
www.allitebooks.comwww.allitebooks.com

http://www.allitebooks.org
http://www.allitebooks.org

Get more out of
WROX.com

Programmer to Programmer™

Interact
Take an active role online by participating in
our P2P forums

Wrox Online Library
Hundreds of our books are available online
through Books24x7.com

Wrox Blox
Download short informational pieces and
code to keep you up to date and out of
trouble!

Chapters on Demand
Purchase individual book chapters in pdf
format

Join the Community
Sign up for our free monthly newsletter at
newsletter.wrox.com

Browse
Ready for more Wrox? We have books and
e-books available on .NET, SQL Server, Java,
XML, Visual Basic, C#/ C++, and much more!

Contact Us.
We always like to get feedback from our readers. Have a book idea?
Need community support? E-mail us at wrox-partnerwithus@wrox.com

Related Wrox Books

ASP.NET MVC 1.0 Test Driven Development Problem – Design – Solution
ISBN: 978-0-470-44762-8
A hands-on guide to creating a complete ASP.NET site using Test Driven Development methods. Shows how ASP.NET MVC is well suited
to TDD and testability. Covers the complete lifecycle including design, testing, deployment, beta releases, refactoring, and tool and
framework selection.

ASP.NET MVC 1.0 Website Programming Problem – Design – Solution
ISBN: 978-0-470-41095-0
A hands-on guide to creating ASP.NET websites using MVC. The book solves some of the most common problems that programmers run
into when creating their first application or when trying to upgrade a current application to this new technology, and demonstrates each
concept while building TheBeerHouse application.

Beginning ASP.NET MVC 1.0
ISBN: 978-0-470-43399-7
This book is a great choice for those who already have ASP.NET knowledge and need to grasp the new concepts of ASP.NET MVC. Readers
will learn about Test-Driven Development and unit testing, the principles of the MVC pattern and its role in TDD, how to implement the
pattern and how to move from traditional ASP.NET webforms to ASP.NET MVC. The book also includes detailed case studies that can be
applied in real world situations.

Professional ASP.NET 3.5 AJAX
ISBN: 978-0-470-39217-1
This book is aimed at experienced ASP.NET developers looking to add AJAX to their applications, and experienced Web developers who
want to move to using ASP.NET and AJAX together.

Professional ASP.NET 3.5 Security, Membership, and Role Management with C# and VB
ISBN: 978-0-470-37930-1
As the only book to address ASP.NET 3.5, AJAX, and IIS 7 security from the developer’s point of view, this book begins with a look at the
new features of IIS 7.0 and then goes on to focus on IIS 7.0 and ASP.NET 3.5 integration. You’ll walk through a detailed explanation of the
request life cycle for an ASP.NET application running on IIS 7.0 under the classicmode, from the moment it enters IIS 7.0 until ASP.NET
generates a corresponding response.

Professional ASP.NET 3.5 SP1
ISBN: 978-0-470-47826-4
With this updated edition of the bestselling ASP.NET book, a stellar author team covers the new controls in the AJAX toolbox, the back
button history, and script combining, and they also examine the new capabilities of WCF including changes to DataContractSerializer. In
addition, the accompanying CD-ROM features the entire book in PDF format.

Professional ASP.NET MVC 1.0
ISBN: 978-0-470-38461-9
This book begins with you working along as Scott Guthrie builds a complete ASP.NET MVC reference application, NerdDinner.com. He
begins by starting a new project and incrementally adding functionality and features. Along the way you’ll cover how to create a database,
build a model layer with business rule validations, implement listing/details data browsing, provide CRUD (Create, Update, Delete) data
form entry support, reuse UI using master pages and partials, secure the application using authentication and authorization, and implement
automated unit testing. From there, the bulk of the rest of the book goes into the ways that MVC is different from ASP.NET Web Forms,
exploring the structure of a standard MVC application and see what you get out of the box. The last third of the book focuses entirely on
advanced techniques and extending the framework.

www.allitebooks.comwww.allitebooks.com

http://www.allitebooks.org
http://www.allitebooks.org

ASP.NET 3.5 Website Programming

Introduction . xix

Chapter 1: Introducing the Project: TheBeerHouse . 1
Chapter 2: Developing the Site Design . 9
Chapter 3: Planning an Architecture . 59
Chapter 4: Membership and User Profi ling . 143
Chapter 5: News and Article Management . 247
Chapter 6: Opinion Polls . 327
Chapter 7: Newsletters . 365
Chapter 8: Forums . 397
Chapter 9: E-Commerce Store . 431
Chapter 10: Calendar of Events . 501
Chapter 11: Photo Gallery . 519
Chapter 12: Localizing the Site . 545
Chapter 13: Deploying the Site . 563

Index . 591

87586ffirs.indd i87586ffirs.indd i 9/14/09 6:35:49 AM9/14/09 6:35:49 AM

www.allitebooks.comwww.allitebooks.com

http://www.allitebooks.org
http://www.allitebooks.org

87586ffirs.indd ii87586ffirs.indd ii 9/14/09 6:35:49 AM9/14/09 6:35:49 AM

www.allitebooks.comwww.allitebooks.com

http://www.allitebooks.org
http://www.allitebooks.org

ASP.NET 3.5 Website Programming
Problem–Design–Solution

87586ffirs.indd iii87586ffirs.indd iii 9/14/09 6:35:49 AM9/14/09 6:35:49 AM

www.allitebooks.comwww.allitebooks.com

http://www.allitebooks.org
http://www.allitebooks.org

87586ffirs.indd iv87586ffirs.indd iv 9/14/09 6:35:49 AM9/14/09 6:35:49 AM

ASP.NET 3.5 Website Programming
Problem–Design–Solution

Chris Love

87586ffirs.indd v87586ffirs.indd v 9/14/09 6:35:49 AM9/14/09 6:35:49 AM

ASP.NET 3.5 Website Programming: Problem–Design–Solution
Published by
Wiley Publishing, Inc.
10475 Crosspoint Boulevard
Indianapolis, IN 46256
www.wiley.com

Copyright © 2010 by Wiley Publishing, Inc., Indianapolis, Indiana

Published simultaneously in Canada

ISBN: 978-0-470-18758-6

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or
by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted
under Sections 107 or 108 of the 1976 United States Copyright Act, without either the prior written permis-
sion of the Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright
Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600. Requests to
the Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc.,
111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at http://www.wiley.com/
go/permissions.

Limit of Liability/Disclaimer of Warranty: The publisher and the author make no representations or war-
ranties with respect to the accuracy or completeness of the contents of this work and specifi cally disclaim
all warranties, including without limitation warranties of fi tness for a particular purpose. No warranty
may be created or extended by sales or promotional materials. The advice and strategies contained herein
may not be suitable for every situation. This work is sold with the understanding that the publisher is not
engaged in rendering legal, accounting, or other professional services. If professional assistance is required,
the services of a competent professional person should be sought. Neither the publisher nor the author shall
be liable for damages arising herefrom. The fact that an organization or Web site is referred to in this work
as a citation and/or a potential source of further information does not mean that the author or the pub-
lisher endorses the information the organization or Web site may provide or recommendations it may make.
Further, readers should be aware that Internet Web sites listed in this work may have changed or disap-
peared between when this work was written and when it is read.

For general information on our other products and services please contact our Customer Care Department
within the United States at (877) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may
not be available in electronic books.

Library of Congress Control Number: 2009928740

Trademarks: Wiley, the Wiley logo, Wrox, the Wrox logo, and Wrox Programmer to Programmer are trade-
marks or registered trademarks of John Wiley & Sons, Inc. and/or its affi liates, in the United States and
other countries, and may not be used without written permission. All other trademarks are the property of
their respective owners. Wiley Publishing, Inc. is not associated with any product or vendor mentioned in
this book.

87586ffirs.indd vi87586ffirs.indd vi 9/14/09 6:35:49 AM9/14/09 6:35:49 AM

About the Author
Chris Love has more than 16 years experience in software design, development,
and architecture. He has been the principal developer for more than 300 small- and
medium-sized ASP and ASP.NET websites over the past 10 years. These projects
have exposed him to a wide range of Microsoft-related technologies to solve
real business problems for his clients. He has focused primarily on ASP.NET
and VB.NET/C# to produce the majority of his websites. Recently he has been
working on applying JQuery to bring more client-side life to his websites, and
pursuing a reduction in the size and complexity of his ASP.NET applications by
eliminating Web Controls and focusing more on pure HTML markup instead.

Chris’s clients rely on his experience and expertise to develop online marketing strategies, including
search engine optimization and pay-per-click campaigns. He has begun to leverage this experience
along with his ASP.NET know-how to build his own Web properties and practice his technical and
marketing theories fi rst-hand.

Chris has been in a leadership role in the local user’s group TRINUG for more than 5 years. He fre-
quently presents and organizes Code Camps around the country.

His fi rst book, ASP.NET 2.0 Your Visual Blueprint for Developing Web Applications (Wiley), was published
in 2007. He has also written two eBooks for WROX on custom HttpHandlers and HttpModules.

87586ffirs.indd vii87586ffirs.indd vii 9/14/09 6:35:49 AM9/14/09 6:35:49 AM

87586ffirs.indd viii87586ffirs.indd viii 9/14/09 6:35:49 AM9/14/09 6:35:49 AM

Acquisitions Editor
Paul Reese

Project Editor
Maryann Steinhart

Technical Editor
Cody Reichenau

Production Editor
Daniel Scribner

Copy Editor
Foxxe Editorial Services

Editorial Director
Robyn B. Siesky

Editorial Manager
Mary Beth Wakefi eld

Production Manager
Tim Tate

Vice President and
Executive Group Publisher
Richard Swadley

Vice President and Executive Publisher
Barry Pruett

Associate Publisher
Jim Minatel

Project Coordinator, Cover
Lynsey Stanford

Compositor
Craig Johnson, Happenstance Type-O-Rama

Proofreader
Nate Pritts, Word One

Indexer
Robert Swanson

Cover Image
© Getty Images

Credits

87586ffirs.indd ix87586ffirs.indd ix 9/14/09 6:35:49 AM9/14/09 6:35:49 AM

87586ffirs.indd x87586ffirs.indd x 9/14/09 6:35:49 AM9/14/09 6:35:49 AM

Acknowledgments

I am so fortunate to have a great collection of friends and family who have been very supportive over
the years. As my .NET experience and knowledge have matured I have been blessed with forming some
great relationships in the community. I have to thank everyone who has been supportive in the Triangle
.Net User Group over the years. Deciding one night what the group was ultimately changed my career
so much for the positive. I encourage each and every reader of this book to seek out any user group in
his area.

With that said, there are some specifi c people to thank. First, Tom, who has been a great friend to me
both professionally and personally, and who is always excited when good things happen for me. Beth,
you really helped me keep my composure and perspective in the past year with so many things coming
at me.

I want to thank all the Microsoft team members with whom I have formed relationships over the last
few years. You all have been so helpful to me and anyone else who asked.

