Studies in Computational Intelligence 806

Chung Yik Cho
Rong Kun Jason Tan
John A. Leong

Amandeep S. Sidhu

Large Scale
Data Analytics

@ Springer

http://www.allitebooks.org

Studies in Computational Intelligence

Data, Semantics and Cloud Computing

Volume 806

Series editor

Amandeep S. Sidhu, Biological Mapping Research Institute, Perth, WA, Australia
e-mail: dscc@biomap.org

www.allitebooks.cond

http://www.allitebooks.org

More information about this series at http://www.springer.com/series/11756

vww . allitebooks.con

http://www.springer.com/series/7092
http://www.allitebooks.org

Chung Yik Cho - Rong Kun Jason Tan
John A. Leong - Amandeep S. Sidhu

Large Scale Data Analytics

@ Springer

www.allitebooks.cond

http://www.allitebooks.org

Chung Yik Cho John A. Leong

Curtin Malaysia Research Institute Curtin Malaysia Research Institute
Curtin University Curtin University

Miri, Sarawak, Malaysia Miri, Sarawak, Malaysia

Rong Kun Jason Tan Amandeep S. Sidhu

Curtin Malaysia Research Institute Biological Mapping Research Institute
Curtin University Perth, WA, Australia

Miri, Sarawak, Malaysia

ISSN 1860-949X ISSN 1860-9503 (electronic)
Studies in Computational Intelligence

ISSN 2524-6593 ISSN 2524-6607 (electronic)
Data, Semantics and Cloud Computing

ISBN 978-3-030-03891-5 ISBN 978-3-030-03892-2 (eBook)

https://doi.org/10.1007/978-3-030-03892-2
Library of Congress Control Number: 2018960754

© Springer Nature Switzerland AG 2019

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt from
the relevant protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the
authors or the editors give a warranty, express or implied, with respect to the material contained herein or
for any errors or omissions that may have been made. The publisher remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

vww . allitebooks.con

https://doi.org/10.1007/978-3-030-03892-2
http://www.allitebooks.org

Contents

1

3

4

Introduction 1
1.1 Project OVerVIiEWt 1
1.2 Research Background 2
1.3 Problem Statement 3
1.4 ODbjective.o 4
1.5 Outline 4
Background 5
2.1 Literature Reviews 5
2.1.1 Process of Life Science Discovery 5
2.1.2 The Biological Data Nature. 6
2.1.3 Constant Evolution of a Domain.................. ... 7
2.14 Data Integration Challenges. 8
2.1.5 Semantic Integration Challenges 10
2.1.6 Biomedical Ontologies 11
2.1.7 Creation of Ontology Methodologies 12
2.1.8 Ontology-Based Approach for Semantic Integration 16
Large Scale Data Analytics. 19
3.1 Language Integrated Query............ 19
3.2 Cloud Computing as a Platform 20
3.3 Algebraic Operators for Biomedical Ontologies 21
3.3.1 Select Operatort 21
3322 Union Operatort 22
3.3.3 Intersection Operator 23
334 Except Operator......................o.iiiiii... 24
Query Framework 27
4.1 Functions for Querying RCSB Protein Data Bank (PDB) 27
4.1.1 Make Query Function 27
4.12 Do Search Function. 28

vi Contents
4.1.3 Do Protsym Search Function........................ 29

414 Get All Function 30

4.2 Functions for Looking up Information Given PDBID 30
42.1 GetInfo Function 30

422 GetPDB File Function 31

423 Get All Info Function 31

424 Get Raw Blast Function 32

425 Parse Blast Function 32

4.2.6 Get Blast Wrapper Function 33

427 Describe PDB Function. 33

4.2.8 Get Entity Info Function 34

429 Describe Chemical Function 35

4.2.10 Get Ligands Function 35

4.2.11 Get Gene Ontology Function. 36

4.2.12 Get Sequence Cluster Function 37

4213 Get Blast Function. 38

42.14 Get PFAM Function 38

4.2.15 Get Clusters Function 39

4.2.16 Find Results Generator Function 39

4.2.17 Parse Results Generator Function 39

4.2.18 Find Papers Function. 40

4.2.19 Find Authors Function. 41

4220 Find Dates Function 42

4221 List Taxonomy Function 42

4222 List Types Function. 43

4.3 Functions for Querying Information with PDBID 44
4.3.1 To Dictionary Function 44

4.3.2 Remove at Sign Function 44

4.3.3 Remove Duplicates Function. 44

4.3.4 Walk Nested Dictionary Function 45

5 Results and Discussion 47
5.1 Query Web Portal 47
52 SUMMAIY. . ..ot 50

6 Conclusion and Future Works 51
6.1 Conclusion 51
6.2 Limitations 52
6.3 Future Works 52
AppendiX 53

List of Figures

Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.

2.1
2.2
23
24
2.5
3.1
3.2
33
4.1
4.2
43
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12
4.13
4.14
4.15
4.16
4.17
4.18
4.19
4.20
4.21
4.22
4.23

Process of life science discovery......................... 6
Process of On-To-Knowledge. 14
Ontology development with On-To-Knowledge 15
OPSDS architecture 17
Process of global ontology 17
Usage of select operator in instances of family concept 22
Usage of union operatorot 23
Usage of intersection operator.ooouo... 25
Make query function. 28
Do search function L L 29
Do protsym search function 29
Getall function. 30
Get info function 31
Get PDB file function. L 31
Get all info function. 32
Get raw blast function 32
Parse blast function. 33
Get blast wrapper function 33
Describe PDB function. 34
Sample output for describe PDB function. 34
Get entity info function. 34
Sample output for get entity info function 35
Describe chemical function. 35
Sample output for chemical function 35
Get ligands function 36
Sample output for get ligands function. 36
Get gene ontology function. 36
Sample output for get gene ontology function 37
Get sequence cluster function. 37
Sample output for get sequence cluster function. 37
Get blast function. i 38

vii

viii

Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.

4.24
4.25
4.26
4.27
4.28
4.29
4.30
4.31
4.32
4.33
4.34
4.35
4.36
4.37
4.38
4.39
4.40
4.41
4.42
4.43
5.1

5.2

53

54

5.5

5.6

List of Figures

Sample output for get blast function. 38
Get PFAM function 38
Sample output for get PFAM function 39
Get clusters function. 39
Sample output for get clusters function. 39
Find results generator function 40
Sample output for find results generator function............ 40
Parse results generator function 40
Find papers function. 41
Sample output for find papers function. 41
Find authors function 41
Sample output for find authors function 42
Find dates function. 42
List taxonomy function. 42
Sample output for list taxonomy function. 43
List types function 43
To dictionary function 44
Remove at sign function. 44
Remove duplicates function 45
Walk nested dictionary function 45
Homepage of query web portal. 48
Search page of query web portal 48
Search result for keyword ‘crispr’. 48
Information related to protein ID “1WI9” 49
Detailed information of protein ID “IWJ9*. 49
Contact page of query web portal. 50

List of Tables

Table 1.1

Outline

ix

Chapter 1)
Introduction Check or

1.1 Project Overview

In this modern technological age, data is growing larger and faster compared to
previous decades. The existing methods used to process and analyse the
overflowing amount of data are no longer sufficient. The term large scale data first
surfaced in the magazine “Visually Exploring Gigabyte Datasets in Real Time” [1]
published in Association for Computing Machinery (ACM) in 1999. It was men-
tioned having large scale data without a proper methodology to analyse data is a
huge challenge and a sad occasion at the same time. In the year 2000, Peter Lyman
and Hal Varian [2] from University of California at Berkeley (both currently resides
in Google as chief economist) attempted to measure the available data volume and
data growth rate. Both senior researchers concluded that 1.5 billion gigabytes of
storage was required to contain the data from film, optical, magnetic and print
material annually.

Starting from 2001 onwards, large scale data was defined as data that contains
high volume, high velocity and high variety. This definition was defined by
Douglas Laney, an industry analyst currently working with Gartner [3]. The defi-
nition of high volume in large scale data refers to the continuous growth of data that
consisted of terabytes or petabytes of information [4]. For instance, the data pro-
duced by existing social networking sites are counted in terabytes per day [5]. High
velocity refers to the speed of data flow from different data sources [4]. For
example, if data is constantly flowing in from a sensor to a database storage, the
amount of data flow is large and fast at the same time [5]. High variety data does not
mainly consist of traditional data, it also contains structured, semi-structured,
unstructured or raw data. These data come from miscellaneous sites such as web
pages, e-mails, sensor devices, social media sites and others, for example Facebook,
Twitter, Outlook and Instagram in our modern society [5].

Two other additional elements are required to be taken into consideration when
it comes to large scale data, variability and complexity. Variability takes the

© Springer Nature Switzerland AG 2019 1
C. Y. Cho et al., Large Scale Data Analytics,

Studies in Computational Intelligence 806,

https://doi.org/10.1007/978-3-030-03892-2_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-03892-2_1&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-03892-2_1&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-03892-2_1&domain=pdf
https://doi.org/10.1007/978-3-030-03892-2_1

2 1 Introduction

inconsistency of data flow into consideration as data loads are getting harder to
manage [5]. Due to increasing usage of social media, for instance, Facebook
generates over 40 petabytes of data daily, there are increasingly high peaks in data
loads to databases [6]. As for complexity, data from various sources are very
difficult to be related, matched, cleaned and transformed across systems. It is very
important that the data is associated with its relevant relationships, hierarchies and
data linkages otherwise they will not be sorted accordingly [5].

Large scale data has been growing ever since and it is difficult to contain such
vast information. To make use of large scale data, it is required to have a proper
methodology to retrieve and analyse these data. In this chapter, we are going to
discuss about the research background, problem statements and the objectives of
this research.

1.2 Research Background

Faced with the enormous amount of data, the traditional data analytic methodolo-
gies are no longer sufficient [7]. In this modern technological phase, data can be
processed via the statistical algorithms method through dumping data into the
largest high-performance computing clusters to obtain results [7]. The processed
data is then stored in different data sources and they come in useful in scientific
applications and business usage such as biosciences, market sales and different
fields [8].

Term analytics is defined as a method of data transformation for better decision
making whereas large scale data analytics is defined as a process that extracts large
amounts of information from complex datasets consisting of structured, semi
structured, unstructured and raw data [8]. The usage of large scale data analytics can
be applicable to various fields, such as improving marketing strategies by analysing
real consumer behaviour instead of predicting the needs of their customer and
making gut-based decisions [9]. Information extracted from data sources through
data analytics can perform and improve strategic decisions of business leaders by
just adding a feature to study telemetry and the usage of user data on multiple
platforms be it on mobile applications, websites or desktop applications [10].
Retrieved data can be used for recommendation engines, for example, ‘think
Netflix’ and YouTube video suggestions. Large scale analytics uses intensive data
mining algorithms to produce accurate results and high performance processors are
required for the process [8]. Since large scale data analytics applications requires
huge amount of computational power and data storage, infrastructures offered by
cloud computing can be used as a potent platform [8].

Ontology has been used for large scale analytics to utilize shared vocabulary for
data mapping. The word ontology originates from a philosophical term which refers
to ‘the object of existence’ and from the perspective of the computer science com-
munity, it is known as ‘specification of conceptualization’ for information sharing in
artificial intelligence [11]. There is a conceptual framework which is presented using

1.2 Research Background 3

ontologies to show the significance of structured image through common vocabulary
in a provided biological or medical domain. This information can be used by
automated software agents and users in the domain [11]. The concepts, its rela-
tionships, the definitions of its relationships and the prospect of ontology rules and
axiom definitions are included by the shared vocabulary to define the mechanism that
is used to control the substances which are introduced into the ontology and the
application of the substance based on logical inference [12].

For multiple fields, there are a lot of organizations that tend to maintain their data
in a proprietary database. When the data in databases are available for other people
to reference, the obtained data tends to be in different schemas and structures.
Moreover, it is difficult to translate and integrate biomedical data as it is constantly
updated and covers enormous amounts of data in the field of genomic information
that contains data from genome sequencing and gene expression sequencing.
Hence, the greatest challenge in this research is to ensure that any data search or
querying would comprehensively cover all available databases without the need for
data integration and data translation.

1.3 Problem Statement

Existing query methodologies focuses more on data integration. These method-
ologies can be used if the size of the targeted data sources is not large and the
unified database is continually updated. For biomedical data integration, it involves
genomics and proteomics data with relation to data semantics. Data semantics
consists of value or meaning of data and the difference of semantics in multiple
sources. Hence, the differences in concept identification, concept overloading and
data transformation issues are important and requires addressing for existing data
integration query methodologies [13]. There are two elements for concept identi-
fication: data identification when data from different sources are referring to the
very same object and information integration conflicts found in these different
sources [13]. The identification of an abstract concept identified in every single data
source needs to be performed first to address these issues. The information conflict
can be effortlessly solved after the shared concepts have been defined [13]. For
instance, two different values are defined in two different sources to represent one
attribute, which theoretically should be the same. The answer to a query, when
added to the reconciliation process used by genomics, may not be correct. These
accrued errors cause it to be one of the flaws with genomics as the possible dif-
ferences between the two sources makes reconciling the data difficult and it needs to
be stored in an integrated view [13]. This approach makes the seemly simple query
into a much more complicated endeavour than it first appears to be.

Furthermore, the usage of existing query methodology is not efficient and cost
effective. The existing methodology presented by researchers requires huge
amounts of computing resources and time to complete data translation, data map-
ping and query processing. However, with the proposed query framework, process

4 1 Introduction

of data querying and data management are easier compared to its predecessors. The
query framework built using Language Integrated Query needs to be easily
deployable on a cloud computing environment while ensuring the performance in
handling and querying large scale data sources can be done smoothly.

1.4 Objective

The objective of this MPhil is to design a framework using Language Integrated
Query to manage large scale data sources and implement it on a Cloud Computing
environment, Microsoft Azure. This designed large scale data analytics framework
can overcome the problems of other existing frameworks by being able to manage
different type of large scale data sources without having structure conflict issues.
The result of having the framework should be:

1. Easier to manage large scale data sources: Managing large scale data sources is
no longer time consuming as the framework built using Language Integrated
Query can manage large data sources all together instead of perusing data from
multiple existing frameworks querying different types of data sources.

2. Easier access to the framework using web applications: A web application
deployed on the Cloud Computing environment, Microsoft Azure can easily
access the implemented framework to query different large scale data sources.

3. Higher processing power to operate the framework: Implementing the frame-
work on a Cloud Computing environment, Microsoft Azure allows the frame-
work to fully utilize the available scalable resources of Microsoft Azure to
process tasks efficiently.

1.5 Outline

Six main chapters will be discussed in Table 1.1.

Table 1.1 Outline

Chapter 1 This chapter is mainly project introduction which includes project overview,
research background, problem statement and objective

Chapter 2 This chapter focuses on project background and literature reviews related to
project

Chapter 3 This chapter introduces the proposed methodology applied for this project

Chapter 4 This chapter introduces the proposed query framework in detail

Chapter 5 This chapter shows the web portal for proposed framework and the results

Chapter 6 This chapter is the conclusion of the project about giving an idea of overall
review, limitations and discussion on future works to be researched

Chapter 2)
Background ot

2.1 Literature Reviews

2.1.1 Process of Life Science Discovery

Reductionist molecular biology is a hypothesis-based approach used by scientists in
the second half of the 20th century to determine and characterize molecules, cells
and major structures of living systems. Biologists identified that, as a single
community, they are required to continue using reductionist strategies to further
their cause in elucidating the whole structure of components and every single one of
their functions. They are required to use the system-level type of approach to
comprehend molecules and cells, the functions of organs, tissues and populations as
well [14]. Other than using information on parts of proteins, genes, and the various
other macromolecular entities, systems analysis demands the information on the
relationships between molecular parts and how these parts function together [14].
This approach is causing scientists to gradually abandon reductionist approaches
while adapting synthetic approaches to identify characteristics and integrate bio-
logical data that can be used for quantitative and detailed qualitative predictions in
biology systems. Information integration from data sources are heavily depending
on a synthetic or integrated view of biology [14].

A hefty amount of research has been done in evolutionary biology since two
decades ago. It has highly depended on sequence evaluations at protein levels and
of genes. In future work, the approach will grow to be more dependent on tracking
DNA sequences and evolution of genomes [14].

Essentially, research discovery enables researchers to obtain complex informa-
tion from biology and experimental observations of diversity and heterogeneity
[14]. Implementation of solid information infrastructures are essential to biology
and required in computing activities and databases. An example of how biological
research has gradually grown more dependent on integration of computational
activities and experimental procedures are shown in Fig. 2.1.

© Springer Nature Switzerland AG 2019 5
C. Y. Cho et al., Large Scale Data Analytics,

Studies in Computational Intelligence 806,

https://doi.org/10.1007/978-3-030-03892-2_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-03892-2_2&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-03892-2_2&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-03892-2_2&domain=pdf
https://doi.org/10.1007/978-3-030-03892-2_2

6 2 Background

Databases Databases Databases

B [|5 [| B [

Proteomics

Genomics Gene

Sequence Expression £ Prolein Regulatory Network
e . xpression ;
Gene Finding Profiles 4 Structures Metabolic Pathway
Genome- Microarray Funclions Prolein Pathway
Comparisons Experimenls

}: i Inleractions i Cellular Process

Computational Computational Computational
Analysis Analysis Analysis
Tools Tools Tools

Fig. 2.1 Process of life science discovery

Relations between the area of gene expression profiles, systems biology, pro-
teomics, and genomics are highly dependent on the integration of experimental
procedures along with a searchable database, computational algorithm applications
and analysis tools [14]. Data from computational analysis and database searches are
essential to the whole discovery procedure. Since the selected systems are complex
to study, the derived data from simulations and derived computational models
obtained from databases are combined to generate experimental data for better
interpretations. Studies on protein pathways, cellular and biochemical processes,
simulation and modelling of protein-protein interactions, genetic regulatory net-
works, normal and diseased physiologies are currently in their infancy state, hence,
some changes are needed [14]. Quantitative details are missing in the process and
experimental observations are needed to fill in the missing pieces. The boundaries
between these experimental datasets and computationally generated data are not
defined due to close interaction, therefore, multidisciplinary groups are required to
integrate these approaches in accelerating progress. With the continuing advances
made using experimental methods, information infrastructure can compute the
understanding of biology with ease [14].

