
Securing the
Perimeter

Deploying Identity and Access
Management with Free
Open Source Software
—
Michael Schwartz
Maciej Machulak

www.allitebooks.com

http://www.allitebooks.org

Securing the Perimeter
Deploying Identity and Access
Management with Free Open

Source Software

Michael Schwartz
Maciej Machulak

www.allitebooks.com

http://www.allitebooks.org

Securing the Perimeter: Deploying Identity and Access Management with Free Open
Source Software

ISBN-13 (pbk): 978-1-4842-2600-1 ISBN-13 (electronic): 978-1-4842-2601-8
https://doi.org/10.1007/978-1-4842-2601-8

Library of Congress Control Number: 2018966332

Copyright © 2018 by Michael Schwartz, Maciej Machulak

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Susan McDermott
Development Editor: Laura Berendson
Coordinating Editor: Rita Fernando

Cover designed by eStudioCalamar

Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street,
6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-
sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole member
(owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a
Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit http://www.apress.com/
rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub via the book’s product page, located at www.apress.com/9781484226001. For more
detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

Michael Schwartz
Austin, TX, USA

Maciej Machulak
London, UK

www.allitebooks.com

https://doi.org/10.1007/978-1-4842-2601-8
http://www.allitebooks.org

As Adam Savage from Mythbusters says: “Failure is always
an option!” That’s why this book is dedicated to the vibrant,

tenacious, and global identity community who has been at it for
20 plus years and shows no signs of slowing down.

www.allitebooks.com

http://www.allitebooks.org

v

About the Authors �� xiii

Acknowledgments ���xv

Table of Contents

Chapter 1: Introduction��� 1

Components of an Identity Service ��� 1

Identity Management ��� 2

Identity and Access Management ��� 3

Identity and Access Governance ��� 6

Directory Services ��� 8

Is IAM a Good Place to Start? �� 8

Identity Standards ��� 9

Gluu Server ��� 10

Why Free Open Source? �� 11

Where to Start? ��� 13

Conclusion �� 16

Chapter 2: LDAP �� 17

History ��� 17

Why Use LDAP Today? ��� 19

Basics ��� 20

Entries, DNs, and RDNs�� 21

Namespace �� 22

Schema�� 23

Filters �� 24

LDIF ��� 26

www.allitebooks.com

http://www.allitebooks.org

vi

LDAP Configuration ��� 27

Indexing ��� 27

LDAP Security �� 29

Managing Data �� 32

Command-Line Tools ��� 32

GUI Tools �� 36

SDKs �� 42

Operational Considerations ��� 42

Replication ��� 43

Benchmark �� 43

Backup/Restore ��� 45

Monitoring ��� 45

Synchronization �� 46

Sets and Hashing �� 47

Manually Synchronizing Data�� 50

Gluu Server Cache Refresh ��� 54

LSC—LDAP Synchronization Connector ��� 55

LDAP Proxy �� 55

Conclusion �� 57

Chapter 3: SAML ��� 59

Assertions, Bindings, Protocols, and Profiles �� 60

Assertions �� 61

Protocols �� 63

Protocol Bindings �� 66

Profiles �� 70

SAML Metadata ��� 75

Open Source SAML Software �� 77

Gluu Server Shibboleth Identity Provider Overview ��� 77

Shibboleth Service Provider Example �� 78

Table of ConTenTs

vii

simpleSAMLphp Service Provider Example �� 89

Python-SAML �� 91

Inbound SAML ��� 97

Conclusion �� 103

Chapter 4: OAuth��� 105

Scopes �� 106

OAuth Roles ��� 108

Authorization Server �� 108

Resource Server �� 111

Client ��� 111

Tokens ��� 112

Bearer Tokens �� 113

JSON Web Token (JWT) �� 114

Registration ��� 116

Grants �� 119

Authorization Code Grant ��� 120

Implicit Grant ��� 122

Resource Owner Password Credential Grant ��� 124

Client Credential Grant �� 124

Token Introspection ��� 125

OAuth Client Example: Calling a Google API �� 126

Obtaining Client Credentials �� 127

Calling the Google API�� 131

Client Credential Grant Example with the Gluu Server �� 135

Configuring the Gluu Server �� 135

OAuth Glossary and IANA Registry Terms ��� 139

Conclusion �� 148

References �� 148

Table of ConTenTs

viii

Chapter 5: OpenID Connect ��� 151

OpenID Connect Overview��� 153

OpenID Connect Authorization Server Endpoints ��� 155

id_token��� 157

OpenID Authentication on the Fly �� 158

OpenID Connect Discovery �� 160

Client Registration ��� 163

Authentication/Authorization ��� 165

Response Types ��� 166

Scopes ��� 167

Authorization Code Flow �� 167

Implicit Flow �� 172

Hybrid Flow ��� 174

Request Object �� 176

Userinfo Endpoint �� 177

Logout �� 179

Pairwise Identifiers �� 180

ACR/AMR Parameters �� 181

The Gluu Server OpenID Connect Provider �� 182

Developing OpenID Connect Client Code��� 184

Easy JavaScript Client ��� 184

Apache httpd Module �� 186

oxAuth RP �� 192

AppAuth Mobile Applications ��� 193

oxd Client Middleware Service �� 195

OpenID Connect Glossary and IANA Registry Terms ��� 197

Conclusion �� 202

References �� 202

Table of ConTenTs

ix

Chapter 6: Proxy ��� 205

Load Balancing ��� 207

Access Control and Security ��� 208

Rate Limiting ��� 208

Caching and Compression �� 209

Telemetry �� 210

Monetization ��� 210

API vs Web Proxy ��� 211

Open Source Web Proxies ��� 212

Apache httpd ��� 212

mod_auth_openidc�� 214

Nginx ��� 215

Kong �� 222

Istio �� 228

Conclusion �� 229

Chapter 7: Strong Authentication ��� 231

One-Time Passwords (OTPs) ��� 233

HOTP and TOTP �� 235

HOTP �� 235

TOTP �� 237

Mutual SSL/TLS ��� 241

Fast Identity Online (FIDO)��� 246

FIDO Universal Authentication Framework (UAF)��� 249

FIDO Universal Second Factor (U2F) �� 252

W3C Web Authentication and CTAP ��� 253

Setting Up 2FA with the Gluu Server ��� 256

FIDO Support in the Gluu Server �� 262

Table of ConTenTs

x

Other Ways to Strengthens Authentication with the Gluu Server �� 263

Conclusion �� 263

References �� 264

Chapter 8: User-Managed Access ��� 267

UMA Grant ��� 273

UMA RPT Requests with Interactive Claims Gathering �� 273

UMA RPT Requests with a Pushed Claim Token �� 276

RPT Request Options ��� 277

Client Credentials �� 277

UMA Federated Authorization ��� 278

Protection API �� 280

Resource Registration ��� 280

Permission Endpoint �� 281

Token Introspection ��� 284

UMA Authorization Server Software �� 285

Managing Scopes �� 285

Managing Authorization Policies ��� 287

Interactive Claims Gathering Workflows �� 289

UMA Resource Server Software �� 290

Gluu Gateway as UMA Resource Server �� 290

UMA Client Software ��� 293

Conclusion �� 299

Chapter 9: Identity Management �� 301

MidPoint �� 302

Identity Provisioning and Synchronization �� 303

Role Management ��� 304

Organizational Structure �� 304

Approval Processes ��� 305

Midpoint Delegated Application Security Model �� 306

Auditing ��� 306

Table of ConTenTs

xi

Access Certification ��� 306

Policy Rules ��� 307

User Interface (UI) �� 308

Services and Integration ��� 308

Other MidPoint Features �� 309

Get Started with MidPoint ��� 309

Apache Syncope ��� 309

Syncope Architecture �� 310

Syncope Provisioning �� 312

Syncope Extensions��� 313

Syncope Installation �� 314

Wren:IDM �� 314

Wren:IDM Quick Start �� 316

System Overview ��� 317

Wren:IDM Implementation Basics ��� 319

Wren:IDM Pre-Defined Types ��� 321

Wren:IDM Processes�� 324

Example: Make Your Own Self-Service GUI ��� 325

Example: Consent Governance �� 327

Example: Connector Configuration with Object Mapping Transformations�������������������������� 328

When Is Wren:IDM Suitable? ��� 331

Rolling Out Wren:IDM to Production �� 332

Gluu Casa �� 333

Architecture ��� 333

2FA Credential Management ��� 333

Consent Management�� 334

Social Login Account Management ��� 335

Developer Portal �� 335

Getting Started �� 335

Conclusion �� 336

Table of ConTenTs

xii

Chapter 10: Multiparty Federation ��� 337

Federation Privacy Considerations �� 345

Federation Policy��� 346

Data Protection Code of Conduct �� 347

Network Use Agreement ��� 347

Federation Actors �� 347

Joining a Federation ��� 348

Federation Trust Models �� 349

SAML Federations via Metadata Aggregate �� 349

Trustmarks �� 351

OpenID Federations ��� 354

OTTO Federation �� 355

OTTO API �� 356

OTTO Vocabulary �� 357

Retrieving Datafrom OTTO Federations ��� 359

OTTO Next �� 360

Jagger ��� 360

Federation Registry ��� 361

OTTO-Node/Fides �� 362

Conclusion �� 363

 Index ��� 365

Table of ConTenTs

xiii

About the Authors

Michael Schwartz is a domain expert on digital

authentication and centralized application security policy

management. Since starting an ISP in 1995, he has been

directly involved in network and application security. In

2009, he founded Gluu Inc, a security software development

company that has created an IAM distribution based on free

open source components. In addition to his participation

in several identity standards, Mike is the co-chair of the

OTTO working group at the Kantara Initiative, which is

developing new standards for identity federation. Mike has worked with organizations in

many sectors, including finance, government, education, and enterprise. A graduate of

Washington University in St. Louis, he currently resides with his family in Austin, TX.

Dr. Maciej Machulak is an expert in security, privacy, and

trust in the Cloud. He works on digital identity and security

at HSBC. In the past, Maciej worked for various companies

in the identity and access management space. He also

founded and became the CEO of Cloud Identity Limited

(acquired in 2015), a company that developed innovative

security software based on proprietary and open source

components. Maciej serves as the Vice-Chair of the

User-Managed Access (UMA) Work Group at Kantara

Initiative and is one of the authors of the award-winning UMA protocol and of two

OAuth-related specifications used in Open Banking. In June 2015, Maciej was awarded

the prestigious MIT Technology Review Innovators Under 35 Poland award for his work

on privacy and security. Maciej is a PhD graduate from Newcastle University. Outside of

work, he enjoys various outdoor activities and sports with his family.

xv

Acknowledgments

Thanks are in order! First of all, to Andee, Marzena, Zia, Brant, and Maya, for supporting

the stressed out authors and tolerating our occasional absence! Thanks to Rita Fernando

and Susan McDermott for supporting this project at Apress. Thanks to William Lowe,

Sam Morris, Meghna Joshi, Chris Blanton, Michal Kepkowski, and the rest of the Gluu

team for their contributions and support! Thanks to Thijs Schreijer from Kong for

his work on Chapter 6; Radovan Semancik from Evolveum for the Midpoint content;

Francesco Chicchiriccò from Tirasa for his content on Syncope; Martin Čížek from

Orchitech Solutions for his contribution on Wren:IDM; Quanah Gibson-Mount for his

help on OpenLDAP; Sixto Pablo Martín García of OneLogin for his help on PySAML and

all his great federation software; Eve Maler from ForgeRock for her review of Chapter 8;

Justin Richer from Bespoke Engineering for his sequence diagram on stepped up

authentication; Nat Sakimura, from the Nomura Research Institute, for his great diagram

on OpenID Connect security levels; Matt Moyer and John Wandelt from the Georgia

Tech Research Institute for their contribution to this book and to the community on

federation trustmarks; Nick Roy for his contribution to Chapter 10; Tom Smedinghoff for

his insightful slides from Identiverse; Rainer Hoerbe for his thoughtful presentation at

EIC that was included in Chapter 10; Rajiv Dholakia from Nok Nok for sharing his genius

on FIDO; Igor Farinic from Evolveum for his support; Anil John for agreeing to share the

results of the ERASMUS pilot; Mooketsi Regoeng and Roberts Lapes for their comments;

to Kaliya, Doc, and Phil, who have tirelessly organized the Internet Identity Workshop

for more than a decade; and last, but certainly not least, Colin Walis from the Kantara

Initiative for his tireless efforts as executive director, and his support of this project. We

are leaving out countless other people and organizations who had a less direct impact,

but without whom this book could not have happened.

1
© Michael Schwartz, Maciej Machulak 2018
M. Schwartz and M. Machulak, Securing the Perimeter, https://doi.org/10.1007/978-1-4842-2601-8_1

CHAPTER 1

Introduction
The goal of this book is to demystify Identity and Access Management (IAM). There are

thousands of professionals around the world helping companies with IAM, but that’s

not enough. In this book we aim to increase the supply of IAM engineers by sharing

some of the techniques and strategies developed over the last 20 years in a wide range of

industries. Whether you are starting a small organization or deploying an IAM solution

for a huge enterprise, the techniques presented in this book should help you deploy a

solution based on Free Open Source Software (FOSS) to meet your needs. Nothing in this

book is hard, and if you put the time into it, you can be an IAM professional too!

Each chapter of this book will provide both theory and some pointers to software.

There is a lot of great Free Open Source Software (FOSS) for identity. This book will cover

client and server software, web software and mobile software, libraries, and plugins. It is

not a comprehensive survey of FOSS identity tools—there are too many to cover in one

book! But hopefully, after finishing each chapter, you’ll be in a good place to start your

research.

 Components of an Identity Service
If you’re going to build a world-class identity service, you need to understand the

components. It can be confusing because many identity vendors try to position

themselves as a one-stop-shop for identity, and in the process blur the lines between

what are distinct identity services. Figure 1-1 can help you visualize an identity

infrastructure.

2

 Identity Management
Let’s start with Identity Management (IDM). This term is sometimes used to summarize

the identity service holistically. However, professionals in the industry mean only

one thing when they use the term IDM: managing how systems are kept in sync when

information about a person changes. One of the most important IDM use cases is

“provisioning” and “de-provisioning”. Identity management events happen when a

person’s record is created, updated, or deleted. For example, when a person is hired

by an organization, this may trigger a workflow where accounts are created in several

systems, approvals may be needed, and equipment may be issued. Conversely, when a

person leaves the organization, accounts need to be removed or inactivated.

When a person’s information is updated, this may also trigger a workflow. For

example, if a person’s role in the organization changes, access to systems may be granted

or revoked. Changing your password is also an example of an update. For this reason,

many IDM systems include a self-service password reset website as part of their solution.

Figure 1-1. Identity service components

Chapter 1 IntroduCtIon

3

IAM is a “consumer” of information managed by the IDM system—meaning the IAM

system expects data about a person to be already present and accurate. It’s garbage in,

garbage out. The access management is only as good as the quality of the underlying

data. If you fire an employee, but never take him out of the database, it doesn’t matter

what kind of fancy authentication technology you use!

The lines between IAM and IDM can get blurred. You can have IAM features in your

IDM. For example, two-factor authentication account recovery—you need to be strongly

authenticated before you can reset a strong credential. You can also have IDM features in

your IAM. For example, social login, where users are added on-the-fly the first time they

are authenticated. Another example is forcing people to reset their passwords during a

login flow.

Organizations have two options for IDM: buy or build. Many websites implement

simple registration and account management—adding, editing, and removing records

about people is handled by custom code. In larger organizations, where there are more

systems and the business rules are more complex, an IDM platform may be more

productive. There is some excellent FOSS IDM software out there. Although this book is

primarily about IAM, IDM is covered at a very high level in Chapter 9.

 Identity and Access Management
What is Identity and Access Management? A little history will help give you some

perspective.

The original Internet IAM infrastructure was based on the RADIUS protocol. If you

are old enough, think back to the days of modems (or if you’re not, think of a VPN or

WiFi connection, which still use RADIUS). These systems have three parts: (1) a RADIUS

client requesting access to the network, (2) a network device that has modem ports

or some other network resource, and (3) the RADIUS Server that provides the AAA—

authentication, authorization, and accounting.

RADIUS was developed by Livingston Enterprises Inc. (now part of Alcatel Lucent) to

control access to “terminal servers”—network devices that had a high concentration of

modems. It later became an IETF standard. Today, the last A in “Triple-A” (“accounting”)

has dropped off from most modern IAM systems. In the old days, you might only have

a certain number of hours of dial-up, and the RADIUS Servers would interface to the

Chapter 1 IntroduCtIon

4

billing system of an Internet Service Provider (“ISP”). After authenticating the person,

the RADIUS Server would authorize, for example, to allow either one or two channels,

depending on which type of account the person had purchased. This is a simple example

of the authorization capabilities of RADIUS.

Fast forward a few years. The next phase of Internet IAM started to take place when

the World Wide Web achieved critical scale. Believe it or not, a ubiquitous web was not

a forgone conclusion. By 1998 a company called Netegrity (purchased by Computer

 Associates) launched a product called SiteMinder. This was a new kind of AA server

designed to control access to websites instead of network devices. The design was similar

to RADIUS. There were still three parts: (1) a person using a web browser (the client), (2)

a web server with the SiteMinder Agent installed, and (3) the central SiteMinder Policy

Server. In the Policy Server you could make policies about which people could access

which web servers. A new advantage of web AA platforms like SiteMinder was that you

could achieve Single Sign-On (SSO). In other words, the person could authenticate once

and access multiple websites in the same domain.

More generically, this pattern is commonly known as the “PDP-PEP Pattern.” And

there are a few other standard parts. Consider Figure 1-2.

Figure 1-2. PDP-PEP pattern

Chapter 1 IntroduCtIon

5

Here is a brief summary of the components:

• PDP “Policy Decision Point”—Knows the policies which people,

using which clients are allowed to access what resources. In a way, it’s

the brain of the system.

• PEP “Policy Enforcement Point”—Is responsible for querying the

PDP to find out if access should be granted. There are usually many

PEPs. For example, there could be hundreds of web servers in an

organization, each relying on the PDP to grant access.

• PAP “Policy Administration Point”—This is some kind of interface

that enables an administrator to define the policies in the PDP. It

could be a website or command-line interface. Without a PAP,

administrators are forced to manage the policy data in a database, or

by configuring files.

• PIP—Policy and user information is persisted somewhere, normally

in a database like an LDAP Server.

Let’s go through an imaginary flow based on Figure 1-2. In step 0, the administrator

for this organization creates the policies about who can access which websites. (It’s

step 0, because it happens before the person even tries to get to the website.) In step 1,

a person using a web browser clicks on a link for “Site 1”. In step 2, an HTTP request

is sent from the browser to the web server. The web server either acts as the PEP or

contains other software that intercepts the request and authorizes it. In step 3, the PEP

asks the PDP if it should respond to the request. In order to evaluate the request, the

PDP may need to know “who is this person,” and thus the process of authentication may

ensue. This brings us to step 4—in order to authenticate the person, the PDP may need

to validate a person’s credentials, such as with a username and password. This usually

requires a query to a database, or the PIP. Sometimes the PDP may return information

about the person to the PEP. This is also gathered from the PIP. If the person tries to

navigate to Site 2, in authentication may not need to occur if the PDP can recognize the

web session. In this case, the evaluation of policies still occurs—this website might have

different requirements for access. But the user experience is improved.

Chapter 1 IntroduCtIon

6

So now that you know the history, what does an IAM system look like today?

While the protocols and technology have changed, the basic pattern remains the

same. Of course, older proprietary solutions such as SiteMinder have been replaced

with open standards for web access management. These open standards leverage

APIs for IAM. In the early 2000s, XML/SOAP APIs like SAML and XACML were

introduced. This book will take a close look at SAML, which is still widely in use

today. With the introduction of the iPhone in 2007, a trend toward JSON/REST APIs

gained even more momentum—and this carried over to IAM APIs. New protocols

based on OAuth (which are RESTful, if not one hundred percent REST) currently

have the most momentum.

 Identity and Access Governance
Identity and Access Governance (IAG) is the process of decision making and the process

by which decisions are implemented (or not implemented). Identity governance is not

entirely a technical challenge. It is a combination of systems, rules, and procedures that

are defined between an individual and an organization regarding the entitlement, use,

and protection of personal information in order to authenticate individual identities

and provide authorizations and privileges within or across systems and enterprise

boundaries.

A governance-based approach answers three important questions: (1) Who does?

(2) Who should? and (3) Who did?. “Who does?” addresses reality: you need to have an

inventory of the security process in your organization and compliance practices that are

in place. “Who should?” is the process of mapping roles to resources, setting policies,

and affecting automation to efficiently affect these decisions. “Who did?” requires

monitoring and audit and involves activity collection, review, and alerting. Consider the

diagram in Figure 1-3.

Chapter 1 IntroduCtIon

7

IAG encompasses the totality of the relationship between the organization and all

the digital resources of the company. You can think of the IAG system as the brain, while

the IDM and IAM system are the body. Simply put, in IAM, we assume you already know

what policies you want to implement! In IDM, we assume you already know which users

you want to push to what systems.

Governance happens whether or not you have an IAG platform. In order to respond

quickly, governance tools frequently provide convenient graphical user interfaces

to increase productivity and to reduce incident response times. There are few open

source governance tools. Evolveum Midpoint, introduced briefly in Chapter 9, has some

governance features. It’s a new area of development, with commercial software solutions

arising within the last eight to ten years, and few open standards to implement.

Figure 1-3. User-centric approach to security

Chapter 1 IntroduCtIon

8

 Directory Services
The substrate of IAM is data; all that data about people and their privileges has to

be persisted and retrieved. Technically, any database will do. And in fact, different

solutions use different databases to solve specific requirements. However, many access

management solutions use the Lightweight Directory Access Protocol (LDAP) to front-

end identity systems.

Historically, LDAP databases were faster at retrieving simple data than relational

database management systems (RDBMS). This may or may not be true anymore—

properly indexed, many databases could be made fast enough. LDAP also has strong

data replication features, which is important for large-scale identity systems. And finally,

many LDAP implementations are able to enforce fine-grained access to the data—

defining policies in a tree structure is easier because you can make rules about all data

that resides “below” a certain node in the tree. Many people think of LDAP as being fast

to read and slow to write. This is not always true anymore. Many LDAP Servers have

write performance on par with other database technologies.

No matter what persistence strategy you are using for the directory service, it’s

a critical part of the identity platform. Configured incorrectly, it will inhibit all three

 components we have discussed so far. Also, if your directory service is really big—

millions, tens of millions, hundreds of millions—you really need to think about the

persistence layer. You should always benchmark performance with requirements similar

than what you expect. One of the black arts of LDAP is optimization for a certain data or

transaction profile.

 Is IAM a Good Place to Start?
Now that you know the various pieces that comprise an identity platform, you may be

wondering where to begin. Conventional wisdom is that you should start with IDM and

IAG. This book goes against the grain and suggests IAM and directory services should

be your initial focus. IDM and IAG tend to be long projects that involve business and

technology. Understanding processes and workflows and negotiating changes to how

the business operates takes time. By contrast, implementing an IAM platform is a shorter

project. Doesn’t it make sense to get the shorter project underway first? Furthermore,

by delaying the IAM deployment, applications may not know about important security

requirements. For example, perhaps a content management system does not support

SAML or OpenID Connect, which will become important requirements after you

Chapter 1 IntroduCtIon

9

implement an IAM. Not supporting these open standards may be a reason to eliminate

this CRM from the pool of candidates. But if you haven’t started your IAM project, you

will not know this. It won’t hurt to have the IAM in place when you discuss IDM and IAG

with your organization.

 Identity Standards
Identity services have to play nice with a diverse IT infrastructure. For this reason, open

standards for identity have become increasingly important. There are several standards

bodies in the identity ecosystem. The ones this book will focus on are the IETF, OASIS,

Kantara, and the OpenID Foundation. However, many identity standards are built on

standards governed by other standards bodies. For example, X.509, a standard for digital

certificates, was developed by the ITU.

There are two types of standards: “build it and they will come” standards, and “let’s

work together so we don’t all do something different” standards. The most successful

standards typically fall into the latter category, but in the identity space, without some of

the former, some of the latter would not exist. This book will cover old and new identity

standards, in order of appearance in this book: LDAP, SAML, OAuth, OpenID Connect,

and UMA.

LDAP is the oldest identity standard. Completed in the ’90s, it has been the core

competency of identity experts across the globe since that time. The standard includes

a communication protocol between clients (who want information) and servers (who

hold information). It also includes standards about the format of data, how data can be

serialized in a text format easy for humans to read and write (called LDIF), and other

conventions that improve interoperability between the clients and servers of various

implementations.

SAML is one of the most important web-based federated identity standards. It’s the

most widely supported standard by SaaS providers who want to accept credentials from

large enterprise customers. It uses XML as the data format, which has become somewhat

problematic, as parsing XML documents has been fraught with risk (there are a lot

of places you can go wrong). Like most other federated identity standards, it is based

on redirect a person’s browser to a website maintained by their home organization.

Assuming the website is trusted (and how that occurs was quite innovative), the home

organization then returns information about the person to the original website. It’s quite

a big standard, and this book will cover only its most widely used features.

Chapter 1 IntroduCtIon

10

OAuth 2.0 is still under active development. It uses JSON as the data format, and

RESTful APIs to enable a person (or organization) to authorize access to resources.

Loosely based on a previous protocol by Facebook and the experiences of Microsoft and

Google, it was initially hashed out at the Internet Identity Workshop in Mountain View,

California. OAuth is a delegated authorization protocol, not an authentication protocol.

You’ve used OAuth if you’re used Google login at a third-party site and approved the

release of information.

OpenID Connect is the most prevalent profile of OAuth. In this protocol, you can

authorize the release of information about yourself to a website or mobile application.

The previously-mentioned Google login example is actually OpenID Connect. Google

has no idea if it should release information about you to this website. Only you

know if you want that, so why not just ask you? OpenID Connect is a collaboration

of Google, Microsoft, and other large companies and a few smaller contributors.

Google authentication and Microsoft Azure authentication is OpenID Connect. Many

organizations are adopting the standard. Although similar in purpose to SAML, it offers a

more modern API design and better support for mobile device authentication.

The User Managed Protocol (UMA) is another profile of OAuth. It offers a flexible

protocol to enable three parties to collaborate on security: the Resource Server (which

publishes the APIs), the Authorization Server (which issues tokens that grant access

to APIs), and the Client (which is the website or mobile calling the API, sometimes

on behalf of a person). UMA also defines a protocol to enable the Resource Server to

register its protected URLs with the Authorization Server. Using UMA, organizations can

implement a PEP/PDP access management infrastructure.

 Gluu Server
At the center of our IAM narrative is the Gluu Server, which includes free open source

identity components, integrated together in several easy to install and configure

distributions. Gluu’s founder is Mike Schwartz, one of the authors of this book. The Gluu

Server includes a SAML IDP, an OAuth Authorization Server (supporting also OpenID

and UMA), a component to handle social login, an LDAP Server, and an administrative

web interface.

Gluu is committed to keeping the Gluu Server free. That means the code is available

on GitHub, the binary packages are published for Linux, Docker, and Kubernetes, the

documentation is available, and your questions will be answered on the community

support forums.

Chapter 1 IntroduCtIon

11

The goal of the Gluu Server is to be the best free open source IAM platform and to

have the lowest total cost of operation (TCO). This has been done by incorporating good

existing open source components where they exist, and by writing software to fill in the

gaps. By not writing 100% of the platform, Gluu has been able to deliver one of the most

innovative platforms on the market.

 Why Free Open Source?
Why base your organization’s IAM infrastructure on free open source software?

The cost of commercial IAM software is prohibitive to many organizations. Many of

you reading this book are looking for lower cost alternatives. There is a saying that FOSS

is only free if you don’t value your time, since it sometimes requires more time and effort

to implement than commercial alternatives. But even if nothing is truly “free,” FOSS is

less expensive. Saving money is always good, right?

But why should you use FOSS if cost is not an issue? IAM systems are mission-

critical, not only to the security of an organization, but also to the availability of its digital

services. Most organizations are happy to pay money for the best technology if it gives

them a competitive advantage or mitigates risk.

And interestingly, here’s where the reasons for FOSS get even more compelling.

Jim Whitehurst, CEO of Red Hat, has asserted that FOSS is the best development

methodology—that it results in the best available software. Research in 2014 showed that

open source software had 0.59 defects per 1,000 lines of code, while commercial code

had 0.72!1 But FOSS software has also proven to be very innovative—with fast release

cycles.

FOSS has been particularly successful at implementing Internet standard protocols.

As of July 2018, more than 62% of the top million busiest sites ran the Apache or Nginx

web server.2 The services we enjoy from Google, Apple, Dropbox, and many software as a

service (SaaS) companies could not exist without FOSS. This is even more true when you

consider that most of these services are running on the Linux operating system.

1 Steven J. Vaughan-Nichols, “Coverity finds open source software quality better
than proprietary code,” ZDNet, April 16, 2014, https://www.zdnet.com/article/
coverity-finds-open-source-software-quality-better-than-proprietary-code/.

2 Netcraft, “July 2018 Web Server Survey,” July 19, 2018, Netcraft, https://news.netcraft.com/
archives/2018/07/19/july-2018-web-server-survey.html.

Chapter 1 IntroduCtIon

https://www.zdnet.com/article/coverity-finds-open-source-software-quality-better-than-proprietary-code/
https://www.zdnet.com/article/coverity-finds-open-source-software-quality-better-than-proprietary-code/
https://news.netcraft.com/archives/2018/07/19/july-2018-web-server-survey.html
https://news.netcraft.com/archives/2018/07/19/july-2018-web-server-survey.html

12

Another reason to use FOSS is because there are more people who can use the

software. It is easier for beginners to get hands-on experience with FOSS, which

translates to more people getting trained. This means organizations can find more

candidates, whether recruiting an initial team or replacing members of an existing team.

Publicly searchable support is another reason many prefer FOSS. Would you rather

Google a question or open a support ticket with a vendor? FOSS communities offer an

alternative to support from a vendor. And as a last resort, you can always look at the

code. Developers are used to this process and are frustrated when commercial support is

the only option, which frequently leads to less content.

If you pay a lot for one of the many expensive commercial offerings, won’t that

save your job if something goes wrong? You can say you advised the purchase of

the best software the market had to offer. Your company can sue the commercial

company vendor if there is a problem. But all open source licenses prevent you

from suing. You get what you pay for, so FOSS IAM platforms must be worse—why

else would people buy these expensive commercial platforms? In practice, suing a

software vendor is a joyless, unproductive, and unpredictable way to recover wasted

time and money. IT failures occur for complex reasons—assigning blame to the

vendor is usually difficult.

Another factor to consider is reusability. People move from one organization to

the next with surprising frequency these days. Will you be able to bring your tools

with you to the next gig? If you master FOSS tools, the chances are good. If your tools

are dependent on a large financial commitment and a long, drawn-out legal process,

probably not.

Some sage advice: being great at your job is a much better plan than to “not get

fired” when something goes wrong, and it’s a lot more fun! The best reason to use FOSS

is because it’s the best software available. Don’t make decisions based on fear. “You get

what you pay for” is not always true anymore. Every one of your organization’s digital

services hangs off the identity system. The ability of your organization to meet the

demands of the market is intertwined today with the IT infrastructure. You have a critical

contribution to make. Be a champion of open source software at your organization

because it gives you the best chance to succeed in the long term!

Chapter 1 IntroduCtIon

13

 Where to Start?
IAM platforms consist of a number of pieces, integrated together. The Gluu Server

provides an easy-to-install package of several popular FOSS components, including an

LDAP Server, an OAuth Authorization Server, a SAML identity provider, the Passport-js

Server for social login, and an administrative web interface. Binaries are available for

several Linux distributions, including Ubuntu, Debian, Centos, and Red Hat. Docker and

Kubernetes distributions are available, but you’ll have to see the Gluu website for those

instructions.

It’s best to learn by doing. The Gluu Server provides an ideal environment for trying

out some of the techniques described in the subsequent chapters, and many of the

examples will assume you have a Gluu Server up and running. This section will help you

kick start your effort to install the Gluu Server, so you’ll be ready to get to work.

If you are using the Linux packages, the Gluu Server uses a file system container

strategy called “chroot” to install everything in one folder in the /opt directory. Don’t

confuse this with new container strategies like Docker, which offers process and network

isolation. The goal of chroot was to make the Gluu Server easier to install, uninstall, and

upgrade—which is more difficult if the components are located in many locations on the

host file system.

For development, you may want to use a local virtual machine (VM) running on

your laptop. Use NAT networking to enable the VM to reach the Internet, and so that

you can connect to it via IP. Make sure you give the VM at least 4GB of RAM. You should

also allocate at least two CPU units if possible. The Gluu Server has a bunch of Java

applications, so be generous! If you don’t have a workstation that can host a VM, you

may want to use a cloud server. You probably already have a favorite Linux distribution.

My normal plan is to download the ISO for the Linux distribution to my laptop, and then

specify that file as the boot image in the CD/DVD settings for the VM. I normally do a

very minimal Linux installation, without X Windows and no services except sshd.

After you install the base Linux system and get the latest updates, you’ll want to

install the Gluu Server package. Check the Gluu Server documentation website at

http://gluu.org/docs for the exact package installation process, which will vary based

on your distribution (Ubuntu, Debian, Centos, or Red Hat). The basic idea is that you

will add the repository, add the keys for the repository necessary to verify the package

signatures, update your package index, and then install the Gluu Server using your

standard package management system. This will take some time because the Gluu

Server is large—around 500MB.

Chapter 1 IntroduCtIon

http://gluu.org/docs

14

Once installed, you’ll need to start the Gluu Server. How you accomplish this may

also vary based on your distribution. For example, you may type something like service

gluu-server-3.1.4 start. This mounts the file system, which will enable you to

then “log in” to the container—for example, by typing something like service gluu-

server- 3.1.4 login. Again, check the Gluu docs for the exact syntax for your platform.

Now that you have the Gluu Server package installed and you’ve logged into the

container, things become similar between the distributions. The basic idea is that you

are going to run the setup program (see Listing 1-1), and then voilà, it is done.

Listing 1-1. Initial Gluu Server Configuration

 # cd /install/community-edition-setup/

 # ./setup.py

Installing Gluu Server...

For more info see:

./setup.log

./setup_error.log

** All clear text passwords contained in ./setup.properties.last.

 Enter IP Address [192.168.88.145] :

 Enter hostname [localhost] : idp.mydomain.com

 Enter your city or locality : Austin

 Enter your state or province two letter code : TX

 Enter two letter Country Code : US

 Enter Organization Name : Example Incorporated

 Enter email address for support at your organization : info@example.com

 Enter maximum RAM for applications in MB [3072] : 4096

 Optional: enter password for oxTrust and LDAP superuser [qXlNCzOo5xAS] :

 Install oxAuth OAuth2 Authorization Server? [Yes] :

 Install oxTrust Admin UI? [Yes] :

 Install LDAP Server? [Yes] :

 Install (1) Gluu OpenDJ (2) OpenLDAP Gluu Edition [1|2] [1] : 1

 Install Apache HTTPD Server [Yes] :

 Install Shibboleth SAML IDP? [No] : Yes

Chapter 1 IntroduCtIon

15

 Install Asimba SAML Proxy? [No] :

 Install oxAuth RP? [No] : Yes

 Install Passport? [No] : Yes

 Install JCE 1.8? [Yes] :

 You must accept the Oracle Binary Code License Agreement for the Java SE

Platform Products to download this software. Accept License Agreement?

[Yes] :

 Do you acknowledge that use of the Gluu Server is under the MIT

license? [N|y] : y

| | |

| ------------------------------ |:--------------------:|

| hostname | Albacore.example.com |

| orgName | Example Incorporated |

| Os | Ubuntu |

| City | Austin |

| State | TX |

| countryCode | US |

| Support email | info@example.com |

| Applications max ram | 6000 |

| Admin Pass | qXINCzOo5xAS |

| Install oxAuth | True |

| Install oxTrust | True |

| Install LDAP | True |

| Install JCE 1.8 | True |

| Install Apache 2 web server | True |

| Install Shibboleth SAML Proxy | True |

| Install Asimba SAML Proxy | False |

| Install oxAuth RP | True |

| Install Passport | True |

Note don’t use 127.0.0.1 or localhost for the Ip and hostname. You want to be
able to reach the Gluu Server from your laptop’s browser. even if you don’t have
dnS set up for this hostname, you can edit your localhost’s file to make sure the
name resolves.

Chapter 1 IntroduCtIon

16

Once you’re confident your browser can resolve the hostname, navigate to

https://<hostname> (the hostname you used during setup). Your browser will warn

you about the insecure HTTPS connection because the Gluu Server initially generates

self-signed SSL certificates. It’s okay—you would upgrade these on your production

server, but for your test server, such self-signed SSL certificates are fine. You should be

presented with a login form. The default username is admin. Use the password that either

you specified or was auto-generated for you during installation.

If it’s successful, you should see the Gluu Server login page.

 Conclusion
You now know the components of a modern identity stack: IAM, IDM, IAG, and directory

services. And hopefully you’ve installed your first identity component! Congratulations,

you’re on your way to becoming “identerati”—a guru in this emerging industry.

As mentioned earlier, digital identity is a growing discipline that needs more

practitioners. If you’re interested in continuing, you should consider joining IDPro,

whose mission is to “foster ethics and excellence in the practice and profession of

digital identity”. IDPro is a community where you can connect with other identity

professionals and share best practices. You can find more information on their website

at https://idpro.org.

In the next chapters, we dive more deeply into the introduced topics. You can read

the chapters in order or skip to the chapters that most interest you.

Chapter 1 IntroduCtIon

https://idpro.org

17
© Michael Schwartz, Maciej Machulak 2018
M. Schwartz and M. Machulak, Securing the Perimeter, https://doi.org/10.1007/978-1-4842-2601-8_2

CHAPTER 2

LDAP
Directory services are a critical part of your identity infrastructure. Many components

in the identity stack need to either read or write data. While any database could

work, a popular choice for many identity projects is LDAP. This chapter is not a

comprehensive guide to LDAP. If you are deploying LDAP in your environment, study

the documentation for your LDAP Server of choice. Like other chapters in this book, the

goal here is to give an overview of the technology and brief descriptions of some open

source software tools.

 History
You can retrieve data stored in a tree format quickly by ignoring data that is not relevant

to your search. For example, think about your family tree. If you want to know the

descendants of your parents, you can ignore all the family tree beneath aunts or uncles.

Reducing the scope of the search saves a lot of time.

In the late ’80s, the X.500 set of standards, developed by the International

Telecommunication Union (ITU), standardized the storage and retrieval of data using a

tree structure. X.500 infrastructure worked well for early messaging systems. However,

the popularity of Internet Protocol (IP) lead to the need for a new directory access

protocol. Collaborators from the industry released several related standards from

1993–1997 via the Internet Engineering Task Force (IETF), independent of any X.500

dependencies.

The LDAP IETF RFCs do not define a persistence mechanism. Nothing prohibits

an in-memory LDAP implementation, or even a persistence mechanism based on

homing pigeons (although you’d have to build many lofts, and the performance would

be terrible). Today, each LDAP vendor has its own persistence strategy, and there is a

diverse range of technologies. When you choose an LDAP platform, you always need to

consider the underlying database with its respective tradeoffs. One of the most popular

18

databases for LDAP is Oracle Berkeley DB. OpenLDAP uses LMDB. IBM’s LDAP Server

uses the DB2 database. Radiant Logic offers a commercial LDAP Server that uses

Hadoop as the backend.

Where did the LDAP Servers of today come from? It may help to understand that

some LDAP implementations are related. In 1993, at the University of Michigan, Tim

Howes wrote the first LDAP Server. In 1996, Netscape forked the project and launched

the Netscape Directory Server, which became one of the leading commercial servers.

The OpenLDAP project started, also by forking the 1996 version of the University

of Michigan LDAP Server code—today the University of Michigan directory project

redirects to OpenLDAP. In 1999, Sun Microsystems and Netscape formed an alliance,

called iPlanet, re-branding Netscape Directory Server. In an interesting twist, AOL

became part of this partnership when it acquired Netscape. In 2002, the iPlanet alliance

ended, but the parties retained the right to use the LDAP Server code. Sun rebranded

the LDAP Servers as the Sun Directory Server Enterprise Edition. In 2004, AOL sold the

LDAP Server code to Red Hat, who open sourced it as the Fedora Directory Server (FDS).

Sun continued to innovate the original Netscape Directory Server. But in 2005,

some of the developers felt that they had gone as far as they could with the old code.

Developers proposed to rewrite the LDAP Server from the ground up in Java. Refactoring

and innovations in Java and persistence libraries would improve performance and make

it easier to manage. The launch of OpenDS, a new Java LDAP Server platform, aligned

with a short-lived open source movement at Sun. OpenDS used the same schema and

access control mechanism as previous versions of Sun Directory Server, so the servers

were relatively compatible.

And then Oracle bought Sun. There was overlap in the identity products. Regulators

fussed, and Oracle agreed to divest some of the business. Some of the former Sun

identity team raised money and acquired some of the technology—including OpenDS,

which by this time was an essential part of the identity platform. Forgerock rebranded

this new Java LDAP Server as “OpenDJ” and continues to release source code from time

to time under the Common Development and Distribution License (CDDL).

One of the benefits of LDAP is that because your application uses a standard

protocol to access data, you are not locked into one vendor’s implementation. However,

this does not mean that there are no switching costs with regard to managing the server.

One of the interesting results from this long, intertwined history is that some LDAP

Servers share some important management conventions—particularly how schema and

access controls are managed. For example, the same schema can be used for OpenDJ, Fedora

Directory Server, and even commercial LDAP Servers from Oracle and Ping Identity.

Chapter 2 LDap

19

No discussion of LDAP would be complete without mentioning Microsoft Active

Directory (AD), one of the most widely deployed servers with an LDAP interface.

During the development of Windows 2000, Microsoft recognized that the flat user

management strategy from Windows NT 4.0 was not sufficient to serve large enterprise

customers. Developers forked the directory component from the Exchange 4.0 email

server and added many features. Since its first release in 2000 as an official part of the

Windows Server platform, AD became one of the most common directory servers

for organizations. For many identity and access management deployments, AD is an

important source for information about people.

 Why Use LDAP Today?
Today, some people wonder about the relevance of LDAP. It’s not a protocol you want

to use over the Internet to retrieve your cloud email or to access your cloud files.

Even Microsoft’s new cloud identity service, Azure Active Directory, does not support

LDAP connections from the Internet. Some would even argue that the hierarchical

representation of identity should give way to a linked data graph model, where people

are interconnected, not subordinate within an organization.

The right persistence strategy depends on many factors. How big is your data—

thousands or millions of entries? What is the concurrency requirement? Are read

or write operations more common? Is multi-data center replication required? Does

the concurrency warrant database shards? Can you use the database interface for

in-memory cache? There is no “correct” answer—if data gets stored on the disk, any

database can work for identity services.

But for many organizations, LDAP has proven to be a nice choice for the database in

the IAM stack. Here are my top 10 reasons:

 1. LDAP helps you avoid lock-in to one implementation. LDAP has a

text-based format called LDIF—LDAP Data Interchange Format—

so you can always export data from one LDAP Server and import it

into another.

 2. There are many free open source libraries and tools to manage

data using LDAP.

Chapter 2 LDap

20

 3. Replication technology is mature for several LDAP Servers. For

identity data, business continuity is critical. Many organizations

want to know that a full set of data is available in two locations.

While several other database technologies include replication,

some implementations are “best efforts,” which means you may

need to compare data sets periodically to make sure the data sets

are still in sync. In other database implementations, replication is

not available in the free open source packages.

 4. Many LDAP Servers support numerous algorithms to hash

passwords and provide an easy interface for password verification.

 5. Tools exist to generate large LDAP sample data sets and

benchmark performance—ensuring that the database performs as

expected.

 6. Search performance is excellent in LDAP. By reducing the scope of

searches and properly indexing, lookups are fast!

 7. LDAP has excellent UNIX command-line tools that enable you

to perform most of your day-to-day administrative work over a

simple SSH connection.

 8. There are strategies to scale LDAP horizontally, putting more disks

and reducing replication traffic.

 9. Binary and text backups ensure you never lose your data.

 10. Enterprise customers have successfully deployed and operated

LDAP infrastructure for many years, proving its reliability.

 Basics
LDAP is a client/server message-oriented protocol. The primary operations defined

in LDAP enable the client to read or write data, “bind” (authenticate a requestor), and

“abandon” (signal to the server to cancel an operation). Figure 2-1 shows a typical

sequence diagram of the LDAP protocol.

Chapter 2 LDap

21

LDAP is not a simple text-based protocol like HTTP. You won’t be able to compose

messages on the fly—you’ll need the help of client software. LDAP on the wire uses a

set of rules for encoding data structures called the Basic Encoding Rules (BER), which is

actually a binary format for ASN.1. Binary encoding significantly improves performance,

and high throughput has always been an important design consideration for LDAP.

If there is a need for a new operation, LDAP defines a standard extension mechanism

called “extended operations.” For example, the StartTLS operation enables a client

to indicate that it wants to initiate an encrypted transport layer or perhaps to use

cryptographic signatures, so the parties can validate that they trust each other.

In addition to operations, clients can include LDAP “controls,” which can enable servers

to implement extended behavior not specified in the core LDAP protocol. For example, the

SimplePagedResultsControl, which is described in RFC 2696, enables a client to control the

rate at which an LDAP Server returns the results of an LDAP search operation.

 Entries, DNs, and RDNs
A unit of information in an LDAP tree is called an “entry”—think of it like a record in a

relational database, or an object with properties (and no methods), like a Java bean. An

LDAP directory is composed of many such entries, connected together to form a tree.

DN stands for “Distinguished Name” and RDN stands for “Relative Distinguished

Name”. The DN is the full address of a node in the LDAP tree. The RDN is the partial path

Figure 2-1. LDAP sequence diagram

Chapter 2 LDap

22

of an entry relative to another entry. For example, we might have an entry with a DN of

uid=foo,ou=people,o=acme. It is comprised of three RDNs. The DN of an entry must be

unique in the tree, and it is how we refer to an entry. If you try to add another entry with

the same DN, the LDAP Server will throw an error. Although you might have learned to

leave a space after a comma in your typing class, don’t do this when you reference DNs. For

example, uid=foo, ou=people, o=example.com, is an invalid DN! Also, you should avoid

several special characters when you choose a DN: space, hash, comma, plus, double-quote,

backslash, less-than, greater-than and semicolon. Technically you could use these characters

if you escape them, but do yourself a favor and just avoid them when naming entries.

 Namespace
LDAP is based on the idea of a tree data structure. The namespace, or directory

information tree (DIT) is defined based on how we name each entry in the tree. Over

the years, some common practices have arisen in LDAP namespaces used for enterprise

identity and access management. Let’s just dive into an example. As you can see, the

namespace in Figure 2-2 has three levels.

Figure 2-2. Sample namespace for hypothetical company Acme, Inc.

Chapter 2 LDap

23

The first level is called the root node. It consists of one entry: dc=acme,dc=com.

dc stands for domain component. It may seem confusing that this root node has two

components. Shouldn’t dc=com be the root? Perhaps, but a root node can start from

a sub-tree. Another convention you might see is to use an organization entry as the

root, for example o=acme.com. You might like this convention because it’s less typing.

The second level consists of two entries: ou=people and ou=groups. ou stands for

organizational unit. It’s a common container used to group entries, similar conceptually

to a file system folder. There normally isn’t much data in the ou, except for the name. The

third level contains the leaf entries with the actual data. In Figure 2-2, there are entries

for two people and two groups. The DN for an entry can be known by starting from the

entry in question and traversing up the tree until you hit the root, for example uid=foo,o

u=people,dc=acme,dc=com.

 Schema
An entry in LDAP is composed of a DN and data. It may be helpful to compare/contrast

LDAP to the more familiar model found in a relational database management system

(RDBMS), where data is expressed in a table with columns and each row is a record. At

a high level, one could say that the LDAP equivalent of a table is an “objectclass”; the

equivalent of a column is an “attribute;” the equivalent of a record is an “entry.” In an

RDBMS you need to define your schema—tables and columns—ahead of time. Similarly,

in LDAP you need to pre-define objectclasses and attributes before use.

There are differences. An LDAP entry can have multiple objectclasses. Such an entry

could contain any of the attributes found in any of the objectclasses. Another difference

is that LDAP attributes can be multi-value. In an RDBMS, you need duplicate columns to

hold multiple values, or you have to serialize many values (for example in a JSON array)

and stuff it into one column. In LDAP, it’s easy. Consider the example in Listing 2-1.

Listing 2-1. Sample Entry with Multi-Value Attributes

dn: uid=foo,ou=people,o=acme.com

objectclass: top

objectclass: person

objectclass: organizationalPerson

objectclass: inetOrgPerson

cn: Foo Bar

Chapter 2 LDap

24

sn: Bar

givenName: foo

l: Austin

mail: foo@acme.com

mail: foo_bar_2016@gmail.com

mail: luckyFoo@yahoo.com

This is the first time you are seeing LDIF, the text representation of LDAP data.

Notice that the DN of the entry is on the first line. After that, comes the data. There is

no requirement that the objectclasses are listed first, although it’s a nice convention for

human readers. Both objectclass and mail are multi-value attributes.

Another feature of LDAP schema is that certain attributes might be required for

a certain objectclass. For example, the person objectclass requires cn and sn. A rule

of thumb is not to use required attributes. Strict schema rules seem like a good idea,

until you have an exception. If you make all attributes optional, you have some extra

flexibility.

Attributes have data types, which impact the server’s implementation with regard

to searching and ordering. The most common type of data for an LDAP Server is text.

However, integers, dates, or even binary data like photos or certificates may also be

supported. For more information about data types, you should check the documentation

for your server.

A quick note about object identifiers, or OIDs. These are used extensively in LDAP

configuration servers to identify many different types of things, such as objectclasses and

attributes. By convention, many OIDs are written as strings of dotted decimal numbers,

like the ASN format. In some cases, the LDAP Server may accept any unique string

as an OID. Some servers are very strict about OID using valid ASNs—this is up to the

implementation. Organizations can register an OID in the IANA global registry, which

makes the objects referenceable (or their owner discoverable). I’m not sure why this is

necessary, but I guess it was helpful at some point, way back.

 Filters
You will sometimes need to search an LDAP tree for a specific subset of data based on

specific criteria. Filters are a compact and flexible mechanism to express which data you

want to see based on conditions relating to the attributes values. Table 2-1 contains a

summary of some of the most commonly used LDAP filter expressions.

Chapter 2 LDap

25

Note Certain characters must be escaped if they are used in a search filter:
asterisk (\2A), left parenthesis (\28), right parenthesis (\29), backslash (\5C), and
the null byte (\00). For example, to search for a group with the name 5* Staff,
you would use a filter (cn=5\2A Staff).

Table 2-1. LDAP Filter Overview

Operator Type Example

= Comparison sn=bar) Find entries with last name bar.

=*x* Contains x cn=*manager*) Find all entries with a cn that

contains manager.

x* Starts with x cn=*manager*) Find all entries with a cn that

contains manager.

*x ends with x cn=*manager*) Find all entries with a cn that

contains manager.

<= or >= Less than or equal to

comparison or greater than

or equal to comparison

(dob<=19950101000000Z) Find entries with a

dob before 1/1/95.

=* presence (memberOf=*) Find all entries who belong to at

least one group.

~= approximate (sn~=smith) Find all entries that sound similar,

like perhaps “smith” too.

! Not !(memberOf=*) Find all the entries who don’t

belong to any group.

& and (&(memberOf=*)(l=Austin)) Find all the

entries in location Austin who are a member of at

least one group.

I (or symbol) or (I(status=dead)(status=alive)) Find all

entries with status dead or alive.

Chapter 2 LDap

26

It’s a good idea to always use parentheses to contain the individual elements of

a filter. For example, even though sn=bar is legal, you may want to get into the habit

of using (sn=bar). LDAP filters use prefix notation. That means the operator is first

and then the operands come next. Let’s say you want to know all the entries who have

the last name Foo, Bar, Baz, and Spam. You could make a filter like this: (|(sn=foo)

(sn=bar)(sn=baz)(sn=spam)). However, if you wanted to know only the people (not

any entry) with the last name Foo, Bar, Baz, or Spam, you could make a filter like this:

(&(objectclass=person)(|(sn=foo)(sn=bar)(sn=baz)(sn=spam))).

One trick that I use is to set up the parentheses and operators first, and then add the

attributes and values. For example, literally starting with (&()(|()()()())) then adding

the conditions is easier because you know you have the syntax right from the start. If

you’re using a program to generate the filters, prefix notation is easy to automate (as LISP

fans can attest). Once you get the hang of it, LDAP filters are fun!

 LDIF
The LDAP Data Interchange Format, or LDIF, as described in IETF RFC 2849, is one

of the most important and underrated tools you’ll have in your toolbox. LDIF is a

text format for representing data. It is returned by the LDAP Server when you use the

ldapsearch command-line interface (CLI), and it can also be used to feed instructions

to the LDAP Server when you use the ldapmodify CLI. Both ldapsearch and ldapmodify

will be covered later in this chapter.

An LDIF file always starts with the DN of the entry, and then normally is followed by

attributes. Each entry is separated by at least one blank line. Don’t forget to leave a blank

line after the last entry. Comments in LDIF are prefixed with a #. If an attribute has two

colons, for example see the description attribute of the second entry in Listing 2-2,

it means that the attribute is base-64 encoded. This may be necessary if the entry has

characters that may confuse the LDAP Server. If you inadvertently leave a space at the

end of a value, the LDAP Server will base-64 encode it. Remember that to an LDAP

Server, “this” is not the same as “this ”. Also note how an attribute may have multiple

values—the description attribute in Listing 2-2, for example.

Chapter 2 LDap

27

Listing 2-2. Sample LDIF Data

The first entry

dn: uid=bar,ou=people,dc=example,dc=com

objectclass: top

objectclass: person

cn: Foo Bar

sn: Bar

uid: bar

userPassword: {SSHA}GeXnaWqROzNpzdHnL8QQ==

Another entry

dn: uid=baz,ou=people,dc=example,dc=com

objectclass: top

objectclass: person

cn: Foo Baz

sn: Baz

uid: baz

userPassword: {SSHA}FaKPP5zK6xLkR5IxXyf6_z==

description:: TGFzdCBjaGFyIGlzIGEgc3BhY2Ug

description: Another note about this person.

 LDAP Configuration
In this part, we’re going to look at two of the most important configuration tasks for

LDAP: indexing and security. While each LDAP Server distribution will differ in how

these features are managed, understanding how to perform these tasks is universal.

 Indexing
When you search any database, you want to get results back quickly. The slowest process

to find an entry is to look at every record. Indexes are used to create pointers to certain

data, to expedite a search. Think of it like a table of contents. If you know that people

whose last name starts with a “T” begin on page 72, it will save you some page flipping.

If you know everyone with the last name “Thomas’ is on page 74, you can find a specific

Thomas even faster.

Chapter 2 LDap

28

Another way to look at indexes is that they trade disk space for speed. The more

indexes you have (the more notes about where the data is located), the more storage you

will need. If you load indexes into memory, this can translate directly into more required

RAM, too. Most LDAP Servers support several different types of indexes—presence,

equality, and substring are the most common. In terms of disk space, substring is

much larger than equality and presence (because there are many more substring

combinations). Use substring indexing only when necessary.

This tradeoff of disk space and memory for speed is not only worthwhile,

it’s essential. For IAM LDAP Servers, search speed translates directly into extra

authentications per second. Indexes also make write operations faster. For an IAM

infrastructure, all scoped searches (one level or subtree) must be indexed. If the LDAP

Server has to look through every leaf, the performance will be terrible, and it may even

crash (or seem to crash).

Note all scoped searches MUSt be indexed!

Most LDAP Servers will create a log message if there is an unindexed search.

OpenLDAP will have a log message “not indexed”, Fedora Directory Server “notes=U”,

OpenDJ uses “unindexed”. It’s also useful to see how many entries were returned by

this search, and how much time the search took to execute. Here is a sample log from

OpenDJ, which could indicate a problem:

[4/Jun/2015:15:47:23 +0000] SEARCH RES conn=1134564 op=4 msgID=223 result=0

nentries=1 unindexed etime=32

Make sure to figure out the time units for etime—seconds, milliseconds, or

nanoseconds. If etime=32 were 32 seconds, that’s a red flag. Any LDAP search that takes

more than a few milliseconds to complete indicates a problem. The culprit for this long

search is clearly visible—the keyword unindexed. There are some tools that can help

you analyze large LDAP log files. For OpenDJ, look at the “slowops” and “topfilters”

scripts from Chris Ridd at https://github.com/chrisridd/opendj-utils and also at

“logconv7.pl”, converted from the original Sun script by Ludo Poitou at https://github.

com/ludomp/opendj-utils. An equivalent tool for OpenLDAP is LDAP-Stats, which can

be found at http://prefetch.net/code/ldap-stats.pl.html. For FDS, there is the

LDAP Access Parser at https://github.com/aidan-/ldap-access-parser.

Chapter 2 LDap

https://github.com/chrisridd/opendj-utils
https://github.com/ludomp/opendj-utils
https://github.com/ludomp/opendj-utils
http://prefetch.net/code/ldap-stats.pl.html
https://github.com/aidan-/ldap-access-parser

29

One thing you should look out for is called the “allids threshold”. The allIDs entry

stands for a special index entry that stands for “every entry in the database.” It saves

space and never needs updating. For example, make an index for all the people with

an “E” in their names, this may approach the size of every person in your LDAP Server.

Many servers enable you to tune the number at which indexing is abandoned. In

OpenLDAP, there is a variable called SLAPD_LDBM_MIN_MAXIDS. In FDS, there is a global

database configuration attribute called allidsthreshold. In OpenDJ, this index can

be set for each attribute. Tuning the allids threshold is a good idea when you see an

unindexed warning in the logs, but it seems like the index for this attribute is configured.

In this case, if you examine the search, it may have triggered an index that exceeds the

threshold.

How to view and update indexes is always well-documented in the LDAP Server

documentation. Tactically, what you need to know is that if the LDAP performance is

bad, or LDAP is using too much CPU, the most common root cause is missing indexes.

Look at the indexes first!

 LDAP Security
LDAP is a connection-oriented protocol. A client may request operations anonymously,

and at some point may authenticate to the server to gain additional privileges. In

IAM deployments, anonymous access should be disabled. Simple authentication is

accomplished by specifying the distinguished name of a directory entry and the entry’s

password (stored in the userPassword attribute). Client certificate authentication

could be accomplished using StartTLS, and other types of authentication could be

implemented with SASL authentication. The authentication process is called “binding”

in LDAP, because the connection is made first, and then an identity is bound (or

associated) to the connection.

In most LDAP Servers, there are “superuser” accounts, which may have special

privileges to bypass access controls and search limitations. These entries may be stored

in the configuration, not in the data itself. For example, OpenDJ stores superuser

accounts are under the entry cn=Root DNs,cn=config. The default LDIF will give you an

idea of the special privileges conveyed to superusers. See Listing 2-3.

Chapter 2 LDap

30

Listing 2-3. OpenDJ Root DN privileges

dn: cn=Root DNs,cn=config

objectClass: ds-cfg-root-dn

objectClass: top

cn: Root DNs

ds-cfg-default-root-privilege-name: bypass-lockdown

ds-cfg-default-root-privilege-name: bypass-acl

ds-cfg-default-root-privilege-name: modify-acl

ds-cfg-default-root-privilege-name: config-read

-cfg-default-root-privilege-name: config-write

ds-cfg-default-root-privilege-name: ldif-import

ds-cfg-default-root-privilege-name: ldif-export

ds-cfg-default-root-privilege-name: backend-backup

ds-cfg-default-root-privilege-name: backend-restore

ds-cfg-default-root-privilege-name: server-lockdown

ds-cfg-default-root-privilege-name: server-shutdown

ds-cfg-default-root-privilege-name: server-restart

ds-cfg-default-root-privilege-name: disconnect-client

ds-cfg-default-root-privilege-name: cancel-request

ds-cfg-default-root-privilege-name: password-reset

ds-cfg-default-root-privilege-name: update-schema

ds-cfg-default-root-privilege-name: privilege-change

ds-cfg-default-root-privilege-name: unindexed-search

ds-cfg-default-root-privilege-name: subentry-write

ds-cfg-default-root-privilege-name: changelog-read

Like a root user in Linux, the superuser LDAP account is really powerful. It can

remove the entire database! So normally, you don’t want to give this credential to anyone

except administrators responsible for LDAP operation.

LDAP is great as a backend persistence service for the IAM infrastructure, but it

should be deprecated as an application identity interface—better to use web-based APIs.

If your back is to the wall and you absolutely must give an application LDAP credentials,

you will have to create a new account with access appropriate to the application’s

purpose.

Chapter 2 LDap

31

The first decision is where to put these accounts. A good practice is to create an

organizational unit in a database separate from your actual data, for example, cn=config

could be a good place if your LDAP Server stores configuration there (see Listing 2-4).

Listing 2-4. Sample LDIF for an Organizational Unit to Store Application

Accounts

dn: ou=application accounts,cn=config

objectClass: top

objectClass: organizationalUnit

ou: application accounts

And then you can create your account underneath this organizational unit. For

example, something like Listing 2-5.

Listing 2-5. Sample LDIF for an Application Account

dn: cn=myaccount,ou=application accounts,cn=config

objectClass: top

objectClass: person

cn: myaccount

sn: myaccount

userpassword: SpamAndEggs987

Now that we have account credentials to send to the user, we need to give this

account access to the data that is needed. This is trickier than it may sound, and it can

impact performance. LDAP does not define a common access control model. Each

vendor is left to implement its own security solution. Normally, you’ll find it in a section

about “Access Control Instructions” or ACIs. These are special operational attributes

(meaning they won’t show up in the schema for the respective objectclass—they are

managed by the LDAP Server). ACI syntax normally allows you to specify which DNs

can perform which operations on which part of the tree. If you can add ACIs in any

part of the tree, normally a good place to do so are the structural parts of the tree—the

root or the organizational units. You don’t want to put ACIs in each leaf. The reason

for this is that if an entry is returned, all ACIs need to be evaluated, which may trigger

a downstream search to gather the data needed for evaluation. So it’s a good idea to

minimize ACIs and to move them to the most efficient part of the tree—where they will

be evaluated the minimum number of times.

Chapter 2 LDap

32

Some LDAP Servers can support SSL (Secure Socket Layer) and TLS (Transport

Layer Security). SSL establishes a secure connection initially, prior to LDAP

communication. TLS enables an existing LDAP connection on the unencrypted port

(i.e., 389) to be established and then encryption to be negotiated when the client

requests the startTLS extended operation. SSL (i.e., LDAPS) is better understood by most

network administrators and programmers.

 Managing Data
IAM administrators must be able to easily read and write LDAP data. Luckily, there

are some great tools for this: command-line interfaces (CLIs), GUIs, and APIs. It is

particularly essential that IAM administrators can use the CLI, which are always

available if you can get an SSH session to the LDAP Server and can be used to quickly

search and modify data. We can’t possibly cover all the tools or even all the options for

the tools that we reference here. Read the documentation for each tool to best familiarize

yourself with its capabilities.

 Command-Line Tools
The command-line LDAP tools are essential to master. We are going to show OpenDJ

command-line tools. OpenLDAP and FDS command-line tools are very similar, but

the options for SSL are a little different. At first, LDAP commands seem long—so many

options to remember. By grouping the connection options in your head, you can

simplify memorization. One trick is to think about the following: host | port, username |

password, use SSL | trust self-signed certificate. Respectively these options are -h | -p, -D

| -j, -Z | -X. Assuming you’re using SSL, all LDAP commands will use these options. Note

that, for password authentication, the best practice is to avoid accidentally storing the

root password in the shell command history. If possible, store the password in a file and

remove it when you’re done.

 ldapsearch

Let’s start with an example shown in Listing 2-6 and Table 2-2.

