

Exploring Microservices
Selected by Christian Horsdal Gammelgaard

Manning Author Picks

 Copyright 2017 Manning Publications
To pre-order or learn more about these books go to www.manning.com

Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

http://www.manning.com/

For online information and ordering of these and other Manning books, please visit
www.manning.com. The publisher offers discounts on these books when ordered in quantity.

For more information, please contact

Special Sales Department
Manning Publications Co.
20 Baldwin Road
PO Box 761
Shelter Island, NY 11964
Email: orders@manning.com

©2017 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by means electronic, mechanical, photocopying, or otherwise, without prior written
permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial caps
or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books we publish printed on acid-free paper, and we exert our best efforts to that end.
Recognizing also our responsibility to conserve the resources of our planet, Manning books
are printed on paper that is at least 15 percent recycled and processed without the use of
elemental chlorine.

Manning Publications Co.
20 Baldwin Road Technical
PO Box 761
Shelter Island, NY 11964

Cover designer: Leslie Haimes

ISBN 9781617295072
Printed in the United States of America
1 2 3 4 5 6 7 8 9 10 - EBM - 21 20 19 18 17 16

Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

http://www.manning.com

iii

contents
Introduction iv

MICROSERVICE COLLABORATION 1
Microservice collaboration
Chapter 4 from Microservices in .NET Core by Christian Horsdal

Gammelgaard. 2

YOUR FIRST AKKA.NET APPLICATION 33
Your First Akka.Net Application
Chapter 3 from Reactive Applications with Akka.NET by Anthony Brown. 34

DEPLOYMENT 52
Deployment
Chapter 5 from The Tao of Microservices by Richard Rodger. 53

RUNNING SOFTWARE IN CONTAINERS 96
Running software in containers
Chapter 2 from Docker in Action by Jeff Nickoloff. 97

 index 124

Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

iv

introduction
Over the past few years, microservices architectures have gained tremendous popula-
rity. Considering the promise a well-implemented microservices architecture promi-
ses, this is not a surprising development.
Microservices promise to enable:

 Continuous delivery and agility
 An efficient and enjoyable developer workflow
 Highly maintainable services
 Robust systems
 Highly scalable systems

These are all benefits that many organizations would like their server-side systems to
have, but these benefits are not always realized. In order to successfully achieve
results, microservices have to be used just right. The chapters in this in short ebook
give you a taste of what it takes to succeed with microservices and reap the benefits
I’ve listed above. In addition, these chapters give you a peek into some of the techno-
logies you can use to implement microservices on the .NET platform.

 Before we dive in, let me set the stage by answering what - in a nutshell - a microser-
vice is: A microservice is an individually deployable, autonomous service with one nar-
rowly focused capability.

Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

This chapter gives you a thorough introduction to a very important aspect
of a microservice system: How the microservices collaborate. In order to gain the
benefits of microservices, every part of the system has to collaborate in just the
right way—a way that lowers coupling between microservices and increasingly
enables agility.

Microservice
Collaboration

Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

5

Chapter 4 from Microservices in .NET Core
by Christian Horsdal Gammelgaard.

Microservice collaboration
Each microservice implements a single capability; but to deliver end user function-
ality, microservices need to collaborate. Microservices can use three main commu-
nication styles for collaboration: commands, queries, and events. Each style has its
strengths and weaknesses, and understanding the trade-offs between them allows
you to pick the appropriate one for each microservice collaboration. When you get
the collaboration style right, you can implement loosely coupled microservices with
clear boundaries. In this chapter, I’ll show you how to implement all three collabo-
ration styles in code.

This chapter covers
 Understanding how microservices collaborate through

commands, queries, and events

 Comparing event-based collaboration with collaboration
based on commands and queries

 Implementing an event feed

 Implementing command-, query-, and event-based
collaboration
2

Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

https://www.manning.com/books/microservices-in-net-core

3Types of collaboration: commands, queries, and events
4.1 Types of collaboration: commands, queries, and events
Microservices are fine grained and narrowly scoped. To deliver functionality to an end
user, microservices need to collaborate.

 As an example, consider the Loyalty Program microservice from the point-of-sale
system in chapter 3. The Loyalty Program microservice is responsible for the Loyalty
Program business capability. The program is simple: customers can register as users
with the loyalty program; once registered, they receive notifications about new special
offers and earn loyalty points when they purchase something. Still, the Loyalty Pro-
gram business capability depends on other business capabilities, and other business
capabilities depend on it. As illustrated in figure 4.1, the Loyalty Program microser-
vice needs to collaborate with a number of other microservices.

Special Offers
microservice

Loyalty Program
microservice

API Gateway
microservice

Get loyalty
points by user

Get settings for
registered user

Register user

Update user
settings

Notifications
microservice

Invoice
microservice

Subscribe
to events

Get loyalty
points by user

Send special
offer notification

Figure 4.1 The Loyalty Program microservice collaborates with several other microservices. In some
cases, the Loyalty Program microservice receives requests from other microservices; at other times,
it sends requests to other microservices.

As stated in the list of microservice characteristics in chapter 1, a microservice is
responsible for a single capability; and as discussed in chapter 3, that single capability
is typically a business capability. End user functionalities—or use cases—often involve
several business capabilities, so the microservices implementing these capabilities
must collaborate to deliver functionality to the end user.

 When two microservices collaborate, there are three main styles:

 Commands —Commands are used when one microservice needs another micro-
service to perform an action. For example, the Loyalty Program microservice
sends a command to the Notifications microservice when it needs a notification
to be sent to a registered user.

 Queries —Queries are used when one microservice needs information from
another microservice. Because customers with many loyalty points receive a
Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

4 CHAPTER 4 Microservice collaboration
discount, the Invoice microservice queries the Loyalty Program microservice for
the number of loyalty points a user has.

 Events —Events are used when a microservice needs to react to something that
happened in another microservice. The Loyalty Program microservice sub-
scribes to events from the Special Offers microservice so that when a new spe-
cial offer is made available, it can have notifications sent to registered users.

The collaboration between two microservices can use one, two, or all three of these
collaboration styles. Each time two microservices need to collaborate, you must decide
which style to use. Figure 4.2 shows the collaborations of Loyalty Program again, but
this time identifying the collaboration style I chose for each one.

Special Offers
microservice

Loyalty Program
microservice

API Gateway
microservice

Query: Get loyalty
points by user

Query: Get settings
for registered user

Command: Register
user

Command: Update
user settings

Notifications
microservice

Invoice
microservice

Events: Subscribe
to events

Query: Get loyalty
points by user

Command:
Send special offer

notification

Figure 4.2 The Loyalty Program microservice uses all three collaboration styles: commands, queries,
and events.

 Collaboration based on commands and queries should use relatively coarse-
grained commands and queries. The calls made between microservices are remote
calls, meaning they cross at least a process boundary and usually also a network. This
means calls between microservices are relatively slow. Even though the microservices
are fine grained, you must not fall into the trap of thinking of calls from one microser-
vice to another as being like function calls in a microservice.

 Furthermore, you should prefer collaboration based on events over collaboration
based on commands or queries. Event-based collaboration is more loosely coupled
than the other two forms of collaboration because events are handled asynchronously.
That means two microservices collaborating through events aren’t temporally cou-
pled: the handling of an event doesn’t have to happen immediately after the event is
raised. Rather, handling can happen when the subscriber is ready to do so. In con-
trast, commands and queries are synchronous and therefore need to be handled
immediately after they’re sent.
Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

5Types of collaboration: commands, queries, and events
4.1.1 Commands and queries: synchronous collaboration

Commands and queries are both synchronous forms of collaboration. Both are imple-
mented as HTTP requests from one microservice to another. Queries are implemented
with HTTP GET requests, whereas commands are implemented with HTTP POST or PUT
requests.

 The Loyalty Program microservice can answer queries about registered users and
can handle commands to create or update registered users. Figure 4.3 shows the
command- and query-based collaborations that Loyalty Program takes part in.

Loyalty Program
microservice

API Gateway
microservice

Query: Get loyalty
points by user

HTTP GET /users/123

Query: Get settings
for registered user

HTTP GET /users/123

Command: Register user
HTTP POST /users Command: Update

user settings
HTTP PUT /users/123

Notifications
microservice

Invoice
microserviceQuery: Get loyalty

points by user
HTTP GET /users/123

Command: Send special
offer notification

HTTP POST /notifications

Figure 4.3 The Loyalty Program microservice collaborates with three other microservices using
commands and queries. The queries are implemented as HTTP GET requests, and the commands are
implemented as HTTP POST or PUT requests. The command collaboration with the Notifications
microservice is grayed out because I’m not going to show its implementation—it’s done exactly the
same way as the other collaborations.

 Figure 4.3 includes two different queries: “Get loyalty points for registered user”
and “Get settings for registered user.” You’ll handle both of these with the same end-
point that returns a representation of the registered user. The representation includes
both the number of loyalty points and the settings. You do this for two reasons: it’s
simpler than having two endpoints, and it’s also cleaner because the Loyalty Program
microservice gets to expose just one representation of the registered user instead of
having to come up with specialized formats for specialized queries.

 Two commands are sent to Loyalty Program in figure 4.3: one to register a new user,
and one to update an existing registered user. You’ll implement the first with an HTTP
POST and the second with an HTTP PUT. This is standard usage of POST and PUT HTTP
methods. POST is often used to create a new resource, and PUT is defined in the
HTTP specification to update a resource.
Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

6 CHAPTER 4 Microservice collaboration
All in all, the Loyalty Program microservice needs to expose three endpoints:

 An HTTP GET endpoint at URLs of the form /users/{userId} that responds with a
representation of the user. This endpoint implements both queries in figure 4.3.

 An HTTP POST endpoint at /users/ that expects a representation of a user in
the body of the request and then registers that user in the loyalty program.

 An HTTP PUT endpoint at URLs of the form /users/{userId} that expects a rep-
resentation of a user in the body of the request and then updates an already-
registered user.

The Loyalty Program microservice is made up of the same set of standard components
you’ve seen before, as shown in figure 4.4. The endpoints are implemented in the
HTTP API component.

Loyalty Program
 domain model

HTTP API: accessible from
other microservices

HTTP API module

Event feed module
LoyaltyProgramStore

Loyalty Program microservice

Loyalty
Program

store
EventStore

Figure 4.4 The endpoints exposed by the Loyalty Program microservice are implemented in the HTTP
API component.

The other sides of these collaborations are microservices that most likely follow the
same standard structure, with the addition of a LoyaltyProgramClient component.
For instance, the Invoice microservice might be structured as shown in figure 4.5.

Invoice
storeEventStoreInvoice

 domain model

HTTP API: accessible from
other microservices

HTTP API module

Event feed module
InvoiceStore

Invoice microservice

LoyaltyProgramClient

Figure 4.5 The Invoice microservice has a LoyaltyProgramClient component responsible
for calling the Loyalty Program microservice.
Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

7Types of collaboration: commands, queries, and events
The representation of a registered user that Loyalty Program will expect to receive in
the commands and with which it will respond to queries is a serialization of the follow-
ing LoyaltyProgramUser class.

public class LoyaltyProgramUser
{
 public int Id { get; set; }
 public string Name { get; set; }
 public int LoyaltyPoints { get; set; }
 public LoyaltyProgramSettings Settings { get; set; }
}

public class LoyaltyProgramSettings
{
 public string[] Interests { get; set; }
}

The definitions of the endpoints and the two classes in this code effectively form the con-
tract that the Loyalty Program microservice publishes. The LoyaltyProgramClient
component in the Invoice microservice adheres to this contract when it makes calls to
the Loyalty Program microservice, as illustrated in figure 4.6.

Invoice
 domain model

Invoice microservice

HTTP GET
/users/123

HTTP API: accessible from
other microservices

HTTP API module

Event feed module

Loyalty Program microservice

LoyaltyProgramClient

Figure 4.6 The LoyaltyProgramClient component in the Invoice microservice is responsible for making
calls to the Loyalty Program microservice. It translates between the contract published by Loyalty Program and
the domain model of Invoice.

 Commands and queries are powerful forms of collaboration, but they both suffer
from being synchronous by nature. As mentioned earlier, that creates coupling
between the microservices that expose the endpoints and the microservices that
call the endpoints. Next, we’ll turn our attention to asynchronous collaboration
through events.

Listing 4.1 The Loyalty Program microservice’s user representation
Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

8 CHAPTER 4 Microservice collaboration
4.1.2 Events: asynchronous collaboration

Collaboration based on events is asynchronous. That is, the microservice that publishes
the events doesn’t call the microservices that subscribe to the events. Rather, the sub-
scribers poll the microservice that publishes events for new events when they’re ready
to process them. That polling is what I’ll call subscribing to an event feed. Although the
polling is made out of synchronous requests, the collaboration is asynchronous because
publishing events is independent of any subscriber polling for events.

 In figure 4.7, you can see the Loyalty Program microservice subscribing to events from
the Special Offers microservice. Special Offers can publish events whenever something
happens in its domain, such as every time a new special offer becomes active. Publishing
an event, in this context, means storing the event in Special Offers. Loyalty Program won’t
see the event until it makes a call to the
event feed on Special Offers. When that
happens is entirely up to Loyalty Program.
It can happen right after the event is pub-
lished or at any later point in time.

 As with the other types of collabora-
tion, there are two sides to event-based
collaboration. One side is the microser-
vice that publishes events through an
event feed, and the other is the micro-
services that subscribe to those events.

EXPOSING AN EVENT FEED

A microservice can publish events to other microservices via an event feed, which is just
an HTTP endpoint—at /events, for instance—to which that other microservice can
make requests and from which it can get event data. Figure 4.8 shows the components
in the Special Offers microservice. Once again, the microservice has the same stan-
dard set of components that you’ve seen several times already. In figure 4.8, the com-
ponents involved in implementing the event feed are highlighted.

Special
Offers store

Special Offers
domain model

HTTP API: accessible from
other microservices

HTTP API module

Event feed module
SpecialOffersStore

Special Offers microservice

EventStore

Figure 4.8 The event feed in the Special Offers microservice is exposed to other microservices
over HTTP and is based on the event store.

Special Offers
microservice

Loyalty Program
microservice

Events: Subscribe
to events

Figure 4.7 The Loyalty Program microservice
processes events from the Special Offers
microservice when it’s convenient for Loyalty
Program.
Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

9Types of collaboration: commands, queries, and events
The events published by the Special Offers microservice are stored in its database.
The EventStore component has the code that reads events from and writes them to
the database. The domain model code can use EventStore to store the events it needs
to publish. The Event Feed component is the implementation of the HTTP endpoint
that exposes the event to other microservices: that is, the /events endpoint.

 The Event Feed component uses EventStore to read events from the database
and then returns the events in the body of an HTTP response. Subscribers can use
query parameters to control which and how many events are returned.

SUBSCRIBING TO EVENTS

Subscribing to an event feed essentially means you poll the events endpoint of the
microservice that you subscribe to. At intervals, you send an HTTP GET request to the
/events endpoint to check whether there are any events you haven’t processed yet.

 Figure 4.9 is an overview of the Loyalty Program microservice, which shows that it
consists of two processes. We’ve already talked about the web process, but the event-
subscriber process is new.

Web process

Event-subscriber process

Loyalty Program microservice

Loyalty Program
domain model

LoyaltyProgramStore

Loyalty Program
 domain model

LoyaltyProgramStore

HTTP API: accessible from other microservices

Notifications client

Special Offer
event subscriber

Loyalty Program
data store

Figure 4.9 The event subscription in the Loyalty Program microservice is handled in a
event-subscriber process.
Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

10 CHAPTER 4 Microservice collaboration
The event-subscriber process is a background process that periodically makes requests
to the event feed on the Special Offers microservice to get new events. When it gets back
new events, it processes them by sending commands to the Notifications microservice
to notify registered users about new special offers. The SpecialOffersSubscriber com-
ponent is where the polling of the event feed is implemented, and the Notifications-
Client component is responsible for sending the command to Notifications.

 This is the way you implement event subscriptions: microservices that need to sub-
scribe to events have a subscriber process with a component that polls the event feed.
When new events are returned from the event feed, the subscriber process handles
the events based on business rules.

Events over queues
An alternative to publishing events over an event feed is to use a queue technology,
like RabbitMQ or Service Bus for Windows Server. In this approach, microservices
that publish events push them to a queue, and subscribers read them from the
queue. Events must be routed from the publisher to the subscribers, and how that’s
done depends on the choice of queue technology. As with the event-feed approach,
the microservice subscribing to events has an event-subscriber process that reads
events from the queue and processes them.

This is a perfectly viable approach to implementing event-based collaboration
between microservices. But this book uses HTTP-based event feeds for event-based
collaboration because it’s a simple yet robust and scalable solution.

4.1.3 Data formats

So far, we’ve focused on exchanging data in JSON format. I’ve mentioned in passing
that XML is supported equally by all the endpoints you’ve implemented with Nancy.
(Nancy comes with JSON and XML serialization and deserialization out of the box.)
These two options cover most situations, but there are reasons you might want some-
thing else:

 If you need to exchange a lot of data, a more compact format may be needed.
Text-based formats such as JSON and XML are a lot more verbose than binary
formats like protocol buffers.

 If you need a more structured format than JSON that’s still human readable,
you may want to use YAML.

 If your company uses proprietary data formatting, you may need to support that
format.

In all these cases, you need endpoints capable of receiving data in another format
than XML or JSON, and they also need to be able to respond in that other format. As
an example, a request to register a user with the Loyalty Program microservice using
YAML in the request body looks like this:
Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

11Implementing collaboration
POST /users HTTP/1.1
Host: localhost:5000
Accept: application/yaml

Asks for the response
in YAML format

Content-Type: application/vyaml

Specifies that the
request body is
in YAML format

Name: Christian Provides a YAML-
formatted request bodySettings:

 Interests:
 - whisky
 - cycling
 - software design

The response to this request also uses YAML:

HTTP/1.1 201 Created
Content-Type: application/yaml

Specifies that the
response body is
in YAML format

Location: http://localhost:5000/users/1

Id: 1 Provides a YAML-formatted
response bodyName: Christian

Settings:
 Interests:
 - whisky
 - cycling

Both the preceding request and response have YAML-formatted bodies, and both spec-
ify that the body is YAML in the Content-Type header. The request uses the Accept
header to ask for the response in YAML. This example shows how microservices can
communicate using different data formats and how they can use HTTP headers to tell
which formats are used.

4.2 Implementing collaboration
This section will show you how to code the collaborations you saw earlier in figure 4.2.
I’ll use the Loyalty Program microservice as a starting point, but I’ll also go into some
of its collaborators—the API Gateway microservice, the Invoice microservice, and the
Special Offers microservice—in order to show both ends of the collaborations.

 Three steps are involved in implementing the collaboration:

1 Set up a project for Loyalty Program. Just as you’ve done before, you’ll create
an empty ASP.NET 5 application and add Nancy to it. The only difference this
time is that you’ll add a little Nancy configuration code.

2 Implement the command- and query-based collaborations shown in figure 4.2.
You’ll implement all the commands and queries that Loyalty Program can han-
dle, as well as the code in collaborating microservices that use them.

3 Implement the event-based collaboration shown in figure 4.2. You’ll start with
the event feed in Special Offers and then move on to implement the subscrip-
tion in Loyalty Program. In the process, you’ll add an extra project—and an
extra process—to Loyalty Program. After these steps, you’ll have implemented
all the collaborations of Loyalty Program.
Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

12 CHAPTER 4 Microservice collaboration
The Loyalty Program microservice consists of a web process that has the same struc-
ture you’ve seen before. This is illustrated at the bottom of figure 4.10. Later, when
you implement the event-based collaboration, you’ll add another process that I call
the event-subscriber process. This process is shown at the top of figure 4.10.

Web process

Event subscriber process

Loyalty Program microservice

Loyalty Program
domain model

LoyaltyProgramStore

Loyalty Program
 domain model

LoyaltyProgramStore

HTTP API: accessible from other microservices

Notifications client

Loyalty Program
data store

Special Offers
event subscriber

Figure 4.10 The Loyalty Program microservice has a web process that follows the structure you’ve seen
before and an event-subscriber process that handles the subscription to events from the Special Offers
microservice. I’ll only show the code for the highlighted components in this chapter.

 In the interest of focusing on the collaboration, I won’t show all the code in the
Loyalty Program microservice. Rather, I’ll include the code for the HTTP API in the
web process, and the special offer event subscriber in the event-subscriber process.

4.2.1 Setting up a project for Loyalty Program

The first thing to do in implementing the Loyalty Program microservice is to create an
empty ASP.NET 5 application and add Nancy to it as a NuGet package. You’ve already
done this a couple of times—in chapters 1 and 2—so I won’t go over the details again
here.
Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

13Implementing collaboration
 This time around, there’s one more piece of setup to do: you’ll override how Nancy
handles responses with a 404 Not Found status code. By default, Nancy puts the HTML
for an error page in the body of a 404 Not Found response; but because the clients of
the Loyalty Program microservice aren’t web browsers but other microservices, you
don’t need an error page. I’d rather have a response with a 404 Not Found status code
and an empty body. Toward this end, add a file to the project called Bootstrapper.cs. In
this file, put the following class that inherits from DefaultNancyBootstrapper.

namespace LoyaltyProgram
{
 using System;
 using Nancy;
 using Nancy.Bootstrapper;

 public class Bootstrapper : DefaultNancyBootstrapper
 {
 protected override
 Func<ITypeCatalog, NancyInternalConfiguration> InternalConfiguration =>
 NancyInternalConfiguration
 .WithOverrides(builder => builder.StatusCodeHandlers.Clear());

Remove all default status-code handlers
so they don’t alter the responses.

 }
}

Nancy will automatically discover this class at startup, call the InternalConfiguration
getter, and use the configuration returned from that. You reuse the default configura-
tion except that you clear all StatusCodeHandlers, which means you’re removing
everything that might alter a response because of its status code.

The Nancy bootstrapper
Nancy uses the bootstrapper during application startup to configure both the frame-
work itself and the application. Nancy allows applications to reconfigure the entire
framework, and you can swap any part of Nancy for your own implementation in your
bootstrapper. In this regard, Nancy is open and flexible. In many cases, you don’t
need to configure the framework—Nancy has sensible defaults—and when you do,
you rarely need to swap out entire pieces of Nancy.

To create a bootstrapper, all you have to do is create a class that implements the
INancyBootstrapper interface, and Nancy will discover it and use it. You won’t usu-
ally implement that interface directly, because although the interface itself is simple,
a fully functional implementation of it isn’t. Instead of implementing INancyBoot-
strapper directly, you can take advantage of the default bootstrapper that Nancy
comes with out of the box (DefaultNancyBootstrapper) and extend it. That class
has a number of virtual methods that you can override to hook into different parts of
Nancy. There are, for instance, methods to configure the dependency injection con-
tainer that Nancy uses, methods to set up specialized serialization and deserializa-
tion, methods to add error handlers, and more.

Listing 4.2 Nancy bootstrapper
Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

14 CHAPTER 4 Microservice collaboration
(continued)
You’ll use the Nancy bootstrapper several times throughout the book, but for the
most part you’ll rely happily on Nancy’s defaults. If an application doesn’t have a
Nancy bootstrapper, Nancy uses the default one: DefaultNancyBootstrapper.

4.2.2 Implementing commands and queries

You now have a web project ready to host the implementations of the endpoints
exposed by the Loyalty Program microservice. As listed earlier, these are the endpoints:

 An HTTP GET endpoint at URLs of the form /users/{userId} that responds with a
representation of the user. This endpoint implements both queries in figure 4.3.

 An HTTP POST endpoint at /users/ that expects a representation of a user in
the body of the request and then registers that user in the loyalty program

 An HTTP PUT endpoint at URLs of the form /users/{userId} that expects a rep-
resentation of a user in the body of the request and then updates an already-
registered user.

You’ll implement the command endpoints first and then the query endpoint.

4.2.3 Implementing commands with HTTP POST or PUT

The code needed in the Loyalty Program microservice to implement the handling of
the two commands—the HTTP POST to register a new user and the HTTP PUT to
update one—is similar to the code you saw in chapter 2. You’ll start by implementing
a handler for the command to register a user. A request to Loyalty Program to register
a new user is shown in the following listing.

POST /users HTTP/1.1
Host: localhost:5000
Content-Type: application/json
Accept: application/json

{

JSON representation of the
user being registered

 "id":0,
 "name":"Christian",
 "loyaltyPoints":0,
 "settings":{ "interests" : ["whisky", "cycling"] }
}

To handle the command for registering a new user, you need to add a Nancy module
to Loyalty Program by adding a file called UserModule.cs and putting the following
code in it.

Listing 4.3 Request to register a user named Christian
Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

15Implementing collaboration
 using System.Collections.Generic;
 using Nancy;
 using Nancy.ModelBinding;

 public class UsersModule : NancyModule
 {
 public UsersModule() : base("/users")
 {
 Post("/", _ =>
 {
 var newUser = this.Bind<LoyaltyProgramUser>();

The request must include
a LoyaltyProgramUser in

the body. If it doesn’t, the
request is malformed.

 this.AddRegisteredUser(newUser);
 return this.CreatedResponse(newUser);
 });
 }

 private dynamic CreatedResponse(LoyaltyProgramUser newUser)
 {
 return
 this.Negotiate

Negotiate is an entry
point to Nancy’s

fluent API for
creating responses.

 .WithStatusCode(HttpStatusCode.Created)

Uses the 201 Created status
code for the response

 .WithHeader(
 "Location",
 this.Request.Url.SiteBase + "/users/" + newUser.Id)

Adds a location header to
the response because this

is expected by HTTP for
201 Created responses

 .WithModel(newUser);Returns the
user in the

response for
convenience

 }

 private void AddRegisteredUser(LoyaltyProgramUser newUser)
 {
 // store the newUser to a data store
 }
 }

The response to the preceding request looks like this:

HTTP/1.1 201 Created

The status code is
201 Created.

Content-Type: application/json; charset=utf-8

Nancy’s content
negotiation sets
the Content-Type.

Location: http://localhost:5000/users/4

The Location header points to
the newly created resource.{

 "id": 4,
 "name": "Christian",
 "loyaltyPoints": 0,
 "settings": { "interests": ["whisky", "cycling"]
 }
}

Listing 4.4 POST endpoint for registering users
Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

16 CHAPTER 4 Microservice collaboration
The main new thing to notice in listing 4.4 is the use of Negotiate to create the response
to the command. Negotiate is a property on the NancyModule class that you use as a base
class for UserModule. Here, it mainly works as an entry point to Nancy’s nice, fluent API
for creating responses. In the handler, you use that API to set the status code, add a Loca-
tion header, and add the user object to the response. The API will also allow you to do
more things to the response, such as setting other headers and specifying a view that will
be used when responding to requests that ask for HTML in the Accept header.

 Negotiate also triggers Nancy’s content-negotiation functionality. Content negoti-
ation is how HTTP specifies that the format of data in responses should be decided. It
essentially means reading the Accept header in the request and serializing to a format
indicated there. In listing 4.3, the accept header is Accept: application/json, mean-
ing the response should serialize data to JSON.

 With the handler for the register-user command in place, let’s turn our attention
to implementing a handler for the update-user command. That handler is added to
UserModule.

public class UsersModule : NancyModule
{
 public UsersModule() : base("/users")
 {
 Post("/", _ => ...);

 Put("/{userId:int}", parameters =>
 {
 int userId = parameters.userId;
 var updatedUser = this.Bind<LoyaltyProgramUser>();
 // store the updatedUser to a data store
 return updatedUser; Nancy turns the user object

into a complete response. });
 }
 ...
}

There’s nothing in this code you haven’t seen before.
 The handlers for the commands are only one side of the collaboration. The other

side is the code that sends the commands. Figure 4.2 shows that the API Gateway
microservice sends commands to the Loyalty Program microservice. You won’t build a
complete API Gateway microservice here, but in the code download for this chapter,
you’ll find a console application that acts as API Gateway would with regard to collabo-
rating with Loyalty Program. Here, we’ll focus only on the code that sends the com-
mands.

 In the API Gateway microservice, you’ll create a class called LoyaltyProgramClient
that’s responsible for dealing with communication with the Loyalty Program microser-
vice. That class encapsulates everything involved in building HTTP requests, serializing
data for requests, understanding HTTP responses, and deserializing response data.

