1’

Java XML
and JSON

Document Processing for Java SE

Second Edition

Jeff Friesen

Apress’

ww.allitebooks.cor

http://www.allitebooks.org

Java XML and JSON

Document Processing for Java SE

Second Edition

Jeff Friesen

Apress’

vww .allitebooks.cond

http://www.allitebooks.org

Java XML and JSON: Document Processing for Java SE

Jeff Friesen
Dauphin, MB, Canada

ISBN-13 (pbk): 978-1-4842-4329-9 ISBN-13 (electronic): 978-1-4842-4330-5
https://doi.org/10.1007/978-1-4842-4330-5

Library of Congress Control Number: 2018968598

Copyright © 2019 by Jeff Friesen

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Jonathan Gennick

Development Editor: Laura Berendson

Coordinating Editor: Jill Balzano

Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street,
6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-
sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole member
(owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a
Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit http://www.apress.com/
rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub via the book's product page, located at www.apress.com/978-1-4842-4329-9. For more
detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

vww allitebooks.conl

https://doi.org/10.1007/978-1-4842-4330-5
http://www.allitebooks.org

To my parents.

vww allitebooks.conl

http://www.allitebooks.org

Table of Contents

About the AUtROFccciiemmissnmmmssnnmmsssmsssssnssssnsssssnsesssnsessansessannesssnnesssnnesssnnssssnnsssnns Xi
About the Technical REVIEWETcccussesrsssssssssanssssansssssnsssssnsssssnsssssnsssssnsssssnnssssnnssss xiii
Acknowledgments.......ccccuuuisssnmmmnmmmmmmssssssssssnnnmmmssssssssssnnnnneesssssssssnnnnnnsesssssssnnnnnnnnnnss XV
INtroduCtionccuiisemmmissnnmsssnnmsssnnmsssnnssssnnssssnnnsssannessannessannessannessannesssnnesssnnnsssnnssssnns xvii
Part I: Exploring XML........ccoucemmmmmmnnnnanmmmmsssssnnmmssssssssnnnssssssnsnnnsssssssnsnnsssssnnnns 1
Chapter 1: Introducing XML.........ccoirmmmmmmmmmmmmmmsssssssnmmmmmmssssssssssssseessssssssssssssssessssnns 3
WRAL IS XIIL? ...ttt se e se s e e sa s se s sr e ns e enesansnssnnnsnens 3
Language FRALUIES TOUF.......ccocoveeereererresere s s s s se s s se e s s 5

D LI T=T o = (3 OSSO 5
Elements and ALIHDULEScccvrinnirin e e 7
Character References and CDATA SECHIONS........coueerrrererenerssesssesesesess s ses e 10
NAMESPACES ... ceuerreieiiriere st e e b e e e Re b e e e R b e e e e R b e e e R s 12
Comments and Processing INStrUCHIONSccccoveeernresnesers e 17
Well-Formed DOCUMENTScccvieriiiiiiisresersis e s s ss e sn e s s s n e s s sesnesnennnns 17
Valid DOCUMENTS ... 18
Document Type DefiNition........cccvvvrrrininnrrsre e e 19

1T 1T 3 TS 26

E 111 4= 7R 34
Chapter 2: Parsing XML Documents with SAX.......c.cocemmmmmssmmnmmssssnnnnnssssnssssssssssnsenss 35
WRAL IS SAX?....eeeeeeresie e se s e p s e p e ne e ne e 35
EXPIOFNgG the SAX APLL.....c.ooeeeceeecr s 36
0DbtaiNINg @ SAX 2 PAISEcovveeereeresesesese s e sss e ses s 36
Touring XMLReader MEthods..........couorerrerersenerenereeseresesessese s sesessssessssesessesesssssssssssssssessenens 37
Touring the Handler and ReSOIVEr INTEIfACESccoveererererensmresesesese e sennenens 42

v

vww allitebooks.conl

http://www.allitebooks.org

TABLE OF CONTENTS

Demonstrating the SAX APL.......ccvvvrirere s se s sss s e ssssessessessesssssssessesaessssessesaes 47
Creating a Custom Entity RESOIVET ... 59
1] 4= OSSPSR 65
Chapter 3: Parsing and Creating XML Documents with DOMccocmmmmmnnecnsssnns 67
WRHAL IS DOM? ...ttt s bbb 67
ATrEE OF NOUEScciriecirree e r e e e e nn s 68
EXPIOring the DOM APccoieirierene st sere s se s s s e s s ss s saesa e e s saesa e e s naenaes 71
Obtaining a DOM Parser/Document BUIlAEc.covvevverevenensenene s sessesessesessessessesessessessens 71
Parsing and Creating XML DOCUMENTScccovvererererrerienesessense e ssssessessessessssessessessssessessenes 73
Demonstrating the DOM APLL........ccoceerrrrierere s ses s se s saessssessessessssessessesaessssessesaes 77
Parsing an XML DOCUMENTccccveverrerieresensensesessesessessessesssssssessesssssssessessessssessessesssssssessees 77
Creating an XML DOCUMENL..........cccvoveerierrnserseressesesseressessesesessessessssessessesssssssessessessssensessens 82
Working With Load @and SAVEcccceververierererrerierensssessesesessssessessesssssssessessesssssssessesssssssessessens 85
Loading an XML Document into @ DOM TFEEcevvvererrereereerenserersesessessessessssessessessessssensessens 86
CONFIGUIING @ PAISEE ...ucivevveiererersesesserersessssesessessessssessessessessssessessesssssssesssssessssessessesssssnsessens 90
Filtering an XML Document While Parsingccccverrrvnnnnieninsinsn s s sessesssessessessens 96
Saving a DOM Tree to an XML DOCUMENLcccovvrierierernseniereresessessessessssessessessessssessessens 100
Working with Traversal and RaNge..........ccvvirvrierinnsnsne s s ssssessesne s 102
Performing TraverSals..........ccucverieninsnienie s s s s s 102
Performing Range Operationsccccvinennnneninsc s sssseses e s sesaes 107
SUMIMANY ..ttt R e e e e e R e e e e e e e R e R e e e e e Re e Re R e e e e e Re R e e e e e Renns 111
Chapter 4: Parsing and Creating XML Documents with StAX.........ccccmnsnmmnnnnnnnnas 113
WRAL IS STAX?Z.....eectectrtre ettt s e e e e ae bt e R R e e ae s 113
EXPIOFING STAX ...t sa e s s s b ne e s e a e e s ae e ne e e e e e nne e 114
Parsing XML DOCUMENTScccceverererierieresensessessessssessessessesessessessessssessessesssssssessesasssssessesses 115
Creating XIML DOCUMENTScccevererrereriesssseresseseesessessessessssessessesassessessesassessessessesssnsssesneses 125

£ 1134 7R 138

TABLE OF CONTENTS

Chapter 5: Selecting Nodes with XPath...........cccceinnnnnmmnmnnnssnnmnnssssnmmsssssenssssnn 139
WRAL IS XPAEN?.......ccccecrcess s bbb 139
XPath Language PIIMET ... st st ss s s 139

Location Path EXPreSSIONS.........ccivvririeresnsinsesess s e s s ssssss e s sasssssessessesssssssesnens 140
GENEral EXPrESSIONSccueiriirireriisis e s s s se s s s bbb e s 143
XPath @nd DOM ..o s re e ne e nne e 145
AdVANCEU XPALN ... 154
NamMESPACE CONTEXLS.....ciiiriiriire it e s s e s 154
Extension Functions and Function RESOIVErS...........ccovevrenmrenennnesesesese s 156
Variables and Variable RESOIVELS..........cccvveernnennesenese s s sessessssenens 161
10T 111 1T o SRS 164

Chapter 6: Transforming XML Documents with XSLTcccoimnsemmnmmssssnnsssssssnnns 165
WRAL IS XSLT? ... ss et 165
EXPIOFNgG the XSLT APl ...t st s st e st e 166
Demonstrating the XSLT APLL........crrnnr s s sse s st sessesnens 170
Going Beyond XSLT 1.0 @and XPath 1.0cccccrrerrinereserrsesere s sesse s sessenenns 179

Downloading and Testing SAXON-HE 9.9.........cccccrinnmnnnenerese s 179
Playing With SAXON-HE 9.9..........oorrcrreree s 180
B30T 111 T o OSSR 183

Part II: Exploring JSONcccuscmmmmmssmnmmssssnnmssssnsmssssnssessssnsssssnnnesssnnnsessnnnnss 185

Chapter 7: Introducing JSONcccuscmmmsmmmsnmmsanmssssmsssmsssnsssssssssssssnsssassssnsssansssans 187
WRAL IS JSONT? ... bbb e e e 187
JSON SYNTAX TOUceeeeeeeeceeeere e e s e e e sre e r e e s e e nnnnens 188
Demonstrating JSON With JaVaSCriPL.......ccovoeirerrnsrnerere e 190
Validating JSON ODJECES.......cccerirerrnisineere e s s 195
£ 11134 RS 202

vii

TABLE OF CONTENTS

Chapter 8: Parsing and Creating JSON Objects with mJson...........cccuseennrnsssnnnnns 205
WhEL IS MUSON? ... e e e e e nnn e 205
Obtaining and USING MUJSON........cccoiniriinnrne s s ses e ssa s 206
EXploring the JSON Class.........cucirinininnesssinsese s st sss s s ssssessessessssessesnens 206
Creating JSon ODJECTS........ccccinncn s 207
Learning About JSON ODJECTS.......ccvcreienc s 213
Navigating Json Object HierarChies..........ccocucvvrinnnninininnnsn s 223
Modifying JSON ODJECESccvceiercrr s 225

L1220 Lo TSR 232
Customization Via FACIOMIEScccccerrerereesmsererises s sssnnes 235
£ T TS 242
Chapter 9: Parsing and Creating JSON Objects with GSONcccceeevsssssssssnnnnnnnns 243
WREL IS GSON?evieiriceriee st nr e r g e ne e b e e e nenrnne e 243
Obtaining and USING GSONccccevirernennnese s s ss e sessesesssssssssesessssssssssssans 244
EXPIOFING GSOMNeevuerieteiererestsserse s ssesessesse e s s e s e saesae e s e ssesaese s e ssesaess e e ssesaesaesennesaessessnnsnsesnens 244
Introducing the GSON ClASS........ccivvrreriereninsirsere s s s sa e sae s 245
Parsing JSON Objects Through Deserialization............cccvvvnrnieniennsniene e sessenns 248
Creating JSON Objects Through Serialization.............ccevivvnvnininnnnsni e 258
Learning More ADOUL GSONcccvverrneseriserrnsese s e ss s e s s e ses s ssssessans 267

£ 1§14 R 298
Chapter 10: Extracting JSON Values with JsonPath............cccinssemmnrnssnnnnnnsssnnnns 299
WhaL IS JSONPALNT ...t 299
Learning the JSOnNPath LANQUAQEccccvvereriiinrninn s sse s ss s sss e s ssessssessesnens 300
Obtaining and Using the JsonPath LiDrary...........coooeernnnnesnescsnseseseses s 304
Exploring the JSONPath LiDrary ... ssssesenns 306
Extracting Values from JSON ODJECLS.......cccueerererernserrneseseness s e ssesesennes 306
Using Predicates t0 Filter HemScoocoivirnsnncse s 309
L1134 RS 321

viil

TABLE OF CONTENTS

Chapter 11: Processing JSON with JACKSONcccccssseensrsssssnnsssssssnnssssssssssssssssnnnss 323
WRAL IS JACKSONTcveceecereres e nensans 323
Obtaining and USING JACKSONc.cccevieriiinernesise s sesss s ses e sesss e sesessessssssesssnes 324
Working with Jackson’s BasiC FEAtUIEScccvivrcninnnsnnne s 325
SErBAMINGeiveeir i e E e e s b e e e Re e e e nne s 325
TrEE IMOEL ... e s ae e e e e nne s 334
Data BiNGiNgccoeiiirrenesirere s e e e e e 340
Working with Jackson’s Advanced FEAtUrES...........covvrrererencrnseseseness s e sessenens 350
ANNOTALION TYPES ... s e e s e nne e 350
CuStOm Pretly PriNtErS ..o s 390
Factory, Parser, and Generator FEatUres...........ccovvinvninnnnnnn s sessesnes 398

£ 11T 7 S 402
Chapter 12: Processing JSON with JSON-P........cccsccrmssannmsssnsssssnsssssnsssssanssssnnssssns 405
WRAL IS JSON-PY ... 405
JSON-P 1.0 et 405
JSON-P 1.1 e bbb 408
Obtaining and USING JSON-Pcovririnirrine s saessssessessessssessesaeees 410
Working With JSON=P 1.0.......ccoiiirnniininine e sssss s 411
Working with the Object MOEl APcccccvererrirrerere s ssssessessesnes 411
Working with the Streaming Model APlcoovvrvrinrnniniene e ssssessessesnes 418
Working with JSON-P 1.1°’s Advanced FEAtUIES.........c.ccvvrrerrrerrerseressssensesessessssesessessssessessees 423
JSON POINTET ...ttt 424
JSON PAICH.....cviceiicice e 431
B0 T 0T (v O 440
Editing/Transformation OpPerationsS.........cccvvvrrerievnsensensesesessese s sese s sessessesaessssessesaes 447
JAVA SE 8 SUPPOIvevetecerere e sirere s e sss e se s sae e s e ssessessesessesaesaesas e ssesaesassessesaesasssnsensessens 449
31111117 OO RS 456

ix

TABLE OF CONTENTS

Part lll: APPENAIXES ..eeeeeeeeemnnnnnnnnsssssssssssssssssssssssssssssssssnsssnnnnnnnnnnnnnsnsnsnsnsnnnns 459
Appendix A: ANSWers t0 EXEICISeS .uuuuuuumssssmmmsmmmmssssssssssnnnnnsssssssssssssnnnnnnsssssssssnsnnnns 461
Chapter 1: Introducing XML..........cccoinennrnenine s se s se s ses e sens 461
Chapter 2: Parsing XML Documents With SAX ... 466
Chapter 3: Parsing and Creating XML Documents with DOM............ccoovevrenrsnnnsenessesesensenenns 474
Chapter 4: Parsing and Creating XML Documents with StAX.........cccovvvnrenninsnnsesennesenensesens 486
Chapter 5: Selecting Nodes With XPathcccviriinininnnsniene e sessesses 493
Chapter 6: Transforming XML Documents With XSLTc.ccocevvrminienenensensesiessssessessessesessessenses 497
Chapter 7: Introducing JSON.......ccccvererrrererr s se s s ses e s sse e sessesaessssessesaesassessesaesaes 501
Chapter 8: Parsing and Creating JSON Objects with mJson.........ccccocevnvnininnsnsnsnesnsenennn, 503
Chapter 9: Parsing and Creating JSON Objects With GSON..........ccoceerniererenersnerensesesee e 506
Chapter 10: Extracting JSON Values with JsonPath.............ccocvveerennnnnnnesensscsssesesesesesenens 510
Chapter 11: Processing JSON With JACKSONcccucerererernsennnesesese s ssse e 511
Chapter 12: Processing JSON With JSON-P ... s saeenes 515
1T - . 519

About the Author

Jeff Friesen is a freelance teacher and software developer
with an emphasis on Java. In addition to authoring Java 1/0,
NIO and NIO.2 (Apress), Java Threads and the Concurrency
Utilities (Apress), and the first edition of this book, Jeff has
written numerous articles on Java and other technologies
(such as Android) for JavaWorld (JavalWorld.com), informIT
(InformIT.com), Java.net, SitePoint (SitePoint.com),

and other web sites. Jeff can be contacted via his web site

at JavaJeff.ca or via his LinkedIn (LinkedIn.com) profile
(www.linkedin.com/in/javajeff).

xi

http://www.linkedin.com/in/javajeff

About the Technical Reviewer

Massimo Nardone has more than 24 years of experiences
in Security, web/mobile development, Cloud, and IT
architecture. His true IT passions are Security and Android.
He has been programming and teaching how to program
with Android, Perl, PHP, Java, VB, Python, C/C++, and
MySQL for more than 20 years.
He holds a Master of Science degree in Computing
Science from the University of Salerno, Italy.

He has worked as a Project Manager, Software Engineer,
Research Engineer, Chief Security Architect, Information
Security Manager, PCI/SCADA Auditor, and Senior Lead IT Security/Cloud/SCADA
Architect for many years.

His technical skills include Security, Android, Cloud, Java, MySQL, Drupal, Cobol,
Perl, web and mobile development, MongoDB, D3, Joomla, Couchbase, C/C++, WebGL,
Python, Pro Rails, Django CMS, Jekyll, Scratch, etc.

He worked as visiting lecturer and supervisor for exercises at the Networking
Laboratory of the Helsinki University of Technology (Aalto University). He holds four
international patents (PKI, SIP, SAML, and Proxy areas).

He currently works as Chief Information Security Officer (CISO) for Cargotec Oyj,
and he is member of ISACA Finland Chapter Board.

Massimo has been reviewing more than 45 IT books for different publishing
companies, and he is the coauthor of Pro Android Games (Apress, 2015), Pro JPA 2 in
Java EE 8 (APress 2018), and Beginning EJB in Java EE 8 (Apress, 2018).

xiii

Acknowledgments

I thank Apress Acquisition Editor Jonathan Gennick and the Apress Editorial Board for
giving me the opportunity to create this second edition. I also thank Editor Jill Balzano
for guiding me through the book development process. Finally, I thank my technical
reviewer and copy editor for catching mistakes and making the book look great.

Introduction

XML and (the more popular) JSON let you organize data in textual formats. This book
introduces you to these technologies along with Java APIs for integrating them into your
Java code. This book introduces you to XML and JSON as of Java 11.

Chapter 1 introduces XML, where you learn about basic language features (such
as the XML declaration, elements and attributes, and namespaces). You also learn
about well-formed XML documents and how to validate them via the Document Type
Definition and XML Schema grammar languages.

Chapter 2 focuses on Java's SAX API for parsing XML documents. You learn how to
obtain a SAX 2 parser; you then tour XMLReader methods along with handler and entity
resolver interfaces. Finally, you explore a demonstration of this API and learn how to
create a custom entity resolver.

Chapter 3 addresses Java’s DOM API for parsing and creating XML documents. After
discovering the various nodes that form a DOM document tree, you explore the DOM
API, where you learn how to obtain a DOM parser/document builder and how to parse
and create XML documents. You then explore the Java DOM APIs related to the Load
and Save, and Traversal and Range specifications.

Chapter 4 places the spotlight on Java’s StAX API for parsing and creating XML
documents. You learn how to use StAX to parse XML documents with stream-based and
event-based readers and to create XML documents with stream-based and event-based
writers.

Moving on, Chapter 5 presents Java’s XPath API for simplifying access to a DOM
tree’s nodes. You receive a primer on the XPath language, learning about location path
expressions and general expressions. You also explore advanced features starting with
namespace contexts.

Chapter 6 completes my coverage of XML by targetting Java’'s XSLT API. You learn
about transformer factories and transformers, and much more. You also go beyond the
XSLT 1.0 and XPath 1.0 APIs supported by Java.

xvii

INTRODUCTION

Chapter 7 switches gears to JSON. You receive an introduction to JSON, take a tour of
its syntax, explore a demonstration of JSON in a JavaScript context (because Java doesn’t
yet officially support JSON), and learn how to validate JSON objects in the context of
JSON Schema.

You'll need to work with third-party libraries to parse and create JSON
documents. Chapter 8 introduces you to the mJson library. After learning how
to obtain and use mJson, you explore the Json class, which is the entry point for
working with mJSon.

Google has released an even more powerful library for parsing and creating JSON
documents. The Gson library is the focus of Chapter 9. In this chapter, you learn how
to parse JSON objects through deserialization, how to create JSON objects through
serialization, and much more.

Chapter 10 focuses on the JsonPath API for performing XPath-like operations on
JSON documents.

Chapter 11 introduces you to Jackson, a popular suite of APIs for parsing and
creating JSON documents.

Chapter 12 introduces you to JSON-P, an Oracle API that was planned for inclusion in
Java SE, but was made available to Java EE instead.

Each chapter ends with assorted exercises that are designed to help you master the
content. Along with long answers and true/false questions, you are often confronted
with programming exercises. Appendix A provides the answers and solutions.

Thanks for purchasing this book. I hope you find it helpful in understanding XML
and JSON in a Java context.

Jeff Friesen (October 2018)

Note You can download this book’s source code by pointing your web browser to
www.apress.com/9781484243299 and clicking the Source Code tab followed
by the Download Now link.

xviii

http://www.apress.com/9781484243299

PART |

Exploring XML

CHAPTER 1

Introducing XML

Applications commonly use XML documents to store and exchange data. XML defines
rules for encoding documents in a format that is both human-readable and machine-
readable. Chapter 1 introduces XML, tours the XML language features, and discusses
well-formed and valid documents.

What Is XML?

XML (eXtensible Markup Language) is a meta-language (a language used to describe
other languages) for defining vocabularies (custom markup languages), which is the key
to XML's importance and popularity. XML-based vocabularies (such as XHTML) let you
describe documents in a meaningful way.

XML vocabulary documents are like HTML (see http://en.wikipedia.org/
wiki/HTML) documents in that they are text-based and consist of markup (encoded
descriptions of a document’s logical structure) and content (document text not
interpreted as markup). Markup is evidenced via tags (angle bracket-delimited syntactic
constructs), and each tag has a name. Furthermore, some tags have attributes (name/

value pairs).

Note XML and HTML are descendants of Standard Generalized Markup Language
(SGML), which is the original meta-language for creating vocabularies—XML is
essentially a restricted form of SGML, while HTML is an application of SGML. The
key difference between XML and HTML is that XML invites you to create your own
vocabularies with their own tags and rules, whereas HTML gives you a single
pre-created vocabulary with its own fixed set of tags and rules. XHTML and other
XML-based vocabularies are XML applications. XHTML was created to be a cleaner
implementation of HTML.

© Jeff Friesen 2019
J. Friesen, Java XML and JSON, https://doi.org/10.1007/978-1-4842-4330-5_1

http://en.wikipedia.org/wiki/HTML
http://en.wikipedia.org/wiki/HTML

CHAPTER 1 INTRODUCING XML

If you haven'’t previously encountered XML, you might be surprised by its simplicity
and how closely its vocabularies resemble HTML. You don’t need to be a rocket scientist
to learn how to create an XML document. To prove this to yourself, check out Listing 1-1.

Listing 1-1. XML-Based Recipe for a Grilled Cheese Sandwich

<recipe>
<title>
Grilled Cheese Sandwich
</title>
<ingredients>
<ingredient qty="2">
bread slice
</ingredient>
<ingredient>
cheese slice
</ingredient>
<ingredient qty="2">
margarine pat
</ingredient>
</ingredients>
<instructions>
Place frying pan on element and select medium heat.
For each bread slice, smear one pat of margarine on
one side of bread slice. Place cheese slice between
bread slices with margarine-smeared sides away from
the cheese. Place sandwich in frying pan with one
margarine-smeared side in contact with pan. Fry for
a couple of minutes and flip. Fry other side for a
minute and serve.
</instructions>
</recipe>

CHAPTER 1 INTRODUCING XML

Listing 1-1 presents an XML document that describes a recipe for making a grilled
cheese sandwich. This document is reminiscent of an HTML document in that it consists
of tags, attributes, and content. However, that’s where the similarity ends. Instead of
presenting HTML tags such as <html>, <head>, , and <p>, this informal recipe
language presents its own <recipe>, <ingredients>, and other tags.

Note Although Listing 1-1’s <title> and </title> tags are also found in
HTML, they differ from their HTML counterparts. Web browsers typically display

the content between these tags in their title bars or tab headers. In contrast, the
content between Listing 1-1’s <title> and </title> tags might be displayed as
a recipe header, spoken aloud, or presented in some other way, depending on the
application that parses this document.

Language Features Tour

XML provides several language features for use in defining custom markup languages:
XML declaration, elements and attributes, character references and CDATA sections,
namespaces, and comments and processing instructions. You will learn about these
language features in this section.

XML Declaration

An XML document usually begins with the XML declaration, special markup telling an
XML parser that the document is XML. The absence of the XML declaration in Listing 1-1
reveals that this special markup isn’t mandatory. When the XML declaration is present,
nothing can appear before it.

The XML declaration minimally looks like <?xml version="1.0"?> in which the
nonoptional version attribute identifies the version of the XML specification to which
the document conforms. The initial version of this specification (1.0) was introduced in
1998 and is widely implemented.

CHAPTER 1 INTRODUCING XML

Note The World Wide Web Consortium (W3C), which maintains XML, released
version 1.1 in 2004. This version mainly supports the use of line-ending characters
used on EBCDIC platforms (see http://en.wikipedia.org/wiki/EBCDIC)
and the use of scripts and characters that are absent from Unicode (see http://
en.wikipedia.org/wiki/Unicode) 3.2. Unlike XML 1.0, XML 1.1 isn’t widely
implemented and should be used only when its unique features are needed.

XML supports Unicode, which means that XML documents consist entirely of
characters taken from the Unicode character set. The document’s characters are
encoded into bytes for storage or transmission, and the encoding is specified via the
XML declaration’s optional encoding attribute. One common encoding is UTF-8 (see
http://en.wikipedia.org/wiki/UTF-8), which is a variable-length encoding of the
Unicode character set. UTF-8 is a strict superset of ASCII (see http://en.wikipedia.
org/wiki/ASCII), which means that pure ASCII text files are also UTF-8 documents.

Note In the absence of the XML declaration or when the XML declaration’s
encoding attribute isn’t present, an XML parser typically looks for a special
character sequence at the start of a document to determine the document’s
encoding. This character sequence is known as the byte-order-mark (BOM) and
is created by an editor program (such as Microsoft Windows Notepad) when it
saves the document according to UTF-8 or some other encoding. For example,
the hexadecimal sequence EF BB BF signifies UTF-8 as the encoding. Similarly,
FE FF signifies UTF-16 (see http://en.wikipedia.org/wiki/UTF-16) big
endian, FF FE signifies UTF-16 little endian, 00 00 FE FF signifies UTF-32
(see http://en.wikipedia.org/wiki/UTF-32) big endian, and FF FE 00
00 signifies UTF-32 little endian. UTF-8 is assumed when no BOM is present.

If you'll never use characters apart from the ASCII character set, you can probably
forget about the encoding attribute. However, when your native language isn’t English
or when you're called to create XML documents that include non-ASCII characters, you
need to properly specify encoding. For example, when your document contains ASCII
plus characters from a non-English Western European language (such as ¢, the cedilla

http://en.wikipedia.org/wiki/EBCDIC
http://en.wikipedia.org/wiki/Unicode
http://en.wikipedia.org/wiki/Unicode
http://en.wikipedia.org/wiki/UTF-8
http://en.wikipedia.org/wiki/ASCII
http://en.wikipedia.org/wiki/ASCII
https://en.wikipedia.org/wiki/UTF-16
https://en.wikipedia.org/wiki/UTF-32

CHAPTER 1 INTRODUCING XML

used in French, Portuguese, and other languages), you might want to choose IS0-8859-1
as the encoding attribute’s value—the document will probably have a smaller size when
encoded in this manner than when encoded with UTF-8. Listing 1-2 shows you the
resulting XML declaration.

Listing 1-2. An Encoded Document Containing Non-ASCII Characters

<?xml version="1.0" encoding="IS0-8859-1"?>

<movie>
<name>Le Fabuleux Destin d'Amélie Poulain</name>
<language>francais</language>

</movie>

The final attribute that can appear in the XML declaration is standalone. This
optional attribute, which is only relevant with DTDs (discussed later), determines
whether or not there are external markup declarations that affect the information passed
from an XML processor (a parser) to the application. Its value defaults to no, implying
that there are or may be such declarations. A yes value indicates that there are no such
declarations. For more information, check out “The standalone pseudo-attribute is only
relevant if a DTD is used” (www.xmlplease.com/xml/standalone/).

Elements and Attributes

Following the XML declaration is a hierarchical (tree) structure of elements, where an
element is a portion of the document delimited by a start tag (such as <name>) and an end
tag (such as </name>), or is an empty-element tag (a standalone tag whose name ends
with a forward slash [/], such as <break/>). Start tags and end tags surround content and
possibly other markup, whereas empty-element tags don’t surround anything. Figure 1-1
reveals Listing 1-1’s XML document tree structure.

http://www.xmlplease.com/xml/standalone/

CHAPTER 1 INTRODUCING XML

recipe
Y Y Y
title ingredients instructions
Y Y Y
ingredient ingredient ingredient

Figure 1-1. Listing 1-1’s tree structure is rooted in the recipe element

As with HTML document structure, the structure of an XML document is anchored
in a root element (the topmost element). In HTML, the root element is html (the <html>
and </html> tag pair). Unlike in HTML, you can choose the root element for your XML
documents. Figure 1-1 shows the root element to be recipe.

Unlike the other elements, which have parent elements, recipe has no parent. Also,
recipe and ingredients have child elements: recipe’s children are title, ingredients,
and instructions; and ingredients’ children are three instances of ingredient. The
title, instructions, and ingredient elements don’t have child elements.

Elements can contain child elements, content, or mixed content (a combination of
child elements and content). Listing 1-2 reveals that the movie element contains name
and language child elements and also reveals that each of these child elements contains
content (e.g., Language contains francais). Listing 1-3 presents another example that
demonstrates mixed content along with child elements and content.

Listing 1-3. An Abstract Element Containing Mixed Content

<?xml version="1.0"?>
<article title="The Rebirth of JavaFX" lang="en">
<abstract>
JavaFX 2 marks a significant milestone in the history
of JavaFX. Now that Sun Microsystems has passed the
torch to Oracle, JavaFX Script is gone and
JavaFX-oriented Java APIS (such as

CHAPTER 1 INTRODUCING XML

<code>javafx.application.Application</code>) have
emerged for interacting with this technology. This
article introduces you to this refactored JavaFX,
where you learn about JavaFX 2 architecture and key
APIs.

</abstract>

<body>

</body>

</article>

This document’s root element is article, which contains abstract and body child
elements. The abstract element mixes content with a code element, which contains
content. In contrast, the body element is empty.

Note As with Listings 1-1 and 1-2, Listing 1-3 also contains whitespace (invisible
characters such as spaces, tabs, carriage returns, and line feeds). The XML
specification permits whitespace to be added to a document. Whitespace appearing
within content (such as spaces between words) is considered part of the content. In
contrast, the parser typically ignores whitespace appearing between an end tag and
the next start tag. Such whitespace isn’t considered part of the content.

An XML element’s start tag can contain one or more attributes. For example,
Listing 1-1’s <ingredient> tag has a qty (quantity) attribute, and Listing 1-3’s
<article> taghas title and lang attributes. Attributes provide additional details
about elements. For example, qty identifies the amount of an ingredient that can be
added, title identifies an article’s title, and lang identifies the language in which the
article is written (en for English). Attributes can be optional. For example, when gty

isn’t specified, a default value of 1 is assumed.

Note Element and attribute names may contain any alphanumeric character
from English or another language and may also include the underscore (_), hyphen
(<), period (.), and colon (:) punctuation characters. The colon should only be used
with namespaces (discussed later in this chapter), and names cannot contain
whitespace.

CHAPTER 1 INTRODUCING XML

Character References and CDATA Sections

Certain characters cannot appear literally in the content that appears between a start
tag and an end tag or within an attribute value. For example, you cannot place a literal
< character between a start tag and an end tag because doing so would confuse an XML
parser into thinking that it had encountered another tag.

One solution to this problem is to replace the literal character with a character
reference, which is a code that represents the character. Character references are
classified as numeric character references or character entity references:

e A numeric character reference refers to a character via its Unicode
code point and adheres to the format &#nnnn; (not restricted to
four positions) or &#xhhhh; (not restricted to four positions), where
nnnn provides a decimal representation of the code point and hhhh
provides a hexadecimal representation. For example, 8#0931; and
Σ represent the Greek capital letter sigma. Although XML
mandates that the x in &#xhhhh; be lowercase, it’s flexible in that
the leading zero is optional in either format and in allowing you
to specify an uppercase or lowercase letter for each h. As a result,
Σ, Σ, and Σ are also valid representations of the
Greek capital letter sigma.

o A character entity reference refers to a character via the name of
an entity (aliased data) that specifies the desired character as its
replacement text. Character entity references are predefined by XML
and have the format &name;, in which name is the entity’s name.
XML predefines five character entity references: < (<), > (>), & (&),
' ('), and " ().

Consider <expression>6 < 4</expression>.You could replace the < with numeric
reference 8#60;, yielding <expression>6 < 4</expression>, or better yet with <,
yielding <expression>6 < 4</expression>.The second choice is clearer and easier to
remember.

10

CHAPTER 1 INTRODUCING XML

Suppose you want to embed an HTML or XML document within an element. To
make the embedded document acceptable to an XML parser, you would need to replace
each literal < (start of tag) and & (start of entity) character with its < and & predefined
character entity reference, a tedious and possibly error-prone undertaking—you might
forget to replace one of these characters. To save you from tedium and potential errors,
XML provides an alternative in the form of a CDATA (character data) section.

A CDATA section is a section of literal HTML or XML markup and content
surrounded by the <! [CDATA[prefix and the]]> suffix. You don’t need to specify
predefined character entity references within a CDATA section, as demonstrated in
Listing 1-4.

Listing 1-4. Embedding an XML Document in Another Document’s CDATA
Section

<?xml version="1.0"?>
<svg-examples>
<example>
The following Scalable Vector Graphics document
describes a blue-filled and black-stroked
rectangle.
<![CDATA[<svg width="100%" height="100%"
version="1.1"
xmlns="http://www.w3.0rg/2000/svg">
<rect width="300" height="100"
style="fill:rgb(0,0,255);stroke-width:1;
stroke:rgb(0,0,0)"/>
</svg>1]>
</example>
</svg-examples>

Listing 1-4 embeds a Scalable Vector Graphics (SVG) [see http://en.wikipedia.
org/wiki/Scalable Vector Graphics] XML document within the example element of
an SVG examples document. The SVG document is placed in a CDATA section, obviating
the need to replace all < characters with < predefined character entity references.

11

http://en.wikipedia.org/wiki/Scalable_Vector_Graphics
http://en.wikipedia.org/wiki/Scalable_Vector_Graphics

CHAPTER 1 INTRODUCING XML

Namespaces

It's common to create XML documents that combine features from different XML
languages. Namespaces are used to prevent name conflicts when elements and other
XML language features appear. Without namespaces, an XML parser couldn’t distinguish
between same-named elements or other language features that mean different things, for
example, two same-named title elements from two different languages.

Note Namespaces aren’t part of XML 1.0. They arrived about a year after

this specification was released. To ensure backward compatibility with XML 1.0,
namespaces take advantage of colon characters, which are legal characters in XML
names. Parsers that don’t recognize namespaces return names that include colons.

A namespace is a Uniform Resource Identifier (URI)-based container that helps
differentiate XML vocabularies by providing a unique context for its contained
identifiers. The namespace URI is associated with a namespace prefix (an alias for the
URI) by specifying, typically on an XML document’s root element, either the xmlns
attribute by itself (which signifies the default namespace) or the xmlns : prefix attribute
(which signifies the namespace identified as prefix), and assigning the URI to this
attribute.

Note A namespace’s scope starts at the element where it’s declared and applies
to all of the element’s content unless overridden by another namespace declaration
with the same prefix name.

When prefix is specified, the prefix and a colon character are prepended to the name
of each element tag that belongs to that namespace—see Listing 1-5.

Listing 1-5. Introducing a Pair of Namespaces

<?xml version="1.0"?>
<h:html xmlns:h="http://www.w3.0rg/1999/xhtml"
xmlns:r="http://www.javajeff.ca/">
<h:head>
<h:title>

12

CHAPTER 1

Recipe
</h:title>
</h:head>
<h:body>
<r:recipe>
<r:title>
Grilled Cheese Sandwich
</r:title>
<r:ingredients>
<h:ul>
<h:1i>
<r:ingredient qty="2">
bread slice
</r:ingredient>
</h:1i>
<h:1i>
<r:ingredient>
cheese slice
</r:ingredient>
</h:1i>
<h:1i>
<r:ingredient qty="2">
margarine pat
</r:ingredient>
</h:1i>
</h:ul>
</r:ingredients>
<h:p>
<r:instructions>
Place frying pan on element and select medium
heat. For each bread slice, smear one pat of
margarine on one side of bread slice. Place
cheese slice between bread slices with
margarine-smeared sides away from the cheese.
Place sandwich in frying pan with one

INTRODUCING XML

13

CHAPTER 1 INTRODUCING XML

margarine-smeared side in contact with pan.
Fry for a couple of minutes and flip. Fry
other side for a minute and serve.
</r:instructions>
</h:p>
</r:recipe>
</h:body>
</h:html>

Listing 1-5 describes a document that combines elements from the XHTML (see
http://en.wikipedia.org/wiki/XHTML) language with elements from the recipe
language. All element tags that associate with XHTML are prefixed with h:, and all
element tags that associate with the recipe language are prefixed with r:.

The h: prefix associates with the waw.w3.0rg/1999/xhtml URI, and the r: prefix
associates with the www. javajeff.ca URL. XML doesn’t mandate that URIs point to
document files. It only requires that they be unique to guarantee unique namespaces.

This document’s separation of the recipe data from the XHTML elements makes it
possible to preserve this data’s structure while also allowing an XHTML-compliant web
browser (such as Mozilla Firefox) to present the recipe via a web page (see Figure 1-2).

File Edit View History Bookmarks Tools Help

Recipe

<« C @ filey///D:/work/books/my_books/xmljson2e/ch oo w »

Grilled Cheese Sandwich

® bread slice
e cheese slice
® margarine pat

Place frying pan on element and select medium heat. For each bread slice, smear one pat of
margarine on one side of bread slice. Place cheese slice between bread slices with margarine-
smeared sides away from the cheese. Place sandwich in frying pan with one margarine-
smeared side in contact with pan. Fry for a couple of minutes and flip. Fry other side for a
minute and serve.

Figure 1-2. Mozilla Firefox presents the recipe data via XHTML tags

14

http://en.wikipedia.org/wiki/XHTML
http://www.w3.org/1999/xhtml
http://www.javajeff.ca

CHAPTER 1 INTRODUCING XML

A tag’s attributes don’t need to be prefixed when those attributes belong to the
element. For example, qty isn’t prefixed in <r:ingredient qty="2">. However, a prefix
is required for attributes belonging to other namespaces. For example, suppose you want
to add an XHTML style attribute to the document’s <r:title> tag to provide styling
for the recipe title when displayed via an application. You can accomplish this task by
inserting an XHTML attribute into the title tag, as follows:

<r:title h:style="font-family: sans-serif;">

The XHTML style attribute has been prefixed with h: because this attribute belongs
to the XHTML language namespace and not to the recipe language namespace.

When multiple namespaces are involved, it can be convenient to specify one of these
namespaces as the default namespace to reduce the tedium in entering namespace
prefixes. Consider Listing 1-6.

Listing 1-6. Specifying a Default Namespace

<?xml version="1.0"?>
<html xmlns="http://www.w3.0rg/1999/xhtml"
xmlns:r="http://www.javajeff.ca/">
<head>
<title>
Recipe
</title>
</head>
<body>
<r:recipe>
<r:title>
Grilled Cheese Sandwich
</r:title>
<r:ingredients>

<r:ingredient qty="2">
bread slice
</r:ingredient>
</1i>

15

CHAPTER 1 INTRODUCING XML

<r:ingredient>
cheese slice
</r:ingredient>
</1i>

<r:ingredient qty="2">
margarine pat
</r:ingredient>
</1i>

</r:ingredients>
<p>
<r:instructions>
Place frying pan on element and select medium
heat. For each bread slice, smear one pat of
margarine on one side of bread slice. Place
cheese slice between bread slices with
margarine-smeared sides away from the cheese.
Place sandwich in frying pan with one
margarine-smeared side in contact with pan.
Fry for a couple of minutes and flip. Fry
other side for a minute and serve.
</r:instructions>
</p>
</r:recipe>
</body>
</html>

Listing 1-6 specifies a default namespace for the XHTML language. No XHTML
element tag needs to be prefixed with h:. However, recipe language element tags must
still be prefixed with the r: prefix.

16

CHAPTER 1 INTRODUCING XML

Comments and Processing Instructions

XML documents can contain comments, which are character sequences beginning with
<!-- and ending with -->. For example, you might place <!-- Todo -->in Listing 1-3’s
body element to remind yourself that you need to finish coding this element.

Comments are used to clarify portions of a document. They can appear anywhere
after the XML declaration except within tags, cannot be nested, cannot contain a double
hyphen (--) because doing so might confuse an XML parser that the comment has been
closed, shouldn’t contain a hyphen (-) for the same reason, and are typically ignored
during processing. Comments are not content.

XML also permits processing instructions to be present. A processing instruction
is an instruction that’s made available to the application parsing the document. The
instruction begins with <? and ends with ?>. The <? prefix is followed by a name known
as the target. This name typically identifies the application to which the processing
instruction is intended. The rest of the processing instruction contains text in a format
appropriate to the application. Two examples of processing instructions are <?xml-
stylesheet href="modern.xsl" type="text/xml"?> (associate an eXtensible
Stylesheet Language [XSL] [see http://en.wikipedia.org/wiki/XSL] stylesheet
with an XML document) and <?php /* PHP code */ ?> (passa PHP [see http://
en.wikipedia.org/wiki/PHP] code fragment to the application). Although the XML
declaration looks like a processing instruction, this isn’t the case.

Note The XML declaration isn’t a processing instruction.

Well-Formed Documents

HTML is a sloppy language in which elements can be specified out of order, end tags can
be omitted, and so on. The complexity of a web browser’s page layout code is partly due
to the need to handle these special cases. In contrast, XML is a much stricter language.
To make XML documents easier to parse, XML mandates that XML documents follow
certain rules:

o All elements must either have start and end tags or consist of empty-
element tags. For example, unlike the HTML <p> tag that’s often
specified without a </p> counterpart, </p> must also be present from
an XML document perspective.

17

http://en.wikipedia.org/wiki/XSL
http://en.wikipedia.org/wiki/PHP
http://en.wikipedia.org/wiki/PHP

CHAPTER 1

INTRODUCING XML

Tags must be nested correctly. For example, while you'll probably get
away with specifying <i>XML</1i> in HTML, an XML parser
would report an error. In contrast, <i>XML</i> doesn’t result
in an error, because the nested tag pairs mirror each other.

All attribute values must be quoted. Either single quotes (') or double
quotes (") are permissible (although double quotes are the more
commonly specified quotes). It's an error to omit these quotes.

Empty elements must be properly formatted. For example, HTML’s

 tag would have to be specified as
 in XML. You can specify
a space between the tag’s name and the / character although the
space is optional.

Be careful with case. XML is a case-sensitive language in which

tags differing in case (such as 394211_2_Enand 394211_2_En) are
considered different. It’s an error to mix start and end tags of different
cases, for example, 394211 2 En with </Author>.

XML parsers that are aware of namespaces enforce two additional rules:

An XML document that conforms to these rules is well formed. The document has a
logical and clean appearance and is much easier to process. XML parsers will only parse

Each element and attribute name must not include more than one

colon character.

No entity names, processing instruction targets, or notation names
(discussed later) can contain colons.

well-formed XML documents.

Valid Documents

It’s not always enough for an XML document to be well formed; in many cases the

document must also be valid. A valid document adheres to constraints. For example,

a constraint could be placed upon Listing 1-1’s recipe document to ensure that

the ingredients element always precedes the instructions element; perhaps an

application must first process ingredients.

18

CHAPTER 1 INTRODUCING XML

Note XML document validation is similar to a compiler analyzing source code
to make sure that the code makes sense in @ machine context. For example, each
of int, count, =, 1, and ; is a valid Java character sequence, but 1 count ;
int =isn’t avalid Java construct (whereas int count = 1; is avalid Java
construct).

Some XML parsers perform validation, whereas other parsers don’t because
validating parsers are harder to write. A parser that performs validation compares an
XML document to a grammar document. Any deviation from the grammar document is
reported as an error to the application—the XML document isn’t valid. The application
may choose to fix the error or reject the XML document. Unlike well-formedness errors,
validity errors aren’t necessarily fatal and the parser can continue to parse the XML
document.

Note Validating XML parsers often don’t validate by default because validation
can be time consuming. They must be instructed to perform validation.

Grammar documents are written in a special language. Two commonly used
grammar languages are Document Type Definition and XML Schema.

Document Type Definition

Document Type Definition (DTD) is the oldest grammar language for specifying an
XML document’s grammar. DTD grammar documents (known as DTDs) are written in
accordance to a strict syntax that states what elements may be present and in what parts
of a document, and also what is contained within elements (child elements, content, or
mixed content) and what attributes may be specified. For example, a DTD may specify
that a recipe element must have an ingredients element followed by an instructions
element.

Listing 1-7 presents a DTD for the recipe language that was used to construct Listing 1-1's
document.

19

CHAPTER 1 INTRODUCING XML
Listing 1-7. The Recipe Language’s DTD

<IELEMENT recipe (title, ingredients, instructions)>
<!ELEMENT title (#PCDATA)>

<!ELEMENT ingredients (ingredient+)>

<!ELEMENT ingredient (#PCDATA)>

<VELEMENT instructions (#PCDATA)>

<IATTLIST ingredient qty CDATA "1">

This DTD first declares the recipe language’s elements. Element declarations take the
form <! ELEMENT name content-specifier>, where name is any legal XML name (e.g., it cannot
contain whitespace), and content-specifier identifies what can appear within the element.

The first element declaration states that exactly one recipe element can appear in
the XML document—this declaration doesn’t imply that recipe is the root element.
Furthermore, this element must include exactly one each of the title, ingredients, and
instructions child elements, and in that order. Child elements must be specified as a
comma-separated list. Furthermore, a list is always surrounded by parentheses.

The second element declaration states that the title element contains parsed
character data (nonmarkup text). The third element declaration states that at least one
ingredient element must appear in ingredients. The + character is an example of a
regular expression that means one or more. Other expressions that may be used are *
(zero or more) and ? (once or not at all). The fourth and fifth element declarations are
similar to the second by stating that ingredient and instructions elements contain
parsed character data.

Note Element declarations support three other content specifiers. You can specify
<'ELEMENT name ANY> to allow any type of element content or <! ELEMENT name
EMPTY> to disallow any element content. To state that an element contains mixed
content, you would specify #PCDATA and a list of element names, separated by
vertical bars (|). For example, < 'ELEMENT ingredient (#PCDATA | measure

| note)*> states that the ingredient element can contain a mix of parsed
character data, zero or more measure elements, and zero or more note elements.

It doesn’t specify the order in which the parsed character data and these elements
occur. However, #PCDATA must be the first item specified in the list. When a regular
expression is used in this context, it must appear to the right of the closing parenthesis.

20

CHAPTER 1 INTRODUCING XML

Listing 1-7’s DTD lastly declares the recipe language’s attributes, of which there is
only one: qty. Attribute declarations take the form <!ATTLIST ename aname type default-
value>, where ename is the name of the element to which the attribute belongs, aname
is the name of the attribute, type is the attribute’s type, and default-value is the attribute’s
default value.

The attribute declaration identifies qty as an attribute of ingredient. It also states
that qty’s type is CDATA (any string of characters not including the ampersand, less than
or greater than signs, or double quotes may appear; these characters may be represented
via &, <, >, and ", respectively) and that qty is optional, assuming default value 1
when absent.

MORE ABOUT ATTRIBUTES

DTD lets you specify additional attribute types: ID (create a unique identifier for an attribute
that identifies an element), IDREF (an attribute’s value is an element located elsewhere in the
document), IDREFS (the value consists of multiple IDREFs), ENTITY (you can use external
binary data or unparsed entities), ENTITIES (the value consists of multiple entities), NMTOKEN
(the value is restricted to any valid XML name), NMTOKENS (the value is composed of multiple
XML names), NOTATION (the value is already specified via a DTD notation declaration), and
enumerated (a list of possible values to choose from; values are separated with vertical bars).

Instead of specifying a default value verbatim, you can specify #REQUIRED to mean that

the attribute must always be present with some value (<!ATTLIST ename aname type
#REQUIRED>), #IMPLIED to mean that the attribute is optional and no default value is
provided (< 'ATTLIST ename aname type #IMPLIED>), or #FIXED to mean that the attribute
is optional and must always take on the DTD-assigned default value when used (< 'ATTLIST
ename aname type #FIXED "value">).

You can specify a list of attributes in one ATTLIST declaration. For example, < 'ATTLIST
ename aname1 typel default-value1 anameZ type2 default-value2> declares two attributes
identified as aname1 and anameZ.

A DTD-based validating XML parser requires that a document include a document
type declaration identifying the DTD that specifies the document’s grammar before it will
validate the document.

21

CHAPTER 1 INTRODUCING XML

Note Document Type Definition and document type declaration are two different
things. The DTD acronym identifies a Document Type Definition and never identifies
a document type declaration.

A document type declaration appears immediately after the XML declaration and is
specified in one of the following ways:

o <!DOCTYPE root-element-name SYSTEM uri> references an external but
private DTD via uri. The referenced DTD isn’t available for public
scrutiny. For example, I might store my recipe language’s DTD file
(recipe.dtd) in a private dtds directory on my www. javajefe.
ca website, and use < !DOCTYPE recipe SYSTEM "http://www.
javajeff.ca/dtds/recipe.dtd"> to identify this DTD’s location via
system identifier http://www.javajeff.ca/dtds/recipe.dtd.

e <IDOCTYPE root-element-name PUBLIC fpi uri> references an external
but public DTD via fpi, a formal public identifier (see http://
en.wikipedia.org/wiki/Formal Public_Identifier), and uri.

If a validating XML parser cannot locate the DTD via public
identifier fpi, it can use system identifier uri to locate the DTD.

For example, <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0
Transitional//EN" "http://www.w3.0rg/TR/xhtml1/DTD/xhtml1-
transitional.dtd"> references the XHTML 1.0 DTD first via public
identifier -//W3C//DTD XHTML 1.0 Transitional//EN and second
via system identifier http://www.w3.0rg/TR/xhtml1/DTD/xhtml1-
transitional.dtd.

o <!DOCTYPE root-element [dtd]> references an internal DTD, one
that is embedded within the XML document. The internal DTD must
appear between square brackets.

Listing 1-8 presents Listing 1-1 (minus the child elements between the <recipe> and
</recipe> tags) with an internal DTD.

22

http://www.javajeff.ca
http://www.javajeff.ca
http://www.javajeff.ca/dtds/recipe.dtd
http://www.javajeff.ca/dtds/recipe.dtd
http://www.javajeff.ca/dtds/recipe.dtd
http://en.wikipedia.org/wiki/Formal_Public_Identifier
http://en.wikipedia.org/wiki/Formal_Public_Identifier
http://www.w3.org/TR/xhtml1/DTD/xhtml1-­transitional.dtd
http://www.w3.org/TR/xhtml1/DTD/xhtml1-­transitional.dtd
http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd
http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd

CHAPTER 1 INTRODUCING XML
Listing 1-8. The Recipe Document with an Internal DTD

<?xml version="1.0"?>
<!DOCTYPE recipe [
<!ELEMENT recipe (title, ingredients, instructions)>
<VELEMENT title (#PCDATA)>
<!ELEMENT ingredients (ingredient+)>
<!ELEMENT ingredient (#PCDATA)>
<IELEMENT instructions (#PCDATA)>
<IATTLIST ingredient qty CDATA "1">
1>
<recipe>
<!-- Child elements removed for brevity. -->
</recipe>

Note A document can have internal and external DTDs, for example, < 'DOCTYPE
recipe SYSTEM "http://www.javajeff.ca/dtds/recipe.dtd" [
<!ELEMENT ...>]>.The internal DTD is referred to as the internal DTD subset,
and the external DTD is referred to as the external DTD subset. Neither subset can
override the element declarations of the other subset.

You can also declare notations and general and parameter entities within DTDs.

A notation is an arbitrary piece of data that typically describes the format of unparsed
binary data and typically has the form < !NOTATION name SYSTEM uri>, where name
identifies the notation and uri identifies some kind of plugin that can process the data
on behalf of the application that’s parsing the XML document. For example, < |NOTATION
image SYSTEM "psp.exe"> declares a notation named image and identifies Windows
executable psp.exe as a plugin for processing images.

It's also common to use notations to specify binary data types via media types (see
http://en.wikipedia.org/wiki/Media_type). For example, <!NOTATION image SYSTEM
"image/jpeg"> declares an image notation that identifies the image/jpeg media type for
Joint Photographic Experts Group images.

23

http://www.javajeff.ca/dtds/recipe.dtd
http://en.wikipedia.org/wiki/Media_type

CHAPTER 1 INTRODUCING XML

General entities are entities referenced from inside an XML document via general
entity references, syntactic constructs of the form &name;. Examples include the
predefined 1t, gt, amp, apos, and quot character entities, whose <, >, &, ', and
" character entity references are aliases for characters <, >, &, ', and ", respectively.

General entities are classified as internal or external. An internal general entity is a
general entity whose value is stored in the DTD and has the form <!ENTITY name value>,
where name identifies the entity and value specifies its value. For example, < ENTITY
copyright "Copyright © 2019 Jeff Friesen. All rights reserved."> declares
an internal general entity named copyright. The value of this entity may include another
declared entity, such as © (the HTML entity for the copyright symbol), and can be
referenced from anywhere in an XML document by specifying ©right;.

An external general entity is a general entity whose value is stored outside the
DTD. The value might be textual data (such as an XML document), or it might be binary
data (such as a JPEG image). External general entities are classified as external parsed
general entity and external unparsed general entity.

An external parsed general entity references an external file that stores the entity’s
textual data, which is subject to being inserted into a document and parsed by a validating
parser when a general entity reference is specified in the document, and which has the
form <!ENTITY name SYSTEM uri>, where name identifies the entity and uri identifies the
external file. For example, <!ENTITY chapter-header SYSTEM "http://www.javajeff.
ca/entities/chapheader.xml"> identifies chapheader.xml as storing the XML content to
be inserted into an XML document wherever &chapter-header; appears in the document.
The alternative <!ENTITY name PUBLIC fpi uri> form can be specified.

Caution Because the contents of an external file may be parsed, this content
must be well formed.

An external unparsed general entity references an external file that stores the entity’s
binary data and has the form <!ENTITY name SYSTEM uri NDATA nname>, where name
identifies the entity, urilocates the external file, and NDATA identifies the notation
declaration named nname. The notation typically identifies a plugin for processing
the binary data or the Internet media type of this data. For example, <!ENTITY photo
SYSTEM "photo.jpg" NDATA image> associates name photo with external binary file
photo.png and notation image. The alternative < !ENTITY name PUBLIC fpi uri NDATA
nname> form can be specified.

24

http://www.javajeff.ca/entities/chapheader.xml
http://www.javajeff.ca/entities/chapheader.xml

CHAPTER 1 INTRODUCING XML

Note XML doesn’t allow references to external general entities to appear in
attribute values. For example, you cannot specify &chapter-header; in an
attribute’s value.

Parameter entities are entities referenced from inside a DTD via parameter entity
references, syntactic constructs of the form %name; . They're useful for eliminating
repetitive content from element declarations. For example, you're creating a DTD
for a large company, and this DTD contains three element declarations: < ELEMENT
salesperson (firstname, lastname)>, <!ELEMENT lawyer (firstname, lastname)>,
and <!ELEMENT accountant (firstname, lastname)>.Each element contains repeated
child element content. If you need to add another child element (such asmiddleinitial),
you'll need to make sure that all of the elements are updated; otherwise, you risk a
malformed DTD. Parameter entities can help you solve this problem.

Parameter entities are classified as internal or external. An internal parameter
entity is a parameter entity whose value is stored in the DTD and has the form
<IENTITY % name value>, where name identifies the entity and value specifies its
value. For example, <!ENTITY 7% person-name "firstname, lastname"> declaresa
parameter entity named person-name with value firstname, lastname.Once declared,
this entity can be referenced in the three previous element declarations, as follows:
<!ELEMENT salesperson (%person-name;)>, <!ELEMENT lawyer (%person-name;)>,
and <!ELEMENT accountant (%person-name;)>.Instead of addingmiddleinitial to
each of salesperson, lawyer, and accountant, as was done previously, you would now
add this child element to person-name, as in <!ENTITY % person-name "firstname,
middleinitial, lastname">, and this change would be applied to these element
declarations.

An external parameter entily is a parameter entity whose value is stored outside
the DTD. It has the form <!ENTITY % name SYSTEM uri>, where name identifies the
entity and uri locates the external file. For example, <!ENTITY % person-name SYSTEM
"http://www.javajeff.ca/entities/names.dtd"> identifies names.dtd as storing the
firstname, lastname textto be inserted into a DTD wherever %person-name; appears
in the DTD. The alternative <!ENTITY % name PUBLIC fpi uri> form can be specified.

25

http://www.javajeff.ca/entities/names.dtd

CHAPTER 1 INTRODUCING XML

Note This discussion sums up the basics of DTD. One additional topic that
wasn’t covered (for brevity) is conditional inclusion, which lets you specify those
portions of a DTD to make available to parsers and is typically used with parameter
entity references.

XML Schema

XML Schema is a grammar language for declaring the structure, content, and semantics
(meaning) of an XML document. This language’s grammar documents are known as
schemas that are themselves XML documents. Schemas must conform to the XML
Schema DTD (see www.w3.0rg/2001/XMLSchema.dtd).

XML Schema was introduced by the W3C to overcome limitations with DTD, such as
DTD'’s lack of support for namespaces. Also, XML Schema provides an object-oriented
approach to declaring an XML document’s grammar. This grammar language provides a
much larger set of primitive types than DTD’s CDATA and PCDATA types. For example,
you'll find integer, floating-point, various date and time, and string types to be part of
XML Schema.

Note XML Schema predefines 19 primitive types, which are expressed via the
following identifiers: anyURI, base64Binary, boolean, date, dateTime,
decimal, double, duration, float, hexBinary, gDay, gMonth, gMonthDay,
gYear, gYearMonth, NOTATION, QName, string, and time.

XML Schema provides restriction (reducing the set of permitted values through
constraints), list (allowing a sequence of values), and union (allowing a choice of
values from several types) derivation methods for creating new simple types from these
primitive types. For example, XML Schema derives 13 integer types from decimal
through restriction; these types are expressed via the following identifiers: byte,
int, integer, long, negativelnteger, nonNegativeInteger, nonPositivelnteger,
positiveInteger, short, unsignedByte, unsignedInt, unsignedLong, and
unsignedShort. It also provides support for creating complex types from simple types.

26

http://www.w3.org/2001/XMLSchema.dtd

CHAPTER 1 INTRODUCING XML

A good way to become familiar with XML Schema is to follow through an example,
such as creating a schema for Listing 1-1’s recipe language document. The first step in
creating this recipe language schema is to identify all of its elements and attributes. The
elements are recipe, title, ingredients, instructions, and ingredient; qty is the
solitary attribute.

The next step is to classify the elements according to XML Schema’s content model,
which specifies the types of child elements and text nodes (see http://en.wikipedia.
org/wiki/Node_(computer science)) that can be included in an element. An element
is considered to be empty when the element has no child elements or text nodes, simple
when only text nodes are accepted, complex when only child elements are accepted,
and mixed when child elements and text nodes are accepted. None of Listing 1-1’s
elements have empty or mixed content models. However, the title, ingredient, and
instructions elements have simple content models; and the recipe and ingredients
elements have complex content models.

For elements that have a simple content model, we can distinguish between
elements having attributes and elements not having attributes. XML Schema classifies
elements having a simple content model and no attributes as simple types. Furthermore,
it classifies elements having a simple content model and attributes, or elements from
other content models as complex types. Furthermore, XML Schema classifies attributes
as simple types because they only contain text values—attributes don’t have child
elements. Listing 1-1’s title and instructions elements and its qty attribute are simple
types. Its recipe, ingredients, and ingredient elements are complex types.

At this point, we can begin to declare the schema. The following code fragment
presents the introductory schema element:

<xs:schema xmlns:xs="http://www.w3.0rg/2001/XMLSchema">

The schema element introduces the grammar. It also assigns the commonly used
xs namespace prefix to the standard XML Schema namespace; xs : is subsequently
prepended to XML Schema element names.

Next, we use the element element to declare the title and instructions simple
type elements, as follows:

<xs:element name="title" type="xs:string"/>
<xs:element name="instructions" type="xs:string"/>

27

http://en.wikipedia.org/wiki/Node_(computer_science)
http://en.wikipedia.org/wiki/Node_(computer_science)

CHAPTER 1 INTRODUCING XML

XML Schema requires that each element have a name and (unlike DTD) be
associated with a type, which identifies the kind of data stored in the element. For
example, the first element declaration identifies title as the name via its name attribute
and string as the type via its type attribute (string or character data appears between
the <title> and </title> tags). The xs: prefix in xs:string is required because string
is a predefined W3C type.

Continuing, we now use the attribute element to declare the gty simple type
attribute, as follows:

<xs:attribute name="qty" type="xs:unsignedInt" default="1"/>

This attribute element declares an attribute named qty. I've chosen unsignedInt
as this attribute’s type because quantities are nonnegative values. Furthermore, I've
specified 1 as the default value for when qty isn’t specified—attribute elements
default to declaring optional attributes.

Note The order of element and attribute declarations isn’t significant within a
schema.

Now that we’ve declared the simple types, we can start to declare the complex types.
To begin, we’ll declare recipe, as follows:

<xs:element name="recipe">
<xs:complexType>
<Xs:sequence>
<xs:element ref="title"/>
<xs:element ref="ingredients"/>
<xs:element ref="instructions"/>
</xs:sequence>
</xs:complexType>
</xs:element>

This declaration states that recipe is a complex type (via the complexType element)
consisting of a sequence (via the sequence element) of one title element followed
by one ingredients element followed by one instructions element. Each of these
elements is declared by a different element that’s referred to by its element’s ref
attribute.

28

CHAPTER 1 INTRODUCING XML

The next complex type to declare is ingredients. The following code fragment
provides its declaration:

<xs:element name="ingredients">
<xs:complexType>
<Xs:sequence>
<xs:element ref="ingredient"
maxOccurs="unbounded" />
</xs:sequence>
</xs:complexType>
</xs:element>

This declaration states that ingredients is a complex type consisting of a sequence
of one or more ingredient elements. The “or more” is specified by including element’s
maxOccurs attribute and setting this attribute’s value to unbounded.

Note The maxOccurs attribute identifies the maximum number of times that an
element can occur. A similar minOccurs attribute identifies the minimum number
of times that an element can occur. Each attribute can be assigned 0 or a positive
integer. Furthermore, you can specify unbounded for maxOccuxrs, which means
that there’s no upper limit on occurrences of the element. Each attribute defaults to
a value of 1, which means that an element can appear only one time when neither
attribute is present.

The final complex type to declare is ingredient. Although ingredient can contain
only text nodes, which implies that it should be a simple type, it’s the presence of the qty
attribute that makes it complex. Check out the following declaration:

<xs:element name="ingredient">
<xs:complexType>
<xs:simpleContent>
<xs:extension base="xs:string">
<xs:attribute ref="qty"/>
</xs:extension>
</xs:simpleContent>
</xs:complexType>
</xs:element>

29

CHAPTER 1 INTRODUCING XML

The element named ingredient is a complex type (because of its optional qty
attribute). The simpleContent element indicates that ingredient can only contain
simple content (text nodes), and the extension element indicates that ingredient is
a new type that extends the predefined string type (specified via the base attribute),
implying that ingredient inherits all of string’s attributes and structure. Furthermore,
ingredient is given an additional gty attribute.

Listing 1-9 combines the previous examples into a complete schema.

Listing 1-9. The Recipe Document’s Schema

<?xml version="1.0"?>
<xs:schema xmlns:xs="http://www.w3.0rg/2001/XMLSchema">
<xs:element name="title" type="xs:string"/>
<xs:element name="instructions" type="xs:string"/>
<xs:attribute name="qty" type="xs:unsignedInt" default="1"/>
<xs:element name="recipe">
<xs:complexType>
<Xs:sequence>
<xs:element ref="title"/>
<xs:element ref="ingredients"/>
<xs:element ref="instructions"/>
</xs:sequence>
</xs:complexType>
</xs:element>
<xs:element name="ingredients">
<xs:complexType>
<Xs:sequence>
<xs:element ref="ingredient"
maxOccurs="unbounded" />
</xs:sequence>
</xs:complexType>
</xs:element>

30

CHAPTER 1 INTRODUCING XML

<xs:element name="ingredient">
<xs:complexType>
<xs:simpleContent>
<xs:extension base="xs:string">
<xs:attribute ref="qty"/>
</xs:extension>
</xs:simpleContent>
</xs:complexType>
</xs:element>

After creating the schema, you can reference it from a recipe document. Accomplish
this task by specifying xmlns:xsi and xsi:schemalocation attributes on the document’s
root element start tag (<recipe>), as follows:

<recipe xmlns="http://www.javajeff.ca/"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://www.javajeff.ca/schemas recipe.xsd">

The xmlns attribute identifies http://www.javajeff.ca/ as the document’s
default namespace. Unprefixed elements and their unprefixed attributes belong to this
namespace.

The xmlns:xsi attribute associates the conventional xsi (XML Schema Instance)
prefix with the standard http://www.w3.0rg/2001/XMLSchema-instance namespace
The only item in the document that’s prefixed with xsi: is schemalLocation.

The schemalocation attribute is used to locate the schema. This attribute’s value can
be multiple pairs of space-separated values but is specified as a single pair of such values
in this example. The first value (http://www.javajeff.ca/schemas) identifies the target
namespace for the schema, and the second value (recipe.xsd) identifies the location of
the schema within this namespace.

Note Schema files that conform to XML Schema’s grammar are commonly
assigned the . xsd file extension.

31

http://www.javajeff.ca/
http://www.w3.org/2001/XMLSchema-instance
http://www.javajeff.ca/schemas

CHAPTER 1 INTRODUCING XML

If an XML document declares a namespace (xmlns default or xmlns:prefix), that
namespace must be made available to the schema so that a validating parser can resolve
all references to elements and other schema components for that namespace. We also
need to mention which namespace the schema describes, and we do so by including
the targetNamespace attribute on the schema element. For example, suppose our recipe
document declares a default XML namespace, as follows:

<?xml version="1.0"?>
<recipe xmlns="http://www.javajeff.ca/">

At minimum, we would need to modify Listing 1-9’s schema element to include
targetNameSpace and the recipe document’s default namespace as targetNameSpace’s
value, as follows:

<xs:schema targetNamespace="http://www.javajeff.ca/"
xmlns:xs="http://www.w3.0rg/2001/XMLSchema">

EXERCISES

The following exercises are designed to test your understanding of Chapter 1’s content:
1. Define XML.
2. True or false: XML and HTML are descendants of SGML.

3. What language features does XML provide for use in defining custom markup
languages?

4. What is the XML declaration?
5. ldentify the XML declaration’s three attributes. Which attribute is nonoptional?

6. True or false: An element always consists of a start tag followed by content
followed by an end tag.

7. Following the XML declaration, an XML document is anchored in what kind of
element?

8. What is mixed content?

9. What is a character reference? Identify the two kinds of character references.

32

10.
1.
12.
13.

14.
15.
16.

17.
18.

19.
20.
21.

22.

CHAPTER 1 INTRODUCING XML

What is a CDATA section? Why would you use it?
Define namespace.
What is a namespace prefix?

True or false: A tag’s attributes don’t need to be prefixed when those attributes
belong to the element.

What is a comment? Where can it appear in an XML document?
Define processing instruction.

Identify the rules that an XML document must follow to be considered well
formed.

What does it mean for an XML document to be valid?

A parser that performs validation compares an XML document to a grammar
document. Identify the two common grammar languages.

What is the general syntax for declaring an element in a DTD?
Which grammar language lets you create complex types from simple types?

Create a books . xml document file with a books root element. The books
element must contain one or more book elements, where a book element
must contain one title element, one or more author elements, and one
publisher element (and in that order). Also, the book element’s <book> tag
must contain isbn and pubyear attributes. Record Advanced C++/James
Coplien/Addison Wesley/0201548550/1992 in the first book element,
Beginning Groovy and Grails/Christopher M. Judd/Joseph
Faisal Nusairat/James Shingler/Apress/9781430210450/2008 in
the second book element, and Effective Java/Joshua Bloch/Addison
Wesley/0201310058/2001 in the third book element.

Modify books . xm1 to include an internal DTD that satisfies the previous
exercise’s requirements.

33

CHAPTER 1 INTRODUCING XML

Summary

Applications often use XML documents to store and exchange data. XML defines
rules for encoding documents in a format that is both human-readable and machine-
readable. It’s a meta-language for defining vocabularies, which is the key to XMLs
importance and popularity.

XML provides several language features for use in defining custom markup
languages. These features include the XML declaration, elements and attributes,
character references and CDATA sections, namespaces, and comments and processing
instructions.

HTML is a sloppy language where elements can be specified out of order, end tags
can be omitted, and so on. In contrast, XML documents are well formed in that they
conform to specific rules, which make them easier to process. XML parsers only parse
well-formed XML documents.

In many cases, an XML document must also be valid. A valid document adheres to
constraints as described by a grammar document. Grammar documents are written in
a grammar language, such as the commonly used Document Type Definition and XML
Schema.

Chapter 2 introduces Java’s SAX API for parsing XML documents.

34

CHAPTER 2

Parsing XML Documents
with SAX

Java provides several APIs for parsing XML documents. The most basic of these APIs is
SAX, which is the focus of Chapter 2.

What Is SAX?

Simple API for XML (SAX) is an event-based Java API for parsing an XML document
sequentially from start to finish. As a SAX-oriented parser encounters an item from
the document’s infoset (an abstract data model describing an XML document’s
information—see http://en.wikipedia.org/wiki/XML_Information_Set), it makes
this item available to an application as an event by calling one of the methods in one of
the application’s handlers (objects whose methods are called by the parser to make event
information available), which the application has previously registered with the parser.
The application can then consume this event by processing the infoset item in some
manner.

A SAX parser is more memory efficient than a DOM (see Chapter 3) parser in that
it doesn’t require the entire document to fit into memory. This benefit becomes a
drawback for using XPath (see Chapter 5) and XSLT (see Chapter 6), which require that
the entire document be stored in memory.

Note According to its official website (www.saxproject.org), SAX originated
as an XML parsing API for Java. However, SAX isn’t exclusive to Java. SAX

is also available for Microsoft’s .NET framework (see http://saxdotnet.
sourceforge.net).

35
© Jeff Friesen 2019

J. Friesen, Java XML and JSON, https://doi.org/10.1007/978-1-4842-4330-5_2

http://en.wikipedia.org/wiki/XML_Information_Set
http://www.saxproject.org
http://saxdotnet.sourceforge.net
http://saxdotnet.sourceforge.net

CHAPTER 2 PARSING XML DOCUMENTS WITH SAX

Exploring the SAX API

SAX exists in two major versions: SAX 1 and SAX 2. Java implements both versions
through the javax.xml.parsers package’s abstract SAXParser and SAXParserFactory
classes. The org.xml.sax, org.xml.sax.ext, and org.xml.sax.helpers packages
provide various types that augment both Java implementations.

Note I explore only the SAX 2 implementation because SAX 2 makes available
additional infoset items about an XML document (such as comments and CDATA
section notifications).

Before Java 9, you could use the org.xml.sax.helpers package’s
XMLReaderFactory class to obtain a SAX 2 parser. In Java 9, Oracle deprecated
XMLReaderFactory and recommends using SAXParserFactory instead.

Obtaining a SAX 2 Parser

Classes that implement the XMLReader interface describe SAX 2-based parsers. Instances
of these classes are obtained as follows:

1. Call SAXParserFactory’s static SAXParserFactory
newInstance() method to obtain a new SAXParserFactory
subclass instance. Alternatively, you might want to call the
static SAXParserFactory newDefaultInstance() method
(introduced by Java 9) to obtain an instance of the system-default
SAXParserFactory implementation.

2. Configure the SAXParserFactory object by calling various
SAXParserFactory configuration methods, such as void
setNamespaceAware(boolean awareness), which resultsin a
parser that supports XML namespaces.

3. Call SAXParserFactory’s SAXParser newSAXParser() method to
return a SAXParser subclass instance.

4. Call SAXParser’s XMLReader getXMLReader() method to return an
instance of a class that implements XMLReader.

36

CHAPTER 2 PARSING XML DOCUMENTS WITH SAX

The following code fragment follows these steps to create and return an XMLReader
object whose parser is aware of namespaces:

SAXParserFactory spf = SAXParserFactory.newInstance();
spf.setNamespaceAware(true);

SAXParser sp = spf.newSAXParser();

XMLReader xmlr = sp.getXMLReader();

Note SAXParserFactory’s newInstance() method follows an ordered
lookup procedure to identify the SAXParserFactory implementation class to
load. First, it looks for a javax.xml.parsers.SAXParserFactory system
property and, when present, uses its value as the implementation class name.
Lastly, it invokes newDefaultInstance() to return the system-default
implementation.

The newSAXParser () method creates a new SAXParser subclass object using
the currently configured factory parameters. It throws javax.xml.parsers.
ParserConfigurationException when a parser cannot be created that
satisfies the requested configuration. It throws org.xml.sax.SAXException
when a SAX-oriented error occurs.

Touring XMLReader Methods

The returned XMLReader object makes available several methods for configuring the
parser and parsing a document’s content. These methods are described as follows:

o ContentHandler getContentHandler() returns the current content
handler, which is an instance of a class that implements the org.
xml.sax.ContentHandler interface, or null when none has been
registered.

o DTDHandler getDTDHandler() returns the current DTD handler,
which is an instance of a class that implements the org.xml.sax.
DTDHandler interface, or null when none has been registered.

37

CHAPTER 2

38

PARSING XML DOCUMENTS WITH SAX

EntityResolver getEntityResolver() returns the current entity
resolver, which is an instance of a class that implements the org.
xml.sax.EntityResolver interface, or null when none has been
registered.

ErrorHandler getErrorHandler() returns the current error handler,
which is an instance of a class that implements the org.xml.sax.
ErrorHandler interface, or null when none has been registered.

boolean getFeature(String name) returns the Boolean

value that corresponds to the feature identified by name,

which must be a fully qualified URI. This method throws
org.xml.sax.SAXNotRecognizedException when the name

isn’t recognized as a feature, and throws org.xml.sax.
SAXNotSupportedException when the name is recognized but the
associated value cannot be determined when getFeature() is called.
SAXNotRecognizedException and SAXNotSupportedException are
subclasses of SAXException.

Object getProperty(String name) returns the java.lang.
Object instance that corresponds to the property identified by
name, which must be a fully qualified URI. This method throws
SAXNotRecognizedException when the name isn’t recognized as a
property, and throws SAXNotSupportedException when the name
is recognized but the associated value cannot be determined when
getProperty() is called.

void parse(InputSource input) parses an XML document and
doesn’t return until the document has been parsed. The input
parameter stores a reference to an org.xml.sax.InputSource
object, which describes the document’s source (such as a java.
io.InputStreamobject, or even a java.lang.String-based system
identifier URI). This method throws java.io.IOException when
the source cannot be read and SAXException when parsing fails,
probably due to a well-formedness violation.

void parse(String systemId) parses an XML document by
executing parse(new InputSource(systemId));.

CHAPTER 2 PARSING XML DOCUMENTS WITH SAX

void setContentHandler(ContentHandler handler) registers
the content handler identified by handler with the parser. The
ContentHandler interface provides 11 callback methods that are
called to report various parsing events (such as the start and end of
an element).

void setDTDHandler(DTDHandler handler) registers the DTD
handler identified by handler with the parser. The DTDHandler
interface provides a pair of callback methods for reporting on
notations and external unparsed entities.

void setEntityResolver(EntityResolver resolver) registers
the entity resolver identified by resolver with the parser. The
EntityResolver interface provides a single callback method for

resolving entities.

void setErrorHandler(ErrorHandler handler) registers the error
handler identified by handler with the parser. The ExrorHandler
interface provides three callback methods that report fatal errors
(problems that prevent further parsing, such as well-formedness
violations), recoverable errors (problems that don’t prevent further
parsing, such as validation failures), and warnings (nonerrors that
need to be addressed, such as prefixing an element name with the
W3C-reserved xml prefix).

void setFeature(String name, boolean value) assigns

value to the feature identified by name, which must be a fully
qualified URI. This method throws SAXNotRecognizedException
when the name isn’t recognized as a feature, and throws
SAXNotSupportedException when the name is recognized but the
associated value cannot be set when setFeature() is called.

void setProperty(String name, Object value) assigns

value to the property identified by name, which must be a fully
qualified URL This method throws SAXNotRecognizedException
when the name isn’t recognized as a property, and throws
SAXNotSupportedException when the name is recognized but the
associated value cannot be set when setProperty() is called.

39

CHAPTER 2 PARSING XML DOCUMENTS WITH SAX

When a handler isn’t installed, all events pertaining to that handler are silently
ignored. Not installing an error handler can be problematic because normal processing
might not continue and the application wouldn’t be aware that anything had gone
wrong. When an entity resolver isn’t installed, the parser performs its own default
resolution. I'll have more to say about entity resolution later in this chapter.

Note You typically install a new content handler, DTD handler, entity resolver, or
error handler before a document is parsed, but can also do so while parsing the
document. The parser starts using the handler when the next event occurs.

Setting Features and Properties

After obtaining an XMLReader object, you can configure that object by setting its features
and properties. A feature is a name/value pair that describes a parser mode, such as
validation. In contrast, a property is a name/value pair that describes some other aspect
of the parser interface, such as a lexical handler that augments the content handler by
providing callback methods for reporting on comments, CDATA delimiters, and a few
other syntactic constructs.

Features and properties have names, which must be absolute URIs beginning with
the http:// prefix. A feature’s value is always a Boolean true/false value. In contrast, a
property’s value is an arbitrary object. The following code fragment demonstrates setting
a feature and a property:

String FEAT_VAL = "http://xml.org/sax/features/validation"”;
xmlr.setFeature(FEAT VAL, true);

String PROP_LH = "http://xml.org/sax/properties/lexical-handler";
xmlr.setProperty(PROP_LH, new LexicalHandler() { /* ... */ });

The setFeature() call enables the validation feature so that the parser will
perform validation. Feature names are prefixed with http://xml.org/sax/features/.

40

http://xml.org/sax/features/

CHAPTER 2 PARSING XML DOCUMENTS WITH SAX

Note Parsers must support the namespaces and namespace-prefixes
features. namespaces decides whether URIs and local names are passed to
ContentHandler’s startElement() and endElement () methods. It defaults
to true—these names are passed. The parser can pass empty strings when
false. namespace-prefixes decides whether a namespace declaration’s
xmlns and xmlns:prefix attributes are included in the org.xml.sax.
Attributes list passed to startElement(), and also decides whether qualified
names are passed as the method’s third argument—a qualified name is a prefix
plus a local name. It defaults to false, meaning that xmlns and xmlns:prefix
aren’t included and meaning that parsers don’t have to pass qualified names. No
properties are mandatory. The JDK documentation’s org.xml.sax package page
lists standard SAX 2 features and properties.

The setProperty() call assigns an instance of a class that implements the org.xml.
sax.ext.LexicalHandler interface to the lexical-handler property so that interface
methods can be called to report on comments, CDATA sections, and so on. Property
names are prefixed with http://xml.org/sax/properties/.

Note Unlike ContentHandler, DTDHandler, EntityResolver, and
ErrorHandler, LexicalHandler is an extension (it’s not part of the core SAX
API), which is why XMLReader doesn’t declare a void setlLexicalHandler
(LexicalHandler handler) method. If you want to install a lexical handler,
you must use XMLReader’s setProperty() method to install the handler as the
value of the http://xml.org/sax/properties/lexical-handler property.

Features and properties can be read-only or read-write. (In some rare cases, a
feature or property might be write-only.) When setting or reading a feature or property,
SAXNotSupportedException or SAXNotRecognizedException might be thrown.

For example, if you try to modify a read-only feature/property, an instance of the
SAXNotSupportedException class is thrown. Also, this exception could be thrown if

you call setFeature() or setProperty() during parsing. Trying to set the validation
feature for a parser that doesn’t perform validation is a scenario where an instance of the
SAXNotRecognizedException class is thrown.

41

http://xml.org/sax/properties/
http://xml.org/sax/properties/lexical-handler

CHAPTER 2 PARSING XML DOCUMENTS WITH SAX

Touring the Handler and Resolver Interfaces

The interface-based handlers installed by setContentHandler (), setDTDHandler (),

and setErrorHandler(); the entity resolver installed by setEntityResolver(); and

the handler described by the 1lexical-handler property provide various callback
methods. You need to understand these methods before you can codify them to respond
effectively to parsing events.

Touring ContentHandler

ContentHandler declares the following content-oriented informational callback
methods:

o void characters(char[] ch, int start, int length) reports
an element’s character data via the ch array. The arguments that are
passed to start and length identify that portion of the array that’s
relevant to this method call. Characters are passed via a char[] array
instead of via a String object as a performance optimization. Parsers
commonly store a large amount of the document in an array and
repeatedly pass a reference to this array along with updated start
and length values to characters().

e void endDocument() reports that the end of the document has been
reached. An application might use this method to close an output file
or perform some other cleanup.

o void endElement(String uri, String localName, String
gName) reports that the end of an element has been reached. uri
identifies the element’s namespace URI or is empty when there is
no namespace URI or namespace processing hasn’t been enabled.
localName identifies the element’s local name, which is the name
without a prefix (e.g., the html in html or h:html). gName references
the qualified name, for example, h:html or html when there is no
prefix. endElement () is invoked when an end tag is detected, or
immediately following startElement() when an empty-element tag
is detected.

42

CHAPTER 2 PARSING XML DOCUMENTS WITH SAX

void endPrefixMapping(String prefix) reports that the end of a
namespace prefix mapping (e.g., xmlns:h) has been reached, and
prefix reports this prefix (e.g., h).

void ignorableWhitespace(char[] ch, int start, int length)
reports ignorable whitespace (whitespace located between tags where
the DTD doesn’t allow mixed content). This whitespace is often used
to indent tags. The parameters serve the same purpose as those in the
characters() method.

void processingInstruction(String target, String data)
reports a processing instruction, in which target identifies the
application to which the instruction is directed and data provides the
instruction’s data (the null reference when there is no data).

void setDocumentLocator(Locator locator) reportsanorg.xml.
sax.Locator object (an instance of a class implementing the Locator
interface) whose int getColumnNumber(), int getLineNumber(),
String getPublicId(), and String getSystemId() methods can
be called to obtain location information at the end position of any
document-related event, even when the parser isn’t reporting an
error. This method is called before startDocument () and is a good
place to save the Locator object so that it can be accessed from other
callback methods.

void skippedEntity(String name) reports all skipped entities.
Validating parsers resolve all general entity references, but
nonvalidating parsers have the option of skipping them because
nonvalidating parsers don’t read DTDs where these entities are
declared. If the nonvalidating parser doesn’t read a DTD, it will not
know if an entity is properly declared. Instead of attempting to read
the DTD and report the entity’s replacement text, the nonvalidating
parser calls skippedEntity() with the entity’s name.

void startDocument() reports that the start of the document has
been reached. An application might use this method to create an
output file or perform some other initialization.

43

CHAPTER 2 PARSING XML DOCUMENTS WITH SAX

o void startElement(String uri, String localName, String gName,
Attributes attributes) reports that the start of an element has been
reached. uri identifies the element’s namespace URI or is empty when
there is no namespace URI or namespace processing hasn’t been
enabled. 1ocalName identifies the element’s local name, gName references
its qualified name, and attributes references a list of the element’s
attributes—this list is empty when there are no attributes. startElement()
is invoked when a start tag or an empty-element tag is detected.

o void startPrefixMapping(String prefix, String uri) reports that
the start of a namespace prefix mapping (e.g., xmlns:h="http://www.
w3.0rg/1999/xhtml") has been reached, in which prefix reports this
prefix (such as h) and uri reports the URI to which the prefix is mapped
(e.g., http://www.w3.0rg/1999/xhtml).

Each method except for setDocumentLocator() is declared to throw SAXException,
which an overriding callback method might choose to throw when it detects a problem.

Touring DTDHandler

DTDHandler declares the following DTD-oriented informational callback methods:

o void notationDecl(String name, String publicId, String
systemId) reports a notation declaration, in which name provides
this declaration’s name attribute value, publicId provides this
declaration’s public attribute value (the null reference when this
value isn’t available), and systemId provides this declaration’s
system attribute value.

o void unparsedEntityDecl(String name, String publicId,
String systemId, String notationName) reports an external
unparsed entity declaration, in which name provides the value
of this declaration’s name attribute, publicId provides the value
of the public attribute (the null reference when this value isn’t
available), systemId provides the value of the system attribute, and
notationName provides the NDATA name.