Chapter 2 LDap

33

Listing 2-6. Sample ldapsearch Command

$ /opt/opendj/bin/ldapsearch -h idp.example.com -p 1636 \

 -D "cn=directory manager" -j ~/.pw -Z -X \

 -b "o=gluu" -s one "objectclass=*" dn

ldapsearch returns results as LDIF. Notice in this example, you can specify attributes that

you want returned. If you omit attributes after the filter, the LDAP Server will return all the

non-operational attributes. Consider the following, where the first grep for mail removes the

dn and blank lines; the perl one-liner only prints the second column, thus removing all the

mail: line prefixes. Finally, this output is directed to a local file (see Listing 2-7).

Listing 2-7. Sample ldapsearch Command to Extract Email Addresses for People

in Austin

$ /opt/opendj/bin/ldapsearch -h idp.example.com -p 1636 \

 -D "cn=directory manager" -j ~/.pw -Z -X \

 -b "o=gluu" "(&(l=Austin)(objectclass=person))" \

 mail| grep mail | perl -nale \

 'shift@F;print"@F"'> austin_email_list.txt

Table 2-2. ldapsearch Command Example

Option Description

-h hostname of the LDap Server

-p port of the LDap Server

-D DN of the entry to bind to the connection

-j Full path to a file containing the password for the specified DN

-Z Use SSL

-X trust all certificates (handy for self-signed certificates)

-b DN of the entry where you want to start your search, i.e. base DN

-s Scope of the search: can be either “base”, “sub” or “one”

objectclass=* the LDap filter

dn attribute list, in this case only the DN attribute will be returned

Chapter 2 LDap

34

One of the advantages of a tree structure is that you can narrow your search to the

part of the tree you care about: subtree includes the base DN you specified, plus the

whole tree below it; base indicates you only want the entry returned of the base DN that

you specified; one indicates that you just want entries returned that are one level below

the base DN. A subtree search is the default, so you only need to specify the -s option in

ldapsearch if you want one or base. Consider Figure 2-3, where the top node has been

specified as the root.

One thing to keep in mind when using ldapsearch is that any values that contain

spaces must be quoted—double quotes are typical, although single quotes in UNIX can

also be handy. For example, if your ldapsearch contains the exclamation point, Bash

may interpret it as a command. In these cases, use single quotes for your parameters.

 ldapmodify

Let’s start with an example shown in Listing 2-8 and Table 2-3.

Listing 2-8. Sample ldapmodify Command

$ /opt/opendj/bin/ldapmodify -h idp.example.com -p 1636 \

 -D "cn=directory manager" -j ~/.pw -Z -X -f my.ldif

Figure 2-3. Scopes visualization

Chapter 2 LDap

35

Notice that the initial options are the same as for ldapsearch. The host, port, bind

dn, bind password, and SSL connection have not changed. In this simple example,

we are specifying the LDIF file, which contains the instructions on what operations to

perform. In an LDIF file used for modifications, the second line of the entry specifies the

changetype, which can be add, modify, or delete. If the changetype is add, the second

line can be omitted, and you can use the -a command-line option of ldapmodify, which

will automatically insert the add changetype to each entry. In this way, LDIF output

from ldapsearch can be used directly as input for ldapmodify.

If you are using changetype: modify in your LDIF, you can specify which attributes you

are changing for each entry. You can string several operations for an entry by using a line with

a hyphen on its own line to signal a new attribute operation. Consider this LDIF in Listing 2-9,

which adds one attribute, deletes a specific attribute value, and replaces another attribute.

Listing 2-9. Sample ldapmodify to Update Specific Attributes

dn: uid=foo,ou=people,o=example.com

 changetype: modify

 add: description

 description: "Entry for Foo Bar"

 -

 delete: mail

 mail: foo@spam.com

 -

 replace: status

 status: active

Table 2-3. ldapmodify Command Example

Option Description

-h hostname of the LDap Server

-p port of the LDap Server

-D DN of the entry to bind to the connection

-j Full path to a file containing the password for the specified DN

-z Use SSL

-x trust all certificates (handy for self-signed certificates)

-f the path and filename that contains the LDIF

Chapter 2 LDap

36

Another handy trick is to use LDAP search and grep for ^dn (dn at the beginning of

the line). This can be used to create a list of all the DNs you need to modify. Consider this

simple Python program in Listing 2-10, which outputs LDIF that adds a counter to the

description attribute.

Listing 2-10. Sample Python Script to Generate ldif for Bulk Update of Entries

#!/usr/bin/python

f = open("dn_list.ldif")

lines = f.readlines()

f.close()

c = 0

for line in lines:

 if not len(line.strip()): continue

 c += 1

 print line.strip()

 print "changetype: modify"

 print "add: description"

 print "description: Entry #%i" % c

 print

By effectively rendering LDIF and using ldapmodify, you can automate many

mundane tasks. LDIF is also great because it gives you a record of exactly which changes

you made. Before you run it, you can visually inspect the changes. Learn to love LDIF!

 ldapdelete

This tool is not technically needed, because you could use an LDIF with changetype:

delete. It’s provided as a convenience. You provide all the standard connection

information and then provide the DN of the entry you want to release as the last argument.

 GUI Tools
Sometimes you feel the urge to browse the data in an LDAP Server like you would

browse the file system. Luckily, there are a few good free open source LDAP clients that

let you do just that. We are going to cover two here, although there are other free open

source alternates.

Chapter 2 LDap

37

For the most part, the LDAP Servers you are trying to connect to will not have LDAP

exposed on an Internet-facing network interface. SSH port tunneling is the easiest way to

solve the challenge of how to use your local client to access this remote server. In some

cases, multiple SSH tunnels may be required to route the traffic all the way back to your

local computer. Unix SSH port forwarding is accomplished with the -L command, for

example:

$ ssh -L localport:host:hostport user@ssh_server

If you are a Windows user, and you are using the popular FOSS SSH tool Putty, you

configure tunneling in the SSH section of the profile, as shown in Figure 2-4.

Figure 2-4. Sample tunnel configuration in Windows Putty SSH client

Chapter 2 LDap

38

One important thing to remember when port forwarding is that you will be

connecting to the LDAP Server using the hostname localhost. This may sound

counterintuitive, but it’s because the tunnel is doing its job and broadcasting the remote

traffic on your workstation’s network.

 Apache Directory Studio

One of the best free open source LDAP tools available, Apache Directory Studio has a

rich set of features and provides an Eclipse-based user interface. Although the schema

editor and ACI editor will work only for OpenLDAP, the LDAP browser can be used

with any LDAP v3 server, and the color formatting of the LDIF editor will help you

see mistakes before you save your document. As it is Java software, you’ll need a local

JVM and to set your JAVA_HOME environment variable. Once that’s done, you can unzip

Apache Directory Studio anywhere. For more information, check out the documentation

on their website. See an example of its interface in Figure 2-5.

Figure 2-5. Apache Directory Studio LDAP browser

Chapter 2 LDap

39

 JXplorer

Another free open source graphical LDAP client is maintained by Christopher Betts,

called JXplorer. It was originally donated to the open source community by Computer

Associates, where it was first developed as part of the eTrust Directory project. It’s handy

for browsing, searching, and editing entries. There is also a commercial version that

sells for a very nominal amount with a few more features. There are several binaries

available for Windows, Mac, Linux, and other platforms. See an example of its interface

in Figure 2-6.

 Web2LDAP

If you’d like to have a web-based LDAP client, something like phpMyAdmin for LDAP,

you’re in luck. You can use the Web2LDAP, written by Michael Ströder, who is also

the author of one of the most popular Python LDAP modules. It gives you a lot of

information, even the operational attributes and information about the schema of the

entry. See an example of its interface in Figure 2-7.

Figure 2-6. JXplorer LDAP browser/editor

Chapter 2 LDap

40

 phpLDAPAdmin

A tool designed to help administrators manage data in LDAP, it is normally configured

to point at a specific LDAP Server. If you’re using Centos or Ubuntu, search for a package

called phpldapadmin, which should install the software and configure the Apache

virtual hosts files. The configuration file is stored in /etc/phpldapadmin/config.php.

I’m not sure I love the idea of a web client preconfigured to point at my LDAP Server.

If you had to VPN to get to this interface or the Apache server was only listening on

localhost (and you tunnel via SSH), you could mitigate some of the risk. See an example

of its interface in Figure 2-8.

Figure 2-7. Web2LDAP client

Chapter 2 LDap

41

 FusionDirectory

Not a directory itself, it’s actually a web interface for LDAP written in PHP that provides

its own access management strategy (by using a custom attribute) and several

convenient plugins to manage schema for other common enterprise tools that use

LDAP (like Samba, OpenSSH, and EJBCA). Packages are available for several Linux

distributions. I haven’t used it, but it’s worth taking a look. See an example of its interface

in Figure 2-9.

Figure 2-8. phpLDAPadmin

Figure 2-9. FusionDirectory

Chapter 2 LDap

42

 SDKs
Almost every programming language has a client library for LDAP. Most of the libraries

will enable the basics: connect, search, modify, bind, compare. The better libraries

provide more functionality to help with connection pooling, implementing transactional

behavior, or providing other productive helper libraries. If data transformation is the

goal, I recommend just creating LDIF files for this purpose. For dynamic enterprise

software applications, you’ll need an API. However, as very few applications should use

the LDAP interface (except the IAM components themselves), it’s hard to say when this

use case would arise.

If you must write an LDAP application, one of the best client LDAP libraries available

is written in Java and maintained by the UnboundID group at Ping Identity. This client

is used extensively in the Gluu Server and many other projects. You can download it

from https://www.ldap.com/unboundid-ldap-sdk-for-java. If that location changes,

just Google for “UnboundID LDAP SDK.” It’s comprehensive, well documented, well

maintained, widely used in production, and has a GPLv2 open source license. I highly

recommend using this library over the standard Java JNDI libraries.

Another recommended library is python-ldap, maintained by Michael Ströder. For

direct LDAP operations, it wraps the OpenLDAP C libraries. It also has a handy class for

parsing and generating LDIF.

 Operational Considerations
What are the key operational considerations for running a robust LDAP service? In

order to achieve five nines (99.999%) availability, you need to either get lucky or build an

active-active cluster. You’ll also need to have a good plan in place for how to benchmark

the performance of the LDAP service, to collect current performance metrics, to back up

the data, and to periodically analyze the logs for long searches.

Note research the server Linux configuration requirements. For example, make
sure you have expanded the available file descriptors to at least 65,000. this is one
of the most common mistakes. the LDap Server makes lots of connections. You
don’t want to be limited to the default file descriptor limit, which is around 1,000!

Chapter 2 LDap

http://www.ldap.com/unboundid-ldap-sdk-for-java

43

 Replication
LDAP is known for ease of data replication. However, vendors implement very different

strategies, sometimes solving replication at the database level. There was quite a bit

of innovation in the area of LDAP replication. As LDAP Servers were announced, the

ability to have more “master” servers expanded from two to unlimited in many LDAP

Server platforms. There are many challenges with LDAP replication, including but not

limited to:

• Reducing traffic on wide area network links

• Minimizing the size of the replication data stored in each entry

• Managing colliding transactions (for example, an update after a

delete)

• Reporting synchronization status for each server in the topology

You’ll have to read the documentation for your exact version of LDAP Server to

know how to initialize new replicas, create and remove replication agreements, and

monitor the health of your topology. Frequently, there is a replication service running

that makes sure the data is in sync and communicates changes to the other members of

the topology. The server documentation should also contain information about how to

manage the replication topology and what to do when things go wrong.

 Benchmark
It’s really important to understand the capabilities of an LDAP Server. Lots of factors can

influence performance, including hardware, software, the profile of LDAP operation

traffic, the size of the data entries, the size of the entire data set, the LDAP configuration,

or even the configuration of the underlying database. You don’t know how fast it is

unless you try it! Luckily, there are a few tools that can make that easier.

The first set of tools to consider are searchrate, modrate, and authrate, which can

be built as part of the UnboundID LDAP SDK for Java on their GitHub site at https://

github.com/UnboundID/ldapsdk. These command-line tools enable you to quickly test

the capacity of your server; searchrate produces output such as shown in Table 2-4.

Chapter 2 LDap

https://github.com/UnboundID/ldapsdk
https://github.com/UnboundID/ldapsdk

44

The columns are pretty self-explanatory. The entries/search value is computed by

counting the number of returned entries and dividing by the number of search results.

The reason the entries/search value is not initially one is due to the fact that the LDAP

search was “warming up”—loading relevant data into memory. During benchmarking,

it’s common to include a warm-up period to make sure that the LDAP Server has been

activated in memory, as would be the case in production under load.

Another tool for benchmarking is called SLAMD, by Neil Wilson, which can be found

at http://dl.thezonemanager.com/slamd/. The first component is a server that collects

data; the second is a client that generates load. For high-end benchmarking, these tools

are really handy. You can generate lots of load by creating many clients, each of which

uses many threads. In a typical deployment, you might have one SLAMD server that is

dedicated to getting results, many clients that are responsible for generating load, and

many LDAP Servers that are being tested as part of a replicated topology. In this way,

the server generating or collecting results doesn’t impart the performance of your target

LDAP Server. Another advantage of SLAMD is that you can use several different “jobs,”

which can perform a specific combination of operations. The goal is to generate the type

of traffic that would be typical in production. For example, the searchrate command-

line tool might not be a good gauge of reality if a typical transaction involves a search, an

authentication, and then a several write operations. You might also want to customize

information collected during load testing. For example, for a given load, how is the CPU

and disk usage on the LDAP Servers? Perhaps you want to map some custom variables

onto your graph. SLAMD is extensible and can enable you to do this.

Table 2-4. Sample searchrate Output

Throughput (Ops/Second) Response Time (Milliseconds)

Recent Average Recent Average 99.9% 99.99% 99.999% Err/Sec Entries/
Search

2260.7 2262.8 6.219 6.219 413.842 476.425 476.817 0.0 1.5

3857.5 3178.3 4.149 4.777 352.825 476.404 500.017 0.0 0.8

5078.2 3753.2 2.825 3.978 360.940 460.154 500.017 0.0 1.0

4557.7 3934.5 3.411 3.830 352.480 455.638 500.017 0.0 1.0

Chapter 2 LDap

http://dl.thezonemanager.com/slamd/

45

 Backup/Restore
There are a few strategies for backing up LDAP Servers: binary backups of the database,

file system backups of the folder, server image backups, and LDIF exports of the data

in a standard format. My recommendation is to use LDIF for backup to supplement

your speedier binary backups. The advantage of LDIF is that in a pinch, the data can be

loaded relatively quickly, and if an entry gets corrupted, you can always ignore it and

proceed with the rest of the backup. LDIF gives you an insurance policy.

It’s really important that you test the backup/restore process from both binary and

LDIF sources. You don’t want to find out that your restore process doesn’t work just at

the time the backup is most needed. If backups can be scheduled automatically, it is nice

to have daily data backups for a week or more.

 Monitoring
You will need to get data back indicating the current health of the LDAP Server. One way

to do this is to make a quick search to the directory. The following searches are specific

for OpenDJ, but similar approaches could be utilized to monitor other LDAP Servers,

which frequently publish some performance data as LDAP.

/opt/opendj/bin/ldapsearch -h localhost -p 1636 \

 -D "cn=directory manager" -j ~/.pw -Z -X \

 -s base -b "cn=monitor" "objectclass=*" currentconnection

dn: cn=monitor currentconnections: 12

This namespace cn=monitor is a special place where many LDAP Servers store

information about performance. The results of this search told you two things: that the

server is up and running and that the current number of connections to the server is 12.

If this number is steadily going up and never goes down, it may indicate a connection

leak somewhere in your software stack. There is some more useful information under

cn=monitor that you might want to watch. See the documentation for more information

on what the attributes are tracking.

You’ll also want to keep an eye on the normal stuff—CPU and disk space. Make

sure the logs are rotating properly. If they are not, adjust the settings in the LDAP Server

configuration (and make sure you get a warning by the time the disk space is 80% full!).

Chapter 2 LDap

46

 Synchronization
For the foreseeable future, data about people is sprinkled across organizational systems.

Identity management gurus aim to change business processes to consolidate data about

people. IAM gurus don’t have time to wait for business processes to change, so we try to

use data about people wherever it happens to reside.

There are some data repositories that contain a lot of information about people,

while others contain a small amount of high value data. If data about a person from

a disparate system is needed to make an access decision, it’s faster if all the required

information about people is cached for quick retrieval. For this reason, what you

frequently need is a “data mart”—a place to hold information about a person, aggregated

in one convenient, high-performance local database.

While creating this data mart, you will need to create a mapping for how to get the

information from various backend systems. When and if the business process is cleaned

up by the identity management gurus, the mapping is updated. In this way, deploying

the perfect IDM is not a blocker for the initial deployment of a centralized IAM.

Complexity is the enemy of security and performance. Figure 2-10 illustrates the

advantage of a data mart when identity is distributed across many backend data silos.

If the IAM platform in this scenario connects to each identity silo, end users may need

to take a nap while waiting for an authentication response. If the IAM platform can get

information about the person from a database pre-loaded in memory, it’s possible to

achieve much higher throughput, sometimes thousands of transactions per second.

Figure 2-10. Overview of identity data mart

Chapter 2 LDap

47

How can you aggregate the information you need and keep it up to date? How will

you quickly compare data sets to make sure some changes didn’t get missed, detecting

any discrepancies in the data sets?

Let’s assume that the data mart is an LDAP Server. The goal is to populate this LDAP

Server with the latest and greatest information about people, so it’s available for policy

evaluation and to be shared with applications across the enterprise.

There is no way to efficiently manage a large amount of data manually. We’re going

to have to do some programming. The examples will use Python, but the concepts are

generic and can be ported to any language.

 Sets and Hashing
The first part of our recipe for synchronization is hashing. A hash algorithm is a function

that converts data into a shorter unique output of fixed length. Although it’s impossible

to prove, good hash functions provide an assurance that no two inputs should result in

the same hash value output. If anything about the data changes, the hash value will be

different.

Remember set theory? It’s the second part of our sync recipe. Perhaps you are

experiencing a flashback to your school math class? Although in academic mathematics,

set theory is a major area of research, for IAM, we’re only going to use the basics. Set

operations are magically efficient at figuring out what changed between two data sets.

Most programming languages have native support for basic Set operations. For

example, let’s consider the code shown in Listing 2-11, which shows Set operations in

Python.

Listing 2-11. Sample Python Set Operations

>>> # Create set objects

>>> from sets import Set

mon_list = ["bob", "amy", "tom", "jon", "peg"]

>>> tue_list = ["bob", "amy", "tom", "sal", "jen"]

mon = Set(mon_list)

>>> tue = Set(tue_list)

>>> # Union

>>> all_items = mon | tue

Chapter 2 LDap

48

>>> print list(all_items)

['amy', 'peg', 'tom', 'sal', 'bob', 'jen', 'jon']

>>> # Intersection

>>> common_items = mon & tue

>>> print list(common_items)

['amy', 'bob', 'tom']

>>> # Difference

>>> not_tue = mon - tue

>>> print list(not_tue)

['peg', 'jon']

>>> not_mon = tue - mon

>>> print list(not_mon)

['sal', 'jen']

>>> # Symmetric Difference

>>> part_timers = mon ^ tue

>>> print list(part_timers)

['sal', 'peg', 'jen', 'jon']

Let’s say you have two big data sets. One is a list of people from today, and one

is from a week ago. If you want to figure out who was added or who is missing, Set

operations can instantly answer your question. The basic strategy:

 1. Normalize the data.

 2. Hash the data.

 3. Compare the hash values—if they’re different, something about

this person’s data has changed.

When you hash the data, the order of the information, whitespace, and capitalization

must all be the same, or you will get a different hash result. You can take steps to ensure

the data is formatted the same. For example, lowercase the string or trim the whitespace.

Performing this task is called “normalization”.

Let’s look at a small example. Let’s say you create a file with the primary key for

several people, plus the hash value of their data. Let’s call this fn1.txt (see Listing 2-12).

Chapter 2 LDap

49

Listing 2-12. Sample Hash Values for fn1.txt

bob:b063b8e6029ba27fdb084edc2cea4572acab360adbd2ad9217ce8d71 amy:c62bde41

40cff7ec3e8d253ea709e389366caea034e68d58c76a9721 tom:0bf6cb62649c42a9ae38

76ab6f6d92ad36cb5414e495f8873292be4d jon:604383ab56fb3b6c29c7ee98a7cbfb95

3a026e3c5649de0e8d333b78 peg:d00565ed92bc556704c3b5fb75d11cd8ee843d12aced

b4be525303a0

And a second one that looks like this called fn2.txt (see Listing 2-13).

Listing 2-13. Sample hash values for fn2.txt

bob:e047c44d875407fdb49d53d8b2326fc3e20e27f08434fef1275a3981 amy:c62bde414

0cff7ec3e8d253ea709e389366caea034e68d58c76a9721 tom:0bf6cb62649c42a9ae3876

ab6f6d92ad36cb5414e495f8873292be4d jon:604383ab56fb3b6c29c7ee98a7cbfb953a

026e3c5649de0e8d333b78 pam:f9da1e2be595c9dec9dcfa77b942ca0de1c6d445788df1

8e73720712

Let’s make a few observations about this data. First, the hash value for bob has

changed. Second, peg has dropped out of the second file. Third, pam is new in the second

file. A short Python script could be written like Listing 2-14 to find which users changed.

Listing 2-14. Python Set Sample Code

#!/usr/bin/python

from sets import Set

def getPrimaryKey(line):

return line.split(":")[0]

f = open("fn1.txt")

file1_users = Set(f.readlines())

f.close()

f = open("fn2.txt")

file2_users = Set(f.readlines())

f.close()

Chapter 2 LDap

50

People who changed in file 2

change_list = file2_users ^ file1_users

primary_keys = map(getPrimaryKey, change_list)

print list(Set(primary_keys))

Running this program produces the following output:

['bob', 'peg', 'pam']

The program has identified all the records we need to update. This approach scales

well. The one part of this program that might be a little confusing the creation of a Set

object from a list, only to change it back to a list again? The reason is to eliminate any

duplicates. For example, both of Bob’s entries in the file are unique. But we only need to

update Bob’s record once.

 Manually Synchronizing Data
This section is going to focus on LDAP as the source of data, but to synchronize data

from a database, or data collected by calling web services, the basic strategy is going to

be the same: get data, normalize, hash, detect changes, and update the LDAP data mart.

There are a few strategies to monitor for changes on a source LDAP Server. Some

LDAP Servers have a changelog—this varies between implementations. A basic strategy

that works well is to search using the LDAP protocol and detect by comparing periodic

snapshots of the data (especially if hashing makes it really easy to find changes, as

described previously).

You could connect to an external LDAP Server using an LDAP library. However,

sometimes it’s simpler to just script the ldapsearch command-line tool to do your work.

Consider the following example in Listing 2-15, which creates an LDIF file based on the

first letter of the person’s last name.

Listing 2-15. Sample Script to Gather Data

#!/usr/bin/python

import os

import string

ldapsearch_cmd = "/opt/opendj/bin/ldapsearch"

Chapter 2 LDap

51

network_args = "-h localhost -p 1636 -Z -X"

bind_args = '-D "cn=directory manager" -j /root/.pw'

base = "-b 'ou=people,o=@!3919.2D9C.DCCB.3133!0001!3540.15DD,o=gluu'"

scope = "-s one"

attrs = "dn objectclass"

for c in string.ascii_lowercase:

cmd = [ldapsearch_cmd,

 network_args,

 bind_args,

 base,

 scope,

 "sn=%s*" % c,

 attrs,

 "> %s.ldif" % c]

os.system(" ".join(cmd))

This script is a simple shell script—it could even be written in Bash. Now that you

have the data, how do you read it in from LDAP and do something with it?

LDAP is particularly easy to synchronize across vendor implementations because

there is a standard format for rendering data, LDIF. One handy tool is the LDIF module

in Python LDAP. Many Linux distributions have packages for python-ldap. If not, you

can download the source from the website at https://www.python-ldap.org. Note that

ldif.py is a standalone library with no dependencies. You can just copy it into the folder

in which you’re working. There are many other libraries to convert ldif into native data

structures. Listing 2-16 is a quick example of a python-ldap program that reads an LDIF

file, performs some minimal data normalization, hashes the value, and prints the result.

Listing 2-16. Sample Python Script to Hash LDIF Data

#!/usr/bin/python

import hashlib

string

from ldif import LDIFParser

test_ldif = """

dn: uid=foo,ou=people,dc=example,dc=com

Chapter 2 LDap

http://www.python-ldap.org/

52

objectclass: top

objectclass: person

cn: Foo

sn: Foo

uid: foo

dn: uid=bar,ou=people,dc=example,dc=com

objectclass: top

objectclass: person

cn: Bar

sn: Bar

uid: bar

dn: uid=baz,ou=people,dc=example,dc=com

objectclass: top

objectclass: person

cn: Baz

sn: Baz

uid: baz

"""

Create test file

f = open("test.ldif", "w")

f.write(test_ldif)

f.close()

class MyLDIF(LDIFParser):

def __init__(self, input, output):

 LDIFParser.__init__(self, input)

def handle(self, dn, entry):

 s = ""

 attrs = entry.keys()

 attrs.sort()

 attrs = map(string.lower, attrs)

 for attr in entry.keys():

 val = entry[attr]

Chapter 2 LDap

53

 val.sort()

 s = s + "%s:%s\n" % (attr, val)

 hash = hashlib.sha224(s).hexdigest()

 print "%s:%s" % (entry['uid'][0], hash)

parser = MyLDIF(open("test.ldif", 'rb'), None)

parser.parse()

Excluding writing the LDIF file, this program is only 16 lines long! It’s more like a

haiku than a novel. Most of the action happens in the handle method of the class. That

method is called once for each LDIF entry in the file. Let’s say you detect an entry that

needs to be changed. You can also use the LDIF module to create LDIF or even generate

modify operations. Consider the following simple example in Listing 2-17 that takes an

entry in Python LDAP format and outputs it to LDIF.

Listing 2-17. Sample Python Script to Print LDIF

#!/usr/bin/python

import ldif, sys

entry={'objectClass':['top','person'],

 'cn':['Foo Bar'],

 'sn':['Bar']}

dn='cn=Foo Bar,o=example.com'

ldif_writer=ldif.LDIFWriter(sys.stdout)

ldif_writer.unparse(dn,entry)

This has the output shown in Listing 2-18.

Listing 2-18. Sample Output from Listing 2-17

dn: cn=Foo Bar,o=example.com

cn: Foo Bar

objectClass: top

objectClass: person

sn: Bar

Chapter 2 LDap

54

Believe it or not, with these basic ideas, you can build your own synchronization

system. It’s a low-tech approach, but sometimes the solutions for synchronization are

just too complicated for the task at hand. At those times, it’s beneficial to understand

the basics and know that if you need to build rather than buy, there are options. You can

simply use command-line tools like ldapsearch, ldapmodify, and ldapdelete and do a

little hashing and text processing.

 Gluu Server Cache Refresh
If you’re looking for a shortcut, and the identities you need to synchronize are primarily

located in LDAP data stores, the oxTrust component of the Gluu Server is a handy

tool you can use to configure an internal data mart. It uses the hash and set operation

strategy outlined previously by creating snapshot files in a folder. If you examine these

files, you’ll see a map of primary keys and hash values. oxTrust also uses an LDAP

database to track the mapping between primary keys in the Gluu Server LDAP Server

and in backend LDAP repositories. The oxTrust approach has some nice built-in

capabilities:

• Attribute name mapping—Use this if you just need to change

the name of one attribute in your source LDAP Server to another

attribute in the Gluu Server LDAP Server. For example, maybe you

have an attribute called samAccountName in Active Directory, but you

want to use uid in the data mart.

• Attribute creation or value transformation—Using the cache

refresh custom interception script, you can add new attributes

or adjust the value of existing attributes. A good example of this

is eduPersonScopedAffiliation—an attribute used in the higher

education industry that rarely exists in the correct format in the

source LDAP Server. However, it can be calculated algorithmically at

most institutions. Another use case for value transformation is calling

an API to pull in data from another data store—perhaps an API that

exposes data from a relational database.

• Filtering—You can configure global LDAP filters. For example,

perhaps you want to filter out all people who do not have attribute

status=active. You can also filter easily on objectclasses.

Chapter 2 LDap

55

• Scheduling—oxTrust includes a service scheduler, so you can control

how often the synchronization process runs.

• Logs—There are logs for both persistence and when the scheduled

process runs.

One thing to watch out for is that you only want to run oxTrust cache refresh on

one server at a time. Otherwise, the source LDAP Servers will have to handle extra

requests, and simultaneous updates to the same entries will probably lead to replication

collisions. If you’re running a cluster of oxTrust servers, you can configure the IP address

of the server on which you want to run the process to avoid this situation.

Configuring oxTrust is accomplished via the web user interface. There are several

forms you need to configure it—refer to the Gluu Server documentation.

 LSC—LDAP Synchronization Connector
One tool you may consider for LDAP synchronization is LSC, a Java application that

uses XML files to define mapping and synchronization rules. The website for this project

can be found at https://lsc-project.org. One of the nicest features is that it supports

connectors to relational database sources. There are not a lot of free open source tools in

this area, so this promising tool seemed worthy of honorable mention. It could provide a

head start to your synchronization project, but it may take some customization work to

get it to do what you need.

 LDAP Proxy
Vertically scaling means adding more memory and CPUs and increasing your storage

speed. This will only get you so far. If your directory service gets large enough, you may

want to horizontally scale—break up the data into smaller sets and use a cluster of smaller,

cheaper servers. This has another tangible advantage—it reduces replication traffic. The

only open source server that currently offers proxy capabilities is OpenLDAP. Without

getting too deep into a discussion of OpenLDAP configuration, Listing 2-19 shows a

sample configuration file that may help point you in the right direction, if this is something

you need to do. In this example in Listing 2-19, there are three LDAP Servers, each holding

one third of the entries. In addition to proxying, OpenLDAP is also caching some of the

results to speed up performance. For more information on this configuration, you should

read the documentation on the slapd-meta backend.

Chapter 2 LDap

https://lsc-project.org

56

Listing 2-19. OpenLDAP Proxy Configuration

##

moduleload back_mdb.la

moduleload back_meta.la

moduleload pcache.la

...

database meta

suffix "dc=foo,dc=net"

uri "ldap://:10389/dc=foo,dc=net"

filter "(cn=[a-i]*)"

rewriteEngine on

suffixmassage "cn=Manager,dc=foo,dc=net" "dc=foo,dc=net"

rootdn cn=Manager,dc=foo,dc=net

rootpw secret

idassert-bind bindmethod=simple

credentials=secret

binddn="cn=Manager,dc=foo,dc=net"

uri "ldap://:20389/dc=foo,dc=net"

filter "(cn=[j-r]*)"

suffixmassage "cn=Manager,dc=foo,dc=net" "dc=foo,dc=net"

rootdn cn=Manager,dc=foo,dc=net

rootpw secret

idassert-bind bindmethod=simple

 credentials=secret

 binddn="cn=Manager,dc=foo,dc=net"

uri "ldap://:30389/dc=foo,dc=net"

filter "(cn=[s-z]*)"

suffixmassage "cn=Manager,dc=foo,dc=net" "dc=foo,dc=net"

rootdn cn=Manager,dc=foo,dc=net

rootpw secret

idassert-bind bindmethod=simple

credentials=secret

Chapter 2 LDap

57

binddn="cn=Manager,dc=foo,dc=net"

overlay pcache

pcache mdb 150000 2 150000 500

directory /var/symas/openldap-data/pcache.foo.net

index default eq

index objectClass

index cn eq,sub

pcacheMaxQueries 999999

pcacheOffline false

pcachePersist true

pcacheAttrset 0 cn objectClass

pcacheTemplate (cn=) 0 3600

 Conclusion
You can find many more guides on the Internet to help you complete your journey, but

hopefully this overview of LDAP gave you a good idea of the “known unknowns”. The

only way you get good at LDAP is to get some hands-on experience moving data around

and actually operating an LDAP Server. Once you get the hang of LDAP, it’s fun!

Chapter 2 LDap

59
© Michael Schwartz, Maciej Machulak 2018
M. Schwartz and M. Machulak, Securing the Perimeter, https://doi.org/10.1007/978-1-4842-2601-8_3

CHAPTER 3

SAML
By the late 1990s, people were starting to get tired of entering the same username

and password on different websites. LDAP helped organizations implement “single-

password,” but didn’t enable web “single sign-on” (SSO). While some vendors were

offering solutions for web SSO, SAML—the Security Assertion Markup Language—

emerged as one of the first standards to enable a person to authenticate once and access

websites both inside and outside their organization. The use case of a person accessing

websites outside their home domain came to be known as identity federation. And the

protocols that enable this are known as federation protocols.

Not surprisingly for technology from 2005, SAML is an XML standard. SAML was

developed by a diverse group of interested parties—29 organizations and several

individuals contributed to the SAML 2.0 core specification. The standard represents the

confluence of several previous efforts to standardize a protocol for SSO, including SAML

1.1, Liberty Alliance ID-FF 1.2 and Shibboleth 1.3. All of these previous standards should

be avoided.

Like LDAP, SAML is not defined in one document, but a number of related

documents. SAML 2.0 was developed at OASIS, a nonprofit consortium that provides

support for the development, convergence and adoption of open standards. At the time

of this writing, OASIS has published 146 standards and 145 committee specifications.

OASIS was a good home for SAML 2.0 because many organizations were already

members and had agreed to its intellectual property guidelines. For more information

about OASIS, you can visit their website at https://www.oasis-open.org.

The terms defined by SAML have become an important part of the IAM lexicon.

For example, a “SAML assertion” is a statement written in XML and issued by an “identity

provider” about a “subject” (person) for a “relying party” (the recipient of the assertion)

who is normally a “service provider” (website). Identity provider is abbreviated simply as

“IDP” and service provider as “SP”. Assertions contain contextual information about the

authentication procedure, as well as “attributes”—similar to LDAP attributes, these are

little pieces of information about the person, such as first name or last name.

http://www.oasis-open.org/

60

SAML is a mature standard, and it’s been successfully deployed to solve many

business challenges. Its stability is one of its advantages—it has not been significantly

updated since its 2.0 inception. Don’t feel bad if you find SAML somewhat hard to

understand at first. SAML was finalized before the age of developer-friendly APIs—ease

of use was not a design goal. When you first start learning about SAML, it's common to

get the terms IDP and SP confused. If you’re new to SAML, think of the IDP as the server

that holds the identity information for the person and the credentials (i.e., username and

password). In most cases, you can substitute SP with “website”. If SAML were LDAP, the

IDP would be the LDAP server, and the SP would be the LDAP client.

Like other federation protocols, SAML uses public key cryptography to sign or

encrypt messages and documents. The use of such keys enables the parties to protect

and verify the integrity of information. By convention, most SAML servers use self-

signed X.509 certificates, whereas browsers make use of certificates issued by Certificate

Authorities (CA). For browsers, using a CA makes sense—it enables validation of a

certificate by trusting the root certificate that was used to issue it, enabling vendors to

ship browsers with pre-trusted keys that save most people from having to know much

about certificate trust. However, in SAML, the use of self-signed certificates has the

security benefit of making trust management explicit—when you trust a certain self-

signed certificate, you are trusting a specific entity. Self-signed certificates are not shared

between services. For example, if you have several SAML services, each would use its

own certificate. And, of course, any SAML certificates would be different from the SSL

certificate used by a web server (which is generally not self-signed anyway).

If you’re reading this chapter, you need to learn at least the basics about SAML, so

the goal is to make this as painless as possible and to discuss some of the tools at our

disposal to manage SSO using SAML. We will stick to the most common SAML use cases

and ignore the more esoteric SAML capabilities.

For a test IDP, you can use the Shibboleth IDP deployed in the Gluu Server. There are

many other excellent free open source SAML tools—we will cover only some of the more

common ones. But, hopefully, the concepts and methodologies will be transferable to

other software solutions and libraries. So, without further ado, let’s start with a slightly

deeper dive into the standard itself, and then move onto the software!

 Assertions, Bindings, Protocols, and Profiles
In this section, we talk about assertions, bindings, protocols, and profiles (see Figure 3- 1).

Chapter 3 SaML

61

 Assertions
Assertions contain the goods—the information that a web application needs from

the Identity Provider about the person accessing the site. A SAML assertion can be

composed of four different sections:

• Subject is an identifier for the person. This can be a one-time

identifier that will change each time the person visits the site, or

it can be a consistent identifier that will enable continuity with a

person’s previous activity.

• Authentication statements contain information about when and

how the person was authenticated.

• Attribute statements contain information about the subject, like first

name, last name, email address, role or group memberships.

• Authorization statements contain information about whether

the subject should be granted access to a requested resource. This

is a somewhat esoteric part of SAML, which you will probably not

encounter for SSO use cases.

Figure 3-1. SAML profiles, assertions, protocols, and bindings

Chapter 3 SaML

62

Figure 3-2 shows a sample SAML assertion sent from an IDP (idp.example.org) to

a SP (sp.example.com) that contains both an authentication and attribute statements,

abbreviated to increase readability.

Figure 3-2. Sample SAML assertion

Chapter 3 SaML

63

 Protocols
While SAML is commonly referenced as a protocol, it’s actually more than that. As a

matter of fact, inside the SAML specification the word “protocol” is also defined, and

these protocols specify how to understand the different messages that are exchanged

between the sender and receiver. The core specification defines requests sent (usually

by the SP), and the responses sent (usually by the IDP) (see Figure 3-3). The core

specification defines certain information that must be present in every message and

then describes the details of messages that are sent for specific use cases.

Figure 3-3. SAML protocol visualization

Chapter 3 SaML

64

SAML defines six protocols:

• Assertion Query and Request Protocol defines messages and

processing rules for requesting existing assertions if the requester

knows the unique identifier of an assertion, or if the requester can

identify the subject and statement type.

• Authentication Request Protocol is one of the most important

protocols. It defines how an SP can find out who the subject is, as

well as details about the authentication, such as when and how the

authentication occurred. If a server can respond to this protocol, it is

an identity provider!

• Artifact Resolution Protocol is used for direct communication

between the IDP and SP—sometimes referred to as a “back-channel”.

The browser may pass along a reference identifier (artifact) used

to obtain a protocol message. (Spoiler alert: It’s the “code” in the

OpenID Connect authorization code flow.) The IDP or SP can use

that reference identifier to pick up the full payload directly from the

sender without the browser’s further involvement. There are some

security advantages to this, as well as the opportunity to transfer

larger data files more efficiently. We will not touch on this protocol in

this chapter, as it’s not widely used.

• Name Identifier Management Protocol is used by an SP to request

an IDP to provide a name identifier for a subject in a particular

format or context.

• Single Logout Protocol is a protocol that can be initiated by either

the IDP or SP to affect logout. There are a lot of issues with session

management due to different standards in use, so this protocol isn’t

very reliable.

• Name Identifier Mapping Protocol is used by an SP request and an

IDP to provide a name identifier for a subject in a particular format.

Chapter 3 SaML

65

 IDP-Initiated vs SP-Initiated Authentication

What comes first, the chicken or the egg? The equivalent question in SAML is “What

comes first, logging into the IDP or the SP?” Today, we know the answer to this question:

log into the SP first—keep it simple and avoid all the complexity and corner cases that

entertaining IDP—initiated authentication will cause by trying to figure out how to enable

authentication without an authentication request! This is the reason OpenID Connect, a

more modern federation protocol, did not support IDP-initiated authentication. Consider

Figures 3-4 and 3-5, which represent typical (and really oversimplified) SAML flows for the

purpose of highlighting the differences between these two flows.

Figure 3-4. Very simplified SP initiated authentication flow

Figure 3-5. Very simplified sample IDP-initiated authentication flow

Chapter 3 SaML

66

Some websites see advantages to IDP initiated authentication because it may seem

like a simpler way to embed links. For example, consider a hypothetical banking site that

uses an external service provider to handle foreign currency trades. The customer uses

the bank’s portal and then clicks on the link to buy some Euros. A SAML response with

an assertion is created by the IDP and sent along with the customer to the third-party SP,

who can validate the assertion and provide its service.

There are several reasons why IDP initiated authentication is currently discouraged.

One of the main concerns is that, while this process is defined in the standard, it is not

interoperable. When a website receives an unsolicited SAML response, how does it know

where to send redirect the browser after consumption of the assertion, i.e., the relay

state? Each website that supports IDP initiated authentication may have a different way

to communicate what is the correct relay state. It requires out-of-band communication

and is therefore a “one-off”. The more one-offs your organization supports, the more

expensive your infrastructure is to maintain over the long term. Net-net, this solution is

better for the website than for the IDP.

The idea of sending a response without a corresponding request is generally

troubling. In OAuth, the state parameter is used to reject any unsolicited response.

You should deprecate IDP initiated authentication—SP initiated authentication is more

scalable and futureproofs the design for OAuth.

 Protocol Bindings
There are several technical solutions that will enable SAML messages to be passed from

a sender to a receiver. For example, short messages may be carried directly in the URL

query string of an HTTP GET request, while longer messages may use HTTP POST or web

services. Mapping a SAML exchange onto a communication protocol is called a SAML

binding, and several bindings may be combined to create a protocol flow:

• HTTP Redirect (GET) defines a mechanism by which SAML protocol

messages can be transmitted within URL parameters, intended to be

used through the HTTP-redirect mechanism.

• HTTP POST defines a mechanism by which SAML protocol messages

may be transmitted within the base64-encoded content of an HTML

form control.

Chapter 3 SaML

67

• Simple Sign defines an HTTP POST mechanism that employs a simpler

strategy to digitally sign the message. Instead of signing components of

the message, the entire SAML protocol message is signed.

• SAML SOAP defines how to use SOAP, an XML web services

standard, to send and receive SAML requests and responses.

• Reverse SOAP defines a mechanism in which an HTTP request

is sent to a SP, which in turn returns a SAML request, normally an

authentication request in a SOAP envelope. It’s used in the ECP

profile, which will be covered later.

• HTTP Artifact is a mechanism to use a reference value (or artifact),

which the receiver can use to establish a direct communication

channel with the sender to request the full message.

• SAML URI is not a request/response binding, but a mechanism to

retrieve an assertion via a URI, normally via HTTPS.

SAML bindings provide some flexibility. Consider the Web Browser SSO profile:

there are four SP bindings and three IDP bindings, making twelve different deployments

scenarios possible. In this chapter, we focus on the two most common protocol binding:

Redirect-POST and POST-POST.

 HTTP Redirect Binding

One of the most important bindings, it defines a mechanism by which SAML messages

can be transmitted within parameters, including the signature. One advantage of this

binding is that it is easy to debug in the case of unexpected behavior. The SAML Request

must be compressed (see IETF RFC 1951), base64-encoded, and then URL-encoded.

If you inspect the GET URL, it will be quite long. Signatures are not included in the

SAML Request; they are specified with the additional parameters. One reason to leave

signatures out is to decrease the size of the parameter payload. It is inadvisable to send

very long URLs, and it can cause problems with old browsers. The request may also

include the RelayState parameter, which is used in SP-initiated authentication to drop

unsolicited responses, or in IDP-initiated authentication to convey the final landing

page. While the SAML request itself may be short, the responses may be longer. As it is

inadvisable to send excessively long URLs, in practice this binding may be combined

with others in a single protocol exchange. Figure 3-6 details a typical HTTP redirect

binding for SP-initiated authentication.

Chapter 3 SaML

68

There are a few important security considerations when using this binding. Notice

that the SP and IDP do not directly communicate, which means that this binding does

not support confidentiality of messages from the browser. Also, if you don’t want an

eavesdropper seeing the SAML response and request, you must use TLS (SSL) from the

browser to both the IDP and SP to hide the GET parameters. You should use a secure

communication channel for all APIs and websites, but especially for authentication!

It’s also important for the browser not to cache the SAML response. Normally the IDP

will use the HTTP Headers’ Cache-Control field set to no-cache, no-store and the

Pragma header set to no-cache. But, if this is missing, there is a danger of a replay attack

by someone other than the subject. Another thing to keep in mind is that by using GET

requests, there is a chance a web server or proxy may persist SAML messages log files,

which is not desirable from a security or privacy perspective. You also need to consider

that a GET URL may be retained by the browser as the referrer URL. This summary is not

an exhaustive discussion, but a starting point for your research.

Figure 3-6. Sample SP-initiated authentication flow using HTTP redirect bindings

Chapter 3 SaML

69

 HTTP POST Binding

Another common binding, it uses an HTML form with the hidden fields named either

SAMLRequest or SAMLResponse to send messages. The action attribute of the form is used

to specify the URL to which to send the message, and JavaScript is normally used to

automate submission of the form. For example, see Listing 3-1.

Listing 3-1. Sample HTML Form Used for Form POST Response

<form method="post"

 action="https://idp.example.com/SAML2/SSO/POST" ...>

<input type="hidden" name="SAMLRequest"

 value="(base-64 encoded xml)" />

</form>

<form method="post"

 action="https://sp.example.com/SAML2/SSO/POST" ...>

<input type="hidden" name="SAMLResponse"

 value="(base-64 encoded xml)" />

</form>

window.onload = function() {document.forms[0].submit();}

This strategy is handy because it can handle longer messages, and some of the

security considerations around logging the GET request go away. In this scenario, the

browser is also in the middle, so you won’t be able to hide anything from it. As with

the HTTP redirect binding, HTTP POST sends identity information embedded in SAML

protocol messages across the wire (see Figure 3-7). A secure communication channel

to both the SP and IDP is highly recommended. Caching the form containing SAML

messages should also be discouraged.

Chapter 3 SaML

70

 Profiles
SAML provides a great deal of flexibility or “optionality”. However, optionality is the

enemy of interoperability! Profiles are used to provide more specific guidelines for how

to use a combination of assertions, protocols, and bindings. By adhering to profiles that

define more specifically how to use the building blocks, including the naming, syntax,

and values of such elements, profiles make interoperability more likely. While the first

two profiles listed here are the most important, the OASIS SAML specifications include

details about five profile categories:

• SSO Profiles define how to use SAML for single sign-on of browsers (and

hypothetically other devices, but such use cases are rather esoteric).

• SAML Attribute Profiles define how information about a person is

conveyed in SAML.

• Artifact Resolution Profiles define a back-channel mechanism

for the IDP and SP to communicate directly to pass SAML protocol

messages by reference identifiers. Although it’s potentially more

secure, it’s infrequently used for Enterprise IAM.

Figure 3-7. Sample SP-initiated authentication flow using HTTP POST bindings

Chapter 3 SaML

71

• Assertion Query/Request Profiles define how to request assertions

by referencing an identifier or by querying based on a subject

(person). It’s not normally needed because the assertion included

in the SSO Profiles normally contain both an authentication and

attribute statement.

• Name Identifier Mapping Profiles define how to request an

alternate name identifier for the same person in a different format.

This also won’t be covered due to its esoteric appeal.

 Web Browser SSO Profile

This is the most important profile defined by the SAML specifications. Some people

might not even realize that there is any purpose to SAML other than Web Browser SSO.

In this profile, a person authenticates to the IDP, which produces an assertion that the

SP uses to establish a session. This profile defines two important services, or roles, in the

message exchange:

• Single Sign-On Service, which specifies the IDP’s endpoints (URLs)

to which the browser sends the message from the SP.

• Assertion Consumer Endpoint, which is the SP’s endpoint to which

the browser sends the message from the IDP.

This profile spells out more of the details about the flow of messages between the SP

and IDP. We’ve already covered many of these details. The profile also specifies some

important information about the use of “metadata,” which will be covered subsequently.

 Single Logout Profile (SLO)

Don’t get your hopes up that the SLO profile is a logout panacea. It doesn’t work in

practice with many applications, even if they are all SAML—even if they support SLO!

Logout requests should be signed by the SP—otherwise a malicious website could log

out a person just by knowing a subject identifier. There are two mechanisms for logout—

“front-channel” and “back-channel”. In a front-channel logout, the browser loads a page

with logout URLs for all applications to which the subject has logged in. Each of these

requests are hopefully automatically sent by the browser (this can be accomplished

with iframe, script or img HTML tags). With any luck, when the browser calls the logout

URLs at the respective applications, the person is logged out. In back-channel logout, a

notification is sent directly from the IDP to the SP to log out a specific browser session.

Chapter 3 SaML

72

The likely success of front-channel logout for all the people in your domain is

tenuous at best. First of all, if an error is encountered while the browser calls the logout

URL (maybe the network is down?), the IDP (or the person) will usually never know

something failed. To log out of an application, normally it needs to clear the application

cookie it set post-authentication. A common problem with front-channel logout is that

some browsers block “third-party cookies,” or cookies from a domain other than that of

the page. Because the IDP presents the front-channel logout page, but the iframes (or

script or img tags) call logout URLs in a different domain (the application), these will

be seen by the browser as third-party. Most browsers have a setting to block third-party

cookies, and some even do so as the default setting. For example, Figure 3-8 shows the

setting on Chrome (which is not the default setting).

So, what about back-channel logout? If the browser sends a logout request to

the IDP, as the SLO profile states is preferred, the IDP would need to execute back-

channel requests in parallel to all SPs to which it has sent a response. This is not a trivial

undertaking, as the IDP and SP may not even have a direct connection (in the POST and

redirect bindings, the browser is used as an intermediary). Also complicating the mess

is that if the website relies on cookies in the browser, a back-channel notification has no

way to remove the cookie in the browser.

Figure 3-8. Chrome settings interface to block third-party cookies

Chapter 3 SaML

73

 Attribute Profile

In SAML, attributes refer to data about a person—the subject. In order to achieve

interoperability, the IDP and SP must exchange attribute information in a standard

manner. The SAML attribute profile provides a way to name attributes, to enable

syntax validation, and to provide other attribute information using XML. The two most

common attribute profile formats are generically referred to as “basic” and “LDAP”.

 Basic Attributes

The first thing that you might notice is that there are two elements: Attribute and

AttributeValue. The NameFormat attribute specifies that this is a “basic” attribute

(see Listing 3-2). The only other XML attribute of the SAML Attribute element is the

Name attribute, which is used for comparison. Note that in this example, there are two

AttributeValue elements—don’t forget that attributes can be multi-value. The type of

the attribute is also specified using XML schema types. The main types you might expect

to see are string, boolean, decimal, float, double, duration, dateTime, time, and

date. For more information about these values, and their exact syntax and values, see

the “XML Schema Part 2: Datatypes” document published by the W3C: https://www.

w3.org/TR/xmlschema-2/.

Listing 3-2. SAML Basic Attribute Element

<saml:Attribute Name="FirstName"

 NameFormat=

 "urn:oasis:names:tc:SAML:2.0:attrname-format:basic">

 <saml:AttributeValue xsi:type="xs:string">

 Michael

 </saml:AttributeValue>

 <saml:AttributeValue xsi:type="xs:string">

 Mike

 </saml:AttributeValue>

</saml:Attribute>

Chapter 3 SaML

http://www.w3.org/TR/xmlschema-2/
http://www.w3.org/TR/xmlschema-2/

74

 SAML V2.0 X.500/LDAP Attributes

The other common format you might see for attributes is based on LDAP, because

organizations understandably wanted to re-use the schema they previously defined

(see Listing 3-3). The name used is based on the object identifier (OID) that is

commonly used in LDAP. A FriendlyName is used, because no one could possible

remember these abstruse OIDs. The AttributeValue part is the same, but the type will

always be “string” if the value can be defined as a UTF-8 string, for example, all of the

following in Listing 3-4.

Listing 3-3. SAML LDAP Attribute Element

<saml:Attribute Name="urn:oid:2.5.4.42"

 FriendlyName="givenName" x500:Encoding="LDAP"

 xmlns:x500=

 "urn:oasis:names:tc:SAML:2.0:profiles:attribute:X500"

 NameFormat=

 "urn:oasis:names:tc:SAML:2.0:attrname-format:uri"

>

 <saml:AttributeValue xsi:type="xsd:string">

 Michael

 </saml:AttributeValue>

 <saml:AttributeValue xsi:type="xsd:string">

 Mike

 </saml:AttributeValue>

</saml:Attribute>

Listing 3-4. Attribute Type OIDs

Attribute Type Description 1.3.6.1.4.1.1466.115.121.1.3

Bit String 1.3.6.1.4.1.1466.115.121.1.6

Boolean 1.3.6.1.4.1.1466.115.121.1.7

Country String 1.3.6.1.4.1.1466.115.121.1.11

DN 1.3.6.1.4.1.1466.115.121.1.12

Directory String 1.3.6.1.4.1.1466.115.121.1.15

Facsimile Telephone Number 1.3.6.1.4.1.1466.115.121.1.22 Generalized Time

1.3.6.1.4.1.1466.115.121.1.24

Chapter 3 SaML

75

IA5 String 1.3.6.1.4.1.1466.115.121.1.26

INTEGER 1.3.6.1.4.1.1466.115.121.1.27

LDAP Syntax Description 1.3.6.1.4.1.1466.115.121.1.54

Matching Rule Description 1.3.6.1.4.1.1466.115.121.1.30 Matching Rule

Use Description 1.3.6.1.4.1.1466.115.121.1.31 Name And Optional UID

1.3.6.1.4.1.1466.115.121.1.34

Name Form Description 1.3.6.1.4.1.1466.115.121.1.35

Numeric String 1.3.6.1.4.1.1466.115.121.1.36

Object Class Description 1.3.6.1.4.1.1466.115.121.1.37

Octet String 1.3.6.1.4.1.1466.115.121.1.40

OID 1.3.6.1.4.1.1466.115.121.1.38

Other Mailbox 1.3.6.1.4.1.1466.115.121.1.39

Postal Address 1.3.6.1.4.1.1466.115.121.1.41

Presentation Address 1.3.6.1.4.1.1466.115.121.1.43

Printable String 1.3.6.1.4.1.1466.115.121.1.44

Substring Assertion 1.3.6.1.4.1.1466.115.121.1.58

Telephone Number 1.3.6.1.4.1.1466.115.121.1.50

UTC Time 1.3.6.1.4.1.1466.115.121.1.53

If the AttributeValue can’t be expressed as a UTF-8 string, the xsi:type should be

base-64 encoded and the xsi:type must be set to xsd:base64Binary.

 SAML Metadata
SAML metadata is an XML document that groups together all necessary SAML-

related details of one party. Included are the roles the service fulfills, details on how to

communicate with these services, information of the organization and its operators, as

well as information on the cryptographic keys and certificates that the party uses to sign

or encrypt different SAML messages.

Metadata is also used by federation operators, which are organizations that enhance

trust between organizations by vetting participants. The purpose of a federation is to

drive down the legal and technical costs of collaboration. Multi-party federations are

covered in more detail in Chapter 10. At a technical level, the federation aggregates the

metadata of many participants and publishes one large metadata document, which

includes as sub-elements the metadata for all participants. This approach can lead to

large files.

Chapter 3 SaML

76

Figure 3-9 provides an overview of a metadata document for an IDP. The document

itself contains a signature so that its integrity can be verified. One of the most important

attributes is the entityID of the EntityDescriptor. Your SAML partners will need

this in their configuration to identify your IDP. If this entity is an SP, it must define an

SPSSODescriptor, which contains an AssertionConsumerService element, i.e., where

the IDP should send the SAML response. An organization could operate an entity that

fulfills both the role of SP as well as IDP. This would be reflected in the metadata defining

both an IDPSSODescriptor element as well as an SPSSODEscriptor element. This is not

typical, but it’s not unusual either—for example a SAML proxy might have both IDP and

SP endpoints. As you can see, the metadata contains a lot of descriptive information

that enables SAML partners to configure their respective services without a lot of back-

and- forth about what formats or data is required. Metadata saves time and enables

automation.

Figure 3-9. Sample SAML IDP metadata structure

Chapter 3 SaML

77

 Open Source SAML Software
Congratulations, you made it through the theoretical section of this chapter! Now it’s

time to roll up your sleeves and get to work. This section walks you through a number

of examples that involve configuring websites for SSO with a SAML IDP. We use the

Gluu Server we set up in Chapter 1 as the IDP. For the websites, we try the Shibboleth SP

software, SimpleSAMLPhp, and a custom Python script.

 Gluu Server Shibboleth Identity Provider Overview
If you installed the Gluu Server in the first chapter, then you already have a SAML IDP

up and running, waiting for you to configure websites for SSO! This is because the Gluu

Server bundles the Shibboleth Identity Provider in its distribution. As a test, you can view

the SAML metadata for your IDP. Navigate to this URL: https://<your- hostname>/idp/

shibboleth, replacing the <your-hostname>, of course, with that of your installation. If

this URL returns an XML document, you’re in business! The Shibboleth IDP is working.

If you’re wondering why the name Shibboleth was chosen, its biblical origins tell

of a word whose proper pronunciation was a way to prove membership to a tribe. It’s a

nice metaphor for federated identity. But why name a project after a word whose claim

to fame is difficulty in pronunciation? Your guess is as good as ours. But back to the Gluu

Server, to view the configuration of your IDP, you’ll need to log in to the chroot container.

service gluu-server-3.1.3 login

Note If you are using a later version of the Gluu Server, adjust this command
accordingly.

chroot is a file system container. It’s a handy trick to simplify distribution of the

Gluu Server software. Chroot containers have been around for a while. They only offer

file system isolation—new Linux kernel containers also provide process and network

isolation. For example, if a hacker were to get access to an application constrained to a

file system container and were to run # rm -rf /* (normally fatal for UNIX systems),

only the application folder would be deleted.

Chapter 3 SaML

78

You’ll notice that the chroot container contains an entire Linux distribution. The

Shibboleth IDP is installed in /opt/idp. The Gluu Server creates the initial configuration

during setup and you can configure the IDP through the oxTrust graphical admin

interface. By default, the Gluu Server supports the redirect and POST bindings via the

front-channel (browser). Back-channel protocols (like the artifact and attribute profiles)

can be supported through the use of custom templates.

The Gluu Server ships with a Shibboleth IDP login handler that leverages OpenID

Connect authentication. OpenID Connect is covered in more detail in Chapter 5, but for

now, think of it as a modern version of SAML using JSON instead of XML. The goal of this

login handler is to enable SSO across websites using either SAML or OpenID Connect,

and to enable you to define authentication workflows in one place. For example, to

support two-factor authentication, you would not want to configure one plugin for SAML

and a different plugin for OpenID Connect.

 Shibboleth Service Provider Example
The Shibboleth SP solution consists of two parts. The first is an Apache or IIS web server

plugin that enables you to specify that certain web folders require an authenticated user.

The second is a service called “shibd,” which runs on the same server as the web server

(listening on a localhost socket) and provides the SAML operations needed by the web

server plugin. The advantage of this architecture is that the web server plugin is relatively

“thin,” as most of the heavy lifting for the SAML protocol is performed by the shibd

service software.

To get you started as quickly as possible, this section will provide an end-to-end

example using Ubuntu 14.04.4, and I’ll explain as we go along. Prior to developing this

example, install a new Ubuntu server. The only software you should select when running

the Ubuntu Server installation is OpenSSH. If you want to do this with Centos, the

concepts are the same but the commands and locations are a little different. Check Gluu

documentation for an equivalent procedure at https://gluu.org/docs.

In this example, the hostname for the Gluu Server (IDP) is albacore.gluu.info. The

hostname for the web server (SP) is squid.gluu.info.

Chapter 3 SaML

https://gluu.org/docs

79

 Installing the Web Server, Certificates, and SP Metadata

Most of Listing 3-5 is standard Apache web server administration tasks. In this process

we’re generating self-signed certificates, which we’re using for HTTPS and to generate

the Shibboleth SP metadata. For a more secure deployment, each service should have a

different private key. By convention, the certificates used by the SAML SP should be

self-signed. The HTTPS certificate would normally be issued by a well-known

certification authority, like GoDaddy, Verisign, or Let’s Encrypt.

Listing 3-5. Ubuntu 14.04 Apache2 and Shibboleth SP Installation

apt-get install apache2 libshibsp6 libapache2-mod-shib2

a2enmod cgi

a2enmod ssl

a2enmod shib2

a2ensite default-ssl

mkdir /etc/certs

cd /etc/certs

openssl genrsa -des3 -out squid.key 2048

openssl rsa -in squid.key -out squid.key.insecure

mv squid.key.insecure squid.key

openssl req -new -key squid.key -out squid.csr

openssl x509 -req -days 365 -in squid.csr -signkey squid.key -out squid.crt

shib-metagen -c /etc/certs/squid.crt -h squid.gluu.info >

/etc/shibboleth/squid-metadata.xml

service apache2 start

service shibd start

mkdir /var/www/html/sp

ln -s /etc/shibboleth/squid-metadata.xml /var/www/html/sp/metadata.xml

mkdir /var/www/protected

cd /var/www/protected

wget

https://raw.githubusercontent.com/GluuFederation/community-edition-setup/

master/sta tic/scripts/printHeaders.py

chmod ugo+x printHeaders.py

Chapter 3 SaML

80

Note If you are not using DN, don’t forget to update all the hosts files—this
includes the hosts file on the Gluu Server VM, your test web server VM, and
your laptop (or workstation). the Windows host file location is c:\windows\
system32\drivers\etc\hosts. run notepad.exe as administrator!

For this sample, we are creating a public folder to publish the SP metadata. This

will make it easier when we configure the IDP. There is nothing secret about SAML

metadata—it contains a public certificate and information about public HTTPS

endpoints. The nice thing about publishing your SP metadata is that the IDP can obtain

an updated document automatically. In the last two lines of Listing 3-5, we’re creating a

simple cgi-script that prints the environment variables, which will include the HTTP

headers inserted by the Shibboleth SP. The script looks like Listing 3-6.

Listing 3-6. Python Script to Print Headers

#!/usr/bin/python import os

d = os.environ k = d.keys() k.sort()

print "Content-type: text/html\n\n"

print "<HTML><HEAD><TITLE>printHeaders.cgi</TITLE></Head><BODY>" print

"<h1>Environment Variables</H1>"

for item in k:

print "<p>%s: %s </p>" % (item, d[item])

print "</BODY></HTML>"

To activate the Shibboleth SP, we need to update the Apache web server

configuration: Edit the default site at /etc/apache2/sites-available/default-ssl.

conf, adding what’s shown in Listing 3-7 inside the VirtualHost directive. Then restart

the apache2 service.

Listing 3-7. Sample Apache2 Folder Protected by the Shibboleth SP Apache

plugin

ScriptAlias /protected/ /var/www/protected/

<Directory /var/www/protected>

 AddHandler cgi-script .py

 Options +ExecCGI SSLOptions +StdEnvVars

Chapter 3 SaML

81

 AuthType shibboleth

 ShibRequestSetting requireSession true

 Require valid-user

</Directory>

 Configure the Shibboleth SP

This is probably the hardest part. We need to finish updating our Shibboleth SP to

customize it for our environment. We’ll want to update a few files in /etc/shibboleth:

• shibboleth2.xml specifies our entityID, which IDP we’re using and

some other important configuration options.

• attribute-map.xml defines which attributes we’re requesting from

the IDP.

• Get the metadata from your IDP.

In the attribute-map.xml file in Figure 3-10, we are mapping four user

attributes: givenName (first name), sn (last name), displayName, and uid (username).

The name attribute refers to the SAML name, and the id refers to the attribute name

that we’ll see in the HTTP headers. If you don’t know the right SAML name, you

can check the SAML 2 URI value in the Gluu Server, in the Configuration/Attribute

section (see Figure 3-11).

