
David Dossot
John D’Emic

M A N N I N G

www.allitebooks.com

http://www.allitebooks.org

Mule in Action
www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Mule in Action
DAVID DOSSOT

 JOHN D’EMIC

M A N N I N G
Greenwich

(74° w. long.)
www.allitebooks.com

http://www.allitebooks.org

For online information and ordering of this and other Manning books, please visit
www.manning.com. The publisher offers discounts on this book when ordered in quantity.
For more information, please contact

Special Sales Department
Manning Publications Co.
Sound View Court 3B fax: (609) 877-8256
Greenwick, CT 06830 email: orders@manning.com

©2010 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by means electronic, mechanical, photocopying, or otherwise, without prior written
permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial caps
or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books we publish printed on acid-free paper, and we exert our best efforts to that end.
Recognizing also our responsibility to conserve the resources of our planet, Manning books
are printed on paper that is at least 15 percent recycled and processed without the use of
elemental chlorine.

Development editor: Jeff Bleiel
Copyeditor: Benjamin Berg

Manning Publications Co. Proofreader: Katie Tennant
Sound View Court 3B Typesetter: Dottie Marsico
Greenwich, CT 06830 Cover designer: Marija Tudor

ISBN 978-1-933988-96-2
Printed in the United States of America
1 2 3 4 5 6 7 8 9 10 – MAL – 14 13 12 11 10 09
www.allitebooks.com

http://www.allitebooks.org

 We dedicate this book to those
who are tired of integration donkey work.

Your Mule has arrived!

brief contents
PART 1 CORE MULE..1

1 ■ Discovering Mule 3

2 ■ Configuring Mule 21

3 ■ Sending and receiving data with Mule 39

4 ■ Routing data with Mule 82

5 ■ Transforming data with Mule 108

6 ■ Working with components 139

PART 2 RUNNING MULE..165

7 ■ Deploying Mule 167

8 ■ Exception handling and logging 196

9 ■ Securing Mule 218

10 ■ Using transactions with Mule 233

11 ■ Monitoring with Mule 251
vii

BRIEF CONTENTSviii
PART 3 TRAVELING FURTHER WITH MULE..............................271

12 ■ Developing and testing with Mule 273

13 ■ Using the Mule API 299

14 ■ Scripting with Mule 327

15 ■ Business process management
and scheduling with Mule 342

16 ■ Tuning Mule 362

contents
foreword xvii
preface xix
acknowledgments xx
about this book xxi
about the authors xxv

PART 1 CORE MULE...1

1 Discovering Mule 3
1.1 ESB, the EAI workhorse 5
1.2 The Mule project 7

History 8 ■ Competition 9

1.3 Mule’s core concepts 10
Model 10 ■ Service 11 ■ Transports 12 ■ Routers 14
Components 15 ■ Request processing 15

1.4 Mule on your machine 18
1.5 Summary 19

2 Configuring Mule 21
2.1 First ride 22
2.2 The Spring XML configuration 25

XML element families 26 ■ Configured values 29 ■ Schema
locations 32
ix

CONTENTSx
2.3 Configuration modularity 34
Independent configurations 34 ■ Inherited configurations 35
Imported configurations 36 ■ Heterogeneous configurations 36

2.4 Summary 37

3 Sending and receiving data with Mule 39
3.1 Understanding connectors and endpoints 40

Configuring connectors 41 ■ Configuring endpoints 43

3.2 Working with files and directories
using the file transport 46
Reading and writing files with file endpoints 47 ■ Using filters on
inbound file endpoints 49 ■ Using STDIO endpoints 50

3.3 Using email 51
Receiving email with the IMAP transport 51 ■ Sending mail using
the SMTP transport 53

3.4 Using web services 55
Consuming and exposing SOAP services with the CXF transport 55
Sending and receiving data using the HTTP transport 61

3.5 Using the JMS transport for asynchronous messaging 64
Sending JMS messages with the JMS outbound endpoint 65
Receiving JMS messages with the JMS inbound endpoint 67
Using selector filters on JMS endpoints 68 ■ Using JMS
synchronously 68

3.6 Receiving and sending files using the FTP transport 70
Receiving files with inbound FTP endpoints 71 ■ Sending files
with outbound FTP endpoints 72

3.7 Working with databases 72
Using a JDBC inbound endpoint to perform queries 73 ■ Using a
JDBC outbound endpoint to perform insertions 75

3.8 Using the XMPP transport 76
Sending Jabber messages on an outbound endpoint 77 ■ Receiving
Jabber messages on an inbound endpoint 77

3.9 The VM transport 78
Sending and receiving messages on VM endpoints 79 ■ Using
persistent queues on VM endpoints 80

3.10 Summary 81

CONTENTS xi
4 Routing data with Mule 82
4.1 Working with routers 83

Inbound routers 84 ■ Outbound routers 85

4.2 Using filters with routers 86
Filtering by type 86 ■ Filtering by textual content 87 ■ Filtering
with expressions 87 ■ Logical filtering 89

4.3 Using inbound routers 89
Being picky with the selective-consumer router 90 ■ Altering
message flow with the forwarding-consumer router 91 ■ Collecting
data with the collection aggregator 92 ■ Insuring atomic delivery
with the idempotent receiver 94 ■ Snooping messages with the
wiretap router 96

4.4 Outbound routing 97
Being picky with the filtering router 97 ■ Sending to multiple
endpoints with the static recipient list 98 ■ Broadcasting messages
with the multicasting router 99 ■ Service composition with the
chaining router 100 ■ Chopping up messages with the message
splitter 102 ■ Using asynchronous-reply routers 104

4.5 Summary 107

5 Transforming data with Mule 108
5.1 Working with transformers 109
5.2 Configuring transformers 111
5.3 Using core transformers 114

 Dealing with bytes 115 ■ Compressing data 117 ■ Modifying
properties 118 ■ Leveraging expression evaluators 120

5.4 Using XML transformers 122
Transforming format with XSL 122 ■ XML object
marshalling 124

5.5 Using JMS transformers 125
Producing JMS messages 125 ■ Consuming JMS messages 126

5.6 Existing transformers in action 127
5.7 Writing custom transformers 131

Transforming payloads 131 ■ Transforming messages 134

5.8 Summary 138

CONTENTSxii
6 Working with components 139
6.1 Massaging messages 142

Building bridges 142 ■ Echoing and logging data 144
Building messages 145

6.2 Invoking remote logic 147
Feeling good with SOAP 148 ■ Taking some REST 149

6.3 Executing business logic 151
Resolving the entry point 152 ■ Configuring the component 156
Handling workload with a pool 158 ■ Reaching out with
composition 160 ■ Internal canonical data model 162

6.4 Summary 163

PART 2 RUNNING MULE...165

7 Deploying Mule 167
7.1 Deployment strategies 168

Standalone server 169 ■ NetBoot server 171 ■ Embedded in a
Java application 172 ■ Embedded in a web application 174
Embedded as a JCA resource 177

7.2 Deployment topologies 178
Satisfying functional needs 179 ■ Dealing with the network 181
Designing for high availability 184 ■ Shooting for fault
tolerance 187

7.3 Deployment management 189
Using development tools 190 ■ Hitchhiking Galaxy 192

7.4 Summary 195

8 Exception handling and logging 196
8.1 Exception strategies 197

Positioning exception strategies 197 ■ Exceptions and
routing 202

8.2 Using retry policies 207
Implementing a retry policy 207 ■ Using the SimpleRetryPolicy
with JMS 209 ■ Starting Mule with failed connectors
using the Common Retry Policies 210

CONTENTS xiii
8.3 Logging with Mule 212
Using log4j with Mule 212 ■ Using Apache Chainsaw
with log4j 213

8.4 Summary 217

9 Securing Mule 218
9.1 Demonstrating Mule security 219
9.2 Using security managers and

understanding security providers 220
Using Spring Security 221 ■ Using JAAS 224

9.3 Securing endpoints with security filters 225
Securing an HTTP endpoint with Spring Security 225
Performing JMS header authentication with JAAS 226
Using password-based payload encryption 228 ■ Decrypting
message payloads with the PGP SecurityFilter 230

9.4 Summary 232

10 Using transactions with Mule 233
10.1 Using transactions with a single resource 235

Using JDBC endpoints transactionally 235 ■ Using JMS
endpoints transactionally 237

10.2 Using multiple resource transactions 242
Spanning multiple resources with JBossTS 243 ■ Using XA
transactions in a container 246

10.3 Managing transactions with exception strategies 247
Handling component exceptions 248 ■ Committing transactions
with an exception strategy 249

10.4 Summary 250

11 Monitoring with Mule 251
11.1 Checking health 252

Checking health at network level 253 ■ Checking health at system
and JVM levels 254 ■ Checking health at JVM and Mule
levels 256

11.2 Tracking activity 260
Using log files 261 ■ Using notifications 264 ■ Periodic data
monitoring 266

CONTENTSxiv
11.3 Building dashboards 268
11.4 Summary 270

PART 3 TRAVELING FURTHER WITH MULE.....................271

12 Developing and testing with Mule 273
12.1 Managing Mule projects with Maven 274

Setting up a Maven project 275 ■ Using the Mule Maven
dependencies 278 ■ Simplifying Maven projects with the Mule
Maven archetypes 282

12.2 Using Mule with an IDE 283
XML editing for Mule 283 ■ Using Mule’s IDE plug-in 285

12.3 Testing with Mule 289
Functional testing 289 ■ Mocking component behavior 292
Load testing with JMeter 294

12.4 Summary 298

13 Using the Mule API 299
13.1 Piggybacking the Mule client 300

Reaching a local Mule 301 ■ Reaching a remote Mule 302
Reaching out with transports 306

13.2 Exploring the Mule context 307
Controlling a Mule instance 309 ■ Reading the
configuration 309 ■ Accessing statistics 309 ■ Looking up the
registry 310

13.3 Digging the Mule event context 311
Prospecting messages 312 ■ Influencing message processing 314

13.4 Keeping abreast with Mule 316
Leveraging lifecycle events 317 ■ Intercepting messages 319
Receiving notifications 322

13.5 Summary 325

14 Scripting with Mule 327
14.1 Using Rhino 328

Implementing component logic with Rhino 328 ■ Using service
interface binding in scripts 331

CONTENTS xv
14.2 Using Groovy 332
Implementing transformers with Groovy 332 ■ Using the Groovy
evaluator 335

14.3 Using Spring 336
Implementing custom Mule functionality using Spring 336
Auto-reloading scripts 339

14.4 Summary 341

15 Business process management and scheduling with Mule 342
15.1 Orchestrating services with Mule 343

Introducing jBPM 346 ■ Using jBPM with Mule 348

15.2 Job scheduling with Mule 356
Using Quartz to schedule jobs 357 ■ Polling endpoints 358
Dispatching jobs 359

15.3 Summary 361

16 Tuning Mule 362
16.1 Understanding thread pools 363

Synchronicity aspects 365 ■ Transport peculiarities 368
Configuration options 370

16.2 Increasing performance 372
Profiler-based investigation 373 ■ Performance advice 377

16.3 Summary 379

appendix A The expression evaluation framework 381
appendix B The Mule community 387

index 391

foreword
Secretly, my wife still harbors a little regret about the lost weekends I spent coding
Mule, but without her, Mule would not have been created and the book you are read-
ing would not exist.

 Like thousands of developers before me, I was continually struggling with the com-
plexities of systems integration. The problem was that the proprietary solutions of the
day—there were no open source alternatives back then—set out to address integra-
tion by adding another piece of complexity to the problem. These products made too
many assumptions about the environment and architecture, masking the ugliness with
doodleware, slick demo applications, and suave salesmen. I used to work long hours
trying to work around integration products rather than being able to leverage them.
This resulted in me venting to the point where my wife firmly suggested that I stop
complaining and do something about it. A Mule was born.

 Six years on, and Mule represents a shift in the way we integrate applications. It
provides a focus on service orientation and assembly instead of building monolithic
application stacks. Integration and service orientation are becoming increasingly
important parts of application developers’ lives, since organizations never throw any-
thing away. Couple this with the rise of SaaS, Web 2.0, and Cloud computing, and we
have an evolution from traditional application development to an assembly model,
where data is served in many forms from many sources inside and outside of our com-
pany firewalls.

 This book provides the first thorough coverage of all aspects of Mule. It provides
examples for everything you will need to do with Mule, from creating and consuming
services to working with various technologies such as JMS, Web Services, and FTP.
Importantly, it covers how to test, deploy, monitor, and tune Mule applications, topics
that can trip up new users due to the flexibility of the Mule platform.
xvii

FOREWORDxviii
 The great yet subtle element of this book is that the authors have captured the
essence of pragmatism that is the founding principle of Mule. The notion that you
can start small and build a complete ESB architecture over time is prevalent. Each
chapter explains the tools provided by Mule for building service-oriented applica-
tions. The chapters cover everything, including configuration basics, message routing,
data transformation, publishing services, and working with the Mule Galaxy registry.

 This publication marks a significant milestone for the Mule project. It demon-
strates that the ideals of open source and community building do work. The authors,
David Dossot and John D’Emic, have been long-time community members and have
made many other contributions to the project; this is a significant and lasting addi-
tion. I can see this book becoming the must-have guide for all current and prospective
Mule users since it walks the reader through all aspects of Mule in the right amount of
detail, focusing on the areas most important for building applications. Read on to
learn how to unlock the power of Mule.

 ROSS MASON
 Creator of Mule

preface
Developers who’ve had to do application integration work know what a daunting
endeavor it can be. While some applications provide facilities for integration, say with
a rich API meant to be externally consumed, many were never designed to be accessed
by other applications. Challenges also abound for applications that are designed for
interoperability from the ground up. Developers will often spend a considerable
amount of time dealing with the plumbing of a particular integration protocol, such
as SOAP or JMS, to allow their applications to play nicely with the outside world.

 Enterprise Integration Patterns, by Gregor Hohpe and Bobby Woolf, quantified these
challenges, attached a language to them, and offered a catalog of solutions. Integra-
tion developers and architects could, if they chose, look at their integration problems
through the lens of these patterns and implement them appropriately. Implementa-
tion, though, is where the work lies. The integration developer, in addition to dealing
with JMS brokers, SOAP stacks, and legacy databases, now has to implement message
routers, data transformers, and protocol adaptors to put the patterns into practice.

 This is where Mule fits in. Mule provides a platform to develop and host your inte-
gration solutions. By implementing many of the patterns described in Enterprise Inte-
gration Patterns, Mule allows you to focus on solving the integration aspects specific to
your domain. Mule frees you from the plumbing of integration, such as implementing
an FTP client or transforming a Java object to XML-just as a web development frame-
work frees you from dealing with the details of raw HTTP requests.

 We have used Mule since 2005 in a variety of contexts, from high-performance
message processing to enterprise integration and orchestration. In these contexts,
we’ve used Mule either as a standalone ESB or as an application-level integration
framework. This is this experience we want to share with you in this book.
xix

acknowledgments
We’d like to thank our development editor at Manning, Jeff Bleiel, who has been a
joy to work with. We’d also like to thank Nicholas Chase for his support with the Doc-
Book writing and editing process. We want to extend further thanks to our reviewers,
whose insights helped us build a better book: Ben Hall, John Griffin, Ara Abraha-
mian, Dimitar Dimitrov, Doug Warren, Fabrice Dewasmes, Jeroen Benckhuijsen, Josh
Devins, Mikel Ayveis, Rick Wagner, Roberto Rojas, Tijs Rademakers, Prasad A. Choda-
varapu, Rama Kanneganti, Davide Piazza, and Celso Gonzalez. Special thanks to Ross
Mason for writing the foreword to our book and to our technical proofreader
Andrew Perepelytsya.

DAVID I’d like to thank my wife and kids for their patience and constant support dur-
ing the tough journey of writing this book. I also want to apologize to everybody who
thought I was writing a book about eMule and was disappointed when they heard
about ESB and integration.

JOHN I would like to thank my wife, Catherine, for supporting (and putting up with)
me while I wrote this book. I also want to thank my family, colleagues, and friends. All
have been continuously supportive throughout this process, through words of encour-
agement and sharing the occasional stiff drink.

xx

about this book
Mule, as the preeminent open source integration platform, provides a framework for
implementing integration solutions. This book will give you the tools for using Mule
effectively. It’s not a user guide: Mule’s comprehensive user guide is available online
already. Instead, it’s a review of Mule’s main moving parts and features put into action
in real-world contexts. After a bit of history and some fundamentals about configuring
Mule, we’ll walk you through the different family of components that you’ll use in
your projects. We’ll then review some runtime concerns such as exception handling,
transactions, security, and monitoring. Then we’ll delve into advanced subjects such as
programming with Mule’s API, business process orchestration, and tuning.

Who should read this book

This book is primarily targeted at Java developers who want to solve integration chal-
lenges using the Mule platform. It’s also useful for architects and managers who’re
evaluating Mule as an integration platform or ESB solution. The majority of Mule’s
functionality can be leveraged without writing a line of Java code. As such, system
administrators who find themselves repeatedly solving the same integration problems
will also find this book useful. Additionally, system administrators tasked with support-
ing Mule instances will find this book, in particular part 2, of value.

How to use this book

The chapters in this book build upon each other. Readers new to Mule are encour-
aged to read the book in this manner. Readers familiar with Mule 1.x will find part 1
particularly useful, as it describes and provides examples of the new configuration syn-
tax in depth. This book isn’t intended as a reference manual-we deliberately chose to
xxi

ABOUT THIS BOOKxxii
provide examples of working Mule configurations over tables of XML Schema ele-
ments. More importantly, providing such a book would duplicate the content already
available at www.mulesource.org, the Mule Javadocs, and the XSD documentation-
where complete reference documentation is available. We’re hoping that reading
Mule in Action gives you the skills to use these resources effectively.

Roadmap

Chapter 1 introduces the origins and history of the Mule project. You’ll also discover
the architecture and terminology of Mule ESB.

 Chapter 2 details the configuration of Mule with XML files and how you can orga-
nize them efficiently.

 Chapter 3 shows you how to use Mule’s transport functionality to move data
around using different mechanisms, like SOAP or JMS.

 Chapter 4 covers Mule’s routing functionality. You’ll see how Mule’s routers let you
control how data enters and leaves your services.

 Chapter 5 describes message transformation within Mule. You’ll learn about com-
monly used transformers and will even create your own.

 Chapter 6 covers service components and how you can leverage them to add cus-
tom behavior in your Mule services.

 Chapter 7 details the different aspects of deploying Mule within your IT landscape,
including deployment topologies.

 Chapter 8 describes how to handle exceptions and logging with Mule. We’ll cover
how exception strategies and logging let you identify and recover from errors.

 Chapter 9 shows you how to secure your Mule applications. You’ll see how Mule’s
security features let you authenticate, authorize, and encrypt messages that pass
through your services.

 Chapter 10 covers Mule’s transactions support. You’ll see how business expecta-
tions can be enforced by applying transactions on your endpoints.

 Chapter 11 details your options in terms of monitoring Mule instances. You will
also learn about best practices for auditing and discover how to build dashboards.

 Chapter 12 shows you how to use Mule’s development tooling support and testing
features to simplify your life.

 Chapter 13 describes the principal members of the API you will use when writing
custom code for your Mule projects.

 Chapter 14 covers Mule’s support for scripting functionality. You’ll see how Rhino
and Groovy can be used to accelerate the development of components, transformers,
and custom routers.

 Chapter 15 covers how the jBPM and Quartz transports can be used for service
orchestration and scheduling.

 Chapter 16 explains the threading model of Mule, how to configure it, and how to
profile and tune the ESB.

ABOUT THIS BOOK xxiii
Code conventions

The code examples in this book are abbreviated in the interest of space. In particular,
namespace declarations in the XML configurations and package import in Java classes
have been omitted. The reader is encouraged to use the source code of the book
when working with the examples. The line length of some of the examples exceeds
that of the page width. In cases like these, the ➥ marker is used to indicate a line has
been wrapped for formatting.

 All source code in listings or in text is in a fixed-width font like this to separate it
from ordinary text. Code annotations accompany many of the listings, highlighting
important concepts. In some cases, numbered bullets link to explanations that follow
the listing.

Source code downloads

The source code of the book is available online from the publisher’s website at
http://www.manning.com/MuleinAction, as well as from this URL: http://code.
google.com/p/muleinaction/.

Software requirements

The required configuration to run these examples follows:

■ JDK 5 or better
■ Maven 2.0.8 or better
■ Mule 2.2.x Community Release

Mule Community Release can be downloaded from this page: http://www.mule-
source.org/display/MULE/Download.

Author Online

The purchase of Mule in Action includes free access to a private web forum run by Man-
ning Publications, where you can make comments about the book, ask technical ques-
tions, and receive help from the authors and from other users. To access the forum
and subscribe to it, point your web browser to http://www.manning.com/MuleinAc-
tion. This page provides information about how to get on the forum once you’re reg-
istered, what kind of help is available, and the rules of conduct on the forum.

 Manning’s commitment to our readers is to provide a venue where a meaningful
dialogue between individual readers and between readers and the authors can take
place. It’s not a commitment to any specific amount of participation on the part of the
authors, whose contribution to the book’s forum remains voluntary (and unpaid). We
suggest you try asking them some challenging questions, lest their interest stray!

 The Author Online forum and the archives of previous discussions will be accessi-
ble from the publisher’s website as long as the book is in print.

http://www.manning.com/MuleinAction
http://www.manning.com/MuleinAction
http://code.google.com/p/muleinaction/
http://www.mulesource.org/display/MULE/Download
http://www.manning.com/MuleinAction
http://www.manning.com/MuleinAction

ABOUT THIS BOOKxxiv
About the cover illustration

The figure on the cover of Mule in Action is captioned “Man and his mule, from the vil-
lage of Brgud in Istria, Croatia.” The illustration is taken from a collection of water-
colors by Nikola Arsenovic, owned by the Ethnographic Museum of Belgrade, Serbia.

 Arsenovic (1823–1885) was a professional tailor with a thriving business in the
northeastern Croatian city of Vukovar. His ambition was to record traditional dress
habits across the territories of Croatia and he set out to do this over a period of two
years in the middle of the nineteenth century. Arsenovic had talent but no artistic
training. His background as a tailor is visible in the quality and the attention to
detail of decoration that these images exhibit. He worked at a time when traditional
clothing still retained age-old forms, but in the decades following his work, the
switch to more modern forms accelerated in these regions. In many cases his water-
colors present the last and the only trace of certain traditional Croatian clothing
styles. Manning obtained complimentary files of scanned images from the Ethno-
graphic Museum of Split.

 The rich variety of Arsenovic’s collection reminds us vividly of how culturally apart
the world’s towns and regions were just 150 years ago. Isolated from each other, peo-
ple spoke different dialects and languages. It was easy to identify where a person lived
and his trade or station in life just by his clothes. Dress codes have changed since then
and the diversity by region, so rich at the time, has faded away. It is now hard to tell
apart the inhabitants of different continents, let alone different towns or regions.

 At a time when it is hard to tell one computer book from another, Manning cele-
brates the inventiveness , the initiative, and the fun of the computer business with
book covers based on the colorful diversity of regional dress customs of long ago,
brought back to life by the pictures from this collection.

about the authors
David Dossot has worked as a software engineer and architect for more than 14 years.
He’s been using Mule since 2005 in a variety of different contexts and is the project
“despot” of the JCR Transport. He’s the project lead of NxBRE, an open source busi-
ness rules engine for the .NET platform (selected for O’Reilly’s Windows Developer
Power Tools). He’s also a judge for the Jolt Product Excellence Awards and has written
several articles for SD magazine. He holds a production systems engineering diploma
from ESSTIN.

 John D’Emic has been working on integration projects in one form or another for
the last 11 years. He’s currently the chief architect at OpSource, Inc., and has been
leveraging Mule in that capacity since 2006. He holds a degree in computer science
from St. John’s University.

xxv

Part 1

Core Mule

Mule is a lightweight event-driven enterprise service bus (ESB) and an
integration platform. As such, it more closely resembles a rich and diverse tool-
box than a shrink-wrapped application. In the first chapter of this book, we’ll
introduce you to its history, overall architecture, and its terminology. Armed
with this basic knowledge, you’ll be able to further delve into the platform.

 In chapter 2, you’ll go through an extensive review of the principles involved
in configuring Mule. You’ll learn what it means and what it takes to configure
Mule, including some tricks to get yourself organized.

 Chapter 3 will be the first chapter dedicated to one of the major moving
parts of Mule: the transports. You’ll discover the main protocols that the plat-
form supports in the context of actual configuration samples.

 A second important feature of Mule is message routing. We’ll explore the
advanced capacities of Mule in this domain in chapter 4.

 Message transformation is a crucial facet of enterprise service buses.
Chapter 5 will allow you to learn how to take advantage of Mule transformers
and how to create new ones.

 Finally, we’ll close this first part with chapter 6, which focuses on compo-
nents, the place where message massage and business logic happens in Mule.

Discovering Mule
Integration happens.
 All it takes is a simple requirement: connect to the inventory application, send

this to the CRM, hook that to the accounting server. All of a sudden, your applica-
tion, which was living a happy digital life in splendid isolation, has to connect to a
system that’s not only remote but also exotic. It speaks a different language, or a
known language but uses a bizarre protocol, or it can only be spoken to at certain
times during the night... in Asia. It goes up and down without notice. Soon, you
start thinking in terms of messages, transformation, or adaptation. Welcome to the
world of integration!

 Nowadays, a standard corporate IT landscape has been shaped by years of soft-
ware evolution and business mergers, which has usually led to a complex panorama
of heterogeneous systems of all ages and natures. Strategic commercial decisions or
critical reorganizations heavily rely on these systems working together as seamlessly

In this chapter
■ Reviewing the challenges of enterprise

integration
■ Origins and history of the Mule project
■ Architecture and terminology of Mule ESB
3

4 CHAPTER 1 Discovering Mule
as possible. The need for application integration is thus a reality that all enterprise
developers will have to deal with during the course of their career. As Michael Nygard
puts it, “Real enterprises are always messier than the enterprise architecture would
ever admit. New technologies never quite fully supplant old ones. A mishmash of inte-
gration technologies will be found, from flat-file transfer with batch processing to pub-
lish/subscribe messaging.”1

 Application integration encompasses all the difficulties that heterogeneity creates
in the world of software, leading to diversity in all the aspects of system communica-
tions and interrelations:

■ Transport—applications can accept input from a variety of means, from the file
system to the network.

■ Data format—speaking the right protocol is only part of the solution, as applica-
tions can use almost any form of representation for the data they exchange.

■ Invocation styles—synchronous, asynchronous, or batch call semantics entail very
different integration strategies.

■ Lifecycles—applications of different origins that serve varied purposes tend to
have disparate development, maintenance, and operational lifecycles.

This book is about Mule, a tool that can help you get over these difficulties. You’ll
learn how to make the most of it so your task of integrating applications will be
focused on solving business problems and not on bothersome low-level concerns.
Before getting down to the nitty-gritty of Mule, we’ll first go through its origins and its
general architecture. This is the main purpose of this first chapter. We’ll also install
Mule on your machine and make sure you can run the examples that accompany this
book. By the end of this chapter, you’ll have acquired the basic knowledge and lingo
required to delve further into the platform.

 Where does Mule come from? To answer this question, we have to travel just a few
years back in time.

 During the past decade, promising new standards such as SOAP2 came to light.
These new standards laid the foundations of interoperable applications by giving
birth to the concept of web services. The normalization of the data model and service
interface representations was a seminal event for the industry, as it began the search
for platform-independent representation of all the characteristics of application com-
munications. Web service technologies opened a lot of possibilities but also brought
new challenges. One challenge is the proliferation of point-to-point communications
across systems, as illustrated in figure 1.1. This proliferation often leads to a spaghetti
plate integration model, with many-to-many relationships between the different appli-
cations. Though the interoperability problem was solved, maintenance was compli-
cated and no governance existed.

1 Release It!, Michael T. Nygard, Pragmatic Bookshelf, March 2007
2 SOAP, originally defined as Simple Object Access Protocol, is a protocol specification for exchanging structured

information in the implementation of web services in computer networks [Wikipedia].

5ESB, the EAI workhorse
When the industry realized that, despite the standardization of protocols, the chal-
lenges of integration were only growing, a new discipline came to life. Its goal was to
foster the creation of tools, platforms, and practices to enable and facilitate applica-
tion integration. The EAI (enterprise application integration) discipline was born, for
better or worse. Indeed, as the industry was learning its way through these new con-
cepts, many errors were made, leading to the impressive failure rate of 70 percent for
all EAI projects in 2003.3 While solving integration challenges, EAI brought a new
wealth of complexities, including the need for heavy processes and extensive gover-
nance to attempt to manage the impact inherent in the invasiveness of most integra-
tion patterns. Figure 1.2 shows a typical broker-centric integration pattern.

Something better was needed. And it needed to be simpler and cleaner.

1.1 ESB, the EAI workhorse
Enterprise architects started to dream of a platform that would allow them to over-
come the difficulties of application integration. This platform would foster better
practices by encouraging loosely coupled integration and at the same time discourag-
ing many-to-many connectivity. Moreover, this platform wouldn’t require any change
from existing applications. Like C3P0, it would be able to speak all languages and

3 http://www.ebizq.net/topics/int_sbp/features/3463.html

Figure 1.1 Point-to-point integration approach:
everyone must speak the language of everyone.

Application

Broker
stub

Application

Broker
stub

Application

Broker
stub

Application

Broker
stub

Integrat ion
broker

Figure 1.2 Application-invasive integration
broker approach: everyone must speak the
language of the broker.

http://www.ebizq.net/topics/int_sbp/features/3463.html

6 CHAPTER 1 Discovering Mule
make dissembling systems talk with each other through its capacity to translate from
one form of communication to another. Acting like the bus at the core of computer
architecture, this middleware would become the backbone of enterprise messaging, if
not, according to some, the pillar of the service-oriented architecture (SOA) redesign
that enterprises were going through. As illustrated in figure 1.3, the bus would play a
central role without invading the privacy of all the applications around it.

To solve the issues caused by the centralized nature of previous integration platforms,
this bus was designed to be distributable in several brokers deployed at strategic loca-
tions across a corporate network, as shown in figure 1.4. On top of solving the afore-
mentioned integration issues, this bus would offer extra value-added services, like
intelligent routing of messages between systems, centralized security enforcement, or
quality of service measurement. The concepts defining the enterprise service bus
(ESB) were established and vendors started to build their solutions, providing enter-
prise developers with a new breed of integration tooling.

This book widely assumes that you’re knowledgeable of these concepts. Should you
need more in-depth coverage of the subject, a lot of literature is available about ESBs
and their use cases, benefits, and disadvantages. There’s also a lively controversy about
the role such tools should or shouldn’t play in SOA. As always, there’s no silver bullet:
an ESB should be envisioned and deployed in a pragmatic and progressive manner. In
his originative book Enterprise Service Bus, industry pundit David Chappell summarized

Figure 1.3 Enterprise service bus approach: the
bus speaks the language of everyone.

Figure 1.4 ESB nodes distributed at
strategic network locations

7The Mule project
this necessity by saying, “An ESB provides a highly distributed approach to integration,
with unique capabilities that allow individual departments or business units to build
out their integration projects in incremental, digestible chunks.”4

 Vendors were prompt to deliver their first ESB solutions, mostly because they
reused parts of their existing application servers and message-oriented middlewares.
Hence, the solutions they came up with, though robust, feature-rich, and thoroughly
documented, were often hard to deploy and seldom easy to employ. Developers had
to jump through hoops before having their first example running, let alone the
embryo of the integration solution they needed.

1.2 The Mule project
The Mule project was started with the motivation to make things simpler for program-
mers and give them a chance to hit the ground running. Pragmatism aside, another
driver for the project was the need to build a lightweight and modular solution that
could scale from an application-level messaging framework to an enterprise-wide
highly distributable object broker.

 Mule’s core was designed as an event-driven framework combined with a unified
representation of messages, expandable with pluggable modules. These modules
would provide support for a wide range of transports or add extra features, such as dis-
tributed transactions, security, or management. Mule was also designed as a program-
matic framework offering programmers the means to graft additional behavior such
as specific message processing or custom data transformation.

 This orientation toward software developers helped Mule to remain focused on its
core goals and carefully avoid entering the philosophical debate about the role of an
ESB in SOA. Moreover, Mule was conceived as an open source project, forcing it to
stick to its mission to deliver a down-to-earth integration framework and not to digress
to less practical or broader concerns. Finally, the strategic decision to develop Mule in
the open allowed contributors to provide patches and improvements, turning this bus
into a solid and proven platform.

4 Enterprise Service Bus, David A. Chappell, O’Reilly, June 2004

What’s in the name?
“After working on a couple of bespoke ESB systems, I found that there was a lot of
infrastructure work to be done before you can really start thinking about implementing
any logic. I regard this infrastructure work as “donkey work” as it needs doing for ev-
ery project. I preferred Mule over Donkey and Ass just didn’t seem right ;-). A Mule is
also commonly referred to as a carrier of load, moving it from one place to another.
The load we specialize in moving is your enterprise information.”

—Ross Mason, CTO & Co-Founder, MuleSource Inc.

8 CHAPTER 1 Discovering Mule
1.2.1 History

Mule publicly started as a SourceForge project in April 2003, and stayed there for 2
years, until it reached its first stable release and moved to CodeHaus. The architec-
tural principles that would define the platform design for the coming years were laid
during this maturation phase. At the core of this design was the Universal Message
Object (UMO) API, a comprehensive yet compact abstraction of all the moving parts
of the ESB. The key idea behind the UMO API was to unify the logic and model repre-
sentations while keeping them isolated from the underlying transports. This paved
the way for building all the required features of the ESB: message routing, data trans-
formation, and protocol adaptation.

 Version 1.0, which was released in April 2005, already contained numerous trans-
ports. This made it immediately appealing for many enterprise developers. Most of
the following releases were focused on debugging, adding new features, and trans-
ports. Improving performance was also a subject of focus. From version 1.3, Mule
started to be built with Maven (see section 12.1) and to be distributed as artifacts
whose dependencies were strictly managed. This improvement simplified the usage of
the platform, both at development and deployment times, as the total number of
libraries a typical integration project will depend on is usually a few dozen.

 A key milestone for the Mule project occurred when MuleSource got incorporated
in 2006, in order “to help support and enable the rapidly growing community using
Mule in mission-critical enterprise applications.”

 When Mule transitioned from version 1 to version 2, it went through a major over-
haul that was mainly driven by the adoption of Spring 2 as its configuration and wiring
framework. Until this major revision, a Mule instance was configured by an ad hoc
parsing engine that was fully responsible for the different components’ instantiation
and lifecycle. Spring was an optional bean container, from which Mule was able to
fetch objects. This was useful, for example, when the default configuration mecha-
nism wasn’t powerful enough to instantiate and configure a specific object.

 It was also possible to fully configure Mule 1 from Spring, but this practice never
really caught on, mainly because of the verbosity and the lack of expressiveness of the
required XML configuration. The introduction of XML Schema-based configuration
in Spring 2 solved both these issues. Specialized XML elements and attributes replaced
generic elements and class references, leading to a more concise and communicative
configuration syntax. The strong typing of attributes defined by XML Schema also pro-
vided type safety to the multiple configuration parameters. Moreover, unless one
needs to configure custom implementations, there are no more class names in the
configuration file.

 This new configuration format is actually the most visible improvement of Mule 2.
But there are other changes that happened, most only visible to advanced users or
transport writers, who are both dependent of the internals of Mule. Though the origi-
nal concepts remained, the previously ubiquitous UMO API has given way to a new set
of restructured APIs. Thanks to the move to Spring, the main manager of Mule, which

9The Mule project
was a monolithic singleton, has been replaced by a lighter context object that can be
injected on demand. This new architecture puts Mule in position to leverage the wide
range of runtime platforms supported by Spring, including OSGI.

1.2.2 Competition

All major JEE vendors (BEA, IBM, Oracle, Sun) have an ESB in their catalog. It’s unre-
markably based on their middleware technologies and is usually at the core of a much
broader SOA product suite. There are also some commercial ESBs that have been built
by vendors not in the field of JEE application servers, like the ones from Progress Soft-
ware, IONA Technologies, and Software AG.

 NOTE Commercial ESBs mainly distinguish themselves from Mule in the follow-
ing aspects:

■ Prescriptive deployment model, whereas Mule supports a wide variety of
deployment strategies (presented in chapter 7).

■ Prescriptive SOA methodology, whereas Mule can embrace the architec-
tural style and SOA practices in place where it’s deployed.

■ Mainly focused on higher-level concerns, whereas Mule deals extensively
with all the details of integration.

■ Strict full-stack web service orientation, whereas Mule’s capacities as an
integration framework open it to all sorts of other protocols.

■ Comprehensive documentation, a subject on which MuleSource has
made huge progress recently.

Mule is, of course, not the only available open source ESB. To name a few, major OSS
actors such as JBoss, Apache, and ObjectWeb provide their own solutions. Spring-
Source also provides an integration framework built on their dependency injection
container. While most of these products use proprietary architecture and configura-
tion, the integration products from the Apache Software Foundation are notably stan-
dard-focused: ServiceMix is based on the Java Business Integration (JBI) specification,
Tuscany follows the standards defined by the Oasis Open Composite Services Archi-
tecture (SCA and SDO), and Synapse has an extensive support of WS-* standards.

 It can be daunting to have to pick up a particular solution while considering all the
available options. For some help with the selection process and a broader view of ESBs
in general and open source ones in particular, you can turn to another book from Man-
ning Publications Co. named Open Source ESBs in Action (Rademakers and Dirksen).

 One way to decide whether a tool is good for you is to get familiar with it and see if
you can wrap your mind around its concepts easily. So read on, as from now until the
end of this chapter we’ll proceed with a first review of Mule’s different moving parts
and how they relate to each other. We’ll introduce Mule’s core concepts only briefly in
this first approach: all the concepts you will learn about in section 1.3 will be covered
in great detail in subsequent chapters.

10 CHAPTER 1 Discovering Mule
1.3 Mule’s core concepts
Now that you’re ready to begin your journey exploring Mule, let’s discover the core
concepts that sit at the heart of this ESB. Any domain has its own lingo. EAI in general
and Mule in particular have one too. If you’re familiar with the book Enterprise Integra-
tion Patterns,5 you’ll quickly realize that a significant part of Mule’s terminology has
been derived from this work. In fact, the core architecture of the platform itself has
been influenced by the concepts laid by Gregor Hohpe and Bobby Woolf in these pat-
terns. If you aren’t familiar with these patterns, we recommend that you spend some
time getting acquainted with them. The table of contents of the companion web site
for the book (http://www.enterpriseintegrationpatterns.com/toc.html) can get
you started with the terminology we’re about to use.

 To guide us in this discovery of Mule, we’ll use a concrete integration case as a con-
text of reference. Whereas we’ll describe each moving part of the ESB, we’ll also pres-
ent what role it would come to play in this context of reference.

 Let’s suppose we have a publication application that accepts only XSL-FO6 as its
input. Moreover, this input should be sent as text messages to a JMS queue. The
authors use an editing tool that generates DocBook7 documents. This tool is only
capable of sending these documents to an HTTP destination. We’re now faced with
the need to translate DocBook to XSL-FO and to adapt the HTTP protocol to JMS. To
solve this, we’ll leverage Mule to both translate the message format from one form to
another and to take care of the protocol mismatch. As illustrated in figure 1.5, we’ll
deploy a Mule service between the authoring tool and the publication application.
The ESB will act as a mediator between them.

 What’s happening inside the big gray box that represents a Mule instance? Let’s
discover how Mule’s internals are coming into play to make this integration happen.

1.3.1 Model

The first logical layer we discover is the model layer. A Mule model represents the run-
time environment that hosts services. It defines the behavior of Mule when processing

5 Enterprise Integration Patterns, Gregor Hohpe, Bobby Woolf, Addison-Wesley Professional, October 2003
6 XSL Formatting Objects, or XSL-FO, is a markup language for XML document formatting.
7 DocBook is a semantic markup language for technical documentation.

DocBook

HTTP POST

XSL-FO

JMS queue

Authoring tool Publication applicationMule ESB

Figure 1.5 Mule ESB acting as a mediator between an authoring tool and a
publication application

http://www.enterpriseintegrationpatterns.com/toc.html

11Mule’s core concepts
requests handled by these services (see section 1.3.6). As represented in figure 1.6, the
model provides services with supporting features, such as exception strategies. It also
provides services with default values that simplify their configuration.

 In our example, the authoring tool doesn’t expect any message back from Mule
(except the acknowledgement of its posting). As far as it’s concerned, it’ll send mes-
sages to Mule in a “fire and forget” mode. Mule itself will send messages to the JMS
queue without expecting any reply from the publication application. Consequently,
the model that the Mule instance would host would establish a runtime environment
optimized for asynchronous processing of messages, as no synchronous reply is
expected anywhere in the overall message processing chain.

1.3.2 Service

A Mule service is composed of all the Mule entities involved in processing particular
requests in predefined manners, as shown in figure 1.7. To come to life, a service is
defined by a specific configuration. This configuration determines the different ele-
ments, from the different layers of responsibility, that will be mobilized to process the
requests that it’ll be open to receive. Depending on the type of input channel it uses,
a service may or may not be publicly accessible outside of the ESB.

 For the time it gets handled by a service, a request is associated with a session
object. As its name suggests, this object carries all the necessary context for the pro-
cessing of a message while it transits through the service.

 In our example, the service would need to act as a bridge between the incoming
HTTP messages and the outgoing JMS messages. Interestingly, the default behavior of

Mode l

Service

Service Service

Service

Exception
listener

Lifecycle
adapter

Service Service
Entry point
resolvers Figure 1.6 A Mule model is the runtime environment

into which services are hosted.

Service

Transport Inbound
router

Component Outbound
router

Transport

Exception
listener

Figure 1.7 A Mule service
mobilizes different moving parts to
process requests.

12 CHAPTER 1 Discovering Mule
a Mule service is to bridge its inbound router to its outbound one. Hence, you’d rely
on this default behavior for the publication application.

1.3.3 Transports

As illustrated by figure 1.8, the transport layer is in charge of receiving or sending
messages. This is why it’s involved with both inbound and outbound communications.

A transport manifests itself in the configuration by the following elements: connec-
tors, endpoints and transformers.
CONNECTOR

A connector is in charge of controlling the usage of a particular protocol. It’s config-
ured with parameters that are specific to this protocol and holds any state that can be
shared with the underlying entities in charge of the actual communications. For
example, a JMS connector is configured with a Connection, which is shared by the dif-
ferent entities in charge of the actual communication.

 These communicating entities will differ depending on whether the connector is
used for listening/polling, reading from, or writing to a particular destination: they
would respectively be message receivers, message requesters, and message dispatch-
ers. Though a connector isn’t part of a service, it contributes these communication
parts to it. Consequently, a service is dependent on one or more connectors for actu-
ally receiving or sending messages.

 In our example, we’d need an HTTP connector and a JMS connector. The HTTP
connector would provide the message receiving infrastructure in the form of a dedi-
cated listener on a particular port. The JMS connector would provide the capacity to
connect to the target JMS provider (through its specific connection factory) and to
handle the dispatch of messages to the desired queue.
ENDPOINT

An endpoint represents the specific usage of a protocol, whether it’s for listening/
polling, reading from (requesting in Mule’s terminology), or writing to a particular tar-
get destination. It hence controls what underlying entities will be used with the con-
nector they depend on. The target destination itself is defined as a URI. Depending on

Transport

Connector

Message
receiver

Message
requester

Message
dispatcher

Endpoint

Endpoint

Endpoint

Exception
listener

Transformers

Figure 1.8 A Mule transport provides all
the ESB elements required for receiving,
sending, and transforming messages for a
particular protocol.

13Mule’s core concepts
the connector, the URI will bear a different meaning; for example, it can represent a
URL or a JMS destination.

 Inbound and outbound endpoints exist in the context of a particular service and
represent the expected entry and exit points for messages, respectively. These end-
points are defined in the inbound and outbound routers. It’s also possible to define
an inbound endpoint in a response router. In that case, the inbound endpoint acts as
a response endpoint where asynchronous replies will be consolidated before the ser-
vice returns its own response. Global endpoints can be considered abstract entities
that get reified only when referenced in the context of a service: as such, they’re a
convenient way to share common configuration attributes.

 In our example, we’d need an HTTP inbound endpoint and a JMS outbound end-
point. The HTTP endpoint would specify the port to open to the incoming HTTP traf-
fic, whereas the JMS one would configure the message publisher for the desired queue.
TRANSFORMER

As its name suggests, a transformer takes care of translating the content of a message
from one form to another. Mule ships with a wealth of general transformers that per-
form simple operations, such as byte-array-to-string-transformer, which builds a
string out of an array of bytes using the relevant encoding. On top of that, each trans-
port contributes its own set of specific transports, for example object-to-jms-
message-transformer, which builds a javax.jms.Message out of any content. It’s
possible to chain transformers to cumulate their effects, as shown in figure 1.9.

Transformers can kick in at different stages while a message transits through a service.
Essentially, inbound transformers come into play when a message enters a service, out-
bound transformers when it leaves, and response transformers when a message is
returned to the initial caller of the service. Transformers are configured in different
ways: globally or locally on endpoints by the user, and implicitly on connectors by the
transport itself (it’s possible to override these implicit transformers, as you’ll see in
section 3.3.1).

NOTE A transport also defines one message adapter. A message adapter is
responsible for extracting all the information available in a particular
request (data, meta information, attachments, and so on) and storing
them in transport-agnostic fashion in a Mule message. See the note in
section 5.1 for more on this.

In our example, we’d need a DocBook to XSL-FO transformer, which will be a generic
xslt-transformer configured with a specific XSL-T stylesheet. This transformer could

Object to
JMS message

Object
to str ing

XSL-T
transformer

byte [] by te [] String JMS text message

Figure 1.9 Transformers can be chained to cumulate their effects.

14 CHAPTER 1 Discovering Mule
be either inbound or outbound, depending of what message format we want to carry
over inside the ESB. We’d also need a transformer to convert the XML message into
JMS on the way out to the publication application. This transformer would in fact be
applied implicitly by the JMS transport itself, without any particular configuration.

1.3.4 Routers

Routers play a crucial role in controlling the trajectory a message will follow when it
transits in Mule. They’re the gatekeepers of the endpoints of a service. In fact, they act
like railroad switches, taking care of keeping messages on the right succession of
tracks so they can reach their intended destinations. Some of these routers play a sim-
ple role and don’t pay much attention to the messages that transit through them. Oth-
ers are more advanced: depending on certain characteristics of a message, they can
decide to switch it to another track. Certain routers go even further and act like the
big classification yards you can see close to major train freight stations: they can split,
sort, or regroup messages based on certain conditions.

 These conditions are mainly enforced by special entities called filters. Filters are a
powerful complement to the routers. Filters provide the brains routers need to make
smart decisions about what to do with messages in transit. Like figure 1.10 suggests,
they can base their filtering decisions on all the characteristics of a message and its
properties. Some filters go as far as deeply analyzing the content of a message for a
particular value on which their outcome will be based. And, of course, you can roll
your own filters.

 The location of a router in a service determines its nature (inbound, outbound, or
response) and the possible roles it could decide to play (pass-through, aggregator, and
so on). Inbound routers are traversed before a message reaches a component, while
outbound ones are reached after a message leaves a component. Response routers
(aka async-reply routers) take care of consolidating asynchronous replies from one or
more endpoint as a unique service response to the inbound request. Mastering the art
of message routing is key to taming this Mule. Throughout this book, you’ll have
numerous occasions to familiarize yourself with routers and filters.

 Coming back to our example, where no particular routing is necessary, the
inbound and outbound routers would be the simplest ones possible. They would be
pass-throughs, giving way to any message that decides to transit through them.

Figure 1.10 A router can
leverage filters to dispatch
messages based on their
properties.

15Mule’s core concepts
1.3.5 Components

Components are the centerpiece of Mule’s services. Each service is organized with a
component at its core and the inbound and outbound routers around it. Components
are used to implement a specific behavior in a service. This behavior can be as simple
as logging messages or can go as far as invoking other services. Components can also
have no behavior at all; in that case they’re pass-through and make the service act as a
bridge between its inbound and outbound routers.

 In essence, a component receives, processes, and returns messages. It’s an object
from which one method will be invoked when a message reaches it.

 In our example, we don’t need any specific behavior from the service component.
As we said in section 1.3.2, we simply need to rely on the bridge that Mule establishes
by default in a service. Hence, we won’t need to define any explicit component: the
implicit bridge that Mule will instantiate will solve our problem efficiently.

 Figure 1.11 summarizes the different Mule elements that you’ve learned about so
far and that we need to use for our example. We’ll further detail this example in
chapter 5.

So far, we’ve focused on discovering Mule’s inners from a static point of view. Let’s
now see what’s happening when a message flows through these different layers.

1.3.6 Request processing

While following the message flow in figure 1.5, you might have noticed that the arrows
between the external applications and Mule are one-way only. This assumes that, not-
withstanding any low-level transport acknowledgment mechanism that might exist,
the caller on the left side of the arrow isn’t interested in the immediate, or synchro-
nous, response to its request. This doesn’t preclude that it might well be interested in
an ulterior, or asynchronous, response that would be coming via another channel.

Inbound router Outbound
pass-through

router

Service

Mode l

HTTP connector

Publ icat ion configurat ion

Outbound endpoint
JMS destination

Implici t
br idge component

Inbound endpoint
HTTP port

JMS connector

XSL
transformer

Figure 1.11 The different Mule moving parts involved in the Publication application configuration

16 CHAPTER 1 Discovering Mule
MESSAGES AND EVENTS

To understand how Mule handles these different situations, it’s important to grasp the
notion of events. You might remember that Mule was introduced as an event-driven
platform. Indeed, the default model (see section 1.3.1) used by Mule for processing
requests is based on the work of Matt Welsh on the definition of a staged event-driven
architecture (SEDA). The following are Welsh’s core concepts of SEDA:8

“SEDA is an acronym for staged event-driven architecture, and decomposes a com-
plex, event-driven application into a set of stages connected by queues. This design
avoids the high overhead associated with thread-based concurrency models, and
decouples event and thread scheduling from application logic. By performing
admission control on each event queue, the service can be well-conditioned to load,
preventing resources from being overcommitted when demand exceeds service
capacity. SEDA employs dynamic control to automatically tune runtime parameters
(such as the scheduling parameters of each stage), as well as to manage load, for
example, by performing adaptive load shedding. Decomposing services into a set of
stages also enables modularity and code reuse, as well as the development of debug-
ging tools for complex event-driven applications.”

When a message transits in Mule, it is in fact an event that’s moved around. This event
carries not only the actual content of the message but also the context in which this
message is processed (see section 13.3). This event context is composed of references
to different objects, including security credentials, if any, the session in which this
request is processed, and the global Mule context, through which all the internals of
the ESB are accessible (see section 13.2).

 A Mule message is composed of different parts:

■ The payload, which is the main data content carried by the message
■ The properties, which contain the meta information much like the header of a

SOAP envelope or the properties of a JMS message
■ Optionally, multiple named attachments, to support the notion of multipart

messages
■ Optionally, an exception payload, which holds any error that occurred during

the processing of the event

In our example, the initial payload of the Mule message will be the data the author-
ing tool would’ve HTTP posted, and the properties would contain any headers the cli-
ent would’ve sent (most probably the usual HTTP suspects: Content-Type and
Content-Length). Throughout the transformation chain, the payload would be
altered from DocBook to XSL-FO, and finally, to become a JMS text message just
before leaving Mule.
STANDARD PROCESSING

By default, an event gets routed in a service from an inbound endpoint to the compo-
nent entry point, via any configured or implicit transformers. After that, the response

8 SEDA, Matt Welsh, http://www.eecs.harvard.edu/~mdw/proj/seda

http://www.eecs.harvard.edu/~mdw/proj/seda
http://www.eecs.harvard.edu/~mdw/proj/seda

17Mule’s core concepts
of the component gets routed to an outbound endpoint, potentially via transformers
as well. Figure 1.12 shows the standard processing of an event in a Mule service.
This default behavior can be altered in different ways:

■ No outbound router is defined—the event won’t travel further than the compo-
nent.

■ Altered routing—the component can programmatically decide not to let the
event reach the configured outbound router and reroute it to another service
(or discard it).

■ Nested routing—the component can send the event to another service, wait for
its response, and then let normal routing happen.

The way the response to the caller of the service will be routed can also vary greatly:

■ No response—if the inbound endpoint is asynchronous, the caller of the service
won’t receive an immediate response when its request is accepted by Mule. In
that scenario, the response of the component won’t be returned to it.

■ Synchronous response—to the contrary, if the inbound endpoint is configured to
be synchronous, the response of the component will be immediately returned
to the caller as a response to its request. If a response transformer is configured,
it’ll be used at this stage.

■ Asynchronous response—in that case, the inbound endpoint is synchronous but
the response that it’ll return to the caller isn’t the one coming out from the

Outbound routerInbound router

HTTP
< < E n d p o i n t > >

JMS
< < E n d p o i n t > >

POJO
< < C o m p o n e n t > >

Request

Response Dispatch

Application
or

component
T

T

T

Application
or

component

An inbound event gets routed

to the component entry point

through transformers.

The component response is

sent to the outbound router

for endpoint dispatching.

The component response can

be returned to the caller if

the endpoint is synchronous.

Figure 1.12 Standard event processing in a Mule service

18 CHAPTER 1 Discovering Mule
component but one that’ll be received on an asynchronous channel after the
message has been sent through the outbound router. Response transformers
would also apply in that case.

In our example of DocBook to XSL-FO bridging, we’d use a fully asynchronous config-
uration that would lead to a request processing schema similar to the one shown in
figure 1.12. No response, except the standard HTTP acknowledgment, would be sent
to the authoring tool in response to its request.

 We’re done with our quick tour of Mule. You’ve now discovered its general archi-
tecture, underlying principles, and principal moving parts. You should realize that the
fundamental knowledge you need to grasp is limited. We believe that this is a key char-
acteristic of Mule and a reason for its success.

1.4 Mule on your machine
Before going further, we need to make sure that you have Mule correctly installed on
your machine. Bear in mind that, depending on the way you’ll deploy Mule, you
might not need to install it. For example, if you decide to embed Mule in a web appli-
cation, you’ll have nothing to install, as you’ll deploy all the libraries within your WAR
file. We’ll cover the different deployment options in chapter 7.

 Nevertheless, we’ll install a standalone Mule server on your machine. This’ll allow
you to run the examples that can be downloaded from this book’s companion web
site. It’ll also allow you to easily run your own experiments: as we’ll introduce different
Mule features, you’ll certainly feel the urge to run a quick test to ensure you grok what
you’ve just learned.

 Here’s an outline of the installation steps:9

■ Download the latest stable full distribution of Mule Community Edition from
MuleSource’s web site (http://mulesource.org/display/MULE/Download). We
need the full distribution because we’ll install a standalone Mule server.

■ Decompress the distribution archive in a directory of your choice.
■ Add an environment variable named MULE_HOME that points to this directory. In

Windows, this is done with a system property.
■ Add the MULE_HOME/bin directory to your system’s PATH.

That should be it.
 Download the source code from the companion web site of this book (http://

muleinaction.com) and decompress it in another folder of your choice. Ensure that
your MULE_HOME points to a Mule version that matches the example source code
requirements. Most examples will require Maven 2 to run: if you don’t have this build
tool already installed, it’s a good time to do so. If you have several Mule instances
deployed, be sure to check that MULE_HOME points to the version that matches the one
used for the examples.

9 The detailed installation instructions are available at http://mulesource.org/display/MULE2INTRO/Install-
ing+Mule.

http://mulesource.org/display/MULE2INTRO/Installing+Mule
http://mulesource.org/display/MULE/Download
http://muleinaction.com
http://muleinaction.com

19Summary
NOTE Though not necessary to execute some standalone examples, you can
run mvn clean install in the root directory of the code samples. After a
few minutes, you should get a successful build.

The first example we run isn’t intended to demonstrate any feature of Mule; its goal is
to ensure that both Mule standalone server and the code samples are correctly
installed. This example is located in the chapter01/welcome directory. Start it by
using the batch file appropriate for your operating system. You should see the follow-
ing output in the console:10

Running in console (foreground) mode by default, use Ctrl-C to exit...
Running Mule...
--> Wrapper Started as Console
Launching a JVM...
Starting the Mule Server...
Wrapper (Version 3.2.3) http://wrapper.tanukisoftware.org
 Copyright 1999-2006 Tanuki Software, Inc. All Rights Reserved.

 _ _ _ _ ___ ___ _ _
| | | | | | | | | \/ | | | | |
| | | | ___| | ___ ___ _ __ ___ ___ | |_ ___ | . . |_ _| | ___| |
| |/\| |/ _ \ |/ __/ _ \| '_ ` _ \ / _ \ | __/ _ \ | |\/| | | | | |/ _ \ |
\ /\ / __/ | (_| (_) | | | | | | __/ | || (_) | | | | | |_| | | __/_|
 \/ \/ ___|_|______/|_| |_| |_|___| _____/ _| |_/__,_|_|___(_)

When you’ve seen enough of this splendid ASCII art, press control+C in the console
screen. Mule should stop with the following output:

INT trapped. Shutting down.
**
* The server is shutting down due to normal shutdown request *
* Server started: 02/06/08 4:00 PM *
* Server shutdown: 02/06/08 4:00 PM *
**
<-- Wrapper Stopped

The sound of Mule’s hooves has just started to echo in your machine! You’ll get more
of that in the coming chapters, but for now, this is a pretty good start.

1.5 Summary
In this chapter, you’ve discovered that Mule is a no-nonsense platform that has the
potential to become the workhorse of your enterprise integration projects. The fol-
lowing, which is an excerpt from Mule’s Architecture Guide, should now sound famil-
iar to you. Here are all the concepts that you’ve just learned: Mule is an event-based
architecture; actions within a Mule network are triggered by events occurring either
in Mule or in external systems. Events always contain some sort of data—the payload
—which will be used and/or manipulated by one or more components and a set of
properties that are associated with the processing of the event. These properties are

10 The first time you run Mule standalone, you’ll be prompted to read and approve its license agreement.

20 CHAPTER 1 Discovering Mule
arbitrary and can be set at any time from when the event is created. The data in the
event can be accessed in its original state or in its transformed state. The event will use
the transformer associated with the endpoint that received the event to transform its
payload into a format that the receiving component understands.

 The next chapter will give you the fundamental knowledge you need to configure
Mule and understand the numerous configuration samples that will follow in subse-
quent chapters.

Configuring Mule
In this chapter, you’ll learn the fundamental principles of a Mule configuration
file. Said differently, this chapter will give you the grammar of the configuration
file, while the upcoming chapters will help you build your vocabulary. When you’re
done reading it, you’ll be able to create new configuration files and set up the
scene for your own services, which you’ll learn to create in the coming chapters.

 In essence, configuring Mule consists of defining the services you want to be
active in a particular instance of the ESB. As seen in the previous chapter, these ser-
vices are composed of and rely on many different moving parts, which also need to
be configured. Some of these moving parts are intrinsically shared across several
services, such as connectors. Others can be locally defined or globally configured
and shared, such as endpoints. As you can guess, supporting this flexibility and
richness in a configuration mechanism is pretty hairy.

In this chapter
■ Configuring Mule with XML files
■ Elements of a configuration file
■ Configuration files organization strategies
21

22 CHAPTER 2 Configuring Mule
 To achieve this, Mule uses configuration builders that can translate a human-authored
configuration file into the complex graph of objects that constitutes a running node of
this ESB. The main builders are of two kinds: a Spring-driven builder, which works with
XML files, and a script builder, which can accept scripting language files.

NOTE The scripting configuration builder uses a script in any language for
which a JSR-223–compliant engine exists (such as Groovy, JRuby, or
Rhino). By default, Mule supports Groovy configuration files, but other
scripting languages can be added by installing the Mule Scripting Pack
that can be downloaded from http://mulesource.org/display/MULE/
Download. A scripted configuration is a low-level approach to configuring
Mule. It’s up to you to instantiate, configure, and wire all the necessary
moving parts. This requires an expert knowledge of Mule internals. This
explains why this approach is much less popular than XML configuration,
as it’s rare that anyone needs this level of control. This said, there can be
circumstances where using Spring or XML isn’t an option. In that situa-
tion, using a scripted configuration can save the day.

In this chapter we’ll mainly focus on configuring the Spring XML builder, for several
reasons:

■ It’s the most popular—you’re more likely to find examples using this syntax.
■ It’s the most user friendly—Spring takes care of wiring together all the moving

parts of the ESB, something you must do by hand with a scripted builder.
■ It’s the most expressive—dedicated XML schemas define the domain-specific lan-

guage of Mule, allowing you to handle higher-level concepts than the scripting
approach does.

We’ll start by running a simple example, which will allow you to look at your first ser-
vice configuration. We’ll then review the overall structure, element families, and con-
figurable items of the Spring XML file in general terms, just enough for you to get the
gist of it and have the basic knowledge you’ll need to grasp what you’ll learn in the
upcoming chapters. We’ll also give some advice on how to organize your configura-
tion files efficiently.

 Are you ready for the ride? We believe the answer is yes, so let’s start to look into
our first Mule configuration file.

2.1 First ride
Though Mule comes complete with a “hello” example, we chose to get started with the
“echo” example that’s also bundled with the platform. We believe the echo example is
the true “hello world” example for Mule, as it doesn’t require any transformer, custom
component, or specific router. That’s why we decided to nickname it “Echo World.”

 Let’s now look into details of the Echo World example. As shown in figure 2.1, this
application uses the stdio transport to receive messages from the console input
(stdin) and send these messages unchanged directly to the console output (stdout).

http://mulesource.org/display/MULE/Download

23First ride
A specific component, called a bridge, is used to pass the messages from the inbound
router to the outbound one. A bridge is a neutral component: it doesn’t perform any
action or modify the messages that it processes. The outbound router is a pass-
through one: it’s the simplest router that exists. It dispatches the messages it receives
to a unique endpoint.

 Listing 2.1 provides the full configuration for this example. As an astute reader,
you’ll quickly notice that there’s no bridge component. This is because a service uses a
bridge component implicitly if none is configured. Except for this subtlety, the config-
uration file is pretty straightforward. Note how the specific attributes on the different
elements help to make the configuration self-explanatory.

<mule xmlns="http://www.mulesource.org/schema/mule/core/2.2"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:stdio="http://www.mulesource.org/schema/mule/stdio/2.2"
 xsi:schemaLocation="
 http://www.mulesource.org/schema/mule/core/2.2
 http://www.mulesource.org/schema/mule/core/2.2/mule.xsd
 http://www.mulesource.org/schema/mule/stdio/2.2
 http://www.mulesource.org/schema/mule/stdio/2.2/mule-stdio.xsd">
 <stdio:connector name="SystemStreamConnector"
 promptMessage="Please enter something: "
 messageDelayTime="1000"/>

 <model name="echoSample">
 <service name="echoService">
 <inbound>
 <stdio:inbound-endpoint system="IN"/>
 </inbound>
 <outbound>
 <pass-through-router>
 <stdio:outbound-endpoint system="OUT"/>
 </pass-through-router>

Listing 2.1 The echo example XML configuration

Inbound router Outbound
pass-through router

echoService

echoModel

Stdio connector

Echo configuration

Outbound endpoint
system OUT

Console
input

Console
output

Implici t
br idge component

Inbound endpoint
system IN

Figure 2.1 Moving parts and message flow of the echo example

Defines and configures
standard input

connector

The echo service

24 CHAPTER 2 Configuring Mule
 </outbound>
 </service>
 </model>
</mule>

In chapter 1, we installed the Mule standalone server and downloaded the examples
from this book’s companion web site. So, at this point, you should be able to start this
example. For this, go into the /chapter02/echo directory and run the echo-xml
batch file that suits your OS. The output should be as shown here, with a version and
a build number that match your Mule installation and with the host name of your
machine:

Running in console (foreground) mode by default, use Ctrl-C to exit...
Running Mule...
--> Wrapper Started as Console
Launching a JVM...
Starting the Mule Server...
Wrapper (Version 3.2.3) http://wrapper.tanukisoftware.org
 Copyright 1999-2006 Tanuki Software, Inc. All Rights Reserved.

INFO 2008-06-28 14:19:26,035 [WrapperListener_start_runner]
org.mule.MuleServer: Mule Server initializing...
... (lots of lines) ...

INFO 2008-06-28 14:19:28,794 [WrapperListener_start_runner]
org.mule.DefaultMuleContext:

* Mule ESB and Integration Platform *
* Version: 2.2.0 Build: 12377 *
* MuleSource, Inc. *
* For more information go to http://mule.mulesource.org *
* *
* Server started: 28/02/09 14:19 *
* Server ID: b4b877b5-76e1-11dd-bbe5-e14763a30d37 *
* JDK: 1.5.0_07 (mixed mode) *
* OS: Linux (2.6.24-19-386, i386) *
* Host: emcee-mule (127.0.0.1) *
* *
* Agents Running: None *

Please enter something:

As prompted, enter something. Note that the first time a message gets dispatched to
the outbound endpoint, Mule instantiates and connects the necessary dispatcher:

Please enter something:
Something
INFO 2008-06-28 15:52:46,697 [SystemStreamConnector.dispatcher.1]
org.mule.transport.stdio.StdioMessageDispatcher: Connected:
StdioMessageDispatcher{this=15c97e4, endpoint=stdio://system.out,
disposed=false}

Something

Please enter something:

25The Spring XML configuration
Something else
Something else

Please enter something:

When you’re tired of playing with the echo, stop the execution of the application with
control+C. All the log entries you’ll see scrolling on your console will represent a nor-
mal and clean shutdown of the ESB. The very last lines shown in the console should be
like this:

* The server is shutting down due to normal shutdown request *
* Server started: 28/02/09 15:52 *
* Server shutdown: 28/02/09 15:53 *

<-- Wrapper Stopped

Note how control+C has been interpreted as a normal shutdown request. If the JVM
were to exit abruptly, for example because of a hard crash, the wrapper script would
restart the instance automatically.

 Even if basic, this example has shown you what less than 20 lines of configuration
can buy you in Mule. You also got the gist of the runtime environment of Mule, how it
behaves at startup and shutdown times, and what it reports in the logs.

 The Echo World example has given you some clues about the organization of the
Spring XML configuration file.1 Let’s now broaden your view by exploring the struc-
ture of this configuration file.

2.2 The Spring XML configuration
The Spring configuration builder relies on XML to enforce the correct syntax (well-
formedness) and on XML Schema to define the grammatical rules (validity). These
rules define the usable elements2 and where they can be used. These elements repre-
sent the different moving parts of the ESB and their configurable parameters.

 Mule doesn’t rely on a single monolithic schema to define all the configurable ele-
ments, but instead on several of them. One of these schemas defines the core ele-
ments and the general structure of the configuration file. Other elements are defined
by optional additional schemas, such as the transport-specific ones. If you look at the
first lines of listing 2.1, you’ll see that the core and the VM transport specific schemas
are imported.

Always validate your XML configuration files before attempting to load
them in Mule to simplify troubleshooting.

Figure 2.2 represents the elements defined by the core schema. Note how the services,
which are the main actors of a configuration, are lost in the bottom-right corner of

1 The same example is also provided as a scripted configuration in echo-world/conf/echo-config.groovy if
you’re curious to discover this configuration approach as well.

2 Element as defined by the W3C DOM specification.

BEST
PRACTICE

26 CHAPTER 2 Configuring Mule
the mind map. This gives you an idea of all the supporting common features and
global elements you can declare in a configuration file. Throughout the book, you’ll
progressively learn more about each of these elements.

 The Echo World configuration in listing 2.1 only has a few schema references and
one global element (a connector). You can easily imagine that real-world configura-
tion files declare many of these shared configuration artifacts to support the configu-
ration of their services. In the examples coming in the next chapters, you’ll often see
such shared elements, like global endpoints or transformers. Some chapters will even
be dedicated to some of these common elements, such as transaction managers or
JMX agents.

 For now, we’ll consider these elements under several of their main characteristics.
First we’ll look at their main families, then how we can define configured values, and
finally where to find the schemas that define them.

2.2.1 XML element families

Independent of their functions, we can conceptually distinguish three main families
of elements in a Mule configuration:

■ The specific elements
■ The custom elements
■ The Spring elements

It’s important to understand what you can expect from each of these to build a config-
uration file in the most efficient manner.
SPECIFIC ELEMENTS

The specific elements are the most expressive configuration elements available, inso-
far as they constitute the domain-specific language of Mule. As such, these elements

Figure 2.2 Configuration structure defined by Mule’s XML core schema

27The Spring XML configuration
and their attributes are characterized by highly specific names. Another characteristic
is that they intrinsically refer to predefined concrete implementations: they’re used to
express all the configuration elements that aren’t custom-made. This is why no class
name comes into play when using this kind of configuration element. A benefit of this
is the isolation your configuration gets from the internals of Mule’s implementation: if
a class is renamed, your configuration won’t be affected.

 The Mule core and each transport or module you include in your configuration
will contribute such specific elements. Table 2.1 is a nonexhaustive list3 of these ele-
ments as defined by a few Mule XML schemas.

CUSTOM ELEMENTS

Custom elements constitute the Mule-oriented extension points of a configuration.
They mainly allow you to use custom implementations or Mule classes for which no
specific element has been created. These extension points are available for core Mule
artifacts and also for some transports and modules. Custom elements usually rely on a
fully qualified class name parameter to locate your custom code. They also provide a
means to pass the property values your class needs to be properly configured.
Table 2.2 shows a few examples of these custom elements.

3 There are more XML elements defined in these schemas; only the most notable ones are listed here.

Table 2.1 Specific elements defined by some Mule schemas

Schema
ExampleElements defined

(nonexhaustive list)

Mule Core
Models
Transformers
Routers
Filters
Components
Security manager
Exception strategies
Transaction manager

<object-to-string-transformer
 name="ObjectToString"/>
Defines a global object-to-string transformer named ObjectToString.

<global-property name="smtp.username"
 value="jqdoe" />
Defines a global property named smtp.username, whose value is jqdoe.

HTTP Transport
HTTP connector
HTTP endpoint
REST service component
HTTP request and response
 transformers

<http:polling-connector name="pollingHttp"
 pollingFrequency="3000"/>
Defines an HTTP connector named pollingHttp, which will be used for polling a
URL every three seconds.

XML Module
XML transformers
XML routers
XML filters

<xm:xslt-transformer name="DocBook2FO"
 xsl-file="db2fo.xsl"/>
Defines an XSL-T transformer named DocBook2FO, which uses the templates
defined in db2fo.xsl.

28 CHAPTER 2 Configuring Mule

Though it’s possible to do what a specific XML element can do using a custom XML
element, this should be avoided for two main reasons. The first is because you’ll
become coupled to a particular implementation in Mule itself: if a new class is created
and used by the specific element, your custom one will keep referencing the old one.
The second is because you’ll lose the benefit of the strongly typed (schema validated)
and highly expressive attributes defined on the specific elements.

If possible, try to use a specific configuration element instead of custom
one.

 SPRING ELEMENTS

Thanks to the support of a few core Spring schemas, Mule can accept Spring elements
in its configuration. Spring elements are used to instantiate and configure any object
that’ll be used elsewhere in the configuration, where they’ll usually be injected in
standard Mule elements. They’re also used to easily construct configuration parame-
ters such as lists or maps. Finally, they allow configuration modularity through the sup-
port of the import element (see section 2.3). Table 2.3 shows a few examples of these
Spring elements. Note how the spring:beans element opens the door to the usage of
any Spring schema (in this example we use the util one).

 Besides configuration extension, Spring elements also grant access to the frame-
work itself, making possible the usage of advanced features such as AOP. Though you
can do a lot in Mule without deferring to Spring, getting acquainted with this frame-
work will allow you to better grasp the core on which Mule is built. If you’re unfamiliar
with Spring or would like to learn more about it, we strongly recommend reading
Spring in Action from Manning Publications Co. (Walls and Breidenbach).

Table 2.2 Custom elements defined by some Mule schemas

Schema
ExampleElements defined

(nonexhaustive list)

Mule Core
Custom transformer
Custom router
Custom filter
Custom entry point resolver
Custom security and
 encryption providers
Custom exception strategy
Custom transaction manager

<custom-transformer name="NameStringToChatString"
 class="org.mule.example.hello.
 NameStringToChatString"/>
Defines a custom transformer named NameStringToChatString as an
instance of the specified class.

TCP Transport
Custom protocol <tcp:custom-protocol

class="org.mule.transport.tcp.integration.

 ➥CustomSerializationProtocol"/>
Defines a custom TCP protocol as an instance of the specified class.

BEST
PRACTICE

29The Spring XML configuration

You’ve now learned to recognize the different families of XML elements you’ll have to
deal with and what you can expect from them. XML elements without values specific
to your configuration are useless. Let’s now see how you’ll set these different values in
your own configuration files.

2.2.2 Configured values

In a Mule configuration, values are seldom stored as text nodes; they’re mainly stored
as attributes of XML elements. The main exceptions are text-rich properties such as
documentation or script elements. This makes the configuration easier to read, for-
mat, and parse, as attributes are less prone to being disrupted by unwanted

Table 2.3 Elements defined by the supported Spring schemas

Schema
ExampleElements defined

(nonexhaustive list)

Spring Beans
Beans
Bean
Property

<spring:bean name="cfAMQ"
 class="org.apache.activemq.spring.

 ➥ActiveMQConnectionFactory">

 <spring:property name="brokerURL"
 value="tcp://localhost:61616"/>
</spring:bean>
Instantiates an ActiveMQ connection factory, configured with the specified broker URL
parameter and named cfAMQ.

<spring:beans>
 <spring:import
 resource="classpath:applicationContext.xml" />
</spring:beans>
Imports a Spring application context from the classpath.

<inbound-endpoint ref="globalEndpoint">
 <properties>
 <spring:entry key="valueList">
 <util:list>
 <spring:value>value1</spring:value>
 <spring:value>value2</spring:value>
 </util:list>
 </spring:entry>
 </properties>
</inbound-endpoint>
Sets a list property on an endpoint.

Spring Context

Property
placeholder
resolver

<context:property-placeholder location="node.properties"/>
Activates the replacement of ${...} placeholders, resolved against the specified prop-
erties file.

30 CHAPTER 2 Configuring Mule
whitespaces. These attributes are strongly typed, with data types defined by the XML
Schema standard.

 We’ll consider these configured values under their most notable traits:

■ Default values
■ Enumerated values
■ Expressions
■ Property placeholders
■ Names and references

DEFAULT VALUES

Using attributes to hold values enables the definition of default values. Mule schemas
take great care to define default values wherever possible. When you start writing your
own configuration files, you’ll quickly realize how valuable this is. Whenever you con-
figure a Mule object, the question of its default configuration values will arise. What
would usually take a visit to the JavaDoc page of the object will now require only a
glance at the default values for the different attributes supported by the XML element
that represent the object (provided you use a decent tool; see chapter 12).
ENUMERATED VALUES

On top of being strongly typed, some attributes define an enumeration of possible
configuration values. This greatly reduces the risk of introducing a bogus value that
would only be caught later on at runtime. This also provides valuable information
about the intent of the parameter and the abilities of the configured object.
EXPRESSIONS

Mule’s expression evaluation framework offers the capacity to define configuration
values that are evaluated dynamically at runtime. With simple attribute values of the
form #[evaluator:expression], it is possible to access almost any data from the cur-
rent message being processed or the Mule instance itself. Please refer to appendix A
for more information about this powerful framework.
PROPERTY PLACEHOLDERS

An important aspect of any configuration file is the capacity to externalize certain val-
ues that can change at runtime. These values are called properties. They’re generally
used to define environment-specific parameters such as credentials, port numbers, or
paths. It’s possible to use such properties in lieu of fixed values in any attribute of a
Mule configuration. The property is then referred to by its name using a special place-
holder syntax. This is done using the classic Ant notation, as shown:

<smtp:outbound-endpoint user="${smtp.username}" password="${smtp.password}" />

Configuration element Property placeholder

Attribute Property name

31The Spring XML configuration
These properties are defined either as global ones in the Mule configuration, in a
standard Java properties file or in JVM system properties. For the last two options,
Spring’s property placeholder resolver (shown in table 2.3) takes care of injecting the
properties value in your configuration.

TIP Environment properties As with any other application, you’ll have to exter-
nalize environment-specific values in properties files. These are usually
passwords, remote service URLs, port numbers, time-outs, or cron expres-
sions. With Spring XML configurations, a good practice is leveraging
Spring’s PropertyPlaceholderConfigurer to load properties from sev-
eral files on the classpath. The idea is to define reasonable defaults for
the development environment in a properties file embedded in the
deployable itself, and to override these values with others defined in an
environment-specific property file placed also on the classpath, but out-
side of the deployable. This is demonstrated here:

<context:property-placeholder
 location="classpath:META-INF/default.props,
 ➥classpath:override.props" />

This configuration element imports values from classpath files META-
INF/default.props and from override.props. The latter can be left empty
in development and tuned to use correct values in test or production
environments. This construct also supports overriding with Java system
properties: if a system property is defined, it’ll take precedence over a
property of the same name defined in one of these files.

NAMES AND REFERENCES

Being able to have elements that reference other elements is an essential aspect of a
Mule configuration file. This is achieved by using name and reference attributes. Most
of the elements can receive a name through this mechanism. References can some-
times be multivalued. In that case, whitespace is used to separate the different names
that are referred to. The following demonstrates an inbound endpoint that refers to a
chain of four transformers simply by listing their names:

You now know the secrets to setting values in your XML configurations. We’ll now look
at one thing that may still puzzle you: the location of all these different schemas.

<vm:inbound-endpoint path="stockquote"
 responseTransformer-refs="ToString XmlDecoder Xslt XmlToObject" />

Configuration element

Whitespace separated element namesMulti-valued attribute

32 CHAPTER 2 Configuring Mule
2.2.3 Schema locations

You might be wondering where to get an up-to-date list of all the available schemas
you can use in your configurations. This section will do better than give you this list:
it’ll allow you to figure out by yourself the right schema reference to use for any Mule
library you decide to use.

 When you look at the declaration in
listing 2.1, you might be wondering if Mule will
connect to the Internet to download the differ-
ent schemas from the specified locations. Of
course it doesn’t. Each library (transport or mod-
ule) embeds the schemas it needs. Mule lever-
ages the resource resolver mechanism of Spring
to “redirect” the public HTTP URIs into ones that
are internal to the JAR file. How is this mecha-
nism configured? To discover it, fire up your
favorite archiving utility or IDE and open the
library you want to use. There should be a direc-
tory named META-INF. After opening it, you
should see something similar to the screen shot
shown in figure 2.3.

 The schema you’re looking for is in the META-INF directory and is named after the
transport or module name, prefixed with mule-. Figure 2.3 shows that in the VM trans-
port, the schema is named mule-vm.xsd. Some transports have several schemas, one
per variation of the main transport (such as HTTP and HTTPS). The target namespace
of the schema you’re looking for is declared on the root element. Listing 2.2 shows
the root element of the VM transport schema.

<xsd:schema xmlns="http://www.mulesource.org/schema/mule/vm/2.2"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:mule="http://www.mulesource.org/schema/mule/core/2.2"
 targetNamespace="http://www.mulesource.org/schema/mule/vm/2.2"
 elementFormDefault="qualified"
 attributeFormDefault="unqualified">

By now you should be anxious to know where the schema location is defined. Using
the right location is important in order for the “redirection” mechanism to kick in
and allow Mule to validate and load your configuration file. This mechanism is config-
ured by the file named spring.schemas, which is located alongside the library schema.
You can see this file in figure 2.3. The content of this file is a simple mapping between
the remote schema location and the archive file to use for it, as shown:

Listing 2.2 Each Mule library defines a specific target namespace in its schema.

Figure 2.3 Locating the XML schema of
the VM transport

33The Spring XML configuration

The schema location you want to use is on the left of the equal sign. Bear in mind that
because properties files require you to escape colons, the backslash in front of the
equal sign should be omitted if you copy and paste the location directly into your con-
figuration file. With the target namespace and the schema location in hand, you
should now be able to add the VM transport schema to your configuration file.
Listing 2.3 shows you what you should have come up with.

<mule xmlns="http://www.mulesource.org/schema/mule/core/2.2"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:vm="http://www.mulesource.org/schema/mule/vm/2.2"

 xsi:schemaLocation=" http://www.mulesource.org/schema/mule/core/2.2
 http://www.mulesource.org/schema/mule/core/2.2/mule.xsd
 http://www.mulesource.org/schema/mule/vm/2.2
 http://www.mulesource.org/schema/mule/vm/2.2/mule-vm.xsd">

Throughout this chapter, we’ve referred to the Mule core schema. If you look for it in
mule-core.jar, you’ll be disappointed. It’s in fact located in mule-module-spring-con-
fig.jar. Why there and not in the core JAR? Because using Spring XML is one possibility
for building a Mule configuration. As we said in the introduction, there are other
ways, such as scripting.

TIP My valid configuration doesn’t load! It’s possible to create a configuration
that refers to all the right schemas and is well formed and valid, but still
doesn’t load. If this happens to you and you get a cryptic message like the
following:

Configuration problem: Unable to locate
NamespaceHandler for namespace
[http://www.mulesource.org/schema/mule/xyz/2.2]

Then get ready for a “duh” moment. This means you’ve forgotten to add
to your classpath the Mule library that defines the namespace handler
required to load configuration elements in said namespace. Watch out
for missing transport or module JARs.

By now, you’re certainly eager to rush to your keyboard and start building your own
configurations. Before that, we’d like to introduce the notion of modular configura-
tions. This will help you tame the complexity that may arise in your configurations
when your projects start expanding.

Listing 2.3 The root element of a Mule configuration that uses the VM transport

http\://www.mulesource.org/schema/mule/vm/2.2/mule-vm.xsd=META-INF/mule-vm.xsd

Escaped colon Local file

Remote schema location

Defines VM
transport
namespace

Location of VM
transport schema

34 CHAPTER 2 Configuring Mule
NOTE Consider also reading chapter 12, where we discuss the development
tools you’ll need, before starting a Mule project.

2.3 Configuration modularity
Have you ever had to wade through pages and pages of configuration, trying to sort
things out and find your way around? As your integration projects grow and multiply,
there’s a risk that your configuration files may become bloated or redundant, hence
hard to read, test, and maintain. Fortunately, the configuration mechanism of Mule
allows you to relieve the ails of a monolithic configuration by modularizing it.

Modularize your configuration files to make them easier to read and sim-
plify their maintenance.

Cutting a configuration into several parts encourages the following:

■ Reuse of common artifacts across several configurations
■ Extraction of environment-dependent configuration artifacts
■ Isolation of functional aspects that become testable in isolation

There are different approaches that can be used when modularizing a configuration.
In the following sections, we’ll detail these strategies:

■ Independent configurations
■ Inherited configurations
■ Imported configurations
■ Heterogeneous configurations

Of course, you can combine them together. At the end of the day, the objective of this
discussion is to give you a hint of the possibilities and let you establish the configura-
tion organization that best fits your project size and needs.

NOTE In 7.1.3, we’ll discuss another handy option: using an existing Spring
context as the parent context of your Mule configuration. Because this
isn’t done at configuration level, we won’t detail this approach here.

2.3.1 Independent configurations

As shown in figure 2.4, a Mule instance can load several independent configuration
files side by side. In this example, Mule will use two Spring XML configuration build-
ers to instantiate, configure, and wire together the elements defined in both XML con-
figuration files. As you can see, the environment-dependent properties have been
exported in an external file, loaded from the instance-specific configuration file.

 This approach is well suited for simple scenarios, where there’s a loose coupling
between the common and instance-specific elements. It allows a fair level of reuse, as
global elements such as connectors, transformers, or endpoints can be shared with
several instance-specific configurations.

BEST
PRACTICE

35Configuration modularity
The main drawback of using independent configurations is that the instance-specific
configuration doesn’t strongly express its need to run alongside the common configu-
ration. If the shared elements aren’t used immediately, like transformers, you can start
the Mule instance without the required common configuration and start having issues
only later on at runtime.

 Using inherited configurations alleviates this problem.

2.3.2 Inherited configurations

The concept of inherited configurations is illustrated in figure 2.5. The main idea is to
express a formal parent-child dependency between two configurations. By strongly
expressing this dependency, you’ll have the guarantee at boot time that no configura-
tion file has been omitted (unlike the behavior you get with side-by-side independent
configurations as described in the previous section).

Inheritance can only be defined between models: this is why the parent and child
models are represented. Because a model can be empty, this inheritance approach is
suitable even if the common configuration doesn’t have any model elements to share.
It’s also good to know that several different models can inherit from the same parent.
The modularization can therefore span several configuration files.

 How is this inheritance expressed? Simply by using the same name for the parent
and child models and by flagging the child as being an heir, as shown here:

<model name="myConfig">
<model name="myConfig" inherit="true">

In this configuration sample, the parent model doesn’t have an inherit attribute,
which defaults to false when absent, and the child model has the attribute set to true.

Figure 2.4 A Mule instance
can load independent XML
configuration files and
properties files.

Figure 2.5 Models can be inherited,
leading to enforced hierarchies of
configuration files.

36 CHAPTER 2 Configuring Mule
2.3.3 Imported configurations

As briefly discussed in section 2.2.1, Spring can be leveraged to instantiate and config-
ure any infrastructure or custom bean you need for your Mule instance. For example,
Spring can perform JNDI lookups or wire your business logic beans together. After
time, your Spring configuration may grow to the point that it starts to clutter your Mule
configuration. Or you might decide that part of your Spring configuration is reusable.
At this point, extracting your Spring beans to a dedicated application context file
would be the right thing to do. Figure 2.6 shows a situation where such shared applica-
tion contexts have been created and are used by a hierarchy of Mule configurations.

You can easily import external Spring application context files from your Mule config-
uration files.4 The following illustrates how instance-conf.xml, shown in figure 2.6,
would import its Spring context file:

<spring:beans>
 <spring:import resource="instance-beans.xml" />
</spring:beans>

Refer to Spring’s documentation for more information on the usage of the import
element.

2.3.4 Heterogeneous configurations

In the introduction to this chapter, we evoked the possibility of configuring Mule with
a scripting language. The tedious work of setting up the core runtime environment
and all the boilerplate code this requires is usually enough to put off the bravest script
aficionado. The good news is that there’s a solution. It’s possible to mix several styles
of Mule configuration in an instance. The example in figure 2.7 shows an instance
that has been configured with a Groovy script and Spring XML configuration builders.
By following this approach, you can declare all the global elements using the XML

4 Interactions between Mule and Spring configurations are further discussed in 7.1.3.

Figure 2.6 Imported Spring application
context files can complement a
hierarchy of Mule configurations.

37Summary
syntax and focus your scripted configuration on the services you need for your inte-
gration project.

 Since scripted configuration works at the bare metal level, you express the depen-
dency to a parent by looking up the model you want to depend on. If in figure 2.7, the
common configuration defined a model named commonModel, the way the Groovy
configuration would look it up and use it would be the following:

model = muleContext.registry.lookupModel("commonModel")
...
childService.model = model

As you can see, there’s no child model per se. It’s up to the service in the child model
to actively register itself in the model defined in the common configuration.

 We’re sorry to report that after reading this section, you have no more excuses for
building monolithic and kilometric configuration files. And if you’ve inherited such
configurations, you should now have some pretty good ideas on how you could refac-
tor them.

2.4 Summary
In this chapter, you’ve learned the general principles involved in configuring Mule.
You’ve discovered the overall structure of the Spring XML configuration, its syntax,
and the ways to define properties values. Several strategies for organizing your config-
uration files have been detailed: they’ll allow you to grow your integration projects
without getting lost in lengthy and monolithic XML files.

 The scripted configuration mechanisms have been rapidly covered as well. It’s up
to you to decide on your syntax of choice for configuring Mule. By looking at the
examples at the end of this chapter, you should have a fair idea of the efforts involved
in the XML and scripted configuration options. In the rest of the book, all the exam-
ples will use the Spring XML syntax.

 In many places, this chapter has referred you to other chapters. Without this crafty
stratagem, this chapter would’ve had the size of the whole book. The coming chapters
will look further into the details of the main Mule moving parts: endpoints, routers,
transformers, and components. You’ll learn about the main types of each and all the
good they can do for you.

Figure 2.7 Mule can use
heterogeneous builders to load a
hierarchy of configuration files
written in different syntax.

38 CHAPTER 2 Configuring Mule
 NOTE Before we close... We’d like to introduce you to Clood, Inc., our fictional
but promising startup specializing in the domain of value-added services
for businesses hosting applications in the cloud. Blessed with a double
O, our startup is bound for a great future and a significant IPO. On the
technical side of things, Clood, Inc., decided to leverage Mule as our
integration platform to support all the services (monitoring, deployment
controls, identity management, DNS, and so on) we intend to offer to
our clients.

We’re happy to inform you that, always looking for a challenge and
some stock options, you’ve decided to join us on this cloudy adventure.
Throughout the rest of the book, we’ll review some of our activities at
Clood, Inc., and how we’re using Mule to accomplish them.

Sending and
receiving data

with Mule
Can you remember the last trip you took? You probably used more than one means
of transportation to get to where you were going. You may have taken a passenger
jet somewhere first, then hopped in a taxi. Or you may have ridden a bike some-
where, locked it up, and then walked across the street. Perhaps you parachuted out
of a plane, then drove home. In any case, you likely weren’t teleported from one
place to another.

 Transporting data isn’t much different than transporting people. While it would
be nice if systems could magically move data between themselves, this isn’t often

In this chapter
■ Understanding connectors and endpoints
■ Common transports you’ll use working with Mule
■ Using web services with the CXF and HTTP

transports
39

40 CHAPTER 3 Sending and receiving data with Mule
the case. One system might only support SOAP, while your system may only supports
REST. Perhaps you need to get data from an FTP site into a database. Or maybe you
need to receive JMS messages and save their payloads to a file.

 We introduced Clood, Inc., at the end of the last chapter. In this chapter, and
throughout the rest of this book, we’ll be using Clood’s integration activities as a refer-
ence point for some of our discussions and examples. Being a modern, cloud-based
service provider, Clood is forced to integrate with a variety of disparate systems and
services as part of its daily business. Clood also makes extensive internal use of open
source technologies and tools. Let’s start off by considering an integration scenario
recently faced by Clood.

 Clood, Inc., uses Nagios, a popular open source monitoring tool, to perform URL
monitoring of its customers’ cloud-hosted applications. When a URL check fails, Nag-
ios sends an email to the Clood call center where subsequent action is taken. You’ve
been tasked to store these alerts in a database so management can run reports on the
data—with the stipulation that you can’t modify the Nagios installation. Since the
reports will only be run once a day, you decide your best approach is to periodically
download messages from the mail server, perform some analysis on them, and save
the results into a relational database. Without using Mule, you might consider the fol-
lowing strategy:

■ Implement an IMAP client using the Java Mail API.
■ Schedule the client to download the messages at some interval.
■ Write code to parse the email message.
■ Use JDBC to insert the data into the database.

This approach will work, but an awful amount of effort is spent “plumbing”—writing
things such as IMAP clients, JDBC clients, and schedulers. Wouldn’t it be nice to worry
about the business problem at hand—parsing the email data—and let Mule handle
the details of moving the data around?

 We’ll see in this chapter how Mule reduces this plumbing work to a few lines of
XML. We’ll cover the major transports Mule supports and provide working configura-
tions of them in action. In each section, we’ll discuss a specific transport, such as SOAP
or email, and examine how you can use it to send and receive data.

 As moving data around is such an important part of using Mule, expect to make
heavy use of the techniques in this chapter. After all, you’ll need to get data into and
out of Mule before you can do anything useful with it!

3.1 Understanding connectors and endpoints
Mule connectors are a lot like the plane, car, bike, and parachute in our earlier exam-
ples—they enable you to get data from one place to another. And odds are you’ll use
more than one means of transport to get to where you’re going. Connectors provide
an abstraction layer over data transport mechanisms. Connectors exist for things such
as files, email messages, databases, JMS, and even Jabber messages. A connector saves
you the tedium of having to implement the details of a particular communication

41Understanding connectors and endpoints
mechanism yourself. This allows you to focus on solving your integration problem and
not on the plumbing of a particular communications protocol.

 The connectors bundled with Mule should cover the bulk of your data transport
needs. If you’re working with a protocol that isn’t implemented in the core distribu-
tion, you can look at the MuleForge and see if there’s a community contributed con-
nector you can use. You also have the option of implementing your own transport
using the Mule APIs. Let’s take a closer look at connectors and endpoints, and then
see how we can use them to simplify our IMAP integration project.

3.1.1 Configuring connectors

Your Mule configuration will often contain one or several connector configuration
elements. Each transport that you use will contribute its own connector element with
specific attributes. For example, here’s a typical STDIO connector configuration:

<stdio:connector name="SystemStreamConnector"
 promptMessage="Please enter something: "
 messageDelayTime="1000" />

And here’s a secure proxied HTTP connector configuration:

<http:connector name="HttpConnector"
 proxyHostname="${proxyHostname}"
 proxyPort="${proxyPort}"
 proxyUsername="${proxyUsername}"
 proxyPassword="${proxyPassword}" />

It’s absolutely possible to have a configuration that doesn’t contain any connector
configuration. Why’s that? If Mule figures out that one of your endpoints needs a par-
ticular connector, it’ll automatically instantiate one for you, using all the default val-
ues for its different configuration parameters. This is a perfectly viable approach if
you’re satisfied with the behavior of the connector when it uses its default configura-
tion. This is often the case for the VM or HTTP transports. Note that Mule will name
these default connectors with monikers such as connector.http.0.

 On top of that, a connector has a technical configuration also known as the Trans-
port Service Descriptor (TSD). This hidden configuration is automatically used for each
instance of the connector. It defines technical parameters such as what classes to use
for the message receivers, requesters, and dispatchers; or the default transformers to
use in inbound, outbound, and response routers. Knowing these default values is
essential to grasping the behavior of a transport. Though documented on the Mule-
Source web site, it’s good to learn to locate the TSD yourself so you can check what’s
actually in the library you’re using.

 Let’s now hunt for this hidden configuration file. For this, use your favorite
archiving utility or IDE and open the JAR file of the transport you want to use (here,
we picked the JMS transport JAR). Open the META-INF/services/org/mule/transport-
directory. After opening it, you should see something similar to the screen shot shown
in figure 3.1.

42 CHAPTER 3 Sending and receiving data with Mule
The TSD file is named after the protocol supported by the transport. In the case of
JMS, it’s then named jms.properties. Listing 3.1 shows you the content of this file for
the JMS transport. Note the different factories and transformers used by the connec-
tor. There are often lines commented out with a hash mark (#), which lines often rep-
resent valid configuration alternatives.

connector=org.mule.transport.jms.JmsConnector
dispatcher.factory=\
 org.mule.transport.jms.JmsMessageDispatcherFactory
requester.factory=\
 org.mule.transport.jms.JmsMessageRequesterFactory
message.receiver=\
 org.mule.transport.jms.MultiConsumerJmsMessageReceiver
transacted.message.receiver=\
 org.mule.transport.jms.MultiConsumerJmsMessageReceiver
xa.transacted.message.receiver=\
 org.mule.transport.jms.XaTransactedJmsMessageReceiver
message.adapter=org.mule.transport.jms.JmsMessageAdapter
inbound.transformer=\
 org.mule.transport.jms.transformers.JMSMessageToObject
response.transformer=\
 org.mule.transport.jms.transformers.ObjectToJMSMessage
outbound.transformer=\
 org.mule.transport.jms.transformers.ObjectToJMSMessage
endpoint.builder=\
 org.mule.endpoint.ResourceNameEndpointURIBuilder

By default, as shown in listing 3.1, the JMS transport will apply transformers to all mes-
sages in order to extract their payload, ensuring that what travels inside of Mule is
transport neutral. Suppose you now want to configure a Mule instance that deals with
a lot of JMS destinations and whose components need to receive JMS messages and not

Listing 3.1 The TSD for the JMS transport

Figure 3.1 Finding the Transport Service
Descriptor of the JMS transport

43Understanding connectors and endpoints
their payload. The best option is to override the Transport Service Descriptor and use
a “no action” transformer (a typical “null object”). This is achieved as shown:

<jms:connector name="nativeJmsConnector">
 <service-overrides
 inboundTransformer="org.mule.transformer.NoActionTransformer"
 outboundTransformer="org.mule.transformer.NoActionTransformer"
 responseTransformer="org.mule.transformer.NoActionTransformer"
 />
</jms:connector>

As you can see, the entries in the TSD file have their counterparts as attributes on the
service-overrides element.

NOTE When you have only one connector for a particular protocol, whether it’s
a default connector automatically created by Mule or one that you’ve spe-
cifically configured, you don’t need to add a reference to the connector
name in your endpoint for that transport. But as soon as you have more
than one connector for a particular protocol, any endpoint that uses this
protocol will prevent Mule from loading your configuration and an
exception containing the following message will be thrown: “There are at
least 2 connectors matching protocol “xyz”, so the connector to use must
be specified on the endpoint using the “connector property/attribute.”
The message is self-explanatory and the remedy trivial: simply add a ref-
erence to the particular connector name on each endpoint that uses the
concerned protocol. For example:

<vm:endpoint
 connector-ref="myVmConnector" name="LoanBrokerQuotes"
 path="loan.quotes"
 />

Now that we’ve examined connectors, let’s see how endpoints are configured.

3.1.2 Configuring endpoints

An endpoint is a specific utilization of a connector. If a connector is something gen-
eral like flying on a jet, then an endpoint is something concrete, like flying JetBlue on
Flight 123 from JFK to SJC. Endpoints are the cornerstone of I/O in Mule; they’re the
tools you’ll use to get data through your transformers, into your routers, and back and
forth from your components.

 Endpoints come in two different flavors: inbound and outbound. Inbound end-
points are used to accept data; outbound endpoints are used to send data. An
inbound endpoint can do things such as receive SOAP messages, read file streams, and
pull down email messages. An outbound endpoint is used to do things such as send
SOAP messages, write to file streams, and send email messages. You’ll use inbound and
outbound endpoints to communicate between components and services inside Mule
as well as with the outside world.

 Whenever you have an endpoint destination that’s shared by several routers, it’s
worth creating a global endpoint. A global endpoint is not typified for inbound or

44 CHAPTER 3 Sending and receiving data with Mule
outbound routing, making it usable in many different places in a configuration file. It
must be named so it can actually be used in a service, which will reference the global
endpoint by its name. Because it bears a name, a global endpoint can also help clarify
the usage of a particular destination. This is illustrated by the following example,
which demonstrates an in-memory (VM) endpoint whose name is more human-
friendly than its actual path:

<vm:endpoint name="LoanBrokerQuotes" path="loan.quotes" />

Though pretty clear, the path attribute is less informative than the name used for this
VM endpoint.