Finally, I thank the staff at Wiley for offering me this opportunity. Nothing of this magnitude is without
challenges and they have been helpful in solving the many challenges that arose. Producing a book is no
small task, but ultimately rewarding. It is always an honor to have the opportunity to share knowledge
and experience about something you love with others on the scale possible with a book like this. I know
I have learned a lot and I hope to keep learning and sharing.

 — Chris Love

The publisher gratefully acknowledges Marco Bellinaso’s contributions to this book. Marco
was the author of ASP.NET 2.0 Website Programming Problem–Design–Solution as well as the original
TheBeerHouse application. This ASP.NET 3.5 version of the book relies heavily on Marco’s book and
his application.

87586ffirs.indd xi87586ffirs.indd xi 9/14/09 6:35:49 AM9/14/09 6:35:49 AM

87586ffirs.indd xii87586ffirs.indd xii 9/14/09 6:35:50 AM9/14/09 6:35:50 AM

Contents

Introduction xix

Introducing the Project: TheBeerHouse Chapter 1: 1

Problem 2
Design 2
Solution 4
Summary 6

Developing the Site Design Chapter 2: 9

Problem 9
Design 12

Designing the Site Layout 13
Sharing the Common Design among Multiple Pages 19
Creating a Set of User-selectable Themes 26
Creating a Navigation System 28
Creating XHTML-Compliant and -Accessible Sites 29
Sharing a Common Behavior among All Pages 30

Solution 32
Creating the Site Design 33
Creating the Master Page 34
Binding a BreadCrumb to the SiteMap 45
Creating the First Theme 46
Creating a Sample Default.aspx Page 46
Creating the Second Theme 48
Creating the ThemeSelector User Control 49
Creating Consistent Sidebar Content 55
Another Small Touch of Style 56

Summary 57

Planning an Architecture 5Chapter 3: 9

Problem 59
Design 60

Creating a Common Class Library 60

87586ftoc.indd xiii87586ftoc.indd xiii 9/13/09 9:20:52 PM9/13/09 9:20:52 PM

xiv

Contents

Adding a Class Library to a Visual Studio Solution 61
Designing a Layered Infrastructure 63
Choosing a Data Store 64
Designing the Data Access Layer 65
Designing the Business Logic Layer 87
Caching Data for Better Performance 100
Choosing a Caching Strategy That Fits Your Needs 101
Transaction Management with ADO.NET Entity Framework 102
Storing Connection Strings and Other Settings 102
User Interface 105
Error Logging 118
Search Engine Optimization Techniques 119
Navigation 123

Solution 130
TheBeerHouse Confi guration Section 130
Implementing Good Search Engine Optimization Techniques 134
Confi guring ELMAH 139

Summary 142

Membership and User Profi ling 14Chapter 4: 3

Problem 144
Design 145

Password Storage Mechanisms 146
Authentication Modes: Windows Security or Custom Login Form? 146
The Let’s Do Everything on Our Own Approach 147
The Membership and MembershipUser Classes 148
Setting Up and Using Roles 167
Setting Up and Using User Profi les 172
OpenId Identity Services 178
Designing Our Solution 179

Solution 180
The Confi guration File 181
Creating the Login Box 184
The AccessDenied.aspx Page 186
Implementing OpenId Authentication 190
The UserProfi le Control 193
The Register Page 203
The PasswordRecovery Page 208
The EditProfi le Page 210
Creating an AJAX Login Dialog 214

87586ftoc.indd xiv87586ftoc.indd xiv 9/13/09 9:20:52 PM9/13/09 9:20:52 PM

xv

Contents

Persisting the Favorite Theme between Sessions 220
The Administration Section 221

Summary 246

News and Article Management 24Chapter 5: 7

Problem 247
Design 249

Features to Implement 249
Designing the Database Tables 251
Creating the Entity Model 256
Building Repository Classes 258
Designing the Confi guration Module 266
Designing the User Interface 267
The Need for Security 272

Solution 273
The Database Solution 273
Implementing the Confi guration Module 274
Implementing the Business Logic Layer 279
Implementing Gravatars 293
Implementing the User Interface 293

Summary 326

Opinion Polls 32Chapter 6: 7

Problem 327
Design 329

Handling Multiple Votes 330
Designing the Database Tables 331
Designing the Confi guration Module 332
Creating the Entity Data Model 332
Designing the Business Layer 333
Designing the User Interface Services 335

Solution 336
Working on the Database 336
Implementing the Confi guration Module 337
Implementing the Repositories 340
Extending the Entity Model Entities 340
Implementing the User Interface 342

Summary 363

87586ftoc.indd xv87586ftoc.indd xv 9/13/09 9:20:52 PM9/13/09 9:20:52 PM

xvi

Contents

NewsletterChapter 7: s 365

Problem 365
Design 366

Creating and Sending E-mails 366
Managing Long Operations on the Server 367
Designing the Database Tables 371
Designing the Confi guration Module 372
Designing the User Interface Services 373

Solution 374
Implementing the Confi guration Module 374
Implementing the Data Access Layer 377
Implementing the Business Logic Layer 377
Implementing the User Interface 384

Summary 394

Forums 39Chapter 8: 7

Problem 397
Design 398

Designing the Database Tables 399
Designing the Confi guration Module 401
Designing the Business Layer 402
Designing the User Interface Services 402

Solution 403
Implementing the Database 403
Implementing the Data Access Layer 405
Implementing the Business Logic Layer 407
Implementing the User Interface 407

Summary 429

E-Commerce Store 43Chapter 9: 1

Problem 431
Design 432

Choosing an Online Payment Solution 434
Designing the Database Tables 441
Designing the Confi guration Module 442
Designing the Entity Model 443
Designing the Business Layer 444
Designing the User Interface Services 446

87586ftoc.indd xvi87586ftoc.indd xvi 9/13/09 9:20:52 PM9/13/09 9:20:52 PM

xvii

Contents

Solution 448
Implementing the Business Logic Layer 448
Implementing the User Interface 455
Creating a Policies and Procedures Page 498

Summary 499

Calendar of Events 50Chapter 10: 1

Problem 501
Design 502

Designing the Database Tables 502
Creating the Entity Data Model 502
Designing the Business Layer 503
Designing the User Interface Services 505

Solution 510
Implementing the Repositories 510
Extending the Entity Model Entities 511
Implementing the User Interface 512

Summary 518

Photo Gallery 51Chapter 11: 9

Problem 519
Design 519

Designing the Database Tables 520
Creating the Entity Data Model 520
Designing the Business Layer 521
Designing the Confi guration Module 523
The Photo Gallery Storage 524
Designing the User Interface Services 525

Solution 526
Implementing the Repositories 526
Extending the Entity Model Entities 526
Implementing the User Interface 533

Summary 543

Localizing the Site 54Chapter 12: 5

Problem 545
Design 546

Localization Features of ASP.NET 547

87586ftoc.indd xvii87586ftoc.indd xvii 9/13/09 9:20:52 PM9/13/09 9:20:52 PM

xviii

Contents

Solution 556
Localizing ASP.NET AJAX 560

Summary 562

Deploying the Site 56Chapter 13: 3

Problem 563
Design 564

Deploying the Database to SQL Server 2008 565
Deploying the Site 576

Solution 590
Summary 590

Index 591

87586ftoc.indd xviii87586ftoc.indd xviii 9/13/09 9:20:52 PM9/13/09 9:20:52 PM

Introduction

Dear reader, thanks for picking up this book, and welcome to the ASP.NET 3.5 Website Programming:
Problem–Design–Solution, fully updated to ASP.NET version 3.5! The idea for this book was born in 2001,
with ASP.NET 1.0, from the desire to have a book that teaches how to create real-world web sites. The
fi rst edition was published in 2002, and fortunately it was a success. I believe that this was due to the
fact that most ASP.NET books on the market were (and still are) reference-type books, which describe
every single control of the framework, and all their methods and properties, but the examples they pro-
vide are single-page demos showing how to use a control of a feature. Typically these references don’t
show how to integrate all ASP.NET features and controls into a single site with rich functionality, which
is what readers have to do at work. Designing and implementing a real-world site is very different from
creating simple examples, and that’s why I think a book like this is helpful for developers facing real
problems in their everyday work.

Much of this new edition was rewritten completely from scratch, while trying to preserve as much of
the existing application integrity as possible. As a new author for this book I tried to fi nd a balance
between the existing Beer House application framework, add some new modules, and integrate some
of the great new technologies in ASP.NET 3.5 SP1.

This book is aimed at describing, designing, and implementing a site much like the ones you’re probably
working on or will be soon, while taking the opportunity to introduce and explain many of the new
features that the new great ASP.NET 3.5 Framework offers. I don’t hide diffi cult problems so that the
solution can be simpler and shorter to develop; rather, I try to explain most of the problems you’ll typi-
cally face when writing a modern web site, and provide one or more solutions for them. The result is a
web site that features a layout with user-selectable themes, a membership system, a content manage-
ment system for publishing and syndicating articles, photos, polls, mailing lists, forums, photo gallery,
calendar of events, an e-commerce store with support for real-time credit card processing, home page
personalization, search engine optimization and localization (refer to Chapter 1 for a more detailed list
of features to be implemented). I also decided to write the book in VB.NET, which differs from the pre-
vious editions, but source code is available in both C# and VB.NET. I hope you enjoy reading this book,
and that it offers guidance that speeds up the development of your next project and makes it more solid,
extensible, and well organized.

You can browse the web site online at www.thebeerhousebook.com.

The author’s blog is available at http://professionalaspnet.com. Please keep an
eye on it to read about further development and expansion of the sample project.

Who This Book Is For
Let me state up front that this isn’t a book for completely novice programmers, or for experienced devel-
opers who have never touched ASP.NET and the .NET Framework in general. This book teaches how to
write a real-world web site from scratch to deployment, and as such it can’t explain every single detail

87586flast.indd xix87586flast.indd xix 9/14/09 6:29:12 AM9/14/09 6:29:12 AM

Introduction

xx

of the technology, but must concentrate on designing and writing actual solutions. To get the most from
this book, you should already have had some experience with ASP.NET 2.0, even if not advanced solu-
tions. You’re not required to know ASP.NET 3.5, as each chapter will introduce the new controls and
features that you’ll use in that chapter, providing enough background information to implement the
solution. If you then want to learn more about a control, you can check the MSDN offi cial documenta-
tion or another reference-type book such as Wrox’s Professional ASP.NET 3.5. A good reference on search
engine optimization principles is Wiley’s Search Engine Optimization: Your Visual Blueprint for Effective
Internet Marketing by Kristopher Jones. I also found Wrox’s Professional LINQ by Scott Klein very helpful.