Listing 4.5 PUT endpoint for registering users
Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

17Implementing collaboration
 The code for sending the registered-user command takes a LoyaltyProgramUser
as input and creates an HTTP POST with the LoyaltyProgramUser object in the body,
and it sends that to the Loyalty Program microservice. After it checks the response sta-
tus code and confirms that it’s 201 Created, it deserializes the body of the response to
a LoyaltyProgramUser and returns it. If the status code is anything else, the method
returns null. The following listing shows the implementation.

using System;
using System.Text;
using System.Threading.Tasks;
using System.Net;
using System.Net.Http;
using Newtonsoft.Json;

public class LoyaltyProgramClient
{
 public async Task<LoyaltyProgramUser>
 ➥ RegisterUser(LoyaltyProgramUser newUser)
 {
 using(var httpClient = new HttpClient())
 {
 httpClient.BaseAddress = new Uri($"http://{this.hostName}");
 var response = await
 httpClient.PostAsync(Sends the command to Loyalty Program
 "/users/",
 new StringContent(
 JsonConvert.SerializeObject(newUser), Serializes newUser as JSON
 Encoding.UTF8,

Sets the Content-Type header "application/json"));
 ThrowOnTransientFailure(response);
 return JsonConvert.DeserializeObject<LoyaltyProgramUser>(

Deserializes the response if the
command was handled successfully

 await response.Content.ReadAsStringAsync());
 }
 }
}

Similarly, LoyaltyProgramClient has a method for sending the update-user com-
mand. This method also encapsulates the HTTP communication involved in sending
the command.

public async Task<LoyaltyProgramUser> UpdateUser(LoyaltyProgramUser user)
{
 using(var httpClient = new HttpClient())
 {
 httpClient.BaseAddress = new Uri($"http://{this.hostName}");
 var response = await

Listing 4.6 The API Gateway microservice registering new users

Listing 4.7 The API Gateway microservice updating users
Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

18 CHAPTER 4 Microservice collaboration
 httpClient.PutAsync(
Sends the update-user
command as a PUT request $"/users/{user.Id}",

 new StringContent(
 JsonConvert.SerializeObject(user),
 Encoding.UTF8,
 "application/json"));
 ThrowOnTransientFailure(response);
 return JsonConvert.DeserializeObject<LoyaltyProgramUser>(
 await response.Content.ReadAsStringAsync());
 }
}

This code is similar to the code for the register-user command, except this HTTP
request uses the PUT method. With the command handlers implemented in the Loy-
alty Program microservice and a LoyaltyProgramClient implemented in the API
Gateway microservice, the command-based collaboration is implemented. API Gate-
way can register and update users, but it can’t yet query users.

4.2.4 Implementing queries with HTTP GET

The Loyalty Program microservice can handle the commands it needs to handle, but
it can’t answers queries about registered users. Remember that Loyalty Program only
needs one endpoint to handle queries. As mentioned previously, the endpoint han-
dling queries is an HTTP GET endpoint at URLs of the form /users/{userId}, and it
responds with a representation of the user. This endpoint implements both queries in
figure 4.4.

public class UsersModule : NancyModule
{
 private static IDictionary<int, LoyaltyProgramUser> registeredUsers =
 new Dictionary<int, LoyaltyProgramUser>();

 public UsersModule() : base("/users")
 {
 Post("/", _ => ...);

 Put("/{userId:int}", parameters => ...);

 Get("/{userId:int}", parameters =>
 {
 int userId = parameters.userId;
 if (registerUsers.ContainsKey(userId))
 return registerUsers[userId];
 else
 return HttpStatusCode.NotFound;
 });
 }
 ...
}

Listing 4.8 GET endpoint to query a user by ID
Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

19Implementing collaboration
There’s nothing about this code that you haven’t already seen several times. Likewise,
the code needed in the API Gateway microservice to query this endpoint shouldn’t
come as a surprise:

public class LoyaltyProgramClient
{
 ...

 public async Task<LoyaltyProgramUser> QueryUser(int userId)
 {
 var userResource = $"/users/{userId}";
 using(var httpClient = new HttpClient())
 {
 httpClient.BaseAddress = new Uri($"http://{this.hostName}");
 var response = await httpClient.GetAsync(userResource);
 ThrowOnTransientFailure(response);
 return JsonConvert.DeserializeObject<LoyaltyProgramUser>(
 await response.Content.ReadAsStringAsync());
 }
 }
}

This is all that’s needed for the query-based collaboration. You’ve now implemented
the command- and query-based collaborations of the Loyalty Program microservice.

4.2.5 Data formats

Suppose you want the endpoints you just implemented to support YAML. You
shouldn’t implement support for a third data format in the endpoint handlers—it’s
not a concern of the application logic, it’s a technical concern.

 Nancy lets you support deserialization of another format by implementing the
IBodyDeserializer interface. In typical Nancy style, any implementation of that
interface is picked up at application startup and is hooked into Nancy’s model bind-
ing. Likewise, to support serialization of response bodies in a third format, you can
implement IResponseProcessor, which also is automatically discovered by Nancy and
gets hooked into Nancy’s content negotiation.

 To implement YAML support in the Loyalty Program microservice, you’ll first
install the YamlDotNet NuGet package in the project. Then, you’ll add a file called
YamlSerializerDeserializer.cs. You’ll use this file to implement both the deserialization
and the serialization. The deserialization looks like this.

namespace LoyaltyProgram
{
 using System.IO;
 using Nancy.ModelBinding;
 using Nancy.Responses.Negotiation;
 using YamlDotNet.Serialization;

Listing 4.9 Deserializing from YAML
Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

20 CHAPTER 4 Microservice collaboration
 public class YamlBodyDeserializer : IBodyDeserializer
 {
 public bool CanDeserialize(
 MediaRange mediaRange, BindingContext context)
 => mediaRange.Subtype.ToString().EndsWith("yaml");

Tells Nancy which
content types this
deserializer can
handle

 public object Deserialize(
 MediaRange mediaRange, Stream bodyStream, BindingContext context)
 {
 var yamlDeserializer = new Deserializer();
 var reader = new StreamReader(bodyStream);
 return yamlDeserializer.Deserialize(Tries to deserialize the request

body to the type needed by the
application code

 reader, context.DestinationType);
 }
 }
}

This code mainly uses the YamlDotNet library to deserialize the data from the body of
the request.

 The implementation of the serialization support isn’t as simple, but it’s still only a
matter of implementing two methods and a property.

namespace LoyaltyProgram
{
 using System;
 using System.Collections.Generic;
 using System.IO;
 using Nancy;
 using Nancy.Responses.Negotiation;
 using YamlDotNet.Serialization;
 ...

 public class YamlBodySerializer : IResponseProcessor
 {
 public IEnumerable<Tuple<string, MediaRange>> ExtensionMappings
 {
 get
 {
 yield return new Tuple<string, MediaRange>(
 "yaml", new MediaRange("application/yaml"));

Tells Nancy which file
extensions can be handled by
this response processor. You

don’t use this feature.

 }
 }

 public ProcessorMatch CanProcess(
 MediaRange requestedMediaRange, dynamic model, NancyContext context)
 =>
 requestedMediaRange.Subtype.ToString().EndsWith("yaml")

Tells Nancy that this processor can handle
accept header values that end with “yaml”

 ? new ProcessorMatch
 {
 ModelResult = MatchResult.DontCare,

Listing 4.10 Serializing to YAML
Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

21Implementing collaboration
 RequestedContentTypeResult = MatchResult.NonExactMatch
 }
 : ProcessorMatch.None;

 public Response Process(
 MediaRange requestedMediaRange, dynamic model, NancyContext context)
 =>
 new Response

Creates a new response object to
use in the rest of Nancy’s pipeline

 {
 Contents = stream =>

Sets up a function that writes
the response body to a stream {

 var yamlSerializer = new Serializer();
 var streamWriter = new StreamWriter(stream);
 yamlSerializer.Serialize(streamWriter, model);

Writes the YAML
serialized object to the
stream Nancy uses for
the response body

 streamWriter.Flush();
 },
 ContentType = "application/yaml"
 };
 }
}

The serialization is also handled by the YamlDotNet library. The code in Extension-
Mappings and CanProcess in YamlBodySerializer tells Nancy which responses it
applies to. The code in Process creates a response with a YAML-serialized body. This
response may be processed more if the code in the handler customizes the response
further. For instance, the response to the register-user command is created like this:

return
 this.Negotiate
 .WithStatusCode(HttpStatusCode.Created)
 .WithHeader(
 "Location",
 this.Request.Url.SiteBase + "/users/" + newUser.Id)
 .WithModel(newUser);

This code customizes the response through the .With* extension methods. After
YamlBodySerializer has created the response, including the YAML-formatted body,
the WithStatusCode and WithHeader methods further customize the response. As
you’ve seen, all it takes to make your Nancy-based microservices support another data
format is an implementation of IBodyDeserializer and an implementation of
IResponseProcessor.

4.2.6 Implementing an event-based collaboration

Now that you know how to implement command- and query-based collaborations
between microservices, it’s time to turn our attention to the event-based collabora-
tion. Figure 4.11 repeats the collaborations that the Loyalty Program microservice is
involved in. Loyalty Program subscribes to events from Special Offers, and it uses the
events to decide when to notify registered users about new special offers.
Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

22 CHAPTER 4 Microservice collaboration
Special Offers
microservice

Loyalty Program
microservice

API Gateway
microservice

Query: Get loyalty
points by user

Query: Get settings
for registered user

Command: Register
user

Command: Update
user settings

Notifications
microservice

Invoice
microservice

Events: Subscribe
to events

Query: Get loyalty
points by user

Command:
Send special offer

notification

Figure 4.11 The event-based collaboration in the Loyalty Program microservice is the subscription
to the event feed in the Special Offers microservice.

We’ll first look at how Special Offers exposes its events in a feed. Then, you’ll return
to Loyalty Program and add a second process to that service, which will be responsible
for subscribing to events and handling events.

IMPLEMENTING AN EVENT FEED

You saw a simple event feed in chapter 2. The Special Offers microservice implements
its event feed the same way: it exposes an endpoint—/events—that returns a list of
sequentially numbered events. The endpoint can take two query parameters—start

and end—that specify a range of events. For example, a request to the event feed can
look like this:

GET /events?start=10&end=110 HTTP/1.1

Host: specialoffers.mycompany.com
Accept: application/json

The response to this request might be the following, except that I’ve cut off the response
after two events:

HTTP/1.1 200 OK
Content-Type: application/json; charset=utf-8

[
 {
 "sequenceNumber": 10,
 "occuredAt": "2015-10-02T18:37:00.7070659+00:00",
 "name": "NewSpecialOffer",
 "content": {
 "offerId": 123,
 "offer": {
 "productCatalogueId": 1,
Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

23Implementing collaboration
 "productName": "Basic t-shirt",
 "description": "Get an awesome t-shirt at half price!",
 }
 }
 },
 {
 "sequenceNumber": 11,
 "occuredAt": "2015-10-02T20:01:00.3050629+00:00",
 "name": "UpdatedSpecialOffer",
 "content": {
 "offerId": 124,
 "offer": {
 "productCatalogueId": 10,
 "productName": "Hot teacup",
 "description": "Get a Cup<T>. Because you know you want to.",
 "update": "Now with 10% more inference"
 }
 }
 }
}

Notice that the events have different names (NewSpecialOffer and UpdatedSpecial-
Offer) and the two types of events don’t have the same data fields. This is normal: dif-
ferent events carry different information. It’s also something you need to be aware of
when you implement the subscriber in the Loyalty Program microservice. You can’t
expect all events to have the exact same shape.

 The implementation of the /events endpoint in the Special Offers microservice is
a simple Nancy module, just like the one in chapter 2.

namespace SpecialOffers.EventFeed
{
 using Nancy;

 public class EventsFeedModule : NancyModule
 {
 public EventsFeedModule(IEventStore eventStore) : base("/events")
 {
 Get("/", _ =>
 {
 long firstEventSequenceNumber, lastEventSequenceNumber;
 if (!long.TryParse(this.Request.Query.start.Value,
 out firstEventSequenceNumber))
 firstEventSequenceNumber = 0;
 if (!long.TryParse(this.Request.Query.end.Value,
 out lastEventSequenceNumber))
 lastEventSequenceNumber = long.MaxValue;

 return
 eventStore.GetEvents(
 firstEventSequenceNumber,

Listing 4.11 Endpoint that reads and returns events
Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

24 CHAPTER 4 Microservice collaboration
 lastEventSequenceNumber);
 });
 }
 }
}

This module only uses Nancy features that we’ve already discussed. You may notice,
however, that it returns the result of eventStore.GetEvents directly, which is an IEn-
umerable<Event>; Nancy serializes it as an array. The Event is a struct that carries a lit-
tle metadata and a Content field that’s meant to hold the event data.

public struct Event
{
 public long SequenceNumber { get; }
 public DateTimeOffset OccuredAt { get; }
 public string Name { get; }
 public object Content { get; }

 public Event(
 long sequenceNumber,
 DateTimeOffset occuredAt,
 string name,
 object content)
 {
 this.SequenceNumber = sequenceNumber;
 this.OccuredAt = occuredAt;
 this.Name = name;
 this.Content = content;
 }
}

The Content property is used for event-specific data and is where the difference
between a NewSpecialOffer event and an UpdatedSpecialOffer event appears. The
former has one type of object in Content, and the latter has another.

 This is all it takes to expose an event feed. This simplicity is the great advantage of
using an HTTP-based event feed to publish events. Event-based collaboration can be
implemented over a queue system, but that introduces another complex piece of tech-
nology that you have to learn to use and administer in production. That complexity is
warranted in some situations, but certainly not always.

CREATING AND RUNNING AN EVENT-SUBSCRIBER PROCESS

The first step in implementing an event-subscriber process is to create a console
application. You’re using ASP.NET Core, which is based on .NET Core, for the web
processes in the example microservices, so you’ll create a console application that’s
.NET Core–based and call it LoyaltyProgramEventConsumer. You can create a .NET
Core–based console application in Visual Studio 2015 by selecting the Console
Application (Package) project type in the New Project dialog box. Alternatively, you

Listing 4.12 Event class that represents events
Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

25Implementing collaboration
can go to a PowerShell prompt, run the Yeoman ASP.NET generator,1 and select the
option to generate a Console Application.

PS> yo aspnet

 | | .--------------------------.
 |--(o)--| | Welcome to the |
 `---------´ | marvellous ASP.NET Core |
 (_´U`_) | 1.0 generator! |
 /___A___\ '--------------------------'
 | ~ |
 __'.___.'__
 ´ ` |° ´ Y `

? What type of application do you want to create?
 Empty Web Application
> Console Application

Move the cursor
here, and press
Enter to generate
a console app.

 Web Application
 Web Application Basic [without Membership and Authorization]
 Web API Application
 Nancy ASP.NET Application
 Class Library
 Unit test project (xUnit.net)

Whether you create the LoyaltyProgramEventConsumer with Visual Studio or Yeo-
man, you can run it by going to the project folder—the folder where the project.json
file is—in PowerShell and using dotnet:

PS> dotnet run

The application is empty, so nothing interesting happens yet. Running LoyaltyPro-
gramEventConsumer like that from PowerShell is something you’ll only do for testing.
In production, you might run LoyaltyProgramEventConsumer as a Windows service. If
the production environment is based on Windows Servers that you (or your organiza-
tion) run, a Windows service may well be the right choice; but if your production envi-
ronment is in a cloud, in may not be.

WARNING I’m implementing LoyaltyProgramEventConsumer as a Windows
service, which only works on Windows. If you want to run on Linux, you can
create a similar LoyaltyProgramEventConsumer as a Linux daemon.

Creating a Windows service is straightforward and is no different with a .NET Core–
based console application than it was before .NET Core. The project already has a Pro-
gram.cs file containing a Program class. The Program class has a Main method, which is

1 See appendix A for instructions on installing Yeoman and the Yeoman ASP.NET generator.

Listing 4.13 Generating a console app with the Yeoman ASP.NET generator
Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

26 CHAPTER 4 Microservice collaboration
the entry point to the application. To turn it into a Windows service, the Program class
just has to inherit from ServiceBase and override the OnStart and OnStop methods,
as in the following listing.

using System.ServiceProcess;

public class Program : ServiceBase
{
 private EventSubscriber subscriber;

 public void Main(string[] args)
 {
 // more to come
 Run(this);

Starts running as a
Windows service

 }

 protected override void OnStart(string[] args)

Called when the
Windows service
is started

 {
 // more to come
 }

 protected override void OnStop()

Called when the Windows
service is stopped

 {
 // more to come
 }
}

If you’re coding along with this example, you’ll get compile errors from the preceding
code: the type ServiceBase isn’t known. To load the assembly that contains the Ser-
viceBase class, you have to add a line to the dependencies section of your project.json
file and edit the frameworks section to indicate that this application uses the full .NET
framework. The frameworks section should look like this:

"dependencies": {
 "Newtonsoft.Json": "8.0.3",
 "System.ServiceProcess.ServiceController": "4.1.0",
 "System.Net.Http": "4.1.0"
},

"frameworks": {
 "net461": { }
},

That should make the application compile again. To run it, you need to install it as a
Windows service. And toward that end you need a binary version, so you need to
explicitly compile the project. You do that with the dotnet command-line tool:

PS> dotnet build

Listing 4.14 Making Program run as a Windows service
Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

27Implementing collaboration
This compiles the project into a bin folder under the project. You can run the com-
piled output by calling the compiled executable:

PS> .\bin\Debug\net452\LoyaltyProgramEventConsumer

Now you have a binary version, and you can install it as a Windows service using the
sc.exe Windows utility. You must tell sc.exe the name of the Windows service and
the command to execute as a Windows service. In this case, the command is the Loy-
altyProgramEventConsumer executable. You end up with this command:

PS> sc.exe create loyalty-program-event-consumer binPath="<path-to-
project>\bin\Debug\net452\LoyaltyProgramEventConsumer"

Once LoyaltyProgramEventConsumer is installed as a Windows service, you can start
and stop it like any other Windows service.

SUBSCRIBING TO AN EVENT FEED

You now have a LoyaltyProgramEventConsumer console application that you can run
as a Windows service. Its job is to subscribe to events from the Special Offers microser-
vice and use the Notifications microservice to notify registered users of special offers.
Figure 4.12 shows the collaboration of Loyalty Program, with the ones you’ve already
implemented grayed out.

Special Offers
microservice

Loyalty Program
microservice

API Gateway
microservice

Query: Get loyalty
points by user

Query: Get settings
for registered user

Command: Register
user

Command: Update
user settings

Notifications
microservice

Invoice
microservice

Events: Subscribe
to events

Query: Get loyalty
points by user

Command:
Send special offer

notification

Figure 4.12 The event-based collaboration in the Loyalty Program microservice is the subscription
to the event feed in the Special Offers microservice.

Subscribing to an event feed essentially means you’ll poll the events endpoint of the
microservice you subscribe to. At intervals, you’ll send an HTTP GET request to the
/events endpoint to check whether there are any events you haven’t processed yet.

 You’ll start the implementation from the top down. The first thing to do is intro-
duce a class called EventSubscriber and have it set up a timer that elapses after 10
seconds.
Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

28 CHAPTER 4 Microservice collaboration
public class EventSubscriber
{
 private readonly string loyaltyProgramHost;
 private long start = 0;
 private int chunkSize = 100;
 private readonly Timer timer;

 public EventSubscriber(string loyaltyProgramHost)
 {
 this.loyaltyProgramHost = loyaltyProgramHost;
 this.timer = new Timer(10 * 1000);

Sets up the timer
to elapse after 10
seconds

 this.timer.AutoReset = false;
 this.timer.Elapsed += (_, __) => SubscriptionCycleCallback().Wait();

Called every time the timer elapses
 }
}

After 10 seconds, you check for new events, handle any new events, and then sleep 10
seconds again before checking for new events. Every time the timer elapses, listing 4.15
calls SubscriptionCycleCallback, which tries to read new events from the event feed
and then handles new events. Both these tasks are delegated to other methods that we’ll
get to in a moment. For now, here’s the code for SubscriptionCycleCallback.

private async Task SubscriptionCycleCallback()
{
 var response = await ReadEvents().ConfigureAwait(false);

Awaits the HTTP GET
to the event feed

 if (response.StatusCode == HttpStatusCode.OK)
 HandleEvents(response.Content);
 this.timer.Start();
}

The ReadEvents method makes the HTTP GET request to the event feed. It uses Http-
Client, which you’ve seen several times already.

private async Task<HttpResponseMessage> ReadEvents()
{
 using (var httpClient = new HttpClient())
 {
 httpClient.BaseAddress =
 new Uri($"http://{this.loyaltyProgramHost}");
 var response = await httpClient.GetAsync(

Awaits getting
new events

 $"/events/?start={this.start}&end={this.start + this.chunkSize}")

Uses query parameters to limit
the number of events read

 .ConfigureAwait(false);
 return response;
 }
}

Listing 4.15 Starting a timer and setting up a callback function

Listing 4.16 Reading and handling events

Listing 4.17 Reading the next batch of events
Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

29Implementing collaboration
This method reads the events from the event feed and returns them to the Subscrip-
tionCycleCallback method. If the request succeeded, the HandleEvents method is
called. The events are first deserialized, and then each event is handled in turn.

private void HandleEvents(string content)
{
 var events = JsonConvert
 .DeserializeObject<IEnumerable<SpecialOfferEvent>>(content);
 foreach (var ev in events)
 {
 dynamic eventData = ev.Content;

Treats the content property
as a dynamic object

B

 // handle 'ev' using the eventData.
 this.start = Math.Max(this.start, ev.SequenceNumber + 1);

Keeps track of the highest
event number handledC

 }
}

There are a few things to notice here:

 This method keeps track of which events have been handled C. This makes
sure you don’t request events from the feed that you’ve already processed.

 You treat the Content property on the events as dynamic B. As you saw earlier,
not all events carry the same data in the Content property, so treating it as
dynamic allows you to access the properties you need on .Content and not care
about the rest. This is a sound approach because you want to be liberal in
accepting incoming data—it shouldn’t cause problems if the Special Offers
microservice decides to add an extra field to the event JSON. As long as the data
you need is there, the rest can be ignored.

 The events are deserialized into the type SpecialOfferEvent. This is a different
type than the Event type uses to serialize the events in Special Offers. This is
intentional and is done because the two microservices don’t need to have the
exact same view of the events. As long as Loyalty Program doesn’t depend on
data that isn’t there, all is well.

The SpecialOfferEvent type used here is simple and contains only the fields used in
Loyalty Program:

public struct SpecialOfferEvent
{
 public long SequenceNumber { get; set; }
 public string Name { get; set; }
 public object Content { get; set; }
}

To tie the EventSubscriber code back into the Windows service you set up in listing 4.14
at the beginning of implementing the event-subscriber process, you’ll add two more

Listing 4.18 Deserializing and then handling events
Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

30 CHAPTER 4 Microservice collaboration
methods to the EventSubscriber: one that starts the timer and one that stops it. These
two methods effectively start and stop the event subscription:

public void Start()
{
 this.timer.Start();
}

public void Stop()
{
 this.timer.Stop();
}

The Windows service can now create an EventSubscriber at startup and then call the
Start and Stop methods when the Windows service is started or stopped. Filling in
the missing pieces from listing 4.14, the Windows service becomes as follows.

public class Program : ServiceBase
{
 private EventSubscriber subscriber;

 public void Main(string[] args)
 {
 this.subscriber = new EventSubscriber("localhost:5000");
 Run(this);
 }

 protected override void OnStart(string[] args)
 {
 this.subscriber.Start();
 }

 protected override void OnStop()
 {
 this.subscriber.Stop();
 }
}

This concludes your implementation of event subscriptions. As you’ve seen, subscrib-
ing to an event feed means polling it for new events at intervals and then handling any
new events.

4.3 Summary
 There are three types of microservice collaboration:

– Command-based collaboration, where one microservice uses an HTTP POST
or PUT to make another microservice perform an action

Listing 4.19 Windows service to start and stop the subscription
Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

31Summary
– Query-based collaboration, where one microservice uses an HTTP GET to
query the state of another microservice

– Event-based collaboration, where one microservice exposes an event feed
that other microservices can subscribe to by polling the feed for new events

 Event-based collaboration is more loosely coupled than command- and query-
based collaboration.

 You can hook into Nancy’s model binding and content negotiation to support
data formats other than XML and JSON.

 The Nancy bootstrapper is used to configure Nancy itself and Nancy applications.
 You can use HttpClient to send commands to other microservices and to query

other microservices.
 You can use Nancy to expose the endpoints for receiving and handling com-

mands and queries.
 Nancy can expose a simple event feed.
 You can create a process that subscribes to events by

– Creating a .NET Core console application
– Implementing and installing a console application as a Windows service
– Using a timer to make the console application poll an event feed
– Using HttpClient to read events from an event feed
Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

32 CHAPTER 4 Microservice collaboration

Microservice applications are built by connecting sin-
gle-capability, autonomous components that communi-
cate via APIs. These systems can be challenging to
develop because they demand clearly defined inter-
faces and reliable infrastructure. Fortunately for .NET
developers, OWIN (the Open Web Interface for .NET),
and the Nancy web framework help minimize plumb-
ing code and simplify the task of building microservice-
based applications.

 Microservices in .NET Core provides a complete guide
to building microservice applications. After a crystal-
clear introduction to the microservices architectural

style, the book will teach you practical development skills in that style, using OWIN
and Nancy. You'll design and build individual services in C# and learn how to compose
them into a simple but functional application back end. Along the way, you'll address
production and operations concerns like monitoring, logging, and security.

What's inside

 Design robust and ops-friendly services
 Build HTTP APIs with Nancy
 Expose events via feeds with Nancy
 Use OWIN middleware for plumbing

This book is written for C# developers. No previous experience with microservices
required.

Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

https://www.manning.com/books/microservices-in-net-core
https://www.manning.com/books/microservices-in-net-core

When implementing microservices, it is beneficial to choose lightweight
yet robust technologies because these technologies support a quick turnaround
that benefits continuous delivery and microservices. One such technology in the
.NET space is Akka.NET, which is a versatile actor framework that offers an inte-
resting way to implement microservices.

Your First Akka.NET
Application

Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

5

Chapter 3 from Reactive Applications
with Akka.NET by Anthony Brown.

Your First
Akka.Net Application
The first few chapters covered the key reasons- why you’ll likely want to use reactive
architecture, as well as what reactive architecture means. We’ve seen how the over-
all aim of a reactive system is to create applications which are responsive to the end-
user, and how this requires applications to work, even when struggling with the
demands of scale or malfunctioning components. We’ve covered the key things we
need to consider when we design a reactive application to ensure our application
follows the traits of a reactive application.

 From here on, we’ll consider how to write reactive systems which follow the
traits laid out by the reactive manifesto. As we saw, the reactive manifesto is a series
of guidelines designed to suggest solutions to their problems which many organisa-

This chapter covers
 Setting up an actor system

 How to define an actor

 How to send a message to that actor

 A number of alternative actor implementations available
to use
34

Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

https://www.manning.com/books/reactive-applications-with-akka-net
https://www.manning.com/books/reactive-applications-with-akka-net

35Actors
tions have found effective. As such, there are many means of developing reactive sys-
tems; we’ll focus on one. We’ll use the actor model as the underlying basis for our
reactive systems, and the implementation is in the form of Akka.Net, a framework
designed for writing concurrent applications using the actor model in .Net.

 To build these reactive systems we’ll write code. Akka.Net runs on the .Net frame-
work and, whilst any language which runs on the .Net framework can use Akka.Net,
the main content of this book uses C# to write our applications. Because Akka.Net
provides a pragmatic API for F#, which ultimately features some key differences to the
C# API, these will be covered in the appendix at the end of the book. The concepts
you’ll learn in the book will be the same regardless of C# or F#, but the implementa-
tion of these concepts will depend upon the language used.

 By the end of this chapter you’ll have a basic actor created, which can receive mes-
sages, and we’ll send this actor some messages. You can adapt this actor and build your
own actor, capable of performing more complex functions.

3.1 Setting up an application
Akka.Net feels like a framework, but it markets itself as a toolkit and runtime which
forms the basis of concurrent applciations. Ultimately, Akka.Net requires no special
application configuration to run and can be hosted in any of the normal .Net runtime
environments, whether this is console applications, Windows service, IIS, WPF or Win-
dows Forms applications. Throughout this book, examples are given in the form of
console applications unless it’s been specified otherwise.

 All of the components required to run Akka.Net are distributed through the
NuGet package management system. As Akka.Net relies on many modern features of
the .Net runtime, it requires a minimum of .Net v4.5 to run. Akka.Net also has full
Mono support allowing it to run in Linux and Mac OSX environments.

 To install the libraries, a NuGet client is required; there are several options avail-
able for dependency management with a NuGet client:

 Visual Studio package management GUI: If you’re developing applications
using Visual Studio then dependencies can be managed directly through the
references node of a project in the Solution Explorer.

 Command line tooling: In environments where you don’t have access to Visual
Studio, a number of command line tooling options are available including the
official NuGet client or third-party alternatives such as Paket.

 To develop applications in a single machine scenario, the only NuGet package
required is the Akka package. This provides all of the core functionality which is
required to create and host actors and then send messages to these actors.

3.2 Actors
When considering Akka.Net, it’s important to realise that the underlying ideas sur-
rounding the framework are those relating to concurrency. Ultimately, the actor
model is designed to allow multiple tasks to operate independently of each other. The
Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

36 CHAPTER 3 Your First Akka.Net Application
actor model is designed such that it abstracts away many of the underlying multi-
threading constructs which ensure concurrency is possible. At the heart of this is the
concept of an actor.

3.2.1 What does an actor embody?

The concept of an actor is something which has been discussed several times, but now
we can consider what an actor is in the context of Akka.Net. The actor model is a
model of computation designed to make concurrency as easy as possible by abstract-
ing away the difficulties associated with threading, including the likes of mutexes,
semaphores and other multithreading concepts.

 We can think of actors the same way we think of people. Every day we communicate
with hundreds or thousands of people in a variety of methods. People send messages to
those surrounding them and react to messages they’ve received. This communication
is in the form of message passing, where a message can include several types, such as
body language or verbal cues. When a person receives a message, they can process the
information and make decisions based on something. The decisions a person makes
might include sending a message to the person who originally communicated with it,
such as saying “hello” in response to another greeting, or it may be to interact with
other parts of the world, such as taste or feel to get more information. Finally, a person
is able to save memories or information in their mind. For example, they’re able to rec-
ognise faces and names or store facts for later recollection.

