks the Wordpress server for a page
2 the Wordpress server queries the database
3 the database sends back a result (ie, the content of the page)
4 the Wordpress server sends back a web page

 Simple enough, right?
 What happens as things get a bit more complex? What does that look like?
 Although we won’t demonstrate this configuration here, you might recall our dis-

cussion in Chapter 1 about relying on cloud services for more complicated hosting
problems, like content distribution (for example, if your servers are in the US, what’s
the experience going to be like for your readers in Asia?). To show an idea of how this
might look, here’s a flow diagram for a Wordpress server using Google Cloud Storage
to handle static content (like images):

 In this case, the flow is initially the same, but unlike before, when static content is
requested it doesn’t re-use the same flow.

 In this configuration, your Wordpress server will modify references to static con-
tent rather than request it from the Wordpress server, because the browser will request
it from Google Cloud Storage (steps 5 and 6).
Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

57The database
 This means that requests for images and other static content will be handled by
Google Cloud Storage directly, which can do fancy things like distributing your con-
tent around the world and caching the data close to your readers. This means that
your static content will be delivered quickly, no matter how far they are from your
Wordpress server.

 Now that you’ve an idea of how the pieces will talk to each other, it’s time to start
exploring each piece individually and find out what is happening under the hood.

2.2 The database
We’ve drawn this picture involving a database, but we haven’t said much about what type
of database we’re talking about. Many databases are available, but one of the most pop-
ular open-source databases is MySQL, which hopefully you’ve heard of. MySQL is great
at storing relational data and has plenty of knobs to turn when you need to start squeez-
ing out greater performance . For now, we’re not concerned about performance, but
it’s nice to know that we’ll have some wiggle room if things get bigger.

 In the early days of cloud computing, the standard way to turn on a database like
MySQL was to create a virtual machine, install the MySQL binary package, and then
manage that virtual machine like any regular server. As time went on, cloud providers
started noticing that databases all seemed to follow this same pattern, and they started
offering "managed database services" where you don’t have to configure the virtual
machine yourself, but instead turn on a "managed virtual machine" running a specific
binary.

 All of the major cloud hosting providers offer this sort of service; Amazon has its
Relational Database Service (RDS), Azure has its SQL Database service, and Google
has its Cloud SQL service.

 And because managing a database via Cloud SQL is quicker and easier than con-
figuring and managing the underlying virtual machine and its software, we’re going to
use Cloud SQL for our database. This isn’t always going to be the best choice (see
Chapter X for much more detail about Cloud SQL), but for our Wordpress deploy-
ment, which is typical, Cloud SQL is a great fit as it looks almost identical to a MySQL
server that you’d configure yourself, but is easier and faster to set up.

2.2.1 Turning on a Cloud SQL instance

The first step to turning on our database is to jump into the Cloud Console by going
to https://cloud.google.com/console and then clicking on the Cloud SQL section.
Once you get there, you’ll see a nice blue button that says "Create instance":
Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

https://cloud.google.com/console
https://cloud.google.com/console

58 CHAPTER 2 Trying it out: Deploying Wordpress on Google Cloud
 After that, choose to create a "Second Generation" instance (see Chapter X for
more detail on these) and then you’ll be taken to a page where you can enter some
information about your database.

 The first thing you should notice is that this page looks similar to the page you saw
when creating a virtual machine. This is intentional because, under the hood, you’re
creating a virtual machine which Google will manage, and kick-off by installing and
configuring MySQL for you.

 As with a virtual machine, you need to name your database. For this exercise, let’s
name the database wordpress-db (like VMs, the name must be unique inside your
project, ensuring that only one database has this name at a time).

 Then, also like a VM, you must choose where (geographically) you want your data-
base to live. Like last time, let’s use us-central1-c as our zone.

 Let’s leave the default instance type (1 vCPU with 3.75 GB of memory), but keep in
mind that you’ll be able to change this later if your discussion forum becomes popular
enough that a single vCPU can’t handle the load.

 The next thing you should take notice of is the "storage capacity" field. This does
what you might expect, in that it’s the maximum amount of data you’ll be able to
store, but there’s an important detail that might be new to you: size and performance
are tied together.

 Size and performance are tied together? What does that mean?
 This means that a bigger disk will be able to handle more read and write opera-

tions at a time. If you’re an expert in storage, this’ll seem obvious to you, but most of
the time we think of storage in terms of size and rarely in terms speed. This is primar-
ily because our day-to-day experience with disks includes more than enough "speed"
for our needs, and performance isn’t a concern. The problem shows up only when
you have a disk being used by lots of people at the same time, as anyone with a large
and overused network share will know. For our database, we’ll certainly have lots of
people asking for data at the same time, and we must consider speed as a factor.

 What does this mean in real terms? How big of a disk do you need?
 Because you can’t choose performance and size as two separate things, you must

choose a size that gives you the performance you need. This means that you’ll often
Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

http://wordpress.org/latest.tar.gz

59The database
have a disk that stores far more bytes than you need. This is OK, but if you’re still wor-
ried, check out the chapter about Block Storage (Google’s Persistent Disk) for more
details. For this exercise, we should be perfectly safe with a 50GB disk:

 The rest of the options on this page can be changed later. Let’s leave them as they
are and create our instance.
Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

60 CHAPTER 2 Trying it out: Deploying Wordpress on Google Cloud
 Once you’ve created your instance, you can use the gcloud command-line tool to
show that it’s all set with the gcloud sql command in Listing 2.1.

$ gcloud sql instances list
NAME REGION TIER ADDRESS STATUS
wordpress-db - db-n1-standard-1 104.197.207.227 RUNNABLE

2.2.2 Securing your Cloud SQL instance

Before we go any further, you should change a few settings on your SQL instance to
allow you (and hopefully only you) to connect to it. What we’ll do for our testing
phase is change the password on the instance, and then open it up to the world. Then,
after we’ve tested it out, we’ll change the network settings to only allow access from
your Compute Engine VMs.

 First, let’s change the password. You can do this from the command line with the
gcloud sql set-root-password command as shown in Listing 2.2.

$ gcloud sql instances set-root-password wordpress-db -p "my-very-long-
password!"

Setting Cloud SQL instance password...done.
Set password for [https://www.googleapis.com/sql/v1beta3/projects/jjg-cloud-

research/instances/wordpress-db].

Now that the password’s set, let’s (temporarily) open the SQL instance to the outside
world.

 To do this, go into the Cloud Console and navigate to your Cloud SQL instance.
Towards the top are a few tabs; one of them is "Access Control". Under the Access
Control tab, there’s a bit button labelled "Add item" which allows you to control your
"Authorized Networks". Click on that and add "the world" in CIDR notation
(0.0.0.0/0) and click Save:

Listing 2.1 A list of running Cloud SQL instances

Quiz
Can you think of a time that you might have a huge persistent disk that’ll be mostly
empty? Look at the chapter on Persistent Disk if you’re not sure.

Listing 2.2 Setting the root password for a Cloud SQL instance
Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

https://www.googleapis.com/sql/v1beta3/projects/jjg-cloud- research/instances/wordpress-db
https://www.googleapis.com/sql/v1beta3/projects/jjg-cloud- research/instances/wordpress-db

61The database
 Now it’s time to test whether all of this worked!

2.2.3 Connecting to your Cloud SQL instance

If you don’t have a MySQL client, the first thing to do is install one. On a Linux envi-
ronment like Ubuntu you can install it by typing

Caution
You’ll notice a little warning about opening your database to any IP address. This is
OK because we’re doing some testing, but you should never leave this setting for your
production environments. You’ll learn more about securing your SQL instance for your
cluster later on.
Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

62 CHAPTER 2 Trying it out: Deploying Wordpress on Google Cloud
$ sudo apt-get install mysql-client

 On Windows or Mac, you can download the package from MySQL’s website:
http://dev.mysql.com/downloads/mysql/

 After you’ve that installed, connecting to the database is easy: enter the IP address
of your instance (you saw this before with gcloud sql instances list), use the user-
name "root", and the password you set earlier.

 For example, on a Linux computer, here’s what you might do:

$ mysql -h 104.197.207.227 -u root -p
Enter password: # <I typed my password here>
Welcome to the MySQL monitor.Commands end with ; or \g.
Your MySQL connection id is 4760

Server version: 5.6.25-google-log (Google)
Copyright (c) 2000, 2015, Oracle and/or its affiliates. All rights reserved.
Oracle is a registered trademark of Oracle Corporation and/or its
affiliates. Other names may be trademarks of their respective owners.

Type 'help;' or '\h' for help. Type '\c' to clear the current input statement.
mysql>

 Great work! You now have a SQL database server living in the cloud!
 Next, let’s run a few SQL commands to prepare your database for Wordpress.

2.2.4 Configuring your Cloud SQL instance for Wordpress

You’ve a MySQL database that you can successfully talk to. Let’s get that database pre-
pared for Wordpress to start talking to it.

 Here’s a basic outline of what we’re going to do:

1 Create a database called wordpress
2 Create a user called wordpress
3 Give the wordpress user the appropriate permissions

 The first thing you should do is get back to your MySQL command-line prompt. As
you learned, you can do this by running the mysql command.

 Next up is to create the database. Do this by running

mysql> CREATE DATABASE wordpress;
Query OK, 1 row affected (0.10 sec)

Listing 2.3 Installing the MySQL client library on Ubuntu Linux

Listing 2.4 Connecting to a Cloud SQL instance using the MySQL client

Listing 2.5 Creating the wordpress database in MySQL
Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

63Deploying the Wordpress VM
 Then we need to create a user account for Wordpress to use for access to the data-
base:

mysql> CREATE USER wordpress IDENTIFIED BY 'very-long-wordpress-password';
Query OK, 0 rows affected (0.21 sec)

 And then we need to give this new user the right level of access to do things to the
database (like create tables, add rows, run queries, etc):

mysql> GRANT ALL PRIVILEGES ON wordpress.* TO wordpress;
Query OK, 0 rows affected (0.20 sec)

 And finally let’s tell MySQL to reload the list of users and privileges. If we forget
this command, MySQL would know about the changes when it restarts, but we don’t
want to restart our Cloud SQL instance for this alone!

mysql> FLUSH PRIVILEGES;
Query OK, 0 rows affected (0.12 sec)

 This is all you need to do on the database! Next, let’s make it do something real
rather than sit around as a toy.

2.3 Deploying the Wordpress VM
Let’s start by turning on the VM that’ll host our Wordpress installation. As you learned
previously, you can do this easily in the Cloud Console. Go ahead and do that once
more:

Listing 2.6 Creating the wordpress user in MySQL

Listing 2.7 Granting access to the wordpress user in MySQL

Listing 2.8 Refreshing the database’s access controls after changes

Quiz
How does your database get backed up? Look at the chapter on Cloud SQL if you’re
not sure.
Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

64 CHAPTER 2 Trying it out: Deploying Wordpress on Google Cloud
 Take note that the checkboxes for allowing HTTP and HTTPS traffic are checked,
because we want our Wordpress server to be accessible to anyone through their browsers.

 Before you click Create, you need to do one last thing. Click on "Management,
disk, networking, access & security options" which’ll expand to show new options.
Under "Access & security", scroll down to the section called Cloud SQL and change
the dropdown from "None" to "Enabled".

 After that, you’re ready to turn on your VM. Go ahead and click "Create".

2.4 Configuring Wordpress
The first thing to do now that your VM is up and running is to SSH into it. You can do
this in the Cloud Console by clicking the SSH button, or use the Cloud SDK with the
gcloud compute ssh command. For this walkthrough, we’ll use the Cloud SDK to
connect to our VM.

Quiz
 Where does your virtual machine physically exist?
 What will happen if the hardware running your virtual machine has a problem?

Look at the chapter on the Cloud Datacenter if you’re not sure.
Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

65Configuring Wordpress
$ gcloud compute ssh us-central1-c/wordpress
Warning: Permanently added '104.197.86.115' (ECDSA) to the list of known

hosts.
Welcome to Ubuntu 15.10 (GNU/Linux 4.2.0-18-generic x86_64)

 * Documentation: https://help.ubuntu.com/

 Get cloud support with Ubuntu Advantage Cloud Guest:
 http://www.ubuntu.com/business/services/cloud

0 packages can be updated.
0 updates are security updates.