Each method is declared to throw SAXException, which an overriding callback
method might choose to throw when it detects a problem.

44

http://www.w3.org/1999/xhtml
http://www.w3.org/1999/xhtml
http://www.w3.org/1999/xhtml

CHAPTER 2 PARSING XML DOCUMENTS WITH SAX

Touring ErrorHandler

ErrorHandler declares the following error-oriented informational callback methods:

void error(SAXParseException exception) reports that a
recoverable parser error (typically the document isn’t valid) has
occurred; the details are specified via the argument passed to
exception. This method is typically overridden to report the error via
a command window or to log it to a file or a database.

void fatalError(SAXParseException exception) reports that

an unrecoverable parser error (the document isn’t well formed)

has occurred; the details are specified via the argument passed

to exception. This method is typically overridden so that the
application can log the error before it stops processing the document
(because the document is no longer reliable).

void warning(SAXParseException e) reports that a nonserious
error (such as an element name beginning with the reserved xml
character sequence) has occurred; the details are specified via the
argument passed to exception. This method is typically overridden
to report the warning via a console or to log it to a file or a database.

Each method is declared to throw SAXException, which an overriding callback

method might choose to throw when it detects a problem.

Touring EntityResolver

EntityResolver declares the following callback method:

InputSource resolveEntity(String publicId, String systemId)
is called to let the application resolve an external entity (such as an
external DTD subset) by returning a custom InputSource object
that’s based on a different URI. This method is declared to throw
SAXException when it detects a SAX-oriented problem and is also
declared to throw I0Exception when it encounters an I/0 error,
possibly in response to creating an InputStream object or a java.
io.Reader object for the InputSource being created.

45

CHAPTER 2 PARSING XML DOCUMENTS WITH SAX

Touring LexicalHandler

LexicalHandler declares the following additional content-oriented informational
callback methods:

o void comment(char[] ch, int start, int length) reportsa
comment via the ch array. The arguments that are passed to start
and length identify that portion of the array that’s relevant to this
method call.

e void endCDATA() reports the end of a CDATA section.
e void endDTD() reports the end of a DTD.

o void endEntity(String name) reports the end of the entity
identified by name.

o void startCDATA() reports the start of a CDATA section.

o void startDTD(String name, String publicId, String
systemId) reports the start of the DTD identified by name. publicId
specifies the declared public identifier for the external DTD subset
or is the null reference when none was declared. Similarly, systemId
specifies the declared system identifier for the external DTD subset or
is the null reference when none was declared.

o void startEntity(String name) reports the start of the entity
identified by name.

Each method is declared to throw SAXException, which an overriding callback
method might choose to throw when it detects a problem.

Because it can be tedious to implement all of the methods in each interface, the
SAX API conveniently provides the org.xml.sax.helpers.DefaultHandler adapter
class to relieve you of this tedium. DefaultHandler implements ContentHandler,
DTDHandler, EntityResolver, and ExrrorHandler. SAX also provides org.xml.sax.
ext.DefaultHandler2, which subclasses DefaultHandler and which also implements
LexicalHandler.

46

CHAPTER 2 PARSING XML DOCUMENTS WITH SAX

Demonstrating the SAX API

Listing

2-1 presents the source code to SAXDemo, an application that demonstrates the

SAX API. The application consists of a SAXDemo entry-point class and a Handler subclass

of Defa

ultHandler2.

Listing 2-1. SAXDemo

import
import

import
import
import

import
import
import

import

public
{

fin

fin

fin

pub
{

java.io.FileReader;
java.io.IOException;

javax.xml.parsers.ParserConfigurationException;
javax.xml.parsers.SAXParser;
javax.xml.parsers.SAXParserFactory;

org.xml.sax.InputSource;
org.xml.sax.SAXException;
org.xml.sax.XMLReader;

static java.lang.System.*;

class SAXDemo

al static String FEAT_NSP =
"http://xml.org/sax/features/namespace-prefixes";

al static String FEAT VAL =
"http://xml.org/sax/features/validation”;

al static String PROP_LH =
"http://xml.org/sax/properties/lexical-handler";

lic static void main(String[] args)

if (args.length < 1 || args.length > 2)
{

err.println("usage: java SAXDemo xmlfile [v]");
return;

}
try

47

CHAPTER 2 PARSING XML DOCUMENTS WITH SAX

{
SAXParserFactory spf =

SAXParserFactory.newInstance();
spf.setNamespaceAware(true);
SAXParser sp = spf.newSAXParser();
XMLReader xmlr = sp.getXMLReader();
if (args.length == 2 && args[1].equals("v"))
xmlr.setFeature(FEAT VAL, true);
xmlr.setFeature(FEAT NSP, true);
Handler handler = new Handler();
xmlr.setContentHandler(handler);
xmlr.setDTDHandler (handler);
xmlr.setEntityResolver(handler);
xmlr.setErrorHandler(handler);
xmlr.setProperty(PROP_LH, handler);
FileReader fr = new FileReader(args[0]);
xmlr.parse(new InputSource(fr));

}
catch (IOException ioe)
{
err.printf("IOE: %s%n", ioe.toString());
}
catch (ParserConfigurationException pce)
{
err.printf("PCE: %s%n", pce.toString());
}
catch (SAXException saxe)
{
err.printf("SAXE: %s%n", saxe.toString());
}

48

CHAPTER 2 PARSING XML DOCUMENTS WITH SAX

SAXDemo’s main() method first verifies that one or two command-line arguments (the

name of an XML document optionally followed by lowercase letter v, which tells SAXDemo

to create a validating parser) have been specified. It then creates an XMLReader object;

conditionally enables the validation feature and enables the namespace-prefixes

feature; instantiates the companion Handler class; installs this Handler object as the

parser’s content handler, DTD handler, entity resolver, and error handler; installs this

Handler object as the value of the lexical-handler property; creates an input source to

read the document from a file; and parses the document.

The Handler class’s source code is presented in Listing 2-2.

Listing 2-2. Handler

import org.xml.sax.Attributes;

import org.xml.sax.InputSource;

import org.xml.sax.Locator;

import org.xml.sax.SAXParseException;

import org.xml.sax.ext.DefaultHandler2;

import static java.lang.System.*;

public class Handler extends DefaultHandler2

{

private Locator locator;

@Override
public void characters(char[] ch, int start, int length)
{
out.print("characters() [");
for (int i = start; i < start + length; i++)
out.print(ch[i]);
out.println("]");
}

@Override
public void comment(char[] ch, int start, int length)

{

out.print("characters() [");
for (int i = start; i < start + length; i++)

49

CHAPTER 2 PARSING XML DOCUMENTS WITH SAX

50

out.print(ch[i]);
out.println("]1");
}

@Override
public void endCDATA()

{
out.println("endCDATA()");

}

@verride
public void endDocument()

{
out.println("endDocument()");

}

@verride
public void endDTD()

{
out.println("enddTD()");

}

@verride
public void endElement(String uri, String localName,
String qName)

out.print("endElement() ");
out.printf("uri=[%s], ", uri);
out.printf("localName=[%s], ", localName);
out.printf("gName=[%s]%n", gName);

}

@verride
public void endEntity(String name)

{
out.print("endEntity() ");

out.printf("name=[%s]%n", name);

CHAPTER 2 PARSING XML DOCUMENTS WITH SAX

@verride
public void endPrefixMapping(String prefix)
{
out.print("endPrefixMapping() ");
out.printf("prefix=[%s]%n", prefix);
}

@verride
public void error(SAXParseException saxpe)
{
out.printf("error() %s%n", saxpe.toString());

}

@0verride
public void fatalError(SAXParseException saxpe)

{
out.printf("fatalError() %s%n", saxpe.toString());

}

@verride
public void ignorableWhitespace(char[] ch, int start, int length)
{

out.print("ignorableWhitespace() [");

for (int i = start; i < start + length; i++)

out.print(ch[i]);
out.println("]");
}
@Override

public void notationDecl(String name, String publicld,
String systemId)

out.print("notationDecl() ");
out.printf("name=[%s], ", name);
out.printf("publicId=[%s], ", publicId);
out.printf("systemId=[%s]%n", systemId);

51

CHAPTER 2 PARSING XML DOCUMENTS WITH SAX

@verride

public void processingInstruction(String target, String data)

{
out.print("processingInstruction() ");
out.printf("target=[%s], ", target);
out.printf("data=[%s]%n", data);

}

@verride

public InputSource resolveEntity(String publicId, String systemId)

{
out.print("resolveEntity() ");
out.printf("publicId=[%s], ", publicId);
out.printf("systemId=[%s]%n", systemId);
// Do not perform a remapping.
InputSource is = new InputSource();
is.setPublicId(publicId);
is.setSystemId(systemId);
return is;

}

@verride

public void setDocumentlLocator(Locator locator)

{
out.print("setDocumentLocator() ");
out.printf("locator=[%s]%n", locator);
this.locator = locator;

}

@verride
public void skippedEntity(String name)

{
out.print("skippedEntity() ");

out.printf("name=[%s]%n", name);

52

CHAPTER 2 PARSING XML DOCUMENTS WITH SAX

@verride
public void startCDATA()

{
out.println("startCDATA()");

}

@verride
public void startDocument()

{
out.println("startDocument()");

}

@verride
public void startDTD(String name, String publicId, String systemId)
{
out.print("startDTD() ");
out.printf("name=[%s], ", name);
out.printf("publicId=[%s], ", publicId);
out.printf("systemId=[%s]%n", systemId);
}

@verride
public void startElement(String uri, String localName, String gName,
Attributes attributes)

out.print("startElement() ");
out.printf("uri=[%s], ", uri);
out.printf("localName=[%s], ", localName);
out.printf("gName=[%s]%n", gName);
for (int i = 0; i < attributes.getlength(); i++)
out.printf(" Attribute: %s, %s%n", attributes.getlLocalName(i),
attributes.getValue(i));
out.printf("Column number=[%d]%n", locator.getColumnNumber());
out.printf("Line number=[%d]%n", locator.getLineNumber());

53

CHAPTER 2 PARSING XML DOCUMENTS WITH SAX

@verride
public void startEntity(String name)
{
out.print("startEntity() ");
out.printf("name=[%s]%n", name);

}

@verride
public void startPrefixMapping(String prefix, String uri)
{
out.print("startPrefixMapping() ");
out.printf("prefix=[%s], ", prefix);
out.printf("uri=[%s]%n", uri);
}
@verride
public void unparsedEntityDecl(String name,
String publicld,
String systemld,
String notationName)

out.print("unparsedEntityDecl() ");
out.printf("name=[%s], ", name);
out.printf("publicId=[%s], ", publicId);
out.printf("systemId=[%s], ", systemId);
out.printf("notationName=[%s]%n", notationName);

}

@verride
public void warning(SAXParseException saxpe)

{
out.printf("warning() %s%n", saxpe.toString());

54

CHAPTER 2 PARSING XML DOCUMENTS WITH SAX

The Handler subclass is pretty straightforward; it outputs every possible piece of
information about an XML document, subject to feature and property settings. You'll
find this class handy for exploring the order in which events occur along with various
features and properties.

Assuming that files based on Listings 2-1 and 2-2 are located in the same directory,
compile them as follows:

javac SAXDemo.java
Execute the following command to parse Listing 1-4’s svg-examples.xml document:
java SAXDemo svg-examples.xml

SAXDemo responds by presenting the following output (the hashcode will probably be
different):

setDocumentlLocator() locator=[com.sun.org.apache.xerces.internal.parsers.Ab
stractSAXParser$LocatorProxy@53b32d7]
startDocument()
startElement() uri=[], localName=[svg-examples], gName=[svg-examples]
Column number=[15]
Line number=[2]
characters() [
]

startElement() uri=[], localName=[example], gName=[example]
Column number=[13]
Line number=[3]
characters() [

The following Scalable Vector Graphics document]
characters() [

describes a blue-filled and black-stroked

rectangle.]
characters() [

]
startCDATA()

55

CHAPTER 2 PARSING XML DOCUMENTS WITH SAX

characters() [<svg width="100%" height="100%"
version="1.1"
xmlns="http://www.w3.0rg/2000/svg">
<rect width="300" height="100"
style="fill:rgb(0,0,255);stroke-width:1;
stroke:rgb(0,0,0)"/>
</svg>]
endCDATA()
characters() [
]
endElement() uri=[], localName=[example], gName=[example]
characters() [
]
endElement() uri=[], localName=[svg-examples], gqName=[svg-examples]
endDocument ()

The first output line proves that setDocumentLocator() is called first. The
second and third lines also identify the Locator object whose getColumnNumber ()
and getLineNumber () methods are called to output the parser location when
startElement() is called—these methods return column and line numbers starting at 1.
Perhaps you're curious about the four instances of the following output:

characters() [

]

The instance of this output that follows the endCDATA() output is reporting a carriage
return/line feed combination that wasn’t included in the preceding characters()
method call, which passed the contents of the CDATA section minus these line
terminator characters. This is also the case for the instance of this output that follows
the rectangle.] output. In contrast, the instances of this output that follow the
startElement() call for svg-examples and follow the endElement () call for example are
somewhat curious. There’s no content between <svg-examples> and <example>, and
between </example> and </svg-examples>, or is there?

You can satisfy this curiosity by modifying svg-examples.xml to include an internal
DTD. Place the following DTD (which indicates that an svg-examples element contains
one or more example elements and that an example element contains parsed character
data) between the XML declaration and the <svg-examples> start tag:

56

CHAPTER 2 PARSING XML DOCUMENTS WITH SAX

<IDOCTYPE svg-examples [
<!ELEMENT svg-examples (example+)>
<!ELEMENT example (#PCDATA)>

1>
Continuing, execute the following command:
java SAXDemo svg-examples.xml

This time, you should see the following output (although the hashcode will probably
differ):

setDocumentLocator() locator=[com.sun.org.apache.xerces.internal.parsers.Ab
stractSAXParser$LocatorProxy@53b32d7]
startDocument()
startDTD() name=[svg-examples], publicId=[null], systemId=[null]
endDTD()
startElement() uri=[], localName=[svg-examples], gName=[svg-examples]
Column number=[15]
Line number=[6]
ignorableWhitespace() [
]

startElement() uri=[], localName=[example], gName=[example]
Column number=[13]
Line number=[7]
characters() [

The following Scalable Vector Graphics document

describes a blue-filled and black-stroked]
characters() [

rectangle.

]
startCDATA()
characters() [<svg width="100%" height="100%"

version="1.1"
xmlns="http://www.w3.0rg/2000/svg">
<rect width="300" height="100"
style="fill:rgb(0,0,255);stroke-width:1;

57

CHAPTER 2 PARSING XML DOCUMENTS WITH SAX

stroke:rgh(0,0,0)"/>
</svg>]
endCDATA()
characters() [
]
endElement() uri=[], localName=[example], gName=[example]
ignorableWhitespace() [
]
endElement() uri=[], localName=[svg-examples], gName=[svg-examples]
endDocument ()

This output reveals that the ignorableWhitespace() method was called after
startElement() for svg-examples and after endElement() for example. The former
two calls to characters() that produced the strange output were reporting ignorable
whitespace.

Recall that I previously defined ignorable whitespace as whitespace located between
tags where the DTD doesn’t allow mixed content. For example, the DTD indicates that
svg-examples shall contain only example elements, not example elements and parsed
character data. However, the line terminator following the <svg-examples> tag and the
leading whitespace before <example> are parsed character data. The parser now reports
these characters by calling ignorableWhitespace().

This time, there are only two occurrences of the following output:

characters() [

]

The first occurrence reports the line terminator separately from the example
element’s text (before the CDATA section); it didn’t do so previously, which proves that
characters() is called with either all or part of an element’s content. Once again, the
second occurrence reports the line terminator that follows the CDATA section.

Let’s validate svg-examples.xml without the previously presented internal
DTD. We'll do so by executing the following command—don’t forget to include the v
command-line argument or the document won’t validate:

java SAXDemo svg-examples.xml v

58

CHAPTER 2 PARSING XML DOCUMENTS WITH SAX
Among its output are the following error ()-prefixed lines:

error() org.xml.sax.SAXParseException; lineNumber: 2; columnNumber: 14;
Document is invalid: no grammar found.

error() org.xml.sax.SAXParseException; lineNumber: 2; columnNumber: 14;
Document root element "svg-examples", must match DOCTYPE root "null".

These lines reveal that a DTD grammar hasn’t been found. Furthermore, the parser
reports a mismatch between svg-examples (it considers the first encountered element
to be the root element) and null (it considers null to be the name of the root element in
the absence of a DTD). Neither violation is considered to be fatal, which is why error ()
is called instead of fatalError().

Add the internal DTD to svg-examples.xml and reexecute java SAXDemo svg-
examples.xml v. This time, you should see no error ()-prefixed lines in the output.

Tip SAX 2 validation defaults to validating against a DTD. To validate against an
XML Schema-based schema instead, add the schemalLanguage property with
the http://www.w3.0rg/2001/XMLSchema value to the XMLReader object.
Accomplish this task for SAXDemo by specifying xmlr.setProperty("http://
java.sun.com/xml/jaxp/properties/schemalanguage”,
"http://www.w3.0rg/2001/XMLSchema"); before xmlr.parse(new
InputSource(new FileReader(args[0])));.

Creating a Custom Entity Resolver

While exploring XML in Chapter 1, I introduced you to the concept of entities, which are
aliased data. I then discussed general entities and parameter entities in terms of their
internal and external variants.

Unlike internal entities, whose values are specified in a DTD, the values of external
entities are specified outside of a DTD and are identified via public and/or system
identifiers. The system identifier is a URI, whereas the public identifier is a formal public
identifier.

59

http://www.w3.org/2001/XMLSchema
http://java.sun.com/xml/jaxp/properties/schemaLanguage
http://java.sun.com/xml/jaxp/properties/schemaLanguage
http://www.w3.org/2001/XMLSchema

CHAPTER 2 PARSING XML DOCUMENTS WITH SAX

An XML parser reads an external entity (including the external DTD subset) via an
InputSource object that’s connected to the appropriate system identifier. In many cases,
you pass a system identifier or InputSource object to the parser and let it discover where
to find other entities that are referenced from the current document entity.

However, for performance or other reasons, you might want the parser to read the
external entity’s value from a different system identifier, such as a local DTD copy’s
system identifier. You can accomplish this task by creating an entity resolver that uses the
public identifier to choose a different system identifier. Upon encountering an external
entity, the parser calls the custom entity resolver to obtain this identifier.

Consider Listing 2-3’s formal specification of Listing 1-1’s grilled cheese sandwich recipe.

Listing 2-3. XML-Based Recipe for a Grilled Cheese Sandwich Specified in
Recipe Markup Language

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE recipeml PUBLIC
"-//FormatData//DTD RecipeML 0.5//EN"
"http://www.formatdata.com/recipeml/recipeml.dtd">
<recipeml version="0.5">
<recipe>
<head>
<title>Grilled Cheese Sandwich</title>
</head>
<ingredients>
<ing>
<amt><qty>2</qty><unit>slice</unit></amt>
<item>bread</item>
</ing>
<ing>
<amt><qty>1</qty><unit>slice</unit></amt>
<item>cheese</item>
</ing>
<ing>
<amt><qty>2</qty><unit>pat</unit></amt>
<item>margarine</item>
</ing>

60

CHAPTER 2 PARSING XML DOCUMENTS WITH SAX

</ingredients>
<directions>
<step>Place frying pan on element and select
medium heat.</step>
<step>For each bread slice, smear one pat of
margarine on one side of bread slice.</step>
<step>Place cheese slice between bread slices with
margarine-smeared sides away from the
cheese.</step>
<step>Place sandwich in frying pan with one
margarine-smeared size in contact with pan.</step>
<step>Fry for a couple of minutes and flip.</step>
<step>Fry other side for a minute and
serve.</step>
</directions>
</recipe>
</recipeml>

Listing 2-3 specifies the grilled cheese sandwich recipe in Recipe Markup Language
(RecipeML), an XML-based language for marking up recipes. (A company named
FormatData [see www. formatdata.com] released this format in 2000.)

The document type declaration reports -//FormatData//DTD RecipeML 0.5//
EN as the formal public identifier and http://www.formatdata.com/recipeml/
recipeml.dtd as the system identifier. Instead of keeping the default mapping, let’s
map this formal public identifier to recipeml.dtd, a system identifier for a local copy
of this DTD file.

To create a custom entity resolver to perform this mapping, we declare a
class that implements the EntityResolver interface in terms of its InputSource
resolveEntity(String publicId, String systemId) method. We then use the
supplied publicIdvalue as a key into a map that points to the desired systemId value,
and then use this value to create and return a custom InputSource. Listing 2-4 presents
the resulting class.

61

http://www.formatdata.com
http://www.formatdata.com/recipeml/recipeml.dtd
http://www.formatdata.com/recipeml/recipeml.dtd

CHAPTER 2 PARSING XML DOCUMENTS WITH SAX

Listing 2-4. LocalRecipeML

import java.util.HashMap;
import java.util.Map;

import org.xml.sax.EntityResolver;
import org.xml.sax.InputSource;
import org.xml.sax.SAXException;

import static java.lang.System.*;

public class LocalRecipeML implements EntityResolver

{
private Map<String, String> mappings = new HashMap<>();
LocalRecipeML()
{
mappings.put("-//FormatData//DTD RecipeML 0.5//EN", "recipeml.dtd");
}
@verride
public InputSource resolveEntity(String publicId, String systemId)
{
if (mappings.containsKey(publicId))
{
out.println("obtaining cached recipeml.dtd");
systemId = mappings.get(publicId);
InputSource localSource =
new InputSource(systemId);
return localSource;
}
return null;
}
}

62

CHAPTER 2 PARSING XML DOCUMENTS WITH SAX

Listing 2-4 declares LocalRecipeML. This class’s constructor stores the formal public
identifier for the RecipeML DTD and the system identifier for a local copy of this DTD’s
document in a map.

Note Although it’s unnecessary to use a map in this example (an if
(publicId.equals("-//FormatData//DTD RecipeML 0.5//EN"))
return new InputSource("recipeml.dtd") else return null;
statement would suffice), I've chosen to use a map in case | want to expand the
number of mappings in the future. In another scenario, you would probably find

a map to be very convenient. For example, it’s easier to use a map than to use

a series of if statements in a custom entity resolver that maps XHTML's strict,
transitional, and frameset formal public identifiers and also maps its various entity
sets to local copies of these document files.

The overriding resolveEntity() method uses publicId’s argument to locate the
corresponding system identifier in the map—the systemId parameter value is ignored
because it never refers to the local copy of recipeml.dtd. When the mapping is found,
an InputSource object is created and returned. If the mapping couldn’t be found, null
would be returned.

To install this custom entity resolver in SAXDemo, specify xmlr.
setEntityResolver(new LocalRecipeML()); before the parse() method call. After
recompiling the source code, execute the following command:

java SAXDemo gcs.xml

Here, gcs . xml stores Listing 2-3’s text. In the resulting output, you should observe
the message “obtaining cached recipeml.dtd” before the call to startEntity().

Tip The SAXAPI includes an org.xml.sax.ext.EntityResolver2
interface that provides improved support for resolving entities. If you prefer

to implement EntityResolver2 instead of EntityResolver, replace the
setEntityResolver() call to install the entity resolver with a setFeature()
call whose feature name is use-entity-resolver2 (don’t forget the http://
xml.org/sax/features/prefix).

63

http://xml.org/sax/features/prefix
http://xml.org/sax/features/prefix

CHAPTER 2 PARSING XML DOCUMENTS WITH SAX

EXERCISES

The following exercises are designed to test your understanding of Chapter 2’s content:

1. Define SAX.

2. How do you obtain a SAX 2-based parser?

3. What is the purpose of the XMLReader interface?

4. How do you tell a SAX parser to perform validation?

5. ldentify the four kinds of SAX-oriented exceptions that can be thrown when

working with SAX.
What interface does a handler class implement to respond to content-oriented events?
Identify the three other core interfaces that a handler class is likely to implement.

Define ignorable whitespace.

© o N o

True or false: void error(SAXParseException exception) is called for
all kinds of errors.

10. What is the purpose of the DefaultHandler class?
11. What is an entity? What is an entity resolver?

12. Apache Tomcat is an open-source web server developed by the Apache Software
Foundation. Tomcat stores usernames, passwords, and roles (for authentication
purposes) in its tomcat-users.xml configuration file. Create a DumpUserInfo
application that uses SAX to parse the user elements in the following example
tomcat-users.xml file and, for each user element, dump its username,
password, and roles attribute values to standard output in a key = value format:

<?xml version='1.0" encoding="utf-8'?>
<tomcat-users>
<role rolename="dbadmin"/>
<role rolename="manager"/>
<user username="JohnD" password="password1"
roles="dbadmin,manager"/>
<user username="JillD" password="password2"
roles="manager"/>
</tomcat-users>

64

CHAPTER 2 PARSING XML DOCUMENTS WITH SAX

13. Create a SAXSeaxrch application that searches Exercise 1-21’s books . xml
file for those book elements whose publisher child elements contain text
that equals the application’s single command-line publisher name argument.
Once there is a match, output the title element’s text followed by the book
element’s isbn attribute value. For example, java SAXSearch Apress
should output title = Beginning Groovy and Grails, isbn =
9781430210450, whereas java SAXSearch "Addison Wesley" should
output title = Advanced C++, isbn = 0201548550 followed by title
= Effective Java, isbn = 0201310058 on separate lines. Nothing
should output when the command-line publisher name argument doesn’t match
a publisher element’s text.

14. Use Listing 2-1’s SAXDemo application to validate Exercise 1-22's books . xml
content against its DTD. Execute java SAXDemo books.xml -v to perform
the validation.

Summary

SAX s an event-based Java API for parsing an XML document sequentially from start
to finish. As a SAX-oriented parser encounters an item from the document’s infoset, it
makes this item available to an application as an event by calling one of the methods in
one of the application’s handlers, which the application has previously registered with
the parser. The application can then consume this event by processing the infoset item
in some manner.

SAX exists in two major versions: SAX 1 and SAX 2. Java implements both versions
through the javax.xml.parsers package’s abstract SAXParser and SAXParserFactory
classes. The org.xml.sax, org.xml.sax.ext, and org.xml.sax.helpers packages
provide various types that augment both Java implementations.

XMLReader makes available several methods for configuring the parser and parsing
a document’s content. Some of these methods get and set the content handler, DTD
handler, entity resolver, and error handler, which are described by the ContentHandler,
DTDHandler, EntityResolver, and ErrorHandler interfaces. After learning about
XMLReader’s methods and these interfaces, you learned about the nonstandard
LexicalHandler interface and how to create a custom entity resolver.

Chapter 3 introduces Java’s DOM API for parsing/creating XML documents.

65

CHAPTER 3

Parsing and Creating XML
Documents with DOM

SAX can parse XML documents but cannot create them. In contrast, DOM can parse and
create XML documents. Chapter 3 introduces you to DOM.

What Is DOM?

Document Object Model (DOM) is a Java API for parsing an XML document into an
in-memory tree of nodes and for creating an XML document from a node tree. After
a DOM parser creates a tree, an application uses the DOM API to navigate over and
extract infoset items from the tree’s nodes.

DOM has two big advantages over SAX:

¢« DOM permits random access to a document’s infoset items, whereas
SAX only permits serial access.

o DOM lets you also create XML documents, whereas you can only
parse documents with SAX.

However, SAX is advantageous over DOM in that it can parse documents of arbitrary
size, whereas the size of documents parsed or created by DOM is limited by the amount
of available memory for storing the document’s node-based tree structure.

67
© Jeff Friesen 2019

J. Friesen, Java XML and JSON, https://doi.org/10.1007/978-1-4842-4330-5_3

CHAPTER 3 PARSING AND CREATING XML DOCUMENTS WITH DOM

Note DOM originated as an object model for the Netscape Navigator 3 and
Microsoft Internet Explorer 3 web browsers. Collectively, these implementations
are known as DOM Level 0. Because each vendor’'s DOM implementation was only
slightly compatible with the other, the W3C subsequently took charge of DOM’s
development to promote standardization and has so far released DOM Levels 1, 2,
3, and 4. Java 11 supports the first three DOM levels through its DOM API.

A Tree of Nodes

DOM views an XML document as a tree that’s composed of several kinds of nodes. This
tree has a single root node, and all nodes except for the root have a parent node. Also,
each node has a list of child nodes. When this list is empty, the child node is known as a
leaf node.

Note DOM permits nodes to exist that are not part of the tree structure. For
example, an element node’s attribute nodes are not regarded as child nodes of the
element node. Also, nodes can be created but not inserted into the tree; they can
also be removed from the tree.

Each node has a node name, which is the complete name for nodes that have names
(such as an element’s or an attribute’s prefixed name), and #node-type for unnamed
nodes, where node-type is one of cdata-section, comment, document, document-
fragment, or text. Nodes also have local names (names without prefixes), prefixes,
and namespace URIs (although these attributes may be null for certain kinds of nodes,
such as comments). Finally, nodes have string values, which happen to be the content
of text nodes, comment nodes, and similar text-oriented nodes; normalized values for
attributes; and null for everything else.

DOM classifies nodes into 12 types; most of them can be considered part of a DOM
tree. All of these types are described as follows:

o Attribute node: one of an element’s attributes. It has a name, a local
name, a prefix, a namespace URI, and a normalized string value.
The value is normalized by resolving any entity references and by
converting sequences of whitespace to a single whitespace character.

68

CHAPTER 3 PARSING AND CREATING XML DOCUMENTS WITH DOM

An attribute node has children, which are the text and any entity
reference nodes that form its value. Attribute nodes are not regarded
as children of their associated element nodes.

CDATA section node: the contents of a CDATA section. Its name is
#cdata-section and its value is the CDATA section’s text.

Comment node: a document comment. Its name is #comment and its
value is the comment text. A comment node has a parent, which is
the node that contains the comment.

Document node: the root of a DOM tree. Its name is #document,

it always has a single element child node, and it will also have a
document type child node when the document has a document
type declaration. Furthermore, it can have additional child nodes
describing comments or processing instructions that appear before
or after the root element’s start tag. There can be only one document
node in the tree.

Document fragment node: an alternative root node. Its name is
#document-fragment and it contains anything that an element

node can contain (such as other element nodes and even comment
nodes). A parser never creates this kind of a node. However, an
application can create a document fragment node when it extracts
part of a DOM tree to be moved somewhere else. Document fragment
nodes let you work with subtrees.

Document type node: a document type declaration. Its name is

the name specified by the document type declaration for the root
element. Also, it has a (possibly null) public identifier, a required
system identifier, an internal DTD subset (which is possibly null), a
parent (the document node that contains the document type node),
and lists of DTD-declared notations and general entities. Its value is
always set to null.

Element node: a document’s element. It has a name, a local name,
a (possibly null) prefix, and a namespace URI, which is null when
the element doesn’t belong to any namespace. An element node
contains children, including text nodes, and even comment and
processing-instruction nodes.

69

CHAPTER 3 PARSING AND CREATING XML DOCUMENTS WITH DOM

o Entity node: the parsed and unparsed entities that are declared in a
document’s DTD. When a parser reads a DTD, it attaches a map of
entity nodes (indexed by entity name) to the document type node. An
entity node has a name and a system identifier and can also have a
public identifier if one appears in the DTD. Finally, when the parser
reads the entity, the entity node is given a list of read-only child
nodes that contain the entity’s replacement text.

o Entity reference node: a reference to a DTD-declared entity. Each
entity reference node has a name and is included in the tree when
the parser doesn’t replace entity references with their values. The
parser never includes entity reference nodes for character references
(such as & or Σ) because they're replaced by their respective
characters and included in a text node.

e Notation node: a DTD-declared notation. A parser that reads the DTD
attaches a map of notation nodes (indexed by notation name) to the
document type node. Each notation node has a name and a public
identifier or a system identifier, whichever identifier was used to
declare the notation in the DTD. Notation nodes don’t have children.

e Processing-instruction node: a processing instruction that appears in
the document. It has a name (the instruction’s target), a string value
(the instruction’s data), and a parent (its containing node).

o Text node: document content. Its name is #text and it represents
a portion of an element’s content when an intervening node (such
as a comment) must be created. Characters such as < and & that are
represented in the document via character references are replaced by
the literal characters they represent. When these nodes are written to
a document, these characters must be escaped.

Although these node types store considerable information about an XML document,
there are limitations, such as not exposing whitespace outside of the root element. Also,
most DTD or schema information, such as element types (<!ELEMENT...>) and attribute
types (<xs:attribute...>), cannot be accessed through the DOM.

70

CHAPTER 3 PARSING AND CREATING XML DOCUMENTS WITH DOM

DOM Level 3 addresses some of the DOM’s various limitations. For example,
although DOM doesn’t provide a node type for the XML declaration, DOM Level 3
makes it possible to access the XML declaration’s version, encoding, and standalone
attribute values via attributes of the document node.

Note Nonroot nodes never exist in isolation. For example, it’s never the case for
an element node to not belong to a document or to a document fragment. Even
when such nodes are disconnected from the main tree, they remain aware of the
document or document fragment to which they belong.

Exploring the DOM API

Java implements DOM through the javax.xml.parsers package’s abstract
DocumentBuilder and DocumentBuilderFactory classes and the nonabstract
FactoryConfigurationError and ParserConfigurationException classes. The org.
w3c.dom, org.w3c.dom.bootstrap, org.w3c.dom.events, org.w3c.dom.1ls, org.w3c.
dom.ranges, org.w3c.dom.traversal, and org.w3c.dom.views packages provide
various types that augment this implementation.

Obtaining a DOM Parser/Document Builder

A DOM parser is also known as a document builder because of its dual role in parsing
and creating XML documents. You obtain a DOM parser/document builder by first
instantiating DocumentBuilderFactory, by calling one of its newInstance() class
methods. For example, the following code fragment invokes DocumentBuilderFactory’s
DocumentBuilderFactory newInstance() class method:

DocumentBuilderFactory dbf =
DocumentBuilderFactory.newInstance();

Behind the scenes, newInstance() follows an ordered lookup procedure to identify
the DocumentBuilderFactory implementation class to load. This procedure first
examines the javax.xml.parsers.DocumentBuilderFactory system property and lastly
chooses the Java platform’s default DocumentBuilderFactory implementation class
when no other class is found. If an implementation class isn’t available (perhaps the

71

CHAPTER 3 PARSING AND CREATING XML DOCUMENTS WITH DOM

class identified by the javax.xml.parsers.DocumentBuilderFactory system property
doesn’t exist) or cannot be instantiated, newInstance() throws an instance of the
FactoryConfigurationError class. Otherwise, it instantiates the class and returns its
instance.

After obtaining a DocumentBuilderFactory instance, you can call various
configuration methods to configure the factory. For example, you could call
DocumentBuilderFactory’svoid setNamespaceAware(boolean awareness) method
with a true argument to tell the factory that any returned document builder must
provide support for XML namespaces. You can also call void setValidating(boolean
validating) with true as the argument to validate documents against their DTDs or
call void setSchema(Schema schema) to validate documents against the javax.xml.
validation.Schema instance identified by schema.

VALIDATION API

Schema is a member of Java’s Validation API, which decouples document parsing from
validation, making it easier for applications to take advantage of specialized validation libraries
that support additional schema languages (such as Relax NG—see http://en.wikipedia.
org/wiki/RELAX_NG), and making it easier to specify the location of a schema.

The Validation API is associated with the javax.xml.validation package, which also
includes SchemaFactory, SchemaFactorylLoader, TypeInfoProvider, Validator, and
ValidatorHandler. Schema is the central class and represents an immutable in-memory
representation of a grammar.

DOM supports the Validation APl via DocumentBuilderFactory’s void
setSchema(Schema schema) and Schema getSchema() methods. Similarly,
SAX supports Validation via javax.xml.parsers.SAXParserFactory’s void
setSchema(Schema schema) and Schema getSchema() methods.

The following code fragment demonstrates the Validation APl in a DOM context:

// Parse an XML document into a DOM tree.

DocumentBuilder parser =
DocumentBuilderFactory.newInstance().newDocumentBuilder();

Document document = parser.parse(new File("instance.xml"));

72

http://en.wikipedia.org/wiki/RELAX_NG
http://en.wikipedia.org/wiki/RELAX_NG

CHAPTER 3 PARSING AND CREATING XML DOCUMENTS WITH DOM

// Create a SchemaFactory capable of understanding W3C XML Schema (WXS).

SchemaFactory factory =
SchemaFactory.newInstance(XMLConstants.W3C_XML_SCHEMA NS URI);

// Load a WXS schema, represented by a Schema instance.

Source schemaFile = new StreamSource(new File("mySchema.xsd"));

Schema schema = factory.newSchema(schemaFile);

// Create a Validator instance, which is used to validate an XML document.

Validator validator = schema.newValidator();

// Validate the DOM tree.

try

{
validator.validate(new DOMSource(document));

}

catch (SAXException saxe)

{

// XML document is invalid!

}

This example refers to XSLT types such as Souxrce. | explore XSLT in Chapter 6.

After the factory has been configured, call its DocumentBuilder
newDocumentBuilder () method to return a document builder that supports the
configuration, as demonstrated here:

DocumentBuilder db = dbf.newDocumentBuilder();

If a document builder cannot be returned (perhaps the factory cannot create
a document builder that supports XML namespaces), this method throws a
ParserConfigurationException instance.

Parsing and Creating XML Documents

Assuming that you've successfully obtained a document builder, what happens next
depends on whether you want to parse or create an XML document.

DocumentBuilder provides several overloaded parse() methods for parsing an XML
document into a node tree. These methods differ in how they obtain the document. For
example, Document parse(String uri) parses the document that’s identified by its
string-based URI argument.

73

CHAPTER 3 PARSING AND CREATING XML DOCUMENTS WITH DOM

Note Each parse() method throws java.lang.IllegalArgumentException
when null is passed as the method’s first argument, java.io.IOException
when an input/output error occurs, and org.xml.sax.SAXException

when the document cannot be parsed. This last exception type indicates that
DocumentBuilder’s parse() methods rely on SAX to take care of the actual
parsing work. Because they are more involved in building the node tree, DOM
parsers are commonly referred to as document builders.

DocumentBuilder also declares the abstract Document newDocument () method for
creating a DOM tree.

The returned org.w3c.dom.Document object provides access to a parsed document
through methods such as DocumentType getDoctype(), which makes the document
type declaration available through the org.w3c.dom.DocumentType interface.
Conceptually, Document is the root of the document’s node tree. It also declares
various “create” and other methods for creating a node tree. For example, Element
createElement(String tagName) creates an element named by tagName, returning
anew org.w3c.dom.Element object with the specified name but with its local name,
prefix, and namespace URI set to null.

Note Apart from DocumentBuilder, DocumentBuilderFactory, and

a few other classes, DOM is based on interfaces, of which Document and
DocumentType are examples. Behind the scenes, DOM methods (such as the
parse () methods) return objects whose classes implement these interfaces.

Document and all other org.w3c.dom interfaces that describe different kinds of
nodes are subinterfaces of the org.w3c.dom.Node interface. As such, they inherit Node’s
constants and methods.

Node declares 12 constants that represent the various kinds of nodes; ATTRIBUTE _
NODE and ELEMENT NODE are examples. To identify the kind of node represented by a
given Node object, call Node’s short getNodeType() method and compare the returned
value to one of these constants.

74

CHAPTER 3 PARSING AND CREATING XML DOCUMENTS WITH DOM

Note The rationale for using getNodeType() and these constants, instead

of using instanceof and a class name, is that DOM (the object model, not the
Java DOM API) was designed to be language independent, and languages such as
AppleScript don’t have the equivalent of instanceof.

Node declares several methods for getting and setting common node properties.
These methods include String getNodeName(), String getLocalName(), String
getNamespaceURI(), String getPrefix(),void setPrefix(String prefix), String
getNodeValue(), and void setNodeValue(String nodeValue), which let you get and
(for some properties) set a node’s name (such as #text), local name, namespace URI,

prefix, and normalized string value.

Note Various Node methods (such as setPrefix() and getNodeValue())
throw an instance of the org.w3c.dom.DOMException class when something
goes wrong. For example, setPrefix() throws this exception when the prefix
argument contains an illegal character, the node is read-only, or the argument

is malformed. Similarly, getNodeValue() throws DOMException when
getNodeValue() would return more characters than can fit into a DOMString
(a W3C type) variable on the implementation platform. DOMException declares a
series of constants (such as DOMSTRING_SIZE ERR) that classify the reason for
the exception.

Node declares several methods for navigating the node tree. Three of its navigation
methods are described here:

e boolean hasChildNodes() returns true when a node has child nodes.
o Node getFirstChild() returns the node’s first child.
o Node getlLastChild() returns the node’s last child.

75

CHAPTER 3 PARSING AND CREATING XML DOCUMENTS WITH DOM

For nodes with multiple children, you'll find the NodeList getChildNodes()
method to be handy. This method returns an org.w3c.dom.NodelList instance whose
int getLength() method returns the number of nodes in the list and whose Node
item(int index) method returns the node at the indexth position in the list (or
null when index’s value isn’t valid—it’s less than zero or greater than or equal to
getLength()’s value).

Node declares four methods for modifying the tree by inserting, removing, replacing,
and appending child nodes:

o Node insertBefore(Node newChild, Node refChild) inserts
newChild before the existing node specified by refChild and returns
newChild.

o Node removeChild(Node 0ldChild) removes the child node
identified by 01dChild from the tree and returns oldChild.

o Node replaceChild(Node newChild, Node o0ldChild) replaces
0ldChild with newChild and returns 01dChild.

e Node appendChild(Node newChild) adds newChild to the end of the
current node’s child nodes and returns newChild.

Finally, Node declares several utility methods, including Node cloneNode(boolean
deep) (create and return a duplicate of the current node, recursively cloning its subtree
when true is passed to deep), and void normalize() (descend the tree from the given
node and merge all adjacent text nodes, deleting those text nodes that are empty).

Tip To obtain an element node’s attributes, first call Node’s NamedNodeMap
getAttributes() method. This method returns an org.w3c.dom.
NamedNodeMap implementation when the node represents an element; otherwise,
it returns null. As well as declaring methods for accessing these nodes by name
(such as Node getNamedItem(String name)), NamedNodeMap declares int
getLength() and Node item(int index) methods for returning all attribute
nodes by index. You would then obtain the Node’s name by calling a method such
as getNodeName().

76

CHAPTER 3 PARSING AND CREATING XML DOCUMENTS WITH DOM

In addition to inheriting Node’s constants and methods, Document declares its own
methods. For example, you can call Document’s String getXmlEncoding(), boolean
getXmlStandalone(), and String getXmlVersion() methods to return the XML
declaration’s encoding, standalone, and version attribute values, respectively.

Document declares three methods for locating one or more elements:

o Element getElementById(String elementId) returns the element
that has an id attribute (as in) matching the value
specified by elementId.

o NodelList getElementsByTagName(String tagname) returnsa
nodelist of a document’s elements (in document order) matching the
specified tagName.

o NodelList getElementsByTagNameNS(String namespaceURI,String
localName) is equivalent to the second method except in adding
to the nodelist only those elements matching localName and
namespaceURI values. Pass "*" to namespaceURI to match all
namespaces; pass "*" to localName to match all local names.

The returned element node and each element node in the list implement the
Element interface. This interface declares methods to return nodelists of descendent
elements in the tree, attributes associated with the element, and more. For example,
String getAttribute(String name) returns the value of the attribute identified by
name, whereas Attr getAttributeNode(String name) returns an attribute node by
name. The returned node is an implementation of the org.w3c.dom.Attr interface.

Demonstrating the DOM API

You now have enough information to explore applications for parsing and creating XML
documents. This section shows you how to accomplish these tasks.

Parsing an XML Document

Listing 3-1 presents the source code to a DOM-based parsing application that briefly
demonstrates how to parse an XML document into a DOM tree.

77

CHAPTER 3 PARSING AND CREATING XML DOCUMENTS WITH DOM

Listing 3-1. DOMDemo (Version 1)

import

import
import
import
import
import
import
import
import
import
import

import
import

public

{
pub

{

78

java.io.IOException;

javax.xml.parsers.DocumentBuilder;
javax.xml.parsers.DocumentBuilderFactory;
javax.xml.parsers.FactoryConfigurationError;
javax.xml.parsers.ParserConfigurationException;

org.w3c.dom.Attr;
org.w3c.dom.Document;
org.w3c.dom.Element;
org.w3c.dom.NamedNodeMap;
org.w3c.dom.Node;
org.w3c.dom.Nodelist;

org.xml.sax.SAXException;
static java.lang.System.*;

class DOMDemo
lic static void main(String[] args)

if (args.length != 1)

{
err.println("usage: java DOMDemo xmlfile");
return;

}

try

{
DocumentBuilderFactory dbf =

DocumentBuilderFactory.newInstance();

dbf.setNamespaceAware(true);
DocumentBuilder db = dbf.newDocumentBuilder();
Document doc = db.parse(args[0]);

CHAPTER 3 PARSING AND CREATING XML DOCUMENTS WITH DOM

out.printf("Version = %s%n", doc.getXmlVersion());
out.printf("Encoding = %s%n", doc.getXmlEncoding());
out.printf("Standalone = %b%n%n", doc.getXmlStandalone());
if (doc.hasChildNodes())
{
NodeList nl = doc.getChildNodes();
for (int i = 0; i < nl.getlLength(); i++)
{
Node node = nl.item(i);
if (node.getNodeType() == Node.ELEMENT NODE)
dump((Element) node);

}

}
}
catch (IOException ioe)
{

err.printf("IOE: %s%n", ioe.toString());
}
catch (SAXException saxe)
{

err.printf("SAXE: %s%n", saxe.toString());
}
catch (FactoryConfigurationError fce)
{

err.printf("FCE: %skn", fce.toString());
}
catch (ParserConfigurationException pce)
{

err.printf("PCE: %s%n", pce.toString());
}

79

CHAPTER 3 PARSING AND CREATING XML DOCUMENTS WITH DOM

static void dump(Element e)

{
out.printf("Element: %s, %s, %s, %skn",
e.getNodeName(), e.getLocalName(),
e.getPrefix(), e.getNamespaceURI());
NamedNodeMap nnm = e.getAttributes();
if (nnm != null)
for (int i = 0; i < nnm.getLength(); i++)
{
Node node = nnm.item(i) ;
Attr attr = e.getAttributeNode(node.getNodeName());
out.printf(" Attribute %s = %s%n",
attr.getName(), attr.getValue());
}
NodelList nl = e.getChildNodes();
for (int i = 0; i < nl.getlLength(); i++)
{
Node node = nl.item(i);
if (node instanceof Element)
dump((Element) node);
}
}

DOMDemo’s main() method first verifies that one command-line argument (the name
of an XML document) has been specified. It then creates a document builder factory,
informs the factory that it wants a namespace-aware document builder, and has the
factory return this document builder.

Continuing, main() parses the document into a node tree; outputs the XML
declaration’s version number, encoding, and standalone attribute values; and recursively
dumps all element nodes (starting with the root node) and their attribute values.

Notice the use of getNodeType() in one part of this listing and instanceof in
another part. The getNodeType() method call isn’t necessary (it’s only present for
demonstration) because instanceof can be used instead. However, the cast from Node
type to Element type in the dump () method calls is necessary.

80

CHAPTER 3 PARSING AND CREATING XML DOCUMENTS WITH DOM
Compile Listing 3-1 as follows:
javac DOMDemo.java
Run the resulting application to dump Listing 1-3’s article XML content, as follows:
java DOMDemo article.xml
You should observe the following output:

Version = 1.0
Encoding = null
Standalone = false

Element: article, article, null, null
Attribute lang = en
Attribute title = The Rebirth of JavaFX
Element: abstract, abstract, null, null
Element: code, code, null, null
Element: body, body, null, null

Each Element-prefixed line presents the node name, followed by the local name,
followed by the namespace prefix, followed by the namespace URI. The node and local
names are identical because namespaces aren’t being used. For the same reason, the
namespace prefix and namespace URI are null.

Continuing, execute the following command to dump Listing 1-5’s recipe content:

java DOMDemo recipe.xml
This time, you observe the following output, which includes namespace information:

Version = 1.0
Encoding = null
Standalone = false

Element: h:html, html, h, http://www.w3.0rg/1999/xhtml
Attribute xmlns:h = http://www.w3.0rg/1999/xhtml
Attribute xmlns:r = http://www.javajeff.ca/

Element: h:head, head, h, http://www.w3.0rg/1999/xhtml

Element: h:title, title, h, http://www.w3.0rg/1999/xhtml

Element: h:body, body, h, http://www.w3.0rg/1999/xhtml

81

CHAPTER 3 PARSING AND CREATING XML DOCUMENTS WITH DOM

Element:
Element:
Element:
Element:
Element:
Element:

Attri
Element

Element:
Element:
Element:

Attri
Element
Element

Creat

:recipe, recipe, r, http://www.javajeff.ca/

:title, title, r, http://www.javajeff.ca/
:ingredients, ingredients, r, http://www.javajeff.ca/
:ul, ul, h, http://www.w3.0rg/1999/xhtml

:1i, 1i, h, http://www.w3.0rg/1999/xhtml
r:ingredient, ingredient, r, http://www.javajeff.ca/
bute qty = 2

: h:1i, 1i, h, http://www.w3.0rg/1999/xhtml
r:ingredient, ingredient, r, http://www.javajeff.ca/
h:1i, 1i, h, http://www.w3.0rg/1999/xhtml
r:ingredient, ingredient, r, http://www.javajeff.ca/
bute qty = 2

: h:p, p, h, http://www.w3.0rg/1999/xhtml

: r:instructions, instructions, r, http://www.javajeff.ca/

> > K oHOH

ing an XML Document

Listing 3-2 presents another version of the DOMDemo application that briefly demonstrates

the creation of a DOM tree.

Listing

import
import
import
import

import
import
import
import
import

import

82

3-2. DOMDemo (Version 2)

javax.xml.parsers.DocumentBuilder;
javax.xml.parsers.DocumentBuilderFactory;
javax.xml.parsers.FactoryConfigurationError;
javax.xml.parsers.ParserConfigurationException;

org.w3c.dom.Document;
org.w3c.dom.Element;
org.w3c.dom.Node;
org.w3c.dom.NodelList;
org.w3c.dom.Text;

static java.lang.System.*;

CHAPTER 3 PARSING AND CREATING XML DOCUMENTS WITH DOM

public class DOMDemo

{
public static void main(String[] args)
{
try
{

DocumentBuilderFactory dbf =
DocumentBuilderFactory.newInstance();

DocumentBuilder db = dbf.newDocumentBuilder();

Document doc = db.newDocument();

// Create the root element.

Element root = doc.createElement("movie");

doc.appendChild(root);

// Create name child element and add it to the

// root.

Element name = doc.createElement("name");

root.appendChild(name);

// Add a text element to the name element.

Text text = doc.createTextNode("Le Fabuleux " +

"Destin d'Amélie " +
"Poulain™);

name.appendChild(text);

// Create language child element and add it to the

// root.

Element language = doc.createElement("language");

root.appendChild(language);

// Add a text element to the language element.

text = doc.createTextNode("francais");

language.appendChild(text);

out.printf("Version = %s%n", doc.getXmlVersion());

out.printf("Encoding = %s%n",
doc.getXmlEncoding());

out.printf("Standalone = %b%n%n",
doc.getXmlStandalone());

NodelList nl = doc.getChildNodes();

83

CHAPTER 3 PARSING AND CREATING XML DOCUMENTS WITH DOM

for (int i = 0; i < nl.getlLength(); i++)

{
Node node = nl.item(i);
if (node.getNodeType() == Node.ELEMENT NODE)
dump((Element) node);
}
}
catch (FactoryConfigurationError fce)
{
err.printf("FCE: %s%n", fce.toString());
}
catch (ParserConfigurationException pce)
{
err.printf("PCE: %s%n", pce.toString());
}
}
static void dump(Element e)
{

out.printf("Element: %s, %s, %s, %skn",
e.getNodeName(), e.getLocalName(),
e.getPrefix(), e.getNamespaceURI());
NodeList nl = e.getChildNodes();
for (int i = 0; i < nl.getlength(); i++)
{
Node node = nl.item(i);
if (node instanceof Element)
dump((Element) node);
else
if (node instanceof Text)
out.printf("Text: %s%n", ((Text) node).getWholeText());

84

CHAPTER 3 PARSING AND CREATING XML DOCUMENTS WITH DOM

DOMDemo creates Listing 1-2’s movie document. It uses Document’s createElement ()
method to create the root movie element and movie’s name and language child elements.
It also uses Document’s Text createTextNode(String data) method to create text
nodes that are attached to the name and language nodes. Notice the calls to Node’s
appendChild() method, to append child nodes (such as name) to parent nodes (such as
movie).

After creating this tree, DOMDemo outputs the tree’s element nodes and other
information. This output appears as follows:

Version = 1.0
Encoding = null
Standalone = false

Element: movie, null, null, null

Element: name, null, null, null

Text: Le Fabuleux Destin d'Amélie Poulain
Element: language, null, null, null

Text: francais

There’s one problem with the output: the XML declaration’s encoding attribute
hasn’t been set to IS0-8859-1. You cannot accomplish this task via the DOM
API. Instead, you need to use the XSLT API. While exploring XSLT in Chapter 6, you'll
learn how to set the encoding attribute, and you'll also learn how to output this tree to an
XML document file.

Working with Load and Save

Before DOM Level 3, there was no standard way to load XML content into a new
DOM tree and save an existing DOM tree to an XML document. The World Wide Web
Consortium (W3C) responded to this deficiency by developing the DOM Level 3 Load
and Save Specification (www.w3.0rg/TR/DOM-Level-3-LS/), which adds this support.
Although this capability might not seem like much, additional capabilities such as
filtering data during a load operation have also been included.

85

http://www.w3.org/TR/DOM-Level-3-LS/

CHAPTER 3 PARSING AND CREATING XML DOCUMENTS WITH DOM

Java supports the DOM Level 3 Load and Save Specification via the org.w3c.dom.1s
package and its interface types:

o DOMImplementationL$ contains factory methods for creating Load
and Save objects.

o LSInput represents an input source for data.

e LSLoadEvent represents a load event object that signals the
completion of a document load.

e LSOutput represents an output destination for data.

e LSParser provides an interface to an object that is able to build, or
augment, a DOM tree from various input sources.

e LSParserFilter provides applications with the ability to examine
nodes as they are being constructed while parsing.

o LSProgressEvent represents a progress event object that notifies the
application about progress as a document is parsed.

e LSResourceResolver provides a way for applications to redirect

references to external resources.

o LSSerializer provides an API for serializing (writing) a DOM
document to an XML document.

e LSSerializerFilter provides applications with the ability to
examine nodes as they are being serialized and decide what nodes
should be serialized (or not).

This API reveals that load operations rely on a parser and save operations rely on a
serializer.

This package also provides the LSException class, which describes an exception
that’s thrown when processing stops because of a DOM error during a parse or write
operation.

Loading an XML Document into a DOM Tree

Listing 3-3 presents a third version of the DOMDemo application that uses Load and Save to
load an XML document into a new DOM tree.

86

CHAPTER 3 PARSING AND CREATING XML DOCUMENTS WITH DOM

Listing 3-3. DOMDemo (Version 3)

import
import
import
import
import
import

import

import
import

import

public

{
pub

{

org.w3c.dom.Attr;
org.w3c.dom.Document;
org.w3c.dom.Element;
org.w3c.dom.NamedNodeMap;
org.w3c.dom.Node;
org.w3c.dom.Nodelist;

org.w3c.dom.bootstrap.DOMImplementationRegistry;

org.w3c.dom.1ls.DOMImplementationLsS;
org.w3c.dom.ls.LSParser;

static java.lang.System.*;

class DOMDemo
lic static void main(String[] args) throws Exception

if (args.length != 1)

{
err.println("usage: java DOMDemo xmlfile");
return;

}

DOMImplementationlS 1s = (DOMImplementationLS)
DOMImplementationRegistry.newInstance().
getDOMImplementation("LS");

if (1s == null)

{
err.println("load and save not supported");
return;

}

LSParser parser =
1s.createlLSParser (DOMImplementationlLS.

MODE_SYNCHRONOUS, null);

Document doc = parser.parseURI(args[0]);

if (doc.hasChildNodes())

87

CHAPTER 3 PARSING AND CREATING XML DOCUMENTS WITH DOM

{
NodeList nl = doc.getChildNodes();

for (int i = 0; i < nl.getlength(); i++)
{
Node node = nl.item(i);
if (node.getNodeType() == Node.ELEMENT NODE)
dump((Element) node);

}

static void dump(Element e)
{
out.printf("Element: %s, %s, %s, %skn",
e.getNodeName(), e.getLocalName(),
e.getPrefix(), e.getNamespaceURI());
NamedNodeMap nnm = e.getAttributes();
if (nnm != null)
for (int i = 0; i < nnm.getLength(); i++)
{
Node node = nnm.item(i);
Attr attr =
e.getAttributeNode(node.getNodeName());
out.printf(" Attribute %s = %s%n",
attr.getName(), attr.getValue());
}
NodelList nl = e.getChildNodes();
for (int i = 0; i < nl.getlength(); i++)
{
Node node = nl.item(i);
if (node instanceof Element)
dump((Element) node);

88

CHAPTER 3 PARSING AND CREATING XML DOCUMENTS WITH DOM

DOMDemo’s main() method first validates the command line, which requires that

only a single argument (the name of an XML file) be specified. main() then creates a
DOMImplementationL$ object, as follows:

1.

It invokes org.w3c.dom.bootstrap.
DOMImplementationRegistry’s static
DOMImplementationRegistry newInstance() method to obtain a
DOMImplementationRegistry object.

It invokes DOMImplementationRegistry’s DOMImplementation
getDOMImplementation(String features) method on the
previously returned DOMImplementationRegistry object to obtain
an object from a class that implements the DOMImplementation
interface. The string "LS" is passed to getDOMImplementation()
because a DOMImplementation instance supporting Load and Save
(DOMImplementationlLS) is required. This method returns null
when an implementation with the desired features isn’t found.
(For brevity, I omit checking for null in subsequent “Load and
Save” examples.)

It casts the returned org.w3c.dom.DOMImplementation instance
to a DOMImplementationLS instance, which is allowable because
getDOMImplementation() returns an object whose class
implements DOMImplementation and DOMImplementationLS.

main() next invokes DOMImplementationlLS’s LSParser createlLSParser
(short mode, String schemaType) method to create a new LSParser object.
DOMImplementationLS.MODE _SYNCHRONOUS is passed to mode to cause the application
to wait until parsing is finished. null is passed to schemaType so that the created

LSParser can work with any kind of schema (although none is being used in this

example).
LSParser provides a Document parseURI(String uri) method for parsing an XML

document located at the specified uri value. main() calls this method to perform the

parse and return a Document, which is subsequently dumped to the standard output.

89

CHAPTER 3 PARSING AND CREATING XML DOCUMENTS WITH DOM

Note LSParser also provides Document parse(LSInput input) and
Node parseWithContext(LSInput input, Node contextArg, short
action) methods for parsing. The former method takes an LSInput argument,
which can represent a public identifier, a system identifier, a byte stream (possibly
with a specified encoding), a base URI, or a character stream. The latter method
lets you parse one XML document into another XML document. The value passed
to action determines whether the new content precedes, follows, or replaces
existing content.

Compile Listing 3-3 and run it against Listing 1-1’s recipe.xml document. You
should observe the following output:

Element: recipe, recipe, null, null

Element: title, title, null, null

Element: ingredients, ingredients, null, null

Element: ingredient, ingredient, null, null
Attribute gty = 2

Element: ingredient, ingredient, null, null

Element: ingredient, ingredient, null, null
Attribute qty = 2

Element: instructions, instructions, null, null

Configuring a Parser

The LSParser interface declares a DOMConfiguration getDomConfig() method that
returns the org.w3c.dom.DOMConfiguration object used when parsing an input source.
You can use the DOMConfiguration object to configure the parser before parsing an XML
document.

DOMConfiguration declares the void setParameter(String name, Object value)
method for setting the value of a configuration parameter. Supported parameter names
and values are described in DOMConfiguration’s Javadoc.

Several parameters deal with validation. For example, validation requires that the
parser validate the document against a schema (such as XML Schema or DTD), but only
when this parameter is set to true (it defaults to false). Listing 3-4 presents a DOMDemo
application that configures the parser to validate.

90

CHAPTER 3 PARSING AND CREATING XML DOCUMENTS WITH DOM

Listing 3-4. DOMDemo (Version 4)

import org.w3c.dom.Attr;

import org.w3c.dom.Document;

import org.w3c.dom.DOMConfiguration;
import org.w3c.dom.Element;

import org.w3c.dom.NamedNodeMap;
import org.w3c.dom.Node;

import org.w3c.dom.Nodelist;

import org.w3c.dom.bootstrap.DOMImplementationRegistry;

import org.w3c.dom.ls.DOMImplementationLS;
import org.w3c.dom.ls.LSParser;

import static java.lang.System.*;

public class DOMDemo
{

public static void main(String[] args) throws Exception
{

if (args.length != 1)

{
err.println("usage: java DOMDemo xmlfile");
return;

}

DOMImplementationLS 1s = (DOMImplementationLS)
DOMImplementationRegistry.newInstance().
getDOMImplementation("LS");

LSParser parser =
1s.createlLSParser (DOMImplementationlLS.

MODE_SYNCHRONOUS, null);

DOMConfiguration config = parser.getDomConfig();

config.setParameter("validate"”, Boolean.TRUE);

Document doc = parser.parseURI(args[0]);

if (doc.hasChildNodes())

{
NodeList nl = doc.getChildNodes();

91

CHAPTER 3 PARSING AND CREATING XML DOCUMENTS WITH DOM

for (int i = 0; i < nl.getlLength(); i++)

{
Node node = nl.item(i);
if (node.getNodeType() == Node.ELEMENT NODE)
dump((Element) node);
}
}
}
static void dump(Element e)
{
out.printf("Element: %s, %s, %s, %skn",
e.getNodeName(), e.getLocalName(),
e.getPrefix(), e.getNamespaceURI());
NamedNodeMap nnm = e.getAttributes();
if (nnm != null)
for (int i = 0; i < nnm.getlLength(); i++)
{
Node node = nnm.item(i);
Attr attr =
e.getAttributeNode(node.getNodeName());
out.printf(" Attribute %s = %s%n",
attr.getName(), attr.getValue());
}
NodeList nl = e.getChildNodes();
for (int i = 0; i < nl.getlength(); i++)
{
Node node = nl.item(i);
if (node instanceof Element)
dump((Element) node);
}
}

92

CHAPTER 3 PARSING AND CREATING XML DOCUMENTS WITH DOM

DOMDemo executes DOMConfiguration config = parser.getDomConfig(); followed

by config.setParameter("validate", Boolean.TRUE); to configure the parser to

perform validation.

Compile the source code. Before running the application, you'll need a suitable XML

file. Listing 3-5 offers a suitable candidate.

Listing 3-5. An Invalid Recipe Document

<?xml version="1.0"?>
<IDOCTYPE recipe [

1>

<!ELEMENT recipe (title, ingredients, instructions)>
<!ELEMENT title (#PCDATA)>

<VELEMENT ingredients (ingredient+)>

<!ELEMENT ingredient (#PCDATA)>

<IELEMENT instructions (#PCDATA)>

<IATTLIST ingredient qty CDATA "1">

<recipe>

<title>
Grilled Cheese Sandwich

</title>

<instructions>
Place frying pan on element and select medium heat.
For each bread slice, smear one pat of margarine on
one side of bread slice. Place cheese slice between
bread slices with margarine-smeared sides away from
the cheese. Place sandwich in frying pan with one
margarine-smeared side in contact with pan. Fry for
a couple of minutes and flip. Fry other side for a
minute and serve.

</instructions>

<ingredients>
<ingredient qty="2">

bread slice

</ingredient>
<ingredient>

93

CHAPTER 3 PARSING AND CREATING XML DOCUMENTS WITH DOM

cheese slice
</ingredient>
<ingredient qty="2">
margarine pat
</ingredient>
</ingredients>
</recipe>

Listing 3-5 presents the contents of a recipe document that’s similar to the
abbreviated recipe content presented in Listing 1-8 (see Chapter 1). However, there
is a crucial difference: I've placed the instructions element before the ingredients
element, which violates the document’s internal DTD.

Run DOMDemo against a recipe.xml file containing this content, and you should
observe the following output:

[Error] recipe.xml:35:10: The content of element type "recipe" must match

"(title,ingredients,instructions)"”.

Element: recipe, recipe, null, null

Element: title, title, null, null

Element: instructions, instructions, null, null

Element: ingredients, ingredients, null, null

Element: ingredient, ingredient, null, null
Attribute qty = 2

Element: ingredient, ingredient, null, null
Attribute qty = 1

Element: ingredient, ingredient, null, null
Attribute qty = 2

You can use setParameter() to register a custom error handler with the parser,
perhaps to log errors. Start by subclassing the org.w3c.dom.DOMErrorHandler class,
overriding its boolean handleError(DOMError error) method:

public class ErrHandler implements DOMErrorHandler

{

@verride
public boolean handleError(DOMError error)

{

94

CHAPTER 3 PARSING AND CREATING XML DOCUMENTS WITH DOM

short severity = error.getSeverity();
if (severity == error.SEVERITY ERROR)
System.out.printf("DOM3 error: %s%n",
error.getMessage());
else
if (severity == error.SEVERITY FATAL ERROR)
System.out.printf("DOM3 fatal error: %s%n",
error.getMessage());
else
if (severity == error.SEVERITY_WARNING)
System.out.printf("DOM3 warning: %s%n",
error.getMessage());
return true;

The org.w3c.dom.DOMError object passed to handleError () describes a DOM error.
This interface declares three severity level constants: SEVERITY_ERROR, SEVERITY_FATAL _
ERROR, and SEVERITY_WARNING. It also declares short getSeverity() to return the
severity level, and other useful methods.

The handleError() method returns false to inform the parser to stop as soon as
possible or true to inform the parser to continue (depending on the error’s severity
level).

After instantiating the error handler subclass, register it with the parser by invoking
setParameter() with "error-handler" as the name and an instance of the error handler
subclass as the value:

DOMConfiguration config = parser.getDomConfig();
config.setParameter("error-handler", new ErrHandler());

95

CHAPTER 3 PARSING AND CREATING XML DOCUMENTS WITH DOM

Filtering an XML Document While Parsing

You can install a filter on an LSParser instance to determine what content to accept
and what content to ignore while building a parse tree. A filter is an instance of the
LSParserFilter interface and must implement the following methods:

o short acceptNode(Node node): This method is called after the
XML content corresponding to node has been parsed. It returns
LSParserFilter.FILTER_ACCEPT if the node should be included in
the DOM tree, LSParserFilter.FILTER REJECT if the node (and all of
its children) should be rejected, LSParserFilter.FILTER SKIP if the
node should be skipped (all of its children are inserted in its place),
or LSParserFilter.INTERRUPT if the filter wants to stop document
processing (the node is rejected).

o int getWhatToShow(): Tell the parser what types of nodes to
show to acceptNode (). Nodes that are not shown to the filter are
automatically included in the DOM tree being built. It returns a
bitwise ORed combination of org.w3c.dom.NodeFilter SHOW_-
prefixed constants (e.g., SHOW_ELEMENT). Constants SHOW_ATTRIBUTE,
SHOW_DOCUMENT, SHOW_DOCUMENT_TYPE, SHOW_NOTATION, SHOW ENTITY,
and SHOW_DOCUMENT_FRAGMENT are meaningless because such nodes
are never passed to acceptNode().

o short startElement(Element e): The parser calls this method after
element e’s start tag is scanned but before the rest of the element
is processed. The intent is to allow the element, including any
children, to be efficiently skipped. Only element nodes are passed to
startElement(), which returns the same constants as acceptNode().

Listing 3-6 presents a DOMDemo application that extends Listing 3-3 with a filter.

Listing 3-6. DOMDemo (Version 5)

import org.w3c.dom.Attr;

import org.w3c.dom.Document;
import org.w3c.dom.Element;
import org.w3c.dom.NamedNodeMap;
import org.w3c.dom.Node;

96

import
import
import
import
import
import
import

class

{

pri

Inp
{

}

@0v
pub
{

}

@0v
pub
{

}

@0v
pub
{

CHAPTER 3 PARSING AND CREATING XML DOCUMENTS WITH DOM

org.w3c.dom.NodelList;
org.w3c.dom.bootstrap.DOMImplementationRegistry;

org.w3c.dom.ls.DOMImplementationLsS;
org.w3c.dom.ls.LSParser;
org.w3c.dom.ls.LSParserFilter;

org.w3c.dom.traversal.NodeFilter;
static java.lang.System.*;

InputFilter implements LSParserFilter

vate boolean accept;

utFilter(boolean accept)

this.accept = accept;

erride
lic short acceptNode(Node node)

return (accept) ? FILTER _ACCEPT : FILTER REJECT;

erride
lic int getWhatToShow()

return NodeFilter.SHOW ELEMENT;

erride
lic short startElement(Element e)

return LSParserFilter.FILTER ACCEPT;

97

CHAPTER 3 PARSING AND CREATING XML DOCUMENTS WITH DOM

public class DOMDemo
{

public static void main(String[] args) throws Exception
{

if (args.length != 2)

{
err.println("usage: java DOMDemo xmlfile " +

"accept|reject");
return;

}

DOMImplementationlS 1s = (DOMImplementationLS)
DOMImplementationRegistry.newInstance().
getDOMImplementation("LS");

LSParser parser =
1s.createlLSParser (DOMImplementationlLS.

MODE_SYNCHRONOUS, null);

LSParserFilter filter =
new InputFilter(args[1].equals("accept"));

parser.setFilter(filter);

Document doc = parser.parseURI(args[0]);

if (doc.hasChildNodes())

{

NodeList nl = doc.getChildNodes();
for (int i = 0; i < nl.getlLength(); i++)
{
Node node = nl.item(i);
if (node.getNodeType() == Node.ELEMENT NODE)
dump((Element) node);

98

CHAPTER 3 PARSING AND CREATING XML DOCUMENTS WITH DOM

static void dump(Element e)

{
out.printf("Element: %s, %s, %s, %skn",
e.getNodeName(), e.getLocalName(),
e.getPrefix(), e.getNamespaceURI());
NamedNodeMap nnm = e.getAttributes();
if (nnm != null)
for (int i = 0; i < nnm.getLength(); i++)
{
Node node = nnm.item(i);
Attr attr =
e.getAttributeNode(node.getNodeName());
out.printf(" Attribute %s = %s%n",
attr.getName(), attr.getValue());
}
NodeList nl = e.getChildNodes();
for (int i = 0; i < nl.getlLength(); i++)
{
Node node = nl.item(i);
if (node instanceof Element)
dump((Element) node);
}
}

This version of DOMDemo introduces an InputFilter class that extends

LSParserFilter. Its constructor saves an accept argument that tells the filter to accept
every node (when true) or reject every node (when false). The filter is registered with
the LSParser by calling this interface’s void setFilter(LSParserFilter filter)
method.

Compile the listing and run the application with Listing 1-1’s recipe.xml document

as follows:

java DOMDemo recipe.xml accept

99

CHAPTER 3 PARSING AND CREATING XML DOCUMENTS WITH DOM
You should observe the following output:

Element: recipe, recipe, null, null

Element: title, title, null, null

Element: ingredients, ingredients, null, null

Element: ingredient, ingredient, null, null
Attribute qty = 2

Element: ingredient, ingredient, null, null

Element: ingredient, ingredient, null, null
Attribute qty = 2

Element: instructions, instructions, null, null

Now, run the application as follows:
java DOMDemo recipe.xml reject

This time, you should observe the following output:
Element: recipe, recipe, null, null

You might be surprised that there is still some output, which reveals recipe as the
element’s name. Recall that recipe is the root element of the recipe.xml document.
A DOM tree requires a root element, which is why this element isn’t discarded.

Saving a DOM Tree to an XML Document

Listing 3-7 presents a sixth version of the DOMDemo application that uses Load and Save to
save an existing DOM tree to an XML document.

Listing 3-7. DOMDemo (Version 6)
import org.w3c.dom.Document;
import org.w3c.dom.bootstrap.DOMImplementationRegistry;

import org.w3c.dom.ls.DOMImplementationLS;
import org.w3c.dom.ls.LSParser;
import org.w3c.dom.ls.LSSerializer;

import static java.lang.System.*;

100

CHAPTER 3 PARSING AND CREATING XML DOCUMENTS WITH DOM

public class DOMDemo
{

public static void main(String[] args) throws Exception
{

if (args.length != 1)

{
err.println("usage: java DOMDemo xmlfile");
return;

}

DOMImplementationLS 1s = (DOMImplementationLS)
DOMImplementationRegistry.newInstance().
getDOMImplementation("LS");

LSParser parser =
1s.createlLSParser (DOMImplementationLS.

MODE_SYNCHRONOUS, null);

Document doc = parser.parseURI(args[0]);

LSSerializer serializer = ls.createlSSerializer();

if (serializer.writeToURI(doc, " " + args[0]))
out.println("serialization successful");

DOMDemo’s main() method invokes DOMImplementationLS’s LSSerializer
createlSSerializer() method to create a new LSSerializer object.

LSSerializer provides a boolean writeToURI(Node node, String uri) method
for serializing a DOM tree anchored in node to the XML document described by uri.
This method returns true when serialization is successful.

main() calls writeToURI() to perform the serialization and displays a suitable

message when serialization is successful.

Note LSSerializer also provides boolean write(Node node, LSOutput
destination) and String writeToString(Node node) methods for serializing
a DOM tree. The former method takes an LSOutput argument, which can represent

a URI, a byte stream (possibly with a specified encoding), a base URI, or a character
stream. The latter method lets you serialize a DOM tree to a string, which is returned.

101

CHAPTER 3 PARSING AND CREATING XML DOCUMENTS WITH DOM

Compile Listing 3-7 and run it against Listing 1-1’s recipe.xml document. You
should observe the following output:

serialization successful

You should also observe a _recipe.xml file containing a nearly identical version of
recipe.xml’s content.

Note You can configure an LSSerializer instance in an identical manner

to configuring an LSParser instance. Also, you can filter what'’s serialized by
installing an LSSerializerFilter-based filter instance via LSSerializer’s
void setFilter(LSSerializerFilter filter) method.

Working with Traversal and Range

Iterating over a tree of nodes typically involves calling Element’s getChildNodes()
method and using recursion to move down the tree. Listing 3-1 provides an example. It’s
also tedious to write code to perform a task on a range of nodes, such as deleting a node
and its children. The W3C responded to this tedium by developing the DOM Level 2
Traversal and Range Specification (www.w3.0rg/TR/2000/REC-DOM-Level-2-Traversal-
Range-20001113/), which adds this support.

Performing Traversals

Traversal lets you walk through a DOM tree and select specific nodes. Java supports
Traversal via the org.w3c.dom.traversal package and its four interface types:

o DocumentTraversal contains methods that create NodeIterators
and TreeWalkezrs to traverse a node and its children.

e NodeFilter describes a filter for accepting or rejecting nodes.
e NodeIterator stepsthrough a DOM tree’s/subtree’s nodes.

o TreeWalker also steps through a DOM tree’s/subtree’s nodes.

102

http://www.w3.org/TR/2000/REC-DOM-Level-2-Traversal-Range-20001113/
http://www.w3.org/TR/2000/REC-DOM-Level-2-Traversal-Range-20001113/

CHAPTER 3 PARSING AND CREATING XML DOCUMENTS WITH DOM

According to the specification, “NodeIterators and TreeWalkers are two different
ways of representing the nodes of a document subtree and a position within the nodes
they present. A NodeIterator presents a flattened view of the subtree as an ordered
sequence of nodes, presented in document order. Because this view is presented without
respect to hierarchy, iterators have methods to move forward and backward, but not to
move up and down. Conversely, a TreeWalker maintains the hierarchical relationships
of the subtree, allowing navigation of this hierarchy. In general, TreeWalkers are
better for tasks in which the structure of the document around selected nodes will be
manipulated, while NodeIterators are better for tasks that focus on the content of each
selected node.”

DocumentTraversal declares a pair of methods for obtaining a NodeIterator and a
TreeWalker:

o NodeIterator createNodeIterator(Node root, int whatToShow,
NodeFilter filter, boolean entityReferenceExpansion): Create a
new NodeIterator over the subtree anchored at the specified root node.

o TreeWalker createTreeWalker(Node root, int whatToShow,
NodeFilter filter, boolean entityReferenceExpansion): Create a
new TreelWalker over the subtree anchored at the specified root node.

For either method, whatToShow is a bitwise ORed set of SHOW_-prefixed constants
declared by the NodeFilter class. These constants determine what node types may
appear in the logical view of the tree presented by the NodeIterator or TreeWalker
object. Also, filter identifies a NodeFilter object for filtering out nodes, or is passed
null when no filtering is desired. Finally, entityReferenceExpansion is passed true to
expand entity reference nodes.

A DocumentTraversal object is obtained by casting a Document object to
DocumentTraversal.

NodeFilter declares a short acceptNode(Node n) method that determines whether
or not node n is visible in the logical view (a filtered sequence of nodes) provided by
NodeIterator or TreeWalker. This method returns one of NodeFilter’s FILTER_ACCEPT,
FILTER_REJECT, or FILTER_SKIP constants. It's called by a NodeFilter or TreeWalker
implementation.

103

CHAPTER 3 PARSING AND CREATING XML DOCUMENTS WITH DOM

NodeFilter declares several methods, including Node nextNode() and Node
previousNode(), for returning the next or previous node and advancing forward or
backward to the node beyond that node. Either method returns null when there are no
more nodes to step through.

TreeWalker declares several methods, including Node firstChild() and Node
lastChild(), for stepping to the first visible or last visible child, respectively, of the
current node.

Listing 3-8 presents a seventh version of the DOMDemo application that uses
NodeIterator to traverse an XML document. It’s similar to (but shorter than) Listing 3-1.

Listing 3-8. DOMDemo (Version 7)
import java.io.IOException;

import javax.xml.parsers.DocumentBuilder;

import javax.xml.parsers.DocumentBuilderFactory;
import javax.xml.parsers.FactoryConfigurationError;
import javax.xml.parsers.ParserConfigurationException;

import org.w3c.dom.Attr;

import org.w3c.dom.Document;

import org.w3c.dom.DOMImplementation;
import org.w3c.dom.Element;

import org.w3c.dom.NamedNodeMap;
import org.w3c.dom.Node;

import org.w3c.dom.traversal.DocumentTraversal;
import org.w3c.dom.traversal.NodeFilter;
import org.w3c.dom.traversal.NodeIterator;

import org.xml.sax.SAXException;

import static java.lang.System.*;

104

CHAPTER 3 PARSING AND CREATING XML DOCUMENTS WITH DOM

public class DOMDemo

{
public static void main(String[] args)
{
if (args.length != 1)
{
err.println("usage: java DOMDemo xmlfile");
return;
}
try
{

DocumentBuilderFactory dbf =
DocumentBuilderFactory.newInstance();
dbf.setNamespaceAware(true);
DocumentBuilder db = dbf.newDocumentBuilder();
DOMImplementation di = db.getDOMImplementation();
if (!di.hasFeature("Traversal", "2.0"))
{
err.println("parser doesn't support " + "traversal");
return;
}
Document doc = db.parse(args[0]);
out.printf("Version = %s%n", doc.getXmlVersion());
out.printf("Encoding = %s%n", doc.getXmlEncoding());
out.printf("Standalone = %b%n%n", doc.getXmlStandalone());
NodeIterator ni =
((DocumentTraversal) doc).
createNodeIterator(doc.getDocumentElement(),
NodeFilter.SHOW_ELEMENT,
null, true);
Node node = ni.nextNode();

105

CHAPTER 3 PARSING AND CREATING XML DOCUMENTS WITH DOM

while (node != null)

{
dump((Element) node);
node = ni.nextNode();
}
}
catch (IOException ioe)
{
err.printf("IOE: %s%n", ioe.toString());
}
catch (SAXException saxe)
{
err.printf("SAXE: %s%n", saxe.toString());
}
catch (FactoryConfigurationError fce)
{
err.printf("FCE: %s%n", fce.toString());
}
catch (ParserConfigurationException pce)
{
err.printf("PCE: %s%n", pce.toString());
}
}
static void dump(Element e)
{

out.printf("Element: %s, %s, %s, %skn",
e.getNodeName(), e.getLocalName(),
e.getPrefix(), e.getNamespaceURI());
NamedNodeMap nnm = e.getAttributes();
if (nnm != null)
for (int i = 0; i < nnm.getLength(); i++)
{

Node node = nnm.item(i);

106

CHAPTER 3 PARSING AND CREATING XML DOCUMENTS WITH DOM

Attr attr =
e.getAttributeNode(node.getNodeName());
out.printf(" Attribute %s = %s%n",
attr.getName(), attr.getValue());

The main() method demonstrates how to determine if the document builder
supports Traversal or not. It obtains a DOMImplementation instance and invokes its
boolean hasFeature(String feature, String version) method with "Traversal”
passed to feature and "2.0" passed to version. This method returns true if the feature
is supported. It’'s a good idea to check for support in case a document builder doesn'’t
support Traversal.

Run this application against the article.xml file that was used with the first version
of DOMDemo and you’ll observe the same output.

Performing Range Operations

Range provides a convenient way to select, delete, extract, and insert a node into a range
of nodes. Java supports Range via the org.w3c.dom. range package:

o DocumentRange is an interface that contains a method for creating a
range (all of the content between a pair of boundary-points).

o Rangeis an interface that contains methods for describing a range
and performing various range operations.

o RangeException is an exception class that describes range operation
failure.

A boundary-point's position in a Document or DocumentFragment tree can be
characterized by a node and an offset. The node is called the container of the boundary-
point and of its position. The container and its ancestors are the ancestor containers of
the boundary-point and of its position. The offset within the node is called the offset of the
boundary-point and its position.

107

CHAPTER 3 PARSING AND CREATING XML DOCUMENTS WITH DOM

DocumentRange declares the Range createRange() method for creating a Range
object. The returned Range has both of its boundary-points positioned at the beginning
of the corresponding Document (before any content). The Range can be used only to
select content associated with this Document or with DocumentFragments and Attrs for
which this Document is the owner.

A DocumentRange object is obtained by casting a Document object to DocumentRange.

Range declares Node getEndContainer(), int getEndOffset(), Node
getStartContainer(), and int getStartOffset() methods to describe a range. It
also declares various operation methods, such as void deleteContents() and void
selectNodeContents(Node refNode).

Various methods throw RangeException. For example, selectNodeContents()
throws this exception when refNode or one of its ancestor nodes is an Entity, Notation,
or DocumentType node.

Listing 3-9 presents a final version of the DOMDemo application that uses Range to
delete the contents of the ingredients element in Listing 1-1’s recipe. xml file.

Listing 3-9. DOMDemo (Version 8)

import javax.xml.parsers.DocumentBuilder;
import javax.xml.parsers.DocumentBuilderFactory;

import org.w3c.dom.Document;
import org.w3c.dom.DOMImplementation;
import org.w3c.dom.Element;

import org.w3c.dom.bootstrap.DOMImplementationRegistry;

import org.w3c.dom.ls.DOMImplementationLS;
import org.w3c.dom.ls.LSSerializer;

import org.w3c.dom.ranges.DocumentRange;
import org.w3c.dom.ranges.Range;

import static java.lang.System.*;

public class DOMDemo
{

public static void main(String[] args) throws Exception

{

108

CHAPTER 3 PARSING AND CREATING XML DOCUMENTS WITH DOM

DocumentBuilderFactory dbf =
DocumentBuilderFactory.newInstance();

dbf.setNamespaceAware(true);

DocumentBuilder db = dbf.newDocumentBuilder();

DOMImplementation di = db.getDOMImplementation();

if (!di.hasFeature("Range", "2.0"))

{
err.println("parser doesn't support range");
return;

}

Document doc = db.parse("recipe.xml");

Range r = ((DocumentRange) doc).createRange();

Element root = doc.getDocumentElement();

r.selectNodeContents(root.getFirstChild().

getNextSibling().

getNextSibling().

getNextSibling());
r.deleteContents();

DOMImplementationlS 1s = (DOMImplementationLS)
DOMImplementationRegistry.newInstance().
getDOMImplementation("LS");

LSSerializer serializer = ls.createlSSerializer();

if (serializer.writeToURI(doc, " recipe.xml"))
out.println("serialization successful");

The main() method demonstrates how to determine if the document builder

supports Range or not. It obtains a DOMImplementation instance and invokes its
hasFeature() method with "Range" passed to feature and "2.0" passed to version.