Figure 3-10. Sample attribute-map.xml

Chapter 3 SaML

82

Most of the Shibboleth configuration that you’ll need to edit is contained in

the shibboleth2.xml file. Figure 3-12 is a simple example. When you first install

the Shibboleth SP, the /etc/shibboleth folder will contain a file called example-

shibboleth2.xml. You can copy this file, so you don’t have to type in everything in

everything by hand. There are a few things you’ll have to change.

• entityID is the identifier for your SP, and it should match the value

of entityID in your SP metadata that you generated when you ran

shib-metagen.

• You should update the Errors section with an email address that

makes sense for support in case something goes wrong, and also

update the copy of the help HTML file.

Figure 3-11. Attribute configuration in the Gluu Server

Chapter 3 SaML

83

• Note, you only specify two bindings in the sample configuration. We

won’t need the others in the example, so just leave them out! You can

also remove the SAML 1 configuration.

• Leave the Status and Session endpoints. You can get to these by

navigating to https:///Shibboleth.sso/Session and https:///

Shibboleth.sso/Status. In production, you might want to remove

these.

• Leave the AttributeChecker configuration. If uid is not present, the

SP will display an error.

• We are just pointing at one IDP, albacore in our example. The

entityID of the IDP is specified in the SessionInitiator element,

and the metadata for the IDP is specified in the MetadataProvider

element.

• The private key and public certificate (that we created) for the SP is

specified in the CredentialResolver element.

• Change handlerSSL to true! You never want to use HTTP for any

APIs. Always use HTTPS!

Chapter 3 SaML

84

Figure 3-12. Sample shibboleth2.xml

Chapter 3 SaML

85

 Configure the Gluu Server Shibboleth IDP

Now we need to finish up by configuring the Shibboleth IDP in the Gluu Server to trust

the SP and to release certain attributes. Since we didn’t publish the metadata anywhere

on a public URL—which you can do if you want, just copy it into /var/www/html—

you’ll need to make sure you have a copy of squid-metadata.xml sftp’d to your local

workstation. Log in to the Gluu Server admin interface (oxTrust) and navigate to SAML/

Outbound/Trust Relations. Then click the Add Relationship button. You’ll be presented

with a form similar to the one in Figure 3-13.

Note always release the TransientID attribute. It’s a non-persistent session
identifier that doesn’t reveal any personal information about the subject. the
default nameID format in the Gluu Server uses this attribute, so releasing it will
save you some headaches later on.

Figure 3-13. Gluu Server SAML SP Trust Relationship Sample

Chapter 3 SaML

86

The Gluu Server supports four workflows for uploading the SP metadata: File,

URI, Federation, and Generate. In this case, we’re going to use File because you have

downloaded the metadata to your workstation, and you’re going to upload it. URI is

actually a better mechanism in practice, because if the SP updates their metadata, it will

be picked up automatically. However, because this is only a test with self-signed HTTPS

certificates, the Gluu Server is going to complain, so let’s keep it simple.

Federation is also a good mechanism if the SP is part of a federation that you trust

(more on federations later!) Generate is used when the website doesn’t have a SAML SP

installed yet. It enables you to generate the shibboleth2.xml configuration file on the

Gluu Server and download a ZIP file that has instructions on how to install and configure

the Shibboleth SP.

After naming the trust relationship and uploading the metadata, you need to

release attributes (see Figure 3-14). No attributes are released by default—you must

explicitly configure all attributes about the person that you want to release to the

website. These attributes should match those required by the website—release

attributes on a need- to- know basis. It’s always a good idea to release the TransientID

attribute, because the Gluu Server uses it as the default NameID. TransientID is a

session identifier—it doesn’t release any personal or correlatable data about the

subject. Finally, you’ll need to click on the Configure RP, which will display a modal

window, where you’ll select the SAML2SSO profile. The Shibboleth SP supports

signing and encryption.

In this example, I signed the whole response (instead of signing individual

assertions). Signed means that integrity is assured from the IDP. As the response is not

encrypted, if the response was intercepted, anyone could read it. Encryption happens

with the public key of the SP, and since the SP’s private key is secret, even if an attacker

intercepts the response, they would not be able to read the nameID or assertions that

contain the meaningful data.

Chapter 3 SaML

87

Note If you get tired of waiting five minutes for the Shibboleth IDp to reload its
configuration, you can make the polling interval shorter by editing /opt/idp/
conf/service.xml. Change it to one minute for all configurations you want to
speed up: configurationResourcePollingFrequency="PT1M". You can tail
-f /opt/idp/logs/idp-process.log to see when the files get reloaded.

Once you click the Update button, you’ll also have to “activate” the trust relationship.

This gives you an extra step to review the configuration or a way to take an SP out of

service without removing its configuration. Also, you’ll need to wait five minutes for

the Shibboleth IDP to reload the new XML configuration that was rendered by oxTrust.

So assuming everything is configured correctly, when you navigate to the url https://

squid.gluu.info/protected/printHeaders.py, you should see a page that looks like

Listing 3-8, which is slightly edited for brevity. Note that you can see the user claims

(uid, givenName, sn, and displayName) and also the REMOTE_USER variable has been

populated with the uid. The SP sets a session cookie so it knows not to authenticate this

user until its local session expires. Congratulations! You set up your first SAML protected

website!

Figure 3-14. Gluu Server SAML relying party options

Chapter 3 SaML

https://squid.gluu.info/protected/printHeaders.py
https://squid.gluu.info/protected/printHeaders.py

88

Listing 3-8. Sample Output from printHeaders.py

AUTH_TYPE: shibboleth

CONTEXT_DOCUMENT_ROOT: /var/www/protected/

DOCUMENT_ROOT: /var/www/html

HTTPS: on

HTTP_ACCEPT:

text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,*/*;q=0.8

HTTP_CACHE_CONTROL: max-age=0

HTTP_COOKIE:

_shibsession_64656661756c7468747470733a2f2f73717569642e676c75752e696e666f

2f73686962 626f6c657468=_e4359a17513cf53c447ab26455fe4e58

HTTP_HOST: squid.gluu.info

HTTP_REFERER: https://albacore.gluu.info/idp/profile/SAML2/Redirect/SSO

REMOTE_ADDR: 192.168.88.1

REMOTE_USER: admin

REQUEST_METHOD: GET

REQUEST_SCHEME: https

SERVER_ADDR: 192.168.88.148

SERVER_ADMIN: webmaster@localhost

SERVER_NAME: squid.gluu.info

SERVER_PORT: 443

SERVER_PROTOCOL: HTTP/1.1

Shib_Application_ID: default

Shib_Authentication_Instant: 2016-08-19T19:27:31.356Z

Shib_Authentication_Method: urn:oasis:names:tc:SAML:2.0:ac:classes:Password

ProtectedTransport

Shib_AuthnContext_Class: urn:oasis:names:tc:SAML:2.0:ac:classes:PasswordPro

tectedTransport

Shib_Identity_Provider: https://albacore.gluu.info/idp/shibboleth

Shib_Session_ID: _e4359a17513cf53c447ab26455fe4e58 Shib_Session_

Index: _38903d1a68e40bbeab09ff376b49e414

displayName: Default Admin User

givenName: Admin

sn: User uid: admin

Chapter 3 SaML

89

 simpleSAMLphp Service Provider Example
simpleSAMLphp is one of the most popular platforms for SAML. Although simpleSAMLphp

has both IDP and SP components, in this example (see Listing 3-9), we’re just going to

refer to the SP example and use the Gluu Server as our IDP. These instructions will be

shown using Ubuntu 14.04, but similar processes exist for most popular Linux platforms.

Listing 3-9. SimpleSAMLphp Installation

apt-get install php5

apt-get install simplesamlphp

apt-get install php5-mcrypt

php5enmod mcrypt

a2enconf simplesamlphp

service apache2 restart

grep adminpassword /var/lib/simplesamlphp/secrets.inc.php

Note this is the default password! You can use this to log in to the
simpleSAMLphp web interface.

https://<hostname>/simplesamlphp

The configuration is stored in /etc/SimpleSAMLphp. The libraries are installed in

/usr/share/simplesamlphp. The Apache configuration looks like Listing 3-10.

Listing 3-10. Apache2 Configuration for simpleSAMLphp

Alias /simplesamlphp /usr/share/simplesamlphp/www

<Directory /usr/share/simplesamlphp/www/>

 Order allow,deny

 Allow from all

</Directory>

The first thing you want to do is edit /etc/simplesamplephp/config.php. Update the

technicalcontact_name and technicalcontact_email to something that is appropriate

for your organization. While you are testing, you may want to set the logging.level

Chapter 3 SaML

90

to DEBUG, but don’t forget to change it back to WARNING or ERR when you move into

production. Then, we’ll need to specify the Gluu Server IDP as the default authentication

source. Edit authsources and set the idp value (see Listing 3-11).

Listing 3-11. SimpleSAMLphp Sample Configuration

'idp' => 'https://albacore.gluu.info/idp/shibboleth',

'default-sp' => array(

 'saml:SP',

 'privatekey' => '/etc/certs/squid.key',

 'certificate' => '/etc/certs/squid.crt')

Next, we’re going to have to add the metadata of our IDP in the requisite PHP format.

You can do this in the SimpleSAMLphp web admin https:///simplesamlphp/admin/

metadata-converter.php. You can copy the XML for your Gluu Server Shibboleth IDP

from the URL https://<hostname>/idp/shibboleth and paste it into the form. If the

conversion is successful, you should copy the content under the heading saml20- idp-

remote and create a file /etc/simplesamlphp/metadata/saml20-idp-remote.php inside

a php tag, like this:

<?php

{paste content in here}

 ?>

You’re done with your simpleSAMLphp configuration, but now you need to configure

the Gluu Server Shibboleth IDP to trust your SP. Download the metadata to your

laptop and use the File method described above. You can download the SP metadata at

https://<hostname>/simplesamlphp/module.php/saml/sp/metadata.php/default-

sp, or you can copy it from the SimpleSAMLphp admin web interface in the federation

section. Use the same configuration as detailed above for the Shibboleth SP. To test,

the SimpleSAMLphp web interface has a test application under Authentication/Test

configured authentication sources/default-sp. When you click on this link, it should send

you to the Gluu Server IDP. After successful authentication, you should see a page like

Figure 3-15.

Chapter 3 SaML

91

 Python-SAML
The Python-SAML library, written by Sixto Pablo Martín García of OneLogin and others

in the community. The code can be found in the Python package index at https://

pypi.python.org/pypi/python-saml. This is a really cool library, and it ships with a few

sample applications.

In this example, we use the Flask application. Like many things SAML, it was a little

harder to get it working than anticipated, especially compared with the Shibboleth SP

and SimpleSAMLphp approaches. The first steps are to install the required packages, as

shown in Listing 3-12.

Figure 3-15. Sample output from simpleSAMLphp test default-sp

Chapter 3 SaML

https://pypi.python.org/pypi/python-saml
https://pypi.python.org/pypi/python-saml

92

Listing 3-12. Installing Python-SAML

apt-get install python-pip python-libxml2 libxml2-dev \

 libxmlsec1 libxmlsec1-dev python-dev python-virtualenv subversion

a2enmod proxy

a2enmod proxy_http

a2enmod rewrite

a2enmod headers

The next steps involve setting up the local Python environment in my home directory

(not root) (see Listing 3-13).

Listing 3-13. Python-SAML Installation Continued

$ cd ~

$ virtualenv env

$ env/bin/pip install -r demo-flask/requirements.txt

$ env/bin/pip install python-saml

$ svn export https://github.com/onelogin/python-saml.git/trunk/demo-flask

$ cd demo-flask/saml/certs

$ openssl req -new -x509 -days 3652 -nodes -out sp.crt -keyout sp.key

Now we’ve installed the SAML libraries and checked out the sample Flask

application from GitHub. The next step is to configure the application to use our test IDP

(in this sample, albacore.gluu.info). The first configuration file is called settings.

json, and it’s included in its entirety in Listing 3-14. The use of strict=false—not is

something you’d want to do in production. The IDP certificate is truncated in Listing 3-14

for readability. It’s worth noting that I acquired this certificate from the IDP metadata

page (https://<hostname>/idp/shibboleth), but I removed all the spaces and line

returns so that the certificate was transformed into one long string.

Listing 3-14. Python-SAML Configuration Settings

$ vi ~/demo-flask/saml/settings.json

{

"strict": false,

"debug": true,

"sp": {

 "entityId": "https://squid.gluu.info/python-saml-sp/metadata/",

Chapter 3 SaML

93

 "assertionConsumerService": {

 "url": "https://squid.gluu.info/python-saml-sp/?acs",

 "binding": "urn:oasis:names:tc:SAML:2.0:bindings:HTTP-POST"

 },

 "singleLogoutService": {

 "url": "https://squid.gluu.info/python-saml-sp/?sls",

 "binding": "urn:oasis:names:tc:SAML:2.0:bindings:HTTP-Redirect"

 },

 "NameIDFormat": "urn:oasis:names:tc:SAML:2.0:nameid- format:transient"

},

"idp": {

 "entityId": "https://albacore.gluu.info/idp/shibboleth",

 "singleSignOnService": {

 "url": "https://albacore.gluu.info/idp/profile/SAML2/Redirect/SSO",

 "binding": "urn:oasis:names:tc:SAML:2.0:bindings:HTTP-Redirect"

 },

 "singleLogoutService": {

 "url": "https://albacore.gluu.info//idp/logout.jsp",

 "binding": "urn:oasis:names:tc:SAML:2.0:bindings:HTTP-Redirect"

 },

 "x509cert": "MIIDZjCCA....jC8Ec/aQ=="

}

}

Although the Flask app runs on port 8000, Apache2 is used to terminate SSL on

port 443:

vi /etc/apache2/sites-available/default-ssl.conf

Add the directives shown in Listing 3-15 and then restart Apache2.

Listing 3-15. Python-SAML Apache2 SSL Configuration

ProxyPreserveHost On

ProxyPass /python-saml-sp/ http://127.0.0.1:8000/

ProxyPassReverse /python-saml-sp/ http://127.0.0.1:8000/

ProxyPass /python-saml-sp/metadata/ http://127.0.0.1:8000/metadata/

ProxyPassReverse /python-saml-sp/metadata/ http://127.0.0.1:8000/metadata/

Chapter 3 SaML

94

Added the directives shown in Listing 3-16, right above the final </VirtualHost>

tag there.

Listing 3-16. Python-SAML Apache2 Default Configuration

vi /etc/apache2/sites-available/000-default.conf

 ProxyPass /attrs/ http://127.0.0.1:8000/attrs/

 ProxyPassReverse /attrs/ http://127.0.0.1:8000/attrs/

service apache2 restart

Next, start the Flask server (not as root):

$ cd ~/demo-flask

$../env/bin/python index.py

Now, in your browser, navigate to view the metadata (note the trailing /): https://

squid.gluu.info/python-saml-sp/metadata/ and save the XML to your desktop (see

Figure 3-16). Configure the Gluu Server by adding a trust relationship for the Flask

website exactly as you configured for the Shibboleth SP and SimpleSAMLphp—sign

responses and encrypt assertions. Also don’t forget to release the TransientID. After

waiting for the IDP to load the new configuration, click on the “Login and Access to attrs

Page” link.

Figure 3-16. python-saml Flask SAML application login page

Chapter 3 SaML

https://squid.gluu.info/python-saml-sp/metadata/
https://squid.gluu.info/python-saml-sp/metadata/

95

At this point, instead of displaying the expected login page, you should see an error

page from the Shibboleth IDP. This happens a lot in SAML. In this next section, we

describe our debugging procedure—being able to debug is essential to working with

SAML. You need to look at the request and response, without which, you may never

figure out what’s wrong.

First we turned up the logging on the IDP to TRACE by editing /opt/idp/conf/

logging.conf:

 <root level="TRACE">

 <appender-ref ref="IDP_PROCESS"/>

 </root>

Then we stared for a while at the request sent by the python-saml library, which can

be viewed in the /opt/idp/idp-process.log. We compared the request to a request

from the Shibboleth SP, which was working well. What we noticed was that there was this

little extra piece of XML in the request from python-saml (see Listing 3-17).

Listing 3-17. Python-SAML Debug Delta

<samlp:RequestedAuthnContext Comparison="exact">

<saml:AuthnContextClassRef>

urn:oasis:names:tc:SAML:2.0:ac:classes:PasswordProtectedTransport

</saml:AuthnContextClassRef>

</samlp:RequestedAuthnContext>

We searched the Internet for AuthnContextClassRef python-saml and saw that

there was an interesting line of code that looked like this in the authn_request.py

module:

if 'requestedAuthnContext' in security.keys() and security['requestedAuthnC

ontext'] is not False:

We didn’t see any documentation for the requestedAuthnContext property, but I

added it to the advanced_settings.json file, included in Listing 3-18.

Chapter 3 SaML

96

Listing 3-18. Adding a Fix for Python-SAML Settings

$ vi demo-flask/saml/advanced_settings.json

{

"security": {

 "requestedAuthnContext": false,

 "nameIdEncrypted": false,

 "authnRequestsSigned": false,

 "logoutRequestSigned": false,

 "logoutResponseSigned": false,

 "signMetadata": false,

 "wantMessagesSigned": false,

 "wantAssertionsSigned": true,

 "wantNameId" : false,

 "wantNameIdEncrypted": false,

 "wantAssertionsEncrypted": true,

 "signatureAlgorithm": "http://www.w3.org/2000/09/xmldsig#rsa-sha1"

},

"contactPerson": {

 "technical": {

 "givenName": "technical_name",

 "emailAddress": "technical@example.com"

 },

 "support": {

 "givenName": "support_name",

 "emailAddress": "support@example.com"

 }

},

"organization": {

 "en-US": {

 "name": "sp_test",

 "displayname": "SP test",

 "url": "http://sp.example.com"

 }

}

}

Chapter 3 SaML

97

And voilà, it worked! At least, we got the login page of the Shibboleth IDP. After

authenticating as the admin user, we were re-directed to the attrs page, as pictured in

Figure 3-17.

Things don’t always go as planned with SAML. Sometimes, the only way to figure

out what is wrong is to be patient, read the XML requests and responses, read the

log messages, use browser-based tools, tail -f logs, and to do all the other stuff that

developers and system administrators do when the unexpected happens.

 Inbound SAML
When you’re working with SAML, it may be helpful to consider if the identity

information is flowing into or out of your organization. Outbound SAML is more

common. If your organization is using a SaaS service, that is outbound—your

organization manages the identity data and credentials of the person, who is accessing a

third-party service. If you are accepting credentials from a partner or customer's IDP—

that is inbound.

Figure 3-17. Sample output from the python-saml Flask demo app attrs page

Chapter 3 SaML

98

If you are the SaaS provider, finding a solution for inbound SAML is critical. Some

large customers will not do business with you otherwise. To drive down the cost of

inbound SAML, you need to normalize the process of onboarding new customers.

Figure 3-18 shows the difference between inbound and outbound SAML.

One of the challenges with inbound SAML is that if you are a SaaS provider, your

customer will say “send your metadata”. They are expecting to get metadata for one

SAML SP—not a whole bunch of them. But your “website” might actually consist of

many websites, working together. A SAML proxy can help solve this problem. A proxy has

both SP and IDP interfaces. Your customers use the one SP interface, while your internal

websites use the IDP interface.

Another challenge with inbound SAML is how to provide a discovery service to solve

the WAYF challenge—where are you from. In Step 1, we need to direct the person to a

SAML IDP, but as the person has not been authenticated, we don’t know to which IDP

to send them! The easiest solution to this problem is to simply present the person with a

Figure 3-18. Inbound vs. Outbound SAML

Chapter 3 SaML

99

list of available IDPs on a web page, and let the person select the right one. This solution

works well if the IDPs are all public. For example, on the higher education website for

Educause, this is exactly what’s done—which universities are members of Educause is

not a secret. However, if the list of IDPs is your company’s customer list, you might not

want to publish it in so public a manner, so you’ll need another strategy.

There are several strategies that SaaS providers should perhaps consider. The first

is to use the DNS name of the website to provide a hint to the person. For example, if

we have a customer named Acme, and the landing page for this customer is https://

acme.saas.com, we can figure out that any person visiting this site should be directed

to Acme’s IDP. A similar strategy is to use the URL path. For example, Acme could also

use the URL https://www.saas.com/acme. Another strategy is to present a form and ask

the person to enter some information about themselves, like their email address. Then

look up this information in a database and redirect to the corresponding IDP. It would be

helpful in this situation to also write a persistent cookie, so that when the person returns,

you can remember the previous decision, unless they are using a new browser or erased

all their cookies.

Inbound SAML is a challenging requirement. There are many SAML IDP

implementations your partners may use. In a worst case scenario, your partner may

enlist your help configuring a SAML IDP you have never encountered. This process

can be time consuming. It’s a good idea to normalize the process for onboarding IDPs,

outlining all the legal and technical requirements, and implementing a standard testing

process to make sure the connection is functioning properly.

Another issue you may have to consider is attribute mapping. What if the IDP

releases attributes other than you are expecting, and you need to map these attributes to

different internal attributes? Or another possibility is that the format of the value of the

attribute doesn’t meet your requirements. It may be handy to have some capability to

map the attributes and transform the values.

The Gluu Server leverages a component called Passport-js to manage all kinds of

inbound identity, including SAML, but also social login and OpenID Connect. Gluu’s

recommended solution for inbound SAML adds another level of control into the

solution. oxAuth is used to just-in-time create a record in the Gluu LDAP server for a

person authenticated at an external IDP, using the attributes provided by the source

IDP. An overview of this process is provided in Figure 3-19.

Chapter 3 SaML

https://acme.saas.com
https://acme.saas.com
http://www.saas.com/acme

100

Figure 3-20 provides a more detailed sequence diagram for inbound SAML using the

Gluu Server. We're jumping ahead a little here, because the flow described in this section

assumes the initial client is OpenID Connect. This is perfectly feasible—an organization

may use OpenID Connect internally, but still have customers who have SAML IDPs. You

can read about OAuth and OpenID Connect in the following chapters. But just go with it

for now! Let’s go over each of the components and the authentication flow:

• The OpenID Connect client redirects the browser to the OpenID

Connect Provider authorization endpoint (i.e., oxAuth), using a

special base-64 encoded JSON object as the state parameter. This

solves the discovery (WAYF) challenge, so Passport-js knows where

to send the unauthenticated browser session. For example, the state

would look like this:

{"salt":"<SALTVALUE>",provider":"<idp_name>"}(base64- encoded)

Figure 3-19. Overview of Gluu Server inbound SAML process

Chapter 3 SaML

101

• If a session for the user doesn't exist yet, the browser is redirected

to its oxAuth component for authentication, triggering the SAML

Passport Authenticator script. The script either retrieves the target

IDP's ID from the state parameter or just presents an IDP selection

page to the person.

• The script arranges a call to the Gluu Passport-js server requesting a

JWT token (used to control access to the Passport APIs) .

• Passport-js generates a JWT token and returns it back to oxAuth.

• The oxAuth script constructs a URL, which Passport-js will need in

order the delegate the authentication request to the selected IDP.

• The script makes a request to Passport-js, including the JWT token,

and initiates the authentication flow.

• The Passport-js server redirects the person's browser to the specified

external SAML IDP.

• After successful authentication, the person's browser is redirected

back to Passport-js, and their personal data (i.e., attributes) are

passed within the SAML response to the Passport-js callback

endpoint.

• Passport-js redirects the user back to the oxAuth passport's custom

interception script, submitting the user's attributes and access token

to its passportpostlogin.xhtml page.

• The interception script verifies if an account exists in Gluu's LDAP

server. If the account exists, then an oxAuth SSO session is created.

If some of their attributes are changed, oxAuth updates the person's

entry in LDAP.

• If an account for the person does not exist, the oxAuth interception

script adds an entry in the Gluu LDAP server, and then creates the

SSO session.

Chapter 3 SaML

102

Fi
gu

re
 3

-2
0.

 G
lu

u
 S

er
ve

r
in

bo
u

n
d

SA
M

L
se

qu
en

ce
 d

ia
gr

am

Chapter 3 SaML

103

This solution may seem complex, but it is also modular. If you don’t need inbound

identity, don’t install Passport-js. Likewise, if you don’t need outbound SAML, you don’t

install the Shibboleth IDP.

oxAuth is the place where business logic is defined for authentication, and inbound

SAML is just one more possible way a person’s session might be validated. One of the

great aspects of this solution is that it makes it possible for developers to use OpenID

Connect internally and still leverage a partner’s SAML IDP.

 Conclusion
Surely, much more can be said, many more examples can be presented, and many

corner cases were left unexposed. But hopefully you’ll be ready to at least face the world

of SAML with a little more confidence than when you started this chapter! The best way

to learn is by doing. Try some of the examples and just keep at it. Simplify and then

incrementally add more complexity. In the end, SAML usually works!

Chapter 3 SaML

105
© Michael Schwartz, Maciej Machulak 2018
M. Schwartz and M. Machulak, Securing the Perimeter, https://doi.org/10.1007/978-1-4842-2601-8_4

CHAPTER 4

OAuth
OAuth 2.0 (or simply as “OAuth” because OAuth 1.0 is now irrelevant) defines a

mechanism for using bearer tokens to make authorized HTTP requests. Simple

possession of a bearer token enables access. For example, a long time ago in New York

City, if you had a “subway token,” you inserted it into the turnstile and entered the

subway station. No questions asked—you have the token, you get in. Bearer tokens are

also called “access tokens”.

Although OAuth is known primarily as a technology for consumer applications, its

popularity is expanding in enterprise IAM. A common misperception is that OAuth is

a protocol. More accurately, it is a framework for authorization—a set of foundational

patterns and vocabulary. OAuth is not an authentication protocol. If this were true,

OAuth would need to provide specific details, like how messages are sent, the exact data

structure of those messages, and how message integrity is assured. Vittorio Bertocci

made an apt analogy in one of his Microsoft blogs for Microsoft1:

OAuth 2.0 as a building block for implementing a sign-in flow is not only
perfectly possible, but quite handy too: a LOT of web applications take
advantage of that, and it works great. But that does NOT mean that OAuth
is an authentication protocol, with all the affordances you’ve come to expect
from one, as much as using chocolate to make fudge does not make (choco-
late == fudge) true.

1 https://blogs.msdn.microsoft.com/vbertocci/2013/01/02/oauth-2-0-and-sign-in/

https://blogs.msdn.microsoft.com/vbertocci/2013/01/02/oauth-2-0-and-sign-in/

106

Chapter 5 focuses on a protocol that uses OAuth to define a sign in flow—

OpenID Connect. Chapter 8 focuses on another OAuth protocol used for API access

Management—UMA. But in this chapter, we introduce some of the common OAuth

terminology and ideas that to give you some background for what’s to come.

 Scopes
Scopes are used to specify the extent of access for a token. Think of an airplane boarding

pass. Airlines scan your boarding pass before they let you enter the plane. If the agent

sees a green light, they let you pass—real-world token validation! On some airlines, not

all boarding passes are the same. You might prefer a boarding pass that entitles you to sit

in first class. Or your boarding pass may qualify you for a specific seat assignment. You

can think of scopes as these additional constraints. For example, a resource server may

offer many APIs. The authorization server may use scopes to differentiate which APIs

you can access. Even within an API, certain features may not be available unless you

have a token with the right scope.

Scopes may be any string value, but it’s a common practice to use a URI for scopes.

The advantage of this practice is that scopes will be less likely to collide. For example,

many developers in an organization may want to use a scope called “write”. If each

developer uses a different URI namespace for their “write” scope, they will be unique.

Google publishes a list of all their APIs and which scopes are required in order to call

them. A small excerpt is shown in Figure 4-1.

Chapter 4 Oauth

107

According to Figure 4-1, if you want to call a Google API that allows you to “view

and manage your data in Google BigQuery,” you’ll need a token with the scope

https://www.googleapis.com/auth/bigquery. Using this approach, Google uses

scopes to manage which clients can access which features of their service. Google

follows the convention of using URIs for scope values. You may also notice that the

APIs are versioned. If an API is updated, new features may be introduced, which may

require different scopes. Client developers rely on these scopes and need to know

about them before they write their code.

Figure 4-1. Some Google OAuth scopes

Chapter 4 Oauth

http://www.googleapis.com/auth/bigquery

108

 OAuth Roles
You’ll sometimes hear OAuth referred to as “three-legged”. Those legs are the “client,”

“resource server,” and “authorization server”. The client is the software (website or mobile

application) that is either requesting a protected resource or connected to a person

requesting a protected web resource. The resource server is the software that has web content

that needs protecting, API endpoints for example. The authorization server is the software

that issues tokens to a client. Another way to think about OAuth is that the resource server is

the policy enforcement point (PEP), and the authorization server is the policy decision point

(PDP). Figure 4-2 shows the three legs, as well as the people who interact with them.

Figure 4-2. OAuth roles

 Authorization Server
The authorization server is the most complex component of an OAuth infrastructure.

For some deployments, the authorization server and the resource server may be one

software process. For larger deployments, a centralized, single-purpose authorization

server may issue tokens to control access to a distributed network of resource servers.

Chapter 4 Oauth

109

The authorization server holds client credentials—for example, an API key and secret

for each client. Client credentials are important, because they enable an organization

to provision specific permissions for a client. Don’t confuse client credentials with a

person’s credentials (i.e., username and password). Person authentication is a very

different requirement from client authentication. People are messy analog carbon-based

things. Clients are software. There are fewer options to authenticate clients than people.

In some flows, the authorization server may also need to authenticate a person, who

then directly authorizes a client. For example, if you’ve used Google login from a third-

party website, after authenticating (unless you are already logged into Google) you are

presented with a dialog asking you to authorize this client to call an API that will release

information about you, as shown in Figure 4-3.

Figure 4-3. GA sample Google authorization dialog

Chapter 4 Oauth

110

A quick aside—one important thing to note is that in Figure 4-3, you can see the

URL of the authorization server—https://accounts.google.com. This is especially

important when you are entering your credentials. You should never share your

password with a third-party website, and you should always make sure that the

certificates are valid. Most modern browsers will help you out here. If the little lock icon

in the address bar is not green, be concerned. Even if it is green, you may not be safe—

check the hostname and make sure it’s one that you trust (easier said than done, for

sure...) This pattern should remind you of SAML, where you are redirected to the IDP to

enter your credentials. An OAuth based flow adds an extra step for authorization.

Getting back to OAuth roles, the resource owner is the person who is responsible for

making the authorization decision. When you use Google login at a third-party site, you

are the resource owner—you control access to your information. In an enterprise IAM

setting, the resource owner is the organization that manages the RS and AS. For example,

an organization may make policies about which people, or which partners may access a

certain API or website.

The other two people (not software components) in Figure 4-2 are the developer

and the requesting party. Developers are active participants in the OAuth infrastructure

because they obtain client credentials that are used in their software. The requesting

party is the person who is using a software client to access a protected resource. The

requesting party is optional. A machine-to-machine API does not require a requesting

party.

The primary job of the authorization server is to evaluate policies that enable it to

issue tokens. To accomplish this, clients and resource servers interact with APIs (or

endpoints) published by the authorization server. Two endpoints defined by the OAuth

RFC are the authorization and token endpoints. The authorization endpoint is where a

client sends a person using a browser to interact with an authorization server. The token

endpoint is used only by OAuth clients to obtain or refresh a bearer token. For example,

using the Google sign-in flow again as an example, the first redirect to the authorization

endpoint displays a dialog, such as the one shown in Figure 4-3. If you authorize the

request, the client will call the token endpoint next to obtain an access token, with which

it can call an API on a resource server.

The authorization server may publish other OAuth endpoints, depending on what

profiles of OAuth it implements. Like LDAP and SAML, OAuth is defined by several

related standards. An authorization server may implement some optional interfaces for

client registration, token introspection (a way to obtain information about a particular

token) or discovery information (similar to SAML metadata).

Chapter 4 Oauth

https://accounts.google.com

111

 Resource Server
The resource server, acting as the policy enforcement point, plays a critical role in the

security of the OAuth infrastructure. Its job is to make sure a valid token is present—

that the token is not expired and that it has been authorized for the correct scopes. The

resource server will also need to understand how to use the various types of tokens.

In some cases, the resource server must itself call APIs of the authorization server—to

validate a token, for example.

The resource server will want to minimize external calls and the processing time to

decrypt tokens. For this reason, many resource server implementations cache tokens to

expedite subsequent authorization for the same token value.

The developer who writes a resource server will have to coordinate with the

administrators of the authorization server regarding what policies are in place to issue

tokens for certain scopes. Sometimes the same group controls both the authorization

server and resource servers. In other cases, the authorization server might be in control

of the central access management team. This is the reason that Google publishes the

scopes that are required to call its APIs, as shown in Figure 4-1.

The resource server will have to decide which policies to delegate to the

authorization server. “The user has approved access” is the most common policy for

consumer OAuth applications. But using UMA, a protocol that builds on OAuth (the

topic of Chapter 8), you can map scopes to enterprise access policies.

Centralized policy management is a useful approach but it’s not a silver bullet. In

general, centralized policy management works well for coarse-grain authorization, but

not for fine-grain authorization. In a web application, what to display on a certain page

is normally controlled by “fine-grained” permissions. Coarse-grained policies are shared

across more than one application. For example, what type of authentication is required,

which internal roles can access which types of applications, which software clients to

trust—implementing these policies in every application would lead to code duplication.

 Client
An OAuth client is the software that calls the protected resource. It is frequently

connected to a person—the requesting party. The client obtains a token from the

authorization server and presents it to the resource server. In many cases, it’s the job of

the client developer to obtain client credentials at the authorization server and to know

what scopes are needed to access the resource server. The client may need to process

Chapter 4 Oauth

112

a redirect to enable the requesting party to interact with the authorization server. The

client may also need to handle errors that are returned by either the authorization server

or the resource server.

Clients may be a website or native application. In some cases, the client may even

be a JavaScript application that exists entirely in the person’s browser. It’s important to

remember that the client is not the same as the browser. The browser is software that the

requesting party uses to access the Internet. SAML jargon “user agent” applies here too.

The client is software that is between the browser and the protected resource.

In machine-to-machine transactions, where there is no requesting party, the policies

must apply only to information about the client and the context of the transaction.

For example, is this client (authenticated with a client_id and secret), calling from

this network, during this time of day, authorized to obtain a token for certain scopes?

A certain group of clients may be associated with a certain partner or category of

applications—such information about the client is called a “client claim” and is different

from user claims about the requesting party.

 Tokens
A token is an abstraction that represents permission by the authorization server to do

something. An access token is a short-lived token that is obtained by the client. A refresh

token is a long-lived token that is presented by the client to the authorization server in

exchange for a new access token. “Short-lived” means one hour or less, but actual times

may vary depending on the policy of the authorization server. One to five minutes are

common lengths for the lifetime of an access token.

The authorization server decides what type of token to return. Each access token type

definition specifies the additional attributes (if any) sent to the client along with the access

token. The client should not use a token if it does not understand the token type. Each

token has a different security profile and is useful for different use cases. Long strings are

frequently used as bearer tokens. OAuth provides a mechanism where additional token

types can be registered as extensions. JSON Web Tokens (JWTs)—pronounced “jots”—are

popular, and are sometimes used as the bearer token string. There is also an extension

for something called “MAC” tokens. These are tokens that enable the client to protect the

access token value and are useful for non-secure communication channels. However, due

to the widespread use of TLS for OAuth, MAC tokens aren’t used that much in enterprise

deployments, so we’ll skip discussion of these tokens.

Chapter 4 Oauth

113

 Bearer Tokens
RFC 6570, “URI Template,” describes bearer token usage in OAuth. A bearer token is any

data structure that gives the possessor rights to do something—without requiring the

owner of the token to verify control of a cryptographic key. A bearer token can be a string

of sufficient entropy to make guessing unlikely.

It can also be an XML or JSON document encoded appropriately. OAuth relies

heavily on bearer tokens, but SAML IDPs also commonly use them—i.e., signed SAML

assertions. It is imperative to the security of any access management infrastructure

based on bearer tokens to prevent an attacker from gaining possession of the token

during transmission, in memory, or on the disk. If this happens, game over! The resource

server has no way to distinguish the attacker from the authorized token owner!

Listing 4-1 is a simple example of an OAuth bearer token returned from an

authorization server.

Listing 4-1. OAuth Token Endpoint Response

HTTP/1.1 200 OK

Content-Type: application/json;charset=UTF-8

Cache-Control: no-store

Pragma: no-cache

{

"access_token": "41902768-ae84-4a1c-8e62-566a8605b90f",

"token_type": "Bearer",

"expires_in": 3600,

"refresh_token": "d1d50489-98ac-4d21-9ddb-2358caf835c3"

}

The most common way for a client to send a bearer token to the resource server is

to include the token in the Authorization header field, although RFC 6570 also defines

mechanisms to send the access token as an HTML form encoded body parameter or in

the URI (which is a bad idea). Using the header, the bearer token would look like this:

Authorization: Bearer 41902768-ae84-4a1c-8e62-566a8605b90f

In simple OAuth implementations, where the resource server and authorization

server are the same, the resource server might make a query to the local database to

retrieve information about a bearer token—for example, when does it expire or for what

Chapter 4 Oauth

114

scopes was it authorized? If the authorization server is remote, RFC 7662 defines an API

for “token introspection”. This provides a mechanism for the resource server to retrieve

a JSON object from the authorization server that describes the token. Listing 4-2 is an

example from RFC 7662 of a response to the introspection API.

Listing 4-2. Sample OAuth Token Introspsection Response

HTTP/1.1 200 OK

Content-Type: application/json

{

 "active": true,

 "client_id": "l238j323ds-23ij4",

 "username": "jdoe",

 "scope": "read write dolphin",

 "sub": "Z5O3upPC88QrAjx00dis",

 "aud": "https://protected.example.net/resource",

 "iss": "https://server.example.com/",

 "exp": 1419356238,

 "iat": 1419350238,

 "extension_field": "twenty-seven"

}

 JSON Web Token (JWT)
Defined in RFC 7519, the JWT token type is essentially a compact syntax to send an

optionally signed and encrypted JSON object. It’s surprisingly compact on the wire—you

may even be able to send it as a query parameter. The token can contain user claims

and can eliminate the need for token introspection. JWT tokens are also particularly

advantageous in stateless web architectures. Another application for JWT is where

cookies can’t be used, for example, due to restrictions on writing third-party cookies.

JSON Web Tokens consist of three sections, separated by two periods:

Header.Payload.Signature

The header describes the cryptographic algorithms used for signing and encryption,

for example: {"alg": "RS256"}. If you want to know the meaning of “RS256,” you

need to check RFC 7518, which describes JSON web algorithms. If you don’t want to

Chapter 4 Oauth

115

use any encryption or signing in your JWT, you can use {"alg":"none"}. In this case,

there would be no text after the second period—you’d just have a header and payload.

The header may also be used to send unencrypted claims. Note that the value of any

substantive unencrypted claims should be verified against the signed JSON payload.

The JSON payload portion of the token may have three types of claims:

reserved, public, and private. The reserved claims are the ones defined in the OAuth

specifications, such as iss (issuer), exp (expiration time), sub (subject), and aud

(audience). Public claims are registered at the IANA JSON Web Token Registry or

are collision-resistant URIs. Private claims are ad hoc claims agreed upon by the

organizations using them.

Validation of the signature is too complex for treatment here. The token can be

encrypted, signed, signed and encrypted, or encrypted and signed. If encrypted, the

client would have to previously register its public key with the authorization server.

For signing, public keys of the authorization server are frequently provided on a URL

for download. OAuth supports many different signing and encryption algorithms. As

mentioned, check RFC 7518 for a full list. Then, check to make sure these are supported

on the authorization server.

 Proof-of-Possession Tokens

A proof-of-possession token, also called a holder-of-key (HoK) token, requires control of

a cryptographic key to provide additional evidence that the presenter of the token is the

party to whom the token was issued. This approach mitigates the risk of stolen tokens.

RFC 7800 introduces how to declare in a JWT that the presenter of the JWT possesses a

particular proof-of-possession private key and how the recipient can cryptographically

confirm this. Thus, a JWT can be either a bearer token or a proof-of-possession token.

 Token Binding

Token binding is an advanced topic that is still under development, and whose future is

not 100% certain, as adoption by websites and browsers has been slow. The Google team

has even discussed the possibility of dropping support for it, although hopefully they’ll

keep the feature. The idea is for the browser to generate a public key, private key, and

an identifier (Token Binding Key) for TLS connections to a web server. These keys and

identifiers are long-lived. When a connection is made between the browser and website,

the identifier can be remembered at the website. When issuing a security token (e.g., an

Chapter 4 Oauth

116

HTTP cookie or an OAuth token) to a client, the server can include the Token Binding

ID in the token, thus cryptographically binding the token to TLS connections between

that client and server, as well as inoculating the token against abuse (re-use, attempted

impersonation, etc.) by attackers. This would protect the token from man-in-the-middle,

token export, and replay attacks.

In a typical OAuth session, there are several TLS connections: between the browser

and AS, between the browser and RS, between the client and AS, and even between the

RS and AS. There are several opportunities to use token binding to improve security. The

initial work addresses how to protect OAuth access tokens and refresh tokens for TLS

connections between the client and AS.

Token binding could be a useful tool to prevent man-in-the-middle attacks, and

its use has been proposed for banking and financial services profiles. An alternative to

token binding is mutual TLS, for which another OAuth draft is under development.

 Registration
The authorization server needs to know information about each client before it can

issue the client a token. This is similar to SAML, where the IDP needs to configure trust

for each SP. What is new in OAuth is a standardized option for self-service registration.

In SAML, the IDP administrator generally imports the SP’s metadata or configures

information about the SP. This is usually a manual process, although sometimes a

website may create a proprietary process for self-provisioning. OAuth registration

defines standards for client provisioning. During registration, the client is issued a

client identifier. At a minimum, the client must tell the AS the URIs where it is okay to

send users after the AS has finished its interaction—the redirect_uris. This is important

because the AS should never redirect a person’s browser to a URI that has not been

previously registered. If the redirect_uri is a web address, it must always use the https

scheme, and the AS must validate the TLS certificate or certificate keychain. Frequently,

the authorization collects other information about the client such as a name, an icon,

a URL of the home page, a link to the privacy policy, and a brief description of the

application. The client may also register an asymmetric client secret. Client registration

is also an appropriate time for the client to notify the AS about its preferences. What

types of cryptographic algorithms are preferred? What scopes are requested? What

are the default user authentication mechanisms desired? All this information may be

provided during registration.

Chapter 4 Oauth

117

Although the API and vocabulary for registration can align to OAuth standards,

the business process may still vary. The developer may need to complete a form, sign

a legal agreement, or provide various pieces of information about their organization.

Sometimes, the client credentials are automatically created and available for use. For

example, the OpenID Connect profile of OAuth defines an API that enables a client

developer to automatically register. Figure 4-4 shows Google’s very minimal client

registration page

Figure 4-4. Google client registration form

Chapter 4 Oauth

118

RFC 7591 defines common conventions around dynamic client registration,

including client metadata fields and details about the client registration endpoint. Also

discussed is registration with software statements.

It is required that the AS return the client_id in the registration response

(see Listing 4-3). A client_secret is also frequently returned. Aaron Parecki lists some

common OAuth client_ids on his informative site, http://oauth.com.

Listing 4-3. Sample client_id Values from Popular Consumer IDPs

Foursquare: ZYDPLLBWSK3MVQJSIYHB1OR2JXCY0X2C5UJ2QAR2MAAIT5Q

Github: 6779ef20e75817b79602

Google: 292085223830.apps.googleusercontent.com

Instagram: f2a1ed52710d4533bde25be6da03b6e3

SoundCloud: 269d98e4922fb3895e9ae2108cbb5064

Windows Live: 00000000400ECB04

Gluu: @!AA77.E41E.1889.6F5E!0001!09FB.4FBB!0008!3CDC.3AF4

The combined client_id and client_secret should be stronger than a person’s

username and password. In the security considerations section of the core OAuth

authorization framework section, guidelines are given to prevent credential-guessing

attacks for the size of access tokens, authorization codes, refresh tokens, resource owner

passwords, and client credentials. It states:

Note the probability of an attacker guessing generated tokens (and other
credentials not intended for handling by end-users) MuSt be less than or equal to
2^(-128) and ShOuLD be less than or equal to 2^(-160).

If you have trouble computing those huge numbers, it’s about 1 in 340 undecillion to

1.5 quindecillion (give or take a few billion). That’s a number with 38-48 zeros at the end.

How you can accomplish this is beyond my mathematical capabilities. See Listing 4-3 for

some good examples.

Chapter 4 Oauth

http://oauth.com

119

 Grants
The process or method by which a client obtains an access token is called an

authorization grant. The grant represents a permission for the client to access an API

endpoint. Each type of authorization grant has a different flow with its own security

characteristics. Following is a description of the different grants, and when their use

is appropriate. Figure 4-5 presents a flowchart to help explain when you use each

grant type.

Figure 4-5. Grant type flowchart

Chapter 4 Oauth

120

 Authorization Code Grant
This flow, for web-based client applications, uses a “code” (a guess resistant

string) to represent a person’s delegation to the client. The code is returned to

the person’s browser and is forwarded to the client, who exchanges it (with client

credentials) for a token or tokens. The code can only be used once, which reduces

the risk of it leaking. Figure 4-6 provides a sequence diagram for a common use

case for the authorization code grant—how it can be used as the basis for a

login flow.

Like SAML, this grant uses browser redirects to enable a person to interact

with a central security server. In Figure 4-6, the login form and the authorization

form might confuse you—what’s the difference? The login form is where the

person enters their username and password or uses another authentication

technology (e.g., token or biometric). The person uses the authorization form

to approve some action. Figure 4-3 shows an authorization where the person

authorizes the release of information to a third party. Before enabling you to

authorize, the AS may need to authenticate who you are, then it can enable you to

authorize something.

Chapter 4 Oauth

121

Fi
gu

re
 4

-6
.

Se
qu

en
ce

 d
ia

gr
am

 fo
r

an
 a

u
th

or
iz

at
io

n
 c

od
e

gr
an

t b
as

ed
 lo

gi
n

 fl
ow

Chapter 4 Oauth

122

It’s important that the code be protected and that it’s sufficiently long to prevent

guessing. However, because the code is passed through the browser, it’s still susceptible

to interception by existing malware. If additional security is needed, there is an extra

security step that can be implemented called Proof Key for Code Exchange (PKCE,

pronounced “pixy”) by OAuth public clients, described in RFC 7636. Using this

mitigation technique, the client adds a nonce to the authorization request. If the code is

intercepted, without this extra nonce, it cannot be exchanged for a token.

 Implicit Grant
JavaScript client applications have become very popular and powerful. Sometimes these

applications act as OAuth clients. This presents an interesting security challenge because

the client is contained in the browser, so there is no point using an authorization code

to hide the token—the browser will end up seeing it anyway when it executes the

JavaScript! Another consideration is that only front-channel communication can be

used—the AS has no direct way to communicate with the client (back-channel).

The Implicit Grant was designed to accommodate this use case. It enables a

JavaScript client to request an access token without a client secret, directly from the

authorization URI. For this reason, the Implicit Grant has less security protection. The

redirect_uri requested by the client is preregistered with the AS (as normal), which is the

main security mechanism. It’s also worth noting that the client cannot obtain a refresh

token using this flow (because the client cannot call the token endpoint, which requires

client authentication).

Figure 4-7 provides a sample sequence diagram for an Implicit Grant based login

flow. When the access token is returned by the server, it is appended to the redirect_uri

as a fragment. It might look something like this:

GET /client-callback#access_token=8027ad39-9316-49d5-9b3b-

10cce3e9b02d&token_type=Bearer HTTP/1.1

Chapter 4 Oauth

123

Fi
gu

re
 4

-7
.

Se
qu

en
ce

 d
ia

gr
am

 fo
r

an
 im

pl
ic

it
 g

ra
n

t-
ba

se
d

lo
gi

n
 fl

ow

Chapter 4 Oauth

124

 Resource Owner Password Credential Grant
Can’t you just validate username/password credentials at the authorization server, like you

can with an LDAP BIND operation? The Resource Owner Password Credential Grant lets a

client do just that, posting both client credentials and the person’s credentials at the token

endpoint to obtain an access token. One disadvantage of this grant is that all communication

is performed on the back channel by the client, so the authorization server will not be able

to write any cookie or session information in the browser (defeating many single sign-on

implementations). Of course, the biggest disadvantage of this flow is that the client sees

the person’s password. This flow should be vehemently discouraged—it is the OAuth anti-

pattern. It should only be used where there is a supreme amount of trust in the client. And

even then, the client developers should be encouraged to use either the Authorization Code

Flow (for web or mobile applications) or implicit flow (for JavaScript client applications).

Listing 4-4 shows a sample request (with client credentials sent as Basic).

Listing 4-4. Sample Resource Owner Password Credential Grant Request

POST /token

 Host: trusted_client.example.local

 Accept: application/json

 Content-type: application/x-www-form-encoded

 Authorization: Basic 32c0992ae4194701a12dc7440d513d45

 grant_type=password&username=foo&password=spam&scope=uid

 Client Credential Grant
Probably the simplest grant type, the client gains an access token by just providing its

own credentials. It’s a useful grant type for machine-to-machine use cases where there is

no person associated with an API request. It’s so simple, I’ll just show the sample request

and response from RFC 6749 (see Listings 4-5 and 4-6).

Listing 4-5. Sample Request

POST /token HTTP/1.1

Host: server.example.com

Authorization: Basic czZCaGRSa3F0MzpnWDFmQmF0M2JW

Content-Type: application/x-www-form-urlencoded

grant_type=client_credentials

Chapter 4 Oauth

125

Listing 4-6. Sample Response

HTTP/1.1 200 OK

 Content-Type: application/json;charset=UTF-8

 Cache-Control: no-store

 Pragma: no-cache

 {

 "access_token":"2YotnFZFEjr1zCsicMWpAA",

 "token_type":"example",

 "expires_in":3600,

 "example_parameter":"example_value"

 }

 Token Introspection
If a resource server receives an access token issued by an external authorization server, it

needs some way to understand what the access token means. Is it still valid? When was

it issued? For what scopes was it authorized? Sometimes this information is available

in a shared database. Encoded JWT tokens are sometimes used as access tokens. But if

the bearer token value is only a reference identifier, RFC 7662 describes a mechanism

where a resource server can request information about it. This process is called “token

introspection”. It's a simple flow. Listings 4-7 and 4-8 show the sample introspection

request and response from the RFC.

Listing 4-7. Sample Request

POST /introspect HTTP/1.1

Host: server.example.com

Accept: application/json

Content-Type: application/x-www-form-urlencoded

Authorization: Bearer 23410913-abewfq.123483

token=2YotnFZFEjr1zCsicMWpAA

Chapter 4 Oauth

126

Listing 4-8. Sample Response

HTTP/1.1 200 OK

 Content-Type: application/json

 {

 "active": true,

 "client_id": "l238j323ds-23ij4",

 "username": "jdoe",

 "scope": "read write dolphin",

 "sub": "Z5O3upPC88QrAjx00dis",

 "aud": "https://protected.example.net/resource",

 "iss": "https://server.example.com/",

 "exp": 1419356238,

 "iat": 1419350238,

 "extension_field": "twenty-seven"

 }

RFC 7662 says the RS must authenticate to introspect a token to prevent a token

scanning attack. This normally happens by presenting an OAuth token or by including

basic client credentials. Given the entropy and short lifetime of access tokens, you could

allow unauthenticated responses if you understand the risks.

If the token is valid, the active response claim is true. If the token is not valid, it

should be false, and no other information should be returned. RFC 7662 defines some

standard claims, but a domain may use any claims. If the intention is to use token claims

across domains, they should be registered with IANA.

 OAuth Client Example: Calling a Google API
Enough theory, let’s work on an example of using Google’s free open source Python

client library to call an OAuth protected API—in this case Google’s URL shortening

service. In subsequent chapters, we cover in more detail how to use OAuth to protect

enterprise resources—how to configure a resource server and authorization server for

your organization. Google has a lot of APIs, and their policies and procedures are typical

of a well-run application service.

This chapter uses a sample project called “urlias” (like alias for a URL). It will submit a

long URL and get back from Google a shorter URL that can be used for tracking. For example,

Chapter 4 Oauth

127

if you post a blog and want to know how many people click on your blog, it is convenient

to use a tracking URL. The sample code will be in Python, but the process will be the same

across any platform. The code is available in the GitHub repository for this book.

 Obtaining Client Credentials
Remember that each authorization server will have its own policies and procedures for

obtaining client credentials. Google has a website that enables you to enroll (agree to

the terms of services) and to automatically register your application, and in the process,

obtain client credentials. Start this process by opening https://console.developers.

google.com in your browser.

In the Library tab, search for URL, as shown in Figure 4-8.

After clicking on the URL Shortener API, you’ll need to enable it, as shown in Figure 4-9.

Figure 4-9. Enabling Google URL shortener

Figure 4-8. Searching Google libraries for URL shortener

Chapter 4 Oauth

https://console.developers.google.com
https://console.developers.google.com

128

Google does not offer a dynamic client registration API, so you’ll need to manually

register your client in the dashboard. First, you’ll need to set up some general properties,

like the name, contact information, and logo of your application, which Google will use

to render the OAuth consent notification. Note that the values shown in Figure 4-10 are

just an example. You would use information appropriate to your application.

Figure 4-10. Configuring Google OAuth consent screen

Chapter 4 Oauth

129

Click on the Credentials tab, then on Create Credentials. Then choose OAuth Client

ID, as shown in Figure 4-11.

The form to create client credentials is actually rather short. To create a web client,

there are only three pieces of information you need to supply: the application type,

name, and redirect_uris, as shown in Figure 4-12.

Figure 4-11. Creating a Google OAuth client ID

Chapter 4 Oauth

130

If successful, you should see a modal window with your client credentials—record

these in a secure place. You should never share your client credentials. Hypothetical

examples are shown in Figure 4-13.

Figure 4-13. Final client credentials

Figure 4-12. Google client ID request form

Chapter 4 Oauth

131

 Calling the Google API
Now that you have client credentials, it’s time to call the API. To show this I’d like to

reference a sample node project called google-oauth-implicit-example in my GitHub

project for this book at https://github.com/GluuFederation/iam-book. This is a two-

page application: page one displays a login button that enables the user to authorize the

use of their Google account; page two is a JavaScript application that uses the returned

access token to call the API. Figure 4-14 shows the sequence diagram for this application.

Figure 4-14. Sequence diagram for URL shortener application

Chapter 4 Oauth

https://github.com/GluuFederation/iam-book

132

To run this application, you’ll need node.js installed on your workstation or server.

Follow the relevant instructions on http://nodejs.org for your operating system. After

cloning the project from GitHub, the first thing you’ll need to do is to set the properties

files, called settings.js, to enter the client credentials retrieved in the preceding steps

(see Listing 4-9). Don’t forget to quote the strings and to use a semicolon at the end of

each line. Just as an example, settings.js should look something like Listing 4-9 (again,

those are not real Google API creds.). Note that the callback must match the one you

registered for this client with Google. For this demo, I was running the server on port

8000, but you can choose any free port on your system.

Listing 4-9. Sample Properties for URL Shortener Application (Shortened for

Display)

exports.client_id = '6fb8.apps.googleusercontent.com';

exports.client_secret = ' ghoeg&qecyic8_1';

exports.port = 8000;

exports.redirectURIPath = '/cb';

exports.redirectURI = 'http://localhost:8000/cb';

To download the necessary libraries and run the application, navigate via the

command line to the project folder and run the commands shown in Listing 4-10.

Listing 4-10. Starting the Node Application

$ npm install

$ node app

Server Started on port 8000

It might be confusing at first as to why the callback works using localhost. How can

Google call back to localhost? The simple answer is that Google gets your browser to call

the callback. So as long as you can connect to http://localhost:8000, you’re fine. Also,

if you’re using localhost, you don’t need to use https—the traffic is not traversing the

network. If you are redirecting over to anywhere other than localhost, then https is highly

recommended. The client must protect the access token, so using a non-encrypted

protocol would be unwise, even on your local network.

To test the application, point your browser at http://localhost:8000. You should

see the very simple web page shown in Figure 4-15.

Chapter 4 Oauth

http://nodejs.org/

133

When you click on the button, you may be prompted to log in to Google if you don’t

already have a session in your browser. Once Google knows who you are, you will be asked

to authorize the client and then will be redirected to page two, shown in Figure 4- 16.

Figure 4-15. Page one of the URL shortener application

Figure 4-16. Authorization and page two of the URL shortener application*

Chapter 4 Oauth

134

The app is simple: enter a URL and it will obtain a Google-shortened version for you.

The action of calling the API actually happens in the JavaScript in the browser, which

uses the access token returned in the URL fragment (a fragment is content returned in a

URL after the #). The callback URL and fragment in Figure 4-16 is:

http://localhost:8000/cb#state=urlshortenapicall&access_token=ya29.Ci-

UAzies3LBs9mMLOIZr8Sp_iYMgkxTE5aTT3wb6ymyPIccIx-hS8h-

Hlrjlx6f8Q&token_type=Bearer&expires_in=3599

You can see the parameters access_token, token_type, and expires_in, which are

listed after the hash mark (#) of the callback URI. You shouldn’t share an access token,

but this one will be long expired by the time you read this! Let’s take a quick look at some

of the more interesting parts of the code. The interesting part starts after you click the

button. This code is quite simple (see Listing 4-11).

Listing 4-11. Sample Code to Redirect to the Authorization Endpoint

// Redirect to Google's authorization endpoint

 app.post('/authRequest', function(req, res) {

 console.log('Redirect to : ', url);

 res.redirect(url);

 });

The authorization URL sends the required parameters scope, redirect_uri,

response_type, and client_id (see Listing 4-12).

Listing 4-12. Forming the Correct URL Value for OAuth Authorization

var url = 'https://accounts.google.com/o/OAuth/v2/auth?' +

 'scope='+urlShortenScope+'&'+

 'redirect_uri='+redirectURI+'&'+

 'response_type=token&' +

 'client_id='+client_id;

Of course, the response_type token tells the authorization server that this is implicit

flow. The state parameter is not needed in this case, because the application is running

on localhost. The risk of a malicious application sending a response to the callback URI

is minimal. For web applications, the state value is recommended. The state is returned

by the authorization server—the application generates a random, hard-to-guess state

Chapter 4 Oauth

135

value and caches it. When a response is received on the callback, the state should be

looked up. If it doesn’t exist, the response should be discarded—it was unsolicited. If the

state exists in the cache, it should be removed, and the response should be processed.

When the callback is called, it renders the demourlshorten.ejs page. When the

Submit button is clicked, a JavaScript script is called: $('#submit').click(function()),

which gathers the URL from the text field and submits it with the access token to the

urlshortener API. The results are just printed to a log message on the page itself, along

with a log of the exact request that was sent, so you can understand what is going on in

the background.

 Client Credential Grant Example with the Gluu
Server
If you are wondering how to put OAuth to work in your environment, it’s not that hard!

Let’s look at a simple “machine-to-machine” example of a script that calls a protected

API. The example is written in Python, using the easy-to-read “requests” module.

 Configuring the Gluu Server
In this example, the Gluu Server acts as the authorization server. The easiest way to run

this demo is to add both a scope (myScope) and a client using the oxTrust administrative

interface. Figure 4-17 shows a sample of the scope. OAuth scopes are managed under the

“OpenID Connect” section. That might be a little confusing, but OpenID Connect does

a really good job of defining how to manage OAuth clients. When you add the client,

select Scope Type OAuth. In this example, we made the scope available for dynamically

registered clients. It wasn’t necessary, because we’re going to add the scope to the client

manually. In general, if you make scopes available by default, make sure they are not

protecting any resources that require user explicit user approval. When adding the client,

make sure to add Client Credential Grant and two scopes: myScope and uma_protection

(see Figure 4-18). The latter will enable you to reuse these credentials for both the client

and resource server. The uma_protection scope is needed to call the OAuth token

introspection endpoint. You can disable protection of the introspection endpoint, but by

default, it’s protected. The thought is you may not want any client to be able to convert a

bearer token into its JSON equivalent.

Chapter 4 Oauth

136

Figure 4-17. Gluu Server OAuth scope configuration

Figure 4-18. Gluu Server client configuration detail on scopes and grant type

The sample client in Listing 4-13 is pretty simple: it gets a token and calls the

API. The sample RS is almost as simple: it looks at the token sent by the client,

introspects it, checks to see if it has the required scopes, and if so, returns the content. Of

course you'll have to insert your own client credentials and fix the URLs. Note: we aren't

using SSL for the sample API. If you want to use SSL, just add verify=False or read more

about the Python requests module to properly validate the SSL certificate (a requirement

for any production system).

Chapter 4 Oauth

137

Listing 4-13. Simple Python OAuth Client

#!/usr/bin/python

import requests, json

Get access token

client_id = '12345676890abcdefg'

client_secret = "secret"

token_endpoint = "https://idp.example.com/token"

scope = "myScope"

payload = {"grant_type":"client_credentials", "scope":scope}

response = requests.post(token_endpoint, data=payload, verify=False,

auth=(client_id, client_secret))

j = json.loads(response.text)

access_token = j['access_token']

Call API

api_endpoint = "http://api.example.com/cgi-bin/oauth-rs.cgi"

h = {'Authorization': 'Bearer %s' % access_token}

response = requests.post(api_endpoint, headers=h)

print response.text

The sample RS in Listing 4-14 is almost as simple: it looks at the token sent by

the client, introspects it, checks to see if it has the required scopes, and if so, returns

the content. Of course, you'll have to insert your own client credentials and fix the

URLs. Note: we aren't using SSL for the sample API. If you want to use SSL, just add

verify=False or read more about the Python requests module to properly validate the

SSL certificate (a requirement for any production system).

Listing 4-14. Simple OAuth Protected Python API

#!/usr/bin/python

import requests, json, os

from sets import Set

result = None

client_token = None

required_scopes = Set(['myScope'])

Chapter 4 Oauth

138

try:

 client_token = os.environ['HTTP_AUTHORIZATION'].split('Bearer')[-1].

strip()

except:

 print "HTTP/1.0 200 OK"

 print "Content-type: text/html\n\n"

 print 'Access token not found'

First get access token to call introspection endpoint

client_id = '1234567890abcdefg'

client_secret = 'secret'

token_endpoint = 'https://idp.example.com/token'

payload = {'grant_type':'client_credentials', 'scope':'uma_protection'}

response = requests.post(token_endpoint,

 data=payload,

 verify=False,

 auth=(client_id, client_secret))

j = json.loads(response.text)

introspection_token = j['access_token']

Introspect token

introspection_endpoint = 'https://idp.example.com/introspection'

h = {'Authorization': 'Bearer %s' % introspection_token}

token = {'token': client_token}

response = requests.post(introspection_endpoint,

 verify=False,

 headers=h,

 data=token)

result = response.text

j = response.json()

try:

 scopes = Set(j['scopes'][0].strip().split(' '))

except:

 print "HTTP/1.0 200 OK"

 print "Content-type: text/html\n\n"

 print "No scopes found"

 print "Result:\n" + result

Chapter 4 Oauth

139

missing_scopes = required_scopes - scopes

if len(missing_scopes):

 print "HTTP/1.0 200 OK"

 print "Content-type: text/html\n\n"

 print "Missing scopes: %s" % `list(missing_scopes)`

elif len(missing_scopes)==0:

 print "HTTP/1.0 200 OK"

 print "Content-type: text/html\n\n"

 print "Scopes %s all found" % `list(required_scopes)`

Make sure the web server is sending the request headers—if it's not, the RS script will

complain that it can't find the access token. You can use the print headers example from

Chapter 3. Look for the Authorization header: you should see the bearer token. Also, see

the print headers example from Chapter 3 if you're not sure how to deploy a CGI script.