What This Book Covers
This book is basically a large case study that starts from the foundation and works its way through to
completion with a series of designs and solutions for each incremental step along the way. What sets
the Problem–Design–Solution series apart from other Wrox series is the structure of the book and the
start-to-fi nish approach to one completed project. Specifi cally, this book leads the reader through the
development of a complete ASP.NET 3.5 web site that has most of the features users expect to fi nd in
a modern content-related and e-commerce site:

Account registration, personalization, and themes ❑

Site Navigation ❑

News and events, organized into categories ❑

Opinion polls ❑

Newsletter ❑

Forums ❑

Photo Gallery ❑

Calendar of Events ❑

E-commerce store with shopping cart and order management ❑

Localization ❑

From an administrative point of view, the following features and problems are also covered:

Full online back-end administrative section, to manage practically all data from an intuitive ❑

user interface

Site deployment ❑

The implementation of each of these features provides the opportunity to teach various new features
introduced by ASP.NET 3.5, such as the following:

ASP.NET AJAX ❑

The new ❑ ListView

Entity Framework and LINQ to Entities ❑

87586flast.indd xx87586flast.indd xx 9/14/09 6:29:12 AM9/14/09 6:29:12 AM

Introduction

xxi

Because the book is meant to be a case study of a real-world site, it does not stop at just implementing
ASP.NET features; it applies them to typical scenarios. Included are:

Search engine optimization techniques ❑

Error logging and handling ❑

CSS layouts ❑

Not only does this book cover the new features of ASP.NET 3.5, it also demonstrates how to integrate all
of them together, for the development of a single full-featured site. All the design options are explained
and discussed (including the database design, the data access and business logic components design, and
the overall site architecture); at the end of the book you will have learned many of the best practices for
web development, based on a solid, scalable, and extensible architecture.

How This Book Is Structured
The book builds a complete project from start to fi nish. All the chapters (other than the fi rst one) are
self-contained modules within the larger project, and are structured in three sections:

Problem: ❑ This defi nes the problem or problems to be addressed in the chapter: What do you
want to do in this chapter? What features do you want to add to the site and why are they
important? What restrictions or other factors need to be taken into account?

Design: ❑ After the problem is defi ned adequately, this section describes what features are
needed to solve the problem. This will give you a broad idea of how the solution will work or
what will be entailed in solving the problem.

Solution: ❑ After setting up what you are going to accomplish and why (and how that solves the
problem defi ned earlier), we will produce and discuss the code and any other material that
will realize the design and solve the problem laid out at the beginning of the chapter. Just as the
coverage of the book as a whole is weighted toward solution, so is each chapter. This is where
you will get hands-on practice and create the code.

The book is intended to be read from cover to cover, so that you start with nothing and fi nish with a
complete and deployed web site ready to be launched. However, the book follows a modular structure,
so every chapter is quite self-contained and implements a module that, if necessary, can be taken out of
the proposed sample project and re-used in some other web site.

What You Need to Use This Book
To follow the book by building the project on your own computer, or to run the downloadable and
ready-to-use project, you’ll need the following:

Windows XP Professional, Windows Vista, Windows 7, Windows Server 2008, Windows Server ❑

2003, or Windows 2000 Professional or Server.

Any edition of Visual Studio 2008, including the freely available Visual Web Developer 2008 ❑

Expression Edition. However, Visual Studio 2008 Standard is suggested. You’ll be able to fol-
low the book, and run the sample project, even if you don’t use a Microsoft editor at all (if, for

87586flast.indd xxi87586flast.indd xxi 9/14/09 6:29:12 AM9/14/09 6:29:12 AM

Introduction

xxii

example, you prefer using Macromedia Dreamweaver MX or some other text editor), because
Visual Studio’s designers are described and demonstrated in the “Design” section of some
chapters, but are not used to write the code in the “Solution” section.

The freely available SQL Server 2008 Express Edition, and possibly SQL Server 2008 Standard ❑

Edition.

Conventions
To help you get the most from the text and keep track of what’s happening, we’ve used a number of
conventions throughout the book.

Boxes like this one hold important, not-to-be forgotten information that is directly
relevant to the surrounding text.

Notes, tips, hints, tricks, and asides to the current discussion are offset and placed in italics like this.

As for styles in the text:

New terms and important words are ❑ highlighted when introduced.

Keyboard combination strokes look like this: Ctrl+A. ❑

File names, URLs, and code within the text look like so: ❑ persistence.properties.

Code is presented in two different ways: ❑

We use a monofont type with no highlighting for most code examples.
We use gray highlighting to emphasize code that is of particular importance in
the present context, or to indicate where new code is added.

Source Code
As you work through the examples in this book, you may choose either to type in all the code manu-
ally or to use the source code fi les that accompany the book. All of the source code used in this book
is available for download at http://thebeerhouse.codeplex.com/. Once at the site, you can either
download the current source code by selecting the fi les under 2.0 Production – WebForms. This site is
shared with the MVC edition as well, so be aware of that. You can also download the source code by
selecting the Source Code tab and following the instructions on the page.

If for any reason the source is not available at CodePlex, we will keep a copy available for download
at www.wrox.com. Once at the site, simply locate the book’s title (either by using the Search box or by
using one of the title lists) and click the Download Code link on the book’s detail page to obtain all the
source code for the book.

Because many books have similar titles, you may fi nd it easiest to search by ISBN; this book’s ISBN is
978-0-470-18758-6.

87586flast.indd xxii87586flast.indd xxii 9/14/09 6:29:12 AM9/14/09 6:29:12 AM

Introduction

xxiii

Once you download the code, just decompress it with your favorite compression tool. Alternately, you
can go to the main Wrox code download page at http://www.wrox.com/dynamic/books/download
.aspx to see the code available for this book and all other Wrox books.

Errata
We make every effort to ensure that there are no errors in the text or in the code. However, no one is
perfect, and mistakes do occur. If you fi nd an error in one of our books, like a spelling mistake or faulty
piece of code, we would be very grateful for your feedback. By sending in errata you may save another
reader hours of frustration and at the same time you will be helping us provide even higher quality
information.

To fi nd the errata page for this book, go to www.wrox.com and locate the title using the Search box
or one of the title lists. Then, on the book details page, click the Book Errata link. On this page you
can view all errata that has been submitted for this book and posted by Wrox editors. A complete
book list including links to each book’s errata is also available at www.wrox.com/misc-pages/
booklist.shtml.

If you don’t spot “your” error on the Book Errata page, go to www.wrox.com/contact/techsupport
.shtml and complete the form there to send us the error you have found. We’ll check the information
and, if appropriate, post a message to the book’s errata page and fi x the problem in subsequent editions
of the book.

p2p.wrox.com
For author and peer discussion, join the P2P forums at p2p.wrox.com. The forums are a Web-based
system for you to post messages relating to Wrox books and related technologies and interact with
other readers and technology users. The forums offer a subscription feature to e-mail you topics of
interest of your choosing when new posts are made to the forums. Wrox authors, editors, other industry
experts, and your fellow readers are present on these forums.

At http://p2p.wrox.com you will fi nd a number of different forums that will help you not only as
you read this book, but also as you develop your own applications. To join the forums, just follow
these steps:

 1. Go to p2p.wrox.com and click the Register link.

 2. Read the terms of use and click Agree.

 3. Complete the required information to join as well as any optional information you wish to
provide and click Submit.

 4. You will receive an e-mail with information describing how to verify your account and com-
plete the joining process.

You can read messages in the forums without joining P2P but in order to post your own messages, you
must join.

87586flast.indd xxiii87586flast.indd xxiii 9/14/09 6:29:12 AM9/14/09 6:29:12 AM

Introduction

xxiv

Once you join, you can post new messages and respond to messages other users post. You can read
messages at any time on the Web. If you would like to have new messages from a particular forum
e-mailed to you, click the Subscribe to this Forum icon by the forum name in the forum listing.

For more information about how to use the Wrox P2P, be sure to read the P2P FAQs for answers to
questions about how the forum software works as well as many common questions specifi c to P2P
and Wrox books. To read the FAQs, click the FAQ link on any P2P page.

87586flast.indd xxiv87586flast.indd xxiv 9/14/09 6:29:12 AM9/14/09 6:29:12 AM

Introducing the Project :
TheBeerHouse

This chapter introduces the project that we’re going to develop in this book. I’ll explain the con-
cept behind the sample website that is the subject of this book, but as you read along you should
keep in mind that this is a general-purpose, data-driven, content-based style of website that can
easily be modifi ed to meet the needs of a myriad of real-world website requirements. Although
we’ll use many of the older features of ASP.NET, the clear focus of this book is on showing you
how to leverage the powerful new features of ASP.NET 3.5 SP1 such as ASP.NET AJAX, and the
ADO.NET Entity Framework. I’ll also integrate some basic search engine optimization techniques
and third-party services for social networking and SPAM fi ltering to make a much richer site.

This book follows a “Problem–Design–Solution” approach in each chapter: the Problem section
explains the business requirements for the module designed in that chapter; the Design section is
used to develop the roadmap for meeting those requirements, and the Solution section is where
we write the code to implement our design. This is unlike traditional computer books because the
focus is not on teaching basic concepts but rather on showing you how to apply your knowledge
to solve real-world business problems.

If you are new to ASP.NET, this is perhaps not the best book to start with, but if you’re generally
familiar with the basic concepts of web development and ASP.NET (any version of ASP.NET),
you’re ready to put that knowledge to use, and perhaps you want to learn about the new features
in ASP.NET 3.5 SP1. Then, fasten your seat belt!

TheBeerHouse was originally created by Marco to serve as an online presence for a local pub in
his hometown of Bologna, Italy. It was meant to serve as a way to reach out to the pub’s mostly
young clientele. This is still the primary goal of the site, but as technology matures, so does the
average user’s expectations of a site. The success of the site has driven website traffi c and demand
for TheBeerHouse merchandise much higher. This demand means a new site is needed to help
extend the brand and the sharing of information with patrons. It also provides an opportunity to

87586c01.indd 187586c01.indd 1 9/11/09 1:56:38 PM9/11/09 1:56:38 PM

2

Chapter 1: Introducing the Project: TheBeerHouse

upgrade the underlying plumbing with some new technologies for both the user interface and the
business layers.

Problem
Although the owner has always used traditional, printed marketing ads for her pub, and has a popular
website, she wants to expand into social networking because many of her patrons are already active on
Facebook, Twitter, and other popular social networking sites. Retaining features with which users are
familiar is important because users are used to reading about new specials and events, and receiving
newsletters with promotions and coupons. Now you want to extend their capability to browse photos of
past events and to see a true calendar of upcoming events. Since the typical patron of TheBeerHouse is
a young student who is active online, these upgrades should go a long way in extending TheBeerHouse
brand, and, hopefully, profi ts!

The owner also realizes that, just as online marketing and frontend experiences have evolved, so has
the technology that drives the Internet. Building a fl exible and scalable business tier is also important to
the owner. Object Relational Mapping (ORM) frameworks have come of age since the last version of the
site. She is also interested in building some client software for back-offi ce management with Windows
Presentation Foundation (WPF) and maybe even a mobile client in the next phase, so creating a common
business library is very important.