 When we talk about actors, this is the simplest idea. The overall ideas of how peo-
ple can be broken down into three key concepts which form the basis of the actor
model. These three concepts are communication, how they send messages between
each other, processing, how the actor responds whenever it receives a new message,
and finally state, the information that an actor can store when processing.

COMMUNICATION

When considering the principles of reactive applications, we saw the advantages of
using a message-passing architecture in order to help build systems which are scalable
and fault tolerant. By default, all actors within the actor model communicate asyn-
chronously through the use of message passing.

 Each actor within an application has a unique identifier through which it can be
contacted. We can think of the actor’s address exactly like an email address; it pro-
vides us with a known endpoint where we can send messages to. Ultimately, the end
user can receive their email at any address and the same exists with an actor address.
We can send a message to an address and it automatically gets routed to the intended
processing for that actor. This address is connected to a mailbox, which is a queue of
the messages an actor has received at it’s address. This mailbox is where every message
gets added as it’s received, until the actor is able to process them sequentially.

 When we think of an email, it can be one of several types. It can contain the likes of
text, media or even contact information. Akka.Net has a similar concept, but it relies
Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

37Actors
on using data types as the basis of messages. We can choose to use any type we like as
the basis of our messages. Only one requirement exists; messages must be immutable.
If a message isn’t immutable, we could potentially modify it either in the processing
stage or even in the queue. In either scenario, this breaks the concurrency safety guar-
antees provided by Akka.Net.

PROCESSING

Once a message has been received, an actor needs to be able to do something with
that data. This is the job of the processing component of an actor within Akka.Net. As
a message is received, the processing stage is started by the framework, which invokes
the appropriate method to handle the object. Akka.Net guarantees only one message
will be processed at a time, and due to the queue provided by the framework the pro-
cessing stage receives the messages in the exact order they were sent to the actor.

 Due to the differing programming methodologies supported by Akka.Net, differ-
ent techniques for using the APIs can be found that fit best with your paradigm. For
example, the C# APIs revolve around the use of inheritance.

STATE

When we think back to our analogy of actors as people, we touched on the notion of
memories and information saved in their brain. If we want to access the data we can’t
directly query it from somebody else; we need to ask them about the data they know
about. The same concepts apply with actors. An actor is free to store whatever state is
appropriate and form a sealed boundary around it. The only thing within the applica-
tion with access to the data stored on the actor is the processing element associated
with that actor.

 The primary reason for this is due to the ultimate aims of the use of actors. Actors
are a construct which are designed to reduce the complexity of multithreaded appli-
cations. By removing shared access to data, it reduces vast numbers of potential con-
currency bugs, such as deadlocks or race conditions. It also means we can quickly scale
an application built on actors because we can deploy actors into entirely new locations
when required.

COMBINED RESULT

When these three constructs are combined, we’re left with the concept of an actor – a
high-level approach to dealing with concurrency, whether the tasks running concur-
rently are on separate threads or in separate datacentres. The diagram below shows
the interaction between the three key concepts and how they relate. As you can see,
the state is entirely enclosed within the bounds of the actor and isn’t accessible from
outside of that actor instance. The only means we have of manpulating or retrieving
the data is through the use of behavior, which we define within the bounds of the
actor. This behavior is only invoked as required once a new message is received by the
actor’s inbox.
Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

38 CHAPTER 3 Your First Akka.Net Application
Message Behaviour

State

3.2.2 What can an actor do?

We’ve seen that actors are small, isolated entities which share nothing with the world
outside of them, and each is scheduled to process the messages in it’s mailbox. We can
think of actors as tiny applications with a built-in communication channel. Because of
this, actors are able to perform any operation which an application may normally per-
form. We can generalize the actions that an actor is likely to perform into one of three
categories.

 Sending a message: When we designed a reactive system, we saw that applications
are typically built as a dataflow, whereby applications propagate events which
they’ve received and responded to. In order to manage this, actors need to be
able to send messages to other addresses within the actor system. This task isn’t
necessarily related solely to sending messages to actors within the actor system;
it could alse include communication through external services with other trans-
port protocols, such as HTTP.

 Spawning other actors: In the case of actors which perform long running compu-
tations whilst also needing to process large numbers of messages, it’s common
to spawn a new actor which is responsible for handling all of the significant pro-
cessing. For this to happen, actors need to be able to spawn new actors. It also
serves uses in other areas, such as having a supervisionary actor spawn new chil-
dren to perform dangerous work, which may lead to errors.

 Setting behaviour for the next message: A key role of an actor is to be able to respond
to any messages it receives, whilst reactive applications strive to react to changes
in their environment. Ultimately changes in an environment are likely to lead
to changes in the way messages need to be processed, and as such actors should
be able to set how they should process new messages within the actor.

These are some of the most common tasks actors can typically perform, but it’s likely
that actors will be performing other tasks as well. This might include jobs such as con-
necting with external web services, interacting with devices like graphics on the host
machine, or potentially interacting with external input and output on the machine it’s
running on.
Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

39Actors
 A restriction on the type of work that an actor is capable of performing exists.
Actors should try to avoid performing long-running blocking operations, particularly
in cases where several actors may perform blocking operations at the same time. In
this situation, it prevents the Akka.Net scheduler from running any of the processing
for other actors. The work that actors do should aim to be asynchronous and operate
primarily through message passing. An example of a blocking operation is waiting for
a user to enter some text into a console window through the use of Console.ReadLine.

3.2.3 Defining an actor

Having now seen the underlyng principles of actors, we’re able to see how the core
components fit together. We can now define our actor. Let’s think back to our original
actor analogy which looked at it’s similarity with how we, as people, communicate.
Let’s build up an example of how we can model this interaction through the use of
actors. We’ll create an actor which represents the sort of actions a person might take
upon receiving a greeting.

 When writing an actor in C#, we rely upon inheritance of certain actor classes and
override certain methods which get called whenever a new message arrives. The sim-
plest possible means of implementing an actor is through the use of the UntypedAc-
tor class. Using this approach, it’s possible to execute a single method any time a new
message arrives similar to the following.

 class PersonActor : UntypedActor
 {
 protected override void OnReceive(object message)
 {
 Console.WriteLine("Received a message: {0}", message);
 }
 }

Whilst this example is the basics of how we can write an actor using Akka.Net, it’s
likely that we’ll want to do something with the actor whenever it receives a message.
We can use any type within the CLR as a message, with the only requirement being
that the class must be immutable. We’ll create two potential messages that our person
can receive; either a Wave message or a VocalGreeting.

 class Wave {}

 class VocalGreeting
 {
 private readonly string _greeting;
 public string Greeting { get { return _greeting; }}

 public VocalGreeting(string greeting)
 {
 _greeting = greeting;
 }
 }
Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

40 CHAPTER 3 Your First Akka.Net Application
These are the two message types which our actor is now capable of receiving. Our
original actor can now be changed to perform different actions when it receives a
message of a given type. For example, when we receive a VocalGreeting message, we
can print a message out into the console.

 class PersonActor : UntypedActor
 {
 protected override void OnReceive(object message)
 {
 if(message is VocalGreeting)
 {
 var msg = (VocalGreeting)message;
 Console.WriteLine("Hello there!");
 }
 }
 }

When we’re creating a message for each type, we end up with a lot of duplication in
the handling of the message. For example, in our example, we’ve got 2 types of mes-
sages, in each instance, we need to check if the message is of a certain type and then
cast it to that type. We can also end up with a lot of code duplication when we want to
check a condition within the message itself. In order to prevent this, Akka.Net pro-
vides an API which allows us to pattern match on the message type. The example
below shows how, using the Akka.Net pattern matching API, we can invoke a handler
dependent upon the message received.

 class PersonActor : UntypedActor
 {
 protected override void OnReceive(object message)
 {
 message.Match()
 .With<VocalGreeting>
 (x => Console.WriteLine("Hello there"));
 }
}

Akka.Net also provides a further abstraction on top of the basic actor which we can
use to declaratively handle messages. The ReceiveActor combines many of the aspects
of pattern matching whilst continuing to abstract away as much of the logic surround-
ing message type handling as possible. With the UntypedActor we had to override a
certain method, which would be executed upon receipt of a message. The ReceiveAc-
tor requires us to register a message handler for each of the given message types we
want to support. The example below shows how the previous example using an
UntypedActor can be converted to the ReceiveActor implementation.

 class PersonActor : ReceiveActor
 {
 public PersonActor()
 {
 Receive<VocalGreeting>
 (x => Console.WriteLine("Hello there"));
 }
 }
Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

41Actors
Akka.Net is a model for concurrently performing asynchronous operations, and is an
alternative to the .Net Task Parallel Library (TPL). Typically, when dealing with asyn-
chronous operations, we’ll pipe the results back to the actor’s mailbox as a message,
but the ReceiveActor provides the ability to interoperate with the TPL through asyn-
chronous message handlers. An asynchronous message handler works exactly the
same as a regular message handler, except it returns a Task instead of void.

 class PersonActor : ReceiveActor
 {
 public PersonActor()
 {
 Receive<VocalGreeting>(async x =>
 {
 await Task.Delay(50);
 Console.WriteLine("Hello there");
 });
 }
}

The approaches shown for creating actors have relied upon the use of delegates as a
means of handling messages. But Akka.Net provides an additional means of creating
actors in the form of the TypedActor. The TypedActor allows for stricter contracts to
be built up for the types of messages an actor should be able to receive by implement-
ing an interface for each of them. Upon receiving a message of a given type, the corre-
sponding method implementing the interface for that message type is executed with
an instance of the received message.

 class PersonActor : TypedActor,
 IHandle<VocalGreeting>
 {
 void Handle(VocalGreeting greeting)
 {
 Console.WriteLine("Hello there");
 }
 }

All of the actor defintions here allow us to build up bigger and more advanced actors,
capable of performing more complex operations. We saw in our definition of an actor
that we’re able to store state within an actor. The actor definitions are classes in C#
which override specific methods. We’re able to store state within an actor using either
properties or fields on the class.

 When we store any state within an actor, it’s only accessible from within that actor.
It’s impossible to access any properties or fields from outside the actor boundaries.
This means that regardless of where an actor exists, there’s no need to worry about
synchronising access to the state, because messages are only processed one at a time.

 class PersonActor : ReceiveActor
 {
 private int _peopleMet = 0;
Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

42 CHAPTER 3 Your First Akka.Net Application
 public PersonActor()
 {
 Receive<VocalGreeting>(x =>
 {
 _peopleMet++;
 Console.WriteLine("I've met {0} people today",
 _peopleMet);
 });
 }
}

Upon receiving a message, it’s common to require metadata about either the message
which was received, such as the original address of the sender, or about the actor pro-
cessing the message, such as the address behaviour stored within the actor. Within any
of the actor types, we can access this through the Context property within an actor.
For example, if we wanted to retrieve the original sender of the message, we can
access this through the Sender property on the context. Given the sender, we can send
messages as a response to a message we received. For example, if somebody waves at
us, then we’ll wave back at them by sending them a Wave message.

class PersonActor : ReceiveActor
 {
 public PersonActor()
 {
 Receive<Wave>(x =>
 {
 Context.Sender.Tell(
 new VocalGreeting("Hello!"));
 });
 }
 }

Many ways can be used to define actors which are specific to certain aspects of
Akka.Net, and we’ll cover those in later chapters.

3.2.4 Summary

When we discussed design considerations within a reactive system, one of the key con-
siderations was that operations should be done within the smallest unit of work. In the
context of Akka.Net, the actor’s the encapsulation around that smallest unit of work.
One of the key takeaways when dealing with actors is that, due to it’s original design
intentions as a concurrency model, any operations within the confines of an actor are
thread safe. This ensures that we’re able to automatically scale out our application
across as many threads, machines or datacentres as we like, and the framework can
handle any and all scaling issues. This is handled by messages being processed one at
a time through a queue, ensuring that messages are processed in the order they’re
received.
Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

43Spawning an actor
3.3 Spawning an actor
Having defined an actor, we need to be able to start it running within our application.
In order to do this, we’ll start to dig into the underlying framework and look at how
we can use Akka.Net to start instances of actors that can react to messages we send it.
In order to do this we’ll look at the concept of an actor system and what needs to be
done to deploy an actor into this actor system.

3.3.1 The actor system

If actors are people then actor systems are the countries within which they live. The
actor system is the host within which all of your actors will be deployed. Once actors
are deployed, they’re able to perform any tasks which have been assigned to them.
Like people and government, actors need some form of management and restrictions
in place to ensure that they are good and valuable citizens within society. These tasks
fall within the realm of the ActorSystem, which isn’t only our actor host, but also the
scheduler and routing system. You don’t need to know about the internals of the actor
system to be able to develop applications with Akka.Net, as it abstracts all of that away
from the user. There’s more to it than those few elements, but some of the key roles
it’s in charge of include:

 Scheduling: Actors as a multithreading construct run at a higher level than a reg-
ular thread, and as such there needs to be some means of coordinating these
actors. The actor system ensures that all messages have a fair chance at process-
ing their messages within a reasonable amount of time. In contrast, it also
ensures that heavily-used actors aren’t able to starve the system of resources,
causing less frequently used actors to be unable to processs data.

 Message Routing: All of the messaging through Akka.Net is location transparent,
meaning the caller doesn’t need to have any knowledge of the location of the
recipient. There must be some part of the system with knowledge of message
locations, and this is the actor system. The actor system’s capable of routing mes-
sages to a large number of different locations whether they’re on a separate
thread, running on a remote system, or running on a machine in a cluster.

 Supervision: The actor system also acts as the top level supervisor of your applica-
tion, able to recover any component which has crashed. We’ll look into this in a
later chapter as we look to incorporate the notion of fault tolerance into our
application.

 Extensions: Akka.Net supports a vast range of extensibility points throughout the
processing pipeline. The actor system’s also responsible for managing all of
these extensibility points and ensuring that any extensions are correctly incor-
porated into the application.

This is a small subset of the large number of tasks the actor system’s responsible for,
and as such it’s common to have only one running per application. Actor systems are
identified on a machine by using a unique name, meaning that it’s possibile for more
than one actor system to exist on each machine.
Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

44 CHAPTER 3 Your First Akka.Net Application
 Actors in Akka.Net operate under the concept of a hierarchy, whereby all actors are
the children of one other actor in the hierarchy. The reasoning for this is to allow for eas-
ier fault tolerance when developing applications, and the intricacies of this will be cove-
red in a later chapter on fault tolerance. When instantiating an actor system, Akka.Net
initially creates a number of actors used by the system. These top level actors are:

 /user: This actor holds all of the actors which you spawn into your actor sys-
tem. Even if you spawn your actor without a parent, it has a parent in the form
of the user actor which performs supervision of your top-level actors.

 /system: This actor is the top-level actor under which all of the system level
actors are stored. This is typically those actors which are used for tasks such as
logging or those deployed as part of some configuration.

 /deadletters: As actors are free to send messages to any address at any stage of
the application, there’s always the possibility that no actor instance’s available at
the path specified. In this case, the messages are directed to the dead letters actor.

 /temp: At times Akka.Net spawns short lived actors. This is typically for scenar-
ios such as retrieving data, which will be covered later in the chapter.

 /remote: When joining multiple actor systems using Akka.Net remoting, there
are some scenarios whereby Akka.Net needs to create actors to perform the task
of supervisors when a supervisor exists on a separate machine. In these cases,
the remote top level actor is used; this will be covered in a later chapter.

These actors all form part of the hierarchy, in the figure below, you can see the deploy-
ment of them into the hierarchy. The actors themselves form a tree structure similar
to a file system with files and folders. The figure below shows an example deployment
of a simple actor system. In this case, the user has deployed three actors into the actor
system, actorA and actorB where actorA has a child actor spawned beneath it which is
known as childA.

Figure 3.1 An Example actor hierarchy within an
Akka.Net application.

Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

45Spawning an actor
The decision to use actors for all top-level work within Akka.Net itself ensures that a
uniform interface exists throughout the application. In any of these system-created
actors, users are free to send a message to them in the same way that a user might
expect to send a message to an actor which they’ve instantiated.

3.3.2 Spawning an actor

Now that we’ve defined an actor which is able to work, we need to deploy it into an
application to use it. Before we’re able to deploy our actor, we need something which
is capable of hosting an actor. In order to do this, we need to initialise an actor system.
As we’ve seen, the actor system is the component of Akka.Net which is responsible for
many of the tasks relating to how actors are run within the framework.

 Instantiating an actor system in which we can host actors is a simple task and it
requires calling the Create static method on the actor system. The only requirement
when creating an actor system is to name it in a way that actors can be identified based
on which actor system they live in.

var actorSystem = ActorSystem.Create(“MyActorSystem”);

An actor system can also be created with a configuration section in order to customise
certain parts of the framework. This will be covered in a later chapter. For now, we cre-
ate an actor system without a configuration file in C#, which causes a fallback onto the
default configuration.

 As we’ve seen, the actor system is responsible for many of the internal tasks and
scheduling associated with the Akka.Net framework. Because of this the actor system
ends up becoming a heavyweight object, and we typically only spawn one actor system
per application. The actor system is the main means of interacting with the actors
operating within the framework. In most scenarios, it’s typical for the actor system to
either reside in a static class or singleton object, or be injected as a dependency into
those methods which require it.

 Once an actor system has been created, we’re free to deploy new actors into it. To
deploy an actor into the actor system we use the ActorOf method, which requires the
actor type to instantiate as a generic type argument. The example below shows how we
can deploy our actor from earlier into the actor system to interact with it.

var actorRef = actorSystem.ActorOf<GreeterActor(“actorA”);

Once this method has been called, Akka.Net will create and initialize this new actor
into the actor system. We pass it a string, which we can use to uniquely identify a given
actor instance within the actor system. In this case we’ve chosen to refer to the actor as
actorA. This means that given this name, we’re able to retrieve references to it directly
from the actor system.

3.3.3 Summary

The actor system forms the basis of your host within which your actors live. Whilst you
don’t need to understand all of the intricacies of what happens deep within the frame-
Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

46 CHAPTER 3 Your First Akka.Net Application
work, it’s beneficial to have an understanding of some of the features provided by the
actor system. The actor system is also the key extensibility point of an Akka.Net appli-
cation and allows more advanced features to be implemented, many of which we’ll
look at in later chapters.

3.4 Communicating with actors
Once you’ve spawned an actor into your actor system, you’ll want to be able to com-
municate with it. Whilst we have an actor deployed into our actor system, it’s currently
doing no work and sits in memory, doing nothing. By communicating with it, the
framework will invoke the message processign on that actor. The actor model relies
upon message passing as a means of communication between actors. A message is a
generic term for a collection of data which is packaged and sent to an actor instance
somewhere in the actor system, as represented by the address. We saw in our example
earlier that our messages will be a data type we’ve created.

3.4.1 Actor addresses and references

Upon spawning our actor, the actor system returned a direct reference to the actor
through an IActorRef. This actor reference isn’t a direct reference to the actor’s loca-
tion in memory, but is a reference to the actor as used by Akka.Net. It’s ultimate use is
to facilitate sending messages to the inbox of the referenced actor. The Akka.Net
framework provides a number of built-in means of referencing actors out of the box.
These include the likes of actor references for clusters and remote actor systems. We
won’t be seeing these until later chapters.

 The most commonly used actor reference is LocalActorRef, whose job is to operate
on actor systems that only operate on a single machine. The key component of the
actor reference is the storage of the address of the actor itself. Upon deployment,
every actor is given a unique address through which the actor is reachable. The
address is reminiscent of a URI which might be used to identify files in a file system or
web pages on a web site. In this case it represents the address of an actor in an actor
system. Figure <X> below shows the components of an address. An actor address is
made up of four key components:

 Protocol identifier: The protocol identifier is used to reference how a connection is
made to that actor system. This is similar to how http and https are used in web
addresses to identify which system should be used. For a single machine, this is
typically through an identifier like akka://, but for handling concepts such as
remoting, there are other commonly used examples, such as akka.tcp://.

 Actor system name: When we created an actor system, we gave it a unique name to
refer to that actor system instance. This part of the address relates to that name.

 Address: This is only used when dealing with the concept of remoting, but it still
forms a key part of the actor path and is used to identify the machine upon
which an actor system resides.
Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

47Communicating with actors
 Path: The final part of the address is the path, which is used to identify an actor.
All user defined actors start with the /user/ for this part of the path, but other
system defined actors inhabit other root addresses.

The concept of an actor reference starts to ensure that our application is loosely cou-
pled, but it still causes problems. In order to send a message to a given actor refer-
ence, we’ll need to pass the actor reference around the application. When we
considered the benefits of a message-driven architecture, one of the more important
benefits was the ability to have loosely-coupled systems which didn’t rely upon inti-
mate knowledge of other actors. In order to solve this problem with Akka.Net, we’re
able to send messages to an address rather than an actor reference directly. Given an
address we’re able to send a message to that address. For example, to send a message
to an actor known as ActorA in our actor system, we’re able to retrieve a reference to
it’s address as below.

var address = system.ActorSelection(“/user/ActorA”);

When we deployed our actor, we saw that it was deployed into a hierarchy. If we
deployed our actor as the child of another actor, then we can continue to address it
similar to how we find files which are within a folder in a file system. If ActorA has a
child actor called Child, then we can send messages to it as follows.

var childAddress = system.ActorSelection(“/user/ActorA/Child”);

The addressing system within Akka.Net also respects the usage of certain path tra-
versal elements which are typically be associated with URIs. For example, a common
case is to retrieve the parent of the current actor, to allow messages to be sent to a sib-
ling of the current actor. This can be achieved by using the .. syntax to retrieve the par-
ent within an actor as follows.

var address = Context.ActorSelection(“../ActorB”);

Whilst it might seem that the concept of an actor selection and an actor reference are
the same, there’s a significant difference, in that an actor reference points to a specific
incarnation of an actor whilst an actor selection points to an address. This address
may be shared with multiple instantiations of an actor. For example, given a reference
to a specific actor, if that actor is destroyed and recreated, then any messages sent to
that actor reference won’t be delivered to the target, even if they both share the exact
Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

48 CHAPTER 3 Your First Akka.Net Application
same path across instantiations. Given an actor selection, messages can be sent to it
even if an actor is destroyed and recreated; all messages will be delivered.

 This distinction allows for more complex paths to be used in the context of an
actor address. An example of this is through the use of wildcards in the path to a given
actor in order to select large numbers of actors at once. Once these actors have been
selected, it’s possible to send the same message to all in the wildcard with a single
method call. Paths in Akka.Net support two kinds of wildcards in an actor address
based on standard wildcard syntax common across other languages and tools:

 ?: The question mark replaces a single instance of any given character in a path.
For example, the path c?t would match paths such as cat, but not coat or cost.

 *: The asterisk matches any string of characters usable as a path. For example,
the path /parent/*/ would send a message to all children of the actor called
parent.

On occasion it’s beneficial to have a direct reference to an actor instance rather than
a generic address. In order to cater to these situations, Akka.Net provides a number of
different means of retrieving a reference from an address.

 Calling ActorOf to spawn a new actor: Upon spawning a new actor, a direct refer-
ence to that actor is returned which represents the incarnation which has been
spawned.

 Sending a message to an actor: By sending a message to an actor, it’s possible to use
the sender property of a received message to identify which actor replied to the
request for information. Akka.Net provides built-in support for this through the
Identify message, and through an abstraction on the ActorSelection, which can
be used to resolve an instance.

Whilst there’s many cases whereby it’s appropriate to send messages to an address, it
can frequently be beneficial to pass around a reference to a specific actor. For exam-
ple, given a long-running actor which is valid throughout the lifecycle of the applica-
tion and performs a specific purpose, it’s typical to pass an actor reference in the
constructor of those actors that depend on it.

 It’s important to understand the difference in an actor reference and an actor
address due in part to the actor lifecycle, something covered in a later chapter. For
our uses either option is an appropriate means of messaging a specific actor.

3.4.2 Sending a message

Upon spawning our actor into the system, we’re able to communicate with it by send-
ing messages to it’s mailbox. In order to send a message to it, we need something
capable of receiving a message. As we saw in the differences between an address and a
reference, we’re able to send a message to either. Once an actor is spawned, the actor
system returns a reference to that actor instance which we can send a message to. The
actor reference defines a method called Tell which takes an instance of any type and
passes it through the Akka.Net framework. If you’re using F#, there’s a custom opera-
Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

49Communicating with actors
tor defined for sending a message. For example, if we wanted to send a vocal greeting
message to the actor we defined earlier then we can do it as follows.

actorRef.Tell(new VocalGreeting(“Hello”));

There may be times we don’t have an actor reference and on those occasions we’ll
look up an actor by it’s address. In order to look up an actor, we need something capa-
ble of providing references to other actors. This may be the actor system hosting the
actor, or it may be the Context associated with a specific actor. In order to select the
actor deployed earlier, we can use the actor system to select the actor by address.

var selection = actorSystem.ActorSelection(“actorA”);

In each of these cases, the actor system provides the root location from which actors
will be retrieved, which for the actor system is directly beneath the user actor. If we’d a
second actor deployed alongside our first, we could use our first actor reference as
our anchor to other actor locations.

var selection = actorRef.ActorSelection(“../actorB”);

Once we’ve got an address, we can pass messages to it in the same way we do with an
actor reference.

selection.Tell(new VocalGreeting(“Hello”));

Actors are designed to completely encapsulate any state to ensure that nothing out-
side of the system is capable of mutating it. This ensures that Akka.Net retains full
control over the processing stage, by only allowing one message to be processed at a
time. This leaves all code thread-safe, but it adds difficulty to access the data. To access
data from outside the system, we need to send a message that specifically requests the
data to be sent back. Akka.Net provides another method which allows for request-
reply scenarios to be used through the use of Ask. Ask is an asynchronous method
designed to form a layer of abstraction over the top of the messaging which is
required.

var response = await selection.Ask(new Wave());

As Ask is an asynchronous construct, in your code you’ll need to factor the length of
time it takes to get a response. By default, Ask has a timeout of ten seconds within
which the actor needs to respond to your initial request message, otherwise the
request times out with an exception. It’s important to realise that your actor has no
way of knowing that the sender is expecting a reply, and it’s down to how you, the
developer, handle this scenario.

3.4.3 Summary

Messages form an integral part of the design of a system using Akka.Net and are the
key to communication between multiple actors, or even other entities outside of the
actor system. As such it’s important to model your domain effectively through the
commands, which actors will need to be able to respond to. In later chapters, we’ll
Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

50 CHAPTER 3 Your First Akka.Net Application
look at techniques such as Event Sourcing and Domain Driven Design as a means of
modeling certain interactions between actors. At this stage it’s likely that most actors
will react to events or respond to commands.

 Whilst the name message is used, Akka.Net doesn’t require anything special with
regards to the design of a message and they can be .Net classes or structs. The only
requirement when designing these messages is that they be immutable to ensure that
the thread safety guarantees specified by Akka.Net can’t be broken anywhere within
the application.

3.5 Summary
This chapter has covered the basics of creating the core components of an application
built on top of the actor based concurrency provided by Akka.Net. The rest of the
book focuses on how we can use these components and build on top of them to create
more advanced applications which follow the traits specified by the reactive manifesto.
In this chapter you’ve seen:

 How to define an actor and how each part relates to the actor model
 How to deploy that actor within your application
 How to communicate with that actor by passing messages
Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

51Summary

Developing applications in a reactive style ensures that
the experience is always responsive. Akka.NET is a
framework for building distributed, message-driven
applications which are able to stay responsive for the
user even in the face of failure or when faced with
more users. It makes it easy for .NET developers to
write applications which are able to react to changes in
their environment.

 Reactive Applications with Akka.NET begins with an
overview of reactive and a sample application written
in the reactive style. You'll learn concepts of the actor
model and what these mean in a real-world reactive

context. This hands-on book builds on fundamental concepts to teach you how to cre-
ate reliable and resilient applications. You'll also learn useful Akka.NET features for
building real-world applications. By the end of the book, you'll be able to look at a
problem domain and understand how to create applications which are able to with-
stand the demands of a modern day application.

What's inside:

 Real-world applications of Akka.NET and reactive applications
 Designing an Internet of Things architecture with reactive in mind
 Building applications to handle the demands of the modern era of software
 Integrating Akka.NET with your existing .NET stack
 Deploying Akka.NET applications to the cloud

Readers should be comfortable with C# or F# and the .NET framework. No previous
reactive experience needed.

Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

https://www.manning.com/books/reactive-applications-with-akka-net
https://www.manning.com/books/reactive-applications-with-akka-net

Microservices are not very interesting if they only run on developer
machines. They must be deployed to a production environment to provide busi-
ness value. This chapter outlines how to approach deployment specifically
within a microservice context.

Deployment

Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

5

Chapter 5 from The Tao of
Microservices by Richard Rodger.

Deployment
The organizational decision to adopt the microservice architecture often repre-
sents an acceptance that change is necessary and that current work practices aren’t
delivering. This is an opportunity to not only adopt a more capable software archi-
tecture, but also to introduce a new set of work practices for that architecture.