The programs included with the Ubuntu system are free software;
the exact distribution terms for each program are described in the
individual files in /usr/share/doc/*/copyright.

Ubuntu comes with ABSOLUTELY NO WARRANTY, to the extent permitted by
applicable law.

To run a command as administrator (user "root"), use "sudo <command>".
See "man sudo_root" for details.

jj@wordpress:~$

 Once you’re connected, we need to install a bunch of packages:

1 Apache
2 MySQL Client
3 PHP

 You can do this using apt-get:

jj@wordpress:~$ sudo apt-get update
jj@wordpress:~$ sudo apt-get install apache2 mysql-client php5-mysql php5
libapache2-mod-php5 php5-mcrypt php5-gd libssh2-php

 When prompted, confirm (by typing Y and hitting enter).
 Now that you’ve installed all the prerequisites, it’s time to install Wordpress. Start

by downloading the latest version from wordpress.org, and unzipping it into your
home directory.

jj@wordpress:~$ wget http://wordpress.org/latest.tar.gz
jj@wordpress:~$ tar xzvf latest.tar.gz

 After you’ve done that, you’ll need to set some configuration parameters, primar-
ily where Wordpress should store data, and how to authenticate. To do this, copy the
sample config file to wp-config.php, and then edit the file to point to your Cloud
SQL instance (in this example, I’m using vim, but you can use whichever text editor
you’re most comfortable with):
Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

https://help.ubuntu.com/
http://www.ubuntu.com/business/services/cloud
http://wordpress.org/latest.tar.gz

66 CHAPTER 2 Trying it out: Deploying Wordpress on Google Cloud
jj@wordpress:~$ cd wordpress
jj@wordpress:~/wordpress$ cp wp-config-sample.php wp-config.php
jj@wordpress:~/wordpress$ vim wp-config.php

 After editing wp-config.php, it should look something like this:

<?php
/**
* The base configuration for Wordpress
*
* The wp-config.php creation script uses this file during the
* installation. You don't have to use the web site, you can
* copy this file to "wp-config.php" and fill in the values.
*
* This file contains the following configurations:
*
* * MySQL settings
* * Secret keys
* * Database table prefix
* * ABSPATH
*
* @link https://codex.wordpress.org/Editing_wp-config.php
*
* @package WordPress
*/

// ** MySQL settings - You can get this info from your web host ** //
/** The name of the database for WordPress */
define('DB_NAME', 'wordpress');

/** MySQL database username */
define('DB_USER', 'wordpress');

/** MySQL database password */
define('DB_PASSWORD', 'very-long-wordpress-password');

/** MySQL hostname */
define('DB_HOST', '104.197.207.227');

/** Database Charset to use in creating database tables. */
define('DB_CHARSET', 'utf8');

/** The Database Collate type. Don't change this if in doubt. */
define('DB_COLLATE', '');

 Once you have your configuration the way you want it (you should only need to
change the database settings), it’s time to move all those files out of your home direc-
tory and into somewhere that Apache can serve them. (We also need to remove the
Apache default page, index.html) The easiest way to do this is using rm and then
rsync:

jj@wordpress:~/wordpress$ sudo rm /var/www/html/index.html
jj@wordpress:~/wordpress$ sudo rsync -avP ~/wordpress/ /var/www/html/
Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

https://codex.wordpress.org/Editing_wp-config.php

67Review the system
 Now all you must do is visit your web server in your browser, which should end up
looking like this:

 From there, following the prompts should take about five minutes and you’ll have
a working Wordpress installation!

2.5 Review the system
What did we do? Looking at this in order, we setup quite a few different pieces:

1 We turned on a Cloud SQL instance to store our data
2 We added a few users, and changed the security rules.
3 We turned on a Compute Engine virtual machine
4 We installed Wordpress on that VM Did we forget anything?

 Do you remember when we set the security rules on the Cloud SQL instance to
accept connections from anywhere (0.0.0.0/0)? Now that we know where to accept
Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

68 CHAPTER 2 Trying it out: Deploying Wordpress on Google Cloud
requests (from our VM), we should fix that. If we don’t the database is vulnerable to
attacks from the whole world. But, if we lock down the database at the network level,
even if someone discovers the password it’s only useful if they’re connecting from one
of our known machines.

 To do this, head back to the Cloud Console and navigate to your Cloud SQL
instance. Under the "Access Control" tab, edit the Authorized Network you had before,
changingn0.0.0.0/0 to the IP address followed by /32 (ie, 104.197.86.115/32) and
rename the rule to read us-central1-c/wordpress to remember what this rule is for.
When you’re done, the access control rules should look like this:

2.6 Turning it off
If you want to keep your Wordpress instance up and running, you can skip past this
section. (Maybe you’ve always wanted to host your own blog, and the demo we picked
happened to be perfect for you?) If not, let’s go through the process of turning off all
those resources you created.

 The first thing to turn off is the GCE virtual machine. You can do this using the
Cloud Console in the Compute Engine section. When you click on your instance, you
might notice there are two options, "Stop" and "Delete". The difference between
these is subtle but important.

 When you delete an instance, it’s gone forever, like it never existed in the first
place. When you stop an instance, it’s still there, but in a "paused" state where you can
pick up exactly where you left off.

 Why wouldn’t we stop instances rather than delete them? The catch with stopping
an instance is that you must keep your persistent disks around, and those cost money.
You won’t be paying for CPU cycles on a stopped instance, but the disk that stores the
operating system and all your configuration needs to stay around, and you’ll be billed
for your disks whether they’re attached to a running virtual machine or not.
Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

69Summary
 In this case, if we’re done with our Wordpress installation, the right choice is prob-
ably deleting rather than stopping.

 When you click delete, you should notice that the confirmation prompt reminds
you that your disk (the boot disk) will also be deleted.

 After that, you can do the same thing to your Cloud SQL instance, but keep in
mind you don’t have the option to "stop" a Cloud SQL instance.

2.7 Summary
 Google Compute Engine makes it simple and fast to turn on virtual machines in

the cloud.
 Larger persistent disks come with more performance (IOPS); choose a size that

meets your needs. (It’s OK if your disk has empty space.)
 If you don’t need any special customization, Google Cloud SQL is a simple and

fast way to turn on a managed MySQL database, using Compute Engine under
the hood.

 You can connect to Cloud SQL databases using the normal MySQL client, and
there’s no need for anything special in your software.

 Use Google’s access control to limit connections at the network level.
 Never open your production database to the world (0.0.0.0/0).
Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

70 CHAPTER 2 Trying it out: Deploying Wordpress on Google Cloud

Cloud services make it easy to set up technical infra-
structure (such as computing resources or storage
capacity) without those pesky long-term commitments,
meaning you pay for exactly what you need, and can
think beyond the limits of physical machines. Many
cloud providers are out there to choose from, Google
Cloud Platform’s trusted by millions of applications
and is backed by the infrastructure powering many of
the services you use every day such as Google Search
and YouTube. It’s no wonder people are flocking to
cloud providers in general, and GCP in particular, as
these unique services let you focus less on your tools

and more on your application.
 Google Cloud Platform in Action teaches you to build and launch applications that

scale, using the many services on GCP to move faster than ever. You'll begin with an
introduction to what cloud services are in general, and a close up look at GCP and its
benefits. You'll quickly get to deploy a basic application on GCP with step-by-step
instructions. Then you'll move on to more advanced topics, such as how to architect
your application to best take advantage of GCP services, how to launch large-scale web
applications, how best to store and query huge amounts of data, and how to build the
back-end of a social image sharing application. You'll also learn how to choose exactly
the services that best suit your needs. By the end, you’ll be able to build applications
that run on Google Cloud Platform and start quicker, suffer fewer disasters, and
require less maintenance.

What's inside

 Use Google's core infrastructure, data analytics and machine learning
 Get applications deployed quickly
 Choosing the most cost effective options
 Hands-on code examples

 This book is for developers who’ve some experience developing web applications.
No experience with cloud services required.

Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

https://www.manning.com/books/google-cloud-platform-in-action
https://www.manning.com/books/google-cloud-platform-in-action

A serverless architecture’s about composing functions to take in an input
and return an output. These functions are the new building blocks of your archi-
tecture. Each function’s its own deployable unit that’s independent of all the
other functions. By passing inputs to other functions, they can communicate
with each other. But functions can also be triggered by the external world. Fol-
low a chapter of Serverless Architectures and start going Serverless!

Serverless
Architectures on AWS
Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

Chapter 1 from Serverless Architectures on AWS
by Peter Sbarski with Sam Kroonenburg

Going serverless
If you ask software developers what software architecture is, you might get answers
ranging from “it’s a blueprint or a plan” to “a conceptual model” to “the big picture.”
It’s undoubtedly true that architecture, or lack thereof, can make or break software.
Good architecture may help to scale a web or mobile application, and poor architec-
ture may cause serious issues that necessitate a costly rewrite. Understanding the

This chapter covers
 Traditional system and application architectures

 Key characteristics of serverless architectures
and their benefits

 How serverless architectures and microservices
fit in to the picture

 Considerations when transitioning from server to
serverless
72

Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

https://www.manning.com/books/serverless-architectures-on-aws

73How we got to where we are
implication of choice regarding architecture and being able to plan ahead is paramount
to creating effective, high-performing, and ultimately successful software systems.

 This book is about how to go beyond traditional back end architectures that
require us to interact with a server in some shape or form. It describes how to create
serverless back ends that rely entirely on a compute service such as Amazon Web Ser-
vices (AWS) Lambda and an assortment of useful third-party APIs, services, and prod-
ucts. It shows how to build the next generation of systems that can scale and handle
demanding computational requirements without having to provision or manage a sin-
gle machine. Importantly, this book describes techniques that can help developers
quickly deliver products to market while maintaining a high-level of quality and per-
formance by leveraging services and architectures that today’s cloud has to offer.

 The first chapter of this book is about why we think serverless is a game changer
for software developers and solution architects. This chapter introduces key services
such as AWS Lambda and describes the principles of serverless architecture to help
you understand what makes a true serverless system.

1.1 How we got to where we are
If you look at systems powering most of today’s web-enabled software, you’ll see back
end servers performing various forms of computation and client-side front ends pro-
viding an interface for users to operate via their browser, mobile, or desktop device.

 In a typical web application, the server accepts HTTP requests from the front end
and processes requests. Data might travel through numerous application layers before
being saved to a database. The back end, finally, generates a response—it could be in
the form of JSON or fully rendered markup—which is sent back to the client (figure
1.1). Naturally, most systems are more complex once elements such as load balancing,
transactions, clustering, caching, messaging, and data redundancy are taken into
account. Most of this software requires servers running in data centers or in the cloud
that need to be managed, maintained, patched, and backed up.

What’s in a name?
Before we start, we should mention that the word serverless is a bit of a misnomer.
Whether you use a compute service such as AWS Lambda to execute your code or
interact with an API, there are still servers running in the background. The difference
is that these servers are hidden from you. There’s no infrastructure for you to think
about and no way to tweak the underlying operating system. Someone else takes
care of the nitty-gritty details of infrastructure management, freeing your time for
other things. Serverless is about running code in a compute service and interacting
with services and APIs to get the job done.
Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

74 CHAPTER 1 Going serverless
Figure 1.1 This is a basic request-response (client-server) message exchange pattern that most
developers are familiar with. There’s only one web server and one database in this figure. Most systems
are much more complex.

Provisioning, managing, and patching of servers is a time-consuming task that often
requires dedicated operations people. A non-trivial environment is hard to set up and
operate effectively. Infrastructure and hardware are a necessary component of any IT
system, but they’re often also a distraction from what should be the core focus—solv-
ing the business problem.

 Over the past few years, technologies such as platform as a service (PaaS) and con-
tainers have appeared as potential solutions to the headache of inconsistent infra-
structure environments, conflicts, and server management overheard. PaaS is a form
of cloud computing that provides a platform for users to run their software while hid-
ing some of the underlying infrastructure. To make an effective use of PaaS, develop-
ers need to write software that targets the features and capabilities of the platform.
Moving a legacy application designed to run on a standalone server to a PaaS service
may require additional development effort because of the ephemeral nature of most
PaaS implementations. Still, given a choice, many developers would understandably
choose to use PaaS rather than more traditional, more manual solutions thanks to
reduced maintenance and platform support requirements.