This RS script was tested with nginx. For Apache you may need to remove the print

"HTTP/1.0 200 OK" lines. The client script can be run from anywhere, even from your

laptop. If you are not sure where the token and introspection endpoint are located on

your Gluu Server, use the OpenID Connect discovery endpoint. This is a simple JSON

object with the location of all the endpoints (and a bunch of other stuff you'll learn more

about in the next chapter), and you can view it by pointing your browser to https://

gluu.server.hostname/.well-known/openid-configuration.

 OAuth Glossary and IANA Registry Terms
OAuth has a large vocabulary of terms, some of which are registered at the Internet

Assigned Numbers Authority (IANA). This is a department of ICANN, a nonprofit

organization that oversees domain names, IP addresses, and protocol parameters.

IANA publishes many standard names, which are essential for the Internet to work. Port

numbers, media types, and language tags are some examples.

The Internet Engineering Task Force (IETF) community writes drafts, which become

Requests for Comments (RFCs) when they are final. Many RFCs contain guidance to

the IANA department for the creation of unique registry for protocol parameters, the

registration policy, and initial registrations of reserved values. There are almost 3,000

protocol registries published on http://www.iana.org. The two of interest to us are the

OAuth Parameters Registry and the JSON Web Token Registry. Familiarizing yourself

with these parameters shown in Tables 4-1 through 4-9 will help you understand which

part of a profile is OAuth and which part is custom.

Chapter 4 Oauth

https://gluu.server.hostname/.well-known/openid-configuration
https://gluu.server.hostname/.well-known/openid-configuration
http://www.iana.org/

140

Table 4-1. OAuth Access Token Types

Parameter Reference Description

bearer rFC 6750 any party in possession of this type of token can use it to access a

protected resource.

Table 4-2. OAuth Authorization Endpoint Response Types

Parameter Reference Description

code rFC 6749 authorization Code Flow

token rFC 6749 Implicit Flow

Table 4-3. OAuth Extensions Errors

Parameter Reference Description

invalid_request rFC 6750 the request is missing a required parameter, includes an

unsupported parameter or parameter value, repeats the

same parameter, uses more than one method for including

an access token, or is otherwise malformed. the resource

server ShOuLD respond with the http 400 (Bad request)

status code.

invalid_token rFC 6750 the access token provided is expired, revoked, malformed,

or invalid for other reasons. the resource ShOuLD respond

with the http 401 (unauthorized) status code. the client

MaY request a new access token and retry the protected

resource request.

insufficient_

scope

rFC 6750 the request requires higher privileges than provided by the

access token. the resource server ShOuLD respond with

the http 403 (Forbidden) status code and MaY include the

"scope" attribute with the scope necessary to access the

protected resource.

(continued)

Chapter 4 Oauth

141

Parameter Reference Description

unsupported_

token_type

rFC 7009 the authorization server does not support the revocation of

the presented token type. that is, the client tried to revoke

an access token on a server not supporting this feature. If

the server responds with http status code 503, the client

must assume the token still exists and may retry after a

reasonable delay.

unauthorized_

client

rFC 6749 the client is not authorized to request an authorization code

using this method.

access_denied rFC 6749 the resource owner or authorization server denied the

request.

unsupported_

response_type

rFC 6749 the authorization server does not support obtaining an

authorization code using this method.

invalid_scope rFC 6749 the requested scope is invalid, unknown, or malformed.

server_error rFC 6749 the authorization server encountered an unexpected

condition that prevented it from fulfilling the request. (this

error code is needed because a 500 Internal Server error

http status code cannot be returned to the client via an

http redirect.)

temporarily_

unavailable

rFC 6749 the authorization server is currently unable to handle the

request due to a temporary overloading or maintenance of

the server. (this error code is needed because a 503 Service

unavailable http status code cannot be returned to the

client via an http redirect.)

invalid_client rFC 6749 Client authentication failed.

invalid_grant rFC 6749 the provided authorization grant or refresh token is invalid,

expired, revoked, does not match the redirection urI used in

the authorization request, or was issued to another client.

invalid_scope rFC 6749 the requested scope is invalid, unknown, malformed, or

exceeds the scope granted by the resource owner.

Table 4-3. (continued)

Chapter 4 Oauth

142

Table 4-4. OAuth Parameters

Parameter Parameter Usage
Location

Reference Description

client_id authorization request,

token request

rFC 6749 the client identifier issued to

the client during the registration

process.

client_secret token request rFC 6749 a string with sufficient entropy

to prevent a credential guessing

attack.

response_type authorization request rFC 6749 the expected response from

the authorization endpoint, can

be 'code', 'token', or other

registered extension values.

redirect_uri authorization request,

token request

rFC 6749 after completing its interaction

with the resource owner, the

authorization server redirects the

user-agent to this urI.

scope authorization request,

authorization response,

token request, token

response

rFC 6749 the permissions associated with

the access token.

state authorization request,

authorization response

rFC 6749 an opaque value used by the

client to maintain state between

the request and callback. the

authorization server includes

this value when redirecting the

user-agent back to the client.

the parameter ShOuLD be used

for preventing cross-site request

forgery.

(continued)

Chapter 4 Oauth

143

Parameter Parameter Usage
Location

Reference Description

code authorization response,

token request

rFC 6749 a string generated by the

authorization server that’s used

by the client to obtain tokens. It

should be short-lived (less than 10

minutes), one-time use, and bound

to a client-id.

error authorization response,

token response

rFC 6749 a single aSCII error code specified

in the Oauth extensions error

registry.

error_

description

authorization response,

token response

rFC 6749 human-readable aSCII [uSaSCII]

text providing additional

information, used to assist the

client developer in understanding

the error that occurred.

error_uri authorization response,

token response

rFC 6749 a urI identifying a human-readable

web page with information about

the error, used to provide the client.

grant_type token request rFC 6749 Credential representing the

resource owner's authorization (to

access its protected resources)

used by the client to obtain an

access token.

access_token authorization response,

token response

rFC 6749 a string denoting a specific

scope, lifetime, and other access

attributes.

token_type authorization response,

token response

rFC 6749 Information the client needs to

successfully utilize the access

token.

(continued)

Table 4-4. (continued)

Chapter 4 Oauth

144

Parameter Parameter Usage
Location

Reference Description

expires_in authorization response,

token response

rFC 6749 the lifetime in seconds of the access

token. For example, the value “3600”

denotes that the access token will

expire in one hour from the time the

response was generated.

username token request rFC 6749 the identifier for the resource owner.

password token request rFC 6749 the resource owner’s aSCII secret.

refresh_token token request, token

response

rFC 6749 a token that can be used to obtain

a new access token from the

authorization server.

assertion token request rFC 7521 a package of information that

facilitates the sharing of identity

and security information across

security domains.

client_

assertion

token request rFC 7521 an assertion about the client.

client_

assertion_type

token request rFC 7521 the format of the assertion.

code_verifier token request rFC 7636 a cryptographically random string

that is used to correlate the

authorization request to the token

request.

code_challenge authorization request rFC 7636 a challenge derived from the

code verifier that is sent in the

authorization request, to be verified

against later.

code_challenge_

method

authorization request rFC 7636 a mechanism that was used to

derive code challenge.

Table 4-4. (continued)

Chapter 4 Oauth

145

Table 4-5. OAuth Dynamic Client Registration Metadata

Parameter Reference Description

redirect_uris rFC 7591 array of redirection urIs for use in redirect-based

flows.

token_endpoint_

auth_method

rFC 7591 requested authentication method for the token

endpoint.

grant_types rFC 7591 array of Oauth 2.0 grant types that the client may use.

response_types rFC 7591 array of the Oauth 2.0 response types that the client

may use.

client_name rFC 7591 human-readable name of the client to be presented to

the user.

client_uri rFC 7591 urL of a web page providing information about the

client.

logo_uri rFC 7591 urL that references a logo for the client.

scope rFC 7591 Space-separated list of Oauth 2.0 scope values.

contacts rFC 7591 array of strings representing ways to contact people

responsible for this client, typically email addresses.

tos_uri rFC 7591 urL that points to a human-readable terms of service

document for the client.

policy_uri rFC 7591 urL that points to a human-readable policy document

for the client.

jwks_uri rFC 7591 urL referencing the client’s JSON Web Key Set

[rFC7517] document representing the client's public

keys.

jwks rFC 7591 Client’s JSON Web Key Set [rFC7517] document

representing the client’s public keys.

software_id rFC 7591 Identifier for the software that comprises a client.

(continued)

Chapter 4 Oauth

146

Parameter Reference Description

software_version rFC 7591 Version identifier for the software that comprises a

client.

client_id rFC 7591 Client identifier.

client_secret rFC 7591 Client secret.

client_id_issued_at rFC 7591 time at which the client identifier was issued.

client_secret_

expires_at

rFC 7591 time at which the client secret will expire.

registration_

access_token

rFC 7591 Oauth 2.0 Bearer token used to access the client

configuration endpoint.

registration_

client_uri

rFC 7591 Fully qualified urI of the client registration endpoint.

Table 4-6. OAuth Token Endpoint Authentication Methods

Parameter Reference Description

none rFC 7591 No authentication.

client_

secret_post

rFC 7591 the client uses the http POST parameters as defined in Oauth 2.0,

Section 2.3.1.

client_

secret_basic

rFC 7591 http Basic authentication.

Table 4-5. (continued)

Chapter 4 Oauth

147

Table 4-7. OAuth Token Introspection Responses

Parameter Reference Description

active rFC 7662 token active status.

username rFC 7662 user identifier of the resource owner.

client_id rFC 7662 Client identifier of the client.

scope rFC 7662 authorized scopes of the token.

token_type rFC 7662 type of the token.

exp rFC 7662 expiration timestamp of the token.

iat rFC 7662 Issuance timestamp of the token.

nbf rFC 7662 timestamp before which the token is not valid.

sub rFC 7662 Subject of the token.

aud rFC 7662 audience of the token.

iss rFC 7662 Issuer of the token.

jti rFC 7662 unique identifier of the token.

Table 4-8. JSON Web Token Claims

Parameter Reference Description

iss rFC 7519 Issuer

sub rFC 7519 Subject

aud rFC 7519 audience

exp rFC 7519 expiration time

nbf rFC 7519 Not Before

iat rFC 7519 Issued at

jti rFC 7519 JWt ID

cnf rFC 7800 Confirmation

Chapter 4 Oauth

148

 Conclusion
Didn’t get enough OAuth? Now that you know the OAuth basics, it’s time to move

on. The preceding examples showed how to write a client to call an OAuth protected

API. Chapter 5 deep dives on using OAuth for authentication, using the OpenID Connect

profile. Chapter 6 details using a web proxy and OAuth to protect APIs. Chapter 8

discusses using the User Managed Access protocol (UMA), a profile of OAuth for API

access management.

 References

 1. “OAuth 2.0 and Sign-In,” 1/2/2013, http://www.cloudidentity.

com/blog/2013/01/02/oauth-2-0-and-sign-in-4/

 2. Google Scopes page: https://developers.google.com/

identity/protocols/googlescopes?linkId=17886206

 3. “JSON Web Token (JWT),” Jones, Bradley, Sakimura, May 2015,

https://tools.ietf.org/html/rfc7519#section-10.2.1

 4. “OAuth 2.0 Message Authentication Code (MAC) Tokens,” Richer,

Mills, Tschofenig, January 2014, https://tools.ietf.org/html/

draft-ietf-oauth-v2-http-mac-05

 5. “The OAuth 2.0 Authorization Framework: Bearer Token Usage,”

Jones, Hardt, October 2012, https://tools.ietf.org/html/

rfc6750

Table 4-9. JWT Confirmation Methods

Parameter Reference Description

jwk rFC 7800 JSON Web Key representing public Key

jwe rFC 7800 encrypted JSON Web Key

kid rFC 7800 Key Identifier

jku rFC 7800 JWK Set urL

Chapter 4 Oauth

http://www.cloudidentity.com/blog/2013/01/02/oauth-2-0-and-sign-in-4/
http://www.cloudidentity.com/blog/2013/01/02/oauth-2-0-and-sign-in-4/
https://developers.google.com/identity/protocols/googlescopes?linkId=17886206
https://developers.google.com/identity/protocols/googlescopes?linkId=17886206
https://tools.ietf.org/html/rfc7519#section-10.2.1
https://tools.ietf.org/html/draft-ietf-oauth-v2-http-mac-05
https://tools.ietf.org/html/draft-ietf-oauth-v2-http-mac-05
https://tools.ietf.org/html/rfc6750
https://tools.ietf.org/html/rfc6750

149

 6. OAuth 2.0 Token Introspection, J. Richer, October 2015, https://

tools.ietf.org/html/rfc7662

 7. “JSON Web Algorithms (JWA),” Jones, M., May 2015, http://www.

rfc-editor.org/info/rfc7518

 8. “Proof-of-Possession Key Semantics for JSON Web Tokens

(JWTs),” Jones, Bradley, Tschofenig, April 2016, https://tools.

ietf.org/html/rfc7800

 9. “OAuth 2.0 Dynamic Client Registration Protocol,” Jone, Bradley,

Machalak, Hunt, July 2015, https://tools.ietf.org/html/

rfc7591

 10. https://tools.ietf.org/html/rfc6749#section-10.10

 11. “Proof Key for Code Exchange by OAuth Public Clients,” Sakimura,

Bradley, Agarwal, September 2015, https://tools.ietf.org/

html/rfc7636

Chapter 4 Oauth

https://tools.ietf.org/html/rfc7662
https://tools.ietf.org/html/rfc7662
http://www.rfc-editor.org/info/rfc7518
http://www.rfc-editor.org/info/rfc7518
https://tools.ietf.org/html/rfc7800
https://tools.ietf.org/html/rfc7800
https://tools.ietf.org/html/rfc7591
https://tools.ietf.org/html/rfc7591
https://tools.ietf.org/html/rfc6749#section-10.10
https://tools.ietf.org/html/rfc7636
https://tools.ietf.org/html/rfc7636

151
© Michael Schwartz, Maciej Machulak 2018
M. Schwartz and M. Machulak, Securing the Perimeter, https://doi.org/10.1007/978-1-4842-2601-8_5

CHAPTER 5

OpenID Connect
Despite OAuth’s close association with authentication, if you want to use it for web or

mobile login, you’ll should use OpenID Connect. Both a profile and extension of OAuth,

OpenID Connect defines some of the features necessary to use OAuth for federated

identity.

Note To save space, sometimes “OpenID Connect” is shortened to simply
“Connect”. “OpenID” would not be specific enough, because there are several
OpenID working groups with product standards.

OpenID Connect was formulated at a time when Google, Microsoft, Facebook,

and other large consumer identity providers had already introduced their own OAuth

based identity APIs. These services were already processing millions of transactions

per day, and the design of Connect benefited from the experience collected on security,

developer usability, and end user behavior. It was confusing for developers to keep

track of the little differences between the OAuth login services of the various consumer

services. For example, the identity service of Google was almost the same as that of

Facebook. But these little differences were annoying, and resulted in one-off code.

OpenID Connect has many parallels to SAML. The OpenID Provider (OP) is

analogous to the SAML IDP—the software component that authenticates the person

and returns an assertion to the relying party (or RP), roughly equivalent to the SAML

SP. While in SAML we might call pieces of information about a person “attributes,”

in Connect, we call these things “user claims”. The equivalent of the SAML assertion

(signed XML document that contains information about the authentication event, and

optionally attributes of the person), is an id_token, a signed JSON Web Token, or JWT

(pronounced “jot”) that contains very similar information.

152

The overriding design goal of Connect was to keep simple things simple, but also

make complex things possible. As opposed to SAML, which was developed before the

release of the iPhone in 2007, the initial Connect functional specifications released in

2011 incorporated new requirements brought about by mobile use cases. Connect also

embraced JSON data structures and RESTful web services. This architecture is more

efficient on the wire than XML data structures, and it requires less compute power

on small devices. Also, the complexity of parsing XML has resulted in many security

problems, as different implementations may mess it up. Also, while SAML was primarily

focused on enterprise use cases, Connect was designed to address both enterprise and

consumer requirements, which included a wider range of security levels, from non-

sensitive information to highly secure transactions.

Figure 5-1, which is based on a slide from one of Nat Sakimura’s presentations, shows

how Connect layers security. Depending on the Connect features you use, you can

mitigate additional risk. In the implicit flow, tokens are retrieved from the authorization

endpoint without client credentials. This results in less security than for the hybrid flow,

where the client is authenticated and signing and encryption are used for the request

and responses.

Security
Level

Flow Remarks Client Options

Hybrid Flow Authorization request
protected

request_object_encryption_alg
request_object_signing_alg

Hybrid Flow Authorization response
protected

id_token_encrypted_response_alg
id_token_signed_response_alg

Code Flow Client authentication token_endpoint_auth_method=private_key_jwt
token_endpoint_auth_method=client_secret_basic

Implicit Flow No client authentication none

OAuth2 Implicit /
Code

No integrity Without id_token, missing nonce and at_hash

Figure 5-1. OpenID Connect security levels

ChapTer 5 OpenID COnneCT

153

Connect is an architecture that leverages several related standards developed by the

OpenID Connect working group and standards from the IETF. This chapter provides

a deep dive into those components and provides some examples for how you can put

Connect to use in your organization for access management.

 OpenID Connect Overview
If you think back to Figure 4-2 about OAuth, it showed three software roles (the client,

resource server, and authorization server) and three human roles (resource owner,

requesting party, and developer). All six are present in Connect, although there are two

conflations, illustrated in Figure 5-2:

• The OpenID Provider (hereafter referred to as the OP) is a

combination of the authorization and resource server.

• The subject is both the resource owner and the requesting party.

Figure 5-2. Conflated OAuth2 roles in OpenID Connect

ChapTer 5 OpenID COnneCT

154

In OAuth terms, the OP is the authorization server—it issues access token and

publishes the authorization and token endpoints. It is also the resource server, because

it hosts the protected endpoint—the “Userinfo endpoint” that returns a JSON object

containing the user claims of the subject. When you log in, you are both the requesting

party (the person asking to get access) and the resource owner. It’s information about

you that you are authorizing the client to access. Note that in Connect, unlike in most

OAuth scenarios, a developer does not code the protected API—only the client.

OpenID Connect introduces a new token, called the id_token, which is like a SAML

assertion. The id_token contains a subject identifier (for example, a username) and

other information about the authentication event, such as who issued the token, to

whom it was issued, when the authentication occurred, or what type of authentication

happened. Like SAML, id_token may contain attributes (user claims). We’ll go into more

detail on the id_token later in this chapter. The key thing to keep in mind is that it’s not

really a token—something that grants access. It’s an identity assertion.

OpenID Connect also introduces a new flow—the hybrid flow. As you might

remember from Chapter 4, the implicit flow allows the client to request a token from the

authorization endpoint without client authentication. Using the authorization code flow,

after the subject authorizes, the client receives a code from the OAuth authorization

endpoint (front-channel) and obtains a token after presenting the code plus client

credentials at the OAuth token endpoint (back-channel). The hybrid flow combines

the implicit and code flows, in that an id_token is returned on the front-channel from

the authorization endpoint. The id_token is typically signed by the OP and may be

encrypted. Verifying the contents of the id_token adds an extra layer of security to the

front-channel response by introducing the c_hash and s_hash claims, which enable the

client to verify the integrity of the code and state, respectively.

In general, OpenID Connect fills in a lot of important details that are necessary to

use OAuth for a secure sign-in flow. It incorporates the cryptographic features of the the

JSON Object Signing and Encryption standards (JOSE) and describes how to use them

together within an OAuth framework. Figure 5-3, adapted from the OpenID Connect

website, provides an overview of OpenID Connect features and the underpinnings in

OAuth.

ChapTer 5 OpenID COnneCT

155

While new OpenID Connect specifications are under development, there are four

key specifications:

• Core—How a person is authenticated and authorizes the release of

claims.

• Dynamic Client Registration—How a client obtains a client_id and a

secret (or registers a public key).

• Discovery—How a client figures out how to bootstrap authentication

with an OP (many similarities to the publication of SAML IDP

metadata).

• Logout—How clients can attempt to implement single-logout (SLO).

 OpenID Connect Authorization Server Endpoints
The OpenID Connect authorization server endpoints are described in Table 5-1.

Figure 5-3. OpenID Connect overview with OAuth underpinnings

ChapTer 5 OpenID COnneCT

156

Table 5-2. OpenID Federation Endpoints

Endpoint Description

Signing keys Stable keys used for signing and encryption, published to a federation.

Signed JWKS Signed version of the JWKS endpoint.

Metadata Statements JWTs issued to an Op by federations to indicate membership.

Table 5-1. OpenID Connect Authorization Server Endpoints

Endpoint Description

authorization Front-channel web pages that render the login page and authorization (consent)

pages.

Token Back-channel endpoint, normally requiring authentication, where a client can

obtain an access token, id_token, and refresh token.

Userinfo access token protected apI at which the client can request claims about a subject.

Configuration provider metadata published at .well-known/openid-configuration,

including the location of endpoints, supported cryptographic algorithms, and other

information needed by the client to interact with the Op.

JWKS The current public keys of the Op used for signing and encryption.

Client

registration

endpoint for an application to create or update an Oauth client.

Session

management

Used by all three OpenID logout specs (none working that well) .

WebFinger Used to bootstrap Op discovery working backwards from an email address (or

other identifier), i.e. how do you figure out the configuration endpoint for a domain.

If the OP supports the OpenID Federation specification (an implementer’s draft at

the time of this book's publication), it would also optionally publish these endpoints in

Table 5-2.

ChapTer 5 OpenID COnneCT

157

 id_token
The id_token is a JWT that binds the subject identifier (and potentially other claims)

with the authentication event. As previously mentioned, it is analogous to the SAML

assertion. The id_token must be signed by the OP and may be encrypted if the client

so requests. Figure 5-4 shows a summary of the id_token claims. For a full list, see the

OpenID Connect Core specification.

Claim Description

iss URL of OP that issued token

sub Subject identifier

aud Audience – client_id of the client to which the token was issued

exp Expiration time of the token

iat Time at which the token was issued

auth_time Time at which the subject authenticated

nonce Correlates the token to a specific authentication request

acr String that indicates the authentication

amr Array of strings with additional details about authentication event

Figure 5-4. id_token claims

An example of the JSON representation of an id_token is shown in Listing 5-1.

Listing 5-1. Sample id_token JSON Object

{

 "iss" : "https://login.example.com",

 "sub" : "foo@example.com",

 "aud" : "b250c4a7-5551",

 "nonce" : "5zTdd3302Rf9",

 "auth_time" : 1530986231,

 "acr" : "otp",

 "iat" : 1530986231,

 "exp" : 1311288231,

 "orgClaim" : "spam"

}

ChapTer 5 OpenID COnneCT

158

If you're wondering if orgClaim is valid, good eye! The Core spec says the id_token

MAY contain other claims. Similarly, a SAML IDP may include user attributes in a SAML

identity assertion. Sending user claims in the id_token impacts security. It may lack

interoperability—RPs may not expect it. But it's not contrary to the specification.

When sent over the wire, the id_token is base-64 encoded. Remember, according to

RFC 7619, JWTs have three parts: the header, payload, and signature. For example, with

a header of {"alg": "HS512","typ": "JWT"} and using a shared secret of spam, the

example id_token looks like this:

eyJhbGciOiJIUzUxMiIsInR5cCI6IkpXVCJ9.eyJpc3MiOiJodHRwczovL2xvZ2luLmV4YW1wbG

UuY29tIiwic3ViIjoiZm9vQGV4YW1wbGUuY29tIiwiYXVkIjoiYjI1MGM0YTctNT

U1MSIsIm5vbmNlIjoiNXpUZGQzMzAyUmY5IiwiYXV0aF90aW1lIjoxNTMwOTg2MjM

xLCJhY3IiOiJvdHAiLCJpYXQiOjE1MzA5ODYyMzEsImV4cCI6MTMxMTI4ODIzMSwib3JnQ

2xhaW0iOiJzcGFtIn0.OLG72c2GstOGaBhrSHaksCkpld7uU9qpPb32CdisIes

XsUhQifoWHrAj_PBe7MzviVOw_yB23SSYXu9W2zxREA

 OpenID Authentication on the Fly
An interesting feature of Connect is that it describes how a client could bootstrap

authentication against an external Internet domain without knowing anything more

than a person’s email address. Although rarely used in practice, and keeping in mind

that there are some potential security vulnerabilities associated with dynamic discovery

and client registration, it offers a glimpse into a future in which cross-domain security is

possible without prior out-of-band configuration. Figure 5-5 summarizes this discovery

process for a hypothetical person foo@bar.com. In this very simple sequence diagram,

the Person and User Agent are combined into one unit.

ChapTer 5 OpenID COnneCT

159

Figure 5-5. OpenID Connect Dynamic cross-domain authentication

ChapTer 5 OpenID COnneCT

160

Here is the scenario: imagine you are browsing around, and you decide you need

to buy a cool T-shirt from an open source project. You don’t have an account on the

ecommerce site, but you notice that it supports OpenID Connect. That’s great, because

your organization uses an OP, and you don’t want to have to remember yet another

username and password. You click login, provide your email address, and voilà, you

are presented with the login page of your home OP. After authentication, you complete

the necessary shipping and billing information. Your home OP does not release any

personally identifiable information about you—only a “pairwise” ID that is different for

every website you visit. If you ever need to return to this ecommerce site, for example

to check the status of your T-shirt order, you won’t need to remember site-specific

credentials. In fact, you don’t even have to sign in if you already have a session with your

home OP. You simply click Login and you are presented with your order history.

 OpenID Connect Discovery
The OpenID Provider configuration URL can be located at a domain using the

WebFinger protocol (or an out-of-band mechanism). An https GET request to the

configuration URL returns a JSON document, including the endpoints where it provides

the OpenID Connect API. The path used to publish an OP’s configuration endpoint

is https://domain/optional-path/.well-known/openid-configuration. You’ll see

this quite often with different services, such as WebFinger, UMA, and other standards.

The /.well-known/ path is defined in RFC 5785 as a standard location to publish site

metadata.

Figure 5-6 shows a sample Connect discovery response from a local test server. If

you think that this looks like SAML IDP metadata in JSON format, you’re right. SAML

metadata provides the keys, service URLs, and other configuration or organizational

information. One difference is that the keys are not present in the Connect configuration

document, but are referenced by the jwks_uri claim. Figure 5-7 shows a sample JWKS

from Google’s Connect service. You can read more about JSON Web Keys in RFC 7517.

ChapTer 5 OpenID COnneCT

161

Figure 5-6. Sample OpenID Connect configuration response

ChapTer 5 OpenID COnneCT

162

From the client perspective, after receiving and processing the Connect discovery

configuration response, a request can be made to obtain client credentials. In addition

to knowing the URLs where the service is hosted, the client can also discover which

cryptographic algorithms, scopes, user claims, and features are supported. The

OpenID Connect Discovery specification defines what each of these values means,

and conventions for some of the values. Some of the values are out of scope of the

specification and are addressed in other standards.

Because the OP’s public key is required to validate the signatures of the id_token

and Userinfo JWTs, publishing OpenID Connect discovery information is a requirement

for most OPs. It is a best practice to rotate keys every two days. Many SAML IDPs rotate

keys much less frequently—once a year is not uncommon. The design goal behind such

quick key rotation is to quickly identify problems. If key rotation is broken on the RP, and

you find out a year later, the developers may have moved onto another project and lost

familiarity with the client.

As with all security APIs, it is essential that https is used and that the certificate is

properly validated. If an attacker can return incorrect discovery information, bad things

can happen. For example, what if the hacker leaves the authorization_endpoint the

Figure 5-7. Sample JWKS from Google’s OpenID Connect service

ChapTer 5 OpenID COnneCT

163

same as the target OP, so the client obtains a valid code, but changes the token_endpoint

so the client presents its client credentials and code to the hacker! Or if your client

redirects the subject to the OP of an attacker, and it presents a reasonable looking login

page, the person may leak their username and password!

This is also one of the risks that multi-party federations seek to mitigate—providing a

trusted source for clients to obtain OP configuration metadata.

 Client Registration
As OpenID Connect is a profile of OAuth, the client must tell the AS its redirect_uri—

where to send the browser and authorization response after user interaction at the AS is

complete. After processing a registration request, the OP will issue the client an identifier

(client_id). Depending on the implementation, the client either registers or is issued a

client secret. Client authentication is used to increase the security of obtaining a token

on the back-channel. After successful registration, the OP may also return a registration

access token, which can be used for subsequent update operations.

Client registration enables a client to register a JWKS document (containing

its public key) or to specify a jwks_uri. This improves security because it avoids

authentication based on a shared secret with the authorization server.

In SAML, the IDP normally either imports the SP metadata or manually configures

the endpoints and imports its public certificates. The SP itself chooses its identifier—

the entityID. In OAuth, this process is reversed: the OP issues the client identifier and

sometimes even a shared secret used for client authentication.

In the interest of making this process more streamlined, the OpenID Connect

Dynamic Client Registration API was introduced. In parallel, at around the same time,

work began on OAuth client registration, which became RFC 7592. Other protocols, like

the User Managed Access protocol, also take advantage of OpenID client registration.

OpenID Connect client registration is simple: you can register and obtain information

about your registration. In OAuth, there is also a client configuration API that can be

used to update or delete client configuration. In practice, it is beneficial for OPs to also

support the OAuth client configuration API. Figure 5-8 shows the registration flow from

RFC 7592.

ChapTer 5 OpenID COnneCT

164

One of the most important parts of the Connect client registration specification is

the section entitled “Client Metadata”. In addition to specifying the redirect_uri, the

client can tell the OP how it wants to interact—what algorithms to use for signing and

encryption, what grant types it needs, what responses types it expects, and so on. While

most OPs implement default values to keep client registration simple, to use advanced

features, you’ll need to understand the more esoteric parameters.

The Connect client registration API by itself is not always enough information to

handle the requirements of enterprise IAM services. There is policy to consider. For

example, in some cases, a client may request a certain configuration preference, but

the OP may not allow it. The OP may also have client configuration requirements to

handle enterprise requirements. For example, the Gluu Server has a client configuration

 parameter to signal to the OP to suppress the authorization approval message. In a

Client or
Developer

Client
Configuration

Endpoint

Client
Registration

Endpoint

Client Registration Request

Client Information Response

Read or Update Request

Client Information Response

Delete Request

Delete Confirmation

Initial Access Token (Optional)

Software Statement (Optional)

Figure 5-8. RFC 7592 dynamic client registration flow diagram

ChapTer 5 OpenID COnneCT

165

corporate portal, which may be comprised on several client applications, it would be

confusing to present the subject with multiple approval requests. Also, authorization

is not needed if the websites in the portal are controlled by the same organization that

operates the OP. Another example from the Gluu Server regarding authorization is a

setting to enable the OP to only ask the subject to authorize a client once—remembering

the person’s past decision for subsequent requests.

Although there is a client registration API, there may be a manual workflow to

approve registration requests—trust may require manual intervention. If unknown

clients can register with an OP, what personal information about the subject should

be released by default? In most situations, the OP should not release any PII in that

situation. Connect requires the OP to release the openid scope to the client, which

includes the subject identifier (which could be pairwise, thus not leaking any PII).

An administrator at the OP may approve the release of additional information about the

subject post-registration.

Another way to authorize clients to dynamically register, but request PII is to issue it

a “software statement,” which is like a registration access token. The software statement

could be a signed JWT that the client presents to the OP to automate trust management.

If the software statement is issued from a trusted source, like a federation operator, it can

enable an OP to release claims without requiring a manual approval workflow. However,

the mechanism for acquiring registration access tokens and software statements,

presenting them during registration, or validating them is currently unspecified in the

Connect and OAuth client registration specifications.

 Authentication/Authorization
Like SAML, Connect is a federation protocol, not an authentication protocol. And

like SAML, it is based on redirecting the person’s web browser to an identity provider.

Whether the person is authenticated by matching a password or validating possession

of a hardware token, it doesn’t matter—the authentication mechanism is outside the

scope of Connect. However, Connect does care that the person was authenticated—that

the physical person was present at some point to provide the necessary input. After the

subject has been authenticated, Connect defines a flow to enable the person to authorize

the release of user claims. The authentication and authorization processes are both

defined in the Connect Core specification.

ChapTer 5 OpenID COnneCT

166

As discussed, after the client is registered, it can use the three endpoints that will

enable it to authenticate a subject: the authorization endpoint, token endpoint, and

Userinfo endpoint. Depending on the flow used, one, two, or three of these endpoints

may be utilized. Different flows have different security profiles. Even the same flow used

with different parameters can have a different security profile. The next few sections

provide more details about how to use these different flows.

 Response Types
OAuth 2.0 RFC 6749 defines response_type as a space-delimited list of values used

by the client to signal to the authorization server the desired grant type. An OpenID

Connect specification describes the use of multiple response types. The most common

response type is code—which specifies the authorization code flow. Figure 5-9

summarizes the response_type values you might use. The none response_type is used

to signal to the client a successful authorization without granting access to any API. Like

the token response, it is not used for authentication, which would require an id_token.

response_type Flow

code Authorization code

token Implicit – OAuth2 only

id_token Implicit – OpenID Connect

id_token token Implicit – OpenID Connect

code id_token Hybrid

code token Hybrid

code id_token
token

Hybrid

none See “OAuth 2.0 Multiple Response Type Encoding Practices”

Figure 5-9. OpenID Connect response types

ChapTer 5 OpenID COnneCT

167

 Scopes
In OAuth scopes communicate the extent of access. In OpenID Connect, the extent

of access maps to the release of user claims—the granting of a client access to certain

information about the subject. Using scopes, an OP can group the release of user claims

and present a person with one human understandable description for approval. For

example, let’s say we have a scope called address that includes information about a

person’s street, city, state, ZIP code, and country. Instead of prompting the person to

approve each claim individually, the OP can simply ask, “Is it okay to release to this client

information about your physical mailing address?” Connect requires that the openid

scope is always present. This scope maps the subject identifier. If the openid scope is not

present, you’re not using OpenID Connect! How clients are assigned additional scopes

can vary between OP implementations and trust models.

 Authorization Code Flow
The code flow is the most common OpenID Connect authentication flow. Server-side

applications should use it or the hybrid flow—not the implicit flow. Over-simplifying, it's

a three step process:

 1. Redirect the subject to the authorization endpoint.

 2. Use the code and client credentials at the token endpoint to get

the access token, id_token, and refresh token.

 3. Use the access token at the Userinfo endpoint to get user claims.

 Code Flow Step 1: Redirect to Authorization Endpoint

An example authentication request to an imaginary OP login.example.com is shown in

Listing 5-2.

Listing 5-2. Sample Redirect to the Authorization Endpoint, an OpenID

Authentication Request

HTTP/1.1 302 Found

Location: https://login.example.com/authorize?

 response_type=code

 &scope=openid

ChapTer 5 OpenID COnneCT

168

 &client_id=b250c4a7-5551

 &redirect_uri=https%3A%2F%2Fclient.example.com%2Fcb

 &state=6d19327

 &nonce=b722ff419a24

 &acr_values=otp

The OP will render the login and authorization pages, as necessary. If everything

goes well (i.e., the subject successfully authenticates and authorizes the request), the OP

will respond with the code and state (see Listing 5-3).

Listing 5-3. Sample Successful Authentication Response

HTTP/1.1 302 Found

Location: https://client.example.com/cb?

 code=00e33be00c97

 &state=6d19327

The client must validate that the code returned is the one sent. This prevents cross-

site request forgery (CSRF), which tries to execute unwanted actions on the client web

application.

 Code Flow Step 2: Get Tokens

Using the code and redirect_uri from Step 1, and base-64 encoded client credentials

(or other supported client authentication methods), the client calls the token endpoint

(see Listing 5-4).

Listing 5-4. Sample Token Request

POST /token HTTP/1.1

Host: login.example.com

Content-Type: application/x-www-form-urlencoded

Authorization: Basic YjI1MGM0YTctNTU1MTpzZWNyZXQ=

grant_type=authorization_code

 &code=00e33be00c97

 &redirect_uri=https%3A%2F%2Fclient.example.com%2Fcb

ChapTer 5 OpenID COnneCT

169

If the code and the client credentials are valid, the OP should return tokens (see

Listing 5-5).

Listing 5-5. Sample Token Response

HTTP/1.1 200 OK

Content-Type: application/json

Cache-Control: no-store

Pragma: no-cache

{

 "access_token": "3b32043dbc5d",

 "refresh_token": "8984e43005c4",

 "token_type": "Bearer",

 "expires_in": 300,

 "id_token": "{header}.{payload}.{signature})"

}

Note that this response is identical to an OAuth2 token response, as described in

section 5.1 of RFC 6749, with the exception of the id_token, which is defined by OpenID

Connect.

 Step 3: Call Userinfo

In Step 3, you call the Userinfo endpoint with the access token you got in Step 2 (see

Listing 5-6).

Listing 5-6. Sample Userinfo Request

GET /userinfo HTTP/1.1

 Host: login.example.com

 Authorization: Bearer 3b32043dbc5d

A sample Userinfo response from the OpenID Connect Core specification is shown

in Listing 5-7 (the request we showed above would have been pretty boring because it

only requested the openid scope). A more complete discussion of the Userinfo endpoint

follows. This sample in Listing 5-7 will give you an idea of what it looks like.

ChapTer 5 OpenID COnneCT

170

Listing 5-7. Sample Userinfo Response

HTTP/1.1 200 OK

 Content-Type: application/json

 {

 "sub": "248289761001",

 "name": "Jane Doe",

 "given_name": "Jane",

 "family_name": "Doe",

 "preferred_username": "j.doe",

 "email": "janedoe@example.com",

 "picture": "http://example.com/janedoe/me.jpg"

 }

Connect defines several parameters that can be used during the call to the

authorization_endpoint, which are summarized in Figure 5-10.

Param Descrip�on

response_mode How to return the response parameters: query, fragment,
or form

nonce Guess resistant string, returned in id_token, used to
mi�gate replay a�acks

display How the OP should display the authn / authz consent
interface: page, popup, touch, or wap

prompt Whether the OP should prompt for reauthen�ca�on and
consent: none, login, consent, and select_account

max_age Allowable elapsed �me in seconds since the last �me the
end-user was ac�vely authen�cated

ui_locales Subject’s preferred languages and scripts for the user
interface

id_token_hint Used when prompt=none to acquire a new access token

login_hint A mechanism to enable the OP to know the username of
the subject

acr_values Space delimited string specifying authen�ca�on preference
of subject or client

Figure 5-10. Authentication request parameters

ChapTer 5 OpenID COnneCT

171

A few of these parameters need some more explaining. First of all, the response_

mode parameter can use query, fragment, or form. query uses parameters in the URL

to send back response data (key/value pairs after the ? in the URL); fragment puts

information after the # in a URL; fragment includes some security advantages. On a

redirect, the query is sent to the host, whereas the fragment is evaluated locally by the

browser. The form response_mode is a Connect extension—it is not in defined in the

OAuth specifications. There is an OpenID specification called OAuth 2.0 Form Post

Response Mode that defines a mechanism to return a response to the client, which is

similar to SAML’s POST binding—response parameters are included in an HTML form,

which uses JavaScript to automatically post back to the client redirect_uri.

Another interesting parameter is prompt. If you want to re-authenticate the subject,

you can use prompt=login. If you want to receive a new access token without prompting

the subject, you can use prompt=none with the id_token_hint parameter. Using

prompt=none may trigger error responses if interaction with the end user is required, so if

you use this feature, make sure you check for errors. Requesting prompt=consent should

force re-authorization. If you wanted to achieve stepped-up authentication, you could

use the prompt=login and acr_values parameters together.

On success, after the authorization endpoint returns a code, the client will make a

request to the token endpoint. While this request is largely similar to the token request

outlined in OAuth, Connect provides some extra considerations, the first of which is

client authentication. During registration, the client can specify the token_endpoint_

auth_method parameter. The options are client_secret_post, client_secret_basic,

client_secret_jwt, private_key_jwt, and none. The default value is client_secret_

basic. Of particular interest for enterprise IAM is private_key_jwt. Web SSO agents

have been using asymmetric client credential secrets for some time, so using a shared

client secret seems like a downgrade. One challenge with this is that it’s harder for clients

to generate a JWKS credentials.

ChapTer 5 OpenID COnneCT

172

If you are wondering how to create a JWKS, you can use a free utility published at

https://mkjwk.org/. Or you can download the command-line tool from GitHub at

https://github.com/mitreid-connect/json-web-key-generator/. You’ll have to

follow the instructions on the README to compile the package and generate your keys,

but it’s pretty easy.

The token response from the OP will include an access token and an id_token, and

usually a refresh token. The id_token will be a signed JWT, and as previously mentioned,

will be encrypted if the client provided a JWKS and requested encryption during client

registration. The id_token should be validated in a similar manner as the implicit flow.

 Implicit Flow
The main difference between the OAuth and OpenID Connect implicit flows lies in the

use of the id_token, which must be returned in Connect. The id_token adds some extra

security. When the client calls the authorization endpoint, it includes a nonce value.

This value is returned unmodified in the signed id_token. The client must validate that

the nonce has not changed, which mitigates a replay attack. The nonce may be stored in

HTML5 local storage, or a hash of the nonce can be stored in a browser session cookie.

The OAuth2 state parameter should still be used—it serves a different purpose

(to quickly discard bad requests).

There is one more step to ensure the integrity of the transaction. Connect defines an

id_token claim called at_hash, which can be used to verify that the value of the access

token has not changed from when it was issued. If the id_token and token are both

returned from the authorization endpoint, as shown in Figure 5-11, then the client must

verify the at_hash.

ChapTer 5 OpenID COnneCT

https://mkjwk.org/
https://github.com/mitreid-connect/json-web-key-generator/

173

Figure 5-11. OpenID Connect implicit flow sequence diagram

ChapTer 5 OpenID COnneCT

174

You can see that Connect adds quite a bit of security over the generic flow described

in OAuth. Also, other features are available to the client developer, such as use of the

login parameter. For more information, or if you are a developer writing a client, you

should read the Implicit Client Implementer’s Guide.

As mentioned previously, the authorization code flow is more secure than the

implicit flow because the tokens are never exposed to the web browser (and possibly

malicious applications with access to the browser). The code flow also adds client

authentication at the token endpoint.

Validating the id_token improves the security of the implicit flow:

 1. Validate the JWT signature to ensure integrity.

 2. Use encryption to protect against data leaking.

 3. aud verification protects against token re-use—you want to make

sure you're using a token issued for you.

 4. The token issuance, expiration, and authentication times protect

against stale information

 5. The nonce prevents CSRF attacks, like the OAuth state parameter,

but is signed.

 6. The acr and amr claims convey information about how the subject

was authenticated.

 7. The access token can be validated using the at_hash value.

 Hybrid Flow
Hybrid flow is one of the least understood Connect features, but it’s actually not that

complicated. The response_type for hybrid flow always includes code, plus token,

id_token, or both. As Figure 5-1 shows, the hybrid flow can be used to achieve higher

security levels—by returning the id_token from the authorization endpoint, the client

can verify the integrity of the code by verifying the id_token claim c_hash. The most

logical hybrid flow response_type is code id_token. You can also get back an access

token from the authorization endpoint in the hybrid flow, but it’s not clear to me why

you would want to do this—you’re going to get a new access token when you use the

code at the token endpoint.

Figure 5-12 provides an overview of the hybrid flow for response type code id_token.

ChapTer 5 OpenID COnneCT

175

Fi
gu

re
 5

-1
2.

 O
pe

n
ID

 C
on

n
ec

t h
yb

ri
d

flo
w

 s
eq

u
en

ce
 d

ia
gr

am

ChapTer 5 OpenID COnneCT

176

 Request Object
The parameters used to call the Connect authorization endpoint may be sent as one

consolidated JSON object, instead of as individual parameters. This JSON request object

can optionally be signed and encrypted in JWT format. You can also mix and match—

sending some parameters in the request and others in the request object. Some claims

may even be repeated (sent as both a parameter and in the JSON object). To comply with

OAuth and OpenID requirements, this might be necessary. For example, OAuth specifies

that the client_id must be present in the request to the authorization endpoint.

Mixing parameters with request objects can also make sense for certain parameters that

change—like the nonce and state.

There are three ways the client can send the request object to the OP.

• It can be sent as a request parameter.

• It can be stored on a web server and referenced with the request_uri

parameter. This is known as passing the request by reference.

• It can be registered with the OP during client registration or some

other request registration process.

It’s interesting to note that using the request object enables the client to increase the

security level of the OAuth flow, primarily due to the signing and encryption. Why would

you want to send the request object as a URI, or pre-register it? There are a few good

reasons listed in the OpenID Core Specification:

• The set of request parameters can become large and can exceed

browser URI size limitations. Passing the request parameters by

reference can solve this problem.

• Passing a request_uri value, rather than a complete request by

value, can reduce request latency.

• Most requests for claims from an RP are constant. The request_uri

is a way of creating and sometimes also signing and encrypting a

constant set of request parameters in advance. (The request_uri

value becomes an “artifact” representing a particular fixed set of

request parameters.)

ChapTer 5 OpenID COnneCT

177

• Pre-registering a fixed set of request parameters at registration time

enables OPs to cache and pre-validate the request parameters at

registration time, meaning they need not be retrieved at request time.

• Pre-registering a fixed set of request parameters at registration time

also enables OPs to vet the contents of the request from consumer

protection and other points of views, either itself or by utilizing a

third party.

 Userinfo Endpoint
The subject identifier is intrinsically interesting. It allows you to correlate a person’s visits

to your website. But very often, you want to know more information about the person

that was identified at the OpenID Provider. While some of this information may be

passed in the id_token itself, the Userinfo endpoint can provide additional claims about

the subject (attributes in SAML or LDAP jargon).

In order to access the Userinfo endpoint, the client needs to obtain an access token

from the token endpoint. One interesting characteristic of an OpenID Provider is that

the Userinfo endpoint is that only protected API, as shown in Figure 5-2. Thus the OAuth

resource server and authorization server are conflated into one logical unit.

Connect defines standard user claims. For dynamic configuration, the

standardization of claims and scopes reduces one of the barriers to interoperability—

agreement on user claim schema. Although standards people are famous for not

agreeing on schema, there are a few issues with this part of the OpenID Connect

standard. The first thing that could use improvement is that as the standard claims are

defined in Section 5.1 of the Connect Core specification are difficult to reference. LDAP

and SAML both provide a better mechanism for the identification of user attributes.

For example, no identifier is used other than the claim name—LDAP uses OIDs,

SAML uses URIs. Another questionable decision is the use of the underscore character in

the attribute names, which is not valid for an LDAP attribute name. The only explanation

I’ve heard about why there are underscores in these attribute names is that an engineer

at Facebook said that developers like them. If you want to do a direct mapping to LDAP,

you’ll have to do some kind of claims mapping.

Connect also defines four standard scopes, which enable a person to authorize

the release of personal information in bulk: profile, email, address, and phone. Profile

is interesting because it contains many commonly released attributes, including first

ChapTer 5 OpenID COnneCT

178

name, last name, and username. It’s handy to use OAuth scopes to enable a person to

authorize the release of a group of claims. SAML never provided such a mechanism, so

it’s not clear how to handle this requirement—although people have tried (for example,

search the Internet for Shibboleth uApprove).

But what if you have your own custom attributes? You could define your own

scope and map your custom claims to this scope. The Connect Discovery specification

enables an OP to publish scopes_supported and claims_supported. Unfortunately,

there is no way for an OP to specify which claims are associated with which scopes. For

this reason, the Gluu Server OP publishes a non-standard attribute called scope_to_

claims_mapping. But even without this OP discovery claim, the correct scope could

be communicated out-of-band. Figure 5-13 shows a custom OpenID scope being

configured in the Gluu Server.

Figure 5-13. Custom scope configuration in the Gluu Server

ChapTer 5 OpenID COnneCT

179

It is also possible to request individual claims from the Userinfo endpoint. The OP

signals to the client that this is possible by publishing the claims_parameter_supported

discovery claim. The claims parameter value is a JSON object that provides details about

the desired data. It may be advantageous to obtain specific combinations of claims that

cannot be specified using scope values.

 Logout
The bane of IAM professionals is currently logout—especially “single logout” or

SLO. One of the challenges is that expectations vary. Consider this example: let’s say

you are logged into Google, and you have used Google login to authenticate to several

websites, each open in a browser tab. After a while, you close some of these tabs (without

indicated that you want to log out). And after some more time, you click the logout

button on a website. What is your expectation? Would you expect to be logged out of

Google? What about the other applications? What if, instead of Google as the OP, we

change the scenario to websites that are hosted by your organization and connected to

your corporate OP. Your expectation might be different?

The other challenge is that SLO is an inherently asynchronous process, and it’s

hard to solve with synchronous protocols that define requests and responses. In this

example, to achieve SLO, we need to send messages to each of the applications, and to

the OP. Some of those messages may be lost on the network and require retransmission.

But how long does a person who just clicked a logout button want to wait to see a

confirmation that they’ve been logged out?

OpenID Connect has defined three different imperfect mechanisms to affect

SLO. The first is called Session Management, and involves using a JavaScript component

in each tab that listens for a logout event, and sends a notification to the respective

backend web server to end the application session. This is rarely implemented because

it’s so unreliable—if the browser tab is closed at the time logout is needed, it will never

be executed, and the backend application will never be notified. It’s also been logistically

difficult to get applications to update their content to support this mechanism.

The other two mechanisms were introduced after OpenID Connect 1.0 was released,

as it became apparent that the JavaScript logout approach was flawed. The two new

specifications define front-channel and back-channel logout mechanisms, and overload

the same end_session endpoint that was previously defined in the Session Management

specification. Back-channel logout requires the OP to notify the application that a logout

ChapTer 5 OpenID COnneCT

180

event happened. Front-channel logout requires the OP to return an HTML page, with an

iFrame for each application that requires logout. The iFrame should cause the browser

to call the logout page for each application. When it works, front-channel logout is a

good option because it offloads the network traffic and processing to the browser. Also,

the web applications can clean up cookies in the browser. The disadvantage of front-

channel logout is that a person may disable third-party cookies, breaking logout. The

other problem is that the OP has no idea what happened. Its best efforts—it returned

the logout URLs to the browser and never receives any confirmation if each logout

was successful. Consequently, it’s possible that failed logouts won’t be retried, and

application sessions may persist.

Keep in mind that sessions are always in the context of a browser. If you have two

different browsers open, and you log out of one browser, you would not expect to be

logged out of the other browser. You would probably be even more surprised if you

logged out on your laptop, and your sessions on your mobile device ended! It’s up to

the OP to track which clients are associated with each session and to attempt logout

appropriately.

The elusive nature of logout may frustrate management at your organization. The

best way to handle this is to make sure you understand the expectations for logout and

try your best to achieve them. Things may get even more complicated if you have to

consider logout across multiple protocols—for example if you are using both SAML and

OpenID Connect in your organization.

 Pairwise Identifiers
In our new world of big data analysis tools, the more websites you visit, the more digital

breadcrumbs you leave across the Internet. It’s important for some websites to know

who we are—for example, your bank or the government. But other websites, you’d

rather they not know your true identity. In the Shibboleth SAML IDP, there is a feature

called “persistent non-correlatable identifiers”. In Connect, the same idea exists, called

“pairwise identifiers”. The goal is to release a different subject identifier to each website,

but to always release the same identifier for that person, each time the website is

visited. This prevents several websites from colluding to correlate your identity, thereby

protecting your privacy.

There are a few strategies for generating pairwise identifiers. The OP could store the

information in a database and lookup the identifier when the subject returns. The other

option is to use an algorithm to generate the identifier. You could for example use a hash

ChapTer 5 OpenID COnneCT

181

of the subject’s username, the client_id, and a salt value. Every time the person visits

the site, the value for this function would be the same—so it avoids the need to write this

information to the database.

A complication arises: what if there are a group of related websites that need a

consistent identifier for the subject across the domain? Think of a portal application

that is comprised of several related web components. If we issue each client a different

identifier, it could break the portal. Connect defines a client claim called sector_

identifier_uri. This URI is hosted by the RP and should return a JSON document with

an array of related redirect_uri values. By specifying the sector_identifier_uri

at registration, the client signals to the OP to use it instead of the client identifier to

generate pairwise identifiers. Aspects of the algorithm for pairwise identifiers are

defined in the Connect Core specification, but the exact algorithm is up to the OP

implementation.

 ACR/AMR Parameters
Since 1983, when the WarGames protagonist David Lightman (played by Matthew

Broderick) snatched the password for his school district’s mainframe (“pencil”), it’s

been well known that passwords are vulnerable to compromise. Connect defines

two parameters to facilitate the use of strong authentication technologies: “acr”

(Authentication Context Class Reference), and “amr” (Authentication Methods

Reference).

The acr concept has existed since SAML, which defines a AuthnContextClassRef

element as part of a RequestedAuthnContext. The values used for acr vary based on the

administrative domain. The acr can carry meaning about trust, not just authentication

strength. For example, the acr value is sometimes used to specify a NIST 800-63 level of

assurance (1-4). The Connect Core specification indicates that an acr value of 0 signals

to the RP that the authentication should not be used to secure a transaction of any

monetary value. A common convention is to use a URI for the value of the acr, to enable

the policies and procedures around to be externally defined. URIs are a good choice

because they are in a collision-resistant namespace.

The amr authentication claim is new in Connect. This value is returned in the id_

token, and it provides the OP with an opportunity to provide additional context around

the authentication event. An OAuth draft proposes standard values for the amr claim,

including face, pwd, iris, and mfa. The OP and client would have to know from some

out-of-band mechanism what these values mean.

ChapTer 5 OpenID COnneCT

182

Let’s consider an end-to-end example. Let’s say a person uses a password to

authenticate at the Gluu Server, and then navigates to a website. The Gluu Server returns

an integer value as the first value of the amr array. This value corresponds to a “level,”

which can be associated with different types of authentication. Integers are convenient

for automated policy evaluation. If the level is not sufficient, the client can direct the

person back to the authorization endpoint, with an extra parameter prompt=login. This

signals to the OP to re-authenticate the person. At that time, the client can also use the

acr_values parameter to request a specific type of authentication.

 The Gluu Server OpenID Connect Provider
While there are several open source OpenID Connect provider implementations,

the Gluu Server was one of the first, and it is used in a wide array of consumer facing

industries such as banking, telco, healthcare, government, education, and retail.

If you have been reading this book sequentially, you may already have installed it

in Chapter 1. OpenID Connect is a required component. You may want to tweak some

of the OpenID Connect settings. For example, perhaps you want to disable dynamic

client registration. In general, the default settings ardently protect privacy. In a trusted

enterprise setting, you may want to loosen some of the defaults, like token and session

timeouts. You may want to extend client expiration time beyond one day.

The OpenID Connect features are derived from the oxAuth component. oxTrust is

the administrative web interface for oxAuth to configure system settings, manually add

or configure clients, define scopes, and associate user claims with scopes. You can script

configuration using oxTrust administrative APIs.

The Gluu Server uses “interception scripts” to enable you to customize the behavior

of the OpenID Provider. There are four in particular that apply to OpenID Connect, as

outlined in Table 5-3.

ChapTer 5 OpenID COnneCT

183

The Gluu Server was designed for high performance. You can use Redis to store

short-lived objects, like the authorization code and access tokens. Long-lived data is

written to the database—version 3.x uses LDAP and version 4.x introduces a database

option for Couchbase, which allows for sharded deployments for very large data sets

with requirements for high concurrency. For elasticity and automation, Docker and

Kubernetes versions are also available, in addition to the virtual machine distribution

you installed in Chapter 1. Following are some highlights of Gluu OpenID Connect

features.

Gluu has some OpenID Connect client configuration options that you may find

handy. One is called “Pre-Authorization”. You can enable this if you trust a client and

don't want to present the authorization (consent) screen when a person is accessing an

application. For example, when you use a third-party application, Google asks for your

permission. But when you use a Google application, they do not.

The Gluu Server supports pairwise identifiers and gives you two options to generate

them: algorithmic and persistent. The former are generated dynamically as needed

based on a hash of the client_id and subject identifier. If multiple clients are grouped

using a sector_identifier_uri, it is used instead of the client_id. The advantage of

algorithmically generated subject identifiers is that they reduce storage requirements.

However, it's hard to search for a person with a specific algorithmic pairwise identifier.

So the other approach is to generate a pairwise identifier for each client (or sector_

identifier_uri) and store it in the database. This data is stored with the person's entry

in LDAP or Couchbase.

Table 5-3. Gluu Server Login Related Interception Scripts

Script Description

person

authentication

allows the definition of multi-step authentication workflows, including adaptive

authentication, where the number of steps varies depending on the context.

Consent

Gathering

allows exact customization of the authorization (or consent) process. By default,

the Op will request authorization for each scope, and display the respective

scope description.

Dynamic Scopes enables admin to generate scopes on the fly, for example by calling external apIs.

application

Session

Called at the end of a web browser session to clean up third-party sessions or

implement other business logic.

ChapTer 5 OpenID COnneCT

184

The Gluu Server supports all authentication types at the token endpoint, including

private key. Client_id and secret is a shared secret. If the client registers a public key for

token authentication during registration, it improves security by avoiding shared secrets.

The Gluu Server provides a way to publish sector_identifier URIs. You could use a

flat file for this, but the oxTrust provides an interface to search for clients, or to manually

add redirect URIs.

For more information on the Gluu Server, see the documentation at https://gluu.

org/docs.

 Developing OpenID Connect Client Code
Now for the fun part! The next four sections will provide just an overview of client

software, and a few examples of how to use OpenID Connect. All of these examples can

be tested against the Gluu Server you setup in Chapter 1, although they should work

against any OpenID Provider.

 Easy JavaScript Client
This JavaScript client is one of the easiest ways to test OpenID Connect, although it’s not

the most secure (remember Figure 5-1). The client we will use was forked from a sample

application written to demonstrate how easy it is to use Connect. Gluu forked the code

and has enhanced it since that time. The project can be found at https://github.com/

GluuFederation/openid-implicit-client.

It’s not a fancy app—it sends the person to the authorization endpoint to be

authenticated and then prints the claims that are returned in the id_token. Figures 5-12

and 5-13 are the two pages of the demo from that project. This client doesn't support

dynamic client registration, so you’ll have to add the client manually to the Gluu Server

via the oxTrust Admin UI (or use the oxAuth RP web application, described later). When

adding the client in oxTrust, the fields you should configure for the client are shown in

Listing 5-8.

ChapTer 5 OpenID COnneCT

https://gluu.org/docs
https://gluu.org/docs
https://github.com/GluuFederation/openid-implicit-client
https://github.com/GluuFederation/openid-implicit-client

185

Listing 5-8. oxTrust Client Configuration for the OpenID Implicit Client Sample

Client Name: Implicit Test Client

response_type: token id_token

Application Type: Web

Pre-Authorization: Enabled

Subject Type: public

Scopes:openid, profile, email

Response Types: token id_token

Grant Types: implicit

Once you have registered the client, all you need to do is to update the client_id,

redirect_uri, and providerInfo values in the login page HTML. Assuming you’ve

checked out the project into a web accessible folder, then navigate to the page and test

(see Figures 5-14 and 5-15)! Check the latest documentation for other features, like

logout or calling the Userinfo endpoint. In this demo, you should configure the Gluu

Server to return user claims in the id_token. Unfortunately, this client does not support

logout.

Figure 5-14. Login page for OpenID Connect implicit client (implicit-test.html)

ChapTer 5 OpenID COnneCT

186

 Apache httpd Module
One of the common approaches to protect a web application is to use a web server filter

to intercept the request and make sure the person using that connection is authenticated

and authorized (see Figure 5-16). The web server with the filter may directly serve

the application, or may proxy to a backend service. Leveraging the web server is a

well-established pattern, used by older access management platforms as old as CA

Siteminder and SAML platforms like the Shibboleth SP.

Figure 5-15. Callback page for the OpenID Connect implicit client
(login- callback.html)

ChapTer 5 OpenID COnneCT

187

One of the advantages of the web server filter approach is that the application

developer does not need to know that much about the security protocols—if the request

makes it through to the application, the person has been authenticated, and the request

is authorized. Another advantage is that application security is administered by the

system administrators, not by developers. It may be easier to manage and audit Apache

configuration files than to read a bunch of code.

One of the best OpenID Connect relying party implementations was written by

Hans Zandbelt, called mod_auth_openidc. It is an authentication/authorization module

for the Apache 2.x HTTP server that authenticates users against an OpenID Connect

Provider. Currently, the software can be found at https://github.com/zmartzone/

mod_auth_openidc and is included in the package management system for several Linux

distributions. There are binary packages available, and if you are good at compiling

C code, you can build it yourself from the source. Note, if you are an Nginx fan, you

can also take a look at a similar extension, also by Zandbelt, at https://github.com/

zmartzone/lua- resty- openidc.

Application Authn
OpenID Connect

Authz UMA

User Claims

API Access
Permission

Application
Environmental

Variables

Apache/nginx Authn
OpenID Connect

Authz UMAPolicy
Enforcement

Point

Option 1: Application calls APIs directly

Option 2: Application is behind web server

Figure 5-16. Two approaches to web access management

ChapTer 5 OpenID COnneCT

https://github.com/zmartzone/mod_auth_openidc
https://github.com/zmartzone/mod_auth_openidc
https://github.com/zmartzone/lua-resty-openidc
https://github.com/zmartzone/lua-resty-openidc

188

Following are instructions for setting up an Apache HTTPD server on Ubuntu 14

(trusty). If you’re using a Red Hat based system, you may have to adjust some of these

commands to align with its style of Apache HTTPD deployment.

 Basic Web Server Installation

Before you can install mod_auth_openidc, you need to have an Apache httpd server

running with SSL enabled. It is assumed that all the hostnames will be DNS resolvable.

If not, then add the entries in the /etc/hosts file on both the web server and Gluu

Server. If you don’t have the Apache HTTPD server installed, use apt-get to install the

Ubuntu standard distribution:

 # apt-get install apache2

 # service apache2 start

 SSL Configuration

Enable the SSL module in Apache2.

 # a2enmod ssl

Create a self-signed certificate. Answer the certificate signing request questions,

using the server hostname for the “Common Name”. If this is a production deployment,

you should replace this with a certificate with one issued by a certification authority

whose public key is in most browsers, like LetsEncrypt, https://letsencrypt.org

openssl req -x509 -nodes -days 365 -newkey rsa:2048 -keyout/etc/ssl/

private/server.key -out /etc/ssl/certs/server.crt

 Configure Apache to Use SSL

Open the default-ssl.conf file and update the certificate locations with the newly

created private key and certificate:

vi /etc/apache2/sites-available/default-ssl.conf

Activate the SSL virtual host and CGI:

a2ensite default-ssl.conf

a2enmod cgid

service apache2 restart

ChapTer 5 OpenID COnneCT

https://letsencrypt.org

189

 Configuration of mod_auth_openid

The mod_auth_openidc module depends on the Ubuntu package libjansson4:

apt-get install libjansson

You'll also need the mod_auth_openidc and libjose packages, which can be

downloaded from the Releases page at https://github.com/zmartzone/lua-resty-

openidc/releases. If there is no binary package for your distribution, you can build

from source. Follow the instructions on the GitHub project page README.

For example, at this time the current release is 2.3.7, which depends on libjose 2.3

(see Listing 5-9).