This method returns true if the feature is supported. It’s a good idea to check for support

in case a document builder doesn’t support Range.

109

CHAPTER 3 PARSING AND CREATING XML DOCUMENTS WITH DOM

Run this application against Listing 1-1’s recipe. xml file, and you should observe a
_recipe.xml file with the following contents:

<?xml version="1.0" encoding="UTF-8"?><recipe>
<title>
Grilled Cheese Sandwich
</title>
<ingredients/>
<instructions>
Place frying pan on element and select medium heat.
For each bread slice, smear one pat of margarine on
one side of bread slice. Place cheese slice between
bread slices with margarine-smeared sides away from
the cheese. Place sandwich in frying pan with one
margarine-smeared side in contact with pan. Fry for
a couple of minutes and flip. Fry other side for a
minute and serve.
</instructions>
</recipe>

Notice the <ingredients/> empty-element tag, which proves that the ingredients
element’s three ingredient child elements have been deleted.

EXERCISES

The following exercises are designed to test your understanding of Chapter 3’s content:
1. Define DOM.

True or false: Java 11 supports DOM Levels 1 and 2 only.

Identify the 12 types of DOM nodes.

How do you obtain a document builder?

How do you use a document builder to parse an XML document?

o a0 A~ w DN

True or false: Document and all other org.w3c.dom interfaces that describe
different kinds of nodes are subinterfaces of the Node interface.

110

CHAPTER 3 PARSING AND CREATING XML DOCUMENTS WITH DOM

7. How do you use a document builder to create a new XML document?

8. How would you determine if a node has children?

9. True or false: When creating a new XML document, you can use the DOM API to
specify the XML declaration’s encoding attribute.

10. What is the purpose of the Load and Save API?

11. What is the difference between NodeIterator and TreeWalker?

12. What is the difference between Range’s selectNode() and
selectNodeContents() methods?

13. Exercise 2-12 asked you to create a DumpUserInfo application that uses SAX
to parse the user elements in an example tomcat-users.xml file and, for
each user element, dump its username, password, and roles attribute values
to standard output in a key = value format. Recreate this application to use DOM.

14. Create a DOMSearch application that’s the equivalent of Exercise 2-13’s
SAXSearch application.

15. Create a DOMValidate application based on Listing 3-1’s DOMDemo source
code (plus one new line that enables validation) to validate Exercise 1-22’s
books.xml content against its DTD. Execute java DOMValidate books.
xml to perform the validation. You should observe no errors. However, if you
attempt to validate books . xm1 without the DTD, you should observe errors.

16. Extend Listing 3-4 to also include the custom error handler that was presented
while discussing parser configuration.

Summary

Document Object Model (DOM) is a Java API for parsing an XML document into an

in-memory tree of nodes and for creating an XML document from a node tree. After a

DOM parser creates a tree, an application uses the DOM API to navigate over and extract

infoset items from the tree’s nodes.

DOM views an XML document as a tree that’s composed of several kinds of nodes:

attribute, CDATA section, comment, document, document fragment, document type,

element, entity, entity reference, notation, processing instruction, and text.

111

CHAPTER 3 PARSING AND CREATING XML DOCUMENTS WITH DOM

A DOM parser is also known as a document builder because of its dual
role in parsing and creating XML documents. You obtain a document builder
by first instantiating DocumentBuilderFactory. You then invoke the factory’s
newDocumentBuilder () method to return the document builder.

Call one of the document builder’s parse () methods to parse an XML document into
anode tree. Call the various document builder methods that are prefixed with “create”
(along with a few additional methods) to create an XML document.

Before DOM Level 3, there was no standard way to load XML content into a new
DOM tree and save an existing DOM tree to an XML document. The W3C responded to
this deficiency by developing the DOM Level 3 Load and Save Specification, which adds
this support. Java supports the DOM Level 3 Load and Save Specification via the
org.w3c.dom.1s package and its interface types.

Iterating over a tree of nodes typically involves calling Element’s getChildNodes ()
method and using recursion to move down the tree. It’s also tedious to write code
to perform a task on a range of nodes, such as deleting a node and its children. The
W3C responded to this tedium by developing the DOM Level 2 Traversal and Range
Specification. Traversal lets you walk through a DOM tree and select specific nodes.
Range provides a convenient way to select, delete, extract, and insert a node into a range
of nodes.

Chapter 4 introduces the StAX API for parsing/creating XML documents.

112

CHAPTER 4

Parsing and Creating XML

Documents with StAX

Java also includes the StAX API for parsing and creating XML documents. Chapter 4
introduces you to StAX.

What Is StAX?

Streaming API for XML (StAX) is a Java API for parsing an XML document sequentially

from start to finish and also for creating XML documents. StAX was introduced by
Java 6 as an alternative to SAX and DOM and is located midway between these “polar

opposites.”

STAX VERSUS SAX AND DOM

Because Java already supports SAX and DOM for document parsing and DOM for document
creation, you might be wondering why another XML API is needed. The following points justify
StAX’s presence in core Java:

o StAX (like SAX) can be used to parse documents of arbitrary sizes. In
contrast, the maximum size of documents parsed by DOM is limited
by the available memory, which makes DOM unsuitable for mobile
devices with limited amounts of memory.

¢ StAX (like DOM) can be used to create documents. In contrast
to DOM, which can create documents whose maximum size is
constrained by available memory, StAX can create documents of
arbitrary sizes. SAX cannot be used to create documents.

© Jeff Friesen 2019
J. Friesen, Java XML and JSON, https://doi.org/10.1007/978-1-4842-4330-5_4

113

CHAPTER 4 PARSING AND CREATING XML DOCUMENTS WITH STAX

StAX (like SAX) makes infoset items available to applications almost
immediately. In contrast, these items are not made available by DOM
until after it finishes building the tree of nodes.

StAX (like DOM) adopts the pull model, in which the application tells
the parser when it’s ready to receive the next infoset item. This model
is based on the iterator design pattern (see http://sourcemaking.
com/design_patterns/iterator), which results in an application
that’s easier to write and debug. In contrast, SAX adopts the push
model, in which the parser passes infoset items via events to the
application, whether or not the application is ready to receive them.
This model is based on the observer design pattern (see http://
sourcemaking.com/design_patterns/observer), which results in an
application that’s often harder to write and debug.

Summing up, StAX can parse or create documents of arbitrary size, makes infoset items

available to applications almost immediately, and uses the pull model to put the application in

charge. Neither SAX nor DOM offers all of these advantages.

Exploring StAX

Java implements StAX through types stored in the javax.xml.stream, javax.xml.

stream.events, and javax.xml.stream.util packages. This section introduces you to
various types from the first two packages while showing you how to use StAX to parse

and create XML documents.

STREAM-BASED VERSUS EVENT-BASED READERS AND WRITERS

StAX parsers are known as document readers, and StAX document creators are known as

document writers. StAX classifies document readers and document writers as stream-based

or event-based.

A stream-based reader extracts the next infoset item from an input stream via a cursor (infoset
item pointer). Similarly, a stream-based writer writes the next infoset item to an output stream

at the cursor position. The cursor can point to only one item at a time, and always moves
forward, typically by one infoset item.

114

http://sourcemaking.com/design_patterns/iterator
http://sourcemaking.com/design_patterns/iterator
http://sourcemaking.com/design_patterns/observer
http://sourcemaking.com/design_patterns/observer

CHAPTER 4 PARSING AND CREATING XML DOCUMENTS WITH STAX

Stream-based readers and writers are appropriate when writing code for memory-constrained
environments such as Java ME Embedded, because you can use them to create smaller

and more efficient code. They also offer better performance for low-level libraries, where
performance is important.

An event-based reader extracts the next infoset item from an input stream by obtaining an
event. Similarly, an event-based writer writes the next infoset item to the stream by adding
an event to the output stream. In contrast to stream-based readers and writers, event-based
readers and writers have no concept of a cursor.

Event-based readers and writers are appropriate for creating XML processing pipelines
(sequences of components that transform the previous component’s input and pass the
transformed output to the next component in the sequence), for modifying an event sequence,
and more.

Parsing XML Documents

Document readers are obtained by calling the various “create” methods that are
declared in the javax.xml.stream.XMLInputFactory class. These creational methods
are organized into two categories: methods for creating stream-based readers and
methods for creating event-based readers.

Before you can obtain a stream-based or an event-based reader, you need to obtain
an instance of the factory by calling one of the newFactory() static methods, such as
XMLInputFactory newFactory():

XMLInputFactory xmlif = XMLInputFactory.newFactory();

Note You can also call the XMLInputFactory newInstance() static
method but might not want to do so because its same-named but parameterized
companion method has been deprecated to maintain API consistency, and it’s
possible that newInstance() will be deprecated as well.

115

CHAPTER 4 PARSING AND CREATING XML DOCUMENTS WITH STAX

The newFactory() methods follow an ordered lookup procedure to locate the
XMLInputFactory implementation class. This procedure first examines the javax.
xml.stream.XMLInputFactory system property and lastly returns the system-
default implementation (returned from XMLInputFactory newDefaultFactory()).

If there is a service configuration error, or if the implementation is not available or
cannot be instantiated, the method throws an instance of the javax.xml.stream.
FactoryConfigurationError class.

After creating the factory, call XMLInputFactory’s void setProperty(String name,
Object value) method to set various features and properties as necessary. For example,
you might execute xm1if.setProperty(XMLInputFactory.IS VALIDATING, true); (true
is passed as a java.lang.Boolean object via autoboxing—see http://docs.oracle.com/
javase/tutorial/java/data/autoboxing.html) to request a DTD-validating stream-
based reader. However, the default StAX factory implementation throws java.lang.
I1legalArgumentException because it doesn’t support DTD validation. Similarly, you
might execute xmlif.setProperty(XMLInputFactory.IS NAMESPACE AWARE, true);to
request a namespace-aware event-based reader, which is supported.

Parsing Documents with Stream-Based Readers

A stream-based reader is created by calling one of XMLInputFactory’s
createXMLStreamReader () methods, such as XMLStreamReader
createXMLStreamReader (Reader reader).These methods throw javax.xml.stream.
XMLStreamException when the stream-based reader cannot be created.

The following code fragment creates a stream-based reader whose source is a file
named recipe.xml:

Reader reader = new FileReader("recipe.xml");
XMLStreamReader xmlsr = xmlif.createXMLStreamReader(reader);

The low-level javax.xml.stream.XMLStreamReader interface offers the most
efficient way to read XML data with StAX. This interface’s boolean hasNext() method
returns true when there is a next infoset item to obtain; otherwise, it returns false. The
int next() method advances the cursor by one infoset item and returns an integer code
that identifies this item’s type.

Instead of comparing next ()’s return value with an integer value, you would compare
this value against a javax.xml.stream.XMLStreamConstants infoset constant, such as
START_ELEMENT or DTD—XMLStreamReader extends the XMLStreamConstants interface.

116

http://docs.oracle.com/javase/tutorial/java/data/autoboxing.html
http://docs.oracle.com/javase/tutorial/java/data/autoboxing.html

CHAPTER 4 PARSING AND CREATING XML DOCUMENTS WITH STAX

Note You can also obtain the type of the infoset item that the cursor is pointing
to by calling XMLStreamReader’s int getEventType() method. Specifying

“Event” in the name of this method is unfortunate because it confuses stream-
based readers with event-based readers.

The following code fragment uses the hasNext () and next () methods to codify a
parsing loop that detects the start and end of each element:

while (xmlsr.hasNext())
{
switch (xmlsr.next())
{
case XMLStreamReader.START ELEMENT:
// Do something at element start.
break;

case XMLStreamReader.END ELEMENT:
// Do something at element end.

XMLStreamReader also declares various methods for extracting infoset information.
For example, QName getName() returns the qualified name (as a javax.xml.
namespace.QName instance) of the element at the cursor position when next () returns
XMLStreamReader.START_ELEMENT or XMLStreamReader.END_ELEMENT.

Note QName describes a qualified name as a combination of namespace URI,
local part, and prefix components. After instantiating this immutable class (via a
constructor such as QName (String namespaceURI, String localPart,
String prefix)), you can return these components by calling QName’s String
getNamespaceURI(), String getlLocalPart(),and String getPrefix()
methods.

Listing 4-1 presents the source code to a StAXDemo application that reports an XML
document’s start and end elements via a stream-based reader.

117

CHAPTER 4 PARSING AND CREATING XML DOCUMENTS WITH STAX

Listing 4-1. StAXDemo (Version 1)

import
import

import
import
import
import

import

public
{

java.io.FileNotFoundException;
java.io.FileReader;

javax.xml.stream.FactoryConfigurationError;
javax.xml.stream.XMLInputFactory;
javax.xml.stream.XMLStreamException;
javax.xml.stream.XMLStreamReader;

static java.lang.System.*;

class StAXDemo

public static void main(String[] args)

{

118

if (args.length != 1)

{
err.println("usage: java StAXDemo xmlfile");
return;

}

try

{

XMLInputFactory xmlif = XMLInputFactory.newFactory();
FileReader fr = new FileReader(args[0]);

XMLStreamReader xmlsr = xmlif.createXMLStreamReader(fr);
while (xmlsr.hasNext())

{

switch (xmlsr.next())
{
case XMLStreamReader.START_ELEMENT:
out.println("START ELEMENT");
out.printf(" Qname = %s%kn",
xmlsr.getName());
break;

CHAPTER 4 PARSING AND CREATING XML DOCUMENTS WITH STAX

case XMLStreamReader.END_ ELEMENT:
out.println("END ELEMENT");
out.printf(" Qname = %s%n", xmlsr.getName());

}

}
}
catch (FactoryConfigurationError fce)
{

err.printf("FCE: %skn", fce.toString());
}
catch (FileNotFoundException fnfe)
{

err.printf("FNFE: %s%n", fnfe.toString());
}
catch (XMLStreamException xmlse)
{

err.printf("XMLSE: %s%n", xmlse.toString());
}

After verifying the number of command-line arguments, Listing 4-1’s main()
method creates a factory, uses the factory to create a stream-based reader that obtains
its XML data from the file identified by the solitary command-line argument, and
enters a parsing loop. Whenever next () returns XMLStreamReader.START ELEMENT or
XMLStreamReader.END_ELEMENT, XMLStreamReader’s getName () method is called to
return the element’s qualified name.

Compile Listing 4-1 as follows:

javac StAXDemo.java
Run the resulting application to dump Listing 1-2’s movie XML content, as follows:

java StAXDemo movie.xml

119

CHAPTER 4 PARSING AND CREATING XML DOCUMENTS WITH STAX
You should observe the following output:

START _ELEMENT

Oname = movie
START _ELEMENT

Qname = name
END_ELEMENT

Qname = name
START _ELEMENT

Qname = language
END_ELEMENT

Oname = language
END_ELEMENT

Oname = movie

Note XMLStreamReader declares a void close() method that you will want
to call to free any resources associated with this stream-based reader when your
application is designed to run for an extended period of time. Calling this method
doesn’t close the underlying input source.

Parsing Documents with Event-Based Readers

An event-based reader is created by calling one of XMLInputFactory’s
createXMLEventReader () methods, such as XMLEventReader
createXMLEventReader (Reader reader). These methods throw XMLStreamException
when the event-based reader cannot be created.

The following code fragment creates an event-based reader whose source is a file
named recipe.xml:

Reader reader = new FileReader("recipe.xml");
XMLEventReader xmler = xmlif.createXMLEventReader(reader);

120

CHAPTER 4 PARSING AND CREATING XML DOCUMENTS WITH STAX

The high-level javax.xml.stream.XMLEventReader interface offers a somewhat less
efficient but more object-oriented way to read XML data with StAX. This interface’s boolean
hasNext () method returns true when there is an event to obtain; otherwise, it returns
false. The XMLEvent nextEvent() method returns the next event as an object whose class
implements a subinterface of the javax.xml.stream.events.XMLEvent interface.

Note XMLEvent is the base interface for handling markup events. It
declares methods that apply to all subinterfaces; for example, Location
getLocation() (return a javax.xml.stream.Location object whose
int getCharacterOffset() and other methods return location information
about the event) and int getEventType() (return the event type as an
XMLStreamConstants infoset constant, such as START ELEMENT and
PROCESSING_INSTRUCTION—XMLEvent extends XMLStreamConstants).
XMLEvent is subtyped by other javax.xml.stream.events interfaces that
describe different kinds of events (such as Attribute) in terms of methods
that return infoset item-specific information (such as Attribute’s QName
getName() and String getValue() methods).

The following code fragment uses the hasNext () and nextEvent () methods to codify
a parsing loop that detects the start and end of an element:

while (xmler.hasNext())

{
switch (xmler.nextEvent().getEventType())

{
case XMLEvent.START ELEMENT:

// Do something at element start.
break;

case XMLEvent.END ELEMENT:
// Do something at element end.

Listing 4-2 presents the source code to a StAXDemo application that reports an XML
document’s start and end elements via an event-based reader.

121

CHAPTER 4 PARSING AND CREATING XML DOCUMENTS WITH STAX

Listing 4-2. StAXDemo (Version 2)

import java.io.FileNotFoundException;
import java.io.FileReader;

import javax.xml.stream.FactoryConfigurationError;
import javax.xml.stream.XMLEventReader;

import javax.xml.stream.XMLInputFactory;

import javax.xml.stream.XMLStreamException;

import javax.xml.stream.events.EndElement;
import javax.xml.stream.events.StartElement;
import javax.xml.stream.events.XMLEvent;

import static java.lang.System.*;

public class StAXDemo

{
public static void main(String[] args)
{
if (args.length != 1)
{
err.println("usage: java StAXDemo xmlfile");
return;
}
try
{

XMLInputFactory xmlif = XMLInputFactory.newFactory();
FileReader fr = new FileReader(args[o0]);
XMLEventReader xmler = xmlif.createXMLEventReader(fr);
while (xmler.hasNext())
{

XMLEvent xmle = xmler.nextEvent();

switch (xmle.getEventType())

{
case XMLEvent.START ELEMENT:

122

CHAPTER 4 PARSING AND CREATING XML DOCUMENTS WITH STAX

out.println("START ELEMENT");
out.printf(" Qname = %s¥kn",
((StartElement) xmle). getName());
break;
case XMLEvent.END ELEMENT:
out.println("END_ELEMENT");
out.printf(" Qname = %s%n",
((EndElement) xmle). getName());

}

}
}
catch (FactoryConfigurationError fce)
{

err.printf("FCE: %s%n", fce.toString());
}
catch (FileNotFoundException fnfe)
{

err.printf("FNFE: %s%n", fnfe.toString());
}
catch (XMLStreamException xmlse)
{

err.printf("XMLSE: %s%n", xmlse.toString());
}

After verifying the number of command-line arguments, Listing 4-2’s main() method
creates a factory, uses the factory to create an event-based reader that obtains its XML
data from the file identified by the solitary command-line argument, and enters a
parsing loop. Whenever nextEvent () returns XMLEvent.START ELEMENT or XMLEvent.
END_ELEMENT, StartElement’s or EndElement’s getName () method is called to return the

element’s qualified name.

123

CHAPTER 4 PARSING AND CREATING XML DOCUMENTS WITH STAX

After compiling Listing 4-2, run the resulting application to dump Listing 1-3’s article
XML content, as follows:

java StAXDemo article.xml
You should observe the following output:

START ELEMENT

Oname = article
START _ELEMENT

Qname = abstract
START_ELEMENT

Oname = code
END_ELEMENT

Oname = code
END_ELEMENT

Oname = abstract
START ELEMENT

QOname = body
END_ELEMENT
Qname = body

END_ELEMENT
Qname = article

Note You can also create a filtered event-based reader to accept or reject various
events by calling one of XMLInputFactory’s createFilteredReader()
methods, such as XMLEventReader createFilteredReader(XMLEven
tReader reader, EventFilter filter).The javax.xml.stream.
EventFilter interface declares a boolean accept(XMLEvent event)
method that returns true when the specified event is part of the event sequence;
otherwise, it returns false.

124

CHAPTER 4 PARSING AND CREATING XML DOCUMENTS WITH STAX

Creating XML Documents

Document writers are obtained by calling the various “create” methods that are
declared in the javax.xml.stream.XMLOutputFactory class. These creational methods
are organized into two categories: methods for creating stream-based writers and
methods for creating event-based writers.

Before you can obtain a stream-based or an event-based writer, you need to obtain
an instance of the factory by calling one of the newFactory() static methods, such as
XMLOutputFactory newFactory():

XMLOutputFactory xmlof = XMLOutputFactory.newFactory();

Note You can also call the XMLOutputFactory newInstance() static
method but might not want to do so because its same-named but parameterized
companion method has been deprecated to maintain API consistency, and it’s
possible that newInstance() will be deprecated as well.

The newFactory() methods follow an ordered lookup procedure to locate the
XMLOutputFactory implementation class. This procedure first examines the javax.
xml.stream.XMLOutputFactory system property and lastly returns the system-default
implementation (returned from XMLOutputFactory newDefaultFactory()).If there
is a service configuration error, or if the implementation is not available or cannot be
instantiated, the method throws an instance of the FactoryConfigurationError class.

After creating the factory, call XMLOutputFactory’s void setProperty(String
name, Object value) method to set various features and properties as necessary. The
only property currently supported by all writers is XMLOutputFactory.IS REPAIRING
NAMESPACES. When enabled (by passing true or a Boolean object, such as Boolean.TRUE,
to value), the document writer takes care of all namespace bindings and declarations,
with minimal help from the application. The output is always well formed with respect to
namespaces. However enabling this property adds some overhead to the job of writing
the XML.

125

CHAPTER 4 PARSING AND CREATING XML DOCUMENTS WITH STAX

Creating Documents with Stream-Based Writers

A stream-based writer is created by calling one of XMLOutputFactory’s
createXMLStreamWriter () methods, such as XMLStreamWriter
createXMLStreamiWriter (Writer writer). These methods throw XMLStreamException
when the stream-based writer cannot be created.

The following code fragment creates a stream-based writer whose destination is a file
named recipe.xml:

Writer writer = new FileWriter("recipe.xml");
XMLStreamWriter xmlsw = xmlof.createXMLStreamWriter(writer);

The low-level XMLStreamWriter interface declares several methods for writing
infoset items to the destination. The following list describes a few of these methods:

o void close() closes this stream-based writer and frees any
associated resources. The underlying writer is not closed.

e void flush() writes any cached data to the underlying writer.

o void setPrefix(String prefix, String uri) identifies the
namespace prefix to which the uri value is bound. This prefix is
used by variants of the writeStartElement(), writeAttribute(),
and writeEmptyElement () methods that take namespace arguments
but not prefixes. Also, it remains valid until the writeEndElement()
invocation that corresponds to the last writeStartElement()
invocation. This method doesn’t create any output.

o void writeAttribute(String localName, String value) writes
the attribute identified by localName and having the specified value
to the underlying writer. A namespace prefix isn’t included. This
method escapes the &, <, >, and " characters.

o void writeCharacters(String text) writes text’s characters to the
underlying writer. This method escapes the &, <, and > characters.

o void writeEndDocument() closes any start tags and writes
corresponding end tags to the underlying writer.

126

CHAPTER 4 PARSING AND CREATING XML DOCUMENTS WITH STAX

void writeEndElement() writes an end tag to the underlying writer,
relying on the internal state of the stream-based writer to determine
the tag’s prefix and local name.

void writeNamespace(String prefix, String namespaceURI)
writes a namespace to the underlying writer. This method must be
called to ensure that the namespace specified by setPrefix() and
duplicated in this method call is written; otherwise, the resulting
document will not be well formed from a namespace perspective.

void writeStartDocument () writes the XML declaration to the
underlying writer.

void writeStartElement(String namespaceURI, String
localName) writes a start tag with the arguments passed to
namespaceURI and localName to the underlying writer.

Listing 4-3 presents the source code to a StAXDemo application that creates a recipe.

xml file with many of Listing 1-5’s infoset items via a stream-based writer.

Listing 4-3. StAXDemo (Version 3)

import
import

import
import
import
import

import

public
{

final static String NS1
final static String NS2

java.io.FileWriter;
java.io.IOException;

javax.xml.stream.FactoryConfigurationError;
javax.xml.stream.XMLOutputFactory;
javax.xml.stream.XMLStreamException;
javax.xml.stream.XMLStreamWriter;

static java.lang.System.*;

class StAXDemo

"http://www.w3.0rg/1999/xhtml";
"http://www.javajeff.ca/";

127

CHAPTER 4 PARSING AND CREATING XML DOCUMENTS WITH STAX

128

public static void main(String[] args)

{

try
{

XMLOutputFactory xmlof =
XMLOutputFactory.newFactory();
FileWriter fw = new FileWriter("recipe.xml");

XMLStreamWriter xmlsw =
xmlof.createXMLStreamhWriter (fw);

xmlsw.

Xmlsw

xmlsw.
xmlsw.
xmlsw.
.writeStartElement(NS1, "head");

Xmlsw

xmlsw.

writeStartDocument();

.setPrefix("h", NS1);

writeStartElement(NS1, "html");
writeNamespace("h", NS1);

writeNamespace("r", NS2);

writeStartElement(NS1, "title");

xmlsw.writeCharacters("Recipe");
xmlsw.writeEndElement();
xmlsw.writeEndElement();
xmlsw.writeStartElement(NS1, "body");
xmlsw.setPrefix("r", NS2);
xmlsw.writeStartElement(NS2, "recipe");
xmlsw.writeStartElement(NS2, "title");
xmlsw.writeCharacters("Grilled Cheese Sandwich");
xmlsw.writeEndElement();
xmlsw.writeStartElement(NS2, "ingredients");
xmlsw.setPrefix("h", NS1);
xmlsw.writeStartElement(NS1, "ul");

xmlsw.
xmlsw.
xmlsw.
xmlsw.
xmlsw.
xmlsw.
xmlsw.

writeStartElement(NS1, "1i");
setPrefix("r", NS2);
writeStartElement(NS2, "ingredient");
writeAttribute("qty", "2");
writeCharacters("bread slice");
writeEndElement();

setPrefix("h", NS1);

xmlsw.

xmlsw

xmlsw.
xmlsw.
xmlsw.
.flush();
xmlsw.

xmlsw

}

CHAPTER 4

writeEndElement();

.writeEndElement();

setPrefix("r", NS2);
writeEndElement();
writeEndDocument();

close();

PARSING AND CREATING XML DOCUMENTS WITH STAX

catch (FactoryConfigurationError fce)

{

err.printf("FCE: %s%n", fce.toString());

}

catch (IOException ioe)

{

err.printf("IOE: %s%n", ioe.toString());

}

catch (XMLStreamException xmlse)

{

err.printf("XMLSE: %s%n", xmlse.toString());

Although Listing 4-3 is fairly easy to follow, you might be somewhat confused by
the duplication of namespace URIs in the setPrefix() and writeStartElement()

method calls. For example, you might be wondering about the duplicate URIs in xmlsw.
setPrefix("h", NS1); and its xmlsw.writeStartElement(NS1, "html"); successor.
The setPrefix() method call creates a mapping between a namespace prefix (the
value) and a URI (the key) without generating any output. The writeStartElement()
method call specifies the URI key, which this method uses to access the prefix value,

which it then prepends (with a colon character) to the html start tag’s name before

writing this tag to the underlying writer.

Compile Listing 4-3 and run the resulting application. You should discover a recipe.

xml file in the current directory.

129

CHAPTER 4 PARSING AND CREATING XML DOCUMENTS WITH STAX

Creating Documents with Event-Based Writers

An event-based writer is created by calling one of XMLOutputFactory’s
createXMLEventWriter () methods, such as XMLEventWriter
createXMLEventWriter (Writer writer). These methods throw XMLStreamException
when the event-based writer cannot be created.

The following code fragment creates an event-based writer whose destination is a file
named recipe.xml:

Writer writer = new FileWriter("recipe.xml");
XMLEventWriter xmlew = xmlof.createXMLEventWriter(writer);

The high-level XMLEventWriter interface declares the void add(XMLEvent event)
method for adding events that describe infoset items to the output stream implemented
by the underlying writer. Each argument passed to event is an instance of a class that
implements a subinterface of XMLEvent (such as Attribute and StartElement).

To save you the trouble of implementing these interfaces, StAX provides javax.xml.
stream.EventFactory. This utility class declares various factory methods for creating
XMLEvent subinterface implementations. For example, Comment createComment(String
text) returns an object whose class implements the javax.xml.stream.events.
Comment subinterface of XMLEvent.

Because these factory methods are declared abstract, you must first obtain an
instance of the EventFactory class. You can easily accomplish this task by invoking
XMLEventFactory’s XMLEventFactory newFactory() static method, as follows:

XMLEventFactory xmlef = XMLEventFactory.newFactory();
You can then obtain an XMLEvent subinterface implementation, as follows:
XMLEvent comment = xmlef.createComment("ToDo");

Listing 4-4 presents the source code to a StAXDemo application that creates a recipe.
xml file with many of Listing 1-5s infoset items via an event-based writer.

130

CHAPTER 4 PARSING AND CREATING XML DOCUMENTS WITH STAX

Listing 4-4. StAXDemo (Version 4)

import java.io.FileWriter;
import java.io.IOException;

import java.util.Iterator;

import javax.xml.stream.FactoryConfigurationError;
import javax.xml.stream.XMLEventFactory;

import javax.xml.stream.XMLEventWriter;

import javax.xml.stream.XMLOutputFactory;

import javax.xml.stream.XMLStreamException;

import javax.xml.stream.events.Attribute;
import javax.xml.stream.events.Namespace;
import javax.xml.stream.events.XMLEvent;

import static java.lang.System.*;

public class StAXDemo
{

final static String NS1
final static String NS2

"http://www.w3.0rg/1999/xhtml";
"http://www.javajeff.ca/";

public static void main(String[] args)
{
try
{
XMLOutputFactory xmlof =
XMLOutputFactory.newFactory();
FileWriter fw = new FileWriter("recipe.xml");
XMLEventWriter xmlew;
xmlew = xmlof.createXMLEventWriter(fw);
final XMLEventFactory xmlef =
XMLEventFactory.newFactory();
XMLEvent event = xmlef.createStartDocument();
xmlew.add(event);
Iterator<Namespace> nslter;
nsIter = new Iterator<Namespace>()

131

CHAPTER 4 PARSING AND CREATING XML DOCUMENTS WITH STAX

132

{
int index = 0;
Namespace[] ns;

{
ns = new Namespace[2];
ns[0] = xmlef.createNamespace("h", NS1);
ns[1] = xmlef.createNamespace("r", NS2);
}
@Override
public boolean hasNext()
{
return index != 2;
}
@Override
public Namespace next()
{
return ns[index++];
}
@Override
public void remove()
{
throw new UnsupportedOperationException();
}

15

event = xmlef.createStartElement("h", NS1, "html", null, nsIter);
xmlew.add(event);

event = xmlef.createStartElement("h", NS2, "head");
xmlew.add(event);

event = xmlef.createStartElement("h", NS1, "title");
xmlew.add(event);

event = xmlef.createCharacters("Recipe");

xmlew.add(event);

event = xmlef.createEndElement("h", NS1, "title");

CHAPTER 4 PARSING AND CREATING XML DOCUMENTS WITH STAX

xmlew.add(event);

event = xmlef.createEndElement("h", NS1, "head");
xmlew.add(event);

event = xmlef.createStartElement("h", NS1, "body");
xmlew.add(event);

event = xmlef.createStartElement("r", NS2, "recipe");
xmlew.add(event);

event = xmlef.createStartElement("r", NS2, "title");
xmlew.add(event);

event = xmlef.createCharacters("Grilled Cheese " + "Sandwich");
xmlew.add(event);

event = xmlef.createEndElement("r", NS2, "title");
xmlew.add(event);

event = xmlef.createStartElement("r", NS2, "ingredients");
xmlew.add(event);

event = xmlef.createStartElement("h", NS1, "ul");
xmlew.add(event);

event = xmlef.createStartElement("h", NS1, "1i");
xmlew.add(event);

Iterator<Attribute> attrIter;
attrIter = new Iterator<Attribute>()

{

int index = 0;
Attribute[] attrs;

{
attrs = new Attribute[1];
attrs[0] = xmlef.createAttribute("qty", "2");
}
@verride
public boolean hasNext()
{
return index != 1;
}

133

CHAPTER 4 PARSING AND CREATING XML DOCUMENTS WITH STAX

134

@0Override
public Attribute next()
{
return attrs[index++];
}
@Override
public void remove()
{
throw new UnsupportedOperationException();
}

};

event = xmlef.createStartElement("r", NS2, "ingredient",
attrIter, null);

xmlew.add(event);

event = xmlef.createCharacters("bread slice");

xmlew.add(event);

event = xmlef.createEndElement("r", NS2,
xmlew.add(event);

event = xmlef.createEndElement("h", NS1,
xmlew.add(event);

event = xmlef.createEndElement("h", NS1,
xmlew.add(event);

event = xmlef.createEndElement("r", NS2,
xmlew.add(event);

event = xmlef.createEndElement("r", NS2,
xmlew.add(event);

event = xmlef.createEndElement("h", NS1,
xmlew.add(event);

event = xmlef.createEndElement("h", NS1,
xmlew.add(event);

xmlew.flush();

xmlew.close();

"ingredient");
113

"ul");
"ingredients");
"recipe");
"body") ;

"html");

CHAPTER 4 PARSING AND CREATING XML DOCUMENTS WITH STAX

catch (FactoryConfigurationError fce)

{

err.printf("FCE: %skn", fce.toString());
}
catch (IOException ioe)
{

err.printf("IOE: %s%n", ioe.toString());
}
catch (XMLStreamException xmlse)
{

err.printf("XMLSE: %s%n", xmlse.toString());
}

Listing 4-4 should be fairly easy to follow; it’s the event-based equivalent of Listing 4-3.
Notice that this listing includes the creation of java.util.Iterator instances from
anonymous classes that implement this interface. These iterators are created to pass
namespaces or attributes to XMLEventFactory’s StartElement createStartElement
(String prefix, String namespaceUri, String localName, Iterator<? extends
Attribute> attributes, Iterator<? extends Namespace> namespaces) method.
(You can pass null to this parameter when an iterator isn’t applicable; for example,
when the start tag has no attributes.)

Compile Listing 4-4 and run the resulting application. You should discover a recipe.
xml file in the current directory.

XMLEventWriter declares a void add(XMLEventReader reader) convenience
method for adding a stream of input events to an output stream in one method call.
Listing 4-5 presents the source code to a Copy application that uses this method to copy
an XML file to another XML file.

Listing 4-5. Copy

import java.io.FileReader;
import java.io.FileWriter;

import javax.xml.stream.XMLEventReader;
import javax.xml.stream.XMLEventWriter;

135

CHAPTER 4 PARSING AND CREATING XML DOCUMENTS WITH STAX

import javax.xml.stream.XMLInputFactory;
import javax.xml.stream.XMLOutputFactory;

import static java.lang.System.*;

public class Copy

{

public static void main(String[] args) throws Exception

{
if (args.length != 2)
{

err.println("usage: java copy xmlfile1l xmlfile2");
return;

}
XMLInputFactory xmlif = XMLInputFactory.newFactory();
FileReader fr = new FileReader(args[0]);
XMLEventReader xmler = xmlif.createXMLEventReader(fr);
XMLOutputFactory xmlof = XMLOutputFactory.newFactory();
FileWriter fw = new FileWriter(args[1]);
XMLEventWriter xmlew;
xmlew = xmlof.createXMLEventWriter(fw);
xmlew.add(xmler);
xmlew.flush();
xmlew.close();

}

}

For brevity, I added a throws Exception clause tomain()’s header.
Compile Listing 4-5 as follows:

javac Copy.java
Run the resulting application to copy a recipe.xml file toa recipe.xml backup file:
java Copy recipe.xml _recipe.xml

If the source XML file doesn’t have an XML declaration, it will be added to the
destination XML file.

136

CHAPTER 4 PARSING AND CREATING XML DOCUMENTS WITH STAX

EXERCISES

The following exercises are designed to test your understanding of Chapter 4’s content;
1. Define StAX.
2. What packages make up the StAX API?

3. True or false: A stream-based reader extracts the next infoset item from an
input stream by obtaining an event.

4. How do you obtain a document reader? How do you obtain a document writer?

5. What does a document writer do when you call XMLOutputFactory’s
void setProperty(String name, Object value) method with
XMLOutputFactory.IS REPAIRING NAMESPACES as the property name
and true as the value?

6. Create a ParseXMLDoc application that uses a StAX stream-based reader to
parse its single command-line argument, an XML document. After creating
this reader, the application should verify that a START_DOCUMENT infoset item
has been detected, and then enter a loop that reads the next item and uses
a switch statement to output a message corresponding to the item that has
been read: ATTRIBUTE, CDATA, CHARACTERS, COMMENT, DTD, END_ELEMENT,
ENTITY DECLARATION, ENTITY REFERENCE, NAMESPACE, NOTATION
DECLARATION, PROCESSING INSTRUCTION, SPACE, or START ELEMENT.
When START_ELEMENT is detected, output this element’s name and local
name, and output the local names and values of all attributes. The loop ends
when the END_DOCUMENT infoset item has been detected. Explicitly close
the stream reader followed by the file reader upon which it’s based. Test this
application with Exercise 1-21’s books . xm1 file.

137

CHAPTER 4 PARSING AND CREATING XML DOCUMENTS WITH STAX

Summary

StAXis a Java API for parsing an XML document sequentially from start to finish and also
for creating XML documents. Java implements StAX through types stored in the javax.
xml.stream, javax.xml.stream.events, and javax.xml.stream.util packages.

StAX parsers are known as document readers, and StAX document creators are
known as document writers. StAX classifies document readers and document writers as
stream-based or event-based.

Document readers are obtained by calling the various “create” methods that are
declared in the XMLInputFactory class. Document writers are obtained by calling the
various “create” methods that are declared in the XMLOutputFactory class.

The low-level XMLStreamReader interface offers the most efficient way to read XML
data with StAX. This interface’s boolean hasNext() method returns true when there
is a next infoset item to obtain; otherwise, it returns false. The int next() method
advances the cursor by one infoset item and returns an integer code that identifies this
item’s type.

The low-level XMLStreamWriter interface declares several methods for writing
infoset items to the destination. Examples include void writeAttribute(String
localName, String value) and void writeCharacters(String text).

The high-level XMLEventReader interface offers a somewhat less efficient but more
object-oriented way to read XML data with StAX. This interface’s boolean hasNext()
method returns true when there is an event to obtain; otherwise, it returns false.

The XMLEvent nextEvent() method returns the next event as an object whose class
implements a subinterface of the XMLEvent interface.

The high-level XMLEventWriter interface declares the void add(XMLEvent event)
method for adding events that describe infoset items to the output stream implemented
by the underlying writer. Each argument passed to event is an instance of a class that
implements a subinterface of XMLEvent (such as Attribute and StartElement).

Chapter 5 introduces Java’s XPath API for simplifying DOM node access.

138

CHAPTER 5

Selecting Nodes
with XPath

Java includes an XPath API for simplifying access to a DOM tree’s nodes. Chapter 5
introduces you to XPath.

What Is XPath?

XPath is a nonXML declarative query language (defined by the W3C) for selecting an
XML document’s infoset items as one or more nodes. For example, you can use XPath to
locate Listing 1-1’s third ingredient element and return this element node.

As well as simplifying access to a DOM tree’s nodes, XPath is commonly used in
the context of XSLT (discussed in Chapter 6) where it’s typically employed to select (via
XPath expressions) those input document elements that are to be copied to an output
document.

Note Java 11 supports XPath 1.0, which is assigned package javax.xml.xpath.

XPath Language Primer

XPath regards an XML document as a tree of nodes that starts from a root node.

This language recognizes seven kinds of nodes: element, attribute, text, namespace,
processing instruction, comment, and document. It doesn’t recognize CDATA sections,
entity references, or document type declarations.

139
© Jeff Friesen 2019

J. Friesen, Java XML and JSON, https://doi.org/10.1007/978-1-4842-4330-5_5

CHAPTER 5 SELECTING NODES WITH XPATH

Note A DOM tree’s root node (an org.w3c.dom.Document object) isn’t the
same as a document’s root element. The DOM tree’s root node contains the entire
document, including the root element, any comments or processing instructions
that appear before the root element’s start tag, and any comments or processing
instructions that appear after the root element’s end tag.

Location Path Expressions

XPath provides location path expressions for selecting nodes. A location path expression
locates nodes via a sequence of steps starting from the context node (the root node or
some other document node that’s the current node). The returned set of nodes, which is
known as a nodeset, might be empty, or it might contain one or more nodes.

The simplest location path expression selects the document’s root node and consists
of a single forward slash character (/). The next simplest location path expression is
the name of an element, which selects all child elements of the context node that have
that name. For example, ingredient refers to all ingredient child elements of the
context node in Listing 1-1’s recipe document. This XPath expression returns a set of
three ingredient nodes when the context node is ingredients. However, if recipe or
instructions happened to be the context node, ingredient wouldn’t return any nodes
(ingredient is a child of ingredients only). When an expression starts with a forward
slash (/), the expression represents an absolute path that starts from the root node.

For example, expression /movie selects all movie child elements of the root node in
Listing 1-2’s movie document.

Attributes are also handled by location path expressions. To select an element’s
attribute, specify @ followed by the attribute’s name. For example, @qty selects the qty
attribute node of the context node.

In most cases, you'll work with root nodes, element nodes, and attribute nodes.
However, you might also need to work with namespace nodes, text nodes, processing-
instruction nodes, and comment nodes. Unlike namespace nodes, which are typically
handled by XSLT, you'll more likely need to process comments, text, and processing
instructions. XPath provides comment (), text(), and processing-instruction()
functions for selecting comment, text, and processing-instruction nodes.

140

CHAPTER 5 SELECTING NODES WITH XPATH

The comment () and text() functions don’t require arguments because comment
and text nodes don’t have names. Each comment is a separate comment node, and each
text node specifies the longest run of text not interrupted by a tag. The processing-
instruction() function may be called with an argument that identifies the target of the
processing instruction. If called with no argument, all of the context node’s processing-
instruction child nodes are selected.

XPath provides three wildcards for selecting unknown nodes:

e *matches any element node regardless of the node’s type. It doesn’t
match attributes, text nodes, comments, or processing-instruction
nodes. When you place a namespace prefix before the *, only
elements belonging to that namespace are matched.

o node() is a function that matches all nodes.

e @* matches all attribute nodes.

Note XPath lets you perform multiple selections by using the vertical bar (|).

For example, author/* | publisher/* selects the children of author and the
children of publisher, and * |@* matches all elements and attributes, but doesn’t
match text, comment, or processing-instruction nodes.

XPath lets you combine steps into compound paths by using the / character to
separate them. For paths beginning with /, the first path step is relative to the root node;
otherwise, the first path step is relative to another context node. For example, /movie/
name starts with the root node, selects all novie element children of the root node, and
selects all name children of the selected movie nodes. If you wanted to return all text
nodes of the selected name elements, you would specify /movie/name/text().

Compound paths can include // to select nodes from all descendants of the context
node (including the context node). When placed at the start of an expression, // selects
nodes from the entire tree. For example, //ingredient selects all ingredient nodes in
the tree.

As with file systems that let you identify the current directory with a single period
(.) and its parent directory with a double period (. .), you can specify a single period to
represent the current node and a double period to represent the parent of the current
node. (You would typically use a single period in XSLT to indicate that you want to access
the value of the currently matched element.)

141

CHAPTER 5 SELECTING NODES WITH XPATH

It might be necessary to narrow the selection of nodes returned by an XPath
expression. For example, expression /recipe/ingredients/ingredient returns all
ingredient nodes, but perhaps you only want to return the first ingredient node. You
can narrow the selection by including predicates in the location path.

A predicate is a square bracket-delimited Boolean expression that’s tested against
each selected node. If the expression evaluates to true, that node is included in the set
of nodes returned by the XPath expression; otherwise, the node isn’t included in the set.
For example, /recipe/ingredients/ingredient[1] selects the first ingredient element
that’s a child of the ingredients element.

Predicates can include predefined functions (such as last() and position()),
operators (such as -, <, and =), and other items. Consider the following examples:

o /recipe/ingredients/ingredient[last()] selects the last
ingredient element that’s a child of the ingredients element.

o /recipe/ingredients/ingredient[last() - 1] selects the next-to-
last ingredient element that’s a child of the ingredients element.

o /recipe/ingredients/ingredient[position() < 3] selects the
first two ingredient elements that are children of the ingredients
element.

o //ingredient[@qty] selects all ingredient elements (no matter
where they're located) that have qty attributes.

o //ingredient[@qty="1"'] or //ingredient[@qty="1"] selects all
ingredient elements (no matter where they're located) that have qty
attributes with value 1.

Note XPath predefines several functions for use with nodesets: 1ast() returns
a number identifying the last node, position() returns a number identifying a
node’s position, count () returns the number of nodes in its nodeset argument,
id() selects elements by their unique IDs and returns a nodeset of these
elements, local-name() returns the local part of the qualified name of the first
node in its nodeset argument, namespace-uri() returns the namespace part of
the qualified name of the first node in its nodeset argument, and name () returns
the qualified name of the first node in its nodeset argument.

142

CHAPTER 5 SELECTING NODES WITH XPATH

Although predicates are supposed to be Boolean expressions, the predicate might
not evaluate to a Boolean value. For example, it could evaluate to a number or a string—
XPath supports Boolean, number (IEEE 754 double precision floating-point values), and
string expression types as well as a location path expression’s nodeset type. If a predicate
evaluates to a number, XPath converts that number to true when it equals the context
node’s position; otherwise, XPath converts that number to false. If a predicate evaluates
to a string, XPath converts that string to true when the string isn’t empty; otherwise,
XPath converts that string to false. Finally, if a predicate evaluates to a nodeset, XPath
converts that nodeset to true when the nodeset is nonempty; otherwise, XPath converts
that nodeset to false.

Note The previously presented location path expression examples demonstrate
XPath’s abbreviated syntax. However, XPath also supports an unabbreviated syntax
that’s more descriptive of what’s happening and is based on an axis specifier, which
indicates the navigation direction within the XML document’s tree representation.
For example, where /movie/name selects all movie child elements of the

root node followed by all name child elements of the movie elements using the
abbreviated syntax, /child: :movie/child: :name accomplishes the same

task with the expanded syntax. Check out Wikipedia’s “XPath” entry (https://
en.wikipedia.org/wiki/XPath) for more information.

General Expressions

Location path expressions (which return nodesets) are one kind of XPath expression.
XPath also supports general expressions that evaluate to Boolean (such as predicates),
number, or string type; for example, position() = 2, 6.8, and "Hello". General
expressions are often used in XSLT.

XPath Boolean values can be compared via relational operators <, <=, >, >=, =, and
I'=. Boolean expressions can be combined by using operators and and or. Also, XPath
predefines the following Boolean functions:

e boolean() returns a Boolean value for a number, string, or nodeset.

o not() returns true when its Boolean argument is false and vice versa.

143

https://en.wikipedia.org/wiki/XPath
https://en.wikipedia.org/wiki/XPath

CHAPTER 5

SELECTING NODES WITH XPATH

true() returns true.
false() returns false.

lang() returns true or false depending on whether the language of
the context node (as specified by xml :1ang attributes) is the same as
or is a sublanguage of the language specified by the argument string.

XPath numeric values can be manipulated via operators +, -, *, div, and mod

(remainder)—forward slash cannot be used for division because it’s used to separate

location steps. All five operators behave like their Java language counterparts. XPath also

predefines the following numeric functions:

number () converts its argument to a number.

sum() returns the sum of the numeric values represented by the
nodes in its nodeset argument.

floor () returns the largest (closest to positive infinity) number that’s
not greater than its number argument and that’s an integer.

ceiling() returns the smallest (closest to negative infinity) number
that’s not less than its number argument and that’s an integer.

round() returns the number that’s closest to the argument and that’s
an integer. When there are two such numbers, the one closest to

positive infinity is returned.

XPath strings are ordered character sequences that are enclosed in single quotes or

double quotes. A string literal cannot contain the same kind of quote that’s also used to

delimit the string. For example, a string that contains a single quote cannot be delimited

with single quotes. XPath provides the = and ! = operators for comparing strings. XPath

also predefines the following string functions:

144

string() converts its argument to a string.
concat() returns a concatenation of its string arguments.

starts-with() returns true when its first argument string starts with
its second argument string (and otherwise returns false).

contains() returns true when its first argument string contains its
second argument string (and otherwise returns false).

CHAPTER 5 SELECTING NODES WITH XPATH

substring-before() returns the substring of its first argument string
that precedes the first occurrence of its second argument string in

its first argument string or the empty string when its first argument
string doesn’t contain its second argument string.

substring-after() returns the substring of its first argument string
that follows the first occurrence of its second argument string in

its first argument string or the empty string when its first argument
string doesn’t contain its second argument string.

substring() returns the substring of its first (string) argument
starting at the position specified in its second (number) argument
with length specified in its third (number) argument.

string-length() returns the number of characters in its string
argument (or the length of the context node when converted to a
string in the absence of an argument).

normalize-space() returns the argument string with whitespace
normalized by stripping leading and trailing whitespace and
replacing sequences of whitespace characters by a single space (or
performing the same action on the context node when converted to a
string in the absence of an argument).

translate() returns its first argument string with occurrences of
characters in its second argument string replaced by the character at
the corresponding position in its third argument string.

XPath and DOM

Suppose you need someone in your home to purchase a bag of sugar. You can tell this

person to “Please buy me some sugar.” Alternatively, you could say the following: “Please

open the front door. Walk down to the sidewalk. Turn left. Walk up the sidewalk for three
blocks. Turn right. Walk up the sidewalk one block. Enter the store. Go to aisle 7. Walk
two meters down the aisle. Pick up a bag of sugar. Walk to a checkout counter. Pay for

the sugar. Retrace your steps home.” Most people would expect to receive the shorter

instruction and would probably have you committed to an institution if you made a habit

out of providing the longer set of instructions.

145

CHAPTER 5 SELECTING NODES WITH XPATH

Traversing a DOM tree of nodes is similar to providing the longer sequence of
instructions. In contrast, XPath lets you traverse this tree via a succinct instruction.
To see this difference for yourself, consider a scenario where you have an XML-based
contacts document that lists your various professional contacts. Listing 5-1 presents a
trivial example of such a document.

Listing 5-1. XML-Based Contacts Database

<?xml version="1.0"?>
<contacts>
<contact>
<name>John Doe</name>
<city>Chicago</city>
<city>Denver</city>
</contact>
<contact>
<name>Jane Doe</name>
<city>New York</city>
</contact>
<contact>
<name>Sandra Smith</name>
<city>Denver</city>
<city>Miami</city>
</contact>
<contact>
<name>Bob Jones</name>
<city>Chicago</city>
</contact>
</contacts>

Listing 5-1 reveals a simple XML grammar consisting of a contacts root element
that contains a sequence of contact elements. Each contact element contains one name
element and one or more city elements (various contacts travel frequently and spend
alot of time in each city). (To keep the example simple, I'm not providing a DTD or a
schema.)

146

CHAPTER 5 SELECTING NODES WITH XPATH

Suppose you want to locate and output the names of all contacts that live at least part

of each year in Chicago. Listing 5-2 presents the source code to a DOMSearch application
that accomplishes this task with the DOM API.

Listing 5-2. Locating Chicago Contacts with the DOM API

import

import
import

import
import
import
import

import
import
import
import
import
import

public
{

java.io.IOException;

java.util.Arraylist;
java.util.list;

javax.xml.parsers.DocumentBuilder;
javax.xml.parsers.DocumentBuilderFactory;
javax.xml.parsers.FactoryConfigurationError;
javax.xml.parsers.ParserConfigurationException;

org.w3c.dom.Document;
org.w3c.dom.Element;
org.w3c.dom.Node;
org.w3c.dom.NodelList;

org.xml.sax.SAXException;
static java.lang.System.*;

class DOMSearch

public static void main(String[] args)

{

try

{

DocumentBuilderFactory dbf = DocumentBuilderFactory.newInstance();
DocumentBuilder db = dbf.newDocumentBuilder();

Document doc = db.parse("contacts.xml");

List<String> contactNames = new ArraylList<String>();

NodeList contacts = doc.getElementsByTagName("contact");

147

CHAPTER 5

148

SELECTING NODES WITH XPATH

for (int i = 0; i < contacts.getlLength(); i++)

{

(Element) contacts.item(i);
contact.getElementsByTagName("city");

Element contact
NodelList cities
boolean chicago = false;
for (int j = 0; j < cities.getlLength(); j++)
{
Element city = (Element) cities.item(j);
NodelList children = city.getChildNodes();
StringBuilder sb = new StringBuilder();
for (int k = 0; k < children.getlLength(); k++)

{
Node child = children.item(k);
if (child.getNodeType() == Node.TEXT_NODE)
sb.append(child.getNodeValue());
}
if (sb.toString().equals("Chicago"))
{
chicago = true;
break;
}
}
if (chicago)
{

NodelList names = contact.getElementsByTagName("name");
contactNames.add(names.item(0). getFirstChild().
getNodeValue());

}

for (String contactName: contactNames)
out.println(contactName);

CHAPTER 5 SELECTING NODES WITH XPATH

catch (IOException ioe)

{

err.printf("IOE: %s%n", ioe.toString());
}
catch (SAXException saxe)
{

err.printf("SAXE: %s%n", saxe.toString());
}
catch (FactoryConfigurationError fce)
{

err.printf("FCE: %s%n", fce.toString());
}
catch (ParserConfigurationException pce)
{

err.printf("PCE: %s%n", pce.toString());
}

After parsing contacts.xml and building the DOM tree, main() uses Document’s
getElementsByTagName() method to return an org.w3c.dom.NodelList of contact
element nodes. For each member of this list, main() extracts the contact element node
and uses this node with getElementsByTagName() to return a NodeList of the contact
element node’s city element nodes.

For each member of the cities list, main() extracts the city element node and uses
this node with getElementsByTagName() to return a NodeList of the city element node’s
child nodes—there’s only a single child text node in this example, but the presence of
a comment or processing instruction would increase the number of child nodes. For
example, <city>Chicago<!--The windy city--></city> increases the number of child
nodes to 2.

If the child’s node type indicates that it’s a text node, the child node’s value (obtained
via getNodeValue()) is stored in a string builder—only one child node is stored in the
string builder in this example. If the builder’s contents indicate that Chicago has been
found, the chicago flag is set to true and execution leaves the cities loop.

149

CHAPTER 5 SELECTING NODES WITH XPATH

If the chicago flag is set when the cities loop exits, the current contact element
node’s getElementsByTagName () method is called to return a NodelList of the contact
element node’s name element nodes (of which there should only be one, and which I
could enforce through a DTD or schema). It's now a simple matter to extract the first
item from this list, call getFirstChild() on this item to return the text node (I assume
that only text appears between <name> and </name>), and call getNodeValue() on the
text node to obtain its value, which is then added to the contactNames list.

Compile Listing 5-2 as follows:

javac DOMSearch.java

Run the resulting application as follows:
java DOMSearch

You should observe the following output:

John Doe
Bob Jones

Traversing the DOM’s tree of nodes is a tedious exercise at best and is error-prone at
worst. Fortunately, XPath can greatly simplify this situation.

Before writing the XPath equivalent of Listing 5-2, it helps to define a location path
expression. For this example, that expression is //contact[city = "Chicago"]/name/
text (), which uses a predicate to select all contact nodes that contain a Chicago city
node, then select all child name nodes from these contact nodes, and finally select all
child text nodes from these name nodes.

Listing 5-3 presents the source code to an XPathSearch application that uses this
XPath expression and Java’s XPath API, which consists of various types in the javax.xml.
xpath package, to locate Chicago contacts.

Listing 5-3. Locating Chicago Contacts with the XPath API
import java.io.IOException;

import javax.xml.parsers.DocumentBuilder;

import javax.xml.parsers.DocumentBuilderFactory;
import javax.xml.parsers.FactoryConfigurationError;
import javax.xml.parsers.ParserConfigurationException;

150

import
import
import
import
import

import
import

import
import

public

{
pub

{

CHAPTER 5

javax.xml.xpath.XPath;
javax.xml.xpath.XPathConstants;
javax.xml.xpath.XPathException;
javax.xml.xpath.XPathExpression;
javax.xml.xpath.XPathFactory;

org.w3c.dom.Document;
org.w3c.dom.Nodelist;

org.xml.sax.SAXException;

static java.lang.System.*;

class XPathSearch

lic static void main(String[] args)
try

{
DocumentBuilderFactory dbf =

DocumentBuilderFactory.newInstance();

SELECTING NODES WITH XPATH

DocumentBuilder db = dbf.newDocumentBuilder();

Document doc = db.parse("contacts.xml");

XPathFactory xpf = XPathFactory.newInstance();

XPath xp = xpf.newXPath();
XPathExpression xpe;

xpe = xp.compile("//contact[city = 'Chicago']/" +

"name/text()");
Object result =

xpe.evaluate(doc, XPathConstants.NODESET);

NodelList nl = (Nodelist) result;
for (int i = 0; i < nl.getlength(); i++)
out.println(nl.item(i).getNodeValue());
}

catch (IOException ioe)

{

151

CHAPTER 5 SELECTING NODES WITH XPATH

err.printf("IOE: %s%n", ioe.toString());

}
catch (SAXException saxe)
{

err.printf("SAXE: %s%n", saxe.toString());
}
catch (FactoryConfigurationError fce)
{

err.printf("FCE: %shn", fce.toString());
}
catch (ParserConfigurationException pce)
{

err.printf("PCE: %s%n", pce.toString());
}
catch (XPathException xpe)
{

err.printf("XPE: %s%n", xpe.toString());
}

After parsing contacts.xml and building the DOM tree, main() instantiates javax.
xml.xpath.XPathFactory by calling its XPathFactory newInstance() method. The
resulting XPathFactory instance can be used to set features (such as secure processing,
to process XML documents securely) by calling its void setFeature(String name,
boolean value) method, create a javax.xml.xpath.XPath object by calling its XPath
newXPath() method, and more.

XPath declares an XPathExpression compile(String expression) method
for compiling the specified expression (an XPath expression) and returning
the compiled expression as an instance of a class that implements the javax.
xml.xpath.XPathExpression interface. This method throws javax.xml.xpath.
XPathExpressionException (a subclass of javax.xml.xpath.XPathException) when the
expression cannot be compiled.

152

CHAPTER 5 SELECTING NODES WITH XPATH

XPath also declares several overloaded evaluate() methods for immediately
evaluating an expression and returning the result. Because it can take time to evaluate
an expression, you might choose to compile a complex expression first (to boost
performance) when you plan to evaluate this expression many times.

After compiling the expression, main() calls XPathExpression’s Object
evaluate(Object item, QName returnType) method to evaluate the expression. The
first argument is the context node for the expression, which happens to be a Document
instance in the example. The second argument specifies the kind of object returned by
evaluate() and is set to javax.xml.xpath.XPathConstants.NODESET, a qualified name
for the XPath 1.0 nodeset type, which is implemented via DOM’s NodeList interface.

Note The XPath APl maps XPath’s Boolean, number, string, and nodeset types to
Java’s java.lang.Boolean, java.lang.Double, java.lang.String, and
NodeList types, respectively. When calling an evaluate() method, you specify
XPath types via XPathConstants constants (BOOLEAN, NUMBER, STRING, and
NODESET), and the method takes care of returning an object of the appropriate
type. XPathConstants also declares a NODE constant, which doesn’t map to a
Java type. Instead, it’s used to tell evaluate() that you only want the resulting
nodeset to contain a single node.

After casting Object to NodeList, main() uses this interface’s getLength() and
item() methods to traverse the nodelist. For each item in this list, getNodeValue() is
called to return the node’s value, which is subsequently output.

Compile Listing 5-3 as follows:

javac XPathSearch.java

Run the resulting application as follows:
java XPathSearch

You should observe the following output:

John Doe
Bob Jones

153

CHAPTER 5 SELECTING NODES WITH XPATH

Advanced XPath

The XPath API provides three advanced features to overcome limitations with the XPath
1.0 language. These features are namespace contexts, extension functions and function
resolvers, and variables and variable resolvers.

Namespace Contexts

When an XML document’s elements belong to a namespace (including the default
namespace), any XPath expression that queries the document must account for this
namespace. For nondefault namespaces, the expression doesn’t need to use the same
namespace prefix; it only needs to use the same URI. However, when a document
specifies the default namespace, the expression must use a prefix even though the
document doesn’t use a prefix.

To appreciate this situation, suppose Listing 5-1's <contacts> tag was declared as
follows to introduce a default namespace: <contacts xmlns="http://www.javajeff.ca/">.
Furthermore, suppose that Listing 5-3 included dbf. setNamespaceAware(true);
after the line that instantiates DocumentBuilderFactory. If you were to run the revised
XPathSearch application against the revised contacts.xml file, you wouldn’t see any
output.

You can correct this problem by implementing javax.xml.namespace.
NamespaceContext to map an arbitrary prefix to the namespace URI and then registering
this namespace context with the XPath instance. Listing 5-4 presents a minimal
implementation of the NamespaceContext interface.

Listing 5-4. Minimally Implementing NamespaceContext
import java.util.Iterator;

import javax.xml.XMLConstants;

import javax.xml.namespace.NamespaceContext;

public class NSContext implements NamespaceContext

{

@0verride
public String getNamespaceURI(String prefix)

{

154

http://www.javajeff.ca/

CHAPTER 5 SELECTING NODES WITH XPATH

if (prefix == null)
throw new
I1legalArgumentException("prefix is null");
else
if (prefix.equals("tt"))
return "http://www.javajeff.ca/";

else
return null;

}
@verride
public String getPrefix(String uri)
{

return null;
}
@Override
public Iterator<String> getPrefixes(String uri)
{

return null;
}

The getNamespaceURI() method is passed a prefix argument that must be mapped
to a URL When this argument is null, a java.lang.IllegalArgumentException object
must be thrown (according to the Java documentation). When the argument is the
desired prefix value, the namespace URI is returned.

After instantiating the XPath class, you would instantiate NSContext and register
this object with the XPath object by calling XPath’s void setNamespaceContext
(NamespaceContext nsContext) method. For example, you would specify xp.
setNamespaceContext(new NSContext()); after XPath xp = xpf.newXPath(); to
register the NSContext object with xp.

All that’s left to accomplish is to apply the prefix to the XPath expression, which now
becomes //tt:contact[tt:city="Chicago']/tt:name/text() because the contact,
city, and name elements are now part of the default namespace, whose URI is mapped to
arbitrary prefix tt in the NSContext instance’s getNamespaceURI() method.

Compile and run the revised XPathSearch application and you'll see John Doe
followed by Bob Jones on separate lines.

155

CHAPTER 5 SELECTING NODES WITH XPATH

Extension Functions and Function Resolvers

The XPath API lets you define functions (via Java methods) that extend XPath’s
predefined function repertoire by offering new features not already provided. These
Java methods cannot have side effects because XPath functions can be evaluated
multiple times and in any order. Furthermore, they cannot override predefined
functions; a Java method with the same name as a predefined function is never
executed.

Suppose you modify Listing 5-1’s XML document to include a birth element that
records a contact’s date of birth information in YYYY-MM-DD format. Listing 5-5 shows
the resulting XML file.

Listing 5-5. XML-Based Contacts Database with Birth Information

<?xml version="1.0"?>
<contacts xmlns="http://www.javajeff.ca/">
<contact>
<name>John Doe</name>
<birth»1953-01-02</birth>
<city>Chicago</city>
<city>Denver</city>
</contact>
<contact>
<name>Jane Doe</name>
<birth»>1965-07-12</birth>
<city>New York</city>
</contact>
<contact>
<name>Sandra Smith</name>
<birth»1976-11-22</birth>
<city>Denver</city>
<city>Miami</city>
</contact>

156

CHAPTER 5 SELECTING NODES WITH XPATH

<contact>
<name>Bob Jones</name>
<birth>1958-03-14</birth>
<city>Chicago</city>
</contact>
</contacts>

Now suppose that you want to select contacts based on birth information. For
example, you only want to select contacts whose date of birth is greater than 1960-01-
01. Because XPath doesn’t provide this function for you, you decide to declare a date()
extension function. Your first step is to declare a Date class that implements the javax.
xml.xpath.XPathFunction interface—see Listing 5-6.

Listing 5-6. An Extension Function for Returning a Date as a Milliseconds Value

import java.text.ParsePosition;
import java.text.SimpleDateFormat;

import java.util.list;
import javax.xml.xpath.XPathFunction;
import javax.xml.xpath.XPathFunctionException;

import org.w3c.dom.Node;
import org.w3c.dom.Nodelist;

public class Date implements XPathFunction

{

private final static ParsePosition POS = new ParsePosition(0);
private SimpleDateFormat sdf = new SimpleDateFormat("yyyy-mm-dd");

@verride
public Object evaluate(List args)
throws XPathFunctionException

157

CHAPTER 5 SELECTING NODES WITH XPATH

{

if (args.size() != 1)
throw new XPathFunctionException("Invalid " + "number of " +
"arguments");
String value;
Object o = args.get(0);
if (o instanceof Nodelist)
{
NodelList list = (Nodelist) o;
value = list.item(0).getTextContent();
}
else
if (o instanceof String)
value = (String) o;
else
throw new XPathFunctionException("Cannot " + "convert " +
"argument " + "type");
POS.setIndex(0);
return sdf.parse(value, POS).getTime();

XPathFunction declares a single Object evaluate(List args) method that XPath

calls when it needs to execute the extension function. evaluate() is passed a java.

util.List of objects that describe the arguments that were passed to the extension

function by the XPath evaluator. Furthermore, this method returns a value of a type

appropriate to the extension function (date()’s long integer return type is compatible
with XPath’s number type).
The date() extension function is intended to be called with a single argument,

which is either of type nodeset or of type string. This extension function throws javax.

xml.xpath.XPathFunctionException when the number of arguments (as indicated by

the list’s size) isn’t equal to 1.

158

CHAPTER 5 SELECTING NODES WITH XPATH

When the argument is of type NodeList (a nodeset), the textual content of the first
node in the nodeset is obtained; this content is assumed to be a date value in YYYY-MM-
DD format (for brevity, I'm overlooking error checking). When the argument is of type
String, it's assumed to be a date value in this format. Any other type of argument results
in a thrown XPathFunctionException object.

Date comparison is simplified by converting the date to a milliseconds value.

This task is accomplished with the help of the java.text.SimpleDateFormat and
java.text.ParsePosition classes. After resetting the ParsePosition object’s index
(via setIndex(0)), SimpleDateFormat’s Date parse(String text, ParsePosition
pos) method is called to parse the string according to the pattern established when
SimpleDateFormat was instantiated, and starting from the parse position identified by
the ParsePosition index. This index is reset before the parse() method call because
parse() updates this object’s index.

The parse() method returns a java.util.Date object whose long getTime()
method is called to return the number of milliseconds represented by the parsed date.

After implementing the extension function, you need to create a function
resolver, which is an object whose class implements the javax.xml.xpath.
XPathFunctionResolver interface and which tells the XPath evaluator about the
extension function (or functions). Listing 5-7 presents the DateResolver class.

Listing 5-7. A Function Resolver for the date() Extension Function
import javax.xml.namespace.QName;

import javax.xml.xpath.XPathFunction;
import javax.xml.xpath.XPathFunctionResolver;

public class DateResolver implements XPathFunctionResolver

{

private static final QName name =
new QName("http://www.javajeff.ca/", "date", "tt");

159

CHAPTER 5 SELECTING NODES WITH XPATH

@verride
public XPathFunction resolveFunction(QName name, int arity)
{
if (name.equals(this.name) && arity == 1)
return new Date();
return null;

XPathFunctionResolver declares a single XPathFunction resolveFunction(QName
functionName, int arity) method that XPath calls to identify the name of the
extension function and obtain an instance of a Java object whose evaluate() method
implements the function.

The functionName parameter identifies the function’s qualified name because all
extension functions must live in a namespace and must be referenced via a prefix (which
doesn’t have to match the prefix in the document). As a result, you must also bind a
namespace to the prefix via a namespace context (as demonstrated previously). The
arity parameter identifies the number of arguments that the extension function accepts
and is useful when overloading extension functions. If the functionName and arity
values are acceptable, the extension function’s Java class is instantiated and returned;
otherwise, null is returned.

Finally, the function resolver class is instantiated and registered with the XPath
object by calling XPath’s void setXPathFunctionResolver(XPathFunctionResolver
resolver) method.

The following excerpt from Version 3 of this chapter’s XPathSearch application (in
this book’s code archive) demonstrates all of these tasks in order to use date() in XPath
expression //tt:contact[tt:date(tt:birth) > tt:date('1960-01-01")]/tt:name/
text (), which returns only those contacts whose date of birth is greater than 1960-01-01
(Jane Doe followed by Sandra Smith):

DocumentBuilderFactory dbf = DocumentBuilderFactory.newInstance();
dbf.setNamespaceAware(true);

DocumentBuilder db = dbf.newDocumentBuilder();

Document doc = db.parse("contacts.xml");

XPathFactory xpf = XPathFactory.newInstance();

XPath xp = xpf.newXPath();

160

CHAPTER 5 SELECTING NODES WITH XPATH

xp.setNamespaceContext(new NSContext());

xp.setXPathFunctionResolver(new DateResolver());

XPathExpression xpe;

String expr;

expr = "//tt:contact[tt:date(tt:birth) > " +
"tt:date('1960-01-01")]/tt:name/text()";

xpe = xp.compile(expr);

Object result = xpe.evaluate(doc, XPathConstants.NODESET);

NodeList nl = (NodelList) result;

for (int i = 0; i < nl.getlLength(); i++)

out.println(nl.item(i).getNodeValue());

Compile and run the revised XPathSearch application and you'll see Jane Doe
followed by Sandra Smith on separate lines.

Variables and Variable Resolvers

All of the previously specified XPath expressions have been based on literal text. XPath
also lets you specify variables to parameterize these expressions in a similar manner to
using variables with SQL prepared statements.

A variable appears in an expression by prefixing its name (which may or may not
have a namespace prefix) with a $. For example, /a/b[@c = $d]/text() is an XPath
expression that selects all a elements of the root node, and all of a’s b elements that have
c attributes containing the value identified by variable $d, and returns the text of these b
elements. This expression corresponds to Listing 5-8’s XML document.

Listing 5-8. A Simple XML Document for Demonstrating an XPath Variable

<?xml version="1.0"?>

<a>
<b c="x">b1
b2
<b c="y">b3
b4
<b c="x">b5

161

CHAPTER 5 SELECTING NODES WITH XPATH

To specify variables whose values are obtained during expression evaluation, you
must register a variable resolver with your XPath object. A variable resolver is an instance
of a class that implements the javax.xml.xpath.XPathVariableResolver interface in
terms of its Object resolveVariable(QName variableName) method and which tells
the evaluator about the variable (or variables).

The variableName parameter contains the qualified name of a variable’s name.
(Remember that a variable name may be prefixed with a namespace prefix.) This
method verifies that the qualified name appropriately names the variable and then
returns its value.

After creating the variable resolver, you register it with the XPath object by calling
XPath’s void setXPathVariableResolver(XPathVariableResolver resolver) method.

The following excerpt from Version 4 of this chapter’s XPathSearch application (in
this book’s code archive) demonstrates all of these tasks in order to specify $d in XPath
expression /a/b[@c=$d]/text(), which returns b1 followed by b5. It assumes that
Listing 5-8 is stored in a file named example.xml:

DocumentBuilderFactory dbf =

DocumentBuilderFactory.newInstance();
DocumentBuilder db = dbf.newDocumentBuilder();
Document doc = db.parse("example.xml");
XPathFactory xpf = XPathFactory.newInstance();
XPath xp = xpf.newXPath();
XPathVariableResolver xpvr =

new XPathVariableResolver()

{
@0verride
public Object resolveVariable(QName varname)
{
if (varname.getlocalPart().equals("d"))
return "x";
else
return null;
}
};

162

CHAPTER 5 SELECTING NODES WITH XPATH

xp.setXPathVariableResolver(xpvr);

XPathExpression xpe;

xpe = xp.compile("/a/b[@c = $d]/text()");

Object result = xpe.evaluate(doc, XPathConstants.NODESET);

NodeList nl = (NodelList) result;

for (int i = 0; i < nl.getlength(); i++)
out.println(nl.item(i).getNodeValue());

Compile and run the revised XPathSearch application and you'll see b1 followed by
b5 on separate lines.

Caution When you qualify a variable name with a namespace prefix (as in
$ns:d), you must also register a namespace context to resolve the prefix.

EXERCISES

The following exercises are designed to test your understanding of Chapter 5’s content:
1. Define XPath.

Where is XPath commonly used?

Identify the seven kinds of nodes that XPath recognizes.

True or false: XPath recognizes CDATA sections.

Describe what XPath provides for selecting nodes.

o o ~ w N

True or false: In a location path expression, you must prefix an attribute name
with the @ symbol.

7. ldentify the functions that XPath provides for selecting comment, text, and
processing-instruction nodes.

8. What does XPath provide for selecting unknown nodes?
9. How do you perform multiple selections?

10. What is a predicate?

163

CHAPTER 5 SELECTING NODES WITH XPATH

11. ldentify the functions that XPath provides for working with nodesets.

12. ldentify the three advanced features that the XPath API provides to overcome
limitations with the XPath 1.0 language.

13. True or false: The XPath API maps XPath’s number type to java.lang.Float.

14. Modify Listing 5-1’s contacts document by changing <name>John Doe</
name> to <Name>John Doe</Name>. Because you no longer see John Doe
in the output when you run Listing 5-3's XPathSearch application (you only
see Bob Jones), modify this application’s location path expression so that you
see John Doe followed by Bob Jones.

Summary

XPath is a nonXML declarative query language for selecting an XML document’s infoset
items as one or more nodes. It simplifies access to a DOM tree’s nodes and is also useful
with XSLT where it’s typically employed to select those input document elements (via
XPath expressions) that are to be copied to an output document.

XPath regards an XML document as a tree of nodes that starts from a root node.

This language recognizes seven kinds of nodes: element, attribute, text, namespace,
processing instruction, comment, and document. It doesn’t recognize CDATA sections,
entity references, or document type declarations.

XPath provides location path expressions for selecting nodes. A location path
expression locates nodes via a sequence of steps starting from the context node (the root
node or some other document node that’s the current node). The returned set of nodes,
which is known as a nodeset, might be empty, or it might contain one or more nodes.

Location path expressions (which return nodesets) are one kind of XPath expression.
XPath also supports general expressions that evaluate to Boolean (such as predicates),
number, or string type; for example, position() = 2,6.8, and "Hello". General
expressions are often used in XSLT.

The XPath API provides advanced features to overcome limitations with the
XPath 1.0 language: namespace contexts (which map arbitrary namespace prefixes to
namespace URIs), extension functions and function resolvers (for defining functions that
extend XPath'’s predefined function repertoire), and variables and variable resolvers (for
parameterizing XPath expressions).

Chapter 6 introduces you to XSLT for transforming XML documents.

164

CHAPTER 6

Transforming XML
Documents with XSLT

Along with SAX, DOM, StAX, and XPath, Java includes the XSLT AP], for transforming
XML documents. Chapter 6 introduces you to XSLT.

What Is XSLT?

Extensible Stylesheet Language (XSL) is a family of languages for transforming and
formatting XML documents. XSL Transformation (XSLT) is the XSL language for
transforming XML documents to other formats, such as HTML (for presenting an XML
document’s content via a web browser).

XSLT accomplishes its work by using XSLT processors and stylesheets. An XSLT
processor is a software component that applies an XSLT stylesheet (an XML-based
template consisting of content and transformation instructions) to an input document
(without modifying the document) and copies the transformed result to a result tree,
which can be output to a file or output stream or even piped into another XSLT processor
for additional transformations. Figure 6-1 illustrates the transformation process.

XSL T Stylesheet

Result Tree (Output)

XSL T Processor ———> [HTML, XHTML, ..]

"~
XML Document /

(Input)

Figure 6-1. An XSLT processor transforms an XML input document into a result tree

165
© Jeff Friesen 2019

J. Friesen, Java XML and JSON, https://doi.org/10.1007/978-1-4842-4330-5_6

CHAPTER6 TRANSFORMING XML DOCUMENTS WITH XSLT

The beauty of XSLT is that you don’t need to develop custom software applications to
perform the transformations. Instead, you simply create an XSLT stylesheet and input it
along with the XML document needing to be transformed to an XSLT processor.

Exploring the XSLT API

Java implements XSLT through the types in the javax.xml.transform, javax.xml.
transform.dom, javax.xml.transform.sax, javax.xml.transform.stax, and javax.
xml.transform.stream packages. The javax.xml.transform package defines

the generic APIs for processing transformation instructions and for performing a
transformation from a source (where the XSLT processor’s input originates) to a result
(where the processor’s output is sent). The remaining packages define the APIs for
obtaining different kinds of sources and results.

The javax.xml.transform.TransformerFactory class is the starting point for working
with XSLT. You instantiate TransformerFactory by calling one of its newInstance()
methods. For example, the following code fragment uses TransformerFactory’s
TransformerFactory newInstance() class method to create the factory:

TransformerFactory tf = TransformerFactory.newInstance();

Behind the scenes, newInstance() follows an ordered lookup procedure to
identify the TransformerFactory implementation class to load. This procedure first
examines the javax.xml.transform.TransformerFactory system property and lastly
returns the system-default implementation (returned from TransformerFactory
newDefaultInstance()). If there is a service configuration error, or if the
implementation is not available or cannot be instantiated, this method throws an
instance of the javax.xml.stream.TransformerFactoryConfigurationError class.

After obtaining a TransformerFactory object, you can call various configuration
methods to configure the factory. For example, you could call TransformerFactory’s
void setFeature(String name, boolean value) method to enable a feature (such as
secure processing, to transform XML documents securely).

Following the factory’s configuration, call one of its newTransformer () methods
to create and return instances of the javax.xml.transform.Transformer class. The
following code fragment calls Transformer newTransformer() to accomplish this task:

Transformer t = tf.newTransformer();

166

CHAPTER6 TRANSFORMING XML DOCUMENTS WITH XSLT

The noargument newTransformer () method copies source input to the destination
without making any changes. This kind of transformation is known as the identity
transformation.

To change input, specify a stylesheet. Accomplish this task by calling the factory’s
Transformer newTransformer(Source source) method, where the javax.xml.
transform. Source interface describes a source for the stylesheet. The following code
fragment accomplishes this task:

FileReader fr = new FileReader("recipe.xsl");
Transformer t = tf.newTransformer(new StreamSource(fr));

This code fragment creates a transformer that obtains a stylesheet from a file
named recipe.xsl via a javax.xml.transform.stream.StreamSource object
connected to a file reader. It’s customary to use the .xsl or .xslt extension to identify
XSLT stylesheet files.

The newTransformer () methods throw javax.xml.transform.
TransformerConfigurationException when they cannot return a Transformer instance
that corresponds to the factory configuration.

After obtaining a Transformer instance, you can call its void
setOutputProperty(String name, String value) method to influence a
transformation. The javax.xml.transform.OutputKeys class declares constants for
frequently used keys. For example, OutputKeys.METHOD is the key for specifying the
method for outputting the result tree (as XML, HTML, plain text, or something else).

Tip To set multiple properties in a single method call, create a java.util.
Properties object and pass this object as an argument to Transformer’s
void setOutputProperties(Properties prop) method. Properties
set by setOutputProperty() and setOutputProperties() override the
stylesheet’s xs1:output instruction settings.

Before you can perform a transformation, you need to obtain instances of classes
that implement the Source and javax.xml.transform.Result interfaces. You then
pass these instances to Transformer’s void transform(Source xmlSource, Result
outputTarget) method, which throws an instance of the javax.xml.transform.
TransformerException class when a problem arises during the transformation.

167

CHAPTER6 TRANSFORMING XML DOCUMENTS WITH XSLT

The following code fragment shows you how to obtain a source and a result and
perform the transformation:

Source source = new DOMSource(doc);
Result result = new StreamResult(System.out);
t.transform(source, result);

The first line instantiates the javax.xml.transform.dom.DOMSource class, which
acts as a holder for a DOM tree rooted in the org.w3c.dom.Document object specified by
doc. The second line instantiates the javax.xml.transform.stream.StreamResult class,
which acts as a holder for the standard output stream, to which the transformed data
items are sent. The third line reads data from the Source object and outputs transformed
data to the Result object.

TRANSFORMER FACTORY FEATURE DETECTION

Although Java’s default transformers support the various Source and Result
implementation classes that are located in the javax.xml.transform.dom, javax.xml.
transform.sax, javax.xml.transform.stax, and javax.xml.transform.stream
packages, a nondefault transformer (perhaps specified via the javax.xml.transform.
TransformerFactory system property) might be more limited. For this reason, each
Source and Result implementation class declares a FEATURE string constant that can be
passed to TransformerFactory’s boolean getFeature(String name) method. This
method returns true when the Source or Result implementation class is supported. For
example, tf.getFeature(StreamSource.FEATURE) returns true when stream sources
are supported.

The javax.xml.transform.sax.SAXTransformerFactory class provides additional
SAX-specific factory methods that can be used only when the TransformerFactory
object is also an instance of this class. To help you make the determination,
SAXTransformerFactory also declares a FEATURE string constant that you can

pass to getFeature(). For example, tf.getFeature(SAXTransformerFactory.
FEATURE) returns true when the transformer factory referenced from tf is an instance of
SAXTransformerFactory.

168

CHAPTER6 TRANSFORMING XML DOCUMENTS WITH XSLT

Most of Java’'s XML API interface objects and the factories that return them are not
thread-safe. This situation also applies to transformers. Although you can reuse the same
transformer multiple times on the same thread, you cannot access the transformer from
multiple threads.

This problem can be solved for transformers by using instances of classes that
implement the javax.xml.transform.Templates interface. The Java documentation
for this interface has this to say: Templates must be threadsafe for a given instance over
multiple threads running concurrently, and may be used multiple times in a given session.
As well as promoting thread safety, Templates instances can improve performance
because they represent compiled XSLT stylesheets.

The following code fragment shows how you might perform a transformation
without a Templates object:

TransformerFactory tf = TransformerFactory.newInstance();
FileReader fr = new FileReader("recipe.xsl");

StreamSource ssStyleSheet = new StreamSource(fr);

Transformer t = tf.newTransformer(ssStyleSheet);
t.transform(new DOMSource(doc), new StreamResult(System.out));

You cannot access t's transformer from multiple threads. In contrast, the following
code fragment shows you how to construct a transformer from a Templates object so
that it can be accessed from multiple threads:

TransformerFactory tf = TransformerFactory.newInstance();
FileReader fr = new FileReader("recipe.xsl");

StreamSource ssStyleSheet = new StreamSource(fr);

Templates te = tf.newTemplates(ssStylesheet);

Transformer t = te.newTransformer();

t.transform(new DOMSource(doc), new StreamResult(System.out));

The differences are the call to Transformerfactory’s Templates
newTemplates(Source source) method to create and return objects whose classes
implement the Templates interface, and the call to this interface’s Transformer
newTransformer () method to obtain the Transformer object.

169

CHAPTER6 TRANSFORMING XML DOCUMENTS WITH XSLT

Demonstrating the XSLT API

Listing 3-2 presents a DOMDemo application that creates a DOM document tree based

on Listing 1-2’s movie XML document. Unfortunately, you cannot use the DOM API

to assign I50-8859-1 to the XML declaration’s encoding attribute. Also, you cannot

use DOM (apart from Load and Save) to output this tree to a file or other destination.

However, you can overcome these problems with XSLT, as demonstrated in Listing 6-1.

Listing 6-1. Assigning IS0-8859-1 to the XML Declaration’s Encoding Attribute
via XSLT

import
import
import
import

import
import
import
import
import
import
import
import

import
import

import
import
import

import

170

javax.xml.
javax.xml.
javax.xml.
javax.xml.

javax.xml.
javax.xml.
javax.xml.
javax.xml.
javax.xml.
javax.xml.
javax.xml.

javax.xml.
javax.xml.

javax.xml.

parsers.DocumentBuilder;
parsers.DocumentBuilderFactory;

parsers.FactoryConfigurationError;

parsers.ParserConfigurationException;

transform

transform.
transform.
transform.

transform

transform.
transform.

transform

transform.

.OutputKeys;

Result;
Source;
Transformer;

.TransformerConfigurationException;
transform.