 Containerization is a way of isolating an application with its own environment. It’s
a lightweight alternative to full-blown virtualization. Containers are isolated and light-
weight but they need to be deployed to a server—whether in a public or private cloud
or onsite. They’re an excellent solution when dependencies are in play, but they have
their own housekeeping challenges and complexities. They’re not as easy as simply
being able to run code directly in the cloud.

 Finally, we make our way to Lambda, which is a compute service from Amazon Web
Services. Lambda can execute code in a massively parallelized way in response to
events. Lambda takes your code and runs it without any need to provision servers,
install software, deploy containers, or worry about low-level detail. AWS takes care of
provisioning and management of their Elastic Compute Cloud (EC2) servers that run
Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

75How we got to where we are
the actual code and provides a high-availability compute infrastructure—including
capacity provisioning and automated scaling—that the developer doesn’t need to
think about. The words serverless architectures refer to these new kinds of software archi-
tectures that do not rely on direct access to a server to work. By taking Lambda and
making use of various powerful single-purpose APIs and web services, developers can
build loosely coupled, scalable, and efficient architectures quickly. Moving away from
servers and infrastructure concerns, as well as allowing the developer to primarily focus on code is
the ultimate goal behind serverless.

1.1.1 Service-oriented architecture and microservices

Among a number of different system and application architectures, service-oriented
architecture (SOA) has a lot of name recognition among software developers. It’s an
architecture that clearly conceptualized the idea that a system can be composed of
many independent services. Much has been written about SOA but it remains contro-
versial and misunderstood because developers often confuse design philosophy with
specific implementation and attributes.

 SOA doesn’t dictate the use of any particular technology. Instead, it encourages an
architectural approach in which developers create autonomous services that commu-
nicate via message passing and often have a schema or a contract that defines how
messages are created or exchanged. Service reusability and autonomy, composability,
granularity, and discoverability are all important principles associated with SOA.

 Microservices and serverless architectures are spiritual descendants of service-ori-
ented architecture. They retain many of the aforementioned principles and ideas while
attempting to address the complexity of old-fashioned service-oriented architectures.

 There has been a recent trend to implement systems using microservices architec-
ture. Developers tend to think of microservices as small, standalone, fully indepen-
dent services built around a particular business purpose or capability. A microservice
may have an application tier with its own API and a database.

 Ideally, microservices should be easy to replace, with each service written in an
appropriate framework and language. The mere fact that microservices can be written
in different general-purpose or domain-specific languages (DSL) is a draw card for
many developers. Although benefits can be gained from using the right language or a
specialized set of libraries for the job, it can often be a trap too. Having a mix of lan-
guages and frameworks can be hard to support and leads to confusion and difficulties
down the road without a strict discipline.

 Each microservice may maintain its state and store data, which adds to the complexity
of the system. Consistency and coordination management can become an issue too,
because state must often be synchronized across disparate services. Microservices can
communicate indirectly via a message bus or directly by sending messages to one another.

 It can be argued that serverless architecture embodies many principles from
microservices too. After all, depending on how you design the system, every compute
function could be considered its own standalone service. But you don’t need to fully
embrace the microservices mantra and develop every function or service around a
particular business purpose, maintain its state, and so on.
Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

76 CHAPTER 1 Going serverless
 Serverless architectures give you the freedom to apply as few or as many microser-
vices principles as you would like without forcing you down a single path. This book
shows examples of architectures where parts of a monolithic system are re-imple-
mented as serverless architecture without applying all of the microservices tenets. It’s
then up to you to decide how much farther to take your architecture based on your
requirements and preference.

1.1.2 Software design

Software design has evolved from the days of code running on a mainframe to multi-
tier systems of today where the presentation, data, and application/logic tiers feature
prominently in many designs. Within each tier there may be multiple logical layers
that deal with particular aspects of functionality or domain. There are also cross-cut-
ting components, such as logging or exception-handling systems, that can span
numerous layers. The preference for layering is understandable. Layering allows
developers to decouple concerns and have more maintainable applications.

 But the converse can also be true. Having too many layers can lead to inefficiencies. A
small change can often cascade and cause the developer to modify every layer through-
out the system, costing considerable time and energy in implementation and testing.
The more layers there are, the more complex and unwieldy the system might become
over time. Figure 1.2 shows an example of a tiered architecture with multiple layers.

Figure 1.2 A typical three-tier application is usually made up of presentation, application, and data
tiers. A tier may have multiple layers with specific responsibilities. A developer can choose how layers
will interact with each other. This can be strictly top-down or in a loose way, where layers can bypass
their immediate neighbors to talk to other layers.
Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

http://amzn.to/1PFQ2hZ
http://amzn.to/1Qj5LQg

77How we got to where we are
Serverless architectures can help with the problem of layering and having to update
too many things. There’s room for developers to remove or minimize layering by
breaking the system into functions and allowing the front end to securely communi-
cate with services and even the database directly, as shown in figure 1.3. All of this can
be done in an organized way to prevent spaghetti implementations and dependency
nightmares by clearly defining service boundaries, allowing Lambda functions to be
autonomous, and planning how functions and services will interact.

Figure 1.3 In a serverless architecture there’s no single traditional back end. The front end of the
application communicates directly with services, the database, or compute functions via an API
gateway. Some services, however, must be hidden behind compute service functions, where additional
security measures and validation can take place.

 A serverless approach doesn’t solve all problems, nor does it remove the underly-
ing intricacies of the system. But when implemented correctly it can provide opportu-
nities to reduce, organize, and manage complexity. A well-planned serverless
architecture can make future changes easier, which is an important factor for any
long-term application. The next section and later chapters discuss the organization
and orchestration of services in more detail.
Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

78 CHAPTER 1 Going serverless
1.2 Principles of serverless architectures
Serverless architecture has five principles that describe how an ideal serverless system
should be built. Use these principles to help guide your decisions when you create
serverless architecture.

1 Use a compute service to execute code on demand (no servers).
2 Write single-purpose stateless functions.
3 Design push-based, event-driven pipelines.
4 Create thicker, more powerful front ends.
5 Embrace third-party services.

Let’s look at each of these principles in more detail.

1.2.1 Use a compute service to execute code on demand

Serverless architectures are a natural extension of ideas raised in SOA. In serverless
architecture all custom code is written and executed as isolated, independent, and
often granular functions that are run in a stateless compute service such as AWS
Lambda. Developers can write functions to carry out almost any common task, such as
reading and writing to a data source, calling out to other functions, and performing a
calculation. In more complex cases, developers can set up more elaborate pipelines
and orchestrate invocations of multiple functions. There might be scenarios where a
server is still needed to do something. These cases, however, may be far and few
between, and as a developer you should avoid running and interacting with a server if
possible.

Tiers vs. layers
There is confusion among some developers about the difference between layers and
tiers. A tier is a module boundary that exists to provide isolation between major com-
ponents of a system. A presentation tier that’s visible to the user is separate from
the application tier, which encompasses business logic. In turn, the data tier is
another separate system that can manage, persist, and provide access to data. Com-
ponents grouped in a tier can physically reside on different infrastructure.

Layers are logical slices that carry out specific responsibilities in an application. Each
tier can have multiple layers within it responsible for different elements of function-
ality such as domain services.
Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

79Principles of serverless architectures
1.2.2 Write single-purpose stateless functions

As a software engineer, you should try to design your functions with the single respon-
sibility principle (SRP) in mind. A function that does just one thing is more testable
and robust and leads to fewer bugs and unexpected side effects. By composing and
combining functions and services in a loose orchestration, you can build complex
back end systems that are still understandable and easy to manage. A granular func-
tion with a well-defined interface is also more likely to be reused within a serverless
architecture.

 Code written for a compute service such as Lambda should be created in a stateless
style. It must not assume that local resources or processes will survive beyond the
immediate session. Statelessness is powerful because it allows the platform to quickly
scale to handle an ever-changing number of incoming events or requests.

1.2.3 Design push-based, event-driven pipelines

Serverless architectures can be built to serve any purpose. Systems can be built server-
less from scratch, or existing monolithic applications can be gradually re-engineered
to take advantage of this architecture. The most flexible and powerful serverless
designs are event driven. In chapter 3, for example, we’ll build an event-driven, push-
based pipeline to show how quickly we can put together a system to encode video to
different bitrates and formats. We’ll achieve this by connecting Amazon’s Simple Stor-
age Service (S3), Lambda, and Elastic Transcoder together (figure 1.4).

 Building event-driven, push-based systems will often reduce cost and complexity
(you won’t need to run extra code to poll for changes) and potentially make the over-
all user experience smoother. It goes without saying that although event-driven, push-
based models are a good goal, they might not be appropriate or achievable in all cir-
cumstances. Sometimes you’ll have to implement a Lambda function that polls the
event source or runs on a schedule. We’ll cover different event models and work
through examples in later chapters.

 So, what is Lambda exactly?
Lambda is a compute service that executes code written in JavaScript (Node.js),
Python, or Java on AWS infrastructure. Source code is deployed to an isolated container
that has its own allocation of memory, disk space, and CPU. The combination of your
code, configuration, and dependencies is typically referred to as a Lambda function.
The Lambda runtime can invoke a function multiple times in parallel. Lambda supports
push and pull event models of operation and integrates with a large number of AWS
services. Functions can be invoked by an HTTP request through the API Gateway or run
on a scheduler. Chapter 6 covers Lambda in more detail, including its event model,
methods of invocation, and best practice with regard to design. Note that Lambda is
not the only game in town. Microsoft Azure Functions, IBM Bluemix OpenWhisk, and
Google Cloud Functions are other compute services you might want to look at.
Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

80 CHAPTER 1 Going serverless
Figure 1.4 A push-based pipeline style of design works well with serverless architectures. In this
example a user uploads a video, which is transcoded to a different format.

1.2.4 Create thicker, more powerful front ends

It’s important to remember that custom code running in Lambda should be quick to
execute. Functions that terminate sooner are cheaper, because Lambda pricing is
based on the number of requests, the duration of execution, and the amount of mem-
ory allocated. Having less to do in Lambda is cheaper. Furthermore, having a richer
front end that can invoke services can be conducive to a better user experience. Fewer
hops between online resources and reduced latency will result in a better perception
of performance and usability of the application.

 Digitally signed tokens can allow front ends to communicate with disparate ser-
vices, including databases directly. This is in contrast to traditional systems where all
communication flows through via the back end server. Having the front end commu-
nicate with services helps to create systems that need far fewer hops to get to the
required resource.

 Not everything, however, can or should be done in the front end. There are secrets
that cannot be trusted to the client device. Processing a credit card or sending emails
to subscribers must be done only by a service that runs outside the end user’s control.
In this case, a compute service is required to coordinate action, validate data, and
enforce security.
Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

81Serverless pros and cons
 The other important point to consider is consistency. If the front end is responsi-
ble for writing to multiple services and fails midway through, it can leave the system in
an inconsistent state. In this scenario, a Lambda function should be used because it
can be designed to gracefully handle errors and retry failed operations. Atomicity and
consistency are much easier to enforce and control in a Lambda function than in the
front end.

1.2.5 Embrace third-party services

Third-party services are welcome to join the show if they can provide value and reduce
custom code. Developers can leverage many services these days from Auth0 for
authentication to Stripe or Braintree for payment processing. As long as factors such
as price, capability, and availability are considered, developers should try to adopt
third-party services. It’s far more useful for developers to spend time solving a prob-
lem unique to their domain than re-creating functionality already implemented by
someone else. Don’t build for the sake of building if viable third-party services and
APIs are available. Stand on the shoulders of giants to reach new heights. Appendix A
has a short list of Amazon Web Services and non-Amazon Web Services we have found
useful. We’ll look at most of those services in more detail as we move through the
book.

1.3 Transitioning from a server to services
One advantage of the serverless approach is that existing applications can be gradu-
ally converted to serverless architecture. If a developer is faced with a monolithic code
base, they can gradually tease it apart and create Lambda functions that the applica-
tion can communicate with.