Design
At the beginning of a project, you think about your client’s needs and how you might meet those needs,
and possibly even expand on them to give your client more functionality than the minimum needed,
while still staying within your time limits and budgetary guidelines. In this scenario your client is a pub
owner who wants to have a website to promote her pub, providing online information about upcoming
events, reports about past events, and more. The current site can be expanded in many ways, to create a
new site that has a lot more interesting things, good for its users (who are also potential customers for
the physical pub) and for the store owner. We can begin by writing down a list of features that a modern
content-based site should have, and a few reasons why they are useful:

The site will need to provide a rich interactive user experience (now known as UX). The experi- ❑

ence users have on the website directly affects the impression they have of the pub. This means
that users must fi nd information and desired activities easy to browse and interact with.

Attention should also be given to cross-browser compatibility, that is, ensuring that the site
looks good and behaves well on different platforms and browsers. While Internet Explorer is
still the dominant browser, FireFox, Opera, and Safari are growing in popularity. You can’t
know in advance which browser your customers will use, as you might in the case of an intra-
net site for a corporation, for example.

A successful content-based site owes its popularity to its users. Loyal users who regularly visit ❑

the site, help write content, and participate in polls and special events are those who guarantee
that the site will keep growing. To build a vibrant community of active members, users must
have some sort of identity, something that describes and distinguishes them from other mem-
bers. Because of this, the site needs a registration feature, as part of a larger authentication/
authorization infrastructure. This will also be used to grant and restrict access to some areas of
the site.

87586c01.indd 287586c01.indd 2 9/11/09 1:56:38 PM9/11/09 1:56:38 PM

3

Chapter 1: Introducing the Project: TheBeerHouse

Extending the concept of identity and interaction is leveraging popular social networking sites ❑

like Facebook, MySpace, Twitter, and YouTube. These sites will give TheBeerHouse another
avenue of extending its brand, interacting with patrons, and allowing them to interact with
TheBeerHouse site. Most social networking sites, such as Twitter, have available APIs that can
be used by the site to publish content. Twitter allows you to post and monitor your Twitter feed
through any client you want. All of these external sites have been designed to add value to the
overall experience for a patron of TheBeerHouse.

The site needs a constant supply of fresh content to stay alive and vibrant. If the content becomes ❑

stale, visitors will lose interest in the site and won’t visit it anymore. A pub’s site can’t be very
good unless it has regular updates about upcoming events, parties, and concerts. What’s the point
in visiting the site if it doesn’t display photos that were shot at the last party? To facilitate a con-
stant stream of new content, the site needs some mechanism that enables the editor to easily
update it with dynamic content. The content should also be thoughtfully organized so that visi-
tors can fi nd, and even subscribe to, the type(s) of information in which they are most interested.
Furthermore, the editor who will be in charge of the content updates will probably not be a tech-
nical person, so you must build some simple administration pages that make updates easy, even
for nontechnical people.

The Beer House owes much of its success to its nightly entertainment, themed parties and other ❑

events. The new site includes a Calendar of Events for visitors to keep track of what is happen-
ing at the Beer House.

Once the site has new content ready to be read, the site’s manager must have some way to inform ❑

its users about this. Not all users visit the site every day, so the site manager must be proactive
and notify the customers about recent updates. If customers have registered on the site, provid-
ing their e-mail address, they might also have requested to receive a newsletter notifying them
about recent changes and additions to the site. Of course, there are also other ways to syndicate
news, such as exposing RSS (Really Simple Syndication) feeds to which a user can register and
then control from their favorite RSS reader, and get automatic notifi cations about news without
having to visit the site daily to get the information.

A site like this can also be a good opportunity to get feedback from customers about a variety ❑

of issues: What do they like most in a pub? What brand of beer do they prefer? Do they want
to listen to live music while drinking with friends, or perhaps they don’t like all that noise?
Establishing some kind of user-to-site communication is important, and if you get a good
number of responses, it can even lead to strategic decisions and changes that may improve
the business.

If the presence of some sort of user-to-site communication is important, user-to-user communi- ❑

cation may be even more so, because that’s the central point of creating a community of loyal
users, who come to the site frequently to chat, discuss the news posted on the site, ask for sug-
gestions from the others about upcoming events, and more. This translates into more traffi c on
the site and a feeling of membership that will pay off in both the short and long run.

Once the store has a user base, the store’s owner may decide to expand it so that it supports an ❑

online store. In fact, the pub already offers a catalog of products for beer enthusiasts, such as
glasses, T-shirts, key chains, and more. If the site has a lot of traffi c, it may be a good way to
promote these products so that people can place orders without even visiting the pub in person.
And once users see a product and like it, they can rate that product to tell other people how
much they like it. The online store must be easy to manage by nontechnical people, because it
might possibly be the pub’s owner who adds and edits products, and manages the orders. Thus,
there must be a module with a simple and intuitive UI that automates as many operations as
possible, and guides the user through the tasks.

87586c01.indd 387586c01.indd 3 9/11/09 1:56:38 PM9/11/09 1:56:38 PM

4

Chapter 1: Introducing the Project: TheBeerHouse

Demonstrating how lively and fun TheBeerHouse is very important in fostering dedicated ❑

patrons. Photos and videos are a great way to share this atmosphere. Adding a photo gallery
to the site and taking advantage ofYouTube.com and other video-sharing sites are great ways to
share what life is like in TheBeerHouse.

With the site offering news and articles, lists of products, user-to-user discussions, and other ❑

dynamic content, it’s easy to imagine that the home page could easily become crowded, and
possibly more diffi cult to read and understand because of too much information. It would be
good if the user herself could build her own home page, according to what she is interested in.
Maybe she wants to read about upcoming events but doesn’t care about shopping online for
gadgets? Great, you want to give her the capability to do that, by adding and deleting content to
and from the home page, or maybe just moving around the existing content so that it’s placed
and organized in a way that she fi nds more comfortable and useful for her. This type of customi-
zation is done on some large sites such as Windows Live and My MSN, for example, and is a
great example of personalization, which helps encourage users to decide to register on the site.

As mentioned previously, the pub is typically visited by a lot of customers coming from many ❑

different countries, and the pub’s owner expects the same to happen on the website. Because
of this, the site must be partially or fully translated into multiple languages, making it easy for
most users to understand it. Not only must text be translated, but information such as dates
and numbers should also be displayed according to the user’s preferred locale settings, so that
nobody will misunderstand an announcement about an upcoming party or event.

Optimizing the site for search engine exposure is also a high priority. Adding social networking ❑

features to the online strategy should help gain valuable inbound links to assist with search engine
ranking. But you still need to make sure that common search engine optimization techniques
are applied to the site to help with overall ranking and placement of the site for targeted key-
word phrases.

To recap everything in a few words, the TheBeerHouse site will have everything a modern content-
based site will have, including dynamic articles and news, polls for user-to-site communication, forums
for user-to-user communication, newsletters and RSS feeds to notify members about new content on the
site, an e-commerce store for selling products online, home page personalization, and content localiza-
tion. It will also have a photo gallery, calendar of events, social networking, and OpenId integration.
Although the sample project is built around a fi ctitious pub, you’ll recognize in this list of requirements
the common features of the majority of content- and commerce-based sites you fi nd online now, and
sites that you’re likely to develop in the near future, or maybe even sites you’re developing right now.

Solution
The Solution section of each chapter will contain the instructions and actual code for implementing all
the features and requirements outlined and designed in the previous sections. However, this fi rst chap-
ter gives you a more detailed description of exactly what the following chapters will cover, so that you
can get a good idea of what the fi nal result will be like.

In Chapter 2, you’ll build the site’s design, the graphics, and the layout that are shared among all
pages of the site, through the use of master pages and nested master pages. You will also use themes
and Cascading Style Sheets (CSS) to create a couple of different visual appearances for the same master

87586c01.indd 487586c01.indd 4 9/11/09 1:56:38 PM9/11/09 1:56:38 PM

5

Chapter 1: Introducing the Project: TheBeerHouse

page, and create a mechanism to enable users to select their own favorite theme from a drop-down list,
so that they can change the colors and overall appearance of the site according to their taste and possible
visual impediments. Finally, a fl exible and easy-to-maintain navigation system will be built by means of
a custom SiteMapProvider and the Menu and SiteMapPath controls.

In Chapter 3, you’ll lay down the foundations for building a fl exible, and easily confi gurable and instru-
mented site. First, a data access layer (DAL) will be built from the ADO.NET Entity Framework and a
SQL Server database. Then a business logic layer will be built on the top of the DAL to expose the data
in an object-oriented way, with the required validation logic, transaction management, event logging,
and caching. Finally, you’ll look at the UI and presentation layer, which take advantage of the new
ListView control and ASP.NET AJAX to quickly generate complex, interactive, and feature-rich, data-
driven pages.

In Chapter 4, you’ll integrate the membership infrastructure introduced in ASP.NET 2.0 into the site, to
create user registration forms and supporting logic to authenticate/authorize users. You’ll also see how
to use the Profile module, which allows you to declaratively defi ne user-level properties that are auto-
matically persisted to a durable medium, quite different from the well-known traditional Session state
variables, which last only as long as the user browses the site on one occasion. You will also see how to
take advantage of ASP.NET AJAX’s built-in membership, role, and profi le interfaces. You will build a
complete management console to enable administrators to see the list of members, disable members
that behave badly on the site, and view and edit each user’s profi le.

In Chapter 5, you’ll build a sort of content management system, a module that enables administrators
to completely manage the site’s articles from an intuitive UI, accessible also by nontechnical users. The
module will integrate with the built-in membership system to secure the module and track the authors
of the articles, and will have a syndication service that publishes an RSS feed of recent content for a spe-
cifi c category, or for every category, and will support ratings and comments, among many other fea-
tures. It will also automatically post matching content on Twitter, alerting followers about new content
and make use of user and search-engine-friendly URLs, that take advantage of the article title in the
URL and a custom URL Rewriting HttpModule. The result will be quite powerful, enabling the editor
to prepare richly formatted content in advance, and schedule it for automatic publication and retirement,
so that the site’s content updates are as simple as possible, and require the least effort and time. At the
end of the chapter, you will have experienced a many of the things you can do with the new ListView
control, the ADO.NET Entity Framework, interacting with external APIs and custom HttpHandlers.

In Chapter 6, you’ll implement a solution for creating and managing multiple dynamic polls on the
website. It will feature an administration console for managing the polls through a web browser and a
user control that enables you to plug different polls into any page you want with just a couple of lines of
code, as well as a history page for viewing archived polls.

In Chapter 7, the site will be enriched with a complete module for sending out newsletters to members
who registered for them in their profi le page. The module will enable you to send out the e-mail news-
letters from a background thread, instead of the main thread that processes the page request, so that
the page won’t risk timeouts, and more important, so that the editor will not be left with a blank page
for minutes at a time. AJAX will be used to implement real-time feedback about the newsletter being sent
in the background. Finally, end users will be able to look at past newsletters listed on an archive page.
To implement all this, you’ll use advanced features such as multithreaded programming, the new script
callback feature, and new classes for sending e-mails.