TransformerException;
TransformerFactory;
TransformerFactoryConfigurationError;

.dom.DOMSource;

stream.StreamResult;

org.w3c.dom.Document;

org.w3c.dom.Element;

org.w3c.dom.Text;

static java.lang.System.*;

CHAPTER6 TRANSFORMING XML DOCUMENTS WITH XSLT

public class XSLTDemo
{
final static String KEY_INDENT =
"{http://xml.apache.org/xslt}indent-amount";

public static void main(String[] args)
{
try
{
DocumentBuilderFactory dbf =
DocumentBuilderFactory.newInstance();
DocumentBuilder db = dbf.newDocumentBuilder();
Document doc = db.newDocument();
doc.setXmlStandalone(true);
// Create the root element.
Element root = doc.createElement("movie");
doc.appendChild(root);
// Create name child element and add it to the
// root.
Element name = doc.createElement("name");
root.appendChild(name);
// Add a text element to the name element.
Text text = doc.createTextNode("Le Fabuleux " +

"Destin d'Amélie " + "Poulain");
name.appendChild(text);

// Create language child element and add it to the

// root.

Element language = doc.createElement("language");
root.appendChild(language);

// Add a text element to the language element.

text = doc.createTextNode("francais");
language.appendChild(text);

// Use a transformer to output this tree with

// 1S0-8859-1 encoding to the standard output

171

CHAPTER6 TRANSFORMING XML DOCUMENTS WITH XSLT

172

// stream.

TransformerFactory tf = TransformerFactory.newInstance();
Transformer t = tf.newTransformer();
t.setOutputProperty(OutputKeys.METHOD, "xml");
t.setOutputProperty(OutputKeys.ENCODING, "ISO-8859-1");
t.setOutputProperty(OutputKeys.INDENT, "yes");
t.setOutputProperty(KEY INDENT, "3");

Source source = new DOMSource(doc);

Result result = new StreamResult(out);
t.transform(source, result);

}
catch (FactoryConfigurationError fce)
{
err.printf("FCE: %s%n", fce.toString());
}
catch (ParserConfigurationException pce)
{
err.printf("PCE: %s%n", pce.toString());
}

catch (TransformerConfigurationException tce)

{
err.printf("TCE: %s%n", tce.toString());

}
catch (TransformerException te)
{
err.printf("TE: %s%n", te.toString());
}

catch (TransformerFactoryConfigurationError tfce)

{
err.printf("TFCE: %s%n", tfce.toString());

CHAPTER6 TRANSFORMING XML DOCUMENTS WITH XSLT

Listing 6-1 first creates a DOM tree. It then creates a transformer factory and obtains
a transformer from this factory. Four properties are then set on the transformer, and
a stream source and result are obtained. Finally, the transform() method is called to
transform source content to the result.

The four properties set on the transformer influence the transformation.
OutputKeys.METHOD specifies that the result tree will be written out as XML, OutputKeys.
ENCODING specifies that IS0-8859-1 will be the value of the XML declaration’s encoding
attribute, and OutputKeys.INDENT specifies that the transformer can output additional
whitespace.

The additional whitespace is used to output the XML across multiple lines instead of
on a single line. Because it would be nice to indicate the number of spaces for indenting
lines of XML, and because this information cannot be specified via an OutputKeys
property, the nonstandard "{http://xml.apache.org/xslt}indent-amount" property
(property keys begin with brace-delimited URIs) is used to specify an appropriate value
(such as 3 spaces). It’s okay to specify this property in this application because Java’s
default XSLT implementation is based on Apache’s XSLT implementation.

Compile Listing 6-1 as follows:

javac XSLTDemo.java
Run the resulting application as follows:
java XSLTDemo

You should observe the following output:

<?xml version="1.0" encoding="IS0-8859-1"?><movie>
<name>Le Fabuleux Destin d'Amélie Poulain</name>
<language>francais</language>

</movie>

Although this example shows you how to output a DOM tree and also how to specify
an encoding value for the XML declaration of the resulting XML document, the example
doesn’t really demonstrate the power of XSLT because (apart from setting the encoding
attribute value) it performs an identity transformation. A more interesting example
would take advantage of a stylesheet.

Consider a scenario where you want to convert Listing 1-1’s recipe document to an
HTML document for presentation via a web browser. Listing 6-2 presents a stylesheet
that a transformer can use to perform the conversion.

173

http://xml.apache.org/xslt}indent-amount

CHAPTER6 TRANSFORMING XML DOCUMENTS WITH XSLT

Listing 6-2. An XSLT Stylesheet for Converting a Recipe Document to an HTML
Document

<?xml version="1.0"?>
<xsl:stylesheet version="1.0"
xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform">
<xsl:template match="/recipe">
<html>
<head>
<title>Recipes</title>
</head>

<body>
<h2>
<xsl:value-of select="normalize-space(title)"/>
</h2>

<h3>Ingredients</h3>

<xsl:for-each select="ingredients/ingredient">

<xsl:value-of select="normalize-space(text())"/>
<xsl:if test="@qty"> (<xsl:value-of
select="@qty"/>)</xsl:if>
</1i>
</xsl:for-each>

<h3>Instructions</h3>

<xsl:value-of select="normalize-space(instructions)"/>
</body>
</html>
</xsl:template>
</xsl:stylesheet>

174

CHAPTER6 TRANSFORMING XML DOCUMENTS WITH XSLT

Listing 6-2 reveals that a stylesheet is an XML document. Its root element is
stylesheet, which identifies the standard namespace for stylesheets. It's conventional to
specify xs1 as the namespace prefix for referring to XSLT instruction elements, although
any prefix could be specified.

A stylesheet is based on template elements that control how an element and its
content are converted. A template focuses on a single element that’s identified via
the match attribute. This attribute’s value is an XPath location path expression, which
matches all recipe child nodes of the root element node. Regarding Listing 1-1, only the
single recipe root element will be matched and selected.

A template element can contain literal text and stylesheet instructions. For example,
the value-of instruction in <xsl:value-of select="normalize-space(title)"/>
specifies that the value of the title element (which is a child of the recipe context
node) is to be retrieved and copied to the output. Because this text is surrounded by
space and newline characters, XPath’s normalize-string() function is called to remove
this whitespace before the title is copied.

XSLT is a powerful declarative language that includes control flow instructions
such as for-each and if. In the context of <xsl:for-each select="ingredients/
ingredient">, for-each causes all of the ingredient child nodes of the ingredients
node to be selected and processed one at a time. For each node, <xsl:value-
of select="normalize-space(text())"/> is executed to copy the content of the
ingredient node, normalized to remove whitespace. Also, the if instruction in <xs1:if
test="@qty"> (<xsl:value-of select="@qty"/>) determines whether or not the
ingredient node has a qty attribute, and (if so) copies a space character followed by this
attribute’s value (surrounded by parentheses) to the output.

Listing 6-3 presents the source code to an XSLTDemo application that shows you how
to write the Java code to process Listing 1-1 via Listing 6-2’s stylesheet.

Listing 6-3. Transforming Recipe XML via a Stylesheet

import java.io.FileReader;
import java.io.IOException;

import javax.xml.parsers.DocumentBuilder;

import javax.xml.parsers.DocumentBuilderFactory;
import javax.xml.parsers.FactoryConfigurationError;
import javax.xml.parsers.ParserConfigurationException;

175

CHAPTER6 TRANSFORMING XML DOCUMENTS WITH XSLT

import
import
import
import
import

import
import
import

import

import
import

import
import
import

public
{

javax.xml.transform.OutputKeys;
javax.xml.transform.Result;
javax.xml.transform.Source;
javax.xml.transform.Transformer;
javax.xml.transform.
TransformerConfigurationException;
javax.xml.transform.TransformerException;
javax.xml.transform.TransformerFactory;
javax.xml.transform.
TransformerFactoryConfigurationError;

javax.xml.transform.dom.DOMSource;

javax.xml.transform.stream.StreamResult;
javax.xml.transform.stream.StreamSource;

org.w3c.dom.Document;
org.xml.sax.SAXException;
static java.lang.System.*;

class XSLTDemo

public static void main(String[] args)

{

176

try

DocumentBuilderFactory dbf =
DocumentBuilderFactory.newInstance();
DocumentBuilder db = dbf.newDocumentBuilder();
Document doc = db.parse("recipe.xml");
TransformerFactory tf =
TransformerFactory.newInstance();
FileReader fr = new FileReader("recipe.xsl");
StreamSource ssStyleSheet = new StreamSource(fr);
Transformer t = tf.newTransformer(ssStyleSheet);
t.setOutputProperty(OutputKeys.METHOD, "html");

CHAPTER6 TRANSFORMING XML DOCUMENTS WITH XSLT

t.setOutputProperty(OutputKeys.INDENT, "yes");
Source source = new DOMSource(doc);

Result result = new StreamResult(out);
t.transform(source, result);

}
catch (IOException ioe)
{
err.printf("IOE: %s%n", ioe.toString());
}
catch (FactoryConfigurationError fce)
{
err.printf("FCE: %s%n", fce.toString());
}
catch (ParserConfigurationException pce)
{
err.printf("PCE: %s%n", pce.toString());
}
catch (SAXException saxe)
{
err.printf("SAXE: %s%n", saxe.toString());
}
catch (TransformerConfigurationException tce)
{
err.printf("TCE: %s%n", tce.toString());
}
catch (TransformerException te)
{
err.printf("TE: %skn", te.toString());
}
catch (TransformerFactoryConfigurationError tfce)
{
err.printf("TFCE: %s%n", tfce.toString());
}

177

CHAPTER6 TRANSFORMING XML DOCUMENTS WITH XSLT

Listing 6-3 is similar in structure to Listing 6-1. It reveals that the output method is
set to html, and it also reveals that the resulting HTML should be indented. When run,
this application generates the following output:

<html>
<head>
<META http-equiv="Content-Type" content="text/html; charset=UTF-8">
<title>Recipes</title>
</head>
<body>
<h2>Grilled Cheese Sandwich</h2>
<h3>Ingredients</h3>

bread slice (2)</1i>
cheese slice</l1i>
margarine pat (2)</1i>

<h3>Instructions</h3>
Place frying pan on element and select medium heat. For each bread
slice, smear one pat of margarine on one side of bread slice. Place
cheese slice between bread slices with margarine-smeared sides away
from the cheese. Place sandwich in frying pan with one margarine-
smeared side in contact with pan. Fry for a couple of minutes and
flip. Fry other side for a minute and serve.
</body>
</html>

OutputKeys.INDENT and its "yes" value let you output the HTML across multiple
lines as opposed to outputting the HTML on a single line. However, the XSLT processor
performs no additional indentation and ignores attempts to specify the number of
spaces to indent via code such as t.setOutputProperty("{http://xml.apache.org/
xslt}indent-amount”, "3");.

Note An XSLT processor outputs a <META> tag when OutputKeys.METHOD is
setto "html".

178

http://xml.apache.org/xslt}indent-amount
http://xml.apache.org/xslt}indent-amount

CHAPTER6 TRANSFORMING XML DOCUMENTS WITH XSLT

Going Beyond XSLT 1.0 and XPath 1.0

Java 11’s XSLT implementation is based on the Apache Xalan Project (https://xalan.
apache.org), which supports XSLT 1.0 and XPath 1.0. However, more recent versions
of XSLT and XPath have been developed: 2.0, 3.0, and (for XPath) 3.1. The following list
identifies some of their new features:

e XSLT 2.0 introduces string manipulation using regular expressions,
as well as functions and operators for manipulating dates, times, and
durations.

e XPath 2.0 is built around the XQuery and XPath Data Model
(https://en.wikipedia.org/wiki/XQuery and XPath Data_ Model),
which offers a much richer type system.

o XSLT 3.0 supports streaming transformations (www.w3.0rg/TR/
xs1t-30/), which is useful for processing documents that are too
large to fit in memory, or when transformations are chained in XML
Pipelines (https://en.wikipedia.org/wiki/XML_pipeline).

o XPath 3.0 supports functions as first-class values.

o XPath 3.1 adds new map and array data types, largely to underpin
support for JSON, which I introduce in the next chapter.

You cannot use Java 11’s XSLT and XPath APIs to explore these and other new
features until you replace the Xalan implementation. One alternative is SAXON
(http://saxon.sourceforge.net). This “XSLT and XQuery Processor” supports XSLT
2.0/3.0 and XPath 2.0/3.1 (and more).

Downloading and Testing SAXON-HE 9.9

SAXON is available in home, professional, enterprise, and JavaScript editions. The home
edition is an open-source product available under the Mozilla Public License version
2.0. SAXON 9.9 is its most recent version at the time of writing and is the version we will
download.

179

https://xalan.apache.org
https://xalan.apache.org
https://en.wikipedia.org/wiki/XQuery_and_XPath_Data_Model
http://www.w3.org/TR/xslt-30/
http://www.w3.org/TR/xslt-30/
https://en.wikipedia.org/wiki/XML_pipeline
http://saxon.sourceforge.net

CHAPTER6 TRANSFORMING XML DOCUMENTS WITH XSLT

Download Saxon-HE 9.9 by clicking the “Download for Java (5.4 Mbytes)” link on
SAXON'’s SourceForge home page (http://saxon.sourceforge.net). On subsequent
pages, click “Saxon-HE” followed by “9.9” followed by “SaxonHE9-9-0-1].zip.” Save
and unzip this file. I unzipped SAXON-HE 9.9 to my C: \unzipped\SaxonHE9-9-0-1]
directory, which I'll use as its home directory.

Saxonica (http://saxonica.com/welcome/welcome.xml) is the company behind
SAXON. Its “Getting started with Saxon on the Java platform” documentation page (Www.
saxonica.com/html/documentation/about/gettingstarted/gettingstartedjava.
html) shows how to test that the software is working. At the command line, I enter the
following command (spread across two lines for readability) to run a simple query:

java -cp c:\unzipped\SaxonHE9-9-0-1J\saxon9he.jar
net.sf.saxon.Query -t -qgs:"current-date()"

I observed the following output (the time and memory values will typically change
from run to run):

Saxon-HE 9.9.0.1J from Saxonica

Java version 11

Analyzing query from {current-date()}

Analysis time: 213.068628 milliseconds

<?xml version="1.0" encoding="UTF-8"?>2018-10-08-05:00Execution time:
54.719965ms

Memory used: 5837296

Playing with SAXON-HE 9.9

Let’s revisit the first XSLTDemo application presented in this chapter (Listing 6-1). We can
tell this application to use SAXON by inserting the following System. setProperty() call
at the beginning of the main() method:

System.setProperty("javax.xml.transform.TransformerFactory"”,
"net.sf.saxon.TransformerFactoryImpl");

180

http://saxon.sourceforge.net
http://saxonica.com/welcome/welcome.xml
http://www.saxonica.com/html/documentation/about/gettingstarted/gettingstartedjava.html
http://www.saxonica.com/html/documentation/about/gettingstarted/gettingstartedjava.html
http://www.saxonica.com/html/documentation/about/gettingstarted/gettingstartedjava.html

CHAPTER6 TRANSFORMING XML DOCUMENTS WITH XSLT

To prove that SAXON is being used, we can also insert the following line after the
Transformer t = tf.newTransformer(); line:

System.out.println(t);

Note These code fragments are excerpts from a third version of XSLTDemo that’s
located in the book’s code archive.

The source code would be compiled as previously shown. To run the application,
you would need to include the saxon9he. jar file in the CLASSPATH, or else you would
observe a TransformerFactoryConfigurationError:

java -cp c:\unzipped\SaxonHE9-9-0-1]\saxon9he.jar;. XSLTDemo
If all goes well, you should then see the following output:

net.sf.saxon.jaxp.IdentityTransformer@8bo6fde

<?xml version="1.0" encoding="IS0-8859-1"?>

<movie>
<name>Le Fabuleux Destin d'Amélie Poulain</name>
<language>francais</language>

</movie>

You can start to move beyond XSLT 1.0. For example, you might want to check out
Beginning XSLT 2.0 From Novice to Professional (www.apress.com/9781590593240), an
Apress book written by Jeni Tennison. This book will get you comfortable with XSLT 2.0.

Caution The SAXON Home Edition doesn’t include the following capabilities:
schema processing and schema-aware XSLT and XQuery; support for higher-order
functions; support for XPath 1.0 (and XSLT 1.0) backward compatibility mode,
numerous SAXON extensions; calling out to Java methods; XQuery Update support;
and various optimizations including join optimization, streamed processing, multi-
threaded execution, and byte code generation.

181

http://www.apress.com/9781590593240

CHAPTER6 TRANSFORMING XML DOCUMENTS WITH XSLT

EXERCISES

The following exercises are designed to test your understanding of Chapter 6’s content:
1. Define XSLT.
2. How does XSLT accomplish its work?

3. True or false: Call TransformerFactory’s void transform(Source
xmlSource, Result outputTarget) method to transform a source to a result.

4. Create a books.xs1 stylesheet file and a MakeHTML application with a
similar structure to the application that processes Listing 6-2’s recipe.xsl
stylesheet. MakeHTML uses books .xs1 to convert Exercise 1-21’s books . xml
content to HTML. When viewed in a web browser, the HTML should result in a
web page that’s similar to the page shown in Figure 6-2.

Advanced C++

ISBN: 0201548550
Publication Year: 1992

James O. Coplien

Beginning Groovy and Grails

ISBN: 9781430210450
Publication Year: 2008

Christopher M. Judd

Joseph Faisal Nusairat
James Shingler

Effective Java

ISBN: 0201310058
Publication Year: 2001

Joshua Bloch

Figure 6-2. Exercise 1-21’s books.xml content is presented via a web page

182

CHAPTER6 TRANSFORMING XML DOCUMENTS WITH XSLT

Summary

XSL is a family of languages for transforming and formatting XML documents. XSLT is
the XSL language for transforming XML documents to other formats, such as HTML (for
presenting an XML document’s content via a web browser).

XSLT accomplishes its work by using XSLT processors and stylesheets. An XSLT
processor applies an XSLT stylesheet to an input document (without modifying the
document) and copies the transformed result to a result tree, which can be output
to a file or output stream or even piped into another XSLT processor for additional
transformations.

Java implements XSLT through the types in the javax.xml.transform, javax.
xml.transform.dom, javax.xml.transform.sax, javax.xml.transform.stax, and
javax.xml.transform.stream packages. The javax.xml.transform package defines
the generic APIs for processing transformation instructions and for performing a
transformation from a source (where the XSLT processor’s input originates) to a result
(where the processor’s output is sent). The remaining packages define the APIs for
obtaining different kinds of sources and results.

Java 11’s XSLT implementation is based on the Apache Xalan Project, which supports
XSLT 1.0 and XPath 1.0. Because you cannot use Java 11’s XSLT and XPath APIs to
explore XSLT 2.0/3.0 and XPath 2.0/3.x, you must replace the Xalan implementation.
One alternative is SAXON. This “XSLT and XQuery Processor” supports XSLT 2.0/3.0 and
XPath 2.0/3.1 (and more).

Chapter 7 introduces you to JSON, a less-verbose alternative to XML.

183

PART I

Exploring JSON

CHAPTER 7

Introducing JSON

Many applications communicate by exchanging JSON objects instead of XML documents.
Chapter 7 introduces JSON, tours its syntax, demonstrates JSON in a JavaScript context,
and shows how to validate JSON objects in the context of JSON Schema.

What Is JSON?

JSON (JavaScript Object Notation) is a language-independent data format that expresses
JSON objects as human-readable lists of properties (name/value pairs). Although
derived from a nonstrict subset of JavaScript, code to parse JSON objects into equivalent
language-dependent objects is available in many programming languages.

Note JSON allows the Unicode U+2028 line separator and U+2029 paragraph
separator to appear unescaped in quoted strings. Because JavaScript doesn’t
support this capability, JSON isn’t a proper subset of JavaScript.

JSON is commonly used in asynchronous browser/server communication via AJAX
(https://en.wikipedia.org/wiki/Ajax_(programming)).JSON is also used with
NoSQL database management systems such as MongoDb and CouchDb; with apps from
social media websites such as Twitter, Facebook, LinkedIn, and Flickr; and even with the
popular Google Maps API.

Note Many developers prefer JSON to XML because they see JSON as being less
verbose and easier to read. Check out “JSON: The Fat-Free Alternative to XML”
(www. json.org/xml.html) for more information.

187
© Jeff Friesen 2019

J. Friesen, Java XML and JSON, https://doi.org/10.1007/978-1-4842-4330-5_7

https://en.wikipedia.org/wiki/Ajax_(programming)
http://www.json.org/xml.html

CHAPTER 7 INTRODUCING JSON

JSON Syntax Tour

The JSON data format presents a JSON object as a brace-delimited and comma-
separated list of properties (a comma doesn’t appear after the final property):

{
property1 ,
property2 ,

propertyN

For each property, the name is expressed as a string that’s typically quoted (and
by a pair of double quotes). The name string is followed by a colon character, which is
followed by a value of a specific type. Examples include "name": "JSON" and "age": 25.
JSON supports the following six types:

e Number: a signed decimal number that may contain a fractional
part and may use exponential (E) notation. JSON doesn’t permit
nonnumbers (such as NaN), nor does it make any distinction between
integer and floating-point. Furthermore, JSON doesn’t recognize the
octal and hexadecimal formats. (Although JavaScript uses a double
precision floating-point format for all numeric values, other languages
implementing JSON may encode numbers differently.)

o String: a sequence of zero or more Unicode characters. Strings are
delimited with double quotes and support a backslash escaping syntax.

e Boolean: either of the values true or false.

e Array: an ordered list of zero or more values, each of which may be
of any type. Arrays use square bracket notation with elements being
comma-separated.

e Object: an unordered collection of properties where the names (also
called keys) are strings. Because objects are intended to represent
associative arrays, it’s recommended, although not required, that
each key be unique within an object. Objects are delimited with
braces and use commas to separate each property. Within each
property the colon character separates the key from its value.

e Null: an empty value, using the keyword null.
188

CHAPTER 7 INTRODUCING JSON

Note JSON Schema (discussed later) recognizes a seventh type: integer. This
type doesn’t include a fraction or exponent and is a subset of number.

Whitespace is allowed and ignored around or between syntactic elements (values
and punctuation). Four specific characters are considered whitespace for this purpose:
space, horizontal tab, line feed, and carriage return. Also, JSON doesn’t support
comments.

Using this data format, you can specify a JSON object such as the following
anonymous object (excerpted from Wikipedia’s JSON page [https://en.wikipedia.
org/wiki/JSON]) for describing a person in terms of first name, last name, and other data
items:

{

"firstName": "John",
"lastName": "Smith",
"isAlive": true,

"age": 25,
"address":
{
"streetAddress": "21 2nd Street",
"city": "New York",
"state": "NY",
"postalCode": "10021-3100"
}J
"phoneNumbers":
[
{
"type": "home",
"number": "212 555-1234"
b
{
"type": "office",
"number": "646 555-4567"
}
])

189

https://en.wikipedia.org/wiki/JSON
https://en.wikipedia.org/wiki/JSON

CHAPTER 7 INTRODUCING JSON

“children": [],

"spouse”: null

In this example, the anonymous object consists of eight properties with the
following keys:

o firstName identifies a person’s first name and is of type string.
e lastName identifies a person’s last name and is of type string.

e isAliveidentifies a person’s alive status and is of type Boolean.
o ageidentifies how old a person is and is of type number.

e address identifies a person’s location and is of type object. Within
this object are four properties (of type string): streetAddress, city,
state, and postalCode.

o phoneNumbers identifies a person’s phone numbers and is of type
array. Within the array are two objects; each object consists of type
and number properties (of type string).

e children identifies a person’s children (if any) and is of type array.
o spouse identifies a person’s partner and is empty.

The previous example shows that objects and arrays can be nested, for example,
objects placed within arrays that are placed within objects.

Note By convention, JSON objects are stored in files with the . json file
extension.

Demonstrating JSON with JavaScript

Ideally, I'd demonstrate JSON with Java’s standard JSON API. However, Java doesn’t
officially support JSON.

190

CHAPTER 7 INTRODUCING JSON

Note

In 2014, Oracle introduced a Java Enhancement Proposal (JEP) for adding

a JSON API to Java. Although “JEP 198: Light-Weight JSON API” (http://

open
more

jdk.java.net/jeps/198) was updated in 2017, it will probably be several
years before this JSON API becomes part of Java.

rn
(Ifyou’

demonstrate JSON via JavaScript, but in a Java context via Java’s Scripting API.
re new to Scripting, I'll explain just enough of this API so that you can understand

the code.) To get started, Listing 7-1 presents the source code to an application for

executing JavaScript code.

Listing 7-1. Executing JavaScript Code with Assistance from Java

import
import

import
import
import
import

public

{
pub

{

java.io.FileReader;
java.io.IOException;

javax.script.ScriptEngine;
javax.script.ScriptEngineManager;
javax.script.ScriptException;

static java.lang.System.*;

class RunScript
lic static void main(String[] args)

if (args.length != 1)
{
err.println("usage: java RunScript script");
return;
}
ScriptEngineManager manager =
new ScriptEngineManager();
ScriptEngine engine =
manager .getEngineByName("nashorn");
try
{

engine.eval(new FileReader(args[0]));

191

http://openjdk.java.net/jeps/198
http://openjdk.java.net/jeps/198

CHAPTER 7 INTRODUCING JSON

}
catch (ScriptException se)
{
err.println(se.getMessage());
}
catch (IOException ioe)
{
err.println(ioe.getMessage());
}

Listing 7-1’s main() method first verifies that exactly one command-line argument,
which names a script file, has been specified. If this isn’t the case, it displays usage
information and terminates the application.

Assuming that a single command-line argument was specified, the javax.script.
ScriptEngineManager class is instantiated. ScriptEngineManager serves as the entry
point into the Scripting API.

Next, the ScriptEngineManager object’s ScriptEngine getEngineByName(String
shortName) method is called to obtain a script engine corresponding to the desired
shortName value. Java 11 supports the nashorn script engine (although it has been
deprecated), which is returned as an object whose class implements the javax.script.
ScriptEngine interface.

ScriptEngine declares several eval() methods for evaluating a script. main() invokes
the Object eval(Reader reader) method to read the script from its java.io.FileReader
object argument and (assuming that java.io.IOExceptionisn’t thrown) then evaluate
the script. This method returns any script return value, which Iignore. Also, this method
throws javax.script.ScriptException when an error occurs in the script.

Compile Listing 7-1 as follows:

javac RunScript.java

Before you can run this application, you need a suitable script file. Listing 7-2
presents a script that declares and accesses a JSON object.

192

CHAPTER 7

Listing 7-2. Declaring and Accessing a Person Object

var person =

{

"firstName": "John",
"lastName": "Smith",
"isAlive": true,

"age": 25,
"address":
{
"streetAddress": "21 2nd Street",
"city": "New York",
"state": "NY",
"postalCode": "10021-3100"
}J
"phoneNumbers":
[
{
"type": "home",
"number": "212 555-1234"
b
{
"type": "office",
"number": "646 555-4567"
}
])

“children": [],

"spouse”: null
};
print(person.firstName);
print(person.lastName);
print(person.address.city);
print(person.phoneNumbers[1].number);

INTRODUCING JSON

193

CHAPTER 7 INTRODUCING JSON
Assuming that Listing 7-2 is stored in person. js, run the application as follows:
java RunScript person.js

You should observe the following output (along with a warning message about
Nashorn’s planned removal from a future JDK release):

John

Smith

New York

646 555-4567

A JSON object exists as language-independent text. To convert the text to a language-
dependent object, you need to parse the text. JavaScript provides a JSON object with a
parse() method for this task. Pass the text to be parsed as an argument to parse() and
receive the resulting JavaScript-based object as this method’s return value. parse()
throws SyntaxError when the text doesn’t conform to the JSON format.

Listing 7-3 presents a script that demonstrates parse().

Listing 7-3. Parsing a JSON Object

var creditCardText =

“{ \"number\": \"1234567890123456\", " +
"\"expiry\": \"04/20\", \"type\": " +
"\"visa\" }";

var creditCard = JSON.parse(creditCardText);
print(creditCard.number);
print(creditCard.expiry);
print(creditCard.type);

var creditCardText2 = "{ 'type': 'visa' }";
var creditCard2 = JSON.parse(creditCardText2);

Assuming that Listing 7-3 is stored in cc. js, run the application as follows:

java RunScript cc.js

194

CHAPTER 7 INTRODUCING JSON

You should observe the following output:

1234567890123456
04/20
visa
SyntaxError: Invalid JSON: <json>:1:2 Expected , or } but found '
{ "type': 'visa' }
~in <eval> at line number 11

The syntax error shows that you cannot delimit a name with single quotes (only
double quotes are valid).

This is all I have to say about working with JSON in a JavaScript context. Because this
book is Java-focused, subsequent chapters will explore various third-party Java APIs for
parsing JSON objects into Java-dependent objects and vice versa.

Validating JSON Objects

It’s often necessary for applications to validate JSON objects, to ensure that required
properties are present and that additional constraints (such as a price never being less
than 1 dollar) are met. Validation is typically performed in the context of JSON Schema.

JSON Schema is a grammar language for defining the structure, content, and (to
some extent) semantics of JSON objects. It lets you specify metadata (data about data)
about what an object’s properties mean and what values are valid for those properties.
The result of applying the grammar language is a schema (a blueprint) describing the set
of JSON objects that are valid according to the schema.

Note JSON Schema expresses a schema as a JSON object.

JSON Schema is maintained at the JSON Schema website (http://json-schema.
org). This website reveals several advantages for JSON Schema:

o It describes your existing data format.

o If offers clear, human-readable, and machine-readable
documentation.

o It provides complete structural validation, which is useful for
automated testing and validating client-submitted data.

195

http://json-schema.org
http://json-schema.org

CHAPTER 7 INTRODUCING JSON

Note The JSON Schema website focuses on draft version 7 of the JSON Schema
specification. This specification is divided into four parts: JSON Schema Core,
JSON Schema Validation, JSON Hyper-Schema, and Relative JSON Pointers.

To understand JSON Schema, consider the following simple JSON object:

"name": "John Doe",
uageu: 35

This object describes a person in terms of a name and an age. Assume that both of
these properties must be present, name must be of type string and age must be of type
number, and age’s value must range from 18 through 64.

The following schema (based on draft version 7 of JSON Schema) provides the
necessary constraints for this object:

{
"$schema": "http://json-schema.org/draft-07/schemat",

"title": "Person",
"description”: "A person"”,
"type": "object",
"properties":
{
“name":
{
"description”: "A person's name",
"type": "string"

})
"age":
{
"description": "A person's age",
"type": "number",
"minimum": 18,
"maximum": 64
}

196

1

CHAPTER 7 INTRODUCING JSON

"required": ["name", "age"]

Reading from top to bottom, you would interpret this JSON-based schema as follows:

The $schema keyword states that this schema is written according to
the draft version 7 specification.

The title keyword identifies the JSON object being validated by this
schema. In this case, a Person object is being validated.

The description keyword provides a description of the Person
object. As with title, description adds no constraint to the data
being validated.

The type keyword signifies that the containing object is a JSON object
(via the object value). Also, it identifies property types (such as
string and number).

The properties keyword introduces an array of the properties that
can appear in the JSON object. These properties are identified as name
and age. Each property is further described by an object that provides
adescription keyword to describe the property and a type keyword
to identify the type of value that can be assigned to the property. This
is a constraint: you must assign a string to name and a number to age.
For the age property, minimum and maximum keywords are specified

to provide additional constraints: the number assigned to age must
range from 18 through 64.

The required keyword introduces an array that identifies those
properties that must be present in the JSON object. In the example,
both name and age are required properties.

The JSON Schema website provides links to various validator implementations for

different programming languages (see http://json-schema.org/implementations.

html). You can download an implementation and integrate it into your application,

subject to license requirements. For this chapter, I chose to use an online tool called

JSON Schema Validator (www.jsonschemavalidator.net) to demonstrate validation.

197

http://json-schema.org/implementations.html
http://json-schema.org/implementations.html
http://www.jsonschemavalidator.net

CHAPTER 7 INTRODUCING JSON

Figure 7-1 shows the previous JSON object and schema in the appropriate windows
of the JSON Schema Validator online tool.

File Edit View History Bookmarks Tools

of JSON Schema Validator - New: % [iaed
@ o @ & htty ww jsonschemavalidator e @ % Q search m @ @ % yw B =
U JSON Schema Validator o newtonsoft.com
An online, interactive JSON Schema validator. Supports JSON Schema Draft 3, Draft 4, Draft & and Draft 7. B View source code
Select schema: Empty schema ~ Input JSON:
X S - — ;
2 "$schema": "http://json-schema.org/draft- 2 'name”: "John Doe",
87/schema#"”, 3 "age": 35

3 "title": "Person”, 4

4 "description”: "A person”,

5 "type": "object",

3 "properties":

=

8 "name":

9

18 "description”: "A person's name",

11 "type": "string"

12 L.

13 "age":

14

15 "description": "A person's age",

16 "type": "number",

17 "minimum": 18,

18 "maximum": 64

19 }

21 ";equired“: ["name", "age"]

22 }

= =

+ No errors found. JSON validates against the schema v

Figure 7-1. The schema is valid and the JSON object conforms to this schema

198

CHAPTER 7 INTRODUCING JSON

Let’s make some changes to the JSON object so that it no longer conforms to the
schema, and see how the JSON Schema Validator tool responds. First, we'll assign 65 to
age, which exceeds the maximum constraint for the age property. Figure 7-2 shows the
result.

File Edit View History Bockmarks Tools Help

of JSON Schema Validator - New % e

G o @ @ httpsy//www jsonschemavalidator e @ % Q search i @ @ a ywo @B =
~
Select schema: Emply schema ~ Input JSON: % Found 1 error(s)
2 $schema™: "http://Jjson-schema.org/draft- 2 name”: "Jchn Doe",
07/schema#", 9 : "age": 65

3 "title": "Person”, 4}
4 "description”: "A person”,
5 "type": "object",
6 "properties”:
é "name”:
9
18 "description": "A person's name",
13 “type": "string"
13 ";ge":
14
15 "description": "A person's age",
16 "type": "number",

17 "minimum": 18,
"maximum": 64

}s
"required”: ["name", "age"]

il
il

% Found 1 error(s)

Message: Integer 65 exceeds maximum value of 64.
Schema path: #/properties/age/maximum

Figure 7-2. JSON Schema Validator changes its message color to red to signify an
error and also identifies the property and constraint that’s been violated

199

CHAPTER 7 INTRODUCING JSON

Next, we’ll restore age’s value to 35, but surround it with double quotes. This changes
the type from number to string. See Figure 7-3 for the result.

File Edit View History Bookmarks Tools Help

of JSON Schema Validator - Nev: % e

[@ & hitps//www jsonschemavalidator.r = @ 5 | Q search in @ & G yo @ =

Select schema: Empty schema v Input JSON: % Found 1 error(s)

ol ¢ "$schema": "http://json-schema.org/draft- "name”: "John Doe",
87 /schema#", o : "age": "35"|

"title": "Person”, a3

"description": "A person",

"type": "object",

"properties”:

"name" :

D WD 0o~ O s W

"description": "A person's name",
“"type": “string"

s b3)
[y

- 2
13 “age":

"description”: "A person's age",
"type": "number",

17 "minimum": 18,

1 "maximum": 64

,
21 "required”: ["name”, "age"]

il
il

% Found 1 error(s)

Message: Invalid type. Expected Number but got String.
Schema path: #/properties/age/type

Figure 7-3. JSON Schema Validator reports that the age property has the wrong type

200

CHAPTER 7 INTRODUCING JSON

Finally, we’ll restore age’s value to 35, but eliminate the name property. Figure 7-4
shows JSON Schema Validator’s response.

File Edit View History Bookmarks Too

of JSON Schema Validator - New: X e

G ® @ @ httpsy//www jsonschemavalidator e @ | Q search i @ @ &G v B =
~
Select schema: Empty schema ~ Input JSON: % Found 1 error(s)
= L. - . = LA
2 $schema”: "http://json-schema.org/draft- 2 age": 35
e7/schema#", ® 3}

3 "title": "Person",
4 "description": “A person”,
5 "type": "object”,
6 "properties":
8 "name":
9
18 "description": "A person's name",
13 "type": "string"
13 ";ge":
14
15 "description": "A person's age",
16 "type": "number",

17 "minimum": 18,
"maximum": 64

}s
"required”: ["name", "age"]

il
il

*® Found 1 error(s)

Message: Required properties are missing from object: name.
Schema path: #/required

Figure 7-4. JSON Schema Validator reports that the name property is required

Check out “JSON Schema: A Media Type for Describing JSON Documents”
(https://datatracker.ietf.org/doc/draft-handrews-json-schema/) and the other
Internet-Draft documents accessible from the JSON Schema website (http://json-
schema.org) to learn more about JSON Schema.

201

https://datatracker.ietf.org/doc/draft-handrews-json-schema/
http://json-schema.org
http://json-schema.org

CHAPTER 7

INTRODUCING JSON

EXERCISES

The following exercises are designed to test your understanding of Chapter 7’s content:

1.

S T e

10.

Define JSON.

True or false: JSON is derived from a strict subset of JavaScript.

How does the JSON data format present a JSON object?

Identify the six types that JSON supports.

True or false: JSON doesn’t support comments.

How would you parse a JSON object into an equivalent JavaScript object?
Define JSON Schema.

When creating a schema, how do you identify those properties that must be
present in those JSON objects that the schema validates?

Declare a JSON object for a product in terms of name and price properties.
Set the name to "hammexr" and the price to 20.

Declare a schema for validating the previous JSON object. The schema should
constrain name to be a string, price to be a number, price to be at least
1 dollar, and name and price to be present in the object. Use JSON Schema

Validator to verify the schema and JSON object.

Summary

JSON is a language-independent data format that expresses JSON objects as human-

readable lists of properties. Although derived from JavaScript, code to parse JSON

objects into equivalent language-dependent objects is available in many programming

languages.

The JSON data format presents a JSON object as a brace-delimited and comma-

separated list of properties. For each property, the name is expressed as a doubly quoted

string. The name string is followed by a colon character, which is followed by a value of a
specific JSON type.

202

CHAPTER 7 INTRODUCING JSON

JSON supports six types: number, string, Boolean, array, object, and null. JSON
Schema also recognizes an integer type.

Whitespace is allowed and ignored around or between syntactic elements (values
and punctuation). Four specific characters are considered whitespace for this purpose:
space, horizontal tab, line feed, and carriage return. Also, JSON doesn’t support
comments.

Java doesn’t provide a standard JSON API. One way to explore JSON in a Java context
is to leverage Java’s Scripting API.

It’s often necessary for applications to validate JSON objects, to ensure that required
properties are present and that additional constraints (such as a price never being less
than 1 dollar) are met. JSON Schema is a grammar language that lets you accomplish
validation.

JSON Schema lets you define the structure, content, and (to some extent) semantics
of JSON objects. Furthermore, it lets you specify metadata about what an object’s
properties mean and what values are valid for those properties. The result of applying
the grammar language is a schema that describes the set of JSON objects that are valid
according to the schema.

Chapter 8 introduces mJson for parsing and creating JSON objects.

203

CHAPTER 8

Parsing and Creating
JSON Objects with mJson

Many third-party APIs are available for parsing and creating JSON objects. Chapter 8
explores one of the simplest of these APIs: mJson.

What Is mJdson?

mJson is a small Java JSON library (created by developer Borislav Lordanov) for parsing
JSON objects into Java objects and vice versa. This library is documented on GitHub
(http://bolerio.github.io/mjson/), which reveals the following features:

o Full support for JSON Schema Draft 4 validation

e Single universal type—everything is a Json object; there is no type
casting

o Single factory method for converting a Java object to a Json object;
just call Json.make(any Java object here)

o Fast, hand-coded parsing
o Designed as a general purpose data structure for use in Java
o Parent pointers and up() method to traverse the JSON structure

o Concise methods to read (Json.at()), modify (Json.set(), Json.
add()), duplicate (IJson.dup()), and merge (Json.with())

o Flexible merging of deep structures (http://github.com/bolerio/
mjson/wiki/Deep-Merging)

205
© Jeff Friesen 2019

J. Friesen, Java XML and JSON, https://doi.org/10.1007/978-1-4842-4330-5_8

http://bolerio.github.io/mjson
http://github.com/bolerio/mjson/wiki/Deep-Merging
http://github.com/bolerio/mjson/wiki/Deep-Merging

CHAPTER 8 PARSING AND CREATING JSON OBJECTS WITH MJSON

o Methods for type-checking (e.g., Json.isString()) and access to
underlying Java value (e.g., Json.asString())

e Method chaining

o Pluggable factory to build your own support for arbitrary Java-Json
mapping
o Entire library located in one Java file—no external dependencies

Unlike with other JSON libraries, mJson focuses on manipulating JSON structures
in Java without mapping them to strongly typed Java objects. As a result, mJson reduces
verbosity and lets you work with JSON in Java as naturally as in JavaScript.

Obtaining and Using mJson

mJson is distributed as a single JAR file; mjson-1.4.0. jar is the most recent JAR file at
the time of writing. To obtain this JAR file, point your browser to http://repol.maven.
org/maven2/org/sharegov/mjson/1.4.0/mjson-1.4.0.jar.

mjson-1.4.0.jar contains a Json classfile and other classfiles that describe package-
private classes nested within the Json class. Furthermore, this JAR file reveals that Json is
located in the mjson package.

Note mJson is licensed according to Apache License Version 2.0 (www.apache.
org/licenses/).

It’s easy to work with mjson-1.4.0. jar. Simply include it in the CLASSPATH when
compiling source code or running an application, as follows:

javac -cp mjson-1.4.0.jar source file
java -cp mjson-1.4.0.jar;. main classfile

Exploring the Json Class

The Json class describes a JSON object or part of a JSON object. It contains Schema and
Factory interfaces, more than 50 methods, and other members. This section explores
many of these methods along with Schema and Factory.

206

http://repo1.maven.org/maven2/org/sharegov/mjson/1.4.0/mjson-1.4.0.jar
http://repo1.maven.org/maven2/org/sharegov/mjson/1.4.0/mjson-1.4.0.jar
http://www.apache.org/licenses
http://www.apache.org/licenses

CHAPTER 8 PARSING AND CREATING JSON OBJECTS WITH MJSON

Note The APl documentation for the Json class is located at http://bolerio.

github.io/mjson/apidocs/index.html.

Creating Json Objects

Json declares several static methods that create and return Json objects. Three of these

methods read and parse an external JSON object:

e Json read(String s):Read aJSON object from the string that was
passed to s (of type java.lang.String) and parse this object.

e Jsonread(URL url):Read aJSON object from the Uniform Resource
Locator (URL) passed to url (of type java.net.URL) and parse this
object.

o Jsonread(CharacterIterator ci):Read a]JSON object
from the character iterator passed to ci (of type java.text.
CharacterIterator) and parse this object.

Each method returns a Json object that describes the parsed JSON object.
Listing 8-1 presents the source code to an application that demonstrates the
read(String) method.

Listing 8-1. Reading and Parsing a String-Based JSON Object
import mjson.Json;
import static java.lang.System.*;

public class mJsonDemo

{

public static void main(String[] args)

{
String jsonStr =

1 n +
"\"firstName\": \"John\"," +
"\"lastName\": \"Smith\"," +

"\"isAlive\": true," +

207

http://bolerio.github.io/mjson/apidocs/index.html
http://bolerio.github.io/mjson/apidocs/index.html
http://bolerio.github.io/mjson/apidocs/mjson/Json.html
http://bolerio.github.io/mjson/apidocs/mjson/Json.html

CHAPTER 8 PARSING AND CREATING JSON OBJECTS WITH MJSON

"\"age\": 25," +

"\"address\":" +

"+

"\"streetAddress\": \"21 2nd Street\"," +
"\"city\": \"New York\"," +

"\"state\": \"NY\"," +

"\"postalCode\": \"10021-3100\"" +

"}
“\"phoneNumbers\":" +
II[II +
"+

"\"type\": \"home\"," +
"\"number\": \"212 555-1234\"" +

N
" +

“\"type\": \"office\"," +
"\"number\": \"646 555-4567\"" +

+
II]’" +
"\"children\": []," +
"\"spouse\": null" +

o,
)

Json json = Json.read(jsonStr);
out.println(json);

The main(String[]) method first declares a Java string-based JSON object. It then
invokes Json.read() to read and parse this object, and return the object as a Json object.
Finally, main() outputs a string representation of the Json object (Json’s toString()
method is called behind the scenes to convert the Json object to a Java string).

Compile Listing 8-1 as follows:

javac -cp mjson-1.4.0.jar mJsonDemo.java
Run the resulting application as follows:

java -cp mjson-1.4.0.jar;. mJsonDemo

208

CHAPTER 8 PARSING AND CREATING JSON OBJECTS WITH MJSON
You should observe the following output:

{"firstName":"John","lastName":"Smith","isAlive":true,"address":{"street
Address":"21 2nd Street","city":"New York","postalCode":"10021-3100","state":
"NY"},"children":[],"age":25, "phoneNumbers": [{"number":"212 555-1234",
"type":"home"},{"number":"646 555-4567","type":"office"}],"spouse":null}

The read() methods can also parse smaller JSON fragments, such as an array of
different-typed values. See Listing 8-2 for a demonstration.

Listing 8-2. Reading and Parsing a JSON Fragment
import mjson.Json;
import static java.lang.System.*;

public class mJsonDemo

{
public static void main(String[] args)
{
Json json =
Json.read("[4, 5, {}, true, null, \"ABC\", 6]");
out.println(json);
}
}

When you run this application, you should observe the following output:
[4,5,{},true,null,"ABC",6]

In addition to the reading and parsing methods, Json provides static methods for
creating Json objects:

e Json array(): Return a Json object representing an empty JSON
array.

o Json array(Object... args): Return a Json object (representing
a JSON array) filled with args, a variable number of java.lang.
Objects.

209

CHAPTER 8 PARSING AND CREATING JSON OBJECTS WITH MJSON

o Json make(Object anything): Return a Json object filled with the
contents of anything, which is one of null; a value of type Json,
String, java.util.Collection<?>, java.util.Map<?, ?>, java.
lang.Boolean, java.lang.Number; or an array of one of these types.
Maps, collections, and arrays are recursively copied such that each
of their elements is converted to a Json object. A map’s keys are
normally strings, but any object with a meaningful toString()
implementation will work. This method throws java.lang.
I1legalArgumentException when the concrete type of the argument
passed to anything is unknown.

e Json nil():Return a Json object that represents null.

o Json object(): Return a Json object representing an empty JSON
object.

o Json object(Object... args):Return a Json object (representing
a JSON object) filled with args, a variable number of Objects. These
objects identify property names and values; the number of objects
must be even, with even indexes identifying property names and
odd indexes identifying property values. The names are normally
of type String but can be of any other type that has an appropriate
toString() method. Each value is first converted to a Json object by
calling make (Object).

Listing 8-3 presents the source code to an application that demonstrates most of
these additional static methods.

Listing 8-3. Creating a Person JSON Object
import mjson.Json;
import static java.lang.System.*;

public class mJsonDemo

{

public static void main(String[] args)

{

Json jsonAddress =

210

CHAPTER 8 PARSING AND CREATING JSON OBJECTS WITH MJSON

Json.object("streetAddress"”, "21 2nd Street",
"city", "New York",
"state", "NY",
"postalCode", "10021-3100");
Json jsonPhonel =
Json.object("type", "home",
"number", "212 555-1234");
Json jsonPhone2 =
Json.object("type", "office",
"number", "646 555-4567");
Json jsonPerson =
Json.object("firstName", "John",
"lastName", "Smith",
"isAlive", true,
"age", 25,
"address", jsonAddress,
"phoneNumbers", Json.array(jsonPhonel,
jsonPhone2),
"children", Json.array(),
"spouse", Json.nil());
out.println(jsonPerson);

Listing 8-3 describes an application that creates the same JSON object that’s read
and parsed in Listing 8-1. Notice that you can pass Json objects to array(Object...)
and object(Object...), which lets you build complete JSON objects from smaller
fragments. If you run this application, you'll discover the same output as generated by
the application described in Listing 8-1.

Listing 8-4 presents the source code to another application that uses make (Object)
with Java collections and maps.

211

CHAPTER 8 PARSING AND CREATING JSON OBJECTS WITH MJSON

Listing 8-4. Making JSON Objects from Java Collections and Maps

import java.util.Arraylist;
import java.util.Arrays;
import java.util.HashMap;
import java.util.list;
import java.util.Map;

import mjson.Json;
import static java.lang.System.*;

public class mJsonDemo

{

public static void main(String[] args)

{
List<String> weekdays =

Arrays.asList("Sunday", "Monday", "Tuesday",
"Wednesday", "Thursday", "Friday",
"Saturday");
out.println(Json.make(weekdays));
Map<String, Number> people = new HashMap<>();
people.put("John", 33);
people.put("Joan", 27);
out.println(Json.make(people));
Map<String, String[]> planets = new HashMap<>();
planets.put("Mercury", null);
planets.put("Earth", new String[] {"Luna"});
planets.put("Mars", new String[] {"Phobos",
"Deimos"});

out.println(Json.make(planets)) ;

}

}

212

CHAPTER 8 PARSING AND CREATING JSON OBJECTS WITH MJSON

main(String[]) first creates a list of weekday names and then passes this object to
make(Object), whose returned Json object is output. Next, a map of people names and
ages is created and subsequently passed to make(Object). The resulting JSON object is
output. Finally, a map of planet names along with arrays of moon names is created. This
map is converted into a more complex JSON object, which is output.

If you compile this source code and run the application, you'll discover the following
output:

["Sunday", "Monday", "Tuesday", "Wednesday", "Thursday", "Friday","Saturday"]
{"Joan":27,"John":33}
{"Earth":["Luna"], "Mars":["Phobos", "Deimos"], "Mercury":null}

Learning About Json Objects

Json offers several methods for learning about the JSON entities described by Json
objects. For starters, you can call the Object getValue() method to return the JSON
value (as a Java object) of the Json object. The returned value will be Java null or have
the Java Boolean, String, Number, Map, java.util.List, or an array type. For objects and
arrays, this method performs a deep copy of all nested elements.

To identify the JSON type of the JSON value, call one of the following methods:

o boolean isArray():Return true for a JSON array value.

e boolean isBoolean(): Return true for a JSON Boolean value.
e boolean isNull():Return true for the JSON null value.

o boolean isNumber(): Return true for a JSON number value.

o boolean isObject(): Return true for a JSON object value.

e boolean isPrimitive():Return true for a JSON number, string, or
Boolean value.

o boolean isString():Return true for a JSON string value.

Listing 8-5 presents the source code to an application that demonstrates getValue()
and these JSON type-identification methods.

213

CHAPTER 8 PARSING AND CREATING JSON OBJECTS WITH MJSON

Listing 8-5. Obtaining a Json Object’s Value and Identifying Its JSON Type
import mjson.Json;
import static java.lang.System.*;

public class mJsonDemo

{

public static void main(String[] args)

{
String jsonStr =

"+

"\"firstName\": \"John\"," +
"\"lastName\": \"Smith\"," +
"\"isAlive\": true," +

"\"age\": 25," +

"\"address\":" +

"+

"\"streetAddress\": \"21 2nd Street\"," +
"\"city\": \"New York\"," +
"\"state\": \"NY\"," +
“\"postalCode\": \"10021-3100\"" +
"oy

"\"phoneNumbers\":" +

o

"+

"\"type\": \"home\"," +
"\"number\": \"212 555-1234\"" +

N
"+

“\"type\": \"office\"," +
“\"number\": \"646 555-4567\"" +
"o+

SR

"\"children\": []," +

214

}

CHAPTER 8

"\"spouse\": null" +

nyn,
)

Json json = Json.read(jsonStr);

PARSING AND CREATING JSON OBJECTS WITH MJSON

out.println("Value = " + json.getValue());

out.println();
classify(json);

static void classify(Json jsonObject)

{

if (jsonObject.isArray())
out.println("Array");

else

if (jsonObject.isBoolean())
out.println("Boolean");

else

if (jsonObject.isNull())
out.println("Null");

else

if (jsonObject.isNumber())
out.println("Number");

else

if (jsonObject.isObject())
out.println("Object");

else

if (jsonObject.isString())
out.println("String");

if (jsonObject.isPrimitive())
out.println("Primitive");

215

CHAPTER 8 PARSING AND CREATING JSON OBJECTS WITH MJSON

Compile this source code and run the application, and you'll discover the following
output:

Value = {firstName=John, lastName=Smith, isAlive=true,
address={streetAddress=21 2nd Street, city=New York, postalCode=10021-3100,
state=NY}, children=[], age=25, phoneNumbers=[{number=212 555-1234,
type=home}, {number=646 555-4567, type=office}], spouse=null}

Object

After verifying that a Json object represents the expected JSON type, you can call one of

)«

Json’s “as” methods to obtain the JSON value as a Java value of an equivalent Java type:
o boolean asBoolean(): Return the JSON value as a Java Boolean.
o byte asByte(): Return the JSON value as a Java byte integer.

o char asChar(): Return the first character of the JSON string value as
a Java character.

o double asDouble(): Return the JSON value as a Java double
precision floating-point value.

o float asFloat(): Return the JSON value as a Java floating-point
value.

o int asInteger(): Return the JSON value as a Java integer.

o List<JIson> asJsonList(): Return the underlying list representation
of a JSON array. The returned list is the actual array representation so
any modifications to it are modifications to the Json object’s list.

e Map<String, Json> asJsonMap(): Return the underlying map of
properties of a JSON object. The returned map is the actual object
representation so any modifications to it are modifications to the
Json object’s map.

o List<Object> asList():Return alist of the elements of a Json
object that describes a JSON array. The returned list is a copy, and
modifications to it don’t affect the Json object.

o long asLong(): Return the JSON value as a Java long integer.

216

CHAPTER 8 PARSING AND CREATING JSON OBJECTS WITH MJSON

o Map<String, Object> asMap(): Return a map of the properties of a
Json object that describes a JSON object. The returned map is a copy,
and modifications to it don’t affect the Json object.

o short asShort(): Return the JSON value as a Java short integer.
o String asString(): Return the JSON value as a Java string.

Listing 8-6 presents the source code to an application that uses asMap() to obtain a
map of the Json object properties describing a JSON object.

Listing 8-6. Iterating Over a Json Object’s Properties to Learn About a JSON Object
import java.util.Map;

import mjson.Json;

import static java.lang.System.*;

public class mJsonDemo

{

public static void main(String[] args)

{
String jsonStr =

"+

"\"firstName\": \"John\"," +
"\"lastName\": \"Smith\"," +
"\"isAlive\": true," +

"\"age\": 25," +

"\"address\":" +

"+

"\"streetAddress\": \"21 2nd Street\"," +
"\"city\": \"New York\"," +
"\"state\": \"NY\"," +
"\"postalCode\": \"10021-3100\"" +
N

“\"phoneNumbers\":" +

o

+

217

CHAPTER 8 PARSING AND CREATING JSON OBJECTS WITH MJSON

"\"type\": \"home\"," +
"\"number\": \"212 555-1234\"" +

LN
" +

"\"type\": \"office\"," +
“\"number\": \"646 555-4567\"" +
o+

", 4

"\"children\": []," +

"\"spouse\": null" +

e,
)

Json json = Json.read(jsonStr);

if (json.isObject())

{
Map<String, Object> props = json.asMap();
for (Map.Entry<String, Object> propEntry:

props.entrySet())
out.println(propEntry.getKey() + ": " +
propEntry.getValue());

main(String[]) declares the same JSON object as presented in Listing 8-1. It then
reads and parses this object into a Json object. The isObject () method is called to verify
that the Json object represents a JSON object. (It’s a good idea to verify first.) Because
this should be the case, asMap() is called to return a map of the Json object’s properties,
which are then iterated over and output.

Caution If you replace Json json = Json.read(jsonStr); with Json
json = Json.make(jsonStr);, you won't see any output because the Json
object returned from make () identifies the JSON string type and not the JSON
object type.

218

CHAPTER 8 PARSING AND CREATING JSON OBJECTS WITH MJSON

After studying the source code, compile it and run the application. You'll discover
the following output:

firstName: John

lastName: Smith

isAlive: true

address: {streetAddress=21 2nd Street, city=New York,
postalCode=10021-3100, state=NY}

children: []

age: 25

phoneNumbers: [{number=212 555-1234, type=home}, {number=646 555-4567,
type=office}]

spouse: null

You can access the contents of arrays and objects by calling the following at ()
methods, which return Json objects that describe array element values or object
property values:

e Json at(int index):Return the value (as a Json object) of the
array element at the specified index in this Json object’s array.
This method applies to JSON arrays only. It throws java.lang.
IndexOutOfBoundsException when index is out of bounds for the array.

o Json at(String propName): Return the value (as a Json object) of
the object property whose name is identified by propName in this
Json object’s map. Return null when there’s no such property. This
method applies to JSON objects only.

e Json at(String propName, Json defValue): Return the value (as
a Json object) of the object property whose name is identified by
propName in this Json object’s map. When there’s no such property,
create a new property whose value is specified by defValue and
return defValue. This method applies to JSON objects only.

o Json at(String propName, Object defValue):Return the value
(as a Json object) of the object property whose name is identified by
propName in this Json object’s map. When there’s no such property,
create a new property whose value is specified by defValue and
return defValue. This method applies to JSON objects only.

219

CHAPTER 8 PARSING AND CREATING JSON OBJECTS WITH MJSON

Listing 8-7 presents the source code to an application that uses the first two at ()
methods to access a JSON object’s property values.

Listing 8-7. Obtaining and Outputting a JSON Object’s Property Values
import mjson.Json;
import static java.lang.System.*;

public class mJsonDemo

{

public static void main(String[] args)

{
String jsonStr =

"+

"\"firstName\": \"John\"," +
"\"lastName\": \"Smith\"," +
"\"isAlive\": true," +

"\"age\": 25," +

"\"address\":" +

"+

"\"streetAddress\": \"21 2nd Street\"," +
"\"city\": \"New York\"," +
"\"state\": \"NY\"," +
"\"postalCode\": \"10021-3100\"" +
"

“\"phoneNumbers\":" +

"

"+

"\"type\": \"home\"," +
“\"number\": \"212 555-1234\"" +

Y
" +

"\"type\": \"office\"," +
"\"number\": \"646 555-4567\"" +

+
II]’II +

220

CHAPTER 8 PARSING AND CREATING JSON OBJECTS WITH MJSON

"\"children\": []," +
"\"spouse\": null" +

e,
)

Json json = Json.read(jsonStr);

out.printf("First name = %s%n", json.at("firstName"));
out.printf("Last name = %s%n", json.at("lastName"));
out.printf("Is alive = %s%n", json.at("isAlive"));
out.printf("Age = %d%n", json.at("age").asInteger());
out.println("Address");

Json jsonAddr = json.at("address");

out.printf(" Street address = %s%n", jsonAddr.at("streetAddress"));
out.printf(" City = %s%n", jsonAddr.at("city"));
out.printf(" State = %s%n", jsonAddr.at("state"));
out.printf(" Postal code = %s%n", jsonAddr.at("postalCode"));
out.println("Phone Numbers");

Json jsonPhone = json.at("phoneNumbers");

out.printf(" Type = %s%n", jsonPhone.at(0). at("type"));
out.printf(" Number = %s%n", jsonPhone.at(0). at("number"));
out.println();

out.printf(" Type = %s%n", jsonPhone.at(1). at("type"));
out.printf(" Number = %s%n", jsonPhone.at(1). at("number"));
Json jsonChildren = json.at("children");

out.printf("Children = %s%n", jsonChildren);
out.printf("Spouse = %s%n", json.at("spouse"));

Expression json.at("age") returns a Json object describing a JSON number;
asInteger() returns this value as a 32-bit Java integer.
Compile this source code and run the application. You'll discover the following

output:

First name = "John"
Last name = "Smith"
Is alive = true
Age = 25

221

CHAPTER 8 PARSING AND CREATING JSON OBJECTS WITH MJSON

Address
Street address = "21 2nd Street"
City = "New York"
State = "NY"
Postal code = "10021-3100"
Phone Numbers
Type = "home"

Number = "212 555-1234"

Type = "office"

Number = "646 555-4567"
Children = []
Spouse = null

You might be wondering how to detect the empty array that’s assigned to the
children property name. You can accomplish this task by calling asList () to return a
List implementation object, and then calling List’s size() method on this object, as

follows:
System.out.printf("Array length = %d%n", jsonChildren.asList().size());

This code fragment will report an array length of zero elements.
Finally, Json provides three methods for verifying that property names exist, and that
property names or array elements exist with specified values:

o boolean has(String propName): Return true when this Json object
describes a JSON object that has a property identified by propName;
otherwise, return false.

o boolean is(int index, Object value): Return true when this
Json object describes a JSON array that has the specified value at the
specified index; otherwise, return false.

o boolean is(String propName, Object value): Return true when
this Json object describes a JSON object that has a property identified
by propName and this property has the value identified by value;
otherwise, return false.

For example, consider Listing 8-7. Expression json.has("firstName") returns true,
whereas expression json.has("middleName") returns false.

222

CHAPTER 8 PARSING AND CREATING JSON OBJECTS WITH MJSON

Navigating Json Object Hierarchies

When one of the previously discussed at () methods returns a Json object describing a
JSON object or JSON array, you can navigate into the object or array by chaining another
at() method call to the expression. For example, I used this technique in the previous
application to access a phone number:

System.out.printf(" Number = %s%n", jsonPhone.at(0).at("number"));

Here, jsonPhone.at(0) returns a Json object that represents the first array entry
in the phoneNumbers JSON array. Because the array entry happens to be a JSON object,
calling at("number") on this Json object causes Json to return the value (as a Json
object) of the JSON object’s number property.

Each Json object that describes a JSON entity belonging to an array or an object
holds a reference to its enclosing array- or object-based Json object. You can call
Json’s Json up() method to return this enclosing Json object, which is demonstrated
in Listing 8-8.

Listing 8-8. Accessing Enclosing Json Objects
import mjson.Json;
import static java.lang.System.*;

public class mJsonDemo

{

public static void main(String[] args)

{
String jsonStr =

+

"\"propName\": \"propValue\"," +

"\"propArray\":" +

Il[ll +
Rt
"\"elementa\": \"valuel\"" +
"}
"+

223

CHAPTER 8 PARSING AND CREATING JSON OBJECTS WITH MJSON

"\"element2\": \"value2\"" +
oy

ey

B

Json json = Json.read(jsonStr);

Json jsonElementl = json.at("propArray").at(0);
out.println(jsonElement1);

out.println();

out.println(jsonElementi.up());

out.println();
out.println(jsonElement1.up().up());
out.println();
out.println(jsonElement1.up().up().up());

}
}

Compile this source code and run the application, and you'll discover the following
output:

{"element1":"value1"}
[{"element1":"value1"},{"element2":"value2"}]

{"propArray":[{"element1":"value1"},{"element2":"value2"}],

"propName": "propValue"}
null

The first output line describes the first array element in the array assigned to the
propArray property. This element is an object consisting of a single element1 property.

jsonElementl.up() returns a Json object describing the array that encloses the
JSON object that serves as the array’s first element. jsonElement1.up().up() returns a
Json object describing the JSON object that encloses the array. Finally, jsonElement1.
up().up().up() returns a Json object describing the null value; the JSON object has

no parent.

224

CHAPTER 8 PARSING AND CREATING JSON OBJECTS WITH MJSON

Modifying Json Objects

You'll encounter situations where you’ll want to modify existing Json objects’ JSON
values. For example, you might be creating and saving several similar JSON objects and
would like to reuse existing Json objects.

Json lets you modify Json objects that represent JSON arrays and objects. It doesn’t
let you modify Json objects that represent JSON Boolean, number, or string values
because they're regarded as immutable.

Json declares the following set () methods for modifying JSON array elements and
JSON object properties:

o Json set(int index, Object value): Setthe value of the JSON
array element located at index to value.

e Json set(String propName, Json value): Set the value of the
JSON object property whose name is specified by propName to value.

o Json set(String property, Object value): Set the value of the
JSON object property whose name is specified by propName to value.
This method calls make (Object) to convert value to a Json object
representing value and then invokes set(String, Json).

Listing 8-9 presents the source code to an application that uses the first and third
set () methods to set object property and array element values.

Listing 8-9. Setting Object Property and Array Element Values
import mjson.Json;
import static java.lang.System.*;

public class mJsonDemo

{

public static void main(String[] args)

{
String jsonStr =

+
"\"name\": null," +

"\"courses\":" +

225

CHAPTER 8 PARSING AND CREATING JSON OBJECTS WITH MJSON

“[null]" +

e,
)

Json json = Json.read(jsonStr);
out.println(json);

out.println();

json.set("name", "John Doe");

Json jsonCourses = json.at("courses");
jsonCourses.set(0, "English");
out.println(json);

}
}

Compile this source code and run the application, and you'll discover the following
output:

"courses":[null],"name":null}
"courses":["English"],"name":"John Doe"}

If you attempt to set a value for a property that doesn’t exist, Json adds the property.
However, if you attempt to set the value for a nonexistent array element, Json throws
IndexOutOfBoundsException. For this reason, you might prefer to call one of the
following add () methods instead:

e Json add(Json element): Append the specified element to the array
represented by this Json object.

o Json add(Object anything): Convert anything to a Json object by
calling make (Object) and append the result to the array represented
by this Json object.

Listing 8-10 presents the source code to an application that uses the first add ()
method to append two strings to the empty courses array.

Listing 8-10. Appending Strings to an Empty JSON Array
import mjson.Json;
import static java.lang.System.*;

public class mJsonDemo

226

CHAPTER 8 PARSING AND CREATING JSON OBJECTS WITH MJSON

public static void main(String[] args)
{
String jsonStr =
"+
“\"name\": null," +
"\"courses\":" +
T
"1
Json json = Json.read(jsonStr);
out.println(json);
out.println();
json.set("name", "John Doe");
Json jsonCourses = json.at("courses");
jsonCourses.add("English™");
jsonCourses.add("French");
out.println(json);
}
}

Compile this source code and run the application. It generates the output shown here:
"courses":[],"name" :null}
"courses":["English","French"], "name":"John Doe"}

Json provides a pair of array-oriented remove () methods that take the same
arguments as their add() counterparts:

e Json remove(Json element): Remove the specified element from

the array represented by this Json object.

o Json remove(Object anything): Convertanythingtoa Json
object by calling make (Object) and remove the result from the array
represented by this Json object.

Listing 8-11 presents the source code to an application that uses the second
remove () method to remove the "English" string from the courses array.

227

CHAPTER 8 PARSING AND CREATING JSON OBJECTS WITH MJSON
Listing 8-11. Removing a String from a JSON Array
import mjson.Json;

import static java.lang.System.*;

public class mJsonDemo

{

public static void main(String[] args)

{
String jsonStr =

1 mn +
"\"name\": null," +

"\"courses\":" +

[+

Json json = Json.read(jsonStr);
out.println(json);
out.println();

json.set("name", "John Doe");
Json jsonCourses = json.at("courses");
jsonCourses.add("English™");
jsonCourses.add("French");
out.println(json);
out.println();
jsonCourses.remove("English");
out.println(json);

Compile this source code and run the application. It generates the output shown here:
"courses":[],"name" :null}
"courses":["English","French"], "name":"John Doe"}

"courses":["French"], "name":"John Doe"}

228

CHAPTER 8 PARSING AND CREATING JSON OBJECTS WITH MJSON

You can remove an element from an array by index or remove a property from an

object by name by calling the following methods:

Json atDel(int index): Remove the element at the specified index
from this Json object’s JSON array and return the element.

Json atDel(String propName): Remove the property identified by
propName from this Json object’s JSON object and return the property
value (or null when the property doesn’t exist).

Json delAt(int index): Remove the element at the specified index
from this Json object’s JSON array.

Json delAt(String propName): Remove the property identified by
propName from this Json object’s JSON object.

Listing 8-12 presents the source code to an application that uses the last two delAt ()

methods to delete a property and an array element.

Listing 8-12. Removing the Last Name and One of the Courses Being Taken

import

mjson.Json;

import static java.lang.System.*;

public class mJsonDemo

{

public static void main(String[] args)

{

String jsonStr =

1 n +
"\"firstName\": \"John\"," +
"\"lastName\": \"Doe\"," +

"\"courses\":" +
"[\"English\", \"French\", \"Spanish\"]" +

",
)

Json json = Json.read(jsonStr);
out.println(json);
out.println();
json.delAt("lastName");

229

CHAPTER 8 PARSING AND CREATING JSON OBJECTS WITH MJSON

out.println(json);
out.println();
json.at("courses").delAt(1);
out.println(json);

To see the results of the delAt () methods, compile this source code and run the
application. Its output is shown here:

{"firstName":"John","lastName": "Doe","courses":["English","French","Spanish"]}
{"firstName":"John","courses":["English","French","Spanish"]}
{"firstName":"John","courses":["English","Spanish"]}

Json provides an additional method for modifying a JSON object:

o Json with(Json objectorarray): Combine this Json object’s
JSON object or JSON array with the argument passed to
objectorarray. The JSON type of this Json object and the JSON type
of objectorarray must match. If objectorarray identifies a JSON
object, all of its properties are appended to this Json object’s object.
If objectorarray identifies a JSON array, all of its elements are
appended to this Json object’s array.

Listing 8-13 presents the source code to an application that uses with(Json) to
append properties to an object and elements to an array.

Listing 8-13. Appending Properties to an Object and Elements to an Array
import mjson.Json;
import static java.lang.System.*;

public class mJsonDemo

{

public static void main(String[] args)

{
String jsonStr =

230

CHAPTER 8 PARSING AND CREATING JSON OBJECTS WITH MJSON

+
"\"firstName\": \"John\"," +
"\"courses\":" +
"[\"English\"]" +

5

Json json = Json.read(jsonStr);
out.println(json);
out.println();
Json jsono =
Json.read("{\"initial\": \"P\", \"lastName\": " + "\"Doe\"}");

Json jsona = Json.read("[\"French\", \"Spanish\"]");
json.with(jsono);

out.println(json);

out.println();

json.at("courses").with(jsona);

out.println(json);

Compile Listing 8-13 and run the application. Here is the application’s output:
{"firstName":"John","courses":["English"]}
{"firstName":"John","courses":["English"],"lastName":"Doe","initial":"P"}

{"firstName":"John","courses":["English","French","Spanish"],"lastName":
"Doell) Ilinitialll : IIPII}

Note mJson 1.4.0 overloads with() to customize this method’s behavior. See
http://github.com/bolerio/mjson/wiki/Deep-Merging for the details.

231

http://github.com/bolerio/mjson/wiki/Deep-Merging

CHAPTER 8 PARSING AND CREATING JSON OBJECTS WITH MJSON

Validation

Json supports JSON Schema Draft 4 validation via its nested Schema interface and the
following static methods:

o Json.Schema schema(Json jsonSchema): Return a Json.Schema
object that validates JSON documents according to the schema
described by jsonSchema.

o Json.Schema schema(Json jsonSchema, URI uri):Returna Json.
Schema object that validates JSON documents according to the schema
described by jsonSchema and also located at the Uniform Resource
Identifier (URI) passed to uri, which is of type java.net.URI.

e Json.Schema schema(URI uri):Return a Json.Schema object that
validates JSON documents according to the schema located at uri.

Validation is performed by calling Schema’s Json validate(Json document)
method, which attempts to validate a JSON document according to this Schema object.
Validation attempts to proceed even when validation errors are detected. The return
value is always a Json object whose JSON object contains the Boolean property named
ok. When ok is true, there are no other properties. When it’s false, the JSON object also
contains a property named errors, which is an array of error messages for all detected
schema violations.

I've created two sample applications that demonstrate validation. Listing 8-14 is
based on example code at the mJson GitHub “A Tour of the API” page (http://github.
com/bolerio/mjson/wiki/A-Tour-of-the-API).

Listing 8-14. Validating JSON Objects That Include the id Property
import mjson.Json;
import static java.lang.System.*;

public class mJsonDemo

{

public static void main(String[] args)

{
// A simple schema that accepts only JSON objects

// with a mandatory property 'id'.

232

http://github.com/bolerio/mjson/wiki/A-Tour-of-the-API
http://github.com/bolerio/mjson/wiki/A-Tour-of-the-API

CHAPTER 8 PARSING AND CREATING JSON OBJECTS WITH MJSON

Json.Schema schema =
Json.schema(Json.object("type", "object",
"required",
Json.array("id")));
out.println(schema.validate(Json.object("id", 666,
"name",
"Britlan")));
out.println(schema.validate(Json.object("ID", 666,

n name n ,
"Britlan")));
}
}
If you compile this source code and run the application, you'll discover the following
output:
{"ok":true}

{"ok":false,"errors":["Required property id missing from object {\"name\":\

"Britlan\",\"ID\":666}"]}

In Chapter 7, I presented the following JSON object:

{

"name": "John Doe",

n age n : 3 5
}

I also presented the following schema as a JSON object:
{

"$schema”: "http://json-schema.org/draft-07/schema#",
"title": "Person",

"description”: "A person",

"type": "object",

"properties":

{

233

CHAPTER 8 PARSING AND CREATING JSON OBJECTS WITH MJSON

"name":

{
"description”: "A person's name",
"type": "string"

}s

Ilagell

{
"description”: "A person's age",
"type": "number",
"minimum": 18,
"maximum": 64

}

1

"required": ["name", "age"]

Suppose that I copy this schema to a schema. json file and store it on my website
athttp://javajeff.ca/schema.json. Listing 8-15 presents the source code to an
application that uses Json.Schema schema(URI) to obtain this schema for validating the
previous JSON obiject.

Listing 8-15. Validating JSON Objects via an External Schema

import java.net.URI;
import java.net.URISyntaxException;

import mjson.Json;
import static java.lang.System.*;

public class mJsonDemo

{
final static String SCHEMA_URI =

"http://javajeff.ca/schema.json";

public static void main(String[] args)
throws URISyntaxException

234

http://javajeff.ca/schema.json

CHAPTER 8 PARSING AND CREATING JSON OBJECTS WITH MJSON

Json.Schema schema = Json.schema(new URI(SCHEMA URI));
Json json = Json.read("{\"name\": \"John Doe\", " +
"\"age\": 35}");

out.println(schema.validate(json));

json = Json.read("{\"name\": \"John Doe\", " +
"\"age\": 65}");

out.println(schema.validate(json));

json = Json.read("{\"name\": \"John Doe\", " +
"\"age\": \"35\"}");

out.println(schema.validate(json));

json = Json.read("{\"age\": 35}");

out.println(schema.validate(json));

Compile this source code and run the application. You should discover the following

output:

{"ok":true}
"ok":false,"errors":["Number 65 is above allowed maximum 64.0"]}
"ok":false,"errors":["Type mistmatch for \"35\", allowed types:
[\"number\"]"]}
"ok":false,"errors":["Required property name missing from object

{\"age\":35}"]}

Customization via Factories

Json defers the creation of Json objects to a factory, which is an instance of a class that
implements the Json.Factory interface’s methods:

o Json array()
e Json bool(boolean value)

o Json make(Object anything)

Json nil()
e Json number(Number value)

235

CHAPTER 8 PARSING AND CREATING JSON OBJECTS WITH MJSON

o Json object()
o Json string(String value)

The Json.DefaultFactory class provides default implementations of these methods,
but you can provide custom implementations when necessary. To avoid implementing
all of these methods, you can extend DefaultFactory and override only those methods
of interest.

After creating a custom Factory class, you would instantiate it and then install the
object by calling one of the following static Json methods:

o void setGlobalFactory(Json.Factory factory)
e void attachFactory(Json.Factory factory)

The first method installs the specified factory as a global factory, which is used by
all threads that don’t have a specific thread-local factory attached to them. The second
method attaches the specified factory to the invoking thread only, which lets you use
different thread factories in the same classloader. You can remove a thread-local factory
and revert to the global factory for a thread by calling the void dettachFactory()
method.

One of the customizations mentioned in the mJson documentation is case-
insensitive string comparison. Basically, you customize Json’s equals() method to
perform case-insensitive string comparisons. Listing 8-16 presents the source code to an
application that shows how this is done.

Listing 8-16. Customizing Json to Support Case-Insensitive String Comparisons
import java.util.list;

import mjson.Json;

import static java.lang.System.*;

public class mJsonDemo

{

public static void main(String[] args)

{

class MyFactory extends Json.DefaultFactory

{

236

http://bolerio.github.io/mjson/apidocs/mjson/Json.DefaultFactory.html

CHAPTER 8 PARSING AND CREATING JSON OBJECTS WITH MJSON

@0verride
public Json string(String x)

{

// Obtain the StringJson instance.
final Json json = super.string(x);

class StringIJson extends Json

{

private static final long serialVersionUID
= 1L;

String val;

StringIJson(String val)

{
this.val = val;
}
@verride
public byte asByte()
{
return json.asByte();
}
@Override
public char asChar()
{
return json.asChar();
}
@verride
public double asDouble()
{
return json.asDouble();
}

237

CHAPTER 8 PARSING AND CREATING JSON OBJECTS WITH MJSON

@verride
public float asFloat()
{

return json.asFloat();
}
@verride
public int asInteger()
{

return json.asInteger();
}
@0verride
public List<Object> aslList()
{

return json.aslList();
}
@verride
public long asLong()
{

return json.asLong();
}
@verride
public short asShort()
{

return json.asShort();
}
@verride
public String asString()
{

return json.asString();
}
@0verride

public Json dup()

238

CHAPTER 8 PARSING AND CREATING JSON OBJECTS WITH MJSON

{

return json.dup();
}
@Override

public boolean equals(Object x)
{

return x instanceof StringIJson &&
((StringIdson) x).
val.equalsIgnoreCase(val);

}
@verride
public Object getValue()
{
return json.getValue();
}
@verride
public int hashCode()
{
return json.hashCode();
}
@verride
public boolean isString()
{
return json.isString();
}
@verride
public String toString()
{
return json.toString();
}

239

CHAPTER 8 PARSING AND CREATING JSON OBJECTS WITH MJSON

return new StringIJson(x);

}

Json.setGlobalFactory(new MyFactory());
Json.read("\"abc\"");
Json json2 = Json.read("\"abc\"");
Json json3 = Json.read("\"Abc\"");
out.println(jsoni.equals(json2));
out.println(jsoni.equals(json3));

Json jsoni

Listing 8-16’s mJsonDemo class declares a nested MyFactory class that extends Json.
DefaultFactory. The main() method instantiates this class and registers it with Json via
the following method call:

Json.setGlobalFactory(new MyFactory());

main() proceeds to parse three JSON strings via read() method calls and then
perform equality operations on them, outputting the results.

Note The equals() method that’s called is not located in the Json class.
Instead, it’s located in a nested package-private class, such as StringJson.
In the listing, the objects assigned to json1, json2, and json3 have type
StringJson or (with the factory installed) StringIJson (discussed shortly).

MyFactory overrides the string(String) method, which is responsible for creating
Json objects that represent JSON strings. In the Json. java source code (which you can
access from http://bolerio.github.io/mjson/—click the tar.gz or .zip folder link near
the top of the page), string(String) executes return new StringJson(x, null);.

StringJsonis one of Json’s nested package-private static classes. Because it cannot
be accessed from outside of the mjson package, MyFactory’s overriding string(String)
method declares an equivalent StringIJson class (the I is for case-insensitive).

240

http://bolerio.github.io/mjson/—

CHAPTER 8 PARSING AND CREATING JSON OBJECTS WITH MJSON

Rather than copy all of the code from StringJson to StringIJson, which is wasteful
duplication and won’t work anyway because some of the code relies on other package-
private types, I chose to use the adapter/wrapper design pattern (http://en.wikipedia.
org/wiki/Adapter pattern).

The idea behind the adapter pattern is to have StringIJson duplicate StringJson
methods in terms of their headers, and code the bodies to forward almost all
method calls to the StringJson equivalents. This is possible by having MyFactory’s
string(String) method first invoke DefaultFactory’s string(String) method, which
returns the StringJson object. It’s then a simple matter of forwarding calls to this object.

The exception is the equals () method. StringIJson codifies this method to be
nearly identical to its StringJson counterpart. The main difference is the call to String’s
equalsIgnoreCase() method instead of its equals () method. The result is a case-
insensitive equals () method.

Compile the source code and run the application, and you should observe the
following output:

true
true

The first output line shows that abc equals abc. The second output line proves that
the factory was installed because it shows that abc equals Abc.

EXERCISES

The following exercises are designed to test your understanding of Chapter 8’s content:
1. Define mJson.
Describe the Json class.

Identify Json’s methods for reading and parsing external JSON objects.

A w N

True or false: The read() methods can also parse smaller JSON fragments,
such as an array of different-typed values.

5. Identify the methods that Json provides for creating JSON objects.
6. What does Json’s boolean isPrimitive() method accomplish?

7. How do you return a Json object’s JSON array?

241

http://en.wikipedia.org/wiki/Adapter_pattern
http://en.wikipedia.org/wiki/Adapter_pattern

CHAPTER 8 PARSING AND CREATING JSON OBJECTS WITH MJSON

8. True or false: Json’s Map<String, Json> asJsonMap() method returns
a map of the properties of a Json object that describes a JSON object. The
returned map is a copy, and modifications to it don’t affect the Json object.

9. Which Json methods let you access the contents of arrays and objects?

10. What does Json’s boolean is(int index, Object value) method
accomplish?

11. What does Json do when you attempt to set the value for a nonexistent array
element?

12. What is the difference between Json’s atDel() and delAt() methods?

13. What does Json’s Json with(Json objectorarray) method accomplish?
14. Identify Json’s methods for obtaining a Json.Schema object.

15. How do you validate a JSON document against a schema?

16. What is the difference between Json’s setGlobalFactory() and
attachFactory() methods?

17. Two Json methods that were not discussed in this chapter are Json dup()
and String pad(String callback).What do they do?

18. Write an mJsonDemo application that demonstrates dup() and pad().

Summary

m]Json is a small Java JSON library for parsing JSON objects into Java objects and vice
versa. It consists of a Json class that describes a JSON object or part of a JSON object.
Json contains Schema and Factory interfaces, more than 50 methods, and other
members.

After obtaining the mJson library, you learned how to use this library to create Json
objects, learn about Json objects, navigate Json object hierarchies, modify Json objects,
validate JSON documents against a schema, and customize Json by installing nondefault
factories.

Chapter 9 introduces Gson for parsing and creating JSON objects.

242

CHAPTER 9

Parsing and Creating
JSON Objects with Gson

Gson is another API for parsing and creating JSON objects. Chapter 9 explores the latest
version of this open-source Google product.

What Is Gson?

Gson (also known as Google Gson) is a small Java-based library for parsing and creating
JSON objects. Google developed Gson for its own projects, but later made Gson publicly
available, starting with version 1.0. According to Wikipedia (http://en.wikipedia.org/
wiki/Gson), the latest version (at the time of writing) is 2.8.5.

Gson’s GitHub page (http://github.com/google/gson) identifies five important
design goals for Gson:

o Provide simple toJson() and fromJson() methods to convert Java
objects to JSON objects and vice versa

o Allow pre-existing unmodifiable objects to be converted to and from
JSON

o Provide extensive support for Java Generics
o Allow custom representations of objects

e Support arbitrarily complex objects (with deep inheritance
hierarchies and extensive use of generic types)

Gson parses JSON objects by deserializing JSON objects into Java objects. Similarly,
it creates JSON objects by serializing Java objects into JSON objects. Gson relies on Java’s
Reflection API to assist with serialization and deserialization.

243
© Jeff Friesen 2019

J. Friesen, Java XML and JSON, https://doi.org/10.1007/978-1-4842-4330-5_9

http://en.wikipedia.org/wiki/Gson
http://en.wikipedia.org/wiki/Gson
http://github.com/google/gson

CHAPTER9 PARSING AND CREATING JSON OBJECTS WITH GSON

Obtaining and Using Gson

Gson is distributed as a single JAR file; gson-2.8.5. jar is the most recent JAR file at the
time of writing. To obtain this JAR file, point your browser to http://search.maven.
org/#artifactdetails|com.google.code.gson|gson|2.8.5]jar, click the downloads
link and select “jar” from the drop-down list, and save the gson-2.8.5. jar file when
prompted to do so. Also, you might want to download gson-2.8.5-javadoc. jar, which
contains this API’s Javadoc.

Note Gson is licensed according to Apache License Version 2.0 (www.apache.
org/licenses/).