Listing 5-9. Installing mod_auth_openidc

 # wget https://github.com/zmartzone/mod_auth_openidc/releases/download/

v2.3.0/libcjose0_0.5.1-1.trusty.1_amd64.deb

 # wget https://github.com/zmartzone/mod_auth_openidc/releases/download/

v2.3.7/libapache2-mod-auth-openidc_2.3.7-1.trusty.1_amd64.deb

dpkg -i libcjose0_0.5.1-1.trusty.1_amd64.deb

dpkg -i libapache2-mod-auth-openidc_2.3.7-1.trusty.1_amd64.deb

Now you can enable the module:

 # sudo a2enmod auth_openidc

 # sudo service apache2 restart

 Client Registration

You could use either dynamic or manual client registration with mod_auth_openidc.

For this example, let's create the client manually in the Gluu Server. When you add the

client, use the parameters in Listing 5-10.

Listing 5-10. oxTrust configuration the OpenID Connect Client for mod_auth_

openidc

Name: mod_auth_openidc

Client Secret: something-sufficiently-unguessable

Application Type: Web

ChapTer 5 OpenID COnneCT

https://github.com/zmartzone/lua-resty-openidc/releases
https://github.com/zmartzone/lua-resty-openidc/releases

190

Pre-Authorization: Enabled

login uri: https://www.mydomain.com/callback

Subject Type: Public

copes: openid, profile, email

Response Types: code

Make a note of the client secret (you won't get to see it again)! You'll also need the

client_id for the next step.

 Configuring the Apache VirtualHost

You are almost done! You'll need to configure mod_auth_openidc to protect your server.

vi /etc/apache2/sites-available/default-ssl.conf

Add the code from Listing 5-11 right under <VirtualHost _default_:443>.

Listing 5-11. mod_auth_openidc Apache Web Server Directives

 OIDCProviderMetadataURL https://idp.mydomain.com/.well-known/openid-

configuration

OIDCClientID (client-id-you-got-back-when-you-added-the-client)

OIDCClientSecret (your-client-secret)

OIDCRedirectURI https://www.mydomain.com/callback

OIDCResponseType code

OIDCScope "openid profile email"

OIDCSSLValidateServer Off

OIDCCryptoPassphrase (a-random-seed-value)

OIDCPassClaimsAs environment

OIDCClaimPrefix Userinfo_

OIDCPassIDTokenAs payload

<Location "/">

Require valid-user

AuthType openid-connect

</Location>

Then restart Apache to affect the changes.

service apache2 restart

ChapTer 5 OpenID COnneCT

191

The most confusing part here is the OIDCRedirectURI—don't set this to a path used

by your server. The Apache filter uses the redirect_uri to process the response from

the OP.

 Install CGI script

We’re going to use the same sample script that we used in Chapter 3. If you don't have a

copy somewhere, edit the printHeaders.cgi file and add the content from Listing 5-12.

Listing 5-12. Sample Python cgi-script to Print the HTTP Headers

#!/usr/bin/python

Install in /usr/lib/cgi-bin/printHeaders.cgi

import os

d = os.environ

k = d.keys()

k.sort()

print "Content-type: text/html\n\n"

print "<HTML><HEAD><TITLE>printHeaders.cgi</TITLE></Head><BODY>"

print "<h1>Environment Variables</H1>"

for item in k:

 print "<p>%s: %s </p>" % (item, d[item])

print "</BODY></HTML>"

Then you'll need to make the script executable by the Apache.

chown www-data:www-data /usr/lib/cgi-bin/printHeaders.cgi

chmod ug+x /usr/lib/cgi-bin/printHeaders.cgi

Now you’re ready to test. Open your web browser and point it at https://www.

mydomain.com/cgi-bin/printHeaders.py.

If you’re not logged in already, you should be redirected to the authentication page.

If you are logged in, you should just see an HTML page with the REMOTE_USER variable

populated. Also check out OIDC_id_token_payload and all the claims for Userinfo.

ChapTer 5 OpenID COnneCT

http://www.mydomain.com/cgi-bin/printHeaders.py
http://www.mydomain.com/cgi-bin/printHeaders.py

192

 oxAuth RP
The Gluu Server ships with an optional OpenID Connect relying party web application,

called oxauth-rp, which is handy for testing because it prints the full request and

response. During setup, you’ll be asked if you want to install it, which you should on

a development environment. It will be deployed on https://<hostname>/oxauth-

rp. Using this tool, you can exercise all of the basic OpenID Connect APIs, including

discovery, client registration, authorization, token, Userinfo, and end_session.

Figure 5-17 shows a screenshot of the form you should see if oxauth-rp was installed

successfully.

Figure 5-17. oxauth-rp screenshot

If you want to test an OP like the Gluu Server, you can follow this procedure. First,

in the Discovery section, enter the hostname or email address of the OP. This will

trigger a WebFinger request, which will return the configuration URL at which the OP’s

ChapTer 5 OpenID COnneCT

193

endpoints and configuration can be detected. The oxauth-rp web application parses the

configuration JSON and populates the form accordingly. One handy feature of oxauth-

rp is that it will show you the corresponding requests and responses.

Second, you’ll want to register a client. Use the URL of oxauth-rp as the Redirect

URI, for example, https://<hostname>/oxauth-rp/home.htm. You should also specify

Response Type as CODE, Grant Type as AUTHORIZATION_CODE, the Application Type as

WEB, Client Name as oxauth-rp, Subject Type as PUBLIC. Make sure the response returns

a client_id and client_secret.

Third, you can move to the Authorization Endpoint form. If you registered as

specified, use the Response Type as CODE, Scope as openid, redirect_uri should be

populated for you already, State set to 12345, nonce set to abcd12345, Display set to Page,

and Claims set to {}. After clicking Submit, you should be redirected the OP login page

(if you don’t already have a session). After authentication and authorization, you should

be redirected back to oxauth-rp.

Fourth, you should be able to submit your request to the token endpoint. You’ll

need to add Grant Type as AUTHORIZATION CODE, Redirect URI to https://<hostname>/

oxauth-rp/home.htm, and Scope to openid. This response should include a JSON object

that includes the access_token, refresh token, and id_token as keys in a JSON object.

Finally, you’ll just click Submit on the Userinfo form. The access token should already be

populated.

 AppAuth Mobile Applications
One of the most compelling reasons to use OpenID Connect is to authenticate people

from a mobile application (see Figure 5-18). RFC 8252 “OAuth2 for Native Apps” provides

an overview of an improved design for mobile security. In addition to the security

features of OpenID Connect, this draft suggests the use of PKCE (briefly discussed in the

previous chapter on OAuth) and custom URI schemes (i.e., an application can register

a URI such as myapp:// instead of https://). You can test AppAuth against the Gluu

Server, as it supports PKCE and custom URI schemes.

ChapTer 5 OpenID COnneCT

194

In 2016, Google released and then donated code to the OpenID Foundation

called AppAuth for Android and IOS. Simultaneously, Google announced that it was

deprecating the use of WebView—a strategy used by mobile application developers

that is vulnerable to malicious application code. Not only does AppAuth provide secure

authentication, it also enables SSO across the system browser and mobile applications.

It uses operating system hooks so that the system browser does not enable an

application developer to steal a person’s credentials, codes, or tokens. Using this

approach, mobile application developers can use the authorization code or hybrid flow.

You can find the AppAuth code on GitHub:

https://github.com/openid/AppAuth-Android

https://github.com/openid/AppAuth- iOS https://github.com/openid/AppAuth-JS

Figure 5-18. AppAuth mobile SSO overview

ChapTer 5 OpenID COnneCT

195

 oxd Client Middleware Service
Many applications are “server-side,” meaning the web page displays content, but most of

the dynamic business logic resides on the web server. Many server-side libraries, some

of which are free open source, are listed on the OpenID Foundation website at http://

openid.net/developers/libraries. The features of these libraries vary. At a high level,

the OpenID Foundation RP certification program sheds light on which libraries support

which flows (see Figure 5-19). However, the certification tests don’t tell you anything

about optional features (like private key authentication at the token endpoint) or usability.

Unfortunately, some libraries are hard to use, not well documented, or lack examples.

Even if a client library makes it possible to use certain Connect features, developers

may not bother. After login works, developers have a tendency to ignore extras, like

checking signatures and state values. For this reason, Gluu releases the oxd-server

client middleware service. It provides an easy RESTful interface that helps Connect client

developers quickly use an OP, while letting the oxd-server do some of the heavy lifting,

like checking the state and signature.

Another good reason to use the oxd-server is to facilitate updates. If your

organization uses several client libraries, you need to make sure they are kept up-to-

date. Also, because oxd provides a higher level API than OpenID Connect itself, it can

implement new features of Connect or OAuth without changing the interface to your

application, which may break something or trigger a new QA cycle. It's likely that attacks

will be discovered against OAuth and Connect. An abstraction layer makes it easier to

update the client code quickly.

Installation instructions for oxd-server can be found on https://gluu.org/docs/

oxd/install. You don’t need to create a client manually because the oxd-server uses

dynamic client registration. You may want to extend the registration of oxd registered

clients, so they don't expire in the default one day time period for dynamic clients.

Figure 5-19. oxd overview

ChapTer 5 OpenID COnneCT

http://openid.net/developers/libraries
http://openid.net/developers/libraries
https://gluu.org/docs/oxd/install
https://gluu.org/docs/oxd/install

196

There are two configuration files that you’ll need to configure in the /etc/oxd folder:

oxd-conf.json (which contains basic configuration information for the service) and

oxd-default-site-config.json (where you should add the URL of your OP). Make sure

that you start the oxd service and see it listening on the default port 8443.

oxd is not a proxy—it is middleware. For front-channel calls (authorize and logout),

it returns a URL that’s used by your application to redirect the person’s browser to

the OP. However, oxd makes back-channel calls directly to the Token and Userinfo

endpoints. That’s why in Figure 5-16, there are lines both from the person and between

oxd and the OP. oxd validates the id_token, caches the nonce and state parameters,

uses private key authentication at the token endpoint, and is constantly being updated

and improved to support the latest and greatest Connect and OAuth security features.

Originally, Gluu published client libraries for oxd in Python, Java, php, Ruby, and several

other popular languages. However, it was a challenge to maintain all these libraries. Luckily,

a better solution emerged: OpenAPI (i.e., Swagger). The advantage of publishing a OpenAPI

document for oxd APIs is that you can generate client libraries in your favorite language. It's

easy to do using a platform like SwaggerHub, or your favorite code generator.

There is one caveat to calling oxd APIs: they are protected with OAuth. That means

you'll need to obtain a client access token before you call them. Luckily, the oxd-server

has an API that makes this easy to do—there is also an API for this. So the basic flow for

using oxd is as follows:

 1. Obtain OAuth client token with scope oxd.

 2. Call the get_authorization_url endpoint, which returns the URL

to which your application should redirect the person's browser.

Make sure you obtain the state and code from the OP response.

 3. Call the get_tokens_by_code endpoint and present the code and

state from the previous step.

 4. Call the get_user_info endpoint using the access token returned

from the previous step.

 5. Call the get_logout_uri endpoint when you’re done and send the

person’s browser to the returned URL.

The oxd-server also has APIs for UMA and OAuth and is used as a component of the

Gluu Gateway, which is discussed at the end of Chapter 6 on web proxies.

ChapTer 5 OpenID COnneCT

197

 OpenID Connect Glossary and IANA Registry Terms
Just like OAuth, Connect has introduced many terms that were registered at IANA. Tables

5-4 to 5-9 show summaries of these terms. For an updated list, see http://www.iana.

org/assignments/oauth-parameters/oauth-parameters.xhtml.

Table 5-4. OpenID Connect OAuth Authorization Endpoint Response Type

(Specified in OAuth 2.0 Multiple Response Type Encoding Practices)

Parameter Description

id_token Implicit flow

id_token token Implicit flow

code id_token hybrid flow

code token hybrid flow

code id_token token hybrid flow

None no client access credentials returned

Table 5-5. OpenID Connect OAuth Extensions Errors (Specified in OpenID

Connect Core)

Parameter Description

interaction_required Op requires end user interaction of some form to

proceed, but prompt=none

login_required Op requires end user authentication, but prompt=none

account_selection_required Op requires end user to select account, but

prompt=none

consent_required Op requires the end user to authorize, but prompt=none

invalid_request_uri Op cannot read request object specified at UrI

invalid_request_object Op cannot parse the JSOn request object

request_not_supported Op does not support request objects

request_uri_not_supported Op does not support request UrIs

registration_not_supported Op does not support registration parameter

ChapTer 5 OpenID COnneCT

http://www.iana.org/assignments/oauth-parameters/oauth-parameters.xhtml
http://www.iana.org/assignments/oauth-parameters/oauth-parameters.xhtml

198

Table 5-6. OpenID Connect OAuth Parameter (Specified in OpenID Connect Core

Specification, Except session_state, Which Is Defined in the Session Management

Specification)

Parameter Parameter Usage Location Description

nonce authorization request per-session state and be unguessable to

attackers

display authorization request Client preference for end user authentication

and consent user interface

prompt authorization request Client preference for end user interaction

max_age authorization request Maximum authentication age

ui_locales authorization request end user's language preference for UI

claims_locales authorization request end user's language preference for claims

id_token_hint authorization request hint by client about an end user’s past

session

login_hint authorization request hint to the Op about the end user's preferred

identifier or account

acr_values authorization request Space-separated string specifying the acr

values requested by the client

claims authorization request Used to specify specific claims

registration authorization request Used to request client registration

simultaneous with authorization request

request authorization request Specify request object JSOn

request_uri authorization request Specify location of request object JSOn

id_token authorization response,

access token response

JWT returned with information about the

subject and authentication event

session_state authorization response,

access token response

session_state value at the Op

ChapTer 5 OpenID COnneCT

199

Table 5-7. OpenID Connect Dynamic Client Registration Metadata (All These

Parameters Are Defined in the OpenID Connect Dynamic Client Registration 1.0

Incorporating Errata Set 1)

Parameter Description

application_type Kind of the application: native or web

sector_identifier_uri UrL using the https scheme to be used in

calculating pseudonymous identifiers by the Op

subject_type subject_type requested for responses to this

client: pairwise or public

id_token_signed_response_alg JWS alg algorithm reQUIreD for signing the ID token

issued to this client

id_token_encrypted_response_alg JWe alg algorithm reQUIreD for encrypting the ID

token issued to this client

id_token_encrypted_response_enc JWe enc algorithm reQUIreD for encrypting the ID

token issued to this client

Userinfo_signed_response_alg JWS alg algorithm reQUIreD for signing userinfo

responses

Userinfo_encrypted_response_alg JWe alg algorithm reQUIreD for encrypting userinfo

responses

Userinfo_encrypted_response_enc JWe enc algorithm reQUIreD for encrypting userinfo

responses

request_object_signing_alg JWS alg algorithm that MUST be used for signing

request objects sent to the Op

request_object_encryption_alg JWe alg algorithm the rp is declaring that it may use

for encrypting request objects sent to the Op

request_object_encryption_enc JWe enc algorithm the rp is declaring that it may use

for encrypting request objects sent to the Op

(continued)

ChapTer 5 OpenID COnneCT

200

Table 5-8. OpenID Connect OAuth Token Endpoint Authentication Methods

Parameter Reference Description

client_

secret_jwt

rFC 7591 Mechanism to send client credentials as JWT

private_

key_jwt

rFC 7591 Mechanism to send client credentials as JWT, using previously

registered public key to verify client identity

Parameter Description

token_endpoint_auth_signing_alg JWS alg algorithm that MUST be used for signing

the JWT used to authenticate the client at the token

endpoint for the private_key_jwt and client_

secret_jwt authentication methods

default_max_age Default maximum authentication age

require_auth_time Boolean value specifying whether the auth_time

claim in the ID token is reQUIreD

default_acr_values Default requested authentication context class

reference values

initiate_login_uri UrI using the https scheme that a third party can

use to initiate a login by the rp

request_uris array of request_uri values that are pre-registered

by the rp for use at the Op

Table 5-7. (continued)

ChapTer 5 OpenID COnneCT

201

Table 5-9. OpenID Connect JSON Web Token Claims (Specified in OpenID

Connect Core Specification)

Parameter Description

given_name Given name(s) or first name(s)

family_name Surname(s) or last name(s)

middle_name Middle name(s)

nickname Casual name

preferred_username Shorthand name by which the end user wishes to be referred

profile profile page UrL

picture profile picture UrL

website Web page or blog UrL

email preferred email address

email_verified True if the email address has been verified; otherwise false

gender Gender

birthdate Birthday

zoneinfo Time zone

locale Locale

phone_number preferred telephone number

phone_number_verified True if the phone number has been verified; otherwise false

address preferred postal address

updated_at Time the information was last updated

azp authorized party: the party to which the ID token was issued

nonce Value used to associate a client session with an ID token

auth_time Time when the authentication occurred

at_hash access token hash value

c_hash Code hash value

acr authentication context class reference

amr authentication methods references

sub_jwk public key used to check the signature of an ID token

ChapTer 5 OpenID COnneCT

202

 Conclusion
Hopefully you now have a better idea of what OpenID Connect is. Whether you have a

consumer facing application with low security requirements, or a top-secret application

with high security requirements, Connect is a good choice as the interface to centralize

identity. Over time, it’s likely we’ll see fewer applications that add support for SAML, and

more applications that add support for OpenID Connect. Federated identity is a moving

target, but Connect and OAuth seem well positioned to adapt to new technology and

meet new requirements as they arise.

 References

 1. “OpenID Connect Discovery 1.0 incorporating errata set 1,”

http://openid.net/specs/openid-connect-discovery-1_0.

html, Sakimura, Bradley, Jones, Jay, November, 2014.

 2. “OpenID Connect Dynamic Client Registration 1.0,” http://

openid.net/specs/openid-connect-registration-1_0.html,

Sakimura, Bradley, Jones, May 2015.

 3. “OAuth 2.0 Dynamic Client Registration Management Protocol,”

https://tools.ietf.org/html/rfc7592, Jones, Bradley,

Machulak, July 2015.

 4. “OpenID Connect Dynamic Client Registration 1.0 incorporating

errata set 1,” http://openid.net/specs/openid-connect-

registration-1_0.html, Sakimura, Bradley, Jones, November,

2014.

 5. “OAuth 2.0 Multiple Response Type Encoding Practices,” http://

openid.net/specs/oauth-v2-multiple-response-types-1_0.

html, de Medeiros, Scurtescu, Tarjan, Jones, February 2014.

 6. “OpenID Connect Implicit Clint Implementer’s Guide 1.0,”

http://openid.net/specs/openid-connect-implicit-1_0.

html, Sakimura, Bradley, Jones, de Medeiros, Mortimore, August

2015.

ChapTer 5 OpenID COnneCT

http://openid.net/specs/openid-connect-discovery-1_0.html
http://openid.net/specs/openid-connect-discovery-1_0.html
http://openid.net/specs/openid-connect-registration-1_0.html
http://openid.net/specs/openid-connect-registration-1_0.html
https://tools.ietf.org/html/rfc7592
http://openid.net/specs/openid-connect-registration-1_0.html
http://openid.net/specs/openid-connect-registration-1_0.html
http://openid.net/specs/oauth-v2-multiple-response-types-1_0.html
http://openid.net/specs/oauth-v2-multiple-response-types-1_0.html
http://openid.net/specs/oauth-v2-multiple-response-types-1_0.html
http://openid.net/specs/openid-connect-implicit-1_0.html
http://openid.net/specs/openid-connect-implicit-1_0.html

203

 7. OAuth 2.0 Form Post Response Mode, http://openid.net/

specs/oauth-v2-form- post-response-mode-1_0.html, Jones,

Cambell, April 2015.

 8. “OpenID Connect Core 1.0 incorporating errata set 1,”

http://openid.net/specs/openid-connect-core-1_0.

html#RequestUriRationale, Sakimura, Bradley, Jones, de

Medeiros, Mortimore, November 2014.

 9. “OAuth 2.0 for Native Apps,” https://tools.ietf.org/html/

draft-ietf-oauth-native-apps- 06, Denniss, Bradley November

2016.

 10. “OAuth 2.0 Multiple Response Type Encoding Practices,” http://

openid.net/specs/oauth-v2-multiple-response-types-1_0.

html, de Medeiros, Scurtescu, Tarjan, Jones, February 2014.

 11. “OpenID Connect Core 1.0 incorporating errata set 1,” http://

openid.net/specs/openid-connect-core-1_0.html, Sakumura,

Bradley, Jones, de Medeiros, Mortimore, November 2014.

 12. OpenID Connect Session Management 1.0 - draft 27,” http://

openid.net/specs/openid-connect-session-1_0.html, de

Medeiros, Agarwal, Sakimura, Bradley, Jones, August 2016.

 13. “OpenID Connect Dynamic Client Registration 1.0 incorporating

errata set 1,” http://openid.net/specs/openid-connect-

registration-1_0.html, Sakimura, Bradley, Jones, November

2014.

ChapTer 5 OpenID COnneCT

http://openid.net/specs/oauth-v2-form-post-response-mode-1_0.html
http://openid.net/specs/oauth-v2-form-post-response-mode-1_0.html
http://openid.net/specs/openid-connect-core-1_0.html#RequestUriRationale
http://openid.net/specs/openid-connect-core-1_0.html#RequestUriRationale
https://tools.ietf.org/html/draft-ietf-oauth-native-apps-06
https://tools.ietf.org/html/draft-ietf-oauth-native-apps-06
http://openid.net/specs/oauth-v2-multiple-response-types-1_0.html
http://openid.net/specs/oauth-v2-multiple-response-types-1_0.html
http://openid.net/specs/oauth-v2-multiple-response-types-1_0.html
http://openid.net/specs/openid-connect-core-1_0.html
http://openid.net/specs/openid-connect-core-1_0.html
http://openid.net/specs/openid-connect-session-1_0.html
http://openid.net/specs/openid-connect-session-1_0.html
http://openid.net/specs/openid-connect-registration-1_0.html
http://openid.net/specs/openid-connect-registration-1_0.html

205
© Michael Schwartz, Maciej Machulak 2018
M. Schwartz and M. Machulak, Securing the Perimeter, https://doi.org/10.1007/978-1-4842-2601-8_6

CHAPTER 6

Proxy
A proxy is a web server middle-man. It receives an HTTP request from a client, forwards

it to another web server, and after receiving a response, returns it to the client (see

Figure 6-1). Proxies should be “transparent,” meaning they don’t impact either the

client or the backend web service.

In some cases, the proxy uses a path to map the upstream web service. For example,

consider the URL https://www.example.com/myService. In this case, the proxy answers

to the hostname www.example.com, but myService is used as a “junction” to the location

of the upstream web resource. Alternately, a web server could use a hostname to map an

upstream service. For example, https://myservice.example.com.

You may hear your peers use the term “reverse” proxy. As proxies, by definition, go

in both directions, you may have trouble figuring out what’s reverse about it. You’re not

alone. Maybe people used the term “proxy” to describe the type that is used to intercept

web browser traffic within an organization. If they considered this the “normal” direction

for a proxy, i.e., outbound web requests, then proxying inbound traffic is reverse.

Figure 6-1. Proxy overview

206

Many web application frameworks include a web server component. For example,

J2EE applications are deployed inside a servlet container (i.e., a web server). Python

Flask builds in a web server implementation. Many system administrators feel

uncomfortable exposing these web servers directly to the Internet. Although fairly

secure—most vulnerabilities are identified and patched quickly by the community—

correctly configuring any web server requires familiarity with the platform. Thus, in a

heterogeneous environment, with developers using many web frameworks and tools,

it’s hard for system administrators to know them all. It’s a good practice to minimize the

number of Internet-facing web server implementations, so administrators have a smaller

surface area to protect from the riskiest network segment.

Configuration of Internet-facing web services is not a trivial task. Many web servers

utilize security plugins that prevent attacks. As a result, although a platform like Apache

Tomcat (a J2EE servlet container) isn’t insecure, there are fewer tools available to protect

it. Minimizing the systems on which administrators have to manage TLS may also be a

goal. Generating and storing private keys and updating X.509 certificates (which expire

every few months) requires more effort than many developers appreciate. Although if

your organization has a “secure communication” policy, which assumes no network is

safe, you will have to use SSL on both the proxy and the application.

Another reason to use a proxy is because the web server is “dumber”. If TLS is

breached (and TLS implementations have been targeted in the past, such as by

Heartbleed), it may have access to sensitive files, databases, and services. File system

resources may include private keys. The impact of a breach can be worse on the

application server than on the web proxy. The proxy may have lot of data going through

it, so a breached proxy is bad too, but if you have to pick your poison, many security

experts will choose the proxy.

From a pure network standpoint, most large organizations want to put Internet-

facing proxies on a different network segment, i.e., the “DMZ”. An Internet-facing

firewall protects the DMZ, and a second firewall protects the private network. This

strategy prevents Internet-connected servers from directly communicating with internal

databases, or other services that require additional security.

While security was the initial driver, proxies created new opportunities to do some

other handy stuff. The following is a discussion of those features.

Chapter 6 proxy

207

 Load Balancing
If you are building a robust web service, you need to eliminate single points of failure.

Figure 6-2 is a high-level representation of a typical approach.

When a browser or client makes an HTTP request, the host portion of the request

resolves to one IP address. We don’t want the proxy itself to be a single point of failure.

The network load balancer infrastructure normally handles this requirement and routes

the request to an available proxy. At this point, the proxy has to route the request to the

“upstream” web server. It would be silly to fail if another server could handle the request.

The proxy infrastructure also provides a path to upgrading the upstream applications

without incurring downtime. For example, you can take an upstream server out of the

available pool, upgrade it, and then add it back.

Network load balancers and proxies normally can handle timeouts automatically.

The sophistication of health checks vary. At the simplest level, you can look at the TCP/

IP connection—can you connect to the host and port? Of course, a service might listen

on a port and still be non-responsive (i.e., hang). Some proxies and load balancers

implement “active health checks” to a predetermined URL. “Passive health checks”

monitor every request and response. The health checks operate as circuit breakers by

switching traffic from an unhealthy service instance to a healthy one. The proxy must use

active health checks to restore the circuit breaker automatically, since there is no regular

traffic to monitor. Alternately, an administrator can manually reset the circuit breaker.

Figure 6-2. Overview of load balancing

Chapter 6 proxy

208

 Access Control and Security
As a funnel for incoming web requests, the proxy is a very good place to enforce security

policies. In fact, several early commercial web access management products used the

proxy for this purpose, e.g., IBM WebSEAL and Novell Access Manager (subsequently

NetIQ and then Micro Focus).

The proxy makes an excellent policy enforcement point (PEP) in a P*P architecture

(PEP, PDP, PAP, etc.). You don’t want the proxy doing too much policy evaluation

because the main goal is speed. The proxy might be checking to make sure a valid

token exists, or looking at a token to make sure it has the appropriate level of access.

For example, an OAuth-based proxy might check the token expiration or check to make

sure the token has the correct scopes. But of course a proxy can use any access control

architecture, not just OAuth.

The proxy is a good place to run intrusion detection software. If it gets breached,

you want to know quickly. The proxy’s logs should also be monitored, in addition to the

upstream web server logs. If an attack happens, the logs will contain vital information,

such as the network source of the web request.

There is also a security benefit to masking the upstream servers. In security, you

always want to expose as little information as possible to potential attackers. By proxying,

you hide potentially useful information such as the web server type and network

information.

 Rate Limiting
An organization may have a mix of web performance requirements. For example, an

organization’s web services may handle requests from internal departments, partners,

customers, or even anonymous Internet clients. Each of these client classes may have

different expectations, or even service level agreements. To appropriately deliver web

content, it may be necessary for an organization to prioritize certain requests. Proxy

implementations can either block requests beyond a threshold amount or delay them.

Rate limiting can also help prevent data scraping—although attackers may still attempt

to scrape data while living within the rate limit.

Rate limiting can also be an important security feature. Hackers may launch a denial

of service attack (DoS) by overloading your web services. By specifying maximum traffic

limits, the proxy can prevent overloading the upstream web services. However, the proxy

Chapter 6 proxy

209

by itself might not be enough to protect you from a DoS attack, which can swamp the

proxy itself, so you may need to implement hardware and network strategies as well.

Organizations that charge for web services may use rate limiting for monetization.

It’s not uncommon for companies that sell APIs to offer a certain number of calls for a

given time period. For example, two requests a minute are free.

Proxies use different algorithms to implement rate limiting. There is a tradeoff

between performance and precision. A discussion of rate-limiting algorithms is

beyond the scope of this book, as there is a large existing body of work on this topic.

The algorithms are more complex when multiple proxies are deployed in a clustered

solution. In this case, communication is needed between the proxies, normally via a

high-speed in-memory network cache, like Redis or memcached. This shared state

between the systems will obviously incur some overhead and hence add latency to the

traffic. As with any database application, the algorithm needs to mitigate the risk of

race conditions and blocking. The different algorithms define various mechanisms to

minimize latency, usually at the cost of real-time accuracy.

 Caching and Compression
The goal of caching and compression is to gain speed, to minimize network traffic, and

to reduce load on upstream servers. It is superfluous for the upstream server to generate

the same response twice. Caching is a win-win: it’s more efficient for the organization

hosting the web service, and it results in a faster response for the web client. Caching

only makes sense for the HTTP GET method. The POST, PUT, and DELETE methods are

write requests and can’t be cached.

The client can use the Cache-Control HTTP header to control how the proxy handles

caching. The following is not a full discussion of how to use this header, but it should

give you an idea of some of the options.

If the client wishes to prevent the proxy from caching a response, such as to protect

sensitive information like a credit card number, it can specify:

Cache-Control: no-store

If a client does not want to get back cached results, it can specify:

Cache-Control: no-cache

Chapter 6 proxy

210

The client can also specify a maximum age or request that a proxy not return cached

response, even if it has expired (a proxy may do this if a backend service is unavailable):

Cache-Control: max-age=3600, proxy-revalidate

Cache implementations vary—read the documentation for your proxy.

 Telemetry
Human evolution favored those of us who were able to detect changes in our visual

environment. Was that flash of stripes a tiger? In information technology, we can put our

visual acuity to work by looking at graphs and other reports. Due to the complexity of our

infrastructures, it is hard to even diagnose problems if you can’t literally see them.

Pretty pictures are not possible without data. Telemetry is the process of recording

and transmitting the readings of an instrument—in this case our proxy. Web servers

create logs with lots of data. These logs must be processed to produce graphs. Newer

proxies send the data needed for analytics at runtime and enable integration with

visualization tools like Grafana.

Beyond passively capturing data, the proxy can play an active role by inserting

tracking identifiers into the request and response. Tools can use these tracking identifiers

to report on transactions through their lifecycle, such as using an open source tool

like OpenTracing. It’s helpful if system administrators can see execution times and

latencies of an entire request cycle, and even configure monitoring tools to send alerts if

thresholds are exceeded.

 Monetization
The API proxy is like the gate at a large concert—someone has to take the tickets

before you get to see the rock band! API monetization can integrate with accounting or

e-commerce platforms to transform web traffic into currency!

Amazon, the e-commerce juggernaut of the world, does a really good job at this.

Amazon Web Service (AWS) enables developers to monetize APIs built with the AWS

API Gateway using Amazon bill calculation and collection mechanisms. API usage plans

allow developers to set rate limits and quotas, and to create multiple usage plans with

different limits (e.g., Silver, Gold, or Platinum) and offer them as different API products

on the Amazon Web Service (AWS) Marketplace.

Chapter 6 proxy

211

There are three API monetization models:

• Tiered—Access is differentiated by either features, response time,

rate limits, volume, or data depth. Additional costs may be incurred

for overages, or discounts may be applied for volume.

• Flat fees—APIs are billed uniformly based on usage.

• Freemium—Try-buy-fly. APIs are free for a certain length of time or

for a certain quantity of calls.

Points or credits may be used in lieu of fiat currency. For example, maybe you

get 2,500 credits for free, but if you pay $50 per month, you get 5,000 credits. The

advantage of this strategy is that it reduces some of the financial friction in the technical

infrastructure, especially when customers are global and may want to pay in various fiat

or crypto currencies.

In some cases, you could build the billing into the code of the APIs themselves. The

intersection of monetization and APIs definitely occurs where billing is a factor in access

control.

 API vs Web Proxy
A front-channel HTTP request is sent from a person’s browser to a web server (or user

agent). A back-channel request is sent from a software agent—it can even be a machine-

to- machine operation that doesn’t involve a person. Therefore, front-channel requests

require a web proxy, while back-channel requests use an API proxy.

From the perspective of a proxy, this is a subtle difference. You may even wonder

why it matters.

Web proxies need to think about the user experience. A web proxy will need to

brand messages to a person. If everything goes well, the web proxy is invisible to the

person using a browser. However, if there is an error, for example a non-existent page is

requested, the response will vary based on who is making it. A response to a user agent

will need to format pages appropriately with the right CSS, JavaScript, and images, while

error responses to a software agent are informational only. Web proxies need to be

smarter about the variety of browsers, perhaps sending a different response based on the

type of browser or logging the information.

Chapter 6 proxy

212

Web applications use cookies to track sessions. Session validation is an important

feature for a Web proxy. It’s easier for a software agent to use the path to request

parameters or HTTP headers to communicate information to a web service. And

software agents are normally stateless—each request is self-contained and, from the

proxy perspective, doesn’t depend on previous requests. The software agent equivalent

of a session is a token, typically sent in the Authorization header.

Protocols like OpenID Connect, which involve multiple steps—they get the code,

use the code to get an access token, and then use the access token to get user_info—

are more complex to implement in a proxy and require more advanced handling of

state across a series of requests. Also if a web proxy is responsible for authenticating a

person, it will need to convey the resulting authentication information to the upstream

application. For example, the proxy may set the person’s username in the HTTP_REMOTE_

USER header variable. Other HTTP headers may convey other user claims (e.g., HTTP_

EMAIL and HTTP_NAME). Alternately, the web proxy may just send the identity assertion

(e.g., HTTP_ID_TOKEN and HTTP_USER_INFO).

The security policies may differ for a web proxy. While a user agent primarily

specifies the GET and POST methods, software agents may use all available methods, like

PUT and DELETE, and even extension methods like PATCH. Web proxies may want to block

these methods.

 Open Source Web Proxies
The open source web proxies are as follows.

 Apache httpd
The first web server to be used as a proxy was Apache httpd. There are two commonly

used approaches:

• The ProxyPass and ProxyPassReverse directives

• The Rewrite directive

The upstream API is mapped to a folder or hostname using the Apache Directory or

VirtualHost configuration directives.

Chapter 6 proxy

213

It’s possible to combine directives. For example, you can require authentication and

proxy at the same time. This is a common strategy for handling SAML authentication. A

Shibboleth SP proxy configuration might look like Listing 6-1.

Listing 6-1. Apache ProxyPass Example

<VirtualHost _default_:443>

 ServerName proxy.example.com

 <Location />

 AuthType shibboleth

 ShibRequestSetting requireSession 1

 Require shib-attr memberOf Manager

 </Location>

 ProxyPreserveHost On

 ProxyPass /target https://target.example.com/mySite

 ProxyPassReverse /target https://target.example.com/mySite

</VirtualHost>

Here is a summary of the commands:

• AuthType shibboleth—This signals to Apache to use the Shibboleth

filter for authentication.

• Location—This directive limits the scope of the enclosed directives

by URL, which is different than Directory, where you control access

rights to a directory (and its subdirectories) in the file system. In this

example, we are using base URL /.

• Require shib-attr memberOf Manager—This directive requires that

certain attributes must contain the specified values in the request. In

this case, the memberOf attribute must be Manager in order to pass the

authentication.

• ProxyPass—This directive allows remote servers to be mapped into the

space of the local server. The local server does not act as a proxy in the

conventional sense, but appears to be a mirror of the remote server.

• ProxyPassReverse—This directive lets Apache Httpd adjust the URL

in the Location, Content-Location, and URI headers on the HTTP

redirect responses.

Chapter 6 proxy

214

In the discussed configuration, the client attempting to access https://proxy.

example.com/target is first required to be authenticated by Shibboleth, and then

Apache makes a reverse proxy request to http://target.example.com/ to get the final

content displayed on the browser.

 mod_auth_openidc
This Apache module functions as an OpenID Connect relying party, authenticating users

against an OpenID Connect provider, after which it receives user identity information

either via the id_token or the UserInfo JWT.

Sample configuration to use Gluu as an OpenID Connect provider is shown in

Listing 6-2.

Listing 6-2. Sample Configuration to Use Gluu as an OpenID Connect Provider

<VirtualHost *:443>

 ServerAdmin webmaster@localhost

 DocumentRoot /var/www/html

 OIDCProviderMetadataURL https://idp.mydomain.com/.well-known/openid-

configuration

 OIDCClientID (client-id)

 OIDCClientSecret (your-client-secret)

 OIDCRedirectURI https://www.mydomain.com/callback

 OIDCResponseType code

 OIDCScope "openid profile email"

 OIDCSSLValidateServer Off

 OIDCCryptoPassphrase (a-random-seed-value)

 OIDCClaimPrefix USERINFO_

 OIDCPassIDTokenAs payload

 <Location "/">

 Require valid-user

 AuthType openid-connect

 </Location>

Chapter 6 proxy

https://proxy.example.com/target
https://proxy.example.com/target
http://target.example.com/

215

 ProxyPreserveHost On

 ProxyPass /target http://target.host.org/resource.html

 ProxyPassReverse /target http://target.host.org/resource.html

</VirtualHost>

A summary of the various directives follows:

• OIDCProviderMetadataURL—The URL for the OP configuration

metadata, i.e., the location of the .well-known/openid-

configuration file.

• OIDCClientID—The client identifier (client_id) issued by the OP.

• OIDCClientSecret—The secret corresponding to the client_id.

• OIDCRedirectURI—This path will be used by mod_auth_openidc to

receive the callback from the OP with the response. It should not map

to content on the website.

• OIDCResponseType—The response type expected from the

authorization endpoint. Use code for code flow and code id_token

for hybrid flow.

• OIDCScope—The scopes requested from the OP.

 Nginx
Many system administrators prefer Nginx as a lightweight web server, especially for

proxying. A basic nginx.conf file for proxying would look something like Listing 6-3.

Listing 6-3. Sample Nginx Proxy Configuration

events {

 worker_connections 1024;

}

http {

 server {

 listen 80;

 server_name proxy.example.com;

 return 301 https://proxy.example.com$request_uri;

 }

Chapter 6 proxy

216

 server {

 listen 443;

 server_name proxy.example.com;

 ssl on;

 ssl_certificate /etc/nginx/ssl/cert.crt;

 ssl_certificate_key /etc/nginx/ssl/key.key;

 location / {

 proxy_pass https://backend.example.com/

 }

 location /items {

 proxy_pass https://backend.example.com/items

 }

 }

}

Some explanation:

• The worker_connections directive under the events context defines

how many clients can be served simultaneously by Nginx. The

default is 1024.

• The server directives under the http context are where we define the

behaviors of the Nginx web server and see how to handle different

requests.

• As you can see in the first server directive, requests are automatically

redirected from http calls to https. This is done by listening on port

80 and returning a 301 redirect to the port 443 equivalent of the web

server.

• Inside the following server directive block, we defined our

SSL/TLS capabilities with the following declarations: ssl on,

ssl_certificate, and ssl_certificate_key.

• Next is the location directive, which defines what should

happen to client requests. For example, a client request to

https://proxy.example.com/items will proxy on the backend

to https://backend.example.com/items. This will also route

traffic to all “children” of this directory, unless another hardcoded

Chapter 6 proxy

https://proxy.example.com/items
https://backend.example.com/items

217

location is defined. For instance, /items/shoes/ will be handled

by this directive unless you have a location /items/shoes/ {}

directive, which will override this one.

A way to further enhance the proxying capability with more complex requirements

is to use the upstream context. In that block, multiple servers can be pooled together

with more complex redundancy processes and load balancing. For an example, see

Listing 6-4.

Listing 6-4. Sample upstream Context

http {

 upstream backend_items {

 server backend01.example.com:443 max_fails=2 fail_timeout=10s;

 server backend02.example.com:443 max_fails=2 fail_timeout=10s;

 }

 upstream backend_users {

 server backend03.example.com:443 max_fails=2 fail_timeout=10s;

 server backend04.example.com:443 max_fails=2 fail_timeout=10s;

 }

 server {

 listen 80;

 server_name proxy.example.com;

 return 301 https://proxy.example.com$request_uri;

 }

 server {

 listen 443;

 server_name proxy.example.com;

 ssl on;

 ssl_certificate /etc/nginx/ssl/cert.crt;

 ssl_certificate_key /etc/nginx/ssl/key.key;

 location / {

 proxy_pass https://backend.example.com/

 }

 location /items {

 proxy_pass https://backend_items/items

Chapter 6 proxy

218

 proxy_next_upstream error timeout invalid_header http_403 http_404

http_500 http_502 http_503 http_504;

 proxy_connect_timeout 2;

 }

 location /users {

 proxy_pass https://backend_users/users

 proxy_next_upstream error timeout invalid_header http_403 http_404

http_500 http_502 http_503 http_504;

 proxy_connect_timeout 2;

 }

 }

Some explanation:

• To expand on our previous configuration, the upstream directives

were added to the http context. Here, we define the server pools,

backend_items and backend_users. These blocks contain each

server in that proxy pool. By default, Nginx handles the server pools

in a round-robin fashion: each server is requested in order until it

rolls back to the first server and the process begins again.

• Note that each server added must begin with server followed by

the path to the server. Optional ports can be defined as well. In

our example, 443 is used.

• To control failover, Nginx provides max_fails and fail_timeout.

The former sets the maximum amount of connection failures

a server can have before it’s considered unavailable. The latter

defines how long Nginx should wait for a connection and also

how long the server should be considered unavailable.

• Now moving to the location blocks, the proxy_pass directive for

/items and /users points to the upstream pools defined previously,

as opposed to any single URL. Anytime a user or agent tries to access

https://proxy.example.com/users, Nginx will route that request to

one of the servers defined in the backend_users pool

(https://backend03.example.com/users for example).

Chapter 6 proxy

https://proxy.example.com/users
https://backend03.example.com/users

219

• The proxy_next_upstream directive will forcefully route traffic to the

next server in the upstream block if any of the following conditions

are met. So if the server that Nginx is trying to route a request to

presents an error, has a timeout, returns an invalid_header, or

returns any of the HTTP response codes 403, 404, 500, 502, 503, or

504, Nginx will then switch to the next server in the pool.

These are only some of the tools available with Nginx. Let’s examine a more

complex example and extend the functionality to limit access to people authenticated

using OpenID Connect. This example uses the lua-resty-openidc module, written by

Hans Zandbelt (who also wrote the Apache module mod_auth_openidc plugin). The

instructions for installation can be found at https://github.com/zmartzone/lua-

resty- openidc. At this point you should have two servers: one is the OpenID Connect

provider, which is idp.example.com in our example. The other server hosts the Nginx

web server (tested with version 1.11.2.5) with the lua-resty-openidc dependency

properly configured. This second server will be called rp.example.com.

The lua-resty-openidc Nginx library uses the OpenID Connect Authorization Code

Flow. The Nginx OpenResty server in this example is the OpenID Connect RP. After

navigating to the Nginx OpenResty server, the user will be redirected to the OP. After

authentication and authorization, the RP will gather user information from the OP and

send the user to the proxied content.

First, let’s register the OpenResty client with the OpenID Provider, in this case the Gluu

Server. Navigate to your Gluu Server, and on the left panel, click OpenID Connect, and

then Clients. Click the Add Client button. Choose a descriptive name for your client, like

lua-resty-openidc for convenience (this is only for human readability). Jump down to the

bottom, where you will choose Add Login Redirect URI, Add Scope, Add Response Type,

and Add Grant Type. For our example, our Redirect Login URI will be https://rp.example.

com/welcome to match the hostname of the OpenResty server we will configure shortly.

Now, click Add Scope and Search to display all scope options. Check email, openid,

and profile. Next, click Add Response Type and check Code. Click Add Grant Type and

check authorization_code. For our simple example, this is enough, and we can click the

Add button at the bottom of the page. Once we’ve done this, we can gather our inum

of the client we just created from the OpenID Connect -> Clients dashboard next to the

Display Name. OpenResty’s Nginx configuration will use this inum as the client_id and

the secret we created before will be our client_secret. That’s all we need to configure

the Gluu Server as the OP.

Chapter 6 proxy

https://github.com/zmartzone/lua-resty-openidc
https://github.com/zmartzone/lua-resty-openidc
https://rp.example.com/welcome
https://rp.example.com/welcome

220

Take a look at the OpenResty Nginx configuration. By default OpenResty installs their

build of Nginx at /usr/local/openresty/nginx/conf/nginx.conf. We want to replace

this configuration with our own, as shown in Listing 6-5.

Listing 6-5. OpenResty Nginx Configuration

events {

 worker_connections 1024;

}

http {

 lua_package_path "/usr/local/openresty/?.lua;;";

 resolver 8.8.8.8;

 lua_ssl_trusted_certificate /etc/ssl/certs/ca-certificates.crt;

 lua_ssl_verify_depth 5;

 # cache for discovery metadata documents

 lua_shared_dict discovery 1m;

 # cache for JWKs

 lua_shared_dict jwks 1m;

 server {

 listen 80 default_server;

 server_name _;

 return 301 https://$host$request_uri;

 }

 server {

 listen 443 ssl;

 ssl_certificate /usr/local/ssl/nginx.crt;

 ssl_certificate_key /usr/local//ssl/nginx.key;

 location / {

 access_by_lua_block {

 local opts = {

 redirect_uri_path = "/welcome",

Chapter 6 proxy

221

 discovery = "https://idp.example.com/.well-known/openid-

configuration",

 client_id = "$INUM",

 client_secret = "$SECRET",

 ssl_verify = "no",

 scope = "openid email profile",

 redirect_uri_scheme = "https",

 }

 -- call OIDC user authentication

 local res, err = require("resty.openidc").authenticate(opts)

 if err then

 ngx.status = 500

 ngx.say(err)

 ngx.exit(ngx.HTTP_INTERNAL_SERVER_ERROR)

 end

 ngx.req.set_header("X-USER", res.id_token.sub)

 }

 }

 }

}

There are a couple of things to be aware of with this configuration. lua_package_

path must point to the proper location of lua-resty-openidc.lua and its dependencies.

If you installed the packages with the OpenResty Package Manager, this can be left as

shown in Listing 6-4. The ssl_certificate and ssl_certificate_key options should

point to the web certificates for this web server. Creating self-signed certificates isn’t

difficult and is the reason we have the ssl_verify option set to no. Replace the $INUM

and $SECRET terms with client_id and client_secret we created earlier in the Gluu

Server.

That’s it. Now you can start OpenResty from OpenResty’s bin directory. After that,

navigate to https://rp.example.com and you should be redirected to the IDP where you

can log in. After giving consent, you’ll be redirected to the default OpenResty landing

page in the /usr/local/openresty/nginx/html/index.html directory.

Chapter 6 proxy

https://rp.example.com

222

Looking through the examples and issues in the lua-resty-openidc GitHub repo

will give you a better understanding of the robust nature of what you can achieve with

these tools.

 Kong
Kong is an open source API gateway that is free to use (see Figure 6-3). It originated

from the Mashape API marketplace (now RapidAPI), where it served tens of thousands

of APIs. After the API Marketplace was sold to RapidAPI, Kong Inc. (rebranded from

Mashape) focused on extending the API gateway as an open source project.

There are two versions of the product. One is the Enterprise Edition, which includes

additional tools for documentation and analytics, as well as additional features on the

gateway itself. There is also the Community Edition of Kong, which is the bare gateway.

Some of Kong’s key features are:

• Very fast, sub-millisecond latency on the core gateway

• Small footprint, suitable for sidecar patterns

• Extensible through custom plugins

• Open source, no black box

• Extensive and active community

• Over 60 plugins available

 Kong Technical Component Overview

Kong as a gateway is built on top of the well-known Nginx web server. It is written in Lua

(with the OpenResty framework) and as such is easy to extend. For its configuration, it

uses a database. You can choose either Postgres or Cassandra. Many Kong nodes can be

Figure 6-3. Kong

Chapter 6 proxy

223

connected to the same database, and they will then form a Kong cluster. A Kong cluster

scales horizontally; all you need to do is add Kong nodes. The Kong configuration is

dynamic, which means that any changes made to the configuration will automatically

propagate over the entire Kong cluster and take effect within seconds, without having to

deploy and push configurations.

Kong is available in packages for more than 12 platforms, from Docker images to

source code.

 Kong Functional Component Overview

The relationship between several entities determines how you can configure Kong. The

entities are: route, service, consumer, plugin, upstream, and target. The last two,

upstream and target, are specific for load-balancing and health-check purposes. We’ll

not address those here, but the Kong website has excellent documentation.

• Route—A route is a set of matching rules. Whenever a request is

received, its characteristics will be matched against the configured

route entities, and the best match is assigned as the route for this

request. Matching can be done on the requested hostname (host-

header), the requested path, and/or the requested HTTP method.

Every route is always connected to one service (services can have

multiple routes).

• Service—A service is the representation of the backend service,

where the request will be routed. This means that a service contains

all properties for an upstream connection, including host, port, path,

connection timeouts, connection retries, and other information to

control Kong’s proxy behavior. A service can contain many routes.

• Consumer—Software that is calling the API. In OAuth, this is mapped

to a client. In more primitive API access control implementations,

you might use HTTP Basic Authentication, or some other type of

shared secret (e.g., an API key or a signed JWT).

• Plugin—Plugins add functionality to Kong. Plugins can be attached

to any combination of service, route, or consumer. A plugin will be

executed when a request is received for any of the items it is attached

to. When plugins are not attached to anything, they are global

Chapter 6 proxy

224

and will be executed on every request. Many standard plugins are

included for functions like authentication, security, traffic control,

serverless, analytics/monitoring, transformations, and logging. There

are also many community-contributed plugins. It is possible to write

your own plugins if you’re up for learning about Lua and publishing

some Lua rocks!

 Getting Started with Kong

To get started with Kong, you can use the Docker distribution to quickly create a setup

that is fully functional without too much hassle. We’ll take the following steps here: (1)

Set up Kong and database, (2) Create an API in Kong, and (3) Enable authentication on

that API, using plugins.

To get started with Docker, execute the following shell commands.

Step 1: Set up a local PostgreSQL instance (see Listing 6-6).

Listing 6-6. Installing Dockerized Kong

> docker run -d --name kong-database \

-p 5432:5432 \

-e "POSTGRES_USER=kong" \

-e "POSTGRES_DB=kong" \ postgres:9.5

The command will start a new container running PostgreSQL version 9.5. The

container goes by the name kong-database and exposes a single port 5432 to connect to

the database. kong is both the username and password.

Step 2: Initialize the Kong database by running Kong migrations up (see Listing 6-7).

Listing 6-7. Initializing the Kong Database

> docker run --rm --link kong-database:kong-database \

-e "KONG_DATABASE=postgres" \

-e "KONG_PG_HOST=kong-database" \ kong:latest \

kong migrations up

This will start an ephemeral container with Kong running its migrations up

command. When completed, it will simply exit. The command will pull the latest version

of Kong (as per kong:latest).

Chapter 6 proxy

225

The previously created PostgreSQL container kong-database is made available as

hostname kong-database. The two environment variables, KONG_DATABASE and KONG_

PG_HOST, are passed to Kong to tell it to use PostgreSQL as the database and connect to it

as kong-database.

We do not need to pass the port nor any credentials, as Kong defaults to port 5432

and kong for both the username and password (all according to the previously created

PostgreSQL container). Obviously, they can be altered and passed along using other

settings from Kong’s configuration file.

Step 3: Start Kong (see Listing 6-8).

Listing 6-8. Starting Kong

> docker run -d --name kong --link kong-database:kong-database \

-e "KONG_DATABASE=postgres" \

-e "KONG_PG_HOST=kong-database" \

-e "KONG_PROXY_ACCESS_LOG=/dev/stdout" \

-e "KONG_ADMIN_ACCESS_LOG=/dev/stdout" \

-e "KONG_PROXY_ERROR_LOG=/dev/stderr" \

-e "KONG_ADMIN_ERROR_LOG=/dev/stderr" \

-e "KONG_ADMIN_LISTEN=0.0.0.0:8001, 0.0.0.0:8444 ssl" \

-p 8000:8000 \

-p 8443:8443 \

-p 8001:8001 \

-p 8444:8444 \

kong

This will now actually start Kong and run the container as a daemon (the -d option).

From the previous command, there are a few new options passed along. First of all,

exposing the Kong ports for the proxy (8000 for http and 8443 for https traffic) and for the

Kong administrator interface (8001 for http and 8444 for https). Second, the log files are

set to stdout and stderr as per Docker best practices.

Finally, there is the KONG_ADMIN_LISTEN option that tells Kong to listen on all

interfaces for the administrator interface. The default here is to only listen on localhost,

but since it runs inside a container, that would make it unreachable from outside the

container, and hence prevent us from configuring anything.

Chapter 6 proxy

226

Step 4: Check your installation.

Run the command docker ps and it should show two containers running, kong and

kong-database. To test Kong itself, try making an HTTP GET request on the Kong proxy

port 8000 using the following command:

> http get :8000

This uses the http command provided by httpie (see https://httpie.org), which

is a utility that is similar in functionality to curl but provides an easier command line

and nicer output, shown in Listing 6-9.

Listing 6-9. Testing Kong

HTTP/1.1 404 Not Found Connection: keep-alive

Content-Type: application/json; charset=utf-8 Date: Thu, 19 Apr 2018

18:09:14 GMT

Server: kong/0.13.0 Transfer-Encoding: chunked

{

"message": "no route and no API found with those values"

}

The output (despite being an error) clearly shows that Kong is running but cannot

find a matching route for the simple test request.

Step 5: Create a service and route.

To actually start using the system, we need to create a route (to catch incoming

requests) and a service (where to send them).

> http post :8001/services name=test url=http://mockbin.org

> http -f post :8001/services/test/routes hosts[]=myapi.com

The route catches any request destined for host myapi.com, then the service will

forward it to mockbin.org (a test service to create and debug test requests)

Step 6: Test the activated API.

Make the following request to get a returned copy of your request from mockbin.org.

> http get :8000/request host:myapi.com

This inserts a host header that matches the route we created earlier. This makes Kong

forward the request as expected, and we get a result with a body containing all details of

the request we send.

Chapter 6 proxy

https://httpie.org

227

Step 7: Add client authentication using HTTP basic.

By using the key-auth plugin, we can quickly secure our test API. Execute the

following:

> http post :8001/services/test/plugins name=key-auth

If you now test the API again (Step 6), you’ll get a 401 unauthorized response. The

API is now protected and can only be accessed by providing proper credentials.

Step 8: Add a consumer and credentials.

Since credentials are bound to consumers, we first create a consumer, and then

provide credentials for that consumer.

> http post :8001/consumers username=aladdin

> http post :8001/consumers/aladdin/key-auth key=OpenSesame

Now we can test again (same as Step 6), but we only need to add our key to the

request:

> http get :8000/request host:myapi.com apikey:OpenSesame

Step 9: Examine the response.

When examining the response from Step 8, there are a number of artifacts inserted

by Kong into the request and the response.

If you look at the response headers, you’ll notice some extra headers:

Via: kong/0.13.0

X-Kong-Proxy-Latency: 0

X-Kong-Upstream-Latency: 114

The Proxy-Latency header shows the latency it took Kong to process the request/

response (in milliseconds, so 0 means less than a millisecond). The Upstream-Latency is

the time it took the upstream to respond.

In the response body, you’ll see that our mockbin.org test API returned a copy of the

request we sent it. And here you can find the details of the authenticated consumer:

"apikey": "OpenSesame",

"x-consumer-id": "3469667b-f4e0-44ca-8356-120563e7c897", "x-consumer-

username": "aladdin",

Chapter 6 proxy

228

The backend does not have to do its own authentication; it can just grab the details it

needs from the headers of the request.

Step 10: Consider some warnings.

These example steps demonstrate the basics of Kong, although obviously this is not a

recipe for a secure production deployment. Here are some obvious points to consider:

• All requests are plain HTTP—all APIs should be HTTPS.

• The example backend is reachable by bypassing Kong. Your network

firewalls should only allow access through Kong.

• The apikey header is forwarded to the backend—configure Kong to

remove it.

• Kong’s admin API is accessible.

 Istio
Launched in 2017 by IBM, Google, and Lyft, Istio is setting the bar for a containerized

proxy platform. Istio requires Kubernetes v1.9 or newer. In addition to the elasticity that

comes with Kubernetes, Istio provides a few compelling features:

• Traffic management—The ability to route requests based on flexible

rules is a compelling advantage of Istio. For example, let’s say you

want to route 10% of your traffic to version 1.1 of your API, while

routing 90% to version 1.0. You can implement these kinds of rules in

Istio quickly, which is quite difficult in other API gateway platforms.

• Telemetry Istio—It’s built on a new web server, Envoy (see https://

envoyproxy.io), which provides quite a bit of telemetry out of the

box. This enables you to use a tool life Grafana to provide a visual

representation of what’s happing in your proxy deployment.

• Mutual TLS—You can configure mutual TLS on a per service basis.

You can also configure role-based access control (RBAC) for each

service.

Chapter 6 proxy

https://envoyproxy.io
https://envoyproxy.io

229

Istio facilitates accurate monitoring of the health and activity of your micro-services.

It also makes it possible to apply policy across dozens or hundreds of micro-services all

at once. This is where powerful tooling helps give you control and an accurate picture of

your service ecosystem.

For more information on Istio, see the website at https://istio.io. Because it’s

so new, there wasn’t enough time to provide a detailed overview here. But given its

potential, it seemed remiss not to mention it. Check it out!

 Conclusion
Proxying is a powerful technology that keeps getting better. New tools are getting faster,

more flexible, more reliable, and easier to manage. Controlling access to web content via

the proxy is an essential part of any IAM strategy. In Chapter 8, we’ll introduce one more

proxy: the Gluu Gateway. This is an open source distribution that uses Kong community

edition, but adds some extra IAM management components.

Chapter 6 proxy

https://istio.io

231
© Michael Schwartz, Maciej Machulak 2018
M. Schwartz and M. Machulak, Securing the Perimeter, https://doi.org/10.1007/978-1-4842-2601-8_7

CHAPTER 7

Strong Authentication
Wouldn’t you rather stop a security breach than detect it? So why do organizations have

a love affair with intrusion detection systems and neglect strong authentication? While

an IDS system can detect a breach, the authentication may stop it entirely. Numerous

surveys done over the years have shown that passwords are the most common cause of

information security breaches. Upgrading authentication may be the best investment

you can make in enterprise security in terms of effectiveness.

Attackers have many good options for defeating passwords. Easy passwords are

guessable. Sloppy programmers write clear text passwords to the file system or registry,

or hard-code them in applications. People reuse passwords at many sites. One hacked

website leads to others—especially if hackers sell the stolen passwords on the dark web.

Hackers trick people into revealing their passwords via phishing. Key loggers and other

malware snoop passwords. Attackers record passwords sent unencrypted over a network

(for example, via public WiFi networks). Cross-site scripting (XSS) vulnerabilities may

expose your password in the browser. Hackers may have inserted spyware in your

hardware. These examples are only the beginning of a list of potential problems with

passwords.

Early on, security experts realized that combining passwords with another factor

(or factors) increases our confidence in the authentication. As such, MFA (Multi-Factor

Authentication) was born. In the 90s, one-time password (OTP) hardware tokens and

X.509 browser certificates seemed unbreakable. OTPs allow a user to authenticate to a

system with an algorithmically-generated numeric password that changes periodically

(every 30 seconds or so). X.509 web certificates enable a web browser to present a

person’s digital certificate, stored either in the browser or on an external smartcard, to

the server and authenticate based on this certificate.

232

Twenty years later, there are many new authentication technologies beyond

OTP and X.509 certificates. The rate of innovation has not slowed—authentication

technologies are rapidly emerging. Mobile phones have new sensors and websites have

access to behavioral analytics that can mitigate the risk of fraud. But there is a tradeoff

in usability. Albert North Whitehead, an English mathematician and philosopher, said

“Civilization advances by extending the number of important operations which we can

perform without thinking about them.” The best usability would be not authenticating

at all! My device should just know it’s me and send that information over the network.

But unfortunately, we’re not there yet (although behavioral biometrics and continuous

authentication methods are becoming increasing popular). Today, digital authentication

balances a tradeoff between security, usability, and cost (or deployability). If there was a

technology that was secure, super easy to use, and cheap for organizations to implement,

we would be using it. In fact, in many ways, passwords seemed to offer one of the most

attractive “triangles” out there (see Figure 7-1).

In this chapter, we provide a technical overview of some of the available technologies

and standards for strong authentication, such as OATH, Mutual TLS, Fast Identity Online

(FIDO), and W3C Web Authentication. Some of these standards can even help protect

us against phishing, man-in-the-middle attacks, and replay password attacks. For ideas

on how to provision and de-provisioning strong credentials, see Chapter 9 on identity

management.

Figure 7-1. Triangle of trust

Chapter 7 Strong authentiCation

233

 One-Time Passwords (OTPs)
OTPs are not susceptible to replay attacks, meaning an attacker cannot use a stolen OTP

code later to impersonate someone. As the name suggests, the usability of an OTP is like

a password—something that the person enters in addition to their username. OTPs are

not inherently two-factor—the token value is only one factor. One common strategy to

make OTP solutions two-factor is to prefix a PIN number before the OTP. This combines

the “something you know” (PIN number) with the “something you have” (whatever

software/hardware supplied you with the OTP). OTPs are also often used in combination

with a password (your first authenticate “as usual” and then you need to provide an

OTP).

One of the easiest ways to implement OTP is to generate a random number and

send it to the person via email, SMS, or some other messaging platform. One way to

accomplish this is to use an algorithm based on some cryptographic material stored on

that server (preventing attackers from guessing the one-time passwords).

For example, the server can use the HMAC-SHA-1 algorithm, as defined in RFC 2104,

and combine it with the truncation method defined in RFC 4266. The algorithm takes a

secret as the seed and a second variable (e.g., time) to produce a hash and truncates that

hash to produce a code of a desired length. The length of the code should allow the end

user to easily read it and type it back at the site during authentication, hence the length

is often of six-eight digits long and contains numbers only to be easily usable on a mobile

phone. It is then the responsibility of the server to match the code with the one that has

been generated. It’s a good idea to make sure the code is only used once, and that the

code expires. Such an OTP flow is depicted in Figure 7-2.

Chapter 7 Strong authentiCation

234

OTPs delivered via SMS or email don’t prove possession of something, they simply

prove access to a communication channel. First, you must trust the channel—that an

attacker cannot intercept the message. Internet email is hard to trust because it not

encrypted—few email transfer agents support TLS. Email clients make a secure connection

to the server, but the emails are sent in the clear from one MTA to another. Attackers can

use malware installed on the person’s device to intercept the code sent via email. When

targeting a specific person, attackers can hack the mobile operator by convincing one of

the thousands of people or agents to issue a replacement SIM card for a certain num ber.

OTP does not protect you against phishing and allows for man-in-the-middle or man-

in-the-browser attacks. If an attacker tricks a person into interacting with the attacker’s

website (e.g., through phishing), the attacker can replay messages on the legitimate site

(e.g., a bank) and proxy back the actual content without the person knowing.

Figure 7-2. One-time passwords delivered using SMS—example flow

Chapter 7 Strong authentiCation

235

 HOTP and TOTP
HMAC-based One-Time Passwords (HOTPs) and Time-based One-Time Passwords

(TOTPs) are other types of OTPs. Both types of one-time passwords are examples of a

hash-based message authentication code (HMAC) that’s computed based on a secret

and some other value, either a counter for HOTP or time for TOTP. There are both

software and hardware implementations of HOTP and TOTP (see Figure 7-3). We discuss

both types in subsequent sections of this chapter.