 A global endpoint doesn’t activate any connectivity. Think about it as a factory for
creating “live” inbound or outbound endpoints in routers. For example, the preced-
ing global endpoint would become an active inbound endpoint only if the following is
used in an inbound router:

<inbound-endpoint ref="LoanBrokerQuotes" />

You’ll quickly notice that all endpoints offer an address attribute. Why is that? This
allows you to configure a generic endpoint using the Mule 1.x style of URI-based desti-
nation addresses instead of the dedicated attributes of the specific endpoint element.
You’ll seldom have to use this mechanism, but for your personal enlightenment, here
are two strictly equivalent global endpoint definitions:

<file:endpoint name="tmpPoller"
 path="/tmp"
 fileAge="1000"
 pollingFrequency="2000"
/>

<endpoint name="tmpPoller"
 address="file:/mp?fileAge=1000&pollingFrequency=2000"
/>

You should prefer using the specific form for endpoints, as you’ll gain in expressive-
ness and type safety.

TIP Who cares about endpoint URIs? Unless you use the scripted configuration
builder, you may well never have to write an endpoint URI. But you’ll be
exposed to this syntax, and for different reasons. For example, Mule uses
this representation in its log files, as it’s compact and informative. For
example, the following log entry tells you that a dispatcher for the STDIO
transport has been connected:
INFO 2008-06-28 15:52:46,697 [SystemStreamConnector.dispatcher.1]
 org.mule.transport.stdio.StdioMessageDispatcher:
Connected: StdioMessageDispatcher{this=15c97e4,
 endpoint=stdio://system.out, disposed=false}

Can you spot the URI? You’re right; it’s stdio://system.out. This syntax
is also a convenient means to pass extra parameters to the element you
configure in case no specific attribute exists. So if you’re not familiar with

45Understanding connectors and endpoints
this notation, take a look at RFC-2396, which is titled “Uniform Resource
Identifiers (URI): Generic Syntax”. If you’re having a hard time reading
plain-text 80-column documents (shocking!), then you can read the Java-
Doc of the java.net.URI class. You’ll get a good idea of the different
parts that compose a URI.

Let’s look at an example of how connectors and endpoints work together. Listing 3.2
shows the IMAP-to-database problem from the beginning of this section implemented
using Mule transports.

<spring:beans>
 <spring:import resource="spring-config.xml"/>
 </spring:beans>

<jdbc:connector name="jdbcConnector" dataSource-ref="dataSource">
 <jdbc:query key="statsInsert"
 value="insert into alerts values
 (0,#[map-payload:HOST],
 #[map-payload:MESSAGE],
 #[map-payload:TIMESTAMP])"/>

</jdbc:connector>

<model name="URLAlertingModel">
 <service name="URLAlertingService">
 <inbound>
 <imap:inbound-endpoint host="mail.clood.com" user="mule"
 password="password">
 <email:email-to-string-transformer/>
 </imap:inbound-endpoint>
 </inbound>
 <component class="com.clood.monitoring.URLAlertComponent"/>
 <outbound>
 <pass-through-router>
 <jdbc:outbound-endpoint queryKey="statsInsert"/>
 </pass-through-router>
 </outbound>
 </service>
</model>

There we go; all the tedious work of writing an IMAP client, implementing a sched-
uler, and writing the JDBC client code has been reduced to a few lines of XML! We’ll
be digging into the gory details of the IMAP and JDBC transports later on in this chap-
ter. For now, let’s take a high-level look at what’s going on.

 We first declare an external Spring configuration on B. The Spring configuration
is defining resources external to our Mule config—in this case the dataSource for our
JDBC connector. The JDBC connector, along with the corresponding SQL insert we’ll
use, is defined on C. As you can probably infer, it’ll be used later on to insert a row of
data into the alerts table. The data we’ll ultimately insert is coming from email mes-
sages on Clood’s IMAP server, which we’re connecting to using the IMAP inbound

Listing 3.2 Parsing and sending email contents to a database

B

C

D

E

F

G

46 CHAPTER 3 Sending and receiving data with Mule
endpoint configured on D. When an email is received, it’s converted to a String by
the email-to-string transformer defined on E. This transforms the email from a
potentially tedious javax.mail.Message instance to something easier to deal with—a
String. This String is passed to the component defined on F, which in this case is a
custom class you’ve implemented. The class, com.clood.monitoring.URLAlert-
Component, performs the business logic at hand: extracting relevant alert details from
the mail message to persist in our database on G.1

 As you can see, the level of effort for our integration has been substantially
reduced. We’ve gone from having to work with some particularly hairy APIs to simply
implementing our business logic and writing some XML. We’ll see many more exam-
ples in this chapter where this is the case.

NOTE Endpoints will add headers, called properties, to a message as it’s sent and
received. Prefixed with MULE_, these properties contain metadata about
each message. Some, such as MULE_MESSAGE_ID, are added to all messages
processed by Mule. Other properties are specific to the underlying trans-
port. If the underlying transport supports the notion of message headers,
like JMS or SOAP, the MULE_ properties will be propagated to the proto-
col’s header mechanism. You can see this if you look at the headers of JMS
or SOAP messages once they leave Mule through an outbound endpoint.

In this section you learned how Mule abstracts I/O operations. We saw how connec-
tors and endpoints work together to let you move data into and out of components.
These are core concepts you’ll need for the rest of your exploration into Mule’s capa-
bilities. Now let’s dig in and look at the different transports Mule supports. As we’ve
mentioned, Mule ships with a wealth of transports to ease your integration efforts.
We’ll start off by looking at how Mule works with file input and output.

3.2 Working with files and directories
using the file transport
Performing input and output on files and directories is a core activity of most appli-
cations. Despite the availability of integration technologies such as SOAP and JMS,
you’ll often find yourself reading files from directories, parsing CSV files, and saving
data to disk.

 In this section we’ll look at Mule’s file transport and explore how you can use it to
simplify your file and directory demands. We’ll first look at how you can use the file
transport to move files from one directory to another. We’ll then look at how you can
use filters to be selective about what sort of files you want to process. Finally we’ll look
at Mule’s STDIO support, which allows you to interact with the input and output
streams of your application.

1 We’re deliberately glossing over the details on transformations, components, and routing—all will be covered
in depth in the next three chapters. For the remainder of this chapter we’ll make sparing use of transforma-
tion and try to only use the implicit bridge component and pass-through routers, which simply pass data from
inbound to outbound endpoints.

47Working with files and directories using the file transport
 Configuring the file transport is fairly straightforward. Some of the configuration
properties are listed in Table 3.1. You can see that they govern which directories files
are read from, whether or not they’re deleted, how often a directory is polled, and the
patterns to use when moving files.

3.2.1 Reading and writing files with file endpoints

Let’s consider another integration scenario encountered by Clood, Inc. Your boss and
his cohorts are happily generating reports using the data we created in listing 3.2. A
web-based business intelligence tool is being used to generate the reports. The BI tool
is a bit flaky, though: occasionally it’ll crash and not save the state of the various
reports that had been defined. After some research, you discover a switch to make the
tool save a snapshot of its configuration to a specified directory. You enable this and
realize either a glaring omission or bug with the software—the snapshots are all
identically named, resulting in each snapshot being overwritten by each new snap-
shot! As you want to keep historical configuration snapshots, this is highly suboptimal.
Additionally, you don’t have access to the source code of the BI tool, nor is your

Table 3.1 Configuring the file transport

Property Type Target Description

writeToDirectory String connector, outbound
endpoint

The target directory for file output.

readFromDirectory String connector, inbound
endpoint

The source directory for file input.

autoDelete boolean connector, inbound
endpoint

Whether to delete the source file after
it has been read.

outputAppend boolean connector, outbound
endpoint

Specifies that the output is appended
to a single file instead of being written
to a new file.

pollingFrequency long connector, inbound
endpoint

Specifies the interval in milliseconds
that the source directory should be
polled.

moveToDirectory String connector, inbound
endpoint

The directory to move a file once it
has been read. If this and autoDelete
are unset then the file is deleted.

moveToPattern String connector, inbound
endpoint

The pattern used to indicate what
files should be moved to the
moveToDirectory files not
matching this pattern are deleted.

outputPattern String connector, outbound
endpoint

The pattern used when creating new
files on outbound endpoints.

streaming boolean connector Specifies whether the file data should
be streamed.

48 CHAPTER 3 Sending and receiving data with Mule
support contract with the software provider up to date. Rather than face the prospect
of being asked to revert to a configuration you no longer have, you decide to try to use
Mule to get a backup of each file as it’s written to disk.

 Listing 3.3 demonstrates using the file transport to move files from one directory
to another. In this case, we’ll be polling a backup directory for new snapshot files
every second, then immediately moving the snapshot file to an archive directory with
a timestamp appended.

<file:connector name="FileConnector"
 streaming="false"
 pollingFrequency="1000">
 <file:expression-filename-parser/>

</file:connector>

<model name="fileModel">
 <service name="fileService">
 <inbound>
 <file:inbound-endpoint path="./data/snapshot"/>
 </inbound>
 <outbound>
 <pass-through-router>
 <file:outbound-endpoint path="./data/archive"
 outputPattern="SNAPSHOT-#[function:dateStamp]"/>
 </pass-through-router>
 </outbound>
 </service>
</model>

The global properties for the file connector are set up first in B, C, and D. Since
we’re concerned with the actual file itself, and not a stream of its data, we set the
streaming property of the file connector to false on B. We next need to set how
often we want file inbound endpoints to poll their source directories for new content.
This is accomplished by setting the pollingFrequency to 1000 milliseconds in C.
The filename parser is set on D to use the expression-filename-parser—we’ll see
how this is used in a moment. On E we define the file inbound endpoint. This will
poll the ./data/snapshot directory every second for new files. When a new file is
detected, it’s sent to the file outbound endpoint defined on F and removed from
the source directory.

 A file inbound endpoint will, by default, remove the file from the source directory
once its read by the inbound endpoint. You can override this behavior by setting the
autoDelete property on the file connector to false. Be careful when doing this,
though, as this will cause the file to be repeatedly read by a file inbound endpoint
until it’s removed from the source directory. You can control how aggressively Mule
reads a file by setting the fileAge property on the file connector. The fileAge prop-
erty specifies how long the endpoint should wait before reading the file again. For

Listing 3.3 Using the file transport to move files from one directory to another

Set streaming
to false

B
Poll directories
every second

C

Use expression-
filename-parserD

Look for files
in specified
directory

E

FSend files
to specified

directory

49Working with files and directories using the file transport
instance, a fileAge of 60000 indicates Mule should wait a minute before processing
the file again.

Exercise caution when using the autoDelete property of the file
connector.

Once the file has been sent to the pass-through router by the inbound endpoint, the
file outbound endpoint will place the file in the ./data/archive directory. The result-
ing file will be named using the supplied outputPattern, which is parsed according to
the filename parser defined on D. In this case, we’re using the expression-file-
name-parser. This allows you to use Mule expressions to control how files are named
by the file transport.

NOTE In addition to setting streaming to false, you can also use a FileAdaptor
to obtain a reference to the file object and not a byte stream. This is done
by setting a service-override on the file connector as follows:

<file:connector name="FileObjectConnector">
 <service-overrides
 messageAdapter="org.mule.transport.file.FileMessageAdapter"
 />
</file:connector>

The Mule expression language is covered in depth in appendix A. The following list
details some examples of using Mule expressions in filenames. As you can see, you can
embed date stamps, UUIDs, and the original filename in the final filename:

■ function:dateStamp —The date stamp of the current time
■ function:uuid —A universally unique identifier
■ header:originalFilename —The original name of the file

Now let’s look at how we can control which files the inbound endpoint will process.

3.2.2 Using filters on inbound file endpoints

Sometimes you want to be selective about which files are processed by an inbound file
endpoint. Perhaps you’re interested in moving XML or JSP files from one directory to
another while ignoring everything else. Mule allows endpoints to be particular about
the data they send and receive using filters. A filter is a mechanism for controlling
which data the endpoint is concerned with. Much like the filter in a coffee pot, it lets
some things go through while blocking everything else.

 Let’s revisit our BI configuration backup solution. This has been working great so
far, but inspecting the archive directory reveals some oddly named files. It seems that
some temporary files are being written to the snapshot directory along with the snap-
shots. The only files we’re interested in will match the pattern SNAPSHOT*.xml, so let’s
adjust listing 3.3 accordingly. Listing 3.4 accomplishes this.

BEST
PRACTICE

50 CHAPTER 3 Sending and receiving data with Mule

<file:connector name="FileConnector"
 streaming="false"
 pollingFrequency="1000">
 <file:expression-filename-parser/>
</file:connector>

<model name="fileModel">
 <service name="fileService">
 <inbound>
 <file:inbound-endpoint path="./data/snapshot">
 <file:filename-wildcard-filter
 pattern="SNAPSHOT*.xml"/>
 </file:inbound-endpoint>
 </inbound>
 <outbound>
 <pass-through-router>
 <file:outbound-endpoint path="./data/archive"
 outputPattern=
 "#[header:originalFilename]-#[function:dateStamp].xml"
 />

 </pass-through-router>
 </outbound>
 </service>
</model>

We’ve added a filename wildcard filter to the inbound endpoint at B. As you can see
from the pattern attribute, the filter will only pass files that start with SNAPSHOT and
end with an xml extension. We’ve additionally modified the outputPattern at C to
preserve the original filename for the output files, while still appending the time-
stamp. In this case, the resulting files would be named like this: SNAPSHOT-04-09-08_18-
37-33.417.xml.

TIP Remember that, by default, a file inbound endpoint will delete the
source file after it has been read. If you want to keep the file, be sure to
set autoDelete to false on your inbound endpoint or connector! Keep in
mind, though, that the file will be read again at the next polling interval.
This is useful in certain circumstances.

Closely related to file input and output is console input and output. While Mule is typ-
ically used in a noninteractive fashion from the standpoint of the console, for testing
and debugging, it’s often useful to be able to accept input from a keyboard or print
information out on the screen. Let’s look at the shortcuts Mule provides for perform-
ing this sort of I/O.

3.2.3 Using STDIO endpoints

In order to facilitate testing and debugging, Mule offers access to the standard I/O
streams as inbound and outbound endpoints. This can be invaluable to quickly get
data into and out of endpoints. Listing 3.5 copies input entered on the input stream
to the output stream.

Listing 3.4 Moving only certain files from one directory to another

Only accept files
matching the pattern

B

CRetain original
filename along
with appended

timestamp

51Using email

<model name="stdioModel">
 <service name="stdioService">
 <inbound>
 <stdio:inbound-endpoint system="IN"/>
 </inbound>
 <outbound>
 <pass-through-router>
 <stdio:outbound-endpoint system="OUT"/>
 </pass-through-router>
 </outbound>
 </service>
</model>

We’ll see further use of these endpoints in this chapter as we demonstrate the rest of
Mule’s I/O capabilities.

 We’ve just taken a look at how you can use Mule’s file transport to perform file and
directory operations. We also saw how the STDIO transport enables you to get access to
Mule’s console to perform input and output. These are all important means of getting
data into and out of Mule, but your integration demands will often be more compli-
cated than working with files and keyboard input. Let’s take a further look at Mule’s
transport options, starting with sending and receiving email.

3.3 Using email
It’s hard to escape email messaging in the modern enterprise. While it’s tempting to
think of email as primarily for person-to-person communication, it’s often used for
more than friendly conversation. Email messages relay monitoring alerts, send order
receipts, and coordinate scheduling. This is evident from the automated emails you
receive when signing up to a web site, ordering a book from Amazon, or confirming a
meeting request.

 In this section, we’ll investigate how to use the email transports to act on and gen-
erate these messages. First we’ll take a look at receiving email with the IMAP transport.
Then we’ll look at sending email with the SMTP transport.

3.3.1 Receiving email with the IMAP transport

The IMAP connector allows you to receive email messages from a mail server using
IMAP. IMAP, the Internet Message Access Protocol, is the prevailing format for email
message retrieval—supported by most email servers and clients. IMAP can be a conve-
nient means of interacting with applications that don’t supply more traditional
integration mechanisms. An example could be a legacy application that generates
periodic status emails but doesn’t offer any sort of programmatic API. Email can, at
other times, be a preferred means of application interaction. You may need to
programmatically react to email confirmations, for instance. In that case, using an
IMAP endpoint is a natural fit.

 Table 3.2 lists some of the more common configuration properties of the IMAP
transport.

Listing 3.5 Echoing input from STDIN to output on STDOUT

52 CHAPTER 3 Sending and receiving data with Mule
Let’s reconsider the IMAP example we used in the beginning of this chapter. Clood’s
IMAP server is taking quite a beating. The call center and Mule are accessing the same
IMAP folder every few minutes for new data—much to the chagrin of the mail admin-
istrator. To help remedy the issue, the mail administrator has set up a filter that moves
only the URL alert messages to a folder for us to access. Since our data isn’t terribly
time sensitive, she additionally asked that we only pull down email once an hour. List-
ing 3.6 modifies our configuration to comply with these requests.

<spring:beans>
 <spring:import resource="spring-config.xml"/>
</spring:beans>

<imap:connector name="imapConnector"
 checkFrequency="3600000"
 mailboxFolder="MULE_MESSAGES"
 deleteReadMessages="true" />

<jdbc:connector name="jdbcConnector" dataSource-ref="dataSource">
 <jdbc:query key="statsInsert"
 value="insert into alerts values
 (0,
 #[map-payload:HOST],
 #[map-payload:MESSAGE],
 #[map-payload:TIMESTAMP])"/>
 </jdbc:connector>

<model name="URLAlertingModel">
 <service name="URLAlertingService">
 <inbound>
 <imap:inbound-endpoint host="mail.clood.com" user="mule"
 password="password">

Table 3.2 Common configuration properties of the IMAP transport

Property Type Target Description

mailboxFolder String connector The IMAP folder to read messages
from.

backupFolder String connector, inbound
endpoint

If backupEnabled is true, the
directory on the local disk to backup
messages to.

backupEnabled boolean connector, inbound
endpoint

Whether or not to store copies of
read email messages.

deleteReadMessages boolean connector Whether or not to delete messages
from the mail server once they’ve
been read. If false, the messages are
marked as SEEN on the mail server.

checkFrequency Integer connector Interval at which to poll the server for
new messages.

Listing 3.6 Explicitly configuring an IMAP endpoint’s check frequency and folder

Configures an IMAP
inbound endpoint

B

53Using email
 <email:email-to-string-transformer/>
 </imap:inbound-endpoint>
 </inbound>
 <component class="com.clood.monitoring.URLAlertComponent"/>
 <outbound>
 <pass-through-router>
 <jdbc:outbound-endpoint queryKey="statsInsert"/>
 </pass-through-router>
 </outbound>
 </service>
</model>

As the changes we’ve been requested to make are only allowed on an IMAP connector,
we need to explicitly define one on B. We’re setting the checkFrequency to an hour
(in milliseconds) and telling the connector to only poll the MULE_MESSAGES folder.
Since Mule is the only reader of this folder, we’re also setting the deleteRead-
Messages property to true. This will remove messages from the server as we read
them, conserving disk space and making our mail administrator happy.

Be cautious when using the backupFolder and backupEnabled proper-
ties. Mule will create a file for each email message it processes. This can
quickly lead to filesystem issues such as inode exhaustion in mail-heavy
environments.

Now that we’ve seen a few examples of how to read email messages, let’s see how we
can send them using the SMTP transport.

3.3.2 Sending mail using the SMTP transport

The SMTP transport lets you use an outbound endpoint to send email messages. This
is useful in a variety of situations. We’ve already seen how an alerting system uses SMTP
to send alert data. You’ve also no doubt received automated emails confirming pur-
chases, forum subscriptions, and so forth. Sending email is also useful to perform
notification of the completion of some long-running process—such as a notification
that a backup was successful. Let’s take a look at how to configure SMTP connectors
and endpoints.

 Table 3.3 lists the common properties for configuring the SMTP transport. In par-
ticular, the properties allow us to configure how the headers of the outbound emails
are generated.

Table 3.3 Common configuration properties of the SMTP transport

Property Type Target Description

to String connector, endpoint The recipient of the message

subject String connector, endpoint The default message subject

fromAddress String connector The from address

BEST
PRACTICE

54 CHAPTER 3 Sending and receiving data with Mule
Let’s consider another example from our friends at Clood, Inc. The accounting
department occasionally receives invoices via FTP to an internal server. Accounting
knows when these files arrive and it’s usually the responsibility of you, or someone on
your team, to get the invoice to them. Besides the fact that this is tedious (and error
prone), Accounting has recently been less attentive to letting you know when to
expect these files. They’ve also become increasingly irate when the invoices aren’t
delivered in a timely fashion. As such, automatically emailing the invoices as they
arrive seems like the best bet. Listing 3.7 illustrates how to use an SMTP endpoint to
accomplish this.

<model name="smtpModel">
 <service name="smtpService">
 <inbound>
 <file:inbound-endpoint path="./data/invoice">
 <file:file-to-string-transformer/>
 </file:inbound-endpoint> </inbound>
 <outbound>
 <pass-through-router>
 <smtp:outbound-endpoint host="localhost"
 from="mule@clood.com"
 subject="Accounting Invoice"
 to="accounting@clood.com">
 <email:string-to-email-transformer/>
 </smtp:outbound-endpoint>
 </pass-through-router>
 </outbound>
 </service>
</model>

The file inbound endpoint configured on B will pick up the invoices as they arrive at
the target directory. This should seem familiar from listing 3.3, with the exception of
the file-to-string transformer on C. The file-to-string transformer is going to convert

from String endpoint The from address

replyToAddresses String connector A comma-separated list of reply-to
addresses

replyTo String endpoint A comma-separated list of reply-to
addresses

ccAddresses String connector A comma-separated list of cc
addresses

cc String endpoint A comma-separated list of cc
addresses

Listing 3.7 Using an SMTP endpoint to email an invoice

Table 3.3 Common configuration properties of the SMTP transport (continued)

Property Type Target Description

Configure file
inbound endpoint

B

Convert file
to StringC

Configure SMTP
outbound endpoint

Convert String
to email
message

55Using web services
the contents of the file invoice to a string. Once this occurs, the string is sent for deliv-
ery through the SMTP outbound endpoint. Before the email is sent, though, the string
passes through the string-to-email transformer. Here the String becomes the body of
an email message that’s subsequently delivered to account@clood.com.2

 We just looked at how to receive email messages with the IMAP transport and send
email messages with the SMTP transport. We saw how to augment the example from
the beginning of this chapter to control how messages are downloaded from an IMAP
server. We also saw how to use an SMTP endpoint in conjunction with a file endpoint
to automatically send emails as new files are created in a directory.

 Email usually isn’t the best way to drive integration between applications. For one
thing, it’s hard to make inferences about the data in an email message. For instance,
while two mail messages may be MIME encoded, one might contain XML while the
other may contain a PDF attachment. Another complication with using email as a data
transport is that the underlying protocols make no guarantee about the timelines or
reliability of the message delivery. In the next two sections we’ll be looking at Mule’s
web services and JMS connectors, which attempt to meet these needs.

3.4 Using web services
XML-based web services technologies provide an attractive means of consuming and
exposing enterprise data. XML documents support a variety of schema languages to
enforce document conformity. Most languages and platforms provide rich support for
XML parsing, and various tools exist to map internal data models to XML schemas.
HTTP, being a ubiquitous and firewall-friendly transport protocol, is a natural way to
pass these documents around.

 Mule has an assortment of functionalities for consuming, publishing, transform-
ing, and parsing XML-based web services. In this section we’ll start off by looking at
Mule’s support for web services using SOAP. Then we’ll take a look at using Mule’s
HTTP transport, where you can use the language of the Web to exchange documents.

NOTE The examples in this chapter assume the use of XML web services. This
doesn’t imply that XML is the only means of defining web services data.
Although SOAP is XML-centric, the HTTP transport can work with what-
ever data format you wish. JSON, in particular, is emerging as a practical
alternative to XML; especially when working with rich, browser-based
applications.

3.4.1 Consuming and exposing SOAP services with the CXF transport

The SOAP connector allows you to consume and expose SOAP services. To accomplish
this, Mule employs CXF (http://cxf.apache.org/), a mature, document-driven web-
services framework. As you’ll see in the following sections, CXF provides a rich envi-
ronment for working with SOAP services and messages.

2 Just another reminder that we’ll be covering transformation in detail in chapter 5.

http://cxf.apache.org/

56 CHAPTER 3 Sending and receiving data with Mule
 Exposing and consuming SOAP services are sufficiently different enough that
we’re going to forego the usual discussion of common configuration steps and jump
right into the endpoint details. First we’ll look at how you can use the WSDL outbound
endpoint to consume SOAP services. Then we’ll look at how you can expose your ser-
vice beans for SOAP consumption on an inbound endpoint.

 If you’ve worked with SOAP before, you’ve probably encountered a WSDL. A WSDL
is a description of the operations supported by a SOAP service. WSDLs are particularly
useful for programmatically operating on web services. The WSDL outbound endpoint
takes advantage of this fact.

 Listing 3.8 demonstrates the WSDL endpoint by providing an interface to a web ser-
vice that returns stock quotes. We’ll be reading in a stock ticker name from the STDIO
inbound endpoint and passing it to the GetQuote method of the stockquote service.

<stdio:connector name="SystemStreamConnector"
 promptMessage="Please enter a stock ticker: "
 messageDelayTime="1000"/>

<model name="cxfWsdlModel">
 <service name="cxfWsdlService">
 <inbound>
 <stdio:inbound-endpoint system="IN" synchronous="true"/>
 </inbound>
 <outbound>
 <chaining-router>
 <outbound-endpoint
 address=
"wsdl-cxf:http://www.webservicex.net/stockquote.asmx?\
WSDL&method=GetQuote"/>
 <stdio:outbound-endpoint system="OUT"/>
 </chaining-router>
 </outbound>
 </service>
</model>

First off we’ll configure an inbound endpoint on B. This is where we’ll be accepting
the stock ticker symbol (such as IBM or JAVA) and using it as the payload for the Get-
Quote method. As you can see, we’ve marked the inbound endpoint as synchronous.
An endpoint can support two types of message exchange: asynchronous and synchro-
nous. Asynchronous message exchange assumes that your endpoint “fires and forgets”
the message it sends. This is the behavior you want if the message you’re sending
either doesn’t have a reply or the reply doesn’t matter to you. An example of this
might be a JMS message you place on a queue or a row you insert in a database. An
endpoint is declared synchronous, as in B, if the response is important. This could
either be because you want to return the response to a client or you want the inbound
endpoint to block while the current message is being processed. The latter is the case
in this example: we want the STDIO inbound endpoint to block on new input until a
response is received and output to the screen by the chaining router.

Listing 3.8 Invoking a remote web service using a WSDL outbound endpoint

BConfigures inbound
endpoint to accept

stock tickers

Configures CXF WSDL
outbound endpoint

C

Send request to
WSDL then display
on console

D

57Using web services
 You might have noticed that we’re using a different outbound router than the pre-
vious examples. The chaining router defined on C indicates that the output of each
endpoint will be used as the input into the subsequent endpoint (we’ll discuss the
chaining router in greater detail in the next chapter). In this case, we’ll be taking the
response from the web service and displaying it on the output stream. Once this is
done, the inbound endpoint will prompt the user for a new ticker.

 The web services acrobatics are performed by the outbound endpoint configured
on D. Mule will accept the quote provided by the inbound endpoint, marshal a SOAP
request dynamically from the WSDL, and send it to the remote service. The XML
response will then be passed to the STDIO endpoint and displayed on your console.
The response, for now, will be raw XML as returned from the service. We’ll see in
chapter 5 how we can transform this data into a friendlier format.

 As you can see, we’re using the explicit endpoint URI syntax described in chapter 2
to specify the outbound endpoint. This is because at the time of writing, no schema
definition for the cxf-wsdl endpoint exists. This will hopefully be rectified in the
near future.

 Let’s look at how we can expose some business logic as a SOAP inbound endpoint.
The CXF inbound endpoint works a bit differently than the previous endpoints we’ve
seen; it’ll use the service’s component to dynamically generate a WSDL containing the
operations of your SOAP service. We discuss components in depth in chapter 6, but
you might recall from the first example in this chapter that a component is simply a
POJO that implements some piece of business logic or message enrichment.

 We’ll discuss two options for exposing your component as a web service. The first
option enables you to expose any POJO as a WSDL using sensible defaults. This is typi-
cally the easiest way to go, but sometimes you want to take greater control over how
your WSDL and XSD are generated. If this is the case, you can leverage CXF’s JAXB and
JAX-WS bindings to obtain fine-grained control over the presentation of your web ser-
vice. We’ll look at using the simple front end first; then we’ll investigate how to anno-
tate our POJO and re-expose it using the JAX-WS front end.

 Before we dig into the inbound endpoint configuration, we’ll present the compo-
nent we’ll be working with for the remainder of this section: GreetingServiceImpl.
The friendly class in listing 3.9 contains a single method called getGreeting. It will
take a person’s name and return a salutation.

package com.muleinaction.cxf.simple;

public class GreetingServiceImpl {
 public String getGreeting(String name) {
 return "Hello, " + name;
 }
}

Listing 3.9 GreetingServiceImpl is a Java class that returns a greeting

58 CHAPTER 3 Sending and receiving data with Mule
Although this example is a bit contrived, it serves to illustrate how to use the CXF
inbound endpoint to build a web service. As you’ll see in the next few chapters, com-
ponents can be put to much better use than saying hello.

 Now we’re ready to use the simple front end to expose GreetingServiceImpl. List-
ing 3.10 will expose GreetingServiceImpl as a SOAP service.

<model name="cxf-simple">
 <service name="GreetingService">
 <inbound>
 <cxf:inbound-endpoint frontend="simple"
 address="http://localhost:9090/greeting" />
 </inbound>
 <component
 class="com.muleinaction.cxf.simple.GreetingServiceImpl"/>

 </service>
</model>

The CXF inbound endpoint is configured on B. We’re defining the front end as
simple and specifying the URL we want the WSDL to reside on. We next define our
component on C; as you can see, this is simply the GreetingServiceImpl class we
implemented earlier. CXF will use reflection to examine the public methods of the
GreetingServiceImpl class and expose them as SOAP operations in the WSDL. If you
run this example, you’ll be able to browse to the WSDL using this URL: http://local-
host:8080/greeting?WSDL.

 If you look at the WSDL Mule generates, you’ll see it uses the hostname it’s bound
to as the default for the address location. This is often undesirable when you’re using
NAT or a load balancer and need to use the external address or name. You can over-
ride this explicitly by using the wsdlLocation attribute of the CXF inbound endpoint.
In this scenario, you’d download the WSDL generated by Mule, modify the
soap:address location, and then specify the location of the modified WSDL on the
wsdlLocation attribute. The next time you restart Mule, the new location should take
effect. The modified endpoint looks like this:

<cxf:inbound-endpoint
 frontend="simple"
 address="http://localhost:8080/greeting"
 wsdlLocation="/data/cxf/wsdl/greeting.wsdl"
 />

Use the wsdlLocation attribute to explicitly define your WSDL when you
need to override its address when working with NAT or load balancing.

Let’s fire up a SOAP client and try the endpoint out. In the following example, we’ll
use SoapUI (http://www.soapui.org/) to inspect our web service. As you can see in
figures 3.2, 3.3, and 3.4, we’ve imported our WSDL into SoapUI, generated a request,
and received a response.

Listing 3.10 Using a CXF inbound endpoint with the simple front end

Configure CXF
inbound endpoint

B

C
Specify component class

to accept messages

BEST
PRACTICE

http://localhost:8080/greeting?WSDL
http://www.soapui.org/

59Using web services
This approach works fine for simple SOAP endpoints, but if your data model is com-
plex or if you need specific control over how the WSDL is generated, your best bet is
the JAX-WS front end.

 JAX-WS is the Java API for XML Web Services. Along with JAXB, it allows you to use
Java 5 annotations to define the particulars of your XML schema and WSDL. An in-
depth discussion of JAXB and JAX-WS is beyond the scope of this book, but plenty of
excellent resources exist online (including the CXF web site).

NOTE Contract-first development with CXF The examples in this section generate
the XML artifacts for a web service, the schema, and WSDL from an object
model. Often, though, it’ll make sense to start with the WSDL or schema.
This sort of web services development is called contract-first and is sup-
ported by CXF’s wsdl2java tool. Wsdl2java will generate the JAX-WS anno-
tated classes we’ll see later from a preexisting XML schema and WSDL.
Full documentation on using this tool is available from the CXF web site.

To illustrate how the JAX-WS front end works, we’ll be modifying GreetingService-
Impl, which we defined earlier. We’ll additionally be changing the operation name in
the WSDL from getGreeting to sayGreeting using JAX-WS annotations.

 The first step is to extract an interface from GreetingServiceImpl. As you can see
in listing 3.11, we’ve created an interface called GreetingService that contains a
@WebService annotation on the class declaration.

Figure 3.2 The imported WSDL

Figure 3.3 The SOAP request

Figure 3.4 The SOAP response

60 CHAPTER 3 Sending and receiving data with Mule

import javax.jws.WebService;
import javax.jws.WebMethod;

@WebService
public interface GreetingService {

 @WebMethod(operationName = "sayGreeting")
 String getGreeting(String name);
}

The @WebService annotation on B indicates we’ll be exposing this interface as a web
service. The @WebMethod annotation on the getGreeting method indicates that this
method will become an operation in our WSDL, called sayGreeting. This will override
the default name of getGreeting in the generated WSDL to sayGreeting. Now we
need to refactor GreetingServiceImpl. Listing 3.12 modifies it to implement the
GreetingService interface, along with the appropriate JAX-WS annotations.

import javax.jws.WebService;
import javax.jws.WebMethod;

@WebService(endpointInterface =
 "GreetingService",
 serviceName = "GreetingService")
 public class GreetingServiceImpl implements GreetingService {

@WebMethod(operationName = "sayGreeting")
 public String getGreeting(String name) {
 return "Hello, " + name;
 }
}

The implementation is annotated similarly to the interface. We’re using the @Web-
Service annotation on B to indicate the service name to use in the WSDL, which will
be GreetingService in this case. We additionally annotate the getGreeting method
on C to indicate it should be exposed in the WSDL as sayGreeting. Now we just need
to change the front end from simple to jaxws and we should be in business, as you
can see in listing 3.13.

<model name="cxf-jaxws">
 <service name="GreetingService">
 <inbound>
 <cxf:inbound-endpoint
 frontend="jaxws"
 address="http://localhost:8081/greeting"
 />
 </inbound>
 <component class="GreetingServiceImpl"/>
 </service>
</model>

Listing 3.11 Extracting an interface from GreetingServiceImpl.java

Listing 3.12 Implementing GreetingService with JAXWS annotations

Listing 3.13 Using a CXF inbound endpoint with the jaxws front end

B

B

C

61Using web services
When we restart Mule, the new WSDL will be in place with the getGreeting operation
renamed to sayGreeting.

 Now that you’re able to create SOAP-based web services using the simple and
jaxws front ends, we can look at other methods of web services interoperability.
Whereas SOAP is a good mechanism for exchanging XML documents, the verbosity of
WSDL and XSD can sometimes be overkill. Let’s look at an alternative way of using
HTTP to exchange data.

3.4.2 Sending and receiving data using the HTTP transport

The HTTP transport allows you to send and receive data using the HTTP protocol. For
instance, you can use HTTP’s POST method to send data through an outbound end-
point or the GET method to return data from a synchronous inbound endpoint. XML
is commonly used as the content of this data, although there’s no reason why you
can’t send and receive plaintext, JSON, or CSV. The HTTP transport also features a
polling connector. This’ll let you repeatedly interrogate a remote URL and pull down
its contents at a specified interval.

 Let’s look at how HTTP connectors and endpoints are configured. Table 3.4 shows
you some of the options for configuring the HTTP transport. They should seem famil-
iar to you if you’ve spent any time configuring a web browser.

 Let’s turn our attention back to Clood, Inc., and see how they’re using an HTTP
endpoint to receive data. Clood outsources some of its services, such as backup, to
third-party providers. Clood’s backup provider issues XML reports on the status of

Table 3.4 The HTTP transport lets you specify typical client side properties.

Property Type Target Description

proxyHostname String connector The proxy hostname. This lets you use a
web proxy for requests.

proxyPort String connector The proxy port.

proxyUsername String connector The proxy username.

proxyPassword String connector The proxy password.

enableCookies boolean connector Enable cookies.

user String outbound endpoint The username for the remote URL.

password String outbound endpoint The password for the remote URL.

host String inbound endpoint,
outbound endpoint

The host to either receive requests
(inbound) or send requests (outbound).

port int inbound endpoint,
outbound endpoint

The port to bind to for inbound endpoints
and the port to send to for outbound end-
points.

method String inbound endpoint,
outbound endpoint

HTTP method to use (GET, POST, PUT or
DELETE).

62 CHAPTER 3 Sending and receiving data with Mule
each night’s backup run. They’ve offered to POST these reports to us, and as such
we’ve been tasked to set up an HTTP endpoint to accept this data. Listing 3.14 shows
how to accomplish this. It’ll accept XML posted to the specified URL and save it to a
file with an appended timestamp.

<model name="httpInboundModel">
 <service name="httpInboundService">
 <inbound>
 <http:inbound-endpoint
 address="http://services.clood.com/backup-reporting"
 synchronous="true">
 <byte-array-to-string-transformer/>

 </http:inbound-endpoint>
 </inbound>
 <outbound>
 <pass-through-router>
 <file:outbound-endpoint path="./data/reports"
 outputPattern="backup-report-#[function:dateStamp].xml"/>
 </pass-through-router>
 </outbound>
 </service>
<model>

The HTTP inbound endpoint is configured on B. The HTTP connector will spin up a
web server on the given address and accept documents on the “backup” URI. We have
a byte-array-to-string transformer defined on C. This converts the byte array posted by
the client to a string. Finally, we have an outbound endpoint configured by D that will
save each posted document as an XML file with a timestamp appended to the filename.

 Using the HTTP inbound endpoint in this manner serves as a convenient integra-
tion point when a more formal transport like JMS isn’t available. Also, like SOAP over
HTTP, it’s convenient when firewalls make other integration transports more difficult.
Let’s look at how the backup provider might use Mule to post these reports to the
endpoint in listing 3.14. Listing 3.15 illustrates this.

<model name="httpOutboundModel">
 <service name="httpOutboundService">
 <inbound>
 <file:inbound-endpoint path="./data/provider"/>
 </inbound>
 <outbound>
 <pass-through-router>
 <http:outbound-endpoint
 address="http://services.clood.com/backup-reporting"/>

 </pass-through-router>
 </outbound>
 </service>
</model>

Listing 3.14 Accepting backup data on an HTTP inbound endpoint

Listing 3.15 Using an HTTP outbound endpoint to post data

Accept XML
reporting data

B

Transform posted
byte array to StringC

Save String to file D

B

C

63Using web services
The file inbound endpoint specified on B will wait for reports to appear in the speci-
fied directory. As the reports arrive, they’ll be posted through the HTTP outbound
endpoint defined on C and ultimately arrive at the service we defined in listing 3.14.

NOTE SOAP versus REST, round 1. There’s an ongoing debate in the web-
services communities about the benefits of using SOAP versus using some-
thing called REST. REST, an abbreviation for representational state transfer,
describes the architectural philosophies the WWW is based on. In the
context of web-services debates, this usually boils down to RPC versus doc-
ument exchange.

Occasionally you may have to repeatedly poll a remote URL and pull down the con-
tents. This is an attractive option to pull contents from sites that don’t offer RSS feeds,
for instance. In listing 3.16 we set up an inbound endpoint to pull down the contents
of www.cnn.com every 5 minutes.

<http:polling-connector name="pollingHttp" pollingFrequency="300000"/>

<model name="httpPollingModel">
 <service name="httpPollingService">
 <inbound>
 <http:inbound-endpoint
 address="http://www.cnn.com"
 connector-ref="pollingHttp"
 synchronous="true">
 <byte-array-to-strinkg-transformer/>
 </http:inbound-endpoint>
 </inbound>

 <outbound>
 <pass-through-router>
 <file:outbound-endpoint path="./out"
 outputPattern="www.cnn.com-[DATE].html"/>
 </pass-through-router>
 </outbound>
 </service>
</model>

The polling HTTP inbound endpoint configuration is a bit different than what we’ve
seen. We first need to explicitly configure the connector at B. You can see we’re giv-
ing the connector the name pollingHttp. As you saw in the previous chapter, this is
how the connector will be explicitly referenced in the rest of the configuration; it
allows us to use regular HTTP inbound endpoints alongside polling endpoints. The
inbound endpoint is configured on C. We’re explicitly declaring the pollingHttp
connector by setting the connector-ref property on the inbound endpoint. We again
encounter the byte-array-to-string transformer on D. This performs the same func-
tion as previously: converting the byte array from the HTTP request into a string.
Finally we have the file outbound endpoint on E. This writes the web page contents
out to a file appended with a date stamp.

Listing 3.16 Polling the contents of a web site

B
Configures

http:polling-connector

Poll www.cnn.comC

Transform posted
byte array to StringD

E
Saves web page

as HTML file

64 CHAPTER 3 Sending and receiving data with Mule
 In this section we learned how to use SOAP and HTTP to exchange data. We looked
at using Mule’s CXF Transport to expose our data using SOAP. We saw a couple ways of
using the transport to automatically expose your component’s method as SOAP end-
points. We also saw how to use WSDLs to consume SOAP services on endpoints. We
examined how to use the HTTP endpoint, a lightweight alternative to using the CXF
endpoint, as a method to exchange arbitrary data.

 Whereas SOAP and HTTP are popular ways to do data exchange, there are more
robust options available, especially when you have control over the applications in
question. In the next section, we’ll consider how we can use JMS to do reliable mes-
sage exchange.

3.5 Using the JMS transport for asynchronous messaging
The prevalence of HTTP makes web services an attractive alternative for integration
outside of the firewall. Unfortunately HTTP wasn’t designed as an integration trans-
port. As such, it fails to provide guarantees about delivery time, reliability, and secu-
rity. The WS-* specifications are making strides in these areas, but their domain is
limited to SOAP. Fortunately, the JMS protocol is an attractive alternative for integra-
tion “inside the firewall.” Let’s look at Mule’s JMS support.

 JMS is an attractive option for application integration. If you’re working in a Java
environment and have control over the network between your applications, using JMS
makes a lot of sense—it’s asynchronous, secure, reliable, and often very fast. It also
gives you the ability to work with arbitrary data payloads, in a purely Java environment
you can even pass around serialized objects.

 In this section we’ll investigate Mule’s support for JMS. We’ll start by seeing how we
can send messages on queues and topics. Then we’ll see how we can use filters to be
selective about the JMS messages we receive and send. Finally we’ll see how to use JMS
messages, which are normally asynchronous, to perform synchronous operations on
endpoints.

 The JMS transport can be used to send and receive JMS messages on queues and
topics, using either the 1.0.2b or 1.1 versions of the JMS spec. Mule doesn’t implement
a JMS server, so you’ll use the JMS transport in conjunction with a JMS implementation
such as ActiveMQ, OpenMQ, or Tibco EMS. Because of this, you’ll have to put the cli-
ent JARs for your JMS provider in the lib/user directory in your Mule installation.

 Configuring JMS with your broker can sometimes be a tricky proposition. As such,
Mule provides a wealth of options for JMS connectors and endpoints to play nicely
with the JMS implementation at hand. Table 3.5 lists some of these.

65Using the JMS transport for asynchronous messaging

3.5.1 Sending JMS messages with the JMS outbound endpoint

Let’s send some messages using a JMS outbound endpoint. In listing 3.17, we’ll modify
the backup reporting service used in listing 3.14 to send data to a JMS topic instead of
a file. This’ll allow all interested parties internal to Clood, Inc., to subscribe to the
backup-reports topic and receive information about backup runs.

<jms:activemq-connector name="jmsConnector"
 specification="1.1"
 brokerURL="tcp://localhost:61616" />

<model name="jmsModel">
 <service name="jmsService">
 <inbound>
 <http:inbound-endpoint
 address="http://services.clood.com/backup-reporting"
 synchronous="true">
 <byte-array-to-string-transformer/>
 </http:inbound-endpoint>
 </inbound>
 <outbound>
 <pass-through-router>
 <jms:outbound-endpoint topic="backup-reports"/>

Table 3.5 Common configuration properties for the JMS transport

Property Type Target Description

persistentDelivery boolean connector Toggle persistent delivery for messages

acknowledgementMode String connector Set the acknowledgement mode to
AUTO_ACKNOWLEDGE,
CLIENT_ACKNOWLEDGE, or
DUPS_OK_ACKNOWLDGE

durable boolean connector Toggle durability for topics

specification String connector Specify with JMS specification to use,
either 1.1 or 1.0.2b

honorQosHeaders String connector Specifies whether individual should be
allowed to override JMS QoS headers
(persistentDelivery, and so on)

queue String inbound-end-
point, out-
bound-
endpoint

The queue to send to; can’t be used in
conjunction with

topic String inbound-end-
point,out-
bound-
endpoint

The topic to send to; can’t be used in
conjunction with

Listing 3.17 Sending backup reports to a JMS topic

Configures
activemq-connector

B

Configures HTTP
inbound endpointC

Send JMS messages
to topic D

66 CHAPTER 3 Sending and receiving data with Mule
 </pass-through-router>
 </outbound>
 </service>
</model>

JMS brokers typically require slightly different configuration options. As such, you
need to explicitly configure the connector for your broker. We’re doing this for an
external ActiveMQ instance on B. The broker is listening on the loopback interface
on port 61616. The JMS specification is declared here as well. If we wanted to use the
1.0.2b spec we’d simply change 1.1 to 1.0.2b. An HTTP inbound endpoint is config-
ured on C, where the backup reports will be POSTed. Our JMS outbound endpoint is
defined on D. The string from the inbound endpoint will be sent to the backup-
reports topic as a JMS TextMessage.

 The JMS transport will create the specific type of JMS message based on the source
data. A byte array will be instantiated as a BytesMessage, a Map will become a Map-
Message, an InputStream into a StreamMessage and a String into a TextMessage, as
we’ve just seen. If no better match is found, and the object implements Serializable,
then an ObjectMessage will be created. Refer to section 5.5 for more information
about JMS transformers.

 Sending messages to a queue is just as easy. We simply change the topic attribute
to the queue attribute in the JMS outbound endpoint configuration to look like this:

<jms:outbound-endpoint queue="backup-reports"/>

Messages now sent through this endpoint will be placed on a queue called backup-
reports. If you’re using the 1.0.2b JMS specification, you’ll need a separate connector
for queues and topics, and then reference this connector on each endpoint.
Listing 3.18 illustrates this.

<jms:activemq-connector
 name="jmsQueueConnector"
 specification="1.0.2b"
 brokerURL="tcp://localhost:61616" />

<jms:activemq-connector
 name="jmsTopicConnector"
 specification="1.0.2b"
 brokerURL="tcp://localhost:61616" />

<model name="jms102bModel">
 <service name="jms102bService">
 <inbound>
 <http:inbound-endpoint
 address="http://services.clood.com/backup-reporting"
 synchronous="true">
 <byte-array-to-string-transformer/>
 </http:inbound-endpoint>
 </inbound>

Listing 3.18 Using the JMS 1.0.2b spec with queues and topics

B

C

67Using the JMS transport for asynchronous messaging
 <outbound>
 <pass-through-router>
 <jms:outbound-endpoint
 connector-ref="jmsTopicConnector"
 topic="backup-reports"/>
 </pass-through-router>
 </outbound>
 </service>
</model>

The two connectors, one for topics and one for queues, are configured on B and C.
The outbound endpoint is configured on D. We’re explicitly telling the endpoint to
use the jmsTopicConnector by setting the connector-ref attribute.

3.5.2 Receiving JMS messages with the JMS inbound endpoint

Let’s look at receiving JMS messages on an inbound endpoint. We’ll test that the
backup-reports topic is working by subscribing to it and printing the reports to the
console. Listing 3.19 shows how to implement this with a JMS inbound endpoint.

<jms:activemq-connector name="jmsConnector"
 specification="1.1"
 brokerURL="tcp://localhost:61616" />

<model name="Listing 3.19">
 <service name="Backup Reporting Service">
 <inbound>
 <jms:inbound-endpoint topic="backup-reports"/>
 </inbound>
 <outbound>
 <pass-through-router>
 <file:outbound-endpoint path="OUT"/>
 </pass-through-router>
 </outbound>
 </service>
</model>

The inbound endpoint is configured on B; it’ll consume messages off the backup-
reports topic. We’re not explicitly defining a JMS message–to-object transformer
here. Mule will implicitly use the JMS message–to-object transformer when no other
transformers are present. The rules for this are the inverse of the JMS marshalling that
occurs on the outbound endpoint. In this case, the TextMessage will be transformed
into a string object. Finally, the string is saved to the file by C.

 JMS topics support durable subscribers. Messages for a durable subscriber will be
queued on the JMS broker when the subscriber is unavailable. When the subscriber
comes back online, the missed messages will be delivered. You have the ability to
enable this behavior on an inbound endpoint. This is accomplished by configuring
the connector for durability, as follows:

Listing 3.19 Receiving JMS messages and printing them on the console

D

Receive messages
on backup-
reports topic

B

Output
payload to file

C

68 CHAPTER 3 Sending and receiving data with Mule
<jms:activemq-connector
 name="jmsConnector" specification="1.1"
 brokerURL="tcp://localhost:61616" durable="true" />

Now the JMS transport will treat all topic-based inbound endpoints as durable.

3.5.3 Using selector filters on JMS endpoints

Filters can be used on JMS endpoints to be selective about the messages they consume.
This is analogous to how we used filters on the file inbound endpoint discussed previ-
ously. JMS inbound-endpoint filters use the JMS selector facility to accomplish this.
Let’s modify the JMS inbound endpoint from listing 3.19 to only accept reports cre-
ated after midnight, January 1, 2008. You can see this in listing 3.20.

<jms:inbound-endpoint topic="backup-reports">
 <jms:selector expression="JMSTimestamp >1199163600000" />
 <jms:jmsmessage-to-object-transformer/>
</jms:inbound-endpoint>

You can use JMS selectors in this manner on any header property. We’ll talk more
about headers in chapter 6 when we discuss components in detail. You might be won-
dering what the > characters are all about on B. This is the XML escape sequence
for >, the greater-than character. Failing to escape characters such as > in your Mule
configurations will produce XML parsing errors when Mule starts.

3.5.4 Using JMS synchronously

As JMS is inherently asynchronous in nature, you’ll usually use JMS outbound end-
points in an asynchronous manner—sending messages and not waiting for an imme-
diate response. Sometimes, though, you’ll want to wait for a response from a message
you’re sending. You can accomplish this by setting the synchronous attribute to true
on a JMS endpoint. This attribute tells the transport to wait for a response from the
remote endpoint it’s dispatching to. For some transports, such as SOAP, synchronous
behavior is implied. In other cases, such as JMS, synchronous is false by default
because the behavior is assumed to be asynchronous.

NOTE JMS outbound endpoints can’t be used synchronously within a transac-
tion. In a JMS transaction, messages are sent when the transaction is com-
mitted, which prohibits waiting for a response. We’ll discuss using
transactions with JMS in detail in chapter 10.

Let’s look at an example of how this works. The following example illustrates an HTTP
endpoint deployed by Clood to return the status of an order. Clients of this service
supply an ID to the URL and a string is returned containing the status of the order. For
instance, http://services.clood.com/orders?id=1 will return the status for an
order whose ID is 1. Behind the scenes, this service sends the order request to a JMS

Listing 3.20 Filtering messages with a JMS selector

BDefine JMS selector

http://services.clood.com/orders?id=1

69Using the JMS transport for asynchronous messaging
queue and waits for a response. The result is returned to the user when the response is
received. You can see this in listing 3.21.

<model name="jmsRemoteSyncModel">
 <service name="jmsRemoteSyncService">
 <inbound>
 <http:inbound-endpoint
 address="http://services.clood.com/orders"
 synchronous="true"
 method="GET"/>

 </inbound>
 <outbound>
 <pass-through-router>
 <jms:outbound-endpoint queue="order.status"
 synchronous="true"/>

 </pass-through-router>
 </outbound>
 </service>

 <service name="Order Service">
 <inbound>
 <jms:inbound-endpoint queue="order.status"
 synchronous="true"/>
 </inbound>
 <component

class="com.clood.OrderServiceImpl">
 <method-entry-point-resolver>
 <include-entry-point method="getOrderStatus"/>
 </method-entry-point-resolver>
 </component>
 </service>
</model>

First we set up the HTTP inbound endpoint on B to accept an HTTP GET. The request
is sent to the order.status queue on C. The synchronous property on this endpoint
indicates that a response is expected from the remote endpoint. To facilitate this, the
JMS transport will create a temporary queue for the response data and set this as the
Reply-To property of the JMS message. The request is received by the JMS inbound
endpoint on D, where it’s processed by the OrderServiceImpl component defined
on E. The method-entry-point-resolver and include-entry-point on F and G
tell Mule to invoke the getOrderStatus method of OrderServiceImpl.3 The return
value of this method is sent as a JMS message to the temporary queue and is used as
the response to the original HTTP GET on B. The time to wait for a response on the
temporary queue can be controlled by setting the responseTimeout option on the
endpoint. Setting this option will have the endpoint wait the given number of millisec-
onds for a response before giving up. You can also disable creation of the temporary

Listing 3.21 Using JMS endpoints synchronously

3 We’ll discuss the method-entry-point-resolver and include-entry-point properties in chapter 5.

Accept HTTP order
status requestB

Send JMS request to
remote queueC

Accept JMS request D

Define service componentE
Resolve entry
points by method

F

G
Include given method

as entry point

70 CHAPTER 3 Sending and receiving data with Mule
queue by setting the disableTemporaryReplyToDestinations option on the connec-
tor or endpoint. This is useful if a JMS endpoint is being invoked synchronously but a
response isn’t provided or required. As we’ll see in the next chapter, depending on
the outbound routing used, a message can be sent to multiple endpoints. These will
all be invoked synchronously if the inbound endpoint is synchronous.

 There are scenarios where submitting data like this is particularly useful. One
example is having a set of “competing consumers” that process data. In this case, you
could have multiple “echo services” running in different Mule instances on separate
servers. Each service will compete for messages of the messages queue, giving you
transparent load sharing and redundancy.

Use competing consumer behavior with JMS endpoints to load share mes-
sages across services.

Being able to use JMS with Mule is an important part of your integration toolbelt. You
just learned how to send and receive messages with JMS endpoints using queues and
topics. We saw how to use filters on JMS endpoints to be picky about the messages we
send and receive. Finally, we looked at how to use Mule’s synchronous support with
JMS endpoints to perform synchronous operations over asynchronous queues.

NOTE An important facet of working with JMS is dealing with situations when
the JMS servers are unavailable. In chapter 8 we’ll examine how to use a
reconnection strategy in concert with the JMS transport. This will allow
your Mule instances to tolerate the failure of a JMS server without los-
ing messages.

Now that you’re comfortable using JMS messaging with Mule, let’s turn our attention
to a old but venerable transport protocol—FTP.

3.6 Receiving and sending files using the FTP transport
If you’ve been involved in anything Internet-related for a while, you surely remember
the reign of FTP. Before HTTP and SSH, FTP was the de facto way to move files around
between computers. While FTP’s popularity has waned in recent years due to the rise
of HTTP, SCP, and even BitTorrent, you’ll occasionally encounter an application that
necessitates its use.

 In this section we’ll look at using the FTP transport to send and receive data. First
we’ll look at how we can poll a remote FTP directory. We’ll then see how we can send
data to a remote FTP site using an outbound endpoint.

 Configuring the FTP transport is similar to configuring an FTP client, as we see in
table 3.6.

BEST
PRACTICE

71Receiving and sending files using the FTP transport

3.6.1 Receiving files with inbound FTP endpoints

Let’s look at how to configure an FTP inbound endpoint to poll a remote FTP direc-
tory every hour for new files. In listing 3.22, we’ll pull down new files and persist them
to disk, preserving the filename on the remote server.

<model name="ftpInboundModel">
 <service name="ftpInboundService">
 <inbound>
 <ftp:inbound-endpoint user="joe" password="123456"
 host="ftp.mycompany.com" port="123"
 path="/ftp/incoming"
 pollingFrequency="3600000"/>
 </inbound>
 <outbound>
 <pass-through-router>
 <file:outbound-endpoint path="./out"/>
 </pass-through-router>
 </outbound>
 </service>
</model>

The inbound endpoint is configured on B. We’re specifying the user, password, host,
port, path, and polling frequency for the remote server. The FTP transport will estab-
lish a connection to this endpoint every hour and pass each new file over to the file

Table 3.6 The FTP transport’s configuration is similar to that of a typical FTP client.

Property Type Target Description

pollingFrequency long connector, inbound end-
point

For inbound endpoints, the fre-
quency at which the remote direc-
tory should be read

outputPattern String connector, outbound end-
point

Specify the format of files written by
outbound endpoints

binary boolean connector, inbound end-
point, outbound endpoint

Use binary mode when transferring
files

passive boolean connector, inbound end-
point, outbound endpoint

Use passive mode when transferring
files

user String connector, inbound end-
point, outbound endpoint

The username to use when connect-
ing to the remote FTP server

password String inbound endpoint, out-
bound endpoint

The password to use when connect-
ing to the remote FTP server

host String inbound endpoint, out-
bound endpoint

The host of the remote FTP server

port int inbound endpoint, out-
bound endpoint

The port of the remote FTP server

Listing 3.22 Polling a remote FTP directory every hour for new files

Configure FTP
inbound endpoint

B

Save transferred
files to ./ out
directory

C

72 CHAPTER 3 Sending and receiving data with Mule
outbound endpoint defined on C. The outbound endpoint will write the file to the ./
out directory using the same filename as on the server.

3.6.2 Sending files with outbound FTP endpoints

Sometimes you’ll need to send a file to a remote FTP server. We saw this in listing 3.7,
where Clood’s accounting department was receiving some invoices via an FTP drop.
The service in listing 3.23 illustrates how the third party might have used Mule to send
the invoices to Clood, Inc.

<model name="ftpService">
 <service name="ftpOutboundService">
 <inbound>
 <file:inbound-endpoint path="./in"/>
 </inbound>
 <outbound>
 <pass-through-router>
 <ftp:outbound-endpoint user="joe"
 password="123456"
 host="ftp.clood.com"
 port="123"
 path="/data/invoice" />
 </pass-through-router>
 </outbound>
 </service>
</model>

We have the file inbound endpoint configured on B. As files are placed into the ./in
directory they’ll be passed to the FTP outbound endpoint on C. This’ll place the file
into the /data/invoice directory of ftp.clood.com.

 We just saw how to configure Mule to poll and submit files via FTP. We’ll now look
at how we can use the JDBC transport to get data in and out of a database.

3.7 Working with databases
Databases are often the implied means of integration between applications. Every
mainstream development platform provides rich support for database interaction.
Because of this, it’s not uncommon for databases to outlive the applications they were
originally implemented to support. If you’re working with an existing Java application,
odds are you’re using a database abstraction layer (perhaps implemented with Hiber-
nate or the Spring JDBC template). In that case, it usually makes sense to leverage
these libraries within your components to perform database access. If you’re working
with legacy databases or integrating with an application that doesn’t provide native
Java access, the JDBC transport is an attractive means of getting data into and out of
the database.

 In this section we’ll look at using the JDBC transport. First you’ll see how to use a
JDBC inbound endpoint to perform queries. Then we’ll look at using JDBC outbound

Listing 3.23 Sending a file to a remote FTP server

B

C

73Working with databases
endpoints to perform insertions. Let’s look at how to configure the JDBC transport.
Table 3.7 shows us some common configuration properties. The dataSource-ref in
particular is important; this is the reference to the configured datasource you’ll use to
access the database. This is typically configured as a Spring bean or a JNDI reference.

For the remainder of this section we’ll be revisiting Clood’s monitoring database, dis-
cussed at the beginning of this chapter. This database, called monitoring, consists of a
single table containing URL alerting data. The schema for this database is defined in
listing 3.24.

CREATE TABLE `alerts` (
 `id` int(11) NOT NULL AUTO_INCREMENT,
 `host` varchar(255) NOT NULL,
 `message` text NOT NULL,
 `timestamp` datetime NOT NULL,
PRIMARY KEY (`id`)
) ENGINE=MyISAM DEFAULT CHARSET=latin1;

Let’s look at how we can use the JDBC transport to perform queries against this data-
base, then revisit how to insert rows into it.

3.7.1 Using a JDBC inbound endpoint to perform queries

You’ll use the JDBC inbound endpoint to perform queries against a database. This will
generate data you can pass to components and outbound endpoints. Let’s see how
this works.

 It turns out that other people in Clood, Inc., are interested in the data you’re
collecting. You’ve recently been tasked by the operations team to publish the URL
alert data to a JMS topic. This’ll allow various management applications to take
action if a certain threshold of alerts occur in a given time frame. Listing 3.25 shows
how to use a JDBC inbound endpoint to accomplish this. We’ll query the alerts table
every hour and publish each alert to a JMS topic that can be consumed by inter-
ested parties in operations.

Table 3.7 Configuring the JDBC’s transport dataSource reference, pollingFrequency, and queryKey

Property Type Target Description

dataSource-ref String connector The JNDI or bean reference of the
dataSource

pollingFrequency long connector, inbound endpoint How often the query is executed

queryKey String connector, inbound endpoint,
outbound endpoint

Specify the query to use

Listing 3.24 A database schema for monitoring data

74 CHAPTER 3 Sending and receiving data with Mule

<spring:bean id="dataSource"
 class=
 "org.springframework.jdbc.datasource.DriverManagerDataSource">
 <spring:property name="driverClassName" value="com.mysql.jdbc.Driver"/>
 <spring:property name="url" value="jdbc:mysql://localhost/monitoring"/>
 <spring:property name="username" value="mule"/>
 <spring:property name="password" value="password"/>
</spring:bean>

<jdbc:connector name="jdbcConnector" dataSource-ref="dataSource">
 <jdbc:query key="alertQuery"
 value="select host,timestamp from alerts
 where DATE_SUB(NOW(),INTERVAL 1 HOUR) < timestamp;"/>
 </jdbc:connector>

<jms:activemq-connector
 name="jmsConnector"
 specification="1.1"
 brokerURL="tcp://localhost:61616" />

<model name="jdbcInboundModel">
 <service name="jdbcInboundService">
 <inbound>
 <jdbc:inbound-endpoint
 pollingFrequency="3600000"
 queryKey="alertQuery"/>
 </inbound>
 <outbound>
 <pass-through-router>
 <jms:outbound-endpoint topic="alerts">

 <transformers>
 <xm:object-to-xml-transformer/>
 <jms:object-to-jmsmessage-transformer/>
 </transformers>
 </pass-through-router>
 </outbound>
 </service>
</model>

We’ll start by examining B. Here we’re configuring a Spring datasource with the
details of our database (which is MySQL in this example.) We reference this data-
source on the JDBC connector defined on C. The actual query we’ll use is defined on
D. If you look closely, you’ll notice that we’re escaping out the less-than sign in the
query, so as to avoid XML parsing issues when Mule starts up. This query will return a
row for every alert inserted into the database in the last hour. Each member of the
result set will be sent as an individual Mule message to the outbound router. For
instance, if 10 alerts were returned by alertQuery then 10 messages would be pub-
lished by the JMS outbound endpoint on E.

 The payloads of the messages themselves are a java.util.Map instance. The map’s
keys are the column names of the result set. The key values are the row value for each
result. In the previous example, each message would contain a map with two keys:

Listing 3.25 Querying a table every hour and sending the results to a JMS topic

BConfigure JDBC datasource

CConfigure JDBC connector

DDefine SQL query

Configure JMS
connector

Execute query
once an hour

Transform and send
each row result as a
JMS message

E

75Working with databases
host and timestamp. The value of the host key will be the host of the alert and the
value of the timestamp key will be the timestamp of when the alert occurred. You’ll
see in chapters 5 and 6 how Mule’s transformation and component facilities will allow
you to put this data in a meaningful format for your project. For now, we’re using
object-to-xml-transformer to serialize the map into XML and send it to the out-
bound endpoint.

 Let’s now revisit how to perform insertions using a JDBC outbound endpoint.

3.7.2 Using a JDBC outbound endpoint to perform insertions

The JDBC transport allows you to insert rows into a table using an outbound endpoint.
We saw at the beginning of this chapter how we can use a JDBC outbound endpoint to
insert data arriving from an IMAP mailbox. JDBC outbound endpoints can also be used
in a variety of other scenarios, from loading CSV files into a database to saving log
events to a database table. Let’s take a closer look at the example from the beginning
of this chapter to see how the JDBC inbound endpoint works.

<spring:beans>
 <spring:import resource="spring-config.xml"/>
</spring:beans>

<jdbc:connector name="jdbcConnector" dataSource-ref="dataSource">
 <jdbc:query key="statsInsert"
 value="insert into alerts values
(0,#[map-payload:HOST],#[map-payload:MESSAGE],\
#[map-payload:TIMESTAMP])"/>

</jdbc:connector>

<model name="URLAlertingModel">
 <service name="URLAlertingService">
 <inbound>
 <imap:inbound-endpoint host="mail.clood.com" user="mule"
 password="password">
 <email:email-to-string-transformer/>
 </imap:inbound-endpoint>
 </inbound>
 <component class="com.clood.monitoring.URLAlertComponent"/>
 <outbound>
 <pass-through-router>
 <jdbc:outbound-endpoint queryKey="statsInsert"/>
 </pass-through-

router>
 </outbound>
 </service>
</model>

The first thing you’ll notice is the external Spring configuration reference declared
on B. Instead of declaring our JDBC datasource directly, as we did in listing 3.24,
we’re pulling in an external Spring configuration file. This is often useful if you’re
sharing the same Spring configuration between multiple applications or if your

Listing 3.26 Using a JDBC outbound endpoint to perform insertions

Reference external
Spring configurationB

Define SQL insertC

DUse component to
generate value map

EPerform insertion

76 CHAPTER 3 Sending and receiving data with Mule
Spring config is particularly long and you don’t want to clutter up your Mule configu-
ration. Our SQL insert statement is defined on C. The SQL insert is populated by a
map supplied to the endpoint. We’re using the #[map-payload:KEY] placeholders to
extract values from the map and use these in the INSERT statement. In this case, we’re
extracting the map’s values for keys HOST, MESSAGE, and TIMESTAMP. The map itself is
created by the URLAlertComponent class declared on D. This class populates the map
based on the contents of the email supplied to it. When the map is returned from the
component, it’s passed to the JDBC outbound endpoint defined on E and the data is
inserted into the alerts table.

 Databases are often the implied integration means between applications. Through
the examples in this section, you should now know how to use Mule to leverage this
fact. We saw that we can use a select statement as a source of data for an inbound end-
point. We then looked at how we can insert data into tables using outbound endpoints.

 Now let’s take a look at how we can use the XMPP transport to communicate
with Jabber. You’ll see how this will let you use instant messaging as an integration
mechanism.

3.8 Using the XMPP transport
Instant messaging is a standard means of communication in many enterprises. While
public IM implementations such as AIM or Yahoo! Messaging are common, Jabber is
emerging as a secure, private, and open alternative.

 In this section we’ll look at how we can use the XMPP protocol, which underlies
Jabber, to send and receive messages. This is useful in a variety of scenarios, from
sending out instant messages when an automated software build fails, to using instant
messages as a mechanism to remotely signal applications.

 As we’ve seen with the other transports in this chapter, the configuration proper-
ties in table 3.8 for the XMPP transport mimic the properties you’d set on a client for
the transport (in this case a Jabber client).

Table 3.8 Configuring the XMPP transport to connect to a Jabber server

Property Type Target Description

user String connector, inbound endpoint,
outbound endpoint

The username to use when connecting
to the Jabber server

password String connector, inbound endpoint,
outbound endpoint

The password to use when connecting
to the Jabber server

host String connector, inbound endpoint,
outbound endpoint

The hostname of the Jabber server

port int connector, inbound endpoint,
outbound endpoint

The port the Jabber server is running
on

recipient String connector, inbound endpoint,
outbound endpoint

The default recipient of all messages

77Using the XMPP transport
3.8.1 Sending Jabber messages on an outbound endpoint

Let’s look at how to send a Jabber message on an outbound endpoint. Listing 3.27
defines a service that accepts a JMS message off a queue, then sends the JMS message
payload to a Jabber user.

<jms:activemq-connector name="jmsConnector"
 specification="1.1"
 brokerURL="tcp://localhost:61616" />

<model name="xmpp-outbound">
 <service name="XMPPInbound">
 <inbound>
 <jms:inbound-endpoint queue="messages"/>
 </inbound>
 <outbound>
 <pass-through-router>
 <xmpp:outbound-endpoint
 user="mule"
 password="mule"
 host=”jabber.clood.com”
 port="5222"
 recipient="john" />

 </pass-through-router>
 </outbound>
 </service>
 </model>

B and C should look familiar to you by now; this is simply configuring our ActiveMQ
JMS connector and endpoint. We’re using an inbound endpoint to receive messages
off the messages queue. The XMPP outbound endpoint is configured on D. It’ll take
the payload of the JMS message and send it to john, a jabber account that lives on jab-
ber.clood.com.

 Sending messages like this could be useful in a variety of scenarios. In particular,
you might use an endpoint like this in conjunction with an error channel. This’ll let
you use Mule to alert you to various events as they occur. We’ll talk more about that
in chapter 8. Now that we’ve seen how to send messages, let’s look at how we can
react to them.

3.8.2 Receiving Jabber messages on an inbound endpoint

Receiving IMs is just as easy as sending them. The service in listing 3.28 will accept an
XMPP message and send the contents to an email address.

<model name="xmppInboundModel">
 <service name="xmppInboundService">
 <inbound>
 <xmpp:inbound-endpoint
 user="mule"

Listing 3.27 Sending Jabber messages with the XMPP transport

Listing 3.28 Receiving Jabber messages via the XMPP transport

Configure
ActiveMQ connection

B

Configure inbound
JMS queue

C

Configure outbound
XMPP endpoint

D

78 CHAPTER 3 Sending and receiving data with Mule
 password="mule"
 host="jabber.clood.com"
 port="5222"
 recipient="mule"/>
 </inbound>
 <outbound>
 <pass-through-router>
 <smtp:outbound-endpoint
 host="localhost"
 from="mule"
 subject="Test Message"
 to="mule@company.com"/>
 </pass-through-router>
 </outbound>
 </service>
 </model>
</mule>

The inbound endpoint is configured on B; the configuration is identical to that of
the outbound endpoint. The outbound endpoint is configured on C; this will send
the contents of the instant message to the specified email address.

 We’ve just seen how we can use Mule’s XMPP transport to send and receive mes-
sages using Jabber. This can provide a friendly face for your Jabber services to commu-
nicate with your end users. Let’s conclude our discussion on transports by looking at
Mule’s in-memory, or VM transport.

3.9 The VM transport
The VM transport is a special kind of transport that you’ll use to send messages via
memory. These messages never leave the JVM the Mule instance is running in. The
benefits of this might not seem immediately obvious, but you’ll soon see how the VM
transport allows you to leverage the virtues of an asynchronous messaging framework
such as JMS without the overhead of a broker. You’ll see in the next section how we
can use the VM transport, in conjunction with Mule’s routing functionality, to dispatch
data across multiple components and services.

 Table 3.9 shows some of the properties we can set for the VM transport. The
queueEvents property is of particular interest. The VM transport will, by default,
deliver messages directly to each component. When queueEvents is set to true, Mule
will put these messages in an in-memory queue. As we’ll see, when coupled with persis-
tent delivery, this lets you use the VM transport as a reliable queue for in-VM messaging.

Table 3.9 Configuring the VM transport

Property Type Target Description

queueEvents boolean connector Specifies whether events should be queued on the
endpoint. If false, the default, then events are sim-
ply delivered directly to the component. If true,
then events are placed on an in-memory queue.

queueTimeout long connector How often queued messages are expunged.

Receive IMs for
specified user

B

Send email to
specified address

C

79The VM transport
3.9.1 Sending and receiving messages on VM endpoints

The VM transport supports the sending and receiving of messages. It’s functionally
similar to the JMS transport. The VM transport is typically used to send a message
through services internal to a Mule instance before routing it to a final endpoint or
service. Clood, for instance, uses the VM transport to pass messages received from
both JMS and HTTP endpoints to a common validation service. Once validated, the
message is sent to a dispatching service, where it’s appropriately routed. Listing 3.29
demonstrates this.

<model name="vmModel">
 <service name="Order Input">
 <inbound>
 <http:inbound-endpoint
 address="http://localhost:9756/orders"
 synchronous="true">
 <byte-array-to-string-transformer/>
 </http:inbound-endpoint>
 <jms:inbound-endpoint queue="orders.in">
 <transformers>
 <jms:jmsmessage-to-object-transformer/>
 </transformers>
 </jms:inbound-endpoint>
 </inbound>
 <outbound>
 <pass-through-router>
 <vm:outbound-endpoint path="order.validation"/>
 </pass-through-router>
 </outbound>
 </service>

 <service name="Order Validation">
 <inbound>
 <vm:inbound-endpoint path="order.validation"/>
 </inbound>
 <component class="com.clood.order.OrderValidationService">
 <method-entry-point-resolver>
 <include-entry-point method="validateOrder"/>
 </method-entry-point-resolver>
 </component>
 <outbound>
 <pass-through-router>
 <vm:outbound-endpoint path="order.dispatch"/>
 </pass-through-router>
 </outbound>
 </service>

 <service name="Order Dispatch">
 <inbound>
 <vm:inbound-endpoint path="order.dispatch"/>
 </inbound>
 <outbound>
 <static-recipient-list-router>

Listing 3.29 Messaging with the VM transport

Accept order dataB

Pass order data out to
validation VM queue

C

Accept order data on
validation VM queue

D

Send data to
dispatch VM queue

E

Route orderF

80 CHAPTER 3 Sending and receiving data with Mule
 <recipients>
 <spring:value>
 jms://order.submission.ops
 </spring:value>
 <spring:value>
 jms://order.submission.sales
 </spring:value>
 </recipients>
 </static-recipient-list-router>
 </outbound>
 </service>
</model>

Order data is accepted on the HTTP and JMS endpoints configured on B. An order
must be validated and then dispatched to a set of JMS queues where it can be provi-
sioned. The validation and dispatch could be performed using a component and out-
bound router in the Order Input service. Alternatively, the validation code and
dispatch could be hosted in their own services. The latter approach decouples order
validation and dispatch from order submission, allowing each stage of the order pro-
cess to be managed separately. This is implemented by the VM endpoints on C, D, E,
and F, which breaks down the order processing into stages. Each stage—order input,
order validation, and order dispatch—is handled by a dedicated service that can be
independently managed. Service decomposition in this manner allows you to apply
concerns such as exception handling, tuning, and security separately for each stage.

Use the VM transport to implement service decomposition without using
an external messaging system such as JMS.

A limitation to this approach becomes apparent if the Mule instance dies while a mes-
sage is being passed through the queues. With the default behavior, such messages will
be stored in memory and be lost. Let’s see how we can use persistent queues to over-
come this limitation.

3.9.2 Using persistent queues on VM endpoints

In order to save our VM messages to disk, we need to set the queueEvents property on
the VM connector. We then need to define the queueing profile—this is configured
after the service definitions, as you can see in listing 3.30.

<vm:connector name="vmConnector" queueEvents="true"/>

 <service name="Order Dispatch">
 <inbound>
 <vm:inbound-endpoint path="order.dispatch"/>
 </inbound>
 <outbound>
 <static-recipient-list-router>
 <recipients>
 <spring:value>

Listing 3.30 Using persistent VM queues

BEST
PRACTICE

81Summary
 jms://order.submission.ops
 </spring:value>
 <spring:value>
 jms://order.submission.sales
 </spring:value>
 </recipients>
 </static-recipient-list-router>
 </outbound>
 </service>

 <queue-profile persistent="true" maxOutstandingMessages="1000"/>
</model>

Now your VM messages will be persisted to disk as they’re delivered. The next time
Mule starts up, it’ll attempt to redeliver all the messages saved in the persistent queue.

NOTE The VM transport uses a QueuePersistenceStrategy implementation to
serialize the contents of the VM queue. When queue persistence is
enabled, Mule will use the FilePersistenceStrategy implementation to
serialize the contents of your queues. For this to work, the payloads of
your messages must implement the Serializable interface. Bear this in
mind if you’re passing around objects in your message payloads.

We saw in this section how to send and receive messages using the VM transport,
Mule’s in-memory message-passing facility. We even saw how we can use the in-mem-
ory transport in conjunction with persistent queues to perform reliable messaging.
We’ll see more facets of the VM transport in the next chapter, where we’ll use it to
route data between Mule services. You’ll see how it becomes an important way to orga-
nize the flow of data between your services.

3.10 Summary
In this chapter you’ve seen how you (and Clood, Inc.) can leverage Mule’s transports
to move data between applications. You’ve become familiar with connectors and end-
points, which provide a common abstraction for working with disparate communica-
tion protocols. You’ve seen how they allow you to focus on solving integration
problems and let Mule handle the underlying plumbing.

 While transport functionality is critical, moving data into and out of Mule is only
one piece of the integration puzzle. We’ll see in the next chapter how we can leverage
Mule’s routing functionality to intelligently transport data between endpoints.

Routing data with Mule
You’ve probably been exposed to a router at some point in your career. Usually
these are of the network variety—like the DSL router in your bedroom or the core
router in your data center. In either case, the router’s function is the same: to selec-
tively move around data. Not surprisingly, many of the concepts that underlie net-
work routing are also applicable to routing data between applications. We’ll see in
this chapter how multicasting, static routing, forwarding, and filtering are just as
applicable to enterprise application integration as they are to networking devices.

 We’ve already seen some examples of routing. In the previous chapter, we used
pass-through routing to move data from inbound endpoints to outbound end-
points. We also used a chaining router to pass the response of one endpoint to the
input of another endpoint. Let’s consider an integration scenario and see how
Mule’s routing support helps us out.

In this chapter
■ Understanding inbound and outbound routing
■ Filtering with routers
■ Using inbound routers
■ Using outbound routers
82

83Working with routers
 Recall Clood, Inc.’s monitoring database from the last chapter? Let’s see how we
can modify the outbound routing to send the message to two destinations simultane-
ously. We’ll insert a row into the database and send an instant message to Clood’s Jab-
ber server. Listing 4.1 shows the modified outbound routing configuration.

<outbound>
 <multicasting-router>
 <jdbc:outbound-endpoint queryKey="statsInsert"/>
 <xmpp:outbound-endpoint user="mule" password="mule"
 host="jabber.company.com"
 port="5222"
 recipient="yourboss"
 transformer-refs="StatToInstantMessageText"/>
 </multicasting-router>
</outbound>

The multicasting router defined on B will send the message to each of the listed out-
bound endpoints at the same time. By changing a few lines of XML, we’re able to
make a database insert and send an instant message in parallel. Using routers enables
you to loosely couple the components and messages. When implemented correctly,
neither have any knowledge of or dependencies on the routing strategies employed.1

 In this chapter we’ll investigate Mule’s data routing capabilities. We’ll start off by
looking at the different types of routers supported by Mule. You’ll learn the differ-
ences between inbound and outbound routing. We’ll discuss Mule’s filtering capabili-
ties, then we’ll dive in and examine each of Mule’s supplied routers. We’ll look at how
Clood, Inc., uses Mule’s routing features to manage its order entry and provisioning.
We’ll close out the chapter by considering a special type of outbound router, the
async-request-reply router, which will allow us to aggregate data from multiple
sources. By the end of this chapter, you’ll hopefully be able to look at your integration
challenges in terms of Mule’s routing concepts. This will make it easier for you to
identify and solve integration problems.

4.1 Working with routers
Mule provides a rich set of routing abstractions to help you organize the flow of your
data. In this section we’ll investigate the different types of routers and see where we
can use them to direct message flow. You’ll see how Mule’s routers allow you to
approach your integration efforts using a common, pattern-based language. This’ll
help you identify and reuse routing approaches across different problem domains.
We’ll start off by introducing inbound routing and seeing how to control what data
enters our services. We’ll then look at outbound routers, which control how data
leaves a service.

Listing 4.1 Multicast data to a JDBC and XMPP endpoint

1 You may have noticed we have something called transformer-refs configured on the XMPP outbound
endpoint. You’ll see later in this chapter when we discuss the multicasting router how this lets us tailor the
statistical data for something appropriate in an instant message.

Define multicasting routerB

84 CHAPTER 4 Routing data with Mule
4.1.1 Inbound routers

The first type of router we’ll consider is an inbound router. Inbound routers work in
tandem with inbound endpoints to control how messages are sent to a service’s com-
ponent. You’ll typically use inbound routers to do things such as selectively process
messages, enforce atomic message consumption, and deal with aggregating messages.
Figure 4.1 shows where the inbound router sits in the event-processing chain.

As the figure illustrates, messages are first received by endpoints and then passed to
the inbound router. This is echoed in the configuration file; your inbound router def-
initions will follow your inbound endpoint definitions. When the inbound endpoint
receives the message, one of three things will happen: the message will be sent to the
component, the message will be forwarded to the catch-all strategy, or if there’s no
catch-all strategy configured on the service, the message will be dropped.

 The catch-all strategy defines the service’s behavior in the event that a message
isn’t sent to the component. You’ll typically use catch-all strategies to implement error
handling and logging for unroutable messages. The following catch-all strategies are
available:

■ forwarding-catch-all-strategy—Forwards messages to the specified
endpoint

■ logging-catch-all-strategy—Logs non-matching messages
■ custom-forwarding-catch-all-strategy/custom-catch-all-strategy—

Custom forwarding and catch-all strategies

We’ll see the forwarding catch-all strategy and the logging catch-all strategy in this
chapter. Consult the online Mule documentation for more information about imple-
menting your own forwarding and catch-all strategies.

 Let’s look at how inbound routers are typically configured. Listing 4.2 implements
a service that defines two inbound endpoints, one for JMS messages and another for
the VM messages.

<service name="selectiveConsumerService">
 <inbound>

 <jms:inbound-endpoint queue="messages"/>
 <vm:inbound-endpoint path="messages"/>

 <selective-consumer-router>
 <regex-filter pattern="^STATUS: (OK|SUCCESS)$"/>
 </selective-consumer-router>

Listing 4.2 Selectively consuming messages using the selective-consumer router

Component
Inbound
router

Inbound
endpoint

Figure 4.1 Using an inbound router to route data
from an inbound endpoint to a component

Consume messages that
contain specified regex pattern

B

85Working with routers
 <forwarding-catch-all-strategy>
 <jms:outbound-endpoint queue="errors"/>
 </forwarding-catch-all-strategy>
 </inbound>
 <outbound>
 <pass-through-router>
 <stdio:outbound-endpoint system="OUT"/>
 </pass-through-router>
 </outbound>
</service>

We have a selective consumer defined on B that only consumes messages whose pay-
loads match the specified regular expression pattern. Any messages that don’t pass
this regular expression filter will be handled by the forwarding catch-all strategy
defined on C. The forwarding catch-all strategy will send all unroutable messages to
the specified JMS queue. Messages that make it through the filter will move on to the
pass-through router. Finally, the message will be printed on the screen by the STDIO
outbound endpoint defined on D.

 You may be wondering why we didn’t just use an endpoint filter on each endpoint.
As you’ll see in the next chapter, routing can occur after the transformation process.
This gives you the opportunity to transform your inbound messages before inbound
routing takes place, letting you share the same routing logic across all inbound data.
You could, for instance, transform all your data payloads into XML, then use a JXPath
filter on a selective-consumer router to only consume messages whose payloads match
the specified expression. In this scenario, if you need to change the XPath expression,
you can do it once on the selective-consumer router and not across all your inbound
endpoints.

 Now that we’ve seen how inbound routers control the message flow into a service,
let’s look at controlling how messages leave a service.

4.1.2 Outbound routers

You’ve already seen quite a bit of outbound routing. In the previous chapter, all of our
examples used either the pass-through router or the chaining router. You’ll use out-
bound routers to control how messages are distributed to outbound endpoints.
Figure 4.2 illustrates where outbound routing fits in the event chain.

 As you can see, data from the component is sent to the outbound router. The out-
bound router is responsible for sending the message to the appropriate outbound
endpoints. In listing 4.1, the outbound router is required before data can be sent to
an outbound endpoint. This makes it a little different than inbound routing, where
an inbound router definition isn’t required. Once again you have the option of

Forward unroutable
messages to error queue

C

Print message
to screen

D

Outbound
endpoints

Outbound
router

Component Figure 4.2 Using an outbound
router to route data from a
component to outbound endpoints

86 CHAPTER 4 Routing data with Mule
defining a catch-all strategy for outbound routing. The strategies are the same as for
both inbound and outbound routers; this gives you the flexibility to have different log-
ging or error handling for each.

 Let’s look more closely at configuring outbound routing. We’ll modify listing 4.2
from earlier. Instead of controlling the messages entering the service, we’ll control
what messages leave. This is accomplished by removing the selective-consumer router
from the inbound endpoint and adding a filtering router to the outbound configura-
tion. Listing 4.3 demonstrates this.

<service name="selectiveConsumerService">
 <inbound>
 <jms:inbound-endpoint queue="messages"/>
 <vm:inbound-endpoint path="messages"/>
 </inbound>
 <outbound>
 <filtering-router>
 <stdio:outbound-endpoint system="OUT"/>
 <regex-filter pattern="^STATUS: (OK)$"/>
 </filtering-router>
 <forwarding-catch-all-strategy>
 <jms:outbound-endpoint queue="errors"/>
 </forwarding-catch-all-strategy>

</service>

We’re now accepting all messages on both inbound endpoints, but only passing those
whose payloads match the regex filter.

 Outbound routing is useful for more than message filtering. As we’ll see later in
this chapter, Mule’s outbound routers enable you to completely control how data
leaves your services. You’ll see how this enables you to route data to multiple end-
points, compose the responses from those endpoints, and chain endpoints together.
Before we dig into some of Mule’s supplied routers, let’s talk about how filters work in
conjunction with routing.

4.2 Using filters with routers
Filtering is an important facet of routing with Mule. Many routers take a filter as an
argument that defines or augments their behavior. We’ve already seen how to config-
ure a filter in listing 4.2; there we configured a regex filter to selectively consume mes-
sages whose payloads matched the supplied regular expression. Now we’ll look at
some other filtering options. For the rest of the examples in this section, we’ll see how
Clood, Inc., uses the selective-consumer router defined in listing 4.2 to selectively con-
sume messages representing an order.

4.2.1 Filtering by type

One of the simplest types of filters you’ll work with is the payload-type filter. It filters
messages based on the type of their payload. In the following example we have a

Listing 4.3 Replacing the selective-consumer router with the filtering router

87Using filters with routers
payload-type filter configured to accept messages whose payloads are instances of
com.clood.model.Order. This sort of filtering is useful when different types of objects
share the same inbound endpoints and you’re only interested in consuming a particu-
lar type. In our case, perhaps the endpoint in question is consuming off a JMS queue
that contains order and receipt messages. This example shows how to restrict con-
sumption to messages with a com.clood.model.Order payload:

<selective-consumer-router>
 <payload-type-filter expectedType="com.clood.model.Order"/>
</selective-consumer-router>

The payload-type filter is useful to ensure only a certain data type reaches your com-
ponents, but sometimes you’ll want to go deeper into the message payload for mes-
sage selection. Let’s see different ways in which we can consume order messages that
are fulfilled.

4.2.2 Filtering by textual content

Regular expression and wildcard filters enable you to filter messages based on their
payload’s textual content. These filters are generally applicable when your payload is a
String. As we saw in listing 4.2, this allows us to select messages whose payloads match
the supplied regular expression. A wildcard filter is useful when you don’t need the
power of a full-blown regular expression; it uses shell-like pattern matching to pass
messages through. The following example shows a selective-consumer router that con-
sumes any message that contains the string “FULFILLED” in the payload:

<selective-consumer-router>
 <wildcard-filter pattern="*FULFILLED*"/>
</selective-consumer-router>

Assuming Clood’s “order” messages from earlier were textual, this selective-consumer
router would only pass messages containing the string “FULFILLED” somewhere in the
message body. Selection based on textual content is useful for unstructured string pay-
loads. For structured payloads such as XML, though, there are better ways to apply fil-
tering. Let’s look at how we can use expression filtering on XML and object payloads.

4.2.3 Filtering with expressions

One of the benefits of working with structured data, such as XML or object graphs, is
the availability of structurally aware query tools. Mule provides the JXPath filter to per-
form filtering on these payloads. The JXPath filter leverages the Apache JXPath
library (http://commons.apache.org/jxpath/) to perform filtering on XML and
objects. Let’s assume Clood, Inc., is passing order data using an XML payload that
looks like listing 4.4.

<order>
 <purchaserId>409</purchaserId>
 <productId>1234</productId>

Listing 4.4 XML representation of an order

http://commons.apache.org/jxpath/

88 CHAPTER 4 Routing data with Mule
 <status>FULFILLED</status>
</order>

As in the regex filter example, we want to filter based on whether the result is set to
“FULFILLED”. The difference is that now our payload is XML instead of colon-delim-
ited text. The JXPath filter in the following example will accomplish this for us:

<selective-consumer-router>
 <expression-filter evaluator="jxpath"
 expression="(order/status)='FULFILLED'"/>
</selective-consumer-router>

We specify the evaluator on expression-filter to let it know how to evaluate the
expression. In this case we’re using the JXPath evaluator, but other evaluators are
available.

 The JXPath evaluator can also be used against Java object graphs. Let’s assume that
instead of an XML document, our payload was an instance of the JavaBean in
listing 4.5.

public class Order {
 private long purchaserId;
 private long productId;
 private String status;

 public String getPurchaserId() {
 return purchaserId;
 }

 public void setPurchaserId(long purchaserId) {
 this.purchaserId = purchaserId;
 }

 public long getProductId() {
 return productId;
 }

 public void setProductId(long purchaserId) {
 this.productId = productId;
 }

 public String getStatus() {
 return status;
 }

 public void setStatus(String status) {
 this.status = status;
 }
}

The same expression would evaluate against instances of this Java object as it would
against the XML document.

 Now we’ll look at logical filters. They let you perform complex filter evaluations by
using multiple filters together.

Listing 4.5 Java class for an order

89Using inbound routers
4.2.4 Logical filtering

Logical filters let you perform boolean operations using two or more filters. Mule sup-
plies and, or, and not filters for boolean evaluation. These are equivalent to the &&, ||,
and ! operators in the Java language. Let’s see how to combine two filters using an
and-filter. Listing 4.6 contains the configuration.

<selective-consumer-router>
 <and-filter>
 <payload-type-filter expectedType="java.lang.String"/>
 <expression-filter evaluator="jxpath"
 expression="(order/status)='FULFILLED'"/>
 </and-filter>
</selective-consumer-router>

As you probably already guessed, this filter will consume messages that are both of
type String and that the supplied XPath expression successfully evaluates. You can also
nest logical filters. Listing 4.7 demonstrates this.

<selective-consumer-router>
 <and-filter>
 <payload-type-filter expectedType="java.lang.String"/>
 <or-filter>
 <expression-filter evaluator="jxpath"
 expression="(order/status)='FULFILLED'"/>
 <expression-filter evaluator="jxpath"
 expression="/order/productId = '1234'"/>
 </or-filter>
 </and-filter>
</selective-consumer-router>

In this example, we’re requiring the payload to be a String and to only accept mes-
sages whose result is “FULFILLED” or where the productId is 1234.

 Filtering is an important aspect of using routing with Mule. It’s so important, in
fact, that most of the routers we discuss in this chapter are extensions of either the
selective-consumer router (on the inbound side) or the filtering router (on the out-
bound side). Now that you understand inbound routing, outbound routing, and
using filters in conjunction with both, we’re ready to start our discussion of some of
Mule’s more important supplied routers.

4.3 Using inbound routers
In this section we’ll examine Mule’s capabilities to route messages received on
inbound endpoints. Let’s start our discussion with a router that should be familiar by
now: the selective consumer.

Listing 4.6 Using a logical filter

Listing 4.7 Nesting logical filters

90 CHAPTER 4 Routing data with Mule
4.3.1 Being picky with the selective-consumer router

The selective-consumer router allows you to selectively consume messages from
inbound endpoints. A filter is typically provided to the selective-consumer router in
order to specify which messages get consumed. Messages that aren’t consumed are for-
warded to the catch-all strategy defined for the service. If no catch-all strategy is defined
then the message is dropped. Figure 4.3 illustrates the selective-consumer router.

In listing 4.2 you saw the selective-consumer router working in conjunction with a
regex filter to pass messages that matched the supplied regular expression. In that
case we were looking for a success string to appear somewhere in the payload of the
message. Let’s modify this example to check the header of the message. Listing 4.8
demonstrates using the selective-consumer router to only pass messages that have a
STATUS header of OK.

<service name="selectiveConsumerService">
 <inbound>
 <jms:inbound-endpoint queue="messages"/>
 <vm:inbound-endpoint address="vm://messages"/>

 <selective-consumer-router>
 <expression-filter evaluator="header" expression="STATUS=OK"/>
 </selective-consumer-router>
 <forwarding-catch-all-strategy>
 <jms:outbound-endpoint queue="errors"/>
 </forwarding-catch-all-strategy>
 </inbound>
 <outbound>
 <pass-through-router>
 <stdio:outbound-endpoint system="OUT"/>
 </pass-through-router>
 </outbound>
</service>

The selective-consumer router on B will only pass messages that have a header field of
STATUS with a value of OK. We’ve seen quite a bit of the selective-consumer router, so
let’s turn our attention to something more exciting—the forwarding-consumer router.

Listing 4.8 Using the selective-consumer router to pass messages

Outbound
router

Inbound
endpoint

Selective
consumer

router

Catch-all
strategy

Component

Figure 4.3 The selective-consumer router can
selectively route messages.

B

91Using inbound routers
4.3.2 Altering message flow with the forwarding-consumer router

You’ll occasionally want certain messages to bypass being processed by a component.
As we’ll see in chapter 6, component processing can be used to enrich a message. This
enables you to alter a message as it flows through a service. But you might have a situ-
ation where a message doesn’t need enrichment. In cases like this, the forwarding
router comes in handy. A forwarding router enables you to route selected messages
“around” a component. These messages are subsequently sent to the outbound
router. Figure 4.4 illustrates this.

The forwarding-consumer router is an extension of the selective-consumer router. As
such, it also works in conjunction with a filter to determine what messages to forward.
You can configure a forwarding-consumer router without a filter and it’ll essentially
act like the bridge component, sending all messages to the outbound endpoint. Let’s
consider an example and see the forwarding-consumer router at work. Listing 4.9 is a
modification of listing 4.2, which we saw earlier in this chapter. Instead of dropping
messages that don’t contain a success string, we’ll instead pass them to a component
that’ll rectify the messages’ nonsuccess state, mark them successful, and pass them out
to the outbound router. Messages that contain the success string will bypass the com-
ponent and go directly to the outbound router.

<service name="forwardingConsumerService">
 <inbound>
 <jms:inbound-endpoint queue="messages.in"/>
 <forwarding-router>

 <regex-filter pattern="^STATUS: (OK|SUCCESS)$"/>
 </forwarding-router>
 <selective-consumer-router>
 <regex-filter pattern="^STATUS: (CRITICAL)$"/>
 </selective-consumer-router>

 </inbound>
 <component>
 <spring-object bean="messageEnricher"/>
 </component>
 <outbound>
 <pass-through-router>
 <jms:outbound-endpoint queue="messages.out"/>
 </pass-through-router>
 </outbound>
</service>

Listing 4.9 Bypassing a component with a forwarding-consumer router

Component
Forwarding
consumer

router

Inbound
endpoint

Outbound
router

Figure 4.4 The forwarding-consumer
router can selectively bypass
component processing

Forward messages
matching filter

B

Configure the selective-
consumer routerC

Fix messages in
nonsuccess stateD

Send messages
to queueE

92 CHAPTER 4 Routing data with Mule
We have a filter enclosed within the forwarding-consumer router. Messages that match
this filter will bypass the messageEnricher bean defined on B. We have a second
router, a selective consumer-router, defined on C. The selective-consumer-router
will route messages that haven’t been forwarded by the forwarding router. If the mes-
sage is accepted by the regex-filter defined on the selective-consumer-router it will
be passed to the messageEnricher on D and ultimately dispatched for outbound rout-
ing. Messages not accepted by E are handled by the catch-all strategy for the service.

 Now that you know how to route around a component, let’s look at some inbound
routers that deal with organizing data to route into a component.

4.3.3 Collecting data with the collection aggregator

Sometimes you need to collect messages from several sources before passing the data
to a component for processing. This is useful when performing continuous evaluation
of some source of inbound data. A collection aggregator is used to hold this data, then
submit it to the component after it’s received all the data it needs or a timeout occurs.
The collection aggregator in figure 4.5 illustrates this.

Clood uses a collection aggregator to perform analysis on application response time
metrics accumulated by their monitoring systems. Nagios instances deployed across
Clood’s environment perform periodic HTTP checks against their client’s web sites.
The response times of these checks are published to a JMS topic. Subscribers to this
topic can then process and handle the data appropriately. One such subscriber con-
sumes these metrics for 10 minutes and republishes an average of the group.

 Listing 4.10 illustrates how this is configured.

<service name="collectionAggregatorService">
 <inbound>
 <jms:inbound-endpoint topic="metrics.responsetimes">
 <jms:jmsmessage-to-object-transformer
 returnClass="com.muleinaction.ResponseTime"/>
 </jms:inbound-endpoint>
 <collection-aggregator-router timeout="600000"/>
 </inbound>
 <component>

Listing 4.10 Aggregating messages with the collection aggregator router

Component
Collection
aggregator

Inbound
endpoint

Service

Service

Service

Figure 4.5 A collection aggregator can accept
data from multiple sources in a given time frame.

Define collection
aggregator routerB

93Using inbound routers
 <method-entry-point-resolver>
 <include-entry-point method="averageResponseTimes"/>
 </method-entry-point-resolver>
 <spring-object bean="metricService"/>
 </component>
 <outbound>
 <pass-through-router>
 <jms:outbound-endpoint topic="metrics.avg.responsetimes"/>
 </pass-through-router>
 </outbound>

</service>

The collection aggregator router defined on B will accept response time metrics for a
10-minute interval. When this interval is up, the collection of messages will be sent to
the metricService component configured on C. This will average the response time
of the metrics in the collection and return the result, which will then be sent to the
JMS topic metrics.avg.responsetimes. You might’ve noticed the method-entry-
point-resolver configured on C. This explicitly tells Mule what method to invoke
on the metricService defined on D. We’ll discuss entry point resolution in detail
when we discuss components in chapter 6.