It’s easy to work with gson-2.8.5.jar. Simply include it in the CLASSPATH when

compiling source code or running an application, as follows:

javac -cp gson-2.8.5.jar source file
java -cp gson-2.8.5.jar;. main classfile

Exploring Gson

Gson consists of more than 30 classes and interfaces distributed among four packages:

o com.google.gson: This package provides access to Gson, the main
class for working with Gson.

o com.google.gson.annotations: This package provides annotation
types for use with Gson.

o com.google.gson.reflect: This package provides a utility class for
obtaining type information from a generic type.

o com.google.gson.stream: This package provides utility classes for
reading and writing JSON-encoded values.

In this section, I first introduce you to the Gson class. Then, I focus on Gson
deserialization (parsing JSON objects), followed by Gson serialization (creating JSON
objects). I close by briefly discussing additional Gson features, such as annotations and
type adapters.

244

http://repo1.maven.org/maven2/org/sharegov/mjson/1.3/mjson-1.3.jar.mjson-1.3.jar contains
http://repo1.maven.org/maven2/org/sharegov/mjson/1.3/mjson-1.3.jar.mjson-1.3.jar contains
http://www.apache.org/licenses
http://www.apache.org/licenses

CHAPTER9 PARSING AND CREATING JSON OBJECTS WITH GSON

Introducing the Gson Class

The Gson class handles the conversion between JSON and Java objects. You can
instantiate this class by using the Gson() constructor, or you can obtain a Gson instance
by working with the com.google.gson.GsonBuilder class. The following code fragment
demonstrates both approaches:

Gson gsonl = new Gson();

Gson gson2 = new GsonBuilder()
.registerTypeAdapter(Id.class, new IdTypeAdapter())
.serializeNulls()
.setDateFormat(DateFormat.LONG)
.setFieldNamingPolicy(FieldNamingPolicy.UPPER_CAMEL_CASE)
.setPrettyPrinting()
.setVersion(1.0)
.create();

Call Gson() when you want to work with the default configuration, and use
GsonBuilder when you want to override the default configuration. Configuration
method calls are chained together, with GsonBuilder’s Gson create() method being
called last to return the resulting Gson object.

Gson supports the following default configuration (the list isn’t complete; check the
Gson and GsonBuilder documentation for more information):

o Gson provides default serialization and deserialization for java.
lang.Enum, java.util.Map, java.net.URL, java.net.URI, java.
util.Locale, java.util.Date, java.math.BigDecimal, and
java.math.BigInteger instances. You can change the default
representation by registering a type adapter (discussed later) via
GsonBuilder.registerTypeAdapter(Type, Object).

o The generated JSON text omits all null fields. However, it preserves
nulls in arrays because an array is an ordered list. Also, if a field
isn’t null, but its generated JSON text is empty, the field is kept. You
can configure Gson to serialize null values by calling GsonBuilder.
serializeNulls().

245

http://docs.oracle.com/javase/6/docs/api/java/util/Map.html?is-external=true
http://docs.oracle.com/javase/6/docs/api/java/net/URL.html?is-external=true
http://docs.oracle.com/javase/6/docs/api/java/net/URI.html?is-external=true
http://docs.oracle.com/javase/6/docs/api/java/util/Locale.html?is-external=true
http://docs.oracle.com/javase/6/docs/api/java/util/Date.html?is-external=true
http://docs.oracle.com/javase/6/docs/api/java/math/BigDecimal.html?is-external=true
http://docs.oracle.com/javase/6/docs/api/java/math/BigInteger.html?is-external=true

CHAPTER9 PARSING AND CREATING JSON OBJECTS WITH GSON

o The default Date format is the same as java.text.DateFormat.
DEFAULT. This format ignores the millisecond portion of the
date during serialization. You can change the default format by
invoking GsonBuilder.setDateFormat(int) or GsonBuilder.
setDateFormat(String).

e The default field-naming policy for the output JSON text is the same
as in Java. For example, a Java class field named versionNumber will
be output as "versionNumber" in JSON. The same rules are applied
for mapping incoming JSON to Java classes. You can change this
policy by calling GsonBuilder.setFieldNamingPolicy(FieldNaming
Policy).

o The JSON text that’s generated by the toJson() methods is
represented compactly: all unneeded whitespace is removed. You can
change this behavior by calling GsonBuilder.setPrettyPrinting().

e By default, Gson ignores @Since annotations. You can enable Gson to
use these annotations by calling GsonBuilder.setVersion(double).

e Bydefault, Gson ignores @Expose annotations. You can enable Gson to
serialize/deserialize only those fields marked with this annotation by
calling GsonBuilder.excludeFieldsWithoutExposeAnnotation().

o Bydefault, Gson excludes transient or static fields from
consideration for serialization and deserialization. You can change
this behavior by calling GsonBuilder.excludeFieldsWithModifiers
(int...).

Once you have a Gson object, you can call various fromJson() and toJson()
methods to convert between JSON and Java objects. For example, Listing 9-1 presents a
simple application that obtains a pair of Gson objects and demonstrates JSON-Java object
conversion in terms of JSON primitives.

Listing 9-1. Converting Between JSON Primitives and Their Java Equivalents

import com.google.gson.Gson;
import com.google.gson.GsonBuilder;

import static java.lang.System.*;

246

CHAPTER9 PARSING AND CREATING JSON OBJECTS WITH GSON

public class GsonDemo

{

public static void main(String[] args)
{
Gson gson = new Gson();
String name = gson.fromJson("\"John Doe\"",
String.class);
out.println(name);
gson.toJson(256, out);
out.println();
gson.toJson("<html>", out);
out.println();
gson = new GsonBuilder().disableHtmlEscaping().create();
gson.toJson("<html>", out);
out.println();

Listing 9-1 declares a GsonDemo class whose main() method first instantiates Gson,
keeping its default configuration. It then invokes Gson’s <T> T fromJson(String json,
Class<T> classOfT) generic method to deserialize the specified java.lang.String-
based JSON text (in json) into an object of the specified class (classOfT), which happens
to be String.

JSON string "John Doe" (the double quotes are mandatory), which is expressed
as a Java String object, is converted (minus the double quotes) to a Java String object.
A reference to this object is assigned to name.

After outputting the returned name, main() calls Gson’s void toJson(Object src,
Appendable writer) method to convert autoboxed integer 256 (stored by the compiler
in a java.lang.Integer object) into a JSON integer and output the result to the standard
output stream.

main() reinvokes toJson() to output a Java string containing <html>. By default,
Gson escapes the HTML < and > characters, and so these characters are not output. To
prevent this escaping, it’s necessary to obtain a Gson object via GsonBuilder, invoking
GsonBuilder’s GsonBuilder disableHtmlEscaping() method, whichmain() does next.
A second attempt to output <html> reveals no escaping.

247

CHAPTER 9 PARSING AND CREATING JSON OBJECTS WITH GSON
Compile Listing 9-1 as follows:

javac -cp gson-2.8.5.jar GsonDemo.java
Run the resulting application as follows:

java -cp gson-2.8.5.jar;. GsonDemo
You should observe the following output:

John Doe

256
"\uoo3chtml\uoo3e"
"<html>"

The output isn’t impressive, but it’s a start. In the next two sections, you'll see more
useful examples of deserialization and serialization.

Parsing JSON Objects Through Deserialization

Apart from parsing JSON primitives (such as numbers or strings) into their Java
equivalents, Gson lets you parse JSON objects into Java objects. For example, suppose
you have the following JSON object, which describes a person:

{ "name": "John Doe", "age": 45 }
Also, suppose you have the following Java class:

class Person

{
String name;
int age;

You can use the previous fromJson() method to parse the JSON object into an
instance of the Person class, which I demonstrate in Listing 9-2.

248

CHAPTER9 PARSING AND CREATING JSON OBJECTS WITH GSON

Listing 9-2. Parsing a JSON Object into a Java Object

import com.google.gson.Gson;

import static java.lang.System.*;

public class GsonDemo

static class Person

String name;
int age;

Person(String name, int age)
{
this.name = name;
this.age = age;

}
@0verride
public String toString()
{
return name + ": " + age;
}

public static void main(String[] args)

{
{
}
{
}
}

Gson gson = new Gson();

String json = "{ name: \"John Doe\", age: 45 }";
Person person = gson.fromJson(json, Person.class);
out.println(person);

249

CHAPTER9 PARSING AND CREATING JSON OBJECTS WITH GSON

Listing 9-2 declares a GsonDemo class with a nested Person class that describes a
person in terms of a name and an age.

GsonDemo’s main() method first instantiates Gson, keeping its default configuration.
It then constructs a String-based JSON object representing a person and passes this
object along with Person.class to fromJson(String json, Class<T> classOfT).
fromJson() parses the name and age stored in the string passed to json and uses
Person.class along with the Reflection API to create a Person object and populate it
with the name and age. A reference to the Person object is returned and stored in the
person variable, and subsequently passed to System.out.println(). This method
ultimately invokes Person’s toString() method to return a string representation of the
Person object, and then writes this string to the standard output stream.

Compile Listing 9-2 and run the resulting application. You should observe the
following output:

John Doe: 45

Another method that you can use to parse a JSON object into an instance of the
Person classis <T> T fromJson(JsonElement json, java.lang.Class<T> classOfT).
This method differs from the previous fromJson() method in that the json text is
specified as a tree of com.google.gson.JsonElements (numbers, arrays, etc.).

ABOUT JSONELEMENT

The JsonElement class represents a JSON element (such as a number, a Boolean value,
or an array). It provides various methods for obtaining an element value, such as double
getAsDouble(), boolean getAsBoolean(),and JsonArray getAsJsonArray().
JsonElement is an abstract class that serves as the superclass for the following JSON
element classes (in the com. google.gson package):

o JsonArray: A concrete class that represents JSON's array type. An
array is a list of JsonElements, each of which can be of a different
type. This is an ordered list, meaning that the order in which
elements are added is preserved.

e JsonNull: A concrete class that represents a JSON null value.

250

CHAPTER9 PARSING AND CREATING JSON OBJECTS WITH GSON

o JsonObject: A concrete class that represents JSON’s object type. An
object consists of name/value pairs, where names are strings and
values are any other type of JsonElement, which leads to a tree of
JsonElements. The member elements of this object are maintained in
the order they were added.

e JsonPrimitive: A concrete class that represents one of JSON'’s

number, string, or Boolean types (expressed via their Java types).

Except for JsonNull, each of these subclasses provides various methods for obtaining
element values.

Of course, you need a JsonElement tree before you can call this method. One way to
accomplish this task is to invoke Gson’s JsonElement toJsonTree(Object o) method,
which serializes Java object o to the equivalent JsonElement tree. Listing 9-3 provides an

example.

Listing 9-3. Parsing a JSON Object into a Java Object Redux

import com.google.gson.Gson;
import com.google.gson.GsonBuilder;
import com.google.gson.JsonElement;

import static java.lang.System.*;

class Address

{
private String street;
private String city;
private String state;
private int zipcode;

Address(String street, String city, String state,

int zipcode)

this.street = street;
this.city = city;
this.state = state;

251

CHAPTER9 PARSING AND CREATING JSON OBJECTS WITH GSON

this.zipcode = zipcode;

}
@verride
public String toString()
{
return street + " " + city + " " + state + " " +
zipcode;
}
}
public class GsonDemo
{
public static void main(String[] args)
{
Gson gson = new Gson();
Address address = new Address(null, "Beverly Hills",
"CA", 90210);
JsonElement tree = gson.toJsonTree(address);
out.println(tree);
out.println(gson.fromJson(tree, Address.class));
gson = new GsonBuilder().serializeNulls().create();
tree = gson.toJsonTree(address);
out.println(tree);
out.println(gson.fromJson(tree, Address.class));
}
}

Listing 9-3 declares Address and GsonDemo classes. Address describes a US address
in terms of street, city, state, and zipcode fields. GsonDemo is the main class.

GsonDemo’s main() method first creates a Gson object and then creates an Address
object with a null street field. It subsequently invokes Gson’s toJsonTree() method
to serialize the Address object into an equivalent tree of JsonElements, which is
subsequently output.

main() now invokes fromJson(JsonElement json, Class<T> classofT) to
deserialize the JsonElement tree into an Address object, which is subsequently output
(with assistance from Address’s toString() method).

252

CHAPTER9 PARSING AND CREATING JSON OBJECTS WITH GSON

By default, a null field (such as street) isn’t serialized. To serialize a null field, it’s
necessary to work with GsonBuilder and invoke its GsonBuilder serializeNulls()
method, which is whatmain() does next. main() then repeats its fromJson() and
toJson() calls, outputting the results.

Compile the source code and run the application, and you should observe the
following output:

{"city":"Beverly Hills","state":"CA","zipcode":90210}
null Beverly Hills CA 90210
{"street":null,"city":"Beverly Hills
null Beverly Hills CA 90210

,'state":"CA","zipcode":90210}

Customized JSON Object Parsing

The gson.fromJson(json, Person.class) and gson.fromJson(json, Address.class)
method calls rely on Gson’s default deserialization mechanism to parse JSON objects.
You will often encounter scenarios where you need to parse complex JSON objects
into Java objects whose classes don’t have the same structure as the JSON objects to be
parsed. You can perform this parsing with a custom deserializer, which controls how
JSON objects map to Java objects.

The com.google.gson.JsonDeserializer<T> interface describes a custom
deserializer. The argument passed to T identifies the type for which the deserializer
is being used. For example, you might pass Person to T when needing to parse JSON
objects with a somewhat different structure.

JsonDeserializer declares a single method for handling the deserialization (JSON
object parsing):

T deserialize(JsonElement json,Type typeOfT,
JsonDeserializationContext context)

deserialize() is a callback method that Gson calls during deserialization. This
method is called with the following arguments:

e jsonidentifies the JSON element being deserialized.
o typeOfT identifies the type of the Java object in which to deserialize json.

o context identifies a context in which to perform the deserialization.
(I'll have more to say about contexts later.)

253

CHAPTER9 PARSING AND CREATING JSON OBJECTS WITH GSON

deserialize() throws com.google.gson.JsonParseException when the JSON
element passed to json isn’t compatible with the type passed to typeOfT. Because
JsonParseException extends java.lang.RuntimeException, you don’t have to append
a throws clause.

After creating a JsonDeserializer object, you need to register it with Gson.
Accomplish this task by calling the following GsonBuilder method:

GsonBuilder registerTypeAdapter(Type type, Object typeAdapter)

The object passed to type identifies the type of the deserializer and the object
passed to typeAdapter identifies the deserializer. Because registerTypeAdapter (Type,
Object) returns a GsonBuilder object, you can only use this method in a GsonBuilder
context.

To demonstrate customized JSON object parsing, consider an expanded version of
the previous JSON object:

{ "first-name": "John", "last-name": "Doe", "age": 45, "address": "Box 1 " }

This JSON object differs significantly from the previous JSON object, which consisted
of name and age fields:

e The name field has been refactored into first-name and last-name
fields. Note that the hyphen (-) isn’t a legal character for a Java
identifier.

e An address field has been added.

If you modify Listing 9-2 by replacing the object assigned to json with this new
object, you shouldn’t be surprised by the following output:

null: 45

The parsing is completely messed up. However, we can fix this problem by
introducing the following custom deserializer:

class PersonDeserializer

implements JsonDeserializer<Person>

@verride
public Person
deserialize(JsonElement json, Type typeOfT,

254

http://docs.oracle.com/javase/6/docs/api/java/lang/RuntimeException.html?is-external=true

CHAPTER9 PARSING AND CREATING JSON OBJECTS WITH GSON

JsonDeserializationContext context)

{
JsonObject jsonObject = json.getAsJsonObject();
String firstName = jsonObject.get("first-name").

getAsString();
String lastName = jsonObject.get("last-name").
getAsString();
int age = jsonObject.getAsJsonPrimitive("age").
getAsInt();
String address = jsonObject.get("address").
getAsString();
return new Person(firstName + " " + lastName,
45);
}

When the custom deserializer is used with the previous JSON object, deserialize()
is called only once, and with an object of type JsonObject being passed to json. You
could cast this value to a JsonObject, asin JsonObject jsonObject = (JsonObject)
json;. Alternatively, you can call JsonElement’s JsonObject getAsJsonObject()
method to obtain the JsonObject reference, which is what deserialize() first
accomplishes.

After obtaining the JsonObject reference, deserialize() calls its JsonElement
get(String memberName) method to return a JsonElement for the desired memberName
value. The first call passes first-name to get(); we want to obtain the value of this
JSON field. Because a JsonPrimitive is returned in place of JsonElement, a call to
JsonPrimitive’s String getAsString() method is chained to the JsonPrimitive
reference, and first-name’s value is obtained. This pattern is followed to obtain the
values for the last-name and address fields.

For variety, I decided to do something different with the age field. I call JsonObject's
JsonPrimitive getAsJsonPrimitive(String memberName) method to return a
JsonPrimitive reference corresponding to age. Then, I call JsonPrimitive’s int
getAsInt() method to return the integer value.

255

http://docs.oracle.com/javase/6/docs/api/java/lang/String.html?is-external=true
http://docs.oracle.com/javase/6/docs/api/java/lang/String.html?is-external=true
http://docs.oracle.com/javase/6/docs/api/java/lang/String.html?is-external=true

CHAPTER9 PARSING AND CREATING JSON OBJECTS WITH GSON

After obtaining all field values, a Person object is created and then returned. Because
I'm reusing the Person class shown in Listing 9-2, and because there is no address field
in this class, I throw address’s value away. You might want to modify Person to include
this field.

The following code fragment shows how you would instantiate PersonDeserializer
and register it with a GsonBuilder instance, which is also used to obtain a Gson
instance in order to call fromJson(), to parse the previous JSON object via the person
deserializer:

GsonBuilder gsonBuilder = new GsonBuilder();
gsonBuilder.
registerTypeAdapter(Person.class,
new PersonDeserializer());
Gson gson = gsonBuilder.create();

I've combined these code fragments into a working application. Listing 9-4 presents
the application’s source code.

Listing 9-4. Parsing a JSON Object into a Java Object via a Custom Deserializer
import java.lang.reflect.Type;

import com.google.gson.Gson;

import com.google.gson.GsonBuilder;

import com.google.gson.JsonDeserializationContext;
import com.google.gson.JsonDeserializer;

import com.google.gson.JsonElement;

import com.google.gson.JsonObject;

import com.google.gson.JsonParseException;

import static java.lang.System.*;

public class GsonDemo

{

static class Person

{
String name;
int age;

256

CHAPTER9 PARSING AND CREATING JSON OBJECTS WITH GSON

Person(String name, int age)
{
this.name = name;
this.age = age;

}

@0verride

public String toString()

{

return name + ": " + age;

}
}
public static void main(String[] args)
{

class PersonDeserializer
implements JsonDeserializer<Person>

@0verride
public Person
deserialize(JsonElement json, Type typeOfT,
JsonDeserializationContext context)

{
JsonObject jsonObject = json.getAsJsonObject();
String firstName = jsonObject.get("first-name").

getAsString();
String lastName = jsonObject.get("last-name").
getAsString();
int age = jsonObject.getAsJsonPrimitive("age").
getAsInt();
String address = jsonObject.get("address").
getAsString();
return new Person(firstName + " " + lastName,
45);
}

257

CHAPTER9 PARSING AND CREATING JSON OBJECTS WITH GSON

GsonBuilder gsonBuilder = new GsonBuilder();
gsonBuilder.
registerTypeAdapter(Person.class,
new PersonDeserializer());
Gson gson = gsonBuilder.create();
String json = "{ first-name: \"John\", " +
"last-name: \"Doe\", age: 45, " +
"address: \"Box 1\" }";
Person person = gson.fromJson(json, Person.class);
out.println(person);

Compile Listing 9-4 and run the resulting application. You should observe the
following output:

John Doe: 45

Creating JSON Objects Through Serialization

Gson lets you create JSON objects from Java objects by calling one of Gson’s toJson()
methods. Listing 9-5 provides a simple demonstration.

Listing 9-5. Creating a JSON Object from a Java Object
import com.google.gson.Gson;
import static java.lang.System.*;

public class GsonDemo

{

static class Person

{
String name;
int age;

Person(String name, int age)

{

this.name = name;

258

CHAPTER9 PARSING AND CREATING JSON OBJECTS WITH GSON

this.age = age;

}

}

public static void main(String[] args)

{
Person p = new Person("Jane Doe", 59);
Gson gson = new Gson();
String json = gson.toJson(p);
out.println(json);

}

Listing 9-5’s main() method first creates a Person object from the nested Person
class. It then creates a Gson object and invokes this object’s String toJson(Object src)
method to serialize the Person object into its equivalent JSON string representation,
which toJson(Object) returns.

Compile Listing 9-5 and run the resulting application. You should observe the
following output:

"name":"Jane Doe","age":59}

If you prefer to write the JSON object to a file, a string buffer, or some other java.
lang.Appendable, you can call void toJson(Object src, Appendable writer) to
accomplish this task. This toJson() variant sends its output to the specified writer, as
demonstrated in Listing 9-6.

Listing 9-6. Creating a JSON Object from a Java Object and Writing the JSON
Object to a File

import java.io.FileWriter;
import java.io.IOException;

import com.google.gson.Gson;

public class GsonDemo

{

static class Student

{

259

http://docs.oracle.com/javase/6/docs/api/java/lang/String.html?is-external=true
http://docs.oracle.com/javase/6/docs/api/java/lang/Object.html?is-external=true

CHAPTER9 PARSING AND CREATING JSON OBJECTS WITH GSON

String name;
int id;
int[] grades;

Student(String name, int id, int... grades)

{

this.name = name;
this.id = id;
this.grades = grades;

}

public static void main(String[] args) throws IOException

{

Student s = new Student("John Doe", 820787, 89, 78,

97, 65);

Gson gson = new Gson();

FileWriter fw = new FileWriter("student.json");
gson.toJson(s, fw);

fw.close();

Listing 9-6’s main() method first creates a Student object from the nested Student
class. It then creates Gson and java.io.FileWriter objects and invokes the Gson object’s
toJson(Object, Appendable) method to serialize the Student object into its equivalent
JSON string representation and write the result to student. json. The file writer is then
closed so that buffered content can be written to the file (you could specify fw.flush();
instead).

If you run this application, you won’t observe any output. However, you should
observe a student. json file with the following content:

"name":"John Doe","id":820787,"grades":[89,78,97,65]}

Note void toJson(Object src, Appendable writer) throws the
unchecked com.google.gson.JsonIOException when an /O error arises.

260

http://docs.oracle.com/javase/6/docs/api/java/lang/Object.html?is-external=true

CHAPTER9 PARSING AND CREATING JSON OBJECTS WITH GSON

Customized JSON Object Creation

The previous gson.toJson(p) and gson.toJson(s, fw) method calls rely on Gson'’s
default serialization mechanism to create JSON objects. You will often encounter
scenarios where you need to create JSON objects from Java objects whose classes don’t
have the same structure as the JSON objects to be created. You can perform this creation
with a custom serializer, which controls how Java objects map to JSON objects.

The com.google.gson.JsonSerializer<T> interface describes a custom serializer.
The argument passed to T identifies the type for which the serializer is being used.
For example, you might pass Person to T when needing to create JSON objects with a
somewhat different structure.

JsonSerializer declares a single method for handling the serialization (JSON object
creation):

JsonElement serialize(T src, Type typeOfSrc,
JsonSerializationContext context)

serialize() is a callback method that Gson calls during serialization. This method is
called with the following arguments:

o srcidentifies the Java object that needs to be serialized.

o typeOfSrc identifies the actual type of the Java object, specified by
s1C, to be serialized.

o context identifies a context in which to perform the serialization. (I'll
have more to say about contexts later.)

After creating a JsonSerializer object, you need to register it with Gson. Accomplish
this task by calling the following GsonBuilder method:

GsonBuilder registerTypeAdapter(Type type, Object typeAdapter)

The object passed to type identifies the type of the serializer and the object passed
to typeAdapter identifies the serializer. Because registerTypeAdapter(Type, Object)
returns a GsonBuilder object, you can only use this method in a GsonBuilder context.

To demonstrate customized JSON object creation, consider the Book class that’s
presented in Listing 9-7.

261

CHAPTER9 PARSING AND CREATING JSON OBJECTS WITH GSON

Listing 9-7. Describing a Book as a Title, List of Authors, and ISBN Numbers

public class Book

{
private String title;
private String[] authors;
private String isbnio0;
private String isbni3;

public Book(String title, String[] authors,
String isbn10, String isbni13)

this.title = title;
this.authors = authors;
this.isbn10 = isbnio0;
this.isbn13 = isbni3;

}

public String getTitle()
{

return title;

}

public String[] getAuthors()
{

return authors;

}

public String getIsbn10()
{

return isbnio;

}

public String getIsbni3()
{

return isbni3;

262

CHAPTER9 PARSING AND CREATING JSON OBJECTS WITH GSON

Continuing, suppose that Book objects are to be serialized to JSON objects that have
the following format:

{
"title": title
"lead-author": authoro
"other-authors": [authori, author2, ...]
"isbn-10": isbni0
"isbn-13": isbni3
}

You cannot use default serialization because the Book class doesn’t declare lead-author,
other-authors, isbn-10, and isbn-13 fields. In any case, default serialization creates
JSON property names that match a Java class’s field names (and the hyphen character is
illegal for Java identifiers). To prove that you cannot obtain the desired JSON object with
default serialization, suppose you attempt to execute the following code fragment:

Book book =
new Book("PHP and MySQL Web Development, " +
"Second Edition",
new String[] { "Luke Welling",
"Laura Thomson" },

"067232525X", "075-2063325254");

Gson gson = new Gson();

System.out.println(gson.toJson(book));

This code fragment generates the following output:

{"title":"PHP and MySQL Web Development, Second Edition","authors":["Luke

Welling","Laura Thomson"],"isbn10":"067232525X","isbn13":"075-2063325254"}

The output doesn’t match the expected JSON object. However, you can fix this
problem by introducing the following custom serializer:

class BookSerializer implements JsonSerializer<Book>

{

@verride
public JsonElement
serialize(Book src, Type typeOfSrc,

263

CHAPTER9 PARSING AND CREATING JSON OBJECTS WITH GSON

JsonSerializationContext context)

JsonObject jsonObject = new JsonObject();
jsonObject.addProperty("title", src.getTitle());
jsonObject.addProperty("lead-author”,
src.getAuthors()[0]);
JsonArray jsonOtherAuthors = new JsonArray();
for (int i = 1; i < src.getAuthors().length;
it++)

JsonPrimitive jsonAuthor =
new JsonPrimitive(src.getAuthors()[i]);
jsonOtherAuthors.add(jsonAuthor);
}
jsonObject.add("other-authors"”,
jsonOtherAuthors);
jsonObject.addProperty("isbn-10",
src.getIsbn10());
jsonObject.addProperty("isbn-13",
src.getIsbn13());
return jsonObject;

When the custom serializer is used with the previous Java Book object, serialize()
is called only once with the Book object being passed to src. Because a JSON object is
desired as the result of this method, serialize() first creates a JsonObject instance.

JsonObject declares several addProperty() methods for adding properties to the
JSON object that a JsonObject instance represents. serialize() invokes the void
addProperty(String property, String value) method to add the title, lead-author,
isbn-10, and isbn-13 properties.

The other-authors property is handled differently. First, serialize() creates a
JsonArray instance and populates it with all authors except for the first author. Then, it
invokes JsonObject’s void add(String property, JsonElement value) method to add
the JsonArray object to the JsonObject.

264

http://docs.oracle.com/javase/6/docs/api/java/lang/String.html?is-external=true
http://docs.oracle.com/javase/6/docs/api/java/lang/String.html?is-external=true
http://docs.oracle.com/javase/6/docs/api/java/lang/String.html?is-external=true

CHAPTER9 PARSING AND CREATING JSON OBJECTS WITH GSON

When serialization finishes, serialize() returns the created and populated
JsonObject.

The following code fragment shows how you would instantiate BookSerializer and
register it with a GsonBuilder instance, which is also used to obtain a Gson instance in
order to call toJson(), to create the desired JSON object via the book serializer:

GsonBuilder gsonBuilder = new GsonBuilder();
gsonBuilder.registerTypeAdapter(Book.class,

new BookSerializer());
Gson gson = gsonBuilder.create();

I've combined these code fragments into a working application. Listing 9-8 presents
the application’s source code.

Listing 9-8. Creating a JSON Object from a Java Object via a Custom Serializer
import java.lang.reflect.Type;

import com.google.gson.Gson;

import com.google.gson.GsonBuilder;

import com.google.gson.JsonArray;

import com.google.gson.JsonElement;

import com.google.gson.JsonObject;

import com.google.gson.JsonPrimitive;

import com.google.gson.JsonSerializationContext;
import com.google.gson.JsonSerializer;

import static java.lang.System.*;

public class GsonDemo

{

public static void main(String[] args)

{

class BookSerializer implements JsonSerializer<Book>
{
@Override
public JsonElement
serialize(Book src, Type typeOfSrc,
JsonSerializationContext context)

265

CHAPTER9 PARSING AND CREATING JSON OBJECTS WITH GSON

{
JsonObject jsonObject = new JsonObject();

jsonObject.addProperty("title", src.getTitle());
jsonObject.addProperty("lead-author",
src.getAuthors()[0]);
JsonArray jsonOtherAuthors = new JsonArray();
for (int i = 1; i < src.getAuthors().length;
it++)

JsonPrimitive jsonAuthor =
new JsonPrimitive(src.getAuthors()[i]);
jsonOtherAuthors.add(jsonAuthor);
}
jsonObject.add("other-authors”,
jsonOtherAuthors);
jsonObject.addProperty("isbn-10",
src.getIsbn10());
jsonObject.addProperty("isbn-13",
src.getIsbn13());
return jsonObject;

}

GsonBuilder gsonBuilder = new GsonBuilder();
gsonBuilder.registerTypeAdapter(Book.class,
new BookSerializer());
Gson gson = gsonBuilder.setPrettyPrinting().create();
Book book =
new Book("PHP and MySQL Web Development, " +

"Second Edition",

new String[] { "Luke Welling",

"Laura Thomson" },

"067232525X", "075-2063325254");
out.println(gson.toJson(book));

266

CHAPTER9 PARSING AND CREATING JSON OBJECTS WITH GSON

Compile Listings 9-7 and 9-8, and run the resulting application. You should observe
the following output, which has been pretty-printed (via the setPrettyPrinting()
method call on the GsonBuilder object) to make the output clearer:

{
"title": "PHP and MySQL Web Development, Second Edition",

"lead-author": "Luke Welling",
"other-authors": [

"Laura Thomson"
]J
"isbn-10": "067232525X",
"isbn-13": "075-2063325254"

Learning More About Gson

Now that you have a fairly good understanding of Gson library basics, you'll probably
want to learn about other features that this library offers. In this section, I introduce you
to annotation types, contexts, Gson'’s support for generics, and type adapters.

Note My coverage of additional Gson features isn’t exhaustive. Check out the
“Gson User Guide” (http://github.com/google/gson/blob/master/
UserGuide.md) to learn about topics that | haven’t covered, for example, instance
creators.

Annotation Types

Gson offers several annotation types (in the com.google.gson.annotations package) for
simplifying serialization and deserialization:

o Expose: Exposes the annotated field to or hides it from Gson's

serialization and/or deserialization mechanisms.

o JsonAdapter: Identifies the type adapter to use with a class or field.
(I'll discuss this annotation type later when I focus on type adapters.)

267

https://github.com/google/gson/blob/master/UserGuide.md
https://github.com/google/gson/blob/master/UserGuide.md

CHAPTER9 PARSING AND CREATING JSON OBJECTS WITH GSON

e SerializedName: Indicates that the annotated field or method should
be serialized to JSON with the provided name value as its name.

o Since: Identifies the starting version number for serializing a field or
type. If a Gson object is created with a version number that is less than
the value in the @5ince annotation, the annotated field/type will not
be serialized.

e Until: Identifies the ending version number for serializing a field or
type. If a Gson object is created with a version number that equals or
exceeds the value in the @Until annotation, the annotated field/type
will not be serialized.

Note According to the Gson documentation, Since and Until are useful for
managing the versioning of JSON classes in a web service context.

Exposing and Hiding Fields

By default, Gson will not serialize and deserialize fields that are marked transient
(or static). You can call GsonBuilder’s GsonBuilder excludeFieldsWithModifiers
(int... modifiers) method to change this behavior. Also, Gson lets you selectively
determine which non-transient fields to serialize and/or deserialize by annotating
these fields with instances of the Expose annotation type.

Expose offers the following elements for determining whether a field can be
serialized and whether it can be deserialized:

o serialize: When true, the field marked with this @Expose
annotation is serialized to JSON text; otherwise, the field isn’t
serialized. The default value is true.

o deserialize: When true, the field marked with this @Expose
annotation is deserialized from JSON text; otherwise, the field isn’t
deserialized. The default value is true.

The following code fragment shows how to use Expose and these elements so that a
field named someField will be serialized and not deserialized:

@Expose(serialize = true, deserialize = false)
int someField;

268

CHAPTER9 PARSING AND CREATING JSON OBJECTS WITH GSON

By default, Gson ignores Expose. You must configure Gson to expose/hide fields that
are annotated with @Expose by calling the following GsonBuilder method:

GsonBuilder excludeFieldsWithoutExposeAnnotation()

Create a GsonBuilder object and then call GsonBuilder’s
excludeFieldsWithoutExposeAnnotation() method followed by its Gson create()
method on this object to return a configured Gson object:

GsonBuilder gsonb = new GsonBuilder();
gsonb.excludeFieldsWithoutExposeAnnotation();
Gson gson = gsonb.create();

Listing 9-9 describes an application that demonstrates the Expose annotation type.

Listing 9-9. Exposing and Hiding Fields to and from Serialization and
Deserialization

import com.google.gson.Gson;
import com.google.gson.GsonBuilder;

import com.google.gson.annotations.Expose;
import static java.lang.System.*;

public class GsonDemo

{

static class SomeClass

{
transient int id;
@Expose(serialize = true, deserialize = true)
transient String password;

@Expose(serialize = false, deserialize = false)
int field1;

@Expose(serialize = false, deserialize = true)
int field2;

@Expose(serialize = true, deserialize = false)

int field3;

@Expose(serialize = true, deserialize = true)

int fields4;

269

CHAPTER9 PARSING AND CREATING JSON OBJECTS WITH GSON

@Expose(serialize = true, deserialize = true)
static int fields;
static int field6;

}

public static void main(String[] args)

{
SomeClass sc = new SomeClass();
sc.id = 1;
sc.password = "abc";
sc.field1l = 2;
sc.field2 = 3;
sc.field3 = 4;
sc.field4 = 5;
sc.field5 = 6;
sc.field6 = 7;
GsonBuilder gsonb = new GsonBuilder();
gsonb.excludeFieldsWithoutExposeAnnotation();
Gson gson = gsonb.create();
String json = gson.toJson(sc) ;
out.println(json);
SomeClass sc2 = gson.fromJson(json, SomeClass.class);
out.printf("id = %d%n", sc2.id);
out.printf("password = %s%n", sc2.password);
out.printf("field1l = %d%n", sc2.field1);
out.printf("field2 = %d%n", sc2.field2);
out.printf("field3 = %d%n", sc2.field3);
out.printf("fields = %d%n", sc2.fields);
out.printf("fields = %d%n", sc2.fields);
out.printf("field6 = %d%n", sc2.fieldé6);

}

270

CHAPTER9 PARSING AND CREATING JSON OBJECTS WITH GSON

Listing 9-9 demonstrates Expose with transient instance fields along with non-
transient instance fields and static fields.

Compile Listing 9-9 and run the resulting application. You should observe the
following output:

{"field3":4,"field4":5}
id=0

password = null

field1
field2
field3
fields
fields
field6

1 1} 1l 1 1}
~N o b1 O O O

The first output line shows that only field3 and field4 are serialized. The other
fields are not serialized.

The second and third lines show that the transient id and password fields receive
default values. transient fields are not serialized/deserialized.

The fourth, fifth, and sixth lines show that default 0 values are assigned to field1,
field2, and field3. For field1 and field3, deserialize is assigned false so only
default values can be assigned to these fields. Because field2 wasn’t serialized, the only
value that can be assigned to it is 0.

The seventh line shows that 5 is assigned to field4. This makes sense because the
serialize and deserialize elements are assigned true.

Because static fields aren’t serialized or deserialized, they keep their initial values,
as shown in the eighth and ninth lines (for fields5 and field6).

Note Even if Gson serialized static fields, field6 wouldn’t be serialized
because it isn’t annotated with @Expose, and also because of the gsonb.
excludeFieldsWithoutExposeAnnotation() method call, which causes
Gson to bypass fields not annotated with @Expose.

271

CHAPTER9 PARSING AND CREATING JSON OBJECTS WITH GSON

Changing Field Names

You don’t have to use JsonSerializer<T> and JsonDeserializer<T> when you only
want to change field and/or method names during serialization and deserialization;
for example, changing isbn10 to isbn-10 and isbn13 to isbn-13. You can use
SerializedName instead, as shown here:

@SerializedName("isbn-10")
String isbn1o0;
@SerializedName("isbn-13")
String isbni3;

The JSON object will present isbn-10 and isbn-13 property names, whereas the Java
class presents 1sbn10 and isbn13 field names.

Listing 9-10 describes an application that demonstrates the SerializedName
annotation type.

Listing 9-10. Changing Names

import com.google.gson.Gson;

import com.google.gson.annotations.SerializedName;
import static java.lang.System.*;

public class GsonDemo

{

static class Book

{
String title;
@SerializedName("isbn-10")
String isbnio0;
@SerializedName("isbn-13")
String isbni13;

}

272

CHAPTER9 PARSING AND CREATING JSON OBJECTS WITH GSON

public static void main(String[] args)

{
Book book = new Book();
book.title = "PHP and MySQOL Web Development, " +

"Second Edition";

book.isbn10 = "067232525X";
book.isbn13 = "075-2063325254";
Gson gson = new Gson();
String json = gson.toJson(book);
out.println(json);
Book book2 = gson.fromJson(json, Book.class);
out.printf("title = %s%n", book2.title);
out.printf("isbnio = %s%n", book2.isbn10);
out.printf("isbn13 = %s%n", book2.isbn13);

Compile Listing 9-10 (and Listing 9-7’s Book class) and run the resulting application.
You should observe the following output:

{"title":"PHP and MySQL Web Development, Second Edition",
"iSbn-lO":"067232525X","iSbn-13":"075-2063325254"}
title = PHP and MySQL Web Development, Second Edition

isbn10 = 067232525X
isbn13 = 075-2063325254
Versioning

Since and Until are useful for versioning your classes. Using these annotation types, you
can determine which fields and/or types are serialized to JSON objects.

Each @Since and @Until annotation receives a double precision floating-point value
as its argument. This value specifies a version number, as demonstrated here:

@Since(1.0) private String userID;
@Since(1.0) private String password;
@Until(1.1) private String emailAddress;

273

CHAPTER9 PARSING AND CREATING JSON OBJECTS WITH GSON

@Since(1.0) indicates that the field it annotates is to be serialized for all versions
greater than or equal to 1.0. Similarly, @ntil(1.1) indicates that the field it annotates is
to be serialized for all versions less than 1.1.

The version number that’s compared to the @Since or @Until version argument is
specified by the following GsonBuilder method:

GsonBuilder setVersion(double ignoreVersionsAfter)

As with Expose, you would first create a GsonBuilder object, then call this method
with the desired version number on that object, and finally call create() on the
GsonBuilder object to return a newly created Gson object:

GsonBuilder gsonb = new GsonBuilder();
gsonb.setVersion(2.0);
Gson gson = gsonb.create();

Listing 9-11 describes an application that demonstrates the Since and Until
annotation types.

Listing 9-11. Versioning a Class and Its Fields

import com.google.gson.Gson;
import com.google.gson.GsonBuilder;

import com.google.gson.annotations.Since;
import com.google.gson.annotations.Until;

import static java.lang.System.*;

public class GsonDemo
{
@Since(1.0)
@Until(2.5)
static class SomeClass
{
@Since(1.1)
@Until(1.5)
int field;

274

CHAPTER9 PARSING AND CREATING JSON OBJECTS WITH GSON

public static void main(String[] args)

{
SomeClass sc = new SomeClass();
sc.field = 1;
GsonBuilder gsonb = new GsonBuilder();
gsonb.setVersion(0.9);
Gson gson = gsonb.create();
out.printf("%s%n%n", gson.toJson(sc));
gsonb.setVersion(1.0);
gson = gsonb.create();
out.printf("%s%n%n", gson.toJson(sc));
gsonb.setVersion(1.1);
gson = gsonb.create();
out.printf("%s%n%n", gson.toJson(sc));
gsonb.setVersion(1.5);
gson = gsonb.create();
out.printf("%s%n%n", gson.toJson(sc));
gsonb.setVersion(2.5);
gson = gsonb.create();

out.printf("%s%n", gson.toJson(sc));

Listing 9-11 presents a nested SomeClass that will be serialized as long as the version
number passed to setVersion() ranges from 1.0 to almost 2.5. This class presents
a field named field that will be serialized as long as the version number passed to
setVersion() ranges from 1.1 to almost 1. 5.

Compile Listing 9-11 and run the resulting application. You should observe the
following output:

null
{}
{"field":1}
{}

null

275

CHAPTER9 PARSING AND CREATING JSON OBJECTS WITH GSON

Contexts

The serialize() and deserialize() methods that are declared by the
JsonSerializer and JsonDeserializer interfaces are called with com.google.gson.
JsonSerializationContext and com.google.gson.JsonDeserializationContext
objects, respectively, as their final arguments. These objects provide serialize() and
deserialize() methods for performing default serialization and default deserialization
on specific Java objects. You'll find them handy when working with nested Java objects
that don’t require special treatment.

Suppose you have the following Date and Employee classes:

class Date
{
int year;
int month;
int day;
Date(int year, int month, int day)
{
this.year = year;
this.month = month;
this.day = day;
}
}
class Employee
{
String name;
Date hireDate;
}

Now, suppose that you decide to create a custom serializer to add emp-name and
hire-date properties (instead of name and hireDate properties) to the resulting JSON
object. Because you're not changing the names or the order of Date’s fields during
serialization, you can leverage the context passed to JsonSerializer’s serialize()
method to handle that part of the serialization for you.

276

CHAPTER9 PARSING AND CREATING JSON OBJECTS WITH GSON

The following code fragment presents a serializer that serializes Employee objects
and their nested Date objects:

class EmployeeSerializer
implements JsonSerializer<Employee>

{
@verride
public JsonElement
serialize(Employee emp, Type typeOfSrc,
JsonSerializationContext context)
{
JsonObject jo = new JsonObject();
jo.addProperty("emp-name", emp.name);
jo.add("hire-date",
context.serialize(emp.hireDate));
return jo;
}
}

serialize() first creates a JsonObject to describe the serialized JSON object. It then
adds an emp-name property with the employee name as the value to this JsonObject.
Because default serialization can serialize the hireDate field, serialize() calls context.
serialize(emp.hireDate) to generate a property value. This value and the hire-date
property name are added to the JsonObject, which is returned from the method.

Listing 9-12 presents the source code to an application that demonstrates this
serialize() method.

Listing 9-12. Leveraging a Context to Serialize a Date
import java.lang.reflect.Type;

import com.google.gson.Gson;

import com.google.gson.GsonBuilder;

import com.google.gson.JsonElement;

import com.google.gson.JsonObject;

import com.google.gson.JsonSerializationContext;
import com.google.gson.JsonSerializer;

277

CHAPTER 9 PARSING AND CREATING JSON OBJECTS WITH GSON
import static java.lang.System.*;

public class GsonDemo

{
static class Date
{
int year;
int month;
int day;
Date(int year, int month, int day)
{
this.year = year;
this.month = month;
this.day = day;
}
}
static class Employee
{
String name;
Date hireDate;
}
public static void main(String[] args)
{

Employee e = new Employee();
e.name = "John Doe";
e.hireDate = new Date(1982, 10, 12);
GsonBuilder gb = new GsonBuilder();
class EmployeeSerializer

implements JsonSerializer<Employee>

@Override
public JsonElement
serialize(Employee emp, Type typeOfSrc,
JsonSerializationContext context)

278

CHAPTER9 PARSING AND CREATING JSON OBJECTS WITH GSON

{
JsonObject jo = new JsonObject();
jo.addProperty("emp-name", emp.name);
jo.add("hire-date",
context.serialize(emp.hireDate));
return jo;
}

}
gh.registerTypeAdapter(Employee.class,

new EmployeeSerializer());
Gson gson = gb.create();
out.printf("%shn%n", gson.tolson(e));

Compile Listing 9-12 and run the resulting application. You should observe the
following output (on one line):

{"emp-name":"John Doe","hire-date":{"year":1982,"month":10,"day":12}}

Generics Support

When you call String toJson(Object src) or void toJson(Object src, Appendable
writer), Gson calls src.getClass() to get src’s java.lang.Class object so that it can
reflectively learn about the fields to serialize. Similarly, when you call a deserialization
method such as <T> T fromJson(String json, Class<T> classOfT), Gson uses the
Class object passed to c1assOfT to help it reflectively build a result Java object. These
operations work properly for objects instantiated from nongeneric types. However, when
an object is created from a generic type, problems can occur because the generic type
information is lost due to type erasure. Consider the following code fragment:

List<String> weekdays =
Arrays.asList("Sun", "Mon", "Tue", "Wed", "Thu",
"Fri", "Sat");
String json = gson.toJson(weekdays);
System.out.printf("%s%n%n", json);
System.out.printf("%s¥%n¥%n",
gson.fromJson(json, weekdays.getClass()));

279

http://docs.oracle.com/javase/6/docs/api/java/lang/String.html?is-external=true
http://docs.oracle.com/javase/6/docs/api/java/lang/Object.html?is-external=true
http://docs.oracle.com/javase/6/docs/api/java/lang/String.html?is-external=true
http://docs.oracle.com/javase/6/docs/api/java/lang/Class.html?is-external=true

CHAPTER9 PARSING AND CREATING JSON OBJECTS WITH GSON

Variable weekdays is an object with generic type java.util.List<String>. The
toJson() method calls weekdays.getClass() and discovers, instead, List as the type.
However, it still successfully serializes weekdays to the following JSON object:

["Sun") "MOI’]", "Tue") "Wed", "Thu") "FIi", "Sat"]

Deserialization isn’t successful. When gson.fromJson(json, weekdays.
getClass()) is called, this method throws an instance of the java.lang.
ClassCastException class. Internally, it attempts to cast java.util.Arraylist to java.
util.Arrays$Arraylist, which doesn’t work.

The solution to this problem is to specify the correct List<String> parameterized
type (generic type instance) instead of the raw List type that’s returned from weekdays.
getClass(). You use the com.google.gson.reflect.TypeToken<T> class for this purpose

TypeToken<T> represents a generic type T and enables the retrieval of type
information at runtime, which Gson requires. You would instantiate TypeToken using an
expression such as the following:

Type listType = new TypeToken<List<String>>() {}.getType();

This idiom defines an anonymous local inner class whose inherited getType()
method returns the fully parameterized type as a java.lang.reflect.Type object. In
this code fragment, the following type is returned:

java.util.list<java.lang.String>

Pass the resulting Type object to the <T> T fromJson(String json, Type typeOfT)
method, as follows:

gson.fromJson(json, listType)

This method call parses and returns the JSON object as a List<String>.
You might want to output the result using an expression such as the following:

System.out.printf("%s%n%n", gson.fromJson(json, listType));

However, you would receive a thrown ClassCastException stating that you cannot
castArraylist to java.lang.Object[] instead of observing output. The solution to the
problem is to introduce a cast to List, as follows:

System.out.printf("%s¥%n%n",
(List) gson.fromJson(json, listType));

280

http://docs.oracle.com/javase/6/docs/api/java/lang/String.html?is-external=true
http://docs.oracle.com/javase/6/docs/api/java/lang/reflect/Type.html?is-external=true

CHAPTER9 PARSING AND CREATING JSON OBJECTS WITH GSON

After making this change, you would observe the following output:
[Sun, Mon, Tue, Wed, Thu, Fri, Sat]

Listing 9-13 presents the source code to an application that demonstrates this
problem along with other generic-oriented serialization/deserialization problems, and
how to solve them.

Listing 9-13. Serializing and Deserializing Objects Based on Generic Types
import java.lang.reflect.Type;

import java.util.Arraylist;
import java.util.list;
import java.util.Map;
import java.util.HashMap;

import com.google.gson.Gson;
import com.google.gson.reflect.TypeToken;

import java.util.Arrays;
import java.util.Llist;

import static java.lang.System.*;

public class GsonDemo

{
static
class Vehicle<T>
{
T vehicle;
T get()
{
return vehicle;
}
void set(T vehicle)
{
this.vehicle = vehicle;
}

281

CHAPTER9 PARSING AND CREATING JSON OBJECTS WITH GSON

@Override
public String toString()
{
out.printf("Class of vehicle: %s%n",
vehicle.getClass());
return "Vehicle: " + vehicle.toString();
}
}
static

class Truck

{
String make;
String model;
Truck(String make, String model)
{
this.make = make;
this.model = model;
}
@0verride
public String toString()
{
return "Make: " + make + " Model: " + model;
}
}

public static void main(String[] args)

{

Gson gson = new Gson();
/...

out.printf("PART 1%n");
out.printf("------ %Bn%n");

282

CHAPTER9 PARSING AND CREATING JSON OBJECTS WITH GSON

List<String> weekdays =

Arrays.asList("Sun", "Mon", "Tue", "Wed", "Thu",

"Fri", "Sat");

String json = gson.toJson(weekdays);
out.printf("%s¥%n%n", json);
try
{

out.printf("%shn%n",

gson.fromJson(json,
weekdays.getClass()));

}
catch (ClassCastException cce)
{
cce.printStackTrace();
out.println();
}

Type listType =
new TypeToken<List<String>>() {}.getType();
out.printf("Type = %shn%n", listType);

try
{
out.printf("%skn%n", gson.fromJson(json,
listType));
}
catch (ClassCastException cce)
{
cce.printStackTrace();
out.println();
}
out.printf("%s%n%n", (List) gson.fromJson(json,
listType));
/...

out.printf("PART 2%n");
out.printf("------ %nk%n™);

283

CHAPTER9 PARSING AND CREATING JSON OBJECTS WITH GSON

Truck truck = new Truck("Ford", "F150");
Vehicle<Truck> vehicle = new Vehicle<>();
vehicle.set(truck);

json = gson.toJson(vehicle);
out.printf("%s¥%n%n", json);
out.printf("%shn%n",
gson.fromJson(json, vehicle.getClass()));

/1 ...

out.printf("PART 3%n");
out.printf("------ %n%n");

Map<String, String> map =
new HashMap<String, String>()

put("key", "value");
}
};
out.printf("Map = %shn%n", map);
out.printf("%s%n%n", gson.toJson(map));
out.printf("%s%n%n", gson.fromJson(gson.toJson(map),
map.getClass()));

/7 ...

out.printf("PART 4%n");
out.printf("------ %Bn%n™);

Type vehicleType =
new TypeToken<Vehicle<Truck>>() {}.getType();
json = gson.toJson(vehicle, vehicleType);
out.printf("%s%n%n", json);
out.printf("%shn%n", (Vehicle)
gson.fromJson(json,
vehicleType));

284

CHAPTER9 PARSING AND CREATING JSON OBJECTS WITH GSON

Type mapType =
new TypeToken<Map<String,String>>() {}.getType();
out.printf("%s%n%n", gson.toJson(map, mapType));
out.printf("%s%n%n", (Map)
gson.fromJson(gson.toJson(map, mapType),

mapType)) ;

Listing 9-13’s GsonDemo class is organized into nested Vehicle and Truck static
classes followed by the main() entry-point method. This method is organized into four
sections that demonstrate problems and solutions. Here is the output, which I'll refer to
during my discussion of main():

[llsunll) IIMonll, llTuell) Ilwedll, llThull) IIFrill, llsatll]

java.lang.ClassCastException: Cannot cast java.util.ArraylList to java.util.
Arrays$Arraylist

at java.base/java.lang.Class.cast(Class.java:3606)

at com.google.gson.Gson.fromJson(Gson.java:814)

at GsonDemo.main(GsonDemo.java:79)

Type = java.util.list<java.lang.String>

java.lang.ClassCastException: class java.util.ArraylList cannot be cast to
class [Ljava.lang.Object; (java.util.ArraylList and [Ljava.lang.Object; are
in module java.base of loader 'bootstrap')

at GsonDemo.main(GsonDemo.java:92)

[Sun, Mon, Tue, Wed, Thu, Fri, Sat]

{"vehicle":{"make":"Ford", "model":"F150"}}

Class of vehicle: class com.google.gson.internal.LinkedTreeMap
Vehicle: {make=Ford, model=F150}

285

CHAPTER9 PARSING AND CREATING JSON OBJECTS WITH GSON

{"vehicle":{"make":"Ford", "model":"F150"}}

Class of vehicle: class GsonDemo$Truck
Vehicle: Make: Ford Model: F150

{"key":"value"}
{key=value}

Part 1 focuses on the previously discussed List<String> example. The output shows
successful serialization via toJson(), followed by unsuccessful deserialization via gson.
fromJson(json, weekdays.getClass()), followed by the type stored in the first created
TypeToken instance, followed by successful deserialization with a cast problem, followed
by successful deserialization with no cast problem.

Part 2 focuses on the serialization and deserialization of a Vehicle<Truck>
object named vehicle. This generic object is successfully serialized via a gson.
toJson(vehicle) call. Although you can often pass generic objects to toJson(Object
src) successfully, this method occasionally fails, as I will show. A subsequent call
to gson.fromJson(json, vehicle.getClass()) attempts to deserialize the output,
but there is a problem: you observe Vehicle: {make=Ford, model=F150} instead of
Vehicle: Make: Ford Model: F150.Because Vehicle is specified instead of the full
Vehicle<Truck> generic type, the vehicle field in the Vehicle class is assigned com.
google.gson.internal.LlinkedTreeMap instead of Truck as its type.

Part 3 attempts to serialize and deserialize a map based on an anonymous subclass
of java.util.HashMap. The first null value shows that toJson() wasn’t successful:
toJson()’s internal map.getClass() call returns a GsonDemo$2 reference, which offers no
insight into the object to be serialized. The second null value results from passing null
to json in fromJson(String json, Class<T> classOfT).

286

http://docs.oracle.com/javase/6/docs/api/java/lang/String.html?is-external=true
http://docs.oracle.com/javase/6/docs/api/java/lang/Class.html?is-external=true

CHAPTER9 PARSING AND CREATING JSON OBJECTS WITH GSON

Part 4 shows how to fix the problems in Parts 2 and 3. This section creates
TypeToken<Vehicle<Truck>> and TypeToken<Map<String,String>> objects to store
the Vehicle<Truck> and Map<String, String> parameterized types. These objects
are then passed to the type parameter of the String toJson(Object src, Type
type0fSrc) and <T> T fromJson(String json, Type typeOfT) methods. (Although
gson.toJson(vehicle, vehicleType) isn’t necessary because serialization works with
gson.toJson(vehicle), you should get into the habit of passing a Type object based on a
TypeToken instance as a second argument, just to be safe.)

Note Each of toJson(Object src),<T> T fromJson(String json,
Class<T> classOfT), and similar methods works properly when any of the
fields of the specified object (src and object derived from c1assOfT) are based on
generic types. The only stipulation is that the specified object should not be generic.

Type Adapters

Previously in this chapter, I showed you how to use JsonSerializer and
JsonDeserializer to (respectively) serialize Java objects to JSON strings and vice versa.
These interfaces simplify the translation between Java objects and JSON strings, but add
an intermediate layer of processing.

The intermediate layer consists of code that converts Java objects and JSON strings
to JsonElements. This conversion mitigates the risk of parsing or creating invalid
JSON strings, but does take time that can impact performance. You can avoid the
intermediate layer and create more efficient code by working with the com.google.
gson.TypeAdapter<T> class, where T identifies the Java class serialization source and
deserialization target.

Note You should prefer the more efficient TypeAdapter to the less efficient
JsonSerializer and JsonDeserializer. In fact, Gson uses an internal
TypeAdapter implementation to handle conversions between Java objects and
JSON strings.

287

http://docs.oracle.com/javase/6/docs/api/java/lang/reflect/Type.html?is-external=true
http://docs.oracle.com/javase/6/docs/api/java/lang/String.html?is-external=true
http://docs.oracle.com/javase/6/docs/api/java/lang/reflect/Type.html?is-external=true
http://docs.oracle.com/javase/6/docs/api/java/lang/String.html?is-external=true
http://docs.oracle.com/javase/6/docs/api/java/lang/Class.html?is-external=true

CHAPTER9 PARSING AND CREATING JSON OBJECTS WITH GSON

TypeAdapter is an abstract class that declares several concrete methods along with
the following pair of abstract methods:

e T read(JsonReader in):Read aJSON value (array, object, string,
number, Boolean, or null) and convert it to a Java object, which is
returned. The return value may be null.

e void write(JsonWriter out, T value):Write a JSON value (array,
object, string, number, Boolean, or null), which is passed to value.

Each method throws java.io.IOException when an /O problem occurs.

The read() and write() methods read a sequence of JSON fokens and write a
sequence of JSON tokens, respectively. For read(), the source of these tokens is an
instance of the concrete com.google.gson.stream.JsonReader class. Forwrite(), the
destination of these tokens is the concrete com.google.gson.stream.JsonWriter class.
Tokens are described by the com.google.gson.stream.JsonToken enum (such as BEGIN
ARRAY for open square bracket). They are read and written by calling JsonReader and
JsonWriter methods, such as the following:

e void beginObject(): This JsonReader method consumes the next
token from the JSON stream and asserts that it’s the beginning of
anew object. A companion void endObject() method consumes
the next token from the JSON stream and asserts that it’s the end of
the current object. Either method throws IOException when an I/0
problem occurs.

o JsonWriter name(String name): This JsonWriter method encodes
the property name, which cannot be null. IOException is thrown
when an I/O problem occurs.

After creating a TypeAdapter subclass, you instantiate it and register the instance
with Gson by calling the GsonBuilder registerTypeAdapter(Type type, Object
typeAdapter) method, which I previously presented. The object that’s passed to type
represents the class whose objects are serialized or deserialized. The object that’s passed
to typeAdapter is the type adapter instance.

Listing 9-14 presents the source code to an application that demonstrates a type
adapter.

288

CHAPTER9 PARSING AND CREATING JSON OBJECTS WITH GSON

Listing 9-14. Serializing and Deserializing a Country Object via a Type Adapter
import java.io.IOException;

import java.util.Arraylist;
import java.util.Llist;

import com.google.gson.Gson;
import com.google.gson.GsonBuilder;
import com.google.gson.TypeAdapter;

import com.google.gson.stream.JsonReader;
import com.google.gson.stream.JsonhWriter;

import static java.lang.System.*;

public class GsonDemo

{
static
class Country
{
String name;
int population;
String[] cities;
Country() {}
Country(String name, int population, String... cities)
{
this.name = name;
this.population = population;
this.cities = cities;
}
}
public static void main(String[] args)
{

class CountryAdapter extends TypeAdapter<Country>
{

289

CHAPTER9 PARSING AND CREATING JSON OBJECTS WITH GSON

@0verride
public Country read(JsonReader in)
throws IOException

Country c = new Country();
List<String> cities = new ArraylList<>();
in.beginObject();
while (in.hasNext())

switch (in.nextName())

{

case "name":
c.name = in.nextString();
break;

case "population":
c.population = in.nextInt();
break;

case "cities":
in.beginArray();
while (in.hasNext())
cities.add(in.nextString());
in.endArray();
c.cities =
cities.toArray(new String[o0]);
}
in.endObject();
return c;

}

@0verride
public void write(JsonWriter out, Country c)
throws IOException

out.beginObject();
out.name("name").value(c.name);
out.name("population").value(c.population);

290

CHAPTER9 PARSING AND CREATING JSON OBJECTS WITH GSON

out.name("cities");

out.beginArray();

for (int i = 0; i < c.cities.length; i++)
out.value(c.cities[i]);

out.endArray();
out.endObject();
}
}
Gson gson =

new GsonBuilder().
registerTypeAdapter(Country.class,
new CountryAdapter()).
create();

Country c =

new Country("England”, 53012456 /* 2011 census */,

"London", "Birmingham", "Cambridge");

String json = gson.toJson(c);
out.println(json);
c = gson.fromJson(json, c.getClass());
out.printf("Name = %s%n", c.name);
out.printf("Population = %d%n", c.population);
out.print("Cities = ");
for (String city: c.cities)

out.print(city + " ");
out.println();

Listing 9-14’s GsonDemo class nests a Country class (which describes a country as a

name, a population count, and an array of city names) and also presents a main() entry-

point method.

The main() method first declares a local CountryAdapter class that extends

TypeAdapter<Country>. CountryAdapter overrides the read() and write() methods to

handle the serialization and deserialization tasks.

291

CHAPTER9 PARSING AND CREATING JSON OBJECTS WITH GSON

The read() method first creates a new Country object, which will store the values
being read from the JSON object being deserialized (and accessed from the JsonReader
argument).

After creating a list to store the array of city names that it will be reading, read() calls
beginObject() to assert that the next token read from the token stream is the beginning
of aJSON object.

At this point, read() enters a while loop. This loop continues while JsonReader’s
boolean hasNext() method returns true: there is another object element.

Each while loop iteration executes a switch statement that calls JsonReader’s
String nextName() method to return the next token, which is a property name in the
JSON object. It then compares the token to the three possibilities, name, population, or
cities, and executes the associated code to retrieve the property value and assign the
value to the appropriate field in the previously created Country object.

If the property is name, JsonReader’s String nextString() method is called to
return the string value of the next token. If the property is population, JsonReader’s int
nextInt() method is called to return the token’s int value.

Processing the cities property is more involved because its value is an array:

o JsonReader’svoid beginArray() method is called to signify that
a new array has been detected and to consume the open square
bracket token.

e Awhileloop is entered to repeatedly obtain the next array string
value and add it to the previously created cities list.

o JsonReader’svoid endArray() method is called to signify the end of
the current array and to consume the close square bracket token.

o The cities listis converted to a Java array, which is assigned to the
Country object’s cities member.

After the outer while loop ends, read() calls endObject () to assert that the next
token read from the token stream is the end of the current JSON object, and then returns
the Country object.

The write() method is somewhat similar to read(). It calls JsonWriter’s
JsonWriter name(String name) method to encode the property name specified by name
to a JSON property name. Also, it calls JsonWriter’s JsonWriter value(long value)
and JsonWriter value(String value) methods to encode value as a JSON number or
aJSON string.

292

CHAPTER9 PARSING AND CREATING JSON OBJECTS WITH GSON

The main() method proceeds to create a Gson object from a GsonBuilder object,
which executes registerTypeAdapter (Country.class, new CountryAdapter()) to
instantiate and register CountryAdapter with the Gson object that will be returned.
Country.class indicates that Country objects will be serialized and deserialized.

Finally, a Country object is created, serialized to a string, and deserialized to a new
Country object.

Compile Listing 9-14 and run the resulting application. You should observe the
following output:

"name":"England”, "population”:53012456,"cities":["London", "Birmingham",
"Cambridge"]}
Name = England
Population = 53012456
Cities = London Birmingham Cambridge

Conveniently Associating Type Adapters with Classes and Fields

The JsonAdapter annotation type is used with a TypeAdapter Class object argument to
associate the TypeAdapter instance to use with a class or field. After doing so, you don’t
need to register the TypeAdapter with Gson, which makes for a bit less coding.

Listing 9-15 refactors Listing 9-14 to demonstrate JsonAdapter.

Listing 9-15. Serializing and Deserializing a Country Object Annotated with a
Type Adapter

import java.io.IOException;

import java.util.Arraylist;
import java.util.Llist;

import com.google.gson.Gson;
import com.google.gson.TypeAdapter;

import com.google.gson.annotations.JsonAdapter;

import com.google.gson.stream.JsonReader;
import com.google.gson.stream.JsonWriter;

import static java.lang.System.*;

293

CHAPTER9 PARSING AND CREATING JSON OBJECTS WITH GSON

public class GsonDemo

{
@JsonAdapter(CountryAdapter.class)
static
class Country
{
String name;
int population;
String[] cities;
Country() {}
Country(String name, int population, String...
{
this.name = name;
this.population = population;
this.cities = cities;
}
}
static

class CountryAdapter extends TypeAdapter<Country>

{

@0verride

cities)

public Country read(JsonReader in) throws IOException

{
out.println("read() called");

Country ¢ = new Country();
List<String> cities = new ArraylList<>();
in.beginObject();
while (in.hasNext())

switch (in.nextName())

{

case "name":
c.name = in.nextString();
break;

294

CHAPTER9 PARSING AND CREATING JSON OBJECTS WITH GSON

case "population":
c.population = in.nextInt();
break;

case "cities":
in.beginArray();
while (in.hasNext())
cities.add(in.nextString());

in.endArray();
c.cities = cities.toArray(new String[o0]) ;
}
in.endObject();
return c;
}
@Override

public void write(JsonWriter out, Country c)
throws IOException

System.out.println("write() called");

out.beginObject();

out.name("name").value(c.name);

out.name("population").value(c.population);

out.name("cities");

out.beginArray();

for (int i = 0; i < c.cities.length; i++)
out.value(c.cities[i]);

out.endArray();
out.endObject();
}
}
public static void main(String[] args)
{

Gson gson = new Gson();
Country c
new Country("England", 53012456 /* 2011 census */,

295

CHAPTER9 PARSING AND CREATING JSON OBJECTS WITH GSON

"London", "Birmingham", "Cambridge");

String json = gson.toJson(c);
out.println(json);
c = gson.fromJson(json, c.getClass());
out.printf("Name = %s%n", c.name);
out.printf("Population = %d%n", c.population);
out.print("Cities = ");
for (String city: c.cities)

out.print(city + " ");
out.println();

In Listing 9-15, I've bolded the two essential differences from Listing 9-14: the
Country type adapter class is annotated @IsonAdapter (CountryAdapter.class), and
Gson gson = new Gson(); is specified instead of using a GsonBuilder object and its
create() method.

Compile Listing 9-15 and run the resulting application. You should observe the
following output:

write() called
"name":"England”, "population”:53012456,"cities":["London", "Birmingham",
"Cambridge"]}
read() called
Name = England
Population = 53012456
Cities = London Birmingham Cambridge

The read() called andwrite() called output lines prove that Gson uses the
custom type adapter instead of its internal type adapter.

296

CHAPTER9 PARSING AND CREATING JSON OBJECTS WITH GSON

EXERCISES

The following exercises are designed to test your understanding of Chapter 9’s content:

1.

> wLn

10.
11.

12.

13.

14.

15.

16.

Define Gson.
Identify and describe Gson’s packages.
What are the two ways to obtain a Gson object?

Identify the types for which Gson provides default serialization and
deserialization.

How would you enable pretty-printing?

True or false: By default, Gson excludes transient or static fields from
consideration for serialization and deserialization.

Once you have a Gson object, what methods can you call to convert between
JSON and Java objects?

How do you use Gson to customize JSON object parsing?
Describe the JsonElement class.
Identify the JsonElement subclasses.

What GsonBuilder method do you call to register a serializer or deserializer
with a Gson object?

What method does JsonSerializer provide to serialize a Java object to a
JSON object?

What annotation types does Gson provide to simplify serialization and
deserialization?

True or false: To use Expose, it’s enough to annotate a field, as in
@Expose(serialize = true, deserialize = false).

What do JsonSerializationContext and
JsonDeserializationContext provide?

True or false: You can call <T> T fromJson(String json, Class<T>
classOfT) to deserialize any kind of object.

297

http://docs.oracle.com/javase/6/docs/api/java/lang/String.html?is-external=true
http://docs.oracle.com/javase/6/docs/api/java/lang/Class.html?is-external=true

CHAPTER9 PARSING AND CREATING JSON OBJECTS WITH GSON

17. Why should you prefer TypeAdapter to JsonSerializer and
JsonDeserializer?

18. Modify Listing 9-9 so that the static field named fields is also serialized
and deserialized.

Summary

Gson is a small Java-based library for parsing and creating JSON objects. Google
developed Gson for its own projects, but later made Gson publicly available, starting
with version 1.0.

Gson parses JSON objects by deserializing JSON objects into Java objects. Similarly,
it creates JSON objects by serializing Java objects into JSON objects. Gson relies on Java’s
Reflection API to assist with these tasks.

Gson consists of more than 30 classes and interfaces distributed among four
packages: com.google.gson (provides access to Gson, the main class), com.google.
gson.annotations (provides annotation types for use with Gson), com.google.gson.
reflect (provides a utility class for obtaining type information from a generic type), and
com.google.gson.stream (provides utility classes for reading and writing JSON-encoded
values).

The Gson class handles the conversion between JSON and Java objects. You can
instantiate this class by using the Gson() constructor, or you can obtain a Gson instance
by working with the GsonBuilder class.

Once you have a Gson object, you can call various fromJson() and toJson()
methods to convert between JSON and Java objects. These methods rely on Gson’s
default deserialization and serialization mechanisms, respectively, but you can
customize deserialization and serialization by working with the JsonDeserializer<T>
and JsonSerializer<T> interfaces.

Gson offers additional useful features, including annotation types (Expose,
JsonAdapter, SerializedName, Since, and Until) for simplifying serialization and
deserialization, contexts for automating the serialization of nested objects and arrays,
support for generics, and type adapters.

Chapter 10 introduces JsonPath for extracting JSON values.

298

CHAPTER 10

Extracting JSON Values
with JsonPath

XPath is used to extract values from XML documents. JsonPath performs this task for
JSON documents. Chapter 10 introduces you to JsonPath.

Note If you're unfamiliar with XPath, | recommend that you read Chapter 5
before reading this chapter. JsonPath was derived from XPath.

What Is JsonPath?

JsonPath is a declarative query language (also known as a path-expression-syntax) for
selecting and extracting a JSON document’s property values. For example, you can use
JsonPath to locate "John" in {"firstName": "John"} and return this value. JsonPath is
based on XPath 1.0.

JsonPath was created by Stefan Goessner (http://goessner.net). Goessner also
created JavaScript-based and PHP-based implementations of JsonPath. For complete
documentation, check out Goessner’s website (http://goessner.net/articles/
JsonPath/index.html).

Swedish software company Jayway (www. jayway . com) subsequently adapted
JsonPath to Java. Their Java version of JsonPath is the focus of this chapter. You will find
complete documentation on Jayway’s implementation of JsonPath at http://github.
com/jayway/JsonPath.

299
© Jeff Friesen 2019

J. Friesen, Java XML and JSON, https://doi.org/10.1007/978-1-4842-4330-5_10

http://goessner.net
http://goessner.net/articles/JsonPath/index.html
http://goessner.net/articles/JsonPath/index.html
http://www.jayway.com
http://github.com/jayway/JsonPath
http://github.com/jayway/JsonPath

CHAPTER 10 EXTRACTING JSON VALUES WITH JSONPATH

Learning the JsonPath Language

JsonPath is a simple language with various features that are similar to their XPath
counterparts. This language is used to construct path expressions.

A JsonPath expression begins with the dollar sign ($) character, which refers to the
root element of a query. The dollar sign is followed by a sequence of child elements,
which are separated via dot (.) notation or via square bracket ([]) notation. For
example, consider the following JSON object:

{
"firstName": "John",
"lastName": "Smith",
"age": 25,
"address":
{
"streetAddress": "21 2nd Street",
"city": "New York",
"state": "NY",
"postalCode": "10021-3100"
})
"phoneNumbers":
[
{
"type": "home",
"number": "212 555-1234"
b
{
"type": "office",
"number": "646 555-4567"
}
]
}

300

CHAPTER 10 EXTRACTING JSON VALUES WITH JSONPATH

The following dot notation-based JsonPath expression extracts, from the previous
anonymous JSON object, the phone number (212 555-1234) that’s assigned to the
number field in the anonymous JSON object, which is assigned to the first element in the
phoneNumbers array:

$.phoneNumbers[0] . number

The $ character represents the anonymous root JSON object. The leftmost dot
character separates the object root from the phoneNumbers property name. The [0]
syntax identifies the first element in the array assigned to phoneNumbers.

The first array element stores an anonymous object consisting of "type": "home"
and "number": "212 555-1234" properties. The rightmost dot character accesses this
object’s number child property name, which is assigned the value 212 555-1234. This
value is returned from the expression.

Alternatively, I could specify the following square bracket notation to extract the
same phone number:

$['phoneNumbers'][0]['number"]

The Jayway documentation identifies $ as an operator and also identifies several
other basic operators. Table 10-1 describes these operators.

301

CHAPTER 10 EXTRACTING JSON VALUES WITH JSONPATH

Table 10-1. JsonPath Basic Operators

Operator Description

$ The root element to query. This operator starts all path expressions.
It's equivalent to XPath’s / symbol.

@ The current node being processed by a filter predicate. It's equivalent
to XPath’s . symbol.

* Wildcard. Available anywhere a name or numeric value is required.

Deep scan (also known as recursive descent). Available anywhere a
name is required. It’s equivalent to XPath’s // symbol.

.hame Dot-notated child. The dot is equivalent to XPath’s / symbol.

["name' (, "name')] Bracket-notated child or children.

[number (, number)] Array index or indexes.

[start: end] Array slice operator.

[? (expression) | Filter operator. The expression must evaluate to a Boolean value. In

other words, it’s a predicate.

The Jayway documentation also identifies several functions that can be invoked at
the tail end of a path—the input to a function is the output of the path expression; the
function output is dictated by the function itself. Table 10-2 describes these functions.

Table 10-2. JsonPath Functions

Function Description

min() Return the minimum value (as a double) in an array of numbers.

max () Return the maximum value (as a double) in an array of numbers.

avg() Return the average value (as a double) of an array of numbers.
stddev() Return the standard deviation value (as a double) of an array of numbers.
length() Return the length (as an int) of an array.

302

CHAPTER 10 EXTRACTING JSON VALUES WITH JSONPATH

Finally, the Jayway documentation identifies various operators for filters, which use
predicates (Boolean expressions) to restrict returned lists of items. Predicates can use the
filter operators in Table 10-3 to determine equality, match regular expressions, and test

for inclusion.

Table 10-3. JsonPath Filter Operators

Operator Description

== Return true when the left operand equals the right operand. Note that 1 is not equal
to "1 (i.e., number 1 and string 1 are two different things).

I= Return true when the left operand doesn’t equal the right operand.

< Return true when the left operand is less than the right operand.

<= Return true when the left operand is less than or equal to the right operand.

> Return true when the left operand is greater than the right operand.

>= Return true when the left operand is greater than or equal to the right operand.

="~ Return true when the left operand matches the regular expression specified by the
right operand; for example, [?(@.name =~ /foo.*?/i)].

in Return true when the left operand exists in the right operand; for example,
[?(@.grade in ['A", 'B'])].

nin Return true when the left operand doesn’t exist in the right operand.

subsetof Return true when the left operand (an array) is a subset of the right operand
(an array); for example, [?(@.sizes subsetof ['S', 'M', 'L'])].

size Return true when the size of the left operand (an array or string) matches the right
operand (an integer).

empty Return true when the left operand (an array or string) is empty and the right operand
is true, or return true when the left operand is not empty and the right operand is
false.

This table reveals @.name =~ /foo0.*?/1 and additional simple predicates. You can
create more complex predicates by using the logical AND operator (&&) and the logical
OR operator (| |). Consider the following example:

([?(@.color == 'blue')] || [?(@.color == "red")])

303

CHAPTER 10 EXTRACTING JSON VALUES WITH JSONPATH
You can also use the logical NEGATE operator (!) to negate a predicate:
[?2(!(@.price < 10 & @.category == 'fiction'))]

Within a predicate, you must enclose any string literals with single or double quotes,
which both examples demonstrate.

Obtaining and Using the JsonPath Library

As with Chapter 8’s mJson and Chapter 9’s Gson, you can obtain JsonPath from the
Central Maven Repository (http://search.maven.org).

Note If you're unfamiliar with Maven, think of it as a build tool for Java projects,
although Maven developers think of Maven as more than just a build tool—see
http://maven.apache.org/background/philosophy-of-maven.html.

If you're familiar with Maven, add the following XML fragment to the Project Object
Model (POM) files for your Maven project(s) that will be dependent on JsonPath, and
you will be good to go! (To learn about POM, check out http://maven.apache.org/pom.
html#What_is the POM.)

<dependency>
<groupId>com.jayway.jsonpath</groupId>
<artifactId>json-path</artifactId>
<version>2.4.0</version>

</dependency>

This XML fragment reveals 2.4.0 as the version of Jayway’s JsonPath library that I'm
using in this chapter.

Note It's common for Maven projects to be dependent on other projects. For
example, the mJson project (http://search.maven.org/artifact/org.
sharegov/mjson/1.4.0/bundle) that | discussed in Chapter 8 and the Gson
project (http://search.maven.org/artifact/com.google.code.gson/
gson/2.8.5/jar) that | discussed in Chapter 9 are dependent on JUnit (http://
en.wikipedia.org/wiki/JUnit). | didn’t mention or discuss downloading
JUnit in either chapter because this library isn’t required for normal use.

304

http://search.maven.org
http://maven.apache.org/background/philosophy-of-maven.html
http://maven.apache.org/pom.html#What_is_the_POM
http://maven.apache.org/pom.html#What_is_the_POM
http://search.maven.org/artifact/org.sharegov/mjson/1.4.0/bundle
http://search.maven.org/artifact/org.sharegov/mjson/1.4.0/bundle
http://search.maven.org/artifact/com.google.code.gson/gson/2.8.5/jar
http://search.maven.org/artifact/com.google.code.gson/gson/2.8.5/jar
http://en.wikipedia.org/wiki/JUnit
http://en.wikipedia.org/wiki/JUnit

CHAPTER 10 EXTRACTING JSON VALUES WITH JSONPATH

Because I'm not currently using Maven, I downloaded the JsonPath JAR file and all of
the JAR files on which JsonPath normally depends and then added all of these JAR files
to my CLASSPATH. The easiest way for me to accomplish the download task was to point
my browser to https://jar-download.com/artifacts/com.jayway.jsonpath/json-
path/2.4.0/source-code and click the “Download json-path (2.4.0)” button link.

After unarchiving the ZIP file, I discovered a jar files directory with the
following files:

e accessors-smart-1.2.jar
e asm-5.0.4.jar

e json-path-2.4.0.jar

e json-smart-2.3.jar

o slf4j-api-1.7.25.jar

Note Jayway JsonPath is licensed according to Apache License Version 2.0
(www.apache.org/licenses/).

For compiling Java source code that accesses JsonPath, only json-path-2.4.0.jar
needs to be included in the CLASSPATH:

javac -cp json-path-2.4.0.jar source file
For running applications that access JsonPath, I use the following command line:

java -cp accessors-smart-1.2.jar;asm-5.0.4.jar;json-path-2.4.0.jar;json-
smart-2.3.jar;slf4j-api-1.7.25.jar;. main classfile

These command lines assume that the JAR files are located in the current directory.
To facilitate working with the command lines, place them in a pair of batch files
on Windows platforms (substitute %1 for source file ormain classfile) or their
counterparts on other platforms.

Note JsonPath 2.4.0’s API reference is available online at www. javadoc.io/
doc/com. jayway.jsonpath/json-path/2.4.0.

305

https://jar-download.com/artifacts/com.jayway.jsonpath/json-path/2.4.0/source-code
https://jar-download.com/artifacts/com.jayway.jsonpath/json-path/2.4.0/source-code
http://www.apache.org/licenses/
http://www.javadoc.io/doc/com.jayway.jsonpath/json-path/2.4.0
http://www.javadoc.io/doc/com.jayway.jsonpath/json-path/2.4.0

CHAPTER 10 EXTRACTING JSON VALUES WITH JSONPATH

Exploring the JsonPath Library

The JsonPath library is organized into several packages. You will typically interact with
the com. jayway. jsonpath package and its types. In this section, I focus exclusively

on this package while showing you how to extract values from JSON objects and use
predicates to filter items.

Extracting Values from JSON Objects

The com. jayway. jsonpath package provides the JsonPath class as the entry point into
using the JsonPath library. Listing 10-1 introduces this class.

Listing 10-1. A First Taste of JsonPath

import java.util.HashMap;
import java.util.Llist;

import com.jayway.jsonpath.JsonPath;
import static java.lang.System.*;

public class JsonPathDemo

{

public static void main(String[] args)

{

String json =

+

\"store\":" +

+
" \"book\":" +
n [n +

+
\"category\": \"reference\"," +

! \"author\": \"Nigel Rees\"," +

" \"title\": \"Sayings of the Century\"," +
\"price\": 8.95" +

" 3,

+

306

CHAPTER 10 EXTRACTING JSON VALUES WITH JSONPATH

\"category\": \"fiction\"," +

" \"author\": \"Evelyn Waugh\"," +

" \"title\": \"Sword of Honour\"," +
" \"price\": 12.99" +

+

],II +
\"bicycle\":" +

+

" \"color\": \"red\"," +
" \"price\": 19.95" +

+

n n +

n } n ;

JsonPath path = JsonPath.compile("$.store.book[1]");
HashMap books = path.read(json);

out.println(books);

List<Object> authors =
JsonPath.read(json, "$.store.book[*].author");

out.println(authors);
String author =

JsonPath.read(json, "$.store.book[1].author");
out.println(author);

Listing 10-1 provides a JsonPathDemo class whose main() method uses the JsonPath
class to extract values from JSON objects. main() first declares a string-based JSON
object and assigns its reference to variable json. It then invokes the following static
JsonPath method to compile a JsonPath expression (to improve performance) and
return the compiled result as a JsonPath object:

JsonPath compile(String jsonPath, Predicate... filters)

The Predicate varargs list lets you specify an array of filter predicates to match
filter predicate place holders (identified as ? characters) in the jsonPath string. I'll
demonstrate Predicate and related types later in this chapter.

307

CHAPTER 10 EXTRACTING JSON VALUES WITH JSONPATH

After compiling the $.store.book[1] JsonPath expression, which identifies the
anonymous object in the second element of the array assigned to the book property of
the anonymous object assigned to the store property, main() passes this expression to
the following JsonPath method:

<T> T read(String json)

This generic method is called on the previously compiled JsonPath instance. It
receives the string-based JSON object (assigned to json) as its argument and applies the
JsonPath expression in the compiled JsonPath instance to this argument. The result is
the JSON object identified by $.store.book[1].

The read() method is generic because it can return one of several types. In this
example, it returns an instance of the java.util.LinkedHashMap class (a subclass of
java.util.Hashmap) for storing JSON object property names and their values.

When you intend to reuse JsonPath expressions, it’s good to compile them, which
improves performance. Because I don’t reuse $.store.book[1], I could have used one
of JsonPath’s static read() methods instead. For example, main() next demonstrates
the following read() method:

<T> T read(String json, String jsonPath, Predicate... filters)

This method creates a new JsonPath object for the jsonPath argument and applies it
to the json string. I ignore filters in the example.

The JsonPath expression passed to jsonPathis $.store.book[*].author. This
expression includes the * wildcard to match all elements in the book array. It returns the
value of the author property for each element in this array.

read() returns this value as an instance of the net.minidev.json.JSONArray
class, which is stored in the json-smart-2.3. jar file that you must include in the
CLASSPATH. Because JSONArray extends java.util.ArraylList<Object>, it’s legal to
cast the returned object to List<Object>.

To further demonstrate read(), main() lastly invokes this method with JsonPath
expression $.store.book[1].author, which returns the value of the author property in
the anonymous object stored in the second element of the book array. This time, read()
returns a java.lang.String object.

308

CHAPTER 10 EXTRACTING JSON VALUES WITH JSONPATH

Note Regarding the generic read() methods, JsonPath automatically attempts
to cast the result to the type that the method’s invoker expects, such as a hashmap
for a JSON object, a list of objects for a JSON array, and a string for a JSON string.

Compile Listing 10-1 as follows:
javac -cp json-path-2.4.0.jar JsonPathDemo.java
Run the resulting application as follows:

java -cp accessors-smart-1.2.jar;asm-5.0.4.jar;json-path-2.4.0.jar;json-
smart-2.3.jar;slf4j-api-1.7.25.jar;. JsonPathDemo

You should observe the following output:

{category=fiction, author=Evelyn Waugh, title=Sword of Honour, price=12.99}

["Nigel Rees","Evelyn Waugh"]
Evelyn Waugh

You'll probably also observe some messages about SLF4]J (Simple Logging Facade
for Java) not being able to load the StaticLoggerBinder class and defaulting to a no-
operation logger implementation. You can safely ignore these messages.

Using Predicates to Filter Items

JsonPath supports filters for restricting the nodes that are extracted from a JSON
document to those that match the criteria specified by predicates (Boolean expressions).
You can work with inline predicates, filter predicates, or custom predicates.