87586c01.indd 587586c01.indd 5 9/11/09 1:56:38 PM9/11/09 1:56:38 PM

6

Chapter 1: Introducing the Project: TheBeerHouse

In Chapter 8, you’ll create a forums system from scratch, which supports multiple sub-forums with
optional moderation; lists threads and replies through custom pagination and with different sorting
options; has wide support for standard RSS feeds, confi gurable user rating, signatures, and quoting;
and offers other features typical of most recent forum software. Complete administration features (for
deleting, editing, approving, moving, and closing threads and posts) will also be provided.

In Chapter 9, you’ll add a working e-commerce store with most of the essential features, including a
complete catalog and order management system; a persistent shopping cart; integrated online payment
via credit cards; product ratings; product stock availability; rich formatting of a product’s descriptions,
including text and images; confi gurable shipping methods and order statuses; and much more. All this
will be implemented in relatively few pages, since it will leverage the good foundations built in previous
chapters, such as the built-in membership and profi le systems, and other features and controls, such as
the ListView, Wizard, and MultiView controls.

In Chapter 10, you’ll add a photo gallery that features the capability for administrators to add and man-
age photo albums, photos, and descriptive data about the photos. It also implements an AJAX lightbox
to add some special effects when viewing an image.

In Chapter 11, you’ll add an event calendar to which TheBeerHouse staff will add events at each of their
locations. Patrons can subscribe to these events via RSS or add them to their calendar applications via
an iCal object. This will be done by using the Calendar control and a custom httpHandler. New
events will also be published directly to TheBeerHouse Twitter feed.

In Chapter 12, you’ll make the site’s home page fully localizable to an additional language and will sup-
port the user’s preferred locale settings when displaying dates and numbers. All this can be done easily
with ASP.NET, thanks to its automatic resource generation, implicit and explicit localization expressions,
strongly typed and dynamically compiled global resources, and good Visual Studio Designer support.

Finally, in Chapter 13, you’ll look the different ways to deploy an ASP.NET site, either on a local IIS
server or to a remote production site, or to an inexpensive shared hosting server. The ASP.NET compila-
tion model enables you do use a simple XCOPY deployment that includes everything, but lacks protection
of source code, and takes a little time to compile on fi rst requests. If that’s a problem for you, you will
see how you can use the new command-line tools and Visual Studio’s wizards to precompile the site
and generate one or more compiled assemblies to deploy. You’ll also learn how to deploy the local SQL
Server Express database to a remote full-featured SQL Server instance, and how you can create installer
packages for distributing the application to automate as many installation tasks as possible.

Summary
You now have an overview of an aggressive plan to develop a highly functional content-based website
that shows you how to use ASP.NET 3.5, ASP.NET AJAX, the ADO.NET Entity Framework, and various
external APIs to their full capacity. This chapter gave you a broad idea about what we’re going to discuss,
design, and implement throughout the rest of the book.

87586c01.indd 687586c01.indd 6 9/11/09 1:56:38 PM9/11/09 1:56:38 PM

7

Chapter 1: Introducing the Project: TheBeerHouse

In each chapter, you’ll learn something new about ASP.NET and web programming, and at the end of the
book you will have created a real-world site with most of the features required by modern content-cen-
tric sites and e-commerce stores. Furthermore, the site you develop in this book may provide a good
deal more functionality than any site you’ve designed in the past, and the relatively small development
effort will enable you to do more than you thought possible in a small amount of time. One of Microsoft’s
key goals with the .NET platform is to help you “fall into the pit of success.” ASP.NET is designed to make
developers’ jobs easier: to reduce the amount of effort required to implement common functionality,
thereby giving them more time to focus on business needs, and enabling them to offer more advanced
functionality to empower users and site administrators, while keeping the site maintainable and scalable.
This book will help you judge whether Microsoft has met this goal. Let the adventure begin!

87586c01.indd 787586c01.indd 7 9/11/09 1:56:38 PM9/11/09 1:56:38 PM

87586c01.indd 887586c01.indd 8 9/11/09 1:56:38 PM9/11/09 1:56:38 PM

Developing the Site Design

The fi rst step in developing a new site is to develop the visual site design, consisting of the site’s
overall layout, use of graphics, and user interaction elements. Today the visual architecture
defi nes more than just the “look and feel” from the user’s perspective; it also means the ease of
use and encouraging user interaction. You start by establishing the user experience you want
people to have, and then you design the plumbing behind the scenes that will provide that user
experience. Some basic considerations that affect the user’s experience are the menu and naviga-
tion, use of images, organization of elements on the page, and use of AJAX.

The menu must be intuitive and should be augmented by navigation hints such as a site map or
breadcrumbs that can remind users where they are, relative to the site as a whole. Breadcrumbs in
this context refer to a set of small links on the page that form a trail that enables users to back up
to a previous page by clicking on the link segment for a page higher in the page hierarchy.

Consider the specifi c ASP.NET features before writing any code, so you can take advantage of the
work that’s already been done by Microsoft. By laying a good foundation for the technical architec-
ture, you can improve code reusability and enhance maintainability. This chapter looks at the overall
visual layout of the site and explains how you can take advantage of powerful features such as
master pages and themes. Master pages are used to group functionality into templates that provide
the common elements shared by many pages, and themes enable users to customize certain aspects
of the site to give them a unique look and feel that appeals to them (also called skinning).

Problem
Over the last few years the .NET development community has begun to work hard toward cre-
ating great user interfaces for its applications. We really started seeing a good effort made in
this direction with the introduction of ASP.NET AJAX and now with Windows Presentation

87586c02.indd 987586c02.indd 9 9/13/09 9:47:13 PM9/13/09 9:47:13 PM

10

Chapter 2: Developing the Site Design

Foundation (WPF) and Silverlight. The marketplace has really driven this paradigm change through
competition and users’ demanding it. It is more than just having pretty graphics and whiz-bang fea-
tures; it has to do with just plain usability. Users do not want to have to think; an application should
just work.

Many developers start out writing source code without paying attention to the primary goal of the site:
to provide a simple but highly functional graphical application for users to interact with. This is not
acceptable in today’s competitive world. Developing the user interface seems like a very basic task, but
if it is not done properly, you may have to revisit it several times during development. Every time you
go back and change fundamental features it will require a certain amount of rework, not to mention
a whole new round of unit, integration, and user acceptance testing. Even worse, if you take the user
interface too lightly, you will likely end up regretting it because users may choose not to visit your site.
There are various elements to consider when creating the site design. First, you must convince yourself
of one simple fact: appearance is important! You should repeat this out loud a couple of times.

If your site doesn’t look appealing or if interacting with the site is not natural, people may regret being
there. It’s easy for a developer to get caught up with the diffi cult tasks of organizing source code into
classes and coding the business logic — the cosmetics of the site just don’t seem so important, right?
Wrong! The user interface is the fi rst thing presented to the end user and, more importantly, your cus-
tomer if you are a typical developer. If it is ugly, unclear, and basically unusable, chances are good the
user will be left with a bad impression of the site and the company behind it. Sadly, this will happen
regardless of how fast and scalable the site is.

In addition, you need to consider that not all users have the same opinion about a site template. Some
users may fi nd it diffi cult to read text in a site with a specifi c color scheme and prefer a different color
scheme that might be unclear to many others. It’s very diffi cult to make everybody happy with a single
template and color scheme. That’s why some sites have multiple color schemes and possible layouts
available from which users can choose, enabling them to customize their own user experience accord-
ing to their personal taste — and possibly physical impediments such as color blindness. Studies have
shown that a surprising number of people suffer from partial color blindness that makes it hard for
them to distinguish certain colors, so they must be able to select colors they can distinguish but that
still appear somewhat pleasant.

The term UX (an acronym for “user experience”) has become very common in the
last 2–3 years when referencing software. When AJAX started coming of age a few
years ago, the interaction that website visitors had with the site or application started
increasing. The release of WPF and Silverlight (and I’ll have to throw Adobe Flex in
here, too) has driven users’ expectations even higher. This does not mean that a site
needs to be completely done in Silverlight to be acceptable these days, but gone are
the days of blinking and clashing text, as well as the visible postback model. Users
expect to feel comfortable while using an application, knowing that everything is
going as they expect. This means that they should not have to struggle to under-
stand how an application works, and so forth. A good example in the new version
of the Beer House is the use of pure AJAX to allow users to comment on articles.
The topic of UX is really outside the scope of this book; however, I hope this upgrade
adds several good UX improvements not in the previous edition.

87586c02.indd 1087586c02.indd 10 9/13/09 9:47:13 PM9/13/09 9:47:13 PM

11

Chapter 2: Developing the Site Design

After you choose the layout and colors to use, you need to ensure that the site will look the same on
different browsers. A few years ago, Internet Explorer (IE) was the absolute dominant browser among
Windows users, and if you were developing a technical site targeted at Windows developers, you could
assume that the majority of your user base would use IE to browse the site, and thus develop and test it
only against IE. However, Firefox, Opera, Safari, and now Google Chrome are gaining noticeable mar-
ket share among Internet users, not to mention browsing from other operating systems, such as Linux
and Mac OS. To make things a little more complicated Microsoft is getting close to releasing Internet
Explorer 8, which promises to be ACID 2 compliant, a standard test to measure a site’s compliance
with CSS standards.

You are not targeting just a small niche of users (i.e., not just Windows developers but all people that go
to your client’s pub), and because there are other popular browsers besides Internet Explorer, it is abso-
lutely necessary to ensure that your site works well for the most popular browsers. If you ignore this and
just target IE, Firefox users may come to the site and fi nd a layout much different from what they expect,
with the wrong alignments, sizes, and colors, with panels and text over other elements — in other words,
a complete mess. As you can guess, a user who is presented such an ugly page will typically leave it, which
means losing a potential client or customer for the online store. At the very least, this person’s visit would
have generated page views and, thus, banner impressions.

Because you don’t want to lose visitors, we’ll make sure the new Beer House site renders and works
properly in as many browsers as we can. Typically, if you can make the site work consistently in Internet
Explorer, Firefox, and Chrome, it will work in the other browsers as well. The real key is testing against
the popular browser engines, Internet Explorer, Gecko (Firefox), and WebKit (Chrome).

Designing the user interface layer doesn’t mean just writing the HTML for a page; it also involves the
navigation system and the capability of the webmaster or site administrator (if not the end user) to eas-
ily change the appearance of the site without requiring them to edit the actual content pages (which are
numerous). Once you’re done with the site’s home page, developing all the other pages will take much
less time because the home page establishes layout and navigation elements that will apply throughout
the site. And if you need to modify something in the site’s layout (for example, adding a new poll box to
be displayed on the right-hand side of any page), you will be able to do this easily if you’ve developed
a common user interface shared among many pages. This is why it’s defi nitely worth spending some
additional time thinking about a well-designed UI foundation layer instead of fi ring up Visual Studio
.NET and starting to code right away. This is really a strategic decision that can save you hours or even
days of work later. Remember that fundamental changes applied later in the development phase will
require more time and effort to implement. Figure 2-1 shows the new Beer House in the Mozilla and
WebKit engines.