 The best approach is to initially create a prototype to test developer assumptions
about how the system would function if it were going to be partly or fully serverless.
Legacy systems tend to have interesting constraints that require creative solutions; as
with any architectural refactor at a large scale, there will be compromises. The system
may end up being a hybrid—see figure 1.5—but it may be better to have some of its
aspects run out of Lambda and use third-party services than remain with a legacy
architecture that no longer scales or requires expensive infrastructure to run.

 The transition from a legacy, server-based application to a scalable serverless archi-
tecture may take time to get right. It needs to be approached carefully and slowly, and
developers need to have a good test plan and a great DevOps strategy in place before
they begin.

1.4 Serverless pros and cons
There are advantages to implementing a system as fully or partially serverless, includ-
ing reduced cost and accelerated time to market. But we need to carefully consider
the road to serverless architecture in the context of the application being created.
Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

82 CHAPTER 1 Going serverless
Figure 1.5 Serverless architecture is not an all-or-nothing proposition. If you currently have a
monolithic application running on servers, you can begin to gradually extract components and run them
in isolated services or compute functions. You can decouple a monolithic application into an
assortment of infrastructure as a service (IaaS), PaaS, containers, Lambda functions, and third-party
services if it helps.

1.4.1 Decision drivers

Serverless is not a silver bullet in all circumstances. It may not be appropriate for
applications that have special performance requirements or service-level agreements
(SLA). Vendor lock-in can be an issue for enterprise and government clients, and
decentralization of services can be a challenge.

NOT FOR EVERYONE

Lambda runs in a public cloud, so mission-critical applications shouldn’t necessarily
be based on it. A banking system that performs high-volume transactions or a patient
life-support system requires a higher level of performance and reliability than a public
cloud system can provide. It’s possible that organizations could employ dedicated
hardware or run private or hybrid clouds with their own compute services that might
meet serviceability and reliability requirements. In that case, these architectures could
be adopted.

SERVICE LEVELS AND CUSTOMIZATION

AWS has a an SLA for some services but not for others, so that may be a factor in your
decision. Lambda runs on top of EC2, which has an SLA of 99.95%. S3 has an SLA of
Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

83Serverless pros and cons
99.9%. Other third-party services may have different SLAs or not have an SLA at all.
For most systems, the reliability offered by AWS is sufficient, but some enterprise use
cases may require additional guarantees. With Lambda, the efficiencies gained from
having Amazon look after the platform and scale functions to handle thousands of
requests per second come at the expense of being able to customize the operating sys-
tem or tweak the underlying instance.

VENDOR LOCK-IN
Vendor lock-in is another issue. If a developer decides to leverage third-party APIs and
services, including AWS, there’s a reasonable chance that architecture could become
strongly coupled to the platform being used. The implication of vendor lock-in and
the risk of using third-party services—including company viability, data sovereignty
and privacy, cost, support, documentation, and available feature set—need to be thor-
oughly considered.

DECENTRALIZATION

Moving from a monolithic approach to a more decentralized serverless approach
doesn’t automatically reduce the complexity of the underlying system either. The dis-
tributed nature of the solution can introduce its own challenges because of the need
to make remote rather than in-process calls and the need to handle failures and
latency across a network.

1.4.2 When to use serverless

Serverless architecture allows developers to focus on software design and code rather
than infrastructure. Scalability and high-availability are easier to achieve, and the pric-
ing is often fairer because you pay only for what you use. Importantly with serverless
you have a potential to reduce some of the complexity of the system by minimizing
the number of layers and amount of code you need.

NO MORE SERVERS

Tasks such as server configuration and management, patching, and maintenance are
taken care of by the vendor, which saves time and money. Amazon looks after the
health of its fleet of servers that power Lambda. If you don’t have specific require-
ments to manage or modify compute resources, then having Amazon or another ven-
dor look after them is a great solution. You’re responsible only for your own code,
leaving operational and administrative tasks to a different set of capable hands.

MANY USES

The statelessness and scalability of compute can be used to solve problems that benefit
from parallel processing. Back ends for CRUD applications, e-commerce, back-office
systems, complex web apps, and all kinds of mobile and desktop software can be built
very quickly using serverless architectures. Tasks that used to take weeks can be done in
days or hours as long as the right combination of technologies is chosen. A serverless
approach can work exceptionally well for startups that want to innovate and move
quickly.
Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

84 CHAPTER 1 Going serverless
LOW COST

The traditional server-based architecture requires servers that don’t necessarily run at
full capacity all of the time. Scaling, even with automated systems, involves a new server,
which is often wasted until there’s a temporary upsurge in traffic or new data. Server-
less systems are much more granular with regard to scaling and are cost effective, espe-
cially when peak loads are uneven or unexpected. With Lambda you only pay for what
you use (chapter 4 shows how to calculate cost for Lambda and the API Gateway).

LESS CODE

We mentioned at the start of the chapter that serverless architecture provides an oppor-
tunity to reduce some of the complexity and code in comparison to more traditional sys-
tems. There’s less need to have a multilayered back end system especially if you allow the
front end to do more work and talk to services (and the database) directly.

SCALABLE AND FLEXIBLE

As a developer you don’t need to use serverless architecture to replace your entire
back end if you don’t want to or are unable to do so. You can use Lambda to solve spe-
cific problems, especially if they stand to benefit from parallelization. It goes without
saying that serverless systems can scale more easily than traditional systems. For exam-
ple, consider the following solutions:

 ConnectWise, an IT services company, uses Lambda to process inbound logs,
which has reduced their server maintenance needs from weeks to hours
(http://amzn.to/1PFQ2hZ).

 Netflix uses Lambda to automate validation of backup completions and auto-
mate the encoding process of media files (http://amzn.to/1Qj5LQg).

You can use Lambda for extract, transform, and load (ETL) jobs, real-time file pro-
cessing, and virtually anything else without having to touch your existing codebase.
Just write a function and run it.

1.5 Summary
Cloud has been and continues to be a game changer for IT infrastructure and soft-
ware development. Software developers need to think about the way they can maxi-
mize use from cloud platforms to gain a competitive advantage.

 Serverless architectures are the latest advance for developers and organizations to
think about, study, and adopt. This exciting new shift in architecture will grow quickly
as developers embrace compute services such as AWS Lambda. Today serverless appli-
cations support thousands of users and carry out complex operations, including
heavy-duty tasks such as video encoding and data processing. In many cases, serverless
architectures can achieve a better outcome than traditional models and are cheaper
and faster to implement.

 There’s also a need to reduce complexity and costs associated with running infra-
structure and carrying out development of traditional software systems. The reduction
in cost and time spent on infrastructure maintenance and the benefits of scalability
Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

http://amzn.to/1Qj5LQg
http://amzn.to/1PFQ2hZ

85Summary
are good reasons for organizations and developers to consider serverless architec-
tures. It’s likely that the push for serverless back ends will accelerate over the coming
years.

 In this chapter you learned what serverless architecture is and saw how it compares
to traditional architectures. We looked at core principles and considered some chal-
lenges associated with this architecture. In the next chapter, we’ll dive straight into
creating a serverless application to show how quickly something can be built using
Lambda and AWS.

Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

86 CHAPTER 1 Going serverless

There's a shift underway toward serverless cloud archi-
tectures. With the release of serverless compute tech-
nologies, such as AWS Lambda, developers are now
building entirely serverless platforms at scale. In these
new architectures, traditional back-end servers are
replaced with cloud functions acting as discrete single-
purpose services. By composing and combining these
serverless cloud functions together in a loose orchestra-
tion, and adopting useful third-party services, you can
build powerful, yet easy to understand applications.
Serverless architecture’s about building rich, scalable,
high-performing, and cost-effective systems without

having to worry about traditional compute infrastructure, having more time to focus
on code, and moving quickly.

 Serverless Architectures on AWS teaches you how to build, secure and manage serverless
architectures that can power the most demanding web and mobile apps. You'll get
going quickly with this book's ready-made and real-world examples, code snippets, dia-
grams, and descriptions of architectures that can be readily applied. This book
describes a traditional application and its back-end concerns, and then shows how to
solve these same problems with a serverless approach. You'll begin with a high-level
overview of what serverless is all about, start creating your own media transcoding sys-
tem, and learn more about AWS. Next, you'll go in depth and learn about Lambda, API
Gateway and other important serverless technologies. This section will teach you how
to compose Lambda functions and discuss important considerations when it comes to
building serverless systems. The third part of the book focuses on more advanced top-
ics as your architecture grows. By the end, you'll be able to reason about serverless sys-
tems and be able to compose your own systems by applying these ideas and examples.

What's inside

 Creating a serverless back end
 Using Lambda and the API Gateway
 Connecting multiple services
 Authorization and authentication in a serverless environment
 Securely communicating with third-party services
 Interacting with a database from the front end
 Setting up continuous integration and deployment
 Building high-performance systems using messaging and eventing
 Using AWS to your advantage

This book is for all software developers interested in back-end technologies. Experi-
ence with JavaScript (node.js) and AWS is useful, but not required.

Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

https://www.manning.com/books/serverless-architectures-on-aws
https://www.manning.com/books/serverless-architectures-on-aws

AWS Lambda is an execution environment for small pieces of code called
“functions” in the cloud. No matter how often the function is invoked, the cloud
provider will scale the underlying infrastructure accordingly, and you only pay
for what you use: compute time. If your function isn’t invoked, you pay nothing.
AWS Lambda in Action introduces you to this brave new world: Running Func-
tions in the Cloud.

AWS Lambda
in Action
Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

https://www.manning.com/books/aws-lambda-in-action

Chapter 1 from AWS Lambda in Action by
Danilo Poccia

Running functions
in the cloud
In recent years, cloud computing has changed the way we think about and imple-
ment IT services, allowing companies of every size to build powerful and scalable
applications that could disrupt the industries in which they operated. Think of how
Dropbox changed the way we use digital storage and share files with each other, or
how Spotify changed the way we buy and listen to music.

This chapter covers
 Understanding why functions can be the primitives

of your application

 Getting an overview of AWS Lambda

 Using functions for the back end of your
application

 Building event-driven applications with functions

 Calling functions from a client
88

Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

https://www.manning.com/books/aws-lambda-in-action

89 AWS Lambda in Action
 Those two companies started small, and needed the capacity to focus their time
and resources on bringing their ideas to life quickly. In fact, one of the most impor-
tant advantages of cloud computing is that it frees developers from spending their
time on tasks that don’t add real value to their work, such as managing and scaling the
infrastructure, patching the operating system (OS), or maintaining the software stack
used to run their code. Cloud computing lets them concentrate on the unique and
important features they want to build.

 You can use cloud computing to provide the infrastructure for your application, in
the form of virtual servers, storage, network, load balancers, and so on. The infrastruc-
ture can be scaled automatically using specific configurations. But with this approach
you still need to prepare a whole environment to execute the code you write. You
install and prepare an operating system or a virtual environment; you choose and con-
figure a programming framework; and finally, when the overall stack is ready, you can
plug in our code. Even if you use a container-based approach in building the environ-
ment, with tools such as Docker, you’re still in change of managing versioning and
updates of the containers you use.

 Sometimes you need infrastructure-level access because you want to view or manage
low-level resources. But you can also use cloud computing services that abstract from the
underlying infrastructure implementation, acting like a platform on top of which you
deploy your own customizations. For example, you can have services that provide you
with a database, and you only need to plug in your data (together with a data model)
without having to manage the installation and availability of the database itself. Another
example is services where you provide the code of your application, and a standard infra-
structure to support the execution of your application is automatically implemented.

 If that’s true for a development environment, as soon as you get closer to produc-
tion things become more complex and you may have to take care of the scalability and
availability of the solution. And you must never forget to think about security—consid-
ering who can do what, and on which resources—during the course of the design and
implementation of an application.

 With the introduction of AWS Lambda, the abstraction layer is set higher, allowing
developers to upload their code grouped in functions, and letting those functions be
executed by the platform. In this way you don’t have to manage the programming
framework, the OS, or the availability and scalability. Each function has its own config-
uration that will help you use standard security features provided by Amazon Web Ser-
vices (AWS) to define what a function can do and on which resources.