 HOTP
The HMAC-based One-Time Password method allows for a one-time password to be

generated independently by the client using a cryptographic function, which takes a

secret and a counter as input. The client and server share the secret and counter. The

counter is often set to 0, or a known fixed value, to minimize deployment complexity.

However, to mitigate more risk, the counter should be set to a random value for each

token in a production environment.

Figure 7-3. Examples of HOTP and TOTP hardware and software tokens

Chapter 7 Strong authentiCation

236

The Initiative for Open Authentication (OATH) incubated HOTP, specified in RFC

4226. The design goals were end-consumer usability, as well as ease of implementation

on low-cost hardware with minimal user interface. HOTP codes contain only numeric

characters, so people can easily enter one on their mobile phones. The math behind

HOTP is as follows:

HOTP = Truncate(HMAC-SHA-1(s,c))

where

s - secret value (seed)

c - counter value

Truncate() - truncates the generated HMAC-SHA-1 to extract 6-8 digits

(depending on the actual deployment)

A hardware or software token can generate an HOTP. Organizations decide to use

hardware or software depending on the security requirements of a deployment (you may

recall examples of such tokens depicted in Figure 7-3).

For hardware tokens, an administrator usually provisions the secret and counter

during a centrally-governed account administration process. For software tokens, such

as Google Authenticator (which is open source), the server typically generates the

secret and counter, and then renders an TLS protected web page, which is scanned by

the software token. The server can verify an HOTP because it knows the secret and the

counter used to compute the password. Every time an HOTP is generated, the counter

increases by one.

You may wonder what happens if the counter on the server gets out of sync with the

token (for example, if you start generating HOTPs but are not using them to sign in to the

account). HOTP can deal with such situations through its re-synchronization algorithm,

which uses something called a look-ahead window. Such windows define a number of

acceptable retries for the server to verify an HOTP until giving up and they are usually set

somewhere between 10-20. If the server cannot find an acceptable counter to produce a

valid OTP, the server can then ask for another authentication pass of the protocol to

take place and this happens until the maximum number of authorized attempts is

reached. It is common that the server would accept several attempts. In fact, during

re- synchronization of an OTP, to minimize the possibility of a fraudulent activity,

the server may ask for multiple passcodes to be provided by the user.

If the user fails to resynchronize a token and the maximum number of authorized

attempts is reached, the HOTP RFC document suggests locking the person’s account.

Chapter 7 Strong authentiCation

237

Importantly, when an HOTP is generated, it can be used on the server for an

unknown amount of time. This opens a potential window for an attack, where the OTP

is used by the attacker prior to its legitimate use (e.g., the person generates an HOTP

but fails to use it for a long time, at which point the OTP can be used on the server by an

attacker). This drawback is addressed in another version of one-time passwords, which

is TOTP, or Time-based OTP.

 TOTP
Time-based OTP was also incubated by the OATH initiative and specified in RFC 6238.

It is an example of a hash-based message authentication code (HMAC) and is a variant

of HOTP. This algorithm uses a shared secret and time instead of a counter. Because the

server and the token are affected by network latency, and their clocks may be slightly

out-of-sync, it’s not a precise time that is used for calculating the HMAC, but rather a

time interval. Half-minute intervals are recommended in RFC 6238 as a balance between

security and usability. TOTP is calculated as follows:

TOTP = Truncate(HMAC-SHA-1(s,TC))

where

s - secret value

TC - time counter value which can be calculated as TC =

floor((unixtime(now) − unixtime(T0)) / TI),
Truncate() - truncates the generated to HMAC-SHA-1 to extract 6-8 digits

(depending on the actual deployment)

If you compare TOTP with HOTP, you will notice that in fact TOTP can be

represented as follows:

TOTP = HOTP(s,TC)

TOTP is provisioned to the end user in the same way as HOTP—a shared secret

is established between the token and the authentication server. During provisioning,

clocks need to be synchronized as well.

Verifying a TOTP is similar to the verification done for HOTP. The main difference

is that the server must also calculate the current time counter and use it for calculating

its own TOTP for comparison. The authentication server can typically accept TOTPs

Chapter 7 Strong authentiCation

238

generated from timestamps that differ by one time interval from the client’s timestamp,

but this depends on the actual configuration of the server.

For TOTPs, the problem of desynchronization between the token and the server

is largely alleviated because of the use of time and not a counter. Of course, the clocks

can still go out-of-sync significantly and some form of token resynchronization may be

required. For example, two TOTP values can be used to search for those passcodes in a

larger window back and forth for resynchronization purposes. Furthermore, it may also

be possible to do auto-resynchronization.

For example, if the OTP value does not match during authentication, the server

can save this passcode. When the user tries to sign in by providing the next generated

passcode, then the server can use both OTPs (previous and current) to perform

synchronization to a bigger time window. Such a method allows the use of TOTP even

for those users who use 2FA very rarely.

Because TOTP is generally usable for only a known and limited amount of time, it

can be considered more secure than HOTP. (It is still only a one-time password so if it is

used in a single window then it cannot be reused in that window again.) An example of

a software token (Google Authenticator) with registered TOTPs and HOTP is depicted in

Figure 7-4. You can see that an HOTP can be regenerated at the user’s will, while a TOTP

changes at each interval automatically.

Figure 7-4. Google Authenticator with two TOTPs and one HOTP

Chapter 7 Strong authentiCation

239

Both HOTP and TOTP have nothing that binds these tokens to a session between

the person’s browser and the server, hence there is a possibility of man-in-the-middle or

man-in-the-browser attacks.

An example is depicted in Figure 7-5 that shows a man-in-the-middle attack where

the victim is tricked into accessing the attacker’s website, which is pretending to be a

legitimate banking site. The victim may have checked for a secure SSL connection (green

lock), but this might not help if the attacker hacked the target organization’s DNS server,

added an A-record pointing to their malicious site, and obtained a valid SSL certificate

from a trusted CA. In one such attack, a hacker intercepted the credentials (username/

password) as well as the OTPs (which was either HOTP or TOTP) and reused them to

steal a bundle of cash. The aforementioned attack vector is addressed in standards from

the FIDO Alliance, presented later in this chapter. It could also have been prevented with

mutual TLS.

Figure 7-5. Man-in-the-middle attack on one-time-passwords

Chapter 7 Strong authentiCation

240

HOTP and TOTP can be susceptible to brute force attacks as the lengths of OTPs

are relatively small (typically between six to eight digits), where the attacker tries to

guess the value of the OTP. Therefore, it is necessary to ensure that the server accepting

OTPs implements some form of throttling and can detect these kinds of attacks. For

example, after a few attempts, the server may force a delay before accepting another OTP

or can lock the account and fall back to another authentication method. Importantly,

HOTP and TOTP specifications, as defined in RFC 4228 and 6238 respectively, contain

extensive sections on security considerations. These are worth a read for anyone

seriously considering a deployment of these technologies.

Both HOTP and TOTP rely on a secret shared between the token and the server. As

discussed earlier, hardware tokens usually have the secret (seed) already baked into

them during the manufacturing process or need to be programmed using specialized

software. Such tokens are designed to be tamper-resistant to deter reverse engineering

and avoid leakage of the secret. Software tokens, which are commonly deployed on

mobile phones, rely on the secret shared with them from the server. It is paramount

that such tokens utilize encryption of those secrets and rely on existing technologies,

such as Secure Element (SE) on Android or Secure Enclave (SE) for iPhone for such

encryption. Fortunately, existing software tokens that support HOTP or TOTP use strong

cryptography following security best practices.

In terms of the authentication server, the key that is used for HOTP and TOTP

needs to be stored securely. It is a good idea to use a Hardware Security Module (HSM)

for that purpose, which prevents export of cryptographic material. Interestingly, the

RFC 4228 proposes two different ways of generating and securely storing such secrets:

deterministic generation or random generation. Deterministic generation can be

used to generate secrets on the fly during provisioning and validation. A secret is

generated based on the master key (secret value) and some other public information

(e.g., identifier of a token). The token itself holds the generated shared secret. Random

generation is used only during provisioning and the generated secret must be kept on

both the token and the server. See the “Security Considerations” section of RFC 4228 for

more information.

Note that it is possible to improve security of the shared secret by using a composite

shared secret, i.e., augmenting the seed value with some additional information. For

example, the token would only store a basic seed and would also require the user to

enter a PIN. The token would leverage the PIN, the stored seed, and the counter/time

to calculate the required OTP. Such functionality is available on both software and

hardware tokens.

Chapter 7 Strong authentiCation

241

 Mutual SSL/TLS
Nearly every user of the Internet has been exposed to the SSL (Secure Sockets Layer)

and TLS (Transport Layer Security) protocols, which have been securing transactions on

the Internet since SSL has been introduced by Netscape to the public in 1995. Both SSL

and TLS allow for authentication and encryption of interactions between two different

systems—the client and the server. TLS is the successor of the SSL protocol and provides

the same functionality, allowing for two parties to communicate securely. Because of

the differences in how these two protocols work, TLS does not interoperate with SSL,

although the certificates used in SSL and TLS are the same.

When a user accesses a website over SSL or TLS with any modern web browser, the

browser makes a secure connection to that website. The web browser aims to achieve

two things when making an SSL/TLS connection:

• Check that the server is the correct one.

• Provide encrypted channel between the browser and the server.

When making a connection with the server, the web browser first obtains an SSL/

TLS certificate from the server. This certificate, encoded in X.509 format, contains the

issuer of the certificate, the subject including the FQDN (Fully Qualified Domain Name)

of the server, the public key of the subject, and the signature of the issuer, among other

information. Listing 7-1 shows an example of a X.509 certificate.

Listing 7-1. Sample Certificate

Certificate:

Data:

 Version: 3 (0x2)

 Serial Number: b7:41:8a:d5:00:5e:45:b6

 Signature Algorithm: sha256WithRSAEncryption

 Issuer: CN=GlobalSign CA - SHA256 - G2

 Validity

 Not Before: Nov 21 08:00:00 2016 GMT

 Not After : Nov 22 07:59:59 2017 GMT

 Subject: O=SampleCo,cn=A

 Subject Public Key Info:

 Public Key Algorithm: id-ecPublicKey

Chapter 7 Strong authentiCation

242

 Public-Key: (256 bit)

 pub: 04:c9:22:69:31 [...omitted for brevity...]

 ASN1 OID: prime256v1

 NIST CURVE: P-256

 [...omitted for brevity...]

 Signature Algorithm: sha256WithRSAEncryption

 6f:af:40:72:bd:1e:18:5e:30:54:23:35:

 [...omitted for brevity...]

The browser can easily check the identity of the server based on the certificate that

it receives. First, the browser knows which URL is being accessed and it can compare

it against the FQDN specified in the X.509 certificate. Second, the SSL/TLS contains an

issuer signature, which allows the client to verify if the certificate is valid or not. The

certificate must be signed by an certification authority (CA) that’s trusted by the browser

and this is where the chain of trust kicks in—it defines which CAs are trusted and which

are not (this prevents anyone from creating a certificate for any domain).

Once the web browser authenticates the server, an encrypted channel can be

established. This channel uses a symmetric key that can be shared between the browser

and the server, leveraging the public key from the certificate (for more information we

refer the reader to the TLS protocol specification).

Mutual SSL/TLS differs only slightly from a typical SSL/TLS handshake, as it

involves sharing of the client certificate and additional verification (see Figure 7-6).

First, the server not only shares its certificate with the client, but it also requests client’s

certificate. The server does that by sending a CertificateRequest message to the client.

Importantly, the server needs to be configured to send such messages (i.e., it is not the

client that communicates to the server that it wishes to authenticate with a certificate).

The CertificateRequest message indicates to the client that the server would like the

connection to be mutually authenticated and that the client should authenticate using

an SSL/TLS certificate. The server also sends the list of Distinguished CA names.

Chapter 7 Strong authentiCation

243

Upon receiving these messages, the client either sends a pre-configured certificate

to the server or asks the person to select the certificate that should be sent (we visualize

this in Figure 7-7). The browser only selects the certificates that have been issued by

a CA trusted by the server. Once a certificate is selected, the browser responds to the

server with a certificate message, which contains the client’s certificate. In most cases,

the user can ask the browser to remember their decision and use the same certificate on

subsequent logons. In such cases, the user would not need to explicitly authenticate to

the server but instead this process would happen in the background.

Figure 7-6. Mutual SSL/TLS

Chapter 7 Strong authentiCation

244

The client certificate is similar to the certificate of a server, i.e., it contains the

same set of fields. However, there are two key differences between these two types

of certificates. First, the certificate’s Enhanced Key Usage field has the OID set to

(1.3.6.1.5.5.7.3.2), which represents “Client Authentication”. Second, the subject in

a client certificate describes the identity of the user and most likely differs from the

FQDN. For example, the subject may contain a DN of the person or their email address.

Figure 7-7. A web browser requests a user to select a client certificate for
authentication (self-signed certificate example)

Chapter 7 Strong authentiCation

245

Based on the subject identifier from the certificate, the server can establish the

identity of the person—possession of the certificate (and the corresponding private key)

is evidence of identity.

You may wonder why the server would trust the certificate presented from the

client. After all, this certificate can be public as it contains the public key, among other

information. However, the server authenticates the client based on a challenge-response

protocol, which requires control of the private key corresponding to the public key in

the certificate. During the TLS negotiation, the client also sends a CertificateVerify

message. This message contains a signature of some session related information, and

this signature is created using the private key owned by the client. The server can use

the corresponding public key from the certificate to verify the signature (see Step 6 in

Figure 7-6). We refer the reader to RFC 5246 for more information regarding TLS as

well as client certificate authentication. Importantly, the server should use an Online

Certificate Status Protocol (OCSP) to query the certificate authority’s OCSP and see if the

client’s certificate is still valid (and not revoked).

One of the advantages of mutual SSL/TLS is that there is no shared secret between

the client and server. Because the client first authenticates the server, phishing can

be prevented, although the user must check if the server being accessed is the correct

one (the browser would flag any anomalies or even prevent accessing a site if such site

would rely on SSL certificate pinning). Similarly, the man-in-the-middle attacks can be

alleviated, as a secure channel can be established between the browser and the server.

In practice, mutual SSL/TLS is rarely used for authentication on the Internet. This

is primarily because of the deployment burden that requires a user to obtain and

install an SSL/TLS certificate on their computer. Such installation needs to be done

on each machine that the user wishes to use for a particular site. Such certificates may

expire, which means that the user would need to update them periodically. Sometimes,

certificates may need to be revoked and a new certificate issued to the person. If

you think about the amount of support that an average person requires just for their

username and password credentials, you can imagine the pain of then managing client

certificates.

The exception is government sites and sometimes “intranets” (if such a thing still

exists). In the first case, users can obtain digital certificates to access highly sensitive

websites that require not only authentication but also non-repudiation. As the number

of sites is usually limited, the burden of deploying a client certificate authentication

system is somewhat minimized. For the intranet case, browser versions are tightly

Chapter 7 Strong authentiCation

246

controlled, and certificates are centrally managed. Furthermore, sometimes such

certificates can be distributed on physical devices—e.g., X.509 certificates can be placed

on smartcards that must be inserted into a computer for authentication.

 Fast Identity Online (FIDO)
Fast Identity Online (FIDO) is one of the most important recent efforts to standardize

a technology stack for web and mobile authentication. The FIDO standards, incubated

by the FIDO Alliance, includes protocols for token based and biometric authentication,

including the Universal Authentication Framework (UAF) and Universal 2nd Factor

(U2F).

FIDO provides an abstraction layer between the authenticator and the target

application that relies on the authentication process. Normally, during authentication,

a person would leverage their device (e.g., laptop or mobile device) to authenticate

themselves and this device would be an intermediate between the person and the target

application. For example, the web browser would pass information to the server while a

mobile application could authenticate locally or remotely.

For simplicity, when discussing FIDO, we refer to an IDP as an example of a target

application (within the text as well as in the presented figures). However, the target

application in this context is any application that relies on the authentication event, for

example, the login page of a SAML or OpenID Connect provider, or even a standalone

website that is providing its own authentication service.

In FIDO, the intermediate is the authenticator—software running within a web

browser, mobile device, or on a separate hardware token. Such authenticator is

responsible for verifying the person’s presence. Upon successful verification, this

authenticator then communicates with the IDP using a standardized protocol that FIDO

defines.

FIDO authentication uses public key cryptography where the private key is stored

on a device that has a UAF/U2F software stack installed. Only the public key is registered

with the FIDO IDP. Authentication is accomplished by challenging the authenticator to

produce a valid signature. The authenticator uses its private key once the verification of

the presence of the person is confirmed (e.g., users touch an authenticator or scan their

fingerprints).

Chapter 7 Strong authentiCation

247

FIDO UAF and U2F solve different use cases. UAF aims to provide a passwordless

experience for authentication, while U2F supports a universal second factor, which can

be added on top of existing authentication. Proving the identity of the person is done

based on the valid signature of a challenge that is sent by the IDP to the authenticator.

The use of the private key on the authenticator is allowed once user verification

succeeds. Importantly, the private key never leaves the authenticator and is only used to

sign a challenge. Furthermore, a new cryptographic key pair is created for each IDP with

which a person interacts.

Using FIDO UAF or U2F requires that the client (e.g., a web browser or a mobile

application) used to access the FIDO IDP supports this protocol. At the time of the

publication of this book, Google Chrome and Mozilla Firefox natively support FIDO

U2F, and a third-party extension exists for Apple Safari. Mobile applications can leverage

existing SDKs or frameworks from software and hardware vendors. Android applications

can also use the natively provided API for FIDO U2F. The beauty of the FIDO proposal

is that it is an open standard, hence mobile developers can use their preferred SDKs

without worrying if these will work with third-party FIDO servers.

In FIDO, the application recognizes the person through identity verification but

does not recognize the identity of the person. Nor does FIDO authentication leak any

correlatable identifier of the person—it simply enables a website or IDP to verify that it

is the same authenticator that has been previously registered for this person’s account.

Binding the authentication event to the identity of the person is therefore done outside

of the FIDO protocol and such binding often depends on the actual domain where the

protocol is used (e.g., banking, e-commerce, social networks, etc.). During deployment

of an IAM solution, it is rarely necessary to think about this issue, as FIDO authentication

is a means to identify a known person. But keep in mind that not all websites use a

central IDP, and the FIDO token is useful to the person for any site that supports it. We

discuss how Gluu has adopted the FIDO technology in further sections of this chapter.

FIDO has several advantages over traditional authentication mechanisms (see

Figure 7-8). It allows the IDP to control which authenticators are allowed and which

are explicitly forbidden. This functionality is achieved because each authenticator has

metadata, which is referenced through a private key (called an attestation key) baked

into the authenticator during its manufacturing process. Such metadata can include

information such as the version of the authenticator, what modalities it supports, and

what cryptographic capabilities it has.

Chapter 7 Strong authentiCation

248

An access-management solution can leverage metadata about authenticators to

set authentication policies. For example, a policy may specify that a fingerprint scan

is sufficient to access basic functionality, while an iris scan is required to access more

sensitive resources. Because the FIDO IDP understands which exact authenticator

model is used, one can easily make risk-based policy decisions. For example, an access-

management platform may only allow authenticators with a low false acceptance rate.

Because FIDO relies on public key cryptography, there is no secret that is shared

between the client and the FIDO server. This prevents several different attacks, which

are present for traditional authentication systems. The authenticator would only use

the private key to sign a challenge after successful user verification. Such signature

is bound to the TLS channel, which is established between the client and that server,

hence preventing man-in-the-middle attacks. The FIDO server merely stores a public

key associated with the authenticator, so an attack on such a server would not result in

any shared secret being revealed. Such public key differs per website, which prevents the

correlation of a person with a single authenticator.

Figure 7-8. Comparison of traditional authentication and FIDO authentication

Chapter 7 Strong authentiCation

249

 FIDO Universal Authentication Framework (UAF)
FIDO UAF aims to provide a passwordless experience for authentication where the

person is challenged to verify their presence against a registered authenticator (see

Figure 7-9). Like U2F, the person must first register their device (which supports UAF)

at the IDP. Then, instead of having to remember a password on that device, the person

can authenticate using a local biometric or PIN, which unlocks the private key. UAF

also allows experiences that combine multiple authentication mechanisms, hence the

remote account can be protected with multiple factors such as fingerprint and PIN.

The IDP needs to be able to interact with the FIDO server that can interact with

the device using the FIDO protocol. Such FIDO server can allow for specifying

authentication policies based on authenticator characteristics (which are defined in

authenticator metadata).

UAF authenticators may be connected to a person’s device via various physical

interfaces, such as SPI, USB, or Bluetooth. The UAF Authenticator-Specific Module

(ASM) is an interface on top of UAF authenticators. This interface gives FIDO UAF

clients a standard way of accessing specific authenticators and hides the internal

communication with these authenticators. For example, a FIDO UAF client would

Figure 7-9. FIDO UAF high-level architecture

Chapter 7 Strong authentiCation

250

interact with a biometric authenticator in the same way as it would interact with a

hardware token (improving the cost and deployability).

The FIDO UAF authentication protocol consists of two main parts: registration

and authentication. Registration is initiated by a client, which asks the server to send a

challenge as well as policy of permissible authenticators. The client uses the policy to

search for an available authenticator and presents it to the end user. The user enrolls

depending on the authenticator (e.g., they can scan their fingerprint or provide a PIN).

Upon successful enrollment, the authenticator generates a new public/private key pair.

The private key is stored securely within an authenticator and is used to sign a challenge

while the public key is registered at the server. The client then sends to the server the

following information: a generated public key, a signature of the challenge, and an

attestation key of the authenticator. The server verifies the signature and the attestation

key whether it matches permissible ones, and then stores the user public key. We

visualize this process in Figure 7-10.

During authentication, which is initiated by a client, the server sends a challenge and

a policy that defines which authenticators may be used. It is the client’s responsibility to

then communicate with the correct authenticator that verifies the person’s presence and

Figure 7-10. FIDO UAF registration message flow

Chapter 7 Strong authentiCation

251

produces a signature of the challenge using a securely stored private key for the person

and this target application. The client then responds with the signature. The server

checks if the signature is correct and it does that using the corresponding public key of

the user. Upon successful verification, the person can be signed in to the relying party.

We visualize the UAF authentication message flow in Figure 7-11.

Apart from authentication, the FIDO UAF protocol also enables optional transaction

confirmation. Such functionality is of paramount importance for use cases such as

banking where information like a payment amount needs to be securely authorized.

With a transaction confirmation, apart from sending a challenge, the server also

communicates the transaction text to the device, which the person can authorize.

After a successful authentication, the authenticator signs the concatenated challenge

and transaction text hash, which is returned to the server. This signature is then verified

using the registered public key for the person’s account. We visualize the FIDO UAF

transaction confirmation message flow in Figure 7-12. For more information on this

functionality in FIDO, we refer the reader to the FIDO specification.

Figure 7-11. FIDO UAF authentication message flow

Chapter 7 Strong authentiCation

252

Once a device, which is used for UAF authentication, is lost there is no way of

restoring credentials (i.e., the private keys on that device are kept secure). Hence, it is

important that the person registers multiple strong authenticators and disables the lost

authenticator.

 FIDO Universal Second Factor (U2F)
The FIDO U2F protocol allows for online services to add a second factor on top of an

existing authentication. Typically the person would use their password as step one of the

authentication, and then the FIDO U2F device in the second step. Because FIDO U2F is

built into the browser, it prevents phishing via the MITM attack described in Figure 7- 5.

Combining phishing resistance, a very low failure rate (compared to OTP which is

around 3%), wide availability of USB-A or USB-C interfaces on many devices, and a

robust market of vendors producing a variety of token form factors, FIDO U2F is one of

the most deployable strong authentication choices available to organizations.

The U2F standard also defines both registration and authentication protocols.

Registration is very similar to the one described for UAF. During an authenticated

session, a relying party sends a challenge and a policy to the IDP. One of the permitted

Figure 7-12. FIDO UAF confirmation message flow

Chapter 7 Strong authentiCation

253

authenticators must be used to authenticate the person, produce a public/private

key pair and then sign the challenge. The signature, along with the authenticator’s

attestation key and the generated public key is returned to the relying party and checked

by the FIDO server. If the verification is successful, then the public key is registered for

the person’s account.

The FIDO U2F authentication flow is presented in Figure 7-13. After the person

submits their credentials, the FIDO server sends a challenge to the client and a policy

of permissible authenticators. The client authenticates the person through one of those

authenticators. In U2F, the user would press a button on the U2F device, tap it over an

NFC reader or scan their finger on a FIDO-compliant mobile fingerprint scanner. This

unlocks the private key of the device to be used similarly UAF—i.e., to sign a challenge

sent by the server. Once a signature is produced, it is returned to the relying party. The

relying party verifies that signature using the corresponding registered public key.

 W3C Web Authentication and CTAP
Adoption of the FIDO protocol has been largely dependent on support for this protocol

by a specific platform. For example, Android for the last few years has provided the

necessary APIs that allow developers to use the functionality of credential creation and

Figure 7-13. FIDO U2F message flow

Chapter 7 Strong authentiCation

254

subsequent authentication for native applications. On the web, some browsers, such

as Google Chrome or Mozilla Firefox, provided support for FIDO U2F, but the lack of

ubiquitous browser support was problematic for application developers.

FIDO 2.0 was developed to add features that addressed requirements important to

a wider range of browser vendors. It includes two components: the Web Authentication

Protocol and the Client to Authenticator Protocol (CTAP). They are complementary and

provide a comprehensive suite for strong authentication. Relationships between Web

Authentication API and CTAP are visualized in Figure 7-14.

The Web Authentication API, incubated by the FIDO Alliance and standardized by

The World Wide Web Consortium (W3C), provides a mechanism for interacting with

the FIDO Authenticator. It defines a common and public API which, if implemented by

a browser, enables a web application (such as an IDP) to request authentication using

the FIDO protocol. Like FIDO U2F, the W3C Web Authentication API defines an API

for registration (i.e., enrollment of a credential) and authentication. Vendors such as

Microsoft, Google, and Mozilla already support this standard in their web browsers.

In addition to the API, W3C Web Authentication also defines a key attestation

format and a signature format. The API is used by the website or web application—a

simple JavaScript application can call this API on the user’s web browser. Registration

Figure 7-14. Overview of W3C Web Authentication and related CTAP

Chapter 7 Strong authentiCation

255

communicates data about the authenticator (makeCredential endpoint), which is stored

on the server and used later for authentication (getAssertion endpoint). Much of the

heavy lifting is done by the browser, which creates necessary messages and provides

error handling. The authenticator performs authentication operations and produces the

attestation.

The key attestation format and the signature format are the two elements that define

what information is passed between the web browser and the server for registration

and authentication. This includes information about the authenticator itself, and

the proof of possession of a private key of the FIDO 2.0 credential. We visualize

credential registration as well as the use of a scoped credential in Figures 7-15 and 7-16,

respectively.

Figure 7-15. W3C Web Authentication API: registration operation

Figure 7-16. W3C Web Authentication API: authentication operation

Chapter 7 Strong authentiCation

256

CTAP defines how the FIDO client running on a specific platform, e.g. an operating

system or a web browser, can talk to an external authenticator such as a USB-powered

security key or a mobile phone that can interact with the computer via NFC or Bluetooth.

Combining W3C Web Authentication and CTAP solves a variety of use cases in a

simple and standardized way. For example, a person can sign in to a website such as

an IDP using their smartphone as an external authenticator, which communicates with

the person’s laptop over a Bluetooth connection (see Figure 7-17). You should read

the specifications of W3C Web Authentication and FIDO 2.0 CTAP for more detailed

information.

 Setting Up 2FA with the Gluu Server
It’s important to understand how acr works in the Gluu Server. ACR stands for

authentication context class reference. It is jargon used both in SAML and OpenID

Connect to specify what kind of authentication happened. In an OpenID Connect

authentication request, one of the parameters defined is acr_values. This is the primary

way for a client to signal to the OpenID Provider (OP) the preferred way to authenticate

the subject. A client may also specify default_acr_values during registration (and

omit the parameter while making an authentication request). In the Gluu Server

configuration, acr is used to name the authentication workflow.

Figure 7-17. FIDO client to authenticator protocol use case: user authenticates to
IDP using a smartphone as an external authenticator

Chapter 7 Strong authentiCation

257

Organizations have a wide array of requirements for login—not just how to

authenticate the person, but how to log, detect fraud, gather consent, and sometimes

even update personal data records on the fly. The diversity of authentication business

logic requirements for organizations are so varied, it is difficult (if not impossible)

to build a GUI that provides the needed flexibility. Gluu’s solution was to create an

authentication “interception script”—a standard interface that enables developers to

code the exact workflow they need. The goal is to enable extension of the Gluu Server,

without forking the core code (which makes it harder to keep current with updates).

Gluu uses the interception script approach in several places—not just for authentication.

For example, in the next chapter, you see how interception scripts are also used to

express policies about when to grant access tokens using the UMA protocol. The

interception script that we discuss here is called “Person Authentication”.

When you install the Gluu Server, password authentication is enabled by default.

You can see this in the oxTrust admin interface, under the Configuration, Manage

Authentication section, as shown in Figure 7-18. You can specify the acr for oxTrust,

which is an easy way to test an authentication workflow, although it’s also an easy way to

lock yourself out, in which case you may have to change it back to password. In case you

forgot your LDAP from Chapter 2, do something like Listing 7-2 (replacing the inum to

match the entry under ou=appliances,o=gluu for your instance).

Figure 7-18. Configuring the default authentication method in the Gluu Server
(oxTrust)

Chapter 7 Strong authentiCation

258

Listing 7-2. Sample LDIF to Revert to Password Authentication If You Lock

Yourself Out

dn: inum=@!7A1F!0002!02C3.DD97,ou=appliances,o=gluu

changetype: modify

replace: oxTrustAuthenticationMode

oxTrustAuthenticationMode: auth_ldap_server

You then load the ldif, as shown in Listing 7-3 (setting the right values for -j and -f

of course).

Listing 7-3. Sample ldapmodify to Revert to Password Authentication

$ /opt/opendj/bin/ldapmodify -h localhost -p 1636 \

-D "cn=directory manager" -j ~/.pw -Z -X -f fix-login.ldif

If your OpenID Connect script supports setting the acr_values parameter, that’s a

great way to test. If you are using the oxd-server, it allows this. In the Apache2 HTTP

module, mod_auth_openidc, you can send extra parameters:

 OIDCAuthRequestParams acr_values=u2f

Another way to test an authentication script is to set the “Default ACR”—which is

the authentication method used if the client fails to specify an acr. The Default ACR is

also used for all SAML websites. Although in future versions of the Gluu Server, it may

support the use of the AuthnContextClassRef element in the SAML authentication

request.

Although LDAP authentication requires only the completion of the “Manage LDAP

Authentication” form (acr = auth_ldap_server), if you want to see the other types of

authentication available or write your own custom authentication flow, you’ll need to

look at the Person Authentication tab of the “Manage Custom Scripts” configuration

section of oxTrust. You’ll notice immediately that the Gluu Server ships with several

strong authentication mechanisms, as shown in Figure 7-19.

Chapter 7 Strong authentiCation

259

Each interception script has a different interface (i.e., what methods are available).

For the Person Authentication script, the most interesting method is (not surprisingly)

called authenticate, which returns a Boolean depending on success or failure.

Listing 7-4 shows the authenticate method for the Duo Security script. Duo is a SaaS

authentication provider now owned by Cisco. This script has an interesting example of

adaptive authentication.

Listing 7-4. Sample Authenticate Method of a Gluu Server Authentication Script

def authenticate(self, configurationAttributes, requestParameters, step):

 duo_host = configurationAttributes.get("duo_host").getValue2()

 authenticationService = CdiUtil.bean(AuthenticationService)

 identity = CdiUtil.bean(Identity)

 if (step == 1):

 print "Duo. Authenticate for step 1"

Figure 7-19. Custom authentication scripts in the Gluu Server (oxTrust)

Chapter 7 Strong authentiCation

260

 credentials = identity.getCredentials()

 user_name = credentials.getUsername()

 user_password = credentials.getPassword()

 logged_in = False

 if (StringHelper.isNotEmptyString(user_name) and

 StringHelper.isNotEmptyString(user_password)):

 userService = CdiUtil.bean(UserService)

 logged_in =

 authenticationService.authenticate(user_name, user_password)

 if (not logged_in):

 return False

 user = authenticationService.getAuthenticatedUser()

 if (self.use_duo_group):

 print "Duo. Authenticate for step 1. Checking if user

 belong to Duo group"

 is_member_duo_group = self.isUserMemberOfGroup(user,

 self.audit_attribute, self.duo_group)

 if (is_member_duo_group):

 print "Duo. Authenticate for step 1. User '" +

 user.getUserId() + "' member of Duo group"

 duo_count_login_steps = 2

 else:

 self.processAuditGroup(user)

 duo_count_login_steps = 1

 identity.setWorkingParameter("duo_count_login_steps",

 duo_count_login_steps)

 return True

 elif (step == 2):

 print "Duo. Authenticate for step 2"

 user = authenticationService.getAuthenticatedUser()

 if user == None:

 print "Duo Authn step 2. Failed to find user name"

 return False

 user_name = user.getUserId()

 sig_response_array = requestParameters.get("sig_response")

Chapter 7 Strong authentiCation

261

 if ArrayHelper.isEmpty(sig_response_array):

 print "Duo. Authn step 2. sig_response is empty"

 return False

 duo_sig_response = sig_response_array[0]

 authenticated_username = duo_web.verify_response(self.ikey,

 self.skey, self.akey, duo_sig_response)

 print "Duo. Authn step 2. authenticated_username: " +

 authenticated_username + ", expected user_name: " +

 user_name

 if (not StringHelper.equals(user_name,

 authenticated_username)):

 return False

 return True

 else:

 return False

Two-factor is not the same as two-step authentication. You could have a two-factor,

one-step authentication. For example, many OTP tokens are two-factor, as they require

a PIN number to unlock the token (something you know), and then the OTP code

is displayed (something you have). However, in this example, OTP authentication is

processed in one step. A multi-step authentication workflow is more flexible because

it enables you to look at the context in the first step and to decide if you need a second

step. If you dynamically adjust the number of steps at runtime, this is called adaptive

authentication.

The Gluu Server supports multi-step, adaptive authentication workflows. When

the Gluu Server invokes the script, the step is sent to the authenticate method as a

parameter. In the script, you can switch on the step. That’s why there is a large block of

code under if (step ==1): and elif (step == 2).

The Duo authentication script provides a nice example of adaptive authentication.

The goal of this script was to allow for testing of two-factor authentication for a subset

of accounts, before introducing it to the whole organization. After the password is

validated, the script checks to see if the person is in a certain group—if so, the person is

put through a two-step authentication. If not, the person can proceed with one step.

Chapter 7 Strong authentiCation

262

There are two other important methods that need to support adaptive

authentication: getCountAuthenticationSteps and getPageForStep. The former

normally just returns 1 or 2. But for adaptive authentication, it checks a variable. The

organization can also customize the two-factor authentication experience by using

getPageForStep. This determines which JSF page is returned for a given authentication

workflow.

Using this approach, the Gluu Server supports a diverse range of authentication

requirements. You can call the APIs of 2FA SaaS providers, use custom Java or Python

libraries, implement complex conditional logic, look at the security context of the

authentication—if you can define an algorithm for authentication, you can implement it

in the Gluu Server.

 FIDO Support in the Gluu Server
The Gluu Server has built-in FIDO authentication endpoints. Current Gluu Servers

publish a configuration document at .well-known/fido-configuration (older Gluu

Servers used /.well-known/fido-u2f-configuration). Published here are the Gluu

Server registration and authentication endpoints. Gluu also ships with built-in Person

Interception scripts for FIDO U2F. FIDO 2 is supported in Gluu Server 3.1.5 and later.

When a FIDO credential is registered, the Gluu Server stores its metadata and public

key in LDAP, under the person’s entry, in an organizational unit called ou=fido. There is

one entry for each FIDO device. Depending on the FIDO protocols used—U2F, FIDO 2,

or UAF—the entry may contain a different amount of data. Gluu’s Super Gluu application

also uses FIDO to authenticate devices and stores phone data in addition to FIDO data.

Storing the FIDO data in one attribute of the LDAP person entry would have made

it difficult to index, as FIDO registration data also includes a public key. However, this

design also required Gluu to add a FIDO SCIM profile (because it can’t be managed

as simple user attribute). In Chapter 9, we introduce a user-facing web credential

management tool to enable people to add and remove FIDO credentials for their Gluu

Server account.

Chapter 7 Strong authentiCation

263

 Other Ways to Strengthens Authentication
with the Gluu Server
Although some of the technologies are not commercially licensed, no 2FA technology

is “free”. You always need to consider the cost of supporting people in your organization

(who inevitably have questions), the productivity cost of failure, the cost of hardware,

and the cost of deployment.

Remember that authentication is about risk mitigation. Strengthening the credential

itself is not always the best way to reduce risk. There is a ton of innovation in big data and

artificial intelligence. Look for commercial providers of APIs that can help you identify

risky transactions. There are various ways this is possible. For example, hackers tend

to re-use IP addresses for their attacks. Some security service providers can use the IP

as input for a fraud score. You can also look at the credential itself. Sites like https://

haveibeenpwned.com/ will tell you if an email address was part of a breach. Other

services, like Vericlouds, hash email address and password combinations purchased on

the dark web, enabling you to detect if the credentials themselves have been exposed.

With this kind of information, you can improve security by adding an authentication step

and forcing the users to change their passwords.

The Gluu Server ships with several other 2FA authentication scripts, and many more

are checked into GitHub: https://github.com/GluuFederation/oxAuth/tree/master/

Server/integrations. You should also check the latest docs for more information on

how to write custom Person Authentication scripts if the ones available don’t exactly

meet your needs.

 Conclusion
People are analog. Computers are digital. For a computer to bridge this divide—to

positively identify one person with a high degree of certainty—is incredibly difficult.

As computers are getting more powerful, and as more hardware is becoming available

to increase the sensory capabilities of computers in the analog world, they are getting

better at it. But authentication is a moving target, because hackers are getting better

at defeating the strategies. You need to think carefully about which authentication

workflows to roll out in your organization. But doing nothing (i.e., just using passwords)

is becoming less and less of an option. Crossing the digital-analog divide is a core

capability for any sizable organization.

Chapter 7 Strong authentiCation

https://haveibeenpwned.com/
https://haveibeenpwned.com/
https://github.com/GluuFederation/oxAuth/tree/master/Server/integrations
https://github.com/GluuFederation/oxAuth/tree/master/Server/integrations

264

 References

 1. More information on best practices for deploying HOTP

can be found in https://www.yubico.com/wp-content/

uploads/2016/02/YubicoBestPracticesOATH-HOTP.pdf.

 2. OATH is an industry-wide collaboration to develop an open

reference architecture by leveraging existing open standards for

the universal adoption of strong authentication. As of March 2018,

members of this initiative include such companies as Symantec,

Gemalto, Vasco, Yubico, among others.

 3. RFC 4226: HOTP: An HMAC-Based One-Time Password

Algorithm. Available at https://tools.ietf.org/html/rfc4226.

 4. RFC 6238: TOTP: Time-Based One-Time Password Algorithm.

 5. Hickman, Kipp, “The SSL Protocol,” Netscape Communications

Corp., February 9, 1995. Available at https://tools.ietf.org/

html/draft-hickman-netscape- ssl-00.

 6. In the text, we use the term SSL/TLS instead of focusing on any

of these two protocols. In reality, we recommend using TLS only

as all existing SSL versions have now been deprecated. Readers

should use the latest version of TLS, which is 1.2, as specified in

https://tools.ietf.org/html/rfc5246.

 7. RFC 5246: The Transport Layer Security (TLS) Protocol Version

1.2. Available at https://tools.ietf.org/html/rfc5246.

 8. FIDO Alliance has been set up in 2013 to work on a standard for

strong passwordless authentication and strong second factor.

More information can be found at https://fidoalliance.org/.

 9. FIDO UAF specifications can be found at https://fidoalliance.

org/specs/fido- uaf- v1.1-ps-20170202/.

 10. FIDO U2F specifications can be found at https://fidoalliance.

org/specs/fido- u2f- v1.2-ps-20170411/.

Chapter 7 Strong authentiCation

http://www.yubico.com/wp-content/uploads/2016/02/YubicoBestPracticesOATH-HOTP.pdf
http://www.yubico.com/wp-content/uploads/2016/02/YubicoBestPracticesOATH-HOTP.pdf
https://tools.ietf.org/html/rfc4226
https://tools.ietf.org/html/draft-hickman-netscape-ssl-00
https://tools.ietf.org/html/draft-hickman-netscape-ssl-00
https://tools.ietf.org/html/rfc5246
https://tools.ietf.org/html/rfc5246
https://fidoalliance.org/
https://fidoalliance.org/specs/fido-uaf-v1.1-ps-20170202/
https://fidoalliance.org/specs/fido-uaf-v1.1-ps-20170202/
https://fidoalliance.org/specs/fido-u2f-v1.2-ps-20170411/
https://fidoalliance.org/specs/fido-u2f-v1.2-ps-20170411/

265

 11. The private/public key pair is most typically generated within

a secure hardware token (authenticator) that is designed to be

tamper-proof, thereby preventing any leakage of the private key.

 12. U2F Reference Implementations. Available at https://github.

com/google/u2f- ref- code.

 13. U2F Support Extension for Firefox. Available at https://github.

com/prefiks/u2f4moz.

 14. W3C Web Authentication Specification. Available at https://www.

w3.org/TR/webauthn/.

 15. FIDO Client to Authenticator Protocol. Available at https://

fidoalliance.org/specs/fido-v2.0-ps-20170927/fido-client-

to-authenticator-protocol-v2.0- ps- 20170927.html.

 16. Anthony J. Nadalin. “New FIDO Specifications Overview - Strong

Web Authentication,” December 8, 2016. Available at https://

www.slideshare.net/FIDOAlliance/new-fido-specifications-

overview-fido-alliance-tokyo-seminar- nadalin.

Chapter 7 Strong authentiCation

https://github.com/google/u2f-ref-code
https://github.com/google/u2f-ref-code
https://github.com/prefiks/u2f4moz
https://github.com/prefiks/u2f4moz
http://www.w3.org/TR/webauthn/
http://www.w3.org/TR/webauthn/
https://fidoalliance.org/specs/fido-v2.0-ps-20170927/fido-client-to-authenticator-protocol-v2.0-ps-20170927.html
https://fidoalliance.org/specs/fido-v2.0-ps-20170927/fido-client-to-authenticator-protocol-v2.0-ps-20170927.html
https://fidoalliance.org/specs/fido-v2.0-ps-20170927/fido-client-to-authenticator-protocol-v2.0-ps-20170927.html
https://www.slideshare.net/FIDOAlliance/new-fido-specifications-overview-fido-alliance-tokyo-seminar-nadalin
https://www.slideshare.net/FIDOAlliance/new-fido-specifications-overview-fido-alliance-tokyo-seminar-nadalin
https://www.slideshare.net/FIDOAlliance/new-fido-specifications-overview-fido-alliance-tokyo-seminar-nadalin

267
© Michael Schwartz, Maciej Machulak 2018
M. Schwartz and M. Machulak, Securing the Perimeter, https://doi.org/10.1007/978-1-4842-2601-8_8

CHAPTER 8

User-Managed Access
Today, you use OAuth 2.0 to authorize software to access your own stuff, but what if you

want to let someone else access your stuff? We call this “Alice to Bob sharing”. This is one

of the primary use cases for the User-Managed Access (UMA) protocol. Alice and Bob

don’t have to be humans—either can be a non-person entity (NPE), such as a software

process or company. With UMA, Alice can use any authorization server to share data

with Bob. It’s up to Bob and the clients he is using, to interact with the authorization

servers of Alice’s choosing. Moreover, Alice can choose to use the same authorization

server for different protected information that she wants to share with Bob—this data

can be distributed, yet access to it can be centralized with UMA. An interesting property

of UMA is that it also handles asynchronous authorization. For example, Bob may

request access to something, and Alice may not approve the request until she’s online.

Likewise, Alice can also create a policy at the authorization server that gives access to

some data to Bob—she does not have to be online for access to be granted.

This chapter covers the second version of the UMA protocol—UMA 2.0. If you are

an implementer of UMA software, this chapter provides a conceptual background, but

you must still read the actual UMA specifications. The “UMA 2.0 Grant for OAuth 2.0

Authorization” is what you should read if you are implementing an UMA Client. You

need to read the “Federated Authorization for UMA 2.0” specification if you plan to

implement an UMA Resource Server or Authorization Server.

UMA was eight years in the making. The working group at Kantara Initiative formed

in 2009, before the existence of either OAuth 2.0 or OpenID Connect. Previous versions

of UMA, although OAuth-like, did not perfectly align with OAuth. One of the main goals

of UMA 2.0 was to leverage OAuth wherever concepts and syntax overlapped. UMA 2.0 is

complementary to OAuth. It adds new capabilities that are not possible to achieve with

OAuth alone.

268

Like OAuth, UMA uses bearer tokens and scopes to convey the “extent of access”.

UMA is not a policy expression language. Issuance of an UMA token conveys the

successful evaluation of policy by the Authorization Server. But UMA leaves it up to the

Authorization Server to decide how to grant access. For example, in the Gluu Server,

the oxTrust user management APIs require an UMA access token with the scope SCIM

Access. To obtain this scope, there is an interception script called scim_access_policy,

whose authorization method returns a boolean. The SCIM APIs are unaware of the

policy—it could have been expressed as XML, it could have involved a human pressing a

button—the SCIM API doesn’t have to care what happened behinds the scenes at the AS

to evaluate the policy.

Alice to Bob sharing has many real-world use cases. An interesting potential use case

for UMA is federated document sharing. Google Docs works because everyone has a

Google account. However, a service provider could launch an UMA-enabled document-

sharing service that allows users to authenticate at any OpenID Connect Provider.

Another important use cases for UMA is runtime consent management. The European

Union General Data Protection Regulation (GDPR) seeks to give consumers control

of their data and require companies to get consent in certain cases, such as sharing

personal data with a third party.

Let’s use a hypothetical situation: an airline offers you a special deal on a rental

car. To complete this transaction, the airline needs to ask you if that’s okay, and the car

rental company needs a consent receipt that proves you opted into the offer. Both the

airline and rental car company create consent records for audit purposes. Let’s say there

is an API that the rental car company has created specifically for receiving referrals

from airlines. The API could require an UMA token with a scope that signifies that an

appropriate consent record is present. Without the token, the person’s browser redirects

to the airline’s authorization server to review and approve the release of their personal

information.

During development of UMA, the working group considered three possible

ecosystems: narrow, medium, and wide. In the narrow ecosystem, one party (like

an enterprise) controls the authorization server and resource servers—it is a tightly

controlled environment. A medium ecosystem involves the collaboration of a few

authorization servers, but the participants manage trust statically—think about a social

login environment where you get to choose from a few large consumer IDPs. The wide

ecosystem enables autonomous parties to dynamically establish trust as required.

For example, in a wide ecosystem, I can access a previously unknown UMA-protected

Chapter 8 User-Managed aCCess

269

website, introduce a new IDP, and dynamically register my software client to facilitate

future transactions. UMA addresses all three ecosystems. The narrow ecosystem perhaps

most closely aligns with enterprise identity and access management, so it is the one we

focus on in this chapter.

UMA has some special jargon. Let’s define it now:

• Resource owner (RO)—The entity (person or organization) that

grants access to a protected resource (i.e., Alice).

• Requesting party (RqP)—The entity, using client software, who is

trying to get access to a resource (i.e., Bob).

• Permission ticket—An identifier used to correlate a request for

access to a resource and a certain client. The permission ticket is

similar in function to the code in the OAuth authorization code

flow—the UMA client presents the ticket plus client credentials at the

UMA token endpoint.

• Client—An OAuth client that supports the UMA Grant.

• Resource server (RS)—An OAuth resource server that supports the

extra requirements specified by UMA, such as registering resources,

returning permission tickets to unauthorized clients, and introspecting

access tokens. This is sometimes the API software or an API gateway.

• Authorization server (AS)—An OAuth authorization server that

supports the extra requirements specified by UMA, such as resource

registration and the UMA Grant type.

• Scopes—As in OAuth, an extent of access. The authorization server

uses scopes to map to zero or more policies.

• Claim—An attribute about a person (requesting party) or client.

• Protection API token (PAT)—An OAuth access token with

scope uma_protection, used by the RS to call UMA APIs on the

authorization server.

• Requesting party token (RPT)—An OAuth bearer token used by

the client to gain access to a protected resource. This is the most

commonly referred to UMA access token! If there is no RPT, the client

cannot access an API!

Chapter 8 User-Managed aCCess

270

• Persisted claims token (PCT)—A reference access token issued

to the client to represent a set of claims collected during a previous

authorization process.

As UMA is a profile and extension of OAuth 2.0, Figure 8-1 should look familiar.

The software components (Client, RS, AS) are of course the same as OAuth—it is their

interactions that are slightly different. What is new in this diagram is the placement of

the requesting party (RqP) and the resource owner (RO). In “plain” OAuth, these are the

same person.

The PAT is just an OAuth access token with the scope uma_protection. It can be

obtained from the AS using the OAuth Client Credentials Grant. The PCT token is not an

access token, but a reference to data.

Figure 8-1. UMA high-level overview

Chapter 8 User-Managed aCCess

271

UMA has two specifications. The first is the “UMA 2.0 Grant for OAuth 2.0

Authorization”; the second is “Federated Authorization for UMA 2.0”. For brevity, we

will call them UMA Grant and UMA FedAuthz, respectively. UMA Grant addresses the

information needed by an UMA client developer. If you are calling an UMA protected

resource, and you need to obtain an RPT, then you need to understand the UMA Grant

specification. If you are a developer who is writing an API that you want to protect using

UMA, then you should read both the UMA Grant and UMA FedAuthz specifications.

One of the innovations of UMA is a loose bundling between the client and the

security infrastructure. Look back again at Figure 4-1, which lists the scopes required

to access Google APIs. Note that Google must publish each scope. If Google releases

a new version of the API, it may impact the required scopes, which means that client

developers must update their code. UMA uses permission tickets to hide the scopes

from the client. The permission ticket is a guess-resistant alpha-numeric code, used as a

handle to reference the required scopes. After the AS returns the permission ticket to the

RS, the RS sends it to the client. Importantly, the client never sees the scopes—just the

permission ticket (hence, scopes are internal to the client-AS interaction). In this way,

the RS is in control of the scopes and can update them without impacting existing client

software.

UMA still allows for the client to explicitly request scopes. Of course, the RS will

need to communicate these scopes out of band with the client. As in OAuth, clients

must register “requested” scopes prior to specifying them. Figure 8-2 uses a Venn

diagram to represent the relationship between scopes associated with a ticket, scopes

requested by a client, and scopes registered by a client. You could express this as: ticket

scopes ∪ (requested scopes ∩ registered scopes). For a more detailed discussion, see the

“Interpreting Authorization Assessment Set Math” section of the UMA Implementer's

Guide.

Chapter 8 User-Managed aCCess

272

You may have heard of a standard called XACML, the “eXtensible Access Control

Markup Language”. Unlike XACML, UMA does not specify syntax for policy expression.

If you want to use XACML to express polices and an UMA authorization server to issue

access tokens —that’s possible! The UMA AS can gather the claims, generate an XACML

request, and return an authorization decision based on the response from an XACML

policy decision point. A structured policy expression language is useful in situations where

there are many policies, and you need to either perform analysis on policies, or perhaps

auto-generate them. If you’re a small organization, you probably don’t need this.

UMA does not enable fine-grained access control. This does not mean that policy

centralization is not useful. If several APIs share a policy, using an UMA access token

to implement this policy centrally makes sense. There is a tradeoff between speed and

centralization. For example, if you’re building an auction website with an Update button,

visible only to the item seller, should you use UMA to control rendering this button?

Probably not. But what if the Update button requires the seller’s consent? In cases like

this, centralization may make sense.

In the next few sections, we introduce the UMA 2.0 standard and follow up with

some real-world examples of how you can put UMA to work to protect APIs and web

applications.

Figure 8-2. Scopes set math

Chapter 8 User-Managed aCCess

273

 UMA Grant
UMA registers a new grant_type in the IANA OAuth Registry:

urn:ietf:params:oauth:grant-type:uma-ticket. From the name of this grant

type, you can see how important the permission ticket is to UMA. At the risk of over-

simplifying, instead of using a code to obtain a token at the token endpoint, as in the

OAuth Authorization Code Grant, you use a permission ticket. UMA does not support

token issuance at the authorization endpoint—there is no UMA implicit flow. In most

OAuth profiles, policy evaluation happens at the authorization endpoint (the “policy” is

normally “did the person approve?”). Policy is in quotes because synchronous human

approval is not a policy as we would normally understand it. The AS iterates through the

scopes and maps each to a set of policies. Policy enforcement happens at the RS, which

maps the request to a resource identifier (resource_id) and ensures that the required

scopes are present in the RPT.

 UMA RPT Requests with Interactive Claims Gathering
Figure 8-3 is a sequence diagram for the UMA Grant when the AS is using interactive

claims gathering. The following is a description of each step for additional context.

 1. A person (the RqP) uses a client to access an UMA protected

resource at the RS.

 2. Without an access token, the RS will return HTTP code 401

(Unauthorized) with a permission ticket (obtained from the AS

after registering a resource with certain scopes). The RS will also

return the URI of the AS at which to obtain an access token.

 3. The client presents the permission ticket at the token endpoint

(along with client credentials). In this example, let’s imagine that

the AS needs the RqP to authenticate.

 4. The AS returns 403 (Forbidden) with an error message contained

in a JSON object called needs_info. The AS also provides a hint as

to where the client can obtain authorization, which in this case is

the interactive claims gathering endpoint at the AS.

Chapter 8 User-Managed aCCess

274

 5. The client redirects the RqP’s browser to the claims gathering

endpoint at the AS. This is the equivalent of redirecting to the

authorization endpoint in the OAuth code flow. The request must

include the client_id and ticket and should include the claims_

redirect_uri and state.

 6. Which claims the AS needs is outside the scope of UMA. For

GDPR compliance, the AS may need the person to consent to

the release of personal information. It is possible that the AS

may need the person to provide government issued license

information. Or the policy may require step-up authentication.

The possibilities are endless.

 7. The RqP supplies the necessary information (or the flow stops).

 8. The AS processes the information and redirects the RqP’s browser

back to the client’s previously registered claims_redirect_uri

with a new permission ticket. Note: the client should check the

state parameter to prevent cross-site request forgery attacks.

 9. The client requests a new RPT by presenting the new permission

ticket.

 10. In our example, the AS returns the access token (RPT) on

successful evaluation of the policies. Optionally, the AS may

return a PCT, which is a token that references the information

obtained during interactive claims processing. The client can

present this in the future to avoid any redundant interactive

claims processing.

 11. With a valid access token in hand, the client again tries to obtain

the resource.

 12. The RS is responsible for validating the access token. In our

example, it’s good, and the RS returns the protected resource.

Chapter 8 User-Managed aCCess

275

Fi
gu

re
 8

-3
.

U
M

A
 G

ra
n

t s
eq

u
en

ce
 d

ia
gr

am
 (

w
it

h
in

te
ra

ct
iv

e
cl

ai
m

s
ga

th
er

in
g)

Chapter 8 User-Managed aCCess

276

The interactive claims gathering flow is very powerful. It has many applications for

both enterprise and consumer facing applications. One particularly important use case

is for step-up authentication. When a person traverses a website, performing a certain

transaction may require additional risk mitigation. For example, viewing bank information

might require one set of security policies, and to transfer funds, another. At the point you

transfer funds, the bank might want to require stronger authentication by sending you to

the bank’s IDP to perform this additional step-up authentication (e.g., the user will need to

provide a second factor). This is just one example of a kind of interaction with the person

that may be necessary. Other important use cases are formalized consent management,

providing additional information, or invoking a fraud detection process.

 UMA RPT Requests with a Pushed Claim Token
Pushing a claims token, like an OpenID Connect JWT or a SAML assertion, is an

expedient way to convey some IDP asserted attributes about a person. Figure 8-4

provides the sequence diagram for the UMA Grant when the client pushes a claim token,

like an id_token or SAML assertion. This flow is much shorter than interactive claims

gathering. However, the AS must be able to parse and validate the claims token, which

is outside the scope of UMA. For example, for an identity assertion, it is common to

validate the signature using the public key of the issuer. Encrypted claims tokens will

work only if the AS has the right private key. For example, the client could encrypt the

assertion with a public key of the UMA AS—again this is out of scope of UMA.

Figure 8-4. UMA Grant sequence diagram (with pushed claim token)

Chapter 8 User-Managed aCCess

277

 RPT Request Options
As mentioned earlier, the client can request a specific scope, using the scope parameter,

if such scopes are pre-registered by the client. The AS will add this candidate scope to all

resources that appear in the permission ticket.

It is possible that the client already has an RPT from a different transaction. The

client may include this previously issued RPT using the rpt parameter. The client

developer should be careful, as the newly issued RPT will contain the previously granted

permissions. Unlike OAuth, there is no way to down-scope an UMA RPT. Also, keep in

mind that the client may not know the associated scopes for an RPT, as a permission

ticket may reference scopes of which it is not aware—there is no requirement to pre-

register scopes associated with a permission ticket. However, the UMA FedAuthz spec

does recommend in Section 4 that the RS “document its intended pattern of permission

requests in order to assist the client in pre-registering for and requesting appropriate

scopes at the authorization server”.

The client can use the claim_token and claim client_token_format parameters to

specify the presence of a base64-encoded identity assertion. One issue that may arise is

that the assertion may have an audience for a party other than the UMA Authorization

Server. How the client and AS determine how to align with audience restrictions is also

out of scope of UMA.

Finally, there is the pct parameter, which is used to send a PCT token returned from

a previous authorization workflow. The client must only send the PCT token for the

same RqP. The point of the pct parameter is to save the requesting party from the effort

needed to provide the same required information. The AS can still initiate interactive

claims-gathering based on the context of the situation.

 Client Credentials
Clients must present credentials (i.e., client_id and client_secret) at the RPT

(token) endpoint, but UMA does not define any mechanism for this to happen,

except mentioning that RFC 7591 and OpenID Connect also define client registration.

Depending on the security requirements, an OAuth client may choose different

mechanisms for client authentication. If you are using OpenID Connect client

registration, you should consider using private_key_jwt, which avoids any shared

secrets between the AS and client.

Chapter 8 User-Managed aCCess

278

 UMA Federated Authorization
The resource owner (RO)—whether a company or person—can manage access at

multiple resource servers. The ability to use multiple autonomous resource servers

and authorization servers is why we call it “federated authorization”. While the UMA

Grant specification provides a protocol for client developers, the UMA FedAuthz

specification details the protocol between the RS and AS. How are permission tickets

requested, how are resources associated with scopes, and how does the AS enable the

RS to request UMA protection for a resource? UMA FedAuthz defines the back-channel

communication between the AS and RS. Note: AS and RS developers need to read both

UMA Grant and UMA FedAuthz.

Authorization model in UMA offers some of the capabilities of its web access

management predecessors. While in OAuth the client must know the scopes it needs, in

older web access management platforms, that wasn’t the case. The clients just requested

a certain URL. See Figure 8-5 for an illustration of how a web access management

platform could utilize UMA. In this case, the RS is mapping resources to a combination

of a certain URL and HTTP method (or methods). This isn’t a requirement—the RS has a

lot of flexibility as to “what is a resource”. For example, it may only use UMA tokens when

it encounters a certain transaction value, or when required to obtain personal consent.

Figure 8-5. Mapping resources to scopes and policies with UMA

Chapter 8 User-Managed aCCess

279

Saving the details for later, let’s say that in Figure 8-5, the RS has two APIs: /someAPI

and /someOtherAPI. To do an HTTP GET request on /someAPI, you need an RPT

with scope-a. On the AS, the resource owner determines what scope maps to which

policies (as shown in Figure 8-6). This process is also not in scope of UMA. But just as

an example, Policy One could state that the person must authenticate locally, and that

the role of the person must be “manager”. In this case the RS is the policy enforcement

point—it must ensure that the token is active and contains the proper authorizations for

each resource ID. The AS is the policy decision point—it alone knows the policies, and it

must have sufficient information to make a policy decision.

One difference between UMA and web access management is that with UMA, the

RS can add extra security as it sees fit. This might not be desirable if you want policy

centralization, but it’s possible. In UMA, the RS can be a little “smarter” than your typical

web access management “agent”—— which as its name suggests, always does the policy

server’s bidding.

Figure 8-6. Resource owner’s role: mapping policies to scopes

Chapter 8 User-Managed aCCess

280

How does this all happen? The next few sections help fill in some of the details.

 Protection API
The Protection API, implemented by an UMA AS and utilized by the RS, provides several

endpoints that enable the registration of resources. The protection API also enables

the RS to manage client permission requests for resources. An OAuth token called the

Protection API access token, or PAT, controls access to the Protection API (apologies for

the tautology—great names are self-defining). The RS is a client of the AS and must use

OAuth client credentials, preferably private_key_jwt.

 Resource Registration
A “resource” is a pretty abstract concept in UMA. By design, only the RS understands

the content represented by it. UMA relies on the registration of resources before

access management can occur. To accomplish this, the UMA Protection API provides a

resource registration endpoint. The UMA authorization server publishes the URLs for all

endpoints in the configuration metadata document found at the issuer URL plus /.well-

known/uma2-configuration. The RS specifies resource_scopes, which are all those

possible for access to this resource. A client can request one or more resource_scopes

during the authorization phase. The AS returns a resource ID on resource creation. The

RS needs the resource ID for future calls to the Protection API. Figure 8-7 provides a

sequence diagram for resource registration. For more details on resource registration,

read the resource registration section of UMA FedAuthz.

Chapter 8 User-Managed aCCess

281

Figure 8-7. Resource registration sequence diagram example

 Permission Endpoint
If a client requests a resource without an RPT access token, if the token is invalid, or lacks

sufficient scopes, the RS uses the permission endpoint to obtain a new permission ticket.

The RS returns the permission ticket, along with the URL of the AS to the client.

Chapter 8 User-Managed aCCess

282

While requesting the permission ticket, the RS specifies the required scopes from

the list of previously registered scopes for that resource. For example, the RS might have

registered scopes https://as.example/all and https://as.example/view. Let’s say

that either of those scopes is acceptable to the RS. Note, that when deciding to issue an

RPT to a client, the AS may decide to grant only some of the requested scopes. While in

OAuth, the AS would always return a token authorized for the granted scopes (omitting

the others), in UMA, the AS may return either a token for a partial list of scopes or an

error. This makes sense in cases where granting only a subset of the scopes would not

be useful to the client. Figure 8-8 presents the sequence diagram for the permission

endpoint.

By now, you are probably wondering what one of these elusive permission tickets

looks like during registration. Listing 8-1 shows an example of an HTTP POST request that

RS makes to AS to register permission (and get permission ticket back).

Figure 8-8. Sequence diagram whereby the resource server obtains a permission
ticket

Chapter 8 User-Managed aCCess

283

Listing 8-1. Sample UMA Permission Ticket Request

POST /perm HTTP/1.1

Content-Type: application/json

Host: as.example.com

Authorization: Bearer 74b57da9-b12a-49cc-8026-a97f5a1e8234

...