2.1.2 The Biological Data Nature

As high-throughput technologies are introduced to the biological research field and
advanced genome projects, the amount of obtainable data is highly increased and
contributed to the large data volume growth as stated by Sidhu et al. [15]. However,
data volume is not the focus point in life science. Diversity and variability of data
are much more important compared to data volume.

According to Sidhu et al. [15], the structure of a biological dataset is highly
complex, and it is organized in a free and flexible hierarchy that reflects the
understanding of the complicated living systems involved. These living systems
contain information on genes and proteins, regulatory network and biochemical
pathways, protein-protein interaction, cells and tissues, ecosystems on earth and

2.1 Literature Reviews 7

organisms and populations. This raises a series of challenges in modelling, infor-
matics and simulations. There are varieties of biological data due to the complex
biological systems ranging from protein and nucleic acid sequences, different levels
of biological images resolutions, literature publications and laboratory records, to
dozens of technological experimental outputs such as light and electronic micro-
scopy, microarray chips, mass spectrometry as well as results from Nuclear
Magnetic Resonance (NMR) [15].

The differences of different types of individual and species varies immensely, as
well as the nature of biological data. For instance, the function and structure of
organs are different depending on the age and gender, normal or unhealthy state,
and the type of species [15]. Biological research is still undergoing an expansion
where different fields in biology are still in their growing stages. Data contributed
by these systems are still incomplete and inconsistent. This is a challenging issue in
the process of modelling biological objects.

2.1.3 Constant Evolution of a Domain

Lacroix [16] mentioned as domains are constantly changing, the Biological
Information Systems must be constructed in a way where handling data is possible
while managing the technology and legacy data. Existing data management
methodologies are unable to address the constant changes in these domains. There
are two major problems that need to be addressed in scientific data management
which are changes in data identification and data representation [16].

2.1.3.1 Traditional Database Management

There are three varieties widely used in traditional data management systems. These
varieties are relational, object-relational, and object-oriented. According to Lacroix
[16], data in relational database systems are represented in a form of relations table
with data representation through classes relying on a basic relational representation
provided by object-relation systems. The data representation is user-friendly as data
are organized through classes as well for object-oriented databases. Traditional
database systems are made to support their own data transactions, however, there is
a limitation in data changes that can be supported by the data organization of the
database. For example, the changes are limited to renaming, adding or removing
attributes and relations, and other particulars. Complex schema transactions are not
supported by traditional database systems as the initial designs did not take them
into account. To define a new schema, a new database will need to be constructed.
This will bring changes in the data organization of the database. From a biological
data source standpoint, the said process is too troublesome and unacceptable when
changes have to be frequently made [16].

8 2 Background

From another aspect, traditional database systems depend heavily on pre-defined
identities. The set of attributes are primary keys that identifies objects and places
them in a relational database. As biological data source attributes are ever changing,
the existing concept is not efficient due to the fact that the primary keys do not
change over time [16]. There is no biological data management system designed to
keep up with the frequent changes in identification, such as tracking the frequent
changes of identity in objects.

2.1.3.2 The Fusion of Scientific Data

Data fusion defines an implementation of data that are obtained from different types
of sources. Scientific data are obtained from different instruments performing mass
spectrometry, microarrays and other specific procedures [16]. These instruments
rely on proper calibration parameters setup for standardized data collection. Data
collected from similar tasks performed on these instruments can be implemented
into the same dataset for analysis.

Using a traditional database approach, complete dataset measurements and
parameters are required for complex queries for the data analysis process [16]. If
any information is missing or incomplete, the data will be ignored and left
unprocessed, which is unacceptable to life data scientists.

2.1.3.3 Differences of Structured and Semi-structured Data

The integration of datasets that are alike but disparate in the biological domain is
not supported by existing traditional database methodologies. The solution for this
problem is to adhere to the structure offered by semi-structured methods [16].
A feature where data organization enables the changes of new attributes and
missing attributes are introduced in this semi-structured method. Semi-structured
data is usually shown as either rooted, edge-labelled or directed graph. XML is one
of the examples of semi-structured data. XML has become the standard for storing,
describing and interchanging data between many heterogeneous biological data-
bases [16]. The facilities for XML content definition are provided by the combi-
nation of multiple XML schemas [16]. Flexibility and platform support that are
ideal for capturing and representing the complicated data types of biological data
can be provided by XML.

2.1.4 Data Integration Challenges

Data Integration was never easy to begin with. Researchers are struggling to
improve data integration processes to ensure that data translation can be done in a
fast and efficient manner. Kadadi et al. [17] had conducted a survey on the

2.1 Literature Reviews 9

challenges of data integration and interoperability in large scale data and summa-
rized these challenges into 7 parts: accommodation for scope of data, data incon-
sistency, query optimization, inadequate resources, scalability, implementing
support system and Extract Load Transform (ETL) processes in big data. The
challenge to accommodate the scope of large datasets and the addition of new
domains in any organization can be overcome by integrating high performance
computing (HPC) environments and high-performance data storage, for example,
hybrid storage devices with the combined functionality of a standard hard disk drive
(HDD) and solid state drive (SSD) to reduce data latency and to provide fast data
access. However, this method leads to the need to upgrade or purchase new
equipment.

In a survey conducted by Kadadi et al. [17], they clarified that data from different
sources leads to data inconsistency, thus high computing resources are needed to
process unstructured data from large data sources. Therefore, query operations are
easier to perform on structured data to analyse and obtain data for various uses,
such as business decisions. However, in large datasets, there is normally a high
volume of unstructured data. By referring to the survey conducted, query opti-
mization may affect the attributes when data integration takes place at any level or
during data mapping to existing or new schema [17].

Furthermore, Kadadi et al. [17] surveyed where problems arise with inadequate
resources in data integration implementation; these problems include insufficient
financial resources and insufficient skilled personnel in data integration. They also
mentioned high level skilled personnel in big data are hard to find and these skilled
personnel requires a high level of experience at dealing with data integration
modules. Furthermore, the process of obtaining new licenses for tools and tech-
nologies from vendors required for data integration implementation is tedious.

Kadadi et al. [17] identified that scalability issues occurred in scenarios where
new data are extracted and integrated from different sources along with legacy
systems data. Attempting this heterogeneous integration may affect the performance
of the system due to the need to undergo updates and modifications for the system
to adapt to newer technologies. However, if legacy systems meet the requirements
and are compatible with newer technologies, the process is easier as less updates
and modifications are necessary in the ensuing integration process.

Support systems need to be implemented by organizations to handle updates and
report errors in every step of the data integration process. In the survey conducted
by Kadadi et al. [17], they discovered that implementing support systems will
require a training module to train professionals on error report handling, and this
will require a huge sum of investment for organizations. However, through the
implementation of support systems, organizations can determine the weaknesses
existing in their system architecture.

Extract Load Transform (ELT) is an example of data integration. ELT processes
every piece of data that goes through it and outputs these data as a huge dataset
entity after the integration process. The identification of the ELT processes takes
place after the data integration process to determine whether it would affect func-
tionality of database storage due to storing huge data chunks [17]. To improve load

10 2 Background

processes, key constraints are disabled during the load processing part and
re-enabled after the process is done, a step required to be done manually as sug-
gested by researchers [17].

2.1.5 Semantic Integration Challenges

In semantic integration, concepts of interest are defined as a common meta-model,
and the properties of data sources are portrayed as common concepts [18]. The
system manages data sources while users interact with data mapping. Despite the
significance and usefulness of semantic integration, it still has flaws that are difficult
to solve. Doan and Halevy [19] had conducted a survey on challenges of semantic
integration and these challenges are hard to address due to several fundamental
reasons: Involved elements of semantics can only relate to few information sources,
the data creators, related schema, documentation and the data itself. Semantic
information is difficult to extract, especially from the data creators and documen-
tation. Doan and Halevy [19] stated in the survey that data creators of older
databases are likely retired, have moved or have forgotten about their created data.
Moreover, any documentation is likely to be untidy, incorrect or outdated. This is a
huge problem as the process of matching schema elements is normally done based
on the clues between schema and data, for example, the name of the elements,
structures, values, types and integrity constraints. Doan and Halevy [19] clarified
that these clues are not always reliable as elements might have the same name but
can be two different entities, and they are often incomplete. For example, an ele-
ment with the name contact-agent implies that it is related to the agent but does not
provide any substantial information to justify the meaning of the relationship; it
could be the agent name or phone number. In the scenario brought up in the survey
conducted by Doan and Halevy [19], to match an element s from schema S with
element t from schema T, all the other elements in schema T needs to be examined
to ensure element t can be represented with s. To further complicate matters, the
overall matching process is dependent on the application used. Doan and Halevy
[19] suggested users oversee the matching process to avoid any mismatches but
user opinion is subjective and this leads to the need of assembling a committee to
determine whether the mapping process is correct.

Due to these challenges, semantic matching needed to be done manually and has
been long known to be error-prone. For example, 0069n a case where GTE
telecommunications attempted to integrate 40 databases with 27,000 elements, the
planners for this project estimated that it will take 12 person-years to find docu-
mentation and element matches without the original developers of the databases
[19].

2.1 Literature Reviews 11

2.1.6 Biomedical Ontologies

The existing methodologies do not discuss the complex issues of biological data.
Recent efforts made on ontologies intended to provide a way to solve these complex
problems. According to Gruber [20], the term ontology originates from a philo-
sophical term referring to ‘the object of existence’ and from the computer science
community’s perspective, it is known as ‘specification of conceptualization’ for
sharing information in artificial intelligence. A conceptual framework is delivered
by ontologies for a significant structured image through common vocabulary pro-
vided by biological or medical domains [21]. These can be used by either auto-
mated software agents or humans in the domain. The concepts, relationships,
definition of relationships and the prospect of ontology rules and axiom definitions
are included by shared vocabulary to define the mechanism used to control the
substances which are introduced into the ontology and applicable on logical
inference [21]. Ontologies are slowly emerging as a common language in biome-
dicine for higher effective communication needed across multiple sources involving
information and biological data.

2.1.6.1 Biomedical Ontologies Open Issues

Researchers tends to select different types of organisms depending on their research
work in different fields of biological systems as they progress on their research. For
instance, to study human heart disease, the rat is chosen as it is a good model to
study. Meanwhile, to study cellular differentiation, the fly is chosen for the task.
Each of the model systems consists of paid database overseers collecting and
storing biological data for the specific organism [21]. A list of keywords is gen-
erated by scientific text mining that are used as the terms for gene ontology.
Different terms might be used by different database projects referring to the same
theory or concept and sometimes the same term might be referring to a completely
different concept. However, these terms might not relate to each other formally in
any possible way [21]. To tackle this problem, organized and precise vocabularies
are provided by Gene Ontology (GO) and can be shared between biological data-
base to define the gene products. Whether it is from a different or the same database,
this enables the querying process of gene products to be performed more easily
through information sharing of biological characteristics.

The application of GO links up ontology nodes and proteins, especially for
protein annotation over gene ontology. The GO Consortium developed a software
platform named GO Engine through the combination of harsh sequences of
homology comparisons with the analysis of text information to annotate proteins
efficiently [21]. There are new genes forming during evolution created through
mutation, recombination with ancestral genes and duplication. Whenever one of the
species evolves, high levels of homology will be retained in most of the orthologs.

12 2 Background

In biomedical literature, individual gene and protein associated text information
is buried deeply among the other biomedical literature. There are few papers
published recently describing the growth of numerous methods to extract text
information automatically. However, direct implementation of these methods in GO
annotation are insignificant [21] but with GO Engine, it can gather homology
information, analyse text information and unique procedures of protein-clustering
to construct the finest annotations possible.

In recent events, Protein Data Bank (PDB) has also released a few versions of
PDB Exchange Dictionary and its archival files in the format of XML, namely
PDBML. Both XML Representations and PDB Exchange uses similar logical data
organization but disadvantages of being able to maintain a rational communication
with PDB Exchange representation is PDBML lacking categorized structure
properties in XML data. Ontology induction tool, a directed acyclic graph
(DAG) was introduced to build protein ontology including MEDLINE abstracts and
UNIPROT protein names. It represents the relationship between protein literatures
and knowledge on protein synthesis process. Nevertheless, the process is not for-
malized, thus, it can’t be recognized as a protein ontology [21].

At the completion of the Human Genome Project (HGP) in April 2003,
Genomes to Life Initiative (GTL) was announced [21]. Ongoing management and
the coordination of GTL are guided from the experience from HGP states the
objective, “To correlate information about multiprotein machines with data in major
protein databases to better understand sequence, structure and function of protein
machines”. The objective can be achieved up to certain extent by constructing the
Generic Protein Ontology based on the Generic Protein Ontology vocabulary for
proteomics and Specialized Domain Ontologies for every main protein family [21].

2.1.7 Creation of Ontology Methodologies

A new °‘skeletal model’ was presented by Uschold and King [22] as a design and
evaluation for ontologies. There are several stages in the skeletal model that are
essential for any ontology engineering related methodology. There are several
specific principles designed by Uschold and Gruninger [23] to be uphold in each
phase, which are: coherence (consistency), extensibility, clarity, minimal ontolog-
ical commitment, and minimal encoding bias [20]. A semi-informal ontology
named The Enterprise Ontology has been created by Uschold et al. [24] by fol-
lowing the design principles mentioned above for ontology capture phase.

Based off the experiences of creating the TOVE (TOronto Virtual Enterprise)
ontology, Gruninger and Fox [25] developed a new methodology for both design
and evaluation for ontologies. However, this methodology was designed base on a
very rigid method, hence, this methodology is not suitable for any less formal
ontologies. Furthermore, this methodology is not sufficient for a first-order logic
based ontology language as a first-order logic language is used for this method-
ology for the formulation of axioms, definitions and its justification.

2.1 Literature Reviews 13

A methodology presented by Staab et al. [26] was created based on the
On-To-Knowledge (OTK), which is a primary key point in constructing large
Knowledge Management systems. In the methodology presented, the differences of
both knowledge process and knowledge meta-process is made clearly. The
knowledge process is responsible for Knowledge Management system which deals
with knowledge acquisition and retrieval while knowledge meta-process deals with
managing the knowledges in the system. In ontology terms, the first part of the
methodology deals with the usage of ontology while the latter deals with the initial
set up, construction and maintenance of the ontologies.

The skeletal model by Uschold and King is not a methodology, but rather a
standard to be followed by ontology engineering related methodologies.
Meanwhile, the methodology presented by Gruninger and Fox is only suitable for
formal logic languages and it was specifically created using KIF language [27, 28].
This methodology was tailored for formal authentication through the usage of
formal questions. However, the approach of METHONTOLOGY is much more
generic and a comprehensive methodology compared to the others.
METHONTOLOGY offers a generic methodology for all types of ontology while
obeying the standard of IEEE software development process. The
On-To-Knowledge methodology can give a better support for ontology developer
as it is built specifically for the development of both domain and application related
ontologies, which is the Knowledge Management applications for ontologies.

2.1.7.1 The Creation of Protein Ontology with On-To-Knowledge
Methodology

The On-To-Knowledge methodology has two main approaches for Knowledge
Management during the creation of Protein Ontology:

1. Data Focus: Mainly pragmatic, the data focus approach has been chosen by
organizations that maintain protein data in Knowledge Management; to review
the current protein databases and identifies the knowledge needs. Meta-data is
defined as “Data that describes the structure of data” in data focus.

2. Knowledge Item Focus: For the knowledge item focus, the established knowl-
edge of Protein Ontology classifies knowledge needs through the examination of
knowledge items. The meta-data for knowledge item focus is defined as “Data
describing issues related to the content of data”.

Once the implementation of knowledge management system for Protein
Ontology has been done, the knowledge processes cycle through these few steps,
which are also illustrated in Fig. 2.2 [26]:

1. The process of creating and importing Protein Data from different data sources.
2. Gathering knowledge related to the concepts of protein ontology, including
protein data annotation and the references of protein ontology concepts.

14 2 Background

Documents
Metadata

Applications
Analyze
Summarize

Import

N

Capture

Refrieve/access

Extract

Query Annotate

Search tools
Derive views
Infer knowledge

Fig. 2.2 Process of On-To-Knowledge

3. The process of retrieving and accessing knowledge from the concepts of protein
ontology using a query.
4. User goals are achieved through the usage of extracted knowledge.

There are several phases in the process of protein ontology development using
On-To-Knowledge methodology as shown in the Fig. 2.3 [29]:

1. Phase one of the process is the feasibility study. This phase is implemented from
the CommonKADS methodology [30]. CommonKADS is a framework used to
develop a knowledge-based system (KBS) and it supports the features of KBS
development project, for example: acquisition of knowledge, problem identifi-
cation, project management, knowledge modelling and analysis, system inte-
gration issues analysis, capturing user requirements, and knowledge system
design. The outcome, that has been determined after conducting the feasibility
study, was that On-To-Knowledge should be used to construct Protein Ontology
for maximum support on its development, maintenance and evaluation.

2. Phase two, which is the actual first phase in development, outputs the ontology
requirement specification. The possibilities of having existing protein data
sources integrated into the ontology are analyzed in this stage. In addition, there
are a number of queries generated to capture the protein ontology requirements
for existing protein data and knowledge frameworks.

2.1 Literature Reviews 15

Surfficier
ritiiremend.