 Grouping of inbound messages is accomplished by looking at the correlationId
on each message. The correlationId is set by the outbound routers of each external
service. The collection aggregator will wait for messages that share the same
correlationId and group them together in a list, which is passed to the component
for evaluation. The correlationId is usually something that makes sense in the given
business scenario. In this example it might be the ID of the monitoring job being
run. This will let the service accept monitoring results from different Nagios
instances in parallel.

 In addition to the correlationId, a correlationGroupSize can also be set. This
determines the number of messages that are needed before the list can be sent to the
component for processing. By default, if the correct number of messages needed to
meet the correlationGroupSize isn’t reached by the timeout interval, Mule logs an
error and the data isn’t sent to the component. You can override this behavior by set-
ting the failOnTimeout property on the collection aggregator router to true. This
will allow incomplete groups to be sent to the component.

 Remember that the collection aggregator router is an extension of the selective-
consumer router, so you can make full use of filtering when processing messages. List-
ing 4.11 will use a JXPath expression filter to only accept metrics for a particular client.

Use filters in conjunction with inbound routers to harness selective-
routing capabilities.

<service name="collectionAggregatorService">
 <inbound>
 <jms:inbound-endpoint topic="metrics.responsetimes">
 <jms:jmsmessage-to-object-transformer

Listing 4.11 Using an expression-filter with the collection aggregator

C

Declare
method
to invokeAverage

response
timesD

BEST
PRACTICE

94 CHAPTER 4 Routing data with Mule
 returnClass="com.muleinaction.ResponseTime"/>
 </jms:inbound-endpoint>
 <collection-aggregator-router timeout="60000">
 <expression-filter evaluator="jxpath"
 expression="(metric/clientId)='client1'">
 </collection-aggregator-router>
 <collection-aggregator-router timeout="600000"/>
 </inbound>
 <component>
 <method-entry-point-resolver>
 <include-entry-point method="averageResponseTimes"/>
 </method-entry-point-resolver>
 <spring-object bean="metricService"/>
 </component>
 <outbound>
 <pass-through-router>
 <jms:outbound-endpoint topic="metrics.avg.responsetimes"/>
 </pass-through-router>
 </outbound>

</service>

Now that we can process multiple messages as a group, let’s look at how we can guar-
antee that we only process a message once.

4.3.4 Insuring atomic delivery with the idempotent receiver

It can be important to guarantee that a message is only processed once. Obvious
examples abound in the banking industry. You want to be sure you’re not processing
the same withdrawal or debit twice, for instance. It’s conceivable, though, for a mes-
sage to be delivered or sent more than one time. Someone might hit the Submit but-
ton twice on an online banking form or a malicious user may be deliberately injecting
duplicate messages into your system.

 Mule’s idempotent-receiver router allows you to ensure that a message is con-
sumed atomically. The idempotent-receiver router generates an ID for each message it
consumes. The IDs are subsequently stored and scanned as new messages arrive.
Duplicate IDs are handled by the catch-all strategy for the router, if one is defined. If
no strategy exists, the message is discarded and some information is logged. Figure 4.6
illustrates how this works.

Consume
messages

selectively

Component
Idempotent

receiver
Inbound
endpoint

Message ID history

Exception strategy
Figure 4.6 The idempotent-receiver router
ensures that only one copy of a message is
routed to a component.

95Using inbound routers
Let’s return to Clood, Inc.’s order provisioning system. After some time in produc-
tion, it became apparent that Clood’s order endpoints were receiving duplicate order
messages, ultimately resulting in clients getting billed twice for their provisioning fees.
This turned out to be the result of a bug in Clood’s JMS provider that has subsequently
been patched, but Clood’s management is rightfully worried about this issue occur-
ring again. Since every order is assigned a unique ID as it enters the system, it’s possi-
ble to use an idempotent receiver to ensure that an endpoint only processes the same
order once. Listing 4.12 shows how to implement this.

<service name="idempotentReceiverService">
 <inbound>
 <jms:inbound-endpoint queue="orders"/>
 <idempotent-receiver-router idExpression="#[header:orderId]">
 <simple-text-file-store directory="./order-ids"/>
 </idempotent-receiver-router>
 <forwarding-catch-all-strategy>
 <jms:outbound-endpoint queue="duplicate.orders"/>
 </forwarding-catch-all-strategy>
 </inbound>
 <component>
 <method-entry-point-resolver>
 <include-entry-point method="process"/>
 </method-entry-point-resolver>
 <spring-object bean="orderService"/>
 </component>
</service>

The idempotent-receiver router is defined on B. The first thing of interest is the
idExpression; this is the value we’ll be using as the idempotent identifier. We’re spec-
ifying the idExpression using Mule’s expression evaluator syntax. Expression evalua-
tors allow you to dynamically extract data from a message using various mechanisms,
such as taking the value of the message’s headers or extracting the message’s payload.2

In this case, we’re extracting an orderId from the header of the message and using
this as the idempotent ID. We’re declaring how we want to store and reference the IDs
in C. In this case, we’re using simple-text-file-store to save messages to a text file
(you can implement more complex schemes to save messages if the simple text file
store isn’t suitable). If you choose not to specify an idExpression, Mule will use the
messages’s ID as the default. Duplicate messages are handled by the exception strategy
for the model. In this case, the forwarding catch-all strategy on D will send duplicate
orders to the duplicate.orders queue where they can be dealt with appropriately.

 Let’s wrap up our discussion of inbound routing by examining the wiretap router,
which enables us to watch the messages coming into a service.

Listing 4.12 Insuring atomic delivery with the idempotent-receiver router

2 Full information regarding the available evaluators is available in appendix A.

BEvaluate
expression

to extract ID

Store IDs in
given
directoryC

Send duplicate
orders to queueD

96 CHAPTER 4 Routing data with Mule
4.3.5 Snooping messages with the wiretap router

The wiretap router lets you inspect traffic
going into a service. Analogous to a wire-
tap on a phone, Mule’s wiretap enables
you to copy messages to a remote end-
point without the knowledge of other
inbound routers or the component. This
is useful in a variety of scenarios, from
message logging to quality-of-service and
billing applications. Figure 4.7 illustrates
the wiretap router in use.

 The wiretap will send a copy of each
message that arrives for the component to
an outbound endpoint. Let’s consider an example. Clood, Inc., is interested in getting
real-time statistics for the orders it’s processing. Clood’s order processing is handled
by a Spring-configured bean called orderProcessingService. This object contains all
the logic for processing orders as they arrive off a JMS queue called orders. Clood
could modify orderProcessingService to collect statistics on orders as they come in,
but this would involve modifying already well-proven order processing code as well as
doing a redeployment of the code to all Clood’s Mule instances. It perhaps most
importantly introduces coupling between the statistics collection and the order pro-
cessing. Let’s see how Clood uses the wiretap router to “listen” as order messages pass
into the orderProcessingService and send a copy to a separate endpoint for statis-
tics generation. Listing 4.13 illustrates this.

<service name="wiretapService">
 <inbound>
 <jms:inbound-endpoint queue="orders"/>
 <wire-tap-router>
 <vm:outbound-endpoint path="statisticsService"/>
 </wire-tap-router>
 </inbound>
 <component>
 <spring-object bean="orderProcessingService"/>
 </component>
</service>

<service name="wiretapReceiver">
 <inbound>
 <vm:inbound-endpoint path="statisticsService">
 <jms:jmsmessage-to-object-transformer
 name="JmsMessageToString"
 returnClass="java.lang.String" />
 </vm:inbound-endpoint>
 </inbound>
 <component>

Listing 4.13 Sniffing traffic with a wiretap router

ComponentWiretap
Inbound
endpoint

Figure 4.7 The wiretap router enables message
inspection

B Define wiretap router

Accept copy of each
order message

97Outbound routing
 <spring-object bean="statisticsService"/>
 </component>
</service>

The wiretap router configured on B will send a copy of each message received by the
orderProcessingService to the statisticsService endpoint. Like the forwarding
consuming router, the wiretap router is an extension of the selective consuming
router, so you can use filtering to tap only the messages you’re interested in. Remem-
ber that the wiretap router simply copies and forwards the message; it doesn’t modify
messages that pass through it.

 In this section we’ve nose-dived into Mule’s inbound routing capabilities. You’ve
seen how selective consuming routers form the basis for Mule’s inbound routers. We
looked at how we can use this in conjunction with forwarding-consumer routers to
alter message flow around our components. You then saw how you can aggregate col-
lections of inbound messages using a collection aggregator. Finally, you saw how you
can use the idempotent receiver to guarantee message atomicity as well as use the
wiretap router to snoop on traffic. Now that we’ve looked at Mule’s inbound routers
in depth, we can turn our attention to outbound routers.

4.4 Outbound routing
Outbound routers dictate how messages leave a service. In the last chapter, you saw
how to use the pass-through router to send messages to a single endpoint. You also saw
how to apply the chaining router to use the response of one endpoint as the input into
another. In this section we’ll investigate more of Mule’s outbound routing options.

4.4.1 Being picky with the filtering router

The filtering router lets you control what
messages leave your component. Much like
the inbound selective-consumer router, the
filtering router uses a filter to determine
what to let through. The routers we
describe in this section are extensions of
the filtering-outbound router, so it’s impor-
tant to be familiar with it. The filtering
router is illustrated in figure 4.8.

 In listing 4.14 we’re using a payload-type
filter in conjunction with the filtering router
to only allow messages with Double payloads
to pass to the outbound JMS endpoint.

<service name="filteringRouterService">
 <inbound>
 <jms:inbound-endpoint queue="metrics.responsetimes"/>
 <collection-aggregator-router timeout="600000"/>

Listing 4.14 Using the filtering router to filter outbound messages

Component
Filtering
router

Outbound
endpoint

Catch-all
strategy

Figure 4.8 A filtering router stops select
messages from leaving a component.

98 CHAPTER 4 Routing data with Mule
 </inbound>
 <component>
 <method-entry-point-resolver>
 <include-entry-point method="averageResponseTimes"/>
 </method-entry-point-resolver>
 <spring-object bean="metricService"/>
 </component>
 <outbound>
 <filtering-router>
 <jms:outbound-endpoint queue="metrics.avg.responsetimes"/>
 <payload-type-filter expectedType="java.lang.Double"/>
 </filtering-router>
 <logging-catch-all-strategy/>
 </outbound>
</service>

The configuration, as you can see, is almost identical to that of the selective-consumer
router. We’re specifying a filter on B that’ll block any message that doesn’t have a
payload of Double. You might’ve noticed that we’ve configured a logging catch-all
strategy on C. Since we should never receive messages that have a payload other then
Double, we want the filtering router to log these messages to the logging catch-all
strategy. We can then act on the information and debug why we’re receiving data that
isn’t a Double.

 Using filtering with routers should be old hat by now, so let’s look at some other
more creative routing options. We’ll start with the static recipient list.

4.4.2 Sending to multiple endpoints with the static recipient list

The static-recipient-list router lets you simultaneously send the same message
to multiple endpoints. You’ll usually use a static recipient list when each endpoint is
using the same transport. This is often the case with VM and JMS endpoints. Figure 4.9
illustrates the static recipient list.

 Clood uses error channels to manage the reporting of exceptions in their infrastruc-
ture. When errors occur during message processing, Clood sends the message to mul-
tiple recipients for processing. The static recipient list comes in handy in situations
like this. Listing 4.15 shows how Clood uses the static recipient list to send a message
that arrives on an inbound endpoint to three JMS queues.3

3 We’ll talk about exception handling extensively in chapter 8.

BOnly accept messages
with Double payloads

C
Log messages
that don’t pass

Component
Message-

splitter

Outbound
endpoint

Outbound
endpoint

Outbound
endpoint

Figure 4.9 A static recipient
list can route data to multiple
endpoints.

99Outbound routing

<service name="staticRecipientListService">
 <inbound>
 <vm:inbound-endpoint address="vm://errors"/>
 </inbound>
 <outbound>
 <static-recipient-list-router>
 <recipients>
 <spring:value>jms://errors.ops</spring:value>
 <spring:value>jms://errors.engr</spring:value>
 <spring:value>jms://errors.reports</spring:value>
 </recipients>
 </static-recipient-list-router>
 </outbound>
</service>

The configuration is fairly straightforward. We define a static-recipient-list router on
B and enumerate our outbound endpoints on C. The spring:value element
might seem strange to you. This is simply Mule reusing the Spring schema’s value
element.

Use static recipient lists when sending the same message to endpoints
using identical transports.

The static-recipient-list router is useful for sending data across homogeneous end-
points, but it’s often useful to broadcast a message across different transports. Let’s
look at the multicasting router, which we saw in the beginning of this chapter, to see
how to accomplish this.

4.4.3 Broadcasting messages with the multicasting router

The multicasting router is similar to the static recipient list in that it simultaneously
sends the same message across a set of outbound endpoints. The difference is that the
multicasting router is used when the endpoint list contains different types of trans-
ports. We saw this situation in the first example of this chapter. If you recall, we had a
multicasting router receiving statistical data from a component. Our requirement was
to let our boss know when new data was being inserted into the database. The data
from the component was numeric and as such was suitable for database insertion. You
probably want to send your boss something more informative than a set of numbers in
an IM, though. This is where the multicasting router comes in handy; it lets you tailor
the data for each outbound endpoint. Figure 4.10 illustrates the multicasting router.

 We saw how Clood, Inc., uses multicast routing at the beginning of this chapter.
Let’s add another endpoint to this multicast router now to further demonstrate how it
works. Listing 4.16 shows how to do this.

Listing 4.15 Send outbound messages to list of endpoints

B Configure static-
recipient-list router

C

Send data to
multiple JMS

queues

BEST
PRACTICE

100 CHAPTER 4 Routing data with Mule

<outbound>
 <multicasting-router>
 <jdbc:outbound-endpoint queryKey="statsInsert"/>
 <xmpp:outbound-endpoint user="mule"
 password="mule"
 host="jabber.clood.com"
 port="5222"
 recipient="joe"
 transformer-refs="StatToInstantMessageText"/>
 jms:outbound-endpoint topic="alerts"/>
 </multicasting-router>
</outbound>

We simply need to add the additional endpoint, in this case a JMS outbound endpoint
publishing to a topic on B, and now data leaving the component will be inserted into
the database, sent to Clood, Inc.’s Jabber server, and published to a JMS topic.

Use the multicasting router when sending the same message to end-
points using different transports.

Transformers can be used on each endoint to put the contents of the message in a
suitable format (as we mentioned previously, we’ll be talking more about transforma-
tion in the next chapter).

 The multicasting router is an important piece of functionality in the integration
world. It’s a rare occasion when every party interested in messages from a service is
“speaking the same language” from a transport perspective. The multicasting router
allows you to easily move the same messages across these different endpoints. Let’s
turn our attention now to the chaining router. As you recall from the last chapter, this
lets you take advantage of the response from synchronous endpoints in your service’s
outbound configuration.

4.4.4 Service composition with the chaining router

Service composition is an important part of enterprise integration. Often, you’ll find
yourself needing to feed the output of some service into the input of another. While
it’s possible to model this using a series of VM queues, it would be convenient to have

Listing 4.16 Using the multicasting router to send data to multiple endpoints

Component
Multicasting

router

Transformer

Transformer

Transformer

Outbound
endpoint

(transport x)

Outbound
endpoint

(transport y)

Outbound
endpoint

(transport z)

Figure 4.10 The
multicasting router can
send messages to multiple
endpoints over different
transports.

B

BEST
PRACTICE

101Outbound routing
an abstraction in place for this sort of operation. Luckily, Mule provides a chaining
router for this situation. As illustrated in figure 4.11, the chaining router allows you to
feed the output of one endpoint into the input of another.

 The examples in the previous chapter used the chaining router in conjunction
with an STDIO outbound endpoint. Let’s look at another example. Listing 4.17 shows
a chaining router that accepts a ZIP code from a STDIO inbound endpoint. The ZIP
code is bridged to the chaining router, which is configured with two endpoints. It sub-
mits the ZIP code to the first endpoint, a SOAP service that returns the weather infor-
mation for the corresponding area. When the SOAP result is returned, it’s passed to
the outbound JMS endpoint, which places the data on a queue.

<service name="chainingRouterService">
 <inbound>
 <stdio:inbound-endpoint system="IN" />
 </inbound>
 <outbound>
 <chaining-router>
 <outbound-endpoint address=
"http://www.webservicex.net/usweather.asmx?WSDL&method=\
GetWeatherReport"/>
 <jms:outbound-endpoint queue="weather"/>
 </chaining-router>
 </outbound>
</service>

The chaining router is a good choice for small and ad hoc service composition. You’ll
see an alternative way to perform service composition when we look at using BPM
engines with Mule in part 3 of this book.

 We’ve now looked at a few ways to send a single message across multiple endpoints.
The static-recipient-list router lets you send a message to a set of homogeneous end-
points. The multicasting router lets you send a message across a set of heterogeneous
endpoints. Finally, the chaining router lets you feed the result of one endpoint into
the input of another. This is all great for a single message, but how do we deal with
sending different messages to individual endpoints? The message splitter router we

Listing 4.17 Using the response of an endpoint as the input for another endpoint

Component
Chaining

router

Endpoint

Endpoint

Endpoint
Figure 4.11 The chaining router can
sequentially and synchronously send data to
multiple endpoints.

102 CHAPTER 4 Routing data with Mule
consider next will show us how to split a message up and route its pieces separately to
different endpoints.

4.4.5 Chopping up messages with the message splitter

Dealing with collections of data sometimes calls for handling independent elements
of the collection differently. This can arise when your components are supplying col-
lections or XML documents to outbound endpoints. In these situations, you might
want to split the collection or XML document into its constituent elements and deal
with each element independently. Mule provides the message-splitter router for these
cases. Figure 4.12 shows how message-splitter routers work.

In this section, we’ll start by looking at using the list message splitter in conjunction
with a JXPath filter. We’ll route a collection of objects to different endpoints based on
their properties. Then we’ll examine using the XML message splitter to splice up an
XML file and route each element separately.

 Let’s consider the Order class from listing 4.5. In listing 4.18 we’ve implemented
an inbound endpoint to accept a list of Order objects off a JMS queue. The list is
bridged to an outbound message splitter. The list-message-splitter-router is con-
figured to use a JXPath filter to route each message differently. The JXPath filter will
select the route based on the value of the status property of each Order object.

<service name="listMessageSplitterService">
 <inbound>
 <vm:inbound-endpoint path="orders"/>
 </inbound>
 <outbound>
 <list-message-splitter-router>
 <vm:outbound-endpoint path="orders.fulfilled">
 <expression-filter evaluator="jxpath"
 expression="status = 'FULFILLED'"/>
 </vm:outbound-endpoint>
 <vm:outbound-endpoint path="orders.pending">
 <expression-filter evaluator="jxpath"
 expression="status = 'PENDING'"/>
 </vm:outbound-endpoint>

Listing 4.18 Using JXPath expressions to split up a collection of orders

Component
Message
Splitter

Outbound
endpoint

Outbound
endpoint

Outbound
endpoint

ABC

A

C

B

Figure 4.12 A message
splitter can break up a
message and send its parts
to multiple endpoints.

B Define list message-
splitter router

103Outbound routing
 <vm:outbound-endpoint path="orders.unknown"/>
 </list-message-splitter-router>
 </outbound>
</service>

The list-message-splitter router defined on B sends messages to different queues
depending on the value of the status property. This allows us to send completed
orders to one queue and pending orders to another. Note that we have an outbound
endpoint defined on C without a filter. This acts as a “fall-through” endpoint; if
none of the other endpoints’ filters match, the message will be routed through this
endpoint.

 Let’s assume that instead of passing around a list of Order objects, we instead
received XML representing orders. This document looks like listing 4.19.

<orders>
 <order>
 <id>1234</id>
 <status>FULFILLED</status>
 </order>
 <order>
 <id>1235</id>
 <status>PENDING</status>
 </order>
 <order>
 <id>1236</id>
 <status>PENDING</status>
 </order>
</orders>

We want to split up the document into individual documents, with each containing
the XML for one order. We’ll then route each order to the appropriate queue as
before. Listing 4.20 uses the filtering XML message splitter to take care of this.

<service name="xmlMessageSplitterService">
 <inbound>
 <vm:inbound-endpoint path="orders"/>
 </inbound>

 <outbound>
 <mulexml:message-splitter splitExpression="/orders/order">
 <vm:outbound-endpoint path="orders.fulfilled">
 <expression-filter evaluator="jxpath"
 expression="/order/status = 'FULFILLED'"/>
 </vm:outbound-endpoint>
 <vm:outbound-endpoint path="orders.pending">
 <expression-filter evaluator="jxpath"
 expression="/order/status ='PENDING'"/>
 </vm:outbound-endpoint>
 <vm:outbound-endpoint path="orders.unknown"/>

Listing 4.19 An XML document with orders

Listing 4.20 Splitting up an XML payload

C
Define “fall-through”

outbound endpoint

BSplit XML message

104 CHAPTER 4 Routing data with Mule
 </mulexml:message-splitter>
 </outbound>
</service>

As you can see, in B we‘ve changed list-message-splitter-router to xml-message-
splitter, defined in the mulexml namespace. We’ve supplied a splitExpression to
the router to instruct it how to slice up the XML. In this case we want to extract each
order element from the document. We then use an XPath expression to evaluate the
status of each order document and route it accordingly.

NOTE The payload of messages leaving the message-splitter router will be
instances of org.dom4j.Document.

We’ve just seen how we can split up a message and route its constituent parts. What if
we want to go a step further and elicit a response from each endpoint, then make a
decision based on the response as a whole? We’ll see how as we consider asynchronous-
reply routers.

4.4.6 Using asynchronous-reply routers

The chaining router enabled us to set up a sequence of outbound endpoints where we
could feed the output of one endpoint as input to the next. Sometimes, though, we
need to send a message to a set of endpoints in parallel, wait for their output, and
send an atomic response based on the aggregate data. An asynchronous-reply router
makes this possible. As you can see in figure 4.13, the async reply routing occurs after
all the outbound endpoints have returned data or have timed out.

 You’ll typically use VM queues to aggregate the responses and trigger the asynchro-
nous-reply router, as we’ll see shortly. Like the other routers, the asynchronous-reply
router’s place in the configuration file is in line with its location in the event context.
The async-reply element signals asynchronous reply routing and occurs after the
outbound configuration.

 Let’s consider an example of where an asynchronous-reply router is useful. Clood,
Inc., has a series of virtual machine (VM) farms deployed across their organization.
Customers use a web services API to provision and deprovision VMs on this environ-
ment. The customer doesn’t care (or know) what VM farm their VM is spun up on.
Clood, though, wants to distribute VM provisioning more or less evenly across each

Outbound
endpoint

Outbound
router

Outbound
endpoint

Outbound
endpoint

Asynchronous
reply router

Figure 4.13 An asynchronous-reply router can
synchronously send messages to multiple endpoints
and return a single response

105Outbound routing
farm. To accomplish this, Clood is using an async-reply router to query each VM farm,
collect the results, and return the farm with the lowest number of running VMs. List-
ing 4.21 lists the Mule configuration to accomplish this.

<model name="asyncRequestReplyModel">

 <service name="asyncRequestReplyService">
 <inbound>
 <vm:inbound-endpoint
 path="farmRequests"
 synchronous="true"/>

 </inbound>
 <outbound>
 <multicasting-router>
 <vm:outbound-endpoint
 path="farm1"
 />
 <vm:outbound-endpoint
 path="farm2"
 />
 <vm:outbound-endpoint
 path="farm1"
 />
 <reply-to
 address="vm://farmResponses"/>
 </multicasting-router>
 </outbound>

 <async-reply>
 <vm:inbound-endpoint
 path="farmResponses"/>
 <custom-async-reply-router
 class="FarmResponseAggregator"/>
 </async-reply>
 </service>

 <service name="farm1">
 <inbound>
 <vm:inbound-endpoint
 path="farm1"
 synchronous="true" />
 </inbound>
 <component>
 <method-entry-point-resolver>
 <include-entry-point method="getStatus"/>
 </method-entry-point-resolver>
 <spring-object bean="farm1"/>
 </component>
 </service>

 <service name="farm2">

 <inbound>
 <vm:inbound-endpoint

Listing 4.21 Using the async-reply router to select an appropriate VM farm

B Receives farm
status requests

C Multicast request
to each farm

D Send each response
to reply-to address

E Configure async-
reply router

F Define
custom router

G Farm endpoint

H Farm endpoint

106 CHAPTER 4 Routing data with Mule
 path="farm2"
 synchronous="true" />
 </inbound>
 <component>
 <method-entry-point-resolver>
 <include-entry-point method="getStatus"/>
 </method-entry-point-resolver>
 <spring-object bean="farm2"/>
 </component>
 </service>

 <service name="farm3">
 <inbound>
 <vm:inbound-endpoint
 path="farm3"
 synchronous="true" />
 </inbound>
 <component>
 <method-entry-point-resolver>
 <include-entry-point method="getStatus"/>
 </method-entry-point-resolver>
 <spring-object bean="farm3"/>
 </component>
 </service>
</model>

The farm status request is first accepted by B. On C we multicast this request out to
each farm for a response. For the purposes of this example, these are just stubs
defined on G, H, and I that randomly generate VM farm data. As the farm metrics
are returned, they’re sent to the endpoint defined by the reply-to definition on D.
Our async-reply configuration begins on E. The responses from each VM farm are
received by the VM inbound endpoint. Once all the responses are received they’re
passed to the custom-async-reply router defined on F. The defined class, Farm-
ResponseAggregator, will choose the farm with the lowest number of provisioned VMs
and return it as the result of the synchronous inbound endpoint defined on B. This
result is then returned by the VM endpoint we started with on B.

 If a response isn’t received from each farm then, by default, the responses aren’t
aggregated and the request fails. This often isn’t the desired behavior. Consider if one
of the VM farms is under heavy load and can’t respond to the status request in a timely
fashion. We still want to provision the VM to another farm, not abandon the request.
The async-reply router, much like the collection aggregator, allows you to set the
failOnTimeout value to true in these scenarios. This will cause the partial result to be
aggregated to evaluate the response.

NOTE The implementation for FarmSelectionService is included with the
source code for the examples in this book. Mule also ships with some
stock reply routers: you can replace the custom-async-reply router with
either a single-async-reply router or a collection-async-reply router to try
them out. The single-async-reply router will return the first message
that’s received on its endpoint. Conversely, the collection-async-reply
router will return all the messages received on the endpoint.

I Farm endpoint

107Summary
By now you’ve seen quite a few ways to control message flow out of your compo-
nents. Just as you used the selective consumer routing to control inbound message
flow, you saw how you can use the filtering router to control what messages leave a
component. You saw how to dispatch messages to a list of receivers with the static
recipient list as well as broadcast a message through different transports with the
multicasting router. You saw how to do rudimentary service composition using the
chaining router as well as message splitting with the message-splitting router. Finally
we looked at using the async-reply router to aggregate data from a multitude of
sources to return a single result.

4.5 Summary
In this chapter we explored Mule’s routing capabilities. You saw how inbound and out-
bound routers control how data moves through your services. We took a look at
Mule’s filtering capabilities and how they apply to routing. We examined each of
Mule’s core routers in depth and saw examples of each at work. Perhaps most impor-
tantly, you may have noticed that services, endpoints, and components can be igno-
rant of routing changes. This loose coupling allows you to drastically change the
routing behavior of your services without modifying your component’s code, end-
point definitions, or external services.

 You’re now able to configure Mule, work with its transports, and route data
between services. The next two chapters will round out your first steps with Mule.
We’ll first look at transformation, which allows you to adapt messages based on their
context. We’ll then look at components, which allow you to embed your own business
logic into Mule.

Transforming data
with Mule
Nowadays, every application understands XML and uses interoperable data struc-
tures, right? If you replied yes, be informed that you live in Wonderland, and
sooner or later, you’ll awake to a harsh reality! If, like most of us, you answered no,
then you know why data transformation is such a key feature of an ESB.

 We’re still far away from a world of unified data representation, if we ever reach
that point. Unifying data is a tremendous effort. For public data models, it takes
years of work by international committees to give birth to complete and complex
standards. In large corporations, internal working groups or governance bodies
also struggle to establish custom unified data representations. In the meantime, the
everyday life of a software developer working on integration projects is fraught with
data transformation challenges.

In this chapter
■ Message transformation principles
■ Common transformers from Mule Core
■ JMS and XML transformers
■ Writing custom transformers
108

109Working with transformers
 In this chapter, you’ll learn how Mule can help you with your data transformation
needs. We’ll first discuss the way transformers behave and how you can work with
them. We’ll then review the usage of a few existing transformers that illustrate the
diversity and capacities of Mule:

■ Core transformers —General-purpose transformers from the core library of Mule
■ XML transformers —Specialized transformers from the XML module
■ JMS transformers —Transport-specific transformers for JMS

While discovering the existing transformers, we’ll look at how Clood, Inc., uses them
to satisfy their own needs but also the needs of one of their clients. We’ll then look at
a custom transformer Clood has rolled out to support client-facing email generation.

 When you’re done with this chapter, you’ll have a clear picture of how Mule will
remove the data transformation millstone from your integration projects.

5.1 Working with transformers
A Mule transformer has simple behavior, as illustrated by the flow chart shown in fig-
ure 5.1. As this diagram suggests, a transformer strictly enforces the types of data it
receives and outputs. This can be relaxed by configuration: in that case, a transformer
won’t report an exception for bad input, but will return the original message
unchanged, without enforcing the expected result type (return class). Therefore use this
option sparingly.

Figure 5.1 The default behavior of a
Mule transformer

110 CHAPTER 5 Transforming data with Mule
NOTE When a message transits in Mule, it’s an event, more specifically an
instance of org.mule.api.MuleEvent, that’s moved around. This object
carries not only the actual content of the message but also the context of
the event. This context is composed of references to different objects,
including security credentials, if any, the session in which this request is
processed, and the Mule context, through which all the internals of the
ESB are accessible. The content of a message, also known as payload, is
itself wrapped in an instance of org.mule.api.MuleMessage, which pro-
vides different means of accessing the payload under different forms. A
MuleMessage also contains properties, much like the header of a SOAP
envelope or the properties of a JMS message, and can also have multiple
named attachments (read more about this in section 13.3.1).

A transformer can alter a message in different ways:

■ Payload type transformation—The data type of the message payload is transformed
from one form to another. For example, a java.util.Map is transformed into a
javax.jms.MapMessage.

■ Payload format transformation—The data format of the message payload is trans-
formed from one form to another. For example, a DocBook XML instance is
transformed into an XSL-FO instance.

■ Properties transformation—The properties of the message are modified, whether
by adding new properties or by removing, renaming, or changing the values of
existing properties. For example, a message needs a particular property to be
set before being sent to a JMS destination.

Transformers often come in pairs, with the second transformer able to undo what the
first one has done. For example, compression and decompression, which are payload
format transformations, are handled by two different transformers. A transformer that
can reverse the action of another is called a round-trip transformer. Making a message go
through a transformer and its round-trip should restore the original message.

 NOTE Transformation versus adaptation Wouldn’t this be a great title for a con-
troversial book? In Mule, message adaptation and transformation are two
different and complementary notions. Mule uses the concept of message
adaptation to standardize the handling of messages whose natures are
specific to each transport. Mule’s moving parts need to access the mes-
sage properties and the byte payload in a unified manner. Mule message
adapters, following the adapter design pattern,1 do this by wrapping the
transport-specific message payload with an adapter. This adapter is state-
ful: it contains not only the original message that it wraps, but also signif-
icant information extracted from it (such as encoding, properties, or
attachments) and some extra context (such as the current exception).
Transformation allows you to alter the content of the message adapter:

1 See http://en.wikipedia.org/wiki/Adapter_pattern

http://en.wikipedia.org/wiki/Adapter_pattern

111Configuring transformers
either its payload or its properties, as discussed previously. Figure 5.2
illustrate these two concepts: a message adapter that wraps a transport-
specific message, and that has extracted some of its properties, has its
payload transformed into a transport-agnostic one.

Understanding how adaptation complements transformation will help
you understand the behavior of the transport-specific transformers,
which will be discussed in the next section.

Mule is extremely rich in terms of available transformers: each Mule library you’ll use
in your project can potentially contain transformers:

■ The Mule core contains a wealth of general-purpose transformers: we’ll detail a
few of them in section 5.3.

■ Modules can also contain transformers: in section 5.4, we’ll look at some of
those that come with the XML module.

■ Transports may provide transformers as well: we’ll review the ones that are bun-
dled with the JMS transport in section 5.5.

You’ve just discovered the basics of message transformation in Mule. You now need to
learn the fundamentals and the subtleties of transformers’ configuration in order to
use them efficiently in your own projects.

5.2 Configuring transformers
To use a transformer in your Mule instance, you need to first declare it. This is usually
done globally in your configuration file, as we discovered in chapter 2. The following
configuration fragment shows the declaration of an object-to-byte array transformer
(discussed in 5.3.1) named ObjectToByteArray:

<object-to-byte-array-transformer name="ObjectToByteArray" />

Message adapter

Properties

Transport-specific
payload

Properties

Content

Message adapter

Properties

Generic payload

Transport-specific
payload extract ion

transformer

Figure 5.2 Message adaptation and transformation have different but complementary goals.

112 CHAPTER 5 Transforming data with Mule
A transformer element supports two common configuration attributes, in addition to
its name:

■ ignoreBadInput—The purpose of this boolean attribute has been demon-
strated in figure 5.1. As we said earlier, this instructs the transformer to perform
no action and return the message unchanged in case its type isn’t supported.

■ returnClass—This attribute allows you to configure the fully qualified name of
the type of class that the transformer is expected to return. This is useful if you
want to strictly enforce a stricter type than the transformer’s default (for exam-
ple, a transformer might target java.lang.Object whereas you want it to pro-
duce only java.util.Map objects).

After it’s been declared, and thus named, you can refer to the transformer from your
endpoint. Whether they’re global or not, endpoints support two styles of transformer
references—either whitespace-separated names listed in an attribute or defined by
specific child elements. This is illustrated in listing 5.1, where you can see a chain of
three inbound transformers defined on an endpoint in two different ways.

<http:inbound-endpoint host="localhost" port="8080"
 transformer-refs="ObjectToByteArray
 DocbookToFO
 ObjectToString" />

<http:inbound-endpoint host="localhost" port="8080">
 <transformers>
 <transformer ref="ObjectToByteArray" />
 <transformer ref="DocbookToFO" />
 <transformer ref="ObjectToString" />
 </transformers>
</http:inbound-endpoint>

The second approach is more foolproof, because individual transformer references
can be checked by advanced XML editors, whereas a list of references will only be
checked at runtime when Mule tries to load the configuration. Note that the trans-
formers parent element can be omitted if you don’t also have response transformers.
This said, using it is better for clarity if your endpoint contains other child elements
(such as filters).

 It’s also possible to declare an anonymous transformer locally inside an endpoint.
For example, the following defines a global STDIO endpoint that’ll encode its input in
Base64:

<stdio:endpoint name="sysin" system="IN">
 <base64-encoder-transformer />
</stdio:endpoint>

This local transformer is deemed anonymous because it doesn’t have a name attribute;
thus, it can’t be referenced. This kind of declaration can be a viable option for
extremely short configurations. As soon as your configuration won’t fully fit on one or

Listing 5.1 Two different ways to declare a similar chain of transformers on an endpoint

List of inbound
transformer
references

List of inbound
transformer
reference elements

113Configuring transformers
two screens, you might risk losing track of the different transformers you use and
might miss opportunities for reusing them in different places. Hence, when your con-
figuration starts to grow, you should prefer using global transformers and reference
them from your endpoints. For the sake of brevity, we’ll often use anonymous trans-
formers in the upcoming examples.

 There’s a caveat with endpoint transformers: as soon as you declare a transformer
on an endpoint, you override the default transformer that the transport could’ve set for
this endpoint. This can be extremely surprising at first, as you might not realize that
by adding the extra transformation behavior you cancel the default one. This implies
that if you want to add your transformation logic to an implicit one, you first have to declare the
default transformation explicitly. We’ll come back to this fact later on, in section 5.3.2.

 WARNING Local trumps global If you declare one or several transformers on a
global endpoint and add other transformers to the inbound or out-
bound endpoint that references the global one, the locally declared
transformers will override the globally declared ones. For example,
consider the global endpoint declaration and its reference shown in
listing 5.2.

<stdio:endpoint name="sysin" system="IN"
 transformer-refs="Base64Encoder" />

<inbound-endpoint ref="sysin"
 transformer-refs="Base64Decoder">

In this example, the inbound endpoint built from referencing the global one named
sysin will have only the Base64Decoder transformer applied to it. The local declara-
tion of this transformer has overridden the declaration of the Base64Encoder on the
global endpoint definition.

 If you look at the available attributes on an endpoint definition element, you’ll see
that two of them are related to transformers. One is named transformer-refs and
the other is named responseTransformer-refs. Similar to what’s shown in listing 5.2,
there’s also a child element named response-transformers that can be used inside
an endpoint. Why two types of transformers?

 The answer to this question is given in figure 5.3.
 Regular transformers (inbound and outbound) kick in when a message traverses

an endpoint in the direction that’s natural for the router it sits in, which is toward the
component for inbound routers and away from it for outbound ones. In contrast,
response transformers kick in when a message flows back as a response to the incom-
ing request, when a response is expected in a synchronous manner. This synchronous
response can be expected from a component in an inbound router or from the
remote destination in an outbound router.

 There’s another important fact about inbound transformers you must be aware of.
It’s up to the component to decide whether to apply the configured inbound transformer. This can

Listing 5.2 Local endpoint transformer declarations override global ones.

Global endpoint with
a transformer

Inbound endpoint with
a transformer override

114 CHAPTER 5 Transforming data with Mule
be confusing! We’ll discuss this further in the next chapter. In the meantime, our
examples will focus only on bridge services built on the implicit bridge-component,
which honors inbound transformers.

TIP My transformers are ignored! If you’ve configured transformers on your
endpoint and they aren’t applied as you expect them to be, ask yourself
the following questions:

■ Are the transformers configured for the right part of the message flow? You
may need to apply the transformers on the response.

■ Is the service component honoring transformers? The component you’re
using might not let transformers kick in.

Most of the time, this’ll help you figure out the source of the problem.

As you’ve noticed, configuring transformers requires a good understanding of the
default behavior of transports and the message flows around service components.
We’ll come back to these two aspects in the coming sections of this chapter and in the
next chapter about components.

 You’ve now acquired enough knowledge about using and configuring transform-
ers. In the next sections, we’ll take a deeper look at some notable transformers picked
from the core library of Mule and from the XML module and the JMS transport.

Look for implementations of org.mule.api.transformer.Trans-
former in Mule’s API to discover all the available transformers.

5.3 Using core transformers
There are almost 30 transformers in the core library of Mule. They all provide
transport-independent transformation features such as compression, encryption, or
payload value extraction. In this section we’ll look at four of them (six if we count the
round-trip ones) that illustrate common payload type and properties transformations:

Inbound router

Component

Endpoint

Response
transformer

Transformer

Outbound router

Endpoint

Response
transformer

Transformer

Figure 5.3 Endpoint transformers and response transformers can be used in inbound and
outbound routers.

BEST
PRACTICE

115Using core transformers
■ Dealing with bytes—Using byte transformers to perform payload type transforma-
tion with bytes and streams

■ Compressing data—Applying GZip transformation to compress or decompress
payload

■ Modifying properties—Working with the transformer that fiddles with the proper-
ties of a message

■ Leveraging expression evaluators—Creating new payloads with a transformer that
can evaluate expressions of all sorts

TIP A lazy but handy transformer Mule’s core contains a lazy transformer
named no-action-transformer. What’s the point of a transformer that
does nothing? Its main intention is to override an implicit active trans-
former to prevent its action. If you remember the discussion about ser-
vice overrides in section 3.1.1, you should recall how we leveraged this
transformer to alter the default transformation behavior of a connector.
The no-action transformer can be used at endpoint level too, if you don’t
want to override the connector default behavior. Here you can disable
the default transformer that extracts the payload of JMS messages at the
inbound endpoint level:

<jms:inbound-endpoint queue="theQueue">
 <no-action-transformer/>
</jms:inbound-endpoint>

With this configuration, JMS messages consumed by the endpoint will be
passed untransformed to the component. As you can see, far from being
prone to inaction, the NoActionTransformer actively resists working,
which allows you to disable default transformation behaviors.

For our first bite at core transformers, we’ll appropriately look at a pair of core trans-
formers that deal with bytes.

5.3.1 Dealing with bytes

Bytes are a finer grain of data unit exchanged between systems. In these systems, bytes
are usually handled as streams or as arrays, with the former suited for large volumes of
data and the latter for smaller chunks of information.

 In Mule Core, the ByteArrayTo transformers can handle both arrays and streams
of bytes as their input. This means that if the endpoint you’re declaring a transformer
on is capable of streaming, the transformer will be able to act on the flow of data with-
out the need to first store it in an array.

 Let’s consider first the versatile byte-array-to-object transformer. If this transformer
receives a byte payload that represents a serialized Java object, the result will be an
object deserialized from these bytes. If the payload isn’t a serialized object, the trans-
former will simply build a String from the bytes. The following demonstrates this
transformer configured to deserialize byte arrays or streams into instances of
java.util.Map only:

116 CHAPTER 5 Transforming data with Mule
<byte-array-to-object-transformer
 name="ByteArrayToMap" returnClass="java.util.Map" />

If this transformer is used in an endpoint that receives anything other than serialized
map objects, a TransformerException will be thrown and the processing of the mes-
sage will be stopped.

WARNING I U+2764 Unicode Ever entered your accented first, last, or street
name in a web site and got a back a series of question marks in the
confirmation screen? If yes, you’ve been victim of a developer’s
assumption that there are no characters beyond the 128 defined in
the US-ASCII set. Whenever you transform bytes into Strings or vice
versa, you must consider the encoding that’ll be used during the con-
version. This is because the representation of a single character
doesn’t always translate to a single byte: the byte representation of a
character is dictated by encoding. Note that UTF-8 is nowadays a com-
mon encoding, as it’s backward-compatible with ASCII and efficient
enough for most non-Asian character sets.

In Mule, the encoding used by a transformer is determined by
looking first at the encoding of the message. If none is specified, the
encoding defined on the endpoint where the transformation hap-
pens will be used. If the endpoint has no encoding set, then the
default encoding of the platform will be used. In Mule 2, the default
encoding is UTF-8. Your best option is to have the encoding specified
in the message. Some transports do this automatically for you, such as
the HTTP transport, which recognizes the Content-Encoding header
and sets the value on the message accordingly. If this isn’t possible,
then you’ll have to ensure that clients use a predefined encoding and
stick to it.

The alter ego of this transformer is the object-to-byte-array transformer. As expected,
it works the opposite way: it transforms Strings and streams into byte arrays and mar-
shals serializable payloads into bytes using the standard Java serialization mechanism.
Note that this transformer chokes on nonserializable payloads, as it can’t possibly per-
form any transformation on them. The following shows the simple declaration of the
transformer we use in the publication example detailed in section 5.6 to copy all the
bytes of an incoming input stream into an array:

<object-to-byte-array-transformer name="ObjectToByteArray" />

Copying a complete input stream to a byte array can have a serious, if not fatal, impact
on the memory of your Mule instance. This should never be taken lightly. So why
would we do something that foolish? When processing an event asynchronously, you
have no guarantee that the input stream will stay open for the duration of the message
processing. If the inbound endpoint decides it has received its response, it’ll close its
connection, taking down all the open streams. Using this transformer fills the message
with a payload that can be processed safely anytime after it has been received: this is a
way to “detach” the message from its transport.

117Using core transformers
Always consider the memory impact of the transformation you intend
to use.

If you list all the byte-related transformers in Mule’s core, you’ll find a few others.
We’ll quickly detail them here:

■ byte-array-to-serializable-transformer and serializable-to-byte-

array-transformer—These are specialized versions of the byte-array-to-object
transformer and the object-to-byte-array transformer, which only transform to
and from serialized Java objects.

■ byte-array-to-hex-string-transformer and hex-string-to-byte-array-

transformer—This pair of transformers isn’t related to the others. As their
names suggest, they transform from and to hexadecimal representations of
bytes.

■ byte-array-to-string-transformer and string-to-byte-array-

transformer—These behave like their byte counterparts except that they rely
on the current encoding to transform bytes to and from strings.

NOTE Some less-popular core transformers don’t have a matching XML config-
uration element. If you intend to use one of them, you’ll need to declare
it as a custom one (see section 5.7.1). That’s the case for the org.
mule.transformer.simple.ByteArrayToMuleMessage and org.mule.
transformer.simple.MuleMessageToByteArray transformers. These are
specialized versions of the serializable-byte array transformers that trans-
form not only the payload of the message but the whole MuleMessage
object. This can be useful for exchanging messages over the wire between
Mule instances in a form that’s directly usable by Mule and that carries all
the meta information and specific context with it.

You now have a good idea of the transformers you can leverage to transform your data
from bytes to other forms. Let’s discover how to deflate message payloads.

5.3.2 Compressing data

Under their byte representations, messages can become big to the point that they’re
not practical to send over the network. For example, JMS providers often discourage
publishing messages with heavy payloads: when you start going beyond a hundred
kilobytes, it’s usually a good time to consider compression. With XML being a com-
mon payload in messaging systems nowadays, you can expect drastic reductions of
data volume, as XML is a good candidate for compression.

 So how do we compress data in Mule? Let’s suppose that you have to publish large
strings to a JMS queue. The receiving consumer, which listens on this queue, expects
you to compress the data before you send it. If you’re in such a situation, the gzip-
compress transformer is the one you’re looking for. Here’s how you’d use it:

<jms:outbound-endpoint queue="compressedDataQueue"
 connector-ref="dataJmsConnector">
 <transformers>

BEST
PRACTICE

118 CHAPTER 5 Transforming data with Mule
 <string-to-byte-array-transformer />
 <gzip-compress-transformer />
 <jms:object-to-jmsmessage-transformer />
 </transformers>
</jms:outbound-endpoint>

Why on earth do we use three transformers? Why can’t we just apply the GZip-
Compresser to the JMS outbound endpoint? Here’s the explanation:

■ The reason why we use a string-to-byte array transformer before the GZip-
Compresser is subtle. Because the endpoint receives a string payload and
because string is serializable, the natural behavior of the compressor would be
to serialize the string first, and then compress it. But what we actually want to
send to the JMS queue are the bytes that constitute the string in a compressed
manner. This is why we use the string-to-byte array transformer first.

■ The reason why we need the object-to-JMS message transformer is also interest-
ing. If you remember the discussion of section 5.1, as soon as you declare a
transformer on an endpoint, you cancel the default see one it could have, forc-
ing you to declare it explicitly. While you don’t need to use the ObjectToJms-
Message transformer on JMS outbound endpoints that don’t declare a trans-
former, you need to do it in this case, as we already had two transformers on the
endpoint.

Conversely, if the receiving consumer were a Mule JMS inbound endpoint, we’d have to
use several transformers; in fact we’d use the round-trip twins of the ones on the out-
bound endpoint demonstrated earlier, but in reverse order. This is demonstrated here:

<jms:inbound-endpoint queue="compressedDataQueue"
 connector-ref="dataJmsConnector">
 <transformers>
 <jms:jmsmessage-to-object-transformer />
 <gzip-uncompress-transformer />
 <byte-array-to-string-transformer />
 </transformers>
</jms:inbound-endpoint>

The transformers we’ve seen so far were all performing payload type transformations.
Let’s now look at a transformer that can modify message properties.

5.3.3 Modifying properties

Whether they were called properties, headers or metadata, you should’ve already
been exposed to the notion of extra chunks of data carried alongside the main pay-
load of a message. Properties are named values that establish context so a message can
be properly processed or interpreted. For example, the headers that you send with
data in an HTTP POST action can be considered to be the properties of a message
whose payload would be the body of the HTTP operation.

 In Mule, all properties are stored together in a map that’s part of the message con-
text. These properties are of three kinds:

119Using core transformers
■ Mule-specific properties—These properties carry contextual information with the
message so Mule’s different moving parts can work properly. Encoding, session,
and correlation identifiers are examples of this kind. You can get a list of these
properties by looking at the source code of org.mule.api.config.Mule-
Properties. If you do so, you’ll notice that their names are in uppercase with
underscores instead of spaces (like Java constants). You usually don’t want to
mess with these properties.

■ Transport-specific properties—If a transport supports the notion of properties, the
connector will store these values with the actual payload in the message context.
The connector will also convert message properties into transport properties
when sending messages. This is why you find all the HTTP headers in message
properties after sending a message to Mule over this protocol.

■ User properties—Pretty much like protocols allow you to roll your own properties
in addition to the specific ones, Mule allows you to add any number of typed
properties to a message. This can be useful for many things, as these properties
will be kept and moved around the Mule instance (or instances if you have sev-
eral connected nodes). Consider, for example, a complex routing scenario,
where messages are analyzed by a business rules engine, get tagged with some
properties, and must then be sorted or dispatched accordingly.

Adding, modifying, or removing properties is therefore an important aspect of deal-
ing with messages in Mule. This is where the message-properties transformer comes in
handy. Let’s consider its different operations while looking at a few examples.

 Removing transport-specific properties that you don’t want to carry over is a com-
mon message sanitizing operation. The following sample shows an HTTP inbound end-
point that removes some of the standard browser headers from incoming messages:

<http:inbound-endpoint address="http://localhost:8080/log">
 <message-properties-transformer>
 <delete-message-property key="Accept" />
 <delete-message-property key="Accept-Encoding" />
 <delete-message-property key="Accept-Charset" />
 <delete-message-property key="Accept-Language" />
 <delete-message-property key="Cache-Control" />
 <delete-message-property key="User-Agent" />
 </message-properties-transformer>
</http:inbound-endpoint>

As we said before, adding properties helps tag messages so they can be routed smartly.
The following defines a global transformer that sets a custom property used for track-
ing error messages to its default value, but only if it hasn’t been already set:

<message-properties-transformer name="AddDefaultErrorIfAbsent"
 overwrite="false">
 <add-message-property key="ErrorFlag" value="DefaultError" />
</message-properties-transformer>

120 CHAPTER 5 Transforming data with Mule
If you need to set several properties at once, you have two options. The first consists in
using several add-message-property elements, as shown here:

<message-properties-transformer
 name="AddStatisticsSpreadsheetResponseHeaders" >
 <add-message-property
 key="Content-Type" value="application/vnd.ms-excel" />
 <add-message-property
 key="Content-Disposition" value="attachment;
filename=stats.csv" />
</message-properties-transformer>

Alternatively, you can leverage a dedicated child element that accepts Spring’s map
entry elements. Here’s the declaration of a global transformer that Clood, Inc., uses to
add meta information about their customers to a Mule message:

<message-properties-transformer name="CustomerPropertiesSetter">
 <add-message-properties>
 <spring:entry key="CustomerId" value="${customer.id}" />
 <spring:entry key="AccountId" value="${account.id}" />
 </add-message-properties>
</message-properties-transformer>

Notice how they leveraged properties placeholders to avoid hard-coding the values
that are likely to change between environments. It’s also possible to rename an exist-
ing property. The following demonstrates a transformer that renames the transport
property that holds the incoming HTTP method used from http.method to
inbound.http.method:

<message-properties-transformer name="HttpMethodHeaderRenamer">
 <rename-message-property key="http.method" value="inbound.http.method" />
</message-properties-transformer>

Use property transformers to deal with transport- or routing-related mes-
sage metadata.

You’re now able to modify the properties of your messages, whether to satisfy an inter-
nal need in your Mule instance or for an external transport or remote system. Let’s
now discover a last core transformer that’s extremely resourceful.

5.3.4 Leveraging expression evaluators

In section 4.2.3, you learned about the support for expression evaluation that exists in
Mule. A wealth of expression evaluators are available, and each supports a different
expression syntax: turn to appendix A if you want to know more about this subject.
The expression transformer can leverage these evaluators to transform the payload of the
message it processes. This transformer can be configured to evaluate one or several
expressions. Depending on this configuration, the resulting message payload will be
an object (single expression) or an array of objects (multiple expressions).

 Internally, Clood, Inc., has to deal with a lot of Internet addresses, for monitor-
ing the activity of their clients. They use instances of java.net.InetAddress as the

BEST
PRACTICE

121Using core transformers
payload of administrative messages that run around in their Mule instances.
Unfortunately, one of their monitoring applications needs to receive only basic
information about an Internet address: its host IP, and whether it’s multicast. To
feed it with the right information, Clood uses an expression transformer in order to
extract the relevant bits:

<expression-transformer>
 <return-argument evaluator="bean" expression="hostAddress" />
 <return-argument evaluator="bean" expression="isMulticastAddress" />
</expression-transformer>

The output of this transformer is an array of objects; the first is a string representing
the host address and the second is a boolean specifying whether it’s multicast or not.
Note that we used the bean evaluator and that the expression is a Jaxen XPath bean
property name (similar to the standard JavaBean one, except for boolean fields).
Because we haven’t set the optional argument to true—that is, the optional boolean
argument named optional—if any of these two expressions would return null, the
whole transformation and message-processing chain would be aborted with an excep-
tion being thrown.

 The expression transformer is so powerful that it can most of the time replace a
custom transformer. Therefore, before writing any code, check first whether you can
achieve your goal with the expression transformer.

NOTE Automagic transformation Before we close this section on core transform-
ers, let’s look at the auto transformer. As its name suggests, this transformer
can apply a desired transformation automatically. How does it do that? It
selects the most appropriate transformer based on the return class that
you specify on its declaration:
<auto-transformer returnClass="com.clood.statistic.ActivityReport" />

The auto transformer can only select globally configured transformers
that are discoverable (more on this notion later). It works better with cus-
tom objects, as shown in the example, instead of generic ones such as
strings or byte arrays. For the latter, there are way too many choices avail-
able for the auto transformer to pick up the right one.

When should this transformer be recommended? Mainly when a sin-
gle endpoint receives a variety of different payloads and needs to trans-
form them to a particular custom object type.

We’re now done with our quick tour of a few core transformers. You’ve learned to deal
with bytes, compress them, alter message properties, and leverage the power of
expressions. Your bag of transformation tricks already allows you to perform all sorts
of message manipulations. This said, none of the transformers we’ve looked at per-
form data format transformation. Because XML is particularly well suited for data for-
mat transformations, we’ll now look at some of the transformers you can find in the
Mule XML module.

122 CHAPTER 5 Transforming data with Mule
5.4 Using XML transformers
The XML module provides several transformers. We’ll look at the two most significant:

■ XSL transformer—Transforms an XML payload into another format, thanks
to XSLT.

■ XML marshaling transformers—Marshals and unmarshals objects to and
from XML.

The other transformers of the XML module, which we don’t cover here, provide extra
features such as transforming from and to a DOM tree or generating pretty-printing
XML output.

 Before we look at the XSL transformer, a quick remark about the namespace prefix
used for the XML module configuration elements. You’ll notice that it’s xm:. Why not
xml: you might ask? Because xml: is a reserved prefix that always binds to http://
www.w3.org/XML/1998/namespace. Now that we’re sure you won’t be surprised by
this detail, let’s proceed.

5.4.1 Transforming format with XSL

XSL transformation, aka XSLT (http://www.w3.org/TR/xslt), is a powerful and versa-
tile means to transform an XML payload into another format. This other format is usu-
ally XML too (with a different DTD or schema), but it can also be HTML or even plain
text. So what does it take to use this transformer? Here’s the definition of the XSL
transformer that performs the DocBook-to-FO transformation in section 5.6:

<xm:xslt-transformer name="DocbookToFO"
 xsl-file="docbook-xsl/fo/docbook.xsl" />

So far, nothing exciting: this creates a global transformer named DocbookToFO and
loads the specified file from the classpath. If you know DocBook XSLs, you’re aware
that they’re extremely modularized and rely on a lot of import statements. This is
pretty common. An XSL template document often has external resources, such as
other XSL files or even external XML documents. How does the XSL transformer load
its main XSL and its external resources? The XSL transformer uses a file lookup fall-
back strategy that consists of looking first in the file system and then in the classpath,
and finally trying a regular URL lookup. With this in mind, you should be able to write
XSL templates that work even if your Mule instance doesn’t have access to the Internet.

TIP The XSL transformer is extremely versatile as far as source and return
types are concerned. This transformer goes to great lengths to accept a
wide variety of input types (bytes, string, W3C, and dom4j elements), so
you seldom need to perform any pretransformation prior to calling it.
This transformer also infers the best matching return type based on the
input source (or the returnClass attribute if it’s been set). For example,
if a W3C Element is used as a source, the transformer will build a W3C
Node as a result.

http://www.w3.org/XML/1998/namespace
http://www.w3.org/XML/1998/namespace
http://www.w3.org/TR/xslt

123Using XML transformers
XSL templates can receive parameters when they start processing an XML source. How
do we do this in Mule? Going back to our previous example, let’s pretend that we want
to change the default alignment from justified to centered. This is achieved by passing
the appropriate parameter to the DocBook XSL, as shown here:

<xm:xslt-transformer name="DocbookToFO"
 xsl-file="docbook-xsl/fo/docbook.xsl">
 <xm:context-property key="alignment" value="center" />
</xm:xslt-transformer>

Note how we used the repeatable xm:context-property element. It’s in fact a Spring
XML list entry, which means that you can also use the key-ref and value-ref attri-
butes if you want to refer to beans in your configuration.

 You might wonder if this is the way to inject dynamic values in the XSL transformer.
Not really; there’s a much better solution. Suppose the alignment parameter you need
to pass to the XSL is defined in a property of the current message named fo-
alignment. The best way to pass this value to the XSL is to leverage the expression
evaluation framework that we talked about in section 5.3.4. This is achieved this way:

<xm:xslt-transformer name="DocbookToFO"
 xsl-file="docbook-xsl/fo/docbook.xsl">
 <xm:context-property key="alignment" value="#[header:fo-alignment]" />
</xm:xslt-transformer>

Now we’re talking! Not only will the XSL transformation work on the current message
payload, but it can also work on all sorts of dynamic values that you’ll grab thanks to
the expression evaluators.

 If you’ve used XSLT before, you should know that it’s a pretty intense process that
pounds on CPU and memory. The XSL transformer supports performance optimiza-
tion parameters that allow you to fine-tune the maximum load and throughput of
your transformation operations. The following shows the original example configured
to have a maximum of five concurrent transformations happening at the same time:

<xm:xslt-transformer maxActiveTransformers="5" maxIdleTransformers="5"
 name="DocbookToFO" xsl-file="docbook-xsl/fo/docbook.xsl" />

Note that because this particular XSL is expensive to load in memory, we don’t want to
dereference any transformer once it’s been created. This is why we’ve set the number
of idle transformers to be the same as the maximum number of transformers. A lower
number would’ve implied the potential destruction and recreation of transformers.

NOTE Workers in the pool This transformer uses a pool of javax.xml.trans-
form.Transformer workers to manage the load. Without erring on the
side of premature optimization, always take a little time to consider the
expected concurrent load this transformer will have to deal with. If a mes-
sage arrives when this transformer has exhausted its pool, it’ll wait indefi-
nitely until a transformation is done and a worker is returned to the pool
(where it won’t have time to chill out, unfortunately). Therefore, if you
estimate that the amount of messages you’ll need to transform is likely to
exceed the maximum number of active transformers, or if you simply

124 CHAPTER 5 Transforming data with Mule
don’t want to reach that limit, you might want to locate this transformer
behind an asynchronous delivery mechanism. This way, you’ll refrain
from blocking threads in a chain of synchronous calls waiting for the
workers to pick up a transformation task.

You’ve just learned how to transform payload format with XSL, so let’s see another
transformer from the XML module that can deal with the payload type itself.

5.4.2 XML object marshalling

If you’ve done more than trivialities with Java serialization, you’ve realized that it’s
challenging at best... and challenged at worst. Alternative marshalling techniques
have been developed, including creating XML representations of objects. The XML
marshaller and unmarshaller from the XML module leverage ThoughtWorks’
XStream, for that matter (http://xstream.codehaus.org/).

 Thanks to XStream, these transformers don’t require a lot of configuration. For
example, you don’t need to provide an XML schema, as is often the case with other
XML data binders. Note also how this transformer can marshal any object, unlike the
byte array ones we’ve seen before, which rely on Java’s serialization mechanism. The
following declare an XML object marshaller:

<xm:object-to-xml-transformer />

Nothing spectacular, but a lot of capability behind the scene. As a variant of the previ-
ous example, the following declares a marshaller that serializes the full MuleMessage
instead of just the payload:

<xm:object-to-xml-transformer acceptUMOMessage="true" />

This transformer would be well suited for persisting detailed error messages in an
exception strategy, as it would marshal the whole MuleMessage in XML, a format an
expert user can analyze and from which you can easily extract parts for later reprocess-
ing. It can also be useful for scenarios where you want to send a MuleMessage over the
wire without resorting to standard Java serialization.

 Similarly, the declaration of the round-trip XML object unmarshaller this trivial:

<xm:xml-to-object-transformer />

NOTE At the time of this writing, the XML module configuration schema of
Mule 2.2 doesn’t allow you to take full advantage of the transformer class
behind the scene, which supports XStream’s concepts of custom aliases,
converters, and drivers. Until this is corrected, if you need one of these
features, you’ll have to declare these transformers as if they were custom
ones (see section 2.2.1) so you can access their full configuration proper-
ties. The following demonstrates an XML marshaller that aliases
org.mule.DefaultMuleMessage classes into MuleMessage:

<custom-transformer
 class="org.mule.module.xml.transformer.ObjectToXml">
 <spring:property name="acceptUMOMessage" value="true" />

http://xstream.codehaus.org/

125Using JMS transformers
 <spring:property name="aliases">
 <spring:map>
 <spring:entry key="MuleMessage"
 value="org.mule.DefaultMuleMessage" />
 </spring:map>
 </spring:property>
</custom-transformer>

When marshalling org.mule.DefaultMuleMessage, this transformer will
output an XML document whose root element will be named Mule-
Message.

As we’ve seen, the XML module contains transformers that can be useful in different
scenarios, even if you don’t use XML extensively2. Now that we’ve explored some core
and module transformers, let’s look at a few transport transformers.

5.5 Using JMS transformers
Most of the two dozen Mule transport libraries contain transformers. These trans-
formers usually transform the messages from a type that’s specific to the transport to
one that’s independent from it, and vice versa. They’re usually automatically applied
for you by the transport itself, whenever a message is received or sent. So why bother
mentioning them? If you remember the discussion from the beginning of section 5.1,
specifying transformers on endpoints disables their default transformers. Hence,
you’d better know that they exist and how to configure them.

 This section will focus on the transformers that come with the JMS transport, as this
messaging API is popular and often involved in integration projects. These transform-
ers are useful for the two main messaging actions, which are

■ Producing JMS messages—Transforming a message payload and its properties into
a javax.jms.Message ready to be sent

■ Consuming JMS messages—Extracting the body of an incoming javax.jms.
Message into a JMS-agnostic payload

Note that, because of the asymmetric way they handle JMS properties, these transform-
ers can’t be considered true round-trip transformers.

5.5.1 Producing JMS messages

The JMS transport uses a javax.jms.MessageProducer to send messages to a particu-
lar destination (queue or topic). JMS can only send messages that comply with its API.
Therefore, the transport needs to transform the current Mule message into a JMS mes-
sage. For this, it uses the object-to-JMS message transformer, which transforms the pay-
load to the specific JMS message whose body data type is best fitted.

 How does Mule select the JMS message type? You may remember that JMS 1.1
defines five types of messages, which all implement javax.jms.Message and differ

2 The Extended XML Module is a MuleForge project that offers extra XML to object marshallers. See http://
www.mulesource.org/display/EXTENDEDXML/Home for more information.

http://www.mulesource.org/display/EXTENDEDXML/Home
http://www.mulesource.org/display/EXTENDEDXML/Home

126 CHAPTER 5 Transforming data with Mule
only by the type of data they carry in their
body. Table 5.1 shows the strategy used by
Mule to select a JMS message based on the
source type.

 The jms:object-to-jmsmessage-

transformer also takes care of copying all
the current message properties into JMS
message properties, unless their name is a
reserved JMS header name. Note that the
Mule correlation ID message property is
copied into the JMS correlation ID header.
This propagation of correlation IDs across
systems is an essential messaging pattern.

 Configuring this transformer is trivial,
as shown in the following example:

<jms:object-to-jmsmessage-transformer name="ObjectToJmsMessage" />

This declares a global object-to-JMS message transformer named ObjectToJms-
Message. Nothing more is needed, as the transformer is smart enough to just do the
right thing with your messages.

 NOTE If you’re somewhat versed in the art of JMS, you should know that an
active JMS session is needed to actually create any type of JMS message.
Consequently, the object-to-JMS message transformer needs access to a
valid session to do its work. This is achieved by either retrieving the ses-
sion from the current transaction (if any) or by getting one, possibly
cached, from the JMS connector itself.

Let’s now look at the alter ego of this transformer, which is used when receiving
messages.

5.5.2 Consuming JMS messages

When the JMS transport reads (or to speak the
correct lingo, consumes) a message, its payload is
a javax.jms.Message object. The actual payload
of the JMS message resides in its body, whose
type is one of the five we’ve seen previously. It’s
when the body payload needs to be extracted
that the JMS message–to-object transformer
comes into play. This transformer extracts the
body payload from the JMS message source but
doesn’t alter the message properties (the JMS message adapter already took care of
extracting the notable JMS message headers and all the JMS message properties).

 How does this transformer decide what type of data it will return? This decision is
based on the rules shown in table 5.2.

Table 5.1 Return type decision table of the
object-to-JMS message transformer

Source type JMS message type

Input stream
Stream messageLista

Map Map message

String Text message

Serializable object Object message

Byte array Bytes message

JMS message Itself

a. Mule restricts the types of objects that can go in
this list based on the supported types defined in the
JMS specification for StreamMessages.

Table 5.2 Return type decision table of
the JMS message–to-object transformer

Source type Return type

Stream message List of objects

Map message Map

Text message String

Object message Serializable object

Bytes message Byte array

127Existing transformers in action
Why do we have a sixth type of JMS message? This is because JMS supports the notion
of a bodyless message, which is a message with no payload and only headers and proper-
ties. In that case, the payload itself is of no interest, and you should only focus on the
headers and properties that the JMS transport message adapter extracted for you.

 Like its alter ego, configuring this transformer is straightforward, as shown:

<jms:jmsmessage-to-object-transformer name="JmsMessageToObject" />

This declares a global JMS message–to-object transformer named JmsMessageTo-
Object. As a bonus, this transformer can do a little more for you. It can convert the
extracted string to a byte array (or the extracted byte array into a string) if you specify
the desired return class:

<jms:jmsmessage-to-object-transformer name="JmsMessageToString"
 returnClass="java.lang.String" />

This transformer will only return a String if it has extracted a byte array from the JMS
message. Otherwise, the return value will stay unchanged, as it was after extraction
from the JMS message.

 As you’ve observed, the transformers from the JMS transport are designed to allow
you to leverage the powerful messaging infrastructure that is JMS without having to
deal with the low-level details. Integrating JMS providers will now be bliss!

 We’re done with our exploration of Mule transformers. We’ve learned how and
when to use them and have discovered some of the most notable ones from the core,
module, and transport libraries. It’s now time to look at an example that puts several
of them into action.

5.6 Existing transformers in action
Clood, Inc., has many prestigious clients, including a famous publishing company.
When they turned to Clood for advice on how to implement their authoring platform
(presented in section 1.3), Clood naturally oriented them toward Mule. After all,
nothing prevents our clients from using the same tools we do. Figure 5.4 shows a con-
ceptual view of the configuration that we’ve built to support the publication applica-
tion scenario.

 Let’s detail the different transformers we use:

■ Object-to-byte-array transformer—The inbound HTTP endpoint creates a message
with a byte stream payload. Knowing that the XSLT transformer is perfectly able
to consume this kind of input, why do we transform the stream into a byte array
first? The reason lies in the way the XSLT transformer consumes the input
stream, which prevents it from being fully drained before the HTTP connection
(and the related input stream) gets closed. By using this transformer first, we
fully drain the input stream before the HTTP connection gets closed.

■ XSL transformer—This transformer performs the bulk of the work of this ser-
vice and transforms the incoming DocBook XML data into XSL-FO.3 This

3 The DocBook to XSL-FO transformation stylesheets are available from the Docbook Project: http://doc-
book.sourceforge.net.

http://docbook.sourceforge.net

128 CHAPTER 5 Transforming data with Mule
transformation is slow and resource-greedy, but will be throttled thanks to the
pool of workers embedded in the XSL transformer. The client is already dis-
connected when the XSL transformation happens, which fits well the overall
asynchronous design of the solution.

■ Object-to-string transformer—One of the requirements was to deliver the XSL-FO
document as a string to the targeted JMS queue and not as a byte array. This
is why we have this third transformer kicking in to finalize the transforma-
tion chain.

■ Message-properties transformer—We have to remove all the message properties
added by the HTTP transport on the Mule message, as their names aren’t com-
patible with the JMS specification. If we don’t remove them, they’ll be carried up
to the JMS outbound endpoint, where they’ll be transformed into JMS message
properties and warnings will be logged.

As you can see, we apply all the transformers on the inbound endpoint, while we
could’ve put some or all of them on the outbound endpoint. Why is that? If we
would’ve declared a transformer on the outbound JMS endpoint, this would’ve
removed the implicit object-to-JMS transformer that the transport uses. We would then
have had to explicitly configure this JMS transformer on the outbound endpoint. By
declaring the transformers on the inbound endpoint, we avoided this.

 Concretely, this amounts to a limited Mule configuration. If you look at the sample
provided at the companion site of this book, you’ll see three configuration files:

■ publication-jms-config.xml—This is the JMS-specific configuration of the applica-
tion. Following our advice to avoid monolithic configurations, we’ve grouped in
this file all the configuration artifacts that could change if we used another JMS
provider (for example, one for integration tests and another for production).

Inbound router Outbound
pass-through router

publicationService

publicationModel

HTTP connector

Publ icat ion configurat ion

Outbound endpoint
JMS destination

HTTP
localhost

8080

JMS
queue

Implici t
br idge component

Inbound endpoint
HTTP port

JMS connector

Object-to-byte-array
transformer

Object-to-string
transformer

XSL
transformer

Figure 5.4 Configuration overview of the Publication Application integration example

129Existing transformers in action
■ publication-config.xml—This is the main configuration file where the service and
the transformers are defined.

■ server-stub-config.xml—This configuration file isn’t really part of the integration
solution. It simulates the application that will consume the JMS queue and pro-
cess the XSL-FO document. For this example, it simply dumps the XSL-FO file in
the file system.

Listing 5.3 shows the content of publication-config.xml, less the mule root element.

<spring:beans>
 <spring:import resource="publication-jms-config.xml"/>
</spring:beans>

<object-to-byte-array-transformer name="ObjectToByteArray" />

<object-to-string-transformer name="ObjectToString" />

<message-properties-transformer
 name="MessagePropertiesSanitizer">
 <delete-message-property key="Content-Length" />
 <delete-message-property key="Content-Type" />
 <delete-message-property key="User-Agent" />
 <delete-message-property key="http.context.path" />
 <delete-message-property key="http.method" />
 <delete-message-property key="http.request" />
 <delete-message-property key="http.request.path" />
 <delete-message-property key="http.version" />
</message-properties-transformer>

<xm:xslt-transformer name="DocbookToFO"
 xsl-file="docbook-xsl/fo/docbook.xsl" />

<model name="publicationModel">
 <service name="publicationService">
 <inbound>
 <http:inbound-endpoint host="localhost" port="8080">
 <transformers>
 <transformer ref="ObjectToByteArray" />
 <transformer ref="DocbookToFO" />
 <transformer ref="ObjectToString" />
 <transformer ref="MessagePropertiesSanitizer" />
 </transformers>
 </http:inbound-endpoint>
 </inbound>
 <outbound>
 <pass-through-router>
 <jms:outbound-endpoint queue="publicationQueue"
 connector-ref="publicationJmsConnector" />
 </pass-through-router>
 </outbound>
 </service>
</model>

Listing 5.3 The configuration of the publication application

Imports JMS
configuration file

Declares publication
service as a bridge

References all
global transformers
by name

130 CHAPTER 5 Transforming data with Mule
If you start the publication application and HTTP post the provided DocBook sample
file,4 you’ll notice the following entries in the Mule console:

INFO [connector.http.0.receiver.2]
org.mule.transport.http.HttpMessageReceiver: Closing HTTP connection.
 Making portrait pages on USletter paper (8.5inx11in)

INFO [publicationJmsConnector.dispatcher.1]
org.mule.transport.jms.JmsMessageDispatcher:
 Connected: JmsMessageDispatcher{this=1611ed3,
 endpoint=jms://publicationQueue, disposed=false}

 These entries follow the expected chronology:

■ The message is received on the HTTP port and the connection is closed.
■ The DocBook generation occurs (it’ll generate a USletter document in this

case).
■ The result of the transformation is sent to the target JMS queue (named

publicationQueue).

Right after these entries, you’ll notice that the server stub consumes the message in
the queue and logs its activity:

INFO [connector.file.0.dispatcher.1]
org.mule.transport.file.FileMessageDispatcher:
 Connected: FileMessageDispatcher{this=19576c3,
 endpoint=file://out, disposed=false}

INFO [connector.file.0.dispatcher.1]
org.mule.transport.file.FileConnector:
 Writing file to: /workdir/out/9bfb8a1b-55f3-11dd-b83c-61d8eb47eb0c.fo

As expected, the XSL-FO content has been read from the JMS queue and stored as a
file (with a long uniquely generated name).

 This integration scenario can look trivial from a quick look: it might look like we
could’ve done the same with a few lines of code. Bear in mind that, with this short
configuration, we’ve benefited from a lot of supporting features from Mule, such as
XSL transformer pooling, JMS message generation, and transport connection (and
reconnection in case of trouble). This allowed us to deliver a turnkey solution to the
publishing company in a short time: a running prototype was ready in a matter of
hours and production soon followed.

 The existing Mule transformers are numerous and support a wide range of trans-
formations. We can only encourage you to explore Mule Core, its modules, and librar-
ies to discover all of them. But Mule isn’t limited to the existing transformers you can
find in its libraries. Mule supports the notion of custom transformers, a powerful
means to plug in your own transformation logic. We’ll now look at this ability and cre-
ate our own custom transformer.

4 For example, by running
wget --post-file='data/test.docbook' localhost:8080/publicationService

131Writing custom transformers
5.7 Writing custom transformers
When would you need to write a custom transformer? This can happen for a variety of
reasons:

■ You might have a transformation requirement that’s so specific that it’s impossi-
ble to realize with an existing transformer or a chain of them.

■ You want to use an existing transformation framework or a tool that has trans-
forming capacities and isn’t available as an existing transformer.

Clood, Inc., needs to generate a lot of custom emails to send to its clients: activity
reports, incident status reports, and last but not least, invoices. For this they decided
to use Mule, as it offers all the features they need: tapping different sources of data,
transforming them into nice human-readable emails, and sending these over the wire
to clients. Though XSLT could’ve been an option, they decided to leverage the
Apache Velocity Engine, an open source templating framework.

 We implemented two versions of this transformer:

■ The first version we created used Velocity to transform only the payload of the
message.

■ It turned out that this wasn’t enough: we came up with a second version, able to
transform the payload and to get values from the message properties, too.

Create payload transformers unless you absolutely need to have access to
the MuleMessage object.

Let’s start with reviewing what we did for the first version of the Velocity transformer.

NOTE In this section, we’ll only look at compiled Java transformer implementa-
tion. In section 14.1.2, we’ll look at the possibility of implementing trans-
formers with a scripting language.

5.7.1 Transforming payloads

The first version of our custom transformer uses the message payload as the Velocity
context and applies a template to it in order to generate a string. The idea was to
apply the transformation on a bean representing a client’s account details, resulting
in the textual content of the email for the said client.

TIP Transformers as good citizens Whenever you decide to create your own
transformer, ask yourself the following questions:

■ Should it be idempotent? In other words, how should it behave if the source
type is of the same type as the expected return type? It’s often beneficial
for a transformer to return the source object unchanged if it’s already of
the desired type. Similarly, a transformer that performs format transforma-
tion might decide to return the source unchanged if it’s already in the
desired format.

BEST
PRACTICE

132 CHAPTER 5 Transforming data with Mule
■ Should it have a round-trip alter ego? Being able to transform back and forth
from one form to another gives greater flexibility in the way the transformer
will be used. If a transformation can easily be reverted by an alter-ego trans-
former, this can allow it to transform back to the original form in case of
exception. This also applies to a format transformer, which can revert trans-
formed data into its original form.

Now, let’s look at the nitty-gritty. Even if all transformers implement org.mule.
api.transformer.Transformer, it’s recommended that you extend the abstract base
class that implements this interface. This will shield you from changes in the inter-
face, as the abstract base class will be updated so your custom code will still work.
Moreover, the abstract base class takes care of pesky details such as enforcing the
source and return types. The abstract base class to extend for transforming only pay-
loads is org.mule.transformer.AbstractTransformer. This is the one that the
VelocityPayloadTransformer extends, as shown in listing 5.4.

public final class VelocityPayloadTransformer extends AbstractTransformer {
 private VelocityEngine velocityEngine;

 private String templateName;

 private Template template;

 public VelocityPayloadTransformer() {
 registerSourceType(Object.class);
 setReturnClass(String.class);
 }

 public void setVelocityEngine(final VelocityEngine velocityEngine) {

 this.velocityEngine = velocityEngine;
 }

 public void setTemplateName(final String templateName) {
 this.templateName = templateName;
 }

 @Override
 public void initialise() throws InitialisationException {
 try {
 template = velocityEngine.getTemplate(templateName);
 } catch (final Exception e) {
 throw new InitialisationException(e, this);
 }
 }

 @Override
 protected Object doTransform(final Object payload,
 final String encoding)
 throws TransformerException {

 try {
 final StringWriter result = new StringWriter();

Listing 5.4 The Velocity payload transformer (imports and private members not shown)

Sets acceptable source
and return types

B

Receives Velocity
engine by injection

Receives template
name by injection

Initializes
Velocity

template

Performs transformation
on payload

133Writing custom transformers
 template.merge(new VelocityContext(
 Collections.singletonMap("payload", payload)),
 result);

 return result.toString();

 } catch (final Exception e) {
 throw new TransformerException(MessageFactory
 .createStaticMessage("Can not transform message with template: "
 + template), e);
 }
 }
}

There are several notable aspects of this code:

■ We leverage the Spring-based configuration mechanism to get both the Velocity
engine and the template name injected into the transformer.

■ Though we could’ve deferred to Spring to initialize the Velocity template and
inject it rather than the engine and the name, we let this happens in the initial-
ization method so we can throw a proper exception referring to the trans-
former itself (this makes life easier for debugging, instead of a generic Spring
context error).

■ The source type is Object (as defined in B). We don’t want to limit where this
transformer can be used, as Velocity can work on many types of objects. Most of
the time a collection or a Java bean will be processed by this transformer.

■ doTransform is the only method that must be implemented when extending
org.mule.transformer.AbstractTransformer.

■ We don’t do anything with the encoding parameter because we work with Uni-
code strings during the transformation.

■ We pass the message payload as a context entry named payload (not src or
data) simply for consistency reasons, as other transformers, such as the script
one (discussed in chapter 14) use payload too. Consistency is good.

■ As Velocity throws an Exception, we have to catch it too. Note how we create a
static message when this happens. We could’ve also created a message in a
resource bundle so it could be translated, though the value at this level would
be limited.

NOTE If you’re wondering about the initialise() method, bear with us for
now and just assume Mule will call it at the right time before the trans-
former gets used. The Mule internal API, including lifecycle events, will
be covered in chapter 13.

Now, how do we use this transformer? Since it relies on Spring for the creation and
injection of the Velocity engine, we need to use some Spring elements (see
section 2.2.1) to make the magic happen. And because it’s a custom transformer, we
need to configure it with the custom-transformer element (shocking!). Here’s the
declaration of a global Velocity payload transformer for our email generation use case:

134 CHAPTER 5 Transforming data with Mule
<spring:bean name="velocityEngine"
 class="org.springframework.ui.velocity.VelocityEngineFactoryBean">
 <spring:property name="resourceLoaderPath" value="classpath:templates" />
</spring:bean>

<custom-transformer name="emailTransformer"
 class="com.muleinaction.transformer.VelocityPayloadTransformer">
 <spring:property name="velocityEngine" ref="velocityEngine" />
 <spring:property name="templateName" value="email.vm" />
</custom-transformer>

We rely on an Spring factory for instantiating and configuring the Velocity engine
itself. Then we inject the Velocity engine into the transformer alongside the template
name. This approach allows us to minimize the code of the transformer (listing 5.4 is
only 48 lines, including the accessors), while benefiting from all the configuration
flexibility Spring can buy us.

 It’s beyond the scope of this book to discuss Velocity templates, but here’s what
could be the beginning of an email template:

Dear ${payload.client.title} ${payload.client.lastName},

This template will be used with our transformer on messages whose payload is an
“email context” bean that contains a Client bean, which exposes getTitle() and
getLastName() accessors.5

 As you’ve seen, it takes only a few lines of code to create a full-fledged trans-
former out of an existing transformation framework. Thanks to the usage of Spring,
it’s been possible to keep this code small and clear, while tapping some preexisting
transformation logic. This should give you enough guidelines to reuse your existing
transformation code inside Mule. But it should also give you enough guidance to
get started with a complete transformer from scratch, should you need one.

Transformers should be stateless and not assume anything about the
order in which they process messages.

Just like we said before, this transformer can only use data in the payload. But what if
we need to also use values extracted from the properties? If this is the case, we’d need
to extend a different abstract class, as shown in the next section.

5.7.2 Transforming messages

We happened to add a current file reference as a property to the message triggering
the email generation. Since we wanted clients to see this reference number in the gen-
erated emails (so they can refer to it when contacting Clood to complain about the
outrageous fees), we needed to access the message properties from the Velocity trans-
former. How is this possible?

 Whenever you need to read or modify message properties in a transformer, you
need to have access to the org.mule.api.MuleMessage object itself, and not only its

5 In the next chapter, you’ll see how we build the email context bean that’s passed to this transformer.

BEST
PRACTICE

135Writing custom transformers
payload as we’ve seen in the previous section. We’ll modify the Velocity transformer we
built in the previous section so it can read these properties. This second version will, of
course, still give access to the payload: it has two objects that we’ll pass in the Velocity
context to the template. Note that a template designed for this second transformer
won’t work properly with the first one, as message properties will be unresolvable.

 This time, the abstract base class to extend for transforming messages is
org.mule.transformer.AbstractMessageAwareTransformer. This is the class that
the VelocityMessageTransformer extends, as shown in listing 5.5.

public final class VelocityMessageTransformer extends
 AbstractMessageAwareTransformer {

 private VelocityEngine velocityEngine;

 private String templateName;

 private Template template;

 public VelocityMessageTransformer() {
 registerSourceType(Object.class);
 setReturnClass(String.class);
 }

 public void setVelocityEngine(
 final VelocityEngine velocityEngine) {

 this.velocityEngine = velocityEngine;
 }

 public void setTemplateName(final String templateName) {
 this.templateName = templateName;
 }

 @Override
 public void initialise() throws InitialisationException {
 try {
 template = velocityEngine.getTemplate(templateName);
 } catch (final Exception e) {
 throw new InitialisationException(e, this);
 }
 }

 @Override
 public Object transform(final MuleMessage message,
 final String outputEncoding)
 throws TransformerException {

 try {
 final StringWriter result = new StringWriter();

 final Map<String, Object> context = new HashMap<String, Object>();
 context.put("message", message);
 context.put("payload", message.getPayload());

 template.merge(new VelocityContext(context), result);

Listing 5.5 The Velocity message transformer (imports not shown)

Sets acceptable source
and return types

Receives Velocity
engine by injection

Receives
template name
by injection

Initializes Velocity
template

Performs
transformation
on message

136 CHAPTER 5 Transforming data with Mule
 return result.toString();

 } catch (final Exception e) {
 throw new TransformerException(MessageFactory
 .createStaticMessage("Can not transform message with template: "
 + template), e);
 }
 }
}

If you compare the code of this second version of the Velocity transformer and the first
one, you’ll notice that we now pass two objects to the Velocity context: message and
payload. Why do that when message should be enough, since you can get the payload
from it? Again this is a matter of consistency with the existing transformers. You’ll find
the notion of passing both the payload and the complete message in other transform-
ers. Moreover, this makes the second transformer backward-compatible with the first
one. You can use the second one as a drop-in replacement for the first one, as existing
Velocity templates will find the object they expect bound under the same name.

 Configuring the Velocity message transformer is done exactly as for the payload
transformer:

<spring:bean name="velocityEngine"
 class="org.springframework.ui.velocity.VelocityEngineFactoryBean">
 <spring:property name="resourceLoaderPath" value="classpath:templates" />
</spring:bean>

<custom-transformer name="emailTransformer"
 class="com.muleinaction.transformer.VelocityMessageTransformer">
 <spring:property name="velocityEngine" ref="velocityEngine" />
 <spring:property name="templateName" value="email.vm" />
</custom-transformer>

The only difference is that with this version, we can now access message properties.
Here’s a new version of the previous email template, which will add a file reference to
the header:

Our ref. ${message.getProperty('currentFileReference')}
Dear ${payload.client.title} ${payload.client.lastName},

Note how we access a particular message property using the getProperty method and
its name.

 At this point, you might wonder what it would take to modify the properties of a
message. Not much, really. Let’s say that we want our Velocity message transformer to
mark a message with a time stamp whenever it’s done with the transformation.
Listing 5.6 shows the single-line addition to make this happen.

@Override
public Object transform(final MuleMessage message,
 final String outputEncoding)
 throws TransformerException {

Listing 5.6 The transform method of the marking Velocity message transformer

137Writing custom transformers
 try {
 final StringWriter result = new StringWriter();

 final Map<String, Object> context = new HashMap<String, Object>();
 context.put("message", message);
 context.put("payload", message.getPayload());

 template.merge(new VelocityContext(context), result);

 message.setLongProperty(timeStampPropertyName,
 System.currentTimeMillis());

 return result.toString();

 } catch (final Exception e) {
 throw new TransformerException(MessageFactory
 .createStaticMessage("Can not transform message with template: "
 + template), e);
 }
}

Because the MuleMessage instance is available in the transform method, you’re basi-
cally free to alter its properties using the related methods (set, clear, remove). Note
how we didn’t hard-code the name of the property name we want to set with the time-
stamp value. This’ll be externally configured with Spring the same way the template
name is. Configuration eases reuse: it’ll make your custom transformers more valuable.

TIP Making your message transformer discoverable Unlike payload transform-
ers, which extend org.mule.transformer.AbstractTransformer, mes-
sage transformers aren’t discoverable by default. This means that if
Mule looks for a transformer that can transform a particular source
type to a particular return type, it won’t discover a transformer that
extends org.mule.transformer.AbstractMessageAwareTransformer. If
you want your transformer to be discovered, you must then implement
org.mule.api.transformer.DiscoverableTransformer. The transformer
discovery mechanism supports the notion of weighting, which allows
you to give precedence to a transformer above ones with similar source
and return types.

Mule will look for discoverable transformers when you use the auto
transformer that we mentioned earlier, but also when you use payload
accessor methods (discussed in section 13.3.1).

As we said, auto transformation is an interesting option if the trans-
former you’ve created works with very specific source and return types
(such as domain objects). Making a string-to-string transformer discover-
able won’t bring you much.

In this section, you’ve learned to implement custom transformers that can operate on
message payloads and properties. You’ve also discovered some best practices in term
of design and implementation.

Sets long
property to
current time

138 CHAPTER 5 Transforming data with Mule
 Should Mule’s extensive panoply of existing transformers miss a particular one,
you’re now ready to build it. There’s no transformation need that you won’t be able to
tackle with Mule in a clean, efficient, yet simple manner.

5.8 Summary
Message transformation is a crucial feature of ESBs because it allows you to bridge the
gap between different data types and formats. In this chapter, we’ve learned how
transformation occurs in Mule, what it’s good for, and how to leverage it in your inte-
gration projects.

 You’ve discovered some of the existing Mule transformers. Some of them came
from the core library, while others from specific modules or transports. Though they
have different purposes, they’re pretty similar in kind. This similarity makes them easy
to learn and use. It also allows you to compose them in transformation chains to per-
form even more advanced or specific transformation operations.

 Message transformation is yet another domain where Mule shines by its simplicity
and extensibility. The several lines of code and configuration required to roll out your
own custom transformers should’ve convinced you of this.

 By now, you’ve also noticed how service components can be involved in message
transformation. We’ll look at this last part of Mule’s core, the components, in the next
chapter.

Working
with components
If you’ve been around for a while in the happy field of software development,
you’ve surely been exposed to different flavors of component models. CORBA, EJB,
JavaBean, and now SCA have all helped familiarize us with the notion of the compo-
nent. We understand that components represent entities that can perform specific
operations, with well-defined interfaces and an accent on encapsulation.

 Unsurprisingly, Mule supports its own component model. More surprisingly, it’s
often difficult to decide when to use or create a component in Mule. This difficulty
stems from the extensive capacities of the routing, filtering, and transforming infra-
structure that surrounds the components. The previous chapters explored these

In this chapter
■ Understanding the role of components in Mule
■ Common components from Mule Core
■ Invoking SOAP and REST services
■ Executing your business logic
■ Advanced component configuration
139

140 CHAPTER 6 Working with components
capacities: you’ve discovered that you can achieve many complex integration scenar-
ios without the need for any particular component.

 So why bother about components?
 In this chapter, we’ll start by answering that question. Then we’ll look at existing

and custom components that perform message-level operations, remote logic invoca-
tion, and custom business logic execution. We’ll also look closely at Clood’s usage of
existing and custom components in their email generation, statistics, and file trans-
fer services.

 Components are at the core of Mule services: each service hosts a component. This
component is the destination for messages after they’ve been received by the inbound
endpoint, unless a filtering or forwarding router is used (see section 4.3.2). As illus-
trated in figure 6.1, a component can be the final destination of a message. This can
happen if no outbound router is configured or if the component instructs Mule to
stop further processing of the message.

NOTE Component invocations can also be wrapped by interceptors that allow
you to share common behavior in a transversal manner. This advanced
subject will be discussed in chapter 13.

Figure 6.1 also illustrates an important principle in the architecture of Mule. The
response of the method that’s been called on the component is both used as the
return value of the inbound router endpoint (if it’s synchronous) and sent to the out-
bound router for dispatching (if such an outbound router exists). This “one way in,
two ways out” behavior is the cause of a lot of confusion and is also underestimated in
its capacities. All the message exchange patterns supported by Mule, which are
described in the online user guide,1 are enabled by this behavior. The following sec-
tions will demonstrate how to leverage the component response in different scenarios.

WARNING Components with attitude A component can decide to return null or
even nothing at all (if the method that’s called on it is void): in this

1 See http://www.mulesource.org/display/MULE2USER/MEPs.

Inbound router

Component

Outbound router
receives()

runs logic
returns ()

(if synchronous)

Service

Figure 6.1 At the core
of Mule services,
components receive
messages, process
them, and return results.

http://www.mulesource.org/display/MULE2USER/MEPs
http://www.mulesource.org/display/MULE2USER/MEPs

141
case, the synchronous response will be null but no message will be
sent to the outbound router.

A component can also take control of the message process flow.
For example, it can cancel the routing that’s configured on the ser-
vice and perform a direct dispatch to another endpoint.

Don’t go overboard in the routing logic you might be tempted to
code in your component; instead you should prefer the more explicit
and more readable configuration-based approach or consider lever-
aging the component binding feature (see section 6.3.4).

As you’ve learned in the previous chapters, transformers and routers already provide
many message-processing capacities, such as splitting or enrichment. Where do com-
ponents fit into this scheme? There are no hard rules, but here are a few use cases and
guidelines to help you better understand:

■ Some message-related operations aren’t conceptually fitted anywhere else. For
example, a transformer wouldn’t be the best place for executing business logic
or logging messages.

■ Processing a message might require you to communicate with another service.
Components can act as one-stop communication devices and perform opera-
tions such as synchronous RPC calls in a more straightforward manner than
what you could do with, say, a chaining router and a bunch of transformers.

■ Unlike other Mule moving parts, components don’t mandate the implementa-
tion of a specific interface. This enables you to use any existing business logic
POJO directly as a Mule component.

■ Components can reify a preexisting business interface, defined, for example,
with a WSDL in a contract-first approach.

■ Components offer features that other Mule entities don’t. For example, you can
pool components only by means of configuration.

■ Exceptions thrown at component level don’t have the same semantics as excep-
tions thrown elsewhere. If your custom code executes business logic, throwing
an exception from a transformer or a router wouldn’t be interpreted and
reported the same way by Mule as if you were throwing it from your component.
The former would be handled by the connector’s exception strategy, while the
latter would be handled by the service exception strategy (see chapter 8 for
more on exception handling).

“To component or not?” That’s a question you should start to feel more confident
answering.

 If you’re still hesitant, don’t despair! The rest of the chapter will help you grok
components. We’ll start by looking at some existing components that ship with Mule:
they’re ready to be used and only need to be configured to start being useful. Then
we’ll detail the creation of custom components and all the possibilities Mule offers to
configure them.

142 CHAPTER 6 Working with components
NOTE In the figures in the coming sections, you’ll notice that transformers are
represented on the inbound endpoints, as this is where they’re config-
ured. You might be puzzled by the fact that the messages represented as
leaving the inbound router haven’t been transformed yet. If you remem-
ber the discussion from the beginning of chapter 5, you should recall
that the component will decide whether to take this transformer into
account. Discussions in section 6.3.1 will make you realize that the reality
is slightly more subtle than that. But, for now, considering that compo-
nents decide to apply transformers or not is a fairly good approximation.
This is why the transformation seems to happen inside the components
in these figures.

6.1 Massaging messages
The core library of Mule contains components that can massage your messages in dif-
ferent manners. Though they don’t execute any business logic–specific operations,
they perform specific tasks that you’ll find handy in a lot of different scenarios.

 What can these core components do to your messages? Here’s a list:

■ Bridge messages—Pass messages from inbound to outbound routers
■ Echo and log messages —Log messages and move them from inbound to out-

bound routers
■ Build messages —Create messages from fixed or dynamic values

Let’s review them in this order.

6.1.1 Building bridges

In the preceding chapters, you’ve seen many service examples that had no compo-
nent configured. What does this mean? If components are at the core of Mule ser-
vices, why do so many services not have any components? In fact, these examples rely
on an implicit component that Mule uses when none is specified for a service.

 This is the bridge component. As its name suggests, it bridges its inbound router to its
outbound router, but doesn’t perform any particular operation on the message. This
said, it does honor any transformer defined on the inbound endpoint, as illustrated in
figure 6.2. Often, you’ll build services with this component because you won’t have
any specific logic to execute. In that case, the routers and transformers that kick in
before or after the bridge will be enough to support the message-related operations
you need.

Inbound router Bridge
component Outbound router

Transformer
to

Figure 6.2 The bridge
component passes inbound
messages to the outbound
router, while honoring the
inbound transformer.

143Massaging messages
 The bridge component returns the input message transformed by the inbound
transformers, if any. In listing 6.1, messages sent to the VM inbound endpoint will be
transformed by the Suffixer transformer and will be routed to the VM outbound end-
point. If the process that has sent a message to the VM inbound endpoint is waiting for
a synchronous response, it’ll receive the transformed message.

<service name="implicit bridge">
 <vm:inbound-endpoint path="ImplicitBridge.In">
 <transformer ref="Suffixer" />
 </vm:inbound-endpoint>
 </inbound>

 <outbound>
 <pass-through-router>
 <vm:outbound-endpoint ref="generic channel" />
 </pass-through-router>
 </outbound>
</service>

The example of listing 6.1 isn’t stunningly demonstrative, with its empty line where a
component configuration element was expected. That said, relying on its implicit
presence is the canonical way to define a bridge service in Mule. You might’ve seen
configurations with a bridge component explicitly configured, as demonstrated in list-
ing 6.2. Though the explicit configuration is currently technically equivalent to the
implicit one, there’s no guarantee that it’ll stay like this in the future. It’s possible that
the implicit bridge might be refactored in a way that’s even more efficient than the
explicit one. Hence, you should prefer the implicit bridge approach.

<service name="ExplicitBridge">
 <inbound>
 <vm:inbound-endpoint path="ExplicitBridge.In">
 <transformer ref="Suffixer" />
 </vm:inbound-endpoint>
 </inbound>

 <bridge-component />

 <outbound>
 <pass-through-router>
 <vm:outbound-endpoint ref="GenericChannel" />
 </pass-through-router>
 </outbound>
</service>

Sometimes it’s useful to keep track of the messages that flow through a bridge service.
The next component is useful for this.

Listing 6.1 A service with an implicit bridge component

Listing 6.2 A service with an explicit bridge component

Bridge component implicitly
configured (no component defined)

Bridge component
explicitly configured

144 CHAPTER 6 Working with components
6.1.2 Echoing and logging data

The echo component, which you discovered in the Echo World example in chapter 2,
performs more than what its name indicates. Not only does it echo the incoming mes-
sage, but it also logs it. Figure 6.3 illustrates its behavior.

Like the bridge component, it returns the input message transformed by the inbound
transformers. This makes the echo component usable with synchronous inbound end-
points and outbound routers. Listing 6.3 shows a configuration that is (at message
level) functionally equivalent to the one shown for the bridge component. The only
difference is that the inbound messages will be logged before being transformed and
returned out of the echo component.

<service name="Echo">
 <inbound>
 <vm:inbound-endpoint path="Echo.In">
 <transformer ref="Suffixer" />
 </vm:inbound-endpoint>
 </inbound>

 <echo-component />

 <outbound>
 <pass-through-router>
 <vm:outbound-endpoint ref="GenericChannel" />
 </pass-through-router>
 </outbound>
</service>

The echo component logs a string rendition of the message at INFO level and for the
org.mule.component.simple package. This log message is sent to the same logging
framework as the one used by Mule itself. For a standalone server deployment, such as
the one we use for this book’s examples, the log files are located in MULE_HOME/
logs. You can find more information about logging in chapter 8.

Listing 6.3 A service that logs and echoes messages back

Inbound router Echo
component

Outbound router

Log file

Transformer
to

Figure 6.3 The echo component logs
untransformed inbound messages and send them
to the outbound router.

Echo component

145Massaging messages
 Even if functionally equivalent, the echo component is much less efficient than the
bridge and should be used only if logging is necessary. A common approach is to start
a configuration with echo components in services of particular interest and to replace
these components with bridges when things work as expected.

NOTE Log or echo? You may have noticed the existence of another component
in Mule’s core schema named log-component and wondered how it dif-
fers from the echo component. At the time of this writing, there’s no
functional difference between the echo component and the log compo-
nent. Prior to Mule 2.1.2, the log component used to return null, which
limited its usage as a terminal component (messages weren’t flowing out
of it to the outbound router). This isn’t the case anymore. The only dif-
ference that remains between these two components is the interfaces
they implement: the log component implements org.mule.api.compo-
nent.simple.LogService, whereas the echo component implements
both org.mule.api.component.simple.LogService and org.mule.api.
component.simple.EchoService.