[

 {

 "resource_id":"c746d6d4-992f-4d93",

 "resource_scopes":[

 "https://as.example/view"

]

 },

 {

 "resource_id":"8c799def-cd4d-46ee",

 "resource_scopes":[

 "https://as.example/view",

 "https://as.example/all"

]

 }

]

The RS should use HTTP headers to communicate the ticket and the AS location to

the client. Listing 8-2 is the example from the UMA Grant of a response to a client from

the RS with the ticket obtained from the AS permission endpoint.

Listing 8-2. Sample UMA Permission Ticket Response

HTTP/1.1 401 Unauthorized

 WWW-Authenticate: UMA realm="example",

 as_uri="https://as.example.com",

 ticket="016f84e8-f9b9-11e0-bd6f-0021cc6004de"

Chapter 8 User-Managed aCCess

284

 Token Introspection
An UMA RPT is an OAuth bearer token. The RS needs to know if this token is active, and

what permissions it grants. While a bearer token could be a base64-encoded JWT, in

many implementations, it is just a non-guessable string—a reference to an object stored

at the AS. In order to retrieve the corresponding object, UMA aligns with OAuth token

introspection (RFC 7662), but adds an UMA specific response parameter: permissions.

Also, an UMA token introspection response must not return a scopes parameter. This

would be confusing to an RS, because scopes are bound to resources (instead, it returns

the aforementioned permissions parameter). For example, we could have scopes called

https://as.example.com/view and https://as.example.com/all. Let’s say you have two

files, file1 (resource identifier is c746d6d4-992f-4d93) and file2 (resource identifier is

8c799def-cd4d- 46ee). It’s conceivable you could grant someone https://as.example.

com/view on file1 but on file2 you would grant both https://as.example.com/view

and https://as.example.com/all (or just the latter one). Listing 8-3 shows an example of

a response containing the introspection object with the permissions parameter.

Listing 8-3. Example of a Response Containing the Introspection Object with the

Permissions Parameter

HTTP/1.1 200 OK

Content-Type: application/json

Cache-Control: no-store

...

{

 "active":true,

 "exp":1256953732,

 "iat":1256912345,

 "permissions":[

 {

 "resource_id":"c746d6d4-992f-4d93",

 "resource_scopes":[

 "https://as.example/view"

],

 "exp":1256953732

 },

Chapter 8 User-Managed aCCess

285

 {

 "resource_id":"8c799def-cd4d-46ee",

 "resource_scopes":[

 "https://as.example/view",

 "https://as.example/all"

],

 "exp":1256953732

 }

]

}

In a nutshell, UMA provides a way for a client to obtain an access token to access a

resource. How the AS authorizes the access token is the only thing that changes versus

“normal” OAuth. In the next few sections, we describe how to put UMA to work.

 UMA Authorization Server Software
This section focuses on how to configure the Gluu Server (specifically the oxAuth

component) as an UMA authorization server. Some of these features require no

configuration by the administrator. For example, the Gluu Server shows the resources

registered by the RS, but there is nothing for the AS administrator to do. Likewise, oxAuth

implements the UMA configuration endpoint, but it requires no configuration by the

administrator. The primary UMA configuration responsibility of the administrator is to

define UMA scopes, RPT policies, and claims gathering workflows.

 Managing Scopes
Scopes represent the “extent of access”. In UMA, the RS manages access to a resource

by specifying the required scopes. When evaluating whether to grant access to a client,

oxAuth calculates all the policies associated with the scopes for that permission. Let’s

say Alice is sharing a document with Bob. When Bob tries to read the document, the RS

makes a request for a permission ticket with the view and search scopes. Bob’s client

must obtain an RPT at the UMA token endpoint, at which point the AS looks up all

the policies associated with the view and search scopes (corresponding to the ticket).

Policies vary—maybe the AS checks a database to see if Alice has given Bob access to

this document, and if Bob has authenticated using a strong two-factor authentication

Chapter 8 User-Managed aCCess

286

mechanism. In oxAuth, you define Python interception scripts to express policies. The

most important method in the UMA RPT Authorization script is the authorize method,

which returns a boolean. All policies associated with all scopes must evaluate to true for

the oxAuth to return an RPT. In the oxTrust administration interface, the admin defines

the policies. Figure 8-9 shows an example of scope management.

Figure 8-9. oxTrust screenshot of UMA scope

You can use the Gluu Server oxTrust interface to map policies to scopes. The AS must

define the scope before an RS can use it. The RS does not know what policies map to

the scope. The AS can update the policies, or even add new policies without impacting

the RS or client code. It’s recommended to use a URI as the ID of the scope, to avoid

collisions in the event of a merger with another organization.

Chapter 8 User-Managed aCCess

287

 Managing Authorization Policies
Interception scripts are the standard mechanism for customizing business logic in

oxAuth. Administrators enter scripts directly into the oxTrust web interface, as shown in

Figure 8-10, in which case oxTrust stores them in the LDAP server. Administrators can

author scripts directly on the file system, although LDAP storage is more convenient

for clustered deployments. Figure 8-10 describes the interface for an UMA RPT policy

interception script. As you might expect, init is called before the authorize method,

and destroy is called after. The authorize method must return either true or false. The

policy may have access to the requesting party’s identity if the client pushed claims

(for example, an OpenID id_token or Userinfo JWT), the PCT token, or a previously

issued RPT sent with the token request. The Gluu Server administrator can create many

interesting policies about the requesting party, for example if she has a certain role or

used a certain type of authentication. You can make policies based on client claims—

perhaps internal and third-party clients have access to different APIs. Policies can call

external APIs, for example to obtain a fraud score based on the IP address of the client

(the AS can determine the IP address in the HTTP Request object).

Figure 8-10. RPT policy interception script screenshot

Chapter 8 User-Managed aCCess

288

If a policy fails, the AS may want to provide a hint to the client as to what went wrong.

The AS has two ways to communicate this information to the client: via the need_info

response, or as a parameter to the claims gathering endpoint. After all the policies have

been evaluated, the response will be returned by oxAuth. See Listing 8-4.

Listing 8-4. UMA RPT Policy Interception Script

class UmaRptPolicy(UmaRptPolicyType):

 def __init__(self, currentTimeMillis):

 self.currentTimeMillis = currentTimeMillis

 def init(self, configurationAttributes):

 print "RPT Policy. Initialized successfully"

 return True

 def destroy(self, configurationAttributes):

 print "RPT Policy. Destroyed successfully"

 return True

 def getApiVersion(self):

 return 1

 def getRequiredClaims(self, context):

 json = """[]"""

 context.addRedirectUserParam("customUserParam1", "value1")

 return ClaimDefinitionBuilder.build(String.format(json, context.

getIssuer()))

 def authorize(self, context):

 print "RPT Policy. Authorizing ..."

 return True

 def getClaimsGatheringScriptName(self, context):

 context.addRedirectUserParam("customUserParam2", "value2")

 return "sampleClaimsGathering"

Chapter 8 User-Managed aCCess

289

 Interactive Claims Gathering Workflows
Sometimes the AS may need to interact with the RqP to make an authorization decision.

Using the UMA claims gathering workflow, the AS may present forms or even redirect

the RqP to another website. During this interaction, the AS may look at the context and

decide it needs to mitigate additional fraud risk. To do this, it might require a more

secure type of authentication. Or it’s even possible the AS may need to facilitate local

registration, or to get the consent of the RO to share personal information. The AS may

need to communicate instructions for some offline activity. There are many possible use

cases where the answer to “can you get a token” is not simply “yes” or “no”.

Gluu Server administrators control claims gathering by writing a custom script.

Claims gathering is like an authentication script, which is also front- channel. The

getStepsCount method determines the number of steps. For example, step one could

be to authenticate the user more strongly, and step two to present a form to request

additional information from the RqP. Unless the step involves a redirect, oxAuth will

display the page specified in getPageForStep. The getClaims method processes the

information submitted by a form presented in a step. If there is information it wants to

attach to the PCT token, it uses the storeClaimInPCT method. The getClaims method

returns the PCT after each step. For examples of claims gathering, see the default scripts

included with the Gluu Server. See Listing 8-5.

Listing 8-5. Claims Gathering Interception Script

Class ClaimsGatheringScript(ClaimsGatheringType):

 def init(self, configAttrs):

 return

 def destroy(self,configAttrs):

 return

 def process(self, claimsGatheringContext, configAttrs):

 return pct

 def prepareForStep(self, configAttrs):

 return True

Chapter 8 User-Managed aCCess

290

 def getExtraParametersForStep(self, configAttrs, step):

 return None

 def getStepsCount(self, configAttrs):

 return 1

 def getStepsCount(self, configAttrs):

 return 1

 UMA Resource Server Software
As UMA 2.0 is a relatively new standard, there is not a lot of client software at this time of

this first edition. Of course, the RS can implement the protocol directly, but having client

software makes the job a lot easier. Chapter 5 introduced the oxd client middleware

server for OpenID Connect. This software also provides interfaces for UMA, for the

UMA client, the RS, and the OAuth client credential grant (to call oxd APIs and the RPT

endpoint). You can use the oxd OpenAPI document (i.e., Swagger document) to generate

client libraries for Python, Php, Node, Java, C#, Ruby, Go, and many other languages

using code generators or SaaS services like SwaggerHub.

The two oxd methods that an API developer needs to use are uma_rs_protect and

uma_rs_check_access. The protect method is used to register resources and associate

scopes. The check_access method is used to validate access tokens, before content from

an API is returned.

 Gluu Gateway as UMA Resource Server
In Chapter 6 we introduced the Kong API gateway. In this section, we describe how

to turn it into an UMA RS, which verifies that tokens are active and have the scopes

required to call certain APIs. Gluu accomplished this by writing two Kong plugins (see

Figure 8-11). The first filters HTTP requests and inspects the Authorization header for a

valid token. The second looks at the requested URL and HTTP method and verifies that

the right scopes are present.

Chapter 8 User-Managed aCCess

291

The Gluu Gateway package integrates several components:

• Kong Community Edition

• Konga administrative web GUI

• oxd

• Postgres

• Setup script

Like the Gluu Server, the goal of Gluu Gateway is to supply a Linux package to make

these components easy to install by providing a straightforward deployment process.

The Gluu Gateway is MIT licensed. It should be noted, however, that it uses the oxd

client middleware, which is commercial (although up to 10 licenses are free). See the

Gluu Gateway and oxd documentation sites for more information on licensing: https://

gluu.org/Docs.

Gluu Gateway has three modes: OAuth, UMA, and Mix (see Figure 8-12). In OAuth

mode, the client obtains a token from the OAuth token endpoint and calls OAuth

protected endpoints; in UMA mode, the client obtains a token from the UMA token

endpoint (RPT) and calls UMA protected endpoints; in Mix mode, the client obtains an

OAuth token, but the Gluu Gateway switches it for an UMA token prior to calling the

upstream web server. In this section, we cover the UMA mode only. The purpose of Mix

mode is to keep it simple for developers—they just need to think about client credential

grant (i.e., they don’t need to read the UMA Grant specification). For more information

about Mix mode, see the Gluu Gateway docs at https://gluu.org/docs. This feature

may be removed from a future version of Gluu Gateway.

Clients

Optional Extra
Functionality

(plugins)

Web Server API

Consumer
Plugin

UMA RS
Plugin

Figure 8-11. Gluu Gateway plugin overview

Chapter 8 User-Managed aCCess

https://gluu.org/Docs
https://gluu.org/Docs
https://gluu.org/docs

292

One of the most important features of the Gluu Gateway is to provide a GUI to enable

administrators to specify which UMA scopes are required to call a certain endpoint with

a certain method. The Gluu Gateway uses scope expressions, a draft UMA extension,

to enable administrators to use complex boolean statements to control access to APIs.

Figure 8-13 shows a sample configuration for a test API.

Figure 8-12. Gluu Gateway modes

Chapter 8 User-Managed aCCess

293

 UMA Client Software
As mentioned, using the oxd middleware is your best bet for client software. There is a

useful sample application included in the gg-demo folder of the Gluu Gateway GitHub

project: https://github.com/GluuFederation/gluu-gateway.

This project walks you through each step of what an UMA client needs to do, both

with and without claims gathering. The demo deploys as a simple cgi-script and

requires some setup on the AS and RS, which is described in the README.

Figure 8- 14 provides an overview of the components. Notice that oxd is handling all of

the back-channel calls for the client and RS. It’s effectively the same as the standard UMA

protocol, except oxd is doing some of the heavy lifting.

Figure 8-13. Gluu Gateway RS security

Chapter 8 User-Managed aCCess

https://github.com/GluuFederation/gluu-gateway

294

The following sequence provides an overview of UMA from the perspective of an

UMA client using oxd. In the first step, the client calls an API hosted by the Gluu Gateway

acting as an UMA RS (see Figure 8-15). As the request does not contain a bearer token

in the Authorization header, the RS returns a HTTP 401 Unauthorized response, but

includes a permission ticket in the WWW-Authenticate header.

Figure 8-14. Gluu Gateway demo overview

Figure 8-15. Step 1 of UMA client

Chapter 8 User-Managed aCCess

295

In Step 2, the client obtains a plain OAuth client token (see Figure 8-16). This will

be needed when the client calls the oxd APIs, and when the client tries to obtain an

RPT. Note the AS returns scopes uma_protection and openid. This is only because they

are configured as default scopes on the Gluu Server—they serve no purpose in this

demo. What’s really needed is the access token in the response body.

In Step 3, the client attempts to get an RPT by calling the oxd uma-rp-get-rpt

endpoint (see Figure 8-17). It presents the ticket from Step 1 and uses the access token

from Step 2 in the Authorization header. The AS evaluates all the policies for the scopes

required by the respective permission ticket. In this case, they must evaluate to true, as

the response contains a new access_token—the RPT!

Figure 8-16. Step 2 of UMA client

Chapter 8 User-Managed aCCess

296

In Step 4, the client uses the RPT to populate the Authorization header of the

request (see Figure 8-18). The RS introspects the token and evaluates the permissions.

Everything is okay, because the RS returns content!

Figure 8-18. Step 4 of UMA client

Figure 8-17. Step 3 of UMA client

Chapter 8 User-Managed aCCess

297

But what if all the policies don’t evaluate to true? If you call the demo-client CGI

script with the parameter claim=true, you can see such an example (see Figure 8-19).

Instead of getting back an RPT, as in Step 2, you will get back a need_info error. The

response also details required claims, which could be useful information for the client.

And importantly, the client gets back a redirect_user value, where it can redirect the

user to interact with the AS.

In this demo, there is a two-step claims gathering process. In the first step,

shown in Figure 8-20, the AS presents a form for the RqP to enter a country. This is a

simple example, but the AS could do anything here. Just a few examples would be to

authenticate the RqP, query external fraud detection APIs, or ask the RqP to consent to

sharing personal information. Figure 8-21 shows Step 2 of the sample claims gathering

workflow, asking for the RqP to enter a city.

Figure 8-19. The need_info error

Chapter 8 User-Managed aCCess

298

The claims gathering script is similar to authentication, which also allows for a

multi-step front-channel (browser) interaction. In claims gathering, instead of an

Authenticate method, there is a method called gather.

Once claims gathering is done, if the policies now evaluate to true, a new ticket is

generated, which the client can present to the RPT endpoint, or if using oxd, to call the

uma-rp-get-rpt endpoint. Information gathered during claims gathering is stored and

referenceable in the future when the client uses the PCT (see Figure 8-22).

Figure 8-20. Claim gathering Step 1 by the AS

Figure 8-22. Successful claims gathering response

Figure 8-21. Claim gathering Step 2 by the AS

Chapter 8 User-Managed aCCess

299

 Conclusion
UMA is useful. Hopefully this chapter has given you a basic understanding.

UMA and OpenID don’t overlap. In fact, UMA relies on the identity layer provided by

OpenID, as well as its advanced client registration and authentication features. In some

ways, UMA is backward OpenID Connect. A developer writing an OpenID client always

calls the authorization endpoint first, and then if necessary calls the token endpoint.

With UMA, the token endpoint is called first, and then if necessary, the RqP is redirected

to the authorization endpoint.

UMA is very different kind of standard than OpenID. By 2011, many large

consumer identity providers were using OAuth for authentication and to enable

people to authorize access to their personal information. OpenID aligned the various

implementations so developers didn’t have to learn ten different ways to do the same

thing. UMA is a “build it and they will come” standard. There is always the risk that such

standards are a field of dreams that never become a reality, especially if something else

comes along that solves the same problem and gains more adoption. Luckily, this hasn’t

happened. Authorization is very much an unsolved problem today, and UMA presents

our best chance at an interoperable solution, which resulted from a truly consensus

based standards organization. The ball is in our court now to drive adoption!

Chapter 8 User-Managed aCCess

301
© Michael Schwartz, Maciej Machulak 2018
M. Schwartz and M. Machulak, Securing the Perimeter, https://doi.org/10.1007/978-1-4842-2601-8_9

CHAPTER 9

Identity Management
Although this book is primarily about IAM, not IDM or IAG, it would have been a missed

opportunity not to provide a short overview of some of the free open source software

tools for IDM: Evolveum MidPoint, Apache Syncope, Wren:IDM, and Gluu Casa.

MidPoint, Syncope, and Wren:IDM offer traditional enterprise IDM features

like approvals, workflows, synchronization connectors, and self-service password

management. Casa extends the traditional capabilities of self-service password

management, enabling people to manage their strong authentication credentials (two-

factor). It also supports optional plugins for non-authentication self-service features, like

enabling a person to revoke prior authorizations or manage client credentials.

To implement a quality enterprise identity infrastructure, the importance of IDM

cannot be ignored. The cliché “garbage in, garbage out” is particularly relevant. If the

underlying data used by the IAM platform is wrong, bad things will happen. The IAM

platform is just one consumer of identity data from an IDM system. Many systems

require up-to-date identity data. Failure to implement quality identity management

processes will result in security problems and lost productivity.

As an organization grows, it becomes critical to exert control over the flow of identity

information between systems. On the path from startup to enterprise, organizations

organically assemble processes to keep identity information in systems up-to-date. In

the beginning, there may be one person who is responsible for adding and removing

accounts in various systems. They may write some scripts to make their job easier.

But eventually, home-grown processes become hard to maintain, unreliable, and too

manual. They don’t offer the operational leverage needed for efficiency, accuracy, and

legal compliance. Enter IDM and IAG software.

302

IDM and IAG are not exclusively technical challenges. Deploying software is only

part of the solution—there are business challenges that need to be resolved too. It is

not uncommon for IDM and IAG projects to require a significant investment of time by

everyone in the organization. There is no quick fix, and all levels of management should

be involved in crafting the IDM strategy. End user behavior may need to change—thus

IDM is cultural too.

Implementing IDM and IAG systems can require a fair amount of configuration and

customization. The tools are powerful, and the learning curve can be steep. You don’t

have to implement a comprehensive solution on the first try. It may be best to keep the

scope tight and roll out additional functionality as you go.

This overview of MidPoint, Syncope, Wren:IDM, and Casa is just an appetizer to

whet your appetite for more information. You should visit each respective website, dive

into the documentation, and try out the software to get a more thorough understanding

of the capabilities and business models behind the software.

 MidPoint
MidPoint is a comprehensive open source IDM and IAG platform. The project is led

by Evolveum, who offers professional support subscriptions to organizations using

the software. MidPoint is a Java application that leverages the Spring framework for its

internal structure. The source code is released under the Apache license. Evolveum

engineers are the primary developers, leading a vibrant and growing community of

individual and organizational contributors.

MidPoint includes the following features:

• Identity provisioning and synchronization

• Role management

• Organizational structure management

• Approval process management

• Auditing

• Access certification

• Policy rules

• Web interface

• Web services

Chapter 9 IdentIty ManageMent

303

 Identity Provisioning and Synchronization
At its core, MidPoint has a powerful connector-based IDM engine. A connector is a

simple piece of code that moves identity data (e.g., an account) from a source system

to a target system. MidPoint connectors are based on the Connectors for Identity

Management (ConnId) framework that is used by many open source and commercial

IDM software products. This is handy because connectors are interoperable across any

ConnId-based IDM system, including MidPoint.

Connectors are relatively simple blocks of code that implement a standard interface.

There is almost no IDM logic in the connector. The synchronization business logic is

located inside MidPoint, reducing bloat in the connectors themselves. The same logic is

reused for all connectors.

MidPoint saves the account-to-person link information in its database and

continuously keeps data synchronized. Once a data mapping is configured, it is reused

for provisioning, synchronization, data import tasks, and other IDM functions. This

unifies IDM policy and simplifies maintenance.

MidPoint can also map data to populate account attributes. A mapping can pass

values unchanged or can transform values with a script (Groovy, JavaScript, or Python).

Conditional mapping provides flexibility for propagating data based on context, such as

a role or association with an organizational unit. Administrators can also define manual

processes to supplement data with information provided by business people.

Synchronization can be configured to work in “both directions”. For example,

MidPoint can push information about a person from a Human Resources system to an

LDAP server. The LDAP server itself may be authoritative for other information, like the

person’s password. MidPoint can aggregate the data and synchronize it to all required

systems.

MidPoint can synchronize data about any object type that is accessible by a

connector, not just user attributes. For example, MidPoint can read data from a relational

database table and create an LDAP subtree or a nested group, use the location of an

entry in the LDAP tree to provision data in a relational database table, or automatically

create an LDAP role entry based on group.

Connectors can also be configured to send notifications to alert people that their

account was provisioned. They can also perform system administration tasks, such as

the creation of home directories, mailboxes, or password policies. The possibilities are

almost limitless.

Chapter 9 IdentIty ManageMent

304

 Role Management
Roles are used by most IDM platforms and are central to how MidPoint organizes

privileges. Role Based Access Control (RBAC) is a strategy used by many organizations

to authorize access to resources. However, RBAC has a dark side: if roles are used to

reference each unique access requirement, the number of roles can grow exponentially.

In fact, some organizations have more roles than people! This is known as “role

explosion”. MidPoint uses several strategies to reduce the impact of role explosion, such

as enabling dynamic expressions inside roles to make roles conditional, so one role is

included in another role only if a specific condition is satisfied.

MidPoint roles may be based on specific user data, or a parameter of the role itself.

For example, roles such as Sales Assistant, Engineering Assistant, and Logistics Assistant

can be simplified with one generic Assistant role, where the organizational unit (sales,

engineering, or logistics) is just a parameter to that role.

In MidPoint, role evaluation can be applied to the roles themselves, enabling the

creation of meta-roles. For example, it is common for roles to be divided into several

types, such as application roles, business roles, or technical roles. Roles may share

common characteristics such as an approval process or lifecycle policy. Instead of

duplicating common attributes, business roles may be assigned a meta-role to define

common characteristics across all business roles.

 Organizational Structure
Traditional IDM is primarily concerned with synchronizing changed information

about people, but many important changes aren’t about the person, rather their place

in the organization. Organizational structure such as regions, divisions, departments,

work groups, projects, sub-projects, ad hoc teams, faculties, classes, realms, tenants,

and domains all affect which systems a person should be able to access. Many parallel

organizational structures can be modeled in MidPoint. For example, there may be

one big tree that represents a functional organizational structure, and a semi-flat

structure of projects, ad hoc groups, and so on. A person may belong to any number of

organizational units in any organizational structure. Mathematically speaking: if your

structure can be expressed as an acyclic oriented graph, it can be modeled in MidPoint.

Membership in an organizational structure may include privileges to access certain

resources. Therefore, organizational units can be used to control access in the same way

as roles. However, the leaders of a business unit may have different access than ordinary

Chapter 9 IdentIty ManageMent

305

members. In MidPoint, the organizational unit manager is a specific relation a user can have

to the organizational unit and is decoupled from organizational unit membership itself. This

enables a person to be a manager of an organizational unit of which they are not a member.

Organizational structure can be synchronized in the same way as a person’s

accounts. MidPoint mappings can be used to transform organizational structure and

maintain it in the form of LDAP groups, organizational units (OUs), entitlements, roles,

or almost any form.

 Approval Processes
MidPoint can assign roles and organizational units automatically, for example, based on

job codes. This is an efficient and scalable approach, but is typically only feasible for a

small subset of roles. Administrators can manually assign other roles and organizational

units, but this is not scalable. Therefore, most IDM deployments use a process-based

approach where the person requests required roles. The request is then routed through

an approval process where individual approvers can make decisions about the request.

Frequently, the first stage of the approval process is performed by a person’s

manager. Further stages may require approval from a business owner, security officer,

resource owner, or project manager. In most IDM platforms, the approval process is

driven by an internal workflow engine, which is customized using a workflow language

such as Business Process Model and Notation (BPMN). This is a very flexible approach,

however, approval workflows tend to get extremely complicated and can become

difficult to maintain.

Rather than complex custom workflows, MidPoint supports “policy-based” approval

processes driven by declarative approval policies. The approval process for each role

request is dynamically computed based on associated policies. An approval policy can

be defined globally, individually for each role, or for a group of roles (using the meta-

role mechanism). A policy may specify approval stages that are mandatory, optional or

conditional. Each stage may have different approvers or approver groups. MidPoint also

supports approval escalation, delegation, and auditing. Policy-based approval means no

programming is needed to set up an approval process, enabling very complex policies to

be defined and maintained efficiently.

Even though MidPoint offers strategies to reduce role explosion, there may still

be tens or hundreds of roles in the system. To simplify the process of assigning roles,

MidPoint offers a role catalog and shopping-cart style request process for people to

browse categories, select the appropriate roles, and request approval.

Chapter 9 IdentIty ManageMent

306

 Midpoint Delegated Application Security Model
MidPoint’s internal authorization mechanism controls access to MidPoint objects such

as users, roles, organizational units and resources. Fine-grain authorization policies

can be specified down to the level of individual object properties. The authorization

mechanism is aware of the organizational structure, enabling delegation of identity

administration within an organizational unit to its respective managers, and the

delegation of roles to its owner. The same mechanisms used to access target systems can

be used to obtain access to MidPoint itself. Therefore, access to data in MidPoint can be

requested, approved, and audited.

MidPoint also enables a person to specify a “deputy” who can temporarily obtain

their authorizations and privileges. This can be useful when a person is traveling or on

leave. The deputy can access the work items (approval decisions) of the delegating user.

The deputy also gains access to entitlements in target systems, for example temporary

assignment to the same LDAP groups. Privileges are automatically revoked when the

operational time has concluded. Deputy functionality is meant to provide continuity of

business processes both inside MidPoint and in target systems.

 Auditing
MidPoint can maintain an audit trail for changes to data about people, roles,

organizational structure, and configuration. A complete description of changes and any

useful metadata is available for any MidPoint object. A feature called “time machine”

enables the restoration of any past state. Audit trails are recorded in a database table and

can be used to integrate MidPoint with security information and event management

(SIEM) or data warehouse systems.

 Access Certification
Role request and approval processes tend to result in a person accumulating many roles

over time. However, because removal of roles no-longer-needed is often overlooked, it’s

important for organizations to regularly perform access certification campaigns (i.e.,

“recertification” or “attestation”). For example, once per year, managers may need to decide

if the roles assigned to subordinate employees are still needed. The MidPoint web interface

enables managers to efficiently make these decisions. Once certification decisions have been

submitted, any superfluous roles are automatically marked for removal and unassigned.

Chapter 9 IdentIty ManageMent

307

Removal of a non-sensitive role is not an urgent matter. However, certain situations

might require faster action, for example if an employee is moved to a different organizational

unit with a different manager. The new manager assumes responsibility for the employee’s

roles and should execute an ad hoc recertification process for that specific user.

 Policy Rules
Businesses must abide by certain rules and regulations. Executives are tasked with

determining which rules are appropriate. Information technology professionals are

responsible for implementing those rules in systems. An example is segregation of duties

(SoD). For instance, it may be inadvisable for a person to both write and sign checks.

Another example—at an investment banking firm, you can’t advise companies about

mergers and acquisitions and trade securities.

Midpoint policies express rules governing organizational structures and roles, such

as “a project must have at most one manager” or “a role must have at least one owner”.

Policy rules can express policy-based approvals, which may also govern role lifecycles.

The totality of policies determines the governance of the organization.

A single policy rule has two parts: a constraint and an action. A constraint defines

a situation or event where the rule applies, such as “A is assigned to a user” or “A is

assigned together with B”. If the constraint is triggered, then an action takes place.

Actions may be as simple as “prohibit such an operation”. But actions can also be

complex, for example, removing all conflicting assignments or driving a request through

an approval process or re-certification.

Policy rules can be combined to form more complex business logic, such as “prohibit

assignment of A and B at the same time”. MidPoint enables administrators to combine

policy rules with meta-roles and approval processes. An example might be: “if any

two roles from this set of roles are assigned to the same person, then drive the request

through an approval by a security officer”. Such combinations are used to implement

advanced features like ad hoc recertification and role lifecycle management.

Chapter 9 IdentIty ManageMent

308

 User Interface (UI)
The MidPoint UI can be used for:

• End user self-service management of identity data, for example

allowing people to edit their user profiles, change their passwords, or

request new roles.

• Identity administration, such as managing user data, roles,

organizational structure, approvals, and access certifications.

• Configuration of the MidPoint system.

The MidPoint UI is designed to automatically adapt to custom inputs. For example,

an LDAP server may have a custom LDAP attribute called “foo”. When MidPoint connects

to that LDAP server for the first time, it retrieves its schema, including the custom “foo”

attribute. The resource schema is stored in MidPoint and automatically used for all

data processing. It is also immediately reflected in the web user interface, automatically

rendering an input field for that attribute. No programming or customization is needed

to use this functionality. The web interface also automatically adapts to authorizations.

Only those pages to which the user has access are displayed, and all inaccessible forms

and input fields are hidden or displayed as read-only.

Of course, some customization may be required. MidPoint offers configuration

options to specify how certain parts of the web interface behave, for example, to hide

widgets or unused features.

 Services and Integration
Most MidPoint functionality is available via the following three public interfaces:

• RESTful interface, which is an HTTP-based interface that exposes

MidPoint functionality by following applicable RESTful principles.

Data is presented in XML, JSON, or YAML data formats.

• SOAP interface specified using WSDL and XSD standards.

• Java interface, which is a natural choice for Java extension code, e.g.,

when using overlay projects and extensions based on source code

modifications.

Chapter 9 IdentIty ManageMent

309

All three interfaces offer roughly equivalent functionality. The Java libraries are used

by the MidPoint UI, therefore, those interfaces can be used to build a custom UI or to

integrate MidPoint with other systems for management, advanced tooling, or various

other purposes.

 Other MidPoint Features
MidPoint offers additional features not included in this overview, including flexible

reporting capabilities, self-registration and self-service password reset procedures,

self- healing capabilities, and virtual identities (or “personas”). In addition, the IDM

system is an ideal place to track and protect identity data, and development is ongoing to

add features to enable better protection of data—a key requirement for compliance with

the European Union General Data Protection Regulation (GDPR).

 Get Started with MidPoint
Visit the Evolveum MidPoint wiki to learn how to get started: https://wiki.evolveum.

com/display/midPoint/Introduction.

 Apache Syncope
The Apache Software Foundation is the world’s largest open source foundation. The

Syncope project team is comprised of members and contributors. Members have direct

access to the source of the project and actively evolve the code-base. Contributors

improve the project through submission of patches and suggestions to the members.

Syncope features include:

• Provisioning:

• Synchronization of users, groups, or other objects (e.g., printers,

services, or sensors). Definition of realms—primarily meant

for containing users, groups, or other objects. Identity lifecycle

management.

• Full reconciliation and live synchronization from external

resources. Workflow based approval.

Chapter 9 IdentIty ManageMent

https://wiki.evolveum.com/display/midPoint/Introduction
https://wiki.evolveum.com/display/midPoint/Introduction

310

• Identity Governance and Administration, including:

• Reports

• Auditing

• Administrative web application for full system management,

delegated administration, self-service registration, and profile

management.

• Command Line Interface (CLI) for easy integration with

system tools.

• JAX-RS 2.0-compliant, full-fledged RESTful interface to access all

services.

 Syncope Architecture
Syncope is a Java application that requires the following:

• The latest JDK 8 available

• A Java EE Container, such as Tomcat, Payara Server, or Wildfly

• A relational DBMS, such as PostgreSQL, MySQL, MariaDB, Oracle

DB, or MS SQL Server

A bird’s-eye view of the architecture is shown in Figure 9-1.

Chapter 9 IdentIty ManageMent

311

Admin UI is the web-based console for configuring and administering active

deployments, with full support for delegated administration.

End User UI is the web-based application for self-registration, self-service, and

password reset.

CLI is the command-line application for interacting with Apache Syncope from

scripts, particularly useful for system administrators.

Core is the central component, providing all services offered by Apache Syncope.

Figure 9-1. Apache Syncope architecture

Chapter 9 IdentIty ManageMent

312

Syncope exposes a fully-compliant JAX-RS 2.0 RESTful interface that enables third-

party applications, written in any programming language, to consume IDM services,

including:

• Logic—Implements the overall business logic that can be

triggered via REST services and controls some additional features

(notifications, reports, and auditing).

• Provisioning—Manages the internal (via workflow) and external (via

specific connectors) representation of users, groups, and any objects.

• Workflow—Chooses the preferred engine from a provided list,

including one based on Activiti BPM and another based on Flowable,

the reference open source BPMN 2.0 implementations. Alternatively,

you can define new and custom workflows as needed.

• Persistence—Manages all data (users, groups, attributes, resources,

etc.) at a high level using a standard JPA 2.0 approach. The data is

persisted to an underlying database (internal storage).

• Security—Defines a fine-grained set of entitlements that can be

granted to administrators, thus enabling the implementation of

delegated administration scenarios.

The REST interface can be accessed either via the Java client library or using plain

HTTPS calls.

 Syncope Provisioning
Like MidPoint, the Provisioning layer for Syncope relies on ConnId. ConnId is the

continuation of The Identity Connectors Framework (Sun ICF) project, which used to be

part of the Sun Microsystem IDM product and has since been released as an open source

project. This makes the connectors layer particularly reliable because most connectors

have already been implemented in the framework and widely tested.

The ConnId project features contributors from several companies and meets the

requirements for a modern, active open source project, including an Apache Maven

driven build, artifacts, and mailing lists (see Figure 9-2). Additional connectors, such as

for SOAP, CSV, PowerShell, and Active Directory, are also provided.

Chapter 9 IdentIty ManageMent

313

 Syncope Extensions
You can enhance Syncope with useful features via extensions. An extension might

add a REST endpoint, manage the persistence of additional entities, extend security

mechanisms, tweak the provisioning layer, add features to the user interface, or even

add all such features together. Extensions are available from different sources, including:

Maven artifacts published from the Apache Syncope code-base, part of the official

releases, such as:

• Swagger UI—Enables Swagger UI as a web interface to work with

Syncope RESTful services.

• SSO Support—Provides both OpenID Connect and SAML 2.0 access

to the administrative or end user web interfaces.

• Apache Camel Provisioning Manager—Delegates the provisioning

process execution to a set of Apache Camel routes, which can be

dynamically changed at runtime via the REST interfaces or the

administrative console. Modifications are immediately available for

processing.

• Elasticsearch—Provides an alternate internal search engine for users,

groups, and objects, requiring an external Elasticsearch cluster.

Figure 9-2. Syncope interactivities

Chapter 9 IdentIty ManageMent

314

• SCIM—Provides new REST endpoints implementing the

communication according to the SCIM 2.0 standard, in order to

provision User, Enterprise User, and Group SCIM entities to Apache

Syncope.

• Maven artifacts published by third parties.

 Syncope Installation
Apache Syncope can be deployed in several ways, including:

• Standalone distribution—The simplest way to start exploring

Syncope, the standalone distribution contains a fully working,

in- memory Tomcat-based environment that can be easily deployed

on a laptop, workstation, or server.

• Debian packages—Available for use with Debian GNU/Linux,

Ubuntu, and their derivatives.

• Installer—A GUI application for configuring and deploying on

supported DBMSes and Java EE containers.

• Maven project—The preferred method for working with Apache

Syncope, the Maven Project provides access to the full set of

customization and extension capabilities.

Visit the Apache Syncope documentation to learn how to get a local instance up and

running: http://syncope.apache.org/docs/getting-started.html.

 Wren:IDM
Wren:IDM is a community-developed identity management system with a flexible

data model, multiple extension points, and scripting support, including JavaScript and

Groovy. It can connect to and manage a wide range of systems through the Identity

Connector Framework (Wren:ICF).

Wren:IDM is one of the projects in the Wren Security Suite, a community initiative

that adopted open source projects formerly developed by ForgeRock, which has its own

roots in Sun Microsystems’ products.

Chapter 9 IdentIty ManageMent

http://syncope.apache.org/docs/getting-started.html

315

The project is also an example of open source philosophy benefits in practice.

In 2017, when it became apparent that ForgeRock reduced their open source

commitment, the “it’s time for a fork” initiative arose. It collected developers and

engineers willing to sustain and evolve the latest open source code available before

it was closed. ForgeRock no longer releases any of the most recent versions of their

software under an open source license and the current ForgeRock’s Community

Editions are several major versions behind what was previously offered under the

CDDL license. But luckily, once code is open sourced, its copies can’t be “un-open

sourced”. The community, which broke away from the closed-source model, was later

named Wren Security: https://wrensecurity.org/.

The Wren Security Suite projects include:

• Access management in Wren:AM (formerly OpenAM)

• Directory server in Wren:DS (formerly OpenDJ)

• Identity management in Wren:IDM (formerly OpenIDM)

• Identity Connector Framework Wren:ICF (formerly OpenICF and

ICF), a special part of the IDM solution, which also provides a set of

production-ready connectors—LDAP, Office 365, SPML, SSH, SQL,

PowerShell, REST, and many more

Wren:IDM itself is focused on identity management processes and also provides a

powerful framework for implementing IAG and a portion of IAM processes. Although

the project is based on OpenIDM code, it is not affiliated with ForgeRock in any way.

It is based on the very latest code available under a CDDL license (not-yet-released

OpenIDM 5.x).

The features of Wren:IDM include:

• A complete platform—Used for building IDM and IG solutions

using the concepts described next, including roles, mappings,

synchronizations, workflows, policies, etc.

• ICF connector servers—Services that allow connectors to be run

outside of the IDM itself. Useful when a connector needs a specific

client environment to talk to the integrated system. Also facilitates

security. .NET and Java Connector Servers are available.

Chapter 9 IdentIty ManageMent

https://wrensecurity.org/

316

• Administration GUI—An interface for making changes to data

models and configuration using a point-and-click interface rather

than Wren:IDM’s REST interface.

• Self-service GUI—An interface for end users to update their profile

information, passwords, and preferences.

Both the Administration GUI and Self-Service GUI are web-based, single-page

applications that can be turned off in deployments that do not desire to use them.

 Wren:IDM Quick Start
To begin using Wren:IDM, do the following:

 1. Visit https://wrenscurity.org to get the Wren:IDM package,

either by downloading a binary package or building from the

latest sources.

 2. Make sure you have Java 8+ installed. Both OpenJDK and Oracle

JDK work well. Extract the package to a folder and navigate there

using your terminal.

 3. Run the startup script startup.sh (UNIX/Linux) or startup.bat

(MS Windows).

 4. Open http://localhost:8080/admin in your web browser, log in

with the default credentials openidm-admin:openidm-admin, and

explore the administration interface (see Figure 9-3).

Chapter 9 IdentIty ManageMent

https://wrenscurity.org

317

 System Overview
Wren:IDM provides a JSON-based object model, where objects are treated uniformly

using APIs. These objects include:

• Managed objects—Maintained in IDM’s repository

• System objects—Represent external resources such as accounts

• Configuration objects—Represent various aspects of IDM

configuration

• Workflow objects—Represent approval process or other business

processes

Working with these objects is pretty straightforward. For example, when you patch

a managed object like a user, it is updated in the repository and configured actions

take place. When you patch a system object like an account, it is updated in the

integrated system. Audit trails will appear in the system in both cases. The main system

components are shown in Figure 9-4.

Figure 9-3. Wren:IDM basic administration dashboard

Chapter 9 IdentIty ManageMent

318

Wren:IDM takes a novel approach by providing access to all components through a

unified Resource API. The API is the same—whether objects are being accessed through

REST API calls or internally from scripts and other parts of the IDM system itself. For

example, consider the following JavaScript Resource API called from within IDM:

Figure 9-4. Wren:IDM component overview

Chapter 9 IdentIty ManageMent

319

var users = openidm.query("managed/user", { "_queryFilter" : '/givenName eq

"Peggy"' });

And the equivalent query called via the REST API accessed from the outside:

$ curl -u openidm-admin:openidm-admin \

'http://localhost:8080/openidm/managed/user_queryFilter=givenName+eq+"Peggy"'

 Wren:IDM Implementation Basics
JSON-based object model applies to the configuration as well. This is why you’ll see so

much JSON while examining Wren:IDM. IDM can be managed using an admin GUI, but

the admin actions still result in REST API calls. And the configuration ends up in human-

readable, structured files.

This way the IDM unites the worlds of GUI-based management, API-based

programmatic administration, and config-file-based administration. Organizations may

find it useful to abandon the GUI-based (i.e., IDM repository-based) configuration in

favor of using file-based configuration management. While the former provides IDM-

level auditing, the latter allows leveraging standard SCM tools like git, which may better

fit into modern devops environments. You can also combine these approaches.

The components are familiar from most IDM platforms:

• Audit—Component for auditing of all triggered events and states

• Repository—Persistence layer for storing all managed objects

• Script engine—Component for scripts execution (JavaScript or

Groovy)

• Scheduler—Component for executing scheduled jobs

• Policy—Component for executing validations during object

modifications

• Workflow—Embedded workflow engine based on Activiti

• Crypto—Component for data encryption

• Security—Component for handling REST API security

Chapter 9 IdentIty ManageMent

320

• Managed objects—IDM managed objects like users, roles, or any

objects the organization uses

• System objects—Integrated system objects

• Provisioner—Abstract layer for integrating external systems

• Custom endpoints—REST API endpoints defined by the

implementers to provide their own business logic

Wren:IDM takes a path of extension over modification. Every aspect of the system—

from the data model to the framework configuration—is configurable. Implementers

can use the Wren:IDM framework and its components in whichever way best meets

their needs. The domain data model and its database representation are also solely

in implementers’ hands. Your custom entities don’t have to end up in tables like

custom_object, custom_attribute, and custom_attr_value, known from common

customizable systems. The DB structure can follow your conventions, allowing the data

to be better examined by administrators and even transferred to another system in the

event of migration.

Using explicit mappings, a custom database schema can be accessed through the

IDM’s unified API, as shown in Listing 9-1. In addition to giving you a standard interface

for access to your data, the configured business rules—like auditing and access control—

are also enforced. For example, an update to a custom managed object is done in the

very same way like any other update, as shown in Listing 9-1.

Listing 9-1. Wren:IDM Sample Update to a Custom Object

$ curl \

 -u openidm-admin:openidm-admin \

 --header "Content-Type: application/json" \

 --request PATCH \

 --data '[{"operation" : "replace", "field" : "ownerWorkforceId",

"value" : "90' \

'http://localhost:8080/openidm/managed/costcenter/42'

This translates to the following SQL DML command (according to your schema):

UPDATE openidm.managedou SET ownerworkforceid = '90', rev = '4' WHERE

objectid = '42';

Chapter 9 IdentIty ManageMent

321

This then ends up in the audit like any other operation, as shown in Listing 9-2.

Listing 9-2. Wren:IDM Sample Audit Record

objectid | 40f007eb-4479-476e-9989-6aa48098bec3-94

activitydate | 2018-07-15T08:43:19.507Z

transactionid | 40f007eb-4479-476e-9989-6aa48098bec3-85

activityobjectid | managed/costcenter/42

operation | PATCH

subjectbefore | {"_id":"42","_rev":"3","ownerWorkforceId":"10","name":

"Global Marketing","remarks":"Example by Orchitech"}

subjectafter | {"_id":"42","_rev":"4","ownerWorkforceId":"90","name":

"Global Marketing","remarks":"Example by Orchitech"}

subjectrev | 4

status | SUCCESS

 Wren:IDM Pre-Defined Types
There are a number of pre-defined types in Wren:IDM.

 Managed User

This is a pre-defined managed object type representing a user identity and its attributes.

 Managed Group

This is a pre-defined managed object type representing a low-level access right in a

target system, e.g., an LDAP group. It is optional—organizations that do not use groups

may use roles instead.

 Roles

These can be either authorization roles, which grant rights within the IDM itself, or

provisioning roles, which define how objects are provisioned in target systems. Roles are

managed objects, which means they can be extended to contain additional information

or invoke scripts, just like any other IDM object.

Chapter 9 IdentIty ManageMent

322

 Role Grants

These relate users and roles. They can be either manual or conditional. For example,

they can be triggered automatically based on a matching query. As with any managed

object, role grants can carry any number of additional properties—such as temporal

constraints (e.g., “users have this role for 90 days”).

 Effective Roles

These indicate which roles a user ends up with after applying additional logic. By default,

the effective role of a user matches his role grants. In more complex deployments,

effective roles can also be calculated using a custom script that may alter the result:

filtering out some role grants, or adding additional role grants. Such a script might even

calculate the resultant roles on-the-fly, without considering any role grants at all.

 Role Assignments (aka Assignments)

These set rules for how roles are provisioned in a particular system. For example, they

might indicate that a user with the role of “Broker” gets an account created in the CRM

system. There can be several assignments defined for a role.

 Effective Assignments

These indicate which assignments a user ends up with after applying additional logic,

similar in concept to effective roles. By default, a user’s effective assignments are the

same as the assignments attached to the user’s roles. As with effective roles, a script may

calculate effective assignments, enabling you to more finely control role assignment.

 Relationships

These are managed object attributes used to connect one managed object to another.

You can defined them to synchronize data unidirectionally or bidirectionally, one-to-

one, one-to-many, or many-to-many. For example, consider an organizational chart in

which one person reports to another. Such a relationship is frequently represented as

a bidirectional relationship in IDM between two users—the “manager” and his “direct

reports”. Another example are the roles mentioned previously—each of a user’s roles is

represented as a predefined “roles” relationship in each user. As is the case for all other

IDM objects and attributes, relationships can be retrieved through the API or shown in

administration GUI, as shown in Figure 9-5.

Chapter 9 IdentIty ManageMent

323

 Triggers

These are extension points that allow invoking some logic on a managed object before

an operation happens. For example, effective roles are calculated by invoking an

onRetrieve script defined on the effectiveRoles attribute of user records. Such logic

can be written in either JavaScript or Groovy—depending on whichever best suits the

needs of the implementer for the use case.

There is nothing inherently special about the pre-defined types mentioned in

this section. In a new installation, these types have some behavior that controls how

provisioning is done, but this behavior is defined in the same way that you define

behavior for any custom type. Provisioning is simply modeled through managed object

definitions, relationships, and triggers. All of this logic is configurable and modifiable by

the implementer, giving full control over the logic the system ends up using to manage

identities.

Figure 9-5. Relationship visualization

Chapter 9 IdentIty ManageMent

324

 Wren:IDM Processes
Beyond the data and entitlements that Wren:IDM manages, there are also several

processes Wren:IDM uses to maintain the data. These concepts include the following.

 Policies

These processes enforce validation rules for managed objects. They can be enforced

automatically and/or used directly as a validation service.

 Reconciliation and Synchronization

These processes make the state of objects in one object store match the state of

corresponding objects in other object stores.

• Mappings—Define the transformations between source and target

systems. Mappings are also referenced from role assignments.

• Correlations—Define how to match objects between source and

target if they are not linked. Especially useful when rolling out the

IDM. Can be also defined programmatically using correlation scripts.

• Synchronization situations—Represent an evaluated result

of source and target comparison, such as FOUND, MISSING,

CONFIRMED, etc.

• Synchronization actions—Represent the configured reaction to

a synchronization situation, such as UPDATE, UNLINK, IGNORE,

ASYNC, etc.

• There are subtle but important differences between reconciliation

and synchronization:

• With reconciliation—A full synchronization of objects in source

and target systems takes place.

• With synchronization (aka “LiveSync”)—Just a particular delta

is synchronized, allowing it to be run frequently and changes to

be quickly reflected.

Chapter 9 IdentIty ManageMent

325

 Scheduling

This process controls when synchronization happens. Without a schedule, systems are

only reconciled manually, on-demand.

 Password Synchronization

This feature allows users to have the same password among multiple target systems,

even when such systems might use different ways to hash or encrypt passwords.

Wren:IDM supports plugins that can be installed in target systems to intercept password

changes that occur outside of IDM, so that these changes can be propagated to all of the

systems that the user needs access to.

 Workflows

This process is the key to integrating identity management into business activities,

including approvals, escalations, recertifications, and many others. Wren:IDM uses the

Activiti BPMN 2 Engine for modeling and executing workflows. Workflows are exposed

through the standard IDM resource API. Implementers can use standard Activiti tools—

including the Activiti Designer—to define and edit workflows.

 Example: Make Your Own Self-Service GUI
You can use the Wren:IDM default user-facing self-service website. However, there

might be situations when a custom solution is preferable, either for self-service or for

administrative tasks performed by, for example, the help desk staff. The simplicity of

implementing such a solution is one of the strengths of the platform. The following steps

provide an overview of how to create a custom self-service website.

Step 1: Endpoint configuration (endpoint-accounts.json) (see Listing 9-3).

Listing 9-3. Creating an Endpoint Configuration in Wren:IDM Sample

{

 "context" : "endpoint/accounts/nyc",

 "type" : "text/javascript",

 "file" : "handle-accounts.js"

}

Chapter 9 IdentIty ManageMent

326

Step 2: Endpoint implementation (handle-accounts.js) (see Listing 9-4).

Listing 9-4. Sample Endpoint Implementation

/* global openidm */

// Return all AD accounts from 'Pennyworth - New York City’ department

return openidm.query('system/ad/account', {

 _queryFilter: '/department eq "us_nyc"'

 });

Step 3: Endpoint security (access.js) (see Listing 9-5).

Listing 9-5. Wren:IDM Sample Endpoint Security

{

 "pattern" : "endpoint/accounts/nyc",

 "roles" : "company-admin",

 "methods" : "query",

 "actions" : "*"

}

Step 4: GUI interface (index.html) (see Listing 9-6).

Listing 9-6. Customizing the Wren:IDM User Interface

<!DOCTYPE html>

<html>

 <head>

 <meta charset="UTF-8">

 <script src="https://code.jquery.com/jquery-3.3.1.min.js"></script>

 <script type="text/javascript">

 $(document).ready(function() {

 $.ajax({

 type: 'GET',

 url: 'http://localhost:8080/openidm/endpoint/accounts/

nyc',

 // You'd use JWT in the real life

 headers: {

 'X-OpenIDM-Username': 'company-admin',

Chapter 9 IdentIty ManageMent

327

 'X-OpenIDM-Password': 'company-admin'

 },

 data: {

 '_queryId': 'dummy'

 },

 success: function(data) {

 data.result.forEach(function(account) {

 $("#accounts").append('' + account.

sAMAccountName + '');

 });

 }

 });

 });

 </script>

 </head>

 <body>

 <ul id="accounts">

 </body>

</html>

 Example: Consent Governance
Role and assignment resolution mechanisms also provide a way for various IAG rules to

be enforced in real time.

For example, let’s imagine a company “H.Q. Pennyworth & Co,” which has brokers

who work with clients. Imagine that the firm has a business rule that requires brokers

to make contact information readily available to those clients. To enforce this rule while

complying with local regulations, a Pennyworth broker must consent to sharing his

personal contact information. If a broker has not yet consented, you want to restrict

either his roles or resource grants. In such a case, having the broker role is a

necessary—but not sufficient—requirement for having broker access.

As suggested, the restriction can be made on two different levels and the difference is

conceptual (see Figure 9-6):

• Restriction at the role resolution level—An employee without consent

won’t effectively get the broker role even if it is assigned to them.

Chapter 9 IdentIty ManageMent

328

• Restriction at the assignment resolution level—An employee

without consent can effectively get the broker role, but they still won’t

be eligible to get the assigned resources.

 Example: Connector Configuration with Object Mapping
Transformations
Let’s say we want to set up the mapping suggested in Figure 9-7.

Figure 9-6. Enforcing the consent condition in H.Q. Pennyworth & Co: effective
roles or effective assignments

Chapter 9 IdentIty ManageMent

329

The connector configuration might be as shown in Listing 9-7.

Listing 9-7. Wren:IDM Sample Connector Configuration Sample

{

 "name" : "ad",

 "connectorRef" : {

 "bundleName" : "org.forgerock.openicf.connectors.ldap-connector",

 "bundleVersion" : "[1.4.0.0,2.0.0.0)",

 "connectorName" : "org.identityconnectors.ldap.LdapConnector"

 },

 "configurationProperties" : {

 "host" : "localhost",

 "ssl" : true,

 "principal" : "cn=root",

 "credentials" : "password",

 "baseContexts" : ["ou=corp,dc=hqpennyworth,dc=com"],

 "baseContextsToSynchronize" : ["ou=corp,dc=hqpennyworth,dc=com"],

 "objectClassesToSynchronize" : ["user"]

 },

 "objectTypes" : {

 "account" : {

 "$schema" : "http://json-schema.org/draft-03/schema",

 "id" : "__ACCOUNT__",

 "type" : "object",

 "nativeType" : "__ACCOUNT__",

 "properties" : {

 "dn" : {

 "type" : "string",

Figure 9-7. Sample connector and mapping scenario

Chapter 9 IdentIty ManageMent

330

 "nativeName" : "__NAME__",

 "required" : true

 },

 "sAMAccountName" : {

 "type" : "string"

 },

 "mail" : {

 "type" : "string"

 }

 }

 }

 }

}

The mapping configuration shown in Listing 9-8 also shows how mapping

transformations are applied.

Listing 9-8. Wren:IDM mapping Configuration Sample

{

 "name" : "managedUser_adAccount",

 "source" : "managed/user",

 "target" : "system/ad/account",

 "enableSync" : true,

 "validSource" : {

 "type" : "text/javascript",

 "source" : "source.username != null"

 },

 "correlationScript" : {

 "type" : "text/javascript",

 "source" : "var query = {'_queryFilter': '/sAMAccountName eq \"' +

source.username + '\"'};query;"

 },

 "onCreate" : {

 "type" : "text/javascript",

 "file" : "managedUser_adAccount_onCreate.js"

 },

Chapter 9 IdentIty ManageMent

331

 "properties" : [

 {

 "source" : "username",

 "target" : "sAMAccountName"

 },

 {

 "source" : "",

 "transform" : {

 "type" : "text/javascript",

 "source" : "source.username + '@hqpennyworth.com'"

 },

 "target" : "mail"

 }

]

}

And the OnCreate script is another example of property transformation:

/* global source, target */

target.dn = 'cn=' + source.username + ',ou=corp,dc=hqpennyworth,dc=com';

 When Is Wren:IDM Suitable?
In small to medium organizations that have only a single location —or multiple locations

where identity information is owned by a single location—other IDM products that make

a lot of assumptions about corporate structure may be faster to implement.

In medium to large organizations, where there are branch offices and/or

organizational units that need to have autonomous control over their identity

information, Wren:IDM is an excellent fit.

Effectively, Wren:IDM is so flexible that you could end up spending a lot of time on

integration when something out-of-the-box fits your model. But if your organization isn’t

cookie-cutter, and you have some requirements that take you a little outside of the other

solutions, then Wren:IDM is a better solution, even if it might take a bit more time to

integrate, because it’s built to handle the customization. The time spent integrating pays

off in flexibility and maintainability of the implementation.

Chapter 9 IdentIty ManageMent

332

 Rolling Out Wren:IDM to Production
Wren:IDM can run with any JDBC-connected database, but has been tested with

PostgreSQL, MySQL, Oracle, and Microsoft SQL. In addition, for local development

and testing purposes, it also ships with an embedded copy of OrientDB. In general,

Wren:IDM shares dependencies common to any lightweight JEE application. It runs

both on Oracle JDK and OpenJDK.

A single, commodity-hardware machine with 4GB of RAM would be sufficient to

run the whole solution, including a PostgreSQL database server on a Linux operating

system. The requirements grow with the number and frequency of scheduled tasks and

complexity of the particular actions. The system can be also operated in a cluster. While

high availability is usually not a requirement for IDMs, cluster-based deployment can

help by distribute reconciliation tasks across several nodes. In addition, if direct access

to target systems from the IDM is not possible or desirable (e.g., the target system is

local, but IDM is running on Amazon EC2), connector servers can be used to provide an

interface from the IDM to the target system.

The limiting factor in most deployments is the I/O throughput of the target system;

specifically, how quickly such a system can query records and return them. If you’re

using existing connectors, take note of options that can reduce the amount of data that

a connector will need to request from the remote system (e.g., limit base DNs, filter out

objectclasses that are not of interest). If you’re developing custom connectors for an IDM

project, it is best to optimize the connector to query the target system for as few records

as possible.

As far as an overall deployment, the best approach to address performance issues is:

 1. Plan out your deployment ahead of time.

 2. Integrate with each target system one at a time. Isolation can help

to reveal bottlenecks.

 3. Test the system as you go rather than testing everything at the end

of implementation.

There are several approaches to deploying and testing Wren:IDM. A good

implementer can leverage software engineering best practices such as using SCM, test-

driven development, continuous integration, and continuous delivery. Wren:IDM works

best in such a process.

Chapter 9 IdentIty ManageMent

333

 Gluu Casa
MidPoint, Syncope, and Wren:IDM offer enterprise IDM and IAG tools, and even some

handy user-facing self-service functionality. However, data related to a person’s web

authentication and authorization preferences is outside the scope of traditional IDM and

IAG systems.

In addition to managing personal information, people need to:

• Enroll and manage two-factor authentication (2FA) credentials and

preferences (e.g., phone numbers, U2F keys, OTP, etc.)

• View and revoke consent decisions (e.g., which applications have

what access to personal data)

• Add and remove social login accounts (e.g., Facebook or GitHub)

• Request and manage OAuth client credentials

Gluu Casa (Casa) offers a user-facing, self-service dashboard for managing these

newer self-service requirements. It’s available under the free open source MIT License.

 Architecture
Casa is a Java EE web application that runs inside the Gluu Server’s chroot container,

although it’s distributed as a separate package. Casa interacts directly with Gluu’s

underlying LDAP server and file system, and uses the oxd-java library to leverage Gluu’s

OpenID Connect Provider (OP) and UMA Authorization Server (AS) functionalities. Casa

is built using frameworks such as Weld, ZK, and RestEasy.

Casa’s core functionality—self-service 2FA management—is enabled via a Gluu

Server custom authentication script written in Jython. The script enables a person

to specify their preferences for 2FA—whether to prompt for every authentication, to

remember a certain location, or to remember the browser.

 2FA Credential Management
2FA can significantly increase account security. However, security is only as strong as

its weakest link. If you have a strong authentication mechanism, but you can use email

to recover from a lost credential, your security is degraded. Control of email is an even

weaker credential than a password! If a human operator can reset a strong credential,

Chapter 9 IdentIty ManageMent

334

people are extremely susceptible to social engineering. Don’t hack the crypto—hack the

people! Account recovery is the Achilles heel of 2FA, as an authentication mechanism is

only as strong as the weakest recovery process.

As there are no widely accepted Internet standards for account recovery and strong

authentication, it can be helpful to review and mimic how industry giants like Google

support these important security processes. With one billion user accounts, Google has

lots of data to determine how to roll out secure and usable 2FA.

Google supports several types of authentication: SMS, OTP, FIDO tokens, and several

others. With billions of accounts, strong security can’t come at the expense of usability—

that’s why Google offers a self-service portal where people can enroll, delete, and

manage their own strong credentials.

Gluu Casa provides an open source solution that organizations can use to offer a

similar user-facing, self-service 2FA experience. In the Casa dashboard, people can

enroll and manage their strong authentication credentials to secure their accounts.

Out-of-the-box, Casa supports the same credentials as Google: FIDO, OTP, SMS, and

mobile push (using Super Gluu). This combination of 2FA options makes strong security

available to anyone with a mobile phone. The self-service dashboard empowers people

to enroll multiple strong credentials to thoroughly secure their account.

Net-net, the value of the transaction should drive security enforcement, and in

the Casa administration web interface, system administrators can manage which 2FA

mechanisms are enabled and supported by the system.

 Consent Management
Federated identity enables people to leverage an existing account in an identity provider

(IDP) to create and maintain a passwordless account in an external service provider

application (SP). For example, when you “Sign in with Google” to an unaffiliated third-

party website, Google may send along personal information about you that will be used

to create a local profile for you (sans password). In these situations, before allowing you

to proceed, the IDP will prompt you to “consent” to the release of personal information

(in OAuth jargon, this is the authorization). In addition, Google may prompt you to

authorize the third-party website to perform actions on your behalf, for example to

access your contacts or update your calendar.

As the user’s window into the authentication system, Casa provides a UI for

reviewing and revoking previously made consent decisions. For example, if you sign in

Chapter 9 IdentIty ManageMent

335

to Dropbox using your Gluu IDP account, then decide you no longer want Dropbox to be

able to control your calendar, you can revoke your consent decision in Casa. The third-

party website could (and likely would) retain a copy of any personal data previously

shared, but would no longer have authorization to perform actions on your behalf—it

would need to re-prompt you for consent if you attempt to access the service again using

your external IDP account.

 Social Login Account Management
Creating and remembering passwords for each service is not only a terrible user

experience, but people tend to re-use passwords in many systems, which can quickly

lead to account security issues. Not all systems are secured equally! Spreading your

password across the Internet like the seeds of an ailanthus tree certainly increases your

risk of compromise.

Casa offers people the ability to enroll and remove social login accounts available

to the Gluu Server as a means of authentication. For example, you could create your

account by signing in with Google, then enroll a Twitter, GitHub, and Facebook account

to provide multiple options for accessing your account. This way, even if you get locked

out of Google, you can still access your account.

 Developer Portal
In order to support federated authentication and authorization, application developers

need client credentials from the IAM system (i.e., client-id and client_secret).

Client credentials enable an application to identify itself to the IAM system. Depending

on the scopes granted, client credentials can be used for different purposes. Casa

provides an interface for people to request and manage client credentials in the IAM

system, enabling a more convenient developer experience and greater transparency and

accountability for system administrators.

 Getting Started
Gluu Casa can be deployed via Linux packages. Visit the documentation to learn how to

get a local instance up and running: http://gluu.org/docs/casa.

Chapter 9 IdentIty ManageMent

http://gluu.org/docs/casa

336

 Conclusion
It’s critically important to your organization’s security to get IDM right. It’s a moving

target—there will always be new systems and new business process to which you will

need to adapt. It won’t be easy—defining and implementing IDM requires a significant

investment of time and energy.

Chapter 9 IdentIty ManageMent

337
© Michael Schwartz, Maciej Machulak 2018
M. Schwartz and M. Machulak, Securing the Perimeter, https://doi.org/10.1007/978-1-4842-2601-8_10

CHAPTER 10

Multiparty Federation

“Information security is a fundamentally cooperative endeavor, one in
which responsibility and authority are distributed across a wide array of
actors.”

—Ashwin J. Mathew1

Federated identity protocols like SAML and OpenID Connect enable us to authenticate

people in other domains, but trust issues quickly surface. For example, if your organization

operates a website with valuable content and someone you authenticated at another

domain steals the content, what recourse do you have? If your organization operates an

OpenID Provider (OP), and a relying party website (RP) is hacked, potentially exposing

your account holders’ personal information, do you expect to be notified? What rights do

you have to update your personal information at identity providers or websites that you

use? These related federated trust considerations are aptly described by Scott David, a legal

identity scholar, as the “triangle of trust” (see Figure 10- 1).