 You can use microservices to adopt a scientific approach to risk management.
Microservices make it easier to measure and control risk, as they give you small

This chapter covers
 Understanding nature of failure in complex systems

 Developing a simple mathematical model of failure

 Taking a realistic risk-management perspective

 Using frequent low-cost failure to avoid infrequent high-
cost failure

 Using continuous delivery to measure and manage risk

 Understanding the deployment patterns for
microservices

 Reviewing the wider considerations of microservices in
production
53

Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

https://www.manning.com/books/the-tao-of-microservices
https://www.manning.com/books/the-tao-of-microservices

54 CHAPTER 5 Deployment
units of control. The reliability of your production system then becomes quantifiable,
allowing you to move beyond ineffective manual sign-offs as the primary risk reduc-
tion strategy. Because traditional processes regard software as a bag of features that
are either broken or fixed, and don’t incorporate the concept of failure thresholds
and failure rates, they are much weaker protections against failure1 .

5.1 Things fall apart
Things fail catastrophically. The decline isn’t gradual. Decline is certain, but when
death comes, it comes quickly. Structures need to maintain a minimum level of integ-
rity before they fall apart. Cross that threshold, and the essence is gone.

 This is more than poetic symbolism. Disorder always increases2. Systems can toler-
ate some disorder, and can even convert chaos into order in the short term, but in the
long run, we’re all dead, because disorder inevitably forces the system over the thresh-
old of integrity into failure.

 What is failure? From the perspective of enterprise software, this question has
many answers. Most visible are the technical failures of the system to meet up-time
requirements, to meet feature requirements, and to meet acceptable performance
and defect levels. Less visible, but more important, are failures to meet business goals.

 Organizations obsess about technical failures, often causing business failures as a
result. The argument of this chapter is that it’s better to accept many small failures to
prevent large scale catastrophic failures. It’s better that 5% of users see a broken web
page than that the business goes bankrupt having failed to compete in the market-
place. Nothing lasts forever, but you can last long enough.

 The belief that software systems can be free from defects, and that this is possible
through sheer professionalism, is pervasive in the enterprise. An implicit assumption
that perfect software can be built at a reasonable cost prevails. This is to ignore the
basic dynamics of the law of diminishing marginal returns: the cost of fixing the next
bug grows ever higher, and is unbounded. In practice, all systems go into production
with known defects. The danger of catastrophe comes from an institutional consensus
to pretend that this isn’t the case.

 Can the microservice architecture speak to this problem? Yes, because it makes it
easier to reduce the risk of catastrophic failure by allowing you to make small changes
that have low impact. The introduction of microservices also provides you, as an archi-
tect, with the opportunity to re-frame the discussion around acceptable failure rates,
and the management of risk. Unfortunately, there’s no forcing function, and
microservice deployments can easily become mired in the traditional risk manage-
ment approach of enterprise operations. It’s essential to understand the possibilities
for risk reduction that the architecture creates.

1 To be bluntly cynical, traditional practices are more about territorial defense and blame avoidance than build-
ing effective software.

2 More ways exist to be disorganized than to be organized. Any given change is more likely to move you further
into disorder.
Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

55Learning from history
5.2 Learning from history
To understand how software systems fail, and how we can make deployment better, we
need to understand how complex systems fail. A large scale software system isn’t
unlike a large scale engineering system; numerous components interact in many ways.
With software, we’ve the additional complication of deployment—we keep changing
the system. At least with something like a nuclear power plant, you only build it once.
Let’s start by examining such a complex system, in production.

5.2.1 Three Mile Island

On March 28 1979 the second unit of the nuclear power plant located on Three Mile
Island near Harrisburg, Pennsylvania suffered a partial meltdown, releasing radioac-
tive material into the atmosphere1. The accident was blamed on operator error. From
a complex systems perspective, this conclusion is neither fair nor useful. With com-
plex systems, failure is inevitable, and it’s only a matter of time. The question isn’t, "is
nuclear energy safe?", but rather "what level of accidents and contamination can we
live with?". This is also the question we should ask of software systems.

 To understand Three Mile Island, you need to understand how a reactor works, at
a high level, and a low level, where necessary. Your skills as a software architect will
serve you well. The reactor heats water, turning it into steam. The steam drives a tur-
bine, that spins to produce electricity. The reactor heats the water using a controlled
fission reaction. The nuclear fuel, uranium, emits neutrons that collide with other
uranium atoms, releasing even more neutrons. This is a chain reaction that must be
controlled by absorbing excess neutrons, otherwise bad things happen.

 The uranium fuel is stored in a large, sealed, stainless steel containment vessel,
about the height of three story building. The fuel is stored as vertical rods, about the
height of a single story. Interspersed are control rods, made of graphite. These absorb
the neutrons. To control the reaction, you raise and lower the control rods. The reac-
tion can be completely stopped by lowering all the control rods fully. This is known as
"scramming". An obvious safety feature is that, if there’s a problem, pretty much any
problem, drop the rods!2. Nuclear reactors are designed with many such Automatic
Safety Devices (ASD) that activate without human intervention, caused by the input
signals from sensors. You can see the opportunity for unintended cascading behavior
in the ASDs already, I’m sure.

 The heat from the core (all the stuff inside the containment vessel, including the
rods) is extracted using water. This coolant water is radioactive, and you can’t use it
directly to drive the turbine. You must use a heat exchanger to transfer the heat to
another set of water pipes, and that water, which isn’t radioactive, drives the turbine.
You’ve a primary coolant system, with radioactive water, and a secondary coolant sys-

1 For full details, see the Report of the President’s Commission on the Accident at Three Mile
Island; http://www.threemileisland.org/downloads/188.pdf

2 The technical term "scram" comes from the early days of research reactors. If any went wrong, you dropped
the rods, shouted "scram", and then you ran. Fast.
Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

http://www.threemileisland.org/downloads/188.pdf

56 CHAPTER 5 Deployment
tem, with "normal" water. Everything’s under high pressure, and high temperature,
including the turbine, which is itself cooled by the secondary system. The secondary
water must be pure, and contain almost no microscopic particles, to protect the tur-
bine blades, which are precision engineered. Observe how complexity lives in the
details. A simple fact, that water drives the turbine, hides the complexity that it must
be "special" purified water. Time for a high-level diagram:

Figure 5.1 High level components of a nuclear reactor

Now we go a little deeper. That "special" secondary water doesn’t happen by magic.
You need something called a condensate polisher to make it happen. This purifies the
water using filters. Like many parts of the system, the condensate polisher’s valves,
which allow water to enter and leave, are driven by compressed air. That means the
plant, in additional to water pipes for the primary and secondary cooling systems, also
has compressed air pipes for a pneumatic system. Where does the secondary water
come from? Feed pumps are used to pump water from a local water source, in this
case, the Susquehanna river, into the cooling system. Emergency tanks, with emer-
gency feed pumps, are there in case the main feed pumps fail. The valves for these are
also driven by the pneumatic system.

 We must also consider the core, filled with high temperature radioactive water
under high pressure1. High pressure water is extremely dangerous and can damage
the containment vessel, and the associated pipe-work, leading to a dreaded Loss of
Containment Accident (LOCA). You don’t want holes in the containment vessel. To
alleviate water pressure in the core, a pressurizer is used. This is a large water tank con-
nected to the core and filled about half and half with water and steam. The pressur-

1 What fun!
Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

57Learning from history
izer itself also has a drain, which allows water to be removed from the core entirely.
The steam at the top of the pressurizer tank is compressible, and acts as a shock
absorber. You can control core pressure by controlling the volume of the water in the
lower half of the pressurizer. But you must never ever allow the water level to reach
100% (this is called, "going solid"). Then you’ve no steam, and no shock absorber,
and then you’re going to have a LOCA, because pipes will burst. This fact is drilled
into operators from day one. We can now expand our diagram.

Figure 5.2 A small subset of interactions
between high and low levels in the reactor.

THE TIMELINE OF THE ACCIDENT

At 4:00 AM the steam turbine "tripped". It stopped automatically because the feed
pumps for the secondary cooling system that cools the turbine stopped. With no water
entering the turbine, the turbine was in danger of overheating, and is programmed to
stop under these conditions. The feed pumps had stopped because the pneumatic air
system that drives the valves for the pumps became contaminated with water from the
condensate polisher. A leaky seal in the condensate polisher allowed some of the
water to escape into the pneumatic system. The end result was that a series of ASDs
(Automatic Safety Devices), operating as designed, triggered a series of ever larger
failures. More was to come.

 With the turbine down, and no water flowing in the secondary coolant system, no
heat could be extracted from the primary coolant system. The core couldn’t be
cooled. This is extremely dangerous, and if not corrected, ends with a meltdown.

 There was an ASD for this scenario. Emergency feed pumps take water from an
emergency tank. The emergency pumps kick in automatically. Unfortunately, the
pipes to the emergency pumps were blocked, because two valves were left closed, in
error, during recent maintenance. The emergency pumps supplied no water. The
complexity of the system and its inter-dependencies become apparent here. It isn’t
Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

58 CHAPTER 5 Deployment
only the machinery, but also the management and maintenance thereof, which is part
of the dependency relationship graph.

 The system entered a cascading failure mode. The steam turbine boiled dry. The
reactor "scrammed" automatically, dropping all the control rods to stop the fission
reaction completely. This doesn’t reduce heat to safe levels, as the decay products
from the reaction still need to cool down. Normally this takes several days, and
requires a functioning cooling system. With no cooling, extremely high temperatures
and pressures build in the containment vessel, which is then in danger of breaching.

 Naturally, there are ASDs for this scenario. A relief valve, known as the Pilot-Oper-
ated Relief Value (PORV) opens under high pressure, and allows the core water to
expand into the pressurizer vessel. The PORV is unreliable, because valves for high
pressure radioactive water fail about 1 time in 50 The PORV opened in response to
the high pressure conditions, but then failed to close fully after the pressure was
relieved. The status of the PORV is important for the operators to know, and it had
recently been fitted with a status sensor and indicator. This sensor also failed, leading
the operators to believe that the PORV was closed. The reactor was now under a Loss
of Containment Accident (LOCA), and over one-third of the primary cooling water
drained away over the next 2 hours and 20 minutes. The actual status of the PORV
wasn’t noticed until a new shift of operators started.

 As water drained away, pressure in the core reduced, but by too much. Steam pock-
ets formed. These not only block water flow, but are also far less efficient at removing
heat. The core continued to overheat. At this point, we are now only 5 seconds into
the accident, and the operators are completely unaware of the LOCA, seeing only a
transient pressure spike in the core. At two minutes into the event, pressure dropped
sharply as core coolant turned to steam. At this point the fuel rods in the core were in
danger of becoming exposed, as there was barely sufficient water to cover them.
Another ASD kicked in—injection of cold high pressure water. This is a last resort to
save the core by keeping it covered. The problem is that too much cold water can
crack the containment vessel. Also, and far worse, too much water makes the pressur-
izer "go solid". Without a pressure buffer, pipes would crack. The operators, as they
were trained, slowed the coldwater injection rate1.

 The core became partially exposed as a result, and a partial meltdown occurred.
Although the PORV was eventually closed, and the water brought under control, the
core was badly damaged. Chemical reactions inside the core led to the release of
hydrogen gas, which caused a series of explosions, and ultimately radioactive material
was released into the atmosphere2.

1 Notice that the operators were using a mental model that diverged from reality. Much the same happens with
the operation of software systems under high load.

2 An excellent analysis of this accident, and many others, can be found in the book Normal Accidents (1999),
Princeton University Press, by Charles Perrow. This book also develops a failure model for complex systems
which is relevant to software systems.
Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

59Learning from history
LEARNING FROM THE ACCIDENT

Three Mile Island is one of the most studied complex systems accidents. Some blame
the operators, who "should" have understood what was happening, and who "should"
have closed the valves after maintenance, who "should" have left the high pressure
cold water injection running1. Have you ever left your home and can’t remember if
you’ve locked the front door? Imagine having 500 front doors. On any given day, in
any given reactor, some small percentage of valves will be in the wrong state. Others
blame the sloppiness of the management culture. There should’ve been lock sheets
for the valves. But more paperwork to track work practices has only reduced valve
errors in other reactors, not eliminated them. Some blame the design of the reactor.
Too much complexity and coupling and inter-dependence. A simpler design has
fewer failure modes, but hidden complexity is inherent to systems engineering, and
truly simple designs aren’t possible.

 None of these judgments are useful, because they’re all obvious and true to some
degree. The real learning is that complex systems are fragile, and will fail. No amount
of safety devices and procedures can solve this problem, because the safety devices
and procedures are part of the problem. Three Mile Island makes this clear. The
interactions of all the components of the system (including the humans) led to
failure.

 This is a clear analogy to software systems. We build architectures that have a simi-
lar degree of complexity, the same kinds of interactions and tight couplings. We try to
add redundancy and fail safes, and then find that they fail anyway, as they haven’t
been sufficiently tested. We try to control risk with detailed release procedures and
strict quality assurance, and still end up having to do releases at the weekend, with
inevitable downtime. In one way, we are worse than nuclear reactors—with every
release we change fundamental core components!

 You can’t remove risk by trying to contain complexity. Eventually you’ll have a
LOCA.

5.2.2 A model for failure in software systems

Let’s try to understand the nature of failure in software systems using a simple model.
We need to quantify our exposure to risk to understand how different levels of com-
plexity and change affect a system.

 A software system can be thought of as a set of components, with dependency rela-
tionships between the components. The simplest case is a single component. Under
what conditions does the component, and the entire system, fail? To answer that ques-
tion, we should clarify the term failure. In this model, failure isn’t an absolute binary
condition, but a quantity we can measure. Success might be 100% up-time over a
given period, and failure is any up-time less than 100%. But we could be quite happy

1 Or should they have? It might have cracked the containment vessel, causing an accident far worse. Expert
opinion is conflicted on this point.
Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

60 CHAPTER 5 Deployment
with a failure rate of 1%, giving us 99% up-time as the threshold of success. We could
count the number of requests that have correct responses. Out of every 1000 requests,
perhaps 10 fail, and we’ve a failure rate of 1%. Again, we could be quite happy with
this. Loosely, we can define the failure rate as the proportion of some quantity (con-
tinuous or discrete) that fails to meet a specific threshold value. Remember that we
are building as simple a model as we can, and what the failure rate is a failure of is
excluded from the model. All we care about is the rate, and meeting the threshold.
Failure is failure to meet the threshold, not failure to operate.

 For our one component system, if the component has a failure rate of 1%, then
the system has a failure rate of 1%. Is the system failing?

 If the acceptable failure threshold is 0.5%, then the system is failing. If the accept-
able failure threshold is 2%, then the system isn’t failing, it’s succeeding, and we can
go home.

 This model reflects an important change of perspective: accepting that software
systems are in a constant state of low-level failure. A failure rate always exists. Valves
are always left closed somewhere. The system fails only when a threshold of pain is
crossed. This new perspective is different from the embedded organizational assump-
tion that software can be perfect and operate without defects. The obsession with tally-
ing defective features seems quaint from this viewpoint. Once you gain this
perspective, you can begin to understand how the operational costs of the microser-
vice architecture are out-weighed by the benefit of superior risk management.

Figure 5.3 A single component system,
where P0 is the failure rate of component C0.

TWO COMPONENTS

Now consider a two-component system. One component depends on the other, and
both must function correctly for the system to succeed. Let’s set the failure threshold
at 1%. Perhaps this is the proportion of failed purchases. Perhaps we’re counting
many different kinds of error, and purchases are one type: it isn’t relevant to the
model. Let’s also make the assumption that both components fail independently of
each other1. One failing doesn’t make the other more likely to fail. Both components
have their own failure rate. Below is a two-component system, and a given function
can only succeed if both components succeed. Both are needed.

1 This assumption is important to internalize. Components are like dice. They don’t affect each other, and they
have no memory. If one component fails, it doesn’t make another component more likely to fail. It
may cause the other component to fail, but this is different, because the failure has an external cause. We
are concerned with internal failure, independent of other components.
Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

61Learning from history
Figure 5.4 A two component system, where Pi is the failure rate of component Ci

As the components fail independently, the rules of probability tell us that we can mul-
tiply the probabilities. Four cases are possible: both fail, both succeed, the first fails
and the second succeeds, the first succeeds and the second fails. We want to know the
failure rate of the system. This is the same as asking for the probability that a given
transaction will fail. In the four cases, three are failing, and only one succeeds. This
makes our calculation easier: multiply the success probabilities together to get the
probability for the case where the entire system succeeds. The failure probability is
found by subtracting the success probability from 11. Keeping the numbers simple,
assume that each component has the same failure probability of 1%. This gives a fail-
ure probability of:

Despite the fact that both components are 99% reliable, the system as a whole is only
98% reliable, and fails to meet the success threshold of 99%. You can begin to see that
meeting an overall level of system reliability, where that system is composed of compo-
nents, all essential to operation, is harder than it looks. Each component needs to be a
lot more reliable than the system as a whole.

 We can extend this model to any number of components, if the components
depend on each other in a serial chain. This is a simplification from the real software
architectures we know and love, but let’s work with this model to build some under-
standing of failure probabilities. Using our assumption of failure independence,
where we can multiply the probabilities together, we get the following formula for the
overall probability of failure of a system with an arbitrary number of components in
series:

1 The system can only be in two states, success or failure. The probabilities of both must sum to one. This means
you can find one if you can find the other, and you get to choose the one with the easier formula.
Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

62 CHAPTER 5 Deployment
Where PF is the probability of system failure, n is the number of components, and Pi is
the probability that component i fails.

 If we chart this formula against the number of components in the system, you can
see how the probability of failure grows quickly with the number of components. Even
though each component is quite reliable at 99% (we give each component that same
reliability to keep things simple), the system is unreliable. For example, reading from
the chart, a 10-component system has under a 10% failure rate. It’s a long way from
the desired 1%.

Figure 5.5 Probabili
ty of system failure
against number of
components where
all components are
99% reliable.

The model demonstrates that our intuitions about reliability can often be quite incor-
rect. A convoy of ships is as slow as its slowest ship, but a software architecture isn’t as
unreliable as its most unreliable component. It’s much more unreliable, because the
other components can fail too.

 The system in the Three Mile Island reactor wasn’t linear. It was a complicated set
of components, with many inter-dependencies. Real software is much more like Three
Mile Island, and software components tend to be even more tightly coupled, with no
tolerance for errors. Let’s extend our model to see how this affects reliability. Con-
sider a system with four components, one of which is a sub-component not on the
main line. Three have a serial dependency, but the middle component depends on
the fourth. Here’s the configuration:
Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

63Learning from history
Figure 5.6 A non-linear four
component system.

Again, we give all four components that same reliability of 99%. How reliable is the
system as a whole? We solve the serial case with the formula introduced above. The
reliability of the middle component must take into account its dependency on the
fourth component. This is a serial system as well, contained inside the main system.
It’s a two-component system, and we’ve seen that this has a reliability of 100%—1.99%
= 98.01%. The failure probability of the system is:

What about an arbitrary system with many dependencies? Or systems where multiple
components depend on the same sub-component? We can make another simplifying
assumption to handle this case. We assume that all components are necessary, and
there are no redundancies. Every single component must work. This seems unfair, but
think of how the Three Mile Island accident unfolded. Supposedly redundant sys-
tems, such as the emergency feed pumps, turned out to be crucial as stand-alone com-
ponents. Yes, the reactor could work without them, but it was literally an accident
waiting to happen.

 If all components are necessary, then the dependency graph can be ignored. Every
component is effectively on the main line. It’s easy to overlook sub-components, or
assume they don’t affect reliability as much, but this is a mistake. Interconnected sys-
tems are much more vulnerable to failure than you think, because there are a lot
more sub-component relationships than you think. The humans that run and build
the system are one such sub-component relationship. After all, you can only blame
"human error" for failures if you consider humans to be part of the system. Ignoring
the dependency graph only gives you a first-order approximation of the failure rate,
using the formula above, but given how quickly independent probabilities compound,
that estimate is more than sufficient.
Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

64 CHAPTER 5 Deployment
5.2.3 Redundancy doesn’t do what you think it does

You can make your systems more reliable by adding redundancy. Instead of one
instance of a component that might fail, have many. Keeping to our simple model,
where failures are independent, this makes the system much more reliable. To calcu-
late the failure probability of a set of redundant components, you multiply the individ-
ual failure probabilities, as all must fail for the entire assemblage to fail1. Now you find
that probability theory is your friend. In the one-component system, adding a second
redundant component gives you a failure rate of

Figure 5.7 (1% x 1% = 0.01%)

It seems that all you need to do is add lots of redundancy, and all your problems go
away. Unfortunately this is where our simple model breaks down. Few failure modes in
a software system exist where failure of one instance of a component is independent
of other components of the same kind. Yes, individual host machines can fail2 , but
most failures affect all software components equally. The data center is down. The net-
work is down. The same bug applies to all instances. High load causes instances to fall
like dominoes, or to flap3. A deployment of a new version fails on production traffic.

 Simple models are also useful when they break. They can reveal hidden assump-
tions. Load balancing over multiple instances doesn’t give you strong redundancy, it
merely gives you capacity. It barely moves the reliability needle, because multiple
instances of the same component aren’t independent4 .

1 The failure probability formula in this case is
2 Physical power supplies fail all the time, as do hard drives; network engineers will keep stepping on cables

from now until the heat death of the universe; and we’ll never solve the Halting Problem (it’s mathematically
impossible to prove that any given program will halt instead of executing forever—you can thank Mr. Alan
Turing for that) and there’ll always be input that triggers infinite loops.

3 Flapping occurs when services keep getting killed and restarted by the monitoring system. Under high load,
newly started services are still "cold" (they have empty caches), and their tardiness in responding to requests
is interpreted as failure, and they are killed. And then more services are started. And eventually there are no
services that aren’t either starting or stopping, and work comes to a halt.

Automatic safety devices are unreliable
Another way to reduce the risk of component failure is to use ASDs. But as we saw
in the story of Three Mile Island, these bring their own risks. In the model, they are
nothing more than additional components that can themselves fail.

Many years ago, I worked on a content driven website. The site added about 30 or
40 news stories a day. It wasn’t a breaking news site, and a small delay in publishing

4 This statement, that multiple instances of the same software component don’t fail independently, is proposed
as an empirical fact from the observed behavior of real systems, and isn’t proposed as a mathematical fact.
Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

65Learning from history
5.2.4 Change is scary

Let’s not throw the model out yet. Software systems aren’t static, and suffer from cata-
strophic events known as "deployments". In a deployment, many components are
changed at the same time. In many systems this can’t be done without downtime. Let’s
model this as a simultaneous change of a random subset of components. What does
this do to the reliability of the system?

 By definition, the reliability of a component is the measured rate of failure in pro-
duction. A given component only drops 1 work item in a 100, and has 99% reliability.
Once a deployment is completed and live for a while, we can measure production to
get the reliability rate. But this isn’t much help in advance. We want to know the prob-
ability of failure of the new system before the changes are made.

 Our model isn’t strong enough to provide a formula to answer this question. But
we can use another technique: Monte Carlo simulation. We run lots of simulations of
the deployment, and add up the numbers to see what happens. Let’s use a concrete
example. Assume we’ve a four-component system, and the new deployment consists of
updates to all four components. In a static state, before deployment, the reliability of
the system’s given by our standard formula:

Figure 5.8 (0.994 = .9605 = 96.1%)

To calculate the reliability after deployment, we need to estimate the actual reliabili-
ties of each component. Because we don’t know what they are, we must guess them.
Then we run the formula using the guesses.

 If we do this several times, we’ll be able to plot the distribution of the system reli-
ability. We’ll be able to say things like: in 95% of simulations, the system has at least

a story was acceptable. This gave me the brilliant idea to build a 60 second cache.
Most pages could be generated once, and cached for 60 seconds. Once expired, any
news updates would appear on the regenerated pages, and then the next 60 second
caching period would begin.

This seemed like a cheap way to build what was effectively an ASD for high load. The
site could handle things like election day results without needing to increase server
capacity much.

The 60 second cache was implemented as an in-memory cache on each web server.
Nothing fancy. It was load tested and everything appeared to be fine. But in produc-
tion, servers kept crashing. There was a memory leak, and it didn’t manifest unless
you left the servers running for at least a day, storing over 1440 copies of each page,
for each article, in memory. The first week we went live was a complete nightmare.
We babysat dying machines on a 24/7 rotation.
Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

66 CHAPTER 5 Deployment
99% reliability—deploy! Or, in only 1% of simulations the system has at least 99% reli-
ability—unplanned downtime ahead! Bear in mind that these numbers are for discus-
sion. You’ll need to decide your own numbers that reflect the risk tolerance of your
own organization.

 How do you guess the reliability of a component? You need to do this in a way that
makes the simulation useful. Reliability isn’t normally distributed, like a person’s
height1. Reliability is skewed because components are mostly reliable—most compo-
nents come in around 99%, and can’t go much higher. A lot of space exists below 99%
to fail in. Your team is doing unit testing, and staging, and code reviews, and all that
good stuff. The QA department signs-off on releases, and the head of QA is strict. The
probability is high that your components are reliable, but you can’t test for everything,
and production is a much crueler environment than a developer’s laptop, or a staging
system.

 You can use a skewed probability distribution2 to model "mostly reliable". Here’s a
chart showing how the failure probabilities are distributed. To make a guess, pick a
random number between 0 and 1, and plot its corresponding probability. You can see
that most guesses will give a low failure probability.

Figure 5.9 A skewed
estimator of failure
probability.

1 The normal distribution assumes that any given instance will be close to the average, and has as much chance
of being above average as below.

2 The Pareto distribution is used in this example, as it’s a good model for estimating failure events.
Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

67Learning from history
For each of the four components, you get a reliability estimate. Multiply these
together in the usual manner. Now do this many times. Over many simulation runs,
you can chart the reliability of the system. Here’s the output from a sample exercise1.
Although the system is often fairly reliable, it has mostly poor reliability compared to a
static system. In only 0.15% of simulations the system have reliability of 95% or more.

Figure 5.10 Estimated reliability of the system when four components change simultaneously.

The model shows us that simultaneous deployment of multiple components is inher-
ently risky. It almost always fails the first time. This is why we’ve "scheduled" downtime,
or end up frantically working at the weekend to complete a deployment. What’s hap-
pening is multiple repeated deployment attempts, trying to resolve production issues
that are almost impossible to predict.

 The numbers don’t work in our favor. We’re playing a dangerous game. Our
releases might be low frequency, but they’ve high risk2 . And it seems that microser-

1 In the sample exercise, 1000 runs were executed, and then categorized into 5% intervals
2 The story of the deployment failure suffered by Knight Capital in Chapter 1 is a perfect example of this danger.
Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

68 CHAPTER 5 Deployment
vices must introduce even more risk, as we’ve many more components. Yet, as we shall
discover in this chapter, microservices also provide the flexibility for a solution. If
we’re prepared to accept high frequency releases of single components, then we’ll get
much lower risk exposure.

 I’ve labored the mathematics to make a point. No software development method-
ology can defy the laws of probability at reasonable cost. Engineering, not politics, is
the key to risk management.

5.3 The center cannot hold
The collective delusion of enterprise software development is that perfect software
can be delivered complete and on-time, and deployed to production without errors,
through force of management. Any defects are a failure of professionalism on the part
of the team. Everybody buys into this. Why?

 This book doesn’t take the trite and lazy position that it’s managements fault. Cer-
tainly, no punches are pulled calling out bad behavior, but we must be careful to see
organizational behavior for what it is: rational.

 We can analyze corporate politics using Game theory1 . Why doesn’t anybody point
out the absurdities of enterprise software development, even when there are moun-
tains of evidence? How many more books must be written on the subject? Thankfully
we live in an age where the scale of the software systems we must build is slowly forcing
enterprise software development to face reality.

 Traditional software development processes are an unwanted Nash equilibrium in
the game of corporate politics. It’s a kind of prisoner’s dilemma2. If all stakeholders
acknowledged that failure rates must exist, and used that as a starting point, then con-
tinuous delivery is a natural solution, but nobody is willing to do this. It’d be a career
limiting move. Failure isn’t an option! We’re stuck with a collective delusion, because
we can’t communicate honestly. This book aims to give you some solid principles to
start that honest communication.

WARNING It isn’t advisable to push for change unless there’s a forcing func-
tion. Wait until failure is inevitable under the old system, and then be the
white knight. Pushing for change when you’ve no leverage, is indeed a career
limiting move.

1 The part of mathematics that deals with multi-player games and the limitations of strategies to maximize
results.

2 A Nash equilibrium is a state of a game where no player can improve their position by changing strategy uni-
laterally. The prisoner’s dilemma is a compact example: Two guilty criminals, who robbed a bank together,
are captured by the police, and placed in separate cells where they can’t communicate. If they both stay silent,
then they walk free. But if one betrays the other (getting a shorter sentence as a reward) then the betrayed
criminal serves a life sentence on the evidence of the other. The only rational strategy is to betray, and take
the shorter sentence, because your partner might betray you. If only they could communicate!
Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

69Anarchy works
5.3.1 The cost of perfect software

The software that controlled the space shuttle was some of the most perfect software
ever written. It’s a good example of how expensive such software truly is, and calls out
the absurdity of the expectations for enterprise software. It’s also a good example of
how much effort is required to build redundant software components.

 The initial cost estimate for the shuttle software system was $20m. The final bill was
$200m. This is the first clue that defect-free software is an order-of-magnitude more
expensive than even software engineers estimate. The full requirements specification
has 40 000 pages for a mere 420 000 lines of code. By comparison, Google’s Chrome
web browser is over 5 million lines of code. How perfect is the shuttle software? On
average, there was one bug per release. It wasn’t completely perfect either!