Therefore, use the configuration element that best reveals your inten-
tion: use <log-component /> to indicate that the main intention of this
service is to log messages and <echo-component /> if it’s mainly about
returning what it receives.

So far, the components we’ve looked at were only moving messages around. We’ll now
look at components that can build new messages.

6.1.3 Building messages

In chapter 4, you learned about leveraging routers to aggregate responses from differ-
ent services. This aggregation mechanism is principally used to build a new message
out of asynchronous responses. The reflection message builder component, which we’ll now
discover, can perform a similar aggregation, but out of synchronous service invoca-
tions. Figure 6.4 depicts this mechanism.

 When a message is sent to the inbound endpoint of a service that uses a reflection
message builder component, the following happens:

■ The inbound transformers are applied, if any.
■ The transformed message is synchronously sent to each endpoint of the out-

bound router.
■ The payload of each response from each of the outbound endpoints is passed

to the best matching method of the original untransformed inbound message.

Inbound router

Reflect ion
message
bui lder

component

Outbound router

Transformer
to

1

2

1 2

Figure 6.4 The reflection
message builder component
injects the results of remote
calls in the inbound message.

146 CHAPTER 6 Working with components
If your head is spinning, this is normal! Let’s look at actual
usage of this component. For this, we’ll return to our exam-
ple of generating custom emails for Clood, Inc.’s clients. If
you recall the discussion in section 5.7, we’re using the
Velocity transformer to transform an “email context” bean
into email textual content. The UML diagram of this con-
text class1 is shown in figure 6.5.

 When we create an instance of com.clood.statistic.
statistic.ActivityEmailContext, we only set the client
ID on it. Then we send it to a Mule service that uses the reflection message builder
component to “enrich” it by calling other services to fetch the client bean and the
activity report bean that match the client ID. This enricher service, named Email-
ContextBuilder, is illustrated in listing 6.4.

<service name="EmailContextBuilder">
 <inbound>
 <vm:inbound-endpoint path="EmailContextBuilder.In" />
 </inbound>

 <component>
 <singleton-object
 class="org.mule.component.builder.ReflectionMessageBuilder" />
 </component>

 <outbound>
 <multicasting-router>
 <vm:outbound-endpoint ref="ClientLookupChannel" />
 <vm:outbound-endpoint ref="ActivityReportLookupChannel" />
 </multicasting-router>
 </outbound>
</service>

When the ActivityEmailContext object hits this service, it’s broadcast to the out-
bound endpoints of the multicasting router C. The response of the ClientLookup-
Channel, which unsurprisingly returns Client objects, will be passed to the relevant
setter of ActivityEmailContext by the reflection message builder component B.
The same will be done with the response of the ActivityReportLookupChannel.
Finally, the response of the service will be the original ActivityEmailContext
instance whose properties have been set by values coming from the outbound end-
points. At this point, this object will be ready to be transformed into a meaningful
email and sent to the relevant client.

 TIP Under construction A good practice in software development consists of
setting your IDE new method templates to contain a statement that
throws an unsupported operation. This creates an unmissable reminder

1 We spared you the usual accessors in this diagram.

Listing 6.4 The reflection message builder can be used to enrich a message.

Figure 6.5 The context
class used to generate
client emails with the
Velocity transformer

Instantiates reflection
message builder component

B

Endpoint list to get
values for inbound bean

C

147Invoking remote logic
that something isn’t quite done yet. Mule offers a component that sup-
ports a similar semantic: the null component. Although its name might sug-
gest that it’s a neutral component, this isn’t the case. The null
component will throw an exception if it receives a message. Use it in your
development phase as a placeholder for “something needs to be done
here,” as shown in listing 6.5.

<service name="Null">
 <inbound>
 <vm:inbound-endpoint path="Null.In">
 <transformer ref="Suffixer" />
 </vm:inbound-endpoint>
 </inbound>

 <null-component />

 <outbound>
 <pass-through-router>
 <vm:outbound-endpoint ref="GenericChannel" />
 </pass-through-router>
 </outbound>
</service>

So far, the components we’ve looked at were mainly performing generic operations
with messages. You’ve learned how to efficiently bridge the inbound and outbound
routers of a service. You’ve also learned how to echo, log, and build messages using
components available in Mule. We’ll now start to look at components that can bring
some logic into your Mule!

6.2 Invoking remote logic
You learned in the previous chapters that Mule can support many protocols and can
connect to remote systems. We’re pretty sure that the idea of calling some existing
remote services has started to sprout in your mind. At this point, you might be unsure
about what sort of endpoints, routers, and transformers you’d need to use to perform
such calls.

 If that’s the case, we have good news for you: several Mule transports provide com-
ponents that you can use to invoke remote logic in a synchronous RPC way. These
components act as proxies for remote services, making them the one-stop solution
you were looking for.

 We’ll consider two of these components that encompass two different approaches
to remote service invocations, which the industry, in its infinite and collective wisdom,
has christened SOAP and REST.1 We won’t detail these approaches, as it would be
beyond the scope of this book, but we’re sure you’re familiar enough with them to
understand what follows. Let’s look at the components Mule offers to access services
exposed with these two mainstream approaches.

Listing 6.5 The null component is equivalent to an unsupported operation.

1 Taken in another context, “SOAP and REST” sounds like the mantra of a personal coach.

Throws an
exception when called

Not-yet-used
outbound router

148 CHAPTER 6 Working with components
6.2.1 Feeling good with SOAP

After a little less than a decade in existence, web services have become the ubiquitous
way to expose logic for remote access in corporate IT. It’s more than probable that the
environment in which you’re developing offers SOAP-based web services. Mule offers a
component that allows a seamless access to such remote services: it’s called the SOAP
wrapper component. This component exists in the different SOAP-supporting transports
available for Mule.1 Figure 6.6 illustrates its behavior. The notable feature of this com-
ponent is that it performs its remote call within the normal message-processing flow
of the message in the local Mule service, without mobilizing its routing infrastructure.
Consequently, the routing infrastructure can be leveraged as with any nonremoting
component, allowing the response of the SOAP service to be dispatched as needed.

 Listing 6.6 demonstrates the usage of the Apache AXIS wrapper component. In this
example, the remote service that’s called is the free service from geocoder.us. Sending
a string that contains an address to the GeoCoderSearch service inbound endpoint will
make the wrapper component send a SOAP request. The wrapper component will use
the configured address, method, and SOAP style and encoding for the request. It will
then return the response synchronously. The response will be an array of Geocoder-
AddressResult, which is a value object that contains geolocation and address data.

<service name="GeoCoderSearch">
 <inbound>
 <vm:inbound-endpoint path="GeoCoderSearch.In" />
 </inbound>

 <axis:wrapper-component

1 At the time of this writing, these transports are Apache AXIS and Apache CXF.

Listing 6.6 Calling geocoder.us SOAP with the AXIS service wrapper component

Inbound router
SOAP

w r a p p e r
component

Outbound router

Transformer
to

Web
service

SOAP
transport

Figure 6.6 The SOAP wrapper
component can invoke a
remote web service within a
Mule service.

SOAP wrapper component
from AXIS transport

149Invoking remote logic
 address="http://rpc.geocoder.us/service/soap/?method=geocode"
 style="RPC" use="ENCODED" />
</service>

The simplicity of this configuration hides the heavy lifting performed behind the
scenes by the SOAP transport to build the correct invocation message and map the
response back to objects. This implies the need to create local proxy classes to map
the result of the remote invocation, a practice that creates a sometimes undesirable
tight coupling to the remote service.

 Among other reasons, REST has been designed to alleviate this kind of rigidity.1

We’ll now look at the component that allows REST service access.

6.2.2 Taking some REST

Almost as old as SOAP, REST (short for representational state transfer) has started to
gain traction in the past couple of years and has quickly become an important actor
in Web 2.0 and WOA (Web-Oriented Architecture). The Mule HTTP transport con-
tains a component that’s specifically designed for accessing REST resources. This
component, appropriately named REST service component, performs remote HTTP
invocations within the normal message process flow that occurs in a Mule service, as
illustrated by figure 6.7.2

 REST services are based on standard HTTP features, such as methods and headers.
Moreover, they’re free to return data in the format they want (XML and JSON being
two popular options). Therefore, you’ll have to deal with these concerns when using
the REST service component. Listing 6.7 illustrates this fact. This Mule service acts as a

1 We acknowledge that it’s hard to transition from a section about SOAP to one about REST without hurting
any feelings or cutting some corners.

2 Mule also support exposing and consuming RESTful services, thanks to several transports (Abdera, Jersey,
Restlet) available for download from the RESTpack home page: http://www.mulesource.org/display/
MULE/Mule+RESTpack.

Inbound router
REST

service
component

Outbound router

Transformer
to

REST
service

HTTP
transport

Figure 6.7 The REST service
component can access a
remote resource within a
Mule service.

http://www.mulesource.org/display/MULE/Mule+RESTpack
http://www.mulesource.org/display/MULE/Mule+RESTpack

150 CHAPTER 6 Working with components
proxy for the Google REST search API. Sending a search term as a string to the
inbound endpoint of this service will trigger a call to the Google search API. Thanks to
a chain of transformers, the JSON response of Google search will be transformed into
a java.util.List of web page titles from the hit list.

<service name="GoogleSearch">
 <inbound>
 <vm:inbound-endpoint path="GoogleSearch.In">
 <transformers>
 <message-properties-transformer>
 <add-message-property
 key="http.custom.headers"
 value-ref="RefererHeader" />
 </message-properties-transformer>
 </transformers>
 <response-transformers>
 <byte-array-to-string-transformer />
 <custom-transformer
 class="com.muleinaction.transformer.JsonToXmlTransformer" />
 <xm:jxpath-extractor-transformer
 expression="itleNoFormatting/text()"
 singleResult="false" />
 </response-transformers>
 </vm:inbound-endpoint>
 </inbound>

 <http:rest-service-component
 httpMethod="GET"
 serviceUrl=
 "http://ajax.googleapis.com/ajax/services/search/web?v=1.0">
 <http:payloadParameterName value="q"/>
 </http:rest-service-component>
</service>

NOTE Note how in B we leverage a special property named http.custom.
headers that’s handled by the HTTP transport as a map of key/value
pairs it’ll use as extra HTTP headers. Note also that we refer to Referer-
Header, which is a Spring-configured map not shown in the listing.

If you compare this configuration to the one from the SOAP example, you might find
it overly complex. Bear in mind that the SOAP transport performs a lot behind the
scenes and requires supporting stub classes. In contrast, when using the REST service
component, all the nitty-gritty is visible and under your control. Moreover, your config-
uration mileage will vary depending on the requirements of the remote REST service
you call, its response data format, and the data format your service will need to return.

 You can now easily invoke remote business logic from your Mule services. But
what if you want this logic to run within Mule itself? This is what we’re now going to
delve into.

Listing 6.7 Calling the Google search API with the REST service component

Adds referrer header as
requested by Google AJAX API

B

Transforms REST response
into list of strings

REST component configured
for Google Search API

Passes message payload
as q query parameter

151Executing business logic
6.3 Executing business logic
Suppose you have existing Java classes that can execute some business logic you want
to use internally in your Mule instance. You might also want to expose this logic using
one of Mule’s many transports. What would it take to use these classes within Mule?

 The answer is: not much. Mule doesn’t mandate any change to your existing code;
using it is just a matter of configuration. This is great news because the industry
doesn’t need yet another framework. Once-bitten-twice-shy developers have become
leery of platforms that force them to depend on proprietary APIs. Aware of that fact,
Mule goes to great lengths to allow you to use any existing class as a custom service
component. Mule also allows you to use (or reuse) beans that are defined in Spring
application contexts as custom components.

Strive for creating Mule-unaware logic components.

This said, there are times when you’ll be interested in getting coupled with Mule’s API
(detailed in chapter 13). One is when your component needs to be aware of the Mule
context. By default, a component processes the payload of a Mule message. This pay-
load is pure data and is independent of Mule. But sometimes, you’ll need to access the
current event context. At this point, you’ll make your component implement
org.mule.api.lifecycle.Callable. This interface defines only one method:
onCall(eventContext). From the evenContext object, it’s possible to do all sorts of
things, such as retrieve the message payload, apply inbound transformers, stop further
processing of the message (no dispatching to the existing outbound routers), or look
up other moving parts via the Mule registry. Another reason to get coupled with the
Mule API is to receive by dependency injection references to configured moving parts
such as connectors, transformers, or endpoint builders. We’ll look at such a case in
the configuration example in section 6.3.3.

NOTE Instantiation policy By now, you’re certainly wondering how Mule takes
care of instantiating your objects before calling the right method on
them. Unless you decide to pool these objects, which is discussed in sec-
tion 6.3.3, there are three main possibilities:

■ Let Mule create a unique instance of the object and use it to service all
the requests. This is demonstrated later, in listing 6.8 at B.

■ Let Mule create one new object instance per request it’s servicing. This is
done by using the prototype-object element or the short syntax where
a class name is defined on the component element itself.

■ Let Spring take care of object instantiation. In this case, Spring’s concept
of bean scope will apply.

Granting that creating custom components mostly amounts to creating standard busi-
ness logic classes, there are technical aspects to consider when it comes to configur-
ing these custom components. Since Mule doesn’t force you to fit your code into a

BEST
PRACTICE

152 CHAPTER 6 Working with components
proprietary mold, all the burden resides in the configuration itself. This raises the fol-
lowing questions that we’ll answer in upcoming sections:

■ How does Mule locate the method to call—aka the entry point—on your custom
components?

■ What are the possible ways to configure these components?
■ Why and how should you pool custom components?
■ How do you compose service components?

What are the benefits of an internal canonical data model?

WARNING Component versus component If you’ve looked at Mule’s API, you
might’ve stumbled upon the org.mule.api.component.Component
interface. Is this an interface you need to implement if you create a
custom component? Not really. This interface is mostly for Mule’s
usage only. It’s implemented internally by Mule classes that wrap
your custom components. We suspect that this interface was made
public simply because Java doesn’t have a “friend” visibility specifier.

Let’s start with the important notion of entry point resolution.

6.3.1 Resolving the entry point

As we’ve just discovered, Mule components can be objects of any type. This flexibility
raises the following question: how does Mule manage to determine what method to
call on the component when a message reaches it? In Mule, the method that’s called
when a message is received is poetically called an entry point. To find the entry point to
use, Mule uses a strategy that’s defined by a set of entry point resolvers.

 Figure 6.8 depicts this strategy. Entry point resolver sets can be defined at model
level or at component level, with the latter overriding the former. If none is defined,

Message reaches
component

Has EPRS
configured?

Throw entry point
not found exception

1

 Yes

Model has
default EPRS?

No

Iterate defaul t
Mule EPRS

EPRS: entry point resolver set

I terate
component EPRS

Iterate
model EPRS

 Yes

No

Suitable
entry points?

Throw too many
entry points exception

Call
entry point

0

> 1

Figure 6.8 The component
entry point resolution strategy
used by Mule

153Executing business logic
Mule uses a default set. As you can see, if the strategy doesn’t find exactly one suitable
entry point, an exception will be thrown.

 Mule offers a variety of entry point resolvers that you can leverage to ensure that
messages reach the intended method on your components. Table 6.1 gives you a list of
the available resolvers.

 Each resolver supports different attributes and child elements, depending on its
own configuration needs. The following attributes are shared across several resolvers:

■ acceptVoidMethods—A component method is usually expected to return
something. This attribute tells the resolvers to accept void methods.

■ enableDiscovery—Asks a resolver to look for the best possible match (based on
the message payload type), if a method name hasn’t been explicitly provided.

■ transformFirst—Automatically applies the transformers defined on the
inbound endpoint to the message before trying to resolve the entry point.

Table 6.1 The available entry point resolvers can target component methods in a wide range of
scenarios.

Entry point resolver name Behavior

array-entry-point-resolver Selects methods that accept an array as a single argument.
The inbound message payload must be an array.

callable-entry-point-
resolver

Selects the onCall (eventContext) method if the com-
ponent implements org.mule.api.lifecycle.
Callable. This resolver is always in the default set that
Mule defines.

method-entry-point-
resolver

Selects the method that’s configured in the resolver itself.

no-arguments-entry-point-
resolver

Selects a method that takes no argument. Consequently, the
message isn’t passed to the component.

property-entry-point-
resolver

Selects the method whose name is found in a property of the
inbound message. The message property name to look for is
defined on the resolver itself.

reflection-entry-point-
resolver

Selects the method by using reflection to find the best match
for the inbound message. If the message payload is an array,
its members will be used as method arguments (if you really
want to receive an array as an argument, you must use the
array-entry-point-resolver discussed previously). If
the message has a null payload, the resolver will look for a
method without argument.

custom-entry-point-
resolver

In rare cases, the previous resolvers can’t satisfy your needs,
and you can roll out your own implementation. For this, try sub-
classing org.mule.model.resolvers.Abstract-
EntryPointResolver rather than implementing
org.mule.api.model.EntryPointResolver from
scratch.

154 CHAPTER 6 Working with components
WARNING On call but no transformation duty If you implement onCall(event-
Context) and use the callable-entry-point-resolver, bear in
mind that the inbound transformers won’t be automatically called for you. In
this case, you must call one of the transformMessage methods of the
eventContent argument if you want to work with the transformed
message in your callable custom component.

Similarly, if you disable transformation first at entry point resolver
level, you’ll have to acquire the event context (discussed in
section 13.3) to perform the transformation programmatically.

If you remember the discussion from the beginning of chapter 5, you should remem-
ber that we said that it’s up to the component to decide whether to apply it. Now you under-
stand that the reality is slightly more complex: it’s up to the entry point resolver or the
component to transform the inbound message with the configured transformers, if
need be.

 Here are the child elements that are commonly available to resolvers:

■ exclude-object-methods—This unique empty element instructs the resolver
to ignore the standard Java object methods, such as toString() or notify().
It’s the default behavior of all resolvers, but bear in mind that this default
behavior is turned off if you use the following child element.

■ exclude-entry-point—This repeatable element defines a single method name
that the resolver must ignore. Caution: as soon as you use one exclude-entry-
point element, you disable the intrinsic exclusion of the Java object methods. If
there’s a risk that messages may be dispatched to these undesired methods, use
the exclude-object-methods element.

■ include-entry-point—This repeatable element is used to strictly specify
method names that the resolver must consider. If you specify several names, the
resolver will use the first method with a matching name. This allows you to
define a model-wide resolver that’s applicable to several components.

At this point, you might feel overwhelmed by the versatility of the entry point resolu-
tion mechanism. The best hint we can give you at this point is not to overengineer your
configuration with armies of finely tuned entry point resolvers. Rely first on the default
set that Mule uses and add specific resolvers only if it’s not able to satisfy your needs.

NOTE At this writing, the default set of entry point resolvers contains the
following:

■ A property-entry-point-resolver
■ A callable-entry-point-resolver
■ A reflection-entry-point-resolver configured to accept setter meth-

ods (they’re normally excluded)
■ A reflection-entry-point-resolver configured to accept setter meth-

ods and with transformation first disabled

155Executing business logic
It looks like a byzantine set of resolvers, but there’s a reason for this. The
default entry point resolver set is equivalent to the legacy-entry-point-
resolver-set, which does all these contortions in order to be compati-
ble with the behavior of Mule 1.

Let’s look at a simple example. Listing 6.8 shows a bare-bones random integer genera-
tor service (we’ll detail the component configuration side of things in the next sec-
tion). The response to any message sent to its inbound router will be the value
returned by a call on the nextInt() method of the random object. We use a no-
arguments-entry-point resolver configured to precisely pick up the nextInt() method.

<service name="RandomIntegerGenerator">
 <inbound>
 <vm:inbound-endpoint path="RIG.In" />
 </inbound>

 <component>
 <no-arguments-entry-point-resolver>
 <include-entry-point method="nextInt"/>
 </no-arguments-entry-point-resolver>

 <singleton-object class="java.util.Random" />
 </component>
</service>

Using a transformer in conjunction with an existing entry point resolver might spare
you some custom code and save your day. By pretransforming an incoming payload
into a type that fits the argument of the desired method, you can finely guide the
entry point resolver to hit the right target.

 Let’s go back once again to the client email generation that we used for Clood,
Inc. In section 6.1.3, we detailed the EmailContextBuilder service that calls other ser-
vices in order to enrich a particular payload. You might recall that this service sends
the incoming payload to the different outbound services it’s configured with. This cre-
ates a mismatch between what’s sent to these services (an instance of com.clood.
statistic.statistic.ActivityEmailContext) and what these services actually
expect (a long representing the client ID). Listing 6.9 shows how we use a transformer
to make the payload acceptable to the Client DAO object.

<service name="ClientLookupService">
 <inbound>
 <vm:inbound-endpoint ref="ClientLookupChannel">
 <expression-transformer>
 <return-argument evaluator="bean" expression="id" />
 </expression-transformer>
 </vm:inbound-endpoint>
 </inbound>

Listing 6.8 A random integer generator service

Listing 6.9 A transformer can guide the resolution of the desired component method.

Targets nextInt()
method of random object

Instantiates standard Java
random number

B

Extracts value from
current payload

156 CHAPTER 6 Working with components
 <component>
 <reflection-entry-point-resolver />
 <singleton-object class="com.clood.dao.ClientDao" />
 </component>
</service>

We use a bean expression-transformer (discussed in section 5.3.4) to extract the
only value we’re interested in—com.clood.statistic.statistic.ActivityEmail-

Context, the client ID—and use this value as the new payload before relying on the
reflection-entry-point resolver. Thanks to this pretransformation, the resolver can suc-
cessfully locate and invoke findById(long) on the com.clood.dao.ClientDao com-
ponent object.

Adapt Mule to your components, not the other way around.

You’ve learned how to “direct” messages to the desired entry point on a service com-
ponent object. We’ll now look at the different available options for configuring com-
ponent objects.

6.3.2 Configuring the component

There are two main ways to configure a custom component:

■ Using Mule objects—This approach is the simplest, though it offers the capacity
to inject all sorts of dependencies, including properties and Mule moving parts.
Its main drawback is that the component declaration is local to the service,
hence not reusable.

■ Using Spring beans—This is convenient if you have existing Spring application
context files that define business logic beans. You can then use these beans as
service components. Another advantage is the lifecycle methods Spring can call
on your beans when the host application starts up and before it terminates.

To illustrate these two different approaches, we’ll configure a simple random integer
generator using the stock JDK random class. We’ll set its seed to a predetermined con-
figured value (don’t try this in your own online casino game).

 WARNING Property resolution challenges There are cases when you’ll have to use
Spring instead of Mule for configuring a component. Mule uses
property resolvers, which sometimes get confused by the mismatch
between the provided and the expected values. For example, if you
try to set a byte array to a java.lang.Object property of a compo-
nent, you’ll end up with a string representation of this array (the infa-
mous “[B..” string) instead of having the value correctly set. This
doesn’t happen if you use Spring to configure this component.

Listing 6.10 shows this service with its component configured using a Mule object.
Note how the seed value is configured using a property placeholder. Note also that,
like Spring, Mule supports the notion of singleton and prototype objects. Because

Targets method that can
accept extracted value

BEST
PRACTICE

157Executing business logic
java.util.Random is thread-safe, we only need a unique instance of this object to
serve all the requests coming to the service. This is why we use the singleton-object
configuration element.

<service name="SeededRandomIntegerGenerator">
 <inbound>
 <vm:inbound-endpoint path="SRIG.In" />
 </inbound>
 <component>
 <no-arguments-entry-point-resolver>
 <include-entry-point method="nextInt"/>
 </no-arguments-entry-point-resolver>

 <singleton-object class="java.util.Random">
 <property key="seed" value="${seed}" />
 </singleton-object>
 </component>
</service>

There are cases where using a single component instance to serve all the service
requests isn’t desirable—for example, if the component depends on thread-unsafe
libraries. In that case, if the cost of creating a new component instance isn’t too high,
using a prototype object can be an option. For this, the only change necessary consists
in using the prototype-object configuration element instead of singleton-object.
We’ll come back to this subject in the next section.

TIP Blissful statelessness Stateful objects can’t be safely shared across threads,
unless synchronization or concurrent primitives are used. Unless you’re
confident in your Java concurrency skills and have a real need for that,
strive to keep your components stateless.

Despite reducing local concurrency-related complexity, another
advantage of stateless components is that they can be easily distributed
across different Mule instances. Stateful components often imply cluster-
ing in highly available deployment topologies (this is further discussed in
chapter 7).

Now let’s look at the Spring version of this random integer generator service. As list-
ing 6.11 shows, the main difference is that the service component refers to an existing
Spring bean instead of configuring it locally. The bean definition can be in the same
configuration file, in an imported one, or in a parent application context, which
allows reusing existing Spring beans from a Mule configuration.

<spring:bean id="Random" class="java.util.Random">
 <spring:constructor-arg value="${seed}" />
</spring:bean>

<service name="SpringSeededRandomIntegerGenerator">

Listing 6.10 A fixed-seed random integer generator service

Listing 6.11 A Spring-configured fixed-seed random integer generator service

Targets nextInt()
method of random object

Instantiates and calls
setSeed() to configure
random object

Instantiates and
configures random
number generator

158 CHAPTER 6 Working with components
 <inbound>
 <vm:inbound-endpoint path="SSRIG.In" />
 </inbound>
 <component>
 <no-arguments-entry-point-resolver>
 <include-entry-point method="nextInt"/>
 </no-arguments-entry-point-resolver>

 <spring-object bean="Random" />
 </component>
</service>

Depending on your current usage of Spring and the necessity to share the component
objects across services and configurations, you’ll use either the Mule way or the Spring
way to configure your custom service component objects.

 Let’s now look at advanced configuration options that can allow you to control the
workload of your components.

6.3.3 Handling workload with a pool

Mule allows you to optionally pool your service component objects by configuring
what’s called a pooling profile. Pooling ensures that each component instance will han-
dle only one request at a time. It’s important to understand that this pooling profile, if
used, influences the number of requests that can be served simultaneously by the ser-
vice. The actual number of concurrent requests in a service is constrained by the
smallest of these two pools: the component pool and the thread pool (refer to
chapter 16 for more on this subject).

 When would using a pooled component make sense? Here are a few possible use
cases:

■ The component is expensive to create—It’s therefore important that the total num-
ber of component object instances remain under control.

■ The component is thread-unsafe—It’s then essential to ensure that only one thread
at a time will ever enter a particular instance of the component.

NOTE Pool exhaustion By default, if no component object instance is available
to serve an incoming request, Mule will disregard the maximum value
you’ve set on the polling profile and create an extra component instance
to take care of the request. You can change this and configure the pool-
ing profile to wait (for a fixed period of time or, unwisely, forever) until a
component instance becomes available again. You can also define that
new requests must be rejected if the pool is exhausted. For example, the
following pooling profile sets a hard limit of 10 component objects and
rejects incoming requests when the pool is exhausted:

<pooling-profile maxActive="10" exhaustedAction="WHEN_EXHAUSTED_FAIL" />

To illustrate pooled components, we’ll look at a service Clood uses to compute the
MD5 hashcode of files they receive from their clients. The service performs this com-
putation on demand: it receives a message whose payload is the file name for which the

References Spring-
configured random objectB

159Executing business logic
hash must be calculated, performs the calculation, and returns the computed value.
This is an important feature in validating that we’ve received the expected file and that
we can proceed with it (like pushing it to the client’s server farm in the cloud).

 Because this computation is expensive for large files, we’ll use pooled components.
Listing 6.12 demonstrates the configuration for this service. The pooling profile ele-
ment is explicit: one instance of the com.clood.component.Md5FileHasher compo-
nent object will be created initially in the pool and a maximum of five active objects
will exist at any point of time. We don’t expect this service to receive heavy traffic, but
should this happen, we allow a maximum of 15 seconds of waiting time in the event
that the component pool becomes exhausted.

<service name="Md5FileHasher">
 <inbound>
 <vm:inbound-endpoint path="Md5FileHasher.In" />
 </inbound>

 <pooled-component>
 <prototype-object
 class="com.clood.component.Md5FileHasher">
 <property key="fileConnector"
 value-ref="NonDeletingFileConnector" />
 <property key="sourceFolder"
 value="${java.io.tmpdir}" />
 </prototype-object>

 <pooling-profile
 initialisationPolicy="INITIALISE_ONE"
 maxActive="5"
 exhaustedAction="WHEN_EXHAUSTED_WAIT"
 maxWait="15000" />

 </pooled-component>
</service>

NOTE Note how in listing 6.12 we inject a reference to a Mule file connector
instance. We use the file connector to read from a particular directory:
you may wonder why we do that when it’s a trivial task to read a file using
plain Java code. In fact, using the Mule connector provides us with all the
statistics, exception handling, and transformation features of Mule. In
case you’re wondering, here’s the declaration of NonDeletingFile-
Connector:

<file:connector name="NonDeletingFileConnector"
autoDelete="false" />

Similarly, you can inject global transformers and even global endpoints
into your component. Of course, doing so couples your component with
the Mule API (see chapter 13 for more on this subject).

You can leverage the pooling component configuration with Spring beans, too. For
this, simply use a spring-object reference element B, as you saw in 6.11, and you’ll

Listing 6.12 Controlling the resource usage of a service with a pooled component.

Declares component
as pooled

Defines pooling profile

160 CHAPTER 6 Working with components
be done. Bear in mind that you’ll have to define the scope of the bean to prototype,
so Mule will be able to populate the component pool with different object instances.

 Before we close this section on pooling, here’s a piece of advice: don’t go over-
board with pooling. Use it judiciously. Most of the time, nonpooled component
objects will do the trick for you. Using pooling indifferently often amounts to prema-
ture optimization.

 The last feature we’re about to discover will allow your components to reach out
and touch other services.

6.3.4 Reaching out with composition

Service composition is a powerful way to create new services out of existing ones. Mule
offers a mechanism for performing such composition at component level called com-
ponent binding. As figure 6.9 suggests, Mule can inject a dynamic proxy for a deter-
mined interface into your custom components. Calls to this proxy are then routed to a
specified endpoint using the standard Mule message infrastructure. This means that
the remote service is unaware that it participates in a composition: for this service, this
is business as usual. It doesn’t need to know anything about the interface to which it’s
been bound in the caller component. The remote service only needs to be able to
accept an incoming message and return a synchronous response that satisfies the
arguments of the method called on the interface and its return type, respectively.

 You might wonder why this approach would be better than getting ahold of the
Mule service inbound endpoint and dispatching a message to it from the client com-
ponent. This would work, but would make your client component aware of Mule’s
message dispatching API, hence coupling your component code to the framework
itself. A better approach consists in creating an interface that represents the contract
you’ll have with the remote service and let Mule bind this interface to the remote ser-
vice inbound endpoint. This binding is done by the reflective injection of a dynamic
proxy that implements the interface inside the client component.

 Clood, Inc., leverages this binding mechanism to invoke the MD5 file hasher ser-
vice that we detailed in the previous section. In fact, this is a feature we intensively use

Inbound router Component Outbound router

Mule service

Inbound endpoint

Dynamic proxy

Interface binding

Figure 6.9 A component can
compose other services
through dynamic proxies of
bound interfaces.

161Executing business logic
for all of our service composition needs. Let’s look at how this binding happens.
Here’s the definition of the interface for the MD5 file hasher:

public interface Md5FileHasherService {
 String hash(String fileName);
}

And here’s the setter in the client component that allows Mule to inject a dynamic
proxy via reflection:

public void setMd5hasher(final Md5FileHasherService md5hasher) {
 this.md5hasher = md5hasher;
}

In this case, after instantiation, our component will hold in md5hasher a reference to a
dynamic proxy that implements Md5FileHasherService. Whenever our component
calls the hash method of md5hasher, Mule will transparently call an outbound end-
point and return the result of this remote invocation as the result of the call to the
hash method.

 Listing 6.13 shows how all this is configured. The binding element takes care of
associating a particular method of the interface with an outbound endpoint. There’s
no need to define which setter must be called on com.clood.component.Md5File-
HasherClient: Mule selects the most appropriate one based on its method signature.

<service name="Md5FileHasherClient">
 <inbound>
 <vm:inbound-endpoint path="MSC.In" />
 </inbound>

 <component>
 <singleton-object
 class="com.clood.component.Md5FileHasherClient" />

 <binding
 interface="com.clood.component.Md5FileHasherService"
 method="hash">

 <vm:outbound-endpoint
 path="Md5FileHasher.In"
 synchronous="true" />
 </binding>

 </component>
</service>

Note that in our case, because the interface contains only one method, the method
argument could’ve been omitted on the binding element B. Note also that the called
outbound endpoint C must be synchronous to ensure that the response of the other
Mule service will be received. It’s also possible to inject several different binding inter-
faces into the same component, provided Mule can identify in it a unique matching
setter method for each of these interfaces.

Listing 6.13 A custom component can bind another Mule service to an interface.

Declares custom
component

Defines bound
interface and
method

B

Defines endpoint
associated with
this methodC

162 CHAPTER 6 Working with components
WARNING Null indigestion When designing your remote service interface, try
to use wrapper objects instead of their corresponding primitives (for
example java.lang.Integer instead of int). This is because if the
call to the proxied remote endpoint fails, a Mule message with a null
payload will be returned. Primitives have digestion problems with
nulls: a NullPointerException will be thrown in the dynamic proxy
when the result of the invocation will be downcasted. Using a wrap-
per object allows the client service to receive a null reference and to
deal with it.

This simple mechanism delivers the power of service composition to your custom
component. It also raises the level of abstraction involved in interservice communica-
tions. When building complex integration configurations, you’ll certainly come to
appreciate this feature.

Favor using Mule’s infrastructure (via service composition or raw trans-
port usage—see section 13.1.3) to connect to remote endpoints instead
of coding it yourself.

We’ll close this section by discussing how a canonical data model can also help with
intercomponent communications needs.

6.3.5 Internal canonical data model

The following is a powerful approach to using business components within Mule:

■ Using Mule-independent business classes as service components
■ Configuring them with Mule or Spring mechanisms
■ Exposing the services’ methods over various endpoints
■ Transforming data from transport specific forms to a canonical one that’s com-

mon to all service components

This approach is illustrated in figure 6.10.
 The transformations to and from the canonical form are usually done with custom

transformers (such as the community-supported Smooks transformer) or with a com-
bination of XSL-T and XML marshalling techniques. Building such an internal canoni-
cal data model simplifies many aspects of your configuration, including the
unification of the entry point resolution mechanism or the handling of exceptional
situations (caught exceptions will all have a payload of the same type).

 It’s up to you to decide whether building such a canonical data model makes sense
for your project. If you only deploy a few services, the answer is most certainly no.

 This section gave you an overview of the possibilities for running business logic in
custom components. You’ve seen that the capacities of Mule in this domain go far
beyond a simple object factory, as the platform offers component pooling and service
composition.

BEST
PRACTICE

163Summary
6.4 Summary
Components are first-class citizens of a Mule configuration. They can be discreet (but
efficient) like the ubiquitous bridge component. They can also encompass custom
business logic under the form of standard Java objects.

 You’ve discovered that Mule offers a wealth of standard components that allow you
to perform simple message operations but also to invoke remote logic using standard
web service protocols. You’ve also learned about the numerous options Mule provides
when it comes to running your own business logic in custom components.

 At this point, we’ve covered the configuration mechanisms of Mule and its main
moving parts. By now, you should be able to create nontrivial integration projects, as
you’ve learned to tap the extensive capacities of Mule’s transports, routers, transform-
ers, and components. In the coming chapters, we’ll look at more advanced topics such
as security and transaction management. We’ll also look at deployment and monitor-
ing strategies to ensure that Mule plays a prime role in your IT landscape in the best
possible conditions.

Service

methodA()

methodB()

POJO
componentTransformer

to

Transformer
to

Service

methodC()

methodD()

POJO
component Transformer

to

Transformer
to

Endpoint

Endpoint

Endpoints

Endpoint

Endpoint

Mule instance

Transport-specific data Canonical data model

Figure 6.10 Canonical data transformations at play with POJO business components

Part 2

Running Mule

In part 1, you learned about the fundamentals of Mule. You discovered its phi-
losophy, configuration principles, and major moving parts. You’ve also run exam-
ples that exercised the main building blocks of Mule services: transports, routers,
transformers, and components. Part 2 will take you further and will guide you
through the next steps toward running Mule in a production environment.

 As an ESB and an integration platform, Mule supports several very different
deployment strategies. In chapter 7, we’ll review these strategies. We’ll also
explore the vast subject of deployment topologies and review different
approaches for managing your deployments.

 Problems happen. As tough as it is, Mule can stumble. This usually translates
into exceptions being thrown. Chapter 8 will guide you in putting into place a
sound error management strategy. You’ll also learn how to recover from connec-
tion flakiness and what Mule offers in terms of logging.

 All enterprise applications are subject to security concerns, and Mule doesn’t
elude these constraints. Chapter 9 will show you how to restrict access to certain
resources with authentication and authorization mechanisms. You’ll also learn
how to encrypt and decrypt data.

 Mule is often deployed in environments where data integrity is critical. This
is when using the abilities of transaction-aware transports, such as JMS or JDBC,
usually comes into play. You’ll discover Mule’s transaction management mecha-
nism in chapter 10.

 To wrap up the discussion about running Mule in production, we’ll focus on
monitoring in chapter 11. There, you’ll see different approaches for keeping an
eye on your Mule instances and ensuring they’re healthy and behaving correctly.

Deploying Mule
If you reached this chapter following the natural order of the book—you’ve
learned how to configure Mule and have seen a few samples running—then at this
point, you might be wondering how to move from a “works on my machine” situa-
tion to running Mule in production.

 Or you may also have directly jumped to this chapter because your main con-
cern is figuring out if and how Mule will fit into your IT landscape. You may have
concerns about what you’ll end up handing off to your production team: they may
have operational or skills constraints that you must absolutely comply to. You might
also be wondering about the different deployment topologies Mule can support.

 Whatever path led you to this chapter, you’ll find answers about the crucial
topic of deploying Mule software and configuration files. We’ll explore this matter
by looking at three different aspects of deployment:

In this chapter
■ Discovering the deployment strategies supported

by Mule
■ The why and what of a few deployment topologies
■ Managing the deployment of ESB instances
■ Mule Galaxy
167

168 CHAPTER 7 Deploying Mule
■ Deployment strategies—where we’ll consider the different runtime environments
supported by Mule

■ Deployment topologies—which will introduce the notions of instance-level and
network-level topologies and how they relate to each other in Mule

■ Deployment management—that will be focused on the challenges associated with
managing your deployments and your different options for doing so

In all the upcoming sections, you’ll come to realize that Mule is incredibly flexible
and can adapt to your needs. In this, Mule differs from many of its competitors, which
often mandate a unique way of doing each of these deployment-related activities. This
diversity of choice can be overwhelming at first, but you’ll soon realize that your needs
and constraints will guide you in picking what’s best for your project. At this point
you’ll be glad that Mule is such a versatile platform.

 So, without further ado, let’s get started exploring Mule’s deployment strategies.

7.1 Deployment strategies
If you’ve already dealt with other ESBs, you probably had to use an installer of some
sort in order to deploy the ESB application. After that, the ESB was ready to be config-
ured, either via a GUI or directly by creating configuration files.

 Mule differs from this shrink-wrapped approach because of its dual nature. Mule is
described as “a lightweight messaging framework and highly distributable object bro-
ker,” which means that it supports more deployment strategies and flexibility than a
traditional ESB does. As an object broker, Mule can be installed as a standalone server,
pretty much like any application server. As a messaging framework, Mule is also avail-
able as a set of libraries1 that you can use in any kind of Java application.

 This flexibility leaves you with a choice to make as far as the runtime environment
of your Mule project is concerned. Like most choices, you’ll have to base your deci-
sion on your needs and your constraints. For example, you might need to connect to
local-only EJBs in a particular server. Or the standard production environment in use
in your company might constrain you to a particular web container.

TIP No strings attached Deciding on one deployment strategy doesn’t lock
you into it. With a few variations in some transports, such as the HTTP
transport that can give way to the servlet transport in a web container,
there’s no absolute hindrance that would prevent you from migrating
from one deployment strategy to another one.

In the following sections, we’ll detail the five different deployment strategies that are
possible with Mule and present their pros and cons. You’ll discover that Mule is a con-
tortionist capable of extremes such as running as a standalone server or being embed-
ded in a Swing application. This knowledge will allow you to make an informed
decision when you decide on the deployment strategy you’ll follow.

1 More specifically: a set of Maven artifacts.

169Deployment strategies
NOTE At the time of this writing, none of the strategies that we’re about to dis-
cuss support hot deployment. A restart of Mule is in order any time you
change its configuration.

7.1.1 Standalone server

The simplest (yet still powerful) way to run Mule is to
install it as a standalone server. This is achieved by down-
loading the complete distribution and following the
detailed installation instructions that are available on the
MuleSource web site: http://mulesource.org/display/
MULE2INTRO/Installing+Mule. When deployed that way,
Mule relies on the Java Service Wrapper from Tanuki
Software to control its execution. Figure 7.1 shows a con-
ceptual representation of this deployment model.

 The wrapper is a comprehensive configuration and
control framework for Java applications. By leveraging it,
Mule can be deployed as a daemon on Unix-family oper-
ating systems or a service on Microsoft Windows. The
wrapper is a production-grade running environment: it
can tell the difference between a clean shutdown or a
crash of the Java application it controls. In case the appli-
cation has died in an unexpected manner, the wrapper
will restart it automatically.

 Use the following syntax to control the wrapper:

mulev [console|start|stop|restart|status|dump] [-configv <my-config.xml>]

If no particular action is specified, console is assumed: the instance will be bound
to the terminal where it was launched. If no configuration filename is specified,
Mule will look for a configuration file named mule-config.xml in the classpath and
in its working directory. The startup script supports several other optional parame-
ters, including -debug (to activate the JVM’s remote debugging; see section 12.2.2)
and -profile (to enable YourKit profiling; see section 16.2.1).

TIP Going through the wrapper Often you’ll need to pass parameters to your
Mule configuration by using Java system properties (for example, to pro-
vide values for property placeholders in your configuration file). Because
of the nature of the wrapper, any system properties you try to set with the
classic -Dkey=value construct will be applied on the wrapper itself.
Hence they won’t be set on the Mule instance that’s wrapped. The solu-
tion is to use the -M command-line argument, which passes everything
after itself directly to the Mule application. For example, the following
code will set the key=value system property on Mule’s instance:
mule -config my-config.xml -M-Dkey=value

W r a p p e r

JVM

OS

Mule instance

Your
configurat ion

Mule JARs Other JARs

JDK

Figure 7.1 Conceptual
deployment model of Mule
standalone server

http://mulesource.org/display/MULE2INTRO/Installing+Mule

170 CHAPTER 7 Deploying Mule
Figure 7.2 presents the structure created after
installing Mule’s complete distribution. The
top-level structure presents no particular sur-
prise: for example, as expected, bin is where
to go to find the control scripts for different
operating systems. We’ve expanded the lib
subdirectory so you can see the structure
where the different types of libraries that Mule
depends on are stored. There’s one notable
directory in there: user. This is where you can
drop any extra library you want Mule to be
able to use. It’s also the destination for
patches, as its content is loaded before what’s
in the mule directory.2

 In a production environment, there’s a
slight drawback to dropping your own librar-
ies in the user directory. In doing so, you
make it harder for your operations team to
switch between Mule versions, as they’ll have to tweak the server to deploy your librar-
ies. If you run several differently configured Mule instances in the same server, the
problem might even become more acute: different instances might have different, if
not conflicting, libraries.

 A clean solution for project deployment manage-
ment is demonstrated by the examples that ship with
the Mule distribution: you can create your own direc-
tory structure anywhere you want. You can then start
Mule with a short script that calls the main script in
Mule’s standalone server, which is located via the
MULE_HOME environment property. This is what we’ve
used for our publication application of chapter 5,
whose directory structure is shown in figure 7.3. Note
how we’ve stored our required libraries and configu-
ration files in this directory structure. Thanks to this
approach, you can now change from one Mule ver-
sion to another by simply changing the value of
MULE_HOME.

With Mule standalone, deploy complete project structures and reserve
the /lib/user directory for patch installation and shared libraries (data-
base drivers).

2 Mule needs to be restarted to pick up any JAR that you drop in this directory.

Figure 7.2 Directory structure of Mule
standalone server

Figure 7.3 Directory structure of
an application that uses the Mule
standalone server

BEST
PRACTICE

171Deployment strategies
Table 7.1 recaps the pros and cons of the standalone server deployment option.
 Should any of the cons be a show stopper for you, don’t despair! Mule has other

deployment options in its bag of tricks. Let’s now look at a variant of the standalone
server that brings governance to your Mule.

7.1.2 NetBoot server

If handling Mule versions and deploying configuration files is too much hassle for
your operations team, then NetBoot might be the right deployment strategy for your
company.

 The Mule NetBoot distribution is a slimmed-down version of the complete Mule
distribution. It’s designed to pull all the files it needs at startup from a specific reposi-
tory, named Galaxy (discussed in section 7.3.2). As illustrated in figure 7.4, this
includes Mule’s libraries plus your own libraries, and of course, your configuration
files. Like the standalone server, NetBoot leverages the wrapper too: all we’ve said in
the previous section applies here as well.

 Depending on how you organize your data in Galaxy, starting a NetBoot instance
can be as simple as running this command from the NetBoot bin directory:

mule -M-Dgalaxy.app.workspaces=MyApplication

Table 7.1 Pros and cons of the standalone server deployment option

Pros Cons

Install a standard Mule distribution and
you’re ready to go.

Can be an unfamiliar new piece of software for
operations.

Proven and solid standalone thanks to the
wrapper.

Dependency management can be tedious for
large projects.

Very well-suited for ESB-style deployment. Not suited for “Mule as a messaging frame-
work” approach.

Direct support for patch installation.

Net boot

JVM

OS

Mule instance

Your
configurat ion

Mule JARs Other JARs

JDK

Galaxy

Your
configurat ion

Mule JARs

Other JARs

Figure 7.4 Conceptual deployment model
of Mule NetBoot standalone server

172 CHAPTER 7 Deploying Mule
As you can see, NetBoot parameters are passed as Galaxy-prefixed system proper-
ties through the wrapper (see the Tip in the previous section). There are a wealth
of parameters that you can use, including galaxy.host and galaxy.port to control
the connection to a remote Galaxy repository, and galaxy.username and
galaxy.password for authentication purposes.

NOTE Cashing in on the cache NetBoot creates a local cache where it stores all
the files pulled from Galaxy. At startup, NetBoot checks if more recent
versions of these files exist in Galaxy and refresh them if need be. If Gal-
axy isn’t reachable, NetBoot will rely on its local cache only. The cache
directory structure represents the different workspaces NetBoot has
already downloaded. For example, the cache for the previous sample will
be created in the netboot/lib/cache/MyApplication directory.

As is the case for JARs in Mule’s lib directory structure, all JARs any-
where in the cache directory hierarchy will be added to the classpath.

Don’t hesitate to manually clean the content of the cache if you want
to restart from scratch with NetBoot.

We’ll come back to NetBoot and Galaxy when we discuss deployment management in
section 7.3.2. At this point, let’s just say that this deployment strategy allows you to
manage multiple versions of Mule, along with your own JARs and configuration files,
in a centralized manner.

 Pros and cons of the NetBoot deployment option are listed in table 7.2.

Governance is an important factor to consider if you intend to deploy numerous Mule
instances: with NetBoot you now have a tool that can help you to grow gracefully in
SOA. Now let’s look at how you could use Mule in a standard Java application.

7.1.3 Embedded in a Java application

If you’ve built applications that communicate with the outside world, you probably
ended up building layers of abstractions from the low-level protocol to your domain
model objects. This task was more or less easy depending on the availability of librar-
ies and tools for the particular protocol. If at one point you needed to compose or
orchestrate calls to different remote services, things started to get more complex. At

Table 7.2 Pros and cons of the NetBoot deployment option

Pros Cons

Leverages the Galaxy SOA governance
platform.

Can be an unfamiliar new piece of software for
operations.

Proven and solid standalone thanks to the
wrapper.

Need to deploy Galaxy in a production-grade
manner.

Very well suited for ESB-style deployment. Command lines can become hairy in nontrivial
scenarios.

173Deployment strategies
this point, using Mule as the “communicating framework”
of your application could save you a lot of hassle.

 Embedding Mule in an application is a convenient way
to benefit from all the transports, routers, and transform-
ers we discussed in part 1 of the book. Besides, your appli-
cation will benefit from the level of abstraction Mule
provides on top of all the different protocols it supports.

 As shown in figure 7.5, Mule can be embedded in a
standard Java application. This makes sense if the applica-
tion isn’t destined to be run as a background service3 but,
for example, as an interactive front end.

 In the embedded mode, it’s up to you to add to the
classpath of your application all the libraries that will be
needed by Mule and the underlying transports you’ll
need. Since Mule is built with Maven, you can benefit
from its clean and controlled dependency management
system by using Maven for your own project.4 See
section 12.1 for a complete discussion of this subject.

 Bootstrapping Mule from your own code is easy, as illustrated in the following code
snippet, which loads a Spring XML configuration named my-config.xml:

DefaultMuleContextFactory muleContextFactory = new
 DefaultMuleContextFactory();
 SpringXmlConfigurationBuilder configBuilder = new
 SpringXmlConfigurationBuilder("my-config.xml");
 MuleContext muleContext =

muleContextFactory.createMuleContext(configBuilder);
 muleContext.start();

It’s important to keep the reference to the MuleContext object for the lifetime of
your application, because you’ll need it in order to perform a clean shutdown of
Mule, as illustrated here:

muleContext.dispose();

The MuleContext also allows you to instantiate a client to interact with the Mule
instance from your application. The following code shows how to create the client out
of a particular context:

MuleClient muleClient = new MuleClient(muleContext);

Note that the Mule client supports other construction parameters that we’ll discuss in
chapter 13.

3 The standalone server deployment we talked about in the previous section is the way to go for running Mule
as a service.

4 Ant can also pull dependencies from Maven repositories thanks to a specific task. We still strongly encourage
you to use Maven, if you don’t already.

Your Java application

JVM

OS

Mule context

Your
configurat ion

Mule JARs Other JARs

JDK

Figure 7.5 Conceptual
deployment model of Mule
embedded in a standard Java
application

174 CHAPTER 7 Deploying Mule
TIP Mule über Spring? The example in this section shows how Mule leads the
dance relative to Spring: Mule takes the responsibility to load and boot-
strap the bean factory where your beans will be managed. But what if you
have an existing Spring application with its own context (or hierarchy)
and you want Mule to be running within this environment and have
access to its beans? In this case, you’ll have to pass your existing Spring
context to the Mule configuration builder so it can use Spring as its par-
ent. This will allow Mule to use beans managed in a parent context as its
service components:

ConfigurationBuilder builder = new
 SpringXmlConfigurationBuilder("my-config.xml");

builder.setParentContext(parentContext);
builder.configure(muleContext);

In the Tip, note how we used a configuration builder specific to Spring XML configu-
rations. In chapter 2, we mentioned the possibility of using other builders, such as the
scripting ones. Here’s how you’d create a builder for a Groovy script–based configura-
tion file:

ScriptConfigurationBuilder configBuilder = new
 ScriptConfigurationBuilder("groovy","my-config.groovy");

Table 7.3 summarizes the pros and cons of embedding Mule in a standard Java
application.

You now know how to make your standalone Java applications leverage Mule to com-
municate and integrate with other applications. Let’s now look at what you can do for
your web applications.

7.1.4 Embedded in a web application

For the same reasons we evoked at the beginning of the previous section, you might
be interested in embedding Mule in your web application. Mule provides all you need
to hook it to your favorite servlet container. Why would this be desirable when it’s pos-
sible to use the capable Jetty transport from a standalone Mule server? The main rea-
son is familiarity. It’s more than likely that your support team is knowledgeable about
a particular Java web container. Deploying Mule in such a well-known application

Table 7.3 Pros and cons of embedding Mule in a standard Java application

Pros Cons

Flexibility to deploy just what’s needed Have to deploy what’s needed

Well suited for “Mule as an integration frame-
work” approach

Have to manage Mule’s lifecycle (start/stop) on
your own

Perfect for a J2SE application, such as a Swing
or Spring rich client GUI

175Deployment strategies
environment context gives you the immediate support of
operations for installing, managing, and monitoring your
instance.

 When Mule is embedded in a web application, as
shown in figure 7.6, you need to make sure the necessary
libraries are packaged in your WAR file. As we said in the
previous section, if you use Maven, this packaging will be
automatically done, including the transitive dependen-
cies of the different Mule transports or modules you
could use.

 The Mule instance embedded in your web application
is bootstrapped by using a specific ServletContext-
Listener. This conveniently ties Mule’s lifecycle with
your web application’s lifecycle (which itself is bound to
the web container’s lifecycle). The following demon-
strates the entries you’d need to add to your application’s
web.xml to bootstrap Mule:

<context-param>
 <param-name>org.mule.config</param-name>
 <param-value>my-config.xml</param-value>
</context-param>
<listener>
 <listener-class>org.mule.config.builders.MuleXmlBuilderContextListener
 </listener-class>
</listener>

Needless to say, this context listener also takes care of shutting Mule down properly
when the web application gets stopped. Note how the configuration of the Mule con-
text listener is done by using context-wide initialization parameters.

 Starting Mule is a great first step, but it’s not sufficient: you need to be able to
interact with it. From within your own web application, this can be achieved by using
the Mule client. Since the listener took care of starting Mule, you have no reference to
the context, unlike when you bootstrap Mule yourself. This is why the Mule client is
instantiated with no context parameter, relying on the lookup it’ll perform to locate a
static instance of the context created by the listener:

MuleClient muleClient = new MuleClient();

There’s another great benefit of this deployment model, which is the capacity to tap
the servlet container directly for HTTP inbound endpoints. In a standalone server or
standard Java application deployment scenario, your inbound HTTP endpoints actu-
ally rely on either the stock HTTP transport or the Jetty transport. But this need not be
the case when you deploy in a web container. This container already has its socket
management, thread pools, tuning, and monitoring facilities: Mule can leverage these
if you use the servlet transport for your inbound endpoint.

Web conta iner

JVM

OS

JDK

Servlet API

Your web application

Mule JARs Other JARs

Mule context

Your
configurat ion

Figure 7.6 Conceptual
deployment model of Mule
embedded in a web
application

176 CHAPTER 7 Deploying Mule
 The servlet transport only works in coordination with an actual servlet config-
ured in your web.xml: this servlet takes care of receiving the messages and sending
them to the inbound endpoint that can accept it. Here’s an example of how to con-
figure this servlet:

<servlet>
 <servlet-name>muleServlet</servlet-name>
 <servlet-class>org.mule.transport.servlet.MuleReceiverServlet
 </servlet-class>
<load-on-startup>1</load-on-startup>
</servlet>
<servlet-mapping>
 <servlet-name>muleServlet</servlet-name>
 <url-pattern>/services/*</url-pattern>
</servlet-mapping>

With this configuration in place, the following inbound endpoint can be used:

<servlet:inbound-endpoint address="servlet:arget">

A Mule service using such a configuration will be accessible to the outside world with a
URI following this pattern:

The actual payload of the message that’ll be received in the service will depend on the
HTTP method used by the caller.

NOTE Mule ships with another servlet that’s more oriented toward REST-style
services. Named org.mule.transport.servlet.MuleRESTReceiver-
Servlet, this servlet can be used in lieu of or conjointly with the standard
receiver servlet. Refer to the Mule servlet transport and the Mule REST-
pack for more information on this.

Table 7.4 shows a list of pros and cons of the web application embedded deployment
option of Mule.

Table 7.4 Pros and cons of embedding Mule in a web application

Pros Cons

Can tap your well-known servlet container Must manage Mule’s libraries yourself

Benefits from the web application lifecycle events No direct support for scripted configurations

Familiar deployment platform for operations Possible pesky class loading issues on some web
containers

http://hostname:port/context/services/target?name=value

Web application context Address path

Optional parameters
External service URI Mule servlet mapping

177Deployment strategies
Embedding Mule in a web application is a popular and powerful way to deploy Mule.
Should you need tighter integration with the Java EE stack, especially EJBs, the last
deployment strategy that we’re going to look at is for you.

7.1.5 Embedded as a JCA resource

The Java EE Connector Architecture5 standardizes the
contracts between a particular enterprise information sys-
tem on the one hand, and a Java EE application server
and the applications it hosts on the other hand. These
contracts cover many aspects, such as connection, transac-
tion, and security.

 When you deploy Mule as a JCA resource, as depicted
in figure 7.7, your other Java EE components will possibly
have to gain access to it. They’ll become able to use Mule
in two different styles of scenarios: as synchronous clients
or as asynchronous listeners.

 Connecting to Mule as a synchronous client via its JCA
resource adapter is somewhat similar to using the Mule
client, as we’ve seen in the previous deployment options.
To do so, you need to either look up Mule’s connection
factory in the JNDI tree or have it injected as a resource in
your EJBs. Once you get hold of the connection factory,
you can then communicate with the services defined in
your Mule configuration, but also leverage the different
transports to communicate directly with the outside
world. Here’s how you’d send a message to a service lis-
tening to a particular VM endpoint and get its response
synchronously:

MuleConnection connection = muleConnectionFactory.createConnection();
MuleMessage response = connection.send("vm://MyService.In", payload,

properties);
connection.close();

Note that we’ve spared you the necessary try/catch/finally construct. With such a
connection reference, you can also synchronously read from a particular endpoint
URI, as shown here:

MuleMessage response = connection.request("vm://MyService.In", timeOut);

Connecting to Mule as an asynchronous listener allows you to consume messages flow-
ing out of Mule with Message-Driven Beans (MDBs) the same way you do with JMS des-
tinations. This is done by using a particular messaging type and activation in the

5 Improperly but almost universally abbreviated JCA, which was supposed to be the acronym of the Java Cryp-
tography Architecture.

Appl icat ion server

JVM

OS

JDK

JEE API

Your JCA resource

Mule JARs Other JARs

Mule context

Your
configurat ion

EJBs JMSResources

Figure 7.7 Conceptual
deployment model of Mule
deployed as a JCA resource

178 CHAPTER 7 Deploying Mule
configuration of your MDB. To give you an idea, here’s the standard example from
Mule, where an MDB is configured to consume messages from a TCP socket:

<message-driven>
 <description>An MDB listening on a Tcp socket</description>
 <display-name>TcpReceiverMDB</display-name>
 <ejb-name>TcpReceiverMDB</ejb-name>
 <ejb-class>org.mule.samples.ejb.SimpleReceiverMessageBean</ejb-class>
 <messaging-type>org.mule.api.lifecycle.Callable</messaging-type>
 <transaction-type>Container</transaction-type>
 <activation-config>
 <activation-config-property>
 <activation-config-property-name>endpoint
 </activation-config-property-name>
 <activation-config-property-value>tcp://localhost:12345
 </activation-config-property-value>
 </activation-config-property>
 </activation-config>
 </message-driven>

We won’t dig further into the gory details of this deployment mechanism, as they’re
Java EE container specific: refer to the official Mule documentation to learn more
about this approach. The pros and cons of deploying Mule as a JCA resource are listed
in table 7.5.

We’re done with our tour of the different deployment strategies for your Mule-pow-
ered applications. From the simple and sturdy standalone server to the advanced JCA
resource adapter, you’ve discovered a palette of options that’ll surely fit your needs.

 Now that you understand how to deploy a Mule instance, your next question
should be where to deploy it. Again, Mule is extremely flexible and supports many
deployment topologies. Let’s explore your options in this domain.

7.2 Deployment topologies
Because of the dual nature of Mule (framework and broker), its deployment topology
is twofold: the instance-level topology and the network-level topology. The former is
controlled by the configuration file you learned to write in part 1 of this book. The lat-
ter is defined by the number of Mule instances deployed, their locations, and the

Table 7.5 Pros and cons of deploying Mule as a JCA resource

Pros Cons

Java EE standard inbound and outbound access
to Mule

Need in-depth understanding of the JCA implemen-
tation of your Java EE container

RAR template complete with all needed depen-
dencies

Possibly hairy to debug in case of trouble

In-memory access to local EJBs and JMS desti-
nations

Introduces a level of complexity that’s seldom
worth it

179Deployment topologies
transports they use. Moreover, they mutually influence each other to some extent. Fig-
ure 7.8 illustrates these two levels of deployment topologies.

 There’s a rich terminology for both instance-level and network-level topologies.
The former, mostly coming from the Enterprise Integration Patterns corpus,6 con-
tains terms such as splitter, aggregator, or resequencer. The latter talks about ESB, ESN,
pipeline, peer network, client/server, or hub-and-spoke. There’s enough here to make you
feel dizzy, and certainly too much for us to try to present an exhaustive catalog. This
would be beyond the scope of this book, and is covered in numerous authoritative
books already.

 To approach this subject in a pragmatic way, we’ll consider some factors that can
influence both instance-level and network-level topologies and detail a few related use
cases. Consider the following a grab bag of concepts that you can reuse as you see fit.
Each of the coming sections will be dedicated to a particular factor and what impact it
has on your deployment topology. We’ll start by looking at the impact of functional
needs, then network concerns, high-availability expectations, and finally, fault toler-
ance requirements.

NOTE Security requirements can orient your deployment to particular topolo-
gies. Refer to chapter 9 for more on this subject.

Let’s start with functional needs.

7.2.1 Satisfying functional needs

It’s natural that the primary factors that influence your deployment topology are your
functional needs. Suppose that you simply want to use Mule to expose some business
logic as remotely accessible services. You’ll end up with a client/server topology that

6 See section 1.3.

N e t w o r k

Mule instance

Service

Service Service

Mule instance

Service

Service Service

Mule instance

Service

Service Service Figure 7.8 Instance-level and network-level
topologies of a Mule deployment

180 CHAPTER 7 Deploying Mule
pretty much looks like what’s shown in figure 7.9. As the figure suggests, the services
can themselves be engaged in intrainstance communications: for example, they can be
composed together using the bound interface mechanism we discussed in chapter 6.

 Let’s consider another example. Suppose you have a couple of applications that
need to poll data regularly from different resources, say file systems and databases.
You don’t want to place such a burden on any of these applications, and have wisely
commissioned Mule to take care of this work. Figure 7.10 shows that the topology
you’ll lean toward will be conceptually similar to a hub-and-spoke topology. The differ-
ent services in such a Mule instance would not only perform polling but also all sorts
of transformation, aggregation, or enrichment needed before sending the data to the
target applications.

 The two simple examples we’ve just looked at illustrate that functional constraints
are the most obvious ones to take into account when defining your deployment
topology.

Mule instance

Service

Service Service

Client
appl icat ion

Client
appl icat ion

Client
appl icat ion

Figure 7.9 Mule can be
leveraged to remotely expose
business logic in a client/
server topology.

Mule instance

Service

Service Service

Target
appl icat ion

Fi le system Database Fi le system

Target
appl icat ion

Target
appl icat ion

Figure 7.10 A Mule instance
dedicated to polling data engages
in a hub-and-spoke topology.

181Deployment topologies
 Everybody knows that things tend to work well “on their machine,” but start to
show some attitude whenever they get deployed in the wild. Often, the network gets in
the way, as we’ll see in the next section.

7.2.2 Dealing with the network

With cloud computing becoming mainstream, Sun’s singular vision “The Network Is
the Computer” has turned out to be prophetic. This omnipresence of the network is
what makes Clood, Inc.’s business model possible. But life isn’t as rosy as it is in grand
visions. Though omnipresent, fast, and reliable, the network is still fiendish some-
times. It’s all too easy to forget about the distance between services and the almost infi-
nite time7 it takes to reach them. When this happens, the network will cruelly remind
you that it exists and it can’t be factored out of your topology equation.

 Let’s consider the case of an enterprise-wide network that spans several remote
locations. Certain services exist in all the locations: it’s in the best interest of each loca-
tion to always call the nearest service when several are available. Building an ESN
(enterprise service network) topology, as illustrated in figure 7.11, can help achieve
this goal. In this topology, each Mule instance has enough smarts to figure out what’s
the most appropriate service to call in each site.

MULE-BASED PROXIES

If only for sending and receiving emails, companies have to communicate out of the
comfort zone of their WANs and reach the outside world. Integrating remote systems
is both an exhilarating and a daunting task. Even ignoring the security concerns,
allowing too much knowledge of the external systems to spread out inside corporate
applications can turn into a management nightmare. What if the remote address of
the service changes? What if all communications with this service must now be

7 From the CPU’s standpoint.

Mule instance

Service

Service Service

WAN

Mule instance

Service

Service Service

Mule instance

Service

Service Service

Mule instance

Service

Service Service
Figure 7.11 In an ESN deployment
topology, Mule instances
communicate directly as needed.

182 CHAPTER 7 Deploying Mule
audited? Using Mule as a proxy for remote services, as depicted in figure 7.12, is an
elegant solution to this problem.

 As you can see, this topology is just a variation of the client/server topology from
figure 7.12: in this variation, Mule services act as a middleman for the client applica-
tions, taking care of invoking the remote service for them. All the knowledge of the
remote service is concentrated in a single place, the Mule instance, which acts as a
proxy. This knowledge consists not only of connection details, but can also cover secu-
rity configuration or specific data transformation (for example, to transform data rep-
resentations specific to the remote service into canonical ones in use in the company).

WARNING Proxy frenzy Using Mule as a proxy for all your service invocations,
even internal ones, can be a tempting topology whose elegance
shines in nifty deployment diagrams. After all, what could be wrong
with centralizing all the service invocation knowledge in a central
place? As Dr. Jim Webbers puts it,8 this can in fact merely consist of
sweeping the mess under the carpet. Our advice is simple: proxy ser-
vices if and only if there’s value added in the indirection. You can
achieve a lot in terms of indirection with simple tools such as DNS
and load balancers. “Mule in the middle” will make sense only if
there’s a genuine gain in centralizing features such as protocol adap-
tation, transformation, auditing, or security.

As soon as you start using protocols that aren’t built on top of HTTP or that use
dynamic port allocations, you can get ready to hear about our best friend in the enter-
prise network: the firewall. Having a firewall stuck in the middle of your deployment

8 Discussions on “Guerrilla SOA”: http://bit.ly/g-soa.

Mule instance

Client
appl icat ion

Client
appl icat ion

Client
appl icat ion

R e m o t e
service

Service

Service Service

Figure 7.12 Mule can act as a
proxy for remote services.

http://bit.ly/g-soa

183Deployment topologies
topology can force you to adopt a different protocol for sending and receiving mes-
sages. By using a localized hub-and-spoke topology at the edges of your networks, you
can achieve protocol conversion without having to make other services or Mule
instances aware of it. This approach is illustrated in figure 7.13.

CANONICAL ESB

If you’re lucky enough to have access to a corporate-wide JMS provider, then you
might want to consider the canonical ESB deployment topology. As illustrated in fig-
ure 7.14, this topology abstracts out the network by using JMS destinations as commu-
nication channels between Mule instances and applications. This approach frees each
participant in the topology from pesky network details such as knowing host names or
dealing with unreliable protocols. Provided they can connect to the common JMS pro-
vider, applications and Mule instances in an ESB topology will benefit from JMS char-
acteristics such as guaranteed delivery, and local and distributed transaction support.

Firewal l

Mule instance

Service

Service Service

Mule instance

Service

Service Service

Figure 7.13 A hub-and-spoke topology used to bypass a network complication

JMS provider

 JMS destination

 JMS destination JMS destination

Mule instance

Service

Service Service

Mule instance

Service

Service Service

Applicat ion

Figure 7.14 The canonical ESB deployment
topology of Mule instances relies on a central
JMS provider.

184 CHAPTER 7 Deploying Mule
TIPS For a good QoS Using JMS as a messaging backbone in your deploy-
ment topology not only abstracts out the network but also enriches its
semantics. JMS brings you quality of service (QoS) features that you can
base your routing logic on. For example, you can decide to opt for a
completely different routing logic if a message has its Priority prop-
erty set above a certain level. As you can see, deciding for a canonical
ESB topology at network level opens new possibilities in your instance-
level topologies.

As you’ve seen through these few examples, the network will impose its own con-
straints on your deployment topology, whether you choose to abstract it out or decide
to live with it.

 The next topology influencing factor we’ll consider is the need to run highly avail-
able Mule instances.

7.2.3 Designing for high availability

Being able to ensure business continuity is one of the main goals of any IT depart-
ment. Your Mule-driven projects won’t escape this rule. Depending on the criticality
of the messages that’ll flow through your Mule instances, you’ll probably have to
design your topology so it offers a high availability of service. High availability is gener-
ally attained with redundancy and indirection. Redundancy implies several Mule
instances running at the same time. Indirection implies no direct calls between client
applications and these Mule instances.

 An interesting side effect of redundancy and indirection is that they allow you to
take Mule instances down at any time with no negative impact on the overall avail-
ability of your ESB infrastructure. This allows you to perform maintenance opera-
tions, such as deploying a new configuration file, without any down time. In this
scenario, each Mule instance behind the indirection layer is taken down and put
back up successively.

Consider redundancy and indirection whenever you need “hot
deployments.”

Using a network load balancer in front of a pool of similar Mule instances is probably the
easiest way to achieve high availability. Obviously, this is only an option if the protocol
used to reach the Mule instances can be load balanced (for example, HTTP). If you
remember the client/server example we discussed in section 7.2.1, you’ll recognize
the example in figure 7.15. This is the same topology but with a network load balancer
added. With this in place, one Mule instance can be taken down, for example for an
upgrade, and the client applications will still be able to send messages to an active
instance. As the name suggests, using a load balancer would also allow you to handle
increases in load gracefully: it’ll always be possible to add a new Mule instance to the
pool and have it handle part of the load.

BEST
PRACTICE

185Deployment topologies
Another type of indirection layer you can use is a JMS queue concurrently consumed
by different Mule instances. No client application will ever talk directly to any Mule
instance: all the communications will happen through said queue. Only one Mule
instance will pick up a message that’s been published in the queue. If one instance
goes down, the other will take care of picking up messages. Moreover, if messages
aren’t processed fast enough, you can easily throw in an extra Mule instance to pick
up part of the load. Of course, this implies that you’re running a highly available JMS
provider so it’ll always be up and available for client applications. The canonical ESB
topology, represented in figure 7.14, can therefore be easily evolved into a highly
available one.

 If your Mule instances don’t contain any kind of session state, then it doesn’t mat-
ter where the load balancer dispatches a particular request, as all your Mule instances
are equal as far as incoming requests are concerned. But, on the other hand, if your
Mule instance carries any sort of state that’s necessary to process messages correctly,
load balancing won’t be enough in your topology and you’ll need a way to share ses-
sion state between your Mule instances.9 This is usually achieved either with a shared
database or with clustering software, depending on what needs to be shared and on
performance constraints.

TIP State of the Mule Session state can exist in different parts of Mule. If this
is the case in your configuration, you’ll have to cluster them if you intend
to use a load balancer. Here are a few:

■ Idempotent receivers, which must store the identifier of the messages
they’ve already received. Behind the scenes, the idempotent receiver uses

9 One could argue that with source IP stickiness, a load balancer will make a client “stick” to a particular Mule
instance. This is true but wouldn’t guarantee a graceful failover in case of crash.

Mule instance

Service

Service Service

Client
appl icat ion

Client
appl icat ion

Client
appl icat ion

N e t w o r k
load

balancer

Mule instance

Service

Service Service

Figure 7.15 A network load
balancer provides high availability
to Mule instances.

186 CHAPTER 7 Deploying Mule
an internal API (org.mule.api.store.ObjectStore) to handle its persis-
tence. You can use the provided implementations (file system or in-mem-
ory) and cluster them accordingly (shared file system or in-memory
cluster). Or you can roll out your own implementation, for example a
database-backed one.

■ Message aggregators, which use in-memory collections to keep track of
the message they’re currently storing until the accumulation is done and
they can be released. Currently, the most direct way to cluster aggregators
is via JVM-level clustering.

■ Your own components, though we discouraged you from doing so in
chapter 6. At this point it should be clearer why we encouraged you to
strive for statelessness when designing your components. If you need to
make them stateful, it’s up to you to cluster them in order to make them
highly available.

Note that at the time of this writing, there’s no officially supported clus-
tering mechanism for Mule.

Let’s now revisit our previous example and consider that our Mule instances need to
share some state. As shown in figure 7.16, we’ve now added a piece of clustering soft-
ware to take care of sharing the state across the instances in order to make them able
to process any message at any time.

 At this point, you should have a good understanding of what’s involved when
designing a topology for highly available Mule instances. This will allow you to ensure
continuity of service in case of unexpected events or planned maintenance.

 But it’s possible that, for your business, this is still not enough. If you deal with sen-
sitive data, you have to design your topology for fault tolerance, too.

Mule instance

Service

Service Service

Client
appl icat ion

Client
appl icat ion

N e t w o r k
load

balancer

Mule instance

Service

Service Service

Cluster ing
sof tware

Client
appl icat ion

Figure 7.16 Clustering
software is required to enable
load balancing of stateful
Mule instances.

187Deployment topologies
7.2.4 Shooting for fault tolerance

If you have to ensure that, whatever happens during the processing of a request, no
message gets lost at any time, you have to factor fault tolerance into your topology
design. In traditional systems, fault tolerance is generally attained by using database
transactions, either local or distributed (XA). In the happy world of Mule, since the
vast majority of transports don’t support the notion of transaction, you’ll have to
carefully craft both your instance-level and network-level topologies to become truly
fault-tolerant.

 Mule offers a simple way to gain a good level
of fault tolerance via its persisted VM queues.
When persistence is activated for the VM trans-
port, messages get stored on the file system
when they move between the different services
of a Mule instance, as shown in figure 7.17. In
case of crash, these stored messages will be pro-
cessed upon restart of the instance. Note that,
because it supports XA, the VM transport can be
used in combination with other XA-compatible
transports in order to guarantee a transactional consumption of messages.

 The main drawback of VM persisted queues10 is that you need to restart a dead
instance in order to resume processing. This can conflict with high availability
requirements you might have. If this is the case, the best option is to rely on an exter-
nal highly available JMS provider and use dedicated queues for all intrainstance com-
munications. This is illustrated in figure 7.18.

 So far, we’ve achieved fault tolerance
within a Mule instance and at its bound-
aries if the protocol used supports XA. If
all transports supported distributed
transactions, if networks were highly reli-
able and latency didn’t exist, life would
be peachy. In this perfect world, we could
enroll many systems in huge chains of
distributed transactions, which would
guarantee us the utmost level of fault tol-
erance possible. Unfortunately, we don’t
live in this world. Distributed transaction
is a costly and limited mechanism that’ll
likely be minimally used in most of your integration projects.

 So what’s the solution? The widely adopted approach is to eventually reach cor-
rectness in regard to fault tolerance by building topologies that favor conversation

10 Despite forcing you to move around serializable payloads only so they can be saved on disk.

Mule instance

Service

Service Service

Fi le system

Figure 7.17 Simple file system–based
persisted VM queues are standard with
Mule.

Mule instance

Service

Service Service

HA JMS provider

 JMS queues

Figure 7.18 An HA JMS provider can host queues
for all communications within a Mule instance.

188 CHAPTER 7 Deploying Mule
and compensation over transactionality. This means that your network-level topology
and the protocol it uses will influence your instance-level topology, should you need to
be fully fault tolerant.

 How does this translate in Mule? Let’s suppose that you have a Mule instance that
uses fully persisted intrainstance communication channels. Suppose that, at one point
in the processing of a message, this instance must call a remote service over HTTP and
then process its response internally. As soon as you call the HTTP service, you’ll be out-
side of a transactional behavior. What would happen if you never get its response? You
can potentially lose the original message.

 A possible solution here is to store a little conversational state in an aggregator and
wait for a response from the HTTP service. If the response never comes, the aggrega-
tion will time-out and you’ll be able to store the original message, which was waiting in
the aggregator, in a safe place. This is illustrated in figure 7.19. The kinds of listeners
you can use are exception handlers and routing notification listeners, which will be
respectively discussed in chapters 8 and 13.

 You’ve seen that fault tolerance can be achieved in different ways with Mule,
depending on the criticality of the data you handle and the availability of transactions
for the transports you use.

 We’re done with our exploration of Mule deployment topologies. If there’s one con-
cept you need to take away from this rather disparate section, it’s that there’s no pre-
scriptive way to deploy Mule in your IT landscape. Mule is versatile enough to be
deployed in a topology that best fits your needs. We’ve given you a few patterns and
practices for dealing with this matter but, once again, Mule will go where you need it to.

 As you’ve seen, some topologies rely on multiple deployments of Mule instances,
leading to the necessity to housekeep the deployments themselves. This is a subject
that we’ll discuss in the next section.

Mule instance

Multicaster R e m o t e
service

Service

Aggregator Service

Service

Listener

DLQ

Figure 7.19 Conversational state in
an aggregator can increase Mule’s
fault tolerance.

189Deployment management
7.3 Deployment management
Whatever deployment strategy (or strategies) you opt for, your Mule applications will
undergo the same deployment management difficulties as any of your other middle-
ware applications. In this section, we’ll review your options for how to tackle these dif-
ficulties by using standard development tools and by leveraging the Galaxy
governance platform. But before doing so, let’s start by detailing some common
deployment challenges:

■ Multiple environments—A standard corporate landscape is characterized by a
multitude of environments, among which are often found development, inte-
gration, load test, QA, and production. The same rules that apply for transiting
standard applications from one environment to another will apply to your Mule
projects.

■ Multiple locations—A production environment can span multiple physical loca-
tions. Two Mule instances providing the same services in each location can have
completely different internal topologies, as some resources may not be uni-
formly accessible across production sites. For example, in one site, Mule may
act as a service provider, while it will act as a proxy in another site.

■ Multiple roles—Some Mule instances will play a supporting role (exposing public
services), while others will play an enabling role (routing messages to services
or enterprise resources). In all but the simplest deployment topologies, you’ll
need to coordinate the deployment of your Mule instances. Supporting
instances will generally have to go live or be updated before other applications
can start to use them. In contrast, enabling instances will be touched only after
the systems they target have been readied.

■ Multiple versions—Your Mule projects will evolve as time passes, the same way
standard development projects evolve.

■ Multiple lifecycles—A particular project often contains components that evolve at
a different pace and have different lifecycles. In a Mule project, internal ser-
vices evolve faster and more discretionally than publicly exposed services.

There are some more Mule-specific additional concerns that’ll compound these
difficulties:

■ Configurations have unobvious dependencies on libraries—If you remember the dis-
cussion in chapter 2 about schema location and missing JARs, you should real-
ize that something as benign as adding a new transport to your XML file might
call for a few extra JARs to be added to the classpath.

■ Different deployment strategies implies different deployment management challenges—
For example, a standalone server deployment has all the Mule JARs installed
by default, but of course, none of the business JARs. Conversely, an embed-
ded deployment will contain your custom code but might miss necessary
dependencies.

190 CHAPTER 7 Deploying Mule
■ Different deployment topologies implies different configuration management constraints—
In a topology where Mule exposes services, such as a client/server or proxy ser-
vice, maintaining backward compatibility between different configuration ver-
sions is essential. This isn’t an issue if your Mule instances are deployed to only
poll different external sources.

As we just said, public services imply commitment. Like any public API, a service
exposed to the public becomes a commitment in terms of availability and graceful
evolution. Strict production environments will impose SLAs11to your published Mule
services. At your project level, these SLAs will translate to uptime requirements and
backward compatibility constraints. Moreover, you’ll have to devise a thorough testing
strategy (discussed in chapter 12) and a clear policy for service evolution (transition
times, end of life, and so on).

 So how do you ensure that the right things get deployed at the right place and the
right time? If you’ve made the choice to use NetBoot as your deployment strategy (see
section 7.1.2), then the wisest option is to fully leverage Galaxy as your company-wide
governance platform. If you’ve opted for another deployment strategy, Galaxy is still
an option because it can still take good care of your configuration files.

 But if you don’t envision using Galaxy, you’ll then have to leverage your standard
development tools. Let’s look first at this approach, before boldly going into Galaxy.

7.3.1 Using development tools

If you decide to use your standard development tools to manage the different Mule
artifacts you need to deploy, the nature of these artifacts will mainly depend on the
deployment strategy you’ve selected. With the exception of NetBoot, which implies
using Galaxy, there are mainly two cases:

■ Standalone deployment—You’ll need to deploy your configuration files and the
custom libraries they rely on. If you decide to deploy your project as an inde-
pendent directory structure, as we discussed in section 7.1.1, a good strategy is
to leverage the Maven Assembly Plugin to build a complete deployable proj-
ect.12 If instead you opt for dropping JARs in the lib/user directory, your best
bet will consist of dropping your configuration files there too, as they’ll end up
in the classpath and will be easily picked up by Mule (while remaining editable,
for example to have the operations team easily configure passwords).

■ Embedded deployment—In this case, the deployment unit will be the host applica-
tion. For example, for a web application, you’ll typically create a WAR file that’ll
contain all your custom code and the Mule libraries and configuration files you
need. You’ll have to take care that all the necessary dependencies are packaged

11 Service-level agreements, which usually “specify the levels of availability, serviceability, performance, opera-
tion” [Wikipedia].

12 This is demonstrated in the /chapter07/publication-assembly example of the accompanying source code.

191Deployment management
within the deployment unit. Again, using Maven for building your deployable
would be of great help.

NOTE A mitigating factor for the need to add extra libraries to the classpath is
to use scripting for custom components or transformers. Naturally, if you
have your business logic already available as libraries, don’t go rewriting
it as scripts! We’ll discuss scripting goodness in chapter 14.

Before going any further, let’s make something clear: there’s nothing special about a
Mule project. Why do we say that? Because some may be tempted to consider that a
Mule project escapes the rules and standards that apply to standard software engineer-
ing projects. After all, it’s just a matter of tweaking a few XML files... Hacking the
examples shipped with Mule is acceptable while learning the tool, but should stop as
soon as you kick-start a real project on the platform.

 All the sound practices of software engineering will apply to your Mule projects
too:

■ Source control management—All your Mule configuration files and custom code
(components, transformers, and so forth) should be properly stored in an SCM.

■ Repeatable builds—You should be able to produce a deployable of any version of
your project at any time. We’ve mentioned Maven in both the deployment
options listed previously for a reason: this tool is best fitted for systematically
producing your Mule projects’ artifacts (see section 12.1 for more).

■ Versioned artifacts—Whether you target a standalone or an embedded deploy-
ment, your goal will be to produce a uniquely versioned deployable that can be
handed off to your QA and production teams.

■ Configurable artifacts—Externalize any parameter that others will have to adapt
in the environment they administer (see section 2.2.2).

■ Testing—All your custom code and configurations should be tested at all levels,
which includes unit testing, integration testing, regression testing, and load
testing (see section 12.3).

■ Issue/task tracking—Issues happen, and so do feature requests: there’s no reason
for not tracking them with your Mule projects the same way you do with other
projects. Doing so is essential when you have to coordinate your Mule projects
with other ones.

■ Documentation—At this point, some of you may cringe, but Mule projects
deserve good documentation too. The bare minimum consists in operational
procedures (deployment, support). An interesting addition to consider,
depending on the SOA practices of your company, is a humane registry (see
http://www.martinfowler.com/bliki/HumaneRegistry.html). Maven can be of
great help here, as it can generate a documentation site at the same time it
builds your artifacts.

http://www.martinfowler.com/bliki/HumaneRegistry.html

192 CHAPTER 7 Deploying Mule
As you can see, it’s possible to leverage your existing development tools and practices
to put in place a sensible management of your Mule deployables.

Make the versions of your deployed Mule artifacts easily discoverable at
runtime (via JMX, with a specific HTTP service).

But, because Mule instances will often host production-critical services in several dis-
tributed locations, you might feel the need for a more controlled approach to deploy-
ments. Enter Galaxy, the governance platform for Mule.

7.3.2 Hitchhiking Galaxy

In section 7.1.2, we introduced the NetBoot deployment strategy and mentioned how
it relies on another product named Mule Galaxy. Is Galaxy just a repository of librar-
ies? Far from it! Galaxy is a complete governance platform that allows you to fully
manage all aspects of your Mule deployments. Let’s detail what this means concretely:

■ Galaxy is an artifact repository—You knew this already. In Galaxy, artifacts are
stored in workspaces that are themselves organized as a hierarchy. Artifacts can
be versioned and support lifecycle phases that represent their maturity state
(such as development, test, production). Galaxy exposes its content over the
Atom publishing protocol, which makes it reachable from any client applica-
tion you want to use. It’s also possible to select artifacts by using a specific query
language: the Galaxy Query Language. As an example, figure 7.20 shows the
content of the MuleInAction workspace: note the version number and lifecycle
phase of the artifact named mia-nb-mule-config.xml.

■ Galaxy is a registry—If you look again at figure 7.20 you’ll notice that Galaxy has
recognized that the artifact named mia-nb-mule-config.xml is a Mule XML con-
figuration file. It has analyzed and “understood” its content, as the number of
services, global endpoints, and models show. This capacity makes Galaxy a full-
fledged registry because it can deduct dependencies between configuration
files (including WSDL and schemas used by Mule configurations), hence help-
ing you manage them efficiently.

■ Galaxy is a governance platform—Because it understands what it stores, Galaxy
can enforce custom policies to ensure that diverse constraints are respected.
For example, you can enforce backward compatibility of all WSDL files, effi-
ciently solving the configuration compatibility problem that we discussed in the
introduction of this section. Galaxy also contains an integrated audit trail sys-
tem that allows you to track all repository operations.

At startup time, the first thing Mule will look for is its configuration. So far, we’ve only
used configuration files that were located somewhere in the classpath. Galaxy offers a
new possibility: you can retrieve a configuration file directly from the registry by using
a specific configuration builder named org.mule.galaxy.mule2.config.Galaxy-
ConfigurationBuilder. This builder accepts a URI that points to the desired

BEST
PRACTICE

193Deployment management
configuration file and takes care of retrieving it from Galaxy’s Atom API. This URI can
contain an artifact query expressed in Galaxy Query Language. The Galaxy-
ConfigurationBuilder can be used with any deployment strategy: for example, your
Mule instance embedded in a web application can leverage it to fetch its configuration
from a central Galaxy repository.

 Let’s look at how these two configuration fetching approaches (classpath and
query) can be used with NetBoot and Galaxy:

■ With the classpath approach, you need to package the configuration files in a
JAR and let NetBoot download the workspace that contains this JAR. The follow-
ing startup command assumes that the MuleInAction workspace contains a JAR
where the configuration file mia-nb-mule-config.xml has been packaged:

./mule -config mia-nb-mule-config.xml \
 -M-Dgalaxy.port=9090 \
 -M-Dgalaxy.netboot.workspace=Mule-2-Galaxy \
 -M-Dgalaxy.app.workspaces=MuleInAction

Figure 7.20 Browsing the MuleInAction workspace in a Mule Galaxy registry

194 CHAPTER 7 Deploying Mule
If you remember the discussion about NetBoot’s cache in section 7.1.2, we men-
tioned that all JARs downloaded locally are added to Mule’s classpath. This is
how packaged configuration files become accessible to Mule’s standard config-
uration builders.

NOTE The Maven Publishing Plugin is of great help if you follow the
classpath approach. It can take care of packaging your different arti-
facts in a JAR and uploading it directly into Galaxy’s repository. It also
uploads the direct and transient dependencies of your project into Gal-
axy. It can even create a workspace for you if it doesn’t already exist.

■ With the direct Galaxy query approach, you need to use the Galaxy-
ConfigurationBuilder to query the registry. The following is a NetBoot startup
command that directly fetches the mia-nb-mule-config.xml configuration file
from Galaxy:

./mule -builder org.mule.galaxy.mule2.config.GalaxyConfigurationBuilder \
 -config http://admin:admin@localhost:9090/api/registry?q=select%20\
 artifact%20where%20name%20=%20'mia-nb-mule-config.xml' \
 -M-Dgalaxy.port=9090 \
 -M-Dgalaxy.netboot.workspace=Mule-2-Galaxy \
 -M-Dgalaxy.app.workspaces=MuleInAction

This command also pulls two complete workspaces: Mule-2-Galaxy, which con-
tains the complete distribution of the Mule version we want to use, and MuleIn-
Action, which could contain custom libraries if needed. A smarter way to write
this query would be to add extra criteria to select a particular version or a spe-
cific lifecycle phase of the configuration file.

WARNING Lost in space Galaxy Query Language is picky about spaces: each key-
word and operator must be well separated with spaces. For example,
the following query, which selects the configuration file that is shown
in figure 7.20, will work:

select artifact where name = 'mia-nb-mule-config.xml'

But the following query will fail because there’s no space around the
equal sign (=):

select artifact where name='mia-nb-mule-config.xml'

In the same vein, you may have noticed we had to escape spaces into
%20 in the previous command-line example, which clutters the com-
mand line and reduces its readibility. In that case, the best approach
is to store the command-line arguments in a properties file, where
no escaping is needed, and have the GalaxyConfigurationBuilder
read it.

It’s important to note that Galaxy can itself become a critical part of your deployment
topology. If you rely on Galaxy for direct configuration querying, you’ll need to
deploy it in a way that makes it highly available so your Mule instances will never have

195Summary
trouble starting up. To that end, be aware that Galaxy EE, the enterprise edition of
Galaxy, natively supports clustering.

 NOTE Mule isn’t the only application that can leverage Galaxy for configuration
management: Spring-driven applications can do it too. Thanks to a spe-
cific GalaxyApplicationContext, it’s possible to configure a Spring bean
factory from a URI that contains a Galaxy query expression.

Galaxy’s capacity to centrally manage the deployments of your Mule instances is a
clear win whenever your integration infrastructure starts to grow. Moreover, thanks to
its versatility, Galaxy can potentially become an important actor in your IT landscape
as a central repository of configuration files.

 Establishing sound management of your deployments is key to the success of your
Mule projects. This section has given you some hints about ways to achieve this,
whether you decide to use Galaxy or not.

7.4 Summary
In this section, we explored the act of deploying Mule from different standpoints. We
considered the different possible strategies that you can use for deploying a particular
instance. We also touched on the matter of deployment topologies by giving you some
angles you can use to approach this broad subject. And, finally, we discussed the
necessity to manage your Mule deployments and the options available in this domain.

 It should have come as no surprise that, in all these aspects, Mule presents once
again a great flexibility and offers a variety of options. Because of its capacity to act as
an embedded messaging framework or as a distributed broker, Mule can truly
embrace your integration needs at all levels.

 In section 7.2.4, we mentioned the importance of exception handlers in building a
fault-tolerant Mule instance. The next chapter, which is about exception handling in
Mule, will give you the knowledge you need to strengthen your Mule.

Exception handling
and logging
Dealing with the unexpected is an unfortunate reality when writing software.
Through the use of exceptions, the Java platform provides a framework for dealing
with events of this sort. Exceptions occur when unanticipated events arise in a sys-
tem. These are things such as network failures, I/O issues, and authentication
errors. When you control a system, you can anticipate these events and provide a
means to recover from them. This luxury is often absent in a distributed integra-
tion environment. Remote applications you have no control over will fail for no
apparent reason or supply malformed data. A messaging broker somewhere in your
environment might begin to refuse connections. Your mail server’s disk may fill up,
prohibiting you from downloading emails. Your own code might even have a bug
that causes your data to be routed improperly. In any case, it’s undesirable for your
entire application to fail because of a single unanticipated error.

In this chapter
■ Managing exceptions with exception strategies
■ Using retry policies
■ Logging with Mule
196

197Exception strategies
 Logging is closely related to exception recovery. You naturally want to know when
error conditions occur. This enables you to identify where the issue is and recover
from it. If you have a bunch of data-type exceptions on one of your endpoints, for
instance, you’ll want to know where they’re coming from—even if you’re correctly
ignoring them. Logging also aids in debugging—giving you insight into what your sys-
tem’s doing.

 Mule’s exception handling and logging functionality recognize these facts. They
let you plan for, react to, and log errors that would otherwise bring your integration
process to a screeching halt. You’ll find yourself leveraging Mule’s exception han-
dling ability to identify and troubleshoot failures in your endpoints, components,
and routers.

 In this chapter we’ll be examining how Mule implements exception handling and
logging. We’ll first consider exception strategies, where we’ll see how Mule lets you
react to errors on your connectors and components. We’ll see how you can use Mule’s
routing capabilities to control where exceptions are sent after they’re generated. We’ll
then take a look at how Mule uses the SLF4J logging facade and log4j to simplify log-
ging configuration. Finally, we’ll see how you can use Apache Chainsaw as a graphical
front end to view Mule’s logging data.

8.1 Exception strategies
Mule uses exception strategies to handle failures in connectors and components. Run-
time exceptions thrown in connectors and components have the potential to “trickle
up” and wreak havoc. This could cause core parts of Mule and even Mule itself to fail.
Exception strategies prohibit this—they catch an exception and perform an action as
a result. The appropriate response might be as simple as logging the exception and
moving on, or as complex as rolling back a transaction.

 While you’re free to implement your own exception strategies, Mule supplies
default exception strategies that are flexible enough to handle basic exception han-
dling requirements. We’ll start off this section by examining these exception strate-
gies. We’ll then see how you can use Mule’s routing capabilities in conjunction with
exception strategies to intelligently route and handle errors.

8.1.1 Positioning exception strategies

Mule provides exception strategies for connectors and services. The default exception
strategy for connectors is responsible for handling transport-related exceptions—such
as SSL errors on an HTTPS endpoint, or a connection failure on a JMS endpoint. The
default exception strategy for services handles exceptions that occur in components.
As components generally host your custom code, exceptions thrown here will usually
be related to your business logic. By default, both of these strategies handle excep-
tions in the same way—they’ll log the exception and Mule will continue execution.

 Being able to define separate exception strategies for connectors and components
lets you handle each sort of error independently. This is often desirable. You may want
connector-level exceptions logged at a higher level than component-level exceptions,

198 CHAPTER 8 Exception handling and logging
for instance. As we’ll see in the next chapter, this also gives you the flexibility to han-
dle certain transaction-related responses, such as rollbacks, differently, based on
where an exception occurs. The default exception strategies are illustrated in
figure 8.1

 You have the option of explicitly defining exception strategies in multiple places in
your Mule configurations. Exception strategies can be configured on a per-model basis,
before any service definitions. In this case, the exception strategy, either service or
connector, will be applied to all subsequent services and connectors defined in the
configuration. You can additionally define exception strategies on a per-service basis.
This is done by defining the default-connector exception strategy or the default-ser-
vice exception strategy at the end of each service definition.

 While Mule will implicitly configure the default exception strategies for you, in
order to override the defaults it’s useful to see how to manually configure them. We’ll
demonstrate the placement of exception strategies in this section by showing where
we can place the default exception strategies. You’ll need this information in the next
section, where the placement of an exception strategy will dictate how errors are
routed out of a model or service. This will also be useful when you implement and
place custom exception strategies.

 The default exception strategy for connectors is configured by defining a
default-connector-exception-strategy element on either a model or on a service.
Defining the default-connector exception strategy on a model will cause all connec-
tors used in that model to be handled by the defined exception strategy. Let’s revisit
listing 3.7 from chapter 3 and explicitly define the default-connector exception strat-
egy for the model. The result is shown in listing 8.1.

 <file:connector name="FileConnector"
 streaming="false"
 autoDelete="true"
 >
 <file:expression-filename-parser/>

Listing 8.1 Configuring the default-connector exception strategy on a model

Component
Inbound
endpoint

default-connector-exception-strategy

default-service-exception-strategy

Outbound
endpoint

Figure 8.1 Handling exceptions on
endpoints and components

199Exception strategies
 </file:connector>

<model name="smtpModel">
 <default-connector-exception-strategy/>

 <service name="smtpService">
 <inbound>
 <file:inbound-endpoint path="./data/invoice">
 <file:file-to-string-transformer/>
 </file:inbound-endpoint>
 </inbound>
 <outbound>
 <pass-through-router>
 <smtp:outbound-endpoint host="mail.clood.com"
 from="mule@clood.com"
 subject="Accounting Invoice"
 to="accounting@clood.com">
 <email:string-to-email-transformer/>
 </smtp:outbound-endpoint>
 </pass-through-router>
 </outbound>
 </service>

 <service name="fileService">
 <inbound>
 <file:inbound-endpoint path="./data/snapshot">
 <file:filename-wildcard-filter pattern="SNAPSHOT*.xml"/>
 </file:inbound-endpoint>
 </inbound>
 <outbound>
 <pass-through-router>
 <file:outbound-endpoint
 path="./data/archive"
 outputPattern=
 "#[header:originalFilename]-#[function:dateStamp].xml"/>
 </pass-through-router>
 </outbound>
 </service>
</model>

The default-connector exception strategy is configured after the model definition and
before any service definitions, as we see in B. This default-connector exception strat-
egy will now handle all transport-related exceptions for the endpoints defined on C,

D, E, and F. We can also define the default-connector exception strategy on a per-
service basis as well. This is done by defining the default-connector exception as the
last element of a service, as we see in listing 8.2.

 <file:connector name="FileConnector"
 streaming="false"
 autoDelete="true"
 >
 <file:expression-filename-parser/>
 </file:connector>

<model name="smtpModel">

 <service name="smtpService">
 <inbound>

Listing 8.2 Configuring the default-connector exception strategy on a service

Configure default-connector
exception strategy

B

File inbound
endpoint

C

SMTP outbound
endpoint D

File inbound
endpoint

E

File outbound
endpoint F

200 CHAPTER 8 Exception handling and logging
 <file:inbound-endpoint path="./data/invoice">
 <file:file-to-string-transformer/>
 </file:inbound-endpoint>
 </inbound>
 <outbound>
 <pass-through-router>
 <smtp:outbound-endpoint host="mail.clood.com"
 from="mule@clood.com"
 subject="Accounting Invoice"
 to="accounting@clood.com">
 <email:string-to-email-transformer/>
 </smtp:outbound-endpoint>
 </pass-through-router>
 </outbound>
 <default-connector-exception-strategy/>
 </service>

 <service name="fileService">
 <inbound>
 <file:inbound-endpoint path="./data/snapshot">
 <file:filename-wildcard-filter pattern="SNAPSHOT*.xml"/>
 </file:inbound-endpoint>
 </inbound>
 <outbound>
 <pass-through-router>
 <file:outbound-endpoint
 path="./data/archive"
 outputPattern=
 "#[header:originalFilename]-#[function:dateStamp].xml"/>
 </pass-through-router>
 </outbound>
 <default-connector-exception-strategy/>
 </service>
</model>

The default-connector-exception-strategy elements are defined on B and C.
Defining them here will cause connector-level exceptions thrown by the smtpService
and the fileService to be handled independently of each other.