Inline Predicates

An inline predicate is a string-based predicate. Listing 10-2 presents the source code to
an application that demonstrates several inline predicates.

309

CHAPTER 10 EXTRACTING JSON VALUES WITH JSONPATH

Listing 10-2. Demonstrating Inline Predicates
import java.util.Llist;

import com.jayway.jsonpath.JsonPath;

import static java.lang.System.*;

public class JsonPathDemo

{

public static void main(String[] args)

{

String json =

+

\"store\":" +

+
" \"book\":" +
n [n +

+
\"category\": \"reference\"," +
" \"author\": \"Nigel Rees\"," +
" \"title\": \"Sayings of the Century\"," +
" \"price\": 8.95" +
" 3,
" "+
\"category\": \"fiction\"," +
" \"author\": \"Evelyn Waugh\"," +
" \"title\": \"Sword of Honour\"," +
" \"price\": 12.99" +
" 3,
+
\"category\": \"fiction\"," +
" \"author\": \"J. R. R. Tolkien\"," +
! \"title\": \"The Lord of the Rings\"," +
" \"isbn\": \"0-395-19395-8\"," +
" \"price\": 22.99" +

: b

310

CHAPTER 10 EXTRACTING JSON VALUES WITH JSONPATH

+

\"category\": \"\"," +

\"author\": \"some author\"," +

" \"title\": \"some title\"," +

\"isbn\": \"some isbn\"," +
\"price\": 0" +

" "t

1," +

\"bicycle\":" +

" [+

" "y

! \"color\": \"red\"," +
\"accessories\": [\"horn\", " +
" \"bottle\"]," +

" \"price\": 619.95" +

n }, n +

+

\"color\": \"green\"," +
\"accessories\": [\"horn\", " +
" \"light\"]," +

" \"price\": 639.95" +

" },u +

" "ot

" \"color\": \"blue\"," +
\"accessories\": []," +
" \"price\": 599.95" +

" 1"+

"oy

",
)

+

String expr = "$.store.book[?(@.isbn)].title";
List<Object> titles = JsonPath.read(json, expr);
out.println(titles);
expr =

"$.store.book[?(@.category == 'fiction')].title";

311

CHAPTER 10 EXTRACTING JSON VALUES WITH JSONPATH

titles = JsonPath.read(json, expr);
out.println(titles);
expr = "$..book[?(@.author =~ /.*REES/i)].title";
titles = JsonPath.read(json, expr);
out.println(titles);
expr =

"$..book[?(@.price > 10 && @.price < 20)].title";
titles = JsonPath.read(json, expr);
out.println(titles);
expr = "$..book[?(@.author in ['Nigel Rees'])].title";
titles = JsonPath.read(json, expr);
out.println(titles);
expr =

"$..book[?(@.author nin ['Nigel Rees'])].title";
titles = JsonPath.read(json, expr);
out.println(titles);
expr = "$.store.bicycle[?(@.accessories " +

"subsetof ['horn', 'bottle', 'light'])].price";
List<Object> prices = JsonPath.read(json, expr);
out.println(prices);
expr = "$.store.bicycle[?(@.accessories " +
"subsetof ['horn', 'bottle'])].price";

prices = JsonPath.read(json, expr);
out.println(prices);
expr = "$..book[?(@.author size 12)].title";
titles = JsonPath.read(json, expr);
out.println(titles);
expr = "$..book[?(@.author size 13)].title";
titles = JsonPath.read(json, expr);
out.println(titles);
expr =

"$..bicycle[?(@.accessories empty true)].price";
titles = JsonPath.read(json, expr);
out.println(titles);
expr =

312

CHAPTER 10 EXTRACTING JSON VALUES WITH JSONPATH

"$..bicycle[?(@.accessories empty false)].price";

titles = JsonPath.read(json, expr);
out.println(titles);

expr = "$..book[?(@.category empty true)].title";
titles = JsonPath.read(json, expr);
out.println(titles);

Listing 10-2’s main() method uses the following JsonPath expressions to narrow the

list of returned book title strings:

$.store.book[?(@.isbn)].title: returns the title values for all
book elements that contain an isbn property

$.store.book[?(@.category == 'fiction')].title: returns the
title values for all book elements whose category property is
assigned the string value fiction

$..book[?(@.author =~ /.*REES/i)].title:returnsthe title
values for all book elements whose author property value ends with
rees (case is insignificant)

$..book[?(@.price >= 10 &% @.price <= 20)].title:returnsthe
title values for all book elements whose price property value lies
between 10 and 20

$..book[?(@.author in ['Nigel Rees'])].title: returnsthe
title values for all book elements whose author property value
matches Nigel Rees

$..book[?(@.author nin ['Nigel Rees'])].title: returns the
title values for all book elements whose author property value
doesn’t match Nigel Rees

$.store.bicycle[?(@.accessories subsetof ["horn', 'bottle’,
'light'])].price: returns the price values for all bicycle elements
whose accessories property value (an array) is a subset of the
["horn', 'bottle', 'light'] array

313

CHAPTER 10 EXTRACTING JSON VALUES WITH JSONPATH

o $.store.bicycle[?(@.accessories subsetof ['horn', 'bottle'])].
price: returns the price values for all bicycle elements whose accessories
property value (an array) is a subset of the ["horn', 'bottle'] array

o $..book[?(@.author size 12)].title:returns the title values for
all book elements whose author property value (a string) is exactly 12
characters long

e $..book[?(@.author size 13)].title: returns the title values for
all book elements whose author property value (a string) is exactly 13
characters long

o $..bicycle[?(@.accessories empty true)].price:returns the
price values for all bicycle elements whose accessories property
value (an array) is empty

o $..bicycle[?(@.accessories empty false)].price:returns the
price values for all bicycle elements whose accessories property
value (an array) is not empty

o $..book[?(@.category empty true)].title:returnsthe title
values for all book elements whose category property value (a string)
has zero length

Compile Listing 10-2 and run the resulting application. You should discover the
following output:

"The Lord of the Rings","some title"]

"Sword of Honour","The Lord of the Rings"]
"Sayings of the Century"]

'Sword of Honour"]

Sayings of the Century"]

Sword of Honour","The Lord of the Rings","some title"]

[
[
[
[
[
[
[619.95,639.95,599.95]
[
[
[
[
[
[

619.95,599.95]

Sword of Honour"]

—_

599.95]
619.95,639.95]

some title"]

314

CHAPTER 10 EXTRACTING JSON VALUES WITH JSONPATH

Filter Predicates

A filter predicate is a predicate expressed as an instance of the abstract Filter class,
which implements the Predicate interface.

To create a filter predicate, you typically chain together invocations of various fluent
methods (http://en.wikipedia.org/wiki/Fluent_interface)located in the Criteria
class, which also implements Predicate, and pass the result to Filter’s Filter
filter(Predicate predicate) static method.

Filter filter = Filter.filter(Criteria.where("price").1t(20.00));

Criteria’sCriteria where(String key) static method returnsa Criteria object
that stores the provided key, which is price in this example. Its Criteria 1t(Object o)
method returns a Criteria object for the < operator that identifies the value that’s
compared to the value of the key.

To use the filter predicate, first insert a ? placeholder for the filter predicate into the
path:

String expr = "$['store']['book'][?].title";

Note When multiple filter predicates are provided, they are applied in left-to-
right order of the placeholders where the number of placeholders must match
the number of provided filter predicates. You can specify multiple predicate
placeholders in one filter operation [?, ?]; both predicates must match.

Next, because Filter implements Predicate, you pass the filter predicate to a
read() method that takes a Predicate argument:

List<Object> titles = JsonPath.read(json, expr, filter);

For each book element, the read() method executes the filter predicate when it
detects the ? placeholder in the JsonPath expression.

Listing 10-3 presents the source code to an application that demonstrates the
previous filter predicate code fragments.

315

http://en.wikipedia.org/wiki/Fluent_interface

CHAPTER 10 EXTRACTING JSON VALUES WITH JSONPATH
Listing 10-3. Demonstrating Filter Predicates
import java.util.list;

import com.jayway.jsonpath.Criteria;
import com.jayway.jsonpath.Filter;
import com.jayway.jsonpath.JsonPath;

import static java.lang.System.*;

public class JsonPathDemo

{

public static void main(String[] args)

{

String json =

+

\"store\":" +

" "t

" \"book\":" +

" [+

" "+

\"category\": \"reference\"," +

" \"author\": \"Nigel Rees\"," +

" \"title\": \"Sayings of the Century\"," +
\"price\": 8.95" +

" b

" "+

\"category\": \"fiction\"," +

" \"author\": \"Evelyn Waugh\"," +

" \"title\": \"Sword of Honour\"," +
\"price\": 12.99" +

" 1+

" "o+

\"category\": \"fiction\"," +

" \"author\": \"J. R. R. Tolkien\"," +

" \"title\": \"The Lord of the Rings\"," +

" \"isbn\": \"0-395-19395-8\"," +

316

CHAPTER 10 EXTRACTING JSON VALUES WITH JSONPATH

" \"price\": 22.99" +

+

],II +
\"bicycle\":" +

+

" \"color\": \"red\"," +
" \"price\": 19.95" +

+

" "ot

"}

Filter filter =
Filter.filter(Criteria.where("price").1t(20.00));

String expr = "$['store']['book'][?].title";

List<Object> titles = JsonPath.read(json, expr,

filter);
out.println(titles);

Compile Listing 10-3 and run the resulting application. You should discover the
following output (both books have prices less than 20 dollars):

["Sayings of the Century","Sword of Honour"]

Custom Predicates

A custom predicate is a predicate created from a class that implements the Predicate
interface.

To create a custom predicate, instantiate a class that implements Predicate and
overrides the following method:

boolean apply(Predicate.PredicateContext ctx)

PredicateContext is a nested interface whose methods provide information about
the context in which apply() is called. For example, Object root() returns a reference
to the entire JSON document, and Object item() returns the current item being
evaluated by this predicate.

317

CHAPTER 10 EXTRACTING JSON VALUES WITH JSONPATH

apply() returns the predicate value: true (item is accepted) or false (item is
rejected).

The following code fragment creates a custom predicate for returning Book elements
containing a price property whose value exceeds 20 dollars:

Predicate expensiveBooks =
new Predicate()

{
@0verride
public boolean apply(PredicateContext ctx)
{
String value = ctx.item(Map.class).
get("price").toString();
return Float.valueOf(value) > 20.00;
}
b

PredicateContext’s<T> T item(java.lang.Class<T> clazz) generic method
maps the JSON object in the Book element to a java.util.Map.

To use the custom predicate, first insert a ? placeholder for the custom predicate into
the path:

String expr = "$.store.book[?]";

Next, pass the custom predicate to a read() method that takes a Predicate
argument:

List<Map<String, Object>> titles =
JsonPath.read(json, expr, expensiveBooks);

For each book element, read() executes the custom predicate associated with the ?
and returns a list of maps (one map per accepted item).

Listing 10-4 presents the source code to an application that demonstrates the
previous custom predicate code fragments.

318

CHAPTER 10 EXTRACTING JSON VALUES WITH JSONPATH

Listing 10-4. Demonstrating Custom Predicates

import java.util.Llist;
import java.util.Map;

import com.jayway.jsonpath.JsonPath;
import com.jayway.jsonpath.Predicate;

import static java.lang.System.*;

public class JsonPathDemo

{

public static void main(String[] args)

{

String json =

+

\"store\":" +

" "t

" \"book\":" +

" [+

" "+

\"category\": \"reference\"," +

" \"author\": \"Nigel Rees\"," +

" \"title\": \"Sayings of the Century\"," +
" \"price\": 8.95" +

" b

" "+

\"category\": \"fiction\"," +

" \"author\": \"Evelyn Waugh\"," +

" \"title\": \"Sword of Honour\"," +

" \"price\": 12.99" +

" 1+

" "o+

\"category\": \"fiction\"," +

" \"author\": \"J. R. R. Tolkien\"," +

" \"title\": \"The Lord of the Rings\"," +

" \"isbn\": \"0-395-19395-8\"," +

319

CHAPTER 10 EXTRACTING JSON VALUES WITH JSONPATH

" \"price\": 22.99" +

+

1," +

\"bicycle\":" +

" "4

! \"color\": \"red\"," +
\"price\": 19.95" +

+

" "ot
"}
Predicate expensiveBooks =
new Predicate()
{
@verride
public boolean apply(PredicateContext ctx)
{
String value = ctx.item(Map.class).
get("price").toString();
return Float.valueOf(value) > 20.00;
}
b
String expr = "$.store.book[?]";
List<Map<String, Object>> titles =
JsonPath.read(json, expr, expensiveBooks);
out.println(titles);

Compile Listing 10-4 and run the resulting application. You should discover the
following output (one book has a price greater than 20 dollars):

[{"category":"fiction","author":"J. R. R. Tolkien","title":"The Lord of the
Rings","isbn":"0-395-19395-8","price":22.99}]

320

CHAPTER 10 EXTRACTING JSON VALUES WITH JSONPATH

EXERCISES

The following exercises are designed to test your understanding of Chapter 10’s content:

1.

o B~ W M

Define JsonPath.

True or false: JsonPath is based on XPath 2.0.

Identify the operator that represents the root JSON object.
In what notations can you specify JsonPath expressions?

What operator represents the current node being processed by a filter
predicate?

True or false: JsonPath’s deep scan operator (. .) is equivalent to XPath’s /
symbol.

What does JsonPath’s JsonPath compile(String jsonPath,
Predicate... filters) static method accomplish?

What is the return type of the <T> T read(String json) generic method
that returns JSON object property names and their values?

Identify the three predicate categories.

Given JSON object { "number": [10, 20, 25, 30] },writea
JsonPathDemo application that extracts and outputs the maximum (30),
minimum (10), and average (21.25) values.

Summary

JsonPath is a declarative query language (also known as a path-expression-syntax) for

selecting and extracting a JSON document’s property values.

JsonPath is a simple language with various features that are similar to their XPath

counterparts. This language is used to construct path expressions. Each expression

begins with the $ operator, which identifies the root element of the query and which

corresponds to the XPath / symbol.

321

CHAPTER 10 EXTRACTING JSON VALUES WITH JSONPATH

As with Chapter 8’s mJson and Chapter 9’s Gson, you can obtain JsonPath from the
Central Maven Repository. Alternatively, if you're not using Maven, you can download
the JsonPath JAR file and all of the JAR files on which JsonPath normally depends and
then add all of these JAR files to your CLASSPATH.

The JsonPath library is organized into several packages. You will typically interact
with the com. jayway. jsonpath package and its types. In this chapter, you focused
exclusively on this package while learning how to extract values from JSON objects and
use predicates to filter items.

Chapter 11 introduces Jackson for parsing and generating JSON content.

322

CHAPTER 11

Processing JSON
with Jackson

Jackson is a popular suite of APIs for parsing and creating JSON objects (and more).
Chapter 11 explores the latest version of this “best JSON parser for Java.’

What Is Jackson?

Jackson is a suite of data-processing tools for Java. These tools include a streaming JSON
parser/generator library, a matching data-binding library (for converting Plain Old Java

Objects [POJOs] to and from JSON), and additional data format modules for processing

data encoded in XML and other formats.

Note Jackson was created and is being maintained by Tatu Saloranta (www.
linkedin.com/in/tatu-saloranta-b2b36/), who was inspired by the
quality and variety of XML tooling available for the Java platform and decided
to create something similar for JSON. In 2008, Saloranta founded the company
FasterXML (http://fasterxml.com), which distributed Jackson along with
other key XML-oriented products. Jackson is currently distributed on GitHub
(http://github.com/FasterXML/jackson).

Jackson consists of a core package and two other packages that depend on the core
package:

e Jackson Core: The core package supports a StAX-like streaming API for
reading and writing JSON via sequences of discrete events. This package’s
name is com. fasterxml. jackson.core. Key classes are JsonParser for
reading JSON content and JsonGenerator for writing JSON content.

323
© Jeff Friesen 2019

J. Friesen, Java XML and JSON, https://doi.org/10.1007/978-1-4842-4330-5_11

http://www.linkedin.com/in/tatu-saloranta-b2b36/
http://www.linkedin.com/in/tatu-saloranta-b2b36/
http://fasterxml.com
http://github.com/FasterXML/jackson

CHAPTER 11 PROCESSING JSON WITH JACKSON

e Jackson Databind: The databind package supports a DOM-like tree
model that provides a mutable in-memory tree representation of
a JSON document. It also supports reading/writing JSON from/to
POJOs. This package’s name is com.fasterxml.jackson.databind.
Key classes are ObjectMapper for reading/writing JSON content
from/to tree models or POJOs and JsonNode, which is the base class
for all tree model nodes.

e Jackson Annotations: The annotations package provides public core
annotation types, most of which are used to configure how data
binding (mapping) works. This package’s name is com.fasterxml.
jackson.annotation. Jackson Databind also depends on Jackson
Annotations.

Simple and full POJO-oriented data binding are supported. Simple data binding
focuses on converting to and from java.util.Maps, java.util.lists, java.lang.
Strings, java.lang.Numbers, java.lang.Booleans, and the null reference. Full data
binding includes simple data binding but also supports converting to and from any Java
Beans (http://en.wikipedia.org/wiki/JavaBeans) bean type. Conversions are based
on property accessor conventions or annotations.

The streaming API performs better than the tree model or POJO-oriented data
binding—both APIs leverage the streaming API. However, data binding is the most
convenient and the tree model offers the most flexibility.

Obtaining and Using Jackson

The Jackson Core, Jackson Databind, and Jackson Annotations packages can be obtained
from Maven (https://search.maven.org/search?q=jackson-core). Version 2.9.7 is the
latest version at the time of writing.

For each of the jackson-core, jackson-databind, and jackson-annotations artifact IDs,
click the “jar” and “javadoc.jar” menu items in the associated drop-down Download
menu, and download their referenced JAR files. You should end up with the following
JAR file collection:

e Jjackson-annotations-2.9.7.jar

e jackson-annotations-2.9.7-javadoc.jar

324

http://en.wikipedia.org/wiki/JavaBeans
https://search.maven.org/search?q=jackson-core

CHAPTER 11 PROCESSING JSON WITH JACKSON

e Jjackson-core-2.9.7.jar

e jackson-core-2.9.7-javadoc.jar

o jackson-databind-2.9.7.jar

o jackson-databind-2.9.7-javadoc.jar

I've found it convenient to add all three nonJavadoc JAR files to my CLASSPATH
when compiling and running code that uses a combination of Java Core, Java Databind,
and Java Annotations:

javac -cp jackson-core-2.9.7.jar;jackson-databind-2.9.7.jar;jackson-
annotations-2.9.7.jar source file

java -cp jackson-core-2.9.7.jar;jackson-databind-2.9.7.jar;jackson-
annotations-2.9.7.jar;. main classfile

Working with Jackson’s Basic Features

The Jackson Core and Jackson Databind APIs support the consumption and creation of
JSON documents. This section introduces various types related to streaming, the tree
model, and POJO-oriented data binding.

Streaming

Streaming (also known as Incremental Processing) deserializes (reads) and serializes
(writes) JSON content as discrete events. Reading is performed by a parser that tokenizes
JSON content into tokens and associated data; writing is performed by a generator that
constructs JSON content based on a sequence of calls that output JSON tokens.

Note Streaming has the lowest memory and processing overhead, making it the
most efficient way to process JSON content. It’s used mainly by middleware and
frameworks because it’s harder to use than the tree model or data binding.

325

CHAPTER 11 PROCESSING JSON WITH JACKSON

Streaming methods throw java.io.IOException when anI/O error occurs. When
anon-I/0 problem is encountered while parsing or generating JSON content, a method
throws JsonProcessingException (an IOException subclass in the com.fasterxml.
jackson.core package) or one of its subclasses:

o com.fasterxml.jackson.core.JsonParseException

o com.fasterxml.jackson.core.JsonGenerationException

Stream-Based Parsing

The abstract com. fasterxml. jackson.core.JsonParser class describes a low-level
JSON parser. It’s obtained by calling one of the com.fasterxml. jackson.core.
JsonFactory class’s overloaded createParser() methods, which take the JSON
content’s origin into account.

Note Parsers can be created to parse content from external sources (such as
files or HTTP request streams) or buffered data (such as strings or byte arrays/
buffers).

For example, JsonFactory’s JsonParser createParser(String content) method
creates a parser for parsing the JSON content from the string passed to content. This
method is demonstrated as follows:

String truckJSON = "{ \"brand\" : \"Ford F-150\",
\"doors\" : 4 }";

JsonFactory factory = new JsonFactory();

JsonParser parser = factory.createParser(truckJSON);

After creating a factory and obtaining a parser from the factory, a Java program
typically enters a loop that returns a token and does something with it per iteration. This
activity continues until the parser is closed:

while (!parser.isClosed())
{

JsonToken token = parser.nextToken();
System.out.printf("token = %s%n", token);

326

CHAPTER 11 PROCESSING JSON WITH JACKSON

JsonParser’s boolean isClosed() method returns true when the parser has been
closed, perhaps by invoking JsonParser’s void close() method.

JsonParser’s JsonToken nextToken() method advances the stream enough to
determine the type of the next token, returning it as a com. fasterxml. jackson.core.
JsonToken instance. When no tokens remain, null is returned.

JsonToken is an enum that identifies the basic token types used for returning the
results of parsing JSON content. Examples of its various constants are START_OBJECT ({
was seen) and END_ARRAY (] was seen).

JsonToken also provides various token classification and conversion methods.

For example, boolean isBoolean() returns true when the token describes a Boolean
value, and boolean isNumeric() returns true when the token describes a number.
Also, String asString() returns a string representation of the token (e.g., { for START _
OBJECT) or null when there is no representation (e.g., null for FIELD _NAME—an object’s
field name has been encountered).

JsonParser provides various getValueAs methods for converting a token'’s value to
the method’s return type and returning that value. If conversion fails, null is returned.
For example, String getValueAsString() tries to convert the current token’s value to a
Java String, returning null when the conversion isn’t possible. The companion String
getValueAsString(String def) method returns a more meaningful default value when
conversion fails.

Listing 11-1 presents the source code to an application that demonstrates
JsonParser and JsonToken.

Listing 11-1. Learning How to Use JsonParser and JsonToken
import java.io.File;

import com.fasterxml.jackson.core.JsonFactory;
import com.fasterxml.jackson.core.JsonParser;
import com.fasterxml.jackson.core.JsonToken;

import static java.lang.System.*;

public class JacksonDemo

{

public static void main(String[] args) throws Exception

{

JsonFactory factory = new JsonFactory();

327

CHAPTER 11 PROCESSING JSON WITH JACKSON

JsonParser parser =
factory.createParser(new File("person.json"));
while (!parser.isClosed())
{
JsonToken jsonToken = parser.nextToken();
if (jsonToken == null)
break;
out.printf("jsonToken = %s [%s] [%b] [%s]%n",
jsonToken, jsonToken.asString(),
jsonToken.isNumeric(),
parser.getValueAsString());

Listing 11-1’smain() method first creates a factory and then uses it to create a parser
for parsing a file named person. json. It then enters the previously described loop to
obtain and output tokens.

Listing 11-2 presents the JSON document that’s stored in person. json.

Listing 11-2. Describing a Person in JSON

{

"firstName": "John",

"lastName": "Doe",

"age": 42,

"address":

{
"street": "400 Some Street",
"city": "Beverly Hills",
"state": "CA",
"zipcode": 90210

})

"phoneNumbers":

[
{

"type": "home",

328

b
{

CHAPTER 11

"number": "310 555-1234"

Iltypell : II_FaXII’
"number": "310 555-4567"

Compile Listing 11-1 as follows:

javac -cp jackson-core-2.9.7.jar;jackson-databind-2.9.7.jar;jackson-
annotations-2.9.7.jar JacksonDemo.java

Run the resulting application as follows:

java -cp jackson-core-2.9.7.jar;jackson-databind-2.9.7.jar;jackson-

annotations-2.9.7.jar;. JacksonDemo

You should observe the following output:

jsonToken
jsonToken
jsonToken
jsonToken
jsonToken
jsonToken
jsonToken
jsonToken
jsonToken
jsonToken
jsonToken
jsonToken
jsonToken
jsonToken
jsonToken
jsonToken
jsonToken

START OBJECT [{] [false] [null]

FIELD NAME [null] [false] [firstName]
VALUE_STRING [null] [false] [John]

FIELD NAME [null] [false] [lastName]
VALUE_STRING [null] [false] [Doe]

FIELD NAME [null] [false] [age]
VALUE_NUMBER INT [null] [true] [42]

FIELD NAME [null] [false] [address]

START OBJECT [{] [false] [null]

FIELD NAME [null] [false] [street]
VALUE_STRING [null] [false] [400 Some Street]
FIELD NAME [null] [false] [city]
VALUE_STRING [null] [false] [Beverly Hills]
FIELD NAME [null] [false] [state]
VALUE_STRING [null] [false] [CA]

FIELD NAME [null] [false] [zipcode]
VALUE_NUMBER_INT [null] [true] [90210]

PROCESSING JSON WITH JACKSON

329

CHAPTER 11

PROCESSING JSON WITH JACKSON

jsonToken = END_OBJECT [}] [false] [null]

jsonToken = FIELD NAME [null] [false] [phoneNumbers]
jsonToken = START ARRAY [[] [false] [null]

jsonToken = START OBJECT [{] [false] [null]

jsonToken = FIELD NAME [null] [false] [type]

jsonToken = VALUE STRING [null] [false] [home]
jsonToken = FIELD NAME [null] [false] [number]
jsonToken = VALUE_STRING [null] [false] [310 555-1234]
jsonToken = END OBJECT [}] [false] [null]

jsonToken = START OBJECT [{] [false] [null]

jsonToken = FIELD NAME [null] [false] [type]

jsonToken = VALUE STRING [null] [false] [fax]
jsonToken = FIELD NAME [null] [false] [number]
jsonToken = VALUE_STRING [null] [false] [310 555-4567]
jsonToken = END OBJECT [}] [false] [null]

jsonToken = END ARRAY []] [false] [null]

jsonToken = END_OBJECT [}] [false] [null]

Stream-Based Generation

The abstract com.fasterxml. jackson.core.JsonGenerator class describes a low-

level JSON generator. It’s obtained by calling one of the JsonFactory class’s overloaded
createGenerator() methods, which take the JSON content’s destination into account.

Note Generators can be created to generate content to external destinations,

such as files or networks. Content is sent via output streams or writers.

For example, JsonFactory’s JsonGenerator createGenerator(File file,
JsonEncoding enc) method creates a generator for writing JSON content to the specified
file, overwriting any existing content (or creating the file when it doesn’t exist). The
value passed to enc determines how the written JSON content is encoded and is one of
the constants defined by the com.fasterxml. jackson.core.JsonEncoding enum; for
example, JsonEncoding.UTF8. This method is demonstrated as follows:

330

CHAPTER 11 PROCESSING JSON WITH JACKSON

JsonFactory factory = new JsonFactory();
JsonGenerator generator =
factory.createGenerator(new File("out.json"),
JsonEncoding.UTF8);

JsonGenerator declares various methods for writing JSON content. For example,
void writeStartObject() writes the starting marker ({) for an object.

Listing 11-3 presents the source code to an application that demonstrates
JsonGenerator and methods for writing JSON content.

Listing 11-3. Learning How to Use JsonGenerator and Its Methods
import java.io.File;

import com.fasterxml.jackson.core.JsonEncoding;
import com.fasterxml.jackson.core.JsonFactory;
import com.fasterxml.jackson.core.JsonGenerator;

import static java.lang.System.*;

public class JacksonDemo

{

public static void main(String[] args) throws Exception

{
JsonFactory factory = new JsonFactory();
JsonGenerator generator =
factory.createGenerator(new File("person.json"),

JsonEncoding.UTF8);
generator.writeStartObject();
generator.writeStringField("firstname", "John");
generator.writeStringField("lastName", "Doe");
generator.writeNumberField("age", 42);
generator.writeFieldName("address");
generator.writeStartObject();
generator.writeStringField("street"”,
"400 Some Street");

generator.writeStringField("city", "Beverly Hills");
generator.writeStringField("state"”, "CA");

331

CHAPTER 11 PROCESSING JSON WITH JACKSON

generator.writeNumberField("zipcode", 90210);
generator.writeEndObject();
generator.writeFieldName("phoneNumbers");
generator.writeStartArray();
generator.writeStartObject();
generator.writeStringField("type", "home");
generator.writeStringField("number"”, "310 555-1234");
generator.writeEndObject();
generator.writeStartObject();
generator.writeStringField("type", "fax");
generator.writeStringField("number", "310 555-4567");
generator.writeEndObject();
generator.writeEndArray();
generator.writeEndObject();

generator.close();

out.println("person.json successfully generated");

}
}

writeStartObject() is paired with writeEndObject(), which writes the end-of-
object marker (}).

The void writeStringField(String fieldName, String value) method
writes the specified fieldName and its value. It’s equivalent to calling the void
writeFieldName(String value) method followed by the void writeString(String
text) method. The writeNumberField(String fileName, int value) method is
similar towriteStringField(String fieldName, String value), but writes an integer
value instead. It's equivalent to callingwriteFieldName(String value) followed by the
void writeNumber(int value) method.

The void writeStartArray() method writes the start-of-array marker ([). Its
companion void writeEndArray() method writes the end-of-array marker (]).

When no more content needs to be written, the generator is closed by calling its void
close() method. The underlying destination is also closed when only the generator has
access to the destination.

332

CHAPTER 11 PROCESSING JSON WITH JACKSON

Compile Listing 11-3 and run the application. You should observe the following
output:

person.json successfully generated
The generated person. json file contains the following content:

{"firstname":"John","lastName":"Doe","age":42,"address":{"street":"400 Some
Street","city":"Beverly Hills","state":"CA","zipcode":90210}, "phoneNumbers"
:[{"type":"home", "number":"310 555-1234"},{"type":"fax", "number":"310 555-

4567"}1}

The output is hard to read but can be improved by installing a pretty printer on the
generator. A pretty printer is an instance of a class that implements the com.fasterxml.
jackson.core.PrettyPrinter interface and that formats output to make it easier to
read. One such class is com.fasterxml. jackson.core.util.DefaultPrettyPrinter,
which employs 2-space indentation with platform-default line feeds. An instance of
this class is installed on the generator by invoking JsonGenerator’s JsonGenerator
useDefaultPrettyPrinter() method, as follows:

generator.useDefaultPrettyPrinter();

I excerpted this code fragment from a third version of the JacksonDemo application,
included in this book’s code archive. When run, that application generates a person.
json file with the following content:

{

"firstname" : "John",

"lastName" : "Doe",

"age" : 42,

"address" : {
"street" : "400 Some Street",
"city" : "Beverly Hills",
"state" : "CA",
"zipcode" : 90210

})

"phoneNumbers™ : [{
"type" : "home",
"number" : "310 555-1234"

333

CHAPTER 11 PROCESSING JSON WITH JACKSON

b A

Iltype" : "_Faxll)

"number" : "310 555-4567"
}l

}

Tree Model

The tree model provides a mutable in-memory tree representation of a JSON document.
The com.fasterxml.jackson.databind.ObjectMapper class is used to build a tree,
whose nodes are instances of classes that descend from the abstract com.fasterxml.
jackson.databind.JsonNode class.

ObjectMapper declares several constructors for initializing an object mapper. The
noargument ObjectMapper () constructor is the easiest to use:

ObjectMapper mapper = new ObjectMapper();

Once you have an object mapper, you can use it to read a JSON document into a tree,
or create a tree and write it to a JSON document.

Reading a JSON Document into a Tree

After obtaining an ObjectMapper instance, an application can invoke one of its
overloaded readTree() methods to read a JSON document into an in-memory tree:

JsonNode rootNode = mapper.readTree(new File("person.json"));

The JsonNode readTree(File file) method deserializes JSON content from the
specified file into a tree expressed as set of JsonNode instances. The root node of this
tree is returned.

JsonNode provides various methods for accessing tree nodes. Separate methods exist
for basic traversal of JSON objects and arrays. Objects are indexed by field name and
arrays are indexed by element index. Additionally, it’s possible to use “safe” methods
that return dummy com. fasterxml. jackson.databind.node.MissingNode instances
instead of the null reference when an object or array doesn’t contain an indicated value.
Traversal methods include the following:

334

CHAPTER 11 PROCESSING JSON WITH JACKSON

JsonNode get(int index): for arrays, returns child element at
index (which is 0-based) when the child element exists. If index is
less than 0 or greater than or equal to the array size, or if the node
isnot a com. fasterxml.jackson.databind.node.ArrayNode, null
is returned. Note that JSON null values are of type com.fasterxml.
jackson.databind.node.NullNode and are not represented as the
null reference because null indicates that a value doesn’t exist.

JsonNode get(String fieldName): for objects, returns fieldName’s
value when it exists. If no such field exists or the node is not a com.
fasterxml.jackson.databind.node.ObjectNode, null is returned.
Note that JSON null values are of type Nul1Node and are not
represented as the null reference because null indicates that a value
doesn’t exist.

JsonNode path(int index) and JsonNode path(String fieldName):
These methods are similar to the get(int) and get(String)
methods. However, instead of returning a Java null reference for
missing values, they return a MissingNode reference. MissingNode is
beneficial in that it implements all JsonNode methods as expected: it
never has any value but can be further traversed (resulting always in
aMissingNode). It's very useful for safe traversal: if data is there, it will
be traversed; if not, it will eventually result in missing data. This can
be considered similar to the SQL NULL value.

JsonNode with(String propertyName) and JsonNode
withArray(String propertyName): The first method is called on
object nodes to access a property that has an object value or, when
no such property exists, to create, add, and return the created object
node. The second method is called on object nodes to access a
property that has an array value or, when no such property exists, to
create, add, and return the created array node. These methods are
very useful for safe modifications: subtrees can be materialized as
necessary.

335

CHAPTER 11 PROCESSING JSON WITH JACKSON

Note ArrayNode provides an int size() method that returns the number of
elements in an array. ObjectNode provides an int size() method that returns
the number of properties in an object.

Listing 11-4 presents the source code to an application that demonstrates
readTree() and associated methods.

Listing 11-4. Reading a JSON Document into a Tree and Traversing the Tree
import java.io.File;

import com.fasterxml.jackson.databind.JsonNode;
import com.fasterxml.jackson.databind.ObjectMapper;

import static java.lang.System.*;

public class JacksonDemo

{

public static void main(String[] args) throws Exception
{
ObjectMapper mapper = new ObjectMapper();
JsonNode rootNode =
mapper.readTree(new File("person.json"));
out.printf("firstName = %skn",
rootNode.get("firstName"));
out.printf("lastName = %s%n",
rootNode.get("lastName"));
out.printf("age = %s%n", rootNode.get("age"));
JsonNode address = rootNode.get("address");
out.println("address");
out.printf(" street = %s%n", address.get("street"));
out.printf(" city = %s%n", address.get("city"));
out.printf(" state = %s%n", address.get("state"));
out.printf(" zipcode = %s¥%n",
address.get("zipcode"));

336

CHAPTER 11 PROCESSING JSON WITH JACKSON

JsonNode phoneNumbers = rootNode.get("phoneNumbers");
out.println("phoneNumbers");
for (int i = 0; i < phoneNumbers.size(); i++)
{
out.printf(" %d: ", i);
JsonNode phoneNumber = phoneNumbers.get(i);
out.printf("type = %s, number = %s%n",
phoneNumber.get("type"),
phoneNumber .get("number"));
}
out.println();
out.printf("%s%n", rootNode.with("address").
get("street"));
out.printf("%s%n", rootNode.withArray("phoneNumbers").

get(1).get("type"));

Compile Listing 11-4 and run the application. Assuming that the current directory
also contains Listing 11-2’s person. json file, you should observe the following output:

firstName = "John"

lastName = "Doe"

age = 42

address
street = "400 Some Street"
city = "Beverly Hills"

state = "CA"
zipcode = 90210
phoneNumbers

0: type = "home", number = "310 555-1234"
1: type = "fax", number = "310 555-4567"

"400 Some Street"
II_FaXII

337

CHAPTER 11 PROCESSING JSON WITH JACKSON

Creating a Tree and Writing It to a JSON Document

An application can invoke the following ObjectMapper methods to begin construction
of a tree:

ArrayNode createArrayNode()
ObjectNode createObjectNode()

JsonNode’s ArrayNode and ObjectNode descendants also provide methods for
constructing a tree:

o ArrayNode provides several overloaded add() methods for appending
data to an array. For example, ArrayNode add(int v) appendsan
object containing v to an array. It also provides several overloaded
insert() methods for inserting data into an array. For example,
ArrayNode insert(int index, int v) inserts an object containing
v at the specified index position in the array.

o ObjectNode provides several overloaded put () methods for updating
a property. For example, ObjectNode put(String fieldName,
int v) sets fieldName’s value to an object containing v.

Once the tree has been constructed, it can be written to a JSON document by
invoking one of ObjectMapper’s overloaded writeTree() methods:

mapper.writeTree(generator, rootNode);

The void writeTree(JsonGenerator gen, JsonNode rootNode) method serializes
the rootNode-anchored tree to a destination via generator gen.

Listing 11-5 presents the source code to an application that demonstrates
writeTree() and associated methods.

Listing 11-5. Creating a Tree and Writing Its Nodes to a JSON Document
import java.io.File;

import com.fasterxml.jackson.core.JsonEncoding;
import com.fasterxml.jackson.core.JsonFactory;
import com.fasterxml.jackson.core.JsonGenerator;

import com.fasterxml.jackson.databind.JsonNode;

338

CHAPTER 11 PROCESSING JSON WITH JACKSON
import com.fasterxml.jackson.databind.ObjectMapper;

import com.fasterxml.jackson.databind.node.ArrayNode;
import com.fasterxml.jackson.databind.node.ObjectNode;

import static java.lang.System.*;

public class JacksonDemo

{

public static void main(String[] args) throws Exception
{
ObjectMapper mapper = new ObjectMapper();
JsonNode rootNode = mapper.createObjectNode();
ObjectNode objectNode = (ObjectNode) rootNode;
objectNode.put("firstName", "John");
objectNode.put("lastName", "Doe");
objectNode.put("age", 42);
ObjectNode addressNode = mapper.createObjectNode();
addressNode.put("street", "400 Some Street");
addressNode.put("city", "Beverly Hills");
addressNode.put("state", "CA");
addressNode.put("zipcode", 90210);
objectNode.set("address", addressNode);
ArrayNode phoneNumbersNode = mapper.createArrayNode();
ObjectNode phoneNumberNode
mapper.createObjectNode();
phoneNumberNode.put("type", "home");
phoneNumberNode.put("number”, "310 555-1234");
phoneNumbersNode . add (phoneNumberNode) ;
phoneNumberNode = mapper.createObjectNode();
phoneNumberNode.put("type", "fax");
phoneNumberNode. put("number", "310 555-4567");
phoneNumbersNode.add(phoneNumberNode) ;
objectNode.set("phoneNumbers", phoneNumbersNode);
JsonFactory factory = new JsonFactory();
JsonGenerator generator =

factory.createGenerator(new File("person.json"),

339

CHAPTER 11 PROCESSING JSON WITH JACKSON

JsonEncoding.UTF8);
generator.useDefaultPrettyPrinter();
mapper.writeTree(generator, rootNode);
out.println("person.json successfully generated");

Compile Listing 11-5 and run the application. You should observe the following
output, along with a generated person. json file containing pretty-printed content:

person.json successfully generated

Data Binding

The ObjectMapper class supports data binding in which JSON content is parsed to and
from Java objects such as POJOs. JSON content is deserialized into Java objects, and Java
objects are serialized into JSON content.

Deserialization is achieved by calling one of ObjectMapper’s overloaded
readValue() generic methods, which support deserialization from different sources.
For example, the following method deserializes from a file into the given Java type:

<T> T readValue(File src, Class<T> valueType)

This method doesn’t support generic types because of type erasure (http://
en.wikipedia.org/wiki/Type erasure). In contrast, the following method uses the
com.fasterxml.jackson.core.type.TypeReference<T> type to support generic types:

<T> T readValue(File src, TypeReference valueTypeRef)

TypeReference is a generic abstract class that’s used to obtain full generic type
information via subclassing. I'll show an example shortly.

Serialization is achieved by calling one of ObjectMapper’s overloaded writeValue()
methods, which support serialization to different destinations. For example, the
following method serializes a Java object to a file:

writeValue(File resultFile, Object value)

Jackson supports simple data binding and full data binding.

340

http://en.wikipedia.org/wiki/Type_erasure
http://en.wikipedia.org/wiki/Type_erasure

CHAPTER 11 PROCESSING JSON WITH JACKSON

Simple Data Binding

Simple data binding converts to and from a limited number of core JDK types. Table 11-1
reveals the JSON types and the core JDK types to which they are mapped.

Table 11-1. Mapping JSON Types to Java Types

JSON Type Java Type

object java.util.LlinkedHashMap<String,Object>

array java.util.Arraylist<Object>

string java.lang.String

number (no fraction) java.lang.Integer, java.lang.Long, or java.math.
BigInteger (smallest applicable)

number (fraction) java.lang.Double (configurable to use java.math.BigDecimal)

truelfalse java.lang.Boolean

null null reference

The following example invokes readValue() to read a JSON object into a Java map:
Map<?,?> rootAsMap = mapper.readValue(src, Map.class);

The <?, ?> syntax indicates an untyped map. To bind data into a generic map, such as
Map<String,User>, I would need to specify TypeReference as follows:

Map<String,User> rootAsMap =
mapper.readValue(src,
new TypeReference<Map<String,User>>(){});

TypeReference is needed only to pass a generic type definition (via an anonymous
inner class in this case). What’s important is <Map<String,User>>, which defines the
type to bind to.

Because the range of value types is limited to a few core JDK types, the
deserialization type (at the root or lower level) can be defined as Object.class. Any
value declared to be of java.lang.0Object type uses simple data binding:

Object root = mapper.readValue(src, Object.class);

341

CHAPTER 11 PROCESSING JSON WITH JACKSON

After creating the Java object, it can be serialized to a file or other destination by

invoking writeValue(), which is demonstrated as follows:

mapper.writeValue(new File("file.json"), rootAsMap);

Listing 11-6 presents the source code to an application that demonstrates simple

data binding via these code fragments.

Listing 11-6. A Simple Data-Binding Demonstration

import

import
import

import
import
import

public

{
pub

{

//

342

java.io.File;

java.util.list;
java.util.Map;

com.fasterxml.jackson.core.type.TypeReference;
com.fasterxml.jackson.databind.ObjectMapper;
static java.lang.System.*;

class JacksonDemo
lic static void main(String[] args) throws Exception

ObjectMapper mapper = new ObjectMapper();
String agelJson = "65";
out.println(mapper.readValue(agelson, Integer.class));
String planetsJson = "[\"Mercury\", \"Venus\", " +
"\"Earth\", \"Mars\"]";
List<?> listl = mapper.readValue(planetsJson,
List.class);
out.println(list1);
list1.add("Jupiter");
List<String> list2 =
mapper.readValue(planetsJson,
new
TypeReference<List<String>>(){});
out.println(list2);
list2.add("Jupiter");

CHAPTER 11 PROCESSING JSON WITH JACKSON

out.println(list2);

String gradesJson = "{\"John\": 86, \"Jane\": 92}";

Map<?,?> map = mapper.readValue(gradesJson,
Map.class);

out.println(map);

mapper.writeValue(new File("grades.json"), map);

After creating an ObjectMapper instance, Listing 11-6’s main() method maps a JSON
number to a Java Integer, which is output.

main() now maps a string-based JSON array to a List. Because the resulting 1ist1
object has List<?> type, the compiler will not compile list1.add("Jupiter");. There’s
no add(String) method when the unbounded wildcard type is specified. Although this
problem could be solved by specifying List list1 (giving list1 the raw List type), any
Java object could be stored in the List, which would violate type safety. Generics must
be used to solve this problem.

The main() method next creates a list of strings and uses TypeReference to pass
String to readValue(). The compiler is able to compile list1.add("Jupiter");
because List<String> has an add(String) method.

main() now switches focus to working with Map. After creating a grades-oriented
mabp, it outputs the map and uses writeValue() to write the map’s content to a file
named grades.json.

Compile Listing 11-6 and run the application. You should observe the following
output:

65

[Mercury, Venus, Earth, Mars]
[Mercury, Venus, Earth, Mars]
[Mercury, Venus, Earth, Mars, Jupiter]
{John=86, Jane=92}

Furthermore, you should observe a grades. json file in the current directory. This
file should contain the following content:

{"John":86,"Jane":92}

343

CHAPTER 11 PROCESSING JSON WITH JACKSON

Full Data Binding

Full data binding converts to and from any Java bean type in addition to Maps, Lists,
Strings, Numbers, Booleans, and the null reference. Consider Listing 11-7.

Listing 11-7. A Person Bean

/*
{
"firstName": "John",
"lastName": "Doe",
"age": 42,
"address":
{
"street": "400 Some Street",
"city": "Beverly Hills",
"state": "CA",
"zipcode": 90210
}J
"phoneNumbers":
[
{
"type": "home",
"number": "310 555-1234"
b
{
"type": "fax",
"number": "310 555-4567"
}
]
}
*/

public class Person

{

private String firstName;
private String lastName;
private int age;

344

CHAPTER 11

public static class Address

{

private String street, city, state;
private int zipcode;

public String getStreet()
{

return street;

}

public String getCity()
{

return city;

}

public String getState()
{

return state;

}

public int getZipcode()
{

return zipcode;

}

public void setStreet(String street)
{

this.street = street;

}
public void setCity(String city)
{
this.city = city;
}

public void setState(String state)
{

this.state = state;

PROCESSING JSON WITH JACKSON

345

CHAPTER 11 PROCESSING JSON WITH JACKSON

346

private Address address;

public static class PhoneNumber

{

private String type, number;

public String getType()

{
return type;
}
public String getNumber()
{
return number;
}

public void setType(String type)

{
this.type = type;

}

public void setNumber(String number)

{

this.number = number;

}

private PhoneNumber[] phoneNumbers;

public String getFirstName()

{ return firstName;
}
public String getlLastName()
{
return lastName;
}

CHAPTER 11

public int getAge()

{
return age;
}
public Address getAddress()
{
return address;
}

public PhoneNumber[] getPhoneNumbers()
{

return phoneNumbers;

}

public void setFirstName(String firstName)

{

this.firstName = firstName;

}

public void setLastName(String lastName)
{

this.lastName = lastName;

}
public void setAge(int age)
{
this.age = age;
}

public void setAddress(Address address)
{

this.address = address;

}

PROCESSING JSON WITH JACKSON

public void setPhoneNumbers(PhoneNumber[] phoneNumbers)

{

this.phoneNumbers = phoneNumbers;

347

CHAPTER 11 PROCESSING JSON WITH JACKSON

@verride
public String toString()

{
StringBuffer sb = new StringBuffer();

sb.append("firstName = " + firstName + "\n");
sb.append("lastName = " + lastName + "\n");
sb.append("age = " + age + "\n");
sb.append("address\n");
sb.append(" street =
"\n");
sb.append(" city = " + address.getCity() + "\n");
sb.append(" state = " + address.getState() + "\n");
sb.append(" zipcode = " + address.getZipcode() +
"\n");
sb.append("phoneNumbers\n");
for (int i = 0; i < phoneNumbers.length; i++)

+ address.getStreet() +

{
sb.append(" type = " +
phoneNumbers[i].getType() + "\n");
sb.append(" number = " +
phoneNumbers[i].getNumber() + "\n");
}

return sb.toString();

Listing 11-7 describes a Person class that corresponds to Listing 11-2’s person. json

content. This class adheres to the Java Beans getter/setter method naming conventions.

By default, Jackson maps the fields of a JSON object to fields in a Java object by
matching the names of the JSON fields to the getter and setter methods in the Java
object. Jackson removes the get and set parts of the names of the getter and setter
methods and converts the first character of the remaining name to lowercase. For

example, in Listing 11-7, the JSON firstName field matches the Java getFirstName()

and setFirstName() getter and setter methods.

348

CHAPTER 11 PROCESSING JSON WITH JACKSON

Note A getter method makes a non-public field serializable and deserializable
(once a field has a getter method, it’s considered to be a property). In contrast,

a setter method makes a non-public field deserializable only. For example, in
Listing 11-7, commenting out setAge() only doesn’t affect age’s serializability/
deserializability. However, commenting out getAge () only prevents age from
being serialized (e.g., via one of ObjectMapper’s writeValue() methods).

Listing 11-8 presents the source code to an application that demonstrates full data
binding with assistance from the Person class.

Listing 11-8. A Full Data-Binding Demonstration
import java.io.File;

import com.fasterxml.jackson.databind.ObjectMapper;
import static java.lang.System.* ;

public class JacksonDemo

{
public static void main(String[] args) throws Exception
{
ObjectMapper mapper = new ObjectMapper();
Person person =
mapper.readValue(new File("person.json"),
Person.class);
out.println(person);

Listing 11-8’s main() method first instantiates ObjectMapper. Next, it invokes the
mapper’s readValue() method to read the contents of person.json into a Person object,
which is then printed.

349

CHAPTER 11 PROCESSING JSON WITH JACKSON

Note When using full data binding, the deserialization type must be fully
specified as something other than Object.class, which implies simple data
binding. In Listing 11-8, Person.class is passed to readValue() as the
deserialization type.

Compile Listings 11-7 and 11-8 and run the application. Assuming that the current
directory also contains Listing 11-2’s person. json file, you should observe the following
output:

firstName = John
lastName = Doe
age = 42
address
street = 400 Some Street
city = Beverly Hills
state = CA
zipcode = 90210
phoneNumbers
type = home
number = 310 555-1234
type = fax
number = 310 555-4567

Working with Jackson’s Advanced Features

Jackson provides various advanced features, which focus largely on customization. This
section introduces annotation types; custom pretty printers; and factory, parser, and
generator features.

Annotation Types

The Jackson Annotations and Jackson Databind packages provide annotation types
for influencing how JSON is read into Java objects or what JSON is generated from Java
objects. Annotation types are read-only, write-only, or read-write.

350

CHAPTER 11 PROCESSING JSON WITH JACKSON

Read-Only Annotation Types

Read-only annotation types affect how Jackson deserializes (parses) JSON content into
Java objects (i.e., they affect how Jackson reads JSON content). Jackson supports the
following read-only annotation types:

e JsonSetter

o JsonAnySetter

e JsonCreator and JsonProperty
o JacksonInject

e JsonDeserialize

JsonSetter

Match the annotated setter method’s name to a JSON property name when reading
JSON content into Java objects. This annotation type is useful when a Java class’s internal
property names don’t match the JSON document’s property names.

Listing 11-9 shows JsonSetter annotating a setter method in a Person class. Because
this method isn’t present in Person2, JsonSetter annotates the field instead.

Listing 11-9. Using JsonSetter to Match Java Class and JSON Document
Property Names

import com.fasterxml.jackson.annotation.JsonSetter;
import com.fasterxml.jackson.databind.ObjectMapper;
import static java.lang.System.*;

public class JacksonDemo

{

public static void main(String[] args) throws Exception

{

String jsonContent =

"+

" \"id\": 820787," +

" \"firstName\": \"Pierre\"" +

II}II;
351

CHAPTER 11 PROCESSING JSON WITH JACKSON

}

cla

{

352

ObjectMapper mapper = new ObjectMapper();
Person person = mapper.readValue(jsonContent,
Person.class);
out.println(person);
Person2 person2 = mapper.readValue(jsonContent,
Person2.class);
out.println(person2);

ss Person

private int personID = 0;
private String firstName = null;

public int getPersonID()
{

return personlD;

}

@JsonSetter("id")
public void setPersonID(int personID)

{

this.personID = personID;
}
public String getFirstName()
{

return firstName;
}

public void setFirstName(String firstName)

{

this.firstName = firstName;

CHAPTER 11 PROCESSING JSON WITH JACKSON

@verride
public String toString()

{

return personID + + firstName;

}

class Person2

{
@JsonSetter("id")

private int personID = 0;
private String firstName = null;

public int getPersonID()
{

return personlD;

}

public String getFirstName()
{

return firstName;

}

public void setFirstName(String firstName)

{

this.firstName = firstName;

}

@Override
public String toString()

{

return personlD + + firstName;

The value passed to the @JsonSetter annotation is the name of the JSON field to
match to this setter method. Here, the name is id because that’s the name of the field in
the JSON object to be mapped to the setPersonID() setter method.

353

CHAPTER 11 PROCESSING JSON WITH JACKSON

Person2 doesn’t have a setPersonID() setter, but this isn’t a problem because
Person2 contains a getPersonID() getter, making personID deserializable (via an
implicit setter) and serializable (via getPersonID()).

Compile Listing 11-9 and run the application. You should observe the following
output:

820787: Pierre
820787: Pierre

JsonAnySetter

Call the same setter method for all unrecognized fields in the JSON object. An
unrecognized field is one that isn’t already mapped to a property or setter method in the
Java object.

Listing 11-10 shows JsonAnySetter annotating a setter method in a PropContainer
class. Without the annotation, the code would fail at runtime.

Listing 11-10. Using JsonAnySetter to Install a Setter Method for Unrecognized
JSON Object Fields

import java.util.HashMap;
import java.util.Iterator;
import java.util.Map;
import java.util.Map.Entry;

import com.fasterxml.jackson.annotation.JsonAnySetter;
import com.fasterxml.jackson.databind.ObjectMapper;
import static java.lang.System.*;

public class JacksonDemo

{

public static void main(String[] args) throws Exception

{

String jsonContent =

+
" \"id\": 820787," +

\"firstName\": \"Pierre\"," +

354

CHAPTER 11 PROCESSING JSON WITH JACKSON

\"lastName\": \"Francois\"" +

e,
)

ObjectMapper mapper = new ObjectMapper();
PropContainer pc =

mapper.readValue(jsonContent, PropContainer.class);

Iterator<Map.Entry<String, Object>> iter =
pc.iterator();

while (iter.hasNext())

{
Map.Entry<String, Object> entry = iter.next();
out.printf("Key: %s, Value: %s%n", entry.getKey(),

entry.getValue());
}
}
}
class PropContainer
{
// public String lastName;
private Map<String, Object> properties;
PropContainer()
{
properties = new HashMap<>();
}
@JsonAnySetter
void addProperty(String fieldName, Object value)
{
properties.put(fieldName, value);
}
Iterator<Map.Entry<String, Object>> iterator()
{
return properties.entrySet().iterator();
}
}

355

CHAPTER 11 PROCESSING JSON WITH JACKSON

Listing 11-10 introduces a small JSON object with id, firstName, and lastName
fields. It also introduces a PropContainer class for storing these property names and
their values.

While parsing these fields from the JSON object into the PropContainer object,
Jackson would look for setID(), setFirstName(), and setLastName() methods. Because
these methods don’t exist and there are no public id, firstName, and lastName fields,
Jackson would normally output an error message at runtime. However, the presence
of addProperty() with its @JsonAnySetter annotation causes Jackson to invoke this
method for all three fields.

Compile Listing 11-10 and run the application. You should observe the following
output:

Key: firstName, Value: Pierre
Key: lastName, Value: Francois
Key: id, Value: 820787

Uncomment the line public String lastName;, recompile Listing 11-10, and rerun
the application. You should now observe the following output:

Key: firstName, Value: Pierre
Key: id, Value: 820787

This time, Key: lastName, Value: Francois doesn’t appear, because lastName is
no longer an unrecognized property—it now exists as a property in PropContainer.

JsonCreator and JsonProperty

JsonCreator tells Jackson that the Java object has a constructor (a “creator”) that can
match, with help from JsonProperty, the JSON object’s fields to the fields of the Java
object. These annotation types are useful where it’s not possible to use the @JsonSetter
annotation. For example, immutable objects cannot have setter methods, so their initial
values must be specified in the constructor, which Listing 11-11 demonstrates.

Listing 11-11. Using JsonCreator and JsonProperty to Call a Constructor When
Parsing JSON Text

import com.fasterxml.jackson.annotation.JsonCreator;
import com.fasterxml.jackson.annotation.JsonProperty;

356

CHAPTER 11 PROCESSING JSON WITH JACKSON

import com.fasterxml.jackson.databind.ObjectMapper;
import static java.lang.System.* ;

public class JacksonDemo

{
public static void main(String[] args) throws Exception
{
String jsonContent =
"+
" \"make\": \"Ford\"," +
" \"model\": \"F150\"," +
" \'year\": 2008" +
"
ObjectMapper mapper = new ObjectMapper();
Vehicle vehicle = mapper.readValue(jsonContent,
Vehicle.class);
out.printf("Make %s, Model %s, Year %d%n",
vehicle.getMake(), vehicle.getModel(),
vehicle.getYear());
}
}
class Vehicle
{

private String make, model;
private int year;

@JsonCreator

Vehicle(@JsonProperty("make") String make,
@JsonProperty("model™) String model,
@JsonProperty("year") int year)

this.make = make;
this.model = model;
this.year = year;

357

CHAPTER 11 PROCESSING JSON WITH JACKSON

String getMake()

{

return make;
}
String getModel()
{

return model;
}
int getYear()
{

return year;
}

Vehicle’s constructor is annotated @JsonCreator to tell Jackson that it should
call the constructor when parsing JSON content into a Java object. Furthermore, the
constructor’s parameters are annotated @JsonProperty to tell Jackson which JSON
object fields to pass to which constructor parameters. Note that @sonProperty receives
a single string argument that identifies the JSON object field name.

Compile Listing 11-11 and run the application. You should observe the following
output:

Make Ford, Model F150, Year 2008

Jacksonlnject

Inject (i.e., set based on an ObjectMapper-configured value) values into the parsed
objects instead of reading those values from the JSON content. For example, suppose
Iadd a String webURL field to the previous example’s Vehicle class. I can tell Jackson
to inject the URL of the vehicle’s manufacturer’s website into a Vehicle object by
performing the following steps:

1. Annotate webURL @JacksonInject.

2. Instantiate com.fasterxml.jackson.databind.
InjectableValues.Std() and invoke its addValue(Class<?>
classKey, Object value) method to add the string-based URL
to an injectable values object.

358

CHAPTER 11 PROCESSING JSON WITH JACKSON

3. Instantiate ObjectMapper.

4. Onthe ObjectMapper instance, invoke ObjectMapper’s
ObjectReader reader(InjectableValues injectableValues)
method to construct a com.fasterxml. jackson.databind.
ObjectReader object that will use the specified injectable values.

5. OntheObjectReader instance, invoke ObjectReader’s
ObjectReader forType(Class<?> valueType) method to
construct a new reader instance that’s configured to data bind into
the specified valueType.

6. On the ObjectReader instance that forType() returns, invoke
ObjectReader’s readValue(String src) method (or a similar
readValue() method) to read the source and perform the

injection.

Listing 11-12 presents the source code to an application that accomplishes these tasks.

Listing 11-12. Using JsonInject to Inject a URL into a Parsed Vehicle Object

import com.fasterxml.jackson.annotation.JacksonInject;
import com.fasterxml.jackson.annotation.JsonCreator;
import com.fasterxml.jackson.annotation.JsonProperty;

import com.fasterxml.jackson.databind.InjectableValues;
import com.fasterxml.jackson.databind.ObjectMapper;

import static java.lang.System.*;

public class JacksonDemo

{

public static void main(String[] args) throws Exception

{

String jsonContent =

"+

" \"make\": \"Ford\"," +
" \"model\": \"F150\"," +
" \'"year\": 2008" +

"}

359

CHAPTER 11 PROCESSING JSON WITH JACKSON

InjectableValues inject =
new InjectableValues.Std()
.addValue(String.class,
"ford.com");
Vehicle vehicle =
new ObjectMapper().reader(inject)
.forType(Vehicle.class)
.readValue(jsonContent);
out.printf("Make %s, Model %s, Year %d, URL %s%n",
vehicle.getMake(), vehicle.getModel(),
vehicle.getYear(), vehicle.webURL);

}
}
class Vehicle
{

private String make, model;
private int year;

@JsonCreator

Vehicle(@JsonProperty("make") String make,
@JsonProperty("model") String model,
@JsonProperty("year") int year)

{
this.make = make;
this.model = model;
this.year = year;

}

String getMake()

{
return make;

}

360

CHAPTER 11 PROCESSING JSON WITH JACKSON

String getModel()

{

return model;
}
int getYear()
{

return year;
}
@JacksonInject
String webURL;

Compile Listing 11-12 and run the application. You should observe the following
output:

Make Ford, Model F150, Year 2008, URL ford.com

JsonDeserialize

Specify a custom deserializer class for a given field in a Java object. For example, suppose
a JSON document contains a color field with a string-based value such as black or red.
This document is to be deserialized into a Canvas class that declares a color field of a
Color enum type. Jackson cannot deserialize this value without help, because it cannot
convert a string to an enum instance.

The “help” that Jackson requires starts by adding annotation @JsonDeserialize
to the color field. This annotation type’s using parameter is assigned the java.
lang.Class object of the class being used to perform the custom deserialization.
Furthermore, that class must subclass the abstract com.fasterxml.jackson.databind.
JsonDeserializer<T> class, where T is the type of the annotated field.

JsonDeserializer declares an abstract T deserialize(JsonParser p,
DeserializationContext ctxt) method thatJackson calls to deserialize JSON
content into the value type that this deserializer handles. The JsonParser argument
identifies the parser of the JSON content, and the com. fasterxml. jackson.databind.
DeserializationContext argument is used to pass in configuration settings.

Listing 11-13 presents the source code to an application that implements and

demonstrates this custom deserialization example.

361

CHAPTER 11 PROCESSING JSON WITH JACKSON

Listing 11-13. Using JsonDeserialize to Deserialize a Color String into a Color

Enum
import

import
import

import

import

import
import
import

public

{
pub

{

}

enum C

{
BLA

}

class

362

Constant
java.io.IOException;

com.fasterxml.jackson.core.JsonParser;
com.fasterxml.jackson.core.JsonProcessingException;

com.fasterxml.jackson.databind.annotation.
JsonDeserialize;

com.fasterxml.jackson.databind.
DeserializationContext;
com.fasterxml.jackson.databind.JsonDeserializer;
com.fasterxml.jackson.databind.ObjectMapper;

static java.lang.System.*;

class JacksonDemo
lic static void main(String[] args) throws Exception

String jsonContent =
"+
" \"color\": \"black\"" +
"}
Canvas canvas =
new ObjectMapper().readerFor(Canvas.class)
.readValue(jsonContent);
System.out.printf("Color = %s%n", canvas.color);

olor

CK, UNKNOWN

Canvas

CHAPTER 11 PROCESSING JSON WITH JACKSON

{
@JsonDeserialize(using = ColorDeserializer.class)
public Color color;
}
class ColorDeserializer extends JsonDeserializer<Color>
{
@Override
public Color deserialize(JsonParser jsonParser,
DeserializationContext
deserializationContext)
throws IOException, JsonProcessingException
{
switch (jsonParser.getText().tolLowerCase())
{
case "black":
return Color.BLACK;
default:
return Color.UNKNOWN;
}
}
}
Compile Listing 11-13 and run the application. You should observe the following
output:

Color = BLACK

Write-Only Annotation Types

Write-only annotation types affect how Jackson serializes (generates) Java objects into
JSON content (i.e., they affect how Jackson writes JSON content). Jackson supports the
following write-only annotation types:

e JsonInclude
e JsonGetter

e JsonAnyGetter

363

CHAPTER 11 PROCESSING JSON WITH JACKSON

e JsonPropertyOrder
o JsonRawValue
e JsonValue

e JsonSerialize

Jsoninclude

Include properties for serialization only under certain circumstances. For example, a
String property may be included only if its value isn’t the null reference.
JsonInclude can be used to annotate a field, a method parameter, a constructor
parameter, or an entire class. When a class is annotated, all properties are checked
against the annotation’s value to see if they can be serialized or not.
JsonInclude’s value is specified by assigning one of the JsonInclude.Include
enum’s constants to its value parameter. Here are three examples:

e ALWAYS: The property is to be included independent of its value.
Jackson includes all properties by default (i.e., when JsonInclude
isn’t used).

o NON_EMPTY: Properties with null values or what are otherwise
considered to be empty (e.g., a string has zero length or a Map’s
isEmpty() method returns true) are not included.

o NON_NULL: Properties with null values are not included.

Listing 11-14 presents the source code to an application that demonstrates
JsonInclude with these three enum constants.

Listing 11-14. Using JsonInclude to Skip or Serialize Empty or Null Properties

import java.util.Arraylist;
import java.util.Llist;
import com.fasterxml.jackson.annotation.JsonInclude;

import com.fasterxml.jackson.core.JsonGenerator;
import com.fasterxml.jackson.databind.ObjectMapper;

import static java.lang.System.*;

364

CHAPTER 11 PROCESSING JSON WITH JACKSON

public class JacksonDemo

{

public static void main(String[] args) throws Exception
{
ObjectMapper mapper = new ObjectMapper();
mapper.disable(JsonGenerator.Feature.
AUTO_CLOSE_TARGET);
Personl personl = new Personi();
mapper.writeValue(out, personi) ;
out.println();
Person2 person2 = new Person2();
mapper.writeValue(out, person2);
out.println();
Person3 person3 = new Person3();
mapper.writeValue(out, person3);
out.println();
Person4 person4 = new Person4();
mapper.writeValue(out, persons);

}

class Personi
{
public int personID = 0;
public String firstName = null;
public String lastName = "Doe";
public List<String> phoneNumbers = new Arraylist<>();

}

@JsonInclude(JsonInclude.Include.ALWAYS)
class Person2

{

public int personID = 0;

public String firstName = null;

public String lastName = "Doe";

public List<String> phoneNumbers = new Arraylist<>();
}

365

CHAPTER 11 PROCESSING JSON WITH JACKSON

@JsonInclude(JsonInclude.Include.NON_EMPTY)
class Person3

{

public int personID = 0;

public String firstName = null;

public String lastName = "Doe";

public List<String> phoneNumbers = new ArraylList<>();
}

@JsonInclude(JsonInclude.Include.NON NULL)
class Person4

{

public int personID = 0;

public String firstName = null;

public String lastName = "Doe";

public List<String> phoneNumbers = new Arraylist<>();
}

mapper.disable(JsonGenerator.Feature.AUTO CLOSE TARGET); prevents the
System.out stream from being closed after mapper.writeValue().

Compile Listing 11-14 and run the application. You should observe the following
output:

{"personID":0,"firstName":null,"lastName":"Doe", "phoneNumbers":[]}
{"personID":0,"firstName":null,"lastName":"Doe", "phoneNumbers":[]}
{"personID":0,"lastName":"Doe" }

{"personID":0,"lastName":"Doe","

:"Doe", "phoneNumbers":[]}

JsonGetter

When serializing a class instance, call the @JsonGetter-annotated method and serialize
the return value as the property’s value.

This annotation type is useful for Java classes that follow the jQuery (http://
en.wikipedia.org/wiki/JQuery) style for getter and setter names (such as numDoors ()
instead of getNumDoors()). Consider Listing 11-15.

366

http://en.wikipedia.org/wiki/JQuery
http://en.wikipedia.org/wiki/JQuery

CHAPTER 11 PROCESSING JSON WITH JACKSON

Listing 11-15. Using JSonGetter to Serialize jQuery-Style Properties

import
import
import
import
import

public

{
pub

{

}

class

{

pri

java.io.File;

com.fasterxml.jackson.annotation.JsonGetter;
com.fasterxml.jackson.annotation.JsonSetter;

com.fasterxml.jackson.databind.ObjectMapper;
static java.lang.System.* ;

class JacksonDemo
lic static void main(String[] args) throws Exception

String jsonContent =
1 n +
" \"id\": 820787," +

" \"firstName\": \"Pierre\"" +

e,
)

ObjectMapper mapper = new ObjectMapper();

Person person = mapper.readValue(jsonContent,
Person.class);

out.println(person);

mapper.writeValue(new File("pierre.json"), person);

Person

vate int personID = 0;

private String firstName = null;

@JsonGetter("id")

pub
{

lic int personID()

return personlD;

367

CHAPTER 11 PROCESSING JSON WITH JACKSON

public void setPersonID(int personID)

{

this.personID = personID;

}

@JsonGetter("firstName")
public String firstName()

{ return firstName;
}
public void setFirstName(String firstName)
{
this.firstName = firstName;
}
@verride
public String toString()
{
return personID + ": " + firstName;
}

The personId() and firstName() jQuery-style methods are annotated @JsonGetter.
The value set on each @JsonGetter annotation is the property name that Jackson will
write to the JSON document.

If @sonGetter("id") is removed from personID(), Jackson will throw a runtime
exception. It will do so because it cannot map the JSON id property to the Java personID
property—personID would have to be renamed getld, and setPersonID would have to
be renamed setId to remove the exception. If @JsonGetter("firstName") is removed
from firstName(), Jackson won't serialize the Java firstName property to JSON.

Itisn’t necessary to annotate setPersonID() @JsonSetter("id"), which was
done in Listing 11-9, because the presence of personID() with its @JsonGetter("id")
annotation makes personID deserializable and serializable.

Compile Listing 11-15 and run the application. You should observe the following
output:

820787: Pierre

368

CHAPTER 11 PROCESSING JSON WITH JACKSON

Furthermore, you should observe a pierre. json file with the following content:

"id":820787,"firstName": "Pierre"}

JsonAnyGetter

Identify a non-static, noargument method that returns a map of properties to be

serialized to JSON. Each of the map’s key/value pairs is serialized along with regular

properties. This annotation type is the counterpart to JsonAnySetter.

Listing 11-16 presents an application that demonstrates JsonAnyGetter. This

application extends Listing 11-10, which also demonstrates JsonAnySetter.

Listing 11-16. Using JSonAnyGetter to Serialize a Map of Properties

import java.

import java.
import java.
import java.
import java.

io.File;

util.HashMap;
util.Iterator;
util.Map;
util.Map.Entry;

import com.fasterxml.jackson.annotation.JsonAnyGetter;

import com.fasterxml.jackson.annotation.JsonAnySetter;

import com.fasterxml.jackson.databind.ObjectMapper;

import static java.lang.System.* ;

public class JacksonDemo

{

public static void main(String[] args) throws Exception

{

String jsonContent =

+

" \"id\": 820787," +

"}

\"firstName\": \"Pierre\"," +

\"lastName\": \"Francois\"" +

369

CHAPTER 11 PROCESSING JSON WITH JACKSON

}

cla

{

370

ObjectMapper mapper = new ObjectMapper();
PropContainer pc =

mapper.readValue(jsonContent, PropContainer.class);
Iterator<Map.Entry<String, Object>> iter =

pc.iterator();
while (iter.hasNext())
{
Map.Entry<String, Object> entry = iter.next();
out.printf("Key: %s, Value: %s%n", entry.getKey(),
entry.getValue());
}
mapper.writeValue(new File("pierre.json"), pc) ;
}
ss PropContainer

public String lastName;
private Map<String, Object> properties;

PropContainer()

{

properties = new HashMap<>();

}

@JsonAnySetter
void addProperty(String fieldName, Object value)

{

properties.put(fieldName, value);

}

Iterator<Map.Entry<String, Object>> iterator()
{

return properties.entrySet().iterator();

}
@JsonAnyGetter

CHAPTER 11 PROCESSING JSON WITH JACKSON

public Map<String, Object> properties()

{
return properties;
}
}
Compile Listing 11-16 and run the application. You should observe the following
output:

Key: firstName, Value: Pierre
Key: id, Value: 820787

Jackson’s deserialization mechanism doesn’t add JSON’s lastName property to
the map because it detects a LastName property of the PropContainer class. It updates
lastName instead.

You should also observe a pierre. json file with the following content:

{"lastName":"Francois","firstName":"Pierre","id":820787}

Jackson’s serialization mechanism first writes PropContainer’s regular properties
(only 1astName in this case) and then outputs the properties that are stored in the map.

JsonPropertyOrder

Specify the order in which a Java object’s fields should be serialized to JSON content.
This annotation type makes it possible to override the default top-down order with a
different order. Consider Listing 11-17.

Listing 11-17. Using JSonPropertyOrder to Serialize SomeClass2’s Properties in
Reverse Order

import java.io.File;
import com.fasterxml.jackson.annotation.JsonPropertyOrder;
import com.fasterxml.jackson.databind.ObjectMapper;

import static java.lang.System.*;

371

CHAPTER 11 PROCESSING JSON WITH JACKSON

public class JacksonDemo

{
public static void main(String[] args) throws Exception
{
ObjectMapper mapper = new ObjectMapper();
SomeClass1 scl = new SomeClassi();
mapper.writeValue(new File("orderi.json"), sci);
SomeClass2 sc2 = new SomeClass2();
mapper.writeValue(new File("order2.json"), sc2);
out.println("serialization successful");
}
}
class SomeClass1
{
public int a =1, b =2, c =3, d = 4;
public String e = "e";
}

@Jsonpropertyorder({llell, lldll, IICII’ llbll, llall})
class SomeClass2

{

public inta =1, b=2, c =3, d =4

public String e = "e";

Listing 11-17 declares SomeClass1, which isn’t annotated with JsonPropertyOrder
Therefore, its fields are serialized in top-down order. In contrast, SomeClass2 is
annotated so that its fields are serialized in reverse order.

Note The @JsonProperty annotation receives an array of quoted field names
whose left-to-right order corresponds to the serialized top-to-bottom order.

372

CHAPTER 11 PROCESSING JSON WITH JACKSON

Compile Listing 11-17 and run the application. You should observe the following
output:

serialization successful

The generated order1. json file contains the following content:
{"a":1,"b":2,"c":3,"d":4,"e":"e"}

The generated order2. json file contains the following content:

{"e":"e"’"d":4,"C":3’"b":2,"a":1}

JsonRawValue

Tell Jackson that the annotated Java method or field should be serialized as is. A string
property’s value is serialized without the surrounding quote characters. Consider
Listing 11-18.

Listing 11-18. Using JSonRawValue to Serialize a Vehicle Field As Is
import java.io.File;

import com.fasterxml.jackson.annotation.JsonRawValue;

import com.fasterxml.jackson.databind.ObjectMapper;

import static java.lang.System.*;

public class JacksonDemo

{

public static void main(String[] args) throws Exception
{
ObjectMapper mapper = new ObjectMapper();
Driveri di = new Driveri();
mapper.writeValue(new File("driveri.json"), di);
Driver2 d2 = new Driver2();
mapper.writeValue(new File("driver2.json"), d2);
out.println("serialization successful");

373

CHAPTER 11 PROCESSING JSON WITH JACKSON

class Driveri

{
public String name = "John Doe";
public String vehicle = "{ \"make\": \"Ford\", " +
"\"model\": \"F150\", " +
"\"year\": 2008";
}
class Driver2
{
public String name = "John Doe";
@JsonRawValue
public String vehicle = "{ \"make\": \"Ford\", " +
"\"model\": \"F150\", " +
"\"year\": 2008";
}
Compile Listing 11-18 and run the application. You should observe the following
output:

serialization successful
The generated driver1. json file contains the following content:

"name":"John Doe","vehicle":"{ \"make\": \"Ford\", \"model\": \"F150\",
\"year\": 2008"}

The generated driver2.json file contains the following content:

"name":"John Doe","vehicle":{ "make": "Ford", "model": "F150",
"year": 2008}

Unlike the previous output, this output reveals that the value of Driver2’s vehicle
property is serialized as part of the JSON object structure. It’s not serialized to a string in
the JSON object’s vehicle field, as the previous output shows.

374

CHAPTER 11 PROCESSING JSON WITH JACKSON

JsonValue

Delegate the serialization of a Java object to one of its methods, which must take no
arguments and which must return a value of a scalar type (such as String or java.lang.
Number) or any serializable type (such as java.util.Collection or Map).

For a noargument method with a String return type, Jackson escapes any double
quotation marks inside the returned String, making it impossible to return a full JSON
object. However, that task can be accomplished by using @JsonRawValue.

Listing 11-19 demonstrates JsonValue.

Listing 11-19. Using JSonValue to Serialize Props1 and Props2 Objects via Their
toJson() Methods

import java.io.File;

import java.util.HashMap;
import java.util.Map;

import com.fasterxml.jackson.annotation.JsonValue;
import com.fasterxml.jackson.databind.ObjectMapper;
import static java.lang.System.*;

public class JacksonDemo

{

public static void main(String[] args) throws Exception
{
ObjectMapper mapper = new ObjectMapper();
Propsl p1 = new Propsi();
mapper.writeValue(new File("propsi.json"), p1);
Props2 p2 = new Props2();
mapper.writeValue(new File("props2.json™), p2);
out.println("serialization successful");

375

CHAPTER 11 PROCESSING JSON WITH JACKSON

class Props1

{

npn,
)

"B";

public String a
public String b

@JsonValue
public String toJSON()

{

return a + "\"-\"" + b;

}

class Props2

{

private Map<String, String> props = new HashMap<>();

Props2()

{
props.put("a", "A'A"\"A\"");
props.put("bﬂ’ HBIBI\"B\"");
}

@JsonValue
public Map<String, String> toJSON()

{

return props;

Compile Listing 11-19 and run the application. You should observe the following
output:

serialization successful

The generated props1.json file contains the following content:
"A\"-\"B"

The generated props2.json file contains the following content:

{"a":"A'A'\"A\"","b":"BIBI\"B\""}

376

CHAPTER 11 PROCESSING JSON WITH JACKSON

This output reveals that double quotation marks are escaped even in noargument
methods with return types other than String.

JsonSerialize

Specify a custom serializer class for a given field in a Java object. For example, suppose a
Java object contains a color field whose value is an enum instance such as Color.BLACK.
This object is to be serialized to a JSON document whose color field is associated with a
string-based value such as black or red. Jackson cannot serialize this value without help,
because it cannot convert an enum instance to a string.

The “help” that Jackson requires starts by adding a @JsonSerialize annotation to
the color field. This annotation type’s using parameter is assigned the Class object of
the class being used to perform the custom serialization. Furthermore, that class must
subclass the abstract com.fasterxml. jackson.databind.JsonSerializer<T> class,
where T is the type of the annotated field.

JsonSerializer declares an abstract void serialize(T value, JsonGenerator
gen, SerializerProvider serializers) method that Jackson calls to serialize the
value type that this serializer handles to JSON content. The JsonGenerator argument
identifies the generator of the JSON content, and the com. fasterxml. jackson.
databind.SerializerProvider argument is used when serializing complex object
graphs.

Listing 11-20 presents the source code to an application that refactors Listing 11-13
to implement and demonstrate this custom serialization example.

Listing 11-20. Using JsonSerialize to Serialize a Color Enum Constant to a
Color String

import java.io.File;
import java.io.IOException;

import com.fasterxml.jackson.core.JsonGenerator;
import com.fasterxml.jackson.core.JsonParser;
import com.fasterxml.jackson.core.JsonProcessingException;

import com.fasterxml.jackson.databind.annotation.JsonDeserialize;
import com.fasterxml.jackson.databind.annotation.JsonSerialize;

377

CHAPTER 11 PROCESSING JSON WITH JACKSON

import com.fasterxml.jackson.databind.DeserializationContext;
import com.fasterxml.jackson.databind.JsonDeserializer;
import com.fasterxml.jackson.databind.JsonSerializer;

import com.fasterxml.jackson.databind.ObjectMapper;

import com.fasterxml.jackson.databind.SerializerProvider;

import static java.lang.System.*;

public class JacksonDemo

{
public static void main(String[] args) throws Exception
{
String jsonContent =
"+
" \"color\": \"black\"" +
"}
Canvas canvas =
new ObjectMapper().readerFor(Canvas.class)
.readValue(jsonContent);
out.printf("Color = %s%n", canvas.color);
new ObjectMapper().writeValue(new File("color.json"),
canvas);
}
}
enum Color
{
BLACK, UNKNOWN
}
class Canvas
{
@JsonDeserialize(using = ColorDeserializer.class)
@JsonSerialize(using = ColorSerializer.class)
public Color color;
}

378

CHAPTER 11 PROCESSING JSON WITH JACKSON

class ColorDeserializer extends JsonDeserializer<Color>

{
@Override
public Color deserialize(JsonParser jsonParser,
DeserializationContext
deserializationContext)
throws IOException, JsonProcessingException
{
switch (jsonParser.getText().tolLowerCase())
{
case "black":
return Color.BLACK;
default:
return Color.UNKNOWN;
}
}
}
class ColorSerializer extends JsonSerializer<Color>
{
@verride

public void serialize(Color color,
JsonGenerator jsonGenerator,
SerializerProvider
serializerProvider)
throws IOException, JsonProcessingException

switch (color)

{
case BLACK:

jsonGenerator.writeString("black");
break;

379

CHAPTER 11 PROCESSING JSON WITH JACKSON

default:
jsonGenerator.writeString("unknown");
}
}
}
Compile Listing 11-20 and run the application. You should observe the following
output:

Color = BLACK

Furthermore, you should observe a generated color. json file with the following

content:

{"color":"black"}

Read-Write Annotation Types

Read-write annotation types affect the reading of Java objects from JSON content, as well
as the writing of Java objects to JSON content. The following read-write annotation types
are supported by Jackson:

o JsonIgnore and JsonIgnoreProperties
o JsonlgnoreType
e JsonAutoDetect

Jsonlgnore and JsonlgnoreProperties

JsonIgnore tells Jackson to ignore a certain property (field) of a Java object. The property
is ignored when reading JSON content to Java objects and when writing Java objects to
JSON content. JsonIgnoreProperties tells Jackson to ignore a list of properties of a Java
class. The @JsonIgnoreProperties annotation is placed above the class declaration
instead of above each property (field) to be ignored. These closely related annotation
types are demonstrated in Listing 11-21.

380

CHAPTER 11 PROCESSING JSON WITH JACKSON

Listing 11-21. Using JsonIgnore and JsonIgnoreProperties to Ignore One or
More Properties

import java.io.File;

import com.fasterxml.jackson.annotation.JsonIgnore;
import com.fasterxml.jackson.annotation.
JsonIgnoreProperties;

import com.fasterxml.jackson.databind.ObjectMapper;
import static java.lang.System.*;

public class JacksonDemo

{

public static void main(String[] args) throws Exception

{
new ObjectMapper();

ObjectMapper mapper
SavingsAccountl sal

new SavingsAccount1("101", "John Doe", 50000);
mapper.writeValue(new File("sal.json"), sa1);
SavingsAccount2 sa2 =

new SavingsAccount2("101", "John Doe", 50000);
mapper.writeValue(new File("sa2.json"), sa2);
SavingsAccount3 sa3 =

new SavingsAccount3("101", "John Doe", 50000);
mapper.writeValue(new File("sa3.json"), sa3);
sal = mapper.readValue(new File("sal.json"),

SavingsAccountl.class);
out.printf("bankID = %s%n", sal.bankID);
out.printf("accountOwnerName = %s%n",
sal.accountOwnerName);
out.printf("balanceInCents = %d%n",
sal.balanceInCents);
sa2 = mapper.readValue(new File("sal.json"),
SavingsAccount2.class);

out.printf("bankID = %s%n", sa2.bankID);
out.printf("accountOwnerName = %s%n",

381

CHAPTER 11 PROCESSING JSON WITH JACKSON

sa2.accountOwnerName);
out.printf("balanceInCents = %d%n",
sa2.balanceInCents);
sa3 = mapper.readValue(new File("sal.json"),
SavingsAccount3.class);
out.printf("bankID = %s%n", sa3.bankID);
out.printf("accountOwnerName = %s%n",
sa3.accountOwnerName);
out.printf("balanceInCents = %d%n",

sa3.balanceInCents);
}
}
class SavingsAccount1
{
public String bankID;
public String accountOwnerName;
public long balancelInCents;
SavingsAccount1()
{
}
SavingsAccount1(String bankID, String accountOwnerName,
long balanceInCents)
{
this.bankID = bankID;
this.accountOwnerName = accountOwnerName;
this.balanceInCents = balanceInCents;
}
}
class SavingsAccount2
{
@JsonIgnore

public String bankID;
public String accountOwnerName;
public long balanceInCents;

382

CHAPTER 11 PROCESSING JSON WITH JACKSON

SavingsAccount2()

{
}

SavingsAccount2(String bankID, String accountOwnerName,
long balanceInCents)

{
this.bankID = bankID;
this.accountOwnerName = accountOwnerName;
this.balanceInCents = balanceInCents;

}

}

@JsonIgnoreProperties({"bankID", "accountOwnerName"})
class SavingsAccount3

{
public String bankID;

public String accountOwnerName;
public long balanceInCents;

SavingsAccount3()

{
}

SavingsAccount3(String bankID, String accountOwnerName,
long balanceInCents)

this.bankID = bankID;

this.accountOwnerName = accountOwnerName;
this.balanceInCents = balanceInCents;

The noargument and empty constructors in SavingsAccount1, SavingsAccount2,
and SavingsAccount3 are needed to avoid a runtime exception during deserialization.