-
230 <

Human
Issues,
i on, Knowledge
Refi
’::::',',"y Kickoff mant Management

| I
I I
1 I

I

I 1
Identify .. 15, Capture I7. Extract 19. Technology-

1
1
112, Apply
1. Problems & ‘I requirements : knowledge : focussed : onlology
opportunities | specificaion g Formalize | evaluation | 13, Manage
2. Focus of KM 16. Analyse I 110, Usar- I evolution and
appicaion | knowledge ! I focussed | maintenance
L] L] 1]
3. (OTK-) Tools | SOUrces i g Wvakaton
4. People ! ' 111. Ontology-
¥ 1 | I focussed |
J' : ' evalation !
)) . B '::L\ b
p— (}mz?‘l_'ogy l})evelogmenf. Y,

Fig. 2.3 Ontology development with On-To-Knowledge

3. In phase three, which is the refinement phase, proteomics domain-oriented
protein ontology is developed based on the specification received from phase
two. There are several sub phases for this phase where:

a. Baseline taxonomy was gathered for Protein Ontology.

b. Seed ontology was created according to the baseline taxonomy which has the
related protein data concepts and descriptions for the protein data
relationships.

c. Target protein ontology was then generated through the usage of seed
ontology and expressed in the form of a formal language, Web Ontology
Language [31].

4. Phase four, the evaluation phase is the final phase of the ontology development
stage. During this phase, the specification document and queries are used to
verify the protein ontology. The usage of protein ontology in proteomics domain
is evaluated in this phase as well. Feedback gathered from different research
teams that are using the protein ontology during the evaluation phase is pro-
cessed in the refinement phase. Through this method, the process will go
through several cycles until the protein ontology has been verified to be
acceptable for usage.

16 2 Background

5. Phase five, the maintenance phase is engaged after the protein ontology has been
deployed. In this phase, all the changes that occur in the world will reflect onto
the protein ontology.

2.1.8 Ontology-Based Approach for Semantic Integration

An approach of semantic information integration done by Ngamnij and Somyjit [32]
for electronic patient records (EPR) using an ontology and web service model by
using ontology for mapping purposes, data extraction, data translation and data
integration [32]. The concept of their system is to integrate data from various
healthcare institutes into a single database to ease the data retrieval process. In their
framework [32], Semantic Bridge Ontology Mapping was used to map web services
descriptions and databases of healthcare institutes in WSDL format. The data was
then used to construct Ontology-based Patient Record metadata (OPRM). OPRM
data needs to be translated and stored via a Domain Ontology Extraction and
Semantic Patient Record Integration process [32]. Domain Ontology Extraction
converts information of patient from each healthcare system and convert these
records to OWL (Web Ontology Language) format using Jena API [33], a Java
open source Semantic Web framework. Semantic Patient Record Integration then
stores the data into a single database [32] that maps the description of multiple EPR.
An EPR Semantic Search allows users to retrieve information from the stored
OPRM, for example, the type of medical treatment a patient is receiving. This is the
approach made by Ngamnij and Somjit [32] as an alternative way to tackle the
multiple data sources querying issue.

Liu et al. [34] introduced a semantic data integration approach with domain
ontology, OPSDS. OPSDS is used widely in multiple platforms of China Petroleum
Corporation (CNPC) and it is introduced to integrate oil production engineering
data. This methodology introduced by Liu et al. [34] focuses on data integration
using domain-oriented method, enabling users to access data and shared service
through the usage of transforming query, mapping of ontology and data cleaning.
The approach of Liu et al. [34] methodology is to build a system where users and
applications can access data at ease with the assists of a well-equipped semantic
view for underlying data. Figure 2.4 shows the OPSDS architecture.

The bottom layer of the architecture as shown in Fig. 2.4 are different databases
containing different data sources, for example, SQL Server, Oracle, and other
databases. The middle layer of the architecture consists of local ontologies mined
from the various data sources from the bottom layer. Therefore, the group of local
ontologies combined and formed a unified global ontology. With this architecture,
Liu et al. [34] mentions where users and applications can retrieve data easily by
querying the global ontology.

2.1 Literature Reviews 17

User User User

_(Upper Applications

Lifting Working
Method Condition .
Selection Diagnosis

Application
| AP I Query API
Global Ontology

L~ |
_’ /

ol d}j\ C{ o /Q\O
= [~ Mapping é’} =

@ & @ &

Equipment DB Other DB

Optimal

Design

7

Fig. 2.4 OPSDS architecture

The focus of the architecture is the global ontology. Liu et al. [34] way of
constructing a global ontology is through adapting a hybrid strategy. Figure 2.5
shows the process of global ontology.

(E A g N O N
Data | _'\\ (Local] ""-\) Ontology [';.."‘)' Ontology
Filtration ':// /-.‘ Ontologies | V Evolution V Merging
’ /
\'\ /'I \\‘ /./. I.\ ./J I..‘\
: . S - . —
/\) . N
N| I
IV / . \‘//
/ . -
\/ v .// \ P \
f / Semantic
=
Synonym Table Global Ontology \—— Constraints
N 7

N o N 4

Fig. 2.5 Process of global ontology

18 2 Background

The first phase of the global ontology process is filtering data from different data
sources, such as entities of the data, relationships and attributes. The second phase of
the process is to generate local ontologies through retrieving schemas from databases
and items from the synonym table. The global ontology process is completed
through ontology evolution, mapping and applying semantic constraints [34].

In summary, the existing methodologies are focusing on integrating multiple
data sources into a single data source and applying ontology-based semantic inte-
gration as a solution to the problem of data query for multiple data sources. Existing
methodologies can be used for integrating small amount of data, however, not for
petabytes of data. Taking RCSB PDB as an example, RCSB RPD databases are
updated from time to time and it is hard and expensive for these methodologies to
live update their database while mapping data at the same time. Multiple data
integration challenges are not properly addressed even with semantic integration
and ontology-based semantic integration approaches.

In this research, the focus is on querying data sources with different data
structures without the need of data integration and data translation. Therefore, the
implementation of a smart query system using Language Integrated Query is
required to reach the research goal.

Chapter 3 M)
Large Scale Data Analytics ki

The nature of protein data is complicated and constantly updated by researchers
around the globe. To query from multiple data sources, a query framework written
and built using Python with the concept of Language Integrated Query is proposed
as the solution to overcome the limitations discussed in previous chapters. A cloud
computing platform is used for this research to host the query framework to enable
the framework to use the vast resources available to perform a query with minimal
latency while avoiding computing resource deficiency. In this chapter, Language
Integrated Query, cloud computing and algebraic operators are explained in detail.

3.1 Language Integrated Query

Traditional type of queries is expressed in simple string instead of having type
checking during compilation or IntelliSense support. To query databases, different
query languages need to be studied and understood to use each data source with
differing data structures, such as SQL databases, variable Web services, XML
documents and others [35].

Language integrated query bridges both worlds of data and object. It was first
introduced in Visual Studio 2008 and .NET Framework version 3.5 [35]. Language
integrated query can be written in Python, C# or Visual Basic in Visual Studio and
it is compatible with SQL Server databases, ADO.NET datasets and XML docu-
ments [35]. This method can be applied in new projects and existing projects.
Query writing is easier and better through the usage of keywords of the language
and by using familiar operations with typed collections of objects.

Parallel Language Integrated Query is an engine included in .NET framework
version 4 and it is used to execute queries in a parallel manner. This execution of
queries can be sped up efficiently through the usage of computing resources pro-
vided by the host computer and this feature relies heavily on the host computer
itself, in this case, the cloud computing platform. Another major component for

© Springer Nature Switzerland AG 2019 19
C. Y. Cho et al., Large Scale Data Analytics,

Studies in Computational Intelligence 806,

https://doi.org/10.1007/978-3-030-03892-2_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-03892-2_3&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-03892-2_3&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-03892-2_3&domain=pdf
https://doi.org/10.1007/978-3-030-03892-2_3

20 3 Large Scale Data Analytics

Language Integrated Query is the ability to query across relationships. This
approach enables users to query through accessing properties of a relationship and
to navigate from one object to another [36]. The access operations are transformed
into a complex join or corresponding sub queries in an alternative SQL [36].

For this research, Language Integrated Query written using Python is more con-
venient. Python is a popular high-level programming language widely used for Rapid
Application Development which has the functions of object-oriented and dynamic
semantics [37]. A vast standard library and interpreter of Python are obtainable in
binary or source code and available to all platforms for free. It is widely used for Rapid
Application Development, scripting or connecting existing modules together due to
python’s effectiveness in data structures, dynamic binding and typing. Through the
usage of python, program maintenance cost is lower as the language itself is simpler
and easier to learn compared to other languages. Its modules and package capabilities
widely support the idea of modular programming and reusing of code [37].
Programmers using Python are not required to compile their programs, an essential
process in all other major programming language currently available, making the
process of editing to debugging cycle more efficient [37].

3.2 Cloud Computing as a Platform

The framework is deployed on a cloud computing platform, Microsoft Azure, to
allow the framework to operate smoothly using its vast computing resources and to
benefit from the much lower operating cost compared to having on-site hardware.

Cloud computing can be defined as the use of hosted services through the
internet. The ‘Cloud’ moniker came from the flowchart or cloud-shaped diagram by
which the internet was generally represented [38]. Cloud computing has been uti-
lized by users over the world to gain advantages over current technologies. The
operational model changes the initial impression of needing to store applications in
physical hardware to the impression that it is unnecessary to store these applications
in physical hardware. Due to its flexibility, the computational resources can be
changed easily depending on the demand of users [38]. The available cloud services
are ready to be used without the need of great knowledge or skills to deploy these
services [39]. Services are ready to be deployed and can be done over the internet
helping to cut the cost required to hire professional personnel for the task and this
helps with the financial situation of any company.

3.3 Algebraic Operators for Biomedical Ontologies 21
3.3 Algebraic Operators for Biomedical Ontologies

3.3.1 Select Operator

The projection over sequence is performed by the Select Operator. The allocation
and return of the enumerable object done by the Select Operator captures the
arguments passed to the operator. An argument null exception is returned if any
argument is null [40].

The Select operator allows the user to highlight and select the portions of an
ontology related to the user’s query. The Select Operator selects the instances
meeting the condition given through the ontology structure and the selected concept
given. These instances, which met the given condition, would belong to a specific
sub tree or are the subset of the instances that belong to one or more sub trees. The
Select Operator selects only those edges in the ontology that connect nodes in each
set. The Select Operator, OS is defined as:

Definition 1

OS = (NS, ES,RS) where
NS = Nodes(condition = true)
ES = Edges(VN € NS)

N, E, R here are represented as set of nodes, edges and the relationships of the
ontology graph while NS, ES, RS are presenting the nodes, edges and relationships
of the set selection. The join condition operator won’t be discussed here as the
Select Operator can be used in the following forms:

e Simple-Condition: Where the select condition is specified using the simple
content types, like Generic Concepts, in the ontology and the select operator is
value-based;

e Complex-Condition; Where the select condition is specified using complex
content types, like Derived Concepts, in the ontology and the select operator is
structure-based; and,

e Pattern-Condition: Where the select condition is specified using a mix of simple
and/or complex content types in the hierarchy with additional constraints such
as ordering defined by using of Sequence Relationships in the ontology and
others, where the select operator is pattern-based.

Example 1

When the user requires every available information in Protein Ontology in respect
to the Protein Families, the details of every single example of the Family Concept is
displayed by using the Select Operator which is shown in Fig. 3.1.

22 3 Large Scale Data Analytics

e & o - B

¢ - -~ ~ o ~ -~
L Atoms J { AtomicBind) | Bind | Residues) { SiteGroup)
3 N S A W
A —a et —_— . a
Entry) (Stucture) (" Structural Domains) (_Functional Domains) (* Chemical Bonds) (Constraints)

Fig. 3.1 Usage of select operator in instances of family concept
3.3.2 Union Operator

The union set between two sequences is produced by the Union Operator. The
allocation and returns of the enumerable object which is done by the Union
Operator captures the arguments which are passed on to the operator. An argument
null exception is returned if any argument is null [40].

When Union returns the enumerated object, first and second sequences are
enumerated, in that particular order, and will yield onto each element which was not
previously yielded. Elements are compared by using the non-null comparer argu-
ment if possible. Otherwise, the equality comparer is utilized.

The union of two parts of the ontology, O1 = (N1, El, R1), and O2 = (N2, E2,
R2) with respect to the semantic relationships (SR) of the ontology is expressed as:

Definition 2

0I(1,2) = 01 Ugg02 = (NU, EU, RU), where,

NU = N1UN2UNI(1,2)

EU = El UE2UEI(1,2), and

RU = R1UR2URI(1,2), where,

OI(1,2) = O1Ngr02 = (NI(1,2),EI(1,2),RI(1,2)) is the intersection of two
ontologies.

Two parts of the ontology are combined by the union operation and only one
copy of the intersection concepts is retained. N, E, R here are represented as set of
nodes, edges and the relationships of the ontology graph while NU, EU, RU are
representing the nodes, edges and relationships of the set selection.

Example 2

When a person requires all the available information in Protein Ontology in respect
to the protein Structure and Protein Families, every single information which are
highlighted in Fig. 3.2 is then output. That is how the Union Operator is used
(Family U Structure).

3.3 Algebraic Operators for Biomedical Ontologies 23
::/-F-‘rotein Ontology :

B —

/

A\ i
Gamily/ i\/. Protein Complex \
el B R

- e o Y ¥
Q;‘:bteim:arnilyr \/Pm_teinSuperFin_iD Gamilyﬁm notatioD !/S_Wct \
- T - - -

Q:%mSequ;@ QnitCeD

Fig. 3.2 Usage of union operator

3.3.3 Intersection Operator

The intersection set between two sequences is produced by the Intersect Operator.
The allocation and returns of the enumerable object which is done by the Intersect
Operator captures the arguments which are passed on to the operator. An argument
null exception is returned if any argument is null [40].

When Intersect returns the enumerated object, the first sequence is enumerated,
all the distinct elements of the sequence are collected. The second sequence is
enumerated, marking all elements that occur in both sequences. The marked ele-
ments are yielded in the manner of how they were collected. Elements are compared
by using the non-null comparer argument if possible or using the equality comparer.

Intersection is a particularly significant and fascinating binary operation. There
are two parts, Ol = (N1, El, R1), and O2 = (N2, E2, R2) in the ontology whereas
an answer to the query submitted is provided by the composition of both ontologies.
N, E, R here are represented as set of nodes, edges and the set of Semantic
Relationship. The ontology semantic relationships in respect to the intersection of
two parts of the intersection operation is:

Definition 3

0I(1,2) = 01 N sx02 = (NI, EL, RI), where
NI = Nodes(SR(01, 02)),
EI = Edges(E1,NINN1) + Edges(E2, NINN2)

+ Edges(SR(01,02)), and

24 3 Large Scale Data Analytics

RI = Relationships(O1, NINN1) + Relationships(02, NINN2)
+SR(01,02) — Edges(SR(01, 02)).

SR is totally different compared to R since that it does not include sequences in
it. The nodes which are in the intersection ontology are the nodes which exists in
semantic relationship, which is represented by SR. The intersection ontology edges
among the nodes are either already existing in the ontology sources or has been
recognized as SR. The connections of the intersection ontology are the ones that
have still not been modeled as the edges. The connections which are existing in the
ontology sources only use the concepts that are happening in the intersection
ontology.

Example 3

When a query needs all the available information which are common between the
Protein Structure and the Protein Entry descriptions in Protein Ontology, the only
common thing in between both is the ChainsRef. As shown in Fig. 3.3 that is how
the Intersection Operator is used (Entry N Structure).

3.3.4 Except Operator

The differences of both two sequences is produced by the Except Operator. The
allocation and return of the enumerable objects which is done by the Except
Operator captures the arguments which are passed on to the operator. An argument
null exception is returned if any argument is null [40].

When Except returns the enumerated object, the first sequence is enumerated,
and all the distinct elements of that sequence are collected. The second sequence is
enumerated and the elements which resides in the first sequence is deleted. Then in
order, the remaining elements are finally yielded in the way they were collected.
Elements are compared by using the non-null comparer argument if it is possible.
Otherwise, the equality comparer is utilized.

The differences between O1 and O2, which are the two parts of the ontology are
presented as O1 — O2 which includes portions from the first part which are not the
common in the second part. The difference can also be represented as
Ol — (01N sg02). Nodes, edges and relationships that are not present in the
intersection, but exists in the first ontology.

Example 4

When a query needed all the available information on Protein Entry without the
Protein Structure and Protein Entry descriptions which resides in Protein Ontology,
every single information of Protein Entry that is not been highlighted in the pre-
vious Fig. 3.3 is displayed. As ChainsRef is the only common in between both
Protein Structure and Protein Entry, everything else excluding ChainsRef is output

3.3 Algebraic Operators for Biomedical Ontologies 25

—

G’rotem Ontolog /

P, |

(Protein Complex
‘/ Entry Structure
> \
QloleculD @omSequencD / nltCel>

ChainsRef

. i

esd;sReD
g
AtomsR e/

\/

/\‘

/\

Fig. 3.3 Usage of intersection operator

for the Protein Entry by using the Difference Operator (Entry—(Entry N
Structure)). The objective of having to compute the differences is to optimize the
Protein Ontology maintenance.

The instance of Protein Ontology storage is huge and there are a lot of user
constantly adding instances to it. The differences will expose the instances that have
not been keyed in properly or if there are any changes to the data sources which are
being integrated by Protein Ontology. The changes which are uncovered by the
differences are forwarded to the administrator.

Therefore, the Semantic Relationships do not need to be modified or changed. If
changes arise from the changes to the data source which was integrated by Protein
Ontology, then the semantic relation and the concepts need to be clarified for any
further changes needed to remove the difference.

Chapter 4)
Query Framework Skl

4.1 Functions for Querying RCSB Protein Data Bank
(PDB)

Protein Data Bank, PDB has a vast amount of resources related to protein 3D
models, complex assemblies, and nucleic acids that can be utilized by both students
and researchers for learning the characteristics of biomedicine. Therefore, a
framework is needed to effectively retrieve information from their database. The
functions that are utilized to enable users to query RCSB PDB is explained in this
chapter.

4.1.1 Make Query Function

Figure 4.1 shows the structure and python codes constructed using Visual Studio
for make query function.