 Now let’s turn our attention to the default-service exception strategy, which
defines how exceptions on our components are handled. Let’s look at listing 6.8 from
chapter 6 and see how to explicitly configure the default-service exception strategy to
handle errors thrown by the RandomIntegerGenerator. The result is shown in
listing 8.3.

<service name="RandomIntegerGenerator">

 <inbound>
 <vm:inbound-endpoint path="RIG.In" />
 </inbound>

 <component>
 <no-arguments-entry-point-resolver>

Listing 8.3 Configuring the default-service exception strategy on a particular service

B

C

201Exception strategies
 <include-entry-point method="nextInt"/>
 </no-arguments-entry-point-resolver>

 <singleton-object class="java.util.Random" />
 </component>

 <default-service-exception-strategy/>
 </service>

The default-service exception strategy configured on B will ensure all exceptions
thrown by the RandomIntegerGenerator will be handled by the default-service excep-
tion strategy. You can also define a default-service exception strategy that all the ser-
vices in a model use. The configuration is analogous to the global default-connector
exception strategy we saw previously. Listing 8.4 illustrates how to accomplish this. We
introduce the SeededRandomIntegegerGenerator from chapter 6 and explicitly con-
figure a default-service exception strategy that both will share.

<model name="randomGeneratorModel">

 <default-service-exception-strategy/>

 <service name="RandomIntegerGenerator">
 <inbound>
 <vm:inbound-endpoint path="RIG.In" />
 </inbound>

 <component>
 <no-arguments-entry-point-resolver>
 <include-entry-point method="nextInt"/>
 </no-arguments-entry-point-resolver>

 <singleton-object class="java.util.Random" />
 </component>
 </service>

 <service name="SeededRandomIntegerGenerator">
 <inbound>
 <vm:inbound-endpoint path="SRIG.In" />
 </inbound>
 <component>
 <no-arguments-entry-point-resolver>
 <include-entry-point method="nextInt"/>
 </no-arguments-entry-point-resolver>
 <singleton-object class="java.util.Random">
 <property key="seed" value="${seed}" />
 </singleton-object>
 </component>
 </service>
</model>

The default-service exception strategy defined on B will now handle all exceptions
thrown by the RandomIntegerGenerator defined on C and the SeededRandom-
IntegerGenerator defined on D.

Listing 8.4 Configuring the default-service exception strategy on all services

Define default-service
exception strategy

B

Define default-service
exception strategy

B

Define
RandomIntegerGenerator
service C

DDefine
SeededRandomIntegerGenerator

service

202 CHAPTER 8 Exception handling and logging
 Let’s now see how we can leverage the explicit exception strategy configuration
with Mule’s outbound routing capabilities. This will enable us to route exceptions to
different endpoints for further processing and response.

8.1.2 Exceptions and routing

As we mentioned before, the default exception strategies will simply log exceptions
and move on. This is often the right action to take, but sometimes you’ll want to
take more elaborate measures when an exception occurs. This is especially true in a
large or distributed environment. Equally true in such an environment is the inevita-
bility that a remote service will be unavailable. When such a service is the target of
an outbound endpoint, you might want Mule to attempt to deliver the message to a
different endpoint. We’ll consider both scenarios in this section. Let’s start by look-
ing at how we can use routers in conjunction with exception strategies, which will
allow us to do more than simply log exceptions as they occur. We’ll then look at
using exception-based routing. This will enable us to send data to alternate end-
points if one is unavailable.1

 While it’s easy to keep an eye on log files on a handful of Mule instances, it
becomes increasingly challenging when the number of Mule instances explodes or
becomes distributed across a variety of locations. We’ll discuss ways to mitigate this
later on in this chapter when we dis-
cuss the Chainsaw tool, but you
might need to distribute errors to
someone who can’t access or read
the log data. Additionally, some
errors are so critical that you want to
be notified immediately when they
occur. This can be difficult to accom-
plish by parsing log data alone. For
situations like these, Mule allows you
to route exceptions in much the
same way we routed messages in
chapter 4. This is accomplished by
adding outbound endpoints to an
exception strategy. This causes the
exception strategy to send the excep-
tions through the endpoint as a mes-
sage—in much the same way that a
component does. Figure 8.2 illus-
trates how this works.

1 We’ll see later on in this chapter how to control logging in Mule.

Figure 8.2 Routing exceptions with outbound endpoints

Component
Inbound
endpoint

default-connector-exception-strategy

default-service-exception-strategy

Outbound
endpoint

Outbound
endpoint

Outbound
endpoint

203Exception strategies
Now let’s see how we can configure Mule to do this. Listing 8.5 modifies listing 8.4 to
send service exceptions and connector exceptions to separate JMS queues.

<model name="randomGeneratorModel">
 <default-connector-exception-strategy>
 <jms:outbound-endpoint queue="transport-errors"/>
 </default-connector-exception-strategy>

 <default-service-exception-strategy>
 <jms:outbound-endpoint queue="business-errors"/>
 </default-service-exception-strategy>

 <service name="RandomIntegerGenerator">
 <inbound>
 <vm:inbound-endpoint path="RIG.In" />
 </inbound>

 <component>
 <no-arguments-entry-point-resolver>
 <include-entry-point method="nextInt"/>
 </no-arguments-entry-point-resolver>

 <singleton-object class="java.util.Random" />
 </component>
 </service>

 <service name="SeededRandomIntegerGenerator">
 <inbound>
 <vm:inbound-endpoint path="SRIG.In" />
 </inbound>
 <component>
 <no-arguments-entry-point-resolver>
 <include-entry-point method="nextInt"/>
 </no-arguments-entry-point-resolver>
 <singleton-object class="java.util.Random">
 <property key="seed" value="${seed}" />
 </singleton-object>
 </component>
 </service>
</model>

The JMS outbound endpoint defined on C will route all exceptions thrown by Random-
IntegerGenerator and SeededRandomIntegerGenerator to the JMS queue named
business-errors. The outbound endpoint defined on B will send all connector
exceptions to the queue called transport-errors. Receivers on these queues can take
some sort of action when a particular exception occurs. Let’s look at how we can use
Jabber to send messages to different parties depending on which queue an exception
arrives on.

 Listing 8.6 implements two services to handle errors on each of these queues.

Listing 8.5 Sending all service-level exceptions to a JMS queue

Send connector
exceptions to
JMS queue

B

Send business
exceptions to
JMS queue

C

Define
SeededRandimIntegerGenerator

service

204 CHAPTER 8 Exception handling and logging

<service name="transportErrorService">
 <inbound>
 <jms:inbound-endpoint topic="transport-errors"/>
 </inbound>
 <outbound>
 <pass-through-router>
 <xmpp:outbound-endpoint recipient="ops-on-duty" />
 </pass-through-router>
 </outbound>
</service>

<service name="businessErrorService">
 <inbound>
 <jms:inbound-endpoint topic="business-errors"/>
 </inbound>
 <outbound>
 <pass-through-router>
 <xmpp:outbound-endpoint recipient="engr-on-duty" />
 </pass-through-router>
 </outbound>
</service>

The configuration is fairly straightforward. Exceptions that arrive on the transport-
errors topic will be sent to an XMPP outbound endpoint where they arrive as Jabber-
messages to the ops-on-duty user. Exceptions that arrive on the business-errors
queue are delivered to the engr-on-duty user. Using topics to dispatch the errors
ensures multiple parties can receive the error messages. For instance, there might be
another service that subscribes to these errors and sends them as email alerts or for-
wards them to a logging database. As you saw in chapter 3, subscriptions to topics can
also be made durable, ensuring that the message reaches the subscriber.

 You might have a situation where you’re only interested in routing certain types of
exceptions through an outbound endpoint. Let’s reconsider listing 4.9 from chapter 4
in the context of our friends at Clood, Inc. If you recall, listing 4.9 illustrated using a
forwarding router to bypass component processing for messages containing a certain
payload. Messages that didn’t contain this payload were sent to the messageEnricher
component for processing. Let’s assume that Clood, Inc., is using this service to cor-
rect messages that aren’t in an OK or SUCCESS state. If the messages aren’t successfully
put into the OK or SUCCESS state by the messageEnricher service, then an instance of
com.clood.BusinessException is thrown. Since this is presumably a rare event, we
want to send these exceptions to a JMS topic for further processing. We’re satisfied
with simply logging other types of exceptions. The exception-type filter is useful in
cases like this—it’ll cause the default exception strategy in question to only route
exceptions that match the type in question. Listing 8.7 modifies listing 4.9 to accom-
plish this.

Listing 8.6 Handling transport and business exceptions differently

Accept messages
off transport-
errors queue

Send exception contents
to ops-on-duty

Accept messages
off business-
errors queue

Send exception contents
to engr-on-duty

205Exception strategies

<service name="forwardingConsumerService">
 <default-service-exception-strategy>
 <jms:outbound-endpoint topic="business-errors">
 <exception-type-filter
 expectedType="com.clood.BusinessException"/>
 </jms:outbound-endpoint>
 </default-service-exception-strategy>
 <inbound>
 <jms:inbound-endpoint queue="messages"/>
 <vm:inbound-endpoint address="vm://messages"/>
 <forwarding-router>
 <regex-filter pattern="^STATUS: (OK|SUCCESS)$"/>
 </forwarding-router>
 <selective-consumer-router>
 <regex-filter pattern="^STATUS: (CRITICAL)$"/>
 </selective-consumer-router>
 </inbound>
 <component>
 <spring-object bean="messageEnricher"/>
 </component>
 <outbound>
 <pass-through-router>
 <stdio:outbound-endpoint system="OUT"/>
 </pass-through-router>
 </outbound>
</service>

By adding the exception-type filter on B, we’re ensuring that only instances of
com.clood.BusinessException are being routed to the business-errors topic. All
other exceptions will be logged by the default-service exception strategy.

 Routing exceptions using the default exception strategies is often a good idea, par-
ticularly in distributed environments where Mule usually runs. Routing all exceptions
to a single JMS queue, for instance, aggregates errors in a central place for later triage,
reporting, and management. More complex error handling can be accomplished by
extending org.mule.service.DefaultServiceExceptionStrategy and overriding
the default behaviors. You could, for instance, override the routeException()
method to change how the exception message is sent. This would allow you to send
the original message to the outbound endpoints instead of just the exception payload,
serving the basis for a dead-letter queue strategy allowing you to retry failed message
delivery at a later date.

Override the default exception strategy routing to facilitate centralized
error management and dead-letter queue functionality.

The default exception strategies provide a powerful means for error notification. We’ll
see in chapter 10 how we can further leverage exception strategies in the context of
transactions—this will enable us to perform actions such as rolling back a transaction
when an exception occurs. In addition to exception strategies, Mule provides another
facility for reacting to errors—exception-based routing. Let’s look at that now.

Listing 8.7 Using the exception-type router

Only route instances of
com.clood.BusinessException B

BEST
PRACTICE

206 CHAPTER 8 Exception handling and logging
 It’s often useful in the context of outbound routing to provide multiple endpoints
for a service to try in the event one of the endpoints is unavailable. The exception-
based router exists for this purpose—it allows you to specify a list of endpoints that’ll
be tried in sequence until a message is accepted. Figure 8.3 illustrates this.

In the figure, the exception-based router will attempt to send the message to each
endpoint in sequence until one succeeds. Let’s reconsider listing 3.15 from chapter 3
to see how this works.

 In listing 3.15 we were examining how one of Clood, Inc.’s partners might post
reporting data to an HTTP inbound endpoint. In that example, Clood supplied the
provider with a URL to post data to. Let’s assume that Clood, Inc., has a new require-
ment to accept backup data from globally distributed partners. As such, Clood has
made an effort to set up redundant endpoints for this data in its data centers in North
America as well as Europe. A backup provider can choose to try the endpoint closest
to it first, then fall back on a secondary endpoint in the event the first is unavailable.
Listing 8.8 demonstrates how a provider in North America can use exception-based
routing to accomplish this.

<model name="httpOutboundModel">
 <service name="httpInboundService">
 <inbound>
 <file:inbound-endpoint path="./data/provider"/>
 </inbound>
 <outbound>
 <exception-based-router>
 <http:outbound-endpoint
 address=
 "http://services.nyc.clood.com/backup-reporting"/>
 <http:outbound-endpoint
 address=
 "http://services.dub.clood.com/backup-reporting"/>
 </exception-based-router>
 </outbound>
 </service>
</model>

Listing 8.8 Falling back on multiple endpoints using an exception-based router

Component
Exception-based

router

primary
outbound-endpoint

secondary
outbound-endpoint

tertiary
outbound-endpoint

Figure 8.3 Using an
exception-based router to
send a message in
sequence to multiple
endpoints, halting when
the message is
successfully delivered

207Using retry policies
In this example, Mule would attempt to post the data from the file inbound endpoint
to Clood’s data center in New York first. In the event this failed, the exception-based
router would attempt to post the data to Clood’s data center in Dublin. If this failed as
well, an exception would be thrown and handled by the exception strategy configured
for the connector.

 While the exception-based router is useful in failover scenarios, it might be prefer-
able to retry the same resource repeatedly in the event it’s unavailable. Let’s look at
how we can use retry policies to intelligently try to recover from connector failures.

8.2 Using retry policies
It’s an unfortunate reality that services, servers, and remote applications are occasion-
ally unavailable. Thankfully, though, these outages tend to be short-lived. Network
routing issues, a sysadmin restarting an application, or a server rebooting all represent
common scenarios that typically don’t take long to recover from. Nonetheless, such
failures can have a drastic impact on applications dependent on them. In order to mit-
igate such failures, Mule provides a retry policy mechanism to dictate how connectors-
deal with failed connections. We’ll start off this section by examining Mule’s retry
policy support. We’ll implement a simple retry policy that’ll indefinitely attempt to
connect to a failed resource. We’ll then see how to use this policy with the JMS trans-
port. Finally we’ll show how we can use retry policies to allow Mule instances to start
independently of remote services they may depend on.

 Mule Enterprise Edition ships with a set of retry policies along with an associated
XML schema. This saves you the effort of rolling your own retry policies and using the
Spring injection of the retry policy template that we’ll see in this section. If you’re a
Mule Enterprise user, you’re encouraged to check the relevant documentation for
your Mule Enterprise version and use the supplied retry policies and templates. You
can use the information in this section to implement your own retry policies and tem-
plate when the ones supplied by Mule Enterprise aren’t sufficient.

8.2.1 Implementing a retry policy

A retry policy dictates how a connector should attempt to reconnect to a failed
resource. You may want a connector to attempt to reconnect to the resource indefi-
nitely every 5 seconds. In other scenarios you may want to connect to a resource every
2 minutes for 10 times and then stop. In order to define such behavior, you’ll need to
roll up your sleeves and work with the Mule API. Retry policies are defined by imple-
menting the RetryPolicy interface. Listing 8.9 demonstrates a simple retry policy
that’ll instruct a connector to reconnect to the failed resource every 5 seconds.

public class SimpleRetryPolicy implements RetryPolicy {
 public PolicyStatus applyPolicy(Throwable throwable) {
 try {
 Thread.sleep(5000);

Listing 8.9 An indefinitely reconnecting retry policy

B

208 CHAPTER 8 Exception handling and logging
 } catch (InterruptedException e) {
 throw new RuntimeException(e);
 }
 return PolicyStatus.policyOk();
 }
}

This retry policy will sleep for 5 seconds on B; if not interrupted it’ll return a Policy-
Status of OK. This informs the connector to attempt to retry again. If the thread is
interrupted, a RuntimeException will be thrown on C. In addition to returning a
policyOK state, PolicyStatus can also return an exhausted state. This is useful if you
want to limit the number of retry attempts to a particular resource and is demon-
strated in listing 8.10.

public class ExhaustingRetryPolicy implements RetryPolicy {
 private static int RETRY_LIMIT = 5;
 private int retryCounter = 0;

 public PolicyStatus applyPolicy(Throwable throwable) {
 if (retryCounter >= RETRY_LIMIT) {
 return PolicyStatus.policyExhausted(throwable);
 } else {
 try {
 Thread.sleep(5000);
 } catch (InterruptedException e) {
 throw new RuntimeException(e);
 }
 retryCounter++;
 return PolicyStatus.policyOk();
 }
 }
 }

The ExhaustingRetryPolicy will attempt to connect to the remote resource five
times. This is handled by incrementing the retryCounter on D. If the retryCounter
exceeds the RETRY_LIMIT on B, then a PolicyStatus of exhausted is returned on D,
along with the cause of the retry. This causes the connector to stop retrying to connect
to the failed resource.

 Before we can use either of these retry policies, we must implement a policy tem-
plate. This is accomplished by extending the AbstractPolicyTemplate class.
Listing 8.11 illustrates a policy template for the ExhaustingRetryPolicy.

public class ExhaustingRetryPolicyTemplate
 extends AbstractPolicyTemplate {

 public RetryPolicy createRetryInstance() {
 return new ExhaustingRetryPolicy();
 }
}

Listing 8.10 An exhaustible retry policy

Listing 8.11 An exhaustible retry policy

C

B
C

D

209Using retry policies
We simply need to implement the createRetryInstance method of AbstractPolicy-
Template to return an instance of the retry policy we wish to use. In this case, we’ll
return an ExhaustingRetryPolicy, which will cause the connector to attempt to con-
nect to the failed resource a specified amount of times before giving up.

 Now that we’ve defined our retry policies, let’s see how to configure them for use
in a connector.

8.2.2 Using the SimpleRetryPolicy with JMS

An endpoint will become unavailable if the underlying connector fails. Using the JMS
transport with an external JMS broker is a good example. If the ActiveMQ instance the
connector is configured on goes down, the connector will fail and JMS messages will
stop being delivered—even if the ActiveMQ instance recovers. A retry policy enables
the JMS connector to reconnect to the ActiveMQ instance. If it can reconnect, end-
points on the connector can begin sending and receiving JMS messages again. This
allows your Mule instances to automatically recover from remote service failures with-
out administrative assistance.

 Let’s return our attention to Clood, Inc., and see how they might use a retry policy.
In listing 8.7 we reconsidered how Clood’s backup partners might publish reports to
globally distributed endpoints using the exception-based router. We discussed the
receiving end of this publishing in listing 3.17, where Clood, Inc., publishes the
reports to a JMS topic. To continue our example, let’s assume Clood, Inc., is sharing
an ActiveMQ infrastructure between its New York and Dublin POPs—this ensures
reports will be received at both locations when published to a JMS topic. In order to
increase resiliency for its JMS connections, Clood uses the SimpleRetryPolicy from
listing 8.9 to automatically recover from ActiveMQ failures. Listing 8.12 illustrates how
they do this.

<jms:activemq-connector
 name="jmsConnector"
 specification="1.1"
 brokerURL="${jms.url}">
 <spring:property name="retryPolicyTemplate">
 <spring:bean class="SimpleRetryPolicyTemplate"/>
 </spring:property>
</jms:activemq-connector>

<model name="jmsOutboundModel">
 <service name="jmsOutboundService">
 <inbound>
 <http:inbound-endpoint
 address="http://${http.host}:${http.port}/backup-reports"
 synchronous="true">
 <byte-array-to-string-transformer/>
 </http:inbound-endpoint>
 </inbound>
 <outbound>

Listing 8.12 Using the SimpleRetryConnectionStrategy

BDefine
RetryPolicyTemplate

to use

210 CHAPTER 8 Exception handling and logging
 <pass-through-router>
 <jms:outbound-endpoint topic="backup-reports"/>
 </pass-through-router>
 </outbound>
 </service>
</model>

We inject the RetryPolicyTemplate we wish to use on the ActiveMQ connector on B.
The JMS connector will now invoke the SimpleRetryPolicy when its connection to
the ActiveMQ broker is interrupted.

 In the event of an ActiveMQ failure, the JMS connector will attempt to reconnect
to the ActiveMQ instance every 5 seconds for an indefinite amount of time. JMS mes-
saging will fail during this time, but the Mule instance will still be up. Once ActiveMQ
recovers, the JMS connector will reconnect to the endpoint and JMS messaging will
continue as usual. A side effect of this behavior is that it allows Mule to start up when
external dependencies are unavailable. Let’s see how to do this.

8.2.3 Starting Mule with failed connectors
using the Common Retry Policies

Mule will fail to start if an external dependency, such as a JMS broker or SMTP server, is
unavailable. The SimpleRetryPolicy we implemented earlier doesn’t handle this situ-
ation well—it’ll block indefinitely until the remote resource becomes available, pro-
hibiting Mule from starting up. Having the retry attempts occur in their own thread is
one way to circumvent this issue. Such functionality is available to Mule EE users but is
currently not available in the community Mule 2 release. Fortunately a MuleForge
project exists to fill this gap—the Common Retry Policies

 The Common Retry Policies Mule module is available on MuleForge at this
address: http://www.mulesource.org/display/COMMONRETRYPOLICIES/Home. In
addition to containing an implementation of the SimpleRetryPolicy we saw previ-
ously, the Common Retry Policies package also provides a multithreaded retry policy
template. This template, called the adaptive retry policy, will cause retry attempts to
occur in a thread separate from the main Mule thread when Mule is starting up. This
allows Mule to start even if some connectors are unavailable. You’ll need to download
the JAR file from the Common Retry Policies home and make it available to your Mule
installation prior to being able to use the policies.2

 Let’s see how we can have listing 8.11 start up when the JMS broker is unavailable.
Listing 8.13 illustrates using the adaptive retry policy to accomplish this.

 <spring:beans>
 <spring:bean id="foreverRetryPolicyTemplate"
 class=
"org.mule.modules.common.retry.policies.ForeverRetryPolicyTemplate"/>

2 The Common Retry Policies is a MuleForge project maintained by the community. It’s not part of the main-
stream Mule distribution or maintained by MuleSource.

Listing 8.13 Allowing Mule to start when a connector is failed

BDefine retry
policy template

http://www.mulesource.org/display/COMMONRETRYPOLICIES/Home

211Using retry policies
 <spring:bean id="threadingPolicyTemplate"
 class=
"org.mule.modules.common.retry.policies.AdaptiveRetryPolicyTemplateWrapper">
 <spring:property name="delegate" ref="foreverRetryPolicyTemplate"/>
 </spring:bean>
 </spring:beans>

 <jms:activemq-connector
 name="jmsConnector"
 specification="1.1"
 brokerURL="${jms.url}">
 <spring:property name="retryPolicyTemplate"
 ref="threadingPolicyTemplate"/>

 </jms:activemq-connector>

 <model name="jmsThreadingRetryModel">
 <service name="jmsThreadingRetryService">
 <inbound>
 <http:inbound-endpoint
 address="http://${http.host}:${http.port}/backup-reports"
 synchronous="true">
 <byte-array-to-string-transformer/>
 </http:inbound-endpoint>
 </inbound>
 <outbound>
 <pass-through-router>
 <jms:outbound-endpoint topic="backup-reports"/>
 </pass-through-router>
 </outbound>
 </service>
 </model>

We start off by defining the retry policy we want to use on B. In this case, we’re going
to use the ForeverRetryPolicyTemplate supplied by the Common Retry Policies.
The ForeverRetryPolicyTemplate behaves much like the SimpleRetryPolicy we
looked at before. It’ll attempt to reconnect to a failed connector every 5 seconds. The
AdaptiveRetryPolicyTemplateWrapper defined on C is what enables the Forever-
RetryPolicy behavior to occur in its own thread when Mule starts. We finally inject
the threadingPolicyTemplate into the ActiveMQ connector on D. If the JMS broker
is down when Mule is started, the AdaptiveRetryPolicyTemplateWrapper will use the
ForeverRetryPolicyTemplate to attempt to reconnect to the broker independently
of Mule bootstrapping. This will allow other services that aren’t dependent on that
JMS broker to start and behave normally.

 In this section we saw how connection strategies enable us to tolerate failures in
remote services without restarting Mule. We saw how we can automatically reconnect
to failed services as well as start up Mule when remote dependencies are unavailable.
Let’s turn our attention now to Mule’s logging facilities.

C
Define the adaptive

retry policy template

Inject template
into ActiveMQ
connector

D

212 CHAPTER 8 Exception handling and logging
8.3 Logging with Mule
We’ve spent a lot of time discussing different ways to deal with errors that crop up in
Mule deployments. One of the most common ways you’ll deal with errors and other
diagnostic events is by logging them. Mule uses the Apache Commons Logging pack-
age along with the SLF4J logging facade (http://www.slf4j.org/) to allow you to
plug and play logging facilities. By default, Mule will use the popular log4j logging
library without any intervention on your part. We’ll see later on how we can change
this behavior to allow Mule to use other logging implementations, such as
java.util.logging. Let’s start off with a look at how logging works in a freshly
installed, standalone Mule instance.

8.3.1 Using log4j with Mule

Mule uses log4j as its default logging implementation. Log4j is a robust logging facility
that’s commonly used in many Java applications. Full documentation for using log4j is
available on the project’s web site at http://logging.apache.org/log4j/. Mule pro-
vides a default log4j configuration in the $MULE_HOME/conf/log4j.properties file.
Let’s look at this file now; listing 8.14 shows the default log4j.properties file.

#Default log level
log4j.rootCategory=INFO, console

log4j.appender.console=org.apache.log4j.ConsoleAppender
log4j.appender.console.layout=org.apache.log4j.PatternLayout
log4j.appender.console.layout.ConversionPattern=%-5p %d [%t] %c: %m%n

You can set custom log levels per-package here

Apache Commons tend to make a lot of noise which can clutter the log.
log4j.logger.org.apache=WARN

#Mule classes
log4j.logger.org.mule=INFO

Your custom classes
log4j.logger.com.mycompany=DEBUG

If you’ve worked with log4j at all before, this should seem familiar to you. Log4j sup-
ports the concept of log levels for packages. The log levels available are DEBUG, INFO,
WARN, ERROR, and FAIL, in ascending order of severity. The default log level is speci-
fied on B, which is logging messages of level INFO to the console. The format of the
log output is specified on C. You can tweak this to customize how logging is output
(see the log4j documentation for more information on how to do this). The log defi-
nitions on a per-package basis start on D, where the libraries for the org.apache proj-
ect (which are used extensively by Mule and Spring) are set at a logging level of WARN.
The logging level for the Mule packages is specified next on E. The default level is
INFO, but you’ll soon find it’s convenient to set this to DEBUG for troubleshooting and

Listing 8.14 The default log4j.properties file

Specify default
log level

B

Specify logging
format C

Specify logging level of
org.apache packageD Specify logging

level of org.mule
E

Specify logging level for
your packages

F

http://logging.apache.org/log4j/
http://www.slf4j.org/

213Logging with Mule
general insight into how Mule is behaving. Finally, you can change com.mycompany to
your company’s package prefix in order to set the debugging level for your custom
components, transformers, routers, and so forth. For instance, in order to set DEBUG
logging for Clood, Inc.’s custom classes we’d change F to this:

log4j.logger.com.clood=DEBUG

By default, Mule will write to a log file called mule.log. This file is located in
$MULE_HOME/logs. You can change this location by editing the wrapper.logfile vari-
able in $MULE_HOME/conf/wrapper.conf. Mule will write 1 megabyte of data to the
mule.log file before automatically rotating it. It’ll archive up to 10 rotations with the
stock configuration. This behavior is configured in wrapper.conf as well, by tuning
the wrapper.logfile.maxsize and wrapper.logfile.maxfiles variables.

 NOTE Getting diagnostics from log4j You occasionally need to gather debugging
information from log4j itself. This can be accomplished by setting the
log4j.debug property. If you’re launching Mule in the standalone fash-
ion discussed in chapter 7, this can be accomplished by appending the
string -M-Dlog4j.debug at the end of the command to launch Mule. The
following code shows how to do this:
mule -config my-config.xml -M-Dlog4j.debug

It’s also possible to specify an alternative log4j.properties file by speci-
fying the URL to the file. The following illustrates how to do this.

mule -config my-config.xml
-M-Dlog4j.configuration=file:///path/conf/log4j.properties

Now that you’ve seen how to configure log4j and SLF4J, let’s look at how we can use
Chainsaw to make it easier to view and analyze log entries.

NOTE You might want to use a logger other then log4j with Mule. This is an easy
task provided you’re using a logging implementation supported by SLF4J.
SLF4J supports JDK 1.4 logging, Logback, and the Apache Commons Log-
ging project. Simply download the SLF4J implementation for your version
of Mule, remove the existing SLF4J bridge and place the appropriate
SLF4J bridge in $MULE_HOME/lib/boot. On your next restart, Mule should
log using the new implementation.

8.3.2 Using Apache Chainsaw with log4j

Dealing with text logs can be difficult at times. Even in a Unix-like environment,
where a plethora of excellent text manipulation tools are available, it’s occasionally
useful to have a way to graphically look at and compare log data. This is especially true
when log data must be analyzed from multiple sources, a common scenario when
dealing with distributed environments and applications. Apache Chainsaw is an
attempt to provide such a tool for log4j. In this section we’ll investigate how to use
Apache Chainsaw to view log data from Mule.3

3 You must be using log4j as your SLF4J logging implementation to use Apache Chainsaw.

214 CHAPTER 8 Exception handling and logging
 Let’s start by installing Apache Chainsaw. You can download Chainsaw from the
project’s web site here: http://logging.apache.org/chainsaw. There are three options
for installation: running as a Java Webstart application, installing as on OS/X applica-
tion, or running from the command line. The GUI is functionally identical between
the three, so pick the means most convenient for you and start Chainsaw up. You
should see a screen that looks something like figure 8.4.

For now, select Let me define Receivers manually and then click OK to continue. You
should now be on the Welcome tab. Feel free to click around and explore the UI, and
then we’ll investigate how we can modify Mule’s default logging configuration in
order to see logs in Chainsaw.

 Chainsaw uses log4j’s receiver framework to accept remote logging events. One
such receiver it supports is the SocketHubAppender. The SocketHubAppender is
enabled in the log4j configuration to listen on a socket and publish logging events
to connected clients. Listing 8.15 demonstrates how to modify the default
log4j.properties file in $MULE_HOME/conf to get the SocketHubAppender going.

Default log level
log4j.rootCategory=INFO, console, sockethub

log4j.appender.console=org.apache.log4j.ConsoleAppender
log4j.appender.console.layout=org.apache.log4j.PatternLayout
log4j.appender.console.layout.ConversionPattern=%-5p %d [%t] %c: %m%n

Listing 8.15 Configure a SocketHubAppender in the default log4j.properties

Figure 8.4 Running Chainsaw for the first time

Send logs to
SocketHubAppender

http://logging.apache.org/chainsaw

215Logging with Mule
log4j.appender.sockethub=org.apache.log4j.net.SocketHubAppender
log4j.appender.sockethub.port=9999

You can set custom log levels per-package here

Apache Commons tend to make a lot of noise which can clutter the log.
log4j.logger.org.apache=WARN

Mule classes
log4j.logger.org.mule=INFO

Your custom classes
log4j.logger.com.mycompany=DEBUG

This configuration will set up a SocketHubAppender to listen for connections on port
9999. Clients connected to this socket will receive logging data from log4j. When you
start Mule you should be able to connect to this port, using a tool such as netcat or tel-
net, and you’ll see logging data sent to the socket. Let’s now see how to get Chainsaw
to connect to this port and receive logging events from Mule.

 To receive logging events in Chainsaw we’ll need to configure it to connect to the
SocketHubAppender we just configured. The receiver is configured in the right panel
of the Chainsaw GUI. You can configure a new receiver by clicking on the New
Receiver button in the upper left side of the panel. The screenshot in figure 8.5 illus-
trates this.

 After you click on this, you’ll be presented with options to configure the receiver.
We’re going to set the host to localhost, the name to Mule-1, and the port to 9999.
Once this is done, click the Refresh button and you should see the Mule-1 receiver
appear in the right panel along with a localhost tab on the top of the middle panel.
This should look something like figure 8.6.

 Assuming your Mule instance is generating logging events, you should start seeing
these appear in the localhost tab. As you can see, you can now filter through the log-
ging events by ID, timestamp, level, logger, message, and thread. The panel in the bot-
tom center of the screen displays the full content of the logged message. On the right
panel is a tree you can use to filter messages based on package hierarchy. This allows
you to ignore or focus on messages logged by classes in a certain package. You can
even change the color of log entries based on package or severity.

NOTE The log component You saw in chapter 6 how you can use the log compo-
nent to send message payloads to the Mule log. We’ll see further use of
this component in chapter 11 when we begin talking about logging in the
context of monitoring Mule instances.

The real value of a tool such as Chainsaw comes into play when you’re dealing with
several deployed Mule instances. Manually watching the log files on 10 Mule
instances, for instance, quickly becomes unmanageable. With Chainsaw, you can set
up a SocketHubAppender on each instance and monitor all 10 from a single window

Set which port
SocketHubAppender
will listen on

Define
SocketHubAppender

216 CHAPTER 8 Exception handling and logging
on your desktop. Even with a small number of Mule instances, it’s easy to see how this
can be useful. You’ll see more uses of Chainsaw in chapter 11, where we discuss how it
can be useful in the context of monitoring Mule instances.

Figure 8.5 Creating a new SocketHubReceiver

217Summary
8.4 Summary
In this chapter we investigated Mule’s error handling capabilities. We saw how to use
exception strategies to define how errors are handled on the connector and service
levels. We then saw how to leverage exception strategies with outbound routing to
manage what happens after an exception occurs. In the event of an endpoint failure,
you saw how exception-based routing enables you to send the same message to multi-
ple endpoints, trying each in succession. We turned our attention then to logging,
investigating how Mule uses the SLF4J logging facade to support multiple logging
implementations. We looked at how to configure Mule’s default logger, log4j, as well
as replace it with JDK 1.4 logging. Finally, we saw how to use Chainsaw as a graphical
front end to Mule’s logging data.

 In the next chapters we’ll be discussing other aspects of running Mule. We’ll con-
tinue an aspect crucial to Mule deployments: security.

Figure 8.6 Connect Chainsaw to SocketHubAppender to receive Mule logging events.

Securing Mule
Security is a challenge in application development and deployment—a challenge
that’s exacerbated by application integration. Single sign-on technologies such as
Kerberos, CAS, and LDAP minimize these burdens, but it’s unlikely that every appli-
cation in your environment supports the SSO technology at hand. Even if this is the
case, all bets are off when you’re integrating with applications outside of your com-
pany’s data centers. Thankfully, Mule employs the same architectural principles we
saw in part 1 in its handling of security. This gives you the opportunity to decouple
your security concerns from your routing, transformation, and components.

 You’ll see in this chapter how Mule’s security architecture will enable you to
quickly simplify what would otherwise be complex security tasks. These simplifica-
tions will cross-cut your authentication, authorization, and encryption concerns.
We’ll see how Clood, Inc., uses Mule’s security features to perform authentication
on endpoints, authorize users, and encrypt payloads. We’ll also demonstrate how
Mule enables you to pull this all together to intelligently and quickly secure your
integration infrastructure.

In this chapter
■ Securing Mule with Spring Security
■ Using JAAS with Mule
■ Using security filters to secure endpoints
218

219Demonstrating Mule security
9.1 Demonstrating Mule security
Before we dig into Mule’s security support, let’s look at an example that demonstrates
the flexibility of Mule’s security system. Consider the model defined in listing 9.1.

<model name="auditModel">
 <service name="auditService">
 <inbound>
 <http:inbound-endpoint
 address="http://localhost:8080/audit-trail-data"
 synchronous="true"
 >
 </http:inbound-endpoint>
 </inbound>
 <outbound>
 <pass-through-router>
 <jms:outbound-endpoint address="topic://audit-data"/>
 </pass-through-router>
 </outbound>
 </service>
</model>

Clood, Inc., uses this model to move data from an HTTP inbound endpoint to a JMS
topic, where it’s consumed by a remote office. There’s recently been some concern
about disquieting data entering the HTTP inbound endpoint. It seems like a malicious
user is trying to get malformed data onto the JMS topic. To mitigate these concerns,
you decide to force clients to encrypt the data being sent to the inbound endpoint
using a key shared with the remote office. Additionally, you decide to enforce HTTP
basic auth on the inbound endpoint. This will tie into Clood’s LDAP infrastructure to
require clients to supply a HTTP basic auth header for every request.

 These requirements can be implemented by Mule’s security support. Listing 9.2
illustrates how to use Mule’s support for Spring Security to accomplish both tasks.

<mule-ss:security-manager>
 <mule-ss:delegate-security-provider
 name="ldap-security-provider"
 delegate-ref="authenticationManager"/>
</mule-ss:security-manager>

<security-manager>
 <password-encryption-strategy
 name="passwordEncryption"
 password="password"/>
</security-manager>

<model name="securityManagerHttpPbeModel">
 <service name="securityManagerHttpPbeService">
 <inbound>
 <http:inbound-endpoint

Listing 9.1 Echoing data without encryption

Listing 9.2 Using password-based encryption to encrypt the payload of JMS messages

Accept data from HTTP
inbound endpoint

Forward data
to JMS topic

Define Mule Security
Manager for LDAP B

Define Mule Security
Manager for password-
based encryption

C

220 CHAPTER 9 Securing Mule
 address="http://localhost:8080/audit-trail-data"
 synchronous="true">
 <mule-ss:http-security-filter realm="audit-trail"/>
 </http:inbound-endpoint>
 </inbound>
 <outbound>
 <pass-through-router>
 <jms:outbound-endpoint address="topic://audit-data">
 <transformers>
 <encrypt-transformer
 strategy-ref="passwordEncryption"/>
 </transformers>
 </vm:outbound-endpoint>
 </pass-through-router>
 </outbound>
 </service>
</model>

We’ll dig into the details of listing 9.2 as this chapter progresses. For now, though, you
can see we implemented the security requirements by adding a small amount of XML.
The security managers configured on B and C centralized the security mechanisms
used by the endpoints on D and E. This allows you to define security mechanisms,
such as LDAP providers or encryption schemes, once and reuse them throughout your
Mule configurations. It also means that you can make changes to the security manag-
ers in one place and have those changes propagate to all of your endpoints.

 Let’s take a deeper look into Mule’s security features. We’ll start off by investigating
how security managers and providers allow you to integrate with external authentica-
tion and authorization systems.

9.2 Using security managers and
understanding security providers
Mule’s security functionality is supplied to components, endpoints, and transformers
by security managers. Security managers implement an interface, org.mule.api.
security.SecurityManager, which abstracts the details of an underlying security
mechanism. The password encryption strategy configured in listing 9.2 demonstrates
Mule’s default security manager. The default security manager provides support for
basic security functionality, such as password and secret-key–based encryption. Mule
provides additional security manager implementations that support more sophisti-
cated security implementations such as Spring Security, which you also saw in
listing 9.2, or JAAS and PGP, which we’ll see later in this chapter.

 As you’ve seen, user authentication and authorization is handled by a security
manager as well. This is done with the help of a Mule security provider. A security pro-
vider is an implementation of an interface, org.mule.api.security.Security-
Provider, that’s responsible for authenticating and authorizing a message. Mule
provides security managers and security providers for common back-end authentica-
tion schemes, such as Spring Security and JAAS.

D
Enforce authentication

on inbound endpoint

E

Encrypt payloads of
messages leaving

outbound endpoint

221Using security managers and understanding security providers
 In this section we’ll look at how to use security managers and security providers to
secure your Mule services. We’ll start off by looking at using Spring Security, where
we’ll examine authenticating users against memory and LDAP user databases. We’ll
then turn our attention to JAAS, the Java Authentication and Authorization Service,
and see how we can similarly leverage that to modularize our security concerns.

9.2.1 Using Spring Security

Spring Security, formerly know as Acegi, is an officially supported security product of
the Spring Portfolio. Using Spring Security with Mule follows the pattern we
described earlier. After defining your Spring Security configuration, which we’ll see
how to do shortly, you define Mule Spring Security providers and managers that can
be used on your endpoints.

NOTE Before you can use Spring Security with Mule, you’ll need to include the
Spring Security and Mule Security namespaces. The schema definitions
are defined as follows:

<mule
 xmlns="http://www.mulesource.org/schema/mule/core/2.2"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:spring="http://www.springframework.org/schema/beans"
 xmlns:mule-ss=
 "http://www.mulesource.org/schema/mule/spring-security/2.2"
 xmlns:ss="http://www.springframework.org/schema/security"
 xsi:schemaLocation=" http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans-2.5.xsd
 http://www.mulesource.org/schema/mule/core/2.2
 http://www.mulesource.org/schema/mule/core/2.2/mule.xsd
 http://www.mulesource.org/schema/mule/spring-security/2.2
 http://www.mulesou.../spring-security/2.2/mule-spring-security.xsd
 http://www.springframework.org/schema/security
 http://www.springfr../schema/security/spring-security-2.0.xsd"
>

Mule uses the security manager to broker authentication to the security provider and
the back-end security resource, such as a database of user accounts or an LDAP direc-
tory. A bit confusingly, Mule’s Spring Security provider delegates to a Spring Security
manager. The Spring Security manager then delegates to back-end authentication
schemes, such as LDAP or an in-memory database of usernames. Figure 9.1 illustrates
this relationship.

 The additional level of indirection serves a purpose—it allows Spring Security to
attempt multiple authentication mechanisms when authenticating users. This is useful
when authentication data is spread across multiple data sources, such as LDAP and
JDBC. You may want to try LDAP authentication first and, if that fails, try JDBC authen-
tication. Let’s take a look at two ways we can configure Spring Security with Mule. First
we’ll look at using an “in-memory” DAO to authenticate and authorize users. We’ll
then turn our attention to using Spring Security with an LDAP directory.

222 CHAPTER 9 Securing Mule
USER SECURITY WITH A MEMORY USER SERVICE

For simple applications, testing, and experimentation, it can be useful to use a static
database for user information. Spring Security provides such a mechanism through its
user service. The user service maintains a static map of users, passwords, and roles in
memory. Listing 9.3 demonstrates configuring the user service along with a Spring
Security manager and provider.

<spring:beans>
 <ss:authentication-manager
 alias="authenticationManager"/>

 <ss:authentication-provider>
 <ss:user-service id="userService">
 <ss:user name="john"
 password="password"
 authorities="ROLE_ADMIN"/>
 <ss:user name="david"
 password="password"
 authorities="ROLE_ADMIN"/>
 </ss:user-service>
 </ss:authentication-provider>
</spring:beans>

<mule-ss:security-manager>
 <mule-ss:delegate-security-provider
 name="memory-dao"
 delegate-ref="authenticationManager"/>

</mule-ss:security-manager>

<model>
...
</model>

The Mule Spring Security manager is defined on E. The security provider is then
configured on F to delegate to the Spring Security manager defined on B. The man-
ager will implicitly use the Spring Security authentication provider defined on C

Listing 9.3 Defining a memory user service for endpoint authentication

MULE SPRING
SECURITY PROVIDER

MULE SPRING
SECURITY
MANAGER

SPRING
SECURITY MANAGER

SPRING
SECURITY
PROVIDER

SPRING
SECURITY
PROVIDER

Figure 9.1 Delegation between Mule Spring Security and Spring Security

Begin Spring bean configuration Define Spring Security
authentication
manager

B

Define Spring
Security
authentication
providerC

Define in-
memory user
service

Define userD

Define Mule Spring
Security manager

E

Define Mule Spring
Security provider

F

223Using security managers and understanding security providers
which is configured with the memory user service. The definitions for the user service
start on D. The format used to define a user is described here:

While the in-memory user service is a powerful tool for testing and simple authentica-
tion, you’ll likely be facing more complex authentication schemes in your environ-
ment. One such authentication scheme is provided by an LDAP directory, such as
OpenLDAP, Apache Directory Server, or Microsoft’s Active Directory. Let’s look at
how to use Spring Security’s LDAP support to authenticate against an LDAP directory.
USER SECURITY WITH LDAP

LDAP has emerged as a common directory implementation in many organizations, as
evident from the popularity of products such as OpenLDAP and Active Directory.
Because it’s common to store authentication data alongside organizational data in a
directory, it’s important for a security framework to support LDAP as an authentication
and authorization mechanism. Spring Security is no exception and as such provides
rich support for LDAP directories. Let’s look at how to configure Mule to use Spring
Security to authenticate against an OpenLDAP directory. Listing 9.4 defines a security
manager and provider that authenticate off Clood’s OpenLDAP server.

<spring:beans>

 <ss:ldap-server
 root="dc=clood,dc=com"
 url="ldap://ldap.clood.com:389" />

 <ss:ldap-authentication-provider
 user-dn-pattern="uid={0},ou=people"
 group-search-base="ou=groups"/>

 <ss:authentication-manager alias="authenticationManager"/>

 <mule-ss:security-manager>
 <mule-ss:delegate-security-provider
 name="memory-dao"
 delegate-ref="authenticationManager"/>
 </mule-ss:security-manager>

</spring:beans>

Clood’s LDAP server is defined on B. We define the URL of the server along with the
root distinguished name (DN) we want to query from. A distinguished name is used to
uniquely identify an object in the LDAP directory. The Spring Security LDAP authenti-
cation provider is then defined on C. We define two DN patterns here, one for user

Listing 9.4 Defining an LDAP directory for endpoint authentication

username=password,ROLE_1,ROLE_2,ROLE_3

User definition

Username Password Comma-separated
list of roles

Define the LDAP serverB

Define the LDAP
authentication provider

C

D
Define Mule

Security manager

Define Spring
Security providerE

224 CHAPTER 9 Securing Mule
lookups and another for group lookups. The user-dn-pattern tells Spring Security
how to look up usernames from the directory. The {0} here will be filled in with the
MULE_USER property as defined when a user attempts authentication on an endpoint.
The group-search-base tells Spring Security where to begin searches for authority
data. These are usually defined by groups the user is a member of in LDAP. Groups the
user is a member of are capitalized and prepended with the string ROLE_. For
instance, users in the LDAP group admin would have the ROLE_ADMIN authorities
assigned to them when they’re authenticated. The Spring Security authentication
manager is defined in D and finally referenced by the Mule Spring Security manager
on E. Endpoints referencing this security manager will now use Clood’s LDAP server
for authentication.

 We’ve only touched on the flexibility Spring Security offers in this section. You’re
encouraged to check out the official documentation at http://static.springframe-
work.org/spring-security/site/index.html for more info. Now that you’re comfortable
with configuring Spring Security for both in-memory and LDAP authentication scenar-
ios, let’s look at how to use JAAS with Mule.

9.2.2 Using JAAS

JAAS, the Java Authentication and Authorization Service, is a security framework that
ships with the JRE. It allows you to plug in authentication mechanisms using an exter-
nal configuration file. This enables you to keep authentication details independent of
your Mule configuration. If you’re familiar with Unix operating systems, JAAS is simi-
lar to PAM—it abstracts out authentication and authorization configuration from an
application. In this section we’ll configure Mule to authenticate using JAAS. For the
purposes of this example we’ll be using the DefaultLoginModule supplied by Mule. It
allows us to define a static database of usernames, much like the in-memory user ser-
vice we used with Spring Security. Listing 9.5 illustrates how to configure the Default-
LoginModule in jaas.conf.

jaas-simple {
 org.mule.module.jaas.loginmodule.DefaultLoginModule required
 credentials="john:password"
 debug=true;
};

In the jaas.conf file, we declare a LoginContext called jass-simple that requires
the DefaultLoginModule. We then specify the map of login credentials and enable
debugging. Listing 9.6 illustrates how to set up a JAAS security manager to reference
this file.

<jaas:security-manager>
 <jaas:security-provider

Listing 9.5 Using jaas.conf to configure the DefaultLoginModule

Listing 9.6 Referencing jaas.conf with a JAAS security manager

Define
jaas:security-managerB

http://static.springframework.org/spring-security/site/index.html

225Securing endpoints with security filters
 name="jaas-provider"
 loginContextName="jaas-simple"
 loginConfig="jaas.conf"/>
</jaas:security-manager>

The Mule configuration is equally straightforward. We define a JAAS security manager
on B and then define the JAAS security provider on C. The security provider is con-
figured with the location of the jaas.conf file along with the loginContextName
(jaas-simple in this case). You now have pluggable authentication module support
for Mule. As you probably expect, a production jaas.conf will likely be more com-
plex than what’s in listing 9.5. We’ll be seeing more of JAAS in the next section when
we discuss authenticating JMS messages. For more information about configuring
JAAS, please see http://java.sun.com/j2se/1.4.2/docs/guide/security/jaas/JAASRef-
Guide.html.

 By now you should have a good grasp of configuring Mule’s security functionality.
You’ve seen how security managers and security providers work together to authenti-
cate and authorize users. We introduced Spring Security and saw how to configure in-
memory and LDAP-based authentication and authorization. We then saw how to use
JAAS to achieve externalized, pluggable authentication and authorization. You might
be wondering, though, what good all of this is if we haven’t actually authenticated any-
thing yet. Let’s see how we can use the techniques to achieve endpoint security with
security filters.

9.3 Securing endpoints with security filters
Security filters allow you to control access, authorization, and encryption on your end-
points. We’ll start off this section by looking at how to filter HTTP inbound endpoints
using Spring Security and the HTTP security filter. We’ll then see how we can use the
JAAS security filter to authenticate JMS messages. We’ll finally look at encrypting mes-
sage payloads, using both password-based and public key encryption methods.

9.3.1 Securing an HTTP endpoint with Spring Security

Let’s start our discussion on security filtering by looking at securing an HTTP inbound
endpoint with the HTTP security filter. The HTTP security filter will attempt to authen-
ticate every HTTP request it receives using HTTP basic authentication. Requests that
don’t contain a basic authentication header or whose header doesn’t pass validation
by the relevant security manager aren’t passed by the filter. Listing 9.7 shows how to
configure an HTTP security filter using Spring Security and a memory user service.

<spring:beans>

 <ss:authentication-provider>
 <ss:user-service id="userService">
 <ss:user name="john" password="password" authorities="ROLE_ADMIN"/>
 </ss:user-service>

Listing 9.7 Defining a Basic HTTP security filter on an HTTP inbound endpoint

Reference LoginContext
and jaas.conf file

C

Define user service beansB

http://java.sun.com/j2se/1.4.2/docs/guide/security/jaas/JAASRefGuide.html

226 CHAPTER 9 Securing Mule
 </ss:authentication-provider>

 <ss:authentication-manager alias="authenticationManager">

</spring:beans>

<mule-ss:security-manager>
 <mule-ss:delegate-security-provider
 name="memory-dao"
 delegate-ref="authenticationManager"/>
</mule-ss:security-manager>

<model name="httpModel">
 <service name="httpService">
 <inbound>
 <http:inbound-endpoint
 address="http://localhost:8081/secure"
 synchronous="true">
 <mule-ss:http-security-filter realm="mule"/>
 </http:inbound-endpoint>
 </inbound>
 <echo-component/>
 </service>
</model>

The memory user service is defined by the beans on B, which are delegated to by the
Mule security manager defined on C. Now we’ll see where these come into play. The
HTTP security filter on D, defined inside the HTTP inbound endpoint, will require a
client to supply HTTP basic authentication credentials before accepting the message.
These credentials are then passed to the Mule security manager for authentication.
Remember that you can swap out the authentication mechanism, say from in-memory
DAO to LDAP directory, by simply changing the delegate reference inside the security
manager. No changes need to be made to the security filter. Now that we’ve seen how
to do simple authentication with the HTTP security filter, let’s look at how to secure
JMS messages.

Change the delegate reference in a security manager to swap out authen-
tication mechanisms.

9.3.2 Performing JMS header authentication with JAAS

We can use JMS properties to authenticate JMS messages in much the same way we just
used HTTP headers to authenticate HTTP requests. Mule abstracts the authentication
data it receives from transports onto a special message property called MULE_USER.
Mule, by default, will map JMS message properties onto
the Mule message. We can take advantage of this fact
and set a MULE_USER String property on each of our JMS
messages. If we format the value of that property cor-
rectly, a security filter on a JMS endpoint can attempt to
authenticate the message. The diagram at the right
shows how to format the MULE_USER value.

Define Mule
security manager

C

D
Define security filter

on HTTP endpoint

BEST
PRACTICE

Plain john::password

MULE_USER

Password
encryption

strategy

PasswordUsername

Delimeter

227Securing endpoints with security filters
The MULE_USER value consists of a password encryption strategy, a space, a username,
a delimiter (::) and a password. The encryption strategy reference is always unen-
crypted. The username, delimiter, and password are either all encrypted or all plain-
text. In the figure, we’re specifying the encryption strategy as Plain (no encryption)
and sending a credential string consisting of the username john and the password
password. The security filter will split this string on the :: delimiter and submit the
username and password to the security provider for authentication.

 Let’s see how this works. Listing 9.8 defines a JMS inbound endpoint with a JAAS
security filter. It’ll only pass messages that contain a valid MULE_USER property to the
echo component.

<jaas:security-manager>
 <jaas:security-provider
 name="jaas-simple"
 loginContextName="jaas-simple"
 loginConfig="jaas.conf"/>
</jaas:security-manager>

<model name="jaasModel">
 <service name="jaasService">
 <inbound>
 <jms:inbound-endpoint queue="messages">
 <jaas:jaas-security-filter/>
 </jms:inbound-endpoint>
 </inbound>
 <echo-component/>
 </service>
</model>

Assuming the JAAS security provider defined on B is using the same jaas.conf we
defined in listing 9.4, the JAAS security filter on C will pass any JMS message contain-
ing a MULE_USER property that matches diagram on the previous page.

 We’re naturally wary about passing plaintext passwords around in JMS messages.
We can remedy this by encrypting the credentials contained in the MULE_USER prop-
erty. We can use a password encryption strategy to encrypt the password in the header.
Adding a password encryption strategy to the security manager in listing 9.9 accom-
plishes this.1

<jaas:security-manager>
 <jaas:security-provider
 name="jaas-simple"
 loginContextName="jaas-simple"
 loginConfig="jaas.conf"/>
 <jaas:password-encryption-strategy

Listing 9.8 Using JAAS to authenticate JMS messages

Listing 9.9 Using password-based encryption with JAAS

1 We’ll see how to use the password encryption strategy to encrypt entire message payloads in the next section.

B

C

228 CHAPTER 9 Securing Mule
 name="PBE"
 password="password" />
</jaas:security-manager>

<model name="jaasModel">
 <service name="jaasService">
 <inbound>
 <jms:inbound-endpoint queue="messages">
 <jaas:jaas-security-filter/>
 </jms:inbound-endpoint>
 </inbound>
 <echo-component/>
 </service>
</model>

We declare the password encryption strategy on B along with the password we want to
use. Under the covers, the password encryption strategy uses the Java Cryptographic
Extensions’ PBEWithMD5AndDES algorithm to decode the encrypted part of the
MULE_USER value. The following diagram shows what the new value of MULE_USER looks
like after encryption.

We first change Plain to PBE, which matches the name of the password encryption
strategy defined on B. This is followed by the encryption of Plain john::password
using PBE with the specified password. When decrypted, the result matches the user-
name, delimiter, and password pair from figure 9.3. The security manager can now
decode and authenticate the encrypted credentials.

 Sometimes we need to encrypt the entire payload of a message and not just the
authentication credentials. This is useful when a secure transport such as SSL or a VPN
is unavailable. Let’s look at how we can use encryption to secure the contents of our
payloads.

9.3.3 Using password-based payload encryption

We saw an example of password-based encryption at the beginning of this chapter. If
you recall listing 9.2, we encrypted the payloads of JMS messages using a password.
Recipients of these JMS messages would need to use the same password to decrypt the
payload and process the contents. In that example, we only showed the encryption
side of the payload transformation. Let’s now take a look at how to perform end-to-
end payload encryption of a message, with both encryption and decryption.
Listing 9.10 illustrates a service that accepts a JMS message off a queue, encrypts it,
and sends it to another JMS queue that decrypts the message and forwards it off.

B

PBE pEtDEBiQnNRh+tmO8SttSQ==

MULE_USER

Password
encryption

strategy

Encrypted
username and
password pair

229Securing endpoints with security filters

<security-manager>
 <password-encryption-strategy name="PBE" password="password"/>
</security-manager>

<model name="pbeModel">

 <service name="pbeInService">
 <inbound>
 <jms:inbound-endpoint queue="messages.in"/>
 </inbound>
 <outbound>
 <pass-through-router>
 <jms:outbound-endpoint queue="services.decryption">
 <transformers>
 <encrypt-transformer strategy-ref="PBE"/>
 <jms:object-to-jmsmessage-transformer/>
 </transformers>
 </jms:outbound-endpoint>
 </pass-through-router>
 </outbound>
 </service>

 <service name="pbeOutService">
 <inbound>
 <jms:inbound-endpoint queue="services.decryption">
 <transformers>
 <jms:jmsmessage-to-object-transformer/>
 <decrypt-transformer strategy-ref="PBE"/>
 </transformers>
 </jms:inbound-endpoint>
 </inbound>
 <outbound>
 <pass-through-router>
 <jms:outbound-endpoint queue="messages.out"/>
 </pass-through-router>
 </outbound>
 </service>

</model>

We configure the password encryption strategy on B as we have previously. The
encrypt transformer is then used on C to encrypt the outbound message payload before
it’s placed on the JMS queue. When the message is received on D it’s decrypted by the
decrypt transformer. Both the encrypt transformer and decrypt transformer refer to the
encryption strategy by its name, PBE.

 NOTE In addition to message-level encryption, Mule offers SSL and TLS versions
of some of the transports we discussed in chapter 3. Here are some of the
transports that support SSL or TLS:

Listing 9.10 Encrypting the payload of messages using password-based encryption

B
Define encryption

strategy

C
Encrypt payload of
outbound message

D
Decrypt payload of

inbound message

■ HTTPS
■ IMAPS

■ POP3S
■ XMPPS

■ SMTPS

230 CHAPTER 9 Securing Mule
These transports generally require you to supply information about your
certificate keystores. The online Mule documentation will instruct you
how to do this for the transport in question.

9.3.4 Decrypting message payloads with the PGP SecurityFilter

We just saw how to use password-based encryption to transparently encrypt message
payloads. The main flaw with this sort of encryption is that the password must be
shared between both parties wishing to exchange messages. As you share the password
with more parties, the risk of it becoming compromised grows. This is a major motiva-
tion behind the popularity of public key encryption. Public key encryption uses key pairs
rather then shared keys. The strength of public key encryption relies on the fact that
each user has a closely guarded private key and a widely distributed public key. When
a user wants to send a message, he can encrypt the message using the recipient’s pub-
lic key. The recipient is then able to decrypt the message using her private key. The
sender is also able to “sign” a message using his private key. The recipient can subse-
quently verify this message using the sender’s public key to guarantee the authenticity
of the message.

 Robust public key implementations are readily available. Mule uses the Cryptix
library’s PGP support to perform decryption and signature verification of messages. In
addition to this, GNU Privacy Guard (GPG) and OpenPGP are popular client-side alter-
natives. But using public key encryption securely takes more than software. As public
key encryption relies on the authenticity of public keys, having trustworthy processes
and policies to disseminate and verify public keys is crucial. This infrastructure is
referred to as PKI, or Public Key Infrastructure. For a small organization, this might con-
sist of hand-delivering public keys to individuals on CD-ROM to ensure authenticity.
For a larger authentication, the challenge of key distribution becomes more complex.
Implementing a robust PKI is beyond the scope of this book, but numerous dedicated
resources, both online and in print, can guide you in the right direction.

Implement a robust PKI to facilitate the sharing of public keys.

PGP is a popular protocol for performing public key encryption. Mule’s PGP module
supplies an inbound security filter that can be used to verify signatures and decrypt
messages. Let’s look at using a PGP security filter to accept only PGP messages that we
can decrypt and perform successful signature verification on. Listing 9.11 illustrates
how to do this.

<spring:bean id="pgpKeyManager"
 class="org.mule.module.pgp.PGPKeyRingImpl"
 init-method="initialise">
 <spring:property
 name="publicKeyRingFileName"
 value="conf/public.key.gpg"/>
 <spring:property

Listing 9.11 Decrypting PGP-encrypted JMS payloads using a PGP security filter

BEST
PRACTICE

Define pgpKeyManagerB

Public key ring

231Securing endpoints with security filters
 name="secretKeyRingFileName"
 value="conf/secret.key.gpg"/>
 <spring:property
 name="secretAliasId"
 value="0x7927DE78"/>
 <spring:property
 name="secretPassphrase"
 value="mule"/>
</spring:bean>

<spring:bean id="credentialAccessor"
 class="org.mule.security.MuleHeaderCredentialsAccessor"/>

<pgp:security-manager>
 <pgp:security-provider
 name="pgpSecurityProvider"
 keyManager-ref="pgpKeyManager"/>
 <pgp:keybased-encryption-strategy
 name="keyBasedEncryptionStrategy"
 keyManager-ref="pgpKeyManager"/>
</pgp:security-manager>

<model name="pgpModel">

 <service name="pgpService">
 <inbound>
 <jms:inbound-endpoint
 queue="messages.encrypted" />
 </inbound>
 <outbound>
 <pass-through-router>
 <vm:outbound-endpoint
 path="services.decryption"/>
 </pass-through-router>
 </outbound>
 </service>

 <service name="out">
 <inbound>
 <vm:inbound-endpoint path="services.decryption">
 <pgp:security-filter
 strategyName="keyBasedEncryptionStrategy"
 signRequired="true"
 keyManager-ref="pgpKeyManager"
 credentialsAccessor-ref="credentialAccessor"/>
 </vm:inbound-endpoint>
 </inbound>
 <outbound>
 <pass-through-router>
 <jms:outbound-endpoint queue="messages.decrypted"/>
 </pass-through-router>
 </outbound>
 </service>

</model>

Private key ring

Alias of private key used
for decryption

Private key pass-phrase

C
Define

credentialAccesorConfigure PGP
security manager

Declare inbound
endpoints

D
Pass valid messages through

to outbound endpoint

232 CHAPTER 9 Securing Mule
We start off by defining a key manager to handle the details required for PGP on B.
As you see here, we specify the location of our key rings, the key alias, and secret pass-
word. The credential accessor is defined on C. This instructs Mule how to infer the
user who encrypted or signed the payload from the message. In this case we’ll use the
MuleHeaderCredentialsAccessor, which will have Mule use the MULE_USER message
property to identify who encrypted or signed the message. The decryption and signa-
ture verification occur on D. Messages that can’t be decrypted or verified are handled
by the exception strategy for the service. Messages whose payloads can be decrypted
and verified are passed.2

NOTE If you’re using a Sun JVM, you’ll most likely need to install the Unlimited
Strength Jurisdiction Policy files to use Mule’s PGP support. These are
available on the Java SE downloads page for the Java version you’re using.
The Java 5 Unlimited Strength Jurisdiction Policy files, for instance, are
located at http://java.sun.com/javase/downloads/index_jdk5.jsp. Instal-
lation instructions are included in the archive.

In this section we saw how security filters equip us with the means to verify the authen-
ticity of messages arriving and leaving our endpoints. We first saw how to use Spring
Security in conjunction with an HTTP security filter to achieve basic authentication on
HTTP endpoints. We then saw how to use JAAS and the JAAS security filter to perform
header authentication on JMS messages. We finally saw how to leverage public key
encryption to securely decrypt and verify the payloads of Mule messages.

9.4 Summary
We saw in this chapter how Mule simplifies security for integration projects. This sim-
plification is hopefully evident from our discussion of security managers and security
providers. You saw that you can use different security managers, such as Spring Secu-
rity and JAAS, to independently provide security services for endpoint filters. We saw
how to use endpoint filters to provide basic authentication for HTTP endpoints,
header-based authentication for JMS messages, and public key security for message
payloads with PGP.

 Now that you’re comfortable with security in Mule, we’ll spend the next two chap-
ters talking about two other cross-cutting concerns in many integration scenarios—
transactions and monitoring.

2 You’ll need a PGP implementation to generate a key pair and encrypt messages. Good alternatives are Cryptix
(http://www.cryptix.org/) for programmatic manipulation and GNU Privacy Guard (http://
www.gnupg.org/) for manipulation via the command line.

http://www.cryptix.org/
http://www.gnupg.org/
http://java.sun.com/javase/downloads/index_jdk5.jsp

Using transactions
with Mule
A transaction, whether occurring in software or in real life, is a series of events that
need to occur in a specified sequence, leaving all participants in some predeter-
mined state. Leaving the software world aside for a moment, let’s consider a real-
world example: paying for groceries in a supermarket. In such a transaction, the
following steps need to occur in the specified order:

1 You place your groceries on the counter.
2 The cashier scans each item, adding the price of the item to the register.
3 The cashier sums the prices of the items and communicates the total for you.
4 You present the cashier with a credit card to pay for the groceries.
5 The cashier charges your credit card with the amount for the groceries.
6 The cashier returns the credit card to you.
7 The cashier bags your groceries.
8 You take the bag of groceries and leave the supermarket.

In this chapter
■ Introducing transactional concepts
■ Using single resource transactions
■ Using XA transactions with multiple resources
233

234 CHAPTER 10 Using transactions with Mule
This seemingly mundane undertaking is actually a fairly complex orchestration of
events. The events need to happen in the order specified—the cashier can’t scan your
items until you’ve put them on the counter; he can’t total their prices unless he scans
them; he won’t let you leave the store without paying for them; and so on. The success
or failure of each event is also important. If the cashier won’t tell you the price of the
items, you probably won’t give him your credit card. Likewise, if your credit card is
declined, the cashier is unlikely to bag your groceries (or let you leave the store with
them). In this sense, the preceding transaction is an all-or-nothing proposition. When
you walk out of the grocery store, only two states should be possible: you leave with the
groceries and their monetary amount charged to your credit card, or you leave with-
out any groceries and your credit card is uncharged.

 Similar scenarios are present in software applications. Updating related data in a
database, for instance, usually requires that all or none of the tables are updated. If
some failure occurs halfway through the database update, then the database is left in
an inconsistent state. To prevent this state, you need some mechanism to roll back the
data that has been updated to the point of failure. This makes the database update
atomic—even though a sequence of disconnected events are taking place (the updat-
ing of different tables), they’re treated as a single operation that’s either completely
successful or completely rolled back.

 From this atomicity we can also start to make assumptions about consistency.
Because the database operations are treated in a singular fashion, the database is
guaranteed to be in defined states whether the transaction has completed or failed,
making the operation consistent.

 While a transaction is taking place, it’s important other transactions aren’t
affected. This is closely related to consistency. If another process were querying a table
while the database update we discussed was occurring, and then the update was subse-
quently rolled back, the other process might’ve read data that’s now invalid. This can
be avoided, for instance, by not only rolling back the failed database updates but also
by locking the tables being updated. We refer to such behavior as being isolated.

 Transactions must also be permanent in nature. If the cashier’s card reader tells
him your card has been charged, but in reality it hasn’t, then the grocery store is out
the cost of your groceries. Conversely, if the cashier hides some of your groceries
under the counter to take home with him after his shift, you’ve been charged for
goods you haven’t received. In both cases we want to make sure the transaction has
been completely applied to each resource being affected. When this is guaranteed,
the transaction is referred to as durable.

 These four properties—atomicity, consistency, isolation, and durability—when
taken together form the acronym ACID. This term is commonly used to discuss the
transactions we’ll be examining in this chapter. Such transactions can play an impor-
tant role in integration scenarios—the nature of distributed data and systems often
necessitates their use. Unfortunately, dealing with transactions programmatically can
be esoteric and error-prone. Mule, thankfully, makes it easy to declare transactional

235Using transactions with a single resource
properties on your endpoints. We’ll see in this chapter how to add transactional prop-
erties to our Mule services. We’ll be covering the two major types of transactions sup-
ported by the Java and JEE ecosystems—single and multiple resource transactions.
We’ll start off by examining how single resource transactions let us operate on a single
resource, such as a database or JMS broker, transactionally. We’ll then see how we can
use transactions across multiple resources. Finally, we’ll look at how we can use excep-
tion strategies in conjunction with transactions to provide custom rollback and com-
mit behavior. As usual, we’ll examine each of these features through the lens of Clood,
Inc. You’ll see how Mule’s transactional support augments the reliability of the inte-
gration projects.

10.1 Using transactions with a single resource
Let’s start off by examining how to operate on a single resource transactionally with
Mule. A single resource transaction implies a set of operations executed on a single
provider, such as a particular database or JMS broker. In the context of Mule, transac-
tions of this sort will occur on or across endpoints using the same connector. For
instance, you might use a single-resource JMS transaction on a JMS inbound endpoint
or a single-resource JDBC transaction on a JDBC outbound endpoint. Single-resource
transactions can also be used across inbound and outbound endpoints, provided the
underlying connector is the same. You could, for instance, accept a JMS message on an
inbound endpoint and send the message to multiple JMS queues using a multicasting
router on an outbound endpoint. Assuming the queues involved were all hosted on
the same JMS broker, a failure in sending the message to one of the remote JMS
queues could trigger a rollback of the entire operation, up to and including the mes-
sage being received on the inbound endpoint.

 In this section we’ll start off by looking at how to operate on JDBC endpoints trans-
actionally. We’ll then see how we can use these same techniques to consume and send
JMS messages in transactions.

10.1.1 Using JDBC endpoints transactionally

Being able to operate transactionally against a database is critical for many applica-
tions. The nature of relational databases usually means that data for a single business
entity is stored across numerous tables—joined to each other with foreign key refer-
ences. When this data is updated, care must be taken that every required table is
updated or it isn’t. Anything else could leave the data in an inconsistent state. Implicit
transactional behavior can also be required of inserts to a single table. Perhaps you
want a group of insert statements to occur atomically to ensure that selects against the
table are consistent.

 Clood, Inc., extensively uses relational databases for its day-to-day operations. We
saw in chapter 3 how Clood was using monitoring data from emails to populate a table
of alert data. To augment this data, Clood’s operations team has deployed a perfor-
mance monitoring application to run against Clood’s clients’ web applications. This

236 CHAPTER 10 Using transactions with Mule
application periodically runs a series of tests against a client’s web site and writes the
results of the tests, represented as XML, to a file. The contents of this file are then sent
at a certain interval to a JMS topic for further processing.

 Mule is being used to accept this data and persist it to Clood’s monitoring data-
base. The payload of these messages must be persisted to a database in an all-or-noth-
ing manner. If any of the row inserts fail then the entire transaction should be rolled
back. This ensures the monitoring data for a given client is consistent when it’s
queued by a web-facing analytics engine. Let’s see how to use a JDBC outbound end-
point to enforce this behavior. Listing 10.1 illustrates how Clood accomplishes this.

NOTE For transactions with MySQL to work properly, they must be supported by
an underlying engine that supports transactions, such as InnoDB.

<spring:beans>
 <spring:import resource="spring-config.xml"/>
</spring:beans>

<jms:activemq-connector
 name="jmsConnector"
 specification="1.1"/>
<jdbc:connector name="jdbcConnector" dataSource-ref="dataSource">
 <jdbc:query key="statsInsert"
 value="
 INSERT INTO PERF_METRICS VALUES
 (0,#[map-payload:CLIENT_ID],'AVG_RESPONSE_TIME',
 #[map-payload:AVG_RESPONSE_TIME],
 #[map-payload:TIMESTAMP]),
 (0,#[map-payload:CLIENT_ID], 'MED_RESPONSE_TIME',
 #[map-payload:MED_RESPONSE_TIME],
 #[map-payload:TIMESTAMP]),
 (0,#[map-payload:CLIENT_ID],'MAX_RESPONSE_TIME',
 #[map-payload:MAX_RESPONSE_TIME],
 #[map-payload:TIMESTAMP])
 "/>
</jdbc:connector>

<model name="URLAlertingModel">
 <service name="URLAlertingService">
 <inbound>
 <jms:inbound-endpoint topic="monitoring.performance"/>
 </inbound>
 <component class="com.clood.monitoring.URLMetricsComponent"/>
 <outbound>
 <pass-through-router>
 <jdbc:outbound-endpoint queryKey="statsInsert">
 <jdbc:transaction action="ALWAYS_BEGIN"/>
 </jdbc:outbound-endpoint>
 </pass-through-router>
 </outbound>
 </service>
</model>

Listing 10.1 Using a JDBC outbound endpoint transactionally

Declare INSERT
statement

b

cExecute INSERT
statement

dStart new transaction

237Using transactions with a single resource
Our insert statement is declared on B. It inserts data into the PERF_METRICS table
using data from the map populated by the URLMetricsComponent. URLMetricsCom-
ponent builds this map from the JMS message received on the monitoring.perfor-
mance topic. The insert statement is then executed on c.

 The action parameter on d tells Mule how to initiate the transactional behavior.
The ALWAYS_BEGIN value here indicates that the inserts should begin in a new transac-
tion, independent of any other transactions that might be present. Table 10.1 lists the
valid action values for a Mule transaction.

Since the JDBC outbound endpoint in listing 10.1 isn’t participating in any other
transaction, we’re naturally using ALWAYS_BEGIN to start a new transaction for the
insert. Now that we’ve seen how transactions work with the JDBC transport, let’s look
at how we can send and receive JMS messages transactionally.

10.1.2 Using JMS endpoints transactionally

JMS messaging can also be performed transactionally. Transactions on JMS inbound
endpoints ensure that JMS messages are received successfully. Messages that aren’t
received successfully are rolled back. When a JMS transaction is rolled back, the JMS
message is put back on the queue with the JMSRedelivered header set, allowing a dif-
ferent receiver to attempt to consume the message. A count is also incremented for
the message, which when used in conjunction with the maxRedelivery property of the
JMS connector can limit the number of times delivery for the message is attempted. A
committed transaction on a JMS outbound endpoint indicates that the message was
sent successfully and the message reception is acknowledged. As we’ll see shortly, JMS
transactions can be used in conjunction with the multicasting router, allowing multi-
ple messages to be dispatched in the same transaction. First, let’s see how to accept
JMS messages transactionally.

 In listing 4.9 in chapter 4, we saw how to use the forwarding-consumer router to
perform selective enrichment of messages. Messages with a payload containing a

Table 10.1 Available options for configuring a transaction action

Description

NONE Never participate in a transaction.

ALWAYS_BEGIN Always start a new transaction, committing any previously existing
transaction.

BEGIN_OR_JOIN If there’s an existing transaction, join that transaction. If not, start a new
transaction.

ALWAYS_JOIN Always expect and join an existing transaction. Throws an exception if no
previous transaction exists.

JOIN_IF_POSSIBLE Join an existing transaction if one exists. If no transaction exists, run
nontransactionally.

238 CHAPTER 10 Using transactions with Mule
status of OK or SUCCESS were forwarded along to an outbound endpoint, whereas non-
conforming messages were passed through the component for correction. Let’s
assume that Clood, Inc., wants to start using this service in a production manner for
important data, such as messages containing order or provisioning information.
Clood initially wants to be sure that messages are acknowledged by the JMS inbound
endpoint and processed successfully by the messageProcessor. To accomplish this,
Clood will receive JMS messages off the messages queue transactionally. Listing 10.2
demonstrates this, ensuring either that the message is successfully received by the end-
point and processed by the component or the transaction is rolled back (the message
is placed back on the queue).

<model name="forwardingConsumerModel">
 <service name="forwardingConsumerService">
 <inbound>
 <jms:inbound-endpoint queue="messages">
 <jms:transaction action="ALWAYS_BEGIN"/>
 </jms:inbound-endpoint>
 <forwarding-router>
 <regex-filter pattern="^STATUS: (OK|SUCCESS)$"/>
 </forwarding-router>
 </inbound>
 <component>
 <spring-object bean="messageProcessor"/>
 </component>
 <outbound>
 <pass-through-router>
 <jms:outbound-endpoint queue="processed.messages"/>
 </pass-through-router>
 </outbound>
 </service>
</model>

Messages are received off the messages queue on B. If a message has a payload that
matches the regular expression defined by the regex filter, it’s passed over the compo-
nent on c and sent directly to the pass-through router for outbound routing. If a
message doesn’t have a payload matching the regular expression, it’s processed by the
messageProcessor Spring object defined on c. If a failure occurs on the JMS
inbound-endpoint, the message isn’t acknowledged and is placed back on the queue
for redelivery.

 Failures in the component will also influence the transaction committing or roll-
ing back. Unless overridden by the methods discussed in chapter 8, Mule will use the
default exception strategy to process the exception thrown by the component. Such a
failure will, by default, trigger a rollback on the transaction. We’ll see later in this
chapter how we can override this behavior and trigger a commit based on the type of
exception thrown by a component.

 Once the message is passed to the pass-through router, either from the forwarding
router or from passing through the messageProcessor, it’s routed to the processed.

Listing 10.2 Sending a JMS message transactionally

Accept JMS
message in
transaction

b

Enrich
message

c

239Using transactions with a single resource
messages queue via the JMS outbound endpoint. But what happens if there’s a failure
on the JMS dispatch to the processed.messages queue? We’d hardly be honoring the
business case if we went through the trouble of correcting the inbound message only
to lose it once it’s routed. To solve this problem, let’s see how we can have the out-
bound endpoint join the transaction created on B. Once the outbound endpoint is
joined in the transaction started on B, the transaction will span message reception on
the inbound endpoint, processing by the component, and dispatch by the outbound
endpoint. A failure in dispatching the message will trigger a rollback, ensuring that
the message received on B will be rolled back and the JMS message placed back on
the queue for subsequent redelivery. Listing 10.3 illustrates how to do this.

<model name="forwardingConsumerModel">
 <service name="forwardingConsumerService">
 <inbound>
 <jms:inbound-endpoint queue="messages">
 <jms:transaction action="ALWAYS_BEGIN"/>
 </jms:inbound-endpoint>
 <forwarding-router>
 <regex-filter pattern="^STATUS: (OK|SUCCESS)$"/>
 </forwarding-router>
 </inbound>
 <component>
 <spring-object bean="messageProcessor"/>
 </component>
 <outbound>
 <pass-through-router>
 <jms:outbound-endpoint queue="processed.messages">
 <jms:transaction action="ALWAYS_JOIN"/>
 </jms:outbound-endpoint>
 </pass-through-router>
 </outbound>
 </service>
</model>

By specifying the transaction action as ALWAYS_JOIN on c, we’re specifying that the
sending of the JMS message will join the transaction started on B as we just described.

 It’s also possible to send multiple messages transactionally. Using a multicasting
router with JMS outbound endpoints along with a JMS transaction will cause the mes-
sages sent by the JMS outbound endpoints to either all be committed or all be rolled
back atomically. Let’s see how this functionality is useful for Clood, Inc. Clood cur-
rently collects various real-time analytical data about its customers’ web applications.
Web application response times, network metrics, and billing data are all collected
from Clood’s data centers and published to JMS queues for processing by Clood’s
Mule instances. This data must ultimately be processed and fed into Clood’s opera-
tional database as well as its data warehouse. In order to decouple the operational
database and the data warehousing, Clood has decided to republish the data in an
appropriate format for each destination. The resulting data is then placed on a

Listing 10.3 Using ALWAYS_JOIN to join in an existing transaction

Accept JMS
messages in new
transaction

b

c
Join in existing

transaction

240 CHAPTER 10 Using transactions with Mule
dedicated JMS queue where it’s consumed and saved. Since the operational and data
warehouse data must be in sync with each other, it makes sense to group the publish-
ing of this data atomically in a transaction. Figure 10.1 illustrates this.

 Listing 10.4 shows the corresponding Mule configuration.

<service name="transactedMulticastingRouterService">
 <inbound>
 <jms:inbound-endpoint topic="application-response-times">
 <jms:transaction action="ALWAYS_BEGIN"/>
 </jms:inbound-endpoint>
 <jms:inbound-endpoint topic="network-metrics">
 <jms:transaction action="ALWAYS_BEGIN"/>
 </jms:inbound-endpoint>
 <jms:inbound-endpoint topic="billing-statistics">
 <jms:transaction action="ALWAYS_BEGIN"/>
 </jms:inbound-endpoint>
 </inbound>
 <component>
 <spring-object bean="analyticsService"/>
 </component>
 <outbound>
 <multicasting-router>
 <jms:outbound-endpoint
 queue="operational-database">
 <jms:transaction
 action="ALWAYS_BEGIN"
 timeout="300000"/>
 </jms:outbound-endpoint>
 <jms:outbound-endpoint
 queue="data-warehouse">
 <jms:transaction
 action="ALWAYS_BEGIN"
 timeout="300000"/>
 </jms:outbound-endpoint>
 </multicasting-router>
 </outbound>
</service>

Listing 10.4 Using the multicasting router transactionally

Mule

Operational
database

Data
warehouse

Analytics
provider

Analytics
provider

Analytics
provider

Transaction required

Figure 10.1 Clood, Inc.’s approach
for decoupled data management

Accept JMS messages
from analytics providers

b

Process
analytical data

c

Define the
multicasting router

d

Send analytical
data transactionally

e

Send analytical data
transactionally

241Using transactions with a single resource
The JMS endpoints defined on B will accept messages from each analytics provider
transactionally. This data will be processed by the analyticsService Spring object
configured on c. If there’s a failure on the JMS endpoints, the transaction will be
rolled back. Exceptions thrown by the analyticsService will also trigger a rollback of
the transaction. The processed message will then be passed to the multicasting router
defined on d. The JMS transaction defined on e will ensure that the message is sent
to both JMS queues successfully. If there’s a failure on either queue, then the transac-
tion on e won’t begin and the message will be lost. The timeout value defined on e
specifies how many milliseconds to wait before rolling back the transaction. The
default is usually acceptable for the transport in question. In this case, we’re overrid-
ing the default and explicitly setting a value of 5 minutes for each endpoint.

 In order to ensure messages aren’t lost by such a failure, we can make this entire
message flow transactional, from JMS inbound endpoints to JMS outbound endpoints.
Listing 10.5 shows how to do this.

<service name="metricsService">
 <inbound>
 <jms:inbound-endpoint topic="application-response-times">
 <jms:transaction action="ALWAYS_BEGIN"/>
 </jms:inbound-endpoint>
 <jms:inbound-endpoint topic="network-metrics">
 <jms:transaction action="ALWAYS_BEGIN"/>
 </jms:inbound-endpoint>
 <jms:inbound-endpoint topic="billing-statistics">
 <jms:transaction action="ALWAYS_BEGIN"/>
 </jms:inbound-endpoint>
 </inbound>
 <component>
 <spring-object bean="analyticsService"/>
 </component>
 <outbound>
 <multicasting-router>
 <jms:outbound-endpoint
 queue="operational-database">
 <jms:transaction
 action="ALWAYS_JOIN" timeout="600000"/>
 </jms:outbound-endpoint>
 <jms:outbound-endpoint
 queue="data-warehouse">
 <jms:transaction
 action="ALWAYS_JOIN" timeout="600000"/>
 </jms:outbound-endpoint>
 </multicasting-router>
 </outbound>
</service>

We’ve changed the transaction action from ALWAYS_BEGIN to "ALWAYS_JOIN" on B.
Now a failure on either queue in the multicasting router will cause the transaction to

Listing 10.5 Making an entire message flow transactional

Join previously
existing
transaction

b

Join previously
existing
transaction

242 CHAPTER 10 Using transactions with Mule
roll back up to the message reception on the inbound endpoint. Such a configuration
will make the transaction resilient against a failure on one of the queues. For instance,
if Mule doesn’t have the appropriate rights to access the data-warehouse queue, then
the entire operation will roll back to message reception on the JMS inbound endpoint.

 In this section, we saw how to use transactions with a single resource, such as a sin-
gle database or JMS provider. It’s also possible to run transactions across multiple
resources, such as two databases or a database and JMS provider. Let’s investigate
Mule’s support for that now.

NOTE The VM transport can also be used transactionally. For instance, to begin
a new VM transaction instead of a JMS transaction in listing 10.5, you’d
use the vm:transaction element as follows:
<outbound>
 <multicasting-router>
 <vm:outbound-endpoint
 path="operational.database">
 <vm:transaction
 action="ALWAYS_JOIN"/>
 </vm:outbound-endpoint>
 <vm:outbound-endpoint
 path="data.warehouse">
 <vm:transaction
 action="ALWAYS_JOIN"/>
 </vm:outbound-endpoint>
 </multicasting-router>
</outbound>

10.2 Using multiple resource transactions
Performing transactions on a single resource is appropriate when the operations to be
conducted transactionally all use the same connector. We saw examples of this in the
previous section, where we showed how you can use the JDBC and JMS transports
transactionally. What if the operations you wish to group atomically span more than
one resource? Perhaps you need to accept a JMS message on an inbound endpoint,
process it with a component, and then save the message payload to a database with a
JDBC outbound endpoint. You want to make this operation transactional so that fail-
ures in either the JMS endpoint or the JDBC endpoint trigger a rollback of the entire
operation. Figure 10.2 illustrates this scenario.

component jdbc-outbound-endpoint

Transaction across JMS and JDBC resources

jms-inbound-endpoint

Figure 10.2 Performing a transaction across multiple resources

243Using multiple resource transactions
 The XA standard is a distributed transaction protocol designed to meet this need.
For resources that support XA transactions, such as many JDBC drivers and JMS
providers, this is possible through use of the Java Transaction API. An XA transaction
uses the two-phase commit (2PC) protocol to ensure all participants in the transaction
commit or roll back. During the first phase of the 2PC, the transaction manager issues
a PREPARE command to each transaction participant. The participants “vote” during
this call to indicate whether or not the transaction can be committed. In the second
phase on the 2PC, if any of the participants indicates that its portion of the transaction
can’t be committed, the transaction manager instructs each participant to roll back. If
each participant can commit the transaction, the transaction manager instructs them
each to do so and the transaction is completed.

 To take advantage of XA transactions, use of a specific driver is often required. JMS
and JDBC providers usually provide connection factories or data sources prefixed with
XA to differentiate them. You’ll need to consult the documentation for your provider
and see what these differences are.

 XA transactions can be complex beasts. As we just mentioned, you usually need to
use different JDBC or JMS drivers that specifically have XA support. Resources in XA
transactions can also make decisions about rolling back a transaction outside the
scope of the transaction manager. These scenarios, often caused by locking or net-
work issues, cause HeuristicExceptions to be thrown. You should be aware of these
exceptions and configure your exception strategies accordingly. Finally, XA transac-
tions can introduce scalability issues when locking occurs in XA participants. Be aware
of this when deciding to use XA transactions in your projects.

Exercise caution when using XA transactions, as they can have adverse
scalability, complexity, and performance impacts on your projects.

We’ll see in this section how Mule uses the Java Transaction API (JTA for short) to
allow you to declaratively configure such transactions via XML. We’ll start off by look-
ing at how to perform standalone XA transactions using JBoss Transactions. We’ll then
see how to access a transaction manager when running Mule embedded in an applica-
tion running in a container, such as an application server or servlet container.

NOTE MuleEE offers support for Multi-TX. This allows you to span transactions
across multiple resources without the overhead of JTA. Consult the
MuleEE documentation for more information.

10.2.1 Spanning multiple resources with JBossTS

It used to be that running JTA transactions required the use of a JEE application
server, such as JBossAS or WebLogic, or a standalone, commercial JTA implementa-
tion. Thankfully there are now open source JTA implementations that don’t require
an application server or expensive proprietary solution. One such implementation,
which is supported out of the box by Mule, is JBossTS. Let’s see how we can use Mule’s
JBossTS support to improve Clood, Inc.’s data warehousing service.

BEST
PRACTICE

244 CHAPTER 10 Using transactions with Mule
 We saw in listing 10.5 how Clood was transactionally receiving and republishing
analytical data using JMS inbound and outbound endpoints. Two separate transactions
were occurring in this scenario. The first transaction was spanning the message
reception and subsequent component processing. The second transaction was span-
ning the publishing of each JMS message to a queue by the multicasting router.

 This approach is robust enough if the providers only care that their JMS messages
are received by Mule. It’s less appropriate if the provider needs to be sure whether the
entire action was successful. This might be the case for the data on the billing end-
point. In this case, a provider wants to be certain that the billing data is saved to the
operational database and the data warehouse successfully. To support this, Clood has
added another service that’s dedicated to receiving billing data. Figure 10.3 illustrates
the new service, which forgoes the JMS outbound endpoints and will write to the data-
base and data warehouse directly.

Assuming Clood’s JMS provider and its JDBC drivers for the database and data ware-
house support XA transactions, we can use Mule’s JBossTS support to wrap this
entire operation in a single transaction. Listing 10.6 illustrates how Clood has
accomplished this.

<jms:activemq-xa-connector name="jmsConnector"
 specification="1.1" />

<jdbc:connector name="operationalDb"
 dataSource-ref="operationalDataSource">
 <jdbc:query key="operationalBillingInsert"
 value="
 INSERT INTO billing_stats VALUES (0,#[map-payload:STAT]);"/>
</jdbc:connector>

<jdbc:connector name="warehouseDb"
 dataSource-ref="warehouseDataSource">
 <jdbc:query key="warehouseBillingInsert"
 value="
 INSERT INTO billing_stats VALUES (0,#[map-payload:STAT]);"/>
</jdbc:connector>

Listing 10.6 Sending outbound messages to list of endpoints using an XA transaction

Mule

Operational
database

Data
warehouse

Billing JMS
queue

Transaction required

Figure 10.3 Wrapping billing
data reception into a single
transaction

Define ActiveMQ XA
connector for JMS data source

b

Define JDBC connector for
operational data sourcec

Define JDBC connector for
warehouse data sourced

245Using multiple resource transactions
<jbossts:transaction-manager/>

<model name="BillingModel">
 <service name="BillingService">
 <inbound>
 <jms:inbound-endpoint queue="billing-data">
 <xa-transaction action="ALWAYS_BEGIN"
 timeout="60000"/>
 </jms:inbound-endpoint>
 </inbound>
 <component class="com.clood.billing.BillingService"/>
 <outbound>
 <multicasting-router>
 <jdbc:outbound-endpoint
 connector-ref="operationalDb"
 queryKey="operationalBillingInsert">
 <xa-transaction action="ALWAYS_JOIN"/>
 </jdbc:outbound-endpoint>
 <jdbc:outbound-endpoint
 connector-ref="warehouseDb"
 queryKey="warehouseBillingInsert">
 <xa-transaction action="ALWAYS_JOIN"/>
 </jdbc:outbound-endpoint>
 </multicasting-router>
 </outbound>
 </service>
</model>

We start off by defining an ActiveMQ connector that supports XA transactions on B.
Since our database and data warehouse require separate data sources, we need to con-
figure two JDBC connectors to reference each data source. These are configured on

c and D. The dataSources for both of these connectors, configured in Spring,
should support XA transactions. We specify that we’re using JBossTS to manage the XA
transactions on d. Specifying ALWAYS_BEGIN will cause the JMS inbound endpoint to
start an XA transaction and attempt to receive a message off the billing-data queue. If
a message is received within a wait period, the message is processed by the component
and routed to the outbound endpoints in the same transaction. A failure in either will
trigger the transaction to roll back. If no message is received in the wait period, then
the transaction is also rolled back and a new transaction is started. This polling is to
ensure that messages received by the endpoint are within the XA transaction. The
message is processed by the component and sent to the multicasting router.

NOTE Using ALWAYS_BEGIN in an XA context will suspend an existing transac-
tion. Once the new transaction has completed, the previous transaction
will be resumed.

The XA transaction configuration on E has an action of ALWAYS_JOIN. This means it
expects a previous XA transaction to be open and will join to it (as opposed to com-
mitting the previous transaction and starting a new one). The message will then be
written to both JDBC outbound endpoints. A failure in either the JMS message

Use JBossTS to
manage XA transactions

Begin new XA
transactionE

Expect and
join existing
transaction

Expect and
join existing
transaction

246 CHAPTER 10 Using transactions with Mule
reception or either of the JDBC outbound endpoints will trigger the XA transaction to
roll back. This will trickle back up to the JMS inbound endpoint and cause the JMS
provider to engage in redelivery of the message, using the semantics we discussed for
JMS single resource transactions.

 Let’s now look at how Clood could modify this configuration to run in one of their
application servers.

10.2.2 Using XA transactions in a container

If you’re running Mule embedded in an application that’s deployed in a container,
such as an application server or Servlet container, you have the option to use the con-
tainer’s JTA implementation (if one exists). As we mentioned previously, many of the
popular JEE application servers ship with JTA implementations. Mule facilitates using
these implementations by providing a *-transaction-manager configuration ele-
ment. This lets you specify a LookupFactory to locate the appropriate JTA transaction
manager for your environment. Table 10.2 lists the supported application servers
along with their associated configuration elements.

Listing 10.6 assumed we were running Mule standalone and as such were leveraging
JBossTS outside of any JBossAS context. Let’s now assume that the Mule configuration
in listing 10.6 is running inside as a deployed WAR application in Resin. To use Resin’s
JTA implementation, we’d simply replace the jbossts:transaction-manager element
with Resin’s as illustrated in listing 10.7.

<jms:activemq-xa-connector
 name="jmsConnector"
 specification="1.1"/>

<jdbc:connector name="operationalDb"
 dataSource-ref="operationalDataSource">
 <jdbc:query key="operationalBillingInsert"
 value="
 INSERT INTO billing_stats VALUES (0,#[map-payload:STAT]);"/>
</jdbc:connector>

Table 10.2 Transaction manager lookup factories

Application
server

Configuration element

JBoss AS <jboss-transaction-manager/>

JRun <jrun-transaction-manager/>

Resin <resin-transaction-manager/>

Weblogic <weblogic-transaction-manager/>

WebSphere <websphere-transaction-manager/>

Listing 10.7 Using an application server’s transaction manager

247Managing transactions with exception strategies
<jdbc:connector name="warehouseDb"
 dataSource-ref="warehouseDataSource">
 <jdbc:query key="warehouseBillingInsert"
 value="
 INSERT INTO billing_stats VALUES (0,#[map-payload:STAT]);"/>
</jdbc:connector>

<resin-transaction-manager/>

<model name="BillingModel">
 <service name="BillingService">
 <inbound>
 <jms:inbound-endpoint queue="billing-data">
 <xa-transaction action="ALWAYS_BEGIN"
 timeout="60000"/>
 </jms:inbound-endpoint>
 </inbound>
 <component class="com.clood.billing.BillingService"/>
 <outbound>
 <multicasting-router>
 <jdbc:outbound-endpoint
 connector-ref="operationalDb"
 queryKey="operationalBillingInsert">
 <xa-transaction action="ALWAYS_JOIN"/>
 </jdbc:outbound-endpoint>
 <jdbc:outbound-endpoint
 connector-ref="warehouseDb"
 queryKey="warehouseBillingInsert">
 <xa-transaction action="ALWAYS_JOIN"/>
 </jdbc:outbound-endpoint>
 </multicasting-router>
 </outbound>
 </service>
</model>

If you need access to a JTA provider that isn’t explicitly supported by Mule, you can
use the jndi-transaction-manager. This allows you to specify the JNDI location of a
JTA implementation for Mule to use. For instance, to access a JTA implementation
with the JNDI name of java:/TransactionManager you’d use the following transac-
tion manager configuration:

 <jndi-transaction-manager jndiName="java:/TransactionManager"/>

So far we’ve seen how to perform transactions against single and multiple resources.
We still haven’t seen what to do when exceptions are thrown by components. Let’s
look at how we can leverage the error handling techniques we learned in chapter 8 to
deal with exceptions when they arise in components.

10.3 Managing transactions with exception strategies
In chapter 8 we saw how Mule uses exception strategies to take action when unex-
pected events occur. In this section we’ll see how to use exception strategies in con-
junction with Mule’s transaction support. First we’ll see how we can use the default-
service exception strategy to roll back transactions when an exception is thrown by a

Use Resin’s
JTA support

248 CHAPTER 10 Using transactions with Mule
component. We’ll then see how we can use the default-connector exception strategy
to commit transactions when there’s a failure in a connector.

10.3.1 Handling component exceptions

We saw previously that, by default, the default-service exception strategy will wrap
exceptions thrown by a component and log them. Mule will then stop subsequent pro-
cessing of the message (the outbound routers won’t be invoked). This is the behavior
we’d expect from our discussion of exception strategies in chapter 8. In the context of
a transaction, a failure in the component will cause the transaction to be rolled back.
This is usually the behavior we want—reverting the system to the state it was in before
the transaction was started.

 With a transport like JMS, though, this rollback state will cause redelivery attempts
to occur if certain headers are present on the JMS message. If you know the exception
causing the rollback is unrecoverable, you may want to commit the transaction to pro-
hibit the message from a redelivery attempt. There also may be business logic that
requires you to commit the transaction. For instance, if the received messages have
invalid credentials, it’s probably appropriate to stop further message processing and
commit the transaction. You also may want to forward this message to an error queue
for further analysis. Mule allows you to configure this behavior by specifying commit
and rollback semantics on the default-service exception strategy in a model.
Listing 10.8 illustrates how Clood uses this to commit transactions when a component
throws a com.clood.BusinessException.

<model name="forwardingConsumerModel">

 <default-service-exception-strategy>
 <commit-transaction
 exception-pattern="com.clood.BusinessException"/>
 </default-service-exception-strategy>

 <service name="forwardingConsumerService">
 <inbound>
 <jms:inbound-endpoint queue="messages">
 <jms:transaction action="ALWAYS_BEGIN"/>
 </jms:inbound-endpoint>
 <forwarding-router>
 <regex-filter pattern="^STATUS: (OK|SUCCESS)$"/>
 </forwarding-router>
 </inbound>
 <component>
 <spring-object bean="messageEnricher"/>
 </component>
 <outbound>
 <pass-through-router>
 <jms:outbound-endpoint queue="processed-messages">
 <jms:transaction action="ALWAYS_JOIN"/>
 </jms:outbound-endpoint>

Listing 10.8 Using an exception strategy to commit a transaction

b
Commit

transaction

249Managing transactions with exception strategies
 </pass-through-router>
 </outbound>
 </service>
</model>

The default-service exception strategy has a commit-transaction element configured
on B. The exception-pattern defines what exceptions will trigger a transaction to
commit. Other types of exceptions will be handled as usual and rolled back. You can
also specify exception patterns at a package level using wildcards. You could, for
instance, set the exception pattern to com.clood.exception.* and commit any open
transaction when an exception in the com.clood.exception.* package is thrown.

 The default-connector exception strategy also provides facilities for dealing with
exceptions and transactions. Let’s look at those now.

10.3.2 Committing transactions with an exception strategy

You can configure the default-connector exception strategy to influence transactional
behavior when exceptions are thrown by a connector. This is useful if you want to
commit a transaction that would otherwise be rolled back. Let’s see how this might be
useful in the context of Clood’s JMS to JDBC XA transaction configuration we dis-
cussed in listing 10.6. Perhaps some inconsequential exception is being thrown by the
data warehouse’s JDBC driver. Rather then roll back the entire XA transaction when
these exceptions crop up, you instead decide to catch the exception, log it to an error
queue, and commit the transaction. Mule supports this behavior via the commit-
transaction element. Listing 10.9 illustrates how to do this.