The previous version of the Beer House made the use of Web Parts, which is a con-
cept brought over from SharePoint to allow users to move content around the page.
I chose to remove that chapter from the book because the use of Web Parts is very
minimal, and it drastically adds to the weight of the pages. This technology was
not revised in ASP.NET 3.5 either. If you need to see how to implement Web Parts
in your site, then I recommend the 2.0 version of this book.

87586c02.indd 1187586c02.indd 11 9/13/09 9:47:13 PM9/13/09 9:47:13 PM

12

Chapter 2: Developing the Site Design

Figure 2-1

Design
In this section, I’ll take the problems described in the fi rst section and discuss how to solve them by
devising a technical system design. In practice, you will design and implement the following:

A good-looking graphical template (layout) that appears the same with all major browsers, and ❑

a mechanism to dynamically apply different color schemes and other appearance attributes to it.

A way to easily share the created template with all pages of the site, without physically copying ❑

and pasting the entire code in each page.

A navigation system that enables users to easily fi nd resources on the site and clearly tells users ❑

where they currently are in the site map, enabling them to navigate backward.

A way to apply not only a common design to all pages of the site, but also a common behavior, ❑

such as counting page views or applying the user’s favorite style to the page.

I’ll describe how you can utilize some of the features in ASP.NET when implementing your reusabil-
ity, menu, navigation, and customization requirements. I’ll also review how to utilize CSS layouts to
build an easy-to-manage template that is also search engine optimization (SEO) friendly. Later, in the
“Solution,” section, you’ll put these powerful new features into action!

87586c02.indd 1287586c02.indd 12 9/13/09 9:47:13 PM9/13/09 9:47:13 PM

13

Chapter 2: Developing the Site Design

Designing the Site Layout
When you develop a site design, you typically create a mock-up with a graphics application such as
Adobe Photoshop, Jasc Paint Shop Pro, Paint.NET, or just a piece of paper to show you what the fi nal site
may should look like before you do any specifi c layout or coding in HTML. Once you have a mock-up, you
can show it to the various model users, testers, and managers, who can then decide whether to apply
it to the front of the application. You might create a simple picture like the one shown in Figure 2-2, in
which you show how the content will be laid out in the various areas of the page.

Logo
Login box

News box

Banner
box

Some
other
text

Main content

Footer menu

Copyright notices

Heading menu

Figure 2-2

This is a typical three-column layout, with a header and footer. When the layout is approved, you must
recreate it with real graphics and HTML. It makes sense to do this in the graphics program because, on
average, it takes much less time for a web designer to produce these mock-ups as images than as real
HTML pages. Once the client approves the fi nal mock-up, the web designer can cut the mock-up image
into small pieces and use them in an HTML page.

Creating a mock-up is not always easy for those of us who aren’t very artistic by nature. For a medium
or large company, this is not a problem because there is usually a professional designer to create the
graphical design, and then the developers (people like you and me) build the application around it, or
the designer creates a nice design to fi t the application you create. Sometimes it can be helpful to enlist

87586c02.indd 1387586c02.indd 13 9/13/09 9:47:13 PM9/13/09 9:47:13 PM

14

Chapter 2: Developing the Site Design

the assistance of a third-party company if you’re faced with creating the graphical design by yourself —
you can, in effect, subcontract that one aspect of the site to someone more artistically talented, and they
can make you a site template. This can also mean licensing a prebuilt template from a company like
TemplateMonster (www.templatemonster.com). For the purposes of creating the website discussed
in this book, I used an image of three beer steins I found doing a search for “beer” through Creative
Commons (creativecommons.org), a large collection of free resources such as images and videos. Next, I
wanted to decide on a consistent color scheme and used http://kuler.adobe.com, a site that demon-
strates color schemes, to help me fi nd just the right scheme, “Dark Beer.” I then created some supporting
graphics, consisting of some gradients and a logo in Paint.NET. Paint.NET is a graphic design program
that is similar to Adobe Photoshop, but written entirely in .NET and available for free. Combining all
this made a site design that I could use as a starting point.

I kept things pretty simple, so I did not have to do too much work to get the layout of the site together. I
really needed to get started with defi ning the stylesheets in the Dark Beer theme to apply the graphics
and the color scheme to the site.

Technologies Used to Implement the Design
ASP.NET 3.5 SP1 is the overriding technology that makes the site work. This runs on the web server
and takes advantage of the functionality provided by the .NET Framework. However, ASP.NET does
not run on the user’s computer; instead, it dynamically generates the elements that a browser uses to
render a page. The elements that are sent down to the browser consist of HTML, images, and Cascading
Style Sheets (CSS), which provide colors, sizes, and alignments for various items in the HTML. ASP.NET
also generates some JavaScript procedural code that is also sent down to the browser to handle data
validation and to tell the browser how to interact with the web server.

HTML is created in several ways. You can use the visual form designer in Visual Studio to drop con-
trols onto the form, and this automatically creates the markup for the controls that ultimately emit
HTML. You can hand-edit or author your own HTML code in the .aspx fi les to give it features that
aren’t easily specifi ed in the form designer. Last, HTML can be dynamically generated by your code or
by classes in the .NET Framework, HttpHandlers are the best example of this.

Using CSS to Defi ne Styles in Stylesheet Files
It is not possible to give an exhaustive explanation of CSS in this book, but I’ll cover some of the general
concepts. You should consult other sources for complete details about CSS. The purpose of CSS is to
specify how visual HTML tags are to be rendered by specifying various stylistic elements such as font
size, color, alignment, and so on. These styles, called Selectors, can be included as attributes of HTML
tags, or they can be stored separately and referred to by Class, by ID or by defi ning a rule for a specifi c
HTML element.

Sometimes HTML fi les have the styles hard-coded into the HTML tags as attributes, as in the following
example:

<div style=”align: justify; color: red; background-color:
yellow; font-size: 12px;”>some text</div>

This is bad because it is diffi cult to modify these stylistic elements without going into all the HTML
fi les and hunting for the CSS attributes. It also adds volume to each page being downloaded, thus
hurting the overall perceived performance of the pages. Instead, always put the style defi nitions in a

87586c02.indd 1487586c02.indd 14 9/13/09 9:47:13 PM9/13/09 9:47:13 PM

15

Chapter 2: Developing the Site Design

separate stylesheet fi le with an extension of .css; or if you insist on including styles inside an HTML
fi le, at least defi ne them in a <style> section at the top of the HTML fi le.

There are many blogs and websites that focus entirely on Web Design and CSS. A
quick search will give you a pretty good list to start with. Some books you might
want to reference include:

Mastering Integrated HTML and CSS by Virginia Debolt (www.wiley.com/
WileyCDA/WileyTitle/productCd-047009754X.html), HTML, XHTML

CSS Bible by Steven Schafer, (www.wiley.com/WileyCDA/WileyTitle/
productCd-0470128615.html)

Beginning CSS by Richard York, (www.wiley.com/WileyCDA/WileyTitle/
productCd-0470096977.html)

CSS Instant Results by Richard York (www.wiley.com/WileyCDA/WileyTitle/
productCd-047175126X.html)

Maintaining style defi nitions in a separate stylesheet fi le makes the site more maintainable, increases
performance and minimizes the administrative effort required to maintain styles and to enforce a com-
mon look and feel among many pages. You often hear the term “separation of concerns” in terms of
application architecture; it applies to web development of user interfaces with CSS. The idea is to sepa-
rate as much of the design concerns from the application code as possible. Keeping styles in a fi le means
that there is only one place where you need to manage elements when you need to adjust a style. Using
inline style defi nitions is no different from repeating a routine multiple times in code. In programming
terms, it means that you can refactor a style defi nition to a central location instead of repeating it in
each page of markup. This is a common theme you will see in modern ASP.NET with the use of master
pages, themes, and user controls.

Let’s assume that the client wants to change some styles of a site that’s already in production. If you’ve
hard-coded styles into the HTML elements of the page, then you’d have to look in many fi les to locate
the styles to change, and you might not fi nd them all, or you might change something else by mis-
take — this could break something! However, if you’ve used style classes stored separately in CSS fi les,
then it’s easier to locate the classes that need to be changed, and your HTML code will be untouched
and safe.

Furthermore, CSS fi les can make a site more effi cient. The browser will download the CSS fi le once and
then cache it on the client. The browser will use the cached instance of the .css fi le and not download
all the styles again, so each subsequent request will be much smaller, and therefore faster to download.
In some cases, this can dramatically speed up the loading of web pages in a user’s browser.

On top of downloading fewer resources, this can also help with rendering tables, which browsers do
more slowly than a series of DIV and SPAN elements. That’s because browsers wait until the entire con-
tents of a table have been downloaded before rendering it to the user. Tables are good for tabular data,
and that is what they should be used for. While using stylesheet layouts is tougher to become familiar
with, it can be a much more fl exible way to create a site layout.

87586c02.indd 1587586c02.indd 15 9/13/09 9:47:13 PM9/13/09 9:47:13 PM

16

Chapter 2: Developing the Site Design

While many sites use multiple stylesheet fi les, I personally like to have just one. The reason is that each
fi le will need to be downloaded and thus add to the time required to download the content. While the
hit may seem to be negligible, it all adds up. On the fl ip side, organizing related styles into specifi c fi les
can be very helpful in managing styles. It can also add to confusion and duplication of styles, meaning
that efforts get overwritten during rendering. The ultimate choice will come down to the needs of the
application and your personal management style.

When you group CSS styles, you can create Selectors, which syntactically resemble classes or func-
tions. You can assign them a class name, preceded by a period (.), to allow them to be referenced in the
class= attribute of HTML tags. You can also associate an HTML element with an element name simply
by creating a style rule with the same name as the element. For example, H1 maps to the <h1> element.
You can also refer to specifi c elements by their client-side ID; just precede the name of the style rule
with a # followed by the ID of the element. Finally, you can combine class, element, and ID selectors to
create complex style rules.

For a more detailed explanation of CSS Selectors I recommend visiting the W3C recommendations,
www.w3.org/TR/CSS2/selector.html.

If you use a stylesheet Selector, an ID, or element selectors, and you want to change the font size of
all corresponding HTML elements , you only need to fi nd that style rule and change that single occur-
rence in order to change many visual HTML elements of that given type. If the stylesheet is defi ned in a
separate fi le, you will benefi t even more from this approach, because you will change a single fi le and n
pages will change their appearance accordingly.