The make_query() function initiates a search based on a list of search terms and
requirements and outputs as a compiled dictionary object which users can search
later on. There are several query types that can be used for the search, which are as
follows:

HoldingsQuery A normal search of any related PDB IDs metadata.

ExpTypeQuery A search based on experimental method, for example,
‘X-RAY’.

AdvancedKeywordQuery Any matches that appears in either the title or abstract.

StructureldQuery A normal search by provided structure ID.

ModifiedStructuresQuery Search based on the structures relevancy.
AdvancedAuthorQuery A search on entries based on the name of author.

MotifQuery A normal search for motif.
NoLigandQuery Search every PDB IDs that has no free ligands
© Springer Nature Switzerland AG 2019 27

C. Y. Cho et al., Large Scale Data Analytics,
Studies in Computational Intelligence 806,
https://doi.org/10.1007/978-3-030-03892-2_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-03892-2_4&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-03892-2_4&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-03892-2_4&domain=pdf
https://doi.org/10.1007/978-3-030-03892-2_4

28 4 Query Framework

def make_query(search_term, querytypes='AdvancedKeywordQuery'):

assert querytype in {"HoldingsQuery', "ExpTypeQuery’,
‘AdvancedKeywordQuery ', 'StructureldQuery’,
‘ModifiedStructuresQuery®, °AdvancedAuthorQuery', "MotifQuery’,
‘NoLigandQuery’

}

query_params = dict()
query_params[‘queryType’] = guerytype

if gquerytype=s='‘AdvancedKeywordQuery':
query_params[‘description’] = ‘Text Search for: '+ search_term
query_params[‘keywords'] = search_term

elif querytype=='NoLigandQuery':
query_params["haveLigands'] = "yes"'

elif querytype=="AdvancedAuthorQuery’
query_params[‘description’] = 'Author Name: '+ search_term
query_params['searchType'] = "All Authors®
query_params['audit_author.name’] = search_term
query_params['exactMatch'] = "false’

elif querytypes=='MotifQuery':
query_params[‘description’] = 'Motif Query For: '+ search_term
query_params[‘motif’'] = search_term

search for a specific structure
elif querytype in ['StructureldQuery’,‘ModifiedStructuresQuery’]:
query_params[‘structureldlist’] = search_term

elif querytype=='ExpTypeQuery"’:
query_params[‘experimentalMethod’] = search_te
query_params[‘description’] = "Experimental Method Search : Experimental Method='+ search_term
query_params[‘'mvStructure.expMethod.value’]= search_term

scan_params = dict()
scan_params['orgPdbQuery’] = query_params

return sca n_params

Fig. 4.1 Make query function

As an example, a search based on ‘actin network” will return a result of ‘1D7M’,
‘3W3D’, 4ATH’, ‘4AT7L, ‘4ATN’.

4.1.2 Do Search Function

Figure 4.2 shows the code and structure in python used for do search function.

The function do_search() converts the dictionary, dict() object into XML format
which then sends a request to obtain a matching list of IDs according to search
results from PDB. In this case, the results obtained from make_query() function are
converted to XML format and the XML format will prompt PDB for a list of
matching PDB IDs.

4.1 Functions for Querying RCSB Protein Data Bank (PDB) 29

def do_search(scan_params):

url = 'http://www.rcsb.org/pdb/rest/search’

queryText = xmltodict.unparse(scan_params, pretty=False)
queryText = queryText.encode()

req = urllib.request.Request(url, data=queryText)
f = urllib.request.urlopen(req)
result = f.read()

if not result:
warnings.warn('No results were obtained for this search')

idlist = str(result)
idlist =idlist.split(’\\n")
idlist[@] = idlist[e][-4:]
kk = idlist.pop(-1)

return idlist

Fig. 4.2 Do search function

4.1.3 Do Protsym Search Function

Figure 4.3 shows the code and structure of do protsym search function.

The function do_protsym_search() searches identical entries from user-specified
symmetry groups in Protein Data Bank, PDB. The total minimum and maximum
deviation allowed is measured in Angstroms, are adjusted to determine which
results will be categorized as an identical symmetry. For instance, when ‘C9’ has
been used as the point group, the results returned are shown as ‘1KZU’, ‘INKZ’,
2FKW’, ‘3B8M’, ‘3B8N’ respectively.

def do_protsym_search(point_group, min_rmsd=0.0, max_rmsd=7.0):

query_params = dict()
query_params['queryType'] = 'PointGroupQuery’
query_params['rMSDComparator’'] = 'between’

query_params['pointGroup’] = point_group
query_params['rMSDMin'] = min_rmsd
query_params['rMSDMax'] = max_rmsd

scan_params = dict()
scan_params['orgPdbQuery'] = query_params
idlist = do_search(scan_params)

return idlist

Fig. 4.3 Do protsym search function

30 4 Query Framework

Because of the staggering number of components expected on exascale com-
puting systems, hardware failures are expected to increase. Traditional error cor-
rection methods, such as the checkpoint-restart recovery mechanism, become too
expensive in terms of time and energy due to bulk synchronization and I/O with the
file systems at exascale. An exascale system that employs global recoveries could
conceivably take more time to ready itself than the mean time between failures.

4.1.4 Get All Function

Figure 4.4 shows the code used to construct get all function.
The function get_all() lists out all the currently available PDB IDs in the RCSB
Protein Data Bank.

4.2 Functions for Looking up Information Given PDB ID
4.2.1 Get Info Function

Figure 4.5 shows the code and structure of get info function.

The function get_info() retrieves all information related to the inserted PDB ID.
By combining the specific URL and PDB ID, information regarding specific protein
data can be retrieved.

Fig. 4.4 Get all function def get_all():

url = "http://www.rcsb.org/pdb/rest/getCurrent’

req = urllib.request.Request(url)
f = urllib.request.urlopen(req)
result = f.read()

assert result

kk = str(result)

p = re.compile('structureId=\"...."")

matches = p.findall(str(result))

out = list()

for item in matches:
out.append(item[-5:-1])

return out

4.2 Functions for Looking up Information Given PDB ID 31

def get_info(pdb_id, url_root="
url = url_root + pdb_id
req = urllib.request.Request(url)
f = urllib.request.urlopen(req)
result = f.read()
assert result
out = xmltodict.parse(result,process_namespaces=True)

return out

Fig. 4.5 Get info function

4.2.2 Get PDB File Function

Figure 4.6 shows the structure and codes in Visual Studio of get PDB file function.

For this function, get_pdb_file() allow users to retrieve the full PDB file through
inputting a desired PDB_ID. There are a few file types can be retrieved from PDB,
namely pdb, cif, xml and structfact. The default selection is set to pdb, however,
users can change the file type to their desired one. The compressed (gz) file is
retrieved from PDB as well in this process.

4.2.3 Get All Info Function

Figure 4.7 shows the python codes and structure of get all info function.

def get_pdb_file(pdb_id, filetype='pdb', compression=False):

fullurl = 'http://www.rcsb.org/pdb/download/downloadFile.do2fileFormat="
fullurl += filetype

if compression:

fullurl += "&compression=YES’
else:

fullurl += "&compression=NO’

fullurl += '&structureld=" + pdb_id

url = 'h s/ fwvew.rcsb.or fi "+pdb_id+"'.pdb’
req = urllib.request.Request(fullurl)

f = urllib.request.urlopen(req)

result = f.read()

result = result.decode('unicode_escape’)

return result

Fig. 4.6 Get PDB file function

32 4 Query Framework

def get_all_info(pdb_id):
out = to_dict(get_info(pdb_id))['molDescription’]['structureld’]
out = remove_at_sign(out)
return out

Fig. 4.7 Get all info function

The get_all_info() function serves as a wrapper function for get_info() to tidy up
results that had been retrieved.

4.2.4 Get Raw Blast Function

Figure 4.8 shows get raw blast codes and structure coded in Visual Studio.

The purpose of get_raw_blast() function is to search the full BLAST page for
inserted PDB ID. The BLAST page can be shown in either XML, TXT, or HTML
format depending on the preference of the user. The default setting is set to HTML.

4.2.5 Parse Blast Function

Figure 4.9 shows the code and structure written in Visual Studio for parse blast
function.

The parse_blast() function is used to clean up retriecved HTML BLAST selec-
tion. BeautifulSoup and re module are needed for this function to work. The
function processes all complicated results from the BLAST search function and
compile matches into a list. A raw text file is shown to display alignment of all
matches. HTML type of inputs are much more suited for this function compared to
the others.

def get_raw_blast(pdb_id, output_form="HTML', chain_id='A"):

url_root = 'http://www.rcsb.org/pdb/rest/getBlastPDB2?structureld="

url = url_root + pdb_id + '&chainld="+ chain_id +'&outputFormat=" + output
req = urllib.request.Request(url)

f = urllib.request.urlopen(req)

result = f.read()

result = result.decode(’'unicode_escape')

assert result

return result

Fig. 4.8 Get raw blast function

4.2 Functions for Looking up Information Given PDB ID 33

def parse_blast(blast_string):
soup = BeautifulSoup(str(blast_string), "html.parser")

all_blasts = list()
all_blast_ids = list()

pattern = "><fa»....:"
prog = re.compile(pattern)

for item in soup.find_all('pre’):
if len(item.find_all('a’))==1:
all_blasts.append(item)
blast_id = re.findall(pattern, str(item))[@][-5:-1]
all_blast_ids.append(blast_id)

out = (all_blast_ids, all_blasts)
return out

Fig. 4.9 Parse blast function

4.2.6 Get Blast Wrapper Function

Figure 4.10 shows the code for get blast wrapper function.

The function get_blast2() is an alternative way of searching BLAST with the
inserted PDB ID. This function serves as a wrapper function for get_raw_blast()
and parse_blast().

4.2.7 Describe PDB Function

Figure 4.11 shows the structure and codes of describe PDB function.

Function describe_pdb() retrieves requested description and metadata for the
input PDB ID. For example, details that are shown in Fig. 4.12 for a search includes
authors, deposition date, experimental method, keywords, nr atoms, release date,
resolution and further related details.

def get_blast2(pdb_id, chain_id="A", output_form='HTML'):

raw_results = get_raw_blast(pdb_id, chain_id=chain_id, output_form=output_form)
out = parse_blast(raw_results)

return out

Fig. 4.10 Get blast wrapper function

34 4 Query Framework

def describe_pdb(pdb_id}):

out = get_info(pdb_id, url_root = "http://www.rcsb.org/pdb/rest/describePDB?structureld=")
out = to_dict(out)

out = remove_at_sign(out['PDBdescription’][*PDB"])

return out

Fig. 4.11 Describe PDB function

citation_authors : Malashkevich, V.N., Bhosle, R., Toro, R., Hillerich, B., Gizzi, A.,
Garforth, S., Kar, A., Chan, M.K., Lafluer, J., Patel, H., Matikainen, B., Chamala, 5., Lim, 5., Celikgil, A.,
Villegas, G., Evans, B., Love, J., Fiser, A., Khafizov, K., Seidel, R., Bonanno, J.B., Almo, 5.C.
deposition_date : 2013-07-31

expMethod : X-RAY DIFFRACTION
keywords : TRANSFERASE
last_modification_date : 2013-08-14
nr_atoms : 0

nr_entities : 1

nr_residues : 390

release_date: 2013-08-14
resolution : 1.84

status : CURRENT
structureld : 4LZA
structure_authors : Malashkevich, V.N., Bhosle, R., Toro, R., Hillerich, B., Gizzi, A.,

Garforth, S., Kar, A,, Chan, M.K., Lafluer, J., Patel, H., Matikainen, B., Chamala, S., Lim, S., Celikgil, A.,
Villegas, G., Evans, B., Love, J., Fiser, A., Khafizov, K., Seidel, R., Bonanno, J.B., Almo, S.C.

title : Crystal structure of adenine phosphoribosyltransferase from
Thermoanaerobacter pseudethanolicus ATCC 33223, NYSGRC Target 029700.

Fig. 4.12 Sample output for describe PDB function

4.2.8 Get Entity Info Function

Figure 4.13 shows constructed codes for get entity info function.

The function get_entity_info() returns all information related to the PDB ID.
Information returned to user are entity, type, chain, method, biological assemblies,
release date, resolution and the structure ID as shown in Fig. 4.14.

def get_entity_info(pdb_id):

out = get_info(pdb_id, url_root = 'http://www.rcsb.org/pdb/rest/getEntityInfo?structurelds")
out = to_dict(out)

return remove_at_sign(out[‘entityInfo']['PDB’])

Fig. 4.13 Get entity info function

4.2 Functions for Looking up Information Given PDB ID 35

Fig. 4.14 Sample output for Entity :

get entity info function id: 1
type : protein
Chain : id: A

id : B

Method :
name : xray
bioAssemblies : 1
release_date: Wed Aug 14 00:00:00 PDT 2013
resolution : 1.84
structureld : 4lza

4.2.9 Describe Chemical Function

Figure 4.15 shows the code for describe chemical function.

Function describe_chemical() retrieves chemical description of a requested
chemical ID. Once the chemical ID, for example, ‘NAG’ has been selected to
retrieve its chemical description, the results returned are shown in Fig. 4.16.

4.2.10 Get Ligands Function

Figure 4.17 shows structure and code constructed in Visual Studio for get ligands
function.

def describe_chemical(chem_id):
out = get_info(chem_id, url_root = 'http://www.rcsb.org/pdb/rest/describeHet?chemicaliD=")
out = to_dict(out)
return out

Fig. 4.15 Describe chemical function

describeHet :

ligandinfo :

ligand :

molecularWeight : 221.208

InChiKey : OVRNDRQMDRITHS-FMDGEEDCSA-N

type : D-saccharide

chemicalName : N-ACETYL-D-GLUCOSAMINE

chemicallD : NAG

smiles : cC(=0)N[c@@H]1[c@H]([c@@H]([c@H](o[c@H]10)CO)0)O

InChi : InChi=15/C8H15N0O6/c1-3(11)9-5-7(13)6(12)4(2-10)15-8({5)14/h4-8,10,12-14H,
2H2,1H3,(H,9,11)/t4-,5-,6-,7-,8-/m1/s1

formula : C8 H15N 06

Fig. 4.16 Sample output for chemical function

36 4 Query Framework

def get_ligands(pdb_id):
"""Return ligands of given PDB ID...
out = get_info(pdb_id, url_root = ‘http://www.rcsb.org/pdb/rest/ligandInfo?structurelds")

out = to_dict(out)
return remove_at_sign(out['structureld’])

Fig. 4.17 Get ligands function

id: 100D

ligandinfo :

ligand:

chemicaliD : SPM
molecularWeight : 202.34

structureld : 100D

type: non-polymer

InChi : InChi=15/C10H26N4/c11-5-3-9-13-7-1-2-8-14-10-4-6-12/h13-14H,1-12H2
InChiKey : SPERMINE

formula : C10 H26 N4

smiles : C(CCNCCCN)CNCCCN

Fig. 4.18 Sample output for get ligands function

Function get_ligands() retrieves ligand information of PDB ID. Ligand infor-
mation contain details such as chemical ID, molecular weight, structure ID and type
of chemical. The information that is retrieved is as shown in Fig. 4.18.

4.2.11 Get Gene Ontology Function

Figure 4.19 shows the code of get gene ontology function.
Function get_gene_onto() returns gene ontology information linked to the
PDB ID. The gene ontology information retrieved is shown in Fig. 4.20.

def get_gene_onto(pdb_id):

out = get_info(pdb_id, url_root = 'http://www.rcsb.org/pdb/rest/goTerms?structureld=")
out = to_dict(out)
if not out['goTerms’]:
return None
out = remove_at_sign(out[goTerms'])
return out

Fig. 4.19 Get gene ontology function

4.2 Functions for Looking up Information Given PDB ID 37

Fig. 4.20 Sample output for chainid : A
get gene ontology function id: GO0:0001516
structureld : 4Z0L
detail :
definition : The chemical reactions and pathways resulting

in the formation of prostaglandins, any of a
group of biologically active metabolites which
contain a cyclopentane ring.

name : prostaglandin biosynthetic process

ontology : B

synonyms : prostaglandin anabolism, prostaglandin
biosynthesis, prostaglandin formation,
prostaglandin synthesis.

4.2.12 Get Sequence Cluster Function

Figure 4.21 shows the code construction of get sequence cluster function in Visual
Studio.

Function get_seq_cluster() retrieves the sequence cluster of the assigned PDB ID
with a character chain offset. For example, instead of a normal 4 character PDB 1D,
it adds a decimal behind which results in XXXX.X. An example of the sequence
cluster retrieved for a PDB ID chain, 2F5N.A, is shown in Fig. 4.22.

def get_seq_cluster(pdb_id chain):

url_root = ‘http://www.rcsb.or db/rest/sequenceCluster?structureld="
out = get_info(pdb_id_chain, url_root = url_root)

out = to_dict(out)

return remove_at_sign(out['sequenceCluster'])

Fig. 4.21 Get sequence cluster function

Fig. 4.22 Sample output for name : 4PD2.A rank: 1
get sequence cluster function name : SUGP.A rank: 2
name : 4PCZ.A rank: 3
name : 3GPU.A rank: 4
name : 3JR5.A rank: 5
name : 3SAU.A rank: 6
name : 3GQ4.A rank: 7
name : 1R2Z.A rank: 8
name : 3UGE.A rank: 9

name : 2XZF.A rank: 10

38 4 Query Framework

4.2.13 Get Blast Function

Figure 4.23 shows the code and structure of get blast function.

The get_blast() function retrieves BLAST results for the user inputted PDB ID.
The search result will return as a form of a nested dictionary which contains all the
BLAST results and their metadata. For example, when an entry of 2F5N.A is
entered as the PDB ID, the returned result is as shown in Fig. 4.24.