383

CHAPTER 11 PROCESSING JSON WITH JACKSON

Compile Listing 11-21 and run the application. You should observe the following
output:

bankID = 101
accountOwnerName = John Doe
balanceInCents = 50000
bankID = null
accountOwnerName = John Doe
balanceInCents = 50000
bankID = null
accountOwnerName = null
balanceInCents = 50000

The null values are the result of bankID and accountOwnerName being set to null
because of @JsonIgnore and @jsonIgnoreProperties, even though this information is
stored in sal.json.

The generated sa1l. json file contains the following content:

{"bankID":"101","accountOwnerName":"John Doe","balanceInCents":50000}
The generated sa2. json file contains the following content:
{"accountOwnerName": "John Doe","balanceInCents":50000}

The generated sa3. json file contains the following content:

{"balanceInCents":50000}

JsonlgnoreType

All properties of an annotated type are to be ignored during serialization and
deserialization. This annotation type is demonstrated in Listing 11-22, where it’s used to
prevent Address properties from being serialized/deserialized.

Listing 11-22. Using JsonIgnoreType to Ignore Address Properties
import java.io.File;

import com.fasterxml.jackson.annotation.JsonIgnoreType;

import com.fasterxml.jackson.databind.ObjectMapper;

import static java.lang.System.*;

384

CHAPTER 11 PROCESSING JSON WITH JACKSON

public class JacksonDemo

{

}

public static void main(String[] args) throws Exception

{

ObjectMapper mapper = new ObjectMapper();
Personl personl = new Personi();
personl.name = "John Doe";
personl.address = new Personi.Address();
personl.address.street = "100 Smith Street";
personl.address.city = "SomeCity";
mapper.writeValue(new File("personil.json"), personi);
Person2 person2 = new Person2();
person2.name = "John Doe";
person2.address = new Person2.Address();
person2.address.street = "100 Smith Street";
person2.address.city = "SomeCity";
mapper.writeValue(new File("person2.json"), person2);
personl = mapper.readValue(new File("personi.json"),
Personi.class);
out.printf("name = %s%n", personi.name);
out.printf("street = %s%n", personil.address.street);
out.printf("city = %s%n", personl.address.city);
person2 = mapper.readValue(new File("personi.json"),
Person2.class);
out.printf("name = %s%n", person2.name);
out.printf("street = %s%n", person2.address.street);
out.printf("city = %s%n", person2.address.city);

class Personi

{

public String name;

public static class Address

{

385

CHAPTER 11 PROCESSING JSON WITH JACKSON

public String street;
public String city;

}
public Address address;
}
class Person2
{
public String name;
@JsonIgnoreType
public static class Address
{
public String street;
public String city;
}
public Address address;
}
Compile Listing 11-22 and run the application. You should observe the following
output:

name = John Doe

street = 100 Smith Street

city = SomeCity

name = John Doe

Exception in thread "main" java.lang.NullPointerException
at JacksonDemo.main(JacksonDemo.java:34)

The exception is the result of address being set to null because of @sonIgnoreType,
even though the address information is stored in person1. json.
The generated personil.json file contains the following content:

"name":"John Doe","address":{"street":"100 Smith
Street","city":"SomeCity"}}

The generated person2.json file contains the following content:

"name":"John Doe"}

386

CHAPTER 11 PROCESSING JSON WITH JACKSON

JsonAutoDetect

Tell Jackson to include non-public properties when reading and writing Java objects.

This annotation type declares various visibility elements for determining the
minimum visibility level (such as public or protected) for auto-detection. For example,
fieldVisibility specifies the minimum visibility required for auto-detecting member
fields. One of the JsonAutoDetect.Visibility enum constants is assigned to this
element. This enum enumerates possible visibility thresholds (minimum visibility) that
can be used to limit which methods (and fields) are auto-detected.

Listing 11-23 demonstrates JsonAutoDetect and its nested Visibility enum.

Listing 11-23. Using JsonAutoDetect to Auto-Detect Various Fields
import java.io.File;

import com.fasterxml.jackson.annotation.JsonAutoDetect;

import com.fasterxml.jackson.databind.ObjectMapper;

import static java.lang.System.*;

public class JacksonDemo

{

public static void main(String[] args) throws Exception
{
ObjectMapper mapper = new ObjectMapper();
SomeClass1l scl = new SomeClassi(1, 2, 3);
mapper.writeValue(new File("sc1.json"), sc1);
SomeClass2 sc2 = new SomeClass2(1, 2, 3);
mapper.writeValue(new File("sc2.json"), sc2);
SomeClass3 sc3 = new SomeClass3(1, 2, 3);
mapper.writeValue(new File("sc3.json"), sc3);
scl = mapper.readValue(new File("sc1.json"),
SomeClassi.class);
scl.print();
sc2 = mapper.readValue(new File("sc2.json"),
SomeClass2.class);
sc2.print();
sc3 = mapper.readValue(new File("sc3.json"),

SomeClass3.class);
387

CHAPTER 11 PROCESSING JSON WITH JACKSON

sc3.print();

}

class SomeClass1

{
public int a;
private int b;
protected int c;

SomeClassi()

{
}

SomeClassi(int a, int b, int c)

{

this.a = a;
this.b
this.c

I} 1
N o
- - e

}

public void print()

{
out.printf("a = %d, b = %d, c = %d%n", a, b, c);

}

@JsonAutoDetect(fieldVisibility = JsonAutoDetect.Visibility
.PROTECTED AND PUBLIC)
class SomeClass?2
{
public int a;
private int b;
protected int c;

SomeClass2()

{
}

388

CHAPTER 11 PROCESSING JSON WITH JACKSON

SomeClass2(int a, int b, int c)
{

this.a = a;

this.b = b;

this.c = c;

}

public void print()

{
out.printf("a = %d, b = %d, c = %d%n", a, b, c);

}

@JsonAutoDetect(fieldVisibility = JsonAutoDetect.Visibility
.ANY)
class SomeClass3
{
public int a;
private int b;
protected int c;

SomeClass3()

{
}

SomeClass3(int a, int b, int c)

{
this.a = a;
this.b = b;
this.c = ¢;

}

public void print()

{
out.printf("a = %d, b = %d, c = %d%n", a, b, c);

389

CHAPTER 11 PROCESSING JSON WITH JACKSON

With Visiblity.PROTECTED AND_PUBLIC, only access modifiers protected and
public are auto-detectable. With Visibility.ANY, protected, public, private, and
package access are auto-detectable.

Compile Listing 11-23 and run the application. You should observe the following

output:

a=1,b =0, c =
a=1,b =0, c =
a=1,b=2,c-=

The generated sc1. json file contains the following content:
{"a":1}

The generated sc2. json file contains the following content:
{"a":1,"c":3}

The generated sc3. json file contains the following content:

{Ilall:1)Ilbll:2,llcll:3}

Custom Pretty Printers

Jackson supports pretty printers to improve the appearance of generated output (making
it easier to read). A pretty printer class must implement the PrettyPrinter interface in
terms of the following methods:

o void beforeArrayValues(JsonGenerator gen)

o void beforeObjectEntries(JsonGenerator gen)

o void writeArrayValueSeparator(JsonGenerator gen)

o void writeEndArray(JsonGenerator gen, int nrOfValues)

o void writeEndObject(JsonGenerator gen, int nrOfEntries)
o void writeObjectEntrySeparator(JsonGenerator gen)

o void writeObjectFieldValueSeparator(JsonGenerator gen)

390

CHAPTER 11 PROCESSING JSON WITH JACKSON

o void writeRootValueSeparator(JsonGenerator gen)
o void writeStartArray(JsonGenerator gen)
o void writeStartObject(JsonGenerator gen)

Furthermore, since Jackson 2.1, a stateful implementation of PrettyPrinter must
implement the com. fasterxml. jackson.core.util.Instantiatable<T> interface, to
allow for the construction of per-generation instances in order to avoid state corruption
when sharing the pretty printer instance among threads. Instantiatable declaresa T
createInstance() method that returns a newly created stateful pretty printer object.

Note A stateless pretty printer class doesn’t need to implement
Instantiatable. However, if it implements this interface, its
createInstance() method should return this to signify the current object.

Earlier in this chapter, I showed the following pretty-printed output:

{
"firstname" : "John",
"lastName" : "Doe",
"age" : 42,
"address" : {
"street" : "400 Some Street",
"city" : "Beverly Hills",
"state" : "CA",
"zipcode" : 90210
})
"phoneNumbers" : [{
"type" : "home",
"number" : "310 555-1234"
oA
"type" : "fax",
"number" : "310 555-4567"
b
}

391

CHAPTER 11 PROCESSING JSON WITH JACKSON

I'd like to reformat the output to look like this:

{
"firstname" : "John",
"lastName" : "Doe",
"age" : 42,
"address" :
{
"street" : "400 Some Street",
"city" : "Beverly Hills",
"state" : "CA",
"zipcode" : 90210
})
"phoneNumbers" :
[
{
“type" : "home",
"number" : "310 555-1234"
})
{
"type" : "fax",
"number" : "310 555-4567"
}
]
}

Listing 11-24 provides the source code to an application with a custom
MyPrettyPrinter class that formats the output as shown in the preceding text.

Listing 11-24. Reformatting Output with a Pretty Printer
import java.io.IOException;

import com.fasterxml.jackson.core.JsonEncoding;
import com.fasterxml.jackson.core.JsonFactory;

import com.fasterxml.jackson.core.JsonGenerator;
import com.fasterxml.jackson.core.PrettyPrinter;

392

CHAPTER 11 PROCESSING JSON WITH JACKSON
import com.fasterxml.jackson.core.util.Instantiatable;
import static java.lang.System.*;

public class JacksonDemo

{

public static void main(String[] args) throws Exception

{
JsonFactory factory = new JsonFactory();
JsonGenerator generator =
factory.createGenerator(out, JsonEncoding.UTF8);
generator.setPrettyPrinter(new MyPrettyPrinter());
generator.writeStartObject();
generator.writeStringField("firstname", "John");
generator.writeStringField("lastName", "Doe");
generator.writeNumberField("age", 42);
generator.writeFieldName("address");
generator.writeStartObject();
generator.writeStringField("street"”,

"400 Some Street");
generator.writeStringField("city", "Beverly Hills");
generator.writeStringField("state"”, "CA");
generator.writeNumberField("zipcode", 90210);
generator.writeEndObject();
generator.writeFieldName("phoneNumbers");
generator.writeStartArray();
generator.writeStartObject();
generator.writeStringField("type", "home");
generator.writeStringField("number”, "310 555-1234");
generator.writeEndObject();
generator.writeStartObject();
generator.writeStringField("type", "fax");
generator.writeStringField("number", "310 555-4567");
generator.writeEndObject();
generator.writeEndArray();
generator.writeEndObject();

393

CHAPTER 11 PROCESSING JSON WITH JACKSON

}

cla

394

generator.close();

ss MyPrettyPrinter
implements PrettyPrinter, Instantiatable<MyPrettyPrinter>

private final String LINE SEP =
getProperty("line.separator");

private int indent = 0;
private boolean isNewline = true;

@verride
public MyPrettyPrinter createInstance()
{

return new MyPrettyPrinter();

}

@0verride
public void writeStartObject(JsonGenerator jg)
throws IOException

{

if (!isNewline)
newline(jg);

jg.writeRaw('{");
++indent;
isNewline = false;

}

@verride

public void beforeObjectEntries(JsonGenerator jg)
throws IOException

newline(jg) ;

CHAPTER 11 PROCESSING JSON WITH JACKSON

@verride

public void
writeObjectFieldValueSeparator(JsonGenerator jg)
throws IOException

{
jg.writeRaw(" : ");
isNewline = false;
}
@Override

public void writeObjectEntrySeparator(JsonGenerator jg)
throws IOException

{
jg.writeRaw(",");
newline(jg);

}

@verride

public void writeEndObject(JsonGenerator jg,
int nrOfEntries)
throws IOException

{
--indent;
newline(jg);
jg.writeRaw('}");
isNewline = indent == 0;
}
@verride

public void writeStartArray(JsonGenerator jg)
throws IOException

{
newline(jg);
jg.writeRaw("[");
++indent;
isNewline = false;
}

395

CHAPTER 11 PROCESSING JSON WITH JACKSON

@verride
public void beforeArrayValues(JsonGenerator jg)
throws IOException

{

newline(jg);
}
@0verride

public void writeArrayValueSeparator(JsonGenerator jg)
throws IOException

{
jg.writeRaw(", ");
isNewline = false;
}
@Override

public void writeEndArray(JsonGenerator jg,
int nrOfvalues)
throws IOException

{
--indent;
newline(jg);
jg.writeRaw(']");
isNewline = false;

}

@verride

public void writeRootValueSeparator(JsonGenerator jg)
throws IOException

jg.writeRaw(' ');
}

private void newline(JsonGenerator jg) throws IOException

{
jg.writeRaw(LINE_SEP);

for (int i = 0; i < indent; ++i)

396

CHAPTER 11 PROCESSING JSON WITH JACKSON

jg.writeRaw(" ");
isNewline = true;

DefaultPrettyPrinter is paired with JsonGenerator’s useDefaultPrettyPrinter()
method, which instantiates DefaultPrettyPrinter and installs the instance on the
generator. All other pretty printer classes must be instantiated explicitly, and these
instances must be installed on their generators by using JsonGenerator’s JsonGenerator
setPrettyPrinter(PrettyPrinter pp) method, which Listing 11-24 accomplishes as
follows:

generator.setPrettyPrinter(new MyPrettyPrinter());

Although there’s no need to do so, it’s possible to explicitly instantiate
DefaultPrettyPrinter and pass the instance to JsonGenerator by calling
setPrettyPrinter().

Note MyPrettyPrinter’s content is based on code found in GitHub issue
“PrettyPrinter Indenter: Ability to insert eol before object and array entries #724”
(http://github.com/FasterXML/jackson-databind/issues/724).

Compile Listing 11-24 and run the application. You should observe the following

output:
{
"firstname" : "John",
"lastName" : "Doe",
"age" . 42,
"address" :
{
"street" : "400 Some Street",

"city" : "Beverly Hills",
Ilstate" : IICAII)
"zipcode" : 90210

1

397

http://github.com/FasterXML/jackson-databind/issues/724

CHAPTER 11 PROCESSING JSON WITH JACKSON

"phoneNumbers" :
[
{
"type" : "home",
"number" : "310 555-1234"
})
{
"type" : "fax",
"number" : "310 555-4567"
}

For some custom pretty printers, Jackson’s com. fasterxml.jackson.core.util.
MinimalPrettyPrinter class, which adds no indentation but implements everything
necessary for value output to work as expected, might be easier to use.

Factory, Parser, and Generator Features

JsonFactory, JsonFactory, and JsonGenerator instances can be customized by
enabling various features, which are constants declared by nested Feature enums.

JsonFactory.Feature offers the following factory-oriented features (check out the
Javadoc for descriptions):

« CANONICALIZE FIELD NAMES

« FAIL ON_SYMBOL HASH OVERFLOW

« INTERN_FIELD NAMES

« USE_THREAD_LOCAL FOR_BUFFER_RECYCLING

JsonFactory provides four methods to enable, disable, and interrogate the state of
these features:

o JsonFactory configure(JsonFactory.Feature f, boolean state)
o JsonFactory disable(JsonFactory.Feature f)
o JsonFactory enable(JsonFactory.Feature f)

o boolean isEnabled(JsonFactory.Feature f)

398

CHAPTER 11 PROCESSING JSON WITH JACKSON

JsonParser.Feature offers the following parser-oriented features (check out the
Javadoc for descriptions):

« ALLOW BACKSLASH ESCAPING ANY CHARACTER
o ALLOW_COMMENTS

« ALLOW MISSING VALUES

« ALLOW NON_NUMERIC NUMBERS

« ALLOW NUMERIC_LEADING ZEROS
« ALLOW_SINGLE_QUOTES

o ALLOW TRAILING COMMA

« ALLOW UNQUOTED CONTROL_CHARS
« ALLOW_UNQUOTED FIELD NAMES

o ALLOW YAML_COMMENTS

« AUTO_CLOSE_SOURCE

« IGNORE_UNDEFINED

« INCLUDE_SOURCE_IN_LOCATION

e STRICT DUPLICATE DETECTION

JsonParser provides four methods to enable, disable, and interrogate the state of
these features:

o JsonParser configure(JsonParser.Feature f, boolean state)
e JsonParser disable(JsonParser.Feature f)

o JsonParser enable(JsonParser.Feature f)

e boolean isEnabled(JsonParser.Feature f)

JsonGenerator.Feature offers the following generator-oriented features (check out
the Javadoc for descriptions):

« AUTO_CLOSE_JSON_CONTENT
« AUTO CLOSE_TARGET
« ESCAPE_NON_ASCII

399

CHAPTER 11 PROCESSING JSON WITH JACKSON

« FLUSH PASSED TO STREAM
« IGNORE_UNKNOWN

« OQUOTE_FIELD NAMES

« QUOTE_NON_NUMERIC NUMBERS
e STRICT DUPLICATE DETECTION
« WRITE_BIGDECIMAL AS PLAIN
« WRITE_NUMBERS AS STRINGS

JsonGenerator provides four methods to enable, disable, and interrogate the state of
these features:

o JsonGenerator configure(JsonGenerator.Feature f, boolean
state)

e JsonGenerator disable(JsonGenerator.Feature f)
o JsonGenerator enable(JsonGenerator.Feature f)

e boolean isEnabled(JsonGenerator.Feature f)

Note For convenience, JsonFactory duplicates JsonParser’s and
JsonGenerator’s feature methods, which return, where applicable,
JsonFactory instead of JsonParser or JsonGenerator.

Finally, ObjectMapper supports the customization of its JsonParser and
JsonGenerator objects by providing the following convenience methods:

o ObjectMapper configure(JsonGenerator.Feature f, boolean
state)

o ObjectMapper configure(JsonParser.Feature f, boolean state)
o ObjectMapper disable(JsonGenerator.Feature... features)

o ObjectMapper disable(JsonParser.Feature... features)

o ObjectMapper enable(JsonGenerator.Feature... features)

o ObjectMapper enable(JsonParser.Feature... features)

400

CHAPTER 11 PROCESSING JSON WITH JACKSON

boolean isEnabled(JsonFactory.Feature f)
boolean isEnabled(JsonGenerator.Feature f)

boolean iskEnabled(JsonParser.Feature f)

In Listing 11-14, I disabled JsonGenerator's AUTO CLOSE TARGET feature via an
ObjectMapper instance by using the following code fragment:

mapper.disable(JsonGenerator.Feature.AUTO CLOSE TARGET);

If you recall, I disabled this feature to prevent mapper.writeValue() from closing the

System.out stream.

EXERCISES

The following exercises are designed to test your understanding of Chapter 11’s content:

1.

10.

11.
12.
13.

© © N o o A~ w DN

Define Jackson.

Identify Jackson’s packages.

True or false: Jackson supports only full data binding and POJO data binding.
How does streaming in Jackson work?

True or false: Streaming is the least efficient way to process JSON content.
How do you create a stream-based parser?

After you obtain a parser, how do use the parser to parse JSON content?
How do you create a stream-based generator?

After you obtain a generator, how do you use the generator to generate JSON
content?

True or false: The tree model provides a mutable in-memory tree representation
of a JSON document.

What class is used to start building a tree?
How do you read a JSON document into an in-memory tree?
What is the difference between JsonNode get(int index) and JsonNode

path(int index)?

401

CHAPTER 11 PROCESSING JSON WITH JACKSON

14. How do you write a tree to a JSON document?

15. Define data binding in Jackson.

16. What is the purpose of the TypeReference class?

17. How does simple data binding differ from full data binding?

18. By default, how does Jackson map the fields of a JSON object to fields in a
Java object?

19. True or false: A getter method makes a non-public field serializable only.
20. List Jackson’s read-only annotation types.

21. What does the JsonPropertyOrder annotation type accomplish?

22. What’s the difference between a stateful and a stateless pretty printer class?

23. How do you prevent ObjectMapper’s writeValue() methods from closing
the System.out stream?

24. Modify Listing 11-3 so that numbers are written out as strings.

Summary

Jackson is a suite of data-processing tools for Java. These tools include a streaming
JSON parser/generator library, a matching data-binding library (for converting Plain
Old Java Objects—PQOJOs—to and from JSON), and additional data format modules for
processing data encoded in XML and other formats.

Jackson consists of core, databind, and annotations packages. The core package
supports a StAX-like streaming API for reading and writing JSON via sequences of
discrete events. The databind package supports a DOM-like tree model that provides a
mutable in-memory tree representation of a JSON document. The annotations package
provides public core annotation types, most of which are used to configure how data
binding (mapping) works.

The Jackson Core and Jackson Databind packages support the consumption and
creation of JSON documents. They offer various types related to streaming, the tree
model, and POJO-oriented data binding.

402

CHAPTER 11 PROCESSING JSON WITH JACKSON

Jackson provides various advanced features, which focus largely on customization
in terms of annotation types; custom pretty printers; and factory, parser, and generator
features.

The annotation types influence how JSON is read into Java objects or what JSON is
generated from Java objects. Annotation types are read-only, write-only, or read-write.

Jackson supports pretty printers to improve the appearance of generated output
(making it easier to read). A custom pretty printer class implements the PrettyPrinter
interface.

JsonFactory, JsonParser, and JsonGenerator instances can be customized by
enabling various features, which are constants declared by nested Feature enums. Each
class provides configure(), enable(), disable(), and isEnabled() methods to enable/
disable a feature or learn if a feature is enabled.

Chapter 12 introduces JSON-P for parsing and generating JSON content.

403

CHAPTER 12

Processing JSON
with JSON-P

JSON-P is an intriguing API because it was originally considered for inclusion in Java SE,
but was made available to Java EE instead. Chapter 12 explores JSON-P.

What Is JSON-P?

JSON Processing (JSON-P) is a Java API for processing (i.e., parsing, generating, querying,
and transforming) JSON content.

JSON-P 1.0

JSON-P 1.0 processes JSON content via an object model or a streaming model. The
object model lets JSON-P build a tree of objects for JSON text via API classes similarly to
Java’'s DOM API for XML. The streaming model lets JSON-P produce and consume JSON
text similarly to Java’s StAX API for XML.

JSON-P 1.0 began as “Java Specification Request (JSR) 353: Java API for JSON
Processing” (http://jcp.org/en/jsr/detail?id=353). It was officially released in May
2013, but only for Java EE 7 and higher. However, it also can be used in a Java SE 6 and
higher context.

JSON-P 1.0 consists of 25 types located in package javax.json, along with the
support packages javax.json.spiand javax.json.stream. The javax.json package
mainly contains types that support the object model, the javax. json.spi package
contains a single type that describes a service provider for JSON processing objects, and
the javax.json.stream package contains types that support the streaming model. Both
models are discussed later.

405
© Jeff Friesen 2019

J. Friesen, Java XML and JSON, https://doi.org/10.1007/978-1-4842-4330-5_12

http://jcp.org/en/jsr/detail?id=353

CHAPTER 12 PROCESSING JSON WITH JSON-P

The javax.json package provides the entry-point Json factory class for creating
JSON processing objects, such as array builders, object builders, readers, writers, parsers,
and generators, and additional types that collectively define an object model API for
processing JSON text:

e JsonArray: an interface that represents an immutable JSON array (an
ordered sequence of zero or more values)

o JsonArrayBuilder: an interface that describes a builder for creating
JsonArray models from scratch

o JsonBuilderFactory: an interface that describes a factory for
creating JsonArrayBuilder and JsonObjectBuilder objects

e JsonNumber: an interface that represents an immutable JSON number
value

o JsonObject: an interface that represents an immutable JSON object
value (an unordered collection of zero or more name/value pairs)

o JsonObjectBuilder: an interface that describes a builder for creating
JsonObject models from scratch

e JsonReader: an interface that describes a way to read a JSON object
or an array structure from an input source

o JsonReaderFactory: an interface that describes a factory for creating
JsonReader objects

e JsonString: an interface that represents an immutable JSON string

e JsonStructure: an interface that serves as the direct supertype of
JsonArray and JsonObject

e JsonValue: an interface that represents an immutable JSON value,
and is also the direct supertype of JsonNumber, JsonString, and
JsonStructure

o JsonWriter: an interface that describes a way to write a JSON object
or an array structure to an output destination

o JsonWriterFactory: an interface that describes a factory for creating
JsonWriter objects

406

CHAPTER 12 PROCESSING JSON WITH JSON-P

e JsonValue.ValueType: an enum of JsonValue type constants

o JsonException: an exception that identifies some kind of failure
during JSON processing

JSON VALUE HIERARCHY

JsonValue is the superinterface of interface types that represent immutable JSON values.
Figure 12-1 shows their hierarchical relationship.

JsonValue
JsonNumber JsonString JsonStructure
JsonArray JsonObject

Figure 12-1. Relating JSON value types

JSON'’s Boolean and null types exist as TRUE, FALSE, and NULL constants in JsonValue.

The javax.json.spi service provider interface package provides a single type for
plugging in JSON processing object implementations:

e JsonProvider: an abstract class that serves as a service provider
for JSON processing objects. The JSON-P libraries include a
default Glassfish (http://en.wikipedia.org/wiki/GlassFish)
JsonProvider implementation.

407

http://en.wikipedia.org/wiki/GlassFish

CHAPTER 12 PROCESSING JSON WITH JSON-P

Finally, the javax. json.stream package provides several types that collectively
define a streaming API for parsing and generating JSON text:

o JsonGenerator: an interface that describes a way to write JSON data
to an output destination in a streaming manner

e JsonGeneratorFactory: an interface that describes a factory for
creating JsonGenerator objects

e Jsonlocation: an interface that describes a way to obtain the
location information (e.g., column and line numbers) of a JSON event

in an input source

e JsonParser: an interface that describes a way to read JSON data from
an input source in a streaming (and read-only) manner

o JsonParserFactory: an interface that describes a factory for creating
JsonParser objects

e JsonParser.EVENT: an enum of event types

o JsonGenerationException: an exception indicating that an incorrect
JSON document is being generated

o JsonParsingException: an exception indicating that an incorrect
JSON document is being parsed

A complete API reference is available by pointing the browser to JSR 353’s
“JSR-000353 Java API for JSON Processing 1.0 Final Release for Evaluation”
(http://download.oracle.com/otndocs/jcp/json-1_0-fr-eval-spec/index.html)
page, accepting the license agreement, downloading javax. json-api-1.0-javadoc.zip,
unzipping this archive, and executing jar xvf javax.json-api-1.0-javadoc.jar
on the resulting javax.json-api-1.0-javadoc.jar file. Point the web browser to the
unzipped index.html file to access the API reference.

JSON-P 1.1

JSON-P 1.1 also supports JSON Pointer, JSON Patch, and JSON Merge Patch.
Additionally, the new version introduces editing/transformation operations to JSON
array and object builders and updates the API to better support Java SE 8 stream
operations (including JSON-specific collectors).

408

http://download.oracle.com/otndocs/jcp/json-1_0-fr-eval-spec/index.html

CHAPTER 12 PROCESSING JSON WITH JSON-P

Note

After JSON-P 1.0 was released, JSON Pointer, JSON Patch, and JSON

Merge Patch specifications were released. JSON Pointer defines a string-syntax
for identifying a specific value in a JSON document. JSON Patch defines a JSON
document structure for expressing a sequence of operations to apply to another
JSON document (and also makes use of JSON Pointer). JSON Merge Patch is
similar to JSON Patch in that it’s also used to change another JSON document’s
structure. However, the syntax of the JSON Merge Patch JSON document more
closely mimics the syntax of the JSON document that’s being changed.

JSON-P 1.1 began as “JSR 374: Java API for JSON Processing 1.1” (http://jcp.org/
en/jsr/detail?id=374). It was officially released in May 2017, but only for Java EE 8 and

higher. However, it also can be used in a Java SE 8 and higher context.
JSON-P 1.1 consists of 31 types that are located in the main package javax.json,

along with the support packages javax.json.spi and javax.json.stream. (No new
packages have been added.) The following new types have been added to javax. json:

JsonMergePatch: an interface that represents an implementation of a
JSON Merge Patch as defined by RFC 7386 (http://tools.ietf.org/
html/rfc7386)

JsonPatch: an interface that represents an immutable
implementation of a JSON Patch as defined by RFC 6902
(http://tools.ietf.org/html/rfc6902)

JsonPatchBuilder: an interface that describes a builder for
constructing a JSON Patch by adding JSON Patch operations
incrementally

JsonPointer: an interface that represents an immutable
implementation of a JSON Pointer as defined by RFC 6901
(http://tools.ietf.org/html/rfc6901)

JsonPatch.Operation: an enum of valid RFC 6902 JSON Patch

operations

409

http://jcp.org/en/jsr/detail?id=374
http://jcp.org/en/jsr/detail?id=374
http://tools.ietf.org/html/rfc7386
http://tools.ietf.org/html/rfc7386
http://tools.ietf.org/html/rfc6902
http://tools.ietf.org/html/rfc6901

CHAPTER 12 PROCESSING JSON WITH JSON-P

The following new type is located in javax. json.stream:

o JsonCollectors: a class with java.util.stream.Collector
implementations for accumulating JsonValues into JsonArrays and
JsonObjects

Additional changes in the form of new methods have been made to existing classes.

A complete API reference is available by pointing the browser to JSR 374’s
“JSR-000374 Java API for JSON Processing 1.1 Specification Final Release for Evaluation”
(http://download.oracle.com/otndocs/jcp/json _p-1_1-final-eval-spec/index.html)
page, accepting the license agreement, downloading javax. json-api-1.1-javadoc.jar,
and executing jar xvf javax.json-api-1.1-javadoc.jar.Point the web browser to
the unzipped index. html file to access the API reference.

Obtaining and Using JSON-P

The latest updates of the JSON-P 1.0 and 1.1 libraries can be obtained from the Maven
Repository (http://mvnrepository.com). At the time of writing, 1.0.4 is the latest update
of JSON-P 1.0, and 1.1.3 is the latest update of JSON-P 1.1.

Obtain version 1.0.4 by pointing your browser to “JSR 374 (JSON Processing)
Default Provider » 1.0.4” (http://mvnrepository.com/artifact/org.glassfish/
javax.json/1.0.4) and clicking the “bundle (83 KB)” link on the Files line. The
resulting javax.json-1.0.4.jar file contains all of the JSON-P 1.0 classfiles along with
the Glassfish default provider classfiles. Add this JAR file to your CLASSPATH when
compiling and running code that uses this library:

javac -cp javax.json-1.0.4.jar source file
java -cp javax.json-1.0.4.jar;. main classfile
Follow these steps to obtain version 1.1.3:

1. Point your browser to “JSR 374 (JSON Processing) API » 1.1.3”
(http://mvnrepository.com/artifact/javax.json/javax.
json-api/1.1.3) and click the “bundle (30 KB)” link on the
Files line.

410

http://download.oracle.com/otndocs/jcp/json_p-1_1-final-eval-spec/index.html
http://mvnrepository.com
http://mvnrepository.com/artifact/org.glassfish/javax.json/1.0.4
http://mvnrepository.com/artifact/org.glassfish/javax.json/1.0.4
http://mvnrepository.com/artifact/javax.json/javax.json-api/1.1.3
http://mvnrepository.com/artifact/javax.json/javax.json-api/1.1.3

CHAPTER 12 PROCESSING JSON WITH JSON-P

2. Because the resulting javax.json-api-1.1.3.jar file doesn’t
contain the Glassfish default provider, point your browser to
“JSR 374 (JSON Processing) Default Provider » 1.1.3” (http://
mvnrepository.com/artifact/org.glassfish/javax.
json/1.1.3) and click the “bundle (99 KB)” link on the Files line.
You should observe a javax.json-1.1.3.jar file.

javax.json-api-1.1.3.jar contains only the JSON-P 1.1 class files, and
javax.json-1.1.3.jar contains only the Glassfish class files. Add these JAR files to your
CLASSPATH when compiling and running code that uses these libraries:

javac -cp javax.json-api-1.1.3.jar;javax.json-1.1.3.jar;. source file

java -cp javax.json-api-1.1.3.jar;javax.json-1.1.3.jar;. main classfile

Working with JSON-P 1.0

JSON-P 1.0 provides object model and streaming model APIs to process JSON text. The
object model API represents JSON text in memory via a tree-like structure, which can be
navigated and queried in a random-access fashion. The streaming model API represents
JSON text as a sequence of events; a parser delivers the next event to an application upon
request (the event is “pulled” from the parser). The application can process or discard
the event.

The object model is more flexible than the streaming model in that it enables
processing that requires random access to the complete content of the tree. However, it’s
often not as efficient as the streaming model and requires more memory.

Working with the Object Model API

The object model API is similar to Java’s DOM API for XML. It’s a high-level API
that provides immutable object models for JSON object and array structures. These
JSON structures are represented as object models using JsonObject and JsonArray,
respectively.

JsonObject provides a java.util.Map view for accessing an object model’s
unordered collection of zero or more name/value pairs. Similarly, JsonArray provides a
java.util.Llist view for accessing an object model’s ordered sequence of zero or more

values.

411

http://mvnrepository.com/artifact/org.glassfish/javax.json/1.1.3
http://mvnrepository.com/artifact/org.glassfish/javax.json/1.1.3
http://mvnrepository.com/artifact/org.glassfish/javax.json/1.1.3

CHAPTER 12 PROCESSING JSON WITH JSON-P

JsonObject and JsonArray are joined by JsonString and JsonNumber to represent
most of JSON’s data types. Collectively, they subclass JsonValue, which also defines
TRUE, FALSE, and NULL constants for JSON’s Boolean and null data types.

Builder patterns are used to create object models from scratch. Applications use
interface JsonObjectBuilder to create models that represent JSON objects. The resulting
model is of type JsonObject. Similarly, they use interface JsonArrayBuilder to create
models that represent JSON arrays. The resulting model is of type JsonArray.

Listing 12-1 presents the source code to an application that demonstrates the builder
approach to creating an object model.

Listing 12-1. Using a Builder to Create an Object Model

import javax.json.Json;
import javax.json.JsonArray;
import javax.json.JsonObject;

import static java.lang.System.*;

public class JSONPDemo
{

public static void main(String[] args)
{
JsonObject person =
Json.createObjectBuilder()
.add("firstName", "John")
.add("lastName", "Doe")
.add("age", 42)
.add("address", Json.createObjectBuilder()
.add("street",
"400 Some Street")
.add("city",
"Beverly Hills")
.add("state", "CA")
.add("zipcode", 90210))

412

CHAPTER 12 PROCESSING JSON WITH JSON-P

.add("phoneNumbers",
Json.createArrayBuilder()
.add(Json.createObjectBuilder()
.add("type", "home")
.add("number",
"310 555-1234"))
.add(Json.createObjectBuilder()
.add("type", "fax")
.add("number",
"310 555-4567")))
.build();
out.printf("First name: %s%n",
person.getString("firstName"));
out.printf("Last name: %s%n",
person.getString("lastName"));
out.printf("Age: %d%n", person.getInt("age"));
out.println("Address");
out.println("------- ");
JsonObject address = person.getJsonObject("address");
out.printf(" Street: %s¥%n",
address.getString("street"));
out.printf(" City: %s%n",
address.getString("city"));
out.printf(" State: %s¥%n",
address.getString("state"));
out.printf(" Zipcode: %d%n",
address.getInt("zipcode"));
out.println("Phone Numbers");
out.println("------------- ");
JsonArray phoneNumbers =
person.getJsonArray("phoneNumbers");
for (JsonObject phoneNumber:
phoneNumbers.getValuesAs(JsonObject.class))

413

CHAPTER 12 PROCESSING JSON WITH JSON-P

{
out.printf(" Type: %shn",
phoneNumber.getString("type"));
out.printf(" Number: %s¥n",
phoneNumber .getString("number"));

Listing 12-1 describes a Java application whose main() method constructs
a JsonObject describing a person. It first invokes Json’s JsonObjectBuilder
createObjectBuilder() method followed by various JsonObjectBuilder add()
methods to populate the JsonObject, followed by JsonObjectBuilder’s build() method
to return the JsonObject.

Constructing the JsonObject requires the use of Json’s JsonArrayBuilder
createArrayBuilder () method, followed by JsonArrayBuilder’s JsonArrayBuilder
add(JsonObjectBuilder builder) method to construct the phone numbers JsonArray
portion of the JsonObject.

After returning the JsonObject, main() invokes various methods to interrogate the
object and output object details.

Compile Listing 12-1 as follows:

javac -cp javax.json-1.0.4.jar JSONPDemo.java
Run the resulting application as follows:

java -cp javax.json-1.0.4.jar;. JSONPDemo
You should observe the following output:

First name: John

Last name: Doe

Age: 42

Address
Street: 400 Some Street
City: Beverly Hills
State: CA
Zipcode: 90210

414

Phone Numbers

Type: home
Number: 310 555-1234

Type: fax

Number: 310 555-4567

CHAPTER 12 PROCESSING JSON WITH JSON-P

Object models also can be created from an input source (such as java.

io.InputStreamor java.io.Reader) by using interface JsonReader. Similarly, object

models can be written to an output destination (such as java.io.OutputStreamor java.

io.Writer) by using interface JsonWriter.

Listing 12-2 presents the source code to an application that demonstrates the reader

approach to creating an object model and also writing this model.

Listing 12-2. Using a Reader to Create an Object Model and a Writer to Write

This Model

import java.
import java.
import java.
import java.
import java.
import java.

io
io
io
io
io
io

.File;
.FileNotFoundException;
.FileReader;
.FileWriter;
.IO0Exception;
.StringReader;

import javax.json.Json;

import javax.json.JsonArray;
import javax.json.JsonObject;

import javax.json.JsonReader;

import javax.json.JsonWriter;

import static java.lang.System.*;

public class JSONPDemo

{

public static void main(String[] args)
throws FileNotFoundException

415

CHAPTER 12 PROCESSING JSON WITH JSON-P

{

String json =

"+

" \"firstName\": \"John\"," +

" \"lastName\": \"Doe\"," +

" \"age\": 42," +

" \"address\":" +

" "t

" \"street\": \"400 Some Street\"," +
" \"city\": \"Beverly Hills\"," +
" \"state\": \"CA\"," +

! \"zipcode\": 90210" +

"oy
" \"phoneNumbers\":" +
T

" "+

" \"type\": \"home\"," +
" \"number\": \"310 555-1234\"" +

" 3,
" "+

" \"type\": \"fax\"," +

" \"number\": \"310 555-4567\"" +

+

File file = new File("person.json");
JsonReader reader =
Json.createReader(file.exists() ?
new FileReader("person.json") :
new StringReader(json));
JsonObject person = reader.readObject();
out.printf("First name: %s%n",
person.getString("firstName"));
out.printf("Last name: %skn",
person.getString("lastName"));

416

CHAPTER 12 PROCESSING JSON WITH JSON-P

out.printf("Age: %d%n", person.getInt("age"));

out.println("Address");

out.println("------- ");

JsonObject address = person.getJsonObject("address");

out.printf(" Street: %skn",
address.getString("street"));

out.printf(" City: %s%n",
address.getString("city"));

out.printf(" State: %skn",
address.getString("state"));

out.printf(" Zipcode: %d%n",
address.getInt("zipcode"));

out.println("Phone Numbers");

out.println("------------- ");

JsonArray phoneNumbers =

person.getJsonArray("phoneNumbers");
for (JsonObject phoneNumber:
phoneNumbers.getValuesAs(JsonObject.class))

{
out.printf(" Type: %s%n",
phoneNumber.getString("type"));
out.printf(" Number: %s%n",
phoneNumber.getString("number"));
}
try (var fw = new FileWriter("person.json"))
{
JsonWriter writer = Json.createWriter(fw);
writer.writeObject(person);
writer.close();
}
catch (IOException ioe)
{
out.printf("I/0 error: %s%n", ioe.getMessage());
}

417

CHAPTER 12 PROCESSING JSON WITH JSON-P

Listing 12-2 describes a Java application whose main() method first constructs a
JsonReader object by invoking Json’s JsonReader createReader(Reader reader)
method with either a java.io.FileReader object to read from a person.json file or a
java.io.StringReader object to read from a string when this file doesn’t exist. It then
creates a JsonObject by invoking JsonReader’s JsonObject readObject() method.

main() subsequently invokes various methods to interrogate the object and output
object details and then uses JsonWriter to write the object to a file named person. json.

Compile and run the application as previously shown, and you should observe the
same output (and a person. json file should be created) .

Working with the Streaming Model API

The streaming model API is similar to Java’s StAX API for XML. It’s a high-level API that
provides a stream of events during JSON text parsing, which is represented by interface
JsonParser. This interface provides boolean hasNext() and Event next() methods for
parsing JSON text from an input source.

Listing 12-3 presents the source code to an application that demonstrates parsing
JSON text.

Listing 12-3. Using the Streaming Model to Parse JSON Text
import java.io.StringReader;

import javax.json.Json;

import javax.json.stream.JsonParser;

import static javax.json.stream.JsonParser.Event;

import static java.lang.System.*;

public class JSONPDemo
{

public static void main(String[] args)

{

String json =
1 n +
" \"firstName\": \"John\"," +

" \"lastName\": \"Doe\"," +

418

CHAPTER 12 PROCESSING JSON WITH JSON-P

\"age\": 42," +

\"address\":" +

" "+

" \"street\": \"400 Some Street\"," +
" \"city\": \"Beverly Hills\"," +

" \"state\": \"CA\"," +

" \"zipcode\": 90210" +

R A
" \"phoneNumbers\":" +
n [n +

" "t

! \"type\": \"home\"," +

" \"number\": \"310 555-1234\"" +
" 3,

" "4

" \"type\": \"fax\"," +

" \"number\": \"310 555-4567\"" +
D

o,
)

+

JsonParser parser =
Json.createParser(new StringReader(json));
while (parser.hasNext())
{
Event event = parser.next();
if (event == Event.KEY_NAME)
switch (parser.getString())
{
case "firstName":
parser.next();
out.printf("First name: %s%n",
parser.getString());
break;

419

CHAPTER 12 PROCESSING JSON WITH JSON-P

case "lastName":
parser.next();
out.printf("Last name: %s%n",
parser.getString());
break;

case "age":
parser.next();

out.printf("Age: %d%n", parser.getInt());
break;

case "address":

parser.next();
out.println("Address");
out.println("------- ");
break;

case "street":

parser.next();
out.printf(" Street: %s¥%n",
parser.getString());
break;
case "city":
parser.next();
out.printf(" City: %s%n",
parser.getString());
break;
case "state":
parser.next();
out.printf(" State: %skn",
parser.getString());
break;

420

CHAPTER 12

case "zipcode":
parser.next();
out.printf(" Zipcode: %d%n",
parser.getInt());
break;

case "phoneNumbers":
parser.next();
out.println("Phone Numbers");
out.println("------------- ");
break;

case "type":

parser.next();

out.printf(" Type: %s%n",
parser.getString());

parser.next();

parser.next();

out.printf(" Number: %s%n",
parser.getString());

break;

false when there are no more events) and return the event.
next () returns the next event as a JsonParser.Event enum constant. The only event
of interest is the name of an object’s key, which is signified by Event.KEY_NAME. This
name is returned by invoking JsonParser’s String getString() method. Once a match
is detected, parser.next(); is executed to skip past this name and get to the next event,
typically to return a key’s associated value.

PROCESSING JSON WITH JSON-P

Listing 12-3 describes a Java application that constructs a parser by invoking Json’s
JsonParser createParser(Reader reader) method with a StringReader object
describing string-based JSON text. It repeatedly invokes JsonParser’s hasNext () and
next () methods to respectively test for another event (returning true for an event or

421

CHAPTER 12 PROCESSING JSON WITH JSON-P

Compile and run the application as previously shown, and you should observe the
same output.

The streaming model APT also supports JSON content generation, which is
represented by interface JsonGenerator. This interface provides write-prefixed
methods for generating JSON text to an output destination.

Listing 12-4 presents the source code to an application that shows how to generate
JSON text.

Listing 12-4. Using the Streaming Model to Generate JSON Text

import java.io.FileWriter;
import java.io.IOException;

import javax.json.Json;
import javax.json.stream.JsonGenerator;
import static java.lang.System.*;

public class JSONPDemo
{

public static void main(String[] args)

{

try (var fw = new FileWriter("person.json"))
{
JsonGenerator generator = Json.createGenerator(fw);
generator.writeStartObject()
write("firstName", "John")
.write("lastName", "Doe")
.write("age", 42)
.writeStartObject("address")
write("street", "400 Some Street")
.write("city", "Beverly Hills")
write("state", "CA")
.write("zipcode", 90210)
.writeEnd()

422

CHAPTER 12 PROCESSING JSON WITH JSON-P

.writeStartArray("phoneNumbers")
.writeStartObject()
.write("type", "home")
.write("number", "310 555-1234")
.writeEnd()
.writeStartObject()
.write("type", "fax")
.write("number", "310 555-4567")

.writeEnd()
.writeknd()
.writeEnd();

generator.close();
}
catch (IOException ioe)
{

out.printf("I/0 error: %s%n", ioe.getMessage());
}

Listing 12-4 describes a Java application whose main() method constructs a
generator by invoking Json’s JsonGenerator createGenerator(Writer write) method
with a FileWriter object describing a file-based destination (person.json). It invokes
JsonGenerator’s JsonGenerator writeStartObject() method to begin the process of
writing the object.

Various write(), writeStartObject(), writeStartArray(), and writeEnd()
method calls are chained to the initial writeStartObject() call. Following this
sequence, JsonGenerator’s close() method is called to close the generator.

Compile and run the application as previously shown, and you should observe no
output (although a person. json file is generated) .

Working with JSON-P 1.1’s Advanced Features

JSON-P 1.1 builds on JSON-P 1.0 mainly by supporting JSON Pointer, JSON Patch, and
JSON Merge Patch; by including editing/transformation operations; and by updating the
API to support Java SE 8.

423

CHAPTER 12 PROCESSING JSON WITH JSON-P

Note The previous demos work unchanged under JSON-P 1.1. Simply replace
javax.json-1.0.4.jar with javax.json-api-1.1.3.jar;javax.json-
1.1.3.jar in the CLASSPATH.

JSON Pointer

JSON Pointer (http://tools.ietf.org/html/rfc6901) defines a Unicode-string-syntax
for identifying a specific value in a JSON document. Essentially, the string contains a
sequence of zero or more / -prefixed reference tokens (JSON document keys or values).

A JSON Pointer must conform to the following ABNF (http://en.wikipedia.org/
wiki/Augmented Backus-Naur_form) syntax, or the pointer isn’t valid:

json-pointer = *("/" reference-token)
reference-token = *(unescaped / escaped)
unescaped %x00-2E / %x30-7D / %x7F-10FFFF
; %x2F ('/') and %x7E ('~') are excluded from 'unescaped'
escaped ="~" (""" / "1")
; representing '~' and '/', respectively

The characters ~ (0x7E) and / (0x2F) have special meanings in JSON Pointer.
Therefore, ~ needs to be encoded as ~0 and / needs to be encoded as ~1 when these
characters appear in a reference token.

Consider the following JSON document:

{
"name": "Duke",
"hobbies":
[
"reading",
"surfing"”,
"eating pizza"
]
}

424

http://tools.ietf.org/html/rfc6901
http://en.wikipedia.org/wiki/Augmented_Backus-Naur_form
http://en.wikipedia.org/wiki/Augmented_Backus-Naur_form

CHAPTER 12 PROCESSING JSON WITH JSON-P

The following list presents four example JSON Pointers for use with this document
and (in round brackets) the values of these pointers:

(the whole document)

e "/name" ("Duke")

o "/hobbies" (["reading","surfing","eating pizza"])
"/hobbies/0" ("reading")

Array entries are referenced via zero-based digit sequences, where /0 references the
first entry, /1 references the second entry, and so on.

JSON-P represents a JSON Pointer via the JsonPointer interface. An instance of
a class that implements this interface is obtained by executing Json’s JsonPointer
createPointer(String jsonPointer) static method.

Assuming that the previous JSON document has been created in memory (and
assigned to duke), the following code fragment creates a JSON Pointer to the name
reference token:

JsonPointer pointer = Json.createPointer("/name");

After a JsonPointer instance has been returned, invoking its JsonValue
getValue(JsonStructure target) method returns the value at the referenced location
in the specified target:

System.out.printf("%s¥%n¥n",
pointer.getValue(duke)); // output: "Duke"

JsonPointer can be used to add items to, remove items from, and replace items in a
JSON document. This interface provides the following methods for this purpose:

o <T extends JsonStructure> T add(T target, JsonValue value)
o <T extends JsonStructure> T remove(T target)

o <T extends JsonStructure> T replace(T target, JsonValue
value)

Listing 12-5 presents the source code to an application that demonstrates creating
JsonPointers along with all of the previous JsonPointer methods.

425

CHAPTER 12 PROCESSING JSON WITH JSON-P

Listing 12-5. Demonstrating JSON Pointer

imp
imp
imp
imp
imp

/*

426

ort javax.json.Json;

ort javax.json.JsonArray;
ort javax.json.JsonObject;
ort javax.json.JsonPointer;

ort static java.lang.System.*;

JsonPointer Demonstration:

1) Create the following JSON document:

{
"firstName": "John",
"lastName": "Doe",
"age": 42,
"address":
{
"streetAddress": "400 Some Street",
"city": "Beverly Hills",
"state": "CA",
"zipcode": 90210
}’
"phoneNumbers":
[
{
"type": "home",
"number": "310 555-1234"
}J
{
"type": "fax",
"number": "310 555-4567"
}
]
}

CHAPTER 12 PROCESSING JSON WITH JSON-P

2) Use JsonPointer to convert the previous JSON document
to the following JSON document:

{
"firstName": "John",
"lastName": "Doe",
"age": 30,
"address":
{
"streetAddress": "400 Some Street",
"city": "Beverly Hills",
"state": "CA",
"zipcode": 90210
b
"phoneNumbers":
[
{
"type": "fax",
"number": "310 555-4567"
})
{
"type": "cell",
"number": "123 456-7890"
}
]
}

*/

public class JSONPDemo
{
public static void main(String[] args)
{
JsonObject person;
person =
Json.createObjectBuilder()
.add("firstName", "John")
.add("lastName", "Doe")

427

CHAPTER 12 PROCESSING JSON WITH JSON-P

.add("age", 42)
.add("address", Json.createObjectBuilder()
.add("street",
"400 Some Street")
.add("city",
"Beverly Hills")
.add("state", "CA")
.add("zipcode", 90210))
.add("phoneNumbers",
Json.createArrayBuilder()
.add(Json.createObjectBuilder()
.add("type", "home")
.add("number",
"310 555-1234"))
.add(Json.createObjectBuilder()
.add("type", "fax")
.add("number",
"310 555-4567")))
.build();
JsonPointer pointer = Json.createPointer("/age");
person = pointer.replace(person,
Json.createValue(30));
pointer = Json.createPointer("/phoneNumbers/-");
person =
pointer.add(person,
Json.createObjectBuilder()
.add("type", "cell")
.add("number",

"123 456-7890").build());
pointer = Json.createPointer("/phoneNumbers/0");
person = pointer.remove(person);
out.printf("First name: %s%n",

person.getString("firstName"));
out.printf("Last name: %s%n",
person.getString("lastName"));

428

CHAPTER 12 PROCESSING JSON WITH JSON-P

out.printf("Age: %d%n", person.getInt("age"));

out.println("Address");

out.println("------- ");

JsonObject address = person.getJsonObject("address");

out.printf(" Street: %skn",
address.getString("street"));

out.printf(" City: %s%n",
address.getString("city"));

out.printf(" State: %skn",
address.getString("state"));

out.printf(" Zipcode: %d%n",
address.getInt("zipcode"));

out.println("Phone Numbers");

out.println("------------- ");

JsonArray phoneNumbers =

person.getJsonArray("phoneNumbers");
for (JsonObject phoneNumber:
phoneNumbers.getValuesAs(JsonObject.class))

out.printf(" Type: %s%n",
phoneNumber.getString("type"));

out.printf(" Number: %s%n",
phoneNumber.getString("number"));

Listing 12-5 includes expression Json.createValue(30) for conveniently

converting an int to a JsonNumber, which is the appropriate JsonValue subtype to be

passed as the second argument to JsonPointer’s replace() method. The JsonNumber
createValue(int value) method is one of six overloaded static methods added in

JSON-P 1.1 for conveniently converting doubles, ints, longs, java.lang.Strings,
java.math.BigDecimals, and java.math.BigIntegers to their JSON-P equivalents.

429

CHAPTER 12 PROCESSING JSON WITH JSON-P
Compile Listing 12-5 as follows:

javac -cp javax.json-api-1.1.3.jar;javax.json-1.1.3.jar JSONPDemo.java
Run the resulting application as follows:

java -cp javax.json-api-1.1.3.jar;javax.json-1.1.3.jar;. JSONPDemo
You should observe the following output:

First name: John

Last name: Doe

Age: 30

Address
Street: 400 Some Street
City: Beverly Hills
State: CA
Zipcode: 90210

Phone Numbers

Type: fax
Number: 310 555-4567
Type: cell

Number: 123 456-7890

The Json class provides a pair of static methods for encoding (escaping) a JSON
pointer string and for decoding (unescaping) an encoded pointer string:

o String encodePointer(String pointer)
o String decodePointer(String encPointer)

encodePointer() encodes ~ as ~0 and / as ~1. decodePointer() performs the
opposite conversion. Listing 12-6 demonstrates both methods.

430

CHAPTER 12 PROCESSING JSON WITH JSON-P

Listing 12-6. Demonstrating JSON Pointer Encoding and Decoding
import javax.json.Json;
import static java.lang.System.*;

public class JSONPDemo
{

public static void main(String[] args)

{
if (args.length != 1)

{

err.println("usage: java JSONPDemo pointer");
return;

}

String encPointer = Json.encodePointer(args[0]);

out.printf("Encoded pointer: %s%n\n", encPointer);

out.printf("Decoded pointer: %s%n\n",
Json.decodePointer(encPointer));

Compile Listing 12-6 and then run the application as follows:

java -cp javax.json-1.1.3.jar;javax.json-api-1.1.3.jar;. JSONPDemo /a/b/c~d
You should observe the following output:

Encoded pointer: ~1a~ib~1c™~0d

Decoded pointer: /a/b/c~d

JSON Patch

JSON Patch (http://tools.ietf.org/html/rfc6902) defines a JSON document
structure for expressing a sequence of operations to apply to a target JSON document.
It’s often used with HTTP PATCH (http://en.wikipedia.org/wiki/Patch_verb), an
HTTP request method for making partial changes to an existing resource.

431

http://tools.ietf.org/html/rfc6902
http://en.wikipedia.org/wiki/Patch_verb

CHAPTER 12 PROCESSING JSON WITH JSON-P

The JSON Patch document consists of an array of objects where each object denotes
a single operation. Consider the following example, for use with JSON document
{"aII: {Ilb": {"C": "Va]_"’ "dII: "Va]_"’ "eII: Ilvalll}}}:

[
{ "op": "test", "path": "/a/b/c", "value": "foo" },
{ "op": "remove", "path": "/a/b/c" },
{ "op": "add", "path": "/a/b/c",
"value": ["foo", "bar"] },
{ "op": "replace", "path": "/a/b/c", "value": 42 },
{ "op": "move", "from": "/a/b/c", "path": "/a/b/d" },
{ "op": "copy", "from": "/a/b/d", "path": "/a/b/e" }

Each object has an op field that identifies the operation to be performed. Each object
also has a path field, which is a JSON Pointer that references a location in the target
document.

There are six operations: test, remove, add, replace, move, and copy:

o test: Test that the value at the path location is equal to the value
assigned to the value field.

o remove: Remove the value at the path location.

e add: Add a new element to an array or a new field to an object, or
replace an existing object field’s value.

o replace: Replace the value at the path location with a new value.

o move: Remove the value at the fromlocation and add it to the path
location.

o copy: Copy the value at the from location to the path location.

JSON-P’s JsonPatch interface represents a JSON Patch. Obtain an instance of a class
that implements this interface by executing Json’s JsonPatch createPatch(JsonArray
patchArray) static method:

JsonArray patchops = ... ;
JsonPatch patch = Json.createPatch(patchops);

432

CHAPTER 12 PROCESSING JSON WITH JSON-P

After obtaining a JsonPatch instance, invoke its <T extends JsonStructure> T
apply(t target) generic method to apply the specified patch operations to target:

JsonArray result = jsonpatch.apply(target);

Listing 12-7 presents the source code to an application that demonstrates creating
a JsonPatch object and applying its operations to a JsonObject, to make the same
document changes as demonstrated in Listing 12-5.

Listing 12-7. Demonstrating JSON Patch
import java.io.StringReader;

import javax.json.Json;
import javax.json.JsonArray;
import javax.json.JsonObject;

import static java.lang.System.*;

/*
JsonPatch Demonstration:

1) Create the following JSON document:

{

"firstName": "John",
"lastName": "Doe",
"age": 42,
"address":
{
"streetAddress": "400 Some Street",
"city": "Beverly Hills",
"state": "CA",
"zipcode": 90210

b

433

CHAPTER 12 PROCESSING JSON WITH JSON-P

"phoneNumbers":

[

"type": "home",
"number": "310 555-1234"

lltypell: II_FaXII’
"number": "310 555-4567"

}

2) Use JsonPatch to convert the previous JSON document
to the following JSON document:

"firstName": "John",
"lastName": "Doe",
"age": 30,
"address":
{
"streetAddress": "400 Some Street",
"city": "Beverly Hills",
"state": "CA",
"zipcode": 90210
})

"phoneNumbers":

[

lltypell: Il_FaX"’
"number": "310 555-4567"

"typell: "Cell",
"number": "123 456-7890"

434

CHAPTER 12 PROCESSING JSON WITH JSON-P

}
*/

public class JSONPDemo
{

public static void main(String[] args)
{
JsonObject person;
person =
Json.createObjectBuilder()
.add("firstName", "John")
.add("lastName", "Doe")
.add("age", 42)
.add("address", Json.createObjectBuilder()
.add("street",
"400 Some Street")
.add("city",
"Beverly Hills")
.add("state", "CA")
.add("zipcode", 90210))
.add("phoneNumbers",
Json.createArrayBuilder()
.add(Json.createObjectBuilder()
.add("type", "home")
.add("number",
"310 555-1234"))
.add(Json.createObjectBuilder()
.add("type", "fax")
.add("number",
"310 555-4567")))

.build();
String patch =
"
"+

“\"op\": \"replace\"," +

435

CHAPTER 12 PROCESSING JSON WITH JSON-P

436

"\"path\": \"/age\"," +
"\"value\": 30" +

"t

"+

"\"op\": \"add\"," +

“\"path\": \"/phoneNumbers/-\"," +
"\"value\": " +

"+

"\"type\": \"cell\"," +
"\"number\": \"123 456-7890\"" +

+

AR

+
"\"op\": \"remove\"," +
“\"path\": \"/phoneNumbers/o\"" +

+

"1

JsonArray patchArray =

Json.createReader(new StringReader(patch))
.readArray();

person = Json.createPatch(patchArray).apply(person);

out.printf("First name: %s%n",
person.getString("firstName"));

out.printf("Last name: %s¥%n",
person.getString("lastName"));

out.printf("Age: %d%n", person.getInt("age"));

out.println("Address");

out.println("------- ");

JsonObject address = person.getJsonObject("address");

out.printf(" Street: %s¥%n",
address.getString("street"));

out.printf(" City: %s%n",
address.getString("city"));

out.printf(" State: %skn",
address.getString("state"));

CHAPTER 12

out.printf(" Zipcode: %d%n",
address.getInt("zipcode"));
out.println("Phone Numbers");
out.println("------------- ");
JsonArray phoneNumbers =
person.getJsonArray("phoneNumbers");
for (JsonObject phoneNumber:

PROCESSING JSON WITH JSON-P

phoneNumbers.getValuesAs(JsonObject.class))

out.printf(" Type: %s%n",
phoneNumber.getString("type"));
out.printf(" Number: %s%n",

phoneNumber.getString("number"));

output:

First name: John

Last name: Doe

Age: 30

Address
Street: 400 Some Street
City: Beverly Hills
State: CA
Zipcode: 90210

Phone Numbers

Type: fax
Number: 310 555-4567
Type: cell

Number: 123 456-7890

Compile Listing 12-7 and run the application. You should observe the following

437

CHAPTER 12 PROCESSING JSON WITH JSON-P

It can be tedious to specify all patch operations literally, which is why JSON-P also
provides the JsonPatchBuilder interface for constructing a JSON Patch by adding JSON
Patch operations incrementally. An instance of a class that implements this interface is
obtained by executing either of Json’s createPatchBuilder () methods. The builder’s
add(), remove(), and other methods are called to add patch operations. The build()
method returns the resulting JsonPatch:

JsonPatchBuilder builder = Json.createPatchBuilder();

JsonPatch patch = builder.replace("/a/b/c", 42)
.copy("/a/b/e", "/a/b/d")
.build();

JSON-P provides a third way to obtain a JSON Patch. Json’s JsonPatch
createDiff(JsonStructure source, JsonStructure target) static method
generates a JSON Patch whose operations describe how to convert from source to
target. Note that source and target must have the same types. In other words, they
must both be JsonArrays or JsonObjects. The createDiff() method is demonstrated in
Listing 12-8.

Listing 12-8. Creating a JSON Patch Based on Differences Between a Source and
a Target

import javax.json.Json;
import javax.json.JsonObject;

import static java.lang.System.*;

public class JSONPDemo
{

public static void main(String[] args)
{
JsonObject personi;
personl =
Json.createObjectBuilder()
.add("firstName", "John")
.add("lastName", "Doe")
.add("age", 42)

438

CHAPTER 12 PROCESSING JSON WITH JSON-P

.add("address", Json.createObjectBuilder()
.add("street",
"400 Some Street")
.add("city",
"Beverly Hills")
.add("state", "CA")
.add("zipcode", 90210))
.add("phoneNumbers",
Json.createArrayBuilder()
.add(Json.createObjectBuilder()
.add("type", "home")
.add("number",
"310 555-1234"))
.add(Json.createObjectBuilder()
.add("type", "fax")
.add("number",
"310 555-4567")))
.build();
JsonObject personz;
person2 =
Json.createObjectBuilder()
.add("firstName", "John")
.add("lastName", "Doe")
.add("age", 30)
.add("address", Json.createObjectBuilder()
.add("street",
"400 Some Street")
.add("city",
"Beverly Hills")
.add("state", "CA")
.add("zipcode", 90210))

439

CHAPTER 12 PROCESSING JSON WITH JSON-P

.add("phoneNumbers",
Json.createArrayBuilder()
.add(Json.createObjectBuilder()
.add("type", "fax")
.add("number",
"310 555-4567"))
.add(Json.createObjectBuilder()
.add("type", "cell")
.add("number",
"123 456-7890")))

.build();
out.println(Json.createDiff(personi, person2));
}
}
Compile Listing 12-8 and run the application. You should observe the following
output:

[{"op":"replace","path":"/age","value":30},{"op":"remove", "path":"/phone
Numbers/0"},{"op":"add", "path":"/phoneNumbers/1","value": {"type":"cell",
"number":"123 456-7890"}}]

JSON Merge Patch

JSON Merge Patch (http://tools.ietf.org/html/rfc7386) defines a JSON document
structure for expressing a sequence of changes to be made to a target JSON document
via a syntax that closely mimics that document. Recipients of a JSON Merge Patch
document determine the exact set of changes being requested by comparing the content
of the provided patch against the current content of the target document. If the patch
contains members that don’t appear in the target, those members are added. If the target
does contain the member, the value is replaced. Null values in the merge patch are given
special meaning to indicate the removal of existing values in the target. As with JSON
Patch, JSON Merge Patch is often used with HTTP PATCH (http://en.wikipedia.org/
wiki/Patch_verb).

440

http://tools.ietf.org/html/rfc7386
http://en.wikipedia.org/wiki/Patch_verb
http://en.wikipedia.org/wiki/Patch_verb

CHAPTER 12 PROCESSING JSON WITH JSON-P

For example, consider the following JSON document:

Ilall: llb"’

IICII .

{
Ildll: llell’

II_FII: "g"

The following JSON Merge Patch document specifies a change to a’s value and the
removal of f:

{

a":"z",

"C":

{
"f': null

JSON-P’s JsonMergePatch interface represents a JSON Merge Patch. Obtain an
instance of a class that implements this interface by executing Json’s JsonMergePatch
createMergePatch(JsonValue patchArray) static method:

JsonValue patch = ...;
JsonMergePatch mergePatch = Json.createMergePatch(patch) ;

After obtaining a JsonMergePatch instance, invoke its JsonValue apply(JsonValue
target) method to apply the specified patch to target:

JsonValue result = mergePatch.apply(target);

Listing 12-9 presents the source code to an application that demonstrates creating
a JsonMergePatch object and applying it to a JsonObject, to make the same document
changes as demonstrated in Listing 12-5.

441

CHAPTER 12

PROCESSING JSON WITH JSON-P

Listing 12-9. Demonstrating JSON Merge Patch

import javax.json
import javax.json
import javax.json
import javax.json

import static java.lang.System.*;

public class JSONPDemo

{

442

.Json;

.JsonArray;
.JsonMergePatch;
.JsonObject;

JsonObject person;

person =

public static void main(String[] args)

Json.createObjectBuilder()
.add("firstName", "John")
.add("lastName", "Doe")
.add("age", 42)
.add("address", Json.createObjectBuilder()

.add("street",

"400 Some Street")

.add("city",

"Beverly Hills")

.add("state", "CA")
.add("zipcode", 90210))
.add("phoneNumbers",

Json.createArrayBuilder()

.add(Json.createObjectBuilder()
.add("type", "home")
.add("number",

.build();

.add(Json.

"310 555-1234"))

createObjectBuilder()

.add("type", "fax")
.add("number",

"310 555-4567")))

CHAPTER 12 PROCESSING JSON WITH JSON-P

JsonObject patch =
Json.createObjectBuilder()
.add("age", 30)
.add("phoneNumbers",
Json.createArrayBuilder()
.add(Json.createObjectBuilder()
.add("type", "fax")
.add("number",
"310 555-4567"))
.add(Json.createObjectBuilder()
.add("type", "cell")
.add("number",
"123 456-7890")))
.build();
JsonMergePatch mergePatch =
Json.createMergePatch(patch);
person = (JsonObject) mergePatch.apply(person);
out.printf("First name: %s%n",
person.getString("firstName"));
out.printf("Last name: %s%n",
person.getString("lastName"));
out.printf("Age: %d%n", person.getInt("age"));
out.println("Address");
out.println("------- ");
JsonObject address = person.getJsonObject("address");
out.printf(" Street: %s%n",
address.getString("street"));
out.printf(" City: %s%n",
address.getString("city"));
out.printf(" State: %s¥%n",
address.getString("state"));
out.printf(" Zipcode: %d%n",
address.getInt("zipcode"));
out.println("Phone Numbers");
out.println("------------- ");

443

CHAPTER 12 PROCESSING JSON WITH JSON-P

JsonArray phoneNumbers =
person.getJsonArray("phoneNumbers");
for (JsonObject phoneNumber:
phoneNumbers.getValuesAs(JsonObject.class))

out.printf(" Type: %skn",
phoneNumber.getString("type"));
out.printf(" Number: %s¥n",
phoneNumber .getString("number"));

Listing 12-9 reveals that an array cannot be manipulated by merge patches. To add
an element to an array, or to mutate any of its elements, the entire resulting array must
be specified

It's necessary to cast mergePatch.apply(person) to JsonObject in order to avoid an
incompatible-type error: JsonValue cannot be converted to JsonObject.

Compile Listing 12-9 and run the application. You should observe the following
output:

First name: John

Last name: Doe

Age: 30

Address
Street: 400 Some Street
City: Beverly Hills
State: CA
Zipcode: 90210

Phone Numbers

Type: fax
Number: 310 555-4567
Type: cell

Number: 123 456-7890

444

CHAPTER 12 PROCESSING JSON WITH JSON-P

JSON-P provides another way to obtain a JSON Merge Patch. Json’s JsonMergePatch
createMergeDiff(JsonValue source, JsonValue target) static method generates
a JSON Merge Patch from the source and the target, which yields the target when
applied to the source-source and target don’t have to have the same JsonValue
subtype. The createMergeDiff() method is demonstrated in Listing 12-10.

Listing 12-10. Creating a JSON Merge Patch Based on Differences Between a
Source and a Target

import javax.json.Json;
import javax.json.JsonObject;

import static java.lang.System.*;

public class JSONPDemo
{

public static void main(String[] args)
{
JsonObject personi;
personl =
Json.createObjectBuilder()
.add("firstName", "John")
.add("lastName", "Doe")
.add("age", 42)
.add("address", Json.createObjectBuilder()
.add("street",
"400 Some Street")
.add("city",
"Beverly Hills")
.add("state", "CA")
.add("zipcode", 90210))
.add("phoneNumbers",
Json.createArrayBuilder()
.add(Json.createObjectBuilder()
.add("type", "home")
.add("number",
"310 555-1234"))

445

CHAPTER 12 PROCESSING JSON WITH JSON-P

.add(Json.createObjectBuilder()
.add("type", "fax")
.add("number",
"310 555-4567")))
.build();
JsonObject person2;
person2 =
Json.createObjectBuilder()
.add("firstName", "John")
.add("lastName", "Doe")
.add("age", 30)
.add("address", Json.createObjectBuilder()
.add("street",
"400 Some Street")
.add("city",
"Beverly Hills")
.add("state", "CA")
.add("zipcode", 90210))
.add("phoneNumbers",
Json.createArrayBuilder()
.add(Json.createObjectBuilder()
.add("type", "fax")
.add("number",
"310 555-4567"))
.add(Json.createObjectBuilder()
.add("type", "cell")
.add("number",
"123 456-7890")))
.build();
out.println(Json.createMergeDiff(personi, person2)
.toJsonValue());

446

CHAPTER 12 PROCESSING JSON WITH JSON-P

It's necessary to invoke toJsonValue() on the JsonMergePatch returned from
createMergeDiff() in order to see a JSON document as the output.

Compile Listing 12-10 and run the application. You should observe the following
output:

{"age":30, "phoneNumbers":[{"type":"fax", "number":"310 555-4567"},{"type":
"cell", "number":"123 456-7890"}]}

Editing/Transformation Operations

The JSON object model supports immutable JSON objects and arrays, which makes
these entities thread-safe. Because you cannot modify them, you would manually

copy each of the properties of the JSON object/array into a JsonObjectBuilder or
JsonArrayBuilder and then modify the entity, which is a rather tedious task. Thankfully,
JSON-P 1.1 alleviates the tedium by adding editing/transformation operations to
JsonArrayBuilder and JsonObjectBuilder.

JsonArrayBuilder has received several add(int index, ...) methods for adding
avalue between array elements, several set(int index, ...) methods for updating an
existing element, and a remove () method for removing an element. JsonObjectBuilder
has received a remove () method for removing a name/value pair. Listing 12-11 presents
the source code to an application that demonstrates some of these methods.

Listing 12-11. Demonstrating Assorted Editing/Transformation Operations

import java.util.Arraylist;
import java.util.Arrays;
import java.util.HashMap;
import java.util.Llist;
import java.util.Map;

import javax.json.Json;
import javax.json.JsonObject;

import static java.lang.System.*;

447

CHAPTER 12 PROCESSING JSON WITH JSON-P

public class JSONPDemo
{

public static void main(String[] args)
{
List<String> planets =
Arrays.asList("Mercury"”, "Venus", "Terra", "Mars",
"Jupiter", "Saturn", "Uranus",
"Pluto");
out.println(Json.createArrayBuilder(planets)
.remove(7)
.set(2, "Earth")
.add("Neptune")
.build());

Map<String, Object> employees = new HashMap<>();
employees.put("John Doe", 42);
employees.put("Jill Smith", 38);
employees.put("Bonnie Barnes", 26);
JsonObject employees =
Json.createObjectBuilder(employees)
.remove("Jill Smith")
.build();
out.println(employees);

Listing 12-11 first demonstrates editing/transformation in an array builder context.
A list of planet names is constructed, and this list is passed to Json’s JsonArrayBuilder
createArrayBuilder(Collection<?> collection) static method. Various editing/
transformation method calls are chained to createArrayBuilder() to remove Pluto
(which is no longer officially a planet), change Terra to Earth, and add Neptune. The
build() call returns a JsonArray, which is printed to standard output.

Listing 12-11 next demonstrates editing/transformation in an object builder context.
A map of employee names and ages is constructed, and this map is passed to Json’s
JsonObjectBuilder createObjectBuilder(Map<String, Object> map) static method.

448

CHAPTER 12 PROCESSING JSON WITH JSON-P

A remove() method call is chained to createObjectBuilder() to remove Jill Smith. The
build() call returns a JsonObject, which is printed to standard output.

Compile Listing 12-11 and run the application. You should observe the following
output:

["Mercury","Venus","Earth","Mars","Jupiter","Saturn","Uranus",

{"John Doe":42,"Bonnie Barnes":26}

Neptune"]

Java SE 8 Support

Queries on a JSON object model are currently possible via Java SE 8’s stream operations
and lambda expressions. To make them truly useful and convenient, JSON-P 1.1
introduced a JsonCollectors class whose static collector methods return JSONObjects
or JsonArrays instead of Maps or Lists. For example, consider the following collector
method:

Collector<JsonValue,JsonObjectBuilder,JsonObject>
toJsonObject(Function<jsonValue,String> keyMapper,
Function<JsonValue,JsonValue> valueMapper)

This toJsonObject() collector method constructs a java.util.stream.Collector
that accumulates the input JsonValue elements into a JsonObject. The name/value
pairs of the JsonObject are computed by applying the provided keyMapper and
valueMapper mapping functions.

Listing 12-12 presents the source code to an application that demonstrates this
collector method.

Listing 12-12. Demonstrating a JSON-P Collector

import javax.json.Json;
import javax.json.JsonArray;
import javax.json.JsonObject;

import javax.json.stream.JsonCollectors;

import static java.lang.System.*;

449

CHAPTER 12

pub
{

450

lic class JSONPDemo

PROCESSING JSON WITH JSON-P

public static void main(String[] args)

{

JsonArray employees;

employees = Json.createArrayBuilder()
.add(Json.createObjectBuilder()

.add("name", "John")
.add("age", 42))

.add(Json.createObjectBuilder()

.add("name", "Joan")
.add("age", 28))

.add(Json.createObjectBuilder()

.add("name", "Trevor")
.add("age", 35))

.add(Json.createObjectBuilder()

.add("name", "Sally")
.add("age", 49))

.add(Json.createObjectBuilder()

.build();
out.println(employees);
out.println();

JsonObject result =

.add("name", "Frank")
.add("age", 26))

employees.getValuesAs(JsonObject.class)

.stream()

filter(x -> x.getInt("age") > 40)
.collect(JsonCollectors.

toJsonObject(x

>
x.asJsonObject()

.getString("name"),

X ->
x.asJsonObject()
-get("age")));

CHAPTER 12 PROCESSING JSON WITH JSON-P

out.println(result);

Listing 12-12's main() method first creates a JSON array of employee objects where each
object consists of a name and an age. After outputting the arrayj, it returns a list view of the
array, obtains a stream with the list view as the source, installs (on the stream) a filter that
accepts only those entries whose age exceeds 40, and installs (on the stream) a collector that
accumulates results into a JSON object. The results are accumulated and output.

asJsonObject() is a JsonValue method that returns the invoking JsonValue as a
JsonObject. Although it’s possible to invoke getString("name") on the JsonObject, it’s
not possible to invoke getInt("age") because getInt() returns a primitive int value
instead of an Integer object. For this reason, the code invokes JsonObject’s inherited
get () method from the Map ancestor type.

Note JsonValue also conveniently provides an asJsonArray() method that
returns the invoking JsonValue as a JsonArray.

Compile Listing 12-12 and run the application. You should observe the following
output:

[{"name":"John","age":42},{"name":"Joan","age" :28},{"name" : "Trevor",
"age":35},{"name":"Sally","age":49},{ "name": "Frank", "age":26}]

{"John":42,"Sally":49}

Listing 12-12 reveals JsonArray’s <T extends JsonValue> List<T>
getValuesAs(Class<T> clazz) method, which returns a list view of the specified
type for the array. This method has been present since JSON-P 1.0. However,
JSON-P 1.1 introduced the more functional <T,K extends JsonValue> List<T>
getValuesAs(Function<K,T> func) default method, which can accept a lambda or
method reference argument—Java SE 8 introduced default methods.

JSON-P 1.1’s JsonParser class has been upgraded to support Java SE 8
by including the Stream<JsonValue> getArrayStream() and Stream<Map.
Entry<String,JsonValue>> getObjectStream() default methods. When called,
getArrayStream() returns a stream of JsonArray elements, and getObjectStream()
returns a stream of JsonObject name/value pairs.

451

CHAPTER 12 PROCESSING JSON WITH JSON-P

The combination of JsonParser’s parsing methods along with getArrayStream() or
getObjectStream() offers an efficient alternative to attempting to read a very large JSON
document into memory (which might not fit). For example, suppose a public library
contains a JSON document that itemizes all of its books in terms of ISBN, title, and state
(available or loaned). Listing 12-13 presents a sample document.

Listing 12-13. A Sample Library JSON Document

[

{
"isbn": "1234567890",
"title": "Sample Book 1",
"state": "avail"

b

{
"isbn": "2342340324",
"title": "Sample Book 2",
"state": "loaned"

})

{
"isbn": "2342069340",
“title": "Sample Book 3",
"state": "avail"

})

{
"isbn": "5940045033",
"title": "Sample Book 4",
"state": "avail"

})

{
"isbn": "2394094699",
"title": "Sample Book 5",
"state": "loaned"

}J

452

CHAPTER 12 PROCESSING JSON WITH JSON-P

{
"isbn": "3566433454",
“title": "Sample Book 6",
"state": "avail"

})

{
"isbn": "6990349039",
"title": "Sample Book 7",
"state": "avail"

})

{
"isbn": "5695695690",
"title": "Sample Book 8",
"state": "avail"

}

Suppose it’s necessary to print the first five books whose state is avail(able). The
entire document, which could grow very large, doesn’t need to be read into memory.
It’s only necessary to read book objects one by one until the first five available books
have been printed. Listing 12-14 presents the source code to an application that uses
JsonParser along with getArrayStream() and various stream operations to accomplish
this task.

Listing 12-14. Efficiently Processing a Potentially Large JSON Document

import java.io.FileReader;
import java.io.FileNotFoundException;

import javax.json.Json;
import javax.json.stream.JsonParser;

import static java.lang.System.*;

453

CHAPTER 12 PROCESSING JSON WITH JSON-P

public class JSONPDemo
{
public static void main(String[] args)
throws FileNotFoundException

if (args.length != 1)
{
err.println("usage: java JSONPDemo filespec");
return;
}
JsonParser parser =
Json.createParser(new FileReader(args[0]));
while (parser.hasNext())
if (parser.next() == JsonParser.Event.START ARRAY)
{
parser.getArrayStream()
// convert to Stream<JsonObject>
.map(v -> v.asJsonObject())
.filter(obj -> obj.getString("state")
.equals("avail"))
.limit(5)
.forEach(obj ->
out.printf("ISBN: %s, " +
"TITLE: %s%n%n",
obj.getString("isbn"),
obj.getString("title")));

// skip the rest of the JsonArray

parser.skipArray();

JsonParser offers void skipArray() and void skipObject() methods that skip
tokens and advance the parser to END_ARRAY or END_OBJECT, respectively.

454

CHAPTER 12 PROCESSING JSON WITH JSON-P

Compile Listing 12-14 and run the application. You should observe the following

output:

ISBN: 1234567890, TITLE: Sample Book 1

ISBN: 2342069340, TITLE: Sample Book 3

ISBN: 5940045033, TITLE: Sample Book 4

ISBN: 3566433454, TITLE: Sample Book 6

ISBN: 6990349039, TITLE: Sample Book 7

EXERCISES

The following exercises are designed to test your understanding of Chapter 12’s content:

1.

> L N

11.

Define JSON-P.
Describe JSON-P 1.0’s package structure.
Identify the types for creating JsonArray and JsonObject models.

Which type is the superinterface of interface types that represent immutable
JSON values?

In what ways does JSON-P 1.1 differ from JSON-P 1.0?

True or false: JSON-P 1.0’s streaming model is more flexible than its object
model.

How do you construct a JsonObject model?
What types does the streaming model provide to read and write JSON content?
Describe JSON Merge Patch.

Identify the editing/transformation operations that have been added to
JsonArrayBuilder and JsonObjectBuilder.

True or false: JSON-P 1.1 introduced a JsonCollectors class whose static
collector methods return JSONObjects or JsonArrays instead of Maps or
Lists.

455

CHAPTER 12 PROCESSING JSON WITH JSON-P

12. Write a JSONPDemo application that takes two command-line arguments: the
name of a JSON document file and a JSON Pointer. The application should
read the file into @ JsonObject model (assume that every JSON document
file defines an object). The application should then create a JsonPointer
for the JSON Pointer argument and apply the JsonPointer instance to the
JsonObject, outputting the result. Hint: Refer to the “JSON Pointer” section for
an example JSON document and sample JSON Pointers that access different
document members.

Summary

JSON Processing (JSON-P) is a Java API for processing (i.e., parsing, generating,
querying, and transforming) JSON content.

JSON-P 1.0 processes JSON content via an object model or a streaming model. The
object model lets JSON-P build a tree of objects for JSON text via API classes similarly to
Java’'s DOM API for XML. The streaming model lets JSON-P produce and consume JSON
text similarly to Java’s StAX API for XML.

JSON-P 1.0 consists of 25 types located in package javax. json, along with the
support packages javax.json.spiand javax.json.stream. The javax.json package
mainly contains types that support the object model, the javax.json.spi package
contains a single type that describes a service provider for JSON processing objects, and
the javax.json.stream package contains types that support the streaming model.

JSON-P 1.1 also supports JSON Pointer, JSON Patch, and JSON Merge Patch.
Additionally, the new version introduces editing/transformation operations to JSON
array and object builders and updates the API to better support Java SE 8 stream
operations (including JSON-specific collectors).

JSON-P 1.1 consists of the same packages as JSON-P 1.0 but increases the number of
types to 31.

JSON Pointer defines a Unicode-string-syntax for identifying a specific value in
a JSON document. JSON Patch defines a JSON document structure for expressing a
sequence of operations to apply to another JSON document (and also makes use of
JSON Pointer). JSON Merge Patch is similar to JSON Patch in that it’s also used to change
another JSON document’s structure. However, the syntax of the JSON Merge Patch JSON
document more closely mimics the syntax of the JSON document that’s being changed.

456

CHAPTER 12 PROCESSING JSON WITH JSON-P

Several editing/transformation operations have been introduced to
JsonArrayBuilder and JsonObjectBuilder. JsonArrayBuilder has received several
add(int index, ...) methods for adding a value between array elements, several
set(int index, ...) methods for updating an existing element, and a remove()
method for removing an element. JsonObjectBuilder has received a remove() method
for removing a name/value pair.

Queries on a JSON object model are currently possible via Java SE 8’s stream
operations and lambda expressions. To make them truly useful and convenient,
JSON-P 1.1 introduced a JsonCollectors class whose static collector methods return
JSONObjects or JsonArrays instead of Maps or Lists.

Appendix A presents the answers to each chapter’s exercises.

457

PART il

Appendixes

APPENDIX A

Answers to Exercises

Each of Chapters 1 through 12 closes with an “Exercises” section that tests your

understanding of the chapter’s material. The answers to those exercises are presented in

this appendix.

Chapter 1: Introducing XML

1. XML (eXtensible Markup Language) is a meta-language for
defining vocabularies (custom markup languages), which is the
key to XML's importance and popularity.

2. The answer is true: XML and HTML are descendants of SGML.

3. XML provides the XML declaration, elements and attributes,
character references and CDATA sections, namespaces, and
comments and processing-instruction language features for use in
defining custom markup languages.

4. The XML declaration is special markup that informs an XML
parser that the document is XML.

5. The XML declaration’s three attributes are version, encoding, and
standalone. The version attribute is nonoptional.

6. The answer is false: an element can consist of the empty-element
tag, which is a standalone tag whose name ends with a forward
slash (/), such as <break/>.