 The software development process was incredibly strict. It was a traditional process
with highly detailed specifications. Strict testing, verification and code reviews were
enforced. Bureaucratic signatures were needed for release. Many stakeholders in the
enterprise software development process truly believe that this level of delivery is what
they’re going to get.

 It’s the business of business to make return-on-investment decisions. You spend
money to make money, but you must have a business case. This breaks down if you
don’t understand your cost model. It’s the job of the software architect to make these
costs clear, and to provide alternatives, where the cost of software development is
matched to the expected returns of the project.

5.4 Anarchy works
The most important question in software development is: "What is the acceptable
error rate?" This is the first question to ask at the start of a project. It drives all the
other questions and decisions. It also makes clear to all stakeholders that the process
of software development is about controlling, not conquering, failure.

 The primary consequence is that large scale releases can never meet the accept-
able error rate. Reliability is compromised by the uncertainty of a large release, that
large releases must be rejected as an engineering approach. This is mathematics, and
no amount of QA can overcome it.

 Small releases are less risky. The smaller the better. Small releases have small uncer-
tainties, and we can keep under the failure threshold. Small releases also mean frequent
releases. Enterprise software must constantly change to meet market forces. These small
releases must go all the way to production to fully reduce risk. Collecting them into
large releases takes you back to square one. This is how the probabilities work.

 A system under constant failure isn’t fragile. Every component expects others to
fail, and is built to be more tolerant of failure. The constant failure of components
exercises redundant systems and backups, ensures that you know they work. You’ve an
accurate measure of the failure rate of the system. It’s a known quantity that can be
controlled. The rate of deployment can be adjusted as risks grow and shrink.
Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

70 CHAPTER 5 Deployment
 How does our simple risk model work under these conditions? You may only be
changing one component at a time, but aren’t you still subject to large amounts of risk?
You know that your software development process isn’t going to deliver updated com-
ponents that are as stable as those that have been baked into production for a while.

 Let’s say updated components are 80% reliable on first deployment. You’re not
going to meet a reliability threshold of 99% in any of the systems we’ve looked at. Re-
deploying a single component still isn’t a small enough deployment. This is an engi-
neering and process problem that we’ll address in the remainder of this chapter—
how to make changes to a production software system whilst maintaining a desired
risk tolerance.

5.5 Microservices and Redundancy
An individual component of a software system should never be run as a single instance.
A single instance is vulnerable to failure. The component itself could crash. The
machine that it’s running on could fail. The network connection to that machine could
be accidentally misconfigured. No component should be a single point of failure.

 To avoid being a single point of failure, you can run multiple instances of the com-
ponent. Now you can handle load and you’re more protected against some kinds of
failure. You aren’t protected against software defects in the component itself, which
affect all instances. Even then, such defects can be usually mitigated by automatic
restarts1. Once a component has been running in production for a while, you’ve
enough data to get a good measure of its reliability.

 How do you deploy a new version of a component? In the traditional model, you
try, as quickly as possible, to replace all the old instances with a full set of new ones.
The blue-green deployment strategy, as it’s known, is an example of this. You’ve a run-
ning version of the system, call this the blue version. You spin up a new version of the
system, call this the green version. Then you choose a specific moment to redirect all
traffic from blue to green. Now, if something goes wrong, you can quickly switch back
to blue, and assess the damage. At least you’re still up.

 One way to make this less risky is to redirect only a small fraction of traffic to green
at first. If you’re satisfied that everything still works, redirect greater and greater volu-
mes of traffic until green has completely taken over.

 The microservice architecture makes it easy to adopt this strategy, and reduce risk
even further. Instead of spinning up a full quota of new instances of the green version
of the service, spin up one instance. This one new instance gets a small portion of all
production traffic, and the existing blues look after the main bulk of traffic. You can
observe the behavior of the single green instance. If it’s badly behaved, you can decom-
mission it. Although a small amount of traffic has been affected, and although there’s
been small increase in failure, you’re still in control. You can fully control the level of
exposure by controlling the amount of traffic that you send to that single new instance.

1 Restarts don’t protect you against nastier kinds of defect, such as poison messages.
Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

71Continuous Delivery
 Microservice deployments are nothing more than the introduction of a single new
instance. If the deployment fails, rollback is the decommissioning of a single instance.
Microservices give you well-defined primitive operations on your production system:
add/remove a service instance. Nothing more’s required. These primitive operations
can be used to construct any deployment strategy you desire. For example, blue-green
deployments break down into a list of add and remove operations on specific instances.

 The definition of a primitive operation is a powerful mechanism for achieving con-
trol. If everything is defined in terms of primitives, and you can control the composi-
tion of the primitives, then you can control the system. The microservice instance is
our primitive, and the unit with which we build our systems. Let’s examine the journey
of that unit from development to production.

5.6 Continuous Delivery
The ability to safely deploy a component to production at any time is powerful
because it lets you control risk. Continuous delivery in a microservices context means
the ability to create a specific version of a microservice, and to run one or more
instances of that version in production, on demand. The essential elements of a con-
tinuous delivery pipeline are:

 A version-controlled local development environment for each service, sup-
ported by unit testing, and the ability to test the service against an appropriate
local subset of the other services, using mocking if necessary.

 A staging environment to both validate the microservice, and build, reproduc-
ibly, an artifact for deployment. Validation is automated, but scope is allowed
for manual verification if necessary.

 A management system, used by the development team to execute combinations
of primitives against staging and production, implementing the desired deploy-
ment patterns in an automated manner.

 A production environment that’s constructed from deployment artifacts as
much as possible, with an audit history of the primitive operations applied. The
environment is self-correcting and able to take remedial action, such as restart-
ing crashed services. The environment also provides intelligent load balancing,
allowing traffic volumes to vary between services.

 A monitoring and diagnostics system that verifies the health of the production
system after the application of each primitive operation, and allows the develop-
ment team to introspect and trace message behavior. Alerts are generated from
this part of the system.

The pipeline assumes that the generation of defective artifacts is a common occur-
rence. The pipeline attempts to filter them out at each stage. This is done on a per-
artifact basis, rather than trying to verify an entire update to the system. As a result the
verification is both more accurate, and more credible, as confounding factors have
been removed.
Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

72 CHAPTER 5 Deployment
 Even when a defective artifact makes it to production, this is still considered a nor-
mal event. The behavior of the artifact is continuously verified in production after
deployment, and the artifact is removed if not acceptable. Risk is controlled by pro-
gressively increasing the proportion of activity that the new artifact handles.

 Continuous delivery is based on the reality of software construction and manage-
ment. It delivers:

 Lower risk of failure by favoring low-impact high-frequency single instance
deployments over high-impact low-frequency multiple instance deployments.

 Faster development by enabling high frequency updates to the business logic of
the system, giving a faster feedback loop, and faster refinement against business
goals.

 Lower cost of development as the fast feedback loop reduces time wasted on
features that have no business value.

 Higher quality as less code is written overall, and that which is written is imme-
diately verified.

The tooling to support continuous delivery, and the microservice architecture, is still
in the early stages of development1. Though an end-to-end continuous delivery pipe-
line system is necessary to fully gain the benefits of the microservice architecture, it’s
possible to live with pipeline elements that are less than perfect.

 At the time of writing, all teams working with this approach are using multiple
tools to implement different aspects of the pipeline, as comprehensive solutions don’t
exist. The microservice architecture requires more than current Platform-as-a-Service
vendors offer. Even when comprehensive solutions emerge, they’ll still present trade-
offs in implementation focus2 . It’s probable that you’ll continue to need to put
together a context-specific tool-set for each microservice system that you build. As we
work through the rest of this chapter, the desirable properties for these tools will be
the thing to focus on. You will almost certainly need to invest in the development of
some of your own tooling. At the least this will be integration scripts for the third-party
tools you’ve selected.

5.6.1 Pipeline

The purpose of the continuous delivery pipeline is to provide feedback to the devel-
opment team as quickly as possible. In the case of failure, that feedback should indi-
cate the nature of the failure. It must be easy to see the failing tests, the failing
performance results, or the failed integrations. You should be able to see a history of
the verifications and failures of each microservice. This isn’t the time to roll your own
tooling—there are many capable continuous integration tools3. The key requirement
for you is that your chosen tool can handle many projects easily, as each microservice
is built separately.

1 Things are improving all the time. Take a look at http://deis.com, for example.
2 The Netflix suite, http://netflix.github.io, is a good example of a comprehensive, but opinionated, tool

chain.
3 Two quick mentions: if you want to run something yourself, try http://hudson-ci.org; if you want to out-

source, try http://travis-ci.org(used by the example in Chapter 9).
Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

http://deis.com
http://netflix.github.io
http://hudson-ci.org
http://travis-ci.org

73Continuous Delivery
 The continuous integration tool is one stage of the pipeline, usually operating
before a deployment to the staging systems. You need to be able to trace the generation
of microservices throughout the pipeline. The continuous integration server generates
an artifact that’ll be deployed into production. Before that happens, the source code for
the artifact needs to be marked and tagged to create hermetic artifact generation—you
must be able to reproduce any build from the history of your microservice. After artifact
generation, you need to be able to trace the deployment of that artifact over your sys-
tems from staging to production. This tracing mustn’t be only at the system level, but
also within the system, tracing the number of instances run, and when. Until third party
tooling solves this problem, you’ll need to build this part of the pipeline diagnostics
yourself. It‘s an essential and worthwhile investment for investigating failures.

 The unit of deployment is a microservice, and the unit of movement through the
pipeline is a microservice. The pipeline should prioritize the focus on the generation
and validation of artifacts that represent a microservice. A given version of a microser-
vice is instantiated as a fixed artifact that never changes. Artifacts are immutable. The
same version of a microservice always generates the same artifact, at a binary encoding
level. It’s natural to store these artifacts for quick access1. Nonetheless you need to
retain the capability to hermetically rebuild any version of a microservice, as the build
process is an important element of defect investigation.

 The development environment also needs to make the focus on individual
microservices fluid and natural. This affects the structure of your source code reposi-
tories. We’ll look at this more deeply in Chapter 7. Local validation is also important,
as the first measure of risk. Once the developer’s satisfied that a viable version of the
microservice is ready, it’s the developer that initiates the pipeline to production.

 The staging environment reproduces the development environment validation in
a controlled environment, keeping it free from the variances in local developer
machines. Staging also performs scaling and performance tests, and can use multiple
machines to simulate production, to a limited extent. Staging’s core responsibility is
to generate an artifact with an estimated failure risk within a defined tolerance.

 Production is the live, revenue generating part of the pipeline. Production is
updated by accepting an artifact, and a deployment plan, and applying the deploy-
ment plan under measurement of risk. To manage risk, the deployment plan is a pro-
gressive execution of deployment primitives—activating and deactivating
microservice instances. Tooling for production microservices is the most mature at
present, as it is the most critical part of the pipeline. A great variety of orchestration
and monitoring tools are available to help2.

5.6.2 Process

It’s important to distinguish continuous delivery from continuous deployment. Con-
tinuous deployment is a form of continuous delivery, where commits, though they

1 Amazon S3 isn’t a bad place. More focused solutions are on the market, such as JFrog’s Artifactory product.
2 Common choices here are Kubernetes, Mesos, Docker, and so forth. Although these tools fall into a broad

category, they operate a different levels of the stack, and aren’t mutually exclusive. The case study in Chapter
9 will use on Docker and Kubernetes.
Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

74 CHAPTER 5 Deployment
may be automatically verified, are still pushed directly and immediately to production.
Continuous delivery operates at a coarser grain, where sets of commits are packaged
into immutable artifacts. In both cases, deployments can be effectively "real-time" and
occur multiple times per day.

 Continuous delivery is more suited to the wider context of enterprise software
development, as it allows the team to accommodate compliance and process require-
ments which are difficult to change within the lifetime of the project. Continuous
delivery is also more suited to the microservice architecture, as it allows the focus to be
on the microservice rather than code.

 If "continuous delivery" is considered a continuous delivery of microservice
instances, this understanding drives other virtues. Microservices should be kept small,
and that verification, particularly human verification such as code reviews, is possible
with the desired time-frames of multiple deployments per day.

5.6.3 Protection

The pipeline protects you from exceeding failure thresholds by providing measures of
risk at each stage to production. It isn’t necessary to extract a failure probability pre-
diction from each measure1. You’’ll know the feel of the measures for your system, and
you can use a scoring approach effectively.

 In development, your key risk measuring tools are code reviews and unit tests.
Using modern version control for branch management2 means you can adopt a devel-
opment workflow where new code is written on a branch, and then merged into the
mainline. The merge is only performed if the code passes a review. The review can be
performed by a peer, rather than a senior. Peer developers on a project have more
information and are better able to asses the correctness of a merge. This workflow
means that code review is a normal part of the development process, and has low fric-
tion. Microservices keep the friction even lower because the units of review are
smaller and have less code.

 Unit tests are critical to risk measurement. You should take the perspective that
unit tests must pass before branches can be merged, or code is committed on the
mainline. This keeps the mainline potentially deployable, as a build on staging has a
good chance of passing. Unit tests in the microservice world are concerned with dem-
onstrating the correctness of the code. The other benefits of unit testing, such as mak-
ing refactoring safer, are less relevant.

 Unit tests aren’t sufficient for accurate risk measurement, and are subject to dimin-
ishing marginal returns. Moving from 50% test coverage to 100% reduces your
deployment risk much less than moving from 0% to 50%. Don’t get suckered into the
fashion for 100% test coverage. It’s a fine badge of honor (literally!) for Open Source
utility components, but is superstitious theater for business logic.

1 You could use statistical techniques such as Bayesian estimation to do this if desired.
2 Using a distributed version control system such as git is essential. You need to be able to use pull requests to

implement code reviews.
Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

75Running a microservice system
 On the staging system, you can measure the behavior of a microservice in terms of
its adherence to the message flows of the system. Ensuring that the correct messages
are sent by the service, and the correct responses given, is also a binary pass/fail test,
which you can score with a 0 or 1 The service must meet expectations fully. Though
these message interactions are tested via unit tests in development, they also need to
be tested on the staging system, as this is a closer simulation of production.

 Integrations with other parts of the system can also be tested as part of the staging
process. Those parts of the system that aren’t microservices, such as stand-alone data-
bases, network services such as mail servers, external web service end-points, and oth-
ers, are simulated or run in small scale. The microservice’s behavior with respect to
these can then be measured. Other aspects of the service, such as performance,
resource consumption, and security, need to be measured in a statistical way, taking
samples of behavior, and using these to predict risk of failure.

 Finally, even in production, the risk of failure continues to be measured. Even
before going into production, you can establish manual gates—formal code reviews,
penetration testing, user acceptance, and so forth. These may be legally unavoidable,
but they can still be integrated into the continuous delivery mind-set.

 Running services can be monitored and sampled. Key metrics, particularly those
relating to message flow rates, can be used to determine service and system health. A
great deal more will be said about this aspect of the microservice architecture in
Chapter 6.

5.7 Running a microservice system
The tooling to support microservices is developing quickly, and new tools are emerging
at a high rate. It isn’t useful to examine in detail that which will be out-of-date soon. This
chapter focuses on general principles, allowing you to compare and assess tools and
select those most suitable for your context. You should expect and prepare to build
some tooling yourself. This isn’t a book on deployment in general, and it doesn’t discuss
best practices for the deployment of system elements, such as database clusters, that
aren’t microservices. It is still recommended that these be subject to automation, and if
possible controlled by the same tooling. The focus of this chapter is on deployment of
your own microservices, encoding the business logic of the system, and making them
subject to a higher degree of change compared to other elements.

5.7.1 Immutability

It’s a core principle that, of the approach described here, microservice artifacts are
immutable. This preserves their ability to act as primitive operations. A microservice
artifact could be a container, a virtual machine image, or some other abstraction1. The
essential characteristic of the artifact is that it can’t be changed internally, and only
has two states, active, and inactive.

1 For huge systems, you might even consider an AWS auto-scaling group to be your base unit.
Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

76 CHAPTER 5 Deployment
 The power of immutability is that it excludes side-effects from your system. The
behavior of the system, and microservice instances, is much more predictable because
you can be sure that they aren’t affected by changes that you are unaware of. An
immutable artifact contains everything the microservice needs to run, at fixed ver-
sions. You can be certain that your language platform version, and your libraries, and
other dependencies, are exactly as you expect. Nobody can manually login to the
instance, and make un-audited changes. This predictability allows you to calibrate
your risk estimations more accurately.

 Running immutable instances also forces you to treat your microservices as dispos-
able. An instance that’s developed a problem, or that contains a bug, cannot be "fixed". It
can only be deactivated, and replaced by the activation of a new instance. Matching capa-
city to load isn’t about building new installations on bigger machines, it’s about running
more instances of the artifact. No individual instance is in any way special. This approach
is a basic building block for building reliable systems on unreliable infrastructure

MICROSERVICE DEPLOYMENT PATTERNS

This section is a reference overview of microservice deployment patterns. You’ll need
to compare these patterns against the capabilities of the automation tooling that you
use. Unfortunately you should expect to be disappointed, and you’ll need to augment
your tooling to fully achieve the desired benefits of the patterns.

 Feel free to treat this section more as a recipe book for cooking up your own pat-
terns, rather than a prescription. You can skim the deployment patterns without guilt1.

Name Rollback

Motive Recover from a deployment that’s caused one or more failure metrics to exceed their thresh-
olds. This enables you to deploy new service versions where the estimated probability of failure
is higher than your thresholds, whilst maintaining overall operation within thresholds.

Description Apply the activate primitive for a given microservice artifact to a system. Observe failure alerts.
Deactivate the same artifact. Deactivation can be manual or automatic. Logs should be pre-
served. Deactivation should return the system to health. Recovery is expected but may not
occur in cases where the offending instance has injected defective messages into the system
(for this, see the Kill Switch pattern).

Sequence

1 In production, I’m most fond of the Progressive Canary.
Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

77Running a microservice system

Name Homeostasis

Motive Maintain desired architectural structure and capacity levels.

Description A declarative definition of your architecture, including rules for increasing capacity under load’s
implemented by application of activation and deactivation primitives to the system. Simultane-
ous application of primitives is permitted, although care must be taken to implement and
record this correctly. Homeostasis can also be implemented by allowing services to issue primi-
tive operations, and defining local rules for doing this, see the patterns Mitosis and Apoptosis.

Sequence

Name History

Motive Provide diagnostic data to aid understanding of failing and healthy system behavior.

Description Maintain an audit trail of the temporal order of primitive operation application. A complication’s
that you may allow simultaneous application of sets of primitives. The audit history allows you
to diagnose problems by inspecting the behavior of previous versions of the system—these
can be resurrected by applying the primitives to simulated systems. Defects introduced but
undetected initially can also dealt with by moving backwards over the history.

Sequence
Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

78 CHAPTER 5 Deployment
5.7.2 Automation

Microservice systems in production have too many moving parts to be managed manu-
ally. This is part of the trade-off of the architecture. You must commit to using tooling to
automate your system. This is a never-ending task. Automation doesn’t cover all activities
from day one, nor should it, as you need to allocate most of your development effort to
creating business value. Over time, you’ll need to automate more and more.

 To determine which activity to automate next, divide your operational tasks into two
categories. In the first category, Toil1, place those tasks where effort grows at least lin-
early with the size of the system. To put it another way, from a computational complexity
perspective, these are tasks where human effort is at least O(n), where n is the number
of microservice types (not instances). For example, configuring log capture for a new
microservice type might require manual configuration of the log collection subsystem.

 In second category, Win, place tasks that are less than O(n) in the number of
microservice types. For example, adding a new database secondary reader instance to
handle projected increased data volumes.

 The next task to automate is the most annoying task from the Toil pile. Define
annoying as "most negatively impacting the business goals". Don’t forget to include
failure risk in your calculation of negative impact.

 Automation is also necessary to execute the microservice deployment patterns.
Most of the patterns require the application of large numbers of primitive operations,
over a scheduled period, and under observation for failure. These are tasks that can’t
be performed manually at scale.

 Automation tooling is relatively mature, and dovetails with the requirements of
modern large scale enterprise applications. A wide range of choice exist, and your
decision should be driven by your comfort levels with custom modification or script-
ing, as you’ll need this to fully execute the microservice deployment patterns2.

MORE MICROSERVICE DEPLOYMENT PATTERNS

1 This usage of the term originates with the Google Site Reliability Engineering team.
2 Look to evaluate tools such as Puppet, Chef, Ansible, Terraform, and AWS CodeDeploy

Name Canary

Description New microservices, and new versions of existing microservices, introduce considerable risk to
a production system. It’s unwise to deploy the new instances and immediately allow them to
take large amounts of load. Instead, run multiple instances of known-good services, and
slowly replace these with new ones.
The first step’s to validate that the new microservice both functions correctly, and isn’t
destructive. Activate a single new instance, and direct a small amount of message traffic to
this instance. Then watch your metrics to make sure the system behaves as expected. Apply
the Rollback pattern if not.
Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

79Running a microservice system
Sequence

Name Progressive Canary

Motive Reduce the risk of a full update by applying changes progressively in larger and larger tranches.

Description Though Canary can validate the safety of a single new instance, particularly with respect to
unintended destructive behavior, it doesn’t guarantee good behavior at scale. Deploy a progres-
sively increasing number of new instances to take progressively more traffic, continuing to vali-
date during the process. This balances the need for full deployment of new instance versions
to occur at reasonable speed, with the need to manage the risk of the change. Primitives are
applied concurrently in this pattern. The Rollback can be extended to handle decommission of
multiple instances if a problem arises.

Sequence
Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

80 CHAPTER 5 Deployment
Name Bake

Motive Reduce the risk of failures that have severe downsides.

Description This is a variation of Progressive Canary that maintains a full complement of the existing
instances, but also sends a copy of inbound message traffic to the new instances. The output
from the new instances is compared with the old to ensure that deviations are below a desired
threshold. The output from the new is discarded until this criterion is met. The system can con-
tinue in this configuration, validating against production traffic, until sufficient time has passed
to reach the desired risk level. This pattern is most useful when the output must meet a strict
failure threshold, and where failure places the business at risk. Consider using when you are
dealing with access to sensitive data, financial operations, and resource intensive activities
that are hard to reverse1. This pattern requires intelligent load balancing and additional moni-
toring to implement.

Sequence

1. The canonical description of this technique is given by Github’s Zach Holman: https://zachholman.com/
talk/move-fast-break-nothing

Name Merge

Motive Performance is impacted by network latency.

Description As the system grows and load increases, certain message pathways become bottlenecks.
Latency caused by the need to send messages over the network between microservices may
become unacceptable. Also, security concerns could arise that require encryption of the mes-
sage stream, causing further latency.
To counteract this, trade-off some of the flexibility of microservices for the necessity of perfor-
mance by merging microservices in the critical message path. By using a message abstraction
layer, and pattern matching, as discussed in earlier chapters, this can be achieved with mini-
mal code changes. Don’t merge microservices together wholesale. Look to isolate the mes-
sage patterns of concern into a combined microservice. By executing a message pathway
within a single process, you remove the network from the equation.
This is a good example of the benefit of the microservices-first approach. In the earlier part of
an applications life-cycle more flexibility is needed as understanding of the business logic is
less solid. Later, optimizations may be needed to meet performance goals.

Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

https://zachholman.com/talk/move-fast-break-nothing
https://zachholman.com/talk/move-fast-break-nothing

81Running a microservice system
Sequence

Name Split

Motive Microservices grow over time as more business logic is added, necessitating new kinds of ser-
vice to avoid building technical debt.

Description In the early life-cycle of a system, microservices are small and handle general cases. As time
goes by, more special cases are added to the business logic. Rather than handling these
cases with more complex internal code and data structures, it’s better to split out special
cases into focused microservices. Pattern matching on messages makes this practical, and is
one of the core benefits of the pattern matching approach.
This pattern captures one the core benefits of the microservice architecture: the ability to han-
dle frequently changing and under-specified requirements. Always be looking for opportunities
to split, and avoid the temptation to use more familiar language constructs (such as object-ori-
ented design patterns), as these build technical debt over time.

Sequence
Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

82 CHAPTER 5 Deployment
5.7.3 Resilience

Chapter 3 discussed some of common failure modes of microservice systems. A produc-
tion deployment of microservices needs to be resilient to these failure modes. Although
the system can never be entirely safe, mitigations should be put in place. As always, the
extent and cost of the mitigation should correspond to the desired level of risk.

 In monolithic systems, failure is often dealt with by restarting instances of the
monolith that fail. This approach is heavy-handed, and often ineffective. The
microservice architecture offers a finer-grained menu of techniques for handling fail-
ure. The abstraction of a messaging layer is helpful, as this layer can be extended to
provide automatic safety devices (ASDs). Bearing in mind that ASDs aren’t silver bul-
lets, and may themselves cause failure, they’re still useful for many modes of failure.

SLOW DOWNSTREAM

In this failure mode, taking the perspective of a given client microservice instance,
responses to its outbound messages have latency or throughout levels that are outside
of acceptable levels.

 The client microservice can use the following dynamic tactics, roughly in order of
increasing sophistication:

Timeouts
Consider messages failed if a response isn’t delivered within a fixed timeout period.
This prevents resource consumption on the client microservice.

Adaptive timeouts
Use timeouts, but don’t set them as fixed configuration parameters. Instead, dynami-
cally adjust the timeouts based on observed behavior. As a simplistic example, time-
out if the response delay is more than three standard deviations from the observed
mean response time. Adaptive timeouts reduce the occurrence of false positives
when the overall system is slow, and avoid delays in failure detection when the system
is fast.

Circuit breaker
Persistently slow downstream services should be considered effectively dead. Imple-
mentation requires the messaging layer to maintain meta data about downstream
services. This tactic avoids unnecessary resource consumption, and unnecessary
degradation of overall performance. It increases the risk of overloading healthy
machines by redirecting too much traffic to them, causing a cascading failure simi-
lar to the unintended effects of the ASDs at Three Mile Island.

Retries
If failure to execute a task has a cost, and there’s tolerance for delay, then it may
make more sense to retry a failed message by sending it again. This is an ASD that
has great potential to go wrong. Large volumes of retries are a self-inflicted denial-
of-service attack. Use a retry budget to avoid this by only retrying a limited number
of times, and if the meta data is available, only doing it for a limited number of
times per downstream. Retries should also use a randomized exponential back-off
Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

83Running a microservice system
delay before being sent, as this gives the downstream a better chance of recovery by
spreading load over time.

Intelligent round-robin
If the messaging layer is using point-to-point transmission to send messages, then it
necessarily has sufficient meta data to implement round-robin load-balancing
amongst the downstreams. Simple round-robins keeps a list of downstreams and
cycles through them. This ignores differences in load between messages, and can
lead to individual downstreams becoming overloaded. Random round-robin is
found empirically to be little better, probably because the same clustering of load is
possible. If the downstream microservices provide back pressure meta data, then
the round robin algorithm can make more informed choices. It can choose the
least loaded downstream. It can weight downstreams based on known capacity. It
can restrict downstreams to a subset of the total to avoid a domino effect from a cir-
cuit breaker that trips too aggressively.

UPSTREAM OVERLOAD

This is other end of the overload scenario. The downstream microservice is getting
too many inbound messages. Some of the tactics to apply are:

Adaptive throttles
Don’t attempt to complete all work as it comes in. Instead, queue the work to a
maximum rate than can be safely handled. This prevents the service from thrash-
ing. Services with severe resource constraints spend almost all their time swapping
between tasks rather than working on the tasks. On thread-based language plat-
forms this consumes memory. On event-driven platforms, this manifests as a single
task hogging the CPU, and stalling all others. As with timeouts, it’s worth making
throttles adaptive to optimize resource consumption.

Back-pressure
Provide client microservices with meta data describing current load levels. This
meta data can be embedded in message responses. The downstream service doesn’t
actively handle load, but relies on the kindness of its clients. The meta data makes
client tactics for slow downstreams more effective.

Load shedding
Refuse to execute tasks once a dangerous level of load is reached. This is a deliber-
ate decision to fail a certain percentage of messages. This tactic gives most messages
reasonable latency, and some total failure, rather then allowing many messages to
have high latency with sporadic failure. Appropriate meta data should be returned
to client services to ensure it interprets load shedding correctly and doesn’t trigger
a circuit breaker. The selection of tasks to drop, or add to the queue, or execute
immediately, can be determined algorithmically and is context dependent. None-
theless, even a simple load shedder prevents many kinds of catastrophic collapse.

In addition to the dynamic tactics above, upstream overload can be reduced on a lon-
ger time-frame by applying the Merge deployment pattern.
Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

84 CHAPTER 5 Deployment
LOST ACTIONS

Apply the Progressive Canary deployment pattern, measuring message flow rates to
ensure correctness. There’ll be more discussion on measurement in Chapter 6.

POISON MESSAGES

A microservice generates a poisonous message that triggers a defect in other microser-
vices, causing some level of failure. If the message is continuously retried against dif-
ferent downstream services, they’ll all suffer failures.

Drop duplicates
Downstream microservices should track message correlation identifiers, and keep a
short-term record of recently seen inbound messages. Duplicates should be
ignored.

Validation
Trade-off the flexibility of schema-free messages for stricter validation of inbound
message data. This has a less detrimental effect later in the project when require-
ment change has slowed.

Consider building a dead-letter service. Problematic messages are forwarded to this
service for storage and later diagnosis. This allows you to monitor message health
across the system.