4.2.14 Get PFAM Function

Figure 4.25 shows the way get PFAM function is constructed in Visual Studio.
The get_pfam() function returns PFAM annotations for a PDB ID. The PFAM
annotations result is as shown in Fig. 4.26.

def get_blast(pdb_id, chain_id="A"):
raw_results = get_raw_blast(pdb_id, output_form="XML', chain_id=chain_id)
out = xmltodict.parse(raw_results, process_namespaces=True)

out = to_dict(out)
out = out['BlastOutput’]
return out

Fig. 4.23 Get blast function

PELPEVETVRRELEKRIVGQKIISIEATYPRMVL-—-
GFEQLKKELTGKTIQGISRRGKYLIFEIGDDFRLISHLRMEGKYRLATLDAPREKHDHLTMKFADG-
QUYADVRKFGTWELISTDQVLPYFLKKKIGPEPTYEDFDEKLFREKLRKSTKKIKPYLLEQTLVAGLGNIYVDEVLWLAK
IHPEKETNQLIESSIHLLHDSIHEILQKAIKLGGSSIRTY-
SALGSTGKMQNELQVYGKTGEKCSRCGAEIQKIKVAGRGTHFCPVCQQ

Fig. 4.24 Sample output for get blast function

def get_pfam(pdb_id):

out = get_info(pdb_id, url_root = "http://www.rcsb.org/pdb/rest/hmmer?structureld=")
out = to_dict(out)
if not out[hmmer3']:
return dict()
return remove_at_sign{out[hmmer3’])

Fig. 4.25 Get PFAM function

4.2 Functions for Looking up Information Given PDB ID 39

Fig. 4.26 Sample output for pfamHit :
get PFAM function pfamAcc : PF03895.10
pfamName : YadA_anchor
structurelD : 2LME
pdbResNumEnd : 105
pdbResNumStart : 28
pdfamDesc : YadA-like C-terminal region
eValue : 5.0E-22
chainid : A

4.2.15 Get Clusters Function

Figure 4.27 shows the code for get cluster function.

The get_clusters() function returns cluster related web services for a PDB ID.
For example, the representative cluster for 4hhb.A is 2W72.A as shown in
Fig. 4.28.

4.2.16 Find Results Generator Function

Figure 4.29 shows the structure and codes for find results generator function.

Function find_results_gen() outputs a generator for results returned by any
search of the protein data bank conducted internally. A sample result is shown in
Fig. 4.30.

4.2.17 Parse Results Generator Function

Figure 4.31 shows the code and structure for the parse results generator function.
Function parse_results_gen() queries PDB with a specific search term and field
without violating the existing limitations of the API. If the search result exceeds the

def get_clusters(pdb_id):

out = get_info(pdb_id, url_root = ‘http://www.rcsb.org/pdb/rest/representatives?structureld=")
out = to_dict(out)
return remove_at_sign(out[' representatives’])

Fig. 4.27 Get clusters function

Fig. 4.28 Sample output for pdbchain :
get clusters function name : 2W72.A

40 4 Query Framework

def find_results_gen(search_term, field="title'):

scan_params = make_query(search_term, querytype='AdvancedKeywordQuery')
search_result_ids = do_search(scan_params)

all_titles = []
for pdb_result in search_result_ids:
result= describe_pdb(pdb_result)
if field in result.keys():
yield result[field]

Fig. 4.29 Find results generator function
MYOSIN Il DICTYOSTELIUM DISCOIDEUM MOTOR DOMAIN S456Y BOUND WITH MGADP-BEFX
MYOSIN Il DICTYOSTELIUM DISCOIDEUM MOTOR DOMAIN S456Y BOUND WITH MGADP-ALF4
MYOSIN Il DICTYOSTELIUM DISCOIDEUM MOTOR DOMAIN S456E BOUND WITH MGADP-BEFX

MYOSIN Il DICTYOSTELIUM DISCOIDEUM MOTOR DOMAIN S456E BOUND WITH MGADP-ALF4
The structural basis of blebbistatin inhibition and specificity for myosin Il

Fig. 4.30 Sample output for find results generator function

def parse_results_gen(search_term, field='title’, max_results = 100, sleep_time=.1):

if max_results*sleep_time > 30:
warnings.warn("Because of API limitations, this function\
will take at least " + str(max_results*sleep_time) + " seconds to return results.\

If you need greater speed, try modifying the optional argument sleep_time=.1, (although \
this may cause the search to time out)”)

all_data_raw = find_results_gen(search_term, field=field)

all_data =1ist()

while len(all_data) < max_results:
all_data.append(all_data_raw.send(None))
time.sleep(sleep_time)

return all_data

Fig. 4.31 Parse results generator function

limit, a warning message is displayed to the user to notify that the results are
returned in a timely manner but may be incomplete.

4.2.18 Find Papers Function

Figure 4.32 shows the code for find papers function.
The function find_papers() searches the RCSB PDB for top papers according to
the keyword relevancy and returns the results as a list. If the search result exceeds

4.2 Functions for Looking up Information Given PDB ID 41

def find_papers(search_term, **kwargs):
all_papers = parse_results_gen(search_term, field='title', **kwargs)
return remove_dupes(all_papers)

Fig. 4.32 Find papers function

Crystal structure of a CRISPR-associated protein from thermos thermophilus.
CRYSTAL STRUCTURE OF HYPOTHETICAL PROTEIN 5501404 FROM SULFOLOBUS SOLFATARICUS P2
NMR solution structure of a CRISPR repeat binding protein.|

Fig. 4.33 Sample output for find papers function

the limitations of the API, an error is displayed as mentioned. As an example, the
search result for the term ‘crispr’ is displayed in Fig. 4.33.

4.2.19 Find Authors Function

Figure 4.34 shows the constructed structure and code of the find authors function.

The purpose of the find_authors() function is the same as the find_papers
function, just that it searches top authors instead. It searches based on the number of
PDB entries that an author has his or her name linked with and it is not judged by
the order of the author nor the ranking of the entry. Therefore, if an author has
published a significant number of papers related to the search term, their work will
have priority over any other author who wrote fewer papers that are most likely
related to the search term used. An example is shown in Fig. 4.35 when the title
‘crispr’ is used as the search term.

def find_authors(search_term, **kwargs):
all_individuals = parse_results_gen(search_term, field='citation_authors®, **kwargs)
full_author_list = []
for individual in all_individuals:
individual = individual.replace('.,", ".;")
author_list_clean = [x.strip() for x in individual.split(’;')]
full_author_list+=author_list_clean

out = list(chain.from_iterable(repeat(ii, c) for ii,c in Counter(full_author_list).most_common()))

return remove_dupes(out)

Fig. 4.34 Find authors function

42 4 Query Framework

Doudna, J.A., Jlinek, M., Ke, A, Li, H., Nam, K.J.

Fig. 4.35 Sample output for find authors function

4.2.20 Find Dates Function

Figure 4.36 shows find dates function structure and code.

The function find_dates() has the same usage as the 2 functions above, except
that it is used to retrieve results from RCSB PDB based on the PDB submission
dates. It can be utilized to retrieve data on the popularity of the given search term.

4.2.21 List Taxonomy Function

Figure 4.37 shows the code and structure built in Visual Studio for the list
taxonomy function.

The list_taxa() function examines and returns any taxonomy related information
provided within the description from search results that are returned by the

def find_dates(search_term, **kwargs):

all_dates = parse_results_gen(search_term, field='deposition_date', **kwargs)
return all_dates

Fig. 4.36 Find dates function

def list_taxa(pdb_list, sleep_time=.1):
if len(pdb_list)*sleep_time > 3@:
warnings.warn("Because of API limitations, this function\
will take at least " + str(len(pdb_list)*sleep_time) + " seconds to return results.\

If you need greater speed, try modifying the optional argument sleep_time=.1, (although \
this may cause the search to time out)”)

taxa = []

for pdb_id in pdb_list:
all_info = get_all_info(pdb_id)
species_results = walk_nested_dict(all_info, 'Taxonomy', maxdepth=25,outputs=[])
first_result = walk_nested_dict(species_results, '@name’,outputs=[])
if first_result:
taxa.append(first_result[-1])
else:
taxa.append(' Unknown")

time.sleep(sleep_time)

return taxa

Fig. 4.37 List taxonomy function

4.2 Functions for Looking up Information Given PDB ID 43

Fig. 4.38 Sample output for Thermus thermophilus

list taxonomy function Sulfolobus solfataricus P2
Hyperthermus butylicus DSM 5456
unidentified phage
Sulfolobus solfataricus P2

Pseudomonas aeruginosa UCBPP-PA14
Pseudomonas aeruginosa UCBPP-PA14
Pseudomonas aeruginosa UCBPP-PA14
Sulfolobus solfataricus

Thermus thermophilus HB8

get_all_info() function. Descriptions from the PDB website includes the species
name in each of their entries and occasionally has information of body parts or
organs. For example, if the user searched for ‘crispr’, the result returned are as
shown in Fig. 4.38.

4.2.22 List Types Function

Figure 4.39 shows the code structure of list types function.

The list_types() function analyses the list of PDB IDs provided and searches the
associated structure type of PDB IDs as shown in Fig. 4.39. As an example, when a
search was conducted for the keyword “cripsr’, the search result returned will show
that it is categorized as a protein.

def list_types(pdb_list, sleep_time=.1):
if len(pdb_list)*slee ne > 3@:
warnings.warn("Because of API limitations, this function\
will take at least " + str(len(pdb_list)®*sleep_time) + " seconds to return results.\

If you need greater speed, try modifying the optional argument sleep_time=.1, (although \
this may cause the search to time out)”)

infotypes = []
for pdb_id in |
all_info = get_all_info(pdb_id)
type_results = walk_nested_dict(all_info, ‘@type’, maxdepth=25,outputss=[])}
if type_results:
infotypes.append(type_results[-1])
else:
infotypes.append(' Unknown")
time.sleep(sleep_time)

return infotypes

Fig. 4.39 List types function

44 4 Query Framework
4.3 Functions for Querying Information with PDB ID

4.3.1 To Dictionary Function

Figure 4.40 shows the code of to dictionary function.
The to_dict() function converts and returns a compressed form of OrderedDict(),
a nested object, as a normal dictionary.

4.3.2 Remove at Sign Function

Figure 4.41 shows the code for the remove at sign function.
The remove_at_sign() function as the name suggests, removes any ‘@’ character
from the start of key names in a dictionary.

4.3.3 Remove Duplicates Function

Figure 4.42 shows the remove duplicates function code structure.

The remove_dupes() function removes any duplicated entries from the search list
while not interfering with the order. The standard equivalence testing method for
Python is used to find out whether there are any elements in a list that are identical
to each other. For example, if there are entries of the number 1, 2, 3, 2, 4 and 5, the
final appearance is shown as 1, 2, 3, 4 and 5 instead.

def to_dict(odict):

out = loads{dumps(odict))
return out

Fig. 4.40 To dictionary function

def remove_at_sign(kk):

tagged_keys = [thing for thing in kk.keys() if thing.startswith('@')]
for tag_key in tagged_keys:

kk[tag_key[1:]] = kk.pop(tag_key)
return kk

Fig. 4.41 Remove at sign function

4.3 Functions for Querying Information with PDB ID

def remove_dupes(list_with_dupes):

visited = set()

visited_add = visited.add

out = [entry for entry in list_with_dupes
return out

Fig. 4.42 Remove duplicates function

4.3.4 Walk Nested Dictionary Function

if not (entry

45

in visited or visited_add(entry))]

Figure 4.43 shows the structure and code in Visual Studio for the walk nested

dictionary function.

A nested dictionary may contain huge lists of other dictionaries with unknown
lengths within. Therefore, a depth-first search method is used to find out whether a
key is in any of the dictionaries. The maxdepth variable can be toggled to determine
the maximum depth needed to search a nested dictionary for the desired result.

def walk nested dict(my_result, term, outputs=[], depth=@, max

if depth > maxdepth:

pth=25):

warnings.warn('Maximum recursion depth exceeded. Returned None for the search results, '+
' try increasing the maxdepth keyword argument.’)

return None

h = depth + 1
if type(my_result)==dict:
if te in result.keys():
stputs.append(my_result[term])
else:
new_results = list(my_result.values())
walk_nested_dict(new_results, term, outputs=outpu
elif type(my_result

==list:
for item in my_result:
walk_nested_dict(item, term, outputs=outpu
else:

pass

dead leaf

this conditional may not be necessary
if outputs:

return o
else:

return None

Fig. 4.43 Walk nested dictionary function

ts, depth=depth,maxdepth=ma

s, depth=depth,maxdepth=maxdepth)

Chapter 5 ®
Results and Discussion Check for

For this research, the structure of the query framework that has been explained in
Chap. 4 is implemented on Microsoft Azure. The query framework can be accessed
in the form of a web portal through any web browsing application, for example,
Internet Explorer, Microsoft Edge, Google Chrome and others. The web portal is
built to be user friendly and easy to navigate to retrieve data from RCSB PDB. The
results of the query web portal are shown in this chapter.

5.1 Query Web Portal

Figure 5.1 display the homepage of the query web portal built. The web portal is
built to enable users and researchers in Malaysia to be able to access the system
with ease for protein ontology query purposes.

Figure 5.2 shows the search page of the query web portal. This search function
enables users to search the RCSB PDB with their desired keyword. For example, a
search for data relevant to ‘crispr’ is entered in the search field as shown above.

Figure 5.3 displays the search result for the keyword ‘crispr’. As displayed in
this figure, the search function works as intended. The search webpage displays all
the relevant PDB ID and information for the requested search.

Figure 5.4 shows the information related to Protein ID ‘1WJ9’. The full infor-
mation of the PDB ID obtained from the search query can be further elaborated
when it is selected. As shown in Fig. 5.4, the information that can be accessed are
protein description, molecule, journal, atom sequence, unit cell for cyst, unit cell for
origx, unit cell for scale, helices, sequence residue and sheets.

Figure 5.5 shows the detailed information of protein ID ‘1WJ9’. Each of the
PDB ID attributes can be further expanded through selection to display the full
information for each attribute.

© Springer Nature Switzerland AG 2019 47
C. Y. Cho et al., Large Scale Data Analytics,

Studies in Computational Intelligence 806,

https://doi.org/10.1007/978-3-030-03892-2_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-03892-2_5&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-03892-2_5&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-03892-2_5&domain=pdf
https://doi.org/10.1007/978-3-030-03892-2_5

48 5 Results and Discussion

Protein Ontology Query Portal

Pratein Ontology Cweery Podal |s a hosted web server that perform quedes on protein ontology entries from
multiple open source databases such as RSCB, PDBe, PDBj and more.

L e sboud Curtn Linkvernty Mataynis o

Fig. 5.1 Homepage of query web portal

Do i

Search

Key in your search term,

Search tor: e =

Fig. 5.2 Search page of query web portal

c. T——

You searched for crispr
219 results found

1WJg 2IvY 2Lvs 2LW5
2WTE 2xL 2XLJ ZNLK
2XV0 2YawW 2yay 2YaH
2ZCA 220P 360D 3NKD
INKE 3002 3PKM 3PS0
30HG 3a4l 3QJL QP
30RP 30RO 30RR 3QYF
3s4L 385U 3I5K9 3SKD
3UNG 3UR3 3VZH vzl

awav IWzw IWAB IWVo

Fig. 5.3 Search result for keyword ‘crispr’

Figure 5.6 shows the contact page of the query web portal. The contact infor-
mation displayed on the webpage enables users or researchers to give feedback on
the query web portal.

5.1 Query Web Portal 49

o. - Gy £

You searched for crispr
219 results found

1WJg

2IVY 2LVS 2LWS5 2WTE
2XL1 2XLJ 2XLK 2XVO
2YBW 2Y8Y 2Y8H 2ZCA
2Z0P 3GOD 3NKD 3NKE

Fig. 5.4 Information related to protein ID ‘1WJ9’

Fig. 5.5 Detailed information of protein ID ‘1WJ9’

50 5 Results and Discussion

@

Contact

Contact me @

Fig. 5.6 Contact page of query web portal

5.2 Summary

In this research, we presented a query framework using Language Integrated Query
and built a web portal for users to query RCSB PDB. The query framework pre-
sented is built based on the Language Integrated Query with python language.
Results show that the query framework is capable of querying and providing users
with their desired results. To provide sufficient computing resources for the query
framework, it is deployed on a cloud computing platform, Microsoft Azure. This
enables the framework to query without facing issues involving insufficient
resources that may cause the framework to crash. There are certain limitations that
are limiting the performance of this framework and these limitations will be dis-
cussed in Chap. 6.

Chapter 6 M)
Conclusion and Future Works Check or

6.1 Conclusion

The study of this research shows the difficulties faced by the current generation for
database querying. Recent methodologies such as semantic integration focuses on
data integration, data mapping and data translation. These approaches can be done
for small to medium data sources. However, when it comes to querying databases
that are huge and are being constantly updated by users around the world, these
approaches are not suitable and not cost effective.

To overcome these challenges from a different perspective, we presented a
different querying method using Language Integrated Query in this research.
Instead of integrating existing datasets from different data sources into a single
source, we used Language Integrated Query to build a query framework that is
capable of querying directly from sources without the need for data translation or
integration. To ensure that there are no performance issues, the query framework is
implemented on a cloud computing environment, Microsoft Azure, to utilize the
vast computing resources available there. A user-friendly web portal was built and
implemented on Microsoft Azure for users to search and query the RCSB PDB
without any issue.

Through the construction and implementation of the query framework, the
framework can perform thorough searches through RCSB PDB for results as
planned. The search might take a longer period to be performed depending on the
keyword or query that has been searched or requested by the user due to certain
limitations on both client and server side. There are several limitations and these are
discussed in the next section of this chapter.

© Springer Nature Switzerland AG 2019 51
C. Y. Cho et al., Large Scale Data Analytics,

Studies in Computational Intelligence 806,

https://doi.org/10.1007/978-3-030-03892-2_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-03892-2_6&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-03892-2_6&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-03892-2_6&domain=pdf
https://doi.org/10.1007/978-3-030-03892-2_6

52 6 Conclusion and Future Works

6.2 Limitations

There are several factors that limit the capabilities of the query framework to
function smoothly with minimal delays.
These issues can be improved through several methods:

1. Upgrading of the existing RCSB PDB server infrastructure, mainly hardware,
connection and software wise.

2. Increasing the resources of Microsoft Azure virtual machine, resulting in an
increase in expenses to maintain existing cloud computing infrastructure of
Curtin University Malaysia.