<model name="BillingModel">
 <service name="BillingService">
 <inbound>
 <jms:inbound-endpoint queue="billing-data">
 <xa-transaction action="ALWAYS_BEGIN" timeout="60000"/>
 </jms:inbound-endpoint>
 </inbound>
 <component class="com.clood.billing.BillingService"/>
 <outbound>
 <static-recipient-list-router>
 <xa-transaction action="ALWAYS_JOIN"/>
 <recipients>
 <recipients>
 <spring:value>jdbc://operationalDb</spring:value>
 <spring:value>jdbc://warehouseDb</spring:value>
 </recipients>
 </recipients>
 </static-recipient-list-router>
 </outbound>
 <default-connector-exception-strategy>
 <commit-transaction
 exception-pattern=
 "com.db.jdbc.NotAReallyImportantException"/>

Listing 10.9 Using an exception strategy to commit a transaction

Commit transaction
if specified exception

is thrown

250 CHAPTER 10 Using transactions with Mule
 <jms:outbound-endpoint queue="errors"/>
 </default-connector-exception-strategy>
 </service>
</model>

If a NotAReallyImportantException instance is thrown by the JDBC connector, the
default-connector exception strategy will log the exception to the errors queue and
commit any open transaction.

 In this section you saw how the exception strategies we introduced in chapter 8 can
be used to impact transactional behavior. We saw how the default-service exception
strategy can be used to commit transactions in components. This allows you to avoid
rollbacks when such a behavior would violate a business case or cause adverse effects
on a service. We saw how similar behavior can be used with the default-component
exception strategy, allowing us to override the default transaction behavior when
exceptions occur on connectors and endpoints.

10.4 Summary
Transactions play a critical role when grouping otherwise distinct operations together
atomically. They can be indispensable in an integration scenario where the nature of
such operations is often distinct. We saw in this chapter how Mule makes this poten-
tially difficult task straightforward. By making minor modifications to an endpoint’s
configuration, a range of transactional behavior can be enabled. This behavior can be
used with single-resource transactions or, by using Mule’s JTA support, transactions
using multiple resources. Mule allows exception strategies to partake in the transac-
tional flow by committing or rolling back a transaction based on the exception thrown
by a component or connector. This, too, is easily configurable by modifying an excep-
tion strategy’s XML configuration.

 Now let’s take a look at another critical element of running Mule in production:
monitoring.

Monitoring with Mule
Whether you use Mule to bridge systems together or to directly expose services,
business activities and processes throughout your company will soon rely on the
availability of your Mule instances. As an intermediation tier, it’s common for Mule
to become a critical actor in the IT landscape. In chapter 7, we reviewed different
approaches for running Mule in an highly available manner. In this chapter, we’ll
look at another important aspect of running Mule in production: monitoring. The
ability to trigger alerts before end users or business processes start to suffer is an
immediate benefit of monitoring. But it also helps on other related topics such as
SLA enforcement, operational reporting, and audit trail (for legitimate or unau-
thorized activities).

 In the coming sections, we’ll review different aspects and techniques involved in
monitoring Mule instances. We’ll first consider the need to perform health checks
on these instances. We’ll then look at the different options available to track the
activity that occurs in these instances. And we’ll close with a mention of dashboards,
the human-facing part of monitoring. While doing so, we’ll look at the different

In this chapter
■ Using standard tools to monitor Mule instances
■ Strategies for auditing the ESB
■ Building human-friendly dashboards
251

252 CHAPTER 11 Monitoring with Mule
ways Clood, Inc., monitors its applications and those of its clients, including the partic-
ular web dashboard they’ve created.

 NOTE Our focus is on monitoring instances of Mule Community Edition. The
Enterprise Edition (EE) of Mule comes complete with MuleHQ, a central-
ized monitoring platform based on HypericHQ. MuleHQ goes further
than monitoring Mule instances, as it’s able to monitor all the systems in
an IT landscape. Mule EE and MuleHQ are beyond the scope of this book.

While reading this chapter, you’ll realize that management agents are prominent actors
of Mule monitoring. The agents are responsible for exposing internal state or events
of a Mule instance to the outside world. They exist under a wide variety of implemen-
tations, where each gives access to Mule’s internals in a different manner. By default,
Mule doesn’t activate any agent. This is why you may have noticed the following line in
the startup sequence of our first example shown in 2.1:

Agents Running: None

Mule’s management module contains dozens of agents. Who are these agents and
what are they capable of? This information isn’t classified, so we’ll be able to discuss it
publicly. Instead of listing the agents one by one, we’ll discover them, and what
they’re good for, while we review the different aspects of monitoring that we’ll cover
in this chapter.

 So let’s start by reviewing some approaches to assess the health of your Mule.

11.1 Checking health
Monitoring systems with periodic health checks is a standard practice in the industry.
Like checking the health of a living thing, checking the health of a software system
implies taking measures of predetermined parameters at regular time intervals. Most
of the time, these parameters are analog by nature (such as pulse, blood pressure, or
temperature). For these, thresholds and trends provide insight on the sanity of the sys-
tem. For example, we can check whether the CPU load is above a predefined alert
limit or whether the memory usage is constantly increasing. Sometimes these parame-
ters are truly boolean. For those, it’s either all of nothing, as is the case for a network
ping, where we’re only concerned with the presence of the remote host (and not the
response time).

 Checking the health of a Mule instance can be performed at different levels:

■ It runs on a network-attached server, so it must be monitored at network and
system levels.

■ It’s a Java application, so ensuring the JVM that hosts it is in good health is
essential.1

■ It’s a Mule instance, so there are specific moving parts of the ESB that you want
to keep an eye on.

1 For an extensive discussion of this subject, refer to “Java run-time monitoring,” from Nicholas Whitehead:
http://www.ibm.com/developerworks/library/j-rtm1.

http://www.ibm.com/developerworks/library/j-rtm1

253Checking health
To perform these checks, you can use different tools and technologies. Sometimes,
these technologies overlap in their capacities: for example, SNMP enables both system-
level and JVM-level checks. JMX can also be used to monitor both the JVM and Mule
itself. You’ll likely end up with a mix of these technologies, using the ones that you’re
familiar with or for which you have some preexisting tools.

 We’ll now review some approaches that you can follow to perform systematic health
checks of your Mule instances for the different levels we’ve just mentioned.

11.1.1 Checking health at network level

One of the most basic health checks you can perform is to ensure that a system is alive.
The easiest way to check that a Mule instance is up and running is to perform health
checks at network level. This is usually achieved by exposing a basic service that
returns a fixed value and “ping” it for availability. Of course, this doesn’t reveal the
actual state of the whole Mule instance, as the ping service can be the only one active,
but for a basic check, this is all we need.

 Network-level checks are often required by peripheral systems such as load bal-
ancers. These systems usually perform regular calls on the servers they manage, and
if a predefined response isn’t received on time, they can decide that a particular
server isn’t responsive. This is illustrated in figure 11.1: the load balancer calls a spe-
cially created service on each Mule instance to assess its readiness to process normal
service calls.

 This kind of ping service is easy to configure in Mule. Clood, Inc., had to add such
a service to its publication application. The publishing company was looking for a
highly available deployment of its application, so Clood decided to deploy several
instances of Mule behind a network balancer (see section 7.2.3 for more discussion on
load balancing). The full configuration of this service is shown in listing 11.1. Note
how we leverage a string expression evaluator in a response transformer to return a
fixed value (refer to appendix A for more on this subject). Any call to the ping service
will appropriately receive a PONG response.

Figure 11.1 A load balancer can perform network-
level checks to ensure the healthiness of the Mule
instances it manages.

254 CHAPTER 11 Monitoring with Mule

<service name="pingService">
 <inbound>
 <http:inbound-endpoint
 address="http://${esb.bind.address}:${esb.web.port}/ping"
 synchronous="true">
 <response-transformers>
 <expression-transformer>
 <return-argument evaluator="string" expression="PONG" />
 </expression-transformer>
 </response-transformers>
 </http:inbound-endpoint>
 </inbound>
</service>

This simple ping service works for an HTTP load balancer, but it’s easy to see that it
could be bound to another type of transport (such as plain TCP). Of course, such a
service can also be used outside of the context of a load balancer. A monitoring tool,
for example, can leverage a ping service and decide to raise an alert if the expected
response doesn’t come on time.

 A refinement of this service would consist of creating a specific component that
would leverage the JVM and Mule’s APIs (see chapter 13) to more accurately assert the
internal state of the instance, returning something other than “PONG” in case of
unhappiness.

 As we said in the introduction, network-level checks are useful when a coarse assess-
ment of an instance’s health is acceptable. Let’s now look at a more scrutinous means
to monitor your instances, at system and JVM levels, with SNMP.

11.1.2 Checking health at system and JVM levels

The Simple Network Management Protocol (SNMP) is a standard defined by the Internet
Engineering Task Force (IETF) for monitoring network-attached devices. SNMP is tra-
ditionally used to assess the health of servers at operating system–level by checking
parameters such as CPU load, memory usage, or network traffic. Your organization is
most likely already using SNMP to monitor its different servers. But SNMP can be used
to check parameters of applications themselves, such as the JVM.

 The JVM has a built-in SNMP agent that’s configured to expose general configura-
tion information and also memory pools and threads usage. It can also issue notifica-
tions on low-memory conditions. This allows you to use any SNMP-aware monitoring
tool to ensure that the JVM in which Mule instances are running is in good shape. This
is illustrated in figure 11.2.

 There are many commercial and open source tools that can be used to perform
SNMP monitoring. Some are focused on problem detection and alerts only, while oth-
ers can actually graph the evolution of particular JVM properties. Figure 11.3 shows the
evolution of the JVM heap utilization and thread count over a period of two days, as
produced by Cacti, an open source web-based network graphing solution.
Using SNMP to monitor your Mule instances’ JVMs can be a good option if you already
have compatible monitors in-house. It should be limited to intranet usage only,

Listing 11.1 The ping service defined replies “PONG” to all calls.

255Checking health
though, as the particular version of the SNMP protocol supported by the JVM agent is
mostly unsecured. Moreover, the agent is limited to JVM health assessment, and
doesn’t allow you to get any information about the actual health of the Java applica-
tion running on the JVM.

 Consequently, if you’re interested in monitoring not only at the JVM level but also
Mule itself, you’d better opt for the next option we’ll detail: JMX monitoring.

Figure 11.2 The JVM SNMP agent can be used
to assess the health of a Mule instance.

Figure 11.3 Cacti is a tool that can leverage SNMP to monitor the evolution
of some JVM properties, such as memory usage and thread count.

256 CHAPTER 11 Monitoring with Mule
11.1.3 Checking health at JVM and Mule levels

Mule comes complete with agents that leverage the Java Management Extension
(JMX) technology. These agents remotely expose (over RMI) a wealth of information
about the JVM and the Mule instance itself in a standardized manner, which makes
them ideal for in-depth monitoring scenarios. In addition to monitoring, these agents
can also be used to actually act on the Mule instance itself. For example, it’s possible
to suspend services or even shut down an instance from a distance.

 So how do we activate the Mule JMX agents? The quick and easy way is to use the
jmx-default-config configuration element, which registers a bunch of predefined
agents on fixed ports. This is done as shown in this configuration fragment:2

<management:jmx-default-config />

If you add this element to your configuration, you’ll notice that the list of agents
shown at Mule’s startup now looks like this:

Running: jmx-agent:
service:jmx:rmi:///jndi/rmi://localhost:1099/server Rmi Registry:
rmi://localhost:1099 Default Jmx Agent Support jmx-log4j Jmx
Notification Agent (Listener MBean registered)

What have we gained here? Mainly, the bootstrapping of an RMI server and the regis-
tration of numerous MBeans (we’ll come back to the log4j and the JMX notification
agents in the next section). With this configuration in place, it’s then possible to use a
standard JMX tool, such as JConsole, and connect to the listed JMX RMI URI as shown
in figure 11.4. Note how the innermost parts of Mule (connectors, models, services,
and so on) are visible in the tree view of the MBean server, alongside the statistics.

2 The correct declaration of the management schema is assumed.

Figure 11.4 Mule registers
numerous MBeans to expose its
internals, such as comprehensive
usage statistics.

257Checking health
It’s also now possible to monitor your Mule instance by periodically checking the val-
ues of particular MBean attributes, as conceptually shown in figure 11.5.

 Some notable MBean attribute values to monitor include

■ JVM memory—A good strategy is to observe the size of the different memory
pools after the Mule instances you intend to monitor have been up for a signif-
icant period of time and then set usage thresholds above these deemed normal
values.

■ Lifecycle states—Connectors and services expose boolean flags for their lifecy-
cle states, such as disposed, paused, or stopped. This allows you to check that
none of these critical moving parts is in a state that prevents it from perform-
ing its duty:

■ Service error counts—Services track the number of errors that occurred while
they were processing messages. Monitoring for increases in these error counts
can warn you about serious issues happening in a Mule instance.

 TIP Server moniker Unless instructed otherwise, Mule generates a unique
server ID for each running instance. If you run Mule as a standalone
server, you may have noticed this ID in the logs. The server ID is printed
in the standard start-up boilerplate, as shown here:

**
* Mule ESB and Integration Platform
* ...
* Server ID:54f6bf50-81df-11dd-a889-61bfa310f59c
* ...

This server ID is used to form the name of each MBean Mule exposes. For
example, here’s a typical MBean object name:

Mule.54f6bf50-81df-11dd-a889-61bfa310f59c:type=org.mule.Notification,
 ➥ name=MuleNotificationBroadcaster

Figure 11.5 Remote connectivity to the JVM
MBean server enables in-depth monitoring of a
Mule instance.

258 CHAPTER 11 Monitoring with Mule
Note the unique ID right after the Mule. prefix. As you can guess, this is
less than practical if you intend to pull values from or invoke methods on
Mule’s MBeans. In that case, you’d better set the server ID to a known
value so the MBean names won’t change at each restart of the instance.

The good news is that this is easily achieved by setting the value of a
Java system property named mule.serverId.3 If you look again at figure
11.4, you’ll notice that we’ve used this technique to set the server ID to
Publication. All MBeans names are prefixed with Mule.Publication,
which make them easily reachable.

Our previous usage of jmx-default-config was bare-bones: we used the element as-is
without setting any properties on it. In real life, you’ll want to have control over the
URL and ports the management agents will use, as well as over the users who’ll be
allowed to connect to these agents. You don’t want to let just anybody connect to the
MBean server of your production Mule instances. For this, you’ll have to add more
configuration in and around this configuration element.

 TIP Wrapper manager Take a look at figure 11.4 and note the MBean named
WrapperManager. This MBean allows you to control the Tanuki wrapper,
which we talked about in section 7.1.1. From this MBean, you can request
a thread dump to be written to the log, but can also stop or restart the
whole Mule instance. This is another reason for not exposing Mule’s
MBean server to unauthenticated users.

Let’s look at the management configuration shown in listing 11.2. It’s the configura-
tion we created for the publication application. Note how we’ve configured the
desired bind address, ports, and security credentials. We’ll come back to the second
management element we added in shortly.

<management:jmx-default-config port="${esb.jmxrmi.port}" >
 <management:credentials>
 <spring:entry key="${esb.admin.username}"
 value="${esb.admin.password}" />
 </management:credentials>
</management:jmx-default-config>

<management:jmx-mx4j-adaptor
 jmxAdaptorUrl="http://${esb.bind.address}:${esb.console.port}"
 login="${esb.admin.username}"
 password="${esb.admin.password}" />

With this configuration in place, the log boilerplate of the publication application
looks like listing 11.3.

3 The command-line syntax is -M-Dmule.serverId=Publication (see tip in section 7.1.1).

Listing 11.2 The full management configuration of the publication application

259Checking health

**
* Mule ESB and Integration Platform *
* Version: 2.2.O Build: 12377 *
* MuleSource, Inc. *
* For more information go to http://mule.mulesource.org *
* *
* Server started: 12/01/09 12:34 PM *
* Server ID: Publication *
* JDK: 1.6.0_06 (mixed mode) *
* OS: Linux (2.6.24-19-generic, i386) *
* Host: mule-workhorse (127.0.1.1) *
* *
* Agents Running: *
* jmx-log4j *
* Wrapper Manager: Mule PID #17050, Wrapper PID #17048 *
* Rmi Registry: rmi://127.0.0.1:58889/server *
* Jmx Notification Agent (Listener MBean registered) *
* jmx-agent: service:jmx:rmi:///jndi/rmi://localhost:58889/server *
* Default Jmx Support Agent *
* MX4J Http adaptor: http://127.0.0.1:8089 *
**

You may have noticed in listings 11.2 and 11.3 the appear-
ance of a new agent: the MX4J HTTP adaptor. What’s this new
guy doing? It’s a convenient way to expose the whole MBean
server hierarchy as a web-based console (think of it as a
browsable JConsole). As illustrated in figure 11.6, the MX4J
HTTP adaptor locally connects to the JVM MBean server and
makes it available to a simple browser as a console.

 Figure 11.7 illustrates how convenient and consummate
this HTTP console is. It’s Clood, Inc.’s tool of choice when a
quick review of an instance’s statistics is needed. It’s also
convenient when a firewall bars access to RMI ports or pro-
tocols. As flabbergasting as it may be, it can also be used for
monitoring if it’s absolutely impossible to hook any tool
directly to your Mule instances. Monitoring tools are good
at scraping HTML pages for content; hence they can easily
pull all the MBean attribute values we’ve mentioned. As
rough as it may sound, having this option handy as a last
resort can save the day.

 The Mule JMX agents enable in-depth monitoring of your
instances. They provide you with the means to assess the health of both the JVM and
the Mule moving parts that are critical for your business.

Use JMX to monitor the JVM and Mule’s critical services.

Listing 11.3 The log boilerplate details the active management agents

Server ID set to
known value

List of agents
running

Figure 11.6 The MX4J
HTTP adaptor exposes the
whole MBean server as a
browsable web console.

BEST
PRACTICE

260 CHAPTER 11 Monitoring with Mule
Whether it’s for SLA reasons or because a particular network device needs it, both the
JVM and Mule provide you with all the information you need to effectively ascertain
their health. But monitoring isn’t limited to checking the health of an application: it’s
often necessary to track the actual behavior of this application. We’ll now review some
techniques that you can use to track the activity of your Mule instances.

11.2 Tracking activity
If checking the health of your Mule instances turned you into a nurse, tracking its
activity will turn you into a policeman. Why go for a different uniform? Because moni-
toring an application extends beyond the need for keeping an eye on its health: it’s
also important to ensure its behavior is actually what’s expected. It may also be a busi-
ness or a security requirement to track the activity on particular instances or services,
for compliance or audit reasons.

Figure 11.7 The MX4J HTTP
adaptor agent exposes a JMX
console which allows access to
all the registered MBeans with
a simple browser.

261Tracking activity
 The behavior of a Mule instance can be complex to describe. Inputs over a wide
variety of transports, including schedulers, will trigger outputs toward a great many
destinations. Based on the message context, conditional routing will orient message
processing in different directions. Moreover, errors will occur at all levels and for
diverse reasons: validation or transformation errors for bogus data, security errors for
invalid credentials or rights, transport exceptions when remote destinations decide to
show some attitude.

 Facing such complexity, what could we potentially do to keep track of the behavior
of our Mule instances? The good news is that activity leaves traces. By configuring Mule
to leave useful traces behind itself, we can gain pretty good insight of what’s happening
inside of Mule, both in real time or after the fact. This is possible by using log files,
whose verbosity can be configured, and also by leveraging the extensive notification
framework inside Mule. We can also gain a good understanding of the activity of a
Mule instance by monitoring the data it produces in external systems. Though not
always possible, this is an option that’s worth considering.

 We’ll start by looking at how the log files of a Mule instance can help you to keep
track of its activity.

11.2.1 Using log files

Log files are still the most popular way of keeping track of an application’s activity.
Consequently, one of the most basic means to track the activity of a Mule instance is to
keep an eye on what gets reported in its log files. This eye can be a monitoring system,
looking for specific patterns, such as error messages. Monitoring tools are often well
equipped to efficiently and continuously read log files. But often, it’s a support person
who’ll have to skim through these log files, in search of some evidence needed to diag-
nose an issue. So what should you log in order to facilitate this forensic work?

 You have three options for producing logs that enable you to efficiently track the
activity of a Mule instance:

■ Using Mule’s core logs—Mule can emit an incredible amount of information at
DEBUG level. While running at DEBUG level is appropriate in development, it’s
cumbersome in production, where the sheer amount of data it produces
becomes a hindrance. This can be mitigated by tuning each logger (aka cate-
gory) to the desired threshold, effectively controlling the overall log output.
But this requires a good deal of knowledge of Mule’s internals.

■ Logging Mule’s notifications—Mule can broadcast notifications for each event
that occurs internally, and it’s possible to log them. We’ll discuss this fine-
grained option in the next section.

■ Using custom logging—As presented in chapter 8, you can leverage the logging
infrastructure used by Mule to output your own log entries. This can be done in
different places, for example in your own transformers, in custom components,
or in Spring-driven interceptors (for Spring managed beans). We’ll focus on
this approach for the rest of this section.

262 CHAPTER 11 Monitoring with Mule
 TIP Verbosity moderator In the previous listings showing the list of running
agents, you may have noticed one named jmx-log4j. This agent allows
you to control the logging threshold of loggers and appenders at run
time, via JMX. As we just mentioned, running constantly at DEBUG level
in production isn’t an option. But thanks to the jmx-log4j agent, it’s
possible to temporarily increase the verbosity of a particular logger or
appender while a Mule instance is running. This is convenient for captur-
ing a detailed activity snapshot while performing a particular action.

A convenient way to achieve custom logging is to tap a channel and send the snooped
message to an audit channel (the wiretap router is discussed in chapter 4). This audit
channel, which is usually a VM transport queue, is then consumed by a dedicated ser-
vice that takes care of logging the messages. These logged messages can then be
directed to a dedicated file or any other destination supported by log4j.

 Bear in mind that messages often need a specific transformation before being in a
form that can be logged. This transformation can’t generally be done in the audit ser-
vice, because a unique audit channel is used by wiretap routers in services processing
messages of all kinds. The transformation should be done on these routers, where the
data type is known. This isn’t necessary if you transform all your messages to an inter-
nal canonical form and only log messages under this form.

 TIP No correlation, no love You may remember that we introduced the log
component in chapter 6. Can it be leveraged for activity tracking? Not
really. This component only logs a string representation of the message
payload. It misses an important bit of information for activity tracking:
the message correlation ID.

The correlation ID is the Ariadne’s thread you follow when you need
to perform forensics in a messaging environment. Always ensure that
you keep track of it. This is the only way to follow a message path in a
highly distributed deployment. And the same applies for a single
instance deployment: concurrent message processing weaves log entries
beyond what a normal human brain can follow (or at least what my
brain can follow).

Let’s look at what we’ve done for the publication application. For auditing reasons,
Clood’s client wanted Clood to keep track of each book content upload done by the
authors’ application. Listing 11.4 shows the configuration of the auditor service we’ve
created: it uses a specific component4 that logs the message properties and payload as
shown in listing 11.5. Note how the correlation ID created by Mule is clearly visible,
among the other transport and Mule-specific properties.

4 The code of the AuditComponent is available at the companion web site for this book.

263Tracking activity

<service name="activityAuditorService">
 <inbound>
 <inbound-endpoint ref="AuditChannel" />
 </inbound>
 <component>
 <singleton-object class="com.clood.component.AuditComponent">
 <property key="logName" value="publication.mule.audit" />
 </singleton-object>
 </component>
</service>

15:18:44,807 INFO [publication.mule.audit] {
 Accept=*/*
 Connection=true
 Content-Length=10487
 Content-Type=application/x-www-form-urlencoded
 Host=localhost:8080
 MULE_CORRELATION_ID=76653493-876a-11dd-8b08-cb6ad264076e
 MULE_ENDPOINT=vm://audit.channel
 MULE_ORIGINATING_ENDPOINT=AuditChannel
 MULE_REMOTE_CLIENT_ADDRESS=/127.0.0.1:38438
 User-Agent=Wget/1.10.2
 http.method=POST
 http.request=/publicationService
 http.version=HTTP/1.0
}
Uploaded title: Unit Test: refentry.007
--

If you look at the log entry in listing 11.5, you’ll realize that we don’t log the whole
content of the uploaded DocBook document, but only the value of the first title ele-
ment. This is achieved by using an expression transformer in the wiretap router that
sends to the audit channel, as shown in listing 11.6.

<wire-tap-router>
 <outbound-endpoint ref="AuditChannel">
 <expression-transformer>
 <return-argument
 evaluator="groovy"
 expression="'Uploaded title: '+
 ➥org.apache.commons.lang.StringUtils.substringBetween(
 ➥payload,'<title>','</title>')"/>
 </expression-transformer>
 </outbound-endpoint>
</wire-tap-router>

Whether you rely on Mule’s core logs or decide to specifically log certain messages,
logging plays an important role when tracking the activity of an instance. Mule gives
you the tools you need for an effective logging strategy.

Listing 11.4 An activity audit service logs messages using a custom component.

Listing 11.5 An activity audit based on detailed issue tracking

Listing 11.6 A transformer makes snooped messages writable in an audit log.

264 CHAPTER 11 Monitoring with Mule
Devise a logging strategy that fits your business, security, and production
requirements.

Exploring logs is like exploring Mule’s intimate journal after the facts. Sometimes
you’d prefer that Mule call you directly when a particular event occurs. This is when
the notification framework, which we mentioned earlier in this section, comes into
play. Let’s now detail how you can benefit from it.

11.2.2 Using notifications

The management module defines several agents specialized in handling Mule’s inter-
nal notifications that enable fine-grained tracking of an instance’s activity. These noti-
fications are generated when specific events occur inside Mule, such as when an
instance starts or stops, when an exception has been caught, or when a message is
received or dispatched.5 In essence, the notification agents are ready-made listeners
that process events they receive in predetermined and specific ways. As we introduced
in the previous section, logging these notifications is one possibility, but there are
many others. Let’s review them:

■ The jmx-notifications agent rebroadcasts Mule notifications as standard
MBean notifications. By registering a javax.management.Notification-

Listener to the MuleNotificationBroadcaster MBean, you can remotely receive
these notifications in your own code. The jmx-notifications agent can also
register an MuleNotificationListener MBean that basically accumulates mes-
sages in a list on your behalf. If you use this option, it’s up to you to query and
flush this list regularly.

■ The publish-notifications agent dispatches the notifications to an arbitrary
endpoint. This opens the door to broadcasting event objects to virtually any
destination you could want.

■ The log4j-notifications agent sends a text representation of these events to
the log4j logging framework. Thanks to the extensive list of appenders sup-
ported by log4j, it’s possible to send these log entries to a wide variety of desti-
nations (including SNMP).

NOTE There’s also a chainsaw-notifications agent that seems to be ineffec-
tive in the version of Mule in use at this writing. This isn’t detrimental
since the log4j-notifications agent can also broadcast to Chainsaw,
the GUI-based log viewer for log4j that we presented in chapter 8.

When a publishing company came to Clood, Inc., and asked for a simple way to moni-
tor in real time the activity of their authors in a system Clood had previously built for
them, we decided to use the log4j agent and make it broadcast to a centralized Chain-
saw console. The addition to the existing Mule configuration was minimal, as you can
see in listing 11.7.

5 The notification framework is further detailed in section 11.2.2.

BEST
PRACTICE

265Tracking activity

<notifications>
 <notification event="ENDPOINT-MESSAGE" />
</notifications>

<management:log4j-notifications logName="publication.mule.notifications"
 ignoreAdminNotifications="true"
 ignoreComponentNotifications="true"
 ignoreConnectionNotifications="true"
 ignoreManagementNotifications="true"
 ignoreManagerNotifications="true"
 ignoreModelNotifications="true"
 ignoreSecurityNotifications="true" />

Note how we first have to activate the generation of notifications in B: without this
configuration entry, Mule wouldn’t generate events when messages are received or dis-
patched. The notable aspects of configuring the agent itself C are that we configure it
to ignore the notifications we aren’t interested in and that it’s set to log under a partic-
ular name (this name is usually a class name, but can be arbitrary as is the case here).

 WARNING Death by a thousand notifications? If you don’t configure your agent to
ignore the notifications you’re not really interested in, you must be
aware that it’ll potentially generate significant traffic in the event-han-
dling infrastructure you intend to use to process these notifications.
Whether you use the log4j agent or another agent, it’s recommended
that you tailor the notifications they’ll be interested in to your actual
needs. Failure to do so will potentially induce a secondary load on
your systems that’ll follow the main load your Mule instances receive.

Be careful also not to establish a feedback loop if you use the
publish-notifications agent: if you dispatch notifications to an
endpoint in a Mule instance where message notifications are listened
to, the notifications can raise events that will themselves be dis-
patched, and so on, leading to infinite generation of notifications.

Mule will then log endpoint message notifications to this category name at INFO level
(as we haven’t specified a particular level). Therefore, we have to use the same name
to define the log4j category that appends directly to the Chainsaw console, as you can
see in listing 11.8.

<appender name="CHAINSAW" class="org.apache.log4j.net.SocketAppender">
 <param name="remoteHost" value="chainsaw.publisher.com" />
 <param name="port" value="4445" />
 <param name="locationInfo" value="true" />
</appender>

<category name="publication.mule.notifications" additivity="false">
 <priority value="INFO" />
 <appender-ref ref="CHAINSAW" />
</category>

Listing 11.7 Configuration of notifications and a related log4j agent

Listing 11.8 The log4j configuration that broadcasts Mule notifications to Chainsaw

Activates generation of
notifications for endpoint events

B

C

Declares log4j agent
to process these

notifications

266 CHAPTER 11 Monitoring with Mule
Figure 11.8 shows the log entries received in Chainsaw right after an author has sent a
document to the publication application. The first entry, which is highlighted, shows
when and where the message has been received. The other entries let us see the mes-
sage progress through JMS to the file system.

 Should Clood, Inc., rejoice that they’ve now created a simple console that displays
the frantic activity of book authors? Technically, let’s say yes, as all this has been
achieved using standard Mule features and with the help of log4j.

 The notification framework is a convenient way to monitor the activity of a Mule
instance, as it’s not only extensive but also highly configurable.

 We’ll now explore the last aspect of activity tracking, which consists of monitoring
the impact Mule has on its surroundings.

11.2.3 Periodic data monitoring

Mule is seldom used in isolation: as an integration platform, it usually interacts with
many different systems and enterprise resources. Once a message is done processing
in a Mule instance, it’s generally sent to an external destination, such as a messaging
system, a web service, a file system, or a database. Mule’s activity leaves traces. Monitor-
ing these traces, whenever it’s possible, is a viable way to ensure that Mule’s perform-
ing its duty as expected.

 Typically, this kind of monitoring is put in place when Mule performs regular activ-
ities that modify the state of an external system. For example, if Mule is used to poll a
currency exchange rates feed once per day, you’ll want to ensure that the database
table where the values are stored doesn’t have data older than 24 hours.

Figure 11.8 Chainsaw can be used to display Mule endpoint message notifications in real time.

267Tracking activity
 Thanks to its numerous transports, Mule has the capability to reach external sys-
tems of all kinds. It can be a challenge to speak all the protocols needed to connect to
all the systems that a Mule instance can reach in order to ensure that data is modified
as expected. The best approach is to leverage Mule itself for this data collection activity
and to monitor... the monitor! This approach is illustrated in figure 11.9: a Mule ser-
vice takes care of collecting data state in external systems and is regularly polled by a
monitoring system to check whether a defect flag has been raised.

Clood, Inc., uses a slight variation of this approach: their tracking service is periodi-
cally triggered by an embedded Quartz scheduler and reports any problem to a dedi-
cated error channel. This is illustrated in figure 11.10. If you wonder why we still use
an external monitor, the answer is simple: we simply want to ensure that the activity
tracking service is up and running. Again we monitor the monitor, but this time not to
trigger its activity, but just to ensure its health. We’ll come back to this particular use
case of a scheduler in chapter 15.

 Sometimes periodic data monitoring can’t be transparently applied to all the exter-
nal destinations that a Mule instance reaches. For example, unless it’s been designed
for it, a web service can’t be randomly queried for the state of the data it encapsulates.
In other situations, these external destinations are easy to monitor. Consider message
queues, for example: if you’re using Mule to consume or produce messages, you’ll
want to monitor the different destination queues. You can, for example, set a high
watermark limit on a particular queue and raise an alarm if too many messages are
pending there.

Monitor enterprise resources that your Mule instances talk to.

We’ve reviewed different approaches to keep track of the activity of your Mule
instances. In this domain, Mule is again feature-rich, providing you with the capacity
to log and monitor the business-critical parts of your messaging infrastructure.

Figure 11.9 A service in Mule can be a convenient way
to monitor an instance activity by looking at its impact
on the outside world.

BEST
PRACTICE

268 CHAPTER 11 Monitoring with Mule
The monitoring techniques we’ve talked about so far were mainly oriented toward
machines such as load balancers and monitoring tools. But human beings also want to
be able to sense the state of a Mule instance. For this, the best option, which we’ll now
discover, is to build a dashboard.

11.3 Building dashboards
Whereas monitoring is oriented toward machines and applica-
tions, dashboards are intended to be used by humans. They’re
built to aggregate and summarize technical information about
a system into synthetic representations that allow you to get
the feel of a situation simply by glancing at a display. Though it
may at first look futile to build stuff for human beings to look
at, it’s in fact of paramount importance. Once Mule instances
start to multiply in your network, you’ll feel the urge to gain
awareness of what’s happening in these instances. Monitors
will assure you that things are going well; activity tracking will
give you the capability to diagnose issues, but you’ll still need
to take a look at what’s going on.

 This is when building a dashboard that makes sense to you
becomes important. Discussing the qualities of a good dash-
board is beyond the scope of this book: there’s abundant liter-
ature about this subject available out there. Instead we’ll review
the general-purpose dashboard Clood, Inc., has created.

 As shown in figure 11.11, our dashboard is generated by a
component6 that’s deployed in the Mule instance itself. It’s ren-
dered as HTML, so a standard web browser can display it. Sev-

6 The code of the HtmlDashboard is available at the companion site for this book.

Figure 11.10 A Quartz scheduler can be
used to trigger the activity-tracking service
in a Mule instance.

Figure 11.11
An external dashboard
can connect to Mule’s
JMX notification
MBeans to gather
information to display.

269Building dashboards
eral of these dashboards, generated on different Mule
instances, can be aggregated with something as crude
as a frameset page hosted on a shared host.

 Because the dashboard is generated by a compo-
nent hosted in Mule, it has direct access to the com-
plete Mule API. This API, discussed in chapter 13, is
much richer and more direct to use than the MBeans
exposed by Mule. Our dashboard piggybacks on the
extensive statistics API that Mule offers: it basically
displays traffic patterns with different colors so you
can capture the activity that occurs in an instance
with a glimpse.

 Figure 11.12 presents a few examples of different
states displayed by our dashboard while deployed in
the publication application. From top to bottom: the
ping service is correctly exercised while other services
are idle; the publication service has received a message
that makes the document processor choke; the docu-
ment processor service has been paused. An interest-
ing aspect of this dashboard is that it displays variations
between refreshes: this means that if you don’t display
it for a week, you’ll see a week of activity the next time you start it up. This flattens a lot
of details but also gives you a great way to catch up with the latest news: no red light
while I was in the Bahamas?

 Behind the scenes, the dashboard is a standard custom component that you can
expose using the connector that’s relevant for your configuration (Servlet, Jetty, or
HTTP). An interesting aspect of its configuration, shown in listing 11.9, is that it
receives the set of services to monitor via a direct Spring injection. The referenced
beans are actual Mule services. This is a foolproof way to configure a component, as it
relies on actual object references and not symbolic names.

<spring:bean id="HtmlDashboardComponent"
 class="com.clood.component.HtmlDashboard">
 <spring:property name="observedServices">
 <spring:set>
 <spring:ref bean="publicationService" />
 <spring:ref bean="documentProcessor" />
 <spring:ref bean="pingService" />
 </spring:set>
 </spring:property>
</spring:bean>

A viable alternative to the embedded approach we’ve followed consists of creating a
dashboard as a standalone application (web or rich). This can be done by leveraging

Listing 11.9 The log4j configuration that broadcasts Mule notifications to Chainsaw

Figure 11.12 The HTML
dashboard summarizes recent
activities and service states with
color codes and symbols.

270 CHAPTER 11 Monitoring with Mule
the different JMX agents to regularly query interesting MBeans or receive notifica-
tions. This approach is illustrated in figure 11.13. It’s a good option if you want to use
advanced graphing components, such as delicious pie charts or good old gauges.
Building custom dashboards for Mule is both useful and fun. It’s by no mean a one-
size-fits-all activity: you’ll have to identify the type of information and the representa-
tion that best fit your needs or those of your production team. But, whether you
decide to use an existing graphing tool or to create your own renderer, the diversity of
information exposed by Mule will certainly allow you to build an effective dashboard.

11.4 Summary
Putting in place a well-grounded monitoring strategy for your Mule instances is some-
times required by network devices such as load balancers, but is always a necessity in a
production-grade environment. Moreover, if this monitoring strategy is a cake, then
dashboards are the icing that provides a satisfactory feeling of control over what can
be a complex situation.

 As we’ve discovered, the JVM, Mule, and custom components can all contribute to
achieving your monitoring goals. We’ve also reviewed the available options offered by
Mule, whether you opt for leveraging standard protocols, simple log files, or Mule’s
extensive notification framework.

 We’re now done with our review of guidelines and practices for happily running
Mule in your environment. You’ve learned how to deploy, secure, and monitor Mule
instances. You’ve also discovered how to establish sound logging, exception handling,
and transaction management practices in your Mule applications. In the remainder of
the book, we’ll introduce you to techniques and tactics that’ll help you travel even fur-
ther with Mule. We’ll come closer to programming by looking at some developer tools
and the Mule API. We’ll also explore scripting, scheduling, orchestration, and tuning.

Figure 11.11 An external dashboard can
connect to Mule’s JMX MBean server to gather
information to display.

Part 3

Traveling further
with Mule

While all the fundamentals of Mule have been covered in parts 1 and 2,
we aren’t done yet with our exploration of all the good things Mule can do for
you! This last part of the book will bring additional bits of knowledge and best
practices in order for you to travel further with Mule.

 A wealth of tools is available that can help you be more productive while
developing with Mule. In chapter 12, we’ll review how Maven can help you to
build and manage all the dependencies of your Mule-driven projects. We’ll also
look at developing with an IDE, such as Eclipse, and discuss your different
options when it comes to thoroughly testing your integration application.

 Chapter 13 will be the most code-intensive of this book: in it, we’ll delve into
the API of Mule by looking at some of its key classes. We’ll detail the Mule client
and its numerous use cases, the different contexts from which you can extract a
lot of information, and the notification and interceptor frameworks.

 Dynamic languages have become major players in a developer’s toolbox.
Chapter 14 will demonstrate how Mule allows you to leverage the power of
scripting languages to improve the flexibility and versatility of your integration
applications.

 One of the main virtues of services is that they can be composed and orches-
trated: here again Mule can help. In chapter 15, we’ll explore some techniques
that will allow you to use Mule to run business processes and scheduled tasks.

 We’ll close this book with an in-depth analysis of Mule’s threading model in
chapter 16. We’ll also discuss how thread pools can be tuned and what techniques
you can use to profile and performance-boost your Mule-driven applications.

Developing and testing
with Mule
Developers all have different styles and preferences for writing software and man-
aging the development process. Some embrace the command line, using vi to edit
their code along with configuration files and scripts to package and deploy their
applications. Others prefer to centralize their development using a powerful IDE.
Most of us probably use some combination of the two approaches, perhaps using
an IDE, such as Eclipse or IDEA, to write code and then using the Unix shell tools
for packaging and deployment. While these proclivities may vary, one thing devel-
opers can usually agree on is testing. Testing techniques such as unit, integration,
and load testing allow us to ensure our code works in isolation and conjunction—
letting us refactor in confidence.

 Mule simplifies these tasks by providing facilities for build management, IDE
integration, and testing support. We’ll examine all of these in this chapter, starting

In this chapter
■ Leveraging Maven with Mule
■ Using an IDE to aid development with Mule
■ Writing tests for Mule projects
273

274 CHAPTER 12 Developing and testing with Mule
with Mule’s support for Maven, a popular, open source build management frame-
work. Once you’re comfortable managing your Mule projects with Maven, we’ll exam-
ine how an IDE can simplify Mule development. Finally, we’ll see how to perform
integration and load testing with Mule using the JUnit test framework, Mule’s Test
Compatibility Kit, and the JMeter load testing tool.

12.1 Managing Mule projects with Maven
Dependency management, testing, and packaging are integral parts of the develop-
ment cycle. Nontrivial applications need to manage external libraries, run automated
test suites, and compile and package for deployment. Code you write for your Mule
projects is no exception. This’ll become apparent once you start writing your own
transformers and components. Let’s look at some of the steps you need to take after
you’ve written a custom component:

■ Add any libraries you need for compilation, including the Mule libraries, to the
classpath of javac.

■ Use javac to compile the Java source into class files.
■ Run any unit or functional tests.
■ Package the Java class into a JAR file.
■ Deploy the JAR file.

This collection of activities might be tolerable if it weren’t repeated frequently. This
unfortunately isn’t the case—a developer might need to repeat this process several
times in succession when developing and debugging. More problems are intro-
duced as the process is independently repeated by other developers. One developer
may forget to run the tests, while another may build his JAR files slightly differently,
for instance.

 Automation is a solution for these steps. Tools such as Ant, make, or a scripting
language could be used for this purpose. While these approaches are perfectly reason-
able, some problems arise when moving from one project to the next. The build pro-
cesses for different projects invariably begin to diverge. This introduces developer
inertia when moving from one project to the next. Learning how the build infrastruc-
ture works quickly becomes more difficult than comprehending the code of the proj-
ect itself! This can be managed within a single organization, but resurfaces when
developers of that organization need to work on an external project—as is often the
case when working with open source software.

 Maven was introduced as a solution to this problem. It provides a framework for
managing the build infrastructure of Java projects. Its facilities should negate most of
the need for custom build infrastructures, allowing developers to move from project
to project without spending a lot of time learning how to build the new project. In this
section we’ll start off by seeing how to create a Maven project. We’ll then see how to
manage dependencies to Mule libraries in our Maven project. Finally, we’ll explore
how Maven simplifies packaging and deployment of our Mule code.

275Managing Mule projects with Maven
12.1.1 Setting up a Maven project

Let’s start off by downloading and installing Maven. Maven can be downloaded
from http://maven.apache.org/. Full installation instructions can be found in the
release or at http://maven.apache.org/download.html. You essentially need to do
the following:

■ Add an M2_HOME environment variable to either your Windows system or Unix
shell.

■ Add the bin subdirectory of M2_HOME to your system’s path so you can execute
the Maven commands.

Once Maven is installed, you can create your first project. The following command
(listing 12.1) creates a Maven project for a message-enricher component Clood will
use to add headers to messages.

mvn archetype:create -DgroupId=com.clood -DartifactId=message-enricher

We need to specify the group and artifact IDs for our project. Maven exhibits tight
control over a project’s dependencies. It does this by organizing JAR files in a hierar-
chy of groups, artifacts, and versions. We’ll see more of this in a bit when we explicitly
identify our Mule requirements. For now, we’re telling Maven that the group for our
project is com.clood. The artifact name is going to be message-enricher. When we
build our project, Maven will use these conventions to store the JAR file in a local
repository. We’ll then be able to use the combination of group ID, artifact ID, and ver-
sion to identify and use the JAR file in other projects.

 When you run the command in listing 12.1, you should see Maven spin into a
flurry of activity. When it finishes, there’ll be a subdirectory called message-enricher
in the directory from which you run the command. This directory contains three
things: a pom.xml, file and source directories for your code, and its corresponding
unit tests. The structure is illustrated in Figure 12.1.

 Maven will create the two source trees for our project: one for the main project
code and another for JUnit tests. The source directories will form a package structure

Listing 12.1 Creating a Maven project structure for a custom component

Figure 12.1 The directory structure created by Maven for a project

http://maven.apache.org/
http://maven.apache.org/download.html

276 CHAPTER 12 Developing and testing with Mule
that matches the group ID you supplied to the mvn command. In addition to creating
the directories, Maven has also created a dummy application that’ll print “Hello
World” to the screen. If you look at these source files you’ll see that they’ve been auto-
matically placed in a package that matches the group ID.

 Let’s build and execute the test app to get a feel for how builds with Maven work.
Listing 12.2 will build App.java, run its associated JUnit test, and create a JAR file.

mvn clean compile test package

Running this command from the directory with pom.xml in it will clean any previously
compiled classes, compile all the Java sources, run any JUnit tests, and package the
resulting Java classes into a JAR. If any of the steps fail, the build will be stopped at that
point. For instance, if any of the tests fail, then a JAR file won’t be built. The build pro-
cess will add an additional directory to your project, as illustrated in figure 12.2.

If you inspect the target directory, you’ll see that the compiled class files are located in
classes and the compiled test classes in test-classes. A JAR file has also been cre-
ated. Let’s execute the jar file (listing 12.3) and see what happens.

java -cp target/message-enricher-1.0-SNAPSHOT.jar com/clood/App

This should result in “Hello World!” being printed to your screen. You can probably
infer that the JAR file is named after the artifact ID we used to create the Maven proj-
ect in listing 12.1, but where is the version coming from? The answer is from the
pom.xml file in the root of your project directory. This is the file you’ll use to tell
Maven about your project. Listing 12.4 illustrates the one for our message-enricher
artifact.

Listing 12.2 Compile, test, and build a JAR file of App.java

Listing 12.3 Run the Hello World app

Figure 12.2 The directory structure after a successful build

277Managing Mule projects with Maven

<project xmlns="http://maven.apache.org/POM/4.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation=
 "http://maven.apache.org/POM/4.0.0
 http://maven.apache.org/maven-v4_0_0.xsd">
 <modelVersion>4.0.0</modelVersion>
 <groupId>com.clood</groupId>
 <artifactId>message-enricher</artifactId>
 <packaging>jar</packaging>
 <version>1.0-SNAPSHOT</version>
 <name>message-enricher</name>
 <url>http://maven.apache.org</url>
 <dependencies>
 <dependency>
 <groupId>junit</groupId>
 <artifactId>junit</artifactId>
 <version>3.8.1</version>
 <scope>test</scope>
 </dependency>
 </dependencies>
</project>

The pom.xml file contains all the information Mule needs to build our project. The
groupId and artifactId elements on B and C are populated by the arguments to
the mvn command we ran in listing 12.1. The packaging mechanism is specified on D.
In this case, we want our end result from the build to be a JAR file, so we have jar
specified. Other targets are possible. If we were building a web application, for exam-
ple, the target here would be war. The full range of available targets can be found on
the Maven web site. The version of our project is specified on E. In this case we’re
going to use the default, 1.0-SNAPSHOT, indicating that we’re working on a develop-
ment version of the message enricher.

 The dependencies for message-enricher begin on F. Dependency management
is one of the key features of Maven. By defining our dependencies, Maven will auto-
matically resolve the dependency graph of your project—bundling the appropriate
libraries in your builds. The only dependency for the Hello World application is JUnit,
and this is declared on G. We’re specifying that we want to use JUnit 3.8.1 for our
tests. Since we don’t need JUnit to compile our main classes, it’s given a scope of test.
This would exclude the bundling of the JUnit library if we opted to build a JAR with all
dependencies included. The default scope is compile.

 Maven isn’t limited to building just JAR files. By changing the packaging mecha-
nism in the pom.xml file, you can build WAR or EAR files, for instance. This allows you
to use Maven with the deployment options discussed in chapter 7. Maven generally
makes smart decisions when packaging these projects. Mule projects embedded in
web application WAR files, for instance, will have all the required JAR dependencies in
their WEB-INF/lib directories when packaged.

Listing 12.4 The Maven project definition for the message-enricher project

Group of our projectB

Artifact nameC
Packaging
mechanismD

VersionE

List of dependenciesF

Individual dependencyG

278 CHAPTER 12 Developing and testing with Mule
 Now that you’re comfortable setting up Maven and building a project, let’s get to
work on our custom component.

12.1.2 Using the Mule Maven dependencies

As we mentioned previously, one of the core features of Maven is dependency man-
agement. Maven calls dependencies artifacts. An artifact is usually a JAR file located in
a Maven repository that your project needs for some phase of its build lifecycle, gener-
ally for compilation, testing, or debugging. Before we dig into how to add Maven arti-
facts to our project, let’s look at the source for Clood’s message enricher. Clood is
writing a message enricher that’ll add a property to messages containing metadata
about the organization they belong to. This data will ultimately come from Clood’s
LDAP directory, but for the proof-of-concept phase they’re simply adding a static
header to each message. This is illustrated in listing 12.5.

package com.clood;
import org.mule.api.MuleEventContext;
import org.mule.api.MuleMessage;
import org.mule.api.lifecycle.Callable;

public class MessageEnricher implements Callable {
 public Object onCall(MuleEventContext muleEventContext) {
 MuleMessage message = muleEventContext.getMessage();
 message.setProperty("ORGANIZATION", "CLOOD");
 return message;
 }
}

The source for this class will be placed in src/main/java along with a unit test in src/
test/java. As we’ll be covering unit testing in depth in section 12.3, we’ll just add a
placeholder TestCase for now and revisit it later on. Listing 12.6 illustrates the skele-
ton test case.1

package com.clood;

import junit.framework.TestCase;

public class MessageEnricherTest extends TestCase {
 public void testOnCall() {
 // ToDo IMPLEMENT A REAL TEST!
 assertTrue(true);
 }
}

Listing 12.5 A simple component to add a property to a message

Listing 12.6 A skeleton test case

1 A property transformer could also be used in place of this component, until the additional LDAP lookup func-
tionality was required.

279Managing Mule projects with Maven
Let’s build our project again and see what happens. The output is illustrated in
listing 12.7.

mvn clean package

This time you’ll notice that the build has failed. You should see output on your screen
similar to listing 12.8.2

[INFO] --
[ERROR] BUILD FAILURE
[INFO] --
[INFO] Compilation failure

... MessageEnricher.java:[3,19] package org.mule.api does not exist

... MessageEnricher.java:[4,19] package org.mule.api does not exist

... MessageEnricher.java:[5,29] package org.mule.api.lifecycle
does not exist

... MessageEnricher.java:[7,40] cannot find symbol

... etc

It seems like our build has failed because the required Mule JAR libraries aren’t avail-
able to the project. This can be corrected by adding a dependency to Mule’s core
library in the project’s pom.xml file. Listing 12.9 illustrates how to do this.

<project xmlns="http://maven.apache.org/POM/4.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation=
 "http://maven.apache.org/POM/4.0.0
 http://maven.apache.org/maven-v4_0_0.xsd">
 <modelVersion>4.0.0</modelVersion>
 <groupId>com.clood</groupId>
 <artifactId>message-enricher</artifactId>
 <packaging>jar</packaging>
 <version>1.0-SNAPSHOT</version>
 <name>message-enricher</name>
 <url>http://maven.apache.org</url>
 <dependencies>
 <dependency>
 <groupId>junit</groupId>
 <artifactId>junit</artifactId>
 <version>3.8.1</version>
 <scope>test</scope>
 </dependency>
 <dependency>

Listing 12.7 Attempt to build the message-enricher project

Listing 12.8 The component fails to compile because of missing dependencies.

2 Note that we’ve omitted the compile and test arguments. These arguments, called goals by Maven, are
implied and will be executed by default.

Listing 12.9 Add a dependency to Mule’s core library for the project.

Group ID of dependency

Artifact ID of dependency

Version of dependency

280 CHAPTER 12 Developing and testing with Mule
 <groupId>org.mule</groupId>
 <artifactId>mule-core</artifactId>
 <version>2.2.0</version>
 /dependency>
 </dependencies>
</project>

Adding a dependency to version 2.2.0 of the mule-core artifact will make Mule’s core
API available to our project. The project should now build without incident, produc-
ing a JAR file suitable for deployment to Mule in the target directory.

 Maven does more than just add the Mule core library to your project. All depen-
dencies of Mule’s core library are added to the project as well. You can view the entire
dependency tree of your project by running the mvn dependency:tree goal.
Listing 12.10 shows what this looks like for Clood’s message-enricher project.

[INFO] [dependency:tree]
[INFO] com.clood:message-enricher:jar:1.0-SNAPSHOT
[INFO] +- org.apache.activemq:activemq-core:jar:5.1.0:compile
[INFO] | +- commons-logging:commons-logging-api:jar:1.1:compile
[INFO] | +- org.apache.camel:camel-core:jar:1.3.0:compile
[INFO] | | +- javax.xml.bind:jaxb-api:jar:2.1:compile
[INFO] | | | \- javax.xml.stream:stax-api:jar:1.0-2:compile
[INFO] | | \- com.sun.xml.bind:jaxb-impl:jar:2.1.3:compile
[INFO] | +- org.apache.geronimo.specs:geronimo-jms_1.1_spec:jar...
[INFO] | +- org.apache.activemq:activeio-core:jar:3.1.0:compile
[INFO] | | +- commons-logging:commons-logging:jar:1.1:compile
[INFO] | | | +- logkit:logkit:jar:1.0.1:compile
[INFO] | | | +- avalon-framework:avalon-framework:jar:4.1.3:compile
[INFO] | | | \- javax.servlet:servlet-api:jar:2.4:compile (version ...
[INFO] | | \- backport-util-concurrent:backport-util-concurrent:jar:...
[INFO] | +- org.apache.geronimo.specs:geronimo-j2ee-management_1.0_sp...
[INFO] | \- org.apache.activemq:activeio-core:test-jar:tests:3.1.0:co...
[INFO] +- org.mule.transports:mule-transport-jms:jar:2.2.0:compile
[INFO] | +- org.mule:mule-core:jar:2.2.0:compile
[INFO] | | +- commons-beanutils:commons-beanutils:jar:1.7.0-osgi:compile
[INFO] | | +- org.safehaus.jug:jug:jar:asl:2.0.0-osgi:compile
[INFO] | | +- commons-cli:commons-cli:jar:1.0-osgi:compile
[INFO] | | +- commons-collections:commons-collections:jar:3.2-osgi:compile
[INFO] | | +- commons-io:commons-io:jar:1.3.1-osgi:compile
[INFO] | | +- commons-lang:commons-lang:jar:2.4:compile (version man...
[INFO] | | +- commons-pool:commons-pool:jar:1.4:compile
[INFO] | | +- javax.activation:activation:jar:1.1:compile
[INFO] | | +- org.apache.geronimo.specs:geronimo-jta_1.0.1B_spec:jar...
[INFO] | | +- org.apache.geronimo.specs:geronimo-j2ee-connector_1.5_...
[INFO] | | +- org.slf4j:jcl104-over-slf4j:jar:1.5.0:compile
[INFO] | | +- org.slf4j:slf4j-api:jar:1.5.0:compile
[INFO] | | +- org.slf4j:slf4j-log4j12:jar:1.5.0:compile
[INFO] | | \- log4j:log4j:jar:1.2.14:compile
[INFO] | +- org.mule.modules:mule-module-spring-config:jar:2.2.0:compile
[INFO] | | +- dom4j:dom4j:jar:1.6.1:compile
[INFO] | | \- jaxen:jaxen:jar:1.1.1:compile

Listing 12.10 Printing the dependency tree of the message-enricher project

281Managing Mule projects with Maven
[INFO] | | \- jdom:jdom:jar:1.0:compile
[INFO] | \- org.springframework:spring-context:jar:2.5.6:compile
[INFO] | +- org.springframework:spring-beans:jar:2.5.6:compile
[INFO] | \- org.springframework:spring-core:jar:2.5.6:compile
[INFO] +- com.muleinaction:velocity-transformer:jar:1.0-SNAPSHOT:compile
[INFO] | +- org.mule.transports:mule-transport-vm:jar:2.2.0:compile
[INFO] | | \- org.mule.modules:mule-module-xml:jar:2.2.0:compile
[INFO] | | +- org.apache.geronimo.specs:geronimo-stax-api_1.0...
[INFO] | | +- commons-jxpath:commons-jxpath:jar:1.3-osgi:compile
[INFO] | | +- com.thoughtworks.xstream:xstream:jar:1.2.2-osgi:compile
[INFO] | | +- xpp3:xpp3_min:jar:1.1.3.4.O-osgi:compile
[INFO] | | +- org.codehaus.woodstox:wstx-asl:jar:3.2.6-osgi:compile
[INFO] | | +- net.java.dev.stax-utils:stax-utils:jar:200807...
[INFO] | | +- net.sf.saxon:saxon:jar:8.9.0.4-osgi:compile
[INFO] | | \- net.sf.saxon:saxon-dom:jar:8.9.0.4-osgi:compile
[INFO] | +- org.mule.modules:mule-module-client:jar:2.2.0:compile
[INFO] | +- org.springframework:spring-context-support:jar:2.5.6:compile
[INFO] | | \- aopalliance:aopalliance:jar:1.0:compile
[INFO] | \- org.apache.velocity:velocity:jar:1.5:compile
[INFO] | \- oro:oro:jar:2.0.8:compile
[INFO] +- org.mule.modules:mule-module-builders:jar:2.2.0:compile
[INFO] | \- org.springframework:spring-web:jar:2.5.6:compile
[INFO] +- org.mule.tests:mule-tests-functional:jar:2.2.0:test
[INFO] | \- org.mule:mule-core:test-jar:tests:2.2.0:test
[INFO] \- junit:junit:jar:4.4:test

The entire graph of our project’s dependencies are output to the screen. All of mule-
core’s dependencies are added to the message enricher’s compile classpath, saving
you the trouble of having to do this manually.

 You might’ve noticed Maven fetching JARs after you added the mule-core depen-
dency to your POM and rebuilt the project. Maven automatically downloads necessary
dependencies from a central site, called a repository. These artifacts are then cached to
a local repository on your filesystem. The central Maven repository is located at
http://repo1.maven.org/maven2/. If you poke around the repository for a while,
you’ll see the artifacts are organized in a directory structure that matches their group
IDs. If you navigate to http://repo1.maven.org/maven2/org/mule/ you’ll see the
start of Mule’s Maven artifacts.

 You can use this to select the appropriate module to include in your own projects.
For instance, if you were working on a custom JMS transformer, your code would prob-
ably need access to Mule’s JMS transport, the JMS API libraries, and so on. As such, you
might have a pom.xml file that looks like listing 12.11.

<project xmlns="http://maven.apache.org/POM/4.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation=
 "http://maven.apache.org/POM/4.0.0
 http://maven.apache.org/maven-v4_0_0.xsd">
 <modelVersion>4.0.0</modelVersion>
 <groupId>com.clood</groupId>

Listing 12.11 Adding a dependency to the Mule JMS transport to a pom.xml

http://repo1.maven.org/maven2/
http://repo1.maven.org/maven2/org/mule/

282 CHAPTER 12 Developing and testing with Mule
 <artifactId>message-enricher</artifactId>
 <packaging>jar</packaging>
 <version>1.0-SNAPSHOT</version>
 <name>clood-jms-transformer</name>
 <url>http://maven.apache.org</url>
 <dependencies>
 <dependency>
 <groupId>junit</groupId>
 <artifactId>junit</artifactId>
 <version>3.8.1</version>
 <scope>test</scope>
 </dependency>
 <dependency>
 <groupId>org.mule.transports</groupId>
 <artifactId>mule-transport-jms</artifactId>
 <version>2.2.0</version>
 /dependency>
 </dependencies>
</project>

This would make the JMS transport and all its dependencies, including mule-core,
available to your transformer.

 Let’s now see how to simplify Mule project creation by using the Mule Maven
archetypes.

12.1.3 Simplifying Maven projects with the Mule Maven archetypes

Mule provides a set of Maven archetypes that simplify some of the tasks we previously
enumerated. You can take advantage of these archetypes when starting a new Mule
project or extending Mule by creating a new transport or Mule module.

 The Mule project archetype can be used to create a new project. The archetype
will ask you a series of questions, including things such as the Mule version and the
transports you wish to use, and create a Maven project for you. This project will
include all the required dependencies in its pom.xml file along with a template Mule
configuration that includes all the required namespace definitions. Execute the
Maven command in listing 12.12 to create the project.

mvn org.mule.tools:mule-project-archetype:create \
 -DartifactId=message-enricher \
 -DmuleVersion=2.2.0

You should now have a Maven project with the artifacts we just described. These files
contain additional gems in the forms of TODO pointers—these will guide you through
what you need to complete to a get your Mule project running and tested. The Mule
Maven archetypes can also be used as starting points to create transports and mod-
ules. Mule modules are pieces of functionality, like XML or PGP support, that don’t fall
into the category of transports. You can use the mule-transport-archetype:create
goal when starting a new transport and the mule-module-archetype:create goal-
when beginning work on a new module.

Listing 12.12 Starting a Maven project with the Mule project archetype

283Using Mule with an IDE
 By now you should be comfortable building your Mule projects using Maven. You
saw how to set up, test, and build a Maven project. You also saw how to manage your
project’s dependencies by using the artifacts in a Maven repository. This allowed us to
automatically make Mule’s libraries available for Clood’s message enricher. Let’s now
turn our attention to another way to ease developing with Mule—an integrated devel-
opment environment.

12.2 Using Mule with an IDE
It’s completely feasible to perform all your Mule-related work—development, testing,
debugging, and deployment—using command-line tools. Integrated development
environments exist for those of us who need a bit more help. This is particularly the
case with projects that make heavy use of XML. You might already be aware that work-
ing with XML using a bare-bones text editor can be slightly painful. By using a well-
documented XML schema for configuration, Mule eases much of this burden. To take
full advantage of these features, though, you need a schema-aware development envi-
ronment.

 Starting and stopping Mule can be another inconvenience. When you’ve finished
modifying a Mule configuration and want to test it, you generally need to stop and
start a Mule instance to see your changes take effect. This generally involves leaving
your development environment and executing a shell script, then switching back over
to your development environment to test and debug. Wouldn’t it be nice if this func-
tionality were integrated into your IDE?

 In this section we’ll look at Mule’s support for integrated development environ-
ments. We’ll start by seeing how the XML features of two popular Java IDEs, Eclipse
and IDEA, can simplify the authoring of XML Mule configurations. We’ll then see how
to use Mule IDE, an Eclipse plug-in, to start and stop Mule instances from within the
Eclipse development environment.

12.2.1 XML editing for Mule

For some people, XML is challenging. Even those of us comfortable working with XML
sometimes need a bit of help. Whatever your level of comfort with XML, we highly rec-
ommended you use a schema-aware XML editor to author Mule’s configuration files.
Using such an editor will provide two main features that’ll make your life easier and
the overall XML edition process a little happier. First, you’ll immediately know if your
configuration file is well-formed and valid, or said differently, that it’s really XML and
it complies with the schema rules. Second, you’ll benefit from the content-authoring
assistance that’ll guide you when creating the XML file, pretty much like with the code
completion feature of a Java editor. Most recent IDEs offer such an editor, and there
are also capable standalone editors. Figure 12.3 shows a content assist pop-up in
Eclipse. Note how both insertion suggestions and documentation are contextual to
the element that’s edited.

284 CHAPTER 12 Developing and testing with Mule
NOTE My XML editor tries to connect to the Internet! Depending on the tool you
use, an Internet connection might be required to fetch Mule schemas
when a configuration file is opened. This happens with tools that don’t
understand the local redirection mechanism explained in chapter 2.
Some XML editors require you to build a local catalog of schemas to be
able to offer validation and code assistance. In that case, you can point
the tool to the schemas embedded in the Mule libraries you’re using in
your project.

Your IDE’s templating features can also simplify XML authoring. Templating allows
you to create a skeleton Mule config that you can use as a baseline for new Mule proj-
ects. The template could include schema declarations typically used in your projects,
shared connectors, or boilerplate comments. As you can tell, Clood makes extensive
use of Mule. Most of their Mule configurations contain the same elements, such as a
reference to a Spring config file containing bean definitions or a connector definition
for their JMS broker. The Java developers at Clood who prefer IDEA as their IDE use a
configuration template to simplify starting these configurations. Figure 12.4 illustrates
a template that includes the elements we just mentioned.

 This template includes the schema definitions commonly used in Clood projects, a
Spring bean import element, a connector for Clood’s ActiveMQ broker, and a stub
model definition.

 Now that we’ve seen some general ways that IDEs can simplify Mule develop-
ment, let’s look at Mule’s explicit support for Eclipse through the use of the Mule
IDE plug-in.

Figure 12.3 Editing a Mule configuration file with Eclipse: content assist and contextual
help are provided based on the schema

285Using Mule with an IDE

12.2.2 Using Mule’s IDE plug-in

If you’re an Eclipse user, you can take advantage of the Mule IDE plug-in. This freely
available plug-in provides convenience for working with Mule projects in Eclipse. In
this section we’ll look at how to install Mule IDE in Eclipse. We’ll then use Eclipse to
start a new Mule project using the Echo Example from chapter 1. Finally, we’ll run the
example from inside Eclipse using the Mule IDE.

 If you don’t have Eclipse installed, you can download it from http://www.
eclipse.org/. Once it’s running, you’re ready to install Mule IDE. This is straightfor-
ward—select Software Updates from the Help menu. This’ll bring you to the Software
Updates and Add-ons panel. From here, click on Add Site and enter the following:
http://snapshots.dist.muleforge.org/mule-ide/updates-2.0-M1/. This is illus-
trated in figure 12.5.

 Clicking on OK will install the Mule IDE. You’ll be asked to restart Eclipse when it’s
finished. Once this is done, you’ll need to point Mule IDE at the Mule installation
location on your machine. This’ll enable you to start and stop Mule from Eclipse. To
do this, open the Preferences menu, select Mule, and set it to the same value as your
MULE_HOME value, as illustrated in figure 12.6.

Figure 12.4 Creating a Mule configuration template in IDEA

http://www.eclipse.org/

286 CHAPTER 12 Developing and testing with Mule
Figure 12.5 Installing the Mule IDE in Eclipse Ganymede

Figure 12.6 Setting the
location of Mule for Mule IDE

287Using Mule with an IDE
Now let’s start and run a Mule project. If you navigate to File > New > Project, you’ll be
presented with a New Project dialog. From here, select Mule Project. Give your proj-
ect a name and at the bottom of the dialog, select Add Sample project content, and
select the Echo Example. Once this is done, navigate to the WorkBench and you
should wind up with a screen that looks something like figure 12.7.

We’re now ready to run the Echo Example from inside Eclipse. Do the following to
accomplish this:

1 Save your project from the File menu.
2 Select Run Configurations from the Run menu.
3 Select Local Mule Server on the left side of the panel.
4 Select the project to run.

Now you need to set the configuration file to use. As you can see from figure 12.8, this
project has three config files: echo-axis-config.xml, echo-config.xml, and echo-
cxf-config.xml. Click on the Add button next to the Configuration Files pane, and
then select the echo-config.xml file. Your screen should resemble figure 12.8.

Figure 12.7 The Eclipse WorkBench after starting a new Mule project

288 CHAPTER 12 Developing and testing with Mule

Clicking on Run should now start Mule running. You should see something like
figure 12.9 on your console window in Eclipse.

 NOTE Provider org.apache.xerces.jaxp.SAXParserFactoryImpl not found If you see
Mule throw an exception that says something like “Provider
org.apache.xerces.jaxp.SAXParserFactoryImpl not found” when you
attempt to run the configuration, you need to add the Xerces JAR to
Eclipse’s classpath. This can be done by going to the Run Configurations

Figure 12.8 Setting up a run configuration for Mule in Eclipse

Figure 12.9 A Mule instance running within Eclipse

289Testing with Mule
menu, clicking on the Classpath tab, and adding the Xerces JAR to the
classpath of your Mule project. A Xerces JAR is available in the lib/
endorsed directory of the Mule distribution.

Congratulations! You can now run Mule directly from your development environ-
ment. Clicking on the red Stop button will stop the Mule process. If you want to start
Mule again, you just need to click on the green Run icon in the toolbar.

NOTE Most modern IDEs feature extensive debugging capabilities. One such
feature is remote debugging. This allows you to set up breakpoints and
step debug a remote Java process while it’s running. If your IDE supports
JPDA (Java Platform Debugger Architecture), you can take advantage of
this functionality with Mule once you get a little configuration out of the
way. To enable JPDA in Mule, simply add the -debug flag when you run
the Mule startup script. You can now connect your IDE’s debugger to
Mule on port 5005.

Mule’s well-documented XML schema and IDE support can greatly simplify your expe-
rience working with Mule. You saw how an IDE, or any other competent XML editor,
can take advantage of Mule’s XML schemas to assist you when building your Mule con-
figurations. You also saw how Mule IDE provides tight integration with the Eclipse IDE
platform, enabling you to start and stop a Mule instance without leaving your
development environment. We’ll now see how to tackle another crucial part of the
development process—testing.

12.3 Testing with Mule
Mule provides rich facilities to test your integration projects. We’ll start off by see-
ing how to use Mule’s functional testing capabilities to perform integration tests of
your Mule configurations. We’ll then take advantage of Mule’s test namespace to
use the test component to mock component behavior. We’ll wrap up by taking a
look at JMeter, an open source load testing tool, to load test Mule endpoints.

12.3.1 Functional testing

One way to perform integration testing on a Mule project is to manually start a Mule
instance, send some messages to the endpoint in question, and manually verify that it
worked. During development, this can be an effective technique, as we saw in
section 12.2 with the Mule IDE. This process should ultimately be automated, allowing
you to automatically verify the correctness of your projects. The FunctionalTestCase
of Mule’s Test Compatibility Kit (TCK) can be used for this purpose. The TCK can be
used to test various aspects of Mule projects. The FunctionalTestCase allows you to
bootstrap a Mule instance from a TestCase and then use the MuleClient to interact
with it.

 To demonstrate Mule’s functional testing capabilities, let’s start with a simple
Mule project that uses the component and transformer we discussed in this chapter.
The configuration in listing 12.13 illustrates a Mule service that accepts a JMS

290 CHAPTER 12 Developing and testing with Mule
message off a queue, processes it with the message enricher, transforms it with the
VelocityTransformer, and then sends it to another JMS queue. Clood is using this
process to accept data from a vendor, add an ORGANIZATION header to the message,
format the message with a velocity template, and send the message to another queue
for further processing.

<spring:bean name="velocityEngine"
 class="org.springframework.ui.velocity.VelocityEngineFactoryBean">
 <spring:property name="resourceLoaderPath"
 value="classpath:templates"/>
 </spring:bean>

<custom-transformer name="velocityPayloadTransformer"
 class="com.muleinaction.transformer.VelocityPayloadTransformer">
 <spring:property name="velocityEngine" ref="velocityEngine"/>
 <spring:property name="templateName" value="test-payload.vm"/>
</custom-transformer>

<jms:activemq-connector name="jmsConnector"
 specification="1.1"
 brokerURL="vm://localhost"/>

<model name="FunctionalTestModel">
 <service name="FunctionalTestService">
 <inbound>
 <jms:inbound-endpoint queue="in"/>
 </inbound>
 <component class="com.clood.MessageEnricher"/>
 <outbound>
 <pass-through-router>
 <jms:outbound-endpoint queue="out">
 <transformers>
 <transformer ref="velocityPayloadTransformer"/>
 <jms:object-to-jmsmessage-transformer/>
 </transformers>
 </jms:outbound-endpoint>
 </pass-through-router>
 </outbound>
 </service>
</model>

This configuration is fairly straightforward. One thing to note is the use of the VM bro-
ker for ActiveMQ on B. This creates an in-memory ActiveMQ broker that lives for the
duration of the functional test. Clood wants to avoid sending test messages through its
production JMS infrastructure, so using an in-memory broker is a good compromise.
Similar options exist for other transports. For example, you might want to use an in-
memory database such as Apache Derby or HSQL for testing JDBC endpoints, or the
GreenMail libraries for testing SMTP and IMAP endpoints.

Use ActiveMQ’s vm broker to test JMS endpoints without relying on an
external JMS infrastructure.

Listing 12.13 Using the message enricher and VelocityTransformer

Define VelocityEngine bean

Define VelocityPayloadTransformer

Define ActiveMQ
connector

B

Declare
MessageEnricher
component

Declare outbound
transformers

BEST
PRACTICE

291Testing with Mule
Let’s write a functional test for this configuration. Our goal is to start Mule, send a JMS
message to the in queue, then consume a message off the out queue and confirm that
the header and transformed payload are present. We’ll use the FunctionalTestCase
along with the MuleClient to get this done. Listing 12.14 illustrates this.

public class MessageEnricherFunctionalTest
 extends FunctionalTestCase {
 protected String getConfigResources() {
 return "conf/message-enricher-conf.xml";
 }

 public void testMessageTransformation() throws Exception {
 MuleClient muleClient = new MuleClient(muleContext);

 muleClient.sendAsync("jms://in", "TEST_PAYLOAD", null);

 MuleMessage response = muleClient.request("jms://out", 2000);

 assertEquals("***[MESSAGE=TEST_PAYLOAD]***",
 response.getPayload());

 assertNotNull(response.getProperty("ORGANIZATION", true));

 assertEquals("CLOOD",
 response.getProperty("ORGANIZATION", true));

 }
}

We start off by specifying the location of the Mule configuration on the classpath. If
you’re using Maven for your tests, the configuration file would be located in src/
test/resources/conf (you’ll need to create this directory if it doesn’t exist.) We cre-
ate a MuleClient on B that uses the muleContext present in the FunctionalTest-
Case superclass. You’ll learn much more about the MuleClient in the next chapter.
For now, all you need to know is that the MuleClient is a facility for directly interact-
ing with a Mule instance, which in this case is the Mule environment created by the
FunctionalTestCase.

 We’re sending a JMS message where we don’t expect a synchronous response, so
we use the sendAsync method of MuleClient to send TEST_PAYLOAD to the in queue.
The message will now be sent to the in-memory ActiveMQ broker we configured in list-
ing 12.13. On C we request a message off the JMS out queue with a 2-second timeout.
Assuming everything went well, our transformed message with the added headers
should be waiting for us patiently on the out queue. If we don’t receive a message off
the queue in that time frame, the test will fail. Assuming a message has been received,
we’ll begin our test assertions on D, where we start by testing whether the payload has
been transformed appropriately. If it has, we then test that the header has been set
and has the appropriate value in E and F.

Listing 12.14 Performing an integration test of a Mule configuration

Specify location of
Mule configuration

B Construct
MuleClient
instance

CWait 2
seconds for

message

Test that payload has
been transformed

D

ETest that appropriate header has been added

F
Test that header
has appropriate

292 CHAPTER 12 Developing and testing with Mule
NOTE The AbstractTransformerTestCase can simplify (and speed up) trans-
former testing at the expense of greater exposure to Mule internals. You
should generally stick to extending the FunctionalTestCase and using a
simple Mule config to test transformers, but you might consider the
AbstractTransformerTestCase when the FunctionalTestCase proves to
be too slow.

12.3.2 Mocking component behavior

The functional test we just saw tested whether a message was successfully processed.
We also may want to test what happens when message processing fails or when invalid
data is returned from a component. One way to approach this would be to mock the
component implementation to return the dummy data. The downside of this
approach is that you may need to maintain multiple mock implementations for each
of your failure scenarios. For instance, you’d have a mock component implementa-
tion to return invalid data or another mock that would artificially delay processing to
simulate a time-out of some sort.

 The Mule TCK provides functionality to make this sort of testing easier. By using
Mule’s test component, you can return arbitrary data from a component or introduce
delays in component processing. Let’s see how this works by introducing a 3-second
delay to the message processing demonstrated in listing 12.11. Listing 12.15 shows
how to configure the test component to introduce the delay.

<model name="FunctionalTestModel">
 <service name="FunctionalTestService">
 <inbound>
 <jms:inbound-endpoint queue="in"/>
 </inbound>
 <test:component waitTime="3000"/>
 <outbound>
 <pass-through-router>
 <jms:outbound-endpoint queue="out">
 <transformers>
 <transformer ref="velocityPayloadTransformer"/>
 <jms:object-to-jmsmessage-transformer/>
 </transformers>
 </jms:outbound-endpoint>
 </pass-through-router>
 </outbound>
 </service>
</model>

Replacing the original component class definition with B will cause Mule to pause
for three seconds when the message is received by the component. You can use this
to test that no message is emitted to the out queue during this interval, as illustrated
in listing 12.16.

Listing 12.15 Using the test component to introduce a delay in component processing

Introduce delay in
component processing

B

293Testing with Mule

public class MessageEnricherFunctionalTestCase
 extends FunctionalTestCase {

 protected String getConfigResources() {
 return "conf/test-component-delay.xml";
 }

 public void testClientTimedOut() throws Exception {
 MuleClient muleClient = new MuleClient(muleContext);

 muleClient.sendAsync("jms://in", "TEST_PAYLOAD", null);

 MuleMessage response = muleClient.request("jms://out", 2000);
 assertNull(response);
 }
}

When testing components using this method, be sure to use the MuleClient’s syn-
chronous send method. Doing otherwise will cause your test to exit before the mes-
sages reach the component in question. If this isn’t an option, consider using the
latching facilities in java.util.concurrent in conjunction with Mule’s event notifica-
tion features to block the test thread until the event is processed by the component.

Use MuleClient’s synchronous send method when testing component
behavior.

The test component can also be used to simulate exceptions in a component. This is
useful when testing exception strategies work as expected. Listing 12.17 shows how to
configure the test component to accomplish this.

<default-service-exception-strategy>
 <jms:outbound-endpoint queue="errors"/>
</default-service-exception-strategy>

<service name="FunctionalTestService">
 <inbound>
 <jms:inbound-endpoint queue="in"/>
 </inbound>
 <test:component
 exceptionToThrow="java.lang.RuntimeException"
 throwException="true"/>
 <outbound>
 <pass-through-router>
 <jms:outbound-endpoint queue="out">
 <transformers>
 <transformer ref="velocityPayloadTransformer"/>
 <jms:object-to-jmsmessage-transformer/>
 </transformers>
 </jms:outbound-endpoint>
 </pass-through-router>
 </outbound>
</service>

Listing 12.16 Confirming that no message is output before the delay interval expires

Listing 12.17 Using the test component to simulate exceptions

BEST
PRACTICE

Throw declared
exceptionB

294 CHAPTER 12 Developing and testing with Mule
When the component is invoked it’ll now throw the exception defined by exception-
ToThrow on B. We can now test for this message on the errors queue.

 In addition to introducing delays and throwing exceptions, the test component
also allows you to return arbitrary content. This can be useful to test how a trans-
former or filter on an outbound endpoint responds to malformed data. Listing 12.18
illustrates how to configure the test component to return a defined String.

<test:component>
 <test:return-data>
 TEST PAYLOAD
 </test:return-data>
</test:component>

You can also configure the test component to return the data in a specified file, as
illustrated by listing 12.19.

<test:component>
 <test:return-data file="payload.txt"/>
</test:component>

By now you should be comfortable writing functional tests with Mule and mocking
component behavior using the test component. We’ll now see how we can perform
load tests on a running Mule instance.

12.3.3 Load testing with JMeter

Extensive functional tests coupled with automated integration testing should provide
a fair bit of reassurance that your Mule projects will run correctly when deployed. But
the real world might have different plans. Perhaps Clood’s message transformation
and enrichment service becomes wildly popular within the organization. Unaware of
the demand for such a simple service, you deployed Mule on a spare blade server
loaned to you by a colleague in operations. Mule performs admirably on this blade,
easily processing a hundred or so messages every hour. Suddenly, you notice the ser-
vice is crawling and the load on your lowly spare blade server is through the roof. You
check with Clood’s JMS administrator and realize that thousands of messages are
being sent to the in queue every hour. Since Clood is a cloud computing company,
after all, you decide to deploy Mule to Clood’s cloud—automatically provisioning
Mule instances to consume messages when the message volume becomes to high. To
do this, though, you need to determine how many messages a single Mule instance
can handle.

 Apache JMeter is an open source Java load generation tool that can be used for this
purpose. JMeter allows you to generate different sorts of load for a variety of services,
including JMS, HTTP, JDBC, and LDAP. You can use these facilities to load test Mule
endpoints that use these transports. In this section, we’ll examine how to use JMeter
with JMS as we load test the service we performed integration testing on previously.

Listing 12.18 Using the test component to return an arbitrary String

Listing 12.19 Using the test component to return the contents of a file

295Testing with Mule
 To start off, you’ll need to download JMeter from http://jakarta.apache.org/site/
downloads/downloads_jmeter.cgi. The example in this section will be testing JMS, so
we need to provide our JMS provider’s client libraries to JMeter before we start it up.
This can be done by copying the appropriate JAR files to the lib/ subdirectory in the
root of the JMeter distribution. Once this is done, you can start JMeter from the bin/
subdirectory by either double-clicking on the JMeter JAR file or by running the appro-
priate shell script for your platform. If all of this went correctly, you should see a
screen resembling figure 12.10.

We’ll start by specifying a test plan for a load test. Do this by right-clicking on the Test
Plan icon, selecting Add, and then selecting Thread Group. The thread group is what
we’ll use to control the amount and concurrency of the JMS messages we’ll send. After
talking to Clood’s JMS administrator a bit more, you manage to nail down that load
problems start to occur with five concurrent users sending about 20 messages each.
You figure this is as good a baseline as any to begin your load testing experiments, so
you set their values in JMeter as illustrated in figure 12.11.

 We set the name, and if you want, any comments. We want our tests to continue if
there are any errors along the way. This could allow us to detect and debug failures in
the JMS infrastructure itself, for example. Selecting Stop Thread here will cause the

Figure 12.10 Starting JMeter for the first time

Figure 12.11 Specifying a thread group to simulate five concurrent users sending 20 messages

http://jakarta.apache.org/site/downloads/downloads_jmeter.cgi

296 CHAPTER 12 Developing and testing with Mule
thread that encountered the error to exit and not send any more messages. Stop Test
would cause the entire test to stop when an error is encountered in any thread. The
Number of Threads (users) is then set to 5. The Ramp-Up Period indicates the
amount of time to delay starting each thread. In this case, we want all five threads to
start at the same time, so we set the value to zero. The Loop Count indicates the num-
ber of messages we want each thread to send. In this case, we want each user to send
20 messages, and then stop. Clicking Forever here will cause each user to send mes-
sages indefinitely.

 We now need to add a JMS sampler to the load test. A JMeter sampler is responsible
for generating the traffic used for the test. Let’s set up a JMS sampler by right-clicking
on JMS Test, selecting Add, selecting Sampler, and then selecting Point-to-Point. The
Point-to-Point sampler indicates that we want to generate data for a JMS queue. If you
were publishing data to a topic instead, you’d use the JMS Publisher sampler. Con-
versely, if you wanted to test consuming off a topic, you’d use the JMS Subscriber sam-
pler. This should lead to a screen that allows you to configure the details of your JMS
broker. Figure 12.12 illustrates the configuration for Clood’s staging ActiveMQ broker.

Figure 12.12 Configuring a JMS Point-to-Point sampler with JMeter

297Testing with Mule
We’re not interested in what happens after the messages are sent out by Mule, so the
Communication style is set to Request Only. After filling out the remainder of the
properties for our JMS broker, we’re almost ready to start our load test. We could start
the test now, but we want to collect some data as we run the tests. This is accomplished
by adding listeners to the thread group. Right click on the thread group, select Add,
then select Listener and select a listener you’d like to use to interpret the test results.
For our case, we’re going to add the Aggregate Graph, View Results in Table, and
Graph Results. We can now run the test and view the results. Click on the Run menu
and then select Start. You should see a green light on the upper-right side of the
screen go on as the test runs.3

 If you click on any of the listeners as the test is running, you should see the results
being populated. This should resemble figure 12.13.

 The listener results will be appended as subsequent tests are run. This’ll allow you
to trend things such as throughput as you increase the load of your tests. You can now
use this test to load test the message enricher on the VM. By examining the message
throughput as you increase the number of threads and messages they send, you
should be able to identify the point at which performance 16 to try to squeeze more
performance out of the Mule instance. Ultimately you should be able to get a good
idea of how many messages the given Mule instance on the given platform can han-
dle—allowing you to make intelligent scaling decisions.

 We’ve only scratched the surface of JMeter’s capabilities. As mentioned in the
introduction, JMeter can test transports other then JMS. You can even implement your

3 If your test fails to run, or if any failures occur during the test, you can view them in the jmeter.log file
located in the bin subdirectory you used to launch JMeter.

Figure 12.13 Examining results of a JMeter listener

298 CHAPTER 12 Developing and testing with Mule
own samplers if there isn’t a presupplied one for the endpoint you wish to test. Test
automation is also available, allowing you to integrate load tests into your build pro-
cesses or IDE. Full documentation is available from the JMeter site.

 By now you should be comfortable testing your Mule projects. We saw how Mule’s
Test Compatibility Kit facilitates functional testing of your components, transformers,
and Mule configurations. We then saw how JMeter, an open source load testing frame-
work, can be leveraged to load test your Mule endpoints.

12.4 Summary
The value of good development tools can’t be underestimated. Mule’s ease of use with
popular build management, IDE, and testing tools greatly eases the burden typically
associated with complex integration projects. By now, you should be confident manag-
ing your Mule builds with Maven, using Mule with your IDE of choice, and extensively
testing your Mule projects.

 In this chapter you also saw more of Mule’s API. You saw how the Mule TCK simpli-
fies unit and integration testing. We also saw a glimpse of the MuleClient, a powerful
facility for interacting directly with Mule instances. This exploration into Mule’s inter-
nals will be continued now as we investigate the Mule API.

Using the Mule API
The previous 12 chapters of this book should’ve convinced you that a lot can be
achieved with Mule with minimal coding, or at least without any Mule-specific code
to write. For example, we’ve seen that Mule goes to great lengths to let you reuse
your existing business logic as-is. This is great news because no one wants to write
code that’s coupled to a particular framework, as it creates a potential implementa-
tion lock-in and weakens the code by making it sensitive to API changes.

 But there are times when it’s worth considering the trade-off between frame-
work coupling and the advanced features it offers. Using Mule’s API allows you to
implement advanced behaviors that are cumbersome or even impossible to roll out
when staying away from the framework. In fact, since Mule is “a lightweight messag-
ing framework and highly distributable object broker,” staying away from its API
would amount to denying half of its nature.

In this chapter
■ Communicating with the MuleClient
■ Using context objects to interact with Mule
■ AOP with component interceptors
■ Leveraging the notification framework
299

300 CHAPTER 13 Using the Mule API
 Because there are more than 2,100 classes in Mule 2.2, this chapter can by no
means be an exhaustive tour of all of them. Essentially, this chapter will give you the
necessary pointers you need to approach Mule’s API in an efficient and productive
manner. Instead of considering the API as a static resource, we look at it as a gateway
to Mule’s live moving parts. Along the way, we’ll come back to several Clood exam-
ples we’ve mentioned in the previous chapters. You’ll see how Clood, Inc., makes
good use of the API, which’ll give you a better and deeper insight on how things work
inside of Mule.

 Let’s start by discovering the Mule client, a useful part of the API that you’ll happily
piggyback soon!

13.1 Piggybacking the Mule client
The Mule client isn’t part of the core library, but is bundled in the mule-module-client
module. As we’ll see in the coming sections, its main purpose is to allow you to inter-
act with a Mule instance, whether it’s local (running in the same JVM) or remote (run-
ning in another JVM). We’ll also look at how the client can bootstrap and shut down
an embedded Mule instance for you, which can be used to directly tap into the trans-
ports infrastructure of Mule.

 The Mule client provides you with a rich messaging abstraction and a complete iso-
lation from the transports’ particularities. The client supports the three main types of
interactions that are common in Mule:

■ Send message—A synchronous operation that waits for a response to the message
it sent (relies on the message dispatcher infrastructure)

■ Dispatch message—An asynchronous operation that expects no response for the
message it dispatched (also relies on the message dispatcher infrastructure)

■ Request message—An operation that doesn’t send anything, but synchronously
consumes a message from an endpoint (relies on the message requester
infrastructure)

All these operations are offered under numerous variations that allow you, for exam-
ple, to directly target a service instead of its inbound endpoint, receive a future1 mes-
sage, or disregard the response of a synchronous call.

NOTE It’s possible, but not trivial, to involve several operations of the Mule cli-
ent in a single transaction, provided of course that the transports used
are transactional. This is seldom necessary and won’t be detailed here.
You can study org.mule.test.integration.client.MuleClientTrans-
actionTestCase for more information.

The Mule client main class is org.mule.module.client.MuleClient, which is thread-
safe. This class offers several different constructors: the one you need to use depends

1 As in java.util.concurrent.Future—the pending result of a computation that can be waited on or
polled regularly for a result.

301Piggybacking the Mule client
on the context in which you’ll utilize the client. The main idea is that by using a par-
ticular constructor, you instruct the client to use an existing Mule context (detailed in
section 13.2), look for an existing context in memory, or create a new one by boot-
strapping a Mule instance. We’ll review some of these constructors in the upcoming
examples.

 Let’s start by discovering how the client can be used to interact with a local Mule
instance.

13.1.1 Reaching a local Mule

The most common usage of the Mule client is to
interact with an already running local Mule
instance—an instance that runs within the same
JVM. This is illustrated in figure 13.1.

 In-memory calls from the client to a local Mule
are common in integration testing (see the discus-
sion in chapter 12). The whole Mule test suite, as
well as the majority of the examples that accompany
this book, uses the Mule client, for that matter.
Listing 13.1 shows an excerpt of a method that
Clood, Inc., uses to run integration tests on their
MD5 file hasher component (we talked about this
component in chapter 6).

MuleClient muleClient = new MuleClient(muleContext);

String actualHash =
 muleClient.send("vm://Md5FileHasher.In",
 tempFileName, null).getPayload();

assertEquals(expectedHash, actualHash);

Because this test runs in a class where the Mule context is available, we use the specific
client constructor that accepts it on B.

 When your code runs in the same JVM where a Mule instance is already running,
the client can locate it without the need to pass it a reference to the context. In our
case, we could’ve just done that and used the parameterless constructor, as shown
here:

MuleClient muleClient = new MuleClient();

If you have access to the Mule context, pass it to the client constructor as
a way to eliminate ambiguity for anybody else reading your code.

You may have noticed that in listing 13.1 we send a message to a VM transport URI.
You may wonder if we’re constrained to only use the VM transport when the client is

Listing 13.1 The client facilitates testing by granting access to a Mule instance.

Figure 13.1 The client is a
convenient way to reach a Mule
instance within the same VM.

Create client for existing
Mule instance contextB

Use client to perform
synchronous send to
endpoint

BEST
PRACTICE

302 CHAPTER 13 Using the Mule API
connected to a local Mule instance. This isn’t the case, and to illustrate that other
transports can be used, we’ll rewrite Clood, Inc.’s file hasher component using the
Mule client.

 Listing 13.2 shows how the invocation of the file transport is performed by con-
structing a URI that it understands. By this means, the component synchronously
requests a file to be read from the filesystem. If you turn back to listing 6.12, you’ll
notice that the source folder is configured on the component itself. In fact, the only
variable part in this invocation is the file name.

MuleClient muleClient = new MuleClient(eventContext
 .getMuleContext());

MuleMessage requestedFileMessage =
 muleClient.request("file://"
 + sourceFolder
 + "/" + fileName
 + "?connector="
 + fileConnectorName, 0);

Note how the Mule client is instantiated by using the constructor that accepts a Mule
context, which itself comes from the event context (discussed in section 13.3). We
could’ve relied on the autodetection of the current Mule context by the client, but
since we had direct access to it, we opted for the constructor that accepts it explicitly.
Instantiating a Mule client for each request processed by the component isn’t effi-
cient: we’ll review this component again in a coming section.

TIP Connector selector You’ve surely noticed that the URI we build in 13.2 ends
with a connector parameter added to the file URI. Since the client API
can’t accommodate all the possible parameters that can be involved in a
particular request, you have to pass any extra argument in the URI itself.

In our case, we want to use a specific file connector configured to not
delete the files it reads. Our component has been configured with a ref-
erence to this connector, and we refer to it by its name when we form a
request so we’re sure Mule will use it.

You’ve just discovered how the Mule client facilitates connectivity with a local instance
running in the same JVM. What if the Mule instance you want to connect to runs in
another JVM? What if it runs in a remote server? The Mule client can be used in this
case also, as we’ll now see.

13.1.2 Reaching a remote Mule

The Mule client can connect to a remote instance and use the same richness of inter-
action it uses with a local instance. For this to work, a specific remote dispatcher agent
must be configured in the Mule instance that the client wants to connect to, as illus-
trated in figure 13.2. Because the dispatcher agent is simply a particular consumer for
a standard endpoint, any protocol that supports synchronous communications can be

Listing 13.2 A client connected to an in-JVM Mule instance can use any transport.

303Piggybacking the Mule client
used. On top of this protocol, a configurable (and customizable) format is used to
represent the data that’s sent over the wire in both directions (the client request to
Mule and its response).

Listing 13.3 shows the configuration of a Mule instance that’ll accept client connec-
tions over TCP, using the default wire format. Note that the remote dispatcher agent is
provided by the mule-module-client module. Technically, the standard wire formats
are pairs of round-trip transformers that take care of transforming MuleMessages (pay-
load and properties) to and from byte arrays. The default wire format relies on stan-
dard Java serialization, hence can only carry serializable payloads.

<client:remote-dispatcher-agent>
 <client:remote-endpoint
 address="tcp://localhost:5555"
 synchronous="true" />
</client:remote-dispatcher-agent>

Once the remote dispatcher agent has been configured, it’s possible to connect to it
and then, through this connection, access all the messaging infrastructure of the
remote Mule. The client we’ve seen so far is unable to do this directly but must be
used to spawn a specific client for the remote dispatcher agent. This is shown in
listing 13.4.

MuleClient muleClient = new MuleClient(false);

RemoteDispatcher remoteDispatcher =
 muleClient
 .getRemoteDispatcher("tcp://localhost:5555");

FutureMessageResult asyncResponse =
 remoteDispatcher
 .sendAsyncRemote("TickerLookupChannel",
 "GOOG",
 null);

The client for the remote dispatcher agent, which is an instance of org.mule.module.
client.RemoteDispatcher, is created in C. This object is thread-safe, too.

Listing 13.3 A remote dispatcher agent using the default wire format over TCP

Listing 13.4 The client acts as a factory for creating remote dispatchers.

Figure 13.2 The client can be used to reach a
remote Mule instance by sending messages to a
dedicated dispatcher agent.

Creating context-
less stopped clientB

C

Using client to build
remote dispatcher
for TCP URI

Sending message to endpoint
named TickerLookupChannel

304 CHAPTER 13 Using the Mule API
 In this example, we perform an asynchronous send to an endpoint named
TickerLookupChannel with a message payload of GOOG and no properties. Note that
the sendAsyncRemote method does the same thing as the local Mule client’s send-
Async method. Other methods have slightly different names: for example, the meth-
ods that send directly to a component are suffixed with ToRemoteComponent instead
of Direct.

 Note in B how we create a Mule client without providing it a context and asking it,
with the false parameter, not to look for or create one. Because we’re only interested
in the remote Mule we connect to, there’s no reason for the Mule client to try to inter-
act with a local instance.

 Once we’re done using the remote dispatcher, we can get rid of it by simply dispos-
ing of the Mule client that created it:

muleClient.dispose();

Note that disposing a Mule client terminates all the remote dispatchers it could’ve
created.

WARNING All your clients are belong to us The remote dispatcher is a convenient
way to reach a remote Mule instance through a feature-rich back
door. Should it be the only way? Of course not! It’s still valid to use
any relevant transport to reach services hosted on Mule. For exam-
ple, you can still use an HTTP API to form a request to a service
hosted on Mule and exposed over HTTP. Or you can still use a JMS
client to send to a destination consumed by a Mule service.

Consequently, if you contemplate using the Mule client, take into
account its footprint in terms of transitive dependencies and the
tight coupling between your client code and Mule that its usage
induces. You’ll also want to assess your actual need for the messaging
abstraction the Mule client proposes.

We’ve mentioned that the default wire format is based on standard Java serialization.
This implies that you can only send serializable objects to a remote Mule instance. If
this limitation is an issue for you or if sending binary content over the wire isn’t an
option, then you can consider using the XML wire format. This format relies on
XStream, which can serialize any Java object to an XML representation. Listing 13.5
presents this wire format option combined with an HTTP endpoint. With this configu-
ration, your client and the remote Mule instance will communicate with XML over
HTTP, something that might be more palatable for a firewall than the raw binary over
TCP of the previous example.

<client:remote-dispatcher-agent>
 <client:remote-endpoint ref="RemoteDispatcherChannel" />
 <client:xml-wire-format />
</client:remote-dispatcher-agent>

Listing 13.5 A remote dispatcher agent using the XML wire format over HTTP

305Piggybacking the Mule client
<http:endpoint name="RemoteDispatcherChannel"
 host="localhost"
 port="8181"
 synchronous="true" />

You’ve surely observed in listing 13.5 how we created a global HTTP endpoint and ref-
erenced it from the remote dispatcher agent. This is by no means a requirement: we
could’ve declared the HTTP endpoint on the remote-endpoint element, as in
listing 13.3. The idea was to demonstrate that the remote dispatcher agent leverages
the standard transport infrastructure of the Mule instance that hosts it.

 Now look at listing 13.6, which demonstrates how we create a client for this HTTP
remote dispatcher agent. Except for the URI that has changed, there isn’t much differ-
ence from the previous code: where’s the configuration of the XML wire format? It’s
nowhere to be found, because the client doesn’t decide the wire format: it’s imposed
on it by the distant Mule instance during the initial handshake that occurs when the
remote dispatcher is created.

MuleClient muleClient = new MuleClient(false);

RemoteDispatcher remoteDispatcher =
 muleClient.getRemoteDispatcher("http://localhost:8181");

If none of the existing wire formats satisfy your needs, you can roll your own by creating
a custom implementation of org.mule.api.transformer.wire.WireFormat.

NOTE Did you say back door? Yes, we referred to the remote dispatcher agent as
a back door to a running Mule instance because this is what it is. This
should naturally raise some legitimate security concerns. At the time of
this writing, the remote dispatcher agent doesn’t support security during
the handshake phase, so it’s not possible to secure the endpoint it uses.

This said, it’s possible to secure the services hosted by the remote
Mule instance, as detailed in chapter 9. If you follow that path, you’ll
need to pass a user name and a password to the remote dispatcher
when it’s created:
RemoteDispatcher remoteDispatcher =
 muleClient.getRemoteDispatcher("http://localhost:8181",
 username,
 password);

These credentials will then be used for the subsequent remote calls sent
through it.

You now have a new power tool in your box: the remote dispatcher. It’s a convenient
means for sending messages to any remote Mule instance that has a corresponding
agent enabled, but its usage must be considered with circumspection, as it has security
and coupling trade-offs.

Listing 13.6 The client can create a remote dispatcher that connects over HTTP.

306 CHAPTER 13 Using the Mule API
 If you find the messaging abstraction offered by the client to be seductive, then the
next section will be music to your ears. In it, you’ll learn how to use the client to bene-
fit from Mule’s messaging infrastructure without even configuring it.