GUARANTEED DELIVERY

Message delivery may fail in many ways. Messages may not arrive, or arrive multiple
times. Dropping duplicates helps within a service. Duplicated messages sent to multi-
ple services are more difficult to mitigate. If the risk associated with such events is too
high, extra development effort should be allocated to implementing idempotent mes-
sage interactions1.

EMERGENT BEHAVIOR

A microservice system is a system with many moving parts. Message behavior may have
unintended consequences, such as triggering additional workflows. Correlation iden-
tifiers can be used for after-the-fact diagnosis, but not to actively prevent side-effects.

Time-to-live
Use a decrementing counter reduces it each time an inbound message triggers the
generation of outbound messages. This prevents unbounded side-effects from pro-
ceeding without any checks. It stops infinite message loops. It won’t fully prevent all
side-effects, but limits their effects. You’ll need to determine the appropriate value
of the counter in the context of your own system, but prefer low values. Microser-
vice systems should be shallow, not deep.

1 Be careful not to over-think your system in the early days of a project. It’s often better to accept the risk of,
and actual, data corruption to get to market sooner. Be ethical, and only make this decision openly with your
stakeholders. Chapter 7 has more discussion on making these decisions.
Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

85Running a microservice system
CATASTROPHIC COLLAPSE

Some emergent behavior can be exceptionally pathological, placing the system into
an unrecoverable state, even though the original messages are no longer present.
Even with the Homeostasis pattern in place, service restarts are unable to bring the
system back to health.

 For example, a defect may crash numerous services in rapid succession. New ser-
vices are started as replacements, but have empty caches, and are unable to handle
current load levels. These new services crash and are themselves replaced. The system
can’t establish enough capacity to return to normal. This is known as the thundering
herd problem.

Static responses
Use low resource emergency microservices that return hard-coded responses to
temporarily take load.

Kill Switch
Establish a mechanism to selectively stop large subsets of services. This gives you
the ability to quarantine the problem. You can then restart into a known-good state.

In addition to the dynamic tactics above, prepare for disaster by deliberately testing
individual services with high load to determine their failure points. Software systems
tend to fail quickly rather than gradually, and you need to establish safe limits in
advance.

EVEN MORE MICROSERVICE DEPLOYMENT PATTERNS

Name Apoptosis1

1. Living cells literally commit suicide if they become too damaged. This prevents cell damage from accumulat-
ing and causing cancers.

Motive Remove malfunctioning services quickly. Reduce capacity organically.

Description Microservices can perform self-diagnosis and shut themselves down if their health is unsatis-
factory. For example, all message tasks may be failing because local storage is full. The ser-
vice can maintain internal statistics to calculate health. This also enables a graceful shutdown
by responding to messages with meta data indicating failure during the shutdown, rather than
triggering timeouts.
Apoptosis is useful to match capacity with load. It’s costly to maintain active resources far in
excess of the levels necessary to meet current load. Services can choose to self terminate,
using a probabilistic algorithm to avoid mass shutdowns. Load is redistributed over the remain-
ing services.

Sequence
Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

86 CHAPTER 5 Deployment
Name Mitosis1

Motive Respond to increased load organically without centralized control.

Description Individual microservices have the most accurate measure of their own load levels. Trigger the
launching of new instances if local load levels are too high. This should be done using a prob-
abilistic approach to avoid large volumes of simultaneous launches. The newly launched ser-
vice takes some the load, bringing levels back to acceptable levels.
Mitosis (and Apoptosis) should be used with care, and with built-in limits. You don’t want
unbounded growth or a complete shutdown. Launch and shutdown should occur via primitive
operations executed by the infrastructure tooling, not by the microservices themselves.

Sequence

1. Living cells replicate by splitting in two. Mitosis is the name of this process.

Name Kill Switch

Motive Disable large parts of the system to limit damage.

Description Microservices systems are complex systems, like the Three Mile Island reactor. Failure events
at all scales are to be expected. Empirically these events follow a power law in terms of occur-
rence. Eventually an event with potential for significant damage occurs.
To limit the damage, rapid action is needed. As it’s impossible to understand the event during
its occurrence, the safest course of action is to "scram" the system. You should be able to
shutdown large parts of the system using secondary communication links to each microser-
vice. As the event progresses, you may need to progressively shutdown more and more of the
system to eventually contain the damage.

Sequence
Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

87Running a microservice system
5.7.4 Validation

Continuous validation of the production system is the key practice that makes
microservices successful. No other activity provides as much risk reduction and value.
It’s the only way to run a continuous delivery pipeline responsibly.

 What do you measure in production? CPU load levels? Memory usage? These are
useful, but not essential. Far more important is validation that the system is behaving
as desired. Messages correspond to business activities, or parts of business activities,
and the behavior of messages is the thing to focus on. Message flow rates tell you a
great deal about the health of the system. On their own, they’re still less useful than
you think, as they fluctuate with the time of day and with seasonality.

 It’s more useful to compare message flow rates with each other. A given business
process is encoded by an expanding set of messages generated from an initial trigger-
ing message. Message flow rates are related to each by ratios. For every message of cer-
tain kind, you expect to see two messages of another kind. These ratios don’t change
no matter what the load level of the system, or the amount of services present. They
are invariant.

 Invariants are your primary indicator of health. When you deploy a new version of
a microservice using the Canary pattern, what you check is that the invariants are
within expected bounds. If the new version contains a defect, the message flow ratios
changes, as some messages won’t be generated. This is an immediate indicator of fail-
ure. Invariants, after all, can’t vary. We’ll come back to this topic in Chapter 6 and pro-
vide an example in Chapter 9.

YET MORE MICROSERVICE DEPLOYMENT PATTERNS

Name Version Update

Motive Safely update a set of communicating microservices.

Description Microservices A and B communicate using messages of kind x. New business requirements
introduce the need for messages of kind y between the services. It’s unwise to attempt a
simultaneous update of both. It’s preferable to use the Progressive Canary deployment pattern
to make the change safely.
First update the listening service B, allowing it to recognize the new message y. No other ser-
vices generate this message in production, yet, but we can validate that the new version of B
doesn’t cause damage. Once the new B is in place, update A, which emits y messages.
This multi-stage update (composed of Progressive Canaries for each stage) can be used for
many scenarios where the message interactions must change. It can be used when the inter-
nal data of the messages change (B in this case must retain the ability to handle old mes-
sages until the change is complete). It can be used to inject a third service between two
existing services, by applying the pattern first to one side of the interaction, and then the other.
This is a common way to introduce a cache, such as the one seen in Chapter 1.
Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

88 CHAPTER 5 Deployment
5.7.5 Discovery

Pattern matching and transport independence give you decoupled services. When
microservice A knows that microservice B receives its messages, then A is coupled to B.
Unfortunately message transport requires knowledge of the location of B, otherwise
messages can’t be delivered. Transport independence hides the mechanism of trans-
portation from A. Pattern matching hides the identity of B. Identity is coupling.

 The messaging abstraction layer still needs to know the location of B, even as it hides
this information from A. A (or least, the message layer in A) needs to discover the loca-
tion of B (this is the set of locations of all the instances of B). This is a primary infrastruc-
tural challenge in microservice systems. Let’s examine the common solutions:

Embedded configuration
Hard code service locations as part of the immutable artifact.

Intelligent load-balancing
Direct all message traffic through load-balancers that know where to find the ser-
vices.

Sequence

Name Chaos

Motive Ensure the system is resistant to failure by constantly failing at a low rate.

Description Services can develop fragile dependencies on other services, despite your best intentions.
When dependencies fail, even when that failure is below the threshold, this can cause thresh-
old failures in services that rely on you.
To prevent creeping fragility, deliberately fail your services on a continuous basis, in production.
Calibrate the failure to be well below the failure threshold for the business to prevent a signifi-
cant impact on business outcomes. This is effectively a form of insurance. You take small fre-
quent losses to avoid large infrequent losses that are fatal.
The most famous example of this pattern is the Netflix Chaos Monkey, which randomly shuts
down services in the Netflix infrastructure. Another example is Google Game Days, where large-
scale production failures are deliberately triggered to test failover capabilities.
Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

89Running a microservice system
Service registries
Services register their location with a central registry, and other services look them
up in the registry.

DNS
Use the DNS protocol to resolve the location of a service.

Message bus
Use a message bus to separate publishers from subscribers.

Gossip
Use a peer-to-peer membership gossip protocol to share service locations.

No solution is perfect, and each involves trade-offs:

Discovery Advantages Disadvantages

Embed config. Easy implementation. Works (mostly)
for small static systems.

Doesn’t scale as large systems are under
continuous change. Strong identity concept:
raw network location.

Intelligent LB. Scalable with proven production
quality tooling1

1. Some examples are nginx, and Netflix’s Hystrix

Non-microservice network element that
requires separate management. Load-bal-
ancers force limited transport options, and
must still discover service locations them-
selves using one of the other discovery
mechanisms. Retains identity concept:
request URL.

Registry Scalable with proven production
quality tooling2.

2. Some examples are Consul, Zookeeper, and etcd

Non-microservice network element. High
dependency on chosen solution as no
common standards. Strong identity concept:
service name key.

DNS Unlimited scale and proven produc-
tion quality tooling. Well understood.
Can be used by other mechanisms to
weaken identity by replacing raw net-
work locations

Non-microservice network element.
Management overhead. Weak identity
concept: hostname.

Message Bus Scalable with proven production
quality tooling3.

3. Some examples are RabbitMQ, Kafka, and NServiceBus

Non-microservice network element.
Management overhead. Weak identity
concept: topic name.

Gossip No concept of identity! Doesn’t
require additional network elements.
Early adopter stage, but shown to
work at scale4.

4. The SWIM algorithm has found success at Uber: https://eng.uber.com/intro-to-ringpop

Message layer must have additional
intelligence to handle load-balancing. Rapidly
evolving implementations.
Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

https://eng.uber.com/intro-to-ringpop

90 CHAPTER 5 Deployment
5.7.6 Configuration

How do you configure your microservices. This isn’t an innocent question. Configura-
tion is one of the primary causes of deployment failure. Does configuration live with
the service, immutably packaged into the artifact? Or does configuration live on the
network, able to adapt dynamically to live conditions, and providing an additional way
to control services?

 If configuration is packaged with the service, then configuration changes aren’t
different from code changes, and must be pushed through the continuous delivery
pipeline in the same manner. Although this provides better risk management, it also
means you may suffer unacceptable delays when you need to make changes to config-
uration. You’re also adding additional entries to the artifact store and audit logs for
every single configuration change, which can clutter these databases and make them
less useful. Finally, some network components, such as intelligent load-balancers, still
need dynamic configuration if they’re to be useful, and you can’t place all configura-
tion in artifacts.

 On the other hand, network configuration removes your ability to reproduce the
system deterministically, or to have the full benefit of the safety of immutability. The
same artifact deployed tomorrow could fail even though it worked today. You need to
define separate change control processes and controls for configuration as you won’t
be able to reuse the artifact pipeline for this purpose. You’ll need to deploy network
services and infrastructure to store and serve configuration. Even if most configura-
tion is dynamic, you still need to bake in at least some configuration—the network
location of the configuration store! When you look closely you’ll find that many ser-
vices have large amounts of potential configuration arising from third party libraries
that you include in your services. You need to decide to what extent you’ll expose this
via the dynamic configuration store. You are unlikely to find much value in exposing
all of it, and ends up with artifact generation in any case when you need to change this
deeper configuration. You’ll need to decide how to make this compatible with your
management of higher level configuration.

 The result will be a hybrid solution, as neither approach provides a total solution.
The immutable packaging approach has the advantage of reusing the delivery pipe-
line as a control mechanism, and offering more predictable state. Placing most of
your configuration into immutable artifacts is a reasonable trade-off. Nonetheless, you
should plan for the provision and management of dynamic configuration.

 Two dangerous anti-patterns should be avoided when it comes to configuration.
Using microservices doesn’t protect you from them; remain vigilant!

Automation workarounds
Configuration can be used to code around limitations of your automation tooling.
For example, using feature flags rather than generating new artifacts. Too much of
this and you create an uncontrolled secondary command structure that damages
the properties of the system that makes immutability powerful.
Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

91Running a microservice system
Turing disease
Configuration formats tend to be extended with programming constructs over
time, mostly as conveniences to avoid repetition1. Now you’ve a new unasked-for
programming language in your system with no formal grammar, undefined behav-
ior, and no debugging tools. Good luck!

5.7.7 Security

The microservice architecture doesn’t offer any inherent security benefits, and intro-
duces new attack vectors if care isn’t taken. A common temptation is to share
microservice messages with the outside world. This is dangerous, as it exposes every
microservice as an attack surface.

 There must be an absolute separation. You need a "Demilitarized Zone" (DMZ)
between the internal world of microservice messages, and the outside world of third
party clients. The DMZ must translate between the two. In practice this means that a
microservice system should expose traditional integration points, such as REST APIs,
and then convert requests to these APIs into messages. This allows for strict sanitiza-
tion of input.

 Internally, you can’t ignore that microservices communicate over a network, and
networks represent an opportunity for attack. Your microservice should live within
their own private networks with well-defined ingress and egress routes. The rest of the
system uses these routes to interact with the microservice system. The specific
microservices to which messages are routed aren’t exposed.

 These precautions may still be insufficient, and you need to consider the case
where an attacker has some level of access to the microservice network. You can apply
the security principle of "defense in depth" to strengthen your security in layers. It’s
always a trade-off between stronger security and operational impact.

 Let’s build up a few layers. Microservices can be given a right of refusal. They can
be made more pedantic in the messages they accept. Highly paranoid services lead to
higher error rates, but can delay attackers and make attacks more expensive. For
example, you can limit the amount of data that a service returns for any one request.
This approach means custom work for each service.

 Communication between services can require shared secrets, and as a further
layer, signed messages. This protects against messages injected into the network by an
attacker. The distribution and cycling of the secrets introduces operational complex-
ity. The signing of messages requires key distribution and introduces latency.

 If your data is sensitive, you can encrypt all communication between microservices.
This also introduces latency and management overhead, and isn’t to be undertaken
lightly. Consider using the Merge pattern for extremely sensitive data flows to avoid
the network as much as possible.

1 Initially declarative domain specific languages, such as configuration formats, tend to accumulate program-
matic features over time. It’s surprisingly easy to achieve Turing completeness with a limited set of operations.
Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

92 CHAPTER 5 Deployment
 The need for secure storage and management of secrets and encryption keys is
necessary if these layers are to be effective. It’s pointless to encrypt messages if the keys
are easily accessible within the network. And yet, microservices need to be able to
access the secrets and keys. To solve this problem, you need to introduce another net-
work element—a key management service that provides secure storage, access con-
trol, and audit capabilities1.

5.7.8 Staging

The staging system is the control mechanism for the continuous delivery pipeline. It
encompasses traditional elements, such as a build server for continuous integration. It
can can also consist of multiple systems that test various aspects of the system, such as
performance.

 The staging system can also be used to provide manual gates to the delivery pipe-
line. These are often unavoidable, either politically, or legally. Over time, the effective-
ness of continuous delivery in managing risk and delivering business value quickly can
be used to create sufficient organizational confidence to relax overly ceremonial man-
ual sign-offs.

 The staging system provides a self-service mechanism for development teams to
push updates all the way to production. The empowerment of developer teams to do
this is a critical component in the success of continuous delivery. We’ll discuss this
human factor in Chapter 7.

 Staging should collect statistics to measure the velocity and quality of code delivery
over time. It’s important to know how long it takes, on average, to take code from con-
cept to production, for a given risk level, as this tells you how efficient your continu-
ous delivery pipeline is.

 The staging system has the most variance between projects and organizations. The
level of testing, the number of staging steps, and the mechanism of artifact genera-
tion, are all highly context specific. As you grow the use of microservices and continu-
ous delivery in your organization, you should avoid being too prescriptive in your
definition of the staging function. You must allow teams to adapt to their own circum-
stances.

5.7.9 Development

The development environment needed for microservices should enable the devel-
oper to focus on a small set of services at a time, often a single service. The message
abstraction layer comes into its own here as it makes it easy to mock the behavior of
other services2. Instead of having to implement a complex object hierarchy, microser-
vice mocking only requires implementing sample message flows. This makes it possi-
ble to unit test microservices in complete isolation from the rest of the system.

1 Some examples are Hashicorp Vault, AWS KVS and if money is no object, HSMs (Hardware Security
Modules).

2 For a practical example, see the code in Chapter 9.
Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

93Summary
 Microservices can be specified as a relation between inbound and outbound mes-
sages. This allows the developer to focus on a small part of the system. It also enables
more efficient parallel work, as messages from other microservices (which may not
even be written) can easily be mocked.

 Isolation isn’t always possible or appropriate. Developers often need to run small
subsets of the system locally. Tooling is needed to make this practical. It isn’t advis-
able for development to become dependent on running a full replica of the produc-
tion system. As production grows to hundreds of different services, and beyond, it
becomes extremely resource intensive to run services locally, and ultimately it
becomes impossible.

 If the developer is running only a subset of the system, how do you ensure that
appropriate messages are provided for the other parts of the system? One common
anti-pattern is to use the build or staging systems to do this. Developers end up work-
ing against shared resources that have extremely non-deterministic state. This is the
same anti-pattern as having a shared development database.

 Each developer should provide a set of mock messages for their service. Where do
these mock messages live? At one extreme you can place all mock message flows in a
common mocking service. All developers commit code to this service, but conflicts are
still rare, as work isn’t likely to overlap. At the other extreme you can provide a mock
service along with each service implementation. The mock service is an extremely sim-
ple service that returns hard-coded responses.

 The practical solution for most teams is somewhere in the middle. Start with a sin-
gle universal mocking service, and apply the Split pattern whenever it becomes too
unwieldy. Sets of services with a common focus tend to get their own mocking service.
The development environment is typically a small set of actual services, along with one
or two mocking services. This keeps the number of service processes needed on a
developer machine to a minimum.

 The mock messages are defined by the developers building a given microservice.
This has the unfortunate side-effect that the developer focuses on expected behavior.
Others use their service in unexpected ways, and the mocking is incomplete. If you
allow other developers to add mock messages to services they don’t own, then the
mocks quickly diverge from reality. The solution is to add captured messages to the list
of sample messages. Capture sample message flows from the production or staging
logs, and add them to the mock service. This can be done manually for even medium-
sized systems.

5.8 Summary
This chapter examined the nature of failure in complex systems. Failure is inevitable,
and must be accepted. Starting from that perspective, you can work to distribute fail-
ure more evenly over time, and avoid high impact catastrophes.

 Traditional approaches to software quality are predicated on a false belief in
perfectionism. Enterprise software systems aren’t desktop calculators, and won’t
Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

94 CHAPTER 5 Deployment
give the correct answer 100% of the time. The closer you want to get to 100%,
the more expensive it gets.

 The risk of failure is much higher than generally believed. Simple mathematical
modeling of risk probabilities in component based systems (such as enterprise
software) brings this reality starkly into focus.

 Microservices provide an opportunity to measure risk more accurately. This
enables you to define acceptable error rates that your system must meet.

 By packaging microservices into immutable units of deployment, you can
define a set of deployment patterns that mitigate risk and can be automated for
efficient management of your production systems.

 The accurate measurement of risk enables the construction of a continuous
delivery pipeline that enables developers to push changes to microservices to
production a high velocity and high frequency, whilst maintaining acceptable
risk levels.

This chapter refrained from prescribing specific techniques and tooling. As a software
architect you need the freedom to make these decisions yourself. Rather, the focus on
fundamentals, and basic patterns gives you a framework to help make these decisions.
You’ll need to adapt the principles in this chapter to your own context.

Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

95Summary

Microservices are small, but they offer big value. A
microservice is a very small piece of a larger system that
can be coded by one developer within one iteration.
Microservices can be added and removed individually,
new developers can be immediately productive, and leg-
acy code is easily replaced. Developers are no longer
hampered by the communication and coordination
overhead caused by monolithic systems. Savvy businesses
are discovering that software development productivity
can be greatly enhanced with the right engineering
approach that enables even junior developers to double
their productivity, while reducing delivery risk.

 The Tao of Microservices teaches you the path to understanding how to apply
microservices architecture with your own real-world projects. This high-level book
offers you a conceptual view of microservice architectures, along with core concepts
and their application. You'll also find a detailed case study for the nodezoo.com sys-
tem, including all source code and documentation. By the end of the book, you'll
have explored in depth the key ideas of the microservice architecture and will be able
to design, analyze and implement systems based on this architecture.

What's inside:

 Key principles of the microservice architecture
 Applying these principles to real-world projects
 Implementing large-scale systems
 Detailed case study

This book is for developers, architects, or managers who want to deliver faster, meet
changing business requirements, and build scalable and robust systems.

Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

https://www.manning.com/books/the-tao-of-microservices
https://www.manning.com/books/the-tao-of-microservices

Utilizing microservices leads to many, many deployments all practicing
continuous delivery at the same time, so it is important to base deployments on
easy-to-use yet robust technologies. One such technology is Docker. This chapter
gives you a taste for what Docker can do, and you will see that it fits well with the
techniques described in the previous chapter.

Running Software
in Containers

Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

5

Chapter 2 from Docker in
Action by Jeff Nickoloff.

Running software
in containers
Before the end of this chapter you’ll understand all the basics for working with
containers and how Docker helps solve clutter and conflict problems. You’re going
to work through examples that introduce Docker features as you might encounter
them in daily use.

2.1 Getting help with the Docker command line
You’ll use the docker command-line program throughout the rest of this book. To
get you started with that, I want to show you how to get information about

This chapter covers
 Running interactive and daemon terminal

programs with containers

 Containers and the PID namespace

 Container configuration and output

 Running multiple programs in a container

 Injecting configuration into containers

 Durable containers and the container life cycle

 Cleaning up
97

Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

https://www.manning.com/books/docker-in-action
https://www.manning.com/books/docker-in-action

98 CHAPTER 2 Running software in containers
commands from the docker program itself. This way you’ll understand how to use the
exact version of Docker on your computer. Open a terminal, or command prompt,
and run the following command:

docker help

Running docker help will display information about the basic syntax for using the
docker command-line program as well as a complete list of commands for your version
of the program. Give it a try and take a moment to admire all the neat things you can do.

 docker help gives you only high-level information about what commands are avail-
able. To get detailed information about a specific command, include the command in
the <COMMAND> argument. For example, you might enter the following command to
find out how to copy files from a location inside a container to a location on the host
machine:

docker help cp

That will display a usage pattern for docker cp, a general description of what the com-
mand does, and a detailed breakdown of its arguments. I’m confident that you’ll have
a great time working through the commands introduced in the rest of this book now
that you know how to find help if you need it.

2.2 Controlling containers: building a website monitor
Most examples in this book will use real software. Practical examples will help intro-
duce Docker features and illustrate how you will use them in daily activities. In this
first example, you’re going to install a web server called NGINX. Web servers are
programs that make website files and programs accessible to web browsers over a net-
work. You’re not going to build a website, but you are going to install and start a web
server with Docker. If you follow the instructions in this example, the web server will
be available only to other programs on your computer.

 Suppose a new client walks into your office and makes you an outrageous offer to
build them a new website. They want a website that’s closely monitored. This particu-
lar client wants to run their own operations, so they’ll want the solution you provide to
email their team when the server is down. They’ve also heard about this popular web
server software called NGINX and have specifically requested that you use it. Having
read about the merits of working with Docker, you’ve decided to use it for this project.
Figure 2.1 shows your planned architecture for the project.

 This example uses three containers. The first will run NGINX; the second will run a
program called a mailer. Both of these will run as detached containers. Detached means
that the container will run in the background, without being attached to any input or
output stream. A third program, called an agent, will run in an interactive container.
Both the mailer and agent are small scripts created for this example. In this section
you’ll learn how to do the following:

 Create detached and interactive containers
 List containers on your system
Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

99Controlling containers: building a website monitor
 View container logs
 Stop and restart containers
 Reattach a terminal to a container
 Detach from an attached container

Without further delay, let’s get started filling your client’s order.

nginx

Port 80

A container created
from the nginx image,

which depends on
network port 80

watcher

A container created from the watcher
image, which depends on the

nginx container and the mailer container

mailer

Port 33333

A container created
from the mailer image,

which depends on
network port 33333

Figure 2.1 The three containers that you’ll build in this example

2.2.1 Creating and starting a new container

When installing software with Docker, we say that we’re installing an image. There are
different ways to install an image and several sources for images. Images are covered
in depth in chapter 3. In this example we’re going to download and install an image
for NGINX from Docker Hub. Remember, Docker Hub is the public registry provided
by Docker Inc. The NGINX image is from what Docker Inc. calls a trusted repository.
Generally, the person or foundation that publishes the software controls the trusted
repositories for that software. Running the following command will download, install,
and start a container running NGINX:

docker run --detach \
Note the detach flag --name web nginx:latest

When you run this command, Docker will install nginx:latest from the NGINX
repository hosted on Docker Hub (covered in chapter 3) and run the software. After
Docker has installed and started running NGINX, one line of seemingly random char-
acters will be written to the terminal. It will look something like this:

7cb5d2b9a7eab87f07182b5bf58936c9947890995b1b94f412912fa822a9ecb5

That blob of characters is the unique identifier of the container that was just created
to run NGINX. Every time you run docker run and create a new container, that con-
tainer will get a similar unique identifier. It’s common for users to capture this output
Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

100 CHAPTER 2 Running software in containers
with a variable for use with other commands. You don’t need to do so for the purposes
of this example. After the identifier is displayed, it might not seem like anything has
happened. That's because you used the --detach option and started the program in
the background. This means that the program started but isn’t attached to your termi-
nal. It makes sense to start NGINX this way because we’re going to run a few different
programs.

 Running detached containers is a perfect fit for programs that sit quietly in the
background. That type of program is called a daemon. A daemon generally interacts
with other programs or humans over a network or some other communication tool.
When you launch a daemon or other program in a container that you want to run in
the background, remember to use either the --detach flag or its short form, -d.

 Another daemon that your client needs is a mailer. A mailer waits for connections
from a caller and then sends an email. The following command will install and run a
mailer that will work for this example:

docker run -d \
Start detached --name mailer \

This command uses the short form of the --detach flag to start a new container
named mailer in the background. At this point you’ve run two commands and deliv-
ered two-thirds of the system that your client wants. The last component, called the
agent, is a good fit for an interactive container.

2.2.2 Running interactive containers

Programs that interact with users tend to feel more interactive. A terminal-based text
editor is a great example. The docker command-line tool is a perfect example of an
interactive terminal program. These types of programs might take input from the user
or display output on the terminal. Running interactive programs in Docker requires
that you bind parts of your terminal to the input or output of a running container.

 To get started working with interactive containers, run the following command:

docker run --interactive --tty \ Create a virtual terminal
and bind stdin --link web:web \

 --name web_test \
 busybox:latest /bin/sh

The command uses two flags on the run command: --interactive (or -i) and –-tty
(or –t). First, the --interactive option tells Docker to keep the standard input
stream (stdin) open for the container even if no terminal is attached. Second, the
--tty option tells Docker to allocate a virtual terminal for the container, which will
allow you to pass signals to the container. This is usually what you want from an inter-
active command-line program. You’ll usually use both of these when you’re running
an interactive program like a shell in an interactive container.
Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

101Controlling containers: building a website monitor
 Just as important as the interactive flags, when you started this container you speci-
fied the program to run inside the container. In this case you ran a shell program
called sh. You can run any program that’s available inside the container.

 The command in the interactive container example creates a container, starts a
UNIX shell, and is linked to the container that’s running NGINX (linking is covered in
chapter 5). From this shell you can run a command to verify that your web server is
running correctly:

wget -O - http://web:80/

This uses a program called wget to make an HTTP request to the web server (the
NGINX server you started earlier in a container) and then display the contents of the
web page on your terminal. Among the other lines, there should be a message like
“Welcome to NGINX!” If you see that message, then everything is working correctly
and you can go ahead and shut down this interactive container by typing exit. This
will terminate the shell program and stop the container.

 It’s possible to create an interactive container, manually start a process inside that
container, and then detach your terminal. You can do so by holding down the Crtl (or
Control) key and pressing P and then Q. This will work only when you’ve used the
--tty option.

 To finish the work for your client, you need to start an agent. This is a monitoring
agent that will test the web server as you did in the last example and send a message
with the mailer if the web server stops. This command will start the agent in an inter-
active container using the short-form flags:

docker run -it \ Create a virtual terminal
and bind stdin --name agent \

 --link web:insideweb \
 --link mailer:insidemailer \
 dockerinaction/ch2_agent

When running, the container will test the web container every second and print a
message like the following:

System up.

Now that you’ve seen what it does, detach your terminal from the container. Specifi-
cally, when you start the container and it begins writing “System up,” hold the Ctrl (or
Control) key and then press P and then Q. After doing so you’ll be returned to the
shell for your host computer. Do not stop the program; otherwise, the monitor will
stop checking the web server.