 Those functions can be invoked directly or can subscribe to events generated by
other resources. When you subscribe a function to a resource such as a file repository or
a database, the function is automatically executed when something happens in that
resource, depending on which kinds of events you’ve subscribed to. For example,
when a file has been uploaded or a database item has been modified, an AWS Lambda
function can react to those changes and do something with the new file or the
updated data. If a picture has been uploaded, a function can create thumbnails to
show the pictures on the screens with different resolutions. If a new record is written
Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

90 CHAPTER 1 Running functions in the cloud
in an operational database, a function can keep the data warehouse in sync. In this
way you can design applications that are driven by events.

Using multiple functions together, some of them called directly from a user device,
such as a smartphone, and other functions subscribed to multiple repositories, such as
a file share and a database, you can build a complete event-driven application. You
can see a sample flow of a media-sharing application built in this way in figure 1.1.
Users use a mobile app to upload pictures and share them with their friends.

Get content
index.

Get content
and

thumbnails.

Upload content
with metadata.

Update content
metadata.

Get content
metadata.

Files

(multimedia)

Database

Build
thumbnails.

Update
content index.

Extract
and update
metadata.

User Mobile

app

Figure 1.1 An event-driven, media-sharing application built using multiple AWS Lambda functions,
some invoked directly by the mobile app. Other functions are subscribed to storage repositories such
as a file share or a database.

Book graphical conventions
This book uses the following graphical conventions to help present information more
clearly.

API call

Event

Generic
interaction

Update to
previous figure

Logically
separated area

(for example, what happens
inside AWS Lambda)

Comment
(additional information on

an element in the diagram)
Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

91Introducing AWS Lambda
NOTE Don’t worry if you don’t completely understand the flow of the appli-
cation in figure 1.1. Reading this book, you’ll first learn the architectural
principles used in the design of event-driven applications, and then you’ll
implement this media-sharing application using AWS Lambda together with
an authentication service to recognize users.

When using third-party software or a service not natively integrated with AWS Lambda,
it’s still easy to use that component in an event-driven architecture, adding the capac-
ity to generate those events by using one of the AWS software development kits (SDKs),
which are available for multiple platforms.

 The event-driven approach not only simplifies the development of production
environments, but also makes it easier to design and scale the logic of the application.
For example, let’s take a function that’s subscribed to the upload of a file in a reposi-
tory. Every time this function is invoked, it extracts information from the content of
the file and writes this in a database table. You can think of this function as a logical
connection between the file repository and the database table: every time any compo-
nent of the application—including the client—uploads a file, the subscribed events
are triggered and, in this case, the database is updated.

 As you add more features, the logic of any application becomes more and more
complex to manage. But in this case you created a relationship between the file reposi-
tory and the database, and this connection works independently from the process that
uploads the file. You’ll see more advantages of this approach in this book, along with
more practical examples.

 If you’re building a new application for either a small startup or a large enterprise,
the simplifications introduced by using functions as the building blocks of your appli-
cation will allow you to be more efficient in where to spend your time and faster in
introducing new features to your users.

1.1 Introducing AWS Lambda
AWS Lambda is different from a traditional approach based on physical or virtual serv-
ers. You only need to give your logic, grouped in functions, and the service itself takes
care of executing the functions, if and when required, by managing the software stack
used by the runtime you chose, the availability of the platform, and the scalability of
the infrastructure to sustain the throughput of the invocations.

 Functions are executed in containers. Containers are a server virtualization method
where the kernel of the OS implements multiple isolated environments. With AWS
Lambda, physical servers still execute the code, but because you don’t need to spend
time managing them, it’s common to define this kind of approach as serverless.

TIP For more details on the execution environment used by Lambda func-
tions, please visit http://docs.aws.amazon.com/lambda/latest/dg/current-
supported-versions.html.
Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

http://docs.aws.amazon.com/lambda/latest/dg/current-supported-versions.html
http://docs.aws.amazon.com/lambda/latest/dg/current-supported-versions.html

92 CHAPTER 1 Running functions in the cloud
When you create a new function with AWS Lambda, you choose a function name, create
your code, and specify the configuration of the execution environment that will be
used to run the function, including the following:

 The maximum memory size that can be used by the function
 A timeout after which the function is terminated, even if it hasn’t completed
 A role that describes what the function can do, and on which resources, using

AWS Identity and Access Management (IAM)

TIP When you choose the amount of memory you want for your function,
you’re allocated proportional CPU power. For example, choosing 256 MB of
memory allocates approximately twice as much CPU power to your Lambda
function as requesting 128 MB of memory and half as much CPU power as
choosing 512 MB of memory.

AWS Lambda implements the execution of those functions with an efficient use of the
underlying compute resources that allows for an interesting and innovative cost
model. With AWS Lambda you pay for

 The number of invocations
 The hundreds of milliseconds of execution time of all invocations, depending

on the memory given to the functions

The execution time costs grow linearly with the memory: if you double the memory
and keep the execution time the same, you double that part of the cost. To enable you
to get hands-on experience, a free tier allows you to use AWS Lambda without any
cost. Each month there’s no charge for

 The first one million invocations
 The first 400,000 seconds of execution time with 1 GB of memory

If you use less memory, you have more compute time at no cost; for example, with 128
MB of memory (1 GB divided by 8) you can have up to 3.2 million seconds of execu-
tion time (400,000 seconds multiplied by 8) per month. To give you a scale of the
monthly free tier, 400,000 seconds corresponds to slightly more than 111 hours or 4.6
days, whereas 3.2 million seconds comes close to 889 hours or 37 days.

TIP You’ll need an AWS account to follow the examples in this book. If you
create a new AWS account, all the examples that I provide fall in the Free Tier
and you’ll have no costs to sustain. Please look here for more information on
the AWS Free Tier and how to create a new AWS account: http://aws.amazon
.com/free/.

Throughout the book we’ll use JavaScript (Node.js, actually) and Python in the
examples, but other runtimes are available. For example, you can use Java and other
Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

http://aws.amazon.com/free/
http://aws.amazon.com/free/

93Introducing AWS Lambda
languages running on top of the Java Virtual Machine (JVM), such as Scala or Clojure.
For object-oriented languages such as Java, the function you want to expose is a
method of an object.

 To use platforms that aren’t supported by AWS Lambda, such as C or PHP, it’s pos-
sible to use one of the supported runtimes as a wrapper and bring together with the
function a static binary or anything that can be executed in the OS container used by
the function. For example, a statically linked program written in C can be embedded
in the archive used to upload a function.

 When you call a function with AWS Lambda, you provide an event and a context in
the input:

 The event is the way to send input parameters for your function and is expressed
using JSON syntax.

 The context is used by the service to describe the execution environment and
how the event is received and processed.

Functions can be called synchronously and return a result (figure 1.2). I use the term
“synchronous” to indicate this kind of invocation in the book, but in other sources,
such as the AWS Lambda API Reference documentation or the AWS command-line
interface (CLI), this is described as the RequestResponse invocation type.

Context

Function

Event
AWS Lambda

Result

RequestResponse
function

invocation

Lambda API call

Figure 1.2 Calling an AWS Lambda
function synchronously with the
RequestResponse invocation type.
Functions receive input as an event
and a context and return a result.

For example, a simple synchronous function computing the sum of two numbers can
be implemented in AWS Lambda using the JavaScript runtime as

exports.handler = (event, context, callback) => {
 var result = event.value1 + event.value2;
 callback(null, result);
};
Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

94 CHAPTER 1 Running functions in the cloud
The same can be done using the Python runtime:

def lambda_handler(event, context):
 result = event['value1'] + event['value2']
 return result

We’ll dive deep into the syntax in the next chapter, but for now let’s focus on what the
functions are doing. Giving as input to those functions an event with the following
JSON payload would give back a result of 30:

{
 "value1": 10,
 "value2": 20
}

NOTE The values in JSON are given as numbers, without quotation marks;
otherwise the + used in both the Node.js and Python functions would change
the meaning, becoming a concatenation of two strings.

Functions can also be called asynchronously. In this case the call returns immediately
and no result is given back, while the function is continuing its work (figure 1.3). I use
the term “asynchronous” to indicate this kind of invocation in the book, but in other
sources, such as the AWS Lambda API Reference documentation and the AWS CLI,
this is described as the Event invocation type.

Context

Function

Event
AWS Lambda

Event
function

invocation

Lambda API call

Figure 1.3 Calling an AWS Lambda
function asynchronously with the Event
invocation type. The invocation returns
immediately while the function
continues its work.

When a Lambda function terminates, no session information is retained by the AWS
Lambda service. This kind of interaction with a server is usually defined as stateless.
Considering this behavior, calling Lambda functions asynchronously (returning no
value) is useful when they are accessing and modifying the status of other resources
(such as files in a shared repository, records in a database, and so on) or calling other
services (for example, to send an email or to send a push notification to a mobile
device), as illustrated in figure 1.4.
Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

95Introducing AWS Lambda
Context
ContextResource

Context
ContextResource

Context

Function

Event
AWS Lambda Managed by AWS

Not managed
by AWS

Result
(optional)

Function
invocation

Resources can
be files, records in

a database, and so on.

Lambda API call

Figure 1.4 Functions can create, update, or delete other resources. Resources can also be other
services that can do some actions, such as sending an email.

For example, it’s possible to use the logging capabilities of AWS Lambda to imple-
ment a simple logging function (that you can call asynchronously) in Node.js:

exports.handler = function(event, context) {
 console.log(event.message);
 context.done();
};

In Python that’s even easier because you can use a normal print to log the output:

def lambda_handler(event, context):
 print(event['message'])
 return

You can send input to the function as a JSON event to log a message:

{
 "message": "This message is being logged!"
}

In these two logging examples, we used the integration of AWS Lambda with Amazon
CloudWatch Logs. Functions are executed without a default output device (in what is
usually called a headless environment) and a default logging capability is given for each
AWS Lambda runtime to ship the logs to CloudWatch. You can then use all the fea-
tures provided by CloudWatch Logs, such as choosing the retention period or creat-
ing metrics from logged data. We’ll give more examples and use cases regarding
logging in part 4.

 Asynchronous calls are useful when functions are subscribed to events generated by
other resources, such as Amazon S3, an object store, or Amazon DynamoDB, a fully
managed NoSQL database.
Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

96 CHAPTER 1 Running functions in the cloud
 When you subscribe a function to events generated by other resources, the func-
tion is called asynchronously when the events you selected are generated, passing the
events as input to the function (figure 1.5).

Events
(context)

Events
(context)

Generated
by AWS

Not generated
by AWS

Context
ContextResource

Context
ContextResource

AWS Lambda Managed by AWS

Not managed
by AWS

Direct use
of resource

For example,
a file is uploaded or
something is written

in a database.

AWS Lambda

Function 2

Function 3

Function 1

Figure 1.5 Functions can subscribe to events generated by direct use of resources, or by
other functions interacting with resources. For resources not managed by AWS, you should
find the best way to generate events to subscribe functions to those resources.

For example, if a user of a mobile application uploads a new high-resolution picture
to a file store, a function can be triggered with the location of the new file in its input
as part of the event. The function could then read the picture, build a small thumb-
nail to use in an index page, and write that back to the file store.

 Now you know how AWS Lambda works at a high level, and that you can expose
your code as functions and directly call those functions or subscribe them to events
generated by other resources.

 In the next section, you’ll see how to use those functions in your applications.

1.2 Functions as your back end
Imagine you’re a mobile developer and you’re working on a new application. You can
implement features in the mobile app running on the client device of the end user,
but you’d probably keep part of the logic and status outside of the mobile app. For
example:

 A mobile banking app wouldn’t allow an end user to add money to their bank
account without a good reason; only logic executed outside of the mobile
device, involving the business systems of the bank, can decide if a transfer of
money can be done or not.

 An online multiplayer game wouldn’t allow a player to go to the next level with-
out validating that the player has completed the current level.
Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

97A single back end for everything
This is a common pattern when developing client/server applications and the same
applies to web applications. You need to keep part of the logic outside of the client
(be it a web browser or a mobile device) for a few reasons:

 Sharing, because the information must be used (directly or indirectly) by multi-
ple users of the application

 Security, because the data can be accessed or changed only if specific requirements
are satisfied and the client cannot be trusted to check those requirements by itself

 Access to computing resources or storage capacity not available on a client device

We refer to this external logic required by a front end application as the back end of
the application.