13.1.3 Reaching out with transports

In the opening discussion of this sec-
tion, we said that the client can boot-
strap a Mule instance if no context is
passed to it or is detectable by it. This
capability can be leveraged to directly
exploit Mule’s transports by bootstrap-
ping a serviceless instance and using
the messaging abstraction directly
offered by the client. This approach,
which is illustrated in figure 13.3, truly
promotes Mule as an integration
framework on which an application can lean to connect to remote services without
having to deal with the particularities of the protocols involved.

 Listing 13.7 shows the code that makes this happen. The client is started without
any parameter, which makes it look for an existing Mule instance in memory. Because
it doesn’t find one, it bootstraps an empty instance. This empty instance can be used
from the client to reach any URI whose related transport library is available in the
classpath.

MuleClient muleClient = new MuleClient(false);

MuleMessage response =
 muleClient.send(
"http://www.google.com/finance/historical?
 ➥ q=NASDAQ:GOOG&histperiod=weekly&output=csv",
 null, null);

String payload = response.getPayloadAsString();

muleClient.dispose();

In the previous example, the getPayloadAsString()may look benign, but behind the
scenes, it relies on the powerful message adaptation mechanism we talked about in
section 5.1. Independently of the transport used, Mule will be able to give you a byte
or String representation of the message thanks to this mechanism. The message adap-
tation mechanism also took care of copying all the HTTP headers returned by Google
in the response object properties.

 Be aware that the default transformers defined on the transport itself have kicked in
during the send operation. Should you need to configure other default transformers,
as discussed in section 3.1.1, or should the transport you use need to be configured,

Listing 13.7 Using the client to directly tap Mule’s messaging infrastructure

Figure 13.3 The client can bootstrap a minimal
Mule instance for the sole purpose of tapping its
transport layer in order to reach remote services.

Creates empty Mule instance
and client connected to it

Performs synchronous send
using HTTP transport

Retrieves result of
HTTP call as stringDisposes client

307Exploring the Mule context
you’ll have to create a minimal Mule configuration and load it from the client. This
would be required if you use the JMS transport, as shown in listing 13.8. The raw-jms-
muleclient-config.xml configuration file2 still doesn’t contain any service.

MuleClient muleClient =
 new MuleClient("conf/raw-jms-muleclient-config.xml");

muleClient.getMuleContext().start();

MuleMessage response =
 muleClient.request("jms://"
 + queueName
 + "?connector=amqConnector", 1000);

muleClient.getMuleContext().dispose();
muleClient.dispose();

Because there’s no constructor of the client that loads a configuration in Mule and
starts it, we had to do it explicitly in B. As we showed before, we defined the connec-
tor name we wanted to use in the request URI in C. This would allow us to configure
several connectors in the same Mule configuration and select the one we want to use
in the client code. The same way we started the instance explicitly, we have to dispose
of it in D before terminating the client.

 As we’ve seen, directly tapping Mule’s transports is made easy thanks to the client.
This approach brings the power of Mule’s connectors, adaptors, and transformers to
any of your applications. By delegating all transport-handling aspects to Mule, you can
build communicating systems on top of a neat messaging abstraction layer.

 By now, the Mule client must’ve become an important tool in your Mule toolbox,
as it’s a convenient gateway to an instance, whether this instance is running locally or
in a remote JVM. We’ve mentioned that to connect to a local instance, the client needs
a reference to its Mule context. This context is like a box of chocolates waiting to
reward the audacious explorer. Let’s now discover the treasures it holds.

13.2 Exploring the Mule context
In the previous section of this chapter, and in previous chapters as well, you’ve seen
and heard about the Mule context. You surely understand that it’s an in-memory han-
dle to a running Mule instance. We’ve been using it to configure the Mule client, so it
connects to the instance whose context was in our possession. But there’s way more
you can do with the Mule context. In fact, once you get ahold of it, it’s party time: all
Mule’s internals become accessible!

 Figure 13.4 is a partial dependency graph that represents the main ways for retriev-
ing an instance of the Mule context and some moving parts you can reach from it. It’s
far from a complete representation of reality: if you look at the JavaDoc of the

Listing 13.8 The client can bootstrap a Mule instance and tap transports directly.

2 Available in the provided code samples.

Creates client and
configures Mule

Starts the
Mule instanceB Performs

synchronous
read using JMS
transport

C

Disposes configured Mule
instance, then clientD

308 CHAPTER 13 Using the Mule API
org.mule.api.MuleContext class and follow some of the classes it links, such as
the registry, you’ll find way more objects than represented here. Nevertheless, for the
purpose of this discussion, we’ll focus on a few significant aspects and let you explore
the rest of the context on your own.

 The Mule context is accessible in several ways:

■ Create it—You can create a Mule context by using a factory and loading a spe-
cific configuration in it. This has been demonstrated in section 7.1.3.

■ Get it from the client—If you use the client to bootstrap a Mule instance, you can
ask it for the context it’s created behind the scene. We used this approach in
listing 13.8.

■ Get it from the server—The org.mule.MuleServer class exposes a static acces-
sor to the context of the currently running Mule instance. This is the method to
use in a custom object that runs within Mule but doesn’t implement any of its
interfaces or extend any of its superclasses, like a pure POJO component.

■ Get it from the event context—Components implementing org.mule.api.lifecy-
cle.Callable receive an event context which, among other things, gives direct
access to the Mule context. We used it in listing 13.2.

■ Receive it by injection—If you write a custom class that implements org.mule.
api.MuleContextAware and is stored in the registry, you’ll receive a reference
to the current Mule context just before it gets initialized (see section 13.4.1).

Let’s now review some of the actions you can perform once you have a reference to
the context.

NOTE Using the expression manager is discussed in appendix A.

Figure 13.4 There are many ways to get ahold of the Mule Context, which is the
gateway to Mule’s inner workings.

309Exploring the Mule context
13.2.1 Controlling a Mule instance

The primarily function of the context is to control the overall lifecycle of a Mule
instance. Consequently, if you create a context using the factory, you need to call the
following method after loading your configuration file(s):

muleContext.start();

Similarly, when you want to cleanly terminate a Mule instance, you need to execute
the following:

muleContext.dispose();

NOTE The context also offers a stop() method that can be used to suspend a
Mule instance, which can be resumed with a subsequent call to start().
Note that, as of this writing, Mule 2.2 doesn’t unregister all its MBeans on
a stop operation, which prevents a successful restart. Hence suspension
can only be used on a Mule instance with no JMX management features
activated.

13.2.2 Reading the configuration

The Mule context holds a reference to an object that details the system configuration
of the instance. This object, which is immutable after the instance is started, is an
instance of org.mule.api.config.MuleConfiguration. Though the vast majority of
all configuration values you’ll handle will come from XML or properties files and be
directly injected into your objects, some values are computed by Mule itself and made
available via the configuration object.

 You may recall the discussion in section 11.1.3 concerning the necessity to name
your Mule instance so you can form MBean object names and query them. If you
don’t name your instance, Mule generates a unique name for it on the fly. Because the
configuration object allows you to get this ID, if you have access to the Mule context,
you can build MBean names that are guaranteed to work whether you name your
instance or not. This is illustrated in listing 13.9.

String serverId = muleContext.getConfiguration().getId();

ObjectName listenerObjectName = ObjectName
 .getInstance(JmxSupport.DEFAULT_JMX_DOMAIN_PREFIX
 + "."
 + serverId
 + ":"
 + JmxServerNotificationAgent.LISTENER_JMX_OBJECT_NAME);

13.2.3 Accessing statistics

Mule keeps detailed statistics for all its moving parts. In an instance with numerous
services, these statistics are a convenient means to keep track of the activity of a Mule
instance. In section 11.3, we reviewed the dashboard that Clood, Inc., built that

Listing 13.9 The Mule context gives access to the whole system configuration.

310 CHAPTER 13 Using the Mule API
leverages these statistics to build a snapshot of the situation of a particular instance.
We use another component to regularly dump the full statistics of an instance in XML
files. The logic inside this component, which is shown in listing 13.10, is simple,
thanks to the supporting classes offered by Mule.

AllStatistics allStatistics = muleContext.getStatistics();
allStatistics.logSummary(new XMLPrinter(xmlStatisticsWriter));

13.2.4 Looking up the registry

One of the richest objects the context gives you access to is the registry, where, as its
name suggests, all Mule’s moving parts are registered and accessible via getters or
lookup methods. When using a Spring XML configuration, the registry is created and
populated for you. In that case, it’s composed of a Mule-specific transient registry,
which contains non-Spring objects, and that can delegate to a read-only Spring bean
factory. This means that you can access all the Mule objects and your Spring-handled
objects through the registry.

 In term of software design, dependency injection should be preferred to registry
lookups: this is why most of the time you’ll directly inject the necessary dependencies
into your custom objects. Lookups become relevant when the required resource is
only known at runtime, hence can’t be statically configured. This is the case for
Clood’s XML statistics component. As we said earlier, this component can output the
whole of the statistics of an instance, but can also do so for only one service, if its name
has been sent to the component. Because of the dynamic nature of this behavior, we
use the registry to look up the component by name and then render its statistics, as
shown in listing 13.11.

Service service = muleContext.getRegistry()
 .lookupService(serviceName);

service.getStatistics().logSummary(
 new XMLPrinter(xmlStatisticsWriter));

There is another situation when you should prefer lookup over injection: when no
configuration element can be referenced (thus injected). In chapter 11, we talked
about the jmx-default-config configuration element that automatically configures a
bunch of agents. This element registers each agent it creates under a known name, so
if you needed to reach one of these agents, as shown in listing 13.12, you’d need to
perform a registry lookup.

JmxAgent jmxAgent =
 (JmxAgent) muleContext.getRegistry()
 .lookupAgent("jmx-agent");

MBeanServer mBeanServer = jmxAgent.getMBeanServer();

Listing 13.10 The Mule context gives access to the global statistics.

Listing 13.11 In the context, the registry gives access to all Mule’s moving parts.

Listing 13.12 The Mule registry can be used to look up JMX agents.

311Digging the Mule event context
TIP Registry reloaded It’s possible to store your own objects in the registry with
the registerObject method and retrieve them with lookupObject.
Though thread-safe, the registry shouldn’t be mistaken for a general-pur-
pose object cache. If this is what your application needs, you’d better use
a dedicated one and have it injected in your components or transformers.

It’s also possible to access in the registry the ApplicationContext
that’s created behind the scenes when you use the Spring XML configura-
tion format:

ApplicationContext ac =
 (ApplicationContext) muleContext.getRegistry().lookupObject(
 SpringRegistry.SPRING_APPLICATION_CONTEXT);

This application context contains not only your Spring beans but also all
Mule’s moving parts configured in the XML file.

As suggested by figure 13.4, the Mule context gives access to the innards of the whole
instance. The few examples we’ve just gone through should’ve whetted your appetite
for more. We can’t possibly fully explore the Mule context in this book, as we may end
up putting the whole JavaDoc API in print, but we believe the pointers we’ve given you
will allow you to find your way.

 We’ll now discover another useful context that exists only when a message event is
processed in Mule.

13.3 Digging the Mule event context
The event context is conceptually a façade to Mule’s messaging infrastructure that’s
scoped to the event currently under processing. It’s an instance of org.mule.api.
MuleEventContext and shouldn’t be confused with org.mule.api.MuleContext,
which we discovered in the previous section. As represented in figure 13.5, the event
context methods delegate to several objects: the current event, the current transac-
tion, and the current session. It also gives direct access to the message, transaction,
session, and service objects, should you need to use some of their methods that aren’t
exposed at the event context level.

Figure 13.5 The Mule event context is a façade on objects that expose operations
relevant to the event currently being processed.

312 CHAPTER 13 Using the Mule API
 In the coming sections, we’ll look closely at the message features accessible via the
event context and how you can leverage them in your components. We’ll also discuss
how the event context allows you to influence Mule’s message-processing flow.

 If you remember our discussion about messages and events in section 1.3.6, you
should recall that technically Mule processes events, and not messages directly. This is
why the event context delegates to the event to access message-related objects and
actions. The transaction exposes methods that allow checking and modifying the state
of the current transactional context. The session gives access to the message-routing
infrastructure of Mule, with the familiar dispatch/send/request operations.

 The event context is accessible in several ways:

■ Receive it when called—Components implementing org.mule.api.lifecycle.
Callable receive an event context instance as the unique argument of the
onCall method.

■ Get it from the request context—The org.mule.RequestContext class exposes a
static accessor to the event context relevant for the message currently under
processing.

Let’s start by looking at the message-related features exposed by the event context.

13.3.1 Prospecting messages

The event context exposes a few methods that give
access to the message payload (which we will detail
in a moment). Thanks to the event reference it
holds, the event context also exposes a reference
to the org.mule.api.MuleMessage object, repre-
sented in figure 13.6, so all its content and opera-
tions become accessible. By now, you should be
familiar with the properties, payload, and attach-
ment parts of the message object. Most of the
time, once you have access to the message, you can
alter these values, but some messages have an
immutable adapter that prevents payload modifi-
cations. This adapter is the moving part that per-
forms the hard work of abstracting out the
transport-specific particularities (as we discussed
in section 5.1).

 The message can also hold a reference to an instance of org.mule.api.Excep-
tionPayload if an error occurred while Mule was processing the current event. If you
intend to build a custom audit trail log based on the content of Mule messages, don’t
forget to look for a non-null exception payload, as this is where you can find the
details that allow you to perform effective forensics (see section 11.2).

Figure 13.6 A Mule message object
contains properties and a payload, and
optionally an exception, some
attachments, and cached values.

313Digging the Mule event context
 To understand how the byte payload cache works, we need to look further into the
message payload accessor methods of the event context. These methods target string
and byte restitution of the current message’s payload:

byte[] message = eventContext.getMessageAsBytes();
String message = eventContext.getMessageAsString();
String message = eventContext.getMessageAsString(String encoding);

Behind the scenes, these methods delegate to the message itself: this is where the
transformation to string or bytes happens. In both cases, the result of the transforma-
tion will be cached as bytes in the message itself. Subsequent calls to these methods
will hit the cache and not trigger any further transformation. The transformer used is
automatically selected by Mule based on the actual message payload and the desired
rendering (string or bytes), using a mechanism similar to the one used by the auto
transformer (see the tip about discoverable transformers in section 5.7.2). If no dis-
coverable transformer has been found apt to perform the transformation, Mule will
default to a standard object-to-string transformer or object-to-byte-array transformer.

 We use one of these message payload accessor methods in line B of Clood, Inc.’s
file hasher component shown in listing 13.13. This is a good use case for it because we
don’t expect any inbound transformer to be configured before this component, and
we don’t dispatch anything out of this component. By their nature, these methods are
only relevant when the outcome of the transformation won’t be used as the new pay-
load of the message currently being processed. Should this be the case, then a more
permanent transformation of the message payload is needed.

 The main method that the event context exposes for applying the inbound trans-
formers is the following:

Object result = transformMessage();

There are also variants of this method that perform a subsequent transformation to
restitute the transformed message into a particular format:

Object result = transformMessage(Class expectedType);
byte[] result = transformMessageToBytes();
String result = transformMessageToString();

These variants use the same autotransformation mechanism leveraged by the message
payload accessor methods that we just talked about.

 Clood uses the transformMessage method in their client validation service,
shown in listing 13.14, in order to honor the defined inbound transformers in this
component. More generally, if the entry point resolver (see section 6.3.1) used to
select the method called on your component isn’t configured to apply transformers
first, you’ll have to do it yourself programmatically by calling one of these methods.
This is the case for components implementing Callable used in configurations that
rely on the default entry point resolvers set.

 The last gem in the Mule message you may want to dig is the original payload,
which is available through the original adapter. This gives you a chance to retrieve the

314 CHAPTER 13 Using the Mule API
message as it was before its last transformation. The original payload is kept only if the
message adapter used by Mule before the transformation is immutable, which is the
case for messages created by transports. But if you create messages using
org.mule.transport.DefaultMessageAdapter (implicitly used by org.mule.Default-
MuleMessage), you won’t be able to retrieve the original payload, as this adapter is
mutable.

TIP Size matters If the byte payload and the original payload caches are a
concern to you in terms of memory consumption, you can deactivate
them by setting the mule.message.cacheBytes and mule.message.cacheO-
riginal Java system properties to false, respectively.

This should be envisioned only for Mule instances where memory size
has actually been a concern or if huge message volumes or sizes are
expected to be processed.

In this section, you discovered that there’s way more in a Mule message than meets
the eye. You also learned how to honor inbound transformers from a component if its
entry point resolver doesn’t do it for you. Let’s now see how you can programmatically
influence the way messages are processed in Mule.

13.3.2 Influencing message processing

Mule’s standard message processing flow can be used in complex scenarios thanks to
Mule’s support of routing and transforming features. Often a particular need that
seems to require custom code can be achieved with the addition of an extra service
and a smart routing infrastructure around it (see chapter 4). Service composition
though interface binding (described in section 6.3.4) also enables advanced compo-
nent interactions without the need to couple your code to the Mule API.

What you can’t do with one service, do with two!

But there are times when you need to take control of the message processing flow by
using the API directly. Let’s consider the case of components. By default, the value
returned from a component’s method is used both as the response of the inbound
request, if it’s synchronously waiting for one, and as the payload to be dispatched to
the configured outbound router. One way to prevent anything from being dispatched
out of the component is to return null. But what if you want to return to the inbound
router a non-null value that’s different than the one sent to the outbound router?

 In these scenarios, you’ll need to get ahold of the event context and use the meth-
ods it offers for influencing the message processing flow and adapting it to your
needs. These methods include

■ setStopFurtherProcessing—To prevent the current event from being forwarded to
the configured outbound router.

■ markTransactionForRollback—To instruct Mule to roll back the current transac-
tion, if one exists. Refer to chapter 10 for a complete discussion on transaction
control.

BEST
PRACTICE

315Digging the Mule event context
■ send/dispatch to the configured outbound router—To send the current message or a
new one to the router that’s been defined for the current service in the
configuration.

■ send/dispatch to an arbitrary endpoint—To send the current message or a new one
to any endpoint referred to by its name or URI.

As is the case with the Mule client, the messaging methods offered by the event con-
text can also return future messages and support synchronous requesting of messages.
Clood, Inc., uses this last feature in their file hasher component, whose event-han-
dling code is shown in listing 13.13.

public Object onCall(MuleEventContext eventContext)
 throws Exception {

 String fileName = eventContext.getMessageAsString();

 MuleMessage requestedFileMessage =
 eventContext.requestEvent("file://"
 + sourceFolder
 + "/" + fileName
 + "?connector="
 + fileConnectorName, 0);

 eventContext.setStopFurtherProcessing(true);

 return requestedFileMessage != null ? DigestUtils
 .md5Hex(requestedFileMessage.getPayloadAsBytes()) : null;
}

Because this component isn’t designed to be used with an outbound router, in D we
use the event context method to instruct Mule not to send the return value to the out-
bound router (if one has been mistakenly configured). We also use the event context
in B to transform the inbound message to a string, as discussed before, and to syn-
chronously request the content of a file from its complete URI in C.

 Coming back to Clood’s client emailing services, we’ll look at a component that
further manipulates the message process flow. This component confirms that a mes-
sage payload is a valid instance of com.clood.model.Client and dispatches it accord-
ingly. The event-handling code of this component is shown in listing 13.14.
Depending on the validity of the Client object, it conditionally dispatches the
received message to the outbound router or to an error channel, and systematically
returns a simple string acknowledgment message to the inbound router.

public Object onCall(MuleEventContext eventContext)
 throws Exception {

 eventContext.setStopFurtherProcessing(true);

Listing 13.13 The event context allows us to modify the message-processing flow.

Listing 13.14 Disconnecting the response from the dispatched outbound message

Gets file name
from incoming
message payload

B

Synchronously requests
content of file

C

Response
needs not be
sent to
outbound
router

D

Response consists of MD5
hash of file’s content

Prevents dispatching to
outbound router

B

316 CHAPTER 13 Using the Mule API
 Object payload = eventContext.transformMessage();

 try {
 validatePayloadIsValidClient(payload);

 } catch (IllegalArgumentException iae) {

 try {
 eventContext.dispatchEvent(
 eventContext.getMessage(),
 errorProcessorChannel);

 } catch (MuleException me) {
 processMuleException(me);
 }

 return "ERROR: " + iae.getMessage();
 }

 eventContext.dispatchEvent(payload);

 return "OK";

 }

We achieved this by first instructing (in B) Mule to never dispatch the return value of
the component, because the return values (in D and F) are simple strings that make
sense only to the client connected to the inbound router. Depending on the outcome
of the validatePayloadIsValidClient method call, the message will either be dis-
patched in its transformed form to the outbound router in E or in its original form to
the error channel in C.

 Even though this component has the drawback of being coupled to Mule’s API,
note how it doesn’t hard-code anything about the destinations where messages should
be dispatched. The error channel is configured by injection and the outbound router
is configured using the standard configuration mechanism.

 You’ve discovered that the event context is a rich façade to Mule’s messaging infra-
structure that can be leveraged to reach further than a message payload or to con-
cisely implement complex process flows.

 We’ll now proceed to the last leg of our journey in the API, where we’ll discover
advanced means to inject custom behaviors in Mule.

13.4 Keeping abreast with Mule
During the lifetime of an instance, many things happen inside Mule. Its API allows you
to keep abreast with all this activity and graft the custom behavior you need at differ-
ent strategic locations. In this section we’ll focus on the following places:

■ Lifecycle events—The API allows you to leverage lifecycle events that occur from
startup time, when moving parts get instantiated, configured, and put into ser-
vice, to shutdown time, when they’re transitioned back to oblivion.

■ Interceptors—The API allows you to elegantly inject cross-cutting logic on top of
the normal processing of messages by using component interceptors.

Applies any configured
transformers

Dispatches invalid
message to error
channel

C

Returns error message
to synchronous
 inbound router

D

Dispatches valid
message to configured
outbound routerEReturns acknowledgment

message to inbound routerF

317Keeping abreast with Mule
■ Notifications—Any significant operation or event that happens in Mule ends up
in a notification being fired, which the API allows you to listen to.

Let’s start by looking at how your applications can benefit from becoming aware of
Mule’s lifecycle.

13.4.1 Leveraging lifecycle events

Between the time you bootstrap a Mule instance and the time it’s up and ready, many
things happen, as the numerous log file entries can testify. Moving parts are created
and made ready for production. These moving parts are configured and transitioned
through lifecycle phases, which technically amounts to calling specific methods in a
predefined order. The same happens when you shut down a Mule instance: all moving
parts are transitioned to their ultimate destruction through another series of lifecycle
method calls.

 Your own custom moving parts can benefit from these configuration and lifecycle
method calls the same way Mule’s do. Table 13.1 gives an overview of the methods that
are called and the order in which this happens for the main types of custom objects you
can create. On top of the four standard Mule lifecycle methods (initialize, start,
stop, dispose), this table also shows the custom properties setters, the Mule-specific
setters (context and service injection), and the Spring-specific lifecycle methods.

Table 13.1 Configuration and lifecycle methods are honored differently depending on the type of your
custom object.

Configuration and
lifecycle methods

Prototype
component
(for each
instance)

Singleton
component

Spring Bean
component

Any Spring
Bean

Transformer Filter

Custom properties
setters

✓ ✓ ✓ ✓ ✓ ✓

Mule context setter ✓ ✓ ✓ ✓ ✓ ✓

Spring
init-method

n/a n/a ✓ ✓ n/a n/a

Mule service setter ✓ ✓ ✓ n/a

initialise ✓ ✓ ✓ ✓

start ✓ ✓ ✓ ✓

stop ✓ ✓ ✓ ✓

dispose ✓ ✓

Spring
destroy-method

n/a n/a ✓ ✓ n/a n/a

318 CHAPTER 13 Using the Mule API
How does Mule decide whether it should call a particular lifecycle method or setter
on a custom object? It simply looks for particular interfaces that the custom object
must have implemented. Here’s the list of the four standard lifecycle interfaces:

org.mule.api.lifecycle.Initialisable
org.mule.api.lifecycle.Startable
org.mule.api.lifecycle.Stoppable
org.mule.api.lifecycle.Disposable

TIP One interface to rule them all If your custom object needs to implement
the four standard lifecycle interfaces, you can save yourself a lot of typing
by simply implementing org.mule.api.lifecycle.Lifecycle, which
extends the four standard interfaces.

And here are the interfaces for the Mule-specific setters:

org.mule.api.context.MuleContextAware
org.mule.api.service.ServiceAware

We mentioned implementing MuleContextAware in section 13.2 as a convenient
way to get ahold of the Mule context. Service awareness allows a component to access
the service it’s hosted by and all its internals: state, statistics, inbound, and outbound
routing infrastructure.

WARNING Started but not ready When your components are started, don’t
assume that the whole Mule instance is up and running. Some com-
ponents start way before the complete boot sequence is done. If your
component needs to actively use Mule’s infrastructure, it should wait
until it’s ready. The best way to achieve this is to listen to notifica-
tions, as we’ll see in section 13.4.3.

The code shown in listing 13.15 demonstrates how Clood’s client validation service
(introduced in the previous section) is configured and initialized. Note that we’ve
implemented the initialise method to be idempotent, should Mule call it several
times, but we’ll perform the actual initialization sequence only once.3 The initialize
method will be called because the ClientValidatorService component implements
the org.mule.api.lifecycle.Initialisable interface we just mentioned.

public void setErrorProcessorChannel(
 EndpointBuilder errorProcessorChannelBuilder) {

 this.errorProcessorChannelBuilder = errorProcessorChannelBuilder;
}

public void initialise() throws InitialisationException {
 if (initialized) {
 return;

3 You may notice that the initialise method isn’t designed with thread-safety in mind. This is acceptable because,
though it may be called several times, these calls will happen sequentially and not simultaneously.

Listing 13.15 Using property injection and lifecycle methods to initialize a service

Receives error
channel endpoint

builder via
setter injectionEnsures that component

hasn’t been initialized

319Keeping abreast with Mule
 }

 try {
 errorProcessorChannel = errorProcessorChannelBuilder
 .buildOutboundEndpoint();

 initialized = true;
 } catch (EndpointException ee) {
 throw new InitialisationException(ee, this);
 }
}

The configuration of the component itself is trivial:

<singleton-object class="com.clood.component.ClientValidatorService">
 <property key="errorProcessorChannel" value-ref="ErrorProcessorChannel" />
</singleton-object>

In this configuration, we inject a reference to a global endpoint named Error-
ProcessorChannel in the designated setter method. As we’ve seen in listing 3.15, what
we actually inject is a reference to an endpoint builder, from which we derive an out-
bound endpoint. This makes sense when you take into account that a global endpoint
can be referred to both from inbound and outbound endpoints.

NOTE The same way entry point resolvers (see section 6.3.1) allow you to target
component methods without implementing any Mule interface, it’s also
possible to create custom lifecycle adapters4 that’ll take care of translat-
ing Mule lifecycle methods into any methods on your objects. Is it worth
creating such an adapter for the sake of coding Mule-free components
when it’s also possible to rely on the noninvasive Spring lifecycle meth-
ods? Our own experience is that the latter is more than enough.

You can now make custom logic execute when lifecycle events occur in Mule. Let’s
now learn how to attach cross-cutting logic to components.

13.4.2 Intercepting messages

Components encapsulate standalone units of work that get invoked when events reach
them. In any kind of component-oriented framework, the question of sharing transver-
sal behavior is inevitable. Mule’s components don’t escape this question. Though it’s
possible to follow object-oriented approaches (composition and inheritance) with
Mule components, the most satisfying solution to the problem of implementing cross-
cutting concerns comes from aspect-oriented software development (AOSD).

 To this end, Mule supports the notion of component interceptors, which represent
only a small subset of aspect-oriented programming (AOP) but still offer the capacity
to attach common behaviors to components. A component interceptor, which is an
implementation of org.mule.api.interceptor.Interceptor, receives an
invocation to the component it’s attached to and has all the latitude to decide what to
do with it. For example, it can decide not to forward it to the component, or to be

4 Namely, custom implementations of org.mule.api.component.LifecycleAdapterFactory and
org.mule.api.component.LifecycleAdapter.

Builds actual
error channel

outbound endpoint

320 CHAPTER 13 Using the Mule API
more accurate, to the next interceptor in the stack, as interceptors are always mem-
bers of the stack (the last member of the stack is the component itself). The invoca-
tion is itself an instance of org.mule.api.interceptor.Invocation and is
represented in figure 13.7.

 Of course, besides stopping further processing, an interceptor can also perform
actions around the invocation of the next member of the stack, while keeping its own
state during the life of its own invocation. This is, for example, what the timer-inter-
ceptor does: it computes the time spent in the rest of the stack by storing the time
before passing to the next interceptor and comparing it with the time when the exe-
cution flow comes back to it.

Harness Mule’s interceptors for implementing messaging-level cross-
cutting concerns.

Mule also comes complete with an abstract interceptor implementation named
org.mule.api.interceptor.EnvelopeInterceptor, whose semantics are limited to
adding behavior before and after the invocation of the next member of the stack, but
without the possibility to control this invocation itself. It’s more suited for interceptors
that don’t need to maintain some state around the invocation of the next interceptor
in the stack. The logging-interceptor is built on this principle: it simply logs a mes-
sage before forwarding it to the next interceptor and another message after the exe-
cution flow comes back to it.

NOTE Springing into AOP If you’re a savvy Spring user, you might be interested
in leveraging your Spring AOP skills with Mule. Using Spring AOP can
allow you to go further than where the Mule interceptors can take you, as
it’s a full-fledged aspect-oriented programming framework. This said, be
aware that it requires a great deal of knowledge on both the Mule and
Spring sides. For example, Spring auto-created AOP proxies can confuse
the entry point resolver mechanism of Mule, as the proxy will expose dif-
ferent methods than what your original object was exposing, leading to
confusing errors in Mule. This is especially true for plain POJO compo-
nents that don’t implement org.mule.api.lifecycle.Callable. There-
fore, it’s possible that advising components can lead you to rework part
of your configuration.

Figure 13.7 The Invocation object
allows the interceptor to access the
current event and to propagate it.

BEST
PRACTICE

321Keeping abreast with Mule
Listing 13.16 shows the interceptor stack that Clood uses in front of components that
are costly to call and whose results can be cached. The stack first defines the standard
timer-interceptor that’s used to record how efficient the custom-interceptor con-
figured after it is. The actual cache is provided by Ehcache (see http://ehcache.source-
forge.net), itself configured and injected into our interceptor by Spring.

<interceptor-stack name="PayloadCacheInterceptors">
 <timer-interceptor />
 <custom-interceptor class="com.clood.interceptor.PayloadCacheInterceptor">
 <spring:property name="cache" ref="ehCache" />
 </custom-interceptor>
</interceptor-stack>

The PayloadCacheInterceptor implementation itself is fairly trivial,5 as shown in list-
ing 13.17. Of course, the implementation is concise because all the heavy lifting is
done by Ehcache.

public class PayloadCacheInterceptor implements Interceptor {

 private Ehcache cache;

 public void setCache(Ehcache cache) {
 this.cache = cache;
 }

 public MuleMessage intercept(Invocation invocation)
 throws MuleException {

 MuleMessage currentMessage = invocation.getMessage();
 Object key = currentMessage.getPayload();
 Element cachedElement = cache.get(key);

 if (cachedElement != null) {
 return new DefaultMuleMessage(cachedElement.getObjectValue(),
 currentMessage);
 }

 MuleMessage result = invocation.invoke();
 cache.put(new Element(key, result.getPayload()));
 return result;
 }
}

Note in B that in case of a cache hit, we build the response message by using the
cached payload and the current message. This is because we want to preserve all the
preexisting properties and other extra context from the current message (see
section 13.3.1) alongside the new payload.

Listing 13.16 Clood’s caching interceptor stack defines two interceptors.

5 The multithread-minded readers will notice that no effort is made to ensure that only a single thread actually
ever invokes the next interceptor: this is acceptable in Clood Inc.’s usage scenarios but may need to be
enforced in other ones.

Listing 13.17 The cache interceptor leverages Ehcache to store and replay payloads.

Defines class as Interceptor
implementation

Uses incoming
message
payload as
cache key

Cache hit: return
response immediately

B

Cache miss: proceed
with invocation

Store invocation
result in cache

http://ehcache.sourceforge.net

322 CHAPTER 13 Using the Mule API
 Clood’s file hasher component is a perfect candidate for this interceptor stack. It
receives a message whose payload is a file name and returns a message whose payload
is the MD5 hash of the file’s content. Because files don’t change in content, we can
then use the file name as the key and the MD5 hash as the value in a standard cache.
Adding this interceptor stack to our existing file hashing service (shown in
listing 6.12) is a no-brainer, as shown in this configuration excerpt:

...
<pooled-component>
 <interceptor-stack ref="PayloadCacheInterceptors" />
 <singleton-object class="com.clood.component.Md5FileHasher">
...

 The following console transcript clearly shows the efficiency of the payload cache
interceptor, as reported by the timer-interceptor:

27-Jun-2009 15:34:14 org.mule.interceptor.TimerInterceptor intercept
INFO: Md5FileHasher took 21ms to process event [25e11b6f-a488-11dd]
27-Jun-2009 15:34:24 org.mule.interceptor.TimerInterceptor intercept
INFO: Md5FileHasher took 1ms to process event [25e5884c-a488-11dd]
27-Jun-2009 15:34:34 org.mule.interceptor.TimerInterceptor intercept
INFO: Md5FileHasher took 0ms to process event [25e5fd85-a488-11dd]

TIP Explicit bridge interception You may wonder where to declare an intercep-
tor stack on an implicit bridge (see section 6.1.1) as there’s no XML com-
ponent element in the configuration. The solution is to use an explicit
bridge component and add the stack child element in it.

Thanks to the interceptor framework, you can now share transversal logic across com-
ponents in an elegant and efficient manner. This allows you to enrich the message
process flow with your own custom code. But what if you want to execute some logic
only when particular events occur in Mule? This when you’ll need to tap the notifica-
tion framework that we’ll detail now.

13.4.3 Receiving notifications

As we said in chapter 11, notifications are generated whenever a specific event occurs
inside Mule, such as when an instance starts or stops, when an exception has been
caught, or when a message is received or dispatched. We extensively discussed how
notifications can be leveraged to keep track of the activity of a Mule instance in sec-
tion 11.2.2. There, we mainly talked about using preexisting listeners for Mule’s inter-
nal notifications, such as the log4j-notifications agent.

 There’s much more you can do by directly tapping into the notification frame-
work. For this you need to write custom classes that can receive notification events. We
evoked this possibility at the end of section 7.2.4, where we mentioned creating a lis-
tener that can be notified of routing problems that occur when messages don’t get
correlated on time in an aggregator router. Routing notifications are just one type of
notification that can be listened to in Mule. Figure 13.8 shows an overview of the

323Keeping abreast with Mule
notification types, which are all descendants of ServerNotification. Each notifica-
tion type also defines actions that further specify the context in which they happen.

 Listing 13.18 shows part of the implementation of the correlation time-out notifi-
cation listener.

public class CorrelationTimeOutListener
 implements RoutingNotificationListener {

 public void onNotification(ServerNotification notification) {
 if (notification.getAction()
 != RoutingNotification.CORRELATION_TIMEOUT) {
 return;
 }

 MuleMessageCollection messageCollection =
 (MuleMessageCollection) notification.getSource();
...

Note in B how we programmatically narrow the scope of the notification received to
the correlation time-out action only. We have to do this because routing notifications
encompass more types of events than just correlation time-outs. Because of the way
the notification listener API is designed, note also that this listener, like all listeners,
receives instances of org.mule.api.context.notification.ServerNotification. A
cast to the particular type of notification object your listener can receive is required if
you need to access one of its specific methods. For example, we could cast the
received notification to org.mule.context.notification.RoutingNotification in
this example.

 For such a listener to start receiving notifications, you need to register it with Mule
and activate the notification family it’s interested in, as shown in the configuration
fragment of listing 13.19.

Listing 13.18 A custom class can receive specific notifications like routing issues.

Figure 13.8 The family of Mule server notifications is rich and diverse.

Defines class as
RoutingNotificationListener
implementation

Disregard any notification event
that’s not CORRELATION_TIMEOUTB

Extracts expected
content from
notification source

324 CHAPTER 13 Using the Mule API

<spring:bean
 name="correlationTimeOutListener"
 class="com.muleinaction.service
 ➥ CorrelationTimeOutListener">

 <spring:property name="dlqAddress"
 value="${dlq.address}" />
</spring:bean>

<notifications>
 <notification event="ROUTING" />
 <notification-listener ref="correlationTimeOutListener" />
</notifications>

The activation of the notification family is done in C and the registration of the lis-
tener in D. The instantiation and initialization of this listener shown in B is by no
means normative: an object doesn’t need to be a Spring-handled bean to be able to lis-
ten to notifications, as the upcoming example will demonstrate.

 The following demonstrates an advanced usage of notifications, by combining sev-
eral of the concepts you’ve learned in this chapter (context injection, interceptors,
and notification listeners). Some of Clood’s services are unable to process any event
until the Mule instance they run into is fully initialized (because they dispatch mes-
sages to other services that may not themselves be ready). To prevent an incoming
event from reaching the component of these sensitive services, Clood created an
interceptor that rejects any traffic until the whole Mule instance is fully initialized.
Listing 13.20 shows the full code of this interceptor.

public class BrokerNotReadyInterceptor implements MuleContextAware,
 MuleContextNotificationListener, Interceptor {

 private volatile boolean brokerReady = false;

 public void setMuleContext(MuleContext context) {
 try {
 context.registerListener(this);
 } catch (final NotificationException ne) {
 throw new RuntimeException(ne);
 }
 }

public void onNotification(ServerNotification notification) {
 int action = notification.getAction();

 if (action ==
 MuleContextNotification.CONTEXT_STARTED) {

 brokerReady = true;

 }
 else if (action ==
 MuleContextNotification.CONTEXT_STOPPED) {

 brokerReady = false;

Listing 13.19 A custom object can be registered with Mule to receive notifications.

Listing 13.20 An interceptor that rejects events until Mule is fully initialized

B
Instantiates and configures
notification listener

Activates
routing
notification
family

C DRegisters listener with
Mule’s notifications

infrastructure

Registers listener
with notifications
infrastructure

B

Sets broker ready
when context is
started

Sets not ready
when context is
stopped

325Summary
 }
 }
 public MuleMessage intercept(Invocation invocation)
 throws MuleException {

 if (!brokerReady) {
 throw new IllegalStateException("Invocation of service "
 + invocation.getService().getName()
 + " impossible at this time!");
 }

 return invocation.invoke();
 }
}

Because an interceptor configuration doesn’t expose an ID that we could use to regis-
ter it with Mule’s notifications infrastructure, we have to perform this registration pro-
grammatically on B.

 This interceptor is configured using the custom-interceptor element, as we saw
in the previous section. Notice how there’s no ID attribute that could allow us to regis-
ter it as a notification listener by configuration:

<custom-interceptor
 class="com.clood.interceptor.BrokerNotReadyInterceptor" />

Therefore, the notification configuration related to this interceptor consists only in
the activation of the context family of events:

<notifications>
 <notification event="CONTEXT" />
</notifications>

NOTE Mule’s notification framework offers advanced features such as

■ Associating a custom subinterface of org.mule.api.context.notifica-
tion.ServerNotificationListener with an existing event family

■ Disabling standard listeners to receive events from the family they natu-
rally listen to (for example, preventing all implementations of org.mule.
api.context.notification.RoutingNotificationListener from
receiving routing events)

■ Creating custom notifications (as represented in figure 13.8), listening to
them, and broadcasting them programmatically

In this section, we reviewed how listening to notifications from your own custom code
can allow you to implement advanced Mule-aware logic. Along with lifecycle events
and component interceptors, the notification framework is another tool offered by
Mule to allow you to keep abreast with its internal activity.

13.5 Summary
The Mule API is a rich and comprehensive gateway to all moving parts of the ESB.
Though using the API creates coupling between your code and Mule itself, we’ve

Rejects any event
until the broker
is ready

326 CHAPTER 13 Using the Mule API
explored a wealth of scenarios where the drawbacks of such a coupling are overcome
by its benefits.

 We saw in this chapter how it’s possible to leverage this API to perform actions of
all kinds, including communicating with a running Mule instance, exploring the
inner parts its context gives access to, performing message transformation, and alter-
ing the normal course of message processing. We also learned how to leverage Mule’s
lifecycle events, interceptors, and notification framework to trigger the execution of
business logic at specific moments.

 If the prospect of having to compile your code first before deploying it to Mule is a
daunting one for you, it’s time to rejoice, as the next chapter will be dedicated to
using dynamic languages with Mule.

Scripting with Mule
The undeniable success of the popular web development framework Ruby on Rails
epitomizes the benefits of working with scripting languages. The conciseness of
Ruby coupled with the lack of a compilation phase makes working on this platform
quick and productive. Changes to Ruby on Rails applications can be made on the
fly while the application is running. This instant feedback is invaluable for debug-
ging, testing, and prototyping. Contrast this with the compile, deploy, and debug
cycle that’s present in a compiled language such as Java or C. A typical web applica-
tion in Java, for instance, needs to be compiled, packaged, and deployed to an
application server. To apply modifications to the web application, the cycle must be
repeated. Up until now, this has also been the case for your Mule projects. Any
changes you’ve made to a component or transformer, for instance, would require
you to restart Mule to take effect. This usually isn’t too big of a deal, but wouldn’t it
be nice if you could test the component or transformer while Mule was running?

In this chapter
■ Using Groovy and Rhino with Mule
■ Implementing component and transformer logic

with scripts
■ Leveraging Spring’s scripting functionality with Mule
327

328 CHAPTER 14 Scripting with Mule
 In chapters 5 and 6 you saw how to use the Mule API to implement custom trans-
formation and component logic. The examples in those chapters used Java, but per-
haps you feel like your transformation logic might be more concisely expressed using
Groovy. Maybe you’d rather implement your component logic with Python instead of
Java. You could also be in a position where you need to do a “one-off” transformation
and don’t want to go through the hassle of writing a Java class, packaging it, and
deploying it. We’ll see in this chapter how Mule’s scripting support can help you
accomplish all of these things. We’ll start off by seeing how to use Rhino, the default
scripting language of the JVM, to implement component logic as well as bind to ser-
vice interfaces. Next we’ll turn our attention to Groovy, another Java scripting lan-
guage, and see how it enables us to implement transformation and header evaluation
logic in Mule. Finally, we’ll see how Spring’s scripting support augments Mule’s
dynamic language features, allowing you to implement arbitrary Mule functionality
via scripts as well as auto-refresh scripts without restarting Mule.

14.1 Using Rhino
Since the release of Java 6, the JDK has shipped with scripting support and a scripting
language to take advantage of it: a JavaScript engine called Rhino. Quickly following
suit were a host of other scripting platforms either ported or designed to work from
scratch on the JVM. These included JRuby, a Java implementation of Ruby, as well as
Groovy, a deliberately Java-esque scripting language. Mule takes advantage of the
scripting functionality in Java 6 and can use any language that implements JSR-223—
the specification that defines dynamic language support in the JVM.1

 In this section we’ll begin to explore Mule’s dynamic language support by imple-
menting Mule component logic using Rhino. We’ll then revisit a feature you saw in
chapter 6—service interface binding—and see how to use that functionality in a
scripting context.

14.1.1 Implementing component logic with Rhino

You might find yourself in a situation where you want to add simple component logic
to a service but don’t want to go through the hassle of developing a Java class, packag-
ing it, and deploying it to Mule. Embedding a script in Mule’s configuration can be an
attractive option in cases like this. Let’s assume you want to add a property to messages
as they pass through a service. Perhaps you want to evaluate a message’s payload and,
based on that, set a property header stating the message’s priority. This property could
subsequently be used by selective consumers to determine whether to accept the mes-
sage. Listing 14.1 illustrates how this might be accomplished by using a JavaScript
component.

1 Groovy support for Mule is bundled by default. The Mule Scripting Pack, available from http://www.mule-
source.org/display/MULE/Download+Mule+CE, provides support for Rhino, JRuby and Jython.

http://www.mulesource.org/display/MULE/Download+Mule+CE

329Using Rhino

<service name="rhinoMessageEnrichmentService">
 <inbound>
 <vm:inbound-endpoint path="in"/>
 </inbound>
 <scripting:component>
 <scripting:script engine="js">
 if (payload.search("STATUS: CRITICAL") != -1) {
 message.setProperty("PRIORITY", 'HIGH');
 }
 result = message
 </scripting:script>
 </scripting:component>
 <outbound>
 <pass-through-router>
 <vm:outbound-endpoint path="out"/>
 </pass-through-router>
 </outbound>
</service>

By using the scripting namespace, we can begin to inline scripts into our Mule con-
figuration. We first configure a scripting component on B, telling Mule that the com-
ponent logic will use a JSR-223–compliant scripting engine. Mule will subsequently
spin up an appropriate environment for the script to execute with common Mule ref-
erences defined in the script’s context—as we’ll see in a moment. Since the logic for
this component is fairly straightforward, we choose to inline the script directly in the
XML configuration. C indicates the start of the inlined script along with the scripting
engine to use. Every JSR-223–compliant scripting engine will declare a name, which is
set on C. In this case, we have it set to js, indicating our script is written in JavaScript
and will be executed using Rhino. The script itself begins on D, where we’re search-
ing the payload variable for presence of the specified expression. You might be won-
dering where we’ve defined the payload variable, and that’s because we haven’t—
Mule has. Mule will prepopulate the script’s context with variables you’re most likely
to need. This saves you the hassle of obtaining a reference to the MuleContext. These
variables are listed in table 14.1.2

 We use the message variable on E to set the PRIORITY message property (header)
to HIGH. The component then exists and the modified message is sent out through the
outbound endpoint.

 Embedding a script in your Mule configuration can be convenient when the script
is small enough, but managing larger scripts in the context of a Mule XML configura-
tion can quickly become unwieldy. As such, it’s possible to reference a script stored in
an external file. In listing 6.12 we implemented a component that took the MD5 hash
of a specified file. Let’s take a variation of this functionality and see how it can be
implemented using an external script. We’re going to implement a Rhino script that’ll

Listing 14.1 Using a JavaScript component to enrich a message

2 Please make sure you’ve installed The Mule Scripting Pack if you intend to use a language other than Groovy.

Declare scripting componentB Define script and
scripting engine

C

D

Set specified property
on message

Search
message
payload for
specified
expression

330 CHAPTER 14 Scripting with Mule
take the MD5 hash of the payload of a message and attach it as a property of that mes-
sage. This property can then be used to ensure that the payload of a message hasn’t
changed when processed by future services. Listing 14.2 illustrates a Rhino script
external to the Mule configuration to accomplish this.

importPackage(org.apache.commons.codec.digest);

var PROPERTY_NAME = "MD5SUM";

if (!message.getProperty(PROPERTY_NAME)) {
 log.debug("Setting " + PROPERTY_NAME +
 " property for message: " + id);
 message.setProperty(PROPERTY_NAME,
 getMD5Sum(payload));
 result = message;

}

function getMD5Sum(input) {
 return DigestUtils.md5Hex(input);
}

This script is pretty similar to that of listing 14.1. We have a bit more ceremony with
listing 14.3, though, so it seems more natural to store it external to the Mule configu-
ration. This will also give us the flexibility to change the script as Mule is running, as
we’ll see in a bit. The Mule configuration to load the externally defined script is illus-
trated in listing 14.3.

Table 14.1 Variables made available to a scripting context

Variable name Description

message The current message being processed

payload The payload of the current message

originalPayload The original payload of the current message, before any transformation

muleContext A reference to the MuleContext

eventContext A reference to the EventContext

id The ID of the current event

service A reference to the service object processing the current message

result A variable to explicitly set the result of a script

Listing 14.2 An external Rhino script to add an MD5SUM property to a message

Check if property
has been set

Write log messages
at DEBUG level

Set MD5SUM
property on messageExplicitly set result

of component

331Using Rhino

<service name="md5MessageEnrichmentService">
 <inbound>
 <vm:inbound-endpoint path="in/>
 </inbound>
 <scripting:component>
 <scripting:script file="md5.component.js"/>
 </scripting:component>
 <outbound>
 <pass-through-router>
 <vm:outbound-endpoint path="out"/>
 </pass-through-router>
 </outbound>
</service>

By setting the file parameter on B, we can set the location of the script relative to
Mule’s classpath. You may have noticed that we’ve dropped the engine parameter.
When this value is missing, Mule will try to infer the appropriate engine using the
script’s extension. In this case, since the script ends with a .js extension, Mule will
run the script using the Rhino engine. We’ll see this service again later in this chapter
when we discuss reloading scripts and using Spring’s scripting support with Mule.

14.1.2 Using service interface binding in scripts

In section 6.3.4, you saw how component bindings allowed Mule to transparently
implement interfaces used in components. The interface implementation con-
structed dynamically by Mule could then invoke other services to provide the results
of method calls. This allowed component code to take advantage of Mule services
without being coupled to Mule code, say by using the Mule client. By using the java-
interface-binding element, Mule provides the same functionality for scripts.

 In listing 6.13, we saw how the Md5FileHasherClient was injected with an imple-
mentation of Md5FileHasherService. By using an interface binding, Mule would
proxy calls to the process method of this class to a VM outbound endpoint. The result
of this synchronous endpoint would then be the return method of the process call.
Let’s see how we can use the same functionality in the script. Listing 14.4 shows an
inline Rhino script that duplicates the functionality of listing 6.13.

<model name="vmSimpleModel">
 <service name="greeting">
 <inbound>
 <vm:inbound-endpoint path="MSC.In"/>
 </inbound>
 <scripting:component>
 <scripting:script engine="js">
 result = Md5FileHasherService.hash(payload)
 </scripting:script>
 <scripting:java-interface-binding
 interface="com.clood.component.Md5FileHasherService"

Listing 14.3 Using an externally defined Rhino script

Listing 14.4 Binding a service interface in a script using java-interface-binding

Declare location of
externally defined
script

B

BExecute method on
bound interface

332 CHAPTER 14 Scripting with Mule
 method="hash">
 <vm:outbound-endpoint
 path="Md5FileHasher.In"
 synchronous="true"/>
 </scripting:java-interface-binding>
 </scripting:component>
 </service>
</model>

The java-interface-binding element in the scripting namespace allows us to specify
the interface and method to bind to. On C we’re binding to the Md5File-
HasherService interface’s hash method. This exposes an Md5FileHasherService to
the scripting context that will be proxied to the supplied outbound endpoint. When
the hash method is called on B, a synchronous request will be made on the VM out-
bound endpoint. The result will then be returned to the component.

 JSR-223 wouldn’t be of much use if it only supported a single scripting language.
Let’s look at another JSR-223–compliant language, Groovy, and see how we can use it
to implement transformation and header evaluation logic in Mule.

14.2 Using Groovy
Groovy is a JSR-223–compliant dynamic scripting language for the JVM. It’s deliber-
ately Java-esque, and its syntax closely resembles Java’s—with some interesting twists.
Groovy ships with Mule, so there’s no need to install any additional JARs to take advan-
tage of it. As we’ll see in this section and the next, Mule affords Groovy scripts some
additional functionality as well. More information and full documentation about the
Groovy language is available at http://groovy.codehaus.org/.

14.2.1 Implementing transformers with Groovy

In chapter 5 we saw how custom transformers can be used to perform data transfor-
mations that Mule doesn’t supply in its distribution. In that chapter, we implemented
a custom transformer in Java that transformed message payloads using Velocity. Using
the scripting namespace, we’ll now see how we can implement custom transformation
logic using Groovy.

 Let’s start with a simple example of using a Groovy script to perform an inline pay-
load transformation. The transformer in listing 14.5 will uppercase the string payload
sent through it.

<service name="groovyTransformerService">
 <inbound>
 <vm:inbound-endpoint path="in" >
 <scripting:transformer>
 <scripting:script engine="groovy">
 return payload.toUpperCase()
 </scripting:script>
 </scripting:transformer> </vm:inbound-endpoint>

Listing 14.5 Uppercasing a string payload using a Groovy transformer

Proxy calls to
interfaceC

Define scripting
transformer

B
Define
Groovy
script

C

Uppercase
message
payload and
return itD

http://groovy.codehaus.org/

333Using Groovy
 </inbound>
 <outbound>
 <pass-through-router>
 <vm:outbound-endpoint path="out"/>
 </pass-through-router>
 </outbound>
</service>

The syntax to declare a scripting transformer is similar to configuring a scripting com-
ponent. We have the scripting transformer defined on B along with an inline script
that’s defined on C. As you can see, we’ve changed the engine to groovy from js,
indicating that we want the Groovy scripting engine to execute the supplied script.
The script itself is defined on D; it simply uppercases the payload and returns it.

 Defining global scripting transformers is also possible. This is done by declaring
the scripting transformer before any model definition. Listing 14.6 shows how to
declare the previous transformer globally.

<scripting:transformer
name="toUpperCase">

 <scripting:script engine="groovy">
 return payload.toUpperCase()
 </scripting:script>
</scripting:transformer>

<model name="groovyTransformerModel">
 <service name="groovyTransformerService">
 <inbound>
 <vm:inbound-endpoint path="in"
 transformer-refs="toUpperCase"/>
 </inbound>
 <outbound>
 <pass-through-router>
 <vm:outbound-endpoint system="out"/>
 </pass-through-router>
 </outbound>
 </service>
</model>

We declare the transformer almost identically as before, but here placing it outside
the model definition and supplying a name attribute. In this case, we’re calling the
transformer toUpperCase on B. We then reference the transformer on C by supply-
ing the transformer-refs parameter to the VM inbound endpoint along with the pre-
viously declared name.

 Let’s now consider a more complex transformation scenario and see how it’s sim-
plified by Mule’s scripting and Groovy support. In chapter 4, we saw a few examples of
Clood processing order data, as either XML documents or instances of an Order class.
Clood has recently decided to standardize on a canonical XML model to represent
order data. The web application used by accounting to submit orders, though, is still
using a legacy CSV representation. While the web development team works on

Listing 14.6 Globally declaring a Groovy transformer

Declare global scripting
transformer called
toUpperCaseB

Reference
transformerC

334 CHAPTER 14 Scripting with Mule
refactoring the web application to submit the order as XML data to a JMS queue, you’ve
been tasked to find an interim solution. You decide to use a file inbound endpoint and
implement a custom transformer to build an XML order representation from the CSV
file. Once the document has been created, it’ll be submitted to a JMS queue for further
processing. Listing 14.7 shows an example order represented as XML.

<orders>
 <order>
 <subscriberId>409</subscriberId>
 <productId>1234</productId>
 <status>PENDING</status>
 </order>
 <order>
 <subscriberId>410</subscriberId>
 <productId>1234</productId>
 <status>PENDING</status>
 </order>
 <order>
 <subscriberId>411</subscriberId>
 <productId>1235</productId>
 <status>PENDING</status>
 </order>
</orders>

Listing 14.6 demonstrates the legacy CSV format we need to convert from, using the
same data as listing 14.8.

409,1234,PENDING
410,1234,PENDING
411,1235,PENDING

We’ll start off by writing the script to transform the CSV to XML. We’ll make use of
Groovy’s builder functionality to create the XML. This will most likely be too verbose to
include directly in the Mule config, so we’ll define it in an external file as detailed by
listing 14.9.

import groovy.xml.MarkupBuilder

writer = new StringWriter()
builder = new MarkupBuilder(writer)

builder.orders() {
 payload.split('\n').each {line ->
 def fields = line.split(',')
 order() {
 subscriberId(fields[0])
 productId(fields[1])

Listing 14.7 Representing an order as XML

Listing 14.8 Representing an order as CSV

Listing 14.9 Transforming a CSV payload to XML

Split payload into
individual lines

Split each line
into comma-
separated values

Use Groovy
builder to
construct the
XML response

335Using Groovy
 status(fields[2])
 }
 }
}
return writer.toString()

This short script simply iterates over each line of the payload and constructs the corre-
sponding XML. It uses Groovy’s builder syntax to concisely create and return the XML
response. Listing 14.10 illustrates how to configure Mule to load CSV data from a file,
transform it to XML, and publish it to a JMS queue.

<model name="groovyTransformerModel">
 <service name="groovyTransformerService">
 <inbound>
 <file:inbound-endpoint path="./data">
 <byte-array-to-object-transformer/>
 <scripting:transformer>
 <scripting:script
 file="orderTransformer.groovy"/>
 </scripting:transformer>
 </file:inbound-endpoint>
 </inbound>
 <outbound>
 <pass-through-router>
 <jms:outbound-endpoint queue="orders"/>
 </pass-through-router>
 </outbound>
 </service>
</model>

The file inbound endpoint is configured to wait for files to appear on B. The files are
transformed to an object, in this case a string, by the byte-array-to-object transformer
on C. Our scripting transformer is defined on D. The script element is defined on

E and will execute orderTransformer.groovy, whose contents are listing 14.9, when
invoked. Just as in the earlier Rhino example, we leave off explicitly specifying the
engine and instead let Mule infer it from the file extension. The resultant XML is
finally sent as the payload of a JMS message on the orders queue.

14.2.2 Using the Groovy evaluator

In chapter 4, you saw how various filters can be used in conjunction with a selective-
consumer router to control what messages reach a component. One filter we looked
at was the expression filter. This allowed us to use various expression evaluators to
parse messages entering the filter. The full suite of expression evaluators is docu-
mented in appendix A of this book. One such evaluator we’ll discuss now is the
Groovy evaluator, which allows us to use Groovy scripts as expressions.

 Let’s see how to use Groovy as an expression filter. Listing 14.11 illustrates how to
use a Groovy expression in a selective-consumer router to only accept messages whose
payloads are ASCII printable.

Listing 14.10 Using a Groovy transform to transform CSV to XML

Return result

Wait for files to appear
in supplied directory

B

Transform byte array
from file to Object

C

Declare a scripting transformerD

Execute script defined
by file parameterE

336 CHAPTER 14 Scripting with Mule

<service name="asciiPrintableService">
 <inbound>
 <vm:inbound-endpoint path="in"/>
 <selective-consumer-router>
 <expression-filter evaluator="groovy"
 expression=
 "org.apache.commons.lang.StringUtils.isAsciiPrintable(payload)"/>
 </selective-consumer-router>
 </inbound>
 <test:component enableNotifications="true"/>
</service>

To use the Groovy evaluator, we simply need to set the evaluator to groovy and supply
Groovy code as the expression. In this case we’re using Groovy to invoke the isAscii-
Printable static method of the Apache Commons’ StringUtils class to ensure only
messages whose payloads are ASCII printable will be consumed. As you can see, we’re
using the payload variable to pass to the isAsciiPrintable method—the same vari-
ables that are available in the scripted component and transformer context are avail-
able for the Groovy evaluator as well.

 The Groovy expression you’ll use for this will generally be fairly simple—we’ll see
in the next section how we can implement more powerful filtering by using Groovy in
conjunction with Spring. By now you should be comfortable using Mule’s scripting
functionality. You saw how you can use Rhino and Groovy (or any other JSR-223–com-
pliant scripting engine) to author Mule components and transformers.

 Now that you’re comfortable using Mule’s scripting support using JSR-223 and its
scripting namespace, let’s look at some additional features we can leverage. In the
next section we’ll see how to use Spring’s lang namespace to offer additional flexibil-
ity when using scripting together with Mule.

14.3 Using Spring
In addition to the scripting functionality offered by the scripting namespace, Mule
can also take advantage of Spring’s dynamic language support. This affords you the
ability to use scripts in places where there isn’t explicit schema support, as with
components and transformers. Spring-managed scripts also have the benefit of
being refreshable, as we’ll soon see. Let’s see how Spring’s scripting support aug-
ments Mule’s.

14.3.1 Implementing custom Mule functionality using Spring

So far we’ve seen how Mule provides explicit configuration support for scripted com-
ponents and transformers through use of its scripting namespace. But what happens if
you want to implement a custom router or filter as a script? In these cases, there’s no
direct schema support for scripted implementations. When this is the case, you can
take advantage of Spring’s scripting support offered by its lang namespace. The lang

Listing 14.11 Using a Groovy expression

Use supplied Groovy
fragment to evaluate

message payload

337Using Spring
namespace allows you to define arbitrary Spring beans using JSR-223 scripts. You can
then use these beans anywhere in Mule that takes a bean reference.

 When discussing the Groovy evaluator in section 14.1, we demonstrated a one-line
Groovy script that determined whether the payload of a message was ASCII printable.
For simple filtering situations like this, the Groovy evaluator is more than sufficient.
What happens, though, when you need more elaborate filtering? Perhaps you need to
perform some sort of database or rule-based validation on a message. This is likely
unfeasible with Mule’s supplied filters and evaluators. In cases like this, a custom filter
is usually in order.

 In listing 14.11 from section 14.1, we showed how to use a Rhino script to add a
header to a message containing an MD5 checksum of the message’s payload. Let’s
implement a custom filter using Groovy that will verify whether this checksum is cor-
rect. When used in conjunction with a selective-consumer router, only messages whose
payloads contain the proper checksum will get passed to a component. Listing 14.12
illustrates the Groovy script to accomplish this.

import org.mule.api.routing.filter.Filter
import org.mule.api.MuleMessage
import org.apache.commons.codec.digest.*

class MD5Filter implements Filter {
 static String PROPERTY_NAME = "MD5SUM";

 public boolean accept(MuleMessage muleMessage) {
 if (muleMessage.getProperty(PROPERTY_NAME))
 return muleMessage.getProperty(PROPERTY_NAME) ==
 DigestUtils.md5Hex(muleMessage.getPayloadAsString())
 else return false
 }
}

Our Groovy script declares a class that implements the org.mule.api.routing.
filter.Filter interface. The Filter interface declares one method to implement,
accept, which returns a boolean value depending on whether the message passes the
filter. In this case, we’re comparing the MD5SUM header property to the computed MD5
checksum of the current message payload and return the result (we return a false if
the header is missing).

 Now that we’ve written our filter, we need to configure Mule to read it. At the time
of writing this book, there’s no schema extension to declare scripted filters. As such,
we must configure the MD5Filter as a Spring bean and inject it into our selective-
consumer router. We’ll use the Spring namespaces to accomplish the former. This will
let us load the script as a Spring bean. We’ll then inject the bean into the selective-
consumer router. Listing 14.13 shows how to do this.

Listing 14.12 Using a Groovy filter

Declare filter

Compare MD5SUM
message header

338 CHAPTER 14 Scripting with Mule

Dec

D

<mule xmlns="http://www.mulesource.org/schema/mule/core/2.2"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:scripting="http://www.mulesource.org/schema/mule/scripting/2.2"
 xmlns:vm="http://www.mulesource.org/schema/mule/vm/2.2"
 xmlns:spring="http://www.springframework.org/schema/beans"
 xmlns:lang="http://www.springframework.org/schema/lang"
 xsi:schemaLocation=" http://www.mulesource.org/schema/mule/core/2.2
 http://www.mulesource.org/schema/mule/core/2.2/mule.xsd
 http://www.mulesource.org/schema/mule/scripting/2.2
 http://www.mulesource.org/schema/mule/scripting/2.2/mule-scripting.xsd
 http://www.mulesource.org/schema/mule/vm/2.2
 http://www.mulesource.org/schema/mule/vm/2.2/mule-vm.xsd
 http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans-2.5.xsd
 http://www.springframework.org/schema/lang
 http://www.springframework.org/schema/lang/spring-lang-2.5.xsd
 "
 >

<spring:beans>
 <lang:groovy id="md5Filter"
 script-source="classpath:script/md5Filter.groovy"/>
</spring:beans>

<model name="springFilterModel">
 <service name="in">
 <inbound>
 <vm:inbound-endpoint path="in"/>
 <selective-consumer-router>
 <filter ref="md5Filter"/>
 </selective-consumer-router>
 </inbound>
 <echo-component/>
 </service>
</model>

In order to make use of Spring’s scripting support we need to make sure the spring
and lang namespaces are defined—this is handled by B and C. We begin our bean
definitions on D. In this case we want to use the Groovy script for listing 14.12 as the
bean. This is accomplished by E, where we set the bean’s ID and define the location
of the script. We then inject the bean into the selective-consumer router on F. The
router will now invoke the Groovy script, only letting messages through whose pay-
loads’ MD5 checksum match that of the checksum header. Spring also supports the
inlining of scripts in its configuration.

Externalize your Spring configuration. When you begin to have more
than a few bean definitions, scripting or otherwise, it makes sense to put
them in their own file and import them into your Mule config using the
<spring:import...> element you learned about in chapter 2.

Listing 14.13 Configure a Groovy filter using the Spring lang namespace

lare spring
namespace

B

eclare lang
namespace C

Begin Spring bean
configuration

D
EDefine Groovy bean

implementation

Inject filter
reference

F

BEST
PRACTICE

339Using Spring
14.3.2 Auto-reloading scripts

As we mentioned at the beginning of this chapter, one of the major benefits of work-
ing with a scripting language is the instant feedback it affords. This saves you the has-
sle of having to redeploy your code any time you make a change, and as such can have
a dramatic impact on your development productivity. Although the JSR-223 spec
doesn’t supply any facilities for auto-reloading scripts, we can leverage Spring’s lang
namespace and achieve this functionality for Mule components. To do this, you just
need to set the refresh-check-delay parameter on the Groovy bean, as illustrated in
listing 14.14.

<spring:beans>
 <lang:groovy id="md5Filter"
 script-source="file:script/md5Filter.groovy"
 refresh-check-delay="2000"/>
</spring:beans>

By setting the refresh-check-delay parameter to 2000, we’re telling Spring we want
it to check the script for changes every 2 seconds. You can now make changes to the
md5Filter.groovy script without having to restart Mule. This functionality can also be
leveraged in components and transformers. In these cases, you simply define your
component or transformer as a Spring lang bean and then inject the reference as
needed. Just note that in situations like this, Mule won’t autopopulate the script con-
text for you. You’ll need to use the techniques from chapter 13 to manually obtain ref-
erences to the EventContext, message and message payload. Listing 14.14 illustrates
this by reimplementing the toUpperCase transformer from listing 14.15 as a Groovy
script injected as a transformer.

<spring:beans>
 <lang:groovy id="toUpperTransformer"
 script-source="file:script/toUpper.groovy"
 refresh-check-delay="2000"/>
 </spring:beans>

<model name="springTransformerModel">
 <service name="springTransformerService">
 <inbound>
 <vm:inbound-endpoint path="in">
 <transformer ref="toUpperTransformer"/>
 </vm:inbound-endpoint>
 </inbound>
 <outbound>
 <pass-through-router>
 <vm:outbound-endpoint path="out"/>
 </pass-through-router>
 </outbound>
 </service>
</model>

Listing 14.14 Auto-refreshing a script using the refresh-check-delay parameter

Listing 14.15 Using Spring to declare a refreshable Transformer

Refresh
script every
2 seconds

Define transformer with
location of script

B

Declare refresh interval
of 2 secondsC

Inject transformer
reference

D

340 CHAPTER 14 Scripting with Mule
We define the script file’s location on B along with the refresh interval on C. The
transformer is then defined on D to reference the appropriate bean ID. Since this
bean is being configured “outside” of Mule, we don’t benefit from any of the features
of the scripting namespace. This means we must actually implement the
org.mule.api.transformer.Transformer interface as discussed in chapter 5 for
things to work properly. Listing 14.16 shows the contents of toUpper.groovy, which
does just that.

import org.mule.transformer.AbstractTransformer

class ToUpperTransformer extends AbstractTransformer {
 protected Object doTransform(Object o, String s) {
 return o.toUpperCase();
 }
}

The toUpper.groovy script will now be refreshed every 2 seconds. We can achieve sim-
ilar functionality with Groovy components. In listing 14.1, we examined how to use an
inline Rhino script to add a priority header to a message. We’ll now port this script to
Groovy and see how it can be dynamically refreshed by Spring and Mule. Listing 14.17
shows the same behavior implemented as a Groovy script with a class implementing
the Callable interface.

class MessageEnricher implements Callable {

 public Object onCall(MuleEventContext muleEventContext) {
 def message = muleEventContext.getMessage()
 if (message.payload =~ "STATUS: CRITICAL") {
 message.setProperty("PRIORITY", 'HIGH')
 } else {
 message.setProperty("PRIORITY", 'LOW')
 }
 return message
 }
}

Since we don’t have access to the scripting context prepopulated by Mule in Spring
beans, we need to explicitly implement the Callable interface to get access to the
MuleEventContext. We now need to configure Mule and Spring for the refresh. List-
ing 14.18 shows how to do this.

<spring:beans>
 <lang:groovy id="messageEnricher"
 script-source="file:script/messageEnricher.groovy"
 refresh-check-delay="2000"/>

Listing 14.16 Extending AbstractTransformer in a Groovy script

Listing 14.17 Auto-refreshing a Groovy component

Listing 14.18 Configuring a refreshable Groovy refresh

Extend
AbstractTransformer

BDefine script bean
using supplied script

341Summary
</spring:beans>

<scripting:groovy-refreshable name="messageEnricherScript"
 refreshableBean-ref="messageEnricher"/>

<model name="springMessageEnrichmentModel">

 <service name="springMessageEnrichmentService">

 <inbound>
 <vm:inbound-endpoint path="in"/>
 </inbound>
 <spring-object bean="messageEnricher"/>
 <outbound>
 <pass-through-router>
 <vm:outbound-endpoint path="out"/>
 </pass-through-router>
 </outbound>
</service>

We define the script bean as we’ve done before on B. On C, we’re alerting Mule that
the bean is refreshable. We finally inject the reference on D, allowing us to modify
the bean’s implementation without restarting Mule.

 Spring’s scripting support nicely complements the scripting features of Mule.
Being able to define arbitrary beans as scripts allows you to leverage the benefits of
dynamic languages for Mule functionality, such as filters. This allows you to utilize
scripts in Mule where there might not be explicit Mule schema support. The auto-
refreshing of scripts furthers this point—permitting you to modify Mule’s behavior
dynamically without a restart.

14.4 Summary
Scripting languages can greatly benefit your development productivity. As we saw
repeatedly in this chapter, Mule scripting support takes full advantage of this. By pro-
viding schema extensions for JSR-223 scripts, Mule allows you to directly implement
components and transformers using any JSR-223 scripting engine. For areas of Mule
where scripting support isn’t explicit, Spring’s lang namespace can be used to define
beans using a scripting language. This additionally allows you to benefit from Spring’s
script auto-reloading capabilities in your Mule configurations. Finally, by extending its
service interface binding functionality to scripts, Mule allows you to transparently
invoke endpoint logic from your scripted components in a decoupled manner.

 In this chapter we’ve seen how Mule’s scripting support can simplify component
and transformer development. Let’s now see how Mule simplifies two other common
integration challenges—business orchestration and event scheduling.

C

Define script bean
as being groovy-

refreshable

Inject spring bean as
refresh for service

D

Business process management
and scheduling with Mule
Most of the examples we looked at while discussing transports and routing in chap-
ters 3 and 4 were discrete—dealing with one scope of functionality at a time. For
instance, we were interested in how to send JMS messages or how to group the
responses from a collection of web services and aggregate their responses. In chap-
ter 10, we saw how transactions allow us to perform these operations atomically. But
what happens if the activity we need to coordinate takes longer than a typical trans-
action time-out, or needs to maintain state between multiple service invocations?
Perhaps we have an endpoint that invokes a potentially long-running operation,
such as waiting for a user to respond to a confirmation email. The receipt of this
confirmation email may be one piece of an account-provisioning process—with
events occurring before and subsequent dependent events occurring after the
email is sent. While it might be possible to model such an activity using the routing

In this chapter
■ Using jBPM for service orchestration
■ Scheduling tasks with the Quartz transport
■ Polling endpoints with the Quartz transport
342

343Orchestrating services with Mule
facilities introduced in chapter 4, it seems like a more straightforward solution should
be at our disposal.

 A job such as this is presumably invoked externally—some external user or system
will initiate an account provisioning request. But what if we want to run a job at a spec-
ified time or interval? Maybe we have to perform a bulk load of data into a data ware-
house. Such an operation will likely incur a large amount of overhead on the servers
in question. As such, we probably want to start the bulk load after hours, when such an
event wouldn’t affect users. But how would we tell Mule to start such a job? So far
we’ve only seen how to execute functionality when events occur on inbound
endpoints—we don’t (yet) have a way to initiate such an event from Mule.

 In this chapter we’ll look at solving the challenges above using Mule’s process man-
agement support. We’ll start off by seeing how Mule interacts with business process
management (BPM) engines to coordinate long-running processes, such as the
account provisioning process we just described. You’ll see how Clood leverages this
functionality to simplify its account provisioning processes. We’ll then examine Mule’s
support for Quartz, a popular open source enterprise scheduling tool, to generate
messages and trigger jobs at set times and intervals. Clood uses Mule and Quartz to
perform various scheduling activities, such as triggering data loads and periodically
polling JMS queues, as we’ll also see in this chapter.

15.1 Orchestrating services with Mule
We saw in chapter 4 how to do ad hoc service composition with the chaining router.
In listing 4.17, we used the chaining router to invoke multiple outbound synchronous
endpoints, using the response of each endpoint as the input to the next. This allowed
us to compose services together to form a single response. While the chaining router
is useful in such a scenario, its limitations begins to become apparent as the complex-
ity of the service orchestration grows. We already saw one such limitation at the begin-
ning of this chapter with long-running operations. Another such limitation is
branching—perhaps the response of one service dictates which subsequent service is
invoked. This sort of functionality is unfeasible with naive orchestration approaches.

 BPM engines provide an attractive option for solving such orchestration chal-
lenges. A BPM engine typically provides the functionality missing in a solution such as
the chaining router. By supplying facilities such as process state management, job sus-
pension, and service composition, complex business processes can be modeled and
implemented. This is particularly important in a service-oriented environment, where
disparate services often need to be tied together to accomplish some business need.

 Before we delve into Mule’s support for BPM engines, let’s look at a challenge that
might be solved by service orchestration. Clood, Inc.’s IT department has been using a
manual method to provision employee accounts on various systems. This documented
process was typically handled by the IT system administrators. As Clood has grown,
though, this system has begun to be unmanageable—IT’s sysadmins (SAs) are typically
spending 1 to 2 hours a day dealing with account management issues. To provision an
account, for instance, a Clood SA must do the following:

344 CHAPTER 15 Business process management and scheduling with Mule
1 Use a command-line script to add the user’s account data into an OpenLDAP
directory.

2 Enter additional account data into an internal hours-tracking web application.
3 Create an account on a third-party ticketing system.
4 If the user is in sales, create an account on a third-party CRM system.
5 If the user is in operations, generate a Secure Shell (SSH) key pair for the user.
6 Create a mailbox for the user on the corporate IMAP server.
7 Send an email to the user’s personal email account to confirm that he can

access these systems.
8 Wait for the user’s confirmation that all is well.

You’ve been tasked to work with the lead system administrator on automating this
tedious process. After talking with the lead sysadmin, it becomes apparent that all
eight steps can be performed programmatically in some way or another. As such, you
decide to implement each of the steps as a Mule service, with a component imple-
menting the business logic required to complete each step. Additionally, you and the
lead system administrator decide to represent the provisioning request as XML. Such a
request would resemble listing 15.1.

<account>
 <name>John Doe</name>
 <group>Operations</group>
 <personalEmail>johndoe@gmail.com</personalEmail>
</account>

There are no current requirements to expose the provisioning process as a web ser-
vice, so you decide to use JMS to accept the initial account XML from IT and coordi-
nate the subsequent provisioning activities. This is illustrated in listing 15.2.

<spring:beans>
 <spring:import resource="spring-config.xml"/>
</spring:beans>

<jms:activemq-connector
 name="jmsConnector"
 specification="1.1"
 brokerURL="tcp://mq.clood.com:61616" />

<vm:endpoint name="SendEmailConfirmationEndpoint"
 path="it.provisioning.confirmation"/>

<model name="accountProvisioningModel">

 <service name="crmProvisioning">
 <inbound>
 <jms:inbound-endpoint queue="it.provisioning.crm"/>
 </inbound>

Listing 15.1 Representing account data as XML

Listing 15.2 Exposing provisioning steps via JMS and VM endpoints

Accept CRM
provisioning requests

345Orchestrating services with Mule
 <component>
 <spring-object bean="crmAccountService"/>
 </component>
 </service>

 <service name="hourEntryProvisioning">
 <inbound>
 <jms:inbound-endpoint queue="it.provisioning.hour-entry"/>
 </inbound>
 <component>
 <spring-object bean="hourEntryAccountService"/>
 </component>
 </service>

 <service name="ldapAccountProvisioning">
 <inbound>
 <jms:inbound-endpoint queue="it.provisioning.directory"/>
 </inbound>
 <component>
 <spring-object bean="ldapAccountService"/>
 </component>
 </service>

 <service name="sshAccountProvisioning">
 <inbound>
 <jms:inbound-endpoint queue="it.provisioning.ssh"/>
 </inbound>
 <component>
 <spring-object bean="sshAccountService"/>
 </component>
 </service>

 <service name="ticketingAccountProvisioning">
 <inbound>
 <jms:inbound-endpoint queue="it.provisioning.ticketing"/>
 </inbound>
 <component>
 <spring-object bean="ticketingAccountService"/>
 </component>
 </service>

 <service name="imapAccountProvisioning">
 <inbound>
 <jms:inbound-endpoint queue="it.provisioning.imap"/>
 </inbound>
 <component>
 <spring-object bean="imapAccountService"/>
 </component>
 </service>

 <service name="sendEmailConfirmation">
 <inbound>
 <vm:inbound-endpoint ref="SendEmailConfirmationEndpoint"/>
 </inbound>
 <spring:object bean="sendEmailConfirmationService"/>
 <outbound>
 <pass-through-router>

Accept hours entry
provisioning requests

Accept LDAP
provisioning requests

Accept SSH
provisioning requests

Accept ticketing
provisioning requests

Accept IMAP account
provisioning requests

Send email
confirmations

346 CHAPTER 15 Business process management and scheduling with Mule
 <smtp:outbound-endpoint
 host="${smtp.host}"
 from="${smtp.from}"
 subject="Accounting Invoice"
 to="${smtp.to}">
 <email:string-to-email-transformer/>
 </smtp:outbound-endpoint>
 </pass-through-router>
 </outbound>
 </service>

 <service name="receiveEmailConfirmation">
 <inbound>
 <imap:inbound-endpoint
 host="${imap.host}"
 port="${imap.port}"
 user="${imap.user}"
 password="${imap.password}">
 <email:email-to-string-transformer/>
 </imap:inbound-endpoint>
 </inbound>
 </service>

</model>

We’re already a long way from the previous approach—the prior manual steps can
now be triggered programmatically via JMS messages containing XML account data.
This could form the basis for a centralized administration console, with a single form
submission driving JMS message submission to each enumerated queue. You decide to
use JMS for any provisioning endpoint that needs to be invoked externally. This could
allow operations to spin up mailboxes without provisioning a full account, for
instance. The sendEmailConfirmation endpoint is finally set to use a VM endpoint, as
you have no requirement (or intention) to allow entities external to Mule to send
account confirmation emails.

 There are some drawbacks to this approach. The administrative console is now
tightly coupled to the queue submission sequence. If we modify the provisioning pro-
cess, we’ll need to modify the admin console. This drawback is further amplified if a
requirement arises to support account provisions from outside the console. Perhaps
Clood, Inc., at some point merges with another company and needs to expose its
account provisioning process. In this scenario, changes to the account provisioning
procedure would require modifications on both the internal administrative console
and the externally exposed service.

 Let’s see how we can solve this problem by encapsulating the provisioning process
in a BPM engine.

15.1.1 Introducing jBPM

jBPM is an open source BPM product developed by JBoss, Inc. In addition to providing
a BPM engine, jBPM also supplies an XML-based process definition language called
jPDL as well as a graphical process designer called GPD. jBPM can be deployed as a

Receive email
confirmation responses

347Orchestrating services with Mule
standalone server, deployed to an application server, or embedded into an existing
Java application. In this section we’ll be using jBPM embedded in a running Mule
instance. Full documentation on jBPM, jPDL, GPD, and the various deployment
options for jBPM are available from the jBPM web site: http://www.jboss.org/
jbossjbpm/.
DEFINING THE PROCESS WITH JPDL

Let’s see how we can orchestrate the endpoints we defined in listing 15.2 with jBPM.
Figure 15.1 illustrates the process definition as defined by Clood’s IT group.

You and the lead sysadmin came up with figure 15.1 using jBPM’s GPD tool. This is an
Eclipse plug-in that allows you to graphically lay out process definitions without worry-
ing about XML or Java code. This diagram can be subsequently used to generate a
skeleton business definition. Listing 15.3 is the skeleton definition generated from fig-
ure 15.1.

<process-definition name="AccountProvisioning">

 <start-state name="Provision Account">
 <transition to='Create LDAP Account'/>
 </start-state>

Listing 15.3 Representing the account provisioning process as a process definition

Figure 15.1 The account provisioning
process visualized with GPD

http://www.jboss.org/jbossjbpm/

348 CHAPTER 15 Business process management and scheduling with Mule
 <state name='Create LDAP Account'>
 <transition to='Create Hour Entry Account'/>
 </state>

 <state name='Create Hour Entry Account'>
 <transition to='Check Group'/>
 </state>

 <decision name="Check Group">
 <transition name="Operations" to="Create SSH Account"/>
 <transition name="Sales" to="Create CRM Account"/>
 </decision>

 <state name='Create SSH Account'>
 <transition to="Create IMAP Account"/>
 </state>

 <state name='Create CRM Account'>
 <transition to="Create IMAP Account"/>
 </state>

 <state name='Create IMAP Account'>
 <transition to='Send Email Confirmation'/>
 </state>

 <state name='Send Email Confirmation'>
 <transition name="continue" to='end'/>
 </state>

 <end-state name='end'>
 </end-state>

The business definition in listing 15.3 should capture the account provisioning logic
we’re trying to orchestrate. After receiving the provisioning account, we need to cre-
ate an LDAP account, and then create an hours entry account. After this, depending
on whether the user is in operations or sales, we want to create either an SSH account
or a CRM account. After this, we want to provision an IMAP account and then send a
confirmation email to the user. When the user responds to the confirmation email,
the process ends.

NOTE jBM is currently the only BPM engine supported out of the box by Mule.
The interface for the BPM support is provider-agnostic, and support for
other BPM engines is possible through the org.mule.transport.

bpm.BPMS interface.

15.1.2 Using jBPM with Mule

Now that we have our business logic exposed and our business process defined, we
need to tie the two together. We’ll do this by fleshing out the jPDL definition in
listing 15.3. Generally, you’d do this by implementing jBPM actions. These are classes
that perform the business logic for each step. In our case, we need to implement two
pieces of business logic. One must send JMS messages to the appropriate JMS end-
point. The other must make some sort of determination of which group the user is in
to determine whether to create SSH or CRM accounts. For the first case, Mule ships

349Orchestrating services with Mule
with a set of jBPM action handlers to simplify common tasks, such as sending Mule
messages. These actions are described in table 15.1.

Let’s use these action handlers to coordinate with our Mule endpoints. This is illus-
trated in listing 15.4.

<start-state name="provisioningRequest">
 <transition to='Validate Account'/>
</start-state>

<state name="Validate Account">
 <event type="node-enter">
 <action
 class="org.mule.transport.bpm.jbpm.actions.ValidateMessageSource">
 <expectedSource>
 endpoint.jms.it.provisioning.requests
 </expectedSource>
 </action>
 <action
 class="org.mule.transport.bpm.jbpm.actions.StoreIncomingData">
 <variable>incoming</variable>
 </action>
 <action
 class="org.mule.transport.bpm.jbpm.actions.Continue"/>
 </event>
 <transition to='Create LDAP Account'/>
</state>

<state name='Create LDAP Account'>
 <event type="node-enter">
 <action
 class="org.mule.transport.bpm.jbpm.actions.SendMuleEventAndContinue">
 <endpoint>jms://it.provisioning.ldap</endpoint>

<payloadSource>incoming</payloadSource> <synchronous>false</synchronous>
 </action>
 </event>

Table 15.1 Mule supplies action handlers to accommodate common tasks.

Action Description

Continue Advance to the next state

SendMuleEvent Send a message to a Mule endpoint

SendMuleEventAndContinue Send a message to a Mule endpoint and advance
to the next state

StoreIncomingData Store incoming data to a variable

ValidateMessageSource Validate a message came from a certain source

ValidateMessageType Validate a message is of a certain type

Listing 15.4 The finalized jPDL account provisioning definition

BValidate incoming messages

CStore payload in
process variable

DSend message to
LDAP queue

350 CHAPTER 15 Business process management and scheduling with Mule
 <transition to='Create Hour Entry Account'/>
</state>

<state name='Create Hour Entry Account'>
 <event type="node-enter">
 <action
 class="org.mule.transport.bpm.jbpm.actions.SendMuleEventAndContinue">
 <endpoint>jms://it.provisioning.hour-entry</endpoint>
 <payloadSource>incoming</payloadSource>
 <synchronous>false</synchronous>
 </action>
 </event>
 <transition to='Check Group'/>
</state>

<decision name="Check Group">
 <handler class="com.clood.it.ResolveGroup"/>
 <transition name="Operations" to="Create SSH Account"/>
 <transition name="Sales" to="Create CRM Account"/>
</decision>

<state name='Create SSH Account'>
 <event type="node-enter">
 <action
 class="org.mule.transport.bpm.jbpm.actions.SendMuleEventAndContinue">
 <endpoint>jms://it.provisioning.ssh</endpoint>
 <payloadSource>incoming</payloadSource>
 <synchronous>false</synchronous>
 </action>
 </event>
 <transition to="Create IMAP Account"/>
</state>

<state name='Create CRM Account'>
 <event type="node-enter">
 <action
 class="org.mule.transport.bpm.jbpm.actions.SendMuleEventAndContinue">
 <endpoint>jms://it.provisioning.crm</endpoint>
 <payloadSource>incoming</payloadSource>
 <synchronous>false</synchronous>
 </action>
 </event>
 <transition to="Create IMAP Account"/>
</state>

<state name='Create IMAP Account'>
 <event type="node-enter">
 <action
 class="org.mule.transport.bpm.jbpm.actions.SendMuleEventAndContinue">
 <endpoint>jms://it.provisioning.imap</endpoint>
 <payloadSource>incoming</payloadSource>
 <synchronous>false</synchronous>
 </action>
 </event>
 <transition to='Send Email Confirmation'/>
</state>

ESend message to hours
entry provisioning queue

Branch based on whether
user is in Operations or Sales

F

GSend message
to SSH queue

HSend message
to CRM queue

ISend message
to IMAP queue

351Orchestrating services with Mule
<state name='Send Email Confirmation'>
 <event type="node-enter">
 <action
 class="org.mule.transport.bpm.jbpm.actions.SendMuleEvent">
 <endpoint>SendEmailConfirmationEndpoint</endpoint>
 <payloadSource>incoming</payloadSource>
 <synchronous>false</synchronous>
 </action>
 </event>
 <transition to="end"/>
</state>

<end-state name='end'>
 <event type="node-enter">
 <action
 class="org.mule.transport.bpm.jbpm.actions.SendMuleEvent">
 <endpoint>jms://it.provisioning.completed</endpoint>
 <payloadSource>incoming</payloadSource>
 <synchronous>false</synchronous>
 </action>
 </event>
 </end-state>

</process-definition>

We start off by validating the incoming provisioning request coming from the appro-
priate Mule endpoint in B (you’ll see shortly how this request is sent). We then store
the message payload, in this case the account XML, in a process variable on C. D and

E send asynchronous provisioning requests to create the LDAP and hours accounts. If
we were interested in the responses for these actions, we’d set synchronous to true.
This would result in the response from the endpoint being stored in the incoming
process variable. F is the decision node that will branch the process execution based
on the group the account is associated with. ResolveGroup is used to accomplish this
and is illustrated in listing 15.5.

public class ResolveGroup implements DecisionHandler {

 private XPath groupExpression;

 public ResolveGroup() {
 try {
 groupExpression = XPath.newInstance("//group");
 } catch (JDOMException e) {
 throw new RuntimeException(e);
 }
 }

 public String decide(ExecutionContext executionContext) throws Exception {

 String account =
(String) executionContext.getContextInstance().getVariable("incoming");

 SAXBuilder builder = new SAXBuilder();

Listing 15.5 A Java class to determine group membership

JSend message to
email queue

Complete provisioning process

352 CHAPTER 15 Business process management and scheduling with Mule
 Document doc =
builder.build(new ByteArrayInputStream(account.getBytes()));

 return (groupExpression.valueOf(doc));
 }

}

This class performs an XPath evaluation against the account request and returns the
value of the group expression to jBPM. This is subsequently used to decide where to
branch by the decision node in F. G, H, and I in listing 15.4 send more provision-
ing requests to their appropriate endpoints asynchronously using SendMuleEventAnd-
Continue. Finally, when we reach J, the email confirmation request is sent. Instead
of using SendMuleEventAndContinue, though, we’re simply using SendMuleEvent.
This causes the process to wait until advanced externally. In our case, we’ll be advanc-
ing the process from Mule once the user responds to the email confirmation. Before
we can do that, though, we need to embed jBPM into our Mule configuration.

Use Mule’s custom jBPM actions to send messages to Mule endpoints
from jBPM.

RUNNING JBPM EMBEDDED IN MULE

We now need to configure a jBPM instance to start when we launch Mule. One way to
do this is using Spring’s jBPM module. Listing 15.6 illustrates how to augment the
Spring configuration we’re referencing in listing 15.6 to bootstrap jBPM.1

 <bean id="jbpmConfig"
 class="org.springmodules.workflow.jbpm31. \
LocalJbpmConfigurationFactoryBean">
 <property name="sessionFactory">
 <ref local="jbpmSessionFactory"/>
 </property>
 <property name="configuration">
 <value>jbpm.cfg.xml</value>
 </property>
 <property name="processDefinitions">
 <list>
 <bean id="accountProvisioning"
 class=
"org.springmodules.workflow.jbpm31.definition. \
ProcessDefinitionFactoryBean">
 <property

name="definitionLocation">
 <value>account-provisioning-process.xml</value>
 </property>
 </bean>

Listing 15.6 Using Spring to bootstrap jBPM for a Mule instance

1 As we mentioned before, this isn’t the only, or necessarily the best, deployment strategy for jBPM and Mule.
You can also deploy jBPM as a standalone web app or in an application container. Consult the jBPM docu-
mentation for further details.

BEST
PRACTICE

BLocation of our
process definition

353Orchestrating services with Mule
 </list>
 </property>
 <property name="createSchema">
 <value>false</value>
 </property>
 </bean>

 <bean id="jbpmDataSource"
class="org.springframework.jdbc.datasource.DriverManagerDataSource">
 <property name="driverClassName">
 <value>org.hsqldb.jdbcDriver</value>
 </property>
 <property name="url">
 <value>jdbc:hsqldb:mem:mule</value>
 </property>
 </bean>

 <bean id="jbpmTypes"
class="org.springframework.orm.hibernate3.TypeDefinitionBean">
 <property name="typeName">
 <value>string_max</value>
 </property>
 <property name="typeClass">
 <value>org.jbpm.db.hibernate.StringMax</value>
 </property>
 </bean>

 <bean id="jbpmSessionFactory"
class="org.springframework.orm.hibernate3.LocalSessionFactoryBean">
 <property name="dataSource">
 <ref local="jbpmDataSource"/>
 </property>
 <property name="mappingLocations">
 <value>classpath*:/org/jbpm/**/*.hbm.xml</value>
 </property>
 <property name="typeDefinitions">
 <ref local="jbpmTypes"/>
 </property>
 <property name="hibernateProperties">
 <props>
 <prop key="hibernate.dialect">
 org.hibernate.dialect.HSQLDialect
 </prop>
 <prop key="hibernate.cache.provider_class">
 org.hibernate.cache.HashtableCacheProvider
 </prop>
 <prop key="hibernate.hbm2ddl.auto">update</prop>
 </props>
 </property>
</bean>

The important bits of listing 15.6 are on B, C, and d. The location of our process
definition is defined on B. This will generally be somewhere on Mule’s classpath. The
data source and corresponding Hibernate dialect jBPM will use are defined on C and

D. For testing purposes, we’re using an in-memory HSQL data source. Production

CData source to persist
process data to

Dialect used
by Hibernate

D

354 CHAPTER 15 Business process management and scheduling with Mule
instances of this configuration will likely use an external database instance, such as
MySQL running on a database server.

NOTE BPEL, or Business Process Execution Language, is a web-services–based busi-
ness process management solution. BPEL engines are used to orchestrate
SOAP endpoints and as such can interact with Mule endpoints exposed
using the CXF and Axis transports.

We now need to let Mule interact with the account provisioning process. In our case,
we need to start the process when an account provisioning request arrives and stop the
process once the email confirmation from the user is received. We also need to main-
tain some sort of state once the confirmation email leaves Mule, so we can correlate the
response. Listing 15.7 shows the modified bits of listing 15.2 to accomplish this.

 <service name="createAccount">
 <inbound>
 <jms:inbound-endpoint
 queue="it.provisioning.requests"/>
 </inbound>
 <outbound>
 <pass-through-router>
 <bpm:outbound-endpoint
 name="startProvisionRequest"
 address="bpm://AccountProvisioning"/>
 </pass-through-router>
 </outbound>
</service>

<service name="sendEmailConfirmation">
 <inbound>
 <jms:inbound-endpoint queue="it.provisioning.confirmation"/>
 </inbound>
 <spring:object bean="sendEmailConfirmationService"/>
 <outbound>
 <pass-through-router>
 <smtp:outbound-endpoint host="${smtp.host}"
 from="${smtp.from}"
 subject="Accounting Invoice"
 to="${smtp.to}">
 <email:string-to-email-transformer/>
 </smtp:outbound-endpoint>
 </pass-through-router>
 </outbound>
 </service>

<service name="receiveEmailConfirmation">
 <inbound>
 <imap:inbound-endpoint host="${imap.host}"
 port="${imap.port}"
 user="${imap.user}"
 password="${imap.password}">

Listing 15.7 Using BPM outbound endpoints to start and advance a jBPM process

Start
AccountProvisioning
jBPM process

B

Send
confirmation emailC

Accept emailD

355Orchestrating services with Mule
 <email:email-to-string-transformer/>
 </imap:inbound-endpoint>
 </inbound>
 <spring-object bean="populateProcessId"/>
 <outbound>
 <pass-through-router>
 <bpm:outbound-endpoint address="bpm://AccountProvisioning">
 <transformers>
 <message-properties-transformer>
 <add-message-property
 key="MULE_BPM_PROCESS_ID"
 value="#[header:MULE_BPM_PROCESS_ID]"/>
 </message-properties-transformer>
 </transformers>
 </bpm:outbound-endpoint>
 </pass-through-router>
 </outbound>
</service>

The account provisioning process will begin when a JMS message is received on the
it.provisioning.request queue. When this occurs, the BPM outbound endpoint is
invoked on B. When the address for the BPM outbound endpoint is specified without
any trailing URI, a new process is started. In this case, an account provisioning process
will be started by jBPM and an ID will be associated with it. This ID will be subsequently
accessible as the MULE_BPM_PROCESS_ID property on the Mule message.

 The business process will now continue as we described, until it hits the Send
Email Confirmation state. At this point, the jBPM process will stop and won’t con-
tinue until advanced externally. In order to advance the process, we must first receive
an email confirmation from the user that her account has been created successfully.
This email confirmation is sent by the SMTP outbound endpoint on C. We have a
problem, though. When the email response is received by D, we need a way to associ-
ate the email with the process ID. We can do this by associating the email address with
the process ID using business logic defined in sendEmailConfirmationService on C.
For the purposes of this example, let’s assume the component will store the
MULE_BPM_PROCESS_ID of the message in a database keyed by the email address.

 When the user receives and replies to the email, it’s picked up by the IMAP
inbound endpoint defined on D during one of its scheduled polls of its account on
Clood’s email server. Once this message is received, the populateProcessId compo-
nent is invoked on E. It queries the database updated by sendEmailConfirmation-
Service on C and populates the MULE_BPM_PROCESS_ID of the message with the
appropriate value. The BPM outbound endpoint is then subsequently invoked on F.
As you can see, the address is qualified with the process ID using an expression evalua-
tor on the endpoint.2 This will cause jBPM to advance the process, which will cause
Send Email Confirmation to advance to the end state and our process to end. The

2 See appendix A for more information about using expression evaluators on endpoints.

Associate email
with jBPM process

E

FAdvance
AccountProvisioning

jBPM process

356 CHAPTER 15 Business process management and scheduling with Mule
BPM transport also supplies a BPM inbound endpoint. This allows Mule to receive
events directly from the BPM engine.

NOTE In this example we’re ignoring the possibility of exceptions occurring in
Mule or jBPM. Exceptions occurring in Mule services are handled as we
discussed in chapter 8. In such a situation, you’ll likely want to abort the
process on the jBPM side. A BPM process can be aborted from Mule by
specifying the abort action on an endpoint invocation as follows:
 <bpm:outbound-endpoint address="bpm://AccountProvisioning">
 <transformers>
 <message-properties-transformer>
 <add-message-property
 key="MULE_BPM_PROCESS_ID"
 value="#[header:MULE_BPM_PROCESS_ID]"/>
 <add-message-property
 key="MULE_BPM_ACTION"
 value="abort"/>
 </message-properties-transformer>
 </transformers>
</bpm:outbound-endpoint>

Exceptions that occur in a Mule action handler within jBPM must be han-
dled by jBPM’s error handling facilities. This will most likely involve defin-
ing an exception handler for the process and is fully documented in the
jPDL reference materials.

By now you should be comfortable with orchestrating processes with Mule. We saw
how to use jBPM in conjunction with Mule for native process orchestration. This
allowed us to perform a composite set of activities against a set of Mule endpoints.
Let’s turn our attention now to Mule’s scheduling features and how they can be used
to trigger orchestrations like the ones we just discussed.

15.2 Job scheduling with Mule
In the introduction to this chapter, we discussed a scenario in which we needed to trig-
ger a bulk load into a data warehouse. To avoid adversely impacting users, we wanted
to precisely schedule the load for a time after business hours. Situations like this are
common in computing environments. You’re no doubt familiar with the Unix sched-
uling commands cron and at or the Windows Task Scheduler. These facilities allow us
to schedule events at certain or repeated intervals. In the Java ecosystem, there are
commercial and open source tools that meet this need. One such tool is Quartz.
Quartz is an open source job scheduling system that can be used for a variety of sched-
uling tasks. In this section we’ll investigate Mule’s support for Quartz. We’ll start by
seeing how we can execute jobs at specified times and intervals. We’ll then see how
messages can be used to trigger a scheduling job.