3. Changing the hosting location of virtual machine to the nearest hosting site for
RCSB PDB, in this case, United States of America.

However, the main issue that has been presented is with the technology we
currently have, it is still difficult to solve the issue of hosting large scale data and
ensuring all operations run smoothly. Due to the large number of researchers and
users using RCSB PDB, it is hard for the RCSB PDB server to cater to the needs of
all these requests without having a latency issue. Therefore, the delay in querying
RCSB PDB is due to the latency issue and the hardware limitation issue.

Hardware on the web portal deployment plays a huge part in this as well. If the
hardware performance is insufficient, the framework will crash depending on the
number of queries and users.

6.3 Future Works

For future development, the infrastructure hosting the Microsoft Azure cloud
computing platform can be improved and improvised to withstand the stress
imposed by the query framework on the hardware available under heavy usage.
However, this method will increase the cost of the project.

Other than that, the program can be further optimized to decrease the latency and
stress load imposed on the hosting server. The existing search functions in the
program can be fashioned into an advanced search that can be featured in the web
portal as well as to only search and return a very specific component of a protein
data from RCSB PDB.

Appendix

(A) Query Codes

© Springer Nature Switzerland AG 2019

C. Y. Cho et al., Large Scale Data Analytics,
Studies in Computational Intelligence 806,
https://doi.org/10.1007/978-3-030-03892-2

53

https://doi.org/10.<HypSlash>1007/�978-�3-�030-�03892-�2</HypSlash>

54

warn

Definition of views.
wen

from django.shortcuts import render

from django http import HttpRequest, HttpResponse
from django.template import RequestContext

from datetime import datetime

from django import *

import django.middleware.csrf

from app.forms import *

import json

from django.template.loader import render_to_string
import pprint

r_dict={'name":'value', 'description':'value','molecule':'value','journal

def set_default(oby):
if isinstance(obj, set):
return list(obj)
raise TypeError

def home(request):
"""Renders the home page.
assert isinstance(request, HttpRequest)
return render(
request,
'app/index.html’,

L

‘title’:'Home Page',
‘vear':datetime now().vear,
}
)

def contact(request):
"""Renders the contact page.
assert isinstance(request, HttpRequest)
return render(
request,
'app/contact.html’,

o

‘title":'Contact’,
‘message’'Contact me @',
‘vear':datetime.now().year,
}
)

value' }

Appendix

Appendix

def search(request):
"""Renders the about page.
assert isinstance(request, HttpRequest)
r_dict={}
if request. method=="GET"
return render(
request,
‘app/about.html’,

e

'title':'Search',

‘message’:'Key in your search term.’,

'vear':datetime now().year,

'current_name':'actin network’,

}
)
elif request.is_ajax():

#check fr results
data =request. POST.get("postDiv")
protein =request. POST get("protein")
b=get_pdb_file(protein)
r_dict['description']=get_description(b)
1_dict['molecule']=get_molecule(b)
r_dict['journal']=get_journal(b)
r_dict['atom']=get_atomSeq(b)
1_dict['uc_cryst']=get_unitCell_cryst(b)
r_dict['uc_origx']=get_unitCell_origx(b)
r_dict['uc_scale’]=get_unitCell_scale(b)
r_dict['helices']=get_helices(b)
r_dict['sheets']=get_sheets(b)
1_dict['seqres']=get_seqRes(b)

return
HttpResponse(json.dumps({'array"r_dict,'test':r_dict['sheets']}).content_type="appli
cation/json")

else:
key=request. POST.get('vour_name")

search_dict = make_query(key)
found_pdbs = do_search(search_dict)
found_pdbs1 = [str(x) for x in found _pdbs]
list=[]
onlyprotein=[]
for i in found_pdbsl1:

r_dict['name']=i

onlyprotein.append(i)
return render(request,

‘app/premature html’,

'data’:list,

55

56 Appendix

‘searchTerm' key,
‘size':len(onlyprotein),
‘onlyprotein":onlyprotein,
}
)

def r_query(term.request):

search_dict = make_query('actin network")
found_pdbs = do_search(search_dict)
found_pdbs1 = [str(x) for x in found_pdbs]
formatted_data = simpletable.fit_data_to_columns(found_pdbsl,5)
table = simpletable. SimpleTable(formatted_data)
html_page = simpletable. HTMLPage(table)
html_page.save("app'premature.html")
return render(

request,

'app/premature html',

‘title':'Search’,

'message’'Key in vour search term.’,
'vear':datetime now().year,
‘current_name':' E.G. actin network’,

def oriresult(key, request):
return render(
request,
‘app/index.html’,

‘title":Result,
‘message’key,
'vear':datetime now().year,

}
)

def resulttest(request):
"""Renders the contact page."""
assert isinstance(request, HttpRequest)
if request.is_ajax():
data =request POST get("postDiv")

Appendix

return HitpResponse(json.dumps({'name':data}),content_type="application/json")
else:
return render(
request,
‘app/searchresult html',
{
'title':"Contact’,
‘message':'Contact me @',
'vear':datetime now().vear,
‘csrf_token':django middleware csrf.get_token(request)

)
def reroute(request):
"""Renders the contact page.
assert isinstance(request, HttpRequest)
return render(
request,
‘app/reroute html',

wn

‘title':'Contact’,
‘message’:'Contact me @',
‘vear':datetime. now().year,
}
)

#Entry

def get_description(string):
pattern="*TITLE(.*)[:\n]'
description=re.findall(pattern, string)#, re M|re.I
return description

def get_molecule(string):
pattern='*COMPND(.*)[;\n]'
molecule=re.findall(pattern, string)
return molecule

def get_journal(string):
pattern="*JRNL('s{3}.*)[;'\n]'
journal=re findall(pattern, string)
return journal

#=Structure

def get_atomSeq(string):
pattern="*SEQRES(.*)[;\n]'
atomSeg=re.findall(pattern, string)
return atomSeq

def get_unitCell_cryst(string):

58

pattern="CRYST(\d+'s{3}.*)\n’
cryst=re findall(pattern, string)
retum cryst

def get_unitCell_origx(string):
pattern="ORIGX(\d+\s+.*)'n’
origx=re.findall(pattern, string)
return origx

def get_unitCell_scale(string):
pattern='"SCALE(\d+'s+.*)'n’
scale=re.findall(pattern, string)
return scale#.group(1)

#structuralDomain

def get_helices(string):
pattern="HELIX(\s+.*)'\n'
helices=re.findall(pattern, string)
return helices

def get_sheets(string):
pattern="SHEET(\s+.*)'n’'
sheets=re findall(pattern, string)
return sheets

def get_seqRes(string):
pattern="SEQRES(\s+.*)'n’'
seqRes=re.findall(pattern, string)
return seqRes

m

PyPDB: A Python API for the RCSB Protein Data Bank

from collections import OrderedDict, Counter

from itertools import repeat, chain
import urllib.request

import time

import re

from json import loads, dumps
import warnings

import xmltodict

from bs4 import BeautifulSoup
except ImportError:
try:
import BeautifulSoup
except ImportError:

Appendix

Appendix

print ("pypdb can't find BeautifulSoup. You cannot parse BLAST search results
without this module")

"

Functions for searching the RCSB PDB for lists of PDB IDs

m

functions for conducting searches and obtaining lists of PDB ids
def make_query(search_term, querytype="AdvancedKeywordQuery’):
" Repackage strings into a search dictionary

This function takes a list of search terms and specifications
and repackages it as a dictionary object that can be used to conduct a search

search_term : str

The specific term to search in the database. For specific query types,
the strings that will yield valid results are limited to:

'HoldingsQuery' : A Ggeneral search of the metadata associated with PDB IDs

‘ExpTypeQuery' : Experimental Method such as X-RAY', 'SOLID-STATE
NMR!, etc

'AdvancedKeywordQuery' : Any string that appears in the title or abstract
'StructureldQuery' : Perform a search for a specific Structure ID
‘ModifiedStructuresQuery' : Search for related structures
'AdvancedAuthorQuery' : Search by the names of authors associated with entries
"MotifQuery' : Search for a specific motif
"NoLigandQuery' : Find full list of PDB IDs without free ligrands

querytype : str

The type of query to perform, the easiest is an AdvancedKeywordQuery but more
specific types of searches may also be performed

scan_params : dict

59

60

Appendix

A dictionary representing the query

Examples

This method usually gets used in tandem with do_search

>>>a=make_query('actin network’)

>>> print (a)

{'orgPdbQuery’": {'description': 'Text Search for: actin’,
‘keywords': "actin’,

‘queryType'": 'AdvancedKeywordQuery'} }

>>> search_dict = make_ query('actin network")
>>> found_pdbs = do_search(search_dict)
=>>> print(found_pdbs)

[1D7M, '3W3D', '4ATH", '4ATL', '4ATN']

>>> search_dict = make_query('T[AGJAGGY",querytype="MotifQuery")
>>> found pdbs = do_search(search_dict)

=== print(found_pdbs)

['3LEZ', '3SGH', '4F47")

assert querytype in {'HoldingsQuery’, "ExpTypeQuery',
'AdvancedKeywordQuery','StructureldQuery',
"ModifiedStructuresQuery', 'Advanced AuthorQuery', 'MotifQuery',
"NoLigandQuery'
}

query_params = dict()
query_params['queryType'] = querytype

if querytype=='AdvancedKeywordQuery":
query_params['description’] = 'Text Search for: '+ search_term
query_params['keywords'] = search_term

elif quervtype=="NoLigandQuery":
query_params['haveLigands'] = "yes'

elif querytype=="Advanced AuthorQuery":
query_params['description’] = 'Author Name: '+ search_term
query_params['searchType'] = 'All Authors'
query_params['audit_author.name'] = search_term
query_params['exactMatch'] = 'false’

elif querytype=="MotifQuery"
query_params['description’] = "Motif Query For: '+ search_term
query_params['motif] = search_term

Appendix

search for a specific structure
elif querytype in ['StructureldQuery', ModifiedStructuresQuery']:
query_params['structureldList’] = search_term

elif querytype=="ExpTypeQuery":
query_params['experimentalMethod'] = search_term
query_params['description’] = 'Experimental Method Search : Experimental
Method='+ search_term
query_params['mvStructure.expMethod.value']= search_term

scan_params = dict()
scan_params['orgPdbQuery’] = query_params

return scan_params

def do_search(scan_params):
"Convert dict() to XML object an then send query to the RCSB PDB

This function takes a valid query dict() object, converts it to XML,
and then sends a request to the PDB for a list of IDs corresponding to search results

scan_params : dict
A dictionary of query attributes to use for
the search of the PDB

idlist : list
A list of PDB ids returned by the search

This method usually gets used in tandem with make_query

>>> a=make_query('actin network")

>=> print (a)

{'orgPdbQuery": {'description': 'Text Search for: actin’,
‘keywords': 'actin’,

‘queryType': '"AdvancedKeywordQuery'} }

>>> search_dict = make_query(‘actin network')
=>> found_pdbs = do_search(search_dict)

61

62

Appendix

>>> print(found_pdbs)
[1D7M','3W3D', '4ATH', "4ATL", '4ATN']

>>> search_dict = make_query('T[AG]AGGY",querytype="MotifQuery”)
>>> found_pdbs = do_search(search_dict)

>>> print(found pdbs)

[3LEZ','3SGH', '4F47"]

url = "http://www.rcsb.org/pdb/rest/search’

queryText = xmltodict.unparse(scan_params, pretty=False)
queryText = queryText.encode()

req = urllib request Request(url, data=quervText)
f = urllib.request.urlopen(req)
result = f.read()

if not result:
warnings.warn('No results were obtained for this search’)

1dlist = str(result)
idlist =idlist.split("'n")
idlist[0] = idlist[0][-4:]
kk = 1dlist.pop(-1)

return idlist

2f do_protsym_search(point_group, min_rmsd=0.0, max_rmsd=7.0):
"Performs a protein symmetry search of the PDB

This function can search the Protein Data Bank based on how closely entries
match the user-specified symmetry group

Parameters

point_group : str
The name of the symmetry point group to search. This includes all the standard
abbreviations for symmetry point groups (e.g., C1, C2, D2, T, O, I, H, Al)

min_rmsd : float
The smallest allowed total deviation (in Angstroms) for a result to be classified
as having a matching symmetry

max_rmsd : float
The largest allowed total deviation (in Angstroms) for a result to be classified
as having a matching symmetry

Appendix

Returns

idlist : list of strings
A list of PDB IDs resulting from the search

Examples

>>> kk = do_protsym_search('C9', min_rmsd=0.0, max_rmsd=1.0)
=== print(kk[:5])
[1KZU', 'INKZ', 2FKW', '3B8M’, '3B8N']

query_params = dict()

query_params['queryType'] = PointGroupQuery’
query_params[rtMSDComparator'] = 'between’

query_params['pointGroup'] = point_group
query_params[tMSDMin'] = min_rmsd
query_params['tMSDMax'] = max_rmsd
scan_params = dict()
scan_params['orgPdbQuery'] = query_params

idlist = do_search(scan_params)
return idlist

ef get_all():
"""Return a list of all PDB entries currently in the RCSB Protein Data Bank

out : list of str
A list of all of the PDB IDs currently in the RCSB PDB

Examples

=>> print(get_all()[:10])
['100D', '101D', '101M", "102D", '102L", "102M', '103D", '103L", '103M, '104D']

url = 'http://www.resb.org/pdb/rest/getCurrent’

req = urllib request. Request(url)

63

64

Appendix

f = urllib.request.urlopen(req)
result = frread()
assert result

kk = str(result)

p = re.compile('structureld=\"_..."")

matches = p.findall(str(result))

out = list()

for item in matches:
out.append(item[-3:-1])

return out

m

Functions for looking up information given PDB ID

def get_info(pdb_id,
url_root="http://www rcsb.org/pdb/rest/describeMol?structureld="):
"Look up all information about a given PDB ID

pdb_id : string
A 4 character string giving a pdb entry of interest

url_root : string
The string root of the specific url for the request type

out : OrderedDict
An ordered dictionary object corresponding to bare xml

url = url_root + pdb_id

req = urllib request. Request(url)
f = urllib.request.urlopen(req)
result = fread()

assert result

out = xmltodict parse(result,process_namespaces=True)

return out

Appendix

def get_pdb_file(pdb_id, filetype="pdb’, compression=False):
"'Get the full PDB file associated with a PDB_ID

Parameters

pdb_id : string
A 4 character string giving a pdb entry of interest

filetype: string
The file type.
'pdb’ is the older file format,
'cif is the newer replacement.
'xml' an also be obtained and parsed using the various xml tools included in
PyPDB
'structfact’ is a test file containing structure information for certain entries

compression : bool
Retrieve a compressed (gz) version of the file

Returns

result : string
The string representing the full PDB file in the given format

http://www.rcsb.org/pdb/download/downloadFile.do?fileFormat=structfact&structur
eld=2F5N

Examples
=>> pdb_file = get_pdb_file('41za, filetype='cif , compression=True)
>>> print(pdb_file[:200])
data_4LZA
“
_entry.id 4LZA
=
_audit_conform.dict_name mmcif pdbx.dic
_audit_conform.dict_version 4.032
_audit_conform.dict_location
http://mmecif pdb.org/dictionaries/asciimmecif pdbx

DEV NOTE:
http://www.rcsb.org/pdb/files/2F SN pdbl gz

fullurl = 'http://www.rcsb.org/pdb/download/downloadFile.do?fileF ormat="
fullurl += filetype

Appendix

if compression:

fullurl +="&compression=YES'
else:

fullurl += '&compression=NO'

fullurl +='&structureld=" + pdb_id

url = 'http://www.rcsb.org/pdb/files/'+pdb_id+" pdb’
req = urllib_request Request(fullurl)

f = urllib.request.urlopen(req)

result = frread()

result = result.decode('unicode_escape')

return result

def get_all_info(pdb_id):
"A wrapper for get_info that cleans up the output slighly

pdb_id : string
A 4 character string giving a pdb entry of interest

out : dict
A dictionary containing all the information stored in the entry

>>> all_info = get_all_info('41za")

>>> print(all_info)

{'polymer’: {'macroMolecule’: {'@name": 'Adenine phosphoribosyltransferase’, '
accession': {'@id": 'BOK969'}}, '@entityNr": '1', '@type': 'protein’,
‘polymerDescription’: {'@description’: 'Adenine phosphoribosyltransferase'},
'synonym': {'@name": 'APRT'}, '@length’: '195', 'enzClass": {'@ec": '2.4.2.7'},
‘chain”: [{'@id": 'A"}, {'@id" 'B'}].

‘Taxonomy': {'@name': "Thermoanaerobacter pseudethanolicus ATCC 33223',
'@id': '340099'}, "@weight': '22023.9'}, 'id": '4LZA"}

>>> results = get_all_info(2F5N")

>>> first_polymer = results['polymer’][0]

>>> first_polvmer['polymerDescription']

{'@description': "5
D(*AP*GP*GP*TP*AP*GP*AP*CP*CP*TP*GP*GP*AP*CP*GP*(C)-3"}

m

Appendix

out =to_dict(get_info(pdb_id))['molDescription']['structureld’]
out = remove_at_sign(out)
return out

def get raw _blast(pdb_id, output_form="HTML', chain_id="A"):
"Look up full BLAST page for a given PDB ID

get_blast() uses this function internally

pdb_id : string
A 4 character string giving a pdb entry of interest

chain_id : string
A single character designating the chain ID of interest

output_form : string
TXT, HTML, or XML formatting of the outputs

out : OrderedDict
An ordered dictionary object corresponding to bare xml

url_root = "http://www .rcsb.org/pdb/rest/getBlastPDB2 ?structureld='

url = url_root + pdb_id + '&chainld='+ chain_id +'&outputFormat='+ output_form
req = urllib request. Request(url)

f= urllib.request.urlopen(req)

result = f.read()

result = result.decode('unicode_escape’)

assert result

retumn result
def parse_blast(blast_string):
"Clean up HTML BLAST results
This function requires BeautifulSoup and the re module
It goes throught the complicated output returned by the BLAST
search and provides a list of matches, as well as the raw

text file showing the alignments for each of the matches.