Here is an example of how you can redefi ne the style of a DIV object by storing it in a separate fi le
named styles.css. First, defi ne a new class called mystyle in a fi le called mystyles.css as follows:

.mystyle
{
 align: justify;
 color: red;
 background-color: yellow;
 font-size: 12px;
}

Then, in the .aspx or .htm page, you will link the CSS fi le to the HTML as follows:

<head>
 <link href=”/styles.css” text=”text/css” rel=”stylesheet” />
 <!-- other metatags... -- >
</head>

Finally, you write the HTML DIV tag and specify which CSS class you want it to use:

<div class=”mystyle”>some text</div>

Note that when the style was declared, I used the dot (.) prefi x for the class name. You have to do this
for all of your custom style Selectors.

87586c02.indd 1687586c02.indd 16 9/13/09 9:47:14 PM9/13/09 9:47:14 PM

17

Chapter 2: Developing the Site Design

If you want to defi ne a style to be applied to all HTML elements of a certain kind (for example, to all
<p> paragraphs, or even the page’s <body> tag) that don’t have another explicit class associated with
them, you can write the following specifi cation in the stylesheet fi le:

body
{
 margin: 0px;
 font-family: Verdana;
 font-size: 12px;
}

p
{
 align: justify;
 text-size: 10px;
}

This sets the default style of all body tags and all <p> (paragraph) tags in one place. However, you could
specify a different style for some paragraphs by stating an explicit class name in those tags.

Yet another way to associate a Selector to a HTML object is by ID, which you will see used as we
start defi ning the layout for the new Beer House site. You defi ne the Selector name with a # prefi x, as
follows:

#header
{
 padding: 0px;
 margin: 0px;
 width: 100%;
 height: 184px;
 background-image: url(images/HeaderSlice.gif);
}

Then you could use the id attribute of the HTML tag to link the CSS to the HTML. For example, this is
how you could defi ne an HTML division tag and specify that you want it to use the #header style:

<div id=”header”>some text</div>

You typically use this approach for single objects, such as the header, the footer, the container for the
left, right, center column, and so on. If you need to apply a style to multiple elements in a page, use a
class Selector.

Finally, you can mix the various approaches. Suppose that you want to give a certain style to all links
in a container with the sectiontitle style, and some other styles to links into a container with the
sectionbody style. You could do it this way:

In the .css fi le
.sectiontitle a
{
 color: yellow;
}

87586c02.indd 1787586c02.indd 17 9/13/09 9:47:14 PM9/13/09 9:47:14 PM

18

Chapter 2: Developing the Site Design

.sectionbody a
{
 color: red;
}

In the .aspx/.htm fi le
<div class=”sectiontitle”>
<p>some text</p>
Wrox
<p>some text</p>
</div>

<div class=”sectionbody”>
<p>some other text</p>
Wiley
<p>some other text</p>
</div>

Avoid Using HTML Tables to Control Layout
Often developers will use HTML tables to control the positioning of other items on a web page. This
was considered the standard practice before CSS matured, but many developers still use this methodol-
ogy today. I admit it took me a long time to make the switch. Although this is a very common practice,
the W3C offi cially discourages it (www.w3c.org/tr/wai-webcontent), saying “Tables should be used
to mark up truly tabular information (“data tables”). Content developers should avoid using them to
lay out pages (“layout tables”). Tables for any use also present special problems to users of screen read-
ers.” In other words, HTML tables should be used for displaying tabular data on the page, not to build
the entire layout of the page. For that, you should use container elements (such as DIVs) and their style
attribute, possibly through the use of a separate <style> section or a separate fi le. This is ideal for a
number of reasons:

If you use container elements and a separate stylesheet fi le to defi ne appearance and position, ❑

you won’t need to repeat this defi nition again and again, for each and every page of your site.
This leads to a site that is both faster to develop and easier to maintain once you have a stan-
dard set of templates to build pages.

The site will load much faster for end users. Remember that the stylesheet fi le will be down- ❑

loaded by the client only once, and then loaded from the cache for subsequent requests of pages
until it changes on the server. If you defi ne the layout inside the HTML fi le using tables, the
client instead will download the table’s layout for every page, and thus it will download more
bytes, with the result that downloading the whole page will require a longer time. Typically,
a CSS-driven layout can trim the downloaded bytes by up to 50%, and the advantage of this
approach becomes immediately evident. Furthermore, this savings has a greater impact on
a heavily loaded web server — sending fewer bytes to each user can be multiplied by the
number of simultaneous users to determine the total savings on the web server side of the
communications.

Screen readers, software that can read the text and other content of the page for blind and ❑

visually impaired users, have a much more diffi cult job when tables are used for layout on the
page. Using a table-free layout can increase the accessibility of the site. This is a very important
requirement for certain categories of sites, such as those for public administration and govern-
ment agencies. Few companies are willing to write off entire groups of users over simple mat-
ters like this.

87586c02.indd 1887586c02.indd 18 9/13/09 9:47:14 PM9/13/09 9:47:14 PM

19

Chapter 2: Developing the Site Design

CSS styles and DIVs provide greater fl exibility than tables. You can, for example, have differ- ❑

ent stylesheet fi les that defi ne different appearances and positions for the various objects on
the page. By switching the linked stylesheet, you can completely change the appearance of the
page, without changing anything in the content pages themselves. With dynamic ASP.NET
pages, you can even change the stylesheet at runtime and, thus, easily implement a mechanism
that enables end users to choose the styles they prefer. And it’s not just a matter of colors and
fonts — you can also specify positions for objects in CSS fi les and therefore have one fi le that
places the menu box on the upper-left corner of the page and another one that puts it on the
bottom-right corner. Because we want to allow users to pick their favorite styles from a list of
available themes, this is a particularly important point.

CSS enables you to target different classes of devices in some cases without requiring new ❑

HTML markup, such as mobile devices like PDAs or smartphones. Because of their constrained
screen size, it is necessary to adapt the output for them, so that the content fi ts the small screen
well and is easily readable. You can do this with a specifi c stylesheet that changes the size and
position of some containers (placing them one under the other, rather than in vertical columns),
or hide them completely. For example, you might hide the container for the banners, polls, and
the header with a big logo. Try to do this if you use tables — it will be much more diffi cult.
You’ll have to think about a custom skinning mechanism, and you’ll need to write separate
pages that defi ne the different layouts available. This is much more work than just writing a
new CSS fi le.

Note that the preceding discussion refers to avoiding the use of tables for the site’s overall layout.
However, using tables is acceptable to create input forms with a tabular structure because otherwise too
much CSS code would be required to be easily writeable and maintainable. It’s also not very likely that
you’ll need to dynamically change the layout of the input form, so you don’t need all the fl exibility of
CSS for that, and using HTML tables is more immediate.

Sharing the Common Design among Multiple Pages
Once you fi nish creating your beautiful site design, you need to fi nd a way to quickly apply it to n
pages, where n could be dozens or even hundreds of pages. Master pages are used to control the overall
layout of the site. They have replaced the common ASP.NET 1.1 practice of using a series of user controls
on every page. With Visual Studio 2008, it becomes very natural to develop with nested master pages.

Enter the Master Page Model
ASP.NET 2.0 introduced a master page feature that enables you to defi ne common areas that every page
will share, such as headers, footers, menus, and so on. A master page enables you to put the common
layout code in a single fi le and have it visually inherited in all the content pages. A master page con-
tains the overall layout for your site. Content pages can inherit the appearance of a master page, and
place their own content where the master page has defi ned a ContentPlaceHolder control.

What actually happens at runtime is that the content of the master page and the content page are merged
together as one cohesive unit. Behind the scenes, the master page actually injects itself in the child control
hierarchy of the Page class itself (see www.odetocode.com/Articles/450.aspx). If you think about it,
this makes perfect sense because the MasterPage class inherits the UserControl class, it is just a special
user control in reality.

87586c02.indd 1987586c02.indd 19 9/13/09 9:47:14 PM9/13/09 9:47:14 PM

20

Chapter 2: Developing the Site Design

Once the master page has injected itself into the content page’s control tree, it then looks for correspond-
ing Content controls for each of the ContentPlaceHolders declared in the master page’s markup. In
this action, the overall layout is produced and the page proceeds to build itself as expected. Figure 2-3
illustrates the hierarchy being implemented with master pages.

Page

MasterPage

HTMLForm

ContentPlaceHolder

Controls

Figure 2-3

All of this magic actually happens after the PreInit event, but before the Init event of the content
page. This means that the content page’s master page must be set in the PreInit event and not after it.
Generally, this will be done in the @Page Directive or the web.config fi le. But there are occasions
where you want to defi ne the actual master page at runtime, such as when you open your site up to lay-
out customizations by the end user. You just have to remember to do this in the PreInit event handler
or an InvalidOperationException will be thrown when your page is executed.

An example is worth a thousand words, so let’s see how this concept turns into practice. A master page
has a .master extension. Because it is an extended version of a UserControl, it can be programmed in
the same fashion. The following is code for a master page that contains some text, a header div tag, and
a footer div tag. It also defi nes a ContentPlaceHolder control between the header and the footer:

<%@ Master Language=”VB” AutoEventWireup=”true”
CodeFile=”MasterPage.master.vb” Inherits=”MasterPage” %>

<html>
<head id=”Head1” runat=”server”>
 <title>The Beer House</title>
</head>

<body>
<form id=”Main” runat=”server”>
 <div id=”header”>The Beer House</div>
 <asp:ContentPlaceHolder ID=”MainContent” runat=”server” />
 <div id=”footer”>Copyright 2008 WROX</div>
</form>
</body>
</html>

87586c02.indd 2087586c02.indd 20 9/13/09 9:47:14 PM9/13/09 9:47:14 PM

21

Chapter 2: Developing the Site Design

As you see, it is extremely similar to a standard page or user control, except that it has a @Master
directive at the top of the page instead of a @Page or @Control directive, and it declares one or more
ContentPlaceHolder controls where the .aspx pages will add their own content. The master page
and the content page will merge at runtime — therefore, because the master page defi nes the <html>,
<head>, <body>, and <form> tags, you can easily guess that the content pages must not defi ne them
again. Content pages defi ne the content for the master’s ContentPlaceHolder controls and nothing
else. The following extract shows an example of a content page:

<%@ Page Language=”VB” MasterPageFile=”~/MasterPage.master” AutoEventWireup=”false”
CodeFile=”MyPage.aspx.vb” Inherits=”MyPage” Title=”The Beer House - My Page” %>

<asp:Content ID=”MainContent” ContentPlaceHolderID=”MainContent” Runat=”Server”>
 My page content goes here...
</asp:Content>

The fi rst key point is that the @Page directive sets the MasterPageFile attribute to the virtual path of
the master page to use. The content is placed into Content controls whose ContentPlaceHolderID
must match the ID of one of the ContentPlaceHolder controls of the master page. In a content page,
you can’t place anything but Content controls, and other ASP.NET controls that actually defi ne the
visual features must be grouped under the outermost Content controls. Another point to note is that
the @Page directive has a new attribute, Title, that allows you to override the value specifi ed in the
master page’s <title> metatag. If you fail to specify a Title attribute for a given content page, then
the title specifi ed on the master page will be used instead.