357Job scheduling with Mule
15.2.1 Using Quartz to schedule jobs

Let’s consider the data warehousing loading problem we introduced earlier in the
context of Clood, Inc. In listing 10.5 we saw how Clood was performing inserts into
operational and warehouse databases. In this example, billing statistics were being
sent across as the payload of JMS messages. The overhead of the XA transaction when
inserting between both databases during high message volume has become problem-
atic. The high load on the database servers during the inserts has begun to affect a
front-end web portal that queries these databases. Since there isn’t a current require-
ment to perform real-time inserts into the data warehouse, you and Clood’s DBA have
decided to schedule a bulk data load at 30 minutes past midnight every night. The
bulk load is performed by a sequence of complex SQL queries, so rather than use a
JDBC endpoint, you’ve decided to put this business logic into a component. Now we
just need to trigger the data load at the appropriate time. Listing 15.8 illustrates how
to use a Quartz inbound endpoint to accomplish this.

<model name="quartzCronModel">
 <service name="quartzCronService">
 <inbound>
 <quartz:inbound-endpoint jobName="cron-job"
 cronExpression="0 30 0 * * ?">
 <quartz:event-generator-job/>
 </quartz:inbound-endpoint>
 </inbound>
 <outbound>
 <pass-through-router>
 <vm:outbound-endpoint path="data-warehouse-load"/>
 </pass-through-router>
 </outbound>
 </service>

 <service name="warehouseService">
 <inbound>
 <vm:inbound-endpoint path="data-warehouse-load"/>
 </inbound>
 <component class="com.clood.warehouse.DataWarehousingService">
 <method-entry-point-resolver acceptVoidMethods="true">
 <include-entry-point method="process"/>
 </method-entry-point-resolver>
 </component>
 </service>

</model>

The Quartz inbound endpoint configured on B will instantiate a Quartz scheduler
and define a job with the supplied jobName. The scheduler will then send events to the
Quartz inbound endpoint using the supplied cronExpression. If you’ve used the
Unix cron command, the format in figure 15.2 should look familiar to you.3

Listing 15.8 Triggering jobs with a cron expression

3 With the exception of the extra field for seconds.

Define Quartz
inbound endpoint

B

Generate message
when job is triggeredC

D
Send message through
VM outbound endpoint

EReceive message on VM
inbound endpoint

358 CHAPTER 15 Business process management and scheduling with Mule
This cronExpression will trigger a job at 30 minutes past
midnight every day. An asterisk on the field indicates
that the job will be triggered for each value of that field.
For instance, the asterisks on the day of month and month
fields indicate that the job is to be run every day of the
month and every month of the year. The question mark
(?) on a field indicates ambivalence as to when the event
should occur. In the example, for instance, we don’t care
what day of the week the event falls on. The month and
day of week fields can take either numeric values or the
appropriate abbreviation. For instance, you can specify
FEB as a month value or WED as a day-of-week value.
Ranges can also be used. An expression of 0 * 0-2 * * ?
would cause a job to be triggered every minute from
midnight to 2 a.m., for instance. This also works with
month and day-of-week values, letting you specify ranges
such as MON-FRI or JAN-MAR.

 We now need to define a job on the Quartz inbound endpoint to specify what hap-
pens when a job is triggered. In this case, we have an event-generator-job specified
on C. This indicates that we want a Mule message generated when the Quartz end-
point is triggered. This event will be routed to the VM outbound endpoint on D,
which is sent to the VM inbound endpoint on E. At this point the data warehouse job
will run.

15.2.2 Polling endpoints

You might recall from our discussion of transports in chapter 3 that certain transports
support polling behavior. The JDBC, HTTP, and IMAP inbound endpoints can all
behave this way, periodically polling a remote resource for data. Certain transports,
such as JMS, don’t natively support this behavior. This could be useful in certain sce-
narios. Perhaps we have a JMS queue that we only want to consume messages off of
periodically. This could be useful if we want to batch messages up and process them
only at a specified interval. This sort of behavior is possible by using a Quartz job end-
point. Listing 15.9 illustrates how to consume messages off a specified JMS queue
every 30 seconds.

<model name="quartzPollingModel">
 <service name="quartzPollingService">
 <inbound>
 <quartz:inbound-endpoint jobName="poll-job"
 repeatInterval="30000">
 <quartz:endpoint-polling-job>
 <quartz:job-endpoint address="jms://messages"/>

Listing 15.9 Using a Quartz job endpoint to poll an endpoint

0 30 0 * * ?

Cron expression

second

minute
hour

day of
month

month

day of week

Figure 15.2 Using a Quartz
cron expression to trigger a
job every half hour and detail
the meaning of each field

BDefine Quartz
inbound endpoint

Define endpoint-polling jobC

359Job scheduling with Mule
 </quartz:endpoint-polling-job>
 </quartz:inbound-endpoint>
 </inbound>
 <echo-component/>
 </service>

 </model>

The Quartz inbound endpoint defined on B will invoke the endpoint-polling job on

C every 30 seconds. The endpoint-polling job is configured with a job endpoint to
invoke on D. In this case we want to consume pending messages off the messages JMS
queue. The payloads of these messages are then echoed to the console by the echo
component.

Use the Quartz endpoint-polling job to perform advanced periodic exe-
cution on endpoints that might otherwise not support it.

The endpoint-polling job is also useful if the polling mechanism provided by a trans-
port isn’t sophisticated enough for your needs. A file inbound endpoint, for instance,
can be configured with a polling frequency to read a source directory for files. You
might need something more granular than this. For instance, you might only want to
read the source directory every Wednesday morning at 6:00 a.m. This can be accom-
plished by using the endpoint-polling job in conjunction with a cron expression, as
illustrated in listing 15.10.

<model name="quartzPollingFileModel">
 <service name="quartzPollingFileService">
 <inbound>
 <quartz:inbound-endpoint jobName="cron-job"
 cronExpression="0 0 6 ? * WED">
 <quartz:endpoint-polling-job>
 <quartz:job-endpoint address="file://./data"/>
 </quartz:endpoint-polling-job>
 </quartz:inbound-endpoint>
 </inbound>
 <echo-component/>
 </service>
 </model>

We have a cronExpression configured on B to start a job at 6:00 a.m. every Wednes-
day morning. This will trigger the job endpoint on C to read from the ./data direc-
tory. The contents of the files will then be sent to the echo component and displayed
on the console.

15.2.3 Dispatching jobs

So far we’ve seen how the Quartz transport can be used in conjunction with inbound
endpoints for event scheduling. Scheduling can also be useful in conjunction with

Listing 15.10 Polling a file endpoint using a Quartz cron expression

D

Consume pending
messages off supplied

JMS endpoint

BEST
PRACTICE

Define Quartz
inbound endpoint
with given
cronExpression

B

C
Read files from

supplied file endpoint

360 CHAPTER 15 Business process management and scheduling with Mule
message dispatch as well. A message is typically dispatched as soon as it reaches an out-
bound endpoint in a service. This might not be appropriate, though. You may want to
receive a message and then send the message at a later date. Let’s see how this could
be useful for Clood in the context of the account provisioning example we discussed
at the beginning of this chapter. Clood’s IT team has recently requested that all
account provisioning take place at 9:00 a.m. from Monday through Friday. This is so
the IT team can deal with any provisioning errors during business hours. Currently
the requests are being sent to the BPM engine as they arrive. Listing 15.11 shows how
to use a Quartz outbound endpoint along with a scheduled-dispatch job to accom-
plish this.

<service name="quartzDispatchService">
 <inbound>
 <jms:inbound-endpoint queue="inbound">
 <jms:jmsmessage-to-object-transformer
 name="JmsMessageToString"
 returnClass="java.lang.String"/>
 </jms:inbound-endpoint>
 </inbound>
 <outbound>
 <pass-through-router>
 <quartz:outbound-endpoint jobName="dispatch-job"
 cronExpression="0 0 9 ? * MON-FRI" repeatCount="1">
 <quartz:scheduled-dispatch-job>
 <quartz:job-endpoint
 address="jms://it.provisioning.requests"/>
 </quartz:scheduled-dispatch-job>
 </quartz:outbound-endpoint>
 </pass-through-router>
 </outbound>
</service>

The IT provisioning requests are received on the JMS queue as before. Instead of get-
ting immediately passed to the BPM endpoint, though, they’re scheduled for dispatch
at the specified time. In this case, the cronExpression defined on B ensures that the
message will be scheduled for dispatch on 9:00 a.m. on any day except Saturday or
Sunday. A message received on Saturday or Sunday will be sent at 9:00 a.m. Monday
morning. We’ve set repeatCount to 1 to indicate that the message should only be fired
once.

NOTE You might be wondering what happens if Mule crashes while jobs are
queued, as in listing 15.11. Since the Quartz connector uses an in-mem-
ory job store, by default the jobs will be lost. You can thankfully use
Quartz’s support for persistent job stores to overcome this limitation.
This is accomplished by creating a quartz.properties file in Mule’s
classpath and setting the org.quartz.jobStore.class with the schedul-
ing factory appropriate for your needs. Full documentation is available

Listing 15.11 Dispatching jobs at a specified time

BDefine Quartz
outbound endpoint

Configure scheduled-
dispatch job

Send message
to BPM endpoint

361Summary
on the Quartz web site, but you’ll most likely be interested in the JDBC-
JobStoreTX, which will allow you to store your jobs in a database.

Integrated job scheduling allows Mule to send timed events without using an external
scheduling mechanism. As we saw in this section, this allows us to schedule events, poll
endpoints, and dispatch messages all within a single Mule configuration—greatly eas-
ing our configuration and deployment burdens when using these facilities.

15.3 Summary
Business process management and scheduling mechanisms can be complex moving
parts in integration endeavors. This functionality is traditionally supplied by complex
(and often expensive) standalone solutions. The burden of such approaches is lifted
by Mule’s built-in support for jBPM and Quartz. These transports allow Mule to
orchestrate its services and schedule events—all within a consolidated configuration.

 By now you should be comfortable with these business process management and
scheduling features. You saw how these powerful ingredients enable you to compose
and schedule services. They also demonstrate the flexibility of Mule’s transport
architecture—allowing services exposed over disparate transports to be composed and
scheduled in a common manner. We’ll now turn our attention to tuning Mule, where
you’ll learn how to troubleshoot and improve the performance of your Mule instances.

Tuning Mule
Whether you have predetermined performance goals and want to be sure to reach
them, or you’ve experienced issues with your existing configuration and want to
solve them, the question of tuning Mule will occur to you sooner or later in the life-
time of your projects. Like any application, Mule is constrained by the limits of
memory size and CPU performance. Tuning Mule is about finding the sweet spot
where your business needs meet the reality of software and hardware constraints.

 The same way a race car needs tuning to adapt to the altitude of the track or to
the weather it will race in, Mule can require configuration changes to deliver its
best performance in the particular context of your project. Up to this point of the
book, we’ve relied on the default configuration of Mule’s internal thread pools and
haven’t questioned the performance of the different moving parts, whether they’re
standard or custom. We’ll now tackle these tough questions.

 In short, the objective of this chapter is twofold: to give you a deep understand-
ing of Mule’s threading model and to offer you some hints on how to configure

In this chapter
■ Mule’s threading model
■ Configuring threading profiles
■ Profiling and performance tuning
362

363Understanding thread pools
Mule so it reaches your performance targets. This chapter will often make references
to previous chapters, as the quest for performance isn’t an isolated endeavor but the
outcome of scattered but related activities. We’ll also examine how Clood, Inc., tuned
one of its most intensive services.

 Let’s start by looking deeper into the architecture of Mule than ever before in
order to learn how threading works behind the scenes.

16.1 Understanding thread pools
We’ve evoked Mule’s core architecture in section 1.3.6, where we introduced the
design principles of SEDA. Following this architecture, Mule is designed with numer-
ous thread pools at its heart. Each thread pool handles a specific task, such as receiv-
ing or dispatching messages, or invoking component entry point methods. When a
thread is done with a particular task, it hands it off to a thread in the next thread pool
before coming back to its own pool. This naturally implies some context switching
overhead, hence an impact on performance. Bear in mind that the SEDA architecture
isn’t about maximizing performance but ensuring a graceful degradation under load,
which allows it to handle peaks of activity in a predictable manner.1

 Are these thread pools used all the time? Not at all. As we’ll discover in this section,
the synchronicity configuration influences the usage of thread pools. We’ll also look
at how transport particularities can impact Mule’s threading model. Finally, we’ll dis-
cuss your options in term of configuring thread pools.

WARNING Don’t mix up thread pools and component pools! The upcoming fig-
ures and discussions will help you tell them apart.

Let’s start by discovering the different thread pools that exist in Mule. Figure 16.1 rep-
resents the three thread pools that can be involved when a service handles a message
event. It also represents the component pool that may or may not have been config-
ured for the component (see discussion in section 6.3.3).

NOTE In the coming figures, pay attention to the thread pool box. If it’s full
(three arrows represented), this means that no thread from this pool is
being used. If a thread is used, its arrow is filled in (black) and moved out
of the thread pool box into the stage where it’s used. If the thread spans
stages, its arrow is stretched accordingly.

The receiver and dispatcher thread pools belong to a particular connector object,
while the service thread pool is specific to the service. This is illustrated in figure 16.2.
A corollary of this fact is that if you want to segregate receiver and dispatcher pools for
certain services, you have to configure several connectors. We’ll come back to this idea
in section 16.2.

1 To probe further on Mule and SEDA, you can turn to this highly imaged article: http://www.infoq.com/arti-
cles/SEDA-Mule.

http://www.infoq.com/articles/SEDA-Mule

364 CHAPTER 16 Tuning Mule
If we “zoom” in on a thread pool, we discover a buffer alongside the threads them-
selves, as represented in figure 16.3. Each thread pool is associated with a buffer that
can queue pending requests in case no thread is available for processing the message
right away. It’s only when this buffer is full that the thread pool itself is considered
exhausted. When this happens, Mule will react differently depending on your configu-
ration: it can, for example, reject the latest or oldest request. We’ll see more options
in section 16.1.3.

 You now have a better understanding of the overall design of the Mule threading
model. We’ll now look at how the synchronicity of a message event impacts the way
thread pools are leveraged.

Figure 16.1 Mule relies on three thread pools to handle message events before, inside,
and after each service.

Figure 16.2 Two services using the same connector
share the same receiver and dispatcher thread pools.

Figure 16.3 Each thread pool has a
dedicated buffer that can accumulate
pending requests if no thread is
available to process the message.

365Understanding thread pools
16.1.1 Synchronicity aspects

At each stage of the message event processing, Mule decides whether it needs to bor-
row a thread from the corresponding pool. A thread is borrowed from the receiver
or the dispatcher pool only if this stage is set to be asynchronous. And, by exten-
sion, the component thread pool is used only if the receiver was asynchronous.
There are several factors that determine whether either the receiver or the dis-
patcher will be synchronous:

■ Configured synchronicity—If you’ve set an inbound or outbound endpoint to be
synchronous, the receiver or dispatcher will be synchronous, respectively.

■ Incoming event—If the received message event is synchronous, a receiver can act
synchronously even if its inbound endpoint is configured to be asynchronous.

■ Outbound router—A router can enforce the dispatching stage to be synchronous.
This is the case for the chaining router, for example.

■ Transaction—If the service is transactional, its receiver and dispatcher will be
synchronous no matter how the endpoints are configured.

If you look at figure 16.4, you’ll notice that when both the receiver and the dispatcher
are asynchronous, a thread is borrowed from each pool at each stage of the message
processing. This configuration fully leverages the SEDA design and therefore must be
preferred for services that handle heavy traffic or traffic subject to peaks. Of course,
this configuration can’t be used if a client is expecting a synchronous response from
the service. Table 16.1 summarizes the pros and cons of this configuration model.

Table 16.1 Pro and con of the fully asynchronous mode

Pro Con

Leverages the SEDA model with three fully
decoupled stages

Cannot return the component response to
the caller

Figure 16.4 In fully asynchronous mode, a thread is borrowed from each pool at each
stage of the message processing.

366 CHAPTER 16 Tuning Mule
When a service needs to return a response to the caller, its receiver is configured to be
synchronous. It is still possible to leverage the dispatcher thread pool by configuring it
to be asynchronous. The threading model of this configuration is shown in
figure 16.5. Notice how the receiver thread is used for calling the service component:
this makes sense when you consider that it is the response of the method called on the
component that is waited for synchronously. Table 16.2 presents the pros and cons of
this approach.

As discussed in the introduction, a transactional service will automatically run syn-
chronously: the receiver thread will execute end-to-end and the dispatcher thread
pool will not be used. This is obvious when you consider that, in Java, the transactional
context is attached to the executing thread. Figure 16.6 demonstrates how the thread
used in the receiver is piggybacked all along the processing path of the message event.
The pros and cons of this configuration are listed in table 16.3.

Table 16.2 Pros and con of the synchronous-asynchronous mode

Pros Cons

Returns the component response to the caller.

Dispatching is decoupled from receiving and
servicing.

If a pool of components is used, it can be over-
whelmed by the amount of receiver threads.

Table 16.3 Pro and cons of the fully synchronous mode

Pro Cons

Supports transaction propagation. All the load is handled by the connector’s receiver threads.

If a pool of components is used, it can be overwhelmed by
the amount of receiver threads.

Figure 16.5 If only the receiver is synchronous, one thread from its pool will be used
up to the component method invocation stage.

367Understanding thread pools

Like we said before, using a router such as the chaining router can make the dis-
patcher act synchronously. In that case, an asynchronously called service can end up
dispatching synchronously, using a thread from the service pool for that end. This is
illustrated in figure 16.7. This can also occur if the service component leverages the
event context (see section 13.3) to perform a synchronous dispatch programmatically.
Look at table 16.4 for a summary of the pros and cons of this threading model.

Figure 16.6 In fully synchronous mode, the receiver thread is used throughout all the
stages of the message processing.

Figure 16.7 If only the dispatcher is synchronous, the receiver thread is used
up to the service where a thread is taken from the pool and used throughout
the dispatcher.

368 CHAPTER 16 Tuning Mule

Use synchronous endpoints sparingly and only when it’s justified.

As you’ve just learned, the usage of each of the three thread pools that can be
involved in the processing of a message in a service depends heavily on the synchron-
icity context, whether it’s inbound or outbound. We’ll now look at how transports can
also directly influence the thread pools’ usage.

16.1.2 Transport peculiarities

Transports can influence the threading model mostly in the way they handle incom-
ing messages. In this section, we’ll detail some of these aspects for a few transports.
This will give you a few hints about what to look for; we still recommend that you study
the threading model of the transports you use in your projects if you decide you want
to tune them.

 The first peculiarity we’ll look at is illustrated in figure 16.8. It’s possible for a mes-
sage event to be fully processed in service without using any thread from any of its exist-
ing pools. How come? This can happen when you use the VM transport because, since
it’s an in-memory protocol, Mule optimizes the event-processing flow for synchronous
services by piggybacking the same thread across services. This allows, for example, a
message to be transactionally processed across several services by the same thread.

Table 16.4 Pros and cons of the asynchronous-synchronous mode

Pros Cons

Allows synchronous routing in the dispatcher
(like with a chaining router).

Receiving is decoupled from dispatching and
servicing.

Can’t return the component response to the caller.

The service thread pool size constrains the out-
bound dispatching load capacity.

BEST
PRACTICE

Figure 16.8 A fully synchronous service using the VM transport can
piggyback an incoming thread for event processing.

369Understanding thread pools
 Some transports, such as HTTP or File, support the notion of polling receivers.
Keep in mind that if you activate this feature, the poller will permanently borrow a
thread from the receiver pool of the connector, as illustrated in figure 16.9. Since you
can configure several connectors for the same transport, it’s a good idea to have a
connector dedicated to polling and one or several other connectors for normal mes-
sage processing.

 Other transports don’t rely on a thread pool directly handled by Mule, as shown
in figure 16.10. This is the case for the servlet transport, where the receiver thread
pool is fully handled by the web container that hosts your Mule instance. With the
JMS transport, only the creation of receiver threads is handled by the JMS client
infrastructure. In this case, Mule remains in control of these threads via its pool of
JMS message listeners.2

 In the introduction to this section, we mentioned the existence of a buffer for
each thread pool. Similarly, certain transports natively support the notion of a
request backlog that can accumulate requests when Mule isn’t able to handle them
immediately, as shown in figure 16.11. For example, the TCP and HTTP transports
can handle this situation gracefully by stacking incoming requests in their specific
backlog. Other transports, such as JMS or VM (with queuing activated), can also han-
dle a pool-exhausted situation in a clean manner because they naturally support the
notion of queues of messages.

2 The pool of JMS dispatcher threads is still fully controlled by Mule.

Figure 16.9 A polling
receiver permanently
borrows a thread from
the transport’s
receiver pool.

Figure 16.10 Some transports have
their own receiver thread pool handled
outside of Mule’s infrastructure.

Figure 16.11 Some transports
support the notion of a request
backlog used when the receiver
thread pool is exhausted.

370 CHAPTER 16 Tuning Mule
 As you can see, transports can influence the way thread pools are used. The fact of
the matter is that transports matter as far as threading is concerned. Therefore, it’s a
good idea to spend some time understanding how the transports you use behave.

Build a thorough understanding of the underlying protocols that you’re
using through Mule’s transports.

Let’s now look at the different options Mule gives you for configuring these thread
pools.

16.1.3 Configuration options

Thread pools aren’t configured directly but via the configuration of threading profiles.
Threading profiles are organized in a hierarchy of configuration elements, whose
scope varies from the most generic (Mule-level configuration) to the most specific
(connector-level or service-level configuration). This hierarchy is represented in fig-
ure 16.12, where you can see the Mule-wide default threading profile at the top, then
the profiles for the connector (receiver and dispatcher) on the left, and those for the
service on the right.

 In this hierarchy, a profile defined at a lower (more specific) level overrides one
defined at a higher (more generic) level. For example, consider the following config-
uration fragment:

<configuration>
 <default-threading-profile
 maxBufferSize="100" maxThreadsActive="20"
 maxThreadsIdle="10" threadTTL="60000"
 poolExhaustedAction="ABORT" />
</configuration>

This fragment defines a global threading profile that sets all the thread pools
(receiver, dispatcher, and service) to have by default a maximum number of active
threads limited to 20 and a maximum number of idle threads limited to 10. It also
defines that threads are deemed idle after a minute (60,000 milliseconds) of inactivity
and that, in case of a pool exhaustion (which means that the 100 spots in the buffer
are used), any new request will be aborted and an exception will be thrown.

 But what if a critical service should never reject any request? We’d then override
this Mule-wide default with a service-level thread pool configuration, as shown in the
following excerpt:

BEST
PRACTICE

Figure 16.12 Thread pools are configured via a hierarchy of profiles, whose scope goes from
the most generic to the most specific profile.

371Understanding thread pools
<service name="CriticalService">
 ...
 <threading-profile
 maxBufferSize="100" maxThreadsActive="20"
 maxThreadsIdle="10" threadTTL="60000"
 poolExhaustedAction="RUN" />
</service>

With this setting, the service will never reject any incoming message even if its thread
pool is exhausted. It will, in fact, piggyback the incoming thread to perform the work,
as it can’t hand it off to a thread from its own pool (this will tax the receiver’s thread
pool, potentially creating problems there, too). Note that we had to duplicate all the
values defined in the global threading configuration, as there’s no way to inherit indi-
vidual setting values.

 In addition to RUN and ABORT, the other supported exhausted actions are WAIT,
which holds the incoming thread for a configurable amount of time until the pool
accepts the event or a time-out occurs, and DISCARD and DISCARD_OLDEST, which
silently drop the incoming event or the oldest one in the buffer, respectively.

TIP Outside pool If you use the servlet transport, you may be wondering
where to configure the receiver threading profile, much like when you
arrive in an unknown hotel, you know that there must be a pool but may
have no clue where it is. In the case of the servlet transport, the answer is
easy: as we said in the previous section, the receiver thread pool is han-
dled by the servlet container that hosts your Mule instance. Therefore,
you must configure it by using its specific configuration.

As an example, if you deploy Mule in an embedded web application
on Tomcat, you’ll need to configure the maxThreads and backlog param-
eters of the HTTP or AJP connectors.

You’re now certainly burning with the following question: how do I size all these dif-
ferent thread pools? MuleSource provides a comprehensive methodology for calculat-
ing these sizes3 based on four main factors: expected number of concurrent user
requests, desired processing time, target response time, and acceptable time-out time.
Before you follow that path, we’d like to draw your attention to the fact that for many
deployments, the default values provided by Mule are all that’s needed. Unless you
have specific requirements in one or several of these four factors, you’ll most of the
time be better off leaving the default values. We encourage you to load-test your con-
figuration early on in your project, and decide to tweak the thread pools only if you
have evidence that you need it.

NOTE An example of JMS transport tuning Coming back to our provisioning
system at Clood, Inc., we have to deal with peaks of activity coming from
batch processes happening in the existing systems of Billow, Inc. To

3 See http://www.mulesource.org/display/MULE2USER/Tuning+Performance#TuningPerformance-
CalculatingThreads.

http://www.mulesource.org/display/MULE2USER/Tuning+Performance#TuningPerformance-
CalculatingThreads

372 CHAPTER 16 Tuning Mule
abide by our SLA, we have to ensure that we can process a batch of 10,000
messages within 30 minutes. Since these messages are sent over JMS and
we use Mule’s standard receiver (i.e. org.mule.transport.jms.Multi-
ConsumerJmsMessageReceiver, not one of the polling message receivers
that are also available) to consume them transactionally, we know that we
don’t need to configure a Mule thread pool. The working threads will
directly come from the JMS provider and will be held all along the mes-
sage processing path in Mule in order to maintain the transactional con-
text. We need only configure the number of JMS concurrent consumers.
A load test allowed us to measure that we can sustain an overall message
process time of 4 seconds. A simple computation, similar to the ones
explained in Mule’s thread pool sizing methodology, gives us a minimum
number of concurrent consumers of 10000x4/(30x60)=22.22. Margin
being one of the secrets of engineering, we’ve opted for 25 concurrent
consumers and, since then, haven’t failed our SLA.

Here are a few complementary tips:

■ Use separate thread pools for administrative channels—For example, if you use TCP
to remotely connect to Mule via a remote dispatcher agent (see section 13.1.2),
use a specific connector for this TCP endpoint so it’ll have dedicated thread
pools. That way, in case the TCP transport gets overwhelmed with messages,
you’ll still be in the position to connect to Mule.

■ Don’t forget the component pool—If you use component pooling, the object pool
size must be commensurate to the service thread pool size. It’s easy to define a
global default service thread pool size and forget to size a component pool
accordingly.

■ Waiting is your worst enemy—The best way to kill the scalability of an application
is to mobilize threads in long-waiting cycles. The same applies with Mule: don’t
wait forever, and avoid waiting at all if it’s acceptable business-wise to reject
requests that can’t be processed.

Mule offers total control over the thread pools it uses across the board for handling
message events. You’re now better equipped to understand the role played by these
pools, when they come into play, and what configuration factors you can use to tune
them to your needs.

 When a thread is taken out of a pool, your main goal is to get this thread back in
the pool as fast as possible. How can we achieve this? By shooting for the best possible
performances at every stage of the message event processing. We’ll now consider this
aspect of tuning.

16.2 Increasing performance
Whereas threading profiles define the overall capacity of your Mule instance in term
of scaling and capacity, the performance of each moving part involved in processing
each request will also impact the global throughput of your application. If the time
needed to process each request is longer than the speed at which these requests come

373Increasing performance
in or if this time degrades while the load increases, you can end up in a position where
no matter how many threads and how big the buffer you use, your thread pools will
end up exhausted.

 Therefore, fine-grained performance matters. On the other hand, we all know
Donald Knuth’s words of caution:

 We should forget about small efficiencies, say about 97 percent of the time: premature
optimization is the root of all evil.4

So should performance optimization always be avoided? Of course not. Premature
optimization is the issue. This encourages us to follow a pragmatic approach to the
question of increasing performances: build, measure, and correct.

Don’t tune randomly; use a systematic approach to tuning.

Building has been the main focus of this book, so we consider this subject (hopefully)
covered. In this section, we’ll first talk about gathering metrics to pinpoint actual
points of performance pain. Then we’ll give you some advice on what you can act on
based on these measures. This advice will be generic enough to guide you in the build
phase, not in achieving premature optimization, but in making some choices that will
reduce your exposure to performance issues.

 Let’s start by looking at measuring performance issues with a profiler.

16.2.1 Profiler-based investigation

The most convenient way to locate places in an application that are good candidates
for optimization (aka hot spots) is to use a profiler. As a Java-based application that can
run on the most recent JVMs, and because its source code is available, Mule is all but a
black box when it comes to profiling. To make things even easier, you can download a
free Profiler Pack from MuleSource.org that contains the libraries required to profile
a Mule instance with YourKit (http://yourkit.com). You still need to own a valid
license of YourKit in order to analyze the results of a profiling session.

 After installing the pack, the way you activate the profiler depends on how you
deploy and start Mule (see section 7.1). With a standalone deployment, adding the
-profile parameter to the startup command does the trick. If you deploy Mule in a
JEE container or bootstrap it from an IDE, you’ll have to refer to YourKit’s integra-
tion guidelines to activate the profiler.

 To make the most of a profiling session, you’ll have to exercise Mule in a way that
simulates its usage for the considered configuration. This will allow hot spots to be
detected easily. For this, you can use one of the test tools we mentioned in chapter 12
or create your own ad hoc activity generator, if you have very specific or trivial needs.
Figure 16.13 shows YourKit’s memory dashboard while profiling the LoanBroker sam-
ple application that ships with Mule. This demonstration application comes with a

4 Knuth, Donald. “Structured Programming with go to Statements.” ACM Journal Computing Surveys, Vol 6,
No. 4, Dec. 1974. p.268.

BEST
PRACTICE

http://yourkit.com

374 CHAPTER 16 Tuning Mule
client that can generate a hundred fake requests: we used it as a convenient ad hoc load
injector able to exercise Mule in a way that’s realistic for the configuration under test.

 What can you expect from such a profiling session? Covering the subject of Java
application profiling is beyond the scope of this book, but here are a few key findings
you can expect:

■ Hot spots—Methods that are excessively called or unexpectedly slow.
■ Noncollectable objects—These lead to memory leaks.
■ Monitor locks—An excess of these can create contentions between threads.
■ Deadlocks—These can take down a complete application.
■ Excessive objects or threads creation—This can lead to unexpected memory

exhaustion.

Once you’ve identified areas of improvement, it’ll become possible to take corrective
actions. As far as profiling is concerned, a good strategy is to perform differential and
incremental profiling sessions. This consists in first capturing a snapshot of a profiling
session before you make any change to your configuration or code. This snapshot will

Figure 16.13 Profiling Mule’s memory with YourKit while messages are being processed

375Increasing performance
act as a reference, to which you will compare snapshots taken after each change.
Whenever the behavior of your application has improved, you’ll use the snapshot of
the successful session as the new reference. It’s better to do one change at a time and
reprofile after each change, or else you’ll have a hard time telling what was the actual
cause for an improvement or a degradation.

 The LoanBroker sample application we’ve already profiled comes with several con-
figuration flavors. We’ve compared the profiles of routing-related method invocations
of this application running in asynchronous and synchronous modes. The differ-
ences, which are shown in figure 16.14, confirm the impact of the configuration
change: the asynchronous version depends more on inbound routing and filtering,
whereas the synchronous one leverages the response routers for quotes aggregation.

 In chapter 11, we introduced the notion of agents that are available in the manage-
ment module of Mule. This module also contains an agent specific for profiling that

Figure 16.14 Comparing two profiling session snapshots helps determine the impact of
configuration changes.

376 CHAPTER 16 Tuning Mule
you can use in conjunction with the YourKit profiler pack. This agent doesn’t need
any more configuration than this single configuration element:

<management:yourkit-profiler />

This agent registers an MBean that gives you complete control of the YourKit profiler.
This allows you to perform JMX actions that you’d usually perform from the YourKit
control panel, such as starting and stopping monitor profiling. Figure 16.15 shows the
operations exposed by this agent as seen from the standard JConsole.

TIP Many operations of the YourKit profiler MBean take magic numbers as
parameters. You can find the details of these numbers and to what opera-
tions they apply in the JavaDoc of the com.yourkit.api.Profiling-
Modes class, available online at http://www.yourkit.com/docs/80/api/
com/yourkit/api/ProfilingModes.html.

This agent comes in handy when network or firewall restrictions prevent you from
remotely connecting the YourKit client to Mule, as you’ll be able to use it over HTTP
thanks to the MX4J HTTP agent (see section 11.1.3).

NOTE The Profiler Pack and the management agent are packaged for a particu-
lar version of YourKit. Be sure to check that they’re compatible with the
version you own. If you use a different version and don’t want to upgrade
or downgrade to the version supported by Mule’s extensions, you’ll have
to use the libraries that shipped with your version of YourKit in lieu of the
ones distributed by MuleSource.

Figure 16.15 Mule’s management module offers a YourKit agent that
registers an MBean which controls the profiler.

http://www.yourkit.com/docs/80/api/com/yourkit/api/ProfilingModes.html

377Increasing performance
Using a profiler is the best way to identify performance-challenged pieces of code.
But, whether you use a profiler or not, there’s some general advice that you can apply
to your Mule projects. We’ll go through that now.

16.2.2 Performance advice

Whether you’ve used a profiler before or not, this section will give you some advice
about coding and configuring your Mule applications for better performance. You’ll
see that some of this advice is very generic while other parts are Mule-specific.
FOLLOW GOOD MIDDLEWARE CODING PRACTICES

Mule-based applications don’t escape the rules that apply to middleware develop-
ment. This may sound obvious, but it’s not. It’s all too easy to consider a Mule project
as being different from, say, a standard JEE project because way less code is involved
(or it’s all in scripts). The reality is that the same best practices apply. Let’s name a few:

■ Use appropriate algorithms and data structures.
■ Write sound concurrent code in your components or transformers (thread

safety, concurrent collections, no excessive synchronization, and so on).
■ Consider caching (for example, turn back to section 13.4.2, where Clood used

caching to get rid of a performance hot spot in their Md5FileHasher compo-
nent).

■ Avoid generating useless garbage (favor singleton-scoped beans instead of
prototypes).

REDUCE BUSYWORK

In section 11.2, we talked about the possibility of leveraging log files and notifications
to follow what’s happening in a Mule instance. Be aware that inefficient logging con-
figuration can severely harm performance. Reduce verbosity in production and acti-
vate only the relevant appenders (for example, if you only need FILE, there’s no need
to configure CONSOLE). In the same vein, don’t go overboard with your usage of noti-
fications. If you activate all the possible families of notifications (see section 13.4.2), a
single message can fire multiple notifications while it’s being processed in Mule,
potentially flooding your message listening infrastructure. You certainly don’t need to
expose your application to a potential internal self-denial of service.
USE EFFICIENT MESSAGE ROUTING

Message routing is an important part of what keeps a Mule instance busy; therefore, it
doesn’t hurt to consider performance when configuring your routers and filters. For
example, avoid delivering messages to a component if you know it’ll ignore it: use a
forwarding consumer (see section 4.3.2) to bypass the component altogether. Doing
so will also save you the time spent in the component interceptor stack and the entry
point resolvers.

Investigate high-performance routers such as SXC or Smooks if you
intend to perform content-based routing on large messages.

BEST
PRACTICE

378 CHAPTER 16 Tuning Mule
CARRY LIGHTER PAYLOADS

Carrying byte-heavy payloads creates a burden both in memory usage and in process-
ing time. Mule offers different strategies to alleviate this problem. These strategies
mostly depend on the transport you use. Here’s an incomplete list of possible options
in this matter:

■ The File transport can receive java.io.File objects as the message payload
instead of the whole file content, allowing you to carry a light object until the
real processing needs to happen and the actual file content needs to be read.

■ Some transports can receive incoming requests content as streams instead of
arrays of bytes, either by explicitly configuring them for streaming or by virtue
of the incoming request. This is a powerful option for dealing with huge pay-
loads, but you’ll have to be careful with the synchronicity of the different parts
involved in the request processing (see section 16.1.1), as you can end up with a
closed input stream being dispatched if the receiver wasn’t synchronously
bound to the termination of the processing phase.

■ You can opt to return streams from your components that produce heavy pay-
loads. Many transports can accept streams and serialize them to bytes at the lat-
est possible stage of the message-dispatching process. In the worst case, you can
always leverage an existing transformer to deal with the stream serialization (see
section 5.3.1).

■ Consider deactivating message level caches: see section 13.3.1 for more on this
subject.

TUNE TRANSPORTS

As we discussed in section 16.1.2, transports have their own characteristics that can
influence threading, and consequently performance. The general advice we can give is
you should know the transports you use and how they behave. You should look for
time-out parameters, buffer sizes, and delivery optimization parameters (such as keep
alive and send no delay for TCP and HTTP, chunking for HTTP, or DUPS_OK_ACKNOWLEDGE
for nontransactional JMS).

For HTTP inbound endpoints, you should prefer the Jetty transport in
standalone deployments and the servlet transport in embedded deploy-
ments, over the default HTTP transport.

TUNE MULE’S JVM

Finally, Mule being a Java application, tuning the JVM on which it runs can also con-
tribute to increasing performance. Mule’s memory footprint is influenced by parame-
ters such as the number of threads running or the size of the payloads you carry as
bytes (as opposed to streams). Right-sizing Mule’s JVM, tuning its garbage collector
(like by activating the brand new G1 collector) or some other advanced parameters,
can effectively be achieved by running load tests and long-running tests that simulate
the expected traffic (sustained and peak).

BEST
PRACTICE

379Summary
 Performance tuning is the kingdom of YMMV:5 there’s no one-size-fits-all solution
for such a domain. In this section we’ve given you some hints on how to track down
performance bottlenecks with a profiler and some common advice you can follow to
remedy these issues.

16.3 Summary
In this chapter, we investigated the notions of thread pools and performance optimi-
zation. We’ve talked about how synchronicity deeply affects the way threading occurs
in Mule. We left you with a lot of different options to tune the different thread pools
to your needs. We also presented a pragmatic approach to performance optimization,
with the help of a profiler, and have given you a handful of general tips for better uti-
lizing the available resources of your system (memory and CPU).

 We’re now done with our journey into Mule, but we believe that, for you, this is just
the beginning. From the first chapters, where you learned what Mule can achieve with
just a few lines of configuration, to this final chapter where you learned to tune the
inner parts of the system, you’ve gathered both breadth and depth of knowledge
that’ll allow you to succeed in your Mule-powered projects. Whether you use Mule as a
lightweight messaging framework or as a highly distributed object broker, we wish you
happy trails!

5 Your mileage may vary.

The expression
evaluation framework
Mule offers a rich expression evaluation framework that allows you to hook
advanced logic into different parts of your configuration. In chapters 4 and 5, we
mentioned the possibility of using evaluators. In this appendix, we’ll review the
existing evaluators and present different examples, side by side, to help you realize
how versatile and powerful they are.

 In short, an expression evaluator evaluates an expression on an object. The
nature of the expression and the type of object accepted actually depends on the
type of the evaluator. Most of the time, the object consists of the instance of
MuleMessage that’s currently under processing.

 Table A.1 presents an overview of the evaluators available in Mule at the time of
this writing.1 Note how each evaluator has an ID: this is the ID that you’ll need to
use in your configuration to tell Mule what evaluator to use.

1 Refer to the JavaDoc of your installed Mule for the most accurate evaluators list and description.

Table A.1 Available expression evaluators in Mule 2.2

Evaluator ID Description

attachment Gets an attachment payload by its name from the message.

attachments Builds a map of attachment names and payloads from a comma-sepa-
rated list of attachment names.

attachments-list Builds a list of attachment payloads from a comma-separated list of
attachment names.
381

382 APPENDIX A The expression evaluation framework
bean Evaluates a bean expression, such as object.propertyA.
propertyB, on the message payload. Behind the scenes, this evaluator
uses the jpath evaluator.

endpoint Gets a property of a global endpoint. The expression is of the form
endpointName.propertyName. The only supported property is
address.

function Executes predefined functions, such as now, date, datestamp,
datestamp:dd-MM-yyy, uuid, hostname, ip, count,
payloadClass, shortPayloadClass.

groovy Runs a specified Groovy script, with the following properties bound: log,
result, muleContext, payload, and src (src is an alias of
payload). If the expression is run against a MuleMessage, the follow-
ing properties are also bound: message and all the message properties
(headers). If the expression is run against MuleEvent, the following
properties are also bound: originalPayload, eventContext, id,
and service.

header Gets the value of the message property (aka header) whose name is
passed to the evaluator.

headers Builds a map of message property names and values from a comma-sep-
arated list of property names.

headers-list Builds a list of message property values from a comma-separated list of
property names.

jxpath Evaluates the specified expression with JXPath.

map-payload Gets the value that corresponds to specified key out of the message pay-
load. Works only with payloads that are instances of java.util.Map.

message If no expression is given to this evaluator, it simply returns the message
as is. Otherwise, the expression must be one of the following, which cor-
respond to methods invoked on the MuleMessage object: id,
correlationId, correlationGroupSize, correlation-
Sequence, replyTo, payload, encoding, and exception.

mule Evaluates the expression against the Mule event context. The supported
expressions are serviceName, modelName, inboundEndpoint,
serverId, clusterId, domainId, workingDir, and homeDir.

ognl Evaluates an OGNL (Object-Graph Navigation Language) expression
against the current message payload.

payload If no expression is given to this evaluator (using payload:), it simply
returns the payload as is. If an expression is defined, it must be the class
FQN into which the payload must be transformed. This auto-transforma-
tion relies on the mechanism described in section 13.3.1. For byte arrays,
use this fake FQN: byte[].

Table A.1 Available expression evaluators in Mule 2.2 (continued)

Evaluator ID Description

383APPENDIX A The expression evaluation framework
A.1 Standard evaluators
Let’s review some examples where expression evaluators have been used in different
contexts.

A.1.1 In filters

Using expressions in message filters has been discussed in section 4.2.3. Listing A.1
demonstrates a filter that uses a tiny Groovy script to sort messages by size. Messages
with more than one kilobyte of payload are dispatched to a different outbound end-
point than the smaller ones. The capacity to use Groovy and, from there, reach any
helper class that’s in the classpath of your application allows you to deploy advanced
routing logic with no need for custom classes.

<service name="PayloadSizeFiltering">
 <inbound>
 <vm:inbound-endpoint path="PayloadSizeFiltering.IN" />
 </inbound>

 <outbound>
 <filtering-router>
 <outbound-endpoint ref="TargetChannel" />
 <expression-filter evaluator="groovy"
 expression="message.payloadAsBytes.length>1024" />
 </filtering-router>
 <forwarding-catch-all-strategy>
 <outbound-endpoint ref="LoggerChannel" />
 </forwarding-catch-all-strategy>
 </outbound>
</service>

NOTE On addition to those listed in table A.1, there are a few extra evaluators
that can only be used in expression filters. They’re payload-type, regex,
and wildcard, which filter on the message payload, and exception-type,
which filters on the exception payload of the message.

string A string expression can be composed of text and optionally other nested
expressions, such as #[string:ACK] or #[string:ID#
[function:uuid]]. It’s typically the evaluator to use when multiple
evaluators are present within one composite expression.

xpath Evaluates the specified expression with XPath on a DOM instance.

xpath-node Same as xpath but returns the actual DOM node object instead of its
content.

Listing A.1 Using a Groovy expression evaluator to filter messages

Table A.1 Available expression evaluators in Mule 2.2 (continued)

Evaluator ID Description

384 APPENDIX A The expression evaluation framework
A.1.2 In transformers

In section 5.3.4, we demonstrated the usage of expression transformers. The obvious
usage of a transformer is to alter the payload or properties of a message while it’s pro-
cessed. With a little imagination, we can do way more than this! Listing A.2 shows a
bridge service that leverages a response transformer to provide a synchronous
response to the caller, while dispatching the original message asynchronously to the
outbound router. The synchronous acknowledgement returned to the caller is the
correlation ID of the message it has sent, allowing it to ensure its message has been
received correctly. We’ve achieved, thanks to the message expression evaluator, a dis-
connect between what’s replied to the caller and what’s dispatched without resorting
to using the API, as we did in section A.2.

<service name="AckingAsyncDispatcher">
 <inbound>
 <inbound-endpoint ref="AckingAsyncDispatcherChannel"
 synchronous="true">

 <response-transformers>
 <expression-transformer>
 <return-argument evaluator="message"
 expression="correlationId" />
 </expression-transformer>
 </response-transformers>
 </inbound-endpoint>
 </inbound>

 <outbound>
 <pass-through-router>
 <outbound-endpoint ref="TargetChannel" synchronous="false" />
 </pass-through-router>
 </outbound>
</service>

A.1.3 In endpoint URIs

In section 13.1.2 we looked at the client code used to call a Mule service that looks up
stock information over the Internet. Listing A.3 is the configuration of this service.
Notice how we use the payload expression evaluator: unlike the previous example
where the evaluator ID and expressions were configured in two different attributes, we
have to multiplex all this information in the URI. This is achieved by concatenating
the evaluator ID and the expression itself, separating them with a colon. If you wonder
what the %23 character stands for, it’s the # sign escaped to be parsed correctly in the
context of an HTTP endpoint. The normal expression placeholder syntax is
#[evaluatorID:expression].

Listing A.2 An expression evaluator can return a simple request acknowledgement.

385APPENDIX A The expression evaluation framework

<service name="TickerLookupService">
 <inbound>
 <inbound-endpoint ref="TickerLookupChannel">
 <response-transformers>
 <byte-array-to-string-transformer />
 </response-transformers>
 </inbound-endpoint>
 </inbound>

 <outbound>
 <pass-through-router>
 <http:outbound-endpoint synchronous="true"
 address="http://finance.google.com/finance/historical?
 ➥ q=%23[payload:java.lang.String]&histperiod=weekly
 ➥ &output=csv" />
 </pass-through-router>
 </outbound>
</service>

A.1.4 In custom code

Expression evaluators are also available from your own code, thanks to the
org.mule.api.expression.ExpressionManager instance that’s accessible from the
Mule context (see section 13.2). The following code shows the logic inside a compo-
nent that parses a configured String expression against the messages it receives:

public Object onCall(MuleEventContext eventContext) throws Exception {
 ExpressionManager expressionManager = eventContext
 .getMuleContext().getExpressionManager();

 return expressionManager.parse(expression, eventContext.getMessage(),
 true);
}

Here’s the configuration for this component that makes it return a String containing
the correlation ID of the incoming message and the date stamp when it was received,
under a specific format:

<component>
 <singleton-object class="com.muleinaction.component.ExpressionParser">
 <property key="expression"
 value="#[message:correlationId]@#[function:datestamp:yyyy-dd-MM]" />
 </singleton-object>
</component>

NOTE You can easily perform what this custom component does with a trans-
former and the string expression evaluator:

<expression-transformer>
 <return-argument evaluator="string"
 expression="#[message:correlationId]@#[function:datestamp:
 ➥ yyyy-dd-MM]"/>
</expression-transformer>

Listing A.3 Expressions in endpoint URIs can be resolved at runtime by evaluators.

386 APPENDIX A The expression evaluation framework
A.2 Custom evaluators
As always, should your needs not be covered by Mule’s standard implementations, you
have the possibility to roll out your own expression evaluator. If this is the case, you
need to create an object that implements org.mule.util.expression.Expression-
Evaluator. If you use Spring to instantiate your custom evaluator, Mule will automati-
cally discover it at startup time. You can also register it programmatically using the
register method on the org.mule.api.expression.ExpressionManager instance
that’s accessible from the Mule context (see section 13.2).

 Using a custom evaluator is transparent in string expressions: you simply need to
refer to it by its name. For example, using an custom evaluator named translator in
an expression is done the usual way: #[translator:an_expression].

 In XML elements, you have to specify both that you use a custom evaluator and its
name:

<return-argument evaluator="custom"
 customEvaluator="translator"
 expression="an_expression" />

Let’s now look at a few samples that show you how the expression evaluators can allow
you to achieve complex behaviors without coding your own classes.

The Mule community
This appendix is a short introduction to the Mule community. As suggested by fig-
ure B.1, this community is mainly organized around the MuleSource.org web site,
with some activity on the MuleForge.org and MuleSource.com sites. The latter is
the commercial and corporate site of MuleSource, Inc., where you can find Enter-
prise versions of the products and professional services. We won’t discuss that site
in this appendix.

B.1 MuleSource.org
As a Mule user, MuleSource.org will be your primary destination. Presented as
the documentation and resource center of Mule, this is where you’ll find the

Figure B.1 The Mule community is mainly organized around the MuleSource.org web site.
387

388 APPENDIX B The Mule community
downloadable versions of the Community Editions of Mule and Galaxy. You’ll also
find the complete user guides for Mule 1 and Mule 2. If you’re looking for the lat-
est details of a particular transport or an in-depth review of an advanced concept in
Mule, this is where you’re most likely to find it.

 Another valuable resource of this site is the cookbook. Mostly built by user contri-
butions, the cookbook contains technical solutions for common problems.

B.2 JIRA
JIRA is an issue tracker used by MuleSource for managing bugs, feature requests, and
patch submissions. This is where you’ll look first if you have an issue: a look at the
roadmap or a search on open issues will give you a fair idea of what’s cooking and
what’s burning.

 By creating an account on this system, you’ll be allowed to watch issues and track
their progress but also vote for the ones you consider important. As a community
member, we can only encourage you to exercise your voting power and cast your bal-
lot for issues or feature requests you’d like to see solved or implemented first.

B.3 Mailing lists
Mule’s mailing lists are notable for the non-trollish answers you can get. Out of
respect for the persons who take time to respond to you, always search for an answer
or an already-reported bug before posting in the list. Since all MuleSource web sites
and related mail archives are indexed by the major Internet search engines, you don’t
need to manually search all these different places. Just use your favorite search engine
and you’ll get pretty decent results. If this isn’t the case, then consider a targeted
search in JIRA with selective criteria such as module or ticket state.

B.4 MuleForge.org
MuleForge.org is a complete development platform that MuleSource has opened to
the community to support the creation of new transports, components, or any other
Mule-related artifacts. As such, MuleForge is the workplace of the Mule community.
It’s also its factory outlet, as this is where you’ll go to “shop” for a specific transport
that you can’t find in the standard transports supported by MuleSource.

 It’s also a great place to share your own stuff: you’ll find there all the development
tools of the moment such as Subversion, Confluence, JIRA, Bamboo, and of course,
Maven, with Xircles as the one platform to bind them all in a consistent dashboard.
On top of that, mailing lists and forums are created for each project, to encourage dis-
cussion and feedback. MuleForge allows you to develop, build, distribute, document,
and support your Mule-related creations in an efficient and professional way.

 Why would you share your own creations? Consider this selfish reason: to have a
community of users debugging it for you! More seriously, as developers, we benefit a
lot from open source in general and it’s fair to give back whenever possible. Open

389APPENDIX B The Mule community
source communities thrive on public contributions, but have to maintain a gated
access to committing on the core product. This is why MuleForge is attractive: it allows
open contributions and treats them with all due respect. It’s sure a good place to host
your code and expose it to the world.

index
A

AbstractEntryPointResolver 153
AbstractMessageAwareTrans-

former 135, 137
AbstractPolicyTemplate 208
AbstractTransformer 132, 137
Acegi 221
ACID 234
ActiveMQ 209

RetryPolicyTemplate 210
use of the VM broker 290

adaptive retry policy 210
AdaptiveRetryPolicyTemplate-

Wrapper 211
Ant notation 30
AOL Instant Messenger 76
Apache ActiveMQ 64

external instance 66
Apache Ant 274
Apache AXIS 148
Apache Chainsaw 197, 202,

213, 215
filtering 215

Apache Commons Lang,
StringUtils 336

Apache Commons Logging 213
Apache CXF 55

contract-first development 59
wsdl2java 59

Apache Directory Server 223
Apache JMeter 294

adjusting the Ramp-Up
period 296

custom samplers 298
HTTP 294

JDBC 294
JMS 294
LDAP 294
load testing 297
setting up a JMS test 296
specifying a Test Plan 295
stopping a test 296
stopping a thread 295

Apache JXPath 87
Apache Maven 274

archetypes 282
artifactId 277
artifacts 278
automatic resolution of

dependency graph 277
building EARs 277
building JARs 277
building WARs 277
dependency

management 277
groupId 277
hierarchy of JAR files 275
JUnit 277
location of central

repository 281
M2_HOME 275

bin subdirectory 275
main source tree 275
Mule artifacts

mule-transport-
archetype:create 282

TODO pointers 282
mule-core artifact 280
negating the need for custom

build infrastructure 274
pom.xml 276

repository 281
specifying artifact id 275
specifying group Id 275
test source tree 275
use of dependency tree 280
use of versioning 277

API 299
array-entry-point-resolver 153
aspect-oriented programming

(AOP). See interceptor
async-reply. See router
AuditComponent 262
auditing. See monitoring
automated integration

testing 294
automation 274
auto-transformer 121, 137, 313
Axis transport, and use of with

BPEL engines 354

B

bean, expression evaluator 121,
156

binding 161
BitTorrent 70
boolean operations 89
BPM transport

aborting a process 356
advancing an existing

process 355
exceptions 356
externally advancing a

process 355
interacting with from

Mule 354
391

392
BPM transport (continued)
MULE_BPM_PROCESS_ID

property 355
process definition

location 353
SendMuleEvent 352
SendMuleEventAndContinue

352
starting a process 355
supplied actions 349
synchronicity 351
use of the org.mule.trans-

port.bpm.BPMS
interface 348

XPath evaluation 352
bridge component 15, 142

explicit 143
implicit 23, 143

bridge-component 143
Business Process Execution

Language (BPEL) 354
business process management

(BPM) 101, 343
byte transformers 115
byte-array-to-hex-string-

transformer 117
byte-array-to-object-

transformer 115
byte-array-to-serializable-

transformer 117
byte-array-to-string-

transformer 13, 117

C

Cacti. See monitoring
Callable 151, 308, 312
callable-entry-point-resolver 153
canonical data model 162

logging 262
catch-all strategy

custom 84
error handling 84
logging 84

Central Authentication Service
(CAS) 218

chaining-router 56
Chainsaw 264

console 265
chainsaw-notifications 264
client/server 179
Clood, Inc. 40

account provisioning 343, 360
accounting data 54
analysis of monitoring data 92

async-reply routing 105
auditing 262, 264
backup provider 61–62
BPM 343
business intelligence tool

integration 47
caching interceptor 321
canonical data models 333
custom logging levels 213
custom Velocity

transformer 131
data coupling 239
data warehousing 357
duplicate order messages 95
email generation 131, 146,

155, 315
exception-based routing 204
FTP 72
HTML dashboard 268
IDE templates 284
IMAP 45
IMAP server 52
initialization interceptor 324
JBossTS 243
JMS backup-report topic 65
JMS provider 95
LDAP 278
managing their message-

enricher project 275
MD5 file hashing 158, 160,

301, 315, 322
message-enricher 278
monitoring data 235
monitoring database 73, 83
moving data from an HTTP

inbound-endpoint to a JMS
topic 219

multicasting-router 99
OpenLDAP 223
order processing 333
order provisioning 95, 371
order status via synchronous

JMS 68
partner reporting 206
performance bottlenecks 294
periodic data monitoring 267
presentation 38
publication application.

See publication application
publishing of analytics

data 243
Quartz 343
real-time order statistics 96
relational databases 235
routing 83
security concerns 219

selective-consumer router 86
sending IMAP messages to a

database 45
transactionally receiving bill-

ing data 244
transactions with outbound

endpoints 239
use of error channels 98
use of the HTTP transport 61
use of the static-recipient-list-

router 98
use of transactions 235
using a RetryPolicy 209
VM farms 104
VM transport 79
wire-tap-router 96
XA transaction overhead 357
XA transactions 249
XML payload 87

clustering 186
session state 185

com.clood.monitoring.URL-
AlertComponent 46

com.clood.Order 87
command line 273

profile parameter 373
comma-separated value

(CSV) 61, 75, 333
Common Retry Policies 210

ForeverRetryPolicyTemplate
211

competing consumers 70
component 15, 58

binding 160, 331
method 161

bridge 23
See also bridge component

bypassing with a router 91
configuring 156

type mismatch 156
controlling message process-

ing. See message processing
creation cost 158
custom 151, 328
echo. See echo component
entry point resolution 93
implementing Callable 151
in service 140
include-entry-point 69
initialize. See lifecycle
injecting Mule objects 159,

269
injecting Mule service 160
instantiation policy 151
interceptor 319
log. See log component

393
component (continued)
message enrichment 91, 237
method called. See entry point
method-entry-point-

resolver 69
Mule objects 156

prototype 156
singleton 156

null. See null component
pooled 158
reflection message

builder 145
response 140
REST service. See SOAP
role 141
SOAP wrapper. See SOAP
Spring beans 156

re-using 151, 157, 174
spring-object 238
stateless 157
thread-safety 157–158

Component (interface) 152
compression transformers 117

compressing 117
uncompressing 118

configuration
builder 22, 44
custom elements 27
data types 30
default values 30
enumerated values 30
environment dependent 34
families of elements 26
Groovy 37
modularity 34

advantages 34
importing files 36
independent files 34
inheritance 35
mixed format 36

names and references 31
properties 30
reuse 34
scripted 22
specific elements 26
Spring elements 28
Spring XML 25

advantages 22
loading 173

testability 34
XML Schema 25

core 25
in JAR files 32
location 32
namespace handler 33
transport 32

connector 12
Transport Service

Descriptor 41
connectors, failed 207
console, reading from

stdin 22
console, writing to

stdout 22
conversational state 188
core concepts

component 15
connector 12
endpoint 12
event 16
filters 14
message 16
model 10
router 14
service 11
summarized 19
transformer 13
transport 12

correlation ID, relevance to
monitoring 262

correlationId, relevance to busi-
ness scenario 93

Cryptix 230
CSV 46
custom-entry-point-resolver 153
customer relationship manage-

ment (CRM) 344, 348
custom-interceptor 325

See also interceptor
custom-protocol 28
custom-transformer 28, 133
CXF endpoint

frontend 60
wsdlLocation property 58

CXF transport
component 58

 See also component
default location 58
generated WSDL 58
hostname 58
inbound endpoint 57
JAXB. See Java Architecture for

XML Binding
JAX-WS

front end 59
See also Java API for XML

Web Services
POJOs 57
simple frontend 58
use of with BPEL engines 354
WSDL 57

D

dashboard. See monitoring
data compression. See compres-

sion transformers
data warehouse 343, 356
database 40, 72
database transport 40
default-connector-exception-

strategy 198–201
default-dispatcher-threading-

profile 370
default-exception-strategy 204
DefaultMessageAdapter 314
DefaultMuleContextFactory 173
DefaultMuleMessage 124, 314
default-receiver-threading-

profile 370
default-service-exception-

strategy 198, 200–201
default-service-threading-

profile 370
default-threading-profile 370
dependency management 274
deployment

as a JCA resource. See Java EE
Connector Architecture

challenges 189
development tools 190
in a Java application 173
in a web application 174
management 189
NetBoot
standalone server 169

deployment topology.
See topology

deserialization. See object
deserialization

development practices 191
discoverable transformer 137
DiscoverableTransformer 137
dispatcher 12

dispatching
(asynchronous) 300

sending (synchronous) 300
See also thread pool

dispatcher-threading-
profile 370

Disposable (interface).
See lifecycle

distributed transactions 187
document exchange 55
domain-specific language

(DSL) 26

394
E

EAI. See enterprise application
integration

echo component 144
echo world 22
echo-component 144
EchoService 145
Eclipse 273, 347
EJB. See Enterprise JavaBeans
email transport 40, 51
encoding 116, 133
endpoint 12

asynchronous messaging 56
global 13
inbound 13
outbound 13
response 13
synchronicity 56
synchronous messaging 56
transformer 13, 112
URI 12, 57

specifying a connector 302
with expression 384

endpoints
address attribute 44
global 43
Mule 1.x style URI 44

enterprise application integra-
tion (EAI) 5, 10

enterprise integration
broker centric 5
challenges 4
message bus 6
patterns 10
spaghetti plate 4

Enterprise Integration Patterns 10
Enterprise JavaBeans (EJB) 177
enterprise service bus (ESB) 6

as a mediator 10
canonical deployment 183
definition 7

enterprise service network
(ESN) 181

entry point 152
discovery 153
exclude methods 154
include methods 154
resolver 152

default set 154
set 152

transformer 153
void methods 153

EntryPointResolver 153
EnvelopeInterceptor. See inter-

ceptor

error channel 77
ESB. See enterprise service bus
ESN. See enterprise service net-

work
evaluator, Groovy 335
event context 16, 311

adapting messages 313
transforming messages 313

event processing. See message
processing

eventual consistency 187
exception 196
exception strategies 11, 197, 202

component 197
configured on a per-model

basis 198
configured on a per-service

basis 198
connector 197
default 197
default-service-exception-

strategy 248
and transaction rollbacks

with JMS 248
transactions and 247
used in conjunction with

routing 202
exception-based routing 202,

205
exception-based-router 207, 209
ExceptionPayload 312
exceptions 199, 203

connector 203
routing 203–204
service 203

exception-type-filter 204
ExhaustingRetryPolicy 208
exhaustion, of component

pool 158
expression evaluation

available evaluators 381
custom evaluator 386

registration 386
framework 381
function

dateStamp 49
uuid 49

header, originalFilename 49
in custom code 385
in endpoint URIs 384
in filters 88, 383
in transformers 120, 384

expression transformer 120,
156, 263

output 121
ExpressionEvaluator 386

expression-filename-parser 49
ExpressionManager 385–386
expression-transformer 120

F

failover 207
fault tolerance. See topology
file connector

autoDelete property 48, 50
fileAge property 48
pollingFrequency property 50

file endpoint
inbound 63, 68
outbound 72
outputPattern 50

File Transfer Protocol 54, 70
file transport 40, 46

expression-filename-parser 48
moving files 48
outbound-endpoint 63

FileAdaptor 49
filename-wildcard-filter 50
files

JSP 49
XML 49

filter 14, 49
boolean evaluation 89
jxpath-filter 87
nesting logical 89
not filter 89
or filter 89
org.mule.api.routing.filter.

Filter 337
payload-type-filter 86
regex-filter 238
regular expression 87
wildcard 87

filtering-router 97
filter-router, payload-type-

filter 97
firewall 62, 64

See also topology
ForeverRetryPolicyTemplate 211
forwarding-router 204
FTP 40
FTP endpoint

inbound 71
outbound 72

function, expression
evaluator 385

Functional Test Case
mocking components 292
testing a component and

transformer 289

395
Functional Test Case (continued)
use of the MuleClient 289,

291
functional testing 294

G

Galaxy 171, 192
Maven 194
NetBoot 193
query language 194
Spring configurations 195

GalaxyApplicationContext 195
GalaxyConfigurationBuilder 194
global endpoint. See endpoint
global property 27
Gnu Privacy Guard (GPG) 230
governance. See Galaxy
GreetingServiceImpl 57

JAX-WS annotated 59
Groovy 22, 174, 328, 332

builders 334
expression evaluator 383
expression transformer 263

gzip-compress-transformer 117
gzip-uncompress-

transformer 118

H

headers. See message properties
hex-string-to-byte-array-

transformer 117
Hibernate 72
high availability. See topology
hot deployment

alternative to 184
lack of 169

HtmlDashboard 269
HTTP

basic authentication 219, 225
chunking 378
methods

GET 61
POST 66

transport 55, 61
polling inbound

endpoint 63
polling-connector 61

http connector configuration 41
HTTP endpoint

accepting XML via POST 62
inbound 66, 69
outbound 61, 63
polling thread model 369

https 229

http-security-filter, securing
HTTP inbound-
endpoints 225

hub-and-spoke 180, 183
HypericHQ 252
Hypertext Transfer Protocol 70

I

IDEA 273
idempotent 185
IMAP 40, 45, 344, 348

transport 45, 51
IMAP connector 51, 53

backupEnabled 53
backupFolder 53
checkFrequency 53
deleteReadMessages 53

imaps 229
inbound endpoint,

introduction 43
Initialisable (interface).

See lifecycle
instant messaging 76

reception 77
integrated development envi-

ronment (IDE) 273
and simplifying XML

authoring 284
creating a Mule configuration

template 284
integration with 273
Mule IDE 285

installing as Eclipse plug-
in 285

running a project 288
SAXParserFactoryImpl and

Xerces 289
starting a new project 287

integration testing 301
integration. See enterprise inte-

gration
interceptor

bridge component 322
component 319
envelope 320
Spring AOP 320
stack 320

defining 321
using 322

Internet Message Access Proto-
col (IMAP) 75

inter-service
communications 162

Invocation (object). See inter-
ceptor

J

JAAS
DefaultLoginModule 224
jaas.conf 224
LoginContext 224
maintaining a static list of user

data 224
jaas-security-filter

JMS header
authentication 227

use with MULE_USER 227
Jabber 76, 203–204
JAR files 274
Java API for XML Web

Services 59
Java application

deployment model 173
Mule context 173
pros and cons 174
Spring parent context 174
starting Mule 173
stopping Mule 173

Java Architecture for XML Bind-
ing (JAXB) 59

Java Authentication and Autho-
rization Service
(JAAS) 220, 224

Java Business Integration
(JBI) 9

Java Cryptographic Extensions
(JCE) 228

Java Development Kit (JDK) 328
Java EE Connector Architecture

(JCA)
asynchronous listener 177
deployment model 177
pros and cons 178
synchronous client 177

Java Management Extension
(JMX) 256

HTTP console 259
JConsole 256

Java Message Service (JMS) 40,
46, 64, 197, 342

1.0.2b 64, 66
1.1 64
as a backbone 184
benefits for application

integration 64
bodyless message 127
brokers 66
BytesMessage 66
consuming messages 126
DUPS_OK_ACKNOWLEDGE

378

396
Java Message Service (JMS)
(continued)

durable subscription 67
header authentication 226
highly available provider 187
MapMessage 66
message types 125–126
ObjectMessage 66
producing messages 125
quality of service (QoS) 184
queue 64, 77
Reply-To 69
selector 68
session 126
StreamMessage 66
temporary queue 69
TextMessage 66–67
threading 369
topic 64
transacting message flows 241
transformers 125

from JMS messages 126
to JMS messages 125
turning off 115

Java runtime environment
(JRE) 224

Java service wrapper. See stand-
alone server

Java Transaction API (JTA) 243,
246

java.net.URI 45
java.util.concurrent, use of

latches in tests 293
java.util.logging 212
javac 274
JavaScript Object Notation 55,

61
javax.mail.Message 46
JAX-WS

@WebMethod annotation 60
@WebService annotation 59

JBI. See Java Business Integration
JBossAS 243
JBossTS 243
jBPM 346

action 348
embedded HSQL data

source 353
GPD 346
Hibernate 353
jPDL 346, 348
MySQL 354

JCA. See Java EE Connector
Architecture

JConsole 256

JDBC 40, 45
datasource 45

JDBC endpoint
and inbound querying 73
inbound 72, 75
outbound 73, 75
query results as a Map 74

JDBC transport 45, 72
JEE application server 243
JMS

broker failure 209
broker unavailable 210
message properties 46

JMS Connector, ActiveMQ 77
JMS endpoint

disableTemporaryReplyTo-
Destinations 70

inbound 68, 77, 84
outbound 65
responseTimeout 69
synchronous 68

JMS transport 40
and account

provisioning 346
filtering 68
filters 68
lack of polling support 358
Maven dependencies 282
periodic consumption off a

queue 358
Transport Service

Descriptor 42
jmsmessage-to-object-

transformer 126
JMX. See Java Management

Extension
jmx-default-config 256, 310
jmx-log4j 262
jmx-mx4j-adaptor 258
jmx-notifications 264
JRuby 328
JSON 150
JSR-223 328

lack of facilities for auto
reloading of scripts 339

See also scripting
JVM, performance

considerations 378

K

Kerberos 218

L

legacy-entry-point-resolver-
set 155

lifecycle
custom adapters 319
interfaces 318
methods 317

Lightweight Directory Access
Protocol (LDAP) 218–219,
221, 223, 348

load balancer 58
See also topology

load sharing 70
log component 145
log4j 197, 212, 262

receiver framework 214
log4j.properties 212
log4j-notifications 264, 322
Logback 213
log-component 145
logging 197

and monitoring 261
Chainsaw console 265
message 144, 262

logging levels 212, 261
changing at runtime 262
performance

considerations 377
logging-catch-all-strategy 98
logging-interceptor. See intercep-

tor
LogService 145

M

management agent profiler 376
management agents 252, 256
marshalling. See object serializa-

tion
Maven

Assembly Plugin 190
Publishing Plugin. See Galaxy

MBean. See Java Management
Extension

MDB. See Message Driven Beans
message 16

adapter 13, 110, 312
attachment 16
attachments 110
bytes payload cache 313
detaching 116
encoding 110, 116
exception payload 16, 312
expression evaluator 384–385

397
message (continued)
immutable 312
original payload 313
parts 16
payload 16, 312

getPayloadAsString() 306
performance

considerations 378
properties. See message prop-

erties
reflection builder 145

message dispatcher. See dis-
patcher

Message Driven Beans
(MDB) 177

message processing 15, 314
arbitrary dispatch 315
controlling 17, 314
performance

considerations 377
response handling 17, 140
standard 17
stopping 314

message properties 46, 110, 118
adding 119
Mule-specific 119
removing 119
renaming 120
transformer 110, 119
transport-specific 119
user-defined 119

message receiver. See receiver
message requester. See requester
message transformer 110
message-properties-

transformer 119
metadata. See message properties
META-INF/services/org/mule/

transport 41
method-entry-point-resolver 153
Microsoft Active Directory 223
model 10

inheritance 35
monitoring

auditing 262
dashboard 268
data 267
graphs 254
JMX 256

MBean names 258
JVM 254, 257
log files 261
Mule's health 252
networking 253
services 257
SNMP 254

Mule 22
API. See API
as a proxy. See topology
client. See Mule client
clustering 185
Community Edition 18
competition 9
context. See Mule context
core concepts 10
development practices 191
distinctive aspects 9
domain-specific language 26
Enterprise Edition 207
Galaxy 192
history 8
installing 18
issue tracking 388
mailing list 388
NetBoot 171
Profiler Pack 373
project 7
remote controlling. See Wrap-

perManager (MBean)
version 1 8
version 2 8
welcome to 19
why the name? 7

Mule client 173, 175
bootstrapping Mule 306
disposing 304, 306
in memory 301
instantiating 301–303,

305–306
module 303
remote dispatcher 302
role in testing 301
usage 302
using transports directly 306

Mule community 387
Mule context 307

how to get ahold of 308
registry 310
starting and disposing 309
statistics 309
system configuration 309

MULE_ properties 119, 262
MuleClient 300

use of send 293
use of sendAsync 291

MuleClientTransactionTestCase
300

MuleConfiguration (class) 309
MuleContextAware 308
MuleContextAware (interface).

See lifecycle

MuleContextNotificationLis-
tener. See notifications

mule-core.jar file 33
MuleEvent 110
MuleEventContext. See event

context
MuleForge 210, 388

connectors 41
MULE_HOME 18, 170
MuleHQ 252
MuleMessage 110, 134, 137,

312
MULE_MESSAGE_ID 46
mule-module-client 300, 303
mule-module-spring-config.jar

file 33
MuleReceiverServlet 176
MuleRESTReceiverServlet 176
MuleServer (class) 308
MuleSource 8, 387
MULE_USER

defining the password encryp-
tion strategy 227

encrypting credentials 227
format with embedded

credentials 226
plaintext passwords 227

MultiConsumerJmsMessage-
Receiver 372

multipurpose internet mail
extensions (MIME) 55

MX4J Http adaptor 259
MySQL 74

N

Nagios 40
NamespaceHandler 33
NetBoot

and Galaxy 171
command line 171, 193
deployment model 171
local cache 172
pros and cons 172

network address translation
(NAT) 58

network load balancer. See topol-
ogy

no-action-transformer 115
no-arguments-entry-point-

resolver 153
notifications

activating 324–325
advanced features 325
agents 264
framework 322

398
notifications (continued)
listener 323

registering 324–325
performance impact 265

null component 147
null-component 147

O

object deserialization
from bytes 115
from xml 124

object serialization
to bytes 116
to xml 124

ObjectStore 186
object-to-byte-array-

transformer 116, 313
object-to-jmsmessage-

transformer 13, 118, 125
object-to-string-transformer 27,

313
object-to-xml-transformer 124

acceptUMOMessage 124
Open Source ESBs in Action 9
OpenLDAP 223, 344
OpenMQ 64
OpenPGP 230
outbound endpoint 43

message properties 46
outbound router

bypassing 314
explicitly calling 315

P

packaging 274
pass-through-router 23, 49
password-encryption-

strategy 220
decoding MULE_USER

values 228
decrypt-transformer 229
encrypting credentials 227
encrypt-transformer 229
message payloads 228
PBEWithMD5AndDES

algorithm 228
payload expression

evaluator 384
payload format transformer 110
payload type transformer 110
performance 372

improving 377
using a profiler 373

benefits 374
management agent 376

PGP module
credential accessor 232
key alias 232
key ring management 232
MuleHeaderCredentials-

Accessor 232
and MULE_USER 232

secret password 232
Unlimited Strength Jurisdic-

tion Policy files 232
ping service 253
Plain Old Java Object

(POJO) 57
plaintext 61
pluggable authentication mod-

ules (PAM) 224
policies. See Galaxy
policy template 208
policyOK 208
PolicyStatus 208
polling-connector 27
pollingHttp 63
pooled component. See compo-

nent
pooling profile 158
pop3s 229
pretty good privacy (PGP) 220
Profiler Pack 373
properties

file 31
global 31
override 31
system 31

property placeholders 30
property-entry-point-

resolver 153
PropertyPlaceholderConfigurer

31
prototype-object 157
proxy. See topology
public key encryption

encryption and signing 230
importance of a robust

PKI 230
motivations 230
use of key pairs 230

publication application 10, 127,
170, 258, 262, 266, 269

configuration files 128
monitoring 253
running 130
server ID 258
used transformers 127

publish-notifications 264
Python 328

Q

quality assurance (QA) 191
Quartz 343, 356

scheduler 267, 357
Quartz transport

cronExpression 357, 359–360
use of a question mark 358
use of asterisks 358

endpoint-polling-job 359
inbound-endpoint 357
job dispatch 360
job endpoint 358
jobName 357
scheduled-dispatch-job 360

R

RandomIntegerGenerator 200–
201, 203

really simple syndication
(RSS) 63

receiver 12
idempotent 185
polling 369
servlet. See servlet transport

receiver. See thread pool
receiver-threading-profile 370
redundancy 70
reflection message builder

component 145
reflection-entry-point-

resolver 153, 156
regex-filter 86
registry 310

looking up objects 311
looking up services 310
Spring application

context 311
storing objects 311

registry. See Galaxy
regular expression 85
remote controlling Mule. See

WrapperManager (MBean)
remote dispatcher

agent 303
security considerations 305
usage 303
wire format 303

XML 304
representational state

transfer 63

399
request processing. See message
processing

RequestContext 312
requester 12

requesting
(synchronous) 300

response
asynchronous 17
none 17
synchronous 17

responseTransformer-refs 113
response-transformers 113, 253,

384
REST 40

JSON response 150
service component 149

rest-service-component 150
retry policy 207

simple 207
retry policy template,

multithreaded 210
retryCounter 208
RETRY_LIMIT 208
RetryPolicy 207
RetryPolicyTemplate 210
RFC-2396 45
Rhino 328
rollbacks 198
router 14, 82

and static-recipient-list-
router 244

async request reply 83
async-reply 104

using VM queues 104
chaining 82
chaining-router 85, 97, 101,

104
ad-hoc service

composition 343
BPM as an alternative 343
use with STDIO

endpoint 101
collection-aggregator-

router 92–93
correlationGroupSize 93
correlationId 93
extension of selective-con-

sumer-router 93
exception-based router 206
filtering-router 86, 97
filtering-xml-message-

splitter 103
filter-router

payload-type-filter 97
forwarding router 91

forwarding-consumer-
router 237
extension of selective-

consumer-router 91
idempotent-receiver-

router 94
canonical banking

examples 94
catch-all-strategy and dupli-

cate IDs 94
exception strategy and

duplicate messages 95
forwarding-catch-all-

strategy 95
ID generation 94
idExpression for idempo-

tent identification 95
simple-text-file-store 95

inbound 14
list-message-splitter-router

dispatch to different
endpoints 103

use with jxpath-filter 102
message collection 92
message-splitter-router 102
multicasting-router 99
outbound 14
pass-through 82
pass-through-router 85, 238
response 14
selective consumer 85
selective-consumer 89–90,

328, 335
selective-consumer-router

87, 97
catch-all-strategy 90
custom script 337
header filter 90
supplying a filter 90
unstructured data 87

static-recipient-list-router 98
use of spring:value

element 99
wire-tap-router 96

billing applications 96
extension of selective-con-

sumer-router 97
message logging 96
Quality of Service 96

xml-message-splitter-router
splitExpression 104

routers
and filters 86
inbound 41
outbound 41
response 41

routing
catch-all strategy 84
component 84
inbound 83
outbound 83, 85, 97

catch-all-strategy 86
selective-consumer-router

jxpath-filter 85
structured data 87

shared logic 85
RoutingNotification. See notifica-

tions
RoutingNotificationListener. See

notifications
Ruby 327
Ruby on Rails 327
RuntimeExpection 208

S

schedulers 45
scheduling 40
schema, cxf-wsdl 57
ScriptConfigurationBuilder 174
scripting 22

component
implemented with

Rhino 328
implementing Callable 340

component-binding java-
interface-binding
element 331–332

externally stored script 329
Groovy custom

transformer 332
inline script 328–329
JSR-223–compliant

engine 329
refreshable scripts 330
script context 329

message variable 329
the engine attribute 331
the file attribute 331
transformer

accessing
MuleEventContext 340

defining globally 333
name attribute 333
org.mule.api.transformer.

Transformer 340
secure copy 70
secure shell (SSH) 70, 344, 348
secure socket layer (SSL) 197,

229
security filter 225

400
security manager
and password encryption

strategy 227
authentication 226
centralized security

mechanisms 220
default security manager 220

password-based
encryption 220

secret key-based
encryption 220

encryption 220
LDAP provider 220
manager, delegation 221
MULE_USER 226
org.mule.api.security.Security

Manager 220
referencing jaas.conf 224
Spring Security 220
swapping out delegate

references 226
security provider,

org.mule.api.security.
SecurityProvide 220

security-filter, controlling access,
authorization and
encryption 225

SEDA. See staged event-driven
architecture

SeededRandomIntegerGener-
ator 201, 203

serializable-to-byte-array-
transformer 117

serialization 64
serialization. See object serializa-

tion
server ID 257
ServerNotification. See notifica-

tions
service 11

composition 160
not yet implemented 147
proxying 160

service component. See compo-
nent

service composition 100
service registry. See Galaxy
service. See thread pool
ServiceAware (interface). See

lifecycle
service-level agreement

(SLA) 190
service-oriented architecture

(SOA) 6
service-overrides 49

servlet container. See web appli-
cation

servlet transport
receiver servlet 176
See also web application

ServletContextListener 175
session 11, 312
Simple Network Management

Protocol (SNMP) 254
Simple Object Access Protocol

(SOAP) 40, 46, 55, 354
message properties 46
wrapper component 148
WS-* 64

SimpleRetryPolicy 208–211
single sign-on (SSO) 218
singleton-object 157, 319
SLA. See service-level agreement
SLF4J 197, 212
Smooks transformer 162

for performance 377
SMTP transport 51

outbound endpoint 53, 55,
355

properties 53
smtps 229
SNMP. See Simple Network Man-

agement Protocol
SOA. See service-oriented archi-

tecture
SOAP connector 55
SOAP transport,

synchronous 68
SOAP. See Simple Object Access

Protocol
SoapUI 58
SocketHubAppender 214
software engineering

and Mule projects 191
performance

considerations 377
Spring

AOP. See interceptor
beans 28
configuration in Galaxy. See

Galaxy
context schema 29
dependency injection 207,

269
elements in configuration 28
external configuration 75
import 29, 36
JDBC datasource 74
JDBC template 72
lang namespace 338
parent context 174

property 29
property placeholder

resolver 31
resource resolver 32
role in Mule 8
scripting

manual population 339
refresh-check-delay 339

scripting namespace 336
spring namespace 338
util schema 29
XML configuration

builder 25
Spring in Action 28
Spring Portfolio 221
Spring Security 219

and OpenLDAP 223
LDAP support 223

{0} evaluation 224
and MULE_USER for user-

name propagation 224
defining the rootDN 223
group-search-base 224
prepending of ROLE_ 224
user-dn-pattern 224

namespaces 221
user-service 222, 226

static map of data 222
spring-object 157
SpringXmlConfigurationBuilder

173
staged event-driven architecture

(SEDA) 16, 363, 365
standalone server

as a service 169
command line 169

profile parameter 373
deployment model 169
directory structure 170
installation 18
passing parameters 169
patching 170
project deployment 170
pros and cons 171
shared libraries 170
shutdown sequence 25
startup sequence 24
stopping 25
wrapper script 25

standard input/output
streams 50

Startable (interface). See life-
cycle

statistics 256, 259, 269, 309
stdio connector

configuration 41

401
STDIO transport 51
inbound endpoint 56

stdio transport 22, 46
dispatcher 44

Stoppable (interface). See life-
cycle

streaming, performance
considerations 378

string expression evaluator 253,
385

string-to-byte-array-
transformer 117–118

Structured Query Language 76

T

Test Compatibility Kit (TCK)
AbstractTransformerTestCase

292
FunctionalTestCase 289, 291
test-component 292

exceptionToThrow
attribute 294

introducing delays in com-
ponent processing 292

returning arbitrary
data 292, 294

simulate exceptions 293
testing 274

Apache Derby 290
GreenMail 290
HSQL 290
integration 301

thread pool 363
asynchronous-

synchronous 367
buffer 364, 369
configuration. See threading

profile
dispatcher 363
exhausted 371
fully asynchronous 365
fully synchronous 366
message processing 365
not handled by Mule 369
polling receiver 369
receiver 363
service 363
synchronous-

asynchronous 366
transactions 365
tuning 371
versus component pools 363
VM transport 368

thread, dedicated to retry
attempts 210

threading profile
configuring 370
exhausted action 371
hierarchy of profiles 370
not configured in Mule 371
service 370
tuning 371

threadingPolicyTemplate 211
Tibco EMS 64
timer-interceptor. See interceptor
topology

client/server 179
clustering 185
ESB 183
ESN 181
fault tolerance 187
high availability 184
hub-and-spoke 180, 183
instance and network

level 178
JMS backbone 184
load balancer 184, 253
proxy 182

transaction 198
action

ALWAYS_BEGIN 237, 241,
245

ALWAYS_JOIN 239, 241,
245

component failures 238
rollback 238

exception strategy
committing transaction 249
commit-transaction

element 249
exception-pattern 249
influencing transactional

behavior 249
log instead of commit 249
rollback 248

JMS rollback 237
multicasting-router

rollback 242
outbound endpoint 239
rollback 314
rollback with JMS 241
timeout with JMS 241

transactions 187, 233
as synchronous

operations 365
atomic database updates 234
atomicity 234
consistency 234
databases 235
durability 234

isolation 234
JMS 237
multiple resource 235
MySQL, requirement for

transactional database
engine 236

necessitated by distributed
data and systems 234

real-world examples 233
rollback 237
rolling back 234
single resource 235

JDBC 235
JMS 235

spanning more than one
resource 242

support for JBossTS 243
XA 242

data sources and JMS and
JDBC 243

HeuristicExceptions 243
JDBC provider support 242
JMS provider support 243
LookupFactory 246
requiring special

drivers 243
rollback 246
specifying JTA location with

JNDI 247
two-phase commit 243
use in an application

container 246
use with Resin JTA 246

transformation, no action 115
transformer 13, 109

and entry point resolver 154
anonymous 112
auto. See auto-transformer
behavior 109
byte. See byte transformers
byte-array-to-object-

transformer 335
compression. See compression

transformers
custom 131, 328, 332

transforming message 134
transforming payload 131

discoverable 137, 313
expression. See expression

transformer
global 111
idempotent 131
inbound 13, 112–113
input type 112
JMS 125

402
transformer (continued)
local 113
no action 43
on endpoint 13, 112
order of precedence 113
outbound 13, 113
properties. See message prop-

erties
response 13, 113, 253, 384
return class 109, 112, 121
round-trip 110, 132
scripting 333, 335
VelocityTransformer 290
versus message adapter 110
XML. See XML transformers

Transformer (interface) 132
transformer-refs 112
transformers 112

byte-array-to-string 63
byte-array-to-string-

transformer 62
file-to-string-transformer 54
object-to-jmsmessage-

transformer 75
string-to-email-transformer 55

transport 12
default transformer 13, 113,

118, 125
performance

considerations 378
Transport Layer Security

(TLS) 229
Transport Service Descriptor

(TSD)
JMS 42
overriding 43
service-overrides element 43

transports
and polling support 358
lack of sophisticated polling

mechanisms 359
tuning. See performance
two-phase commit (2PC) 243

U

Universal Message Object
(UMO) 8, 124

Unix 224
scheduling with cron and

at 356
unmarshalling. See object deseri-

alization
URI. See endpoint
use of spring value element 99

V

Velocity 131, 332
configuration 133
engine 134
template 134, 136

VelocityMessageTransformer
135

VelocityPayloadTransformer
132

vi 273
VM connector, queueEvents

property 78, 80
VM endpoint, inbound 84
VM transport 78

default connector 41
enabling service

decomposition 80
messages implementing

Serializable 81
persisted queues 187
similarity to JMS 79
thread pool 368
use of

FilePersistenceStrategy 81
use of QueuePersistence-

Strategy 81
using in a transaction 242

W

WAR file. See web application
web application

deployment model 174
interacting with Mule 175
pros and cons 176
service URIs 176
starting Mule 175
stopping Mule 175

web services
document exchange 63
Remote Procedure Call 63

Web Services Description Lan-
guage (WSDL) 56

soap address 58
Web Services specifications 64
web.xml. See web application
WebLogic 243
Windows, scheduling with the

Windows Task
Scheduler 356

wire format. See remote dis-
patcher

wiretap 262

wrapper (Java service). See stand-
alone server

wrapper.conf 213
wrapper.logfile.maxfiles 213
wrapper.logfile.maxsize 213
wrapper-component 148
WrapperManager (MBean) 258
WSDL transport

inbound endpoint 56
outbound endpoint 56

X

XA. See distributed transactions
XML

and editing 283
escape sequences 68, 74
schema 55
transformers 122
web services 55

XML configuration. See configu-
ration

XML Schema. See configuration
xml-to-object-transformer 124
xml-wire-format. See remote dis-

patcher
XMPP 76, 204

endpoint
inbound 77
outbound 77

transport 40
xmpps 229
XSL Transformation

(XSLT) 122
XSLT. See XSL Transformation
xsl-transformer 27
xslt-transformer 13, 122

concurrency 123
parameter, configured 123
workers 123

XStream
aliases 124
for message

transformation 124

Y

Yahoo! Messaging 76
YourKit 373

MBean 376

99445 99445 99445

ISBN 13: 978-1-933988-96-2
ISBN 10: 1-933988-96-7

M
ule is a widely used open source enterprise service bus. It is
standards based, provides easy integration with Spring and
JBoss, and fully supports the enterprise messaging patterns

collected by Hohpe and Woolf. You can readily customize Mule
without writing a lot of new code.

Mule in Action covers Mule fundamentals and best practices. It is
a comprehensive tutorial that starts with a quick ESB overview and
then gets Mule to work. It dives into core concepts like sending,
receiving, routing, and transforming data. Next, it gives you a close
look at Mule’s standard components and how to roll out custom
ones. You’ll pick up techniques for testing, performance tuning,
BPM orchestration, and even a touch of Groovy scripting.

Written for developers, architects, and IT managers, the book
requires familiarity with Java but no previous exposure to Mule
or other ESBs.

What’s Inside
Mule deployment, logging, monitoring
Common transports, routers, and transformers
Security, routing, orchestration, and transactions

Both authors are Java EE architects. David Dossot is the project
“despot” of the JCR Transport and has worked with Mule since
2005. John D’Emic is Chief Integration Architect at OpSource Inc.,
where he has used Mule since 2006.

For online access to the authors, code samples, and a free ebook for
owners of this book, go to www.manning.com/MuleinAction

Mule IN ACTION

ENTERPRISE JAVA

David Dossot John D’Emic
Foreword by Ross Mason, Creator of Mule

“A deep, anatomical view of
 Mule ESB.”
 —Ara Abrahamian, Architect,
 Coauthor of Java Open Source
 Programming

“A top-to-bottom example-
 driven guide I haven’t found
 anywhere else.”
 —Ben Hall, Technical Lead, IBBS

“Outstanding examples show
 how to use Mule.”
 —Doug Warren, Soft ware Architect,
 Java Web Services

“Th ese guys know what they are
 talking about!”
 —Fabrice Dewasmes, Java & Open
 Source Department Director,
 Pragma Consult

“Works better than a carrot to
 get the Mule going. Useful
 even for experts.”
 —Jeroen Benckhuijsen, Soft ware
 Architect, Atos Origin

SEE INSERT

	brief contents
	contents
	foreword
	preface
	acknowledgments
	about this book
	about the authors
	Part 1 Core Mule
	Chapter 1 Discovering Mule
	1.1 ESB, the EAI workhorse
	1.2 The Mule project
	1.2.1 History
	1.2.2 Competition

	1.3 Mule’s core concepts
	1.3.1 Model
	1.3.2 Service
	1.3.3 Transports
	1.3.4 Routers
	1.3.5 Components
	1.3.6 Request processing

	1.4 Mule on your machine
	1.5 Summary

	Chapter 2 Configuring Mule
	2.1 First ride
	2.2 The Spring XML configuration
	2.2.1 XML element families
	2.2.2 Configured values
	2.2.3 Schema locations

	2.3 Configuration modularity
	2.3.1 Independent configurations
	2.3.2 Inherited configurations
	2.3.3 Imported configurations
	2.3.4 Heterogeneous configurations

	2.4 Summary

	Chapter 3 Sending and receiving data with Mule
	3.1 Understanding connectors and endpoints
	3.1.1 Configuring connectors
	3.1.2 Configuring endpoints

	3.2 Working with files and directories using the file transport
	3.2.1 Reading and writing files with file endpoints
	3.2.2 Using filters on inbound file endpoints
	3.2.3 Using STDIO endpoints

	3.3 Using email
	3.3.1 Receiving email with the IMAP transport
	3.3.2 Sending mail using the SMTP transport

	3.4 Using web services
	3.4.1 Consuming and exposing SOAP services with the CXF transport
	3.4.2 Sending and receiving data using the HTTP transport

	3.5 Using the JMS transport for asynchronous messaging
	3.5.1 Sending JMS messages with the JMS outbound endpoint
	3.5.2 Receiving JMS messages with the JMS inbound endpoint
	3.5.3 Using selector filters on JMS endpoints
	3.5.4 Using JMS synchronously

	3.6 Receiving and sending files using the FTP transport
	3.6.1 Receiving files with inbound FTP endpoints
	3.6.2 Sending files with outbound FTP endpoints

	3.7 Working with databases
	3.7.1 Using a JDBC inbound endpoint to perform queries
	3.7.2 Using a JDBC outbound endpoint to perform insertions

	3.8 Using the XMPP transport
	3.8.1 Sending Jabber messages on an outbound endpoint
	3.8.2 Receiving Jabber messages on an inbound endpoint

	3.9 The VM transport
	3.9.1 Sending and receiving messages on VM endpoints
	3.9.2 Using persistent queues on VM endpoints

	3.10 Summary

	Chapter 4 Routing data with Mule
	4.1 Working with routers
	4.1.1 Inbound routers
	4.1.2 Outbound routers

	4.2 Using filters with routers
	4.2.1 Filtering by type
	4.2.2 Filtering by textual content
	4.2.3 Filtering with expressions
	4.2.4 Logical filtering

	4.3 Using inbound routers
	4.3.1 Being picky with the selective-consumer router
	4.3.2 Altering message flow with the forwarding-consumer router
	4.3.3 Collecting data with the collection aggregator
	4.3.4 Insuring atomic delivery with the idempotent receiver
	4.3.5 Snooping messages with the wiretap router

	4.4 Outbound routing
	4.4.1 Being picky with the filtering router
	4.4.2 Sending to multiple endpoints with the static recipient list
	4.4.3 Broadcasting messages with the multicasting router
	4.4.4 Service composition with the chaining router
	4.4.5 Chopping up messages with the message splitter
	4.4.6 Using asynchronous-reply routers

	4.5 Summary

	Chapter 5 Transforming data with Mule
	5.1 Working with transformers
	5.2 Configuring transformers
	5.3 Using core transformers
	5.3.1 Dealing with bytes
	5.3.2 Compressing data
	5.3.3 Modifying properties
	5.3.4 Leveraging expression evaluators

	5.4 Using XML transformers
	5.4.1 Transforming format with XSL
	5.4.2 XML object marshalling

	5.5 Using JMS transformers
	5.5.1 Producing JMS messages
	5.5.2 Consuming JMS messages

	5.6 Existing transformers in action
	5.7 Writing custom transformers
	5.7.1 Transforming payloads
	5.7.2 Transforming messages

	5.8 Summary

	Chapter 6 Working with components
	6.1 Massaging messages
	6.1.1 Building bridges
	6.1.2 Echoing and logging data
	6.1.3 Building messages

	6.2 Invoking remote logic
	6.2.1 Feeling good with SOAP
	6.2.2 Taking some REST

	6.3 Executing business logic
	6.3.1 Resolving the entry point
	6.3.2 Configuring the component
	6.3.3 Handling workload with a pool
	6.3.4 Reaching out with composition
	6.3.5 Internal canonical data model

	6.4 Summary

	Part 2 Running Mule
	Chapter 7 Deploying Mule
	7.1 Deployment strategies
	7.1.1 Standalone server
	7.1.2 NetBoot server
	7.1.3 Embedded in a Java application
	7.1.4 Embedded in a web application
	7.1.5 Embedded as a JCA resource

	7.2 Deployment topologies
	7.2.1 Satisfying functional needs
	7.2.2 Dealing with the network
	7.2.3 Designing for high availability
	7.2.4 Shooting for fault tolerance

	7.3 Deployment management
	7.3.1 Using development tools
	7.3.2 Hitchhiking Galaxy

	7.4 Summary

	Chapter 8 Exception handling and logging
	8.1 Exception strategies
	8.1.1 Positioning exception strategies
	8.1.2 Exceptions and routing

	8.2 Using retry policies
	8.2.1 Implementing a retry policy
	8.2.2 Using the SimpleRetryPolicy with JMS
	8.2.3 Starting Mule with failed connectors using the Common Retry Policies

	8.3 Logging with Mule
	8.3.1 Using log4j with Mule
	8.3.2 Using Apache Chainsaw with log4j

	8.4 Summary

	Chapter 9 Securing Mule
	9.1 Demonstrating Mule security
	9.2 Using security managers and understanding security providers
	9.2.1 Using Spring Security
	9.2.2 Using JAAS

	9.3 Securing endpoints with security filters
	9.3.1 Securing an HTTP endpoint with Spring Security
	9.3.2 Performing JMS header authentication with JAAS
	9.3.3 Using password-based payload encryption
	9.3.4 Decrypting message payloads with the PGP SecurityFilter

	9.4 Summary

	Chapter 10 Using transactions with Mule
	10.1 Using transactions with a single resource
	10.1.1 Using JDBC endpoints transactionally
	10.1.2 Using JMS endpoints transactionally

	10.2 Using multiple resource transactions
	10.2.1 Spanning multiple resources with JBossTS
	10.2.2 Using XA transactions in a container

	10.3 Managing transactions with exception strategies
	10.3.1 Handling component exceptions
	10.3.2 Committing transactions with an exception strategy

	10.4 Summary

	Chapter 11 Monitoring with Mule
	11.1 Checking health
	11.1.1 Checking health at network level
	11.1.2 Checking health at system and JVM levels
	11.1.3 Checking health at JVM and Mule levels

	11.2 Tracking activity
	11.2.1 Using log files
	11.2.2 Using notifications
	11.2.3 Periodic data monitoring

	11.3 Building dashboards
	11.4 Summary

	Part 3 Traveling further with Mule
	Chapter 12 Developing and testing with Mule
	12.1 Managing Mule projects with Maven
	12.1.1 Setting up a Maven project
	12.1.2 Using the Mule Maven dependencies
	12.1.3 Simplifying Maven projects with the Mule Maven archetypes

	12.2 Using Mule with an IDE
	12.2.1 XML editing for Mule
	12.2.2 Using Mule’s IDE plug-in

	12.3 Testing with Mule
	12.3.1 Functional testing
	12.3.2 Mocking component behavior
	12.3.3 Load testing with JMeter

	12.4 Summary

	Chapter 13 Using the Mule API
	13.1 Piggybacking the Mule client
	13.1.1 Reaching a local Mule
	13.1.2 Reaching a remote Mule
	13.1.3 Reaching out with transports

	13.2 Exploring the Mule context
	13.2.1 Controlling a Mule instance
	13.2.2 Reading the configuration
	13.2.3 Accessing statistics
	13.2.4 Looking up the registry

	13.3 Digging the Mule event context
	13.3.1 Prospecting messages
	13.3.2 Influencing message processing

	13.4 Keeping abreast with Mule
	13.4.1 Leveraging lifecycle events
	13.4.2 Intercepting messages
	13.4.3 Receiving notifications

	13.5 Summary

	Chapter 14 Scripting with Mule
	14.1 Using Rhino
	14.1.1 Implementing component logic with Rhino
	14.1.2 Using service interface binding in scripts

	14.2 Using Groovy
	14.2.1 Implementing transformers with Groovy
	14.2.2 Using the Groovy evaluator

	14.3 Using Spring
	14.3.1 Implementing custom Mule functionality using Spring
	14.3.2 Auto-reloading scripts

	14.4 Summary

	Chapter 15 Business process management and scheduling with Mule
	15.1 Orchestrating services with Mule
	15.1.1 Introducing jBPM
	15.1.2 Using jBPM with Mule

	15.2 Job scheduling with Mule
	15.2.1 Using Quartz to schedule jobs
	15.2.2 Polling endpoints
	15.2.3 Dispatching jobs

	15.3 Summary

	Chapter 16 Tuning Mule
	16.1 Understanding thread pools
	16.1.1 Synchronicity aspects
	16.1.2 Transport peculiarities
	16.1.3 Configuration options

	16.2 Increasing performance
	16.2.1 Profiler-based investigation
	16.2.2 Performance advice

	16.3 Summary

	Appendix A The expression evaluation framework
	A.1 Standard evaluators
	A.1.1 In filters
	A.1.2 In transformers
	A.1.3 In endpoint URIs
	A.1.4 In custom code

	A.2 Custom evaluators

	Appendix B The Mule community
	B.1 MuleSource.org
	B.2 JIRA
	B.3 Mailing lists
	B.4 MuleForge.org

	index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