 Although you’ll usually use detached or daemon containers for software that you
deploy to servers on your network, interactive containers are very useful for running
software on your desktop or for manual work on a server. At this point you’ve started
all three applications in containers that your client needs. Before you can confidently
claim completion, you should test the system.
Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

102 CHAPTER 2 Running software in containers
2.2.3 Listing, stopping, restarting, and viewing output of containers

The first thing you should do to test your current setup is check which containers are
currently running by using the docker ps command:

docker ps

Running the command will display the following information about each running
container:

 The container ID
 The image used
 The command executed in the container
 The time since the container was created
 The duration that the container has been running
 The network ports exposed by the container
 The name of the container

At this point you should have three running containers with names: web, mailer, and
agent. If any is missing but you’ve followed the example thus far, it may have been mis-
takenly stopped. This isn’t a problem because Docker has a command to restart a con-
tainer. The next three commands will restart each container using the container
name. Choose the appropriate ones to restart the containers that were missing from
the list of running containers.

docker restart web
docker restart mailer
docker restart agent

Now that all three containers are running, you need to test that the system is operat-
ing correctly. The best way to do that is to examine the logs for each container. Start
with the web container:

docker logs web

That should display a long log with several lines that contain this substring:

"GET / HTTP/1.0" 200

This means that the web server is running and that the agent is testing the site. Each
time the agent tests the site, one of these lines will be written to the log. The docker
logs command can be helpful for these cases but is dangerous to rely on. Anything
that the program writes to the stdout or stderr output streams will be recorded in this
log. The problem with this pattern is that the log is never rotated or truncated, so the
data written to the log for a container will remain and grow as long as the container
exists. That long-term persistence can be a problem for long-lived processes. A better
way to work with log data uses volumes and is discussed in chapter 4.
Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

103Solved problems and the PID namespace
 You can tell that the agent is monitoring the web server by examining the logs for
web alone. For completeness you should examine the log output for mailer and agent
as well:

docker logs mailer
docker logs agent

The logs for mailer should look something like this:

CH2 Example Mailer has started.

The logs for agent should contain several lines like the one you watched it write when
you started the container:

System up.

TIP The docker logs command has a flag, --follow or -f, that will display
the logs and then continue watching and updating the display with changes
to the log as they occur. When you’ve finished, press Ctrl (or Command) and
the C key to interrupt the logs command.

Now that you’ve validated that the containers are running and that the agent can
reach the web server, you should test that the agent will notice when the web con-
tainer stops. When that happens, the agent should trigger a call to the mailer, and the
event should be recorded in the logs for both agent and mailer. The docker stop
command tells the program with PID #1 in the container to halt. Use it in the follow-
ing commands to test the system:

docker stop web Stop the web server by
stopping the containerdocker logs mailer Wait a couple seconds and

check the mailer logs

Look for a line at the end of the mailer logs that reads like:

“Sending email: To: admin@work Message: The service is down!”

That line means the agent successfully detected that the NGINX server in the con-
tainer named web had stopped. Congratulations! Your client will be happy, and you’ve
built your first real system with containers and Docker.

 Learning the basic Docker features is one thing, but understanding why they’re
useful and how to use them in building more comprehensive systems is another task
entirely. The best place to start learning that is with the process identifier namespace
provided by Linux.

2.3 Solved problems and the PID namespace
Every running program—or process—on a Linux machine has a unique number
called a process identifier (PID). A PID namespace is the set of possible numbers that
identify processes. Linux provides facilities to create multiple PID namespaces. Each
Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

104 CHAPTER 2 Running software in containers
namespace has a complete set of possible PIDs. This means that each PID namespace
will contain its own PID 1, 2, 3, and so on. From the perspective of a process in one
namespace, PID 1 might refer to an init system process like runit or supervisord. In
a different namespace, PID 1 might refer to a command shell like bash. Creating a PID
namespace for each container is a critical feature of Docker. Run the following to see
it in action:

docker run -d --name namespaceA \
 busybox:latest /bin/sh -c "sleep 30000"
docker run -d --name namespaceB \
 busybox:latest /bin/sh -c "nc -l -p 0.0.0.0:80"

docker exec namespaceA ps b
docker exec namespaceB ps c
Command b above should generate a process list similar to the following:

PID USER COMMAND
 1 root /bin/sh -c sleep 30000
 5 root sleep 30000
 6 root ps

Command c above should generate a slightly different process list:

PID USER COMMAND
 1 root /bin/sh -c nc -l -p 0.0.0.0:80
 7 root nc -l -p 0.0.0.0:80
 8 root ps

In this example you use the docker exec command to run additional processes in a
running container. In this case the command you use is called ps, which shows all the
running processes and their PID. From the output it’s clear to see that each container
has a process with PID 1.

 Without a PID namespace, the processes running inside a container would share
the same ID space as those in other containers or on the host. A container would be
able to determine what other processes were running on the host machine. Worse,
namespaces transform many authorization decisions into domain decisions. That
means processes in one container might be able to control processes in other con-
tainers. Docker would be much less useful without the PID namespace. The Linux
features that Docker uses, such as namespaces, help you solve whole classes of soft-
ware problems.

 Like most Docker isolation features, you can optionally create containers without
their own PID namespace. You can try this yourself by setting the --pid flag on docker
create or docker run and setting the value to host. Try it yourself with a container
running BusyBox Linux and the ps Linux command:

docker run --pid host busybox:latest ps Should list all processes
running on the computer
Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

105Solved problems and the PID namespace

Start
sec

insta
Consider the previous web-monitoring example. Suppose you were not using Docker
and were just running NGINX directly on your computer. Now suppose you forgot that
you had already started NGINX for another project. When you start NGINX again, the
second process won’t be able to access the resources it needs because the first process
already has them. This is a basic software conflict example. You can see it in action by
trying to run two copies of NGINX in the same container:

docker run –d --name webConflict nginx:latest
docker logs webConflict

The output should
be empty

docker exec webConflict nginx -g 'daemon off;' Start a second nginx process
in the same container

The last command should display output like:

2015/03/29 22:04:35 [emerg] 10#0: bind() to 0.0.0.0:80 failed (98:
Address already in use)
nginx: [emerg] bind() to 0.0.0.0:80 failed (98: Address already in use)
...

The second process fails to start properly and reports that the address it needs is
already in use. This is called a port conflict, and it’s a common issue in real-world sys-
tems where several processes are running on the same computer or multiple people
contribute to the same environment. It’s a great example of a conflict problem that
Docker simplifies and solves. Run each in a different container, like this:

docker run -d --name webA nginx:latest
Start the first nginx instance

docker logs webA Verify that it is working,
should be empty

 the
ond
nce

docker run -d --name webB nginx:latest

docker logs webB Verify that it is working,
should be empty

To generalize ways that programs might conflict with each other, let’s consider a park-
ing lot metaphor. A paid parking lot has a few basic features: a payment system, a few
reserved parking spaces, and numbered spaces.

 Tying these features back to a computer system, a payment system represents some
shared resource with a specific interface. A payment system might accept cash or
credit cards or both. People who carry only cash won’t be able to use a garage with a
payment system that accepts only credit cards, and people without money to pay the
fee won’t be able to park in the garage at all.

 Similarly, programs that have a dependency on some shared component such as a
specific version of a programming language library won’t be able to run on computers
that either have a different version of that library or lack that library completely. Just
like if two people who each use a different payment method want to park in the same
garage that accepts only one method, conflict arises when you want to use two pro-
grams that require different versions of a library.
Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

106 CHAPTER 2 Running software in containers
 Reserved spaces in this metaphor represent scarce resources. Imagine that the park-
ing garage attendant assigns the same reserved space to two cars. As long as only one
driver wanted to use the garage at a time, there would be no issue. But if both wanted
to use the space simultaneously, the first one in would win and the second wouldn’t be
able to park. As you’ll see in the conflict example in section 2.7, this is the same type of
conflict that happens when two programs try to bind to the same network port.

 Lastly, consider what would happen if someone changed the space numbers in the
parking lot while cars were parked. When owners return and try to locate their vehicles,
they may be unable to do so. Although this is clearly a silly example, it’s a great meta-
phor for what happens to programs when shared environment variables change. Pro-
grams often use environment variables or registry entries to locate other resources that
they need. These resources might be libraries or other programs. When programs con-
flict with each other, they might modify these variables in incompatible ways.

 Here are some common conflict problems:

 Two programs want to bind to the same network port.
 Two programs use the same temporary filename, and file locks are preventing

that.
 Two programs want to use different versions of some globally installed library.
 Two copies of the same program want to use the same PID file.
 A second program you installed modified an environment variable that another

program uses. Now the first program breaks.

All these conflicts arise when one or more programs have a common dependency but
can’t agree to share or have different needs. Like in the earlier port conflict example,
Docker solves software conflicts with such tools as Linux namespaces, file system roots,
and virtualized network components. All these tools are used to provide isolation to
each container.

2.4 Eliminating metaconflicts: building a website farm
In the last section you saw how Docker helps you avoid software conflicts with process
isolation. But if you’re not careful, you can end up building systems that create
metaconflicts, or conflicts between containers in the Docker layer.

 Consider another example where a client has asked you to build a system where
you can host a variable number of websites for their customers. They’d also like to
employ the same monitoring technology that you built earlier in this chapter. Simply
expanding the system you built earlier would be the simplest way to get this job done
without customizing the configuration for NGINX. In this example you’ll build a sys-
tem with several containers running web servers and a monitoring agent (agent) for
each web server. The system will look like the architecture described in figure 2.2.

 One’s first instinct might be to simply start more web containers. That’s not as sim-
ple as it sounds. Identifying containers gets complicated as the number of containers
increases.
Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

107Eliminating metaconflicts: building a website farm
2.4.1 Flexible container identification

The best way to find out why simply creating more copies of the NGINX container you
used in the last example is a bad idea is to try it for yourself:

docker run -d --name webid nginx Create a container
named "webid"

docker run -d --name webid nginx Create another container
named "webid"

The second command here will fail with a conflict error:

FATA[0000] Error response from daemon: Conflict. The name "webid" is
already in use by container 2b5958ba6a00. You have to delete (or rename)
that container to be able to reuse that name.

Using fixed container names like web is useful for experimentation and documenta-
tion, but in a system with multiple containers, using fixed names like that can create
conflicts. By default Docker assigns a unique (human-friendly) name to each con-
tainer it creates. The --name flag simply overrides that process with a known value. If a
situation arises where the name of a container needs to change, you can always
rename the container with the docker rename command:

docker rename webid webid-old Rename the current web
container to "webid-old"docker run -d --name webid nginx Create another container

named "webid"

Renaming containers can help alleviate one-off naming conflicts but does little to
help avoid the problem in the first place. In addition to the name, Docker assigns a
unique identifier that was mentioned in the first example. These are hex-encoded
1024-bit numbers and look something like this:

7cb5d2b9a7eab87f07182b5bf58936c9947890995b1b94f412912fa822a9ecb5

nginx

Port 80

watcher

nginx

Port 80

mailer

Port 33333

watcher

...
nginx

Port 80

watcher

Figure 2.2 A fleet of web server containers
and related monitoring agents
Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

108 CHAPTER 2 Running software in containers
When containers are started in detached mode, their identifier will be printed to the
terminal. You can use these identifiers in place of the container name with any com-
mand that needs to identify a specific container. For example, you could use the previ-
ous ID with a stop or exec command:

docker exec \
 7cb5d2b9a7eab87f07182b5bf58936c9947890995b1b94f412912fa822a9ecb5 \
ps

docker stop \
 7cb5d2b9a7eab87f07182b5bf58936c9947890995b1b94f412912fa822a9ecb5

The high probability of uniqueness of the IDs that are generated means that it is
unlikely that there will ever be a collision with this ID. To a lesser degree it is also
unlikely that there would even be a collision of the first 12 characters of this ID on the
same computer. So in most Docker interfaces, you’ll see container IDs truncated to
their first 12 characters. This makes generated IDs a bit more user friendly. You can
use them wherever a container identifier is required. So the previous two commands
could be written like this:

docker exec 7cb5d2b9a7ea ps
docker stop 7cb5d2b9a7ea

Neither of these IDs is particularly well suited for human use. But they work very well
with scripts and automation techniques. Docker has several means of acquiring the ID
of a container to make automation possible. In these cases the full or truncated
numeric ID will be used.

 The first way to get the numeric ID of a container is to simply start or create a new
one and assign the result of the command to a shell variable. As you saw earlier, when
a new container is started in detached mode, the container ID will be written to the
terminal (stdout). You’d be unable to use this with interactive containers if this were
the only way to get the container ID at creation time. Luckily you can use another
command to create a container without starting it. The docker create command is
very similar to docker run, the primary difference being that the container is created
in a stopped state:

docker create nginx

The result should be a line like:

b26a631e536d3caae348e9fd36e7661254a11511eb2274fb55f9f7c788721b0d

If you’re using a Linux command shell like sh or bash, you can simply assign that
result to a shell variable and use it again later:

CID=$(docker create nginx:latest) This will work on POSIX-
compliant shellsecho $CID
Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

109Eliminating metaconflicts: building a website farm
Shell variables create a new opportunity for conflict, but the scope of that conflict is
limited to the terminal session or current processing environment that the script was
launched in. Those conflicts should be easily avoidable because one use or program is
managing that environment. The problem with this approach is that it won’t help if
multiple users or automated processes need to share that information. In those cases
you can use a container ID (CID) file.

 Both the docker run and docker create commands provide another flag to write
the ID of a new container to a known file:

docker create --cidfile /tmp/web.cid nginx Create a new stopped
container

cat /tmp/web.cid
Inspect the file

Like the use of shell variables, this feature increases the opportunity for conflict. The
name of the CID file (provided after --cidfile) must be known or have some known
structure. Just like manual container naming, this approach uses known names in a
global (Docker-wide) namespace. The good news is that Docker won’t create a new
container using the provided CID file if that file already exists. The command will fail
just as it does when you create two containers with the same name.

 One reason to use CID files instead of names is that CID files can be shared with
containers easily and renamed for that container. This uses a Docker feature called
volumes, which is covered in chapter 4.

TIP One strategy for dealing with CID file-naming collisions is to partition the
namespace by using known or predictable path conventions. For example, in
this scenario you might use a path that contains all web containers under a
known directory and further partition that directory by the customer ID. This
would result in a path like /containers/web/customer1/web.cid or /contain-
ers/web/customer8/web.cid.

In other cases, you can use other commands like docker ps to get the ID of a con-
tainer. For example, if you want to get the truncated ID of the last created container,
you can use this:

CID=$(docker ps --latest --quiet) This will work on POSIX-
compliant shellsecho $CID

CID=$(docker ps -l –q) Run again with the
short-form flagsecho $CID

TIP If you want to get the full container ID, you can use the --no-trunc
option on the docker ps command.

Automation cases are covered by the features you’ve seen so far. But even though
truncation helps, these container IDs are rarely easy to read or remember. For this rea-
son, Docker also generates human-readable names for each container.
Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

110 CHAPTER 2 Running software in containers
 The naming convention uses a personal adjective, an underscore, and the last
name of an influential scientist, engineer, inventor, or other such thought leader.
Examples of generated names are compassionate_swartz, hungry_goodall, and
distracted_turing. These seem to hit a sweet spot for readability and memory. When
you’re working with the docker tool directly, you can always use docker ps to look up
the human-friendly names.

 Container identification can be tricky, but you can manage the issue by using the
ID and name-generation features of Docker.

2.4.2 Container state and dependencies

With this new knowledge, the new system might looks something like this:

MAILER_CID=$(docker run -d dockerinaction/ch2_mailer) Make sure mailer from
first example is runningWEB_CID=$(docker create nginx)

AGENT_CID=$(docker create --link $WEB_CID:insideweb \
 --link $MAILER_CID:insidemailer \
 dockerinaction/ch2_agent)

This snippet could be used to seed a new script that launches a new NGINX and agent
instance for each of your client’s customers. You can use docker ps to see that they’ve
been created:

docker ps

The reason neither the NGINX nor the agent was included with the output has to do
with container state. Docker containers will always be in one of four states and transi-
tion via command according to the diagram in figure 2.3.

pausedrunning

restarting
stop

restart
restart | start stop | kill

create

run

remove

unpause

pause

exited
Figure 2.3 The state
transition diagram for Docker
containers as reported by the
status column

 Neither of the new containers you started appears in the list of containers because
docker ps shows only running containers by default. Those containers were specifi-
cally created with docker create and never started (the exited state). To see all the
containers (including those in the exited state), use the -a option:

docker ps -a
Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

111Eliminating metaconflicts: building a website farm
Now that you’ve verified that both of the containers were created, you need to start
them. For that you can use the docker start command:

docker start $AGENT_CID
docker start $WEB_CID

Running those commands will result in an error. The containers need to be started in
reverse order of their dependency chain. Because you tried to start the agent con-
tainer before the web container, Docker reported a message like this one:

Error response from daemon: Cannot start container
03e65e3c6ee34e714665a8dc4e33fb19257d11402b151380ed4c0a5e38779d0a: Cannot
link to a non running container: /clever_wright AS
/modest_hopper/insideweb

FATA[0000] Error: failed to start one or more containers

In this example, the agent container has a dependency on the web container. You
need to start the web container first:

docker start $WEB_CID
docker start $AGENT_CID

This makes sense when you consider the mechanics at work. The link mechanism
injects IP addresses into dependent containers, and containers that aren’t running
don’t have IP addresses. If you tried to start a container that has a dependency on a
container that isn’t running, Docker wouldn’t have an IP address to inject. Container
linking is covered in chapter 5, but it’s useful to demonstrate this important point in
starting containers.

 Whether you’re using docker run or docker create, the resulting containers
need to be started in the reverse order of their dependency chain. This means that cir-
cular dependencies are impossible to build using Docker container relationships.

 At this point you can put everything together into one concise script that looks like
the following:

MAILER_CID=$(docker run -d dockerinaction/ch2_mailer)

WEB_CID=$(docker run -d nginx)

AGENT_CID=$(docker run -d \
 --link $WEB_CID:insideweb \
 --link $MAILER_CID:insidemailer \
 dockerinaction/ch2_agent)

Now you’re confident that this script can be run without exception each time your cli-
ent needs to provision a new site. Your client has come back and thanked you for the
web and monitoring work you’ve completed so far, but things have changed.

 They’ve decided to focus on building their websites with WordPress (a popular
open source content-management and blogging program). Luckily, WordPress is pub-
lished through Docker Hub in a repository named wordpress:4. All you’ll need to
Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

112 CHAPTER 2 Running software in containers
deliver is a set of commands to provision a new WordPress website that has the same
monitoring and alerting features that you’ve already delivered.

 The interesting thing about content-management systems and other stateful sys-
tems is that the data they work with makes each running program specialized. Adam’s
WordPress blog is different from Betty’s WordPress blog, even if they’re running the
same software. Only the content is different. Even if the content is the same, they’re
different because they’re running on different sites.

 If you build systems or software that know too much about their environment—
like addresses or fixed locations of dependency services—it’s difficult to change that
environment or reuse the software. You need to deliver a system that minimizes envi-
ronment dependence before the contract is complete.

2.5 Building environment-agnostic systems
Much of the work associated with installing software or maintaining a fleet of comput-
ers lies in dealing with specializations of the computing environment. These special-
izations come as global-scoped dependencies (like known host file system locations),
hard-coded deployment architectures (environment checks in code or configura-
tion), or data locality (data stored on a particular computer outside the deployment
architecture). Knowing this, if your goal is to build low-maintenance systems, you
should strive to minimize these things.

 Docker has three specific features to help build environment-agnostic systems:

 Read-only file systems
 Environment variable injection
 Volumes

Working with volumes is a big subject and the topic of chapter 4. In order to learn the
first two features, consider a requirements change for the example situation used in
the rest of this chapter.

 WordPress uses a database program called MySQL to store most of its data, so it’s a
good idea to start with making sure that a container running WordPress has a read-
only file system.

2.5.1 Read-only file systems

Using read-only file systems accomplishes two positive things. First, you can have con-
fidence that the container won’t be specialized from changes to the files it contains.
Second, you have increased confidence that an attacker can’t compromise files in the
container.

 To get started working on your client’s system, create and start a container from
the WordPress image using the --read-only flag:

docker run -d --name wp --read-only wordpress:4

When this is finished, check that the container is running. You can do so using any of
the methods introduced previously, or you can inspect the container metadata
Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

113Building environment-agnostic systems
directly. The following command will print true if the container named wp is running
and false otherwise.

docker inspect --format "{{.State.Running}}" wp

The docker inspect command will display all the metadata (a JSON document) that
Docker maintains for a container. The format option transforms that metadata, and in
this case it filters everything except for the field indicating the running state of the
container. This command should simply output false.

 In this case, the container isn’t running. To determine why, examine the logs for
the container:

docker logs wp

That should output something like:

error: missing WORDPRESS_DB_HOST and MYSQL_PORT_3306_TCP environment
variables
Did you forget to --link some_mysql_container:mysql or set an external db
with -e WORDPRESS_DB_HOST=hostname:port?

It appears that WordPress has a dependency on a MySQL database. A database is a pro-
gram that stores data in such a way that it’s retrievable and searchable later. The good
news is that you can install MySQL using Docker just like WordPress:

docker run -d --name wpdb \
 -e MYSQL_ROOT_PASSWORD=ch2demo \
 mysql:5

Once that is started, create a different WordPress container that’s linked to this new
database container (linking is covered in depth in chapter 5):

docker run -d --name wp2 \
Use a unique name --link wpdb:mysql \ Create a link

to the database -p 80 --read-only \
 wordpress:4

Check one more time that WordPress is running correctly:

docker inspect --format "{{.State.Running}}" wp2

You can tell that WordPress failed to start again. Examine the logs to determine the
cause:

docker logs wp2

There should be a line in the logs that is similar to the following:

... Read-only file system: AH00023: Couldn't create the rewrite-map mutex
(file /var/lock/apache2/rewrite-map.1)

You can tell that WordPress failed to start again, but this time the problem is that it’s
trying to write a lock file to a specific location. This is a required part of the startup
Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

114 CHAPTER 2 Running software in containers
process and is not a specialization. It’s appropriate to make an exception to the read-
only file system in this case. You need to use a volume to make that exception. Use the
following to start WordPress without any issues:

Start the container with specific volumes for read only exceptions
docker run -d --name wp3 --link wpdb:mysql -p 80 \
 -v /run/lock/apache2/ \ Create specific volumes

for writeable space -v /run/apache2/ \
 --read-only wordpress:4

An updated version of the script you’ve been working on should look like this:

SQL_CID=$(docker create -e MYSQL_ROOT_PASSWORD=ch2demo mysql:5)

docker start $SQL_CID

MAILER_CID=$(docker create dockerinaction/ch2_mailer)
docker start $MAILER_CID

WP_CID=$(docker create --link $SQL_CID:mysql -p 80 \
 -v /run/lock/apache2/ -v /run/apache2/ \
 --read-only wordpress:4)

docker start $WP_CID

AGENT_CID=$(docker create --link $WP_CID:insideweb \
 --link $MAILER_CID:insidemailer \
 dockerinaction/ch2_agent)

docker start $AGENT_CID

Congratulations, at this point you should have a running WordPress container! By
using a read-only file system and linking WordPress to another container running a
database, you can be sure that the container running the WordPress image will never
change. This means that if there is ever something wrong with the computer running
a client’s WordPress blog, you should be able to start up another copy of that con-
tainer elsewhere with no problems.

 But there are two problems with this design. First, the database is running in a con-
tainer on the same computer as the WordPress container. Second, WordPress is using
several default values for important settings like database name, administrative user,
administrative password, database salt, and so on. To deal with this problem, you
could create several versions of the WordPress software, each with a special configura-
tion for the client. Doing so would turn your simple provisioning script into a monster
that creates images and writes files. A better way to inject that configuration would be
through the use of environment variables.

2.5.2 Environment variable injection

Environment variables are key-value pairs that are made available to programs
through their execution context. They let you change a program’s configuration
without modifying any files or changing the command used to start the program.
Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

115Building environment-agnostic systems

Inje
environ

var
 Docker uses environment variables to communicate information about dependent
containers, the host name of the container, and other convenient information for pro-
grams running in containers. Docker also provides a mechanism for a user to inject
environment variables into a new container. Programs that know to expect important
information through environment variables can be configured at container-creation
time. Luckily for you and your client, WordPress is one such program.

 Before diving into WordPress specifics, try injecting and viewing environment vari-
ables on your own. The UNIX command env displays all the environment variables in
the current execution context (your terminal). To see environment variable injection
in action, use the following command:

ct an
ment
iable

docker run --env MY_ENVIRONMENT_VAR="this is a test" \
 busybox:latest \
 env

Execute the env command
inside the container

The --env flag—or -e for short—can be used to inject any environment variable. If
the variable is already set by the image or Docker, then the value will be overridden.
This way programs running inside containers can rely on the variables always being
set. WordPress observes the following environment variables:

 WORDPRESS_DB_HOST
 WORDPRESS_DB_USER

 WORDPRESS_DB_PASSWORD
 WORDPRESS_DB_NAME
 WORDPRESS_AUTH_KEY

 WORDPRESS_SECURE_AUTH_KEY
 WORDPRESS_LOGGED_IN_KEY
 WORDPRESS_NONCE_KEY

 WORDPRESS_AUTH_SALT
 WORDPRESS_SECURE_AUTH_SALT
 WORDPRESS_LOGGED_IN_SALT

 WORDPRESS_NONCE_SALT

TIP This example neglects the KEY and SALT variables, but any real produc-
tion system should absolutely set these values.

To get started, you should address the problem that the database is running in a con-
tainer on the same computer as the WordPress container. Rather than using linking to
satisfy WordPress’s database dependency, inject a value for the WORDPRESS_DB_HOST
variable:

docker create --env WORDPRESS_DB_HOST=<my database hostname> wordpress:4

This example would create (not start) a container for WordPress that will try to con-
nect to a MySQL database at whatever you specify at <my database hostname>.
Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

116 CHAPTER 2 Running software in containers
Because the remote database isn’t likely using any default user name or password,
you’ll have to inject values for those settings as well. Suppose the database administra-
tor is a cat lover and hates strong passwords:

docker create \
 --env WORDPRESS_DB_HOST=<my database hostname> \
 --env WORDPRESS_DB_USER=site_admin \
 --env WORDPRESS_DB_PASSWORD=MeowMix42 \
 wordpress:4

Using environment variable injection this way will help you separate the physical ties
between a WordPress container and a MySQL container. Even in the case where you
want to host the database and your customer WordPress sites all on the same machine,
you’ll still need to fix the second problem mentioned earlier. All the sites are using
the same default database name. You’ll need to use environment variable injection to
set the database name for each independent site:

docker create --link wpdb:mysql \
 -e WORDPRESS_DB_NAME=client_a_wp wordpress:4

For client A

docker create --link wpdb:mysql \
 -e WORDPRESS_DB_NAME=client_b_wp wordpress:4

For client B

Now that you’ve solved these problems, you can revise the provisioning script. First,
set the computer to run only a single MySQL container:

DB_CID=$(docker run -d -e MYSQL_ROOT_PASSWORD=ch2demo mysql:5)

MAILER_CID=$(docker run -d dockerinaction/ch2_mailer)

Then the site provisioning script would be this:

if [! -n "$CLIENT_ID"]; then Assume $CLIENT_ID variable
is set as input to script echo "Client ID not set”

 exit 1
fi

WP_CID=$(docker create \
 --link $DB_CID:mysql \

Create link using DB_CID --name wp_$CLIENT_ID \
 -p 80 \
 -v /run/lock/apache2/ -v /run/apache2/ \
 -e WORDPRESS_DB_NAME=$CLIENT_ID \
 --read-only wordpress:4)

docker start $WP_CID

AGENT_CID=$(docker create \
 --name agent_$CLIENT_ID \
 --link $WP_CID:insideweb \
 --link $MAILER_CID:insidemailer \
 dockerinaction/ch2_agent)

docker start $AGENT_CID
Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

117Building durable containers
This new script will start an instance of WordPress and the monitoring agent for each
customer and connect those containers to each other as well as a single mailer pro-
gram and MySQL database. The WordPress containers can be destroyed, restarted,
and upgraded without any worry about loss of data. Figure 2.4 shows this architecture.

wp_$CLIENT_ID agent_$CLIENT_ID

DB_CID MAILER_CID
Figure 2.4 Each WordPress and
agent container uses the same
database and mailer.

 The client should be pleased with what is being delivered. But one thing might be
bothering you. In earlier testing you found that the monitoring agent correctly noti-
fied the mailer when the site was unavailable, but restarting the site and agent
required manual work. It would be better if the system tried to automatically recover
when a failure was detected. Docker provides restart policies to help deal with that,
but you might want something more robust.

2.6 Building durable containers
There are cases where software fails in rare conditions that are temporary in nature.
Although it’s important to be made aware when these conditions arise, it’s usually at
least as important to restore the service as quickly as possible. The monitoring system
that you built in this chapter is a fine start for keeping system owners aware of prob-
lems with a system, but it does nothing to help restore service.

 When all the processes in a container have exited, that container will enter the
exited state. Remember, a Docker container can be in one of four states:

 Running
 Paused
 Restarting
 Exited (also used if the container has never been started)

A basic strategy for recovering from temporary failures is automatically restarting a
process when it exits or fails. Docker provides a few options for monitoring and
restarting containers.
Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

118 CHAPTER 2 Running software in containers
2.6.1 Automatically restarting containers

Docker provides this functionality with a restart policy. Using the --restart flag at
container-creation time, you can tell Docker to do any of the following:

 Never restart (default)
 Attempt to restart when a failure is detected
 Attempt for some predetermined time to restart when a failure is detected
 Always restart the container regardless of the condition

Docker doesn’t always attempt to immediately restart a container. If it did, that would
cause more problems than it solved. Imagine a container that does nothing but print
the time and exit. If that container was configured to always restart and Docker always
immediately restarted it, the system would do nothing but restart that container.
Instead, Docker uses an exponential backoff strategy for timing restart attempts.