 To implement this external logic, the normal approach is either to build a web
application that can be called by the mobile app or to integrate it into an already exist-
ing web application rendering the content for a web browser. But instead of building
and deploying a whole back end web application or extending the functionalities of
your current back end, you can have your web page or your mobile application call
one or more AWS Lambda functions that implement the logic you need. Those func-
tions become your serverless back end.

 Security is one of the reasons why you implement back end logic for an applica-
tion, and you must always check the authentication and authorization of end users
accessing your back end. AWS Lambda uses the standard security framework provided
by AWS to control what a function can do, and on which resources. For example, a
function can read from only a specific path of a file share, and write in a certain data-
base table. This framework is based on AWS Identity and Access Management policies
and roles. In this way, taking care of the security required to execute the code is sim-
pler and becomes part of the development process itself. You can tailor security per-
missions specifically for each function, making it much easier to implement a least-
privilege approach for each module (function, in this case) of your application.

DEFINITION By least privilege, I mean a security practice in which you always use
the least privilege you need to perform an action in your application. For
example, if you have a part of your application that’s reading the user profiles
from a central repository to publish them on a web page, you don’t need to
have write access to the repository in that specific module; you only need to read
the subset of information you need to publish. Every other permission on top
of that is in excess of what’s required and can amplify the effects of a possible
attack—for example, allowing malicious users that discover a security breach
in your application to do more harm.

1.3 A single back end for everything
We can use AWS Lambda functions to expose the back end logic of our applications.
But is that enough, or do we need something different to cover all the possible use
cases for a back end application? Do we still need to develop traditional web applica-
tions, beyond the functions provided by AWS?
Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

98 CHAPTER 1 Running functions in the cloud
Let’s look at the overall flow and interactions of an application that can be used via a
web browser or a mobile app (figure 1.6). Users interact with the back end via the
internet. The back end has some logic and some data to manage.

Back end
data

Application back end

Back end
logic

Internet

Users

Figure 1.6 How users interact via the internet with the back end of an application.
Note that the back end has some logic and some data.

 The users of your application can use different devices, depending on what you
decide to support. Supporting multiple ways to interact with your application, such as
a web interface, a mobile app, and public application programming interfaces (APIs)
that more advanced users can use to integrate third-party products with your applica-
tion, is critical to success and is a common practice for new applications.

 But if we look at the interfaces used by those different devices to communicate
with the back end, we discover that they aren’t always the same: a web browser expects
more than the others, because both the content required by the user interface
(dynamically generated HTML, CSS, JavaScript, multimedia files) and the application
back end logic (exposed via APIs) are required (figure 1.7).

Back end
logic

Application back end

Web browsers

Mobile apps

IoT devices

Other services

Back end
data

Figure 1.7 Different ways in which users can interact with the back end of an
application. Users using a web browser receive different data than other front
end clients.
Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

99A single back end for everything
If the mobile app of a specific service is developed after the web browser interface is
already implemented, the back end application should be refactored to split API func-
tionalities from web rendering—but that’s usually not an easy task, depending on how
the original application was developed. This sometimes causes developers to support
two different back end platforms: one for web browsers serving web content and one
for mobile apps, new devices (for example, wearable, home automation, and Internet
of Things devices), and external services consuming their APIs. Even if the two back
end platforms are well designed and share most of the functionalities (and hence the
code), this wastes the developer’s resources, because for each new feature they have to
understand the impact on both platforms and run more tests to be sure those features
are correctly implemented, while not adding value for their end users.

 If we split the back end data between structured content that can go in one or
more databases and unstructured content, such as files, we can simplify the overall
architecture in a couple of steps:

1 Adding a (secure) web interface to the file repository so that it becomes a stand-
alone resource that clients can directly access

2 Moving part of the logic into the web browser using a JavaScript client applica-
tion and bringing it on par with the logic of the mobile app

Such a JavaScript client application, from an architectural point of view, behaves in
the same way as a mobile app, in terms of functionality implemented, security, and
(most importantly for our use case) the interactions with the back end (figure 1.8).

Back end
logic

HTML, CSS, JavaScript
and multimedia content

API calls

Application back end

Web browsers

Mobile apps

IoT devices

Other services

Files

Databases

Figure 1.8 Using a JavaScript application running in the browser, back end
architecture is simplified by serving only APIs to all clients.

 Looking at the back end logic, we now have a single architecture for all clients and the
same interactions and data flows for all the consuming applications. We can abstract
our back end from the actual implementation of the client and design it to serve a
Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

100 CHAPTER 1 Running functions in the cloud
generic client application using standard API calls that we define once and for all possi-
ble end users.

 This is an important step because we’ve now decoupled the front end implementa-
tions, which could be different depending on the supported client devices, from the
back end architecture (figure 1.9). Also, later you can add a new kind of client appli-
cation (for example, an application running on wearable devices) without affecting
the back end.

Back end
logic

Client
application

Files

Databases

API calls

Application back end

HTML, CSS, JavaScript
and multimedia content

The client application
can be a web browser,

a mobile app,
an IoT device,

or another service.

Figure 1.9 Think of your clients as a single client application consuming your APIs,
which is possible when you decouple the implementation of the back end from the
different user devices that interact with your application.

Looking again at the decoupled architecture, you can see that each of those API calls
takes input parameters, does something in the back end, and returns a result. Does
that remind you of something? Each API call is a function exposed by the back end that
you can implement using AWS Lambda. Applying the same approach, all back end
APIs can be implemented as functions managed by AWS Lambda.

 In this way you have a single serverless back end, powered by AWS Lambda, that serves
the same APIs to all clients of your application.

1.4 Event-driven applications
Up to now, we’ve used the functions provided by AWS Lambda directly, calling them
as back end APIs from the client application. This is what’s usually referred to as a cus-
tom event approach. But you could subscribe a function to receive events from another
resource, for example if a file is uploaded to a repository or if a record in a database
is updated.

 Using subscriptions, you can change the internal behavior of the back end so that it
can react not only to direct requests from client applications, but also to changes in the
Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

101Event-driven applications
resources that are used by the application. Instead of implementing a centralized work-
flow to support all the interactions among the resources, each interaction is described
by the relationship between the resources involved. For example, if a file is added in a repos-
itory, a database table is updated with new information extracted from the file.

NOTE This approach simplifies the design and the future evolution of the
application, because we’re inherently capitalizing on one of the advantages
that microservices architectures bring: bottom-up choreography among soft-
ware modules is much easier to manage than top-down orchestration.

With this approach, our back end becomes a distributed application, because it’s not
centrally managed and executed anymore, and we should apply best practices from dis-
tributed systems. For example, it’s better to avoid synchronous transactions across mul-
tiple resources, which are difficult and slow to manage, and design each function to
work independently (thanks to event subscriptions) with eventual consistency of data.

DEFINITION By eventual consistency, I mean that we shouldn’t expect the state
of data to always be in sync across all resources used by the back end, but that
the data will eventually converge over time to the last updated state.

Applications designed to react to internal and external events without a centralized
workflow to coordinate processing on the resources are event-driven applications. Let’s
introduce this concept with a practical example.

 Imagine you want to implement a media-sharing application, where the users can
upload pictures from their client, a web browser or a mobile app, and share those pic-
tures publicly with everyone or only with their friends.

 To do that, you need two repositories:

 A file repository for the multimedia content (pictures)
 A database to handle user profiles (user table), friendships among the users

(friendship table), and content metadata (content table).

You need to implement the following basic functionalities:

 Allow users to upload new multimedia content (pictures) with its own metadata.
(By metadata, I mean: Is this content public or shared only among friends? Who
uploaded the file? Where was the picture taken? At what time? Is there a caption?)

 Allow users to get specific content (pictures) shared by other users, but only if
they have permission.

 Get an index of the content a specific user can see (all public content plus what
has been shared with that user by their friends).

 Update content metadata. For example, a user can upload pictures only for their
friends, and then change their mind and make a picture public for everyone to see.

 Get content metadata to be shown on the client together with the picture
thumbnails; for example, adding the owner of the content, a date, a location,
and a caption.
Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

102 CHAPTER 1 Running functions in the cloud
Of course, a real application needs more features (and more functions), but for the
sake of simplicity we’ll consider only the features listed here for now. You’ll build a
more complex (but still relatively simple) media-sharing application in chapter 8.

 Because the content won’t change too quickly, it’s also effective to compute in
advance (precompute) what each user can see in terms of content: end users will
probably look at recent content often, and when they do, they want to see the result
quickly. Using a precomputed index for the most recent content makes the rendering
fast for users and makes the application use fewer computing resources in the back
end. If users go back to older content outside the scope of the precomputed index,
you can still compute that dynamically, but it happens less often and is easier to man-
age. The precomputed indexes must be updated each time the content (files or meta-
data) is updated and when the friendships between users change (because picture
visibility is based on friendship).

 You can see those features, and how they access repositories, implemented using
one AWS Lambda function for each feature in figure 1.10.

Client

application
Get content

index

Get content

Upload content
with metadata

Update content
metadata

Get content
metadata

Files

(multimedia)

Database

AWS Lambda

User

Resources

Figure 1.10 Features of a sample media-sharing application implemented as AWS Lambda functions,
still missing basic back end functionalities

 In this way all interactions from the client application are covered, but you still
miss basic back end functionalities here:

 What happens if a user uploads a new piece of content?
 What happens to the index if the user changes the metadata?
 You need to build thumbnails for the pictures to show them as a preview to end

users.
Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

103Event-driven applications
Those new back end features that you want to introduce are different from the previ-
ous ones, because they depend on what’s happening in the back end repositories (files
and database tables, in this case). You can implement those new features as additional
functions that are subscribed to events coming from the repositories. For example:

 If a file (picture) is added or updated, you build the new thumbnail and add it
back to the file repository.

 If a file (picture) is added or updated, you extract the new metadata and update
the database (in the content table).

 Whenever the database is updated (user, friendship, or content table), you
rebuild the dependent precomputed indexes, changing what a user can see.

Implementing those functionalities as AWS Lambda functions and subscribing those
functions to the relevant events allows you to have an efficient architecture that drives
updates when something relevant happens in the repositories, without enforcing a
centralized workflow of activities that are required when data is changed by the end
users. You can see a sample architecture implementing those new features as func-
tions subscribed to events in figure 1.11.

Client

application
Get content

index.

Get content
and

thumbnails.

Upload content
with metadata.

Update content
metadata.

Get content
metadata.

Files

(multimedia)

Database

Build
thumbnails.

Update
content index.

Extract
and update
metadata.

Event:
new or updated

content metadata

AWS Lambda

User

Resources

Event:
new or

updated file

Figure 1.11 Sample media-sharing application with event-driven functions in the back end, subscribed
to events from back end resources, such as file shares or databases

 Consider in our example the function subscribed to database events: that function
is activated when the database is changed directly by end users (explicitly changing
something in the metadata) or when an update is made by another function (because
a new picture has been uploaded, bringing new metadata with it).
Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

104 CHAPTER 1 Running functions in the cloud
You don’t need to manage the two use cases separately; they’re both managed by the
same subscription, a subscription that describes the relationship among the resources
and the action you need to do when something changes.

 You’ll see when implementing this media-sharing application that some of the
Lambda functions can be replaced by direct interactions to back end resources. For exam-
ple, you can upload new or updated content (together with its own metadata) directly in a
file share. Or update content metadata by directly writing to a database. The Lambda
functions subscribed to those resources will implement the required back end logic.

 This is a simplified but working example of a media-sharing application with an
event-driven back end. Functions are automatically chained one after the other by the
relationships we created by subscribing them to events. For example, if a picture is
updated with new metadata (say, a new caption), a first function is invoked by the
event generated in the file repository, updating the metadata in the database content
table. This triggers a new event that invokes a second function to update the content
index for all users who can see that content.