© Jeff Friesen 2019
J. Friesen, Java XML and JSON, https://doi.org/10.1007/978-1-4842-4330-5_13

461

APPENDIXA ANSWERS TO EXERCISES

462

7.

10.

11.

12.

13.

14.

15.

16.

Following the XML declaration, an XML document is anchored in
aroot element.

Mixed content is a combination of child elements and content.

A character reference is a code that represents a character. The two
kinds of character references are numeric character references
(such as Σ) and character entity references (such as <).

A CDATA section is a section of literal HTML or XML markup and
content surrounded by the <! [CDATA[prefix and the]]> suffix.
You would use a CDATA section when you have a large amount
of HTML/XML text and don’t want to replace each literal < (start
of tag) and & (start of entity) character with its < and & predefined
character entity reference, which is a tedious and possibly error-
prone undertaking—you might forget to replace one of these
characters.

A namespace is a Uniform Resource Identifier-based container
that helps differentiate XML vocabularies by providing a unique
context for its contained identifiers.

A namespace prefix is an alias for a URIL.

The answer is true: a tag’s attributes don’t need to be prefixed
when those attributes belong to the element.

A comment is a character sequence beginning with <! -- and
ending with -->. It can appear anywhere in an XML document
except before the XML declaration, except within tags, and except
within another comment.

A processing instruction is an instruction that’s made available to
the application parsing the document. The instruction begins with
<? and ends with ?>.

The rules that an XML document must follow to be considered
well formed are as follows: all elements must either have start and
end tags or consist of empty-element tags, tags must be nested
correctly, all attribute values must be quoted, empty elements
must be properly formatted, and you must be careful with case.

17.

18.

19.

20.

21.

APPENDIXA ANSWERS TO EXERCISES

Furthermore, XML parsers that are aware of namespaces enforce
two additional rules: all element and attribute names must not
include more than one colon character; and no entity names,
processing-instruction targets, or notation names can contain
colons.

For an XML document to be valid, the document must adhere to
certain constraints. For example, one constraint might be that a
specific element must always follow another specific element.

The two common grammar languages are Document Type
Definition and XML Schema.

The general syntax for declaring an element in a DTD is <! ELEMENT
name content-specifier>.

XML Schema lets you create complex types from simple types.

Listing A-1 presents the books . xml document file that was called
for in Chapter 1.

Listing A-1. A Document of Books

<?xml version="1.0"?>

<books>

<book isbn="0201548550" pubyear="1992">
<title>

Advanced C++

</title>
394211 2_En

James 0. Coplien

</author>
<publisher>

Addison Wesley

</publisher>
</book>

463

APPENDIXA ANSWERS TO EXERCISES

<book isbn="9781430210450" pubyear="2008">
<title>
Beginning Groovy and Grails
</title>
394211 2 En
Christopher M. Judd
</author>
394211 2 En
Joseph Faisal Nusairat
</author>
394211 2 En
James Shingler
</author>
<publisher>
Apress
</publisher>
</book>
<book isbn="0201310058" pubyear="2001">
<title>
Effective Java
</title>
394211 2 _En
Joshua Bloch
</author>
<publisher>
Addison Wesley
</publisher>
</book>
</books>

22. Listing A-2 presents the books .xml document file with an internal
DTD that was called for in Chapter 1.

464

APPENDIX A

Listing A-2. A DTD-Enabled Document of Books

<?xml version="1.0"?>
<!DOCTYPE books [

1>

<!ELEMENT books (book+)>

<!ELEMENT book (title, author+, publisher)>
<!ELEMENT title (#PCDATA)>

<!ELEMENT author (#PCDATA)>

<!ELEMENT publisher (#PCDATA)>

<IATTLIST book isbn CDATA #REQUIRED>
<!ATTLIST book pubyear CDATA #REQUIRED>

<books>

<book isbn="0201548550" pubyear="1992">
<title>
Advanced C++
</title>
394211 2 En
James 0. Coplien
</author>
<publisher>
Addison Wesley
</publisher>
</book>
<book 1isbn="9781430210450" pubyear="2008">
<title>
Beginning Groovy and Grails
</title>
394211 2 _En
Christopher M. Judd
</author>
394211 2 En
Joseph Faisal Nusairat
</author>

ANSWERS TO EXERCISES

465

APPENDIXA ANSWERS TO EXERCISES

394211 2 En
James Shingler
</author>
<publisher>
Apress
</publisher>
</book>
<book isbn="0201310058" pubyear="2001">
<title>
Effective Java
</title>
394211 2 En
Joshua Bloch
</author>
<publisher>
Addison Wesley
</publisher>
</book>
</books>

Chapter 2: Parsing XML Documents with SAX

1. SAXis an event-based Java API for parsing an XML document
sequentially from start to finish. As a SAX-oriented parser
encounters an item from the document’s infoset, it makes this
item available to an application as an event by calling one of
the methods in one of the application’s handlers, which the
application has previously registered with the parser. The
application can then consume this event by processing the infoset
item in some manner.

2. You obtain a SAX 2-based parser by obtaining a
SAXParserFactory instance, then configuring this instance, then
returning a SAXParser instance from the SAXParserFactory, and
finally returning an XMLReader instance from the SAXParser.

466

10.

11.

12.

APPENDIXA ANSWERS TO EXERCISES

The purpose of the XMLReader interface is to describe a SAX 2
parser. This interface makes available several methods for
configuring the SAX 2 parser and parsing an XML document’s
content.

You tell a SAX parser to perform validation by invoking
XMLReader’s setFeature(String name, boolean value) method,
passing "http://xml.org/sax/features/validation” to name
and true to value.

The four kinds of SAX-oriented exceptions that can

be thrown when working with SAX are SAXException,
SAXNotRecognizedException, SAXNotSupportedException, and
SAXParseException.

The interface that a handler class implements to respond to
content-oriented events is ContentHandler.

The three other core interfaces that a handler class is likely to
implement are DTDHandler, EntityResolver, and ErrorHandler.

Ignorable whitespace is whitespace located between tags where
the DTD doesn’t allow mixed content.

The answer is false: void error(SAXParseException exception)
is called only for recoverable errors.

The purpose of the DefaultHandler class is to serve as a
convenience base class for SAX 2 applications. It provides
default implementations for all of the callbacks in the four
core SAX 2 handler interfaces: ContentHandler, DTDHandler,
EntityResolver, and ErrorHandler.

An entity is aliased data. An entity resolver is an object that uses
the public identifier to choose a different system identifier. Upon
encountering an external entity, the parser calls the custom entity
resolver to obtain this identifier.

Listing A-3 presents the DumpUserInfo application that was called
for in Chapter 2.

467

http://xml.org/sax/features/validation

APPENDIXA ANSWERS TO EXERCISES

Listing A-3. Using SAX to Dump the Apache tomcat-users.xml File’s User
Information

import java.io.FileReader;
import java.io.IOException;

import javax.xml.parsers.ParserConfigurationException;
import javax.xml.parsers.SAXParser;
import javax.xml.parsers.SAXParserFactory;

import org.xml.sax.Attributes;
import org.xml.sax.InputSource;
import org.xml.sax.SAXException;
import org.xml.sax.XMLReader;

import org.xml.sax.helpers.DefaultHandler;
import static java.lang.System.*;

public class DumpUserInfo

{
public static void main(String[] args)
{
try
{

SAXParserFactory spf =
SAXParserFactory.newInstance();

spf.setNamespaceAware(true);

SAXParser sp = spf.newSAXParser();

XMLReader xmlr = sp.getXMLReader();

Handler handler = new Handler();

xmlr.setContentHandler(handler);

FileReader fr = new FileReader("tomcat-users.xml");

xmlr.parse(new InputSource(fr));

468

APPENDIXA ANSWERS TO EXERCISES

catch (IOException ioe)

{
err.printf("IOE: %s%n", ioe.toString());
}
catch (ParserConfigurationException pce)
{
err.printf("PCE: %s%n", pce.toString());
}
catch (SAXException saxe)
{
err.printf("SAXE: %s%n", saxe.toString());
}
}
}
class Handler extends DefaultHandler
{
@verride
public void startElement(String uri, String localName,
String gName,
Attributes attributes)
{
if (localName.equals("user"))
{
for (int i = 0; i < attributes.getlLength(); i++)
out.printf("%s = %s%n",
attributes.getlLocalName(i),
attributes.getValue(i));
out.println();
}
}
}

13. Listings A-4 and A-5 present the SAXSearch and Handler classes
that were called for in Chapter 2.

469

APPENDIXA ANSWERS TO EXERCISES

Listing A-4. A SAX Driver Class for Searching books .xml for a Specific
Publisher’s Books

import java.io.FileReader;
import java.io.IOException;

import javax.xml.parsers.ParserConfigurationException;
import javax.xml.parsers.SAXParser;
import javax.xml.parsers.SAXParserFactory;

import org.xml.sax.InputSource;
import org.xml.sax.SAXException;
import org.xml.sax.XMLReader;

import static java.lang.System.*;

public class SAXSearch

{
final static String PROP_LH =

"http://xml.org/sax/properties/lexical-handler";

public static void main(String[] args)

{

if (args.length != 1)

{
err.println("usage: java SAXSearch publisher");
return;

}

try

{

SAXParserFactory spf =
SAXParserFactory.newInstance();
spf.setNamespaceAware(true);
SAXParser sp = spf.newSAXParser();
XMLReader xmlr = sp.getXMLReader();

470

APPENDIXA ANSWERS TO EXERCISES

Handler handler = new Handler(args[0]);
xmlr.setContentHandler(handler);
xmlr.setErrorHandler(handler);
xmlr.setProperty(PROP_LH, handler);
FileReader fr = new FileReader("books.xml");
xmlr.parse(new InputSource(fr));

}
catch (IOException ioe)
{
err.printf("IOE: %s%n", ioe.toString());
}
catch (ParserConfigurationException pce)
{
err.printf("PCE: %s%n", pce.toString());
}
catch (SAXException saxe)
{
err.printf("SAXE: %s%n", saxe.toString());
}

}

Listing A-5. A SAX Callback Class Whose Methods Are Called by the SAX Parser

import org.xml.sax.Attributes;
import org.xml.sax.SAXParseException;

import org.xml.sax.ext.DefaultHandler2;
import static java.lang.System.*;

public class Handler extends DefaultHandler2

{

private boolean isPublisher, isTitle;

private String isbn, publisher, pubYear, title, srchText;

471

APPENDIXA ANSWERS TO EXERCISES

472

public Handler(String srchText)

{

this.srchText = srchText;
}
@verride

public void characters(char[] ch, int start, int length)

{
if (isTitle)

{
title = new String(ch, start, length).trim();
isTitle = false;
}
else
if (isPublisher)
{
publisher = new String(ch, start, length).trim();
isPublisher = false;
}
}
@verride

public void endElement(String uri, String localName,
String qName)

if (!localName.equals("book"))
return;
if (!srchText.equals(publisher))
return;
out.printf("title = %s, isbn = %s%n", title, isbn);
}

@verride
public void error(SAXParseException saxpe)

{
out.printf("error() %s%n", saxpe.toString());

APPENDIXA ANSWERS TO EXERCISES

@verride
public void fatalError(SAXParseException saxpe)

{
out.printf("fatalError() %s%n", saxpe.toString());

}

@Override
public void startElement(String uri, String localName,
String gName, Attributes attributes)

{
if (localName.equals("title"))
{
isTitle = true;
return;
}
else
if (localName.equals("publisher"))
{
isPublisher = true;
return;
}
if (!localName.equals("book"))
return;

for (int i = 0; i < attributes.getlLength(); i++)
if (attributes.getLocalName(i).equals("isbn"))
isbn = attributes.getValue(i);
else
if (attributes.getLocalName(i).equals("pubyear"))
pubYear = attributes.getValue(i);

}

@verride
public void warning(SAXParseException saxpe)

{
out.printf("warning() %s%n", saxpe.toString());

473

APPENDIXA ANSWERS TO EXERCISES

14. When you use Listing 2-1’s SAXDemo application to validate
Exercise A-22’s books .xml content against its DTD, you should
observe no validation errors.

Chapter 3: Parsing and Creating XML Documents
with DOM

1. DOM is aJava API for parsing an XML document into an in-
memory tree of nodes and for creating an XML document from a
tree of nodes. After a DOM parser has created a document tree, an
application uses the DOM API to navigate over and extract infoset
items from the tree’s nodes.

2. The answer is false: Java 11 supports DOM Levels 1, 2, and 3.

3. The 12 types of DOM nodes are attribute node, CDATA section
node, comment node, document node, document fragment node,
document type node, element node, entity node, entity reference

node, notation node, processing-instruction node, and text node.

4. You obtain a document builder by first instantiating
DocumentBuilderFactory via one of its newInstance() methods
and then invoking newDocumentBuilder () on the returned
DocumentBuilderFactory object to obtain a DocumentBuilder
object.

5. Youuse a document builder to parse an XML document by
invoking one of DocumentBuilder’s parse() methods.

6. The answer is true: Document and all other org.w3c.dom interfaces
that describe different kinds of nodes are subinterfaces of the Node
interface.

7. Youuse a document builder to create a new XML document by
invoking DocumentBuilder’s Document newDocument() method
and by invoking Document’s various “create” methods.

474

APPENDIXA ANSWERS TO EXERCISES

8. Youwould determine if a node has children by calling Node’s
boolean hasChildNodes() method, which returns true when a
node has child nodes.

9. The answer is false: when creating a new XML document, you
cannot use the DOM API to specify the XML declaration’s
encoding attribute.

10. The purpose of the Load and Save API is to provide a standard way
to load XML content into a new DOM tree and save an existing
DOM tree to an XML document.

11. The difference between NodeIterator and TreeWalker is as
follows: A NodeIterator presents a flattened view of the subtree
as an ordered sequence of nodes, presented in document order.
Conversely, a TreeWalker maintains the hierarchical relationships
of the subtree, allowing navigation of this hierarchy.

12. The difference between Range’s selectNode() and
selectNodeContents() methods is as follows: selectNode() selects
anode and its contents, whereas selectNodeContents () selects the
contents within a node (without also selecting the node).

13. Listing A-6 presents the DumpUserInfo application that was called
for in Chapter 3.

Listing A-6. Using DOM to Dump the Apache tomcat-users.xml File’s User
Information

import java.io.IOException;

import javax.xml.parsers.DocumentBuilder;

import javax.xml.parsers.DocumentBuilderFactory;
import javax.xml.parsers.FactoryConfigurationError;
import javax.xml.parsers.ParserConfigurationException;

import org.w3c.dom.Attr;

import org.w3c.dom.Document;
import org.w3c.dom.Element;
import org.w3c.dom.NamedNodeMap;

475

APPENDIXA ANSWERS TO EXERCISES

import org.w3c.dom.Node;
import org.w3c.dom.Nodelist;

import org.xml.sax.SAXException;
import static java.lang.System.*;

public class DumpUserInfo

{
public static void main(String[] args)
{
try
{

DocumentBuilderFactory dbf =
DocumentBuilderFactory.newInstance();

DocumentBuilder db = dbf.newDocumentBuilder();

Document doc = db.parse("tomcat-users.xml");

NodelList nl = doc.getChildNodes();

for (int i = 0; i < nl.getlLength(); i++)

{
Node node = nl.item(i);
if (node.getNodeType() == Node.ELEMENT NODE)
dump((Element) node);
}
}
catch (IOException ioe)
{
err.printf("IOE: %s%n", ioe.toString());
}
catch (SAXException saxe)
{
err.printf("SAXE: %s%n", saxe.toString());
}
catch (FactoryConfigurationError fce)
{
err.printf("FCE: %s%n", fce.toString());
}

476

APPENDIXA ANSWERS TO EXERCISES

catch (ParserConfigurationException pce)

{
err.printf("PCE: %s%n", pce.toString());
}
}
static void dump(Element e)
{
if (e.getNodeName().equals("user"))
{
NamedNodeMap nnm = e.getAttributes();
if (nnm != null)
for (int i = 0; i < nnm.getLength(); i++)
{
Node node = nnm.item(i);
Attr attr =
e.getAttributeNode(node.getNodeName());
out.printf("%s = %s%n", attr.getName(),
attr.getValue());
}
out.println();
}
NodeList nl = e.getChildNodes();
for (int i = 0; i < nl.getlength(); i++)
{
Node node = nl.item(i);
if (node instanceof Element)
dump((Element) node);
}
}

14. Listing A-7 presents the DOMSearch application that was called for
in Chapter 3.

477

APPENDIXA ANSWERS TO EXERCISES

Listing A-7. Using DOM to Search books . xmlfor a Specific Publisher’s Books
import java.io.IOException;

import java.util.Arraylist;
import java.util.Llist;

import javax.xml.parsers.DocumentBuilder;

import javax.xml.parsers.DocumentBuilderFactory;
import javax.xml.parsers.FactoryConfigurationError;
import javax.xml.parsers.ParserConfigurationException;

import org.w3c.dom.Document;
import org.w3c.dom.Element;
import org.w3c.dom.NamedNodeMap;
import org.w3c.dom.Node;

import org.w3c.dom.Nodelist;

import org.xml.sax.SAXException;
import static java.lang.System.*;

public class DOMSearch

{
public static void main(String[] args)
{
if (args.length != 1)
{
err.println("usage: java DOMSearch publisher");
return;
}
try
{

DocumentBuilderFactory dbf =
DocumentBuilderFactory.newInstance();
DocumentBuilder db = dbf.newDocumentBuilder();

478

APPENDIXA ANSWERS TO EXERCISES

Document doc = db.parse("books.xml");
class BookItem
{
String title;
String isbn;
}
List<BookItem> bookItems = new ArraylList<>();
NodeList books = doc.getElementsByTagName("book");
for (int i = 0; i < books.getLength(); i++)
{
Element book = (Element) books.item(i);
NodeList children = book.getChildNodes();
String title = "";
for (int j = 0; j < children.getlLength(); j++)
{
Node child = children.item(j);
if (child.getNodeType() == Node.ELEMENT NODE)
{
if (child.getNodeName().equals("title"))
title = child.getFirstChild().
getNodeValue().trim();
else
if (child.getNodeName().
equals("publisher"))

// Compare publisher name argument

// (args[0]) with text of publisher's

// child text node. The trim() method

// call removes whitespace that would

// interfere with the comparison.

if (args[o].
equals(child.getFirstChild().

getNodeValue().trim()))

BookItem bookItem = new BookItem();
bookItem.title = title;

479

APPENDIXA ANSWERS TO EXERCISES

480

NamedNodeMap nnm =
book.getAttributes();

Node isbn =
nnm.getNamedItem("isbn");

bookItem.isbn = isbn.getNodeValue();

bookItems.add(bookItem);

break;

}
for (BookItem bookItem: bookItems)

out.printf("title = %s, isbn = %skn",
bookItem.title, bookItem.isbn);
}

catch (IOException ioe)

{
err.printf("IOE: %s%n", ioe.toString());

}
catch (SAXException saxe)

{
err.printf("SAXE: %s%n", saxe.toString());

}

catch (FactoryConfigurationError fce)

{
err.printf("FCE: %s%n", fce.toString());

}

catch (ParserConfigurationException pce)

{
err.printf("PCE: %shn", pce.toString());

APPENDIXA ANSWERS TO EXERCISES

15. Listing A-8 presents the DOMValidate application that was called
for in Chapter 3.

Listing A-8. Using DOM to Validate XML Content
import java.io.IOException;

import javax.xml.parsers.DocumentBuilder;

import javax.xml.parsers.DocumentBuilderFactory;
import javax.xml.parsers.FactoryConfigurationError;
import javax.xml.parsers.ParserConfigurationException;

import org.w3c.dom.Attr;

import org.w3c.dom.Document;
import org.w3c.dom.Element;
import org.w3c.dom.NamedNodeMap;
import org.w3c.dom.Node;

import org.w3c.dom.Nodelist;

import org.xml.sax.SAXException;
import static java.lang.System.*;

public class DOMValidate
{

public static void main(String[] args)
{
if (args.length != 1)
{
err.println("usage: java DOMValidate xmlfile");
return;
}
try
{
DocumentBuilderFactory dbf =
DocumentBuilderFactory.newInstance();
dbf.setNamespaceAware(true);
dbf.setValidating(true);
DocumentBuilder db = dbf.newDocumentBuilder();

481

APPENDIXA ANSWERS TO EXERCISES

Document doc = db.parse(args[0]);

out.printf("Version = %s%n", doc.getXmlVersion());

out.printf("Encoding = %s%n",
doc.getXmlEncoding());

out.printf("Standalone = %b%n%n",
doc.getXmlStandalone());

if (doc.hasChildNodes())

{
NodeList nl = doc.getChildNodes();
for (int i = 0; i < nl.getlLength(); i++)
{
Node node = nl.item(i);
if (node.getNodeType() == Node.ELEMENT NODE)
dump((Element) node);
}
}
}
catch (IOException ioe)
{
err.printf("IOE: %s%n", ioe.toString());
}
catch (SAXException saxe)
{
err.printf("SAXE: %s%n", saxe.toString());
}
catch (FactoryConfigurationError fce)
{
err.printf("FCE: %skn", fce.toString());
}
catch (ParserConfigurationException pce)
{
err.printf("PCE: %s%n", pce.toString());
}

482

APPENDIX A

static void dump(Element e)

{

out.printf("Element: %s, %s, %s, %skn",

e
e

.getNodeName(), e.getLocalName(),
.getPrefix(), e.getNamespaceURI());

NamedNodeMap nnm = e.getAttributes();
if (nnm != null)
for (int i = 0; i < nnm.getLength(); i++)

{
Node node = nnm.item(i);
Attr attr =
e.getAttributeNode(node.getNodeName());
out.printf("Attribute %s = %s%n",
attr.getName(), attr.getValue());
}

NodeList nl = e.getChildNodes();
for (int i =

{

0; i < nl.getlength(); i++)

Node node = nl.item(i);
if (node instanceof Element)
dump((Element) node);

ANSWERS TO EXERCISES

16. Listing A-9 presents the DOMDemo application that was called for in
Chapter 3.

Listing A-9. Installing a Custom Error Handler

import
import
import
import
import
import

org.w3c.
org.w3c.
org.w3c.
org.w3c.
org.w3c.
org.w3c.

dom
dom
dom
dom
dom
dom

JAttr;

.Document;
.DOMConfiguration;
.DOMError;
.DOMErrorHandler;
.Element;

483

APPENDIXA ANSWERS TO EXERCISES

import org.w3c.dom.NamedNodeMap;
import org.w3c.dom.Node;
import org.w3c.dom.Nodelist;

import org.w3c.dom.bootstrap.DOMImplementationRegistry;

import org.w3c.dom.ls.DOMImplementationLsS;
import org.w3c.dom.ls.LSParser;

import static java.lang.System.*;

class ErrHandler implements DOMErrorHandler

{
@verride
public boolean handleError(DOMError error)
{
short severity = error.getSeverity();
if (severity == error.SEVERITY_ERROR)
System.out.printf("DOM3 error: %s%n",
error.getMessage());
else
if (severity == error.SEVERITY FATAL ERROR)
System.out.printf("DOM3 fatal error: %s¥n",
error.getMessage());
else
if (severity == error.SEVERITY WARNING)
System.out.printf("DOM3 warning: %s%n",
error.getMessage());
return true;
}
}
public class DOMDemo
{

public static void main(String[] args) throws Exception

{
if (args.length != 1)

484

APPENDIXA ANSWERS TO EXERCISES

err.println("usage: java DOMDemo xmlfile");
return;

}

DOMImplementationlS 1s = (DOMImplementationLS)
DOMImplementationRegistry.newInstance().
getDOMImplementation("LS");

LSParser parser =
1s.createlLSParser (DOMImplementationlLS.

MODE_SYNCHRONOUS, null);

DOMConfiguration config = parser.getDomConfig();

config.setParameter("validate", Boolean.TRUE);

config.setParameter("error-handler"”,
new ErrHandler());

Document doc = parser.parseURI(args[0]);

if (doc.hasChildNodes())

{

NodeList nl = doc.getChildNodes();
for (int i = 0; i < nl.getlength(); i++)

{
Node node = nl.item(i);
if (node.getNodeType() == Node.ELEMENT NODE)
dump((Element) node);
}
}
}
static void dump(Element e)
{

System.out.printf("Element: %s, %s, %s, %skn",
e.getNodeName(), e.getLocalName(),
e.getPrefix(), e.getNamespaceURI());

NamedNodeMap nnm = e.getAttributes();

485

APPENDIXA ANSWERS TO EXERCISES

if (nnm != null)
for (int i = 0; i < nnm.getLength(); i++)
{
Node node
Attr attr
e.getAttributeNode(node.getNodeName());
out.printf(" Attribute %s = %s%n",
attr.getName(), attr.getValue());

nnm.item(i);

}
NodeList nl = e.getChildNodes();

for (int i = 0; i < nl.getlength(); i++)

{
Node node = nl.item(i);
if (node instanceof Element)
dump((Element) node);
}

Chapter 4: Parsing and Creating XML Documents
with StAX

1. StAXis aJava API for parsing an XML document sequentially from
start to finish and also for creating XML documents.

2. The javax.xml.stream, javax.xml.stream.events, and javax.
xml.stream.util packages make up the StAX APIL

3. The answer is false: an event-based reader extracts the next infoset
item from an input stream by obtaining an event.

4. You obtain a document reader by calling one of the various
“create” methods that are declared in the XMLInputFactory
class. You obtain a document writer by calling one of the various
“create” methods that are declared in the XMLOutputFactory
class.

486

APPENDIXA ANSWERS TO EXERCISES

5. When you call XMLOutputFactory’s void setProperty(String
name, Object value) method with XMLOutputFactory.IS
REPAIRING NAMESPACES as the property name and true as the
value, the document writer takes care of all namespace bindings
and declarations, with minimal help from the application. The
output is always well formed with respect to namespaces.

6. Listing A-10 presents the ParseXMLDoc application that was called
for in Chapter 4.

Listing A-10. A StAX Stream-Based Parser for Parsing an XML Document

import java.io.FileReader;
import java.io.IOException;

import javax.xml.stream.XMLEventReader;
import javax.xml.stream.XMLInputFactory;
import javax.xml.stream.XMLStreamException;
import javax.xml.stream.XMLStreamReader;

import static java.lang.System.*;

public class ParseXMLDoc

{
public static void main(String[] args)
{
if (args.length != 1)
{
err.println("usage: java ParseXMLDoc pathname");
return;
}

XMLInputFactory xmlif
XMLStreamReader xmlsr

XMLInputFactory.newFactory();
null;
try (var fr = new FileReader(args[0]))
{
xmlsr = xmlif.createXMLStreamReader(fr);
int item = xmlsr.getEventType();

487

APPENDIXA ANSWERS TO EXERCISES

if (item != XMLStreamReader.START DOCUMENT)
{
err.println("START DOCUMENT expected");
return;
}
while ((item = xmlsr.next()) !=
XMLStreamReader.END DOCUMENT)
switch (item)
{
case XMLStreamReader.ATTRIBUTE:
out.println("ATTRIBUTE");
break;
case XMLStreamReader.CDATA:
out.println("CDATA");
break;
case XMLStreamReader.CHARACTERS:
out.println("CHARACTERS");
break;
case XMLStreamReader.COMMENT:
out.println("COMMENT");
break;
case XMLStreamReader.DTD:
out.println("DTD");
break;
case XMLStreamReader.END ELEMENT:
out.println("END_ELEMENT");
break;
case XMLStreamReader.ENTITY DECLARATION:
out.println("ENTITY DECLARATION");
break;
case XMLStreamReader.ENTITY REFERENCE:
out.println("ENTITY_ REFERENCE");
break;

488

APPENDIXA ANSWERS TO EXERCISES

case XMLStreamReader.NAMESPACE:
out.println("NAMESPACE");
break;

case XMLStreamReader.NOTATION_DECLARATION:
out.println("NOTATION DECLARATION");
break;

case XMLStreamReader.PROCESSING INSTRUCTION:
out.println("PROCESSING INSTRUCTION");
break;

case XMLStreamReader.SPACE:
out.println("SPACE");
break;

case XMLStreamReader.START_ELEMENT:
out.println("START ELEMENT");
out.printf("Name = %s%n",

xmlsr.getName());
out.printf("Local name = %skn",
xmlsr.getLocalName());
int nAttrs = xmlsr.getAttributeCount();
for (int i = 0; i < nAttrs; i++)
out.printf("Attribute [%s,%s]%n",
xmlsr.
getAttributelLocalName(i),
xmlsr.getAttributeValue(i));

}
catch (IOException ioe)

{

ioe.printStackTrace();

}
catch (XMLStreamException xmlse)

{

xmlse.printStackTrace();

489

APPENDIXA ANSWERS TO EXERCISES

finally
{
if (xmlsr != null)
try
{

xmlsr.close();

}
catch (XMLStreamException xmlse)

{
err.printf("XMLSE: %s%n",
xmlse.getMessage());

When you run this application against Exercise A-21’s books . xm1 file (without an
internal DTD) via java ParseXMLDoc books.xml, you should observe the following
output:

START ELEMENT

Name = books

Local name = books
CHARACTERS
START_ELEMENT

Name = book

Local name = book
Attribute [isbn,0201548550]
Attribute [pubyear,1992]
CHARACTERS

START ELEMENT

Name = title

Local name = title
CHARACTERS

END_ELEMENT

CHARACTERS

490

START ELEMENT

Name = author

Local name = author
CHARACTERS
END_ELEMENT
CHARACTERS
START_ELEMENT

Name = publisher
Local name = publisher
CHARACTERS
END_ELEMENT
CHARACTERS
END_ELEMENT
CHARACTERS
START_ELEMENT

Name = book

Local name = book
Attribute [isbn,9781430210450]
Attribute [pubyear,2008]
CHARACTERS
START_ELEMENT

Name = title

Local name = title
CHARACTERS
END_ELEMENT
CHARACTERS

START ELEMENT

Name = author

Local name = author
CHARACTERS
END_ELEMENT
CHARACTERS

START ELEMENT

Name = author

Local name = author

APPENDIXA ANSWERS TO EXERCISES

491

APPENDIXA ANSWERS TO EXERCISES

CHARACTERS
END_ELEMENT
CHARACTERS
START_ELEMENT

Name = author

Local name = author
CHARACTERS
END_ELEMENT
CHARACTERS
START_ELEMENT

Name = publisher
Local name = publisher
CHARACTERS

END_ ELEMENT
CHARACTERS
END_ELEMENT
CHARACTERS
START_ELEMENT

Name = book

Local name = book
Attribute [isbn,0201310058]
Attribute [pubyear,2001]
CHARACTERS

START ELEMENT

Name = title

Local name = title
CHARACTERS
END_ELEMENT
CHARACTERS

START ELEMENT

Name = author

Local name = author
CHARACTERS
END_ELEMENT
CHARACTERS

492

APPENDIXA ANSWERS TO EXERCISES

START ELEMENT

Name = publisher

Local name = publisher
CHARACTERS

END_ELEMENT

CHARACTERS

END_ELEMENT

CHARACTERS

END_ELEMENT

Chapter 5: Selecting Nodes with XPath

1. XPath is a nonXML declarative query language (defined by the
W3C) for selecting an XML document’s infoset items as one or
more nodes.

2. XPath is commonly used to simplify access to a DOM tree’s
nodes and in the context of XSLT to select those input document
elements (via XPath expressions) that are to be copied to an
output document.

3. The seven kinds of nodes that XPath recognizes are element,
attribute, text, namespace, processing instruction, comment, and
document.

4. The answer is false: XPath doesn’t recognize CDATA sections.

5. XPath provides location path expressions for selecting nodes.
Alocation path expression locates nodes via a sequence of steps
starting from the context node, which is the root node or some
other document node that is the current node. The returned set of
nodes might be empty, or it might contain one or more nodes.

6. The answer is true: in a location path expression, you must prefix
an attribute name with the @ symbol.

493

APPENDIXA ANSWERS TO EXERCISES

494

7.

10.

11.

12.

13.

14.

The functions that XPath provides for selecting comment, text,
and processing-instruction nodes are comment (), text(), and
processing-instruction().

XPath provides wildcards for selecting unknown nodes. The *
wildcard matches any element node regardless of the node’s type.
It doesn’t match attributes, text nodes, comments, or processing-
instruction nodes. When you place a namespace prefix before the
*, only elements belonging to that namespace are matched. The
node () wildcard is a function that matches all nodes. Finally, the
@* wildcard matches all attribute nodes.

You perform multiple selections by using the vertical bar (|). For
example, author/*|publisher/* selects the children of author
and the children of publisher.

A predicate is a square bracket-delimited Boolean expression
that’s tested against each selected node. If the expression
evaluates to true, that node is included in the set of nodes
returned by the XPath expression; otherwise, the node isn’t
included in the set.

The functions that XPath provides for working with nodesets are
last(), position(), id(), local-name(), namespace-uri(), and
name().

The three advanced features that the XPath API provides to
overcome limitations with the XPath 1.0 language are namespace
contexts, extension functions and function resolvers, and
variables and variable resolvers.

The answer is false: the XPath API maps XPath’s number type to
java.lang.Double.

Listings A-11 and A-12 present the contacts.xml document file
and XPathSearch application that were called for in Chapter 5.

APPENDIXA ANSWERS TO EXERCISES

Listing A-11. A Contacts Document with a Titlecased Name Element

<?xml version="1.0"?>

<conta
<co

</contact>

<Co

</contact>

<co

</contact>

<co

</contact>

</cont

cts>
ntact>

<Name>John Doe</Name>

<city>Chicago</city>
<city>Denver</city>

ntact>

<name>Jane Doe</name>
<city>New York</city>

ntact>

<name>Sandra Smith</name>
<city>Denver</city>

<city>Miami</city>

ntact>

<name>Bob Jones</name>
<city>Chicago</city>

acts>

Listing A-12. Searching for Name or Name Elements via a Multiple Selection

import

import
import
import
import

import
import
import
import
import

java.io.IOException;

javax.
javax.
javax.
javax.

javax.
javax.
javax.
javax.
javax.

xml

xml.
xml.
xml.

xml.
xml.
xml.
xml.
xml.

.parsers.DocumentBuilder;
parsers.DocumentBuilderFactory;
parsers.FactoryConfigurationError;
parsers.ParserConfigurationException;

xpath.XPath;
xpath.XPathConstants;
xpath.XPathException;
xpath.XPathExpression;
xpath.XPathFactory;

495

APPENDIXA ANSWERS TO EXERCISES

import org.w3c.dom.Document;
import org.w3c.dom.Nodelist;

import org.xml.sax.SAXException;
import static java.lang.System.*;

public class XPathSearch
{
final static String EXPR =
"//contact[city = 'Chicago']/name/text()|" +
"//contact[city = 'Chicago']/Name/text()";

public static void main(String[] args)
{
try
{
DocumentBuilderFactory dbf =
DocumentBuilderFactory.newInstance();
DocumentBuilder db = dbf.newDocumentBuilder();
Document doc = db.parse("contacts.xml");
XPathFactory xpf = XPathFactory.newInstance();
XPath xp = xpf.newXPath();
XPathExpression xpe;
xpe = xp.compile(EXPR);
Object result =
xpe.evaluate(doc, XPathConstants.NODESET);
NodelList nl = (NodelList) result;
for (int i = 0; i < nl.getlLength(); i++)
out.println(nl.item(i).getNodeValue());

}
catch (IOException ioe)
{
err.printf("IOE: %s%n", ioe.toString());
}

496

APPENDIXA ANSWERS TO EXERCISES

catch (SAXException saxe)

{

err.printf("SAXE: %s%n", saxe.toString());
}
catch (FactoryConfigurationError fce)
{

err.printf("FCE: %s%n", fce.toString());
}
catch (ParserConfigurationException pce)
{

err.printf("PCE: %s%n", pce.toString());
}
catch (XPathException xpe)
{

err.printf("XPE: %s%n", xpe.toString());
}

Chapter 6: Transforming XML Documents with XSLT

1.

XSLT is a family of languages for transforming and formatting
XML documents.

2. XSLT accomplishes its work by using XSLT processors and

stylesheets. An XSLT processor is a software component that
applies an XSLT stylesheet to an input document (without
modifying the document), and copies the transformed result to a
result tree, which can be output to a file or output stream, or even
piped into another XSLT processor for additional transformations.

The answer is false: call Transformer’s void transform(Source
xmlSource, Result outputTarget) method to transform a
source to a result.

497

APPENDIXA ANSWERS TO EXERCISES

4. Listings A-13 and A-14 present the books.xs1 document
stylesheet file and MakeHTML application that were called for in
Chapter 6.

Listing A-13. A Stylesheet for Converting books.xml Content to HTML

<?xml version="1.0"?>
<xsl:stylesheet
version="1.0"
xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform">
<xsl:template match="/books">
<html>
<head>
<title>Books</title>
</head>
<body>
<xsl:for-each select="book">
<h2>
<xsl:value-of select="normalize-space(title/text())"/>
</h2>
ISBN: <xsl:value-of select="@isbn"/><bxr/>
Publication Year: <xsl:value-of select="@pubyear"/>

<xsl:text>
</xsl:text>
<xsl:for-each select="author">»
<xsl:value-of select="normalize-space(text())"/>

<xsl:text>
</xsl:text>
</xsl:for-each>
</xsl:for-each>
</body>
</html>
</xsl:template>
</xsl:stylesheet>

498

APPENDIXA ANSWERS TO EXERCISES

Listing A-14. Converting Books XML to HTML via a Stylesheet

import
import

import
import
import
import

import
import
import
import
import
import
import
import

import

import
import

import
import
import

public
{

java.io.FileReader;

java.io.IOException;

javax.xml
javax.
javax.
javax.

javax.xml
javax.
javax.
javax.
javax.
javax.
javax.

javax.
javax.

javax.
javax.xml

xml.
xml.
xml.

xml.
xml.
xml.
xml.
xml.
xml.
xml.

xml.

xml.

.parsers.DocumentBuilder;

.transform.

transform

transform

.transform

transform.

transform.
transform.
transform.

transform.

transform.

parsers.DocumentBuilderFactory;
parsers.FactoryConfigurationError;
parsers.ParserConfigurationException;

OutputKeys;
Result;

.Source;
transform.

Transformer;
TransformerConfigurationException;
TransformerException;
TransformerFactory;

.TransformerFactoryConfigurationkrror;

dom.DOMSource;

stream.StreamResult;

.stream.StreamSource;

org.w3c.dom.Document;

org.xml.sax.SAXException;

static java.lang.System.*;

class MakeHTML

public static void main(String[] args)

{

try
{

DocumentBuilderFactory dbf =
DocumentBuilderFactory.newInstance();
DocumentBuilder db = dbf.newDocumentBuilder();

Document doc = db.parse("books.xml");

499

APPENDIXA ANSWERS TO EXERCISES

500

TransformerFactory tf =
TransformerFactory.newInstance();
StreamSource ssStyleSheet;
FileReader fr = new FileReader("books.xsl");
ssStyleSheet = new StreamSource(fr);
Transformer t = tf.newTransformer(ssStyleSheet);
t.setOutputProperty(OutputKeys.METHOD, "html");
t.setOutputProperty(OutputKeys.INDENT, "yes");
Source source = new DOMSource(doc);
Result result = new StreamResult(out);
t.transform(source, result);

}
catch (IOException ioe)
{
err.printf("IOE: %s%n", ioe.toString());
}
catch (FactoryConfigurationError fce)
{
err.printf("FCE: %s%n", fce.toString());
}

catch (ParserConfigurationException pce)

{
err.printf("PCE: %s%n", pce.toString());

}
catch (SAXException saxe)
{
err.printf("SAXE: %s%n", saxe.toString());
}

catch (TransformerConfigurationException tce)

{
err.printf("TCE: %shn", tce.toString());

}
catch (TransformerException te)
{
err.printf("TE: %s%n", te.toString());
}

APPENDIXA ANSWERS TO EXERCISES

catch (TransformerFactoryConfigurationError tfce)

{
err.printf("TFCE: %s%n", tfce.toString());

Chapter 7: Introducing JSON

1. JSON (JavaScript Object Notation) is a language-independent data
format that expresses JSON objects as human-readable lists of
properties.

2. The answer is false: JSON is derived from a nonstrict subset of
JavaScript.

3. TheJSON data format presents a JSON object as a brace-delimited
and comma-separated list of properties.

4. The six types that JSON supports are number, string, Boolean,
array, object, and null.

5. The answer is true: JSON doesn’t support comments.

6. You would parse a JSON object into an equivalent JavaScript
object by calling the JSON object’s parse () method with the text to
be parsed as this method’s argument.

7. JSON Schema is a grammar language for defining the structure,
content, and (to some extent) semantics of JSON objects.

8. When creating a schema, you identify those properties that must
be present in those JSON objects that the schema validates by
placing their names in the array that’s assigned to the schema'’s
required property name.

9. Listing A-15 presents the JSON object that was called for in
Chapter 7.

501

APPENDIXA ANSWERS TO EXERCISES

Listing A-15. A Product in Terms of Name and Price

{

"name": "hammer",
"price": 20

10. Listing A-16 presents the schema that was called for in Chapter 7.

Listing A-16. A Schema for Validating Product Objects

{
"$schema"”: "http://json-schema.org/draft-07/schema#",
"title": "Product",
"description": "A product",
"type": "object",
"properties”:
{
"name":
{
"description": "A product name",
"type": "string"
b
"price":
{
"description": "A product price",
"type": "number",
"minimum": 1
}
1
"required": ["name", "price"]
}

502

APPENDIXA ANSWERS TO EXERCISES

Chapter 8: Parsing and Creating JSON Objects
with mJson

1.

mJson is a small Java-based JSON library for parsing JSON objects
into Java objects and vice versa.

The Json class describes a JSON object or part of a JSON object.
It contains Schema and Factory interfaces, more than 50 methods,
and other members.

Json’s methods for reading and parsing external JSON objects
are Json read(String s), Jsonread(URL url), and Json
read(CharacterIterator ci).

The answer is true: the read() methods can also parse smaller
JSON fragments, such as an array of different-typed values.

The methods that Json provides for creating JSON objects

are Json array(), Json array(Object... args), Json
make(Object anything), Json nil(), Json object(), and Json
object(Object... args).

Json’sboolean isPrimitive() method returns true when the
invoking Json object describes a JSON number, string, or Boolean
value.

You return a Json object’s JSON array by calling List<Json>
asJsonList() to return a list of Json objects (one per array
element) or by calling List<Object> asList() to return a list of
Java objects (each object describes one of the elements).

The answer is false: Json’s Map<String, Object> asMap()
method returns a map of the properties of a Json object that
describes a JSON object. The returned map is a copy, and
modifications to it don’t affect the Json object.

Json’s Json at(int index), Json at(String propName), Json
at(String propName, Json defValue), and Json at(String
propName, Object defValue) methods letyou access the
contents of arrays and objects.

503

http://bolerio.github.io/mjson/apidocs/mjson/Json.html
http://bolerio.github.io/mjson/apidocs/mjson/Json.html

APPENDIXA ANSWERS TO EXERCISES

504

10.

11.

12.

13.

14.

15.

16.

17.

Json’s boolean is(int index, Object value) method returns
true when this Json object describes a JSON array that has the
specified value at the specified index; otherwise, it returns false.

When you attempt to set the value for a nonexistent array element,
Json throws IndexOutOfBoundsException.

The difference between Json’s atDel() and delAt() methods is as
follows: the atDel() methods return the removed array element
or object property, whereas the delAt () methods do not return
the removed array element or object property.

Json’s Json with(Json objectorarray) method combines this
Json object’s JSON object or JSON array with the argument passed
to objectorarray. The JSON type of this Json object and the JSON
type of objectorarray must match. If objectorarray identifies a
JSON obiject, all of its properties are appended to this Json object’s
object. If objectorarray identifies a JSON array, all of its elements
are appended to this Json object’s array.

Json’s methods for obtaining a Json.Schema object are Json.
Schema schema(Json jsonSchema), Json.Schema schema(Json
jsonSchema, URI uri), and Json.Schema schema(URI uri).

You validate a JSON document against a schema by calling Json.
Schema’s Json validate(Json document) method with the JSON
document passed as a Json argument to this method.

The difference between Json’s setGlobalFactory() and
attachFactory() methods is that setGlobalFactory() installs
the specified factory as a global factory, which is used by all
threads that don’t have a specific thread-local factory attached to
them, whereas attachFactory() attaches the specified factory to
the invoking thread only.

The Json dup() method returns a clone (a duplicate) of this Json
entity. The String pad(String callback) method wraps a function
named callback around the JSON object described by the current
Json object. This is done for the reason explained in Wikipedia’s
“ISONP” entry (https://en.wikipedia.org/wiki/JSONP).

https://en.wikipedia.org/wiki/JSONP

APPENDIXA ANSWERS TO EXERCISES

18. Listing A-17 presents the mJsonDemo application that was called for

in Chapter 8.

Listing A-17. Demonstrating Json’s dup() and pad() Methods

import mj
import st

public cl

{
public
{
Jso
Jso

out.

out

out.
out.
out.
out.

out.
out.

/*

*/

son.Json;
atic java.lang.System.*;

ass mJsonDemo

static void main(String[] args)

Json.read("{\"name\": \"John Doe\"}");
n json2 = jsoni.dup();

println(jsoni);

.println();

n jsoni

println(json2);

println();

printf("jsonl == json2: %b%n", jsonl == json2);

printf("jsoni.equals(json2): %b%n",
jsonil.equals(json2));

println();

println(jsoni.pad("func"));

The following output is generated:
"name" :"John Doe"}
“name":"John Doe"}

jsonl == json2: false
jsoni.equals(json2): true

func({"name":"John Doe"});

505

APPENDIXA ANSWERS TO EXERCISES

Chapter 9: Parsing and Creating JSON Objects
with Gson

1. Gsonis asmall Java-based library for parsing and creating JSON
objects. Google developed Gson for its own projects, but later
made Gson publicly available, starting with version 1.0.

2. Gson's packages are com.google.gson (provides access to Gson,
the main class for working with Gson), com.google.gson.
annotations (provides annotation types for use with Gson), com.
google.gson.reflect (provides a utility class for obtaining type
information from a generic type), and com.google.gson.stream
(provides utility classes for reading and writing JSON-encoded
values).

3. The two ways to obtain a Gson object are to call the Gson()
constructor or to invoke the create() method on a GsonBuilder
object.

4. The types for which Gson provides default serialization and
deserialization are java.lang.Enum, java.util.Map,
java.net.URL, java.net.URI, java.util.Locale, java.util.Date,
java.math.BigDecimal, and java.math.BigInteger.

5. You would enable pretty-printing by calling GsonBuilder’s
setPrettyPrinting() method.

6. The answer is true: by default, Gson excludes transient or static
fields from consideration for serialization and deserialization.

7. Once you have a Gson object, you can call various fromJson() and
toJson() methods to convert between JSON and Java objects.

8. Youuse Gson to customize JSON object parsing by implementing
the JsonDeserializer<T> interface, instantiating an object from
the implementation, and registering with Gson the deserializer
object along with the class object of the Java class whose objects
are to be serialized/deserialized.

506

http://docs.oracle.com/javase/6/docs/api/java/util/Map.html?is-external=true
http://java.net
http://docs.oracle.com/javase/6/docs/api/java/net/URL.html?is-external=true
http://java.net
http://docs.oracle.com/javase/6/docs/api/java/net/URI.html?is-external=true
http://docs.oracle.com/javase/6/docs/api/java/util/Locale.html?is-external=true
http://docs.oracle.com/javase/6/docs/api/java/util/Date.html?is-external=true
http://docs.oracle.com/javase/6/docs/api/java/math/BigDecimal.html?is-external=true
http://docs.oracle.com/javase/6/docs/api/java/math/BigInteger.html?is-external=true

10.

11.

12.

13.

14.

15.

16.

17.

APPENDIXA ANSWERS TO EXERCISES

The JsonElement class represents a JSON element (such as
a number, a Boolean value, or an array). It provides various
methods for obtaining an element value, such as double
getAsDouble(), boolean getAsBoolean(), and JsonArray
getAsJIsonArray().

The JsonElement subclasses are JsonArray, JsonNull,
JsonObject, and JsonPrimitive.

You call GsonBuilder’s GsonBuilder registerTypeAdapter(Type
type, Object typeAdapter) method to register a serializer or
deserializer with a Gson object.

JsonSerializer provides the JsonElement serialize(T src,
Type typeOfSrc, JsonSerializationContext context) method
to serialize a Java object to a JSON object.

Gson provides the Expose, JsonAdapter, SerializedName,
Since, and Until annotation types to simplify serialization and

deserialization.

The answer is false: to use Expose, it’s not enough to annotate
afield, asin @Expose(serialize = true, deserialize =
false). You also have to call GsonBuilder’s GsonBuilder
excludeFieldsWithoutExposeAnnotation() method.

JsonSerializationContext and JsonDeserializationContext
provide access to methods for performing default serialization
and default deserialization, which are handy when dealing with
nested arrays and objects that don’t require special treatment.

The answer is false: you can call <T> T fromJson(String json,
Class<T> classOfT) to deserialize nongeneric objects (i.e.,
objects created from nongeneric classes) only.

You should prefer TypeAdapter to JsonSerializer and
JsonDeserializer because TypeAdapter is more efficient. Unlike
JsonSerializer and JsonDeserializer, which are associated
with an intermediate layer of code that converts Java and JSON
objects to JsonElements, TypeAdapter doesn’t perform this

conversion.

507

http://docs.oracle.com/javase/6/docs/api/java/lang/String.html?is-external=true
http://docs.oracle.com/javase/6/docs/api/java/lang/Class.html?is-external=true

APPENDIXA ANSWERS TO EXERCISES

18. Listing A-18 presents the GsonDemo application that was called for
in Chapter 9.

Listing A-18. Serializing and Deserializing Properly Exposed Static Fields
import java.lang.reflect.Modifier;

import com.google.gson.Gson;
import com.google.gson.GsonBuilder;

import com.google.gson.annotations.Expose;
import static java.lang.System.*;

public class GsonDemo

{

static class SomeClass

{
transient int id;
@Expose(serialize = true, deserialize = true)
transient String password;
@Expose(serialize = false, deserialize = false)
int field1;
@Expose(serialize = false, deserialize = true)
int field2;
@Expose(serialize = true, deserialize = false)
int fields;
@Expose(serialize = true, deserialize = true)
int fields;
@Expose(serialize = true, deserialize = true)
static int fields;
static int field6;

}

public static void main(String[] args)

{

SomeClass sc = new SomeClass();
sc.id = 1;
sc.password = "abc";

508

APPENDIXA ANSWERS TO EXERCISES

sc.fieldl = 2;
sc.field2 = 3;
sc.field3 = 4;
sc.field4 = 5;
sc.field5 = 6;
sc.field6 = 7;

GsonBuilder gsonb = new GsonBuilder();
gsonb.excludeFieldsWithoutExposeAnnotation();
gsonb.excludeFieldsWithModifiers(Modifier.TRANSIENT);
Gson gson = gsonb.create();

String json = gson.toJson(sc);

out.println(json);

SomeClass sc2 = gson.fromJson(json, SomeClass.class);
out.printf("id = %d%n", sc2.id);

out.printf("password = %s%n", sc2.password);
out.printf("field1 = %d%n", sc2.field1);
out.printf("field2 = %d%n", sc2.field2);
out.printf("field3 = %d%n", sc2.field3);
out.printf("field4 = %d%n", sc2.field4);
out.printf("fields = %d%n", sc2.fields);
out.printf("field6 = %d%n", sc2.field6);

The gsonb.excludeFieldsWithModifiers(Modifier.TRANSIENT); expression
prevents only transient fields from being serialized and deserialized: static fields

will be
annota
gsonb.

serialized and deserialized, by default. Of course, static fields that are not
ted with @Expose have no chance to be serialized and deserialized, because of
excludeFieldsWithoutExposeAnnotation();.

When you run this application, you should discover the following output:

{"fiel
id =0
passwo
field1
field2

d3":4,"field4":5,"field5":6}

1d

null

0
=0

509

APPENDIXA ANSWERS TO EXERCISES

field3 = 0
field4 = 5
fields5 = 6
field6 = 7

The first line shows that the static field named field5 was serialized.

Chapter 10: Extracting JSON Values with JsonPath

1. JsonPath is a declarative query language (also known as a path-
expression-syntax) for selecting and extracting a JSON document’s
property values.

2. The answer is false: JsonPath is based on XPath 1.0.
3. The operator that represents the root JSON object is $.

4. You can specify JsonPath expressions in dot notation and square
bracket notation.

5. The @ operator represents the current node being processed by a
filter predicate.

6. The answer is false: JsonPath’s deep scan operator (. .) is
equivalent to XPath'’s // symbol.

7. JsonPath’s JsonPath compile(String jsonPath, Predicate...
filters) static method compiles the JsonPath expression stored
in the jsonPath-referenced string to a JsonPath object (to improve
performance when JsonPath expressions are reused). The array of
predicates is applied to ? placeholders appearing in the string.

8. Thereturn type of the <T> T read(String json) generic method
that returns JSON object property names and their values is
LinkedHashMap.

9. The three predicate categories are inline predicates, filter
predicates, and custom predicates.

10. Listing A-19 presents the JsonPathDemo application that was
called for in Chapter 10.

510

APPENDIXA ANSWERS TO EXERCISES

Listing A-19. Extracting and Outputting Maximum, Minimum, and Average
Numeric Values

import com.jayway.jsonpath.JsonPath;
import static java.lang.System.*;

public class JsonPathDemo

{

public static void main(String[] args)

{

String json =

+
\"numbers\": [10, 20, 25, 30]" +

",
)

String expr = "$.numbers.max()";
double d = JsonPath.read(json, expr);
out.printf("Max value = %f%n", d);
expr = "$.numbers.min()";

d = JsonPath.read(json, expr);
out.printf("Min value = %f%n", d);
expr = "$.numbers.avg()";

d = JsonPath.read(json, expr);
out.printf("Average value = %f%n", d);

Chapter 11: Processing JSON with Jackson

1. Jackson is a suite of data-processing tools for Java. These tools
include a streaming JSON parser/generator library, a matching
data-binding library (for converting Plain Old Java Objects
[POJOs] to and from JSON), and additional data format modules
for processing data encoded in XML and other formats.

511

APPENDIXA ANSWERS TO EXERCISES

2.

10.

512

Jackson’s packages include Jackson Core (com.fasterxml.
jackson.core), Jackson Databind (com.fasterxml.jackson.
databind), and Jackson Annotations (com.fasterxml. jackson.
annotation).

The answer is false: Jackson supports simple data binding and full
(also known as POJO) data binding.

Streaming in Jackson deserializes (reads) and serializes (writes)
JSON content as discrete events. Reading is performed by a parser
that tokenizes JSON content into tokens and associated data;
writing is performed by a generator that constructs JSON content
based on a sequence of calls that output JSON tokens.

The answer is false: streaming is the most efficient way to process
JSON content.

You create a stream-based parser by instantiating the JsonFactory
class and invoking one of this class’s overloaded createParser()
methods on the instance to obtain a JsonParser instance.

After you obtain a parser, you enter a loop that repeats until the
parser’s isClosed() method returns true. Each loop iteration
invokes JsonParser’s nextToken() method, which returns a
JsonToken object that identifies the next token from the JSON
content. You can interrogate this object to obtain additional
information about the token and then take appropriate action.

You create a stream-based generator by instantiating the
JsonFactory class and invoking one of this class’s overloaded
createGenerator() methods on the instance to obtain a
JsonGenerator instance.

After you obtain a generator, you invoke JsonGenerator
methods such aswriteStartObject() and writeStringField()
to output JSON content. You complete this task by invoking
JsonGenerator’s close() method.

The answer is true: the tree model provides a mutable in-memory
tree representation of a JSON document.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

APPENDIXA ANSWERS TO EXERCISES

The ObjectMapper class is used to start building a tree. The tree’s
nodes are instances of classes that descend from the abstract
JsonNode class.

Youread a JSON document into an in-memory tree by invoking
one of ObjectMapper’s readTree() methods.

The difference between JsonNode get(int index) and JsonNode
path(int index)is that get() returns null for a missing value,
whereas path() returns a MissingNode reference for a missing
value.

You write a tree to a JSON document by invoking one of
ObjectMapper’swriteTree() methods.

Data binding in Jackson is parsing JSON content to and from Java
objects such as POJOs. JSON content is deserialized into Java
objects, and Java objects are serialized into JSON content.

The purpose of the TypeReference class is to pass a generic type
definition (removed by type erasure) to one of ObjectMapper’s
readValue() methods.

Simple data binding differs from full data binding in that simple
data binding converts to and from a limited number of core JDK
types, whereas full data binding also converts to and from any Java
bean type.

By default, Jackson maps the fields of a JSON object to fields in a
Java object by matching the names of the JSON fields to the getter
and setter methods in the Java object. Jackson removes the get
and set parts of the names of the getter and setter methods and
converts the first character of the remaining name to lowercase.

The answer is false: a getter method makes a non-public field
serializable and deserializable.

Jackson’s read-only annotation types are JsonSetter,
JsonAnySetter, JsonCreator and JsonProperty, JacksonInject,
and JsonDeserialize.

513

APPENDIXA ANSWERS TO EXERCISES

21. The JsonPropertyOrder annotation type specifies the order in
which a Java object’s fields should be serialized to JSON content.

22. The difference between a stateful and a stateless pretty
printer class is that the stateful class must implement the
Instantiatable<Ty interface, to allow for the construction of
per-generation instances in order to avoid state corruption when
sharing the pretty printer instance among threads. This is not a
requirement for a stateless class.

23. You prevent ObjectMapper’s writeValue() methods from closing
the System.out stream by executing disable(JsonGenerator.
Feature.AUTO_CLOSE_TARGET) on the ObjectMapper instance.

24. Listing A-20 presents the JacksonDemo application that was called
for in Chapter 11.

Listing A-20. Writing Numeric Values as Strings
import java.io.File;

import com.fasterxml.jackson.core.JsonEncoding;
import com.fasterxml.jackson.core.JsonFactory;
import com.fasterxml.jackson.core.JsonGenerator;

import static java.lang.System.*;

public class JacksonDemo

{

public static void main(String[] args) throws Exception
{
JsonFactory factory = new JsonFactory();
JsonGenerator generator =
factory.createGenerator(new File("person.json"),
JsonEncoding.UTF8);
generator.enable(JsonGenerator.Feature.
WRITE_NUMBERS AS STRINGS);
generator.writeStartObject();
generator.writeStringField("firstname”, "John");
generator.writeStringField("lastName", "Doe");

514

APPENDIXA ANSWERS TO EXERCISES

generator.writeNumberField("age", 42);
generator.writeFieldName("address");
generator.writeStartObject();
generator.writeStringField("street"”, "400 Some Street");
generator.writeStringField("city"”, "Beverly Hills");
generator.writeStringField("state"”, "CA");
generator.writeNumberField("zipcode", 90210);
generator.writeEndObject();
generator.writeFieldName("phoneNumbers");
generator.writeStartArray();
generator.writeStartObject();
generator.writeStringField("type", "home");
generator.writeStringField("number", "310 555-1234");
generator.writeEndObject();
generator.writeStartObject();
generator.writeStringField("type", "fax");
generator.writeStringField("number", "310 555-4567");
generator.writeEndObject();
generator.writeEndArray();
generator.writeEndObject();

generator.close();

out.println("person.json successfully generated");

Chapter 12: Processing JSON with JSON-P

1. JSON Processing (JSON-P) is a Java API for processing (i.e.,
parsing, generating, querying, and transforming) JSON content.

2. JSON-P 1.0 consists of 25 types located in package javax. json,
along with the support packages javax.json.spiand javax.
json.stream. The javax.json package mainly contains types that
support the object model, the javax.json.spi package contains

515

APPENDIXA ANSWERS TO EXERCISES

516

a single type that describes a service provider for JSON processing
objects, and the javax. json.stream package contains types that
support the streaming model.

The types for creating JsonArray and JsonObject models are
JsonArrayBuilder and JsonObjectBuilder.

JSONValue is the superinterface of interface types that represent
immutable JSON values.

JSON-P 1.1 differs from JSON-P 1.0 in that it supports JSON
Pointer, JSON Patch, and JSON Merge Patch. Also, the new version
adds editing and transformation operations to JSON array and
object builders; and it also updates the API to better support Java
SE 8 stream operations (including JSON-specific collectors).

The answer is false: JSON-P 1.0’s object model is more flexible
than its streaming model.

You construct a JsonObject model by invoking Json’s
createObjectBuilder () method to return a JsonObjectBuilder
instance, invoking a chain of JsonObjectBuilder’s add() methods
on this instance to add a hierarchy of objects, and invoking
JsonObjectBuilder’s build() method on the builder instance to
return a JsonObject that serves as the root of the tree.

The types that the streaming model provides to read and write
JSON content are JsonParser and JsonGenerator.

JSON Merge Patch defines a JSON document structure for
expressing a sequence of changes to be made to a target JSON
document via a syntax that closely mimics that document.
Recipients of a JSON Merge Patch document determine the

exact set of changes being requested by comparing the content

of the provided patch against the current content of the target
document. If the patch contains members that don’t appear in the
target, those members are added. If the target does contain the
member, the value is replaced. Null values in the merge patch are
given special meaning to indicate the removal of existing values in
the target.

APPENDIXA ANSWERS TO EXERCISES

10. The editing/transformation operations that have been added
to JsonArrayBuilder and JsonObjectBuilder are as follows:
JsonArrayBuilder has received several add(int index, ...)
methods for adding a value between array elements, several
set(int index, ...) methods for updating an existing
element, and a remove () method for removing an element.
JsonObjectBuilder has received a remove () method for removing
a name/value pair.

11. The answer is true: JSON-P 1.1 introduced a JsonCollectors
class whose static collector methods return JSONObjects or
JsonArrays instead of Maps or Lists.

12. Listing A-21 presents the JSONPDemo application that was called for
in Chapter 12.

Listing A-21. Applying a JSON Pointer to a JSON Document

import java.io.FileReader;
import java.io.IOException;

import javax.json.Json;

import javax.json.JsonObject;
import javax.json.JsonPointer;
import javax.json.JsonReader;

import static java.lang.System.*;

public class JSONPDemo

{
public static void main(String[] args)
{
if (args.length != 2)
{
err.println("usage: java JSONPDemo jsonfile " +
"pointer");
return;
}

517

APPENDIXA ANSWERS TO EXERCISES

try (var fr = new FileReader(args[0]))

{
JsonReader reader = Json.createReader(fr);
JsonObject o = (JsonObject) reader.read();
JsonPointer ptr = Json.createPointer(args[1]);
out.println(ptr.getValue(o));

}
catch (IOException ioe)
{
err.printf("I/0 error: %s%n", ioe.getMessage());
}

518

Index

A

add() method, 226
Advanced XPath
extension function, 156-161
function resolver, 159-161
namespace contexts, 154-155
variables and variable
resolver, 161-163
Annotation types, 267
changing field names, 272-273
contexts, 276-279
exposing and hiding fields, 268-271
generics support, 279-287
JsonFactory, 398-401
JsonGenerator, 398-401
JsonParser, 398-401
pretty printers, 390-398
read-only annotation
Jacksonlnject, 358-361
JsonAnySetter, 354-356
JsonCreator, 356-358
JsonDeserialize, 361-363
JsonProperty, 356-358
JsonSetter, 351-354
read-write annotation
JsonAutoDetect, 387-390
Jsonlgnore, 380-384
JsonlgnoreProperties, 380-384
JsonlgnoreType, 384-386

© Jeff Friesen 2019

versioning, 273-275

write-only annotation
JsonAnyGetter, 369-371
JsonGetter, 366-369
JsonInclude, 364-366
JsonPropertyOrder, 371-373
JsonRawValue, 373-374
JsonSerialize, 377-380
JsonValue, 375-377

Attribute node, 68

B

boolean getFeature(String name), 38
boolean isClosed() method, 327
Byte-order-mark (BOM), 6

C

Character data (CDATA) section, 11, 69
Character references
character entity reference, 10
numeric character reference, 10
Chicago contacts
DOM API, 147-149
XPath API, 150-152
Comment node, 69
Compound paths, 141
ContentHandler, 42
CouchDb, 187

519

J. Friesen, Java XML and JSON, https://doi.org/10.1007/978-1-4842-4330-5

https://doi.org/10.1007/978-1-4842-4330-5

INDEX

createArrayBuilder() method, 414
createGenerator() methods, 330
createMergeDiff() method, 445
createObjectBuilder() method, 414
createPatchBuilder() method, 438
Custom deserializer, 255
Custom entity resolver

external entities, 60

internal entities, 59

LocalRecipeML, 62-63

recipe markup language

(RecipeML), 60, 61

Custom predicates, 317-320

D

Data-binding, 340, 342
date() extension function, 158
disableHtmlEscaping() method, 247
Document fragment node, 69
Document node, 69
Document object model (DOM)
advantages, 67
createElement() method, 85
createElement(String tagName), 74
custom error handler, 483-486
definition, 474
DocumentBuilderFactory, 474
document’s node-based tree
structure, 67
DOMSearch application, 477-480
DOMValidate application, 481-483
DumpUserInfo application, 475-477
hasChildNodes() method, 475
load and save
filter, 96
interface types, 86

520

parser, configuration, 90
XML document, loading, 86
method, location, 77
modification, 76
navigation methods, 75
Nodelterator and
TreeWalker, 475
node’s constants and
methods, 74-75, 77
node tree, 68-70
node types, 474
output, 81
parse() methods, 73
parser/document builder, 71-73
parsing application, 77
parsing XML document, 80
range operations
DocumentRange, 108
DOMDemo application, 108
package, 107
RangeException, 108
saving, XML document, 100-101
selectNode() and
selectNodeContents()
methods, 475
traversal
DOMDemo, 104
interface types, 102
NodeFilter, 103-104
Nodelterator, 103
TreeWalker, 103
tree, creation, 82
utility methods, 76

Document type definition (DTD), 19

attribute declaration, 21
document type declaration, 22
external general entity, 24

internal recipe document, 23

notation, 23

parameter entities, 25

recipe language’s, 20
Document type node, 69
DTDHandler, 44

E

Element node, 69
endCDATA() output, 56
Entity node, 70
Entity reference node, 70
EntityResolver, 45
ErrorHandler, 45
eval() methods, 192
Event-based readers
hasNext() and nextEvent()
methods, 121
output, 124
start and end element, 121
StAXDemo, 122-123
Event-based writers
Copy, 135-136
high-level XMLEventWriter
interface, 130
StAXDemo, 131-135
excludeFieldsWithoutExposeAnnotation()
method, 269
eXtensible Markup Language (XML), 3, 461
attributes, 9, 461
books.xml document, 463-466
CDATA section, 11, 462
character reference, 10-11, 462
comments, 17
contacts database, 146, 156
declaration

INDEX

ASCII, 6
encoded document, 7
parser, 5
unicode character set, 6
DOM tree, 86-90
DYD, 463
elements
mixed content, 8
tree structure, 7
namespaces, 12, 462
default, specification, 15-16
prefix attributes, 12
URI, 12
XHTML, 14, 15
processing instructions, 17, 462
rules, 462
valid documents, 18-19
Extensible Stylesheet Language (XSL), 165
Extension function, 156-161
External general entity
parsed, 24
unparsed, 24

F

Filtering, XML document
DOMDemo application, 96
int getWhatToShow(), 96
listing and running, application, 99
methods, 96
short acceptNode(Node node), 96
short startElement(Element e), 96
Filter predicates, 315-317
firstName() jQuery-style methods, 368
fromJson() method, 250
Full data binding, 344
Function resolver, 159-161

521

INDEX

G

getColumnNumber() methods, 56
getContentHandler() methods, 37
getDTDHandler() methods, 37
getElementsByTagName()
method, 149-150

getEntityResolver() methods, 38
getErrorHandler() methods, 38
getLineNumber() methods, 56
getNamespaceURI() method, 155
getNodeType() method, 80
getTime() method, 159
Gson

annotation types (see Annotation

types)

class, 245

configuration, 245-246

contexts, 276

create() method, 269, 506

JSON objects, serialization (see

JavaScript Object Notation
(JSON))
design goals, 243

fromJson() and toJson() methods, 506

GitHub page, 243

Gson() constructor, 506

jar file, 244
JsonDeserializationContext, 507
JsonDeserializer<T> interface, 506
JsonElement class, 507

JSON-Java object conversion, 246-247

JsonSerializationContext, 507

JsonSerializer, 507

packages, 244, 506

parsing JSON, deserialization (see
Parsing JSON)

serialization and deserialization, static

fields, 508-509
522

setPrettyPrinting() method, 506
TypeAdapter, 287, 507
types, 506

H

handleError() method, 95

Identity transformation, 167
ignorableWhitespace() method, 58
Incremental processing, 325

Inline predicates, 309-314
isObject() method, 218

J, K
Jackson
content, 512
core package, 323-324
createGenerator() methods, 512
data binding, 324, 513
full data binding, 344-350
simple data binding, 341-343
definition, 511
JAR file, 324-325
JsonGenerator methods, 512

JsonNode get(int index) and JsonNode

path(int index), 513
numeric values, strings, 514-515
ObjectMapper class, 513
ObjectMapper’s writeValue()
methods, 514
packages, 512
read-only annotation types, 513
readTree() methods, 513
stateful and stateless pretty printer
class, 514

streaming
stream-based generation, 330-334
stream-based parsing, 326-330, 512
tree model, JSON document, 334-340
TypeReference class, 513
writeTree() methods, 513
JacksonlInject, 358
JavaScript Object Notation (JSON), 187,
251, 406
arguments, 261
Book class, 261-263
code fragment, 263-265
data format, 501
declaration, 192, 194
definition, 195, 501
execution, 191-192
factory (see Json.Factory interface’s
methods)
Gson, 506-509
Jackson, 511-515
java collections and maps, 212
Java object, 258-260, 265-267
JavaScript, demonstration, 190-195
JSON-P, 515-518
JsonPath, 510-511
learning (see Learning Json)
mapping, Java type, 341
mJson, 503-505
modification, 225
add() methods, 226
appending properties, 230-231
delAt() methods, 229
object property and array
element, 225
remove() methods, 227-229
navigation, 223-224
parse() method, 194-195, 501
person.json, 328-330

INDEX

properties, 190, 501
schema, validating product
objects, 502
static methods, 209-211
syntax tour, 188-190
types, 188, 501
validation, schema, 195-201
Java Specification Request (JSR), 405
javax.xml.transform TransformerFactory
class, 166
JsonAdapter, 267
JsonAnyGetter, 369
JsonAnySetter, 354
JsonArray, 250, 406
JsonArrayBuilder, 406
JsonAutoDetect, 387
JsonBuilderFactory, 406
JsonCollectors, 410
JsonCreator, 356
JsonDeserialize, 361
JsonElement, 250
JsonException, 407
JsonFactory, 398
Json.Factory interface’s methods
case-insensitive string
comparisons, 236-239
custom Factory class, 236
custom implementations, 236
equals() method, 236, 241
main() method, 240
String’s equalsignoreCase(), 241
string(String) method, 240
JsonGenerationException, 408
JsonGenerator, 398, 408
methods, 331
source code, 331
JsonGeneratorFactory, 408
JsonGenerator.Feature, 399

523

INDEX

JsonGetter, 366
Jsonlgnore, 380
JsonlgnoreProperties, 380
JsonlgnoreType, 384
JsonInclude, 364
JsonLocation, 408
JSON Merge Patch, 409
demonstration, 442-444
document, 441
source and target, 445-446
JsonNode
for array, 334-335, 338
for objects, 338
JsonNull, 250
JsonNumber, 406
JsonObjectBuilder, 406
JSON-P 1.0
object implementation, 407
object model AP], text, 406-407,
411-418
streaming API, text, 408, 418-423
JSON-P 1.1
editing/transformation
operations, 447-449
Java SE 8 support, 449-455
javax.json, 409-410
JSON Merge Patch, 440-447
JSON Patch, 431-440
JSON Pointer, 424-431
JsonParser, 327, 399, 408
JsonParser. EVENT, 408
JsonParserFactory, 408
JsonParser.Feature, 399
JsonParsingException, 408
JSON Patch, 409, 431
demonstration, 433-434
document, 434-437

524

operations, 432
source and target, 438-440
JsonPatchBuilder, 409
JsonPatch.Operation, 409
JsonPath, 510-511
CLASSPATH, 305
custom predicates, 317
definition, 299
filter operators, 303-304
filter predicates, 315
functions, 302-303
inline predicates, 309
language, 300
library, 304
operators, 302
POM, 304
value extraction, 306-309
XPath counterparts, 300
ZIP file, 305
JSON Pointer, 409, 424-425
demonstration, 426
document, 427-430
encoding and decoding, 431
JsonPrimitive, 251
JSON Processing (JSON-P), 515-518
Java SE 8 support
demonstration, 449-451
sample document, 452-455
JSON Merge Patch, 440-447
JSON Patch, 431-440
JSON Pointer, 424-431
obtain version 1.1.3, 410-411
value types, 407
JsonProperty, 356
JsonPropertyOrder, 371
JsonProvider, 407
JsonRawValue, 373

JsonReader, 406

JsonReaderFactory, 406

JsonReader’s void beginArray()
method, 292

JsonReader’s void endArray() method, 292

JSON Schema Validator, 197

JsonSerialize, 377

JsonSetter, 351

JsonString, 406

JsonStructure, 406

JsonToken, 327

JsonToken nextToken() method, 327

JsonValue, 375, 406

JsonValueValueType, 407

JsonWriter, 288, 406

JsonWriterFactory, 406

L

Learning Json
array element values, 219
java type, 216-217
methods, 213
object properties, 217-219
property values, 220-222
type-identification methods, 214
LexicalHandler, 46

main() entry-point method, 285
main() method, 180, 192, 307
mJson, 503-505

features, 205-206

JAR file, 206

mJsonDemo class, 240
MongoDb, 187

INDEX

N

NamespaceContext interface, 154-155
newDocument() method, 74
newFactory() methods, 116
newlnstance() methods, 166
newSAXParser() method, 37
newTransformer() method, 166-167, 169
Notation node, 70

O

Object getProperty(String name), 38
ObjectMapper() constructor, 334
OutputKeys. METHOD, 167

PQ

Parameter entities
external, 25
internal, 25

parse() method, 159, 194

Parser configuration
custom error handler, 94
DOMDemo application, validation, 90
getDomConfig() method, 90
invalid recipe document, 93-94
output, 94

Parsing JSON
custom deserializer, 253-258
GsonDemo class, 250
Java object redux, 251-253
JsonElement class, 250-251
Person class, 248-249

PersonDeserializer, 256

Plain Old Java Objects (POJOs), 323

Predicate, 142

Pretty printers, 390

525

INDEX

Processing-instruction node, 70
Project Object Model (POM), 304

R

read() method, 308

readObject() method, 418
Read-only annotation, 351
readValue() generic methods, 340
Read-write annotation, 380
resolveEntity() method, 63

S

SAXON-HE 9.9
playing, 180-181
testing, 179-180
SAX 2 parser, 36-37
SAXParserFactory newlnstance()
method, 36
Scalable vector graphics (SVG), 11
Schema’s Json validate(Json document)
external schema, 234-235
id Property, 232, 233
interface, 232
JSON obiject, 233-234
setDocumentLocator() methods, 56
setFeature() call, 40
set() methods, 225
setPersonID() setter method, 353
setPrefix() method call, 129
setProperty() call, 41
Simple API for XML (SAX)
DefaultHandler class, 467
description, 35, 466
DumpUserInfo application, 467-469
entity resolver, 467
exceptions, 467

526

Handler class’s source code, 49
output, 55-56
parser, 35
SAX Callback Class, 471-473
SAXDemo, 47-49
SAX Driver Class, 470-471
SAXParserFactory instance, 466
svg-examples
error(), 59
start tag, 56, 58
whitespace, 467
XMLReader interface, 467
Simple data binding, 341
Simple Logging Facade for Java
(SLF4J), 309
Square bracket-delimited Boolean
expression, 142
startElement() call, 56
Static JsonPath method, 307

Stream-based vs. event-based readers and

writers, 114-115
Stream-based generation, 330-334
Stream-based parsing, 326-330
Stream-based reader

fragment creation, 116
getName() method, 119
hasNext() method, 117
start and end elements, 117, 119
Stream-based writer
StAXDemo, 127
XMLStreamWriter interface, 126-127
Streaming, 325
Streaming API for XML (StAX)
creating documents, 125
event-based writers, 130
stream-based writers, 126
document reader, 486
document writer, 486

parsing documents, 115-116
event-based reader, 120
stream-based reader, 116

ParseXMLDoc books.xml, 490-493

SAX and DOM, 113-114

stream-based

parser, 487-490
System.setProperty(), 180

T

Text node, 70
toJsonObject() collector method, 449
toJsonTree() method, 252
transform() method, 173
Tree model, 334
TypeAdapter
abstract methods, 288
array, 292
class and field, 293, 295-296
JsonReader and JsonWriter
methods, 288
serializing and deserializing, 289-296

U

Uniform resource identifier (URI), 12
Uniform resource locator (URL), 207
useDefaultPrettyPrinter()

method, 333, 397

\'

Validation API, 72-73

Variable resolver, 161-163
Versioning, 273-275

void beginObject(), 288

void parse(InputSource input), 38

INDEX

void parse(String systemlId), 38

void setContentHandler(ContentHandler
handler), 39

void setDTDHandler(DTDHandler
handler), 39

void setEntityResolver(EntityResolver
resolver), 39

void setErrorHandler(ErrorHandler
handler), 39

void setFeature(String name, boolean
value), 39

void setProperty(String name, Object
value), 39

w

Write-only annotation, 363
writeStartArray() method, 332
writeStartObject() method, 423

XY,Z
XML, see eXtensible Markup Language
(XML)
XMLEventWriter interface, 130
XMLReader methods, 37
features and properties, 40-41
XML schema
code fragment, 29
complex types, 28
content model, 27
document schema, 30
element names, 27
language document, 27
namespace, 32
object-oriented approach, 26
schemalLocation attribute, 31
W3C type, 28

527

INDEX

XPath

advanced (see Advanced XPath)
Boolean functions, 143
contacts.xml document file, 494-495
definition of, 139
and DOM, 145
language primer
general expressions, 143
location path expressions, 140-143
node selection, 493-494
normalize-string() function, 175
numeric functions, 144
string functions, 144-145
wildcards, 141
XPathSearch application, 494-497

528

XPathFactory newInstance()

method, 152

XSL Transformation (XSLT), 165

books.xsl document stylesheet file, 498
demonstation
Apache’s implementation, 173
encoding attribute, 170-173
HTML document, conversion,
173-175
XML transformation, 175-178
exploration, 166-169
MakeHTML application, 498-500
processors and stylesheets, 165,
178, 497
XSLT 1.0 and XPath 1.0, 179

	Table of Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Part I: Exploring XML
	Chapter 1: Introducing XML
	What Is XML?
	Language Features Tour
	XML Declaration
	Elements and Attributes
	Character References and CDATA Sections
	Namespaces
	Comments and Processing Instructions

	Well-Formed Documents
	Valid Documents
	Document Type Definition
	XML Schema

	Summary

	Chapter 2: Parsing XML Documents with SAX
	What Is SAX?
	Exploring the SAX API
	Obtaining a SAX 2 Parser
	Touring XMLReader Methods
	Setting Features and Properties

	Touring the Handler and Resolver Interfaces
	Touring ContentHandler
	Touring DTDHandler
	Touring ErrorHandler
	Touring EntityResolver
	Touring LexicalHandler

	Demonstrating the SAX API
	Creating a Custom Entity Resolver
	Summary

	Chapter 3: Parsing and Creating XML Documents with DOM
	What Is DOM?
	A Tree of Nodes
	Exploring the DOM API
	Obtaining a DOM Parser/Document Builder
	Parsing and Creating XML Documents

	Demonstrating the DOM API
	Parsing an XML Document
	Creating an XML Document

	Working with Load and Save
	Loading an XML Document into a DOM Tree
	Configuring a Parser
	Filtering an XML Document While Parsing
	Saving a DOM Tree to an XML Document

	Working with Traversal and Range
	Performing Traversals
	Performing Range Operations

	Summary

	Chapter 4: Parsing and Creating XML Documents with StAX
	What Is StAX?
	Exploring StAX
	Parsing XML Documents
	Parsing Documents with Stream-Based Readers
	Parsing Documents with Event-Based Readers

	Creating XML Documents
	Creating Documents with Stream-Based Writers
	Creating Documents with Event-Based Writers

	Summary

	Chapter 5: Selecting Nodes with XPath
	What Is XPath?
	XPath Language Primer
	Location Path Expressions
	General Expressions

	XPath and DOM
	Advanced XPath
	Namespace Contexts
	Extension Functions and Function Resolvers
	Variables and Variable Resolvers

	Summary

	Chapter 6: Transforming XML Documents with XSLT
	What Is XSLT?
	Exploring the XSLT API
	Demonstrating the XSLT API
	Going Beyond XSLT 1.0 and XPath 1.0
	Downloading and Testing SAXON-HE 9.9
	Playing with SAXON-HE 9.9

	Summary

	Part II: Exploring JSON
	Chapter 7: Introducing JSON
	What Is JSON?
	JSON Syntax Tour
	Demonstrating JSON with JavaScript
	Validating JSON Objects
	Summary

	Chapter 8: Parsing and Creating JSON Objects with mJson
	What Is mJson?
	Obtaining and Using mJson

	Exploring the Json Class
	Creating Json Objects
	Learning About Json Objects
	Navigating Json Object Hierarchies
	Modifying Json Objects
	Validation
	Customization via Factories

	Summary

	Chapter 9: Parsing and Creating JSON Objects with Gson
	What Is Gson?
	Obtaining and Using Gson

	Exploring Gson
	Introducing the Gson Class
	Parsing JSON Objects Through Deserialization
	Customized JSON Object Parsing

	Creating JSON Objects Through Serialization
	Customized JSON Object Creation

	Learning More About Gson
	Annotation Types
	Exposing and Hiding Fields
	Changing Field Names
	Versioning

	Contexts
	Generics Support
	Type Adapters
	Conveniently Associating Type Adapters with Classes and Fields

	Summary

	Chapter 10: Extracting JSON Values with JsonPath
	What Is JsonPath?
	Learning the JsonPath Language
	Obtaining and Using the JsonPath Library
	Exploring the JsonPath Library
	Extracting Values from JSON Objects
	Using Predicates to Filter Items
	Inline Predicates
	Filter Predicates
	Custom Predicates

	Summary

	Chapter 11: Processing JSON with Jackson
	What Is Jackson?
	Obtaining and Using Jackson

	Working with Jackson’s Basic Features
	Streaming
	Stream-Based Parsing
	Stream-Based Generation

	Tree Model
	Reading a JSON Document into a Tree
	Creating a Tree and Writing It to a JSON Document

	Data Binding
	Simple Data Binding
	Full Data Binding

	Working with Jackson’s Advanced Features
	Annotation Types
	Read-Only Annotation Types
	JsonSetter
	JsonAnySetter
	JsonCreator and JsonProperty
	JacksonInject
	JsonDeserialize

	Write-Only Annotation Types
	JsonInclude
	JsonGetter
	JsonAnyGetter
	JsonPropertyOrder
	JsonRawValue
	JsonValue
	JsonSerialize

	Read-Write Annotation Types
	JsonIgnore and JsonIgnoreProperties
	JsonIgnoreType
	JsonAutoDetect

	Custom Pretty Printers
	Factory, Parser, and Generator Features

	Summary

	Chapter 12: Processing JSON with JSON-P
	What Is JSON-P?
	JSON-P 1.0
	JSON-P 1.1
	Obtaining and Using JSON-P

	Working with JSON-P 1.0
	Working with the Object Model API
	Working with the Streaming Model API

	Working with JSON-P 1.1’s Advanced Features
	JSON Pointer
	JSON Patch
	JSON Merge Patch
	Editing/Transformation Operations
	Java SE 8 Support

	Summary

	Part III: Appendixes
	Appendix A: Answers to Exercises
	Chapter 1: Introducing XML
	Chapter 2: Parsing XML Documents with SAX
	Chapter 3: Parsing and Creating XML Documents with DOM
	Chapter 4: Parsing and Creating XML Documents with StAX
	Chapter 5: Selecting Nodes with XPath
	Chapter 6: Transforming XML Documents with XSLT
	Chapter 7: Introducing JSON
	Chapter 8: Parsing and Creating JSON Objects with mJson
	Chapter 9: Parsing and Creating JSON Objects with Gson
	Chapter 10: Extracting JSON Values with JsonPath
	Chapter 11: Processing JSON with Jackson
	Chapter 12: Processing JSON with JSON-P

	Index