 A backoff strategy determines how much time should pass between successive
restart attempts. An exponential backoff strategy will do something like double the
previous time spent waiting on each successive attempt. For example, if the first time
the container needs to be restarted Docker waits 1 second, then on the second
attempt it would wait 2 seconds, 4 seconds on the third attempt, 8 on the fourth, and
so on. Exponential backoff strategies with low initial wait times are a common service-
restoration technique. You can see Docker employ this strategy yourself by building a
container that always restarts and simply prints the time:

docker run -d --name backoff-detector --restart always busybox date

Then after a few seconds use the trailing logs feature to watch it back off and restart:

docker logs -f backoff-detector

The logs will show all the times it has already been restarted and will wait until the
next time it is restarted, print the current time, and then exit. Adding this single flag
to the monitoring system and the WordPress containers you’ve been working on
would solve the recovery issue.

 The only reason you might not want to adopt this directly is that during backoff
periods, the container isn’t running. Containers waiting to be restarted are in the
restarting state. To demonstrate, try to run another process in the backoff-detector
container:

docker exec backoff-detector echo Just a Test

Running that command should result in an error message:

Cannot run exec command ... in container ...: No active container exists
with ID ...

That means you can’t do anything that requires the container to be in a running state,
like execute additional commands in the container. That could be a problem if you
need to run diagnostic programs in a broken container. A more complete strategy is
to use containers that run init or supervisor processes.
Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

119Building durable containers
2.6.2 Keeping containers running with supervisor and startup processes

A supervisor process, or init process, is a program that’s used to launch and maintain
the state of other programs. On a Linux system, PID #1 is an init process. It starts all
the other system processes and restarts them in the event that they fail unexpectedly.
It’s a common practice to use a similar pattern inside containers to start and manage
processes.

 Using a supervisor process inside your container will keep the container running
in the event that the target process—a web server, for example—fails and is restarted.
There are several programs that might be used inside a container. The most popular
include init, systemd, runit, upstart, and supervisord. Publishing software that
uses these programs is covered in chapter 8. For now, take a look at a container that
uses supervisord.

 A company named Tutum provides software that produces a full LAMP (Linux,
Apache, MySQL PHP) stack inside a single container. Containers created this way use
supervisord to make sure that all the related processes are kept running. Start an
example container:

docker run -d -p 80:80 --name lamp-test tutum/lamp

You can see what processes are running inside this container by using the docker top
command:

docker top lamp-test

The top subcommand will show the host PID for each of the processes in the con-
tainer. You’ll see supervisord, mysql, and apache included in the list of running pro-
grams. Now that the container is running, you can test the supervisord restart
functionality by manually stopping one of the processes inside the container.

 The problem is that to kill a process inside of a container from within that con-
tainer, you need to know the PID in the container’s PID namespace. To get that list,
run the following exec subcommand:

docker exec lamp-test ps

The process list generated will have listed apache2 in the CMD column:

PID TTY TIME CMD
 1 ? 00:00:00 supervisord
433 ? 00:00:00 mysqld_safe
835 ? 00:00:00 apache2
842 ? 00:00:00 ps

The values in the PID column will be different when you run the command. Find the
PID on the row for apache2 and then insert that for <PID> in the following command:

docker exec lamp-test kill <PID>

Running this command will run the Linux kill program inside the lamp-test container
and tell the apache2 process to shut down. When apache2 stops, the supervisord
Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

120 CHAPTER 2 Running software in containers
process will log the event and restart the process. The container logs will clearly show
these events:

...

... exited: apache2 (exit status 0; expected)

... spawned: 'apache2' with pid 820

... success: apache2 entered RUNNING state, process has stayed up for >
 than 1 seconds (startsecs)

A common alternative to the use of init or supervisor programs is using a startup
script that at least checks the preconditions for successfully starting the contained soft-
ware. These are sometimes used as the default command for the container. For exam-
ple, the WordPress containers that you’ve created start by running a script to validate
and set default environment variables before starting the WordPress process. You can
view this script by overriding the default command and using a command to view the
contents of the startup script:

docker run wordpress:4 cat /entrypoint.sh

Running that command will result in an error messages like:

error: missing WORDPRESS_DB_HOST and MYSQL_PORT_3306_TCP environment
variables
...

This failed because even though you set the command to run as cat /entrypoint.sh,
Docker containers run something called an entrypoint before executing the command.
Entrypoints are perfect places to put code that validates the preconditions of a con-
tainer. Although this is discussed in depth in part 2 of this book, you need to know how
to override or specifically set the entrypoint of a container on the command line. Try
running the last command again but this time using the --entrypoint flag to specify
the program to run and using the command section to pass arguments:

docker run --entrypoint="cat" \
Use "cat" as the entrypoint

 wordpress:4 /entrypoint.sh Pass /entrypoint.sh as
the argument to cat

If you run through the displayed script, you’ll see how it validates the environment
variables against the dependencies of the software and sets default values. Once the
script has validated that WordPress can execute, it will start the requested or default
command.

 Startup scripts are an important part of building durable containers and can always
be combined with Docker restart policies to take advantage of the strengths of each.
Because both the MySQL and WordPress containers already use startup scripts, it’s
appropriate to simply set the restart policy for each in an updated version of the exam-
ple script.

 With that final modification, you’ve built a complete WordPress site-provisioning
system and learned the basics of container management with Docker. It has taken
Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

121Cleaning up
considerable experimentation. Your computer is likely littered with several containers
that you no longer need. To reclaim the resources that those containers are using, you
need to stop them and remove them from your system.

2.7 Cleaning up
Ease of cleanup is one of the strongest reasons to use containers and Docker. The iso-
lation that containers provide simplifies any steps that you’d have to take to stop pro-
cesses and remove files. With Docker, the whole cleanup process is reduced to one of
a few simple commands. In any cleanup task, you must first identify the container that
you want to stop and/or remove. Remember, to list all of the containers on your com-
puter, use the docker ps command:

docker ps -a

Because the containers you created for the examples in this chapter won’t be used
again, you should be able to safely stop and remove all the listed containers. Make
sure you pay attention to the containers you’re cleaning up if there are any that you
created for your own activities.

 All containers use hard drive space to store logs, container metadata, and files that
have been written to the container file system. All containers also consume resources
in the global namespace like container names and host port mappings. In most cases,
containers that will no longer be used should be removed.

 To remove a container from your computer, use the docker rm command. For
example, to delete the stopped container named wp you’d run:

docker rm wp

You should go through all the containers in the list you generated by running docker
ps -a and remove all containers that are in the exited state. If you try to remove a con-
tainer that’s running, paused, or restarting, Docker will display a message like the fol-
lowing:

Error response from daemon: Conflict, You cannot remove a running container.
Stop the container before attempting removal or use -f

FATA[0000] Error: failed to remove one or more containers

The processes running in a container should be stopped before the files in the con-
tainer are removed. You can do this with the docker stop command or by using the
-f flag on docker rm. The key difference is that when you stop a process using the -f
flag, Docker sends a SIG_KILL signal, which immediately terminates the receiving pro-
cess. In contrast, using docker stop will send a SIG_HUP signal. Recipients of SIG_HUP
have time to perform finalization and cleanup tasks. The SIG_KILL signal makes for
no such allowances and can result in file corruption or poor network experiences. You
can issue a SIG_KILL directly to a container using the docker kill command. But you
should use docker kill or docker rm -f only if you must stop the container in less
than the standard 30-second maximum stop time.
Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

122 CHAPTER 2 Running software in containers
 In the future, if you’re experimenting with short-lived containers, you can avoid
the cleanup burden by specifying --rm on the command. Doing so will automatically
remove the container as soon as it enters the exited state. For example, the following
command will write a message to the screen in a new BusyBox container, and the con-
tainer will be removed as soon as it exits:

docker run --rm --name auto-exit-test busybox:latest echo Hello World
docker ps -a

In this case, you could use either docker stop or docker rm to properly clean up, or it
would be appropriate to use the single-step docker rm -f command. You should also
use the -v flag for reasons that will be covered in chapter 4. The docker CLI makes it is
easy to compose a quick cleanup command:

docker rm -vf $(docker ps -a -q)

This concludes the basics of running software in containers. Each chapter in the
remainder of part 1 will focus on a specific aspect of working with containers. The
next chapter focuses on installing and uninstalling images, how images relate to con-
tainers, and working with container file systems.

2.8 Summary
The primary focus of the Docker project is to enable users to run software in contain-
ers. This chapter shows how you can use Docker for that purpose. The ideas and
features covered include the following:

 Containers can be run with virtual terminals attached to the user’s shell or in
detached mode.

 By default, every Docker container has its own PID namespace, isolating process
information for each container.

 Docker identifies every container by its generated container ID, abbreviated
container ID, or its human-friendly name.

 All containers are in any one of four distinct states: running, paused, restarting,
or exited.

 The docker exec command can be used to run additional processes inside a
running container.

 A user can pass input or provide additional configuration to a process in a
container by specifying environment variables at container-creation time.

 Using the --read-only flag at container-creation time will mount the container
file system as read-only and prevent specialization of the container.

 A container restart policy, set with the --restart flag at container-creation
time, will help your systems automatically recover in the event of a failure.

 Docker makes cleaning up containers with the docker rm command as simple
as creating them.
Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

123Summary

The idea behind Docker is simple. Create a tiny virtual
environment, called a container, that holds just your
application and its dependencies. The Docker engine
uses the host operating system to build and account for
these containers. They are easy to install, manage, and
remove. Applications running inside containers share
resources, making their footprints small.

 Docker in Action teaches readers how to create,
deploy, and manage applications hosted in Docker
containers. After starting with a clear explanation of
the Docker model, you will learn how to package appli-
cations in containers, including techniques for testing

and distributing applications. You will also learn how to run programs securely and
how to manage shared resources. Using carefully designed examples, the book
teaches you how to orchestrate containers and applications from installation to
removal. Along the way, you'll discover techniques for using Docker on systems rang-
ing from dev-and-test machines to full-scale cloud deployments.

What's inside:

 Packaging containers for deployment
 Installing, managing, and removing containers
 Working with Docker images
 Distributing with DockerHub

Readers need only have a working knowledge of the Linux OS. No prior knowledge of
Docker is assumed.

Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

https://www.manning.com/books/docker-in-action
https://www.manning.com/books/docker-in-action

 index

Symbols

?, wildcard 48
.Net framework 35
*, wildcard 48
/deadletters, actor 44
/remote, actor 44
/system, actor 44
/temp, actor 44
/user, actor 44

Numerics

201 Created status code 15
404 Not Found status code 13
60 second cache 65

A

Accept header 11, 16
acceptable error rate, software development

and 69
acceptable failure threshold 60
acceptable performance, technical failures

and 54
actor address, key components of 46
actor model 35

and asynchronous communication 36
described 36
multiple tasks and 35

actor reference 46–47
vs. actor address 48

actor system
analogy between countries and 43
defined 43

deploying an actor into 45
interaction with the actors operating within

the framework 45
root location 49
unique name for 46

actor(s)
and multithreaded application complexity 37
and setting behavior for the next message 38
building advanced 41
communication 36
defined 39
described 36
processing 37
spawning 45
spawning others 38
state 37
the most common tasks performed by 38–39
three key concepts 36–37
top-level 44

adaptive throttles 83
adaptive timeouts 82
address 46
Akka package 35
Akka.Net 35

and .Net runtime environments 35
and full control over the processing stage 49
and the addressing system within 47
as an alternative to .Net Task Parallel Library

(TPL) 41
concurrency safety guarantees and immutable

messages 37
different programming methodologies 37
requirements for running 35
starting instances of actors 43
writing an actor 39
124

Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

125INDEX
Akka.Net pattern matching API 40
apache2 119
API Gateway microservice 16, 18
Apoptosis, deployment pattern 77, 85
application

and handling scaling issues 42
fault tolerance when developing 44
setting up 35

arbitrary system, inter-dependencies in 63
architecture, message passing 36
artifact

defective 72
immutability of 73, 76
production update and 73

Ask, asynchronous method 49
ASP.NET Core 24
ASP.NET generator, Yeoman 25
asynchronous collaboration 8–10

exposing event feed 8–9
subscribing to events 9–10

asynchronous message handler 41
audit history 77
automated validation, staging environment 71
automatic safety devices 55, 64, 82
automation 78
automation workarounds 90

B

back-pressure 83
Bake, deployment pattern 80
Bayesian estimation 74
behavior, data retrieving and 37
binary pass/fail test 75
blocking operations, actors and 39
blue-green deployment strategy 70
Bootstrapper.cs file 13
branch management 74
business goals, failure to meet 54

C

Canary, deployment pattern 78
CanProcess 21
captured messages 93
catastrophic collapse 85
changes, small, low impact of 54
Chaos, deployment pattern 88
child actor 44
circuit breaker 82
client microservice 83

dynamic tactics in 82
code duplication 40

code, building reactive systems and 35
collaboration

implementing 11–30
commands and queries 14
commands with HTTP POST or PUT 14–18
data formats 19–21
event-based collaboration 21–30
queries with HTTP GET 18–19
setting up project for Loyalty Program 12–14

types of 3–11
asynchronous 8–10
data formats 10–11
synchronous 5–7

command line tooling 35
commands 2–3

collaboration and 5–7
implementing

with HTTP POST command 14–18
with HTTP PUT command 14–18

communication, analogy between actors and
people 36

complex system
accidents, Three Mile Island as an example

of 59
fragility of 59
inevitability of failure 55
understanding the failure of 55

component(s)
constant failure of 69
deployment and 65
failure rate 60
guessing the reliability of 66
independent failure 61
overlooking sub-components 63
probability of failure and the number of 62
re-deploying a single 70
redundant, calculation of the failure

probabilty 64
reliability of, described 65
running multiple instances of 70
similarity with dice 60
simultaneous change of a random subset of 65
stand-alone 63

concurrency 36
actors and 35

concurrent applications, Akka.Net and writing 35
configuration 90–91
console app 25
Console Application (Package) project option 24
containers 97–122

building environment-agnostic systems
112–117

environment variable injection 114–117
read-only file systems 112–114
Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

126 INDEX
cleaning up 121
creating 99–100
durable, building 117–121

automatically restarting containers 118
keeping containers running with supervisor

and startup processes 119–121
eliminating metaconflicts 106–112

container state and dependencies 110–112
flexible container identification 107–110

interactive, running 100–101
output of 102–103
PID namespace and 103–106

Content property 24, 29
Content-Type header 11
Context property 42
continuous delivery

and enterprise software development 74
behavior of the artifact 72
described 71
pipeline 71–72
tooling to support 72
vs. continuous deployment 73

continuous deployment, described 73
continuous integration server 73
Create static method 45

D

daemons 100
damage, limiting, Kill Switch and 86
dataflow 38
DefaultNancyBootstrapper class 13
defect levels, technical failures and 54
defect-free software See perfect software
delivery pipeline, manual gates 92
demilitarized zone 91
denial-of-service attack, retries and 82
dependencies

container state and 110–112
dependencies section, json file 26
dependencies, fragile, on other services 88
deployment 65

multiple repeated attempts 67
recovery from 76
simultaneous, of multiple components 67

deployment artifacts 71
deployment failure, configuration and 90
deployment plan 73
--detach flag 100
development environment 73, 92–93

version-controlled local 71
development workflow, adopting 74
diminishing marginal returns, law of 54

discovery 88–89
disorder, increase of 54
DNS protocol 89
docker command-line tool 97–98, 100
docker exec command 104
Docker Hub 99
docker inspect command 113
docker kill command 121
docker logs command 102
docker ps -a 121
docker ps command 102, 110, 121
docker rename command 107
docker rm command 122
docker rm -f command 121–122
docker start command 111
docker stop command 103, 121–122
docker top command 119
.dockerignore file 103–106
Domain Driven Design 50
drop duplicates, poison messages 84
duplicate messages 84

E

email, several types of 36
embedded configuration 88–89
emergent behavior 84
engineering system, large scale, vs. software

system 55
enterprise software development, delusion of 68
--entrypoint flag 120
entrypoints 120
--env (-e) flag 115
environment-agnostic systems, building 112–117

environment variable injection 114–117
read-only file systems 112–114

event feeds 8–9
Event Sourcing 50
event-based collaboration 4, 24
events

event feed
exposing 8–9
implementing 22–24
subscribing to 27–30

subscribing to
event-subscriber process 24–27
overview 9–10

/events endpoint 9
EventStore component 9
eventStore.GetEvents 24
EventSubscriber class 27, 29
event-subscriber process 10, 12
exceeding failure threshold 74
Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

127INDEX
exposure to risk, quantifying 59
ExtensionMappings 21
extensions, Akka.Net and 43

F

-f flag 121
failure 54

and blaming human error for 63
described 59
low-level, software systems and 60
of complex systems 59
preventing large scale by accepting many small

failures 54
probability of 61–62
reducing the risk of 64

failure probability, skewed estimator of 66
failure rate

acceptable 54
described 60
two-component system 60

failure threshold 80
faster development, continuous delivery and 72
feature requirements, technical failures and 54
feedback, continuous delivery pipeline and 72
four-component system

estimated reliability with simultaneous change
of components 67

non-linear 63
reliability and 65

framework section, json file 26

G

Game theory 68
GET endpoint 5, 14
Google Game Days 88
gossip 89
guaranteed delivery 84
guidelines, reactive manifesto as a series of 34

H

Halting Problem 64
HandleEvents method 29
hierarchy, the concept of operating i Akka.Net 44
higher quality, continuous delivery and 72
History, deployment pattern 77
Homeostasis, deployment pattern 77
HTTP communication 17
HTTP GET command

implementing queries with 18–19
HTTP POST command, implementing

commands with 14–18

HTTP PUT command, implementing commands
with 14–18

HTTP-based event feed 24
HttpClient method 28
hybrid solution to configuration 90

I

IBodyDeserializer interface 19, 21
immutability 76
immutable instances, running 76
INancyBootstrapper interface 13
instantiation, actor system and 45
integrity, maintaining minimum level of 54
intelligent load balancing 88–89
intelligent round-robin 83
--interactive (-i) flag 100
interactive containers, running 100–101
inter-dependencies, and Three Mile Island

example 62
InternalConfiguration 13
intuition, reliability and 62
invariants 87
Invoice microservice 6
IResponseProcessor 19, 21
isolation 93

K

key risk measuring tools 74
kill program 119
Kill Switch, deployment pattern 85–86

L

LAMP (Linux, Apache, MySQL PHP) stack 119
large scale releases

uncertainty 69
vs. small releases 69

latency, reasonable, load shedding and 83
load shedding 83
LocalActorRef 46
Location header 15–16
long running computations, actors and 38
Loss of Containment Accident, Three Mile Island

example 56
lost actions, Progressive Canary deployment

pattern and 84
lower cost of development, continuous delivery

and 72
lower risk of failure, continuous delivery and 72
Loyalty Program microservice, setting up project

for 12–14
LoyaltyProgramClient class 6–7, 16
Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

128 INDEX
LoyaltyProgramEventConsumer 25
LoyaltyProgramUser class 7

M

Main method 25
management system 71
management, astors and 43
manual gates 75
Merge, deployment pattern 80, 83

highly sensistive data flows 91
message

described 49
immutability of 37
sending to an actor 48–49

message abstraction layer 80, 92
message bus 89
message delivery 84
message design, Akka.Net and 50
message flow rates 87

Progressive Canary deployment pattern and 84
message passing, as a means of communication

between actors 46
message pathways, as bottlenecks 80
message routing 43
message sending, actors and 38
message-driven architecture, benefits of 47
messaging abstraction layer 88
metaconflicts, eliminating 106–112

container state and dependencies 110–112
flexible container identification 107–110

microservice architecture
and Platform-as-a-Service vendors 72
and reduction of the risk of catastrophic

failure 54
and Split pattern 81
blue-green deployment strategy and 70
operational costs and superior risk

management 60
organizational decision to adopt 53
primitive operations 71
trade-off of 78

microservice artifact
deactivation 76
described 75

microservice deployment patterns 76
microservice deployment patterns, automation

and 78
microservices

and flexibility for a solution 68
configuration 90
deployment of your own 75
encripted communication between 91

focused 81
low friction 74
risk measurement and control 53
staging system and measurement of the

behavior of 75
Mitosis, deployment pattern 77, 86
mock message, defined 93
mock message, providing 93
monitoring and diagnostics system 71
Mono support 35
monolithic systems, failure in 82
Monte Carlo simulation 65
multi-stage update 87

N

--name flag 107
NancyModule class 16
Nash equilibrium 68
Negotiate property 16
Netflix Chaos Monkey 88
network latency 80
networks, opportunity for attack 91
NewSpecialOffer event 23–24
NotificationsClient component 10
nuclear power plant, Three Mile Island

example 55
NuGet client, libraries and 35
NuGet package management system 35

O

one-component system
failure in 60
failure rate and redundant components 64

OnStart method 26
OnStop method 26
operational tasks, dividing into categories 78

P

path 47
pattern matching 40
peer developers, review performed by 74
peer-to-peer membership gossip protocol 89
perfect software 68

the cost of 69
pipeline

continuous integration tool 73
hermetic artifact generation 73
production and 73
protection 74–75
Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

129INDEX
tracing generation of microservice
throughout 73

unit of deployment 73
pipeline, Nancy 21
poison messages 84
POST endpoint 5–6, 14
predictability, and the behavior of the system 76
primitive operations 71

launch and shutdown and 86
microservice artifacts 75

primitives
Canary pattern and 79
simultaneous application of 77

prisoner's dilemma 68
probability distribution, modeling mostly

reliable 66
probability, multiplication 61
production environment 71
production system, quantifiable reliability of 54
production, and risk of failure measurement 75
Program class 25
Progressive Canary, deployment pattern 79
protocol identifier 46
ps command 104
PUT endpoint 6, 14

Q

queries
collaboration and 5–7
implementing

overview 14
with HTTP GET command 18–19

overview 2–3
query-based collaboration 19

R

RabbitMQ 10
ratios, message flow rates and 87
reactive architecture 34
reactive manifesto 34
reactive system, and the smallest unit of work 42
ReadEvents method 28
read-only file systems 112–114
ReceiveActor 40
redundancy, adding 64
reference, retrieving from an address 48
register-user command 16, 21
reliability

and adding redundancy 64
and automatic safety devices 64

estimation of actual 65
mostly poor 67
not normally distributed 66
rate 65

reliability estimate 67
request-reply scenario 49
resilience 82
resource consumption, unnecessary 82
resource intense activities, microservice

deployment patterns and 80
--restart flag 118
restart, automatic 70
restarting containers 118
restrictions, actors and 43
retries 82
return-on-investment decisions 69
right of refusal, microservices 91
risk estimations, predictability and 76
risk management, microservices and scientific

approach to 53
risk reduction strategy, primary 54
Rollback, deployment pattern 76

S

sc.exe utility 27
scheduling 43
security 91–92
Sender property 42
Service Bus 10
service registries 89
ServiceBase class 26
SIG_HUP signal 121
SIG_KILL signal 121
single instance 70
skewed probability distribution 66
slow donstream 82
slow downstream ??–83
small releases 69
software architecture, adopting more capable 53
software development processes 69

traditional 68
software system

and individual component as a single
instance 70

believing in a defect free 54
described 59
distribution of the system reliability 65
interconnected systems 63
large scale 55
understanding the nature of failure 59

software, organizational assumption about 60
space shuttle, perfect software and 69
Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

130 INDEX
Special Offers microservice 8, 22
SpecialOfferEvent 29
SpecialOffersSubscriber component 10
Split, deployment pattern 81, 93
staging environment 71, 73
staging system 92
Start method 30
startup process 119–121
state, accessibility upon storing 41
static responses 85
StatusCodeHandlers 13
Stop method 30
sub-component relationship 63
subscribers, and events 9–10
SubscriptionCycleCallback 28–29
supervision, actor system and 43
supervisor process 119–121
supervisord program 119
synchronous collaboration 5–7
system reliability

overall level of 61
two-component system 61

system-created actors 45

T

technical failure See failure
Tell method, actor reference and 48
text-based formats 10
thrashing 83
Three Mile Island example

non-linear system 62
the role of operators 59

Three Mile Island, example of a complex
system 55–59

threshold, failure rate and meeting the 60
thundering herd problem 85
timeouts 82
time-to-live 84
traditional processes, software and 54
–tty (–t) flag 100
Turing disease 91
Turing, Alan 64
two-component system 60–63
TypedActor 41

U

unique identifier, actor and 36
unit test

and diminishing marginal returns 74
correctness of the code 74
risk measurement and 74

UntypedActor 40
actor implementation through the use of 39

UpdatedSpecialOffer event 23–24
update-user command 17
upstream overload 83
up-time requirements, technical failures and 54
up-time, success vs. failure 59
UserModule class 16
UserModule.cs file 14

V

-v flag 122
validation 87

local 73
poison messages 84

Version Update, deployment pattern 87
Visual Studio package management GUI 35

W

wget program 101
wildcards 48
WithHeader method 21
WithStatusCode method 21
WORDPRESS_DB_HOST variable 115
workflows, triggering additional 84

Y

YAML 10–11
YamlBodySerializer 21
YamlDotNet NuGet package 19
YamlSerializerDeserializer.cs file 19
Yeoman

overview 25
Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

Microservices in .NET Core
by Christian Horsdal Gammelgaard

ISBN: 9781617293375
344 pages
$49.99
January 2017

Reactive Applications with Akka.NET
by Anthony Brown

ISBN: 9781617292989
344 pages
$44.99
Summer 2017

The Tao of Microservices
by Richard Rodger

ISBN: 9781617293146
275 pages
$49.99
Summer 2017

Save 50% on these selected books—eBook, pBook, and MEAP. Just enter feems50 in the
Promotional Code box when you check out. Only at manning.com.

Licensed to UNKNOWN UNKNOWN <chaya5.rou7ek@gmail.com>

https://www.manning.com/books/microservices-in-net-core
https://www.manning.com/books/microservices-in-net-core
https://www.manning.com/books/reactive-applications-with-akka-net
https://www.manning.com/books/the-tao-of-microservices
https://www.manning.com/books/reactive-applications-with-akka-net
http://manning.com
https://www.manning.com/books/the-tao-of-microservices

Docker in Action
by Jeff Nickoloff

ISBN: 9781633430235
304 pages
$49.99
March 2016

https://www.manning.com/books/docker-in-action
https://www.manning.com/books/docker-in-action

	contents
	Introduction
	Microservice Collaboration
	Microservice collaboration
	4.1 Types of collaboration: commands, queries, and events
	4.1.1 Commands and queries: synchronous collaboration
	4.1.2 Events: asynchronous collaboration
	4.1.3 Data formats

	4.2 Implementing collaboration
	4.2.1 Setting up a project for Loyalty Program
	4.2.2 Implementing commands and queries
	4.2.3 Implementing commands with HTTP POST or PUT
	4.2.4 Implementing queries with HTTP GET
	4.2.5 Data formats
	4.2.6 Implementing an event-based collaboration

	4.3 Summary

	What's inside

	Your First Akka.NET Application
	Your First Akka.Net Application
	3.1 Setting up an application
	3.2 Actors
	3.2.1 What does an actor embody?
	3.2.2 What can an actor do?
	3.2.3 Defining an actor
	3.2.4 Summary

	3.3 Spawning an actor
	3.3.1 The actor system
	3.3.2 Spawning an actor
	3.3.3 Summary

	3.4 Communicating with actors
	3.4.1 Actor addresses and references
	3.4.2 Sending a message
	3.4.3 Summary

	3.5 Summary

	What's inside:

	Deployment
	Deployment
	5.1 Things fall apart
	5.2 Learning from history
	5.2.1 Three Mile Island
	5.2.2 A model for failure in software systems
	5.2.3 Redundancy doesn’t do what you think it does
	5.2.4 Change is scary

	5.3 The center cannot hold
	5.3.1 The cost of perfect software

	5.4 Anarchy works
	5.5 Microservices and Redundancy
	5.6 Continuous Delivery
	5.6.1 Pipeline
	5.6.2 Process
	5.6.3 Protection

	5.7 Running a microservice system
	5.7.1 Immutability
	5.7.2 Automation
	5.7.3 Resilience
	5.7.4 Validation
	5.7.5 Discovery
	5.7.6 Configuration
	5.7.7 Security
	5.7.8 Staging
	5.7.9 Development

	5.8 Summary

	What's inside:

	Running Software in Containers
	Running software in containers
	2.1 Getting help with the Docker command line
	2.2 Controlling containers: building a website monitor
	2.2.1 Creating and starting a new container
	2.2.2 Running interactive containers
	2.2.3 Listing, stopping, restarting, and viewing output of containers

	2.3 Solved problems and the PID namespace
	2.4 Eliminating metaconflicts: building a website farm
	2.4.1 Flexible container identification
	2.4.2 Container state and dependencies

	2.5 Building environment-agnostic systems
	2.5.1 Read-only file systems
	2.5.2 Environment variable injection

	2.6 Building durable containers
	2.6.1 Automatically restarting containers
	2.6.2 Keeping containers running with supervisor and startup processes

	2.7 Cleaning up
	2.8 Summary

	What's inside:

	index
	Symbols
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	Y

	Promo