1 https://er.educause.edu/blogs/2018/5/how-can-we-trust

https://er.educause.edu/blogs/2018/5/how-can-we-trust

338

Figure 10-1 conveys what type of trust is needed and by whom. It uses OpenID

Connect vocabulary (OP, RP) but you could substitute the equivalent SAML terms (IDP,

SP). While you are most likely to hear about “Level of Assurance” of an authentication,

you are less likely to hear about the “Level of Protection” or “Level of Control”. However,

these trust considerations are equally important.

Let’s summarize for each vertex:

• Level of Assurance (LOA)—The RP needs assurance from the OP.

Is the person who is the subject of the assertion really who they say

they are? How well did you prove this person’s identity? Did you

inspect a state issued ID in-person? Did you verify with the issuer

that the ID was valid? How well did you authenticate the person

(password, OTP, biometric)? How secure are your account recovery

procedures? The OP provides assurance, and in some cases, liability

protection to the RP. The assertion is only as good as the identity

management and security practices behind it. Identity need not be

asserted for the necessary assurance to be met. Sometimes the RP

only cares “is the person really who they say they are?”. In the case of

WiFi federation, what the RP wants to know is “are we assured this

person will comply with our network rules?”. In the case of federated

access to licensed resources (e.g., online journals), it’s “is this

someone whose bill will paid?”. LOA) is closely associated with

version 2 of NIST 800-63, which defines levels one to four. The current

version of 800-63 is updated to reflect a more nuanced view of

Relying
Party

Person
OpenID
Provider

wants identity ASSURANCE
to reduce fraud

wants CONTROL
of data

wants website PROTECTION
of data from a breach

Figure 10-1. Triangle of trust

Chapter 10 Multiparty Federation

339

the vectors of risk. 800-63C contains NIST’s digital identity guidelines

for federation and assertions and outlines many of the technical

considerations for federation operators. You can read it on the web at

https://pages.nist.gov/800-63-3/sp800-63c.html.

• Level of protection (LOP)—The OP wants the website to protect the data.

Most RPs will write data to their database. Using federated identity,

RPs don’t need the secret credentials (e.g., passwords), but it is

common for RPs to create a local account for each person to track

their history and preferences. Whether or not the person approved

the release of information explicitly or implicitly to the RP, most

OPs expect a certain amount of diligence for the handling of shared

PII. The RP should adopt best practices for data security and the

extent to which it does is its LOP.

• Level of control (LOC)—The person wants to update, remove, or

otherwise direct the use of their data.

Today people are demanding control of their data as a human right.

However, within an ecosystem, the concept of data ownership gets

murky fast, as a person can’t necessarily demand the removal for

their personal information. For example, if an employee places an

order, whose data is it? The employee’s? The buyer’s? Or seller’s?

Federation agreements can specify a person’s rights to control the use

and accuracy of data about them.

Our national, state, and international laws can’t be relied on to create a workable

trust fabric. At best, they are a patchwork of frequently outdated regulations that tend to

inconsistently address issues of assurance, protection, and control. For example, in the

United States, the HIPAA regulations specify that data must be protected by encryption.

Other government regulations are proscriptive about assurance, but say nothing about

protection. The EU GDPR regulations give the person increased control over their data.

Two organizations can achieve trust by describing all the contingencies in legal

contracts. For example, the contract can specify acceptable types of authentication,

the procedure for breach notifications and obligations to update or remove a person’s

information upon their request. However, in a large ecosystem with many companies,

requiring each pair of organizations to negotiate a bilateral agreement is not efficient. In

fact, trust derived from one-off agreements should be the anti-pattern.

Chapter 10 Multiparty Federation

https://pages.nist.gov/800-63-3/sp800-63c.html

340

A better approach is to define one standard contract that level sets assurance,

protection and control within the community. If each federation participant signs a

standard participant agreement, one-off agreements can be greatly reduced.

Another federation legal guru, Thomas J. Smedinghoff from the firm Locke Lord LLP

describes three levels of law that govern multi-party federations: Level 1: general law

(e.g., statutes and regulations); Level 2: law specific to the type of multi-party federation

involved (e.g., financial or medical); and Level 3: system specific rules. Federation

documents define the Level 3 system specific rules, which may address business (e.g.,

duties and responsibilities), legal (e.g., allocate risk and liabilities), technical (e.g.,

how data is formatted and secured), and operational (e.g., process and procedures)

considerations. See Figure 10-2 for an illustration of this concept.

Federations have existed for a long time. In government, a federation describes

multiple autonomous states ceding authority to a central entity. The United States itself

is “federal”—i.e., granted certain powers in the Constitution by the states in the interest

of efficiency. The Internet is a federation—those connected agree to use IP addresses.

Internet standards enable TCP, UDP, TLS, HTTP, and other communication streams.

Figure 10-2. Three level identity system

Chapter 10 Multiparty Federation

341

There are many existing industry federations. If you are a member of a stock

exchange, a sports league, or even a farming collective, you decide that it’s worthwhile to

give up some autonomy to gain efficiency in an ecosystem.

Federations offer different services depending on the level of trust the participants

have in the federation operator and cost. The three existing types of services operated by

federations are (1) root of trust to enable a hierarchical service; (2) metadata aggregate

publication; (3) proxy.

Figure 10-3 uses DNS as an example of a Root of Trust service. ICANN is a sort of

federation where TLDs, registrars, and organizations agree to be governed by some rules in

exchange for DNS. Another example of a hierarchical trust service is the EduRoam higher

education network, which enables reciprocal WiFi across participating campuses. eIDAS, a

set of standards defined in EU regulations, enables interoperable national ID cards.

For meshed federation, as demonstrated in Figure 10-4, one of the best examples is

InCommon (https://incommon.org), a federation of U.S. higher education institutions,

which currently has approximately 1000 members: 700 universities and 300 websites.

InCommon also has an inter-federation agreement with eduGAIN—the EU higher

education federation. Government, defense, pharmaceutical, and automotive industries

also have created supply chain SAML federations using the metadata aggregate approach.

Root Registry

Top Level
Domain
Registry

Domain
Registry

Domain
Registry

Top Level
Domain
Registry

Domain
Registry

Domain
Registry

Top Level
Domain
Registry

Domain
Registry

Domain
Registry

Figure 10-3. Hierarchical trust service

Chapter 10 Multiparty Federation

https://incommon.org

342

Proxy services, shown in Figure 10-5, cost the federation operator more to run, but

are very convenient for participants. In a SAML identity federation, this means that the

IDP has only to import one SP metadata (all the backend SPs are hidden from view). And

likewise, the SP only need to know about one IDP (the proxy), so there is efficiency in

both directions.

Figure 10-4. Meshed federation via aggregate

Chapter 10 Multiparty Federation

343

The federation could also offer centralized API proxy service and enforce federation

policies. Although no current federations are doing this, it seems likely to happen soon.

Information security federations define the tools and rules for trust. See Figure 10-6

for a visualization of trust between federations. Federation “tools” are protocols, data

structures, and vocabularies. Imagine how expensive it would be if every website used

a different identifier for first name and last name. InCommon specifies that participants

must support the eduPerson attributes. Beyond user claims, identity federations could

define standard vocabularies for authentication mechanisms, OAuth scopes, and other

custom schema.

Figure 10-5. Proxy federation service

Chapter 10 Multiparty Federation

344

Federation “rules” are the legal agreements that bind the parties together. There

are a few legal recipes for how to accomplish this. The following recipe is for three

agreements: a “Federation Policy,” which defines the top level governance; a “Data

Protection Code of Conduct,” which defines not just protection, but also privacy

responsibility of participants that hold data about people; and finally, the “Network

Use Agreement,” which should be displayed each time the person is authenticated as a

participant.

Federations are not tied to specific protocols or technologies. Technical and legal

innovations are inevitable, and effective federations will evolve to address new realities.

Figure 10-6. Federation and interfederation trust

Chapter 10 Multiparty Federation

345

 Federation Privacy Considerations
When federations offer services (like the publication of metadata or a proxy), they need

to consider the ramifications for personal privacy. There are three risks:

• Observability, which refers to collecting data about a person activity

• Linkability, which refers to introducing a common identifier (like

your Gmail address)

• Impersonation, as a result of attacks against the SSO mechanisms

The federation is not the only way a person can be tracked, linked, or hacked. For

example, device fingerprinting, IP address, and compromised passwords all take their

toll. But the federation should design its services in a way to avoid the above as much as

possible.

NIST Special Publication 800-63C does a nice job of defining the privacy

considerations for federations, and offers advice to minimizing “tracking” and “profiling”.

Other considerations include:

• Notice and consent

• Data minimization

• Blinding in Proxied federations

• Usability considerations

However, “privacy” can vary depending on your location. The EU has privacy

principles:

• Fairness and lawfulness

• Final purpose

• Propotionality

• Data quality

• Information security

• Openness and transparency

• Individual participation

• Accountability

Chapter 10 Multiparty Federation

346

And don’t forget the excellent “Privacy by Design” rules:

• Minimal identification

• Disclose/need to know

• Limited Linkability

• Transparency and user control

• Information security

The guidelines in NIST 800-63-C about blinding in proxied federations are

particularly interesting. Consider Table 10-1.

Does a “Triple Blind Proxy with or without Attributes” actually exist in real life? It’s

hard to say. But you get the idea here—it’s very hard to protect privacy when you operate

a proxy. Consult the experts!

 Federation Policy
This document describes the governance of the federation. Does the federation have a

steering committee? If so, how many members? Serving for how long? Voting in what

way? The Federation Policy should also define how the federation is managed. Who will

Table 10-1. NIST 800-63C Federation Proxies

Proxy Type RP Knows IdP IdP Knows RP Proxy Can Track
Subscriptions
Between RP and IdP

Proxy Can See
Attributes of
Subscriber

non-Blinding proxy

with attributes

yes yes yes yes

non-Blinding proxy yes yes yes n/a

double Blind proxy

with attributes

no no yes yes

double Blind proxy no no yes n/a

triple Blind proxy with

or without attributes

no no no no

Chapter 10 Multiparty Federation

347

operate the day-to-day services? How should the federation market itself to drive more

memberships? The Federation Policy covers a few more important areas like disputes

resolution, and how an organization could become a participant. You can find quite a

few federation polices on the Internet, as these are public documents, and most large

federation operators point you to them.

 Data Protection Code of Conduct
With the intent of giving people more control of their data, participants agree to a

Data Protection Code of Conduct, regarding the handling of personal information.

The federation can define the baseline expectations for consent, notification, and data

protection. The document may also detail the data retention period and the rights of a

person to access or rectify their data.

 Network Use Agreement
Ultimately, the buck stops with people. End users have to take responsibility for their

own security hygiene. That includes taking the appropriate level of care to protect their

credentials from loss or compromise. The network banner also informs the person about

their rights to correct information, to request removal from a service, and sometimes

where to direct questions at the federation or participant.

 Federation Actors
As this is a book for techies, not lawyers, back to the tools! Figure 10-7 shows the actors

that participate in an identity federation.

• Registration Authority—Trusted third party that operates the

federation technical infrastructure. For example, a hosting company,

ISP, or telecommunications provider.

• Federation Operators—The organization that makes the rules,

specifies the tools, and vets members. The federation should

also perform due diligence on the Registration Authority, as the

federation is partially liable for its operation.

Chapter 10 Multiparty Federation

348

• Participant—An organization who is qualified to join a federation,

signs all the necessary legal agreements, and pays all fees.

• Entity—A service operated by a participant or the federation.

Generally, the service needs to register its cryptographic signing key

with the federation, and the web endpoints where its services can be

found. It may also register other information that is useful to publish

centrally, for example, to help other participants or end users find or

better utilize its service. It’s not uncommon for a participant to have

several entities, for example, a university may operate an SAML IDP

and several websites.

 Joining a Federation
A participant is born once an organization signs the necessary legal agreements and

performs all the required duties, such as paying any fees. The federations vet the

participant and countersigns the documents. The participant specifies administrative,

legal, and technical contacts and shares its technical configuration information,

Figure 10-7. Federation actors

Chapter 10 Multiparty Federation

349

such as web endpoints and the public keys for each of its services. This metadata

about its services is filtered and published by the federation. The federation may add

configuration information, such as whether the entity qualifies as a certain federation

managed category—for example, the Research and Scholarship (R&S) category in the

higher education federation community.

 Federation Trust Models
In addition to the trust generated by the agreements on a shared set of rules, multi-party

federations also use technology to improve security.

The primary trust model used on the Internet today is TLS. We emphasize to

consumers: make sure the little green padlock icon in your web browser is green! Some

browsers make it difficult to navigate to a website where the SSL certificate is invalid.

This trust model relies on the idea that the only organization that controls a domain can

get a certificate for that domain from a well-known certification authority—one that has

its root certificate installed in the browser. In general, this trust model works, but it’s not

secure enough for certain organizations that need to mitigate more risk than the average

ecommerce transaction.

In addition to SSL, SAML and OpenID Connect define mechanisms to sign and

encrypt identity assertions. If you download the public keys via HTTPS, then the trust

model is still TLS. However, if the federation provides an out-of-band, highly secure way

for the participant to upload its public keys to the federation operator, and the consumer

of the identity assertion uses the federation’s copy of the public key, it adds security over

TLS. To forge the signature, the attacker would need to hack both the participant and the

federation.

 SAML Federations via Metadata Aggregate
SAML metadata allows for the description of multiple entities. A SAML federation

metadata aggregate is a big file with all the entities for all the participants. The federation

signs this XML file with its private signing key and publishes it.

A metadata aggregate can get large. Each entity publishes its public certificates.

There is also XML needed to describe the endpoints and other SAML options. An

already big metadata aggregate can get even bigger as a result of inter-federation—if one

federation imports all the entities of another federation.

Chapter 10 Multiparty Federation

350

For many SAML federations, publication of metadata is an automated process that

happens every five minutes or so. In terms of operations, the SAML federation metadata

can be published as a flat file. This makes global distribution of the document easy, as

the federation or registration authority needs no runtime infrastructure other than a

web server. The metadata aggregate can just be copied to multiple data centers, enabling

robust publication.

In SAML, both IDP and SP entities are treated similarly in the metadata. Both

are required to have a stable entityID, which is like a primary key—the entityID must

be unique in the metadata. It’s a common convention to use the URL of the entity’s

metadata as the value for the entityID (a URL is collision resistant). The other common

convention is to use a URN as the value for the entityID. As mentioned, the metadata

published by the entity may or may not be the same as the metadata published for that

entity by the federation, as the federation may add extra information about the entity to

its aggregate.

There are a few drawbacks of the metadata aggregate approach:

• Interfederation using metadata aggregates does not scale well.

A large file can get even bigger if you are including entities from

another federation. The process of copying files and perhaps

transforming them to meet your federation’s metadata conventions

can be onerous.

• The metadata aggregate is hard to search. It’s very flat, so inevitably,

you need to iterate through all the entries (which can be very slow if

you’re parsing the XML at runtime).

• Size is limited to a few thousand entities.

To solve this scaling problem, some federations are deploying the SAML Metadata

Query Protocol (aka, MDQ), which allows for deployments to consume just the metadata

they need and still verify the signature on the metadata to ensure trust. Entities which

need to perform discovery operations may fetch a list of all entities via this API, extract

the information they need for searching and discovery, and cache that information

so that users can interact with it easily. Metadata is already cached by SAML software

for validity periods defined in the metadata itself, in order to ensure reliability and

performance, so this is not much extra work for the software. More information on MDQ

is available at https://datatracker.ietf.org/doc/draft-young-md-query/.

Chapter 10 Multiparty Federation

https://datatracker.ietf.org/doc/draft-young-md-query/

351

Federation software that’s of interoperating using SAML metadata must take into

consideration other factors, including, but not limited to:

• Consuming multiparty metadata (via an aggregate or otherwise).

• Verifying the signature on the metadata.

• Refreshing its cached copy of that metadata on a regular basis

(at least daily).

• Configuring itself to exchange identity information based solely on

the configuration material contained in the metadata (trustmarks,

etc.).

• Handling key-rollover scenarios decrypting assertions using multiple

keys (SP) and issuing encrypted assertions using multiple SP public

keys with all necessary key material published in the metadata.

• Ignoring parts of the X.509 certificate wrapper that play no role in the

federation trust model and relying solely on the key material in the

metadata and the metadata signature for trust.

All requirements for SAML software to be able to interoperate in this context are

documented in the Kantara Initiative’s SAML v2.0 Implementation Profile for Federation

Interoperability at https://kantarainitiative.org/file-downloads/saml-v2-0-

implementation-profile-for-federation-interoperability-version-1-0-pdf/.

This profile builds on the core OASIS standards that define requirements for SAML

software in general.

 Trustmarks
Most of this content is thanks to the Georgia Tech Research Institute (GTRI) with the

support of the National Strategy for Trusted Identities in Cyberspace (NSTIC) via the

National Institute of Standards and Technology (NIST).

Standard disclaimer: “The views expressed do not necessarily reflect the official

policies of NIST or NSTIC; nor does mention by trade names, commercial practices, or

organizations imply endorsement by the U.S. Government.”

Trustmarks enable organizations to convey security risks in machine readable

format. A trustmark can be an assertion about anything! For example, technical

Chapter 10 Multiparty Federation

https://kantarainitiative.org/file-downloads/saml-v2-0-implementation-profile-for-federation-interoperability-version-1-0-pdf/
https://kantarainitiative.org/file-downloads/saml-v2-0-implementation-profile-for-federation-interoperability-version-1-0-pdf/

352

interoperability (e.g., vocabularies and protocols), LOA/LOP/LOC considerations, or

business. The legal aspects of trustmarks are conveyed not through the trustmarks

themselves, but via the trustmark policies and/or trustmark agreements under which

trustmarks are issued and used.

This kind of federation is potentially more efficient than a centralized or

“monolithic” federation.

Figure 10-8 shows how a trustmark can lower costs. The straight line represents

the growth of costs when establishing trust through a series of pairwise (bilateral) trust

relationships. Each new pairwise relationship established requires the same amount of

time and effort as was required for each previously established relationship. This line

represents a worst-case scenario and is an unacceptable strategy for any ecosystem

that wishes to establish more than a trivial number of trust relationships with other

organizations.

Figure 10-8. Potential cost savings from a trustmark framework, courtesy GTRI

Chapter 10 Multiparty Federation

353

The “Traditional Trust” curve represents the growth of costs when establishing

trust through a series of traditional trust frameworks. The route of monolithic trust

frameworks tends to imply joining multiple monolithic trust frameworks over time. The

strategy of joining multiple monolithic trust frameworks does not scale as poorly as the

bilateral trust strategy; however, it is still suboptimal. Since each new monolithic trust

framework is opaque, it is unlikely that a significant amount of the prior work, which was

performed during the process of joining previous monolithic trust frameworks, will be

applicable when joining the next monolithic trust framework.

The “Trustmark Framework” curve represents the growth of costs when establishing

trust through a componentized trustmark framework in which individual trust

components tend to be reused between trust frameworks. In this scenario, joining a new

trust framework requires three steps.

• Determining which trustmarks are required by the new framework.

• Determining which required trustmarks are already possessed, and

which need to be acquired.

• Acquiring the necessary trustmarks that are not already possessed.

Over time, as the organization seeks to join multiple componentized trust

frameworks, it is increasingly likely to already possess many or most (or all) of the

necessary trustmarks based on its previous efforts to join other trust frameworks. This

causes the cost growth curve to become flat, or nearly flat, over time.

This analysis illustrates one of the most important benefits of trustmarks: not only do

trustmarks enable componentization and reuse of trust and interoperability criteria, but

they also carry the potential for significant cost savings over time as the ecosystem grows

to encompass many communities that engage in a variety of cross-COI collaboration

scenarios.

For more information on trustmarks, including the trustmark XML specification,

a database of existing security trustmarks (many!), and lots of great theoretical

information, visit GTRI’s trustmark page at https://trustmark.gtri.gatech.edu/.

Chapter 10 Multiparty Federation

https://trustmark.gtri.gatech.edu/

354

 OpenID Federations
OpenID federations are moving in a similar direction as trustmarks—toward a

componentized trust model. The proposed OpenID federation specification, which is

currently a draft and is likely to change, links together signing keys using a JSON Web

Key Set (JWKS) to create a chain of signing keys. Like public key infrastructure (PKI), it

provides a way to verify that an intermediate key is trusted by a root key.

OpenID presents some unique challenges when compared with SAML. In SAML,

both IDPs and SPs have an entityID, which is a convenient way to reference them in a

federation’s metadata. In OpenID Connect, it’s a requirement that the OpenID Provider

publishes its metadata (although they don’t call it that) on a URL—the .well-known/

openid-configuration endpoint. It’s common for SAML IDPs to publish metadata on a

URL. For example, for a Shibboleth deployment, it can be found at https://hostname/

idp/metadata.

However, what is the entityID for an OpenID RP? One suggested change to OpenID

federation proposes a stable identifier for the RP. During OpenID dynamic client

registration, the OP issues a client_id, which is different for each OP. One could argue

that the redirect_uri is a reasonable way to identify a client. However, you need to

take into account that redirect_uri, may be multi-value, and the RP may update it, so

it’s not a great primary key. OpenID Federation requires non-public RPs (i.e., websites)

to publish a signed_jwks_uri. This is impossible for supporting mobile clients and

JavaScript applications running in the browser.

Another consideration for OpenID Federation was that OpenID Provider keys used

to sign and encrypt assertions are rotated every two days according to current best

practices. That’s a lot—SAML keys are usually rotated every few months or every year.

One of the innovations of OpenID federation is to introduce a stable signing keys for

the OP and RP, the location of which is published on the OpenID Provider discovery

page. The public signing keys are stored by the client and provide additional trust over

TLS (after the key is retrieved). The signing key is used to publish a verifiable OpenID

discovery document.

The main innovation introduced in the OpenID Connect federation specification

is the idea of metadata_statements, a JSON assertion, signed by the federation.

The technical mechanics of how metadata_statements are created are somewhat

complicated—it involves successive cryptographic operations.

Chapter 10 Multiparty Federation

355

Metadata statements are published by the OP or presented by clients during

dynamic registration. Think of the metadata statement like a Russian matryoshka doll—

where each concentric metadata statement asserts information about a link in the trust

chain. For example, a developer creates a metadata statement, signs it, and passes to the

organization, who adds information and signs it, and then passes it to the federation that

signs it. With the right tooling, such a process could be productive for both developers

and security devops.

OpenID Connect Federation specification work is still formative. Feedback from

implementations will result in changes to the specification.

 OTTO Federation
OTTO is a set of standards under development at the Kantara Initiative. OTTO stands

for the “Open Trust Taxonomy for Federation Operators”. It is a set of APIs for federation

management, and an extensible JSON-LD vocabulary to model federation data. Like the

OpenID federation spec, it is waiting for adoption.

OTTO addresses some of the weaknesses of existing SAML federations. The OTTO

APIs standardize operation by the registration authority. How does a participant join a

federation? How to register or update an entity? How to leave a federation?

OTTO APIs provide a standard way to do these things. In SAML, federation

operators either wrote their own operational software or used open source software to

manage federation data. Some federations offer participants no automated interface—

registration and updates happen via a manual process. If federations become more

common, consistency would offer more efficiency to participants and operators alike.

OTTO APIs provide a query mechanism to obtain information from the federation.

While this comes at additional operational complexity—the federation operator is no

longer just copying a static file to a web server—hosting APIs has become somewhat of

a mainstream activity for organizations. And registration authorities who specialize in

hosting federations will certainly have the technical capability.

One of the other goals of OTTO was to make inter-federation more scalable. SAML’s

approach of copying the data from one federation to another is not particularly effective.

It results in large files and raises challenges around filtering the data, as the imported

metadata may not align perfectly with the metadata conventions of the federation that

consumes it and may need to be transformed. The design of OTTO is to use linked data

to enable one federation to reference the data of another.

Chapter 10 Multiparty Federation

356

In addition to the APIs, OTTO defines several JSON-LD vocabularies. The OTTO core

vocabulary defines the common denominator for the registration authority, federation,

participant, entity, and schema. It also defines vocabulary extensions for SAML and

OpenID—the two most important initial use cases. But it leaves open the possibility that

new protocols and new trust models will evolve, and that it can be extended to meet

those new requirements by supporting additional standard or even custom (industry-

specific) vocabularies.

 OTTO API
The registration authority hosts the OTTO API, which consists of a number of service

endpoints.

• Configuration API —Returns a JSON document describing the

federation services of the registration authority—basically the URLs

of all the endpoints described next. This is published as https://

domain/optional-path/.well-known/otto-configuration.

• Federation API —This is the workhorse endpoint. First it is used

by the registration authority to add, edit, and delete federations. It

is used by an organization that wants to sponsor a federation. The

federation uses this endpoint to add and remove participants. It is

used by participants to request to join or leave a federation. And

finally, it can be used by anyone to search public information about

the hosted federations.

• Participant API —This endpoint is used by federation software

to create a participant, look up information about a participant,

or otherwise update a participant’s data. It is also used to link a

participant to federations and entities. Lookup by reference ID is

supported.

• Entity API —This endpoint is used by participant software to create,

update, and delete entities and to link them to participants (who

operate them) or federations. Lookup by reference ID is supported.

• Metadata API —This endpoint, hosted by the Registration Authority,

enables the management of metadata of the federation. The API

requires a category (e.g., OpenID or SAML) and allows optional

Chapter 10 Multiparty Federation

357

parameters metadataFormat and expiration. Metadata could be

periodically downloaded and published in the traditional way (i.e.,

copy to a bunch of servers). Or it can be handled more dynamically:

the software for a participant will obtain a software statement or

metadata statement on the fly.

• Schema API —This endpoint, hosted by the registration authority,

enables the management of schema available to federations. The

category property is required. For example, the OpenID vocabulary

defines UserClaim, Scope, and ACR as values for schema category.

When you create a schema, you have to say if it’s required. For

example, perhaps an email address is a required user claim in certain

federations. The schema endpoint enables software to view, create,

and update schema, and to link schema with an entity or federation.

The endpoints also enable lookup of a schema by ID and an endpoint

to return all available schema categories.

 OTTO Vocabulary
JSON-LD 1.0 is a W3C specification, which can be found at https://www.w3.org/TR/

json-ld/. It is a lightweight syntax to serialize Linked Data in JSON. Since JSON-LD is

100% compatible with JSON, you can use your existing JSON tools and libraries. JSON is

better for security. Compared with XML, JSON is simpler, and parser developers are less

prone to security snafus.

Although there are many good reasons to use JSON-LD, three features were

important to OTTO (see Figure 10-9):

• Linking—You can refer to a JSON object in a different domain. Many

of the objects are related. For example, entities are operated by a

participant, whereas a federation has participants and a registration

authority operates federations. This capability can reduce some of

the data duplication and filtering challenges in the current metadata

aggregate approach.

• Extensibility—A JSON-LD class may be a subclass of another class,

inheriting its properties. The OTTO Core Vocabulary defines building

blocks, with which additional OTTO vocabularies can be built. For

Chapter 10 Multiparty Federation

http://www.w3.org/TR/json-ld/
http://www.w3.org/TR/json-ld/

358

example, SAML IDP and OpenID OP both use OTTO Entity as a

subclass. Future vocabularies may address UMA, ACE, PKI, and other

protocols yet to be invented, and hopefully will not have to reinvent—

just supplement.

• Re-Use—OTTO used schema from https://schema.org as a starting

point. This means our vocabulary was almost complete—OTTO

defines some additional vocabulary for federation specific stuff.

For example, in OTTO a participant is a subclass of schema.org

organization, https://schema.org/Organization.

All core OTTO classes have an @id and name property. The @id is a globally unique

identifier—a primary key used for linking data. The issuer of the @id should either use

a GUID algorithm or a hierarchical name space (such as a URL). The name property is a

human-readable identifier.

The following is a summary of the information stored in each.

• RA—Subclass of schema.org/Organization. Contains the OTTO

endpoint URIs (e.g., federation_endpoint, participant_endpoint).

The registers property specifies the hosted federations.

• Participant—Subclass of schema.org/Organization. Entities are

linked by the operates property. Federations are linked by the

memberOf property. Participant contact information can also be

published here.

Figure 10-9. Vocabulary overview

Chapter 10 Multiparty Federation

https://schema.org
http://schema.org/Organization

359

• Entity—Subclass of schema.org/Thing. A technical service of a

participant. The operates property indicates the resource. The

operatedBy and federatedBy properties specify the organization

and federation links. The supports property can be used to describe

schema requirements or to publish trustmarks. The category

property can be used by the federation to group entities to facilitate

trust management (e.g., R&S websites).

• Federation—Subclass of schema.org/Organization. The member and

federates properties link participants and entities respectively. The

metadata property specifies the federation’s public keys, certificates,

and other cryptographic information to enable verification of

federation assertions and encrypted communication. The sponsor

property specifies the organization responsible for governance.

Federation contact information and legal agreements can be listed.

The federation can use the supports property to publish schema

standards, like user claim identifiers (e.g., givenName or first_name?)

and trustmarks (as mentioned in the previous section).

• Metadata—Subclass of schema.org/Thing. This class specifies its

metadataFormat, expiration, and category (e.g., OpenID or SAML).

OTTO extension vocabularies (like OpenID and SAML) subclass

metadata, adding the necessary details for their protocols.

• Schema—Subclass of schema.org/Thing. Also uses the category

property to group schema (e.g., user_claims, scope). The required

boolean can be used by an entity, e.g., an SP might require the email

address attribute. The sameAs property can be used to link schema to

eliminate overlap.

 Retrieving Datafrom OTTO Federations
Using the OTTO Federation API, you can search and retrieve data about entities.

An OTTO client can use parameters to signal to return the data.

• filter—Enables the OTTO client to use a search expression to limit the

results returned. OTTO uses the JSPath query syntax. You can read more

about JSPath at https://github.com/dilatov/jspath. The following is

an example of a filter to show how you can search for a website by name.

Chapter 10 Multiparty Federation

https://github.com/dilatov/jspath

360

GET /federations?filter=.entities{.name="MyWebsite"}

• depth—Enables you to specify what kinds of objects you want

returned. It’s sort of like using an objectclass=object filter in

LDAP. The following request shows an example where you might

want to get back just a list of organizations that associated with the

federation.

GET /federations/1234?depth=federations.organization

• sign—Enables you to request that the federation sign the returning

JSON object using the private key of the federation, in a format

specified by the signing algorithm.

GET /federations/1234/sign=true&alg=RS512

 OTTO Next
OTTO is still under development at the Kantara Initiative. You can read the draft

specifications, meeting minutes, and visit the test site:

• OTTO GitHub: https://github.com/KantaraInitiative/wg-otto

• OTTO APIs: https://gluu.co/otto-api

• Core vocabulary: https://gluu.co/otto-vocab

• OpenID vocabulary: https://gluu.co/otto-openid

• SAML vocabulary: https://gluu.co/otto-saml

• Swagger demo site (not guaranteed to be up!): http://otto-test.

gluu.org/swagger/

 Jagger
Jagger was developed by HEAnet to manage the Edugate multiparty SAML federation.

in Ireland, Jagger is an easy way to deploy and operate federation management platform

that provides a website for participant administrators to join and update a federation,

and for federation administrators to approve and publish SAML metadata. One of the

nice features is that it supports the management of multiple federations, making it

Chapter 10 Multiparty Federation

https://github.com/KantaraInitiative/wg-otto
https://gluu.co/otto-api
https://gluu.co/otto-vocab
https://gluu.co/otto-openid
https://gluu.co/otto-saml
http://otto-test.gluu.org/swagger/
http://otto-test.gluu.org/swagger/

361

an excellent choice for a registration authority. It also creates a single circle of trust,

containing metadata of all trusted entities via multiple federations. The home page for

Jagger is https://jagger.heanet.ie (see Figure 10-10).

 Federation Registry
Developed by the Australian Access Federation in the higher education sector,

Federation Registration is a Java platform for hosting a single federation. FR won’t get

any further support or updates—they have only been doing security updates for some

time. Features include:

• A focus on organizations as the key building block for the federation

• Allows for organizations to be service providers only

• A personalized dashboard view of the federation for all users

• A highly refined, multi-browser, HTML5 compliant user interface

• The user interface is fully themeable to suit the look and feel of your

organization and is multilingual capable out of the box

• Management for all aspects of SAML 2 compliant identity and service

providers SAML 2.x compliant metadata generation

• Additional assistance for Shibboleth IDP and SP administrators,

including automated Attribute Filter generation

Figure 10-10. Jagger screenshot showing list of IDPs

Chapter 10 Multiparty Federation

https://jagger.heanet.ie

362

• Public registration for organizations, identity providers, and service

providers that are new to the federation

• A fully customizable workflow engine to handle registrations and

other critical federation changes

• Compliance reporting to gain insight into various areas of your

federation

• A hand-crafted model of the entire SAML 2 metadata specification for

use in automated object relational mapping

• Federation integrated, automatically provisioned user accounts with

fine-grained access control

 OTTO-Node/Fides
This software, a part of the ERASMUS project, was funded in part by the United States

Department of Homeland Security’s Science and Technology Directorate. Standard

disclaimer: “The content of this book does not necessarily reflect the position or the

policy of the U.S. Government and no official endorsement should be inferred.”

Fides is a web application that enables a person to register, then register an

organization and apply to become a member of the federation. It includes enrollment

of an OpenID Provider, using the discovery features of OpenID Connect. A federation

administrator manually approves membership applications.

This project included support for creation of “badge assertions,” which are JSON-

LD data structures defined in the Open Badges 2.0 specification, which can be found

at https://gluu.co/open-badges-2-0. In our pilot, we were using badges to convey

professional training and certifications that were specific to the emergency responder

community. The Fides federation admin can authorize an organization to issue certain

types of badges.

Fides also calls the OTTO APIs—for example, when a federation admin approves a

new participant, Fides calls the OTTO federation endpoint to make the link.

Fides and OTTO Node code can be found in Gluu’s GitHub repository: https://

github.com/GluuFederation/otto-node https://github.com/GluuFederation/

erasmus/tree/master/FIDES

More information about ERASMUS can be found at https://kantarainitiative.

org/trustoperations/kantara-identity-privacy-incubator/erasmus/.

Chapter 10 Multiparty Federation

https://gluu.co/open-badges-2-0
https://github.com/GluuFederation/otto-node
https://github.com/GluuFederation/otto-node
https://github.com/GluuFederation/erasmus/tree/master/FIDES
https://github.com/GluuFederation/erasmus/tree/master/FIDES
https://kantarainitiative.org/trustoperations/kantara-identity-privacy-incubator/erasmus/
https://kantarainitiative.org/trustoperations/kantara-identity-privacy-incubator/erasmus/

363

See Figure 10-11 for a FIDES screenshot.

 Conclusion
A theme of human history is that we’re better together, and federations make this

happen at scale. Certainly, as our society becomes increasingly digital, we need more

economies of scale in trust management. You can’t read every privacy policy for every

service you sign up for. Maybe federations can give us more collective bargaining power.

Or maybe they can just help our businesses get more done with less money. Either way,

this technology is also likely to grow and will make the Internet a safer place for all.

Figure 10-11. FIDES screenshot showing Federation

Chapter 10 Multiparty Federation

365
© Michael Schwartz, Maciej Machulak 2018
M. Schwartz and M. Machulak, Securing the Perimeter, https://doi.org/10.1007/978-1-4842-2601-8

Index

A
Access certification, 306–307

Access Control Instructions (ACIs), 31

access_token, 134, 143, 193

ACR/AMR parameters, 181–182

Amazon Web Service (AWS), 210

Apache Directory Studio, 38

Apache httpd module, 212, 214

advantages, web server filter

approach, 187

CGI script, 191

client registration, 189

installation, basic web server, 188

mod_auth_openidc, 187, 189

OpenID Connect Provider, 187

SSL virtual host and CGI, 188

VirtualHost, 190

web access management, 187

Apache/IIS web server plugin, 78

Apache Syncope

architecture, 310–312

ConnId, 312

extensions, 313–314

features, 309

installation, 314

interactivities, 313

API monetization models, 211

API vs. Web Proxy, 211–212

AppAuth mobile applications, 193–194

Assertions, SAML, 61–62
Audit

MidPoint, 306
Wren:IDM Sample IDM, 321

Authentication
attackers record passwords, 231
defeating passwords, 231
digital, 232
2FA with Gluu Server, 256–262
FIDO (see Fast Identity Online (FIDO))
HOTP, 235–237
mutual SSL/TLS, 241, 243, 245–246
OpenID Connect, 165
OTPs, 233–234
technologies and standards, 232
TOTP, 235, 237–240
triangle of trust, 232
upgradin, 231
W3C Web Authentication and

CTAP, 253–256
Authentication Methods Reference (AMR)

parameters, 181
AuthnContextClassRef element, 181
Authorization code flow, 154

redirect to authorization
endpoint, 167–168

get tokens, 168–169
Userinfo

endpoint returns, 171
parameters, 171–172

https://doi.org/10.1007/978-1-4842-2601-8

366

registration, 171
request, 169
response_mode, 171

Authorization Code Grant, 120–122
Authorization server (AS), 269, 285–290

B
Back-channel logout, 179
Backup/restore, LDAP Servers, 45
Bearer token, 113–114
Breached proxy, 206

C
Certificate Authorities (CA), 60
Client Code, OpenID Connect

Apache httpd module (see Apache
httpd module)

JavaScript, 184–186
mobile application, 193–194
oxAuth RP, 192–193
oxd client middleware service, 195–196
client credential grant with Gluu Server

authorization header, 139
configuration, scopes and grant

type, 136
machine-to-machine use cases, 124
OAuth Protected Python

API, 137, 139
RFC 6749, 124
scope, 135–136
SSL certificate, Python, 136–137
token and introspection

endpoint, 139
Client Registration, OpenID

Connect, 163–165

Client software, UMA
cgi-script, 80
claims gathering workflow, 297–298
Gluu gateway, 294
need_info error, 297
OAuth client, 295
oxd middleware, 293
RPT endpoint, 296, 298
uma-rp-get-rpt endpoint, 295

Command-line LDAP tools
ldapdelete, 36
ldapmodify Command, 34–36
ldapsearch, 33–34
OpenLDAP and FDS, 32

D
Data management

command-line tools (see Command-
line LDAP tools)

SDKs, 42
tools, GUI (see GUI tools)

Data Protection Code of Conduct,
Federation, 347

Directory information tree (DIT), 22

E
entityID, 163
eXtensible Access Control Markup

Language (XACML), 272

F
Fast Identity Online (FIDO)

access-management, 248
advantages, 247
authentication process, 246

Authorization code flow (cont.)

Index

367

IDP, 247
OpenID Connect, 246
public key cryptography, 246, 248
signature, 248
UAF (see Universal Authentication

Framework (UAF)
U2F (see Universal 2nd Factor (U2F)

Federated authorization, UMA
permission endpoint, 281–283
protection API, 280
resource registration, 280–281
RO, 278–279
token introspection, 284–285

Federation
actors, 347–348
and interfederation trust, 344
Data Protection Code of Conduct, 347
EU GDPR regulations, 339
hierarchical trust service, 341
identity protocols, 337
information security, 343
Internet, 340
Jagger, 360–361
legal contracts, 339
level of trust, 341
LOA, 338
LOC, 339
LOP, 339
meshed, 341–342
network use agreement, 347
OpenID, 354–355
OpenID Provider (OP), 337
OTTO (see OTTO Federation)
OTTO-Node/Fides, 362–363
participants, 348
policy, 346
privacy, 345–346
proxy services, 342

registry, 361–362
SAML metadata, 349–351
three level identity system, 340
triangle of trust, 337–338
trustmarks, 351–353
trust models, 349

Federation Policy, 346
Fides and OTTO Node code, 362
Filters, 24–26
FOSS software, 11

G
General Data Protection Regulation

(GDPR), 268
Gluu Casa

architecture, 333
consent management, 334–335
developer portal, 335
2FA credential management, 333–334
Linux packages, 335
personal information

management, 333
social login accounts, 335

Gluu Server, 54–55
client credential grant (see Client Code,

OpenID Connect)
attribute configuration, 82
binary packages, 10
configuration, 14–15
FIDO Support, 262
FOSS components, 13
goal, 11
Linux packages, 13
OpenID Connect Provider, 182–184
Shibboleth IDP (see Shibboleth

Identity Provider (IDP)
SSL certificates, 16

Index

368

strengthens authentication, 263
2FA setting (see Two-factor

authentication (2FA)
Google API

callback URI, 134
client credentials, 127, 130
client ID request form, 130
configuration, 128
demourlshorten.ejs page, 135
GitHub project, 131
JavaScript application, 131
Library tab, 127
localhost, callback works, 132
node application, 132
OAuth Client ID, 129
policies and procedures, 126
URL shortener application, 127, 131–133
URL value, OAuth Authorization, 134

Grants
type, 136
OAuth

authorization, 119
authorization code grant, 120–122
client credential, 124–125
flowchart, 119
implicit, 122–123
resource owner password

credential, 124
token introspection, 125–126

UMA Grant (see UMA Grant)
Wren:IDM, 322

GUI tools
Apache Directory Studio, 38
FusionDirectory, 41
JXplorer, 39
phpLDAPAdmin, 40–41
SSH port tunneling, 37

tunnel configuration, Windows Putty
SSH client, 37

Web2LDAP, 39–40

H
Hackers, 208, 231, 263
Hardware Security Module (HSM), 240
Hash algorithm, 47
Hash-based message authentication code

(HMAC), 237
Hash values, 49
HMAC-based One-Time Passwords

(HOTPs)
cryptographic function, 235
design goals, 236
drawbacks, 237
fraudulent activity, 236
OATH, 236
re-synchronization algorithm, 236–237
and TOTP, 239, 240

HMAC-SHA-1 algorithm, 233
Holder-of-key (HoK) token, 115
HTTP POST bindings, 69–70
HTTP redirect binding, 67–69
Hybrid flow, OpenID Connect, 174–175

I
Identity and Access Governance (IAG)

decision making, 6
directory services, 8
FOSS components, 13
free open source software, 11–12
Gluu Server, 13–16
IDM and IAM system, 7
user-centric approach to security, 7
virtual machine (VM), 13

Gluu Server (cont.)

Index

369

Identity and Access Management (IAM)
components, 5
CRM, 9
Gluu Server, 10–11
IDM and IAG, 8
Internet IAM, 4
iPhone, 6
PDP-PEP pattern, 4
policies, 5
RADIUS protocol, 3
service, 1–2
SiteMinder, 6
standards, 9–10

Identity Management (IDM), 2–3
connector and mapping scenario, 329
consent condition, 328
consumer, 301
Endpoint Implementation, 326
features, 301
Gluu Casa (see Gluu Casa)
IAG systems, 302
MidPoint (see MidPoint)
self-service website, 325
Syncope project, Apache (see Apache

Syncope)
Wren:IDM, 314

Identity service
components, 1–2
IAM, 3, 5–6
IDM, 2–3

Identity standards, 9–10
Implicit flows, OpenID Connect, 172–174
Implicit Grant, 122–123
Information security federations, 343
Initiative for Open Authentication

(OATH), 232, 236, 237
Internet Assigned Numbers Authority

(IANA), 139

Internet Engineering Task Force
(IETF), 17, 139

Internet Protocol (IP), 17
iPhone, 6
Istio, 228

J
Jagger, 360–361
Java LDAP Server platform, 18
JavaScript client

callback page, 186
id_token, 184
login page, 185
oxTrust client configuration, 185
test, OpenID Connect, 184

JSON-LD class, 357
JSON Object Signing and Encryption

standards (JOSE), 154
JSON Web Token (JWT)

advantageous, 114
binding, 115–116
claims, 147, 201
confirmation methods, 148
cryptographic algorithms, 114
header, 114
HoK, 115
payload, 115
registration, 116–118
validation, signature, 115

JXplorer, 39

K
Kong

activated API, 222, 226
add client authentication, 227
consumer and credentials, 227

Index

370

creation, service and route, 226
database, 224
Dockerized Kong installion, 224
functional component, 223–224
key features, 222
KONG_ADMIN_LISTEN option, 225
Proxy-Latency header, 227
response, 227
starting, 225
technical component, 222
testing, 226
warnings, 228

L
LDAP, see Lightweight Directory Access

Protocol (LDAP)
ldapdelete, 36, 54
ldapmodify Command, 26, 34–36, 54
ldapsearch Command, 26, 33–34, 50, 54
LDIF, 26
libjose packages, 189
Lightweight Directory Access Protocol

(LDAP), 9
backup/restore, 45
basic encoding rules (BER), 21
benchmark, 43–44
client/server message-oriented

protocol, 20
configuration

indexes, 27–29
security, 29–32

database, IAM stack, 19–20
entries, DNs and RDNs, 21–22
extended operations, 21
filters, 24–26
Gluu Server cache refresh, 54–55

history, 17–19
identity standards, 9
Internet, 19
LDIF, 26–27
LSC, 55
managing data (see Data management,

LDAP)
monitoring, 45
namespace, 22–23
OpenLDAP Proxy Configuration, 56–57
RDBMS, 8
replication, 43
schema, 23–24
sequence diagram, 21
servers, 8
sets and hashing, 47–50
SimplePagedResultsControl, 21
synchronize data (see Synchronization)

Logout, OpenID Connect, 179–180

M
MAC tokens, 112
Meshed federation, 341–342
Metadata, SAML, 75–76
MidPoint

access certification, 306–307
approval process, 305
audit, 306
ConnId-based IDM, 303
data protection, 309
delegated application security

model, 306
features, 302
GDPR, EU, 309
get started, 309
organizational structure, 304–305
policy rules, 307

Kong (cont.)

Index

371

RBAC, 304
services and integration, 308–309
source code, 302
synchronization, 303
UI, 308

Monetization, API proxy, 210–211
myService, 205

N
NameID, 86
Namespace, 22–23
National Strategy for Trusted Identities in

Cyberspace (NSTIC), 351
Nginx

capability, 217
lua-resty-openidc, 219
nginx.conf file, 215
OpenResty Nginx configuration, 220–221
ssl_certificate_key options, 221
upstream context, 217–218

Non-person entity (NPE), 267

O
OAuth

access token types, 140
authorization endpoint response

types, 140, 197
authorization server, 269

client credentials, 109
decision, resource owner, 110
developer and requesting party, 110
dialog box, 109
evaluation, policies, 110
and resource server, 108
third-party website, 110
URL, 110

client, 111–112
consumer applications, 105
dynamic client registration

metadata, 145–146
extensions errors, 140–141, 197
Google API (see Google API)
grants (see Grants)
IANA, 139
JWT claims, 147
JWT confirmation methods, 148
Microsoft blogs, 105
OpenID Connect overview, 155
parameters, 142–144, 198
resource server, 111, 269
scopes, 106–107
token endpoint authentication

methods, 146, 200
token introspection

responses, 147
tokens (see Tokens)

OAuth 2.0, 10, 105, 166, 171, 197, 267,
270, 271

One-Time Passwords (OTPs)
attacker’s website, 234
HMAC-SHA-1 algorithm, 233
PIN number, 233
SMS, 234
token value, 233

OpenID Connect, 10
ACR/AMR parameters, 181–182
API, 160
architecture, 153
authentication/authorization,

158–160, 165
certificate, 162
client Code (see Client Code, OpenID

Connect)
client registration, 163–165

Index

372

code flow, authorization (see
Authorization code flow)

configuration response, 161–162
conflations, OAuth2 roles, 153
federation endpoints, 156
formulation, 151
Gluu Server, 182–184
hybrid flow, 154, 174–175
id_token, 151, 154, 157
implicit flows, 154, 172–174
JOSE (see JSON Object Signing and

Encryption standards (JOSE))
JSON document, 160
JWT claims, 201
JWKS, Google’s OpenID Connect

service, 162
logout, 179–180
OAuth (see OAuth)
overriding design, 152
oxauth-rp, 192–193
oxd Client Middleware

Service, 195–196
pairwise identifiers, 180–181
prompt=login, 171
public key, 162
redirect_uri values, 181
registration metadata,

client, 199–200
request object, 176
resource server, 154
response types, 166
SAML IDPs rotate keys, 162
scope, 167
secure sign-in flow, 154
sector_identifier_uri, 181
security levels, 152
specification, 155, 162

user claims, 151
Userinfo endpoint, 177–179
WebFinger protocol, 160

OpenID federations, 354–355
OpenID Provider (OP), 337
OpenLDAP Proxy Configuration, 56–57
OTTO Federation

API, 356–357
JSON-LD vocabularies, 356
OTTO-Node/Fides, 362–363
retrieve data, 359–360
SAML’s approach, 355
test site, 360
vocabulary, 357–359

OTTO-Node/Fides, 362–363

P, Q
Pairwise identifiers, 180–181
Password Synchronization, 325
Permission ticket, 269
Persisted claims token (PCT), 270
phpLDAPAdmin, 40–41
Policies

MidPoint, 307
OAuth, 110
and procedure, Google API, 126
W3C, 324
Wren:IDM, 324

Privacy, 345–346
Profiles, SAML

attributes
basic, 73
SAML V2.0 X.500/LDAP, 74–75

building blocks, 70
categories, 70
SLO, 71–72
Web Browser SSO, 71

OpenID Connect (cont.)

Index

373

Proof-of-possession token, 115
Protection API access token

(PAT), 269, 280
Protocols, SAML

definitions, six protocols, 64
flow, 66–67
HTTP POST binding, 69–70
HTTP redirect binding, 67–68
IDP-initiated authentication, 65–66
SP initiated authentication, 65
visualization, 63

Proxy
access control and security, 208
Apache Tomcat, 206
API vs. Web Proxy, 211–212
breached proxy, 206
caching and compression, 209
federation service, 342–343
load balancing, 207
monetization, 211
open source web proxies (see Web

proxies)
overview, 205
rate limiting, 208–209
reverse, 205
secure communication policy, 206
telemetry, 210
upstream web service, 205
web application frameworks, 206

Python-SAML
advanced_settings.json file, 95–96
Apache2 default configuration, 94
Apache2 SSL, 93
configuration settings, 92–93
Debug Delta, 95
Flask app, 93
Flask demo app attrs page, 97

Flask SAML application
login page, 94

Flask server, 94
GitHub, 92
inbound SAML

challenging requirement, 99
Gluu Server, 99–102
IDPs, 98
vs. outbound SAML, 98
oxAuth, 103
Passport-js, 99
SaaS provider, 97–99

installation, 92
Shibboleth SP, 95

Python Set Operations, 47
Python Set Sample Code, 49–50

R
RADIUS, 3–4
Redirect-POST, 67
Registration, JWT, 116–118
Registry, Federation, 361–362
Relational database management system

(RDBMS), 8, 23
RelayState parameter, 67
Requesting party token (RPT), 269
Resource owner password credential

grant, 124
Resource owner (RO), 269, 278
Resource server software, UMA

client credential grant, 290–291
Gluu Gateway, 290–293
Gluu Server, 291
SwaggerHub, 290

Role Based Access Control (RBAC), 304
Root node, 23

Index

374

S
scim_access_policy, 268
SDKs, 42
Secure Sockets Layer (SSL)/TLS, 32

advantages, 245
authentication, 241
client certificate, 244–245
encrypted channel, 242
exception, 245
Internet, 245
mutual SSL/TLS, 243
negotiation, 245
protocols, 241
X.509 certificate, 241–242, 246

Security, LDAP, 29–32
Security Assertion Markup Language

(SAML), 9
assertions, 61–62
Certificate Authorities (CA), 60
federation metadata, 349–351
Gluu Server (see Gluu Server)
identity federation, 59
IDP and SP, 60
metadata, 75–76
profiles (see Profiles, SAML)
public key cryptography, 60
Python-SAML library (see

Python-SAML)
Metadata Query Protocol, 350
SAML 2.0, 59
Shibboleth SP solution (see Shibboleth

Service Provider)
simpleSAMLphp, 89–90
single sign-on (SSO), 59–60
stability, 60
XML standard, 59

Security information and event
management (SIEM), 306

Set object, 50
Set operations, 47–48
Shibboleth Identity Provider (IDP), 77–78

federation, 86
file, 86
generate, 86
metadata, 85
nameID, 86
printHeaders.py, 88
reload, 87
SAML relying party options, 87
SAML SP trust relationship, 85
TransientID, 86
trust relationship, 87
Update button, 87
uploading, 86
URI, 86
user claims, 87

Shibboleth Service Provider, 77
advantages, 78
configuration

AttributeChecker, 83
attribute-map.xml, 81
CredentialResolver element, 83
entityID, 82–83
Errors, 82
Gluu Server, 82
handlerSSL, 83
SessionInitiator element, 83
shibboleth2.xml file, 82, 84
update, 81

Gluu Server (see Gluu Server)
installation

Apache2 Folder Protection, 80
Python script, print headers, 80
Ubuntu 14.04 Apache2, 79

shibd, 78
Ubuntu server, 78

Index

375

SimpleSAMLphp Service Provider, 77
Apache2 configuration, 89
authsources, 90
idp value, 90
installation, 89
metadata, 90
saml20-idp-remote, 90
test default-sp, 91
web interface, 90

SimpleSAMLPhp, 77
Single Logout Profile (SLO), 71–72
SLAMD, 44
Social login account management, 335
Synchronization

data, 46–47
handle method, 53
Hash LDIF Data, Python

Script, 51, 53
implementations, 50
Print LDIF, Python Script, 53–54
python-ldap, 51
Script, Gather Data, 50

LDAP, 46–47
password, 325
and reconciliation, 324
TOTP, 238

T
Telemetry, 210
Time-based OTP (TOTP)

calculation, 237
desynchronization, 238
Google, 238
HMAC, 237
and HOTP, 239–240
HSM, 240
iPhone, 240

man-in-the-middle attack, 239
regeneration, 238
secrets, 240
secure element (SE), 240
SSL certificate, 239
synchronization, 238
verification, 237
with HOTP, 237

Tokens
access, 112
additional, 112
bearer, 113–114
JWT (see JSON Web Token (JWT))
MAC, 112

TransientID, 86
Transport Layer Security (TLS), 32
Trustmarks, 351–353
Trust models, 349
Two-factor authentication (2FA)

credential management, 333–334
Gluu Server

default ACR, 258
default authentication method, 257
default_acr_values, 256
Duo Security script, 259–261
getCountAuthenticationSteps and

getPageForStep, 262
oxTrust, 259
password authentication, 258
SaaS providers, 262
two-step authentication, 261
UMA protocol, 257

U, V
User-Managed Access (UMA), 10

authorization server software, 267
claims gathering workflow, 289–290

Index

376

Gluu Server, 285
method, 286
policies, 287–288
scopes, 285–286

enterprise, 268
Google APIs, 271
id_token, 276
jargon, 269–270
Kantara Initiative, 267
OAuth, 268
OpenID Connect JWT, 276
requesting party (RqP), 270
resource owner (RO), 270
specifications, 271
SwaggerHub, 290
versions, 267
XACML, 272

UMA Grant
client credentials, 277
interactive claims gathering, 273–276
pushed claim token, 276
RPT request pptions, 277

Universal 2nd Factor (U2F), 246
message flow, 253
MITM attack, 252
protocol, 252
registration, 252

Universal Authentication Framework
(UAF), 246

authentication message flow, 251
Authenticator-Specific Module

(ASM), 249
client’s responsibility, 250
confirmation message flow, 252
high-level architecture, 249
protocol, 250
registration message flow, 250

signature, 251
and U2F, 246–247

Userinfo endpoint, OpenID
Connect, 177–179

User Interface (UI), 308
UMA, see User-Managed Access (UMA)

W, X, Y, Z
W3C Web Authentication and CTAP

Android, 253
FIDO 2.0, 254
Google Chrome, 254
key attestation format, 255
operating system, 256
overview, 254
registration operation, 255
signature format, 255
smartphone, 256
vendors, 254

Web2LDAP, 39–40
Web Browser SSO, 71
WebFinger protocol, 160
Web proxies

Apache httpd, 212, 214
Istio, 228
Kong, 222–225, 227–228
mod_auth_openidc, 214–215
Nginx (see Nginx)

World Wide Web Consortium (W3C), see
W3C Web Authentication and CTAP

Wren:IDM
administration dashboard, 317
assignments (aka Assignments), 322
Audit Record, 321
authorization roles, 321
community-developed identity

management system, 314

User-Managed Access (UMA) (cont.)

Index

377

component overview, 318–319
connector configuration, 329–331
custom object, 320
customizing, 326–327
effective roles, 322
Endpoint Security, 326
features, 315–316
ForgeRock, 315
framework, 320
IAG, 315
IAM processes, 315
Identity Connector Framework, 314
JDBC-connected database, 332
JSON-based object model, 317, 319
limiting factor, 332
managed group, 321

OpenJDK and Oracle JDK, 316
Password Synchronization, 325
package, 316
policies, 324
reconciliation and synchronization, 324
relationship, 322–323
roles, 321
roles grants, 322
schedule, 325
Security Suite projects, 315
startup script, 316
Sun Microsystems’ products, 314
time, 331
triggers, 323
users, 321
workflows, 325

Index

	Table of Contents
	About the Authors
	Acknowledgments
	Chapter 1: Introduction
	Components of an Identity Service
	Identity Management
	Identity and Access Management

	Identity and Access Governance
	Directory Services

	Is IAM a Good Place to Start?
	Identity Standards
	Gluu Server
	Why Free Open Source?
	Where to Start?
	Conclusion

	Chapter 2: LDAP
	History
	Why Use LDAP Today?
	Basics
	Entries, DNs, and RDNs
	Namespace
	Schema
	Filters

	LDIF
	LDAP Configuration
	Indexing
	LDAP Security

	Managing Data
	Command-Line Tools
	ldapsearch
	ldapmodify
	ldapdelete

	GUI Tools
	Apache Directory Studio
	JXplorer
	Web2LDAP
	phpLDAPAdmin
	FusionDirectory

	SDKs

	Operational Considerations
	Replication
	Benchmark
	Backup/Restore
	Monitoring

	Synchronization
	Sets and Hashing
	Manually Synchronizing Data
	Gluu Server Cache Refresh
	LSC—LDAP Synchronization Connector
	LDAP Proxy
	Conclusion

	Chapter 3: SAML
	Assertions, Bindings, Protocols, and Profiles
	Assertions
	Protocols
	IDP-Initiated vs SP-Initiated Authentication

	Protocol Bindings
	HTTP Redirect Binding
	HTTP POST Binding

	Profiles
	Web Browser SSO Profile
	Single Logout Profile (SLO)
	Attribute Profile
	Basic Attributes
	SAML V2.0 X.500/LDAP Attributes

	SAML Metadata

	Open Source SAML Software
	Gluu Server Shibboleth Identity Provider Overview
	Shibboleth Service Provider Example
	Installing the Web Server, Certificates, and SP Metadata
	Configure the Shibboleth SP
	Configure the Gluu Server Shibboleth IDP

	simpleSAMLphp Service Provider Example
	Python-SAML
	Inbound SAML

	Conclusion

	Chapter 4: OAuth
	Scopes
	OAuth Roles
	Authorization Server
	Resource Server
	Client

	Tokens
	Bearer Tokens
	JSON Web Token (JWT)
	Proof-of-Possession Tokens
	Token Binding

	Registration

	Grants
	Authorization Code Grant
	Implicit Grant
	Resource Owner Password Credential Grant
	Client Credential Grant
	Token Introspection

	OAuth Client Example: Calling a Google API
	Obtaining Client Credentials
	Calling the Google API

	Client Credential Grant Example with the Gluu Server
	Configuring the Gluu Server

	OAuth Glossary and IANA Registry Terms
	Conclusion
	References

	Chapter 5: OpenID Connect
	OpenID Connect Overview
	OpenID Connect Authorization Server Endpoints
	id_token
	OpenID Authentication on the Fly
	OpenID Connect Discovery
	Client Registration
	Authentication/Authorization
	Response Types
	Scopes
	Authorization Code Flow
	Code Flow Step 1: Redirect to Authorization Endpoint
	Code Flow Step 2: Get Tokens
	Step 3: Call Userinfo

	Implicit Flow
	Hybrid Flow
	Request Object
	Userinfo Endpoint
	Logout
	Pairwise Identifiers
	ACR/AMR Parameters

	The Gluu Server OpenID Connect Provider
	Developing OpenID Connect Client Code
	Easy JavaScript Client
	Apache httpd Module
	Basic Web Server Installation
	SSL Configuration
	Configure Apache to Use SSL
	Configuration of mod_auth_openid
	Client Registration
	Configuring the Apache VirtualHost
	Install CGI script

	oxAuth RP
	AppAuth Mobile Applications
	oxd Client Middleware Service

	OpenID Connect Glossary and IANA Registry Terms
	Conclusion
	References

	Chapter 6: Proxy
	Load Balancing
	Access Control and Security
	Rate Limiting
	Caching and Compression
	Telemetry
	Monetization
	API vs Web Proxy
	Open Source Web Proxies
	Apache httpd
	mod_auth_openidc
	Nginx
	Kong
	Kong Technical Component Overview
	Kong Functional Component Overview
	Getting Started with Kong

	Istio

	Conclusion

	Chapter 7: Strong Authentication
	One-Time Passwords (OTPs)
	HOTP and TOTP
	HOTP
	TOTP

	Mutual SSL/TLS
	Fast Identity Online (FIDO)
	FIDO Universal Authentication Framework (UAF)
	FIDO Universal Second Factor (U2F)

	W3C Web Authentication and CTAP
	Setting Up 2FA with the Gluu Server
	FIDO Support in the Gluu Server

	Other Ways to Strengthens Authentication with the Gluu Server
	Conclusion
	References

	Chapter 8: User-Managed Access
	UMA Grant
	UMA RPT Requests with Interactive Claims Gathering
	UMA RPT Requests with a Pushed Claim Token
	RPT Request Options
	Client Credentials

	UMA Federated Authorization
	Protection API
	Resource Registration
	Permission Endpoint
	Token Introspection

	UMA Authorization Server Software
	Managing Scopes
	Managing Authorization Policies
	Interactive Claims Gathering Workflows

	UMA Resource Server Software
	Gluu Gateway as UMA Resource Server

	UMA Client Software
	Conclusion

	Chapter 9: Identity Management
	MidPoint
	Identity Provisioning and Synchronization
	Role Management
	Organizational Structure
	Approval Processes
	Midpoint Delegated Application Security Model
	Auditing
	Access Certification
	Policy Rules
	User Interface (UI)
	Services and Integration
	Other MidPoint Features
	Get Started with MidPoint

	Apache Syncope
	Syncope Architecture
	Syncope Provisioning
	Syncope Extensions
	Syncope Installation

	Wren:IDM
	Wren:IDM Quick Start
	System Overview

	Wren:IDM Implementation Basics
	Wren:IDM Pre-Defined Types
	Managed User
	Managed Group
	Roles
	Role Grants
	Effective Roles
	Role Assignments (aka Assignments)
	Effective Assignments
	Relationships
	Triggers

	Wren:IDM Processes
	Policies
	Reconciliation and Synchronization
	Scheduling
	Password Synchronization
	Workflows

	Example: Make Your Own Self-Service GUI
	Example: Consent Governance
	Example: Connector Configuration with Object Mapping Transformations
	When Is Wren:IDM Suitable?
	Rolling Out Wren:IDM to Production

	Gluu Casa
	Architecture
	2FA Credential Management
	Consent Management
	Social Login Account Management
	Developer Portal
	Getting Started

	Conclusion

	Chapter 10: Multiparty Federation
	Federation Privacy Considerations
	Federation Policy
	Data Protection Code of Conduct
	Network Use Agreement
	Federation Actors
	Joining a Federation
	Federation Trust Models
	SAML Federations via Metadata Aggregate
	Trustmarks
	OpenID Federations
	OTTO Federation
	OTTO API
	OTTO Vocabulary
	Retrieving Datafrom OTTO Federations
	OTTO Next

	Jagger
	Federation Registry
	OTTO-Node/Fides
	Conclusion

	Index