This function works best with HTML formatted Inputs

67

68

Appendix

blast_string : str
A complete webpage of standard BLAST results

out : 2-tuple
A tuple consisting of a list of PDB matches, and a list
of their alignment text files (unformatted)

soup = BeautifulSoup(str(blast_string), "html parser")

all_blasts = list()
all_blast_ids = list()

prog = re.compile(pattern)

for item in soup.find_all('pre):
if len(item find_all("a"))==1:
all_blasts.append(item)
blast_id = re findall(pattern, str(item))[0][-5:-1]
all_blast_ids.append(blast_id)

out = (all_blast_ids, all_blasts)
return out

def get_blast2(pdb_id, chain_id="A’, output_form="HTML"):
"Alternative way to look up BLAST for a given PDB ID. This function is a wrapper
for get_raw_blast and parse_blast

pdb_id : string
A 4 character string giving a pdb entry of interest

chain_id : string
A single character designating the chain ID of interest

Appendix

output_form : string
TXT, HTML, or XML formatting of the BLAST page

Returns

out : 2-tuple
A tuple consisting of a list of PDB matches, and a list
of their alignment text files (unformatted)

Examples

>>> blast_results = get_blast2(2F5N’, chain_id="A’", output_form="HTML")

>>> print('Total Results: ' + str(len(blast_results[0])) +"n")

=== print(blast_results[1][0])

Total Results: 84

<pre>

>2F5P:3:A|pdbid|entity|chain(s)|sequence

Length =274

Score = 545 bits (1404), Expect = e-155, Method: Composition-based stats.

Identities = 274/274 (100%), Positives = 274/274 (100%)

Query: 1
MPELPEVETIRRTLLPLIVGKTIEDVRIFWPNIIRHPRDSEAFAARMIGQTVRG
LERRGK 60

MPELPEVETIRRTLLPLIVGK TIEDVRIFWPNIIRHPRDSEAFAARMIGQTVRG
LERRGK

Sbjct: 1
MPELPEVETIRRTLLPLIVGK TIEDVRIFWPNIIRHPRDSEAFAARMIGQTVRG
LERRGK 60

raw_results - get_raw_blast(pdb_id, chain_id=chain_id,
output_form=output_form)
out = parse_blast(raw_results)

return out

def describe_pdb(pdb_id):
"""Get description and metadata of a PDB entry

Parameters

pdb_id : string
A 4 character string giving a pdb entry of interest

69

70

Appendix

Returns
out : string
A text pdb description from PDB

Examples

>>> describe_pdb('41za")

{'citation_authors": 'Malashkevich, V.N_, Bhosle, R., Toro, R_, Hillerich, B, Gizzi,
A, Garforth, S, Kar, A, Chan, M K, Lafluer,], Patel, H., Matikainen, B., Chamala,
S., Lim, S., Celikgil, A., Villegas, G., Evans, B., Love, J, Fiser, A., Khafizov, K.,
Seidel, R., Bonanno, J.B., Almo, S.C.,

‘deposition_date'": '2013-07-31',

‘expMethod": X-RAY DIFFRACTION',

‘keywords': ' TRANSFERASE',

‘last_modification_date": '2013-08-14',

‘nr_atoms”: '0',

'nr_entities”: '1’,

‘nr_residues”: 390",

‘release_date': '2013-08-14",

‘resolution’: '1.84',

‘status’: '"CURRENT',

‘structureld’: '4LZA,

‘structure_authors”: "Malashkevich, V.N., Bhosle, R., Toro, R., Hillerich, B., Gizzi,
A, Garforth, S., Kar, A, Chan, M K., Lafluer, J., Patel, H., Matikainen, B., Chamala,
S.. Lim, S, Celikgil, A, Villegas, G., Evans, B., Love, I, Fiser, A., Khafizov, K,
Seidel, R.. Bonanno, I B., Almo. S.C., New York Structural Genomics Research
Consortium (NYSGRC)',

‘title': 'Crystal structure of adenine phosphoribosyltransferase from
Thermoanaerobacter pseudethanolicus ATCC 33223, NYSGRC Target 029700.'}

LT

out = get_info(pdb_id, url_root =
‘http://www .resb.org/pdb/rest/describePDB 7structureld=")

out = to_dict(out)

out = remove_at_sign(out[PDBdescription’][PDB'])

return out

def get_entity_info(pdb_id):
"""Return pdb id information

pdb_id : string
A 4 character string giving a pdb entry of interest

Appendix

out : dict
A dictionary containing a description the entry

>>> get_entity_info('41za")
{Entity": {'@id":'1",

'@type": 'protein’,

'Chain": [{'@id":'A"}, {@id": B'}]},

‘Method": {'@name': 'xray'},

'bioAssemblies’: '1')

'release_date": "Wed Aug 14 00:00:00 PDT 2013',
'resolution’: '1.84',

'structureld”: '41za'}
out = get_info(pdb_id, url_root =

‘http://www rcsb.org/pdb/rest/getEntityInfo?structureld=")

out = to_dict(out)
return remove_at_sign(out['entityInfo'][PDB'])

def describe_chemical(chem_id):

o

Parameters

chem_id : string
A 4 character string representing the full chemical sequence of interest (ie, NAG)

out : dict

>>> chem_desc = describe_chemical(NAG")

>>> print(chem_desc)

{'describeHet": {'ligandInfo': {'ligand": {"@molecularWeight'" '221.208'",
'InChIKey": 'OVRNDRQMDRITHS-FMDGEEDCSA-N', '@type'": 'D-saccharide’,
‘chemicalName': N-ACETYL-D-GLUCOSAMINE', '@chemicalID": NAG',
‘smiles”: 'CC(=0)N[C@@H]1[C@H]([C@@H]([C@H](O[C@H]10)CO)0)0","
InChI': 'InChI=1S/C8H15NO6/c1-3(11)9-5-7(13)6(12)4(2-10)15-8(5)14/
h4-8,10,12-14H,2H2,1H3,(H,9,11)/t4-,5-,6-,7-,.8-/m1/51",

'formula’: 'C8 HIS N 06} }}}

72 Appendix

out = get_info(chem_id, url_root =
"http://www.resb.org/pdb/rest/describeHet?chemicallD=")

out = to_dict(out)

return out

def get_ligands(pdb_id):
"""Return ligands of given PDB ID

pdb_id : string
A 4 character string giving a pdb entry of interest

Returns

out : dict
A dictionary containing a list of ligands associated with the entry

>>> print(ligand_dict)
{'id": '100D",
‘ligandInfo’: {'ligand": {'@chemicallD": 'SPM’,
'@molecularWeight': '202.34,
'@structureld’: '100D",
'@type': 'non-polymer’,
nChI': 'InChI=1S/C10H26N4/c11-5-3-9-13-7-1-2-8-14-10-4-6-
12/h13-14H,1-12H2',
'InChlKey": PFNFFQXMRSDOHW-UHFFFAOYSA-N',
‘chemicalName': 'SPERMINE',
'formula’: 'C10 H26 N4',
'smiles”: 'C(CCNCCCN)CNCCCN'} }}

out - get_info(pdb_id, url_root -
‘hitp://www.resb.org/pdb/rest/ligandInfo?structureld=")

out = to_dict(out)

return remove_at_sign(out['structureld'])

def get_gene_onto(pdb_id):
"""Return ligands of given PDB_ID

pdb_id : string

Appendix 73

A 4 character string giving a pdb entry of interest

out : dict
A dictionary containing the gene ontology information associated with the entry

>>> gene_info = get_gene_onto("4Z0L")
>>> print(gene_info['term'][0])
{'@chainld": 'A’,
'‘@id": 'GO:0001516",
"@structureld': "4Z0L',
‘detail': {'@definition": 'The chemical reactions and pathways resulting '
'in the formation of prostaglandins, any ofa’
'group of biologically active metabolites which '
‘contain a cyclopentane ring.',
'@name': 'prostaglandin biosynthetic process',
'@ontology": 'B',
"@synonyms': 'prostaglandin anabolism, prostaglandin '
‘biosynthesis, prostaglandin formation, '
‘prostaglandin synthesis'} }
out = get_info(pdb_id, url_root =
‘http://www.rcsb.org/pdb/rest/goTerms?structureld=")
out = to_dict(out)
if not out['goTerms']:
return None
out = remove_at_sign(out['goTerms'])
return out

def get_seq_cluster(pdb_id_chain):
"""Get the sequence cluster of a PDB ID plus a pdb_id plus a chain,

pdb_id_chain : string
A string denoting a 4 character PDB ID plus a one character chain
offset with a dot: XXX X, as in 2F5N.A

out : dict
A dictionary containing the sequence cluster associated with the PDB
entry and chain

Appendix

Examples

>>> sclust = get_seq_cluster(2F5N.A")
=>> print(sclust['pdbChain'][:10])
[{@name": '4PD2.A", '@rank": '1'},
{'@name": '3UG6P.A", '@rank’: 2},
{'@name': '4PCZ A', '@rank": '3'},
{'@name": '3GPU.A", '@rank: '4'},
{'@name": '3JR5.A’, '@rank’: '5'},
{@name": '3SAU.A', '@rank': '6'},
{'@name": '3GQ4.A", '@rank:'7'},
{'@name": 'IR2Z A’, '@rank’: '8'},
{'@name": '3UGE.A", '@rank": '9'},
{@name": '2XZF A', '@rank": '10'}]

url_root = 'http://www.rcsb.org/pdb/rest'sequenceCluster?structureld="
out = get_info(pdb_id_chain, url_root = url_root)

out = to_dict(out)

return remove_at_sign(out['sequenceCluster'])

def get_blast(pdb_id, chain_id="A"):
Return BLAST search results for a given PDB ID
The key of the output dict())that outputs the full search results is
'BlastOutput_iterations’

To get a list of just the results without the metadata of the search use:
hits = full_results['BlastOutput_iterations'][Iteration']['Tteration_hits']['Hit']

Parameters
pdb_id : string
A 4 character string giving a pdb entry of interest

chain_id : string
A single character designating the chain ID of interest

out : dict()
A nested dict() consisting of the BLAST search results and all associated
metadata
If vou just want the hits, look under four levels of keys:
results[BlastOutput_iterations']['Iteration']['Tteration_hits']["Hit']

Appendix

Examples

>>> blast_results = get_blast(2F5N’, chain_i1d='A")

>>> just_hits =
blast_results['BlastOutput_iterations'][Tteration'][Iteration_hits']['Hit']

=== print(just_hits[50]['Hit_hsps'][Hsp'][Hsp_hseq])

PELPEVETVRRELEKRIVGQKIISIEATYPRMVL--
TGFEQLKKELTGKTIQGISRRGKYLIFEIGDDFRLISHLRMEGKYRLATLDAP
REKHDHL

TMKFADG-
QLIYADVRKFGTWELISTDQVLPYFLKKKIGPEPTYEDFDEKLFREKLRKSTK
KIKPYLLEQTLVAGLGNIYVDEVLWLAKIHPEKET

NQLIESSIHLLHDSIIEILQKAIKLGGSSIRTY-
SALGSTGKMQNELQVYGKTGEKCSRCGAEIQKIKVAGRGTHFCPVCQQ

raw_results = get_raw_blast(pdb_id, output_form="XML', chain_id=chain_id)

out = xmltodict.parse(raw_results, process_namespaces=True)
out = to_dict(out)

out = out[BlastOutput']

return out

def get_pfam(pdb_id):
"""Return PFAM annotations of given PDB_ID

Parameters

pdb_id : string
A 4 character string giving a pdb entry of interest

out : dict
A dictionary containing the PFAM annotations for the specified PDB ID

Examples

>>> pfam_info = get_pfam("2LME")

=== print(pfam_info)

{'pfamHit": {'@pfamAcc’: 'PF03895.10", '@pfamName': "YadA_anchor’,
'@structureld: 2LME', '@pdbResNumEnd": '105", '@pdbResNumStart': '28',

75

76 Appendix

‘@pfamDesc': "YadA-like C-terminal region’, '@eValue": '5.0E-22', '@chainld": 'A'} }
out = get_info(pdb_id, url_root =
‘http://www.resb.org/pdb/resthmmer?structureld=")
out = to_dict(out)
if not out['hmmer3']:
return dict()
return remove_at_sign(out['hmmer3'])

def get_clusters(pdb_id):
"""Return cluster related web services of given PDB_ID

Parameters

pdb_id : string
A 4 character string giving a pdb entry of interest

out : dict
A dictionary containing the representative clusters for the specified PDB ID

Examples

>>> clusts = get_clusters('4hhb A")

>>> print(clusts)

{'pdbChain": {'@name': '2W72.A'}}

out = get_info(pdb_id, url_root=
‘http://www.resb.org/pdb/rest/representatives ?structureld=")

out = to_dict(out)
return remove_at_sign(out['representatives'])

def find_results_gen(search_term, field="title"):

Return a generator of the results returned by a search of
the protein data bank. This generator is used internally.

search_term : str
The search keyword

Appendix 77

field : str
The type of information to record about each entry

Examples

>>> result_gen = find_results_gen('bleb")

>>> pprint.pprint([item for item in result_gen][:5])

[MYOSIN II DICTYOSTELIUM DISCOIDEUM MOTOR DOMAIN $456Y
BOUND WITH MGADP-BEFX',

MYOSIN II DICTYOSTELIUM DISCOIDEUM MOTOR DOMAIN $436Y
BOUND WITH MGADP-ALF4',

DICTYOSTELIUM DISCOIDEUM MYOSIN II MOTOR DOMAIN S456E
WITH BOUND MGADP-BEFX',

'MYOSIN II DICTYOSTELIUM DISCOIDEUM MOTOR DOMAIN S456E
BOUND WITH MGADP-ALF4',

'The structural basis of blebbistatin inhibition and specificity for myosin '

]

"

scan_params = make_query(search_term, quervtype='"AdvancedKeywordQuery")
search_result_ids = do_search(scan_params)

all_titles =[]
for pdb_result in search_result_ids:
result= describe_pdb(pdb_result)
if field in result keys():
yield result[field]

def parse_results_gen(search_term, field="title’, max_results = 100, sleep_time=1):

"

Query the PDB with a search term and field while respecting the query frequency
limitations of the API.

search_term : str
The search keyword

field : str
The type of information to record about each entry

max_results : int
The maximum number of results to search through when
determining the top results

sleep_time : float
Time (in seconds) to wait between requests. If this number is too small
the API will stop working, but it appears to vary among different systems

78 Appendix

all_data_raw : list of str

"

if max_results*sleep_time > 30:
warnings.warn("Because of API limitations, this function!
will take at least " + str(max_results*sleep_time) + " seconds to return results.\
If vou need greater speed, try modifying the optional argument sleep_time=1,
(although \
this may cause the search to time out)")

all data_raw = find_results_gen(search_term, field=field)
all_data =list()
while len(all_data) < max_results:

all data.append(all_data_raw send(None))

time sleep(sleep_time)|

return all_data

def find_papers(search_term, **kwargs):

Return an ordered list of the top papers returned by a kevword search of
the RCSB PDB

Parameters

search_term : str
The search keyword

max_results : int
The maximum number of results to return

all_papers : list of strings
A descending-order list containing the top papers associated with
the search term in the PDB

>>> matching_papers = find_papers('crispr’,max_results=3)
>>> print(matching_papers)

Appendix 79

['Crystal structure of a CRISPR-associated protein from thermus thermophilus',

'CRYSTAL STRUCTURE OF HYPOTHETICAL PROTEIN $S01404 FROM
SULFOLOBUS SOLFATARICUS P2',

NMR solution structure of a CRISPR repeat binding protein']

m

all_papers = parse_results_gen(search_term, field="title', **kwargs)
return remove_dupes(all_papers)

def find_authors(search_term, **kwargs):
"Return an ordered list of the top authors returned by a keyword search of
the RCSB PDB

This function is based on the number of unique PDB entries a given author has
his or her name associated with, and not author order or the ranking of the
entry in the keyword search results. So if an author tends to publish on topics
related to the search_term a lot, even if those papers are not the best match for
the exact search, he or she will have priority in this function over an author
who wrote the one paper that is most relevant to the search term. For the latter
option, just do a standard keyword search using do_search.

Parameters

search_term : str
The search keyword

max_results : int

The maximum number of results to return

>>> top_authors = find_authors(‘crispr’;max_results=100)
>>> print(top_authors[:10])
[Doudna, J.A., 'Tinek, M., 'Ke, A", 'Li, H, Nam, K.H.]

all_individuals = parse_results_gen(search_term, field="citation_authors’,
**kwargs)

full_author_list =[]
for individual in all_individuals:

Appendix

individual = individual.replace(’..", "..'
author_list_clean = [x.strip() for x in individual split(’;")]
full author_list+=author list clean

out = list(chain from_iterable(repeat(ii, c) for ii,c in
Counter(full_author_list).most_common()))

return remove_dupes(out)

def find_dates(search_term, **kwargs):
Return an ordered list of the PDB submission dates returned by a
keyword search of the RCSB PDB. This can be used to assess the
popularity of a gievne keyvword or topic

Parameters

search_term : str
The search keyword

max_results : int
The maximum number of results to return

all_dates : list of str
A list of calendar strings associated with the search term, these can
be converted directly into time or datetime objects

"

all_dates = parse_results_gen(search_term, field='deposition_date’, **kwargs)
return all_dates

def list_taxa(pdb_list, sleep_time=.1):
"'Given a list of PDB IDs, look up their associated species

This function digs through the search results returned
by the get_all_info() function and returns any information on
taxonomy included within the description.