NOTE In a way, the behavior I described is similar to a spreadsheet, where
you update one cell and all the dependent cells (sums, average, more complex
functions) are recomputed automatically. A spreadsheet is a good example of
an event-driven application. This is a first step toward reactive programming,
as you’ll see later in the book.

Try to think of more features for our sample media-sharing application, such as creat-
ing, updating, and deleting a user; changing friendships (adding or removing a
friend) and adding the required functions to the previous diagram to cover those
aspects; subscribing (when it makes sense) the new functions to back end resources to
have the flow of the application driven by events and avoid putting all the workflow
logic in the functions themselves.

 For example, suppose you have access to a mobile push notification service such as
the Amazon Simple Notification Service (SNS). Think about the best way to use that in
the back end to notify end users if new or updated content is available for them. What
would you need to add, in terms of resources, events, and functions, to figure 1.11?

1.5 Calling functions from a client
In the previous discussion we didn’t consider how, technically, the client application
interacts with the AWS Lambda functions, assuming that a sort of direct invocation
is possible.

 As mentioned previously, each function can be invoked synchronously or asynchro-
nously, and a specific AWS Lambda API exists to do that: the Invoke API (figure 1.12).

Client
application

AWS Lambda
function

AWS Lambda
Invoke API

User

Figure 1.12 Calling
AWS Lambda functions
from a client application
using the Invoke API
Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

105Calling functions from a client
To call the Invoke API, AWS applies the standard security checks and requires that the
client application has the right permissions to invoke the function. As per all other
AWS APIs, you need AWS credentials to authenticate, and based on that authentica-
tion, AWS verifies whether those credentials have the right authorization to execute
that API call (Invoke) on that specific resource (the function).

TIP We’ll discuss the security model used by AWS Lambda in more detail in
chapter 4. The most important thing to remember now is to never put security
credentials in a client application, be that a mobile app or a JavaScript web
application. If you put security credentials in something you deliver to end
users, such as a mobile app or HTML or JavaScript code, an advanced user
can find the credentials and compromise your application. In those cases,
you need to use a different approach to authenticate a client application
with the back end.

In the case of AWS Lambda, and all other AWS APIs, it’s possible to use a specific ser-
vice to manage authentication and authorization in an easy way: Amazon Cognito.

 With Amazon Cognito, the client can authenticate using an external social or cus-
tom authentication (such as Facebook or Amazon) and get temporary AWS creden-
tials to invoke the AWS Lambda functions the client is authorized to use (figure 1.13).

Client
application

AWS Lambda
function

AWS Lambda
Invoke API

Get temporary

AWS credentials. Amazon
Cognito

User

Figure 1.13 Using
Amazon Cognito to
authenticate and
authorize invocation for
AWS Lambda functions

NOTE Amazon Cognito provides a simplified interface to other AWS services,
such as AWS Identity and Access Management (IAM) and AWS Security Token
Service (STS). Figure 1.12 makes the flow easier to visualize, not including all
details for the sake of simplicity.

Moving a step forward, it’s possible to replace the direct use of the AWS Lambda
Invoke API by clients with your own web APIs that you can build by mapping the
access to AWS Lambda functions to more generic HTTP URLs and verbs.

 For example, let’s implement the web API for a bookstore. Users may need to list
books, get more information for a specific book, and add, update, or delete a book.
Using the Amazon API Gateway, you can map the access to a specific resource (the
URL of the bookstore or a specific book) with an HTTP verb (GET, POST, PUT, DELETE,
and so on) to the invocation of an AWS Lambda function. See table 1.1 for a sample
configuration.
Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

106 CHAPTER 1 Running functions in the cloud
Let’s look at the example in table 1.1 in more detail:

 If you do an HTTP GET on the /books resource, you execute a Lambda function
(GetAllBooksByRange) that will return a list of books, depending on a range
you can optionally specify.

 If you do an HTTP POST on the same URL, you create a new book (using the
CreateNewBook function) and get the ID of the book as the result.

 With an HTTP GET on /books/ID, you execute a function (GetBookById) that
will give you a description (a representation, according to the REST architec-
ture style) of the book with that specific ID.

 And so on for the other examples in the table.

NOTE You don’t need to have a different Lambda function for every resource
and HTTP verb (method) combination. You can send the resource and the
method as part of the input parameters of a single function that can then pro-
cess it to understand if it has been triggered by a GET or a POST. The choice
between having more and smaller functions, or fewer and bigger ones, depends
on your programming habits.

But the Amazon API Gateway adds more value than that, such as caching results to
reduce load on the back end, throttling to avoid overloading the back end in peak
moments, managing developer keys, generating the SDKs for the web API you design
for multiple platforms, and other features that we’ll start to see in chapter 2.

 What’s important is that by using the Amazon API Gateway we’re decoupling the cli-
ent from directly using AWS Lambda, exposing a clean web API that can be consumed
by external services that should have no knowledge of AWS. However, even with the
web API exposed by the Amazon API Gateway, we can optionally use AWS credentials
(and hence Amazon Cognito) to manage authentication and authorization for the cli-
ents (figure 1.14).

 With the Amazon API Gateway, we can also give public access to some of our web
APIs. By public access I mean that no credentials are required to access those web APIs.
Because one of the possible HTTP verbs that we can use in configuring an API is GET,

Table 1.1 A sample web API for a bookstore

Resource + HTTP verb  Method (function)

/books + GET  GetAllBooksByRange

/books + POST  CreateNewBook

/books/{id} + GET  GetBookById

/books/{id} + PUT  CreateOrUpdateBookById

/books/{id} + DELETE  DeleteBookById
Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

107Summary
Client
application

AWS Lambda
function

Amazon
Cognito

Amazon
API Gateway

Get temporary
AWS credentials.

Web API modeling,
caching, throttling,

logging, CDN, and so on

User
Figure 1.14 Using the
Amazon API Gateway to
access functions via
web APIs

and GET is the default that is used when you type a URL in a web browser, we can use
this configuration to create public websites whose URLs are dynamically served by
AWS Lambda functions (figure 1.15).

Client
application

AWS Lambda
function

Amazon
API Gateway

Web API modeling,
caching, throttling,

logging, CDN, and so on

User

Figure 1.15 Using the
Amazon API Gateway to
give public access to an
API and create public
websites backed by
AWS Lambda

In fact, the web API exposed publicly via the HTTP GET method can return any con-
tent type, including HTML content, such as a web page that can be seen in a browser.

TIP For an example of a joint use of AWS Lambda and the Amazon API
Gateway to build dynamic websites, see the Serverless framework at http://
www.serverless.com/.

1.6 Summary
In this first chapter, I introduced the core topics that will be seen in depth in the rest
of the book:

 An overview of AWS Lambda functions.
 Using functions to implement the back end of an application.
 Having a single back end for different clients, such as web browsers and mobile

apps.
 An overview of how event-driven applications work.
 Managing authentication and authorization from a client.
 Using Lambda functions from a client, directly or via the Amazon API Gateway.

Now let’s put all this theory into practice and build our first functions.
Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

http://www.serverless.com/
http://www.serverless.com/

108 CHAPTER 1 Running functions in the cloud

AWS Lambda in Action is an example-driven tutorial that
teaches you how to build applications that use an event-
driven approach on the back-end. Starting with an
overview of AWS Lambda, the book moves on to show
you common examples and patterns that you can use
to call Lambda functions from a web page or a mobile
app. The second part of the book puts these smaller
examples together to build larger applications. By the
end, you'll be ready to create applications that take
advantage of the high availability, security, perfor-
mance, and scalability of AWS.

 With AWS Lambda, you write your code and upload
it to the AWS cloud. AWS Lambda responds to the events triggered by your application
or your users, and automatically manages the underlying computer resources for you.
Back-end tasks like analyzing a new document or processing requests from a mobile
app are easy to implement. Your application is divided into small functions, leading
naturally to a reactive architecture and the adoption of microservices.

What's inside

 Create a simple API
 Create an event-driven media-sharing application
 Secure access to your application in the cloud
 Use functions from different clients, like web pages or mobile apps
 Connect your application with external services

Requires basic knowledge of JavaScript. Some examples are also provided in Python.
No AWS experience is assumed.

Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

https://www.manning.com/books/aws-lambda-in-action
https://www.manning.com/books/aws-lambda-in-action

 index

A

access control rules 68
Access Control tab 60, 68
accessing resources 97
account, creating, AWS. See AWS (Amazon Web

Services)
Add item button 60
agility, benefits of cloud computing 8
Amazon

data center 13
public cloud offering 3

Amazon Web Services (AWS) Lambda. See AWS
Lambda

Amazon Web Services. See AWS
AOL 11
APIs (application programming interfaces) 98
AppEngine 17
application layers, data travel and 73
application service provider, hype 3
architecture

and creating effective software systems 73
back end 73
good and poor 72
serverless. See serverless architecture 73
tiered 76

artificial intelligence, hype 3
ASP 14
asynchronous functions 94
atomicity 81
Auth0 81
automation 4, 6
autonomous services 75

AWS (Amazon Web Services) 89
account creation

choosing support plan 45
contact information 42
creating key pair 47–50
login credentials 41–42
payment details 43
signing in 45–47
verifying identity 43–44

advantages of
automation capabilities 29
cost 30
fast-growing platform 28
platform of services 29
reducing time to market 30
reliability 30
scalability 29–30
standards compliance 30–31
worldwide deployments 30

alternatives to 33–35
as cloud computing platform 22–23
costs

billing example 31–32
Free Tier 31
overview 31
pay-per-use pricing model 33

services overview 35–37
tools for

blueprints 40–41
CLI 38–40
Management Console 38
SDKs 40

uses for
data archiving 25–26
fault-tolerant systems 27
109

Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

110 INDEX
running Java EE applications 24–25
running web shop 23–24

AWS Lambda 73, 80, 91–96
defined 79

Azure 34–35

B

back-end applications, functions as 96–97
billing, metered 4, 7
BlueHost, public blogs and 55
blueprints, overview 40–41
bottom-up choreography 101
Braintree 81

C

calculator for monthly costs 31
capital expenses, shift to operational 

expenses 5, 7
CDN (content delivery network) 24
CLI (command-line interface) 93

overview 38–40
client, calling functions from 104–107
client-server era 11
cloud

infrastructure 6
metaphor, origin 9
model 5
private 17
public 17
vendor taxonomy 14

cloud computing
agility benefits 8
and evolution of IT 9–14
automation 6
benefits 7–9
conversion of capital expenses to operational

expenses 7
definition 2
efficiency benefits 8
elasticity 6
era 11
first reference to 9
five main principles 4–7
hype 3
metered billing 7
overview 22–23
security 9
service types 14–18
virtualization 5
X-as-a-Service 14, 16

Cloud Console 57
Cloud SDK 64
Cloud SQL instance

configuring for Wordpress 62–63
connecting to 61
securing 60–61
setting the root password for 60
turning on 57–60
Wordpress installation 65

Cloud SQL service 57
Cloud SQL, managing a database via 57
cloud, running functions in 88–107
CloudWatch 95
command-line interface. See CLI
commodity hardware 6
competitive advantages from efficiency benefits 8
complexity, reducing with serverless

approach 77, 84
compute service 36, 73, 78
computing

paradigm shifts 11–12
pooled resources 4–5
virtualized 4

ConnectWise, IT services company 84
container 74
containerization, defined 74
containers 91
content delivery network. See CDN
cost

advantages of AWS 30
billing example 31–32
Free Tier 31
overview 31
pay-per-use pricing model 33

Cray-1 12
Create instance button 57
CreateNewBook function 106
custom code 80
custom event approach 100

D

data archiving 25–26
data centers

economies of scale 13
evolution 12–13
hardware used 22
locations of 22, 30

data security standard. See DSS
database

backing up 63
connection 62
defined 37
Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

111INDEX
locking down at the network level 68
naming 58
vulnerability 68

decentralization, serverless architecture and 83
decoupling 100, 106
deployment, worldwide support 30
disk requirements 58
domain-specific languages (DSL) 75
DSS (data security standard) 31
dynamic scaling 6

E

EC2 16
EC2 (Elastic Compute Cloud) service

defined 21
See also virtual servers

efficiency benefits 8
elasticity 4, 6
enterprise services 37
Event type 94
event-driven applications 100–104
eventual consistency 101
Expedia, data center, build-out 13