The PDB website description of each entry includes the name
of the species (and sometimes details of organ or body part)
for each protein structure sample.

Parameters

Appendix 81

pdb_list : list of str
List of PDB IDs

sleep_time : float
Time (in seconds) to wait between requests. If this number is too small
the API will stop working, but it appears to vary among different systems

Returns

taxa : list of str
A list of the names or classifictions of species
associated with entries

Examples

>>% crispr_query = make_query('crispr’)
>>> crispr_results = do_search(crispr_gquery)
>>> print(list_taxa(crispr_results[:10]))

[Thermus thermophilus’,

'Sulfolobus solfataricus P2,
‘Hyperthermus butylicus DSM 5456,
‘unidentified phage',

'Sulfolobus solfataricus P2',
'Pseudomonas aeruginosa UCBPP-PA14',
'Pseudomonas aeruginosa UCBPP-PA14',
'Pseudomonas aeruginosa UCBPP-PA14,
'Sulfolobus solfataricus’,

'Thermus thermophilus HB8']

"

if len(pdb_list)*sleep_time > 30:
warnings.warn("Because of API limitations, this function\
will take at least " + str(len(pdb_list)*sleep_time) + " seconds to return results.\
If vou need greater speed, try modifying the optional argument sleep_time=.1,
(although '
this may cause the search to time out)")

taxa=]

for pdb_id in pdb_list:
all_info = get_all_info(pdb_id)
species_results = walk_nested_dict(all_info, 'Taxonomy',
maxdepth=25 outputs=[])
first_result = walk_nested_dict(species_results,'@name’ outputs=[])
if first_result:
taxa.append(first_result[-1])

82 Appendix

else:
taxa.append('Unknown')

time.sleep(sleep_time)
return taxa

def list_types(pdb_list, sleep_time=.1):
"Given a list of PDB IDs, look up their associated structure tvpe

pdb_list : list of str
List of PDB IDs

sleep_time : float
Time (in seconds) to wait between requests. If this number is too small
the API will stop working, but it appears to vary among different systems

infotypes : list of str
A list of the structure types associated with each PDB
in the list. For many entries in the RCSB PDB, this defaults
to 'protein’

Examples

>>> crispr_query = make_query('crispr’)

>>> crispr_results = do_search(crispr_query)
>>> print(list_types(crispr_results[:5]))
['protein’, 'protein’, ‘protein’, ‘protein’, 'protein’]

m

if len(pdb_list)*sleep_time > 30:
warnings.warn("Because of API limitations, this function\
will take at least " + str(len(pdb_list)*sleep_time) + " seconds to return results.\
If you need greater speed, try modifying the optional argument sleep_time=.1,
(although '
this may cause the search to time out)")

infotypes =[]
for pdb_id in pdb_list:
all_info = get_all_info(pdb_id)
type_results = walk_nested_dict(all_info, '@type', maxdepth=25, outputs=[])

if type_results:
infotypes.append(type_results[-1])
else:
infotypes.append('Unknown')
time.sleep(sleep_time)

return infotypes

Helper Functions

def to_dict(odict):
"Convert OrderedDict to dict

Takes a nested, OrderedDict() object and outputs a
normal dictionary of the lowest-level key:val pairs

Parameters

odict : OrderedDict

Returns

out : dict

A dictionary corresponding to the flattened form of
the input OrderedDict

out = loads(dumps(odict))
return out

def remove_at_sign(kk):
"Remove the '@' character from the beginning of key names in a dict()

Parameters

kk : dict
A dictionary containing keys with the @ character
(this pops up a lot in converted XML)

Returns

83

Appendix

kk : dict (modified in place)
A dictionary where the @ character has been removed

tagged_keys = [thing for thing in kk kevs() if thing_ startswith('@")]
for tag_key in tagged_keys:
kk[tag_key[1:]] = kk.pop(tag_key)

return kk

def remove_dupes(list_with_dupes):
"Remove duplicate entries from a list while preserving order

This function uses Python's standard equivalence testing methods in

order to determine if two elements of a list are identical. So if in the list [a,b,c]
the condition a == b is True, then regardless of whether a and b are strings, ints,
or other, then b will be removed from the list: [a, c]

Parameters

list_with_dupes : list
A list containing duplicate elements

Returns

out : list
The list with the duplicate entries removed by the order preserved

Examples

>>>a=[1324.2]

>>> print(remove_dupes(a))

[1,3,2.4]

visited = set()

visited_add = visited.add

out = [entry for entry in list_with_dupes if not (entry in visited or
visited_add(entry))]

return out

def walk nested dict(my_result, term, outputs=[], depth=0, maxdepth=25):
For a nested dictionary that may itself comprise lists of
dictionaries of unknown length, determine if a key is anywhere
in any of the dictionaries using a depth-first search

Appendix

Parameters

my_result : dict
A nested dict containing lists, dicts, and other objects as vals

term : str
The name of the key stored somewhere in the tree

maxdepth : int
The maximum depth to search the results tree

depth : int
The depth of the search so far.
Users don't usually access this.

outputs : list
All of the positive search results collected so far.
Users don't usually access this.

outputs : list
All of the search results.

if depth > maxdepth:
warnings. warn('Maximum recursion depth exceeded. Returned None for the
search results,'+
' try increasing the maxdepth keyword argument.’)
return None

depth = depth + 1

if type(my_result)==dict:
if term in my_result.keys():
outputs.append(my_result[term])

else:
new_results = list(my_result.values())
walk_nested_dict(new_results, term, outputs=outputs,
depth=depth. maxdepth=maxdepth)

elif type(my_result)==list:
for item in my_result:
walk_nested_dict(item, term, outputs=outputs,
depth=depth, maxdepth=maxdepth)

85

86

else:
pass
dead leaf

this conditional may not be necessary
if outputs:

return outputs
else:

return None

Appendix

Bibliography

10.

11.

12.

13.

14.

S. Bryson, D. Kenwright, M. Cox, D. Ellsworth, R. Haimes, Visually exploring gigabyte
data sets in real time. Commun. ACM 42(8), 82-90 (1999)

P. Lyman, H.R. Varian, How Much Information. University of California at Berkeley, 2017
(2000) (Online). Available: http://www?2.sims.berkeley.edu/research/projects/how-much-
info/

S. Sicular, Gartner’s Big Data Definition Consists of Three Parts, Not to Be Confused with
Three “V’s, Forbes, 2013. Available: http://www.forbes.com/sites/gartnergroup/2013/03/
27/gartners-big-data-definition-consists-of-three-parts-not-to-be-confused-with-three-vs/

Y. Demchenko, P. Grosso, C. de Laat, P. Membrey, Addressing big data issues in scientific
data infrastructure, in 2013 International Conference on Collaboration Technologies and
Systems (CTS), San Diego, CA, 2013, pp. 48-55

A. Katal, M. Wazid, R.H. Goudar, Big data: issues, challenges, tools and good practices, in
2013 Sixth International Conference on Contemporary Computing (IC3) 2013, pp. 404—409
R. Agrawal, Big data and its application, in 2014 Conference on IT in Business, Industry and
Government (CSIBIG), Indore, 2014, p. 1

C. Anderson, The end of theory: the data deluge makes the scientific method obsolete. Wired
Mag., 1607 (2008)

J. Gueyoung, N. Gnanasambandam, T. Mukherjee, Synchronous parallel processing of
big-data analytics services to optimize performance in federated clouds, in [EEE 5th
International Conference on Cloud Computing (CLOUD), 2012, pp. 811-818

A. Rajpurohit, Big data for business managers—bridging the gap between potential and
value, in 2013 IEEE International Conference on Big Data, Silicon Valley, CA, 2013,
pp- 29-31

A. Vera-Baquero, R. Colomo-Palacios, O. Molloy, Business process analytics using a big
data approach. IT Prof. 15(6), 29-35 (2013)

M. Bada, L. Hunter, Enrichment of OBO ontologies. J. Biomed. Inform. 40(3), 300-315
(2007)

E. Camon, M. Magrane, D. Barrell, V. Lee, E. Dimmer, J. Maslen et al., The gene ontology
annotation (GOA) database: sharing knowledge in Uniprot with gene ontology. Nucleic
Acids Res 32, D262-D266 (2004)

P. Buneman, S.B. Davidson, K. Hart, G.C. Overton, L. Wong, A data transformation system
for biological data sources, in Proceedings of the 21th International Conference on Very
Large Data Bases, 1995, pp. 158-169

E. Pennisi, Genome data shake tree of life. Science 280(5364), 672-674 (1998)

© Springer Nature Switzerland AG 2019 87
C. Y. Cho et al., Large Scale Data Analytics,

Studies in Computational Intelligence 806,

https://doi.org/10.1007/978-3-030-03892-2

http://www2.sims.berkeley.edu/research/projects/how-much-info/
http://www2.sims.berkeley.edu/research/projects/how-much-info/
http://www.forbes.com/sites/gartnergroup/2013/03/27/gartners-big-data-definition-consists-of-three-parts-not-to-be-confused-with-three-vs/
http://www.forbes.com/sites/gartnergroup/2013/03/27/gartners-big-data-definition-consists-of-three-parts-not-to-be-confused-with-three-vs/
https://doi.org/10.<HypSlash>1007/�978-�3-�030-�03892-�2</HypSlash>

88

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

Bibliography

A.S. Sidhu, M. Bellgard, Protein data integration problem, in Biomedical Data and
Applications, ed. by A.S. Sidhu, T.S. Dillon (Springer, Berlin, 2009), pp. 55-69

Z. Lacroix, Issues to address while designing a biological information system, in
Bioinformatics: Managing Scientific Data, ed. by Z. Lacroix, T. Critchlow. The Morgan
Kaufmann Series in Multimedia Information and Systems, 2003, pp. 75-108

A. Kadadi, R. Agrawal, C. Nyamful, R. Atiq, Challenges of data integration and
interoperability in big data, in 2014 IEEE International Conference on Big Data (Big
Data), Washington, DC, 2014, pp. 38-40

K. Baclawski, M. Kokar, P. Kogut, L. Hart, J. Smith, W. Holmes, III et al., Extending UML
to support ontology engineering for the semantic web, in <KUML> 2001—The Unified
Modeling Language. Modeling Languages, Concepts, and Tools, vol. 2185, ed. by M.
Gogolla, C. Kobryn (Springer, Berlin, 2001), pp. 342-360

A. Doan, A.Y. Halevy, Semantic integration research in the database community: a brief
survey. Al Mag. 26, 83 (2005)

T.R. Gruber, A translation approach to portable ontology specifications. Knowl. Acquis. 5
(2), 199-220 (1993)

A.S. Sidhu, M. Bellgard, T.S. Dillon, Classification of information about proteins, in
Bioinformatics: Tools and Applications, ed. by D. Edwards, J. Stajich, D. Hansen (Springer,
New York, 2009), pp. 243-258

M. Uschold, M. King, Towards a methodology for building ontologies. Workshop on Basic
Ontological Issues in Knowledge Sharing Held in Conjunction with IJCAI 1995 (Morgan
Kaufmann, 1995)

M. Uschold, M. Gruninger, Ontologies: principles methods and applications. Knowl. Eng.
Rev. 11(2), 93-155 (1996)

M. Uschold, M. King, S. Morale, Y. Zorgios, The enterprise ontology. Knowl. Eng. Rev. 13
(1), 31-89 (1998)

M. Gruninger, M.S. Fox, Methodology for design and evaluation of ontologies. Workshop
on Basic Ontological Issues in Knowledge Sharing Held in Conjunction with IJCAI 1995,
Montreal, Canada (Morgan Kaufmann, 1995)

S. Staab, R. Studer, H.P. Schnurr, Y. Sure, Knowledge processes and ontologies. IEEE Intell.
Syst. 16(1), 26-34 (2001)

M. Genesereth, Knowledge interchange format, in Second International Conference on
Principles of Knowledge Representation and Reasoning, Cambridge (Morgan Kaufmann,
1991)

M. Genesereth, R. Fikes, Knowledge Interchange Format Version 3 Reference Manual
(Stanford University Logic Group, Stanford, 1992)

Ontoweb, A survey on methodologies for developing, maintaining, evaluating and
reengineering ontologies, in Deliverable 1.4 of OntoWeb Project, ed. by M.
Fernandez-Lopez, Karlsruhe, Germany, AIFB Germany & VUB STAR Lab (2002).
Available: http://www.ontoweb.org/About/Deliverables/index.html

G. Schreiber, H. Akkermans, A. Anjewierden, R. Dehoog, N. Shadbolt, W. Vandevelde, B.
Wielinga, Knowledge Engineering and Management: The Common KADS Methodology
(MIT Press, Cambridge, 2000)

D.L. McGuinness, F. Harmelen (eds.), W3C-OWL, OWL web ontology language overview,
in W3C Recommendation 10 February 2004, McGuinness. World Wide Web Consortium
(2004)

N. Arch-int, S. Arch-int, Semantic information integration for electronic patient records
using ontology and web services model, in 2011 International Conference on Information
Science and Applications, Jeju Island, 2011, pp. 1-7

J. Carroll, I. Dickinson, C. Dollin, D. Reynolds, A. Seaborne, K. Wilkinson, Jena:
implementing the semantic web recommendations, in Proceedings of the 13th World Wide
Web Conference, New York City, USA, pp. 74-83, 17-22 May 2004

http://www.ontoweb.org/About/Deliverables/index.html

Bibliography 89

34.

35.

36.

37.

38.

39.

40.

41.

X. Liu, C. Hu, J. Huang, F. Liu, OPSDS: a semantic data integration and service system
based on domain ontology, in 2016 IEEE First International Conference on Data Science in
Cyberspace (DSC), Changsha, 2016, pp. 302-306

W. Yunxiao, Z. Xuecheng, The research of multi-source heterogeneous data integration
based on LINQ, in 2012 International Conference on Computer Science and Electronics
Engineering (ICCSEE), 2012, pp. 147-150

Querying Across Relationships (LINQ to SQL), Microsoft, 2017 (Online). Available: https://
msdn.microsoft.com/en-us/library/vstudio/bb386932(v=vs.100).aspx

What is Python? Executive Summary, Python.org, 2017 (Online). Available: https://www.
python.org/doc/essays/blurb/

E.J. Qaisar, Introduction to cloud computing for developers: key concepts, the players and
their offerings, in 2012 IEEE TCF Information Technology Professional Conference, Ewing,
NJ, 2012, pp. 1-6

M. Hamdaqa, L. Tahvildari, Cloud computing uncovered: a research landscape. Adv.
Comput., 41-85 (2012)

A. Hejlsberg, M. Torgersen, The .NET standard query operators, Microsoft, 2017 (Online).
Available: http://msdn.microsoft.com/en-us/library/bb394939.aspx

W. Gilpin, A python API for the RCSB protein data bank (PDB), Github, 2016 (Online).
Available: https://github.com/williamgilpin/pypdb

https://msdn.microsoft.com/en-us/library/vstudio/bb386932(v=vs.100).aspx
https://msdn.microsoft.com/en-us/library/vstudio/bb386932(v=vs.100).aspx
https://www.python.org/doc/essays/blurb/
https://www.python.org/doc/essays/blurb/
http://msdn.microsoft.com/en-us/library/bb394939.aspx
https://github.com/williamgilpin/pypdb

	Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Project Overview
	1.2 Research Background
	1.3 Problem Statement
	1.4 Objective
	1.5 Outline

	2 Background
	2.1 Literature Reviews
	2.1.1 Process of Life Science Discovery
	2.1.2 The Biological Data Nature
	2.1.3 Constant Evolution of a Domain
	2.1.3.1 Traditional Database Management
	2.1.3.2 The Fusion of Scientific Data
	2.1.3.3 Differences of Structured and Semi-structured Data

	2.1.4 Data Integration Challenges
	2.1.5 Semantic Integration Challenges
	2.1.6 Biomedical Ontologies
	2.1.6.1 Biomedical Ontologies Open Issues

	2.1.7 Creation of Ontology Methodologies
	2.1.7.1 The Creation of Protein Ontology with On-To-Knowledge Methodology

	2.1.8 Ontology-Based Approach for Semantic Integration

	3 Large Scale Data Analytics
	3.1 Language Integrated Query
	3.2 Cloud Computing as a Platform
	3.3 Algebraic Operators for Biomedical Ontologies
	3.3.1 Select Operator
	3.3.2 Union Operator
	3.3.3 Intersection Operator
	3.3.4 Except Operator

	4 Query Framework
	4.1 Functions for Querying RCSB Protein Data Bank (PDB)
	4.1.1 Make Query Function
	4.1.2 Do Search Function
	4.1.3 Do Protsym Search Function
	4.1.4 Get All Function

	4.2 Functions for Looking up Information Given PDB ID
	4.2.1 Get Info Function
	4.2.2 Get PDB File Function
	4.2.3 Get All Info Function
	4.2.4 Get Raw Blast Function
	4.2.5 Parse Blast Function
	4.2.6 Get Blast Wrapper Function
	4.2.7 Describe PDB Function
	4.2.8 Get Entity Info Function
	4.2.9 Describe Chemical Function
	4.2.10 Get Ligands Function
	4.2.11 Get Gene Ontology Function
	4.2.12 Get Sequence Cluster Function
	4.2.13 Get Blast Function
	4.2.14 Get PFAM Function
	4.2.15 Get Clusters Function
	4.2.16 Find Results Generator Function
	4.2.17 Parse Results Generator Function
	4.2.18 Find Papers Function
	4.2.19 Find Authors Function
	4.2.20 Find Dates Function
	4.2.21 List Taxonomy Function
	4.2.22 List Types Function

	4.3 Functions for Querying Information with PDB ID
	4.3.1 To Dictionary Function
	4.3.2 Remove at Sign Function
	4.3.3 Remove Duplicates Function
	4.3.4 Walk Nested Dictionary Function

	5 Results and Discussion
	5.1 Query Web Portal
	5.2 Summary

	6 Conclusion and Future Works
	6.1 Conclusion
	6.2 Limitations
	6.3 Future Works

	Appendix
	Bibliography