F

FaaS 17
fault-tolerance, AWS use cases 27
FLOPS 12
Force.com, as example of FaaS 17
Free Tier 31
front end, creating more powerful 80–81
functions 88–107

as back end of application 96–97
AWS Lambda 91–96
calling from client 104–107
event-driven applications 100–104
single back end 97–100
subscribing to events 95

G

GCE virtual machine, turning off 68
gcloud command-line tool 60
gcloud compute ssh command 64
gcloud sql set-root-password command 60
GET method 107
GetAllBooksByRange function 106
GetBookById function 106

Google
data center 13
search requests, cloud computing in 9

Google Cloud Function, compute service 79
Google Cloud Platform 34–35
Google Cloud SQL 55
Google Cloud Storage, flow diagram for a

Wordpress server using 56
Google Compute Engine 55
graphical conventions 90
green-screen terminal 11

H

hardware 22
commodity 6

headless environment 95
HostGator, public blogs and 54
HP, Mercury 8
hybrid cloud 18

I

IaaS (infrastructure as a service) 16, 23
IAM (Identity and Access Management) 92, 105
IBM Bluemix OpenWhisk, compute service 79
ideal request 55
index.html, Apache default page 66
infrastructure as a service. See IaaS
infrastructure-level access 89
instance

default type, 58
deleting, 68
stopping, 68

Invoke API 105
ISP 11
IT

evolution of 9–14
shift from self-hosted to outsourcing 5

IT system, necessary components of 74

J

Java EE applications 24–25
JSON, response generated by back end 73
JVM (Java Virtual Machine) 93

K

key pair for SSH, creating 47–50
Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

112 INDEX
L

Lambda function 79
layer 78
layering 76

serverless architecture and the problem of 77
least privilege 97
legacy application, moving to a PaaS service 74
level of access, giving the right level to a user 63
Linux, key file permissions 49
LoadRunner 8
load-testing 8

M

Mac OS X, key file permissions 49
mainframe 11
managed database services 57
managed virtual machine 57
Management Console

overview 38
signing in 45

Management, disk, networking, access & security
options 64

markup, fully rendered 73
metered billing 4, 7
microservice, complexity of 75
Microsoft

Azure 17
data center 13

Microsoft Azure Functions, compute service 79
MySQL client, connecting to a Cloud SQL

instance 62
mysql command 62
MySQL, as the most popular open-source

database 57

N

NAT (Network Address Translation) 24
Netflix, the use of Lambda and 84
network level, connection limit at 68

O

OpenStack 33–35
operational expenses, shift from capital

expenses 5, 7
OS (operating system) 89

P

PaaS (platform as a service) 17, 23, 74
pay-as-you-go 7, 14
PCI (payment card industry) 31
persistent disk 60

more performance and 69
stopping an instance and 68

pipeline 79–80
platform as a service. See PaaS
Poneman 9
pooled computing resources 4–5
precomputed indexes 102–103
prototype, serverless approach and creating 81
provisioning, automatic 6
public access 106
PuTTY 49–50
Pylot 8
Python 8

Q

quality of service (QOS) 7

R

RDP (Remote Desktop Protocol) 47
relational data, storing, MySQL and 57
Relational Database Service (RDS) 57
reliability 30
Remote Desktop Protocol. See RDP
request-response message exchange pattern,

basic 74
RequestResponse type 93

S

S3 (Simple Storage Service), defined 21
SaaS (software as a service) 17, 23

as requirement for cloud computing 13
evolution 14

Salesforce.com, as example of SaaS 17
scale, elastically adjusting 4
scaling, advantages of AWS 29–30
SDKs (software development kits) 91

overview 40
Second Generation instance 58
security 9, 97

credentials 105
rules

changing 64
production database and 67
Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

113INDEX
Security Token Service. See STS
self-hosted model 5

elasticity 6
server, back end 73
serverless architecture 73, 75

advantage of serverless approach 81
and a push-based pipeline style of design 80
and breaking the system into functions 77
and principles from microservices 75
granular function and 79
meaning of a name 73
monolithic application 82
principles of 78
pros and cons 81–84
scalability and flexibility of 84
service levels and customization 82
typical three-tier application 76
when to use 83

serverless back end 91, 97
serverless design, event driven 79
serverless systems, as cost effective 84
service-level agreements (SLA) 82
service-oriented architecture (SOA) 75
sharing information 97
Simple Notification Service. See SNS
Simple Storage Service (S3) 79
single back end 97–100
single responsibility principle (SRP) 79
size and performance 58
SNS (Simple Notification Service) 104
SOA

as requirement for cloud computing 13
hype 3

software as a service. See SaaS
software design 76–78

tiers vs. layers 78
software development kits. See SDKs
software systems

complexity of 73–74
multitier 76

SQL Database service 57
SRP. See single responsibility principle
SSH button 64
standards compliance 30–31
stateless 94
stateless style 79
static content, Google Cloud Storage and

handling of 56–57

storage, defined 37
storage capacity field 58
Stripe 81
STS (Security Token Service) 105
synchronous calls 93
system consistency, front end and 81

T

taxonomy, cloud vendors 14
terminal, green-screen 11
third-party services 81
tier 78
time shared 11
timeout 92
token, digitally signed 80
tools

blueprints 40–41
CLI 38–40
Management Console 38
SDKs 40

top-down orchestration 101

U

Ubuntu, Linux environment 61
use cases

data archiving 25–26
fault-tolerant systems 27
running Java EE applications 24–25
running web shop 23–24

user account, creating for Wordpress 63

V

vendor lock-in 83
virtual machine 57–58

and hosting Wordpress installation 63
automatic creation/deletion 4, 6
turning on 55

virtual machines. See VMs
virtualization 5

as requirement for cloud computing 13
virtualized computing 4, 11
VMs (virtual machines) 25
VMware 13
VPN (Virtual Private Network) 24
Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

114 INDEX
W

web application, typical 73
Windows, SSH client on 49–50
Wordpress

configuration of 64–67
installation, instance stopping vs. instance

deleting 69
popularity of 54
single machine example 55
wordpress.org, the latest version of

Wordpress 65
wordpress database, creating in MySQL 62

Wordpress server 56
accessibility 64

Wordpress VM, deploying 63–64
WordPress.com, public blogs and 55
wrapper 93

X

XaaS 14, 16

Y

Yahoo!, data center 13
Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

The Cloud at Your Service
by Jothy Rosenberg and Arthur Mateos

ISBN: 9781935192528
272 pages
$29.99
November 2010

Amazon Web Services in Action
by Michael Wittig and Andreas Wittig

ISBN: 9781617292880
424 pages
$49.99
September 2015

Google Cloud Platform in Action
by JJ Geewax

ISBN: 9781617293528
400 pages
$49.99
Spring 2017

Save 50% on these selected books—eBook, pBook, and MEAP. Just enter fegscc50 in the
Promotional Code box when you check out. Only at manning.com.

Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

https://www.manning.com/books/the-cloud-at-your-service
https://www.manning.com/books/the-cloud-at-your-service
https://www.manning.com/books/amazon-web-services-in-action
https://www.manning.com/books/google-cloud-platform-in-action
http://manning.com
https://www.manning.com/books/amazon-web-services-in-action
https://www.manning.com/books/google-cloud-platform-in-action

Serverless Architectures on AWS
by Peter Sbarski with Sam Kroonenburg

ISBN: 9781617293825
425 pages
$44.99
Spring 2017

AWS Lambda in Action
by Danilo Poccia

ISBN: 9781617293719
384 pages
$49.99
November 2016

https://www.manning.com/books/serverless-architectures-on-aws
https://www.manning.com/books/aws-lambda-in-action
https://www.manning.com/books/serverless-architectures-on-aws
https://www.manning.com/books/aws-lambda-in-action

	contents
	Introduction
	The Cloud at Your Service
	What is cloud computing?
	1.1 Five main principles that define cloud computing
	1.1.1 Pooled computing resources
	1.1.2 Virtualization of compute resources
	1.1.3 Elasticity as resource demands grow and shrink
	1.1.4 Automation of new resource deployment
	1.1.5 Metered billing that charges only for what you use

	1.2 Benefits that can be garnered from moving to the cloud
	1.2.1 Economic benefits of the change from capital to operational expenses
	1.2.2 Agility benefits from not having to procure and provision servers
	1.2.3 Efficiency benefits that may lead to competitive advantages
	1.2.4 Security stronger and better in the cloud

	1.3 Evolution of IT leading to cloud computing
	1.3.1 Origin of the “cloud” metaphor
	1.3.2 Major computing paradigm shifts: mainframes to client-server to web
	1.3.3 Housing of physical computing resources: data center evolution
	1.3.4 Software componentization and remote access: SOA, virtualization, and SaaS

	1.4 Classifying cloud layers: different types for different uses
	1.4.1 Infrastructure as a Service (IaaS)
	1.4.2 Platform as a Service (PaaS)
	1.4.3 Software as a Service (SaaS) and Framework as a Service (FaaS)
	1.4.4 Private clouds as precursors of public clouds

	1.5 Summary
	What's inside

	Amazon Web Services in Action
	What is Amazon Web Services?
	1.1 What is cloud computing?
	1.2 What can you do with AWS?
	1.2.1 Hosting a web shop
	1.2.2 Running a Java EE application in your private network
	1.2.3 Meeting legal and business data archival requirements
	1.2.4 Implementing a fault-tolerant system architecture

	1.3 How you can benefit from using AWS
	1.3.1 Innovative and fast-growing platform
	1.3.2 Services solve common problems
	1.3.3 Enabling automation
	1.3.4 Flexible capacity (scalability)
	1.3.5 Built for failure (reliability)
	1.3.6 Reducing time to market
	1.3.7 Benefiting from economies of scale
	1.3.8 Worldwide
	1.3.9 Professional partner

	1.4 How much does it cost?
	1.4.1 Free Tier
	1.4.2 Billing example
	1.4.3 Pay-per-use opportunities

	1.5 Comparing alternatives
	1.6 Exploring AWS services
	1.7 Interacting with AWS
	1.7.1 Management Console
	1.7.2 Command-line interface
	1.7.3 SDKs
	1.7.4 Blueprints

	1.8 Creating an AWS account
	1.8.1 Signing up
	1.8.2 Signing In
	1.8.3 Creating a key pair
	1.8.4 Creating a billing alarm

	1.9 Summary
	What's inside
	What's inside

	Google Cloud Platform in Action
	Trying it out: Deploying Wordpress on Google Cloud
	2.1 Overall layout
	2.2 The database
	2.2.1 Turning on a Cloud SQL instance
	2.2.2 Securing your Cloud SQL instance
	2.2.3 Connecting to your Cloud SQL instance
	2.2.4 Configuring your Cloud SQL instance for Wordpress

	2.3 Deploying the Wordpress VM
	2.4 Configuring Wordpress
	2.5 Review the system
	2.6 Turning it off
	2.7 Summary
	What's inside

	Serverless Architectures on AWS
	Going serverless
	1.1 How we got to where we are
	1.1.1 Service-oriented architecture and microservices
	1.1.2 Software design

	1.2 Principles of serverless architectures
	1.2.1 Use a compute service to execute code on demand
	1.2.2 Write single-purpose stateless functions
	1.2.3 Design push-based, event-driven pipelines
	1.2.4 Create thicker, more powerful front ends
	1.2.5 Embrace third-party services

	1.3 Transitioning from a server to services
	1.4 Serverless pros and cons
	1.4.1 Decision drivers
	1.4.2 When to use serverless

	1.5 Summary

	AWS Lambda in Action
	Running functions in the cloud
	1.1 Introducing AWS Lambda
	1.2 Functions as your back end
	1.3 A single back end for everything
	1.4 Event-driven applications
	1.5 Calling functions from a client
	1.6 Summary
	What's inside

	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y

	index
	Save 50% on these selected books—eBook, pBook, and MEAP. Just enter fegscc50 in the Promotional Code box when you check out. Only at manning.com.
	The Cloud at Your Service
	Serverless Architectures on AWS
	Amazon Web Services in Action
	Google Cloud Platform in Action
	AWS Lambda in Action