Figure 2-4 illustrates the master page feature.

MasterPage.master

Master page

ContentPlaceHolder
control

MyPage.aspx at design time

+ =

Inherited master page

Content control matching
ContentPlaceHolder

MyPage.aspx at runtime

Master page and
content page

merged together

Figure 2-4

When you edit a content page in Visual Studio in Design or Split View, it properly renders both the
master page and the content page in the form designer, but the master page content appears to be
“grayed out.” This is done on purpose as a reminder to you that you can’t modify the content provided
by the master page when you’re editing a content page. Figure 2-5 shows the home page in design mode.
Notice how its master page is listed in the top-right corner (CRMaster.master), and the elements con-
tained in the master pages are rendered in the editor but are disabled.

87586c02.indd 2187586c02.indd 21 9/13/09 9:47:14 PM9/13/09 9:47:14 PM

22

Chapter 2: Developing the Site Design

Figure 2-5

I’d like to point out that your master page also has a code-behind fi le that could be used to write prop-
erties and functions that could be accessed in the .aspx or code-behind fi les of content pages. This is
because the master page is actually a user control, so working in a master page is almost identical to
working with a user control.

When you defi ne the ContentPlaceHolder in a master page, you can also specify the default content
for it, which will be used in the event that a particular content page doesn’t have a Content control for
that ContentPlaceHolder. Here is a snippet that shows how to provide some default content:

<asp:ContentPlaceHolder ID=”MainContent” runat=”server”>
 The default content goes here…
</asp:ContentPlaceHolder>

Default content is helpful to handle situations in which you want to add a new section to a number of
content pages, but you can’t change them all at once. You can set up a new ContentPlaceHolder in the
master page, give it some default content, and then take your time in adding the new information to the
content pages — the content pages that haven’t been modifi ed yet will simply show the default content
provided by the master.

Setting the MasterPageFile attribute at the page level may be useful if you want to use different mas-
ter pages for different sets of content pages. If, however, all pages of the site use the same master page,
it’s easier to set it once for all pages from the web.config fi le, by means of the <pages> element, as
shown here:

<pages masterPageFile=”~/Template.master” />

87586c02.indd 2287586c02.indd 22 9/13/09 9:47:14 PM9/13/09 9:47:14 PM

23

Chapter 2: Developing the Site Design

If you still specify the MasterPageFile attribute at the page level, however, that attribute will override
the value in web.config for that single page.

Nested Master Pages
You can take this a step forward and have a master page be the content for another master page. In
other words, you can have nested master pages, whereby a master page inherits the visual appearance
of another master page, and the .aspx content pages inherit from this second master page. The second-
level master page can look something like the following:

<%@ Master Language=”VB” MasterPageFile=”~/MasterPage.master”
AutoEventWireup=”false” CodeFile=”MasterPage2.master.vb”
Inherits=”MasterPage2” %>

<asp:Content ID=”Content1” ContentPlaceHolderID=”MainContent” Runat=”Server”>
 Some other content...
 <hr style=”width: 100%;” />
 <asp:ContentPlaceHolder ID=”MainContent” runat=”server” />
</asp:Content>

Because you can use the same ID for a ContentPlaceHolder control in the base master page and for
another ContentPlaceHolder in the inherited master page, you wouldn’t need to change anything in
the content page but its MasterPageFile attribute, so that it uses the second-level master page.

This possibility has great promise because you can have an outer master page that defi nes the very
common layout (often the company-wide layout), and then other master pages that specify the layout
for specifi c areas of the site, such as the online store section, the administration section, and so on.
Visual Studio 2005 did not have design-time support for nested master pages, making it very diffi cult
to manage development with nested master pages. Visual Studio 2008 has resolved that issue and made
working with master pages much easier all around. In this version of the Beer House I will leverage
several uses of nested master pages to allow a more fl exible design of the site. There will be child master
pages to defi ne two- and three-column layouts.

Other improvements around master pages in Visual Studio 2008 make it easier to see how styles are
applied to the layout, even through all the layers of master pages. While I tend to spend most of my
time working with the layout in the Source View, it is nice to be able to switch to Design View to get a
decent idea of how things are actually shaping up without launching the site. Figure 2-6 illustrates the
principle of nested master pages.

Primary master

Main content

Header

Footer

Nested master

+ =

Combined master

Content Parent and child
content

Side
column

Figure 2-6

87586c02.indd 2387586c02.indd 23 9/13/09 9:47:14 PM9/13/09 9:47:14 PM

24

Chapter 2: Developing the Site Design

Accessing the Master Page from the Content Page
You also have the capability to access the master page from a content page, through the page’s Master
property. The returned object is of type MasterPage, which inherits directly from UserControl
(remember that I said master pages are similar to user controls) and adds a couple of properties. It
exposes a Controls collection, which allows you to access the master page’s controls from the content
page. This may be necessary if, for example, in a specifi c page you want to programmatically access
a control on the master page, such as a TextBox, Button, or the like. Accessing the Controls collec-
tion directly would work, but would require you to do a manual cast from the generic Control object
returned to the right control type, such as a TextBox or Button. A much better, and objected-oriented,
approach is to add custom properties to the master page’s code-behind class. In fact you can create pub-
lic properties and functions in a MasterPage’s code-behind that can be accessed from the content page.
The following example wraps a property to enable or disable personalization. This is what you could
write in the MasterPage’s code-behind:

Private _enablePersonalization As Boolean = False
Public Property EnablePersonalization() As Boolean
 Get
 Return _enablePersonalization
 End Get
 Set(ByVal value As Boolean)
 _enablePersonalization = value
 End Set
End Property

Now in the content page you can add the following line after the @Page directive:

<%@ MasterType VirtualPath=”~/MasterPage.master” %>

With this line you specify the path of the master page used by the ASP.NET runtime to dynamically create
a strongly typed MasterPage class that exposes the custom properties added to its code-behind class. I
know that it seems a duplicate for the MasterPageFile attribute of the @Page directive, but that’s how
you make the master page properties visible in the content page. You can specify the master type not
just by virtual path (as in the preceding example) but also by name of the master page’s class, by means
of the TypeName attribute. Once you’ve added this directive, in the content page’s code-behind fi le (or
in a <script runat=”server”> section of the .aspx fi le itself), you can easily access the master page’s
EnablePersonalization property in a strongly typed fashion, as shown here:

Protected Sub Page_Load(ByVal sender As Object, ByVal e As System.EventArgs)
Handles Me.Load
 If Not IsPostBack Then
 Me.Master.EnablePersonalization = True
 End If
End Sub

When I say “strongly typed” I am implying that you’ll have Visual Studio IntelliSense on this property,
and that’s true: Type Me.Master. and when you press that second period, you’ll see your new property in
the IntelliSense list!

This methodology of accessing master objects from content pages is particularly useful when you want
to put common methods in the master page, to be used by all the pages that use it. If we didn’t have

87586c02.indd 2487586c02.indd 24 9/13/09 9:47:14 PM9/13/09 9:47:14 PM

25

Chapter 2: Developing the Site Design

access to a strongly typed MasterPage object built at runtime by ASP.NET, you’d need to use refl ection
to access those methods, which is slower and certainly much less immediate to use (in this case, it would
have been easier to put the shared methods in a separate class that every page can access).

You can cast the Master property to the master page type at runtime as well. This comes in handy
when you set the master page at runtime. You just have to know what the actual type the master page
is for your content page. By doing this, you can access any public members of the actual master page’s
class, including assigning event handlers.

Another thing to remember when using nested master pages is keeping track of which master page is
actually being referenced. If you are using nested master pages then the Master property of the class
returns a reference to that master page, not its master page. To access the parent master page, you need
to access the content page’s master page’s master page. Wow! Say that a few times real fast!

Protected Sub Page_Load(ByVal sender As Object, ByVal e As System.EventArgs) _
Handles Me.Load
 If Not IsPostBack Then
 Me.Master.Master.EnablePersonalization = True
 End If
End Sub

Switching Master Pages at Runtime
The last thing I want to describe in this introduction to master pages is the capability to dynamically
change the master page used by a content page at runtime. That’s right; you can have multiple master
pages and pick which one to use after the site is already running. You do this by setting the page’s
MasterPageFile property from within the page’s PreInit event handler, as follows:

Protected Sub Page_PreInit(ByVal sender As Object, ByVal e As EventArgs)
 Me.MasterPageFile = “~/OtherMasterPage.master”
End Sub

The PreInit event was new in ASP.NET 2.0, and you can only set the MasterPageFile property in
this event handler because the merging of the two pages must happen very early in the page’s life cycle
(the Load or Init event would be too late).

When changing the master page dynamically, you must make sure that all master pages have the same
ID for the ContentPlaceHolder controls, so that the content page’s Content controls will always
match them, regardless of which master page is being used. This exciting possibility enables you to
build multiple master pages that specify completely different layouts, allowing users to pick their
favorite one. The downside of this approach is that if you write custom code in the master page’s code-
behind fi le, you will need to replicate it in the code-beside class of any page; otherwise, the content
page will not always fi nd it. In addition, you won’t be able to use the strongly typed Master property,
because you can’t dynamically change the master page’s type at runtime; you can only set it with the
@MasterType directive.

This problem can be mitigated by creating a common base MasterPage class each of the MasterPage
variations inherit from. Any common member of the master pages would be contained in the parent
class. For example you would want to have the EnablePersonalization property defi ned in the com-
mon base class and, thus, available to any of the master page variations.

87586c02.indd 2587586c02.indd 25 9/13/09 9:47:14 PM9/13/09 9:47:14 PM

26

Chapter 2: Developing the Site Design

While changing a MasterPage at runtime is pretty cool, a more common practice used on the web is
changing stylesheets to produce a different layout. Because we’ve decided to use a table-free layout, we
can completely change the appearance of the page (fonts, colors, images, and positions) by applying dif-
ferent styles to it. ASP.NET provides a mechanism called themes to help us accomplish just that.

Creating a Set of User-selectable Themes
Themes were a new feature in ASP.NET 2.0 that enabled users to have more control over the look and
feel of a web page. A theme can be used to defi ne color schemes, font names, sizes and styles, and even
images (square corners versus round corners, or images with different colors or shades). The concept of
“skin” support was also new in ASP.NET 2.0. It is really an organized extension of CSS but applied at a
control level. Individual users can select a theme from various options available to them, and the spe-
cifi c theme they choose determines a “skin” that specifi es which visual stylistic settings will be used for
their user session. Skins are server-side relatives of CSS stylesheets. A skin fi le is similar to a CSS fi le,
but, in contrast to CSS, a skin can override various visual properties that were explicitly set on server
controls within a page (a global CSS specifi cation can never override a style set on a particular control).
You can store special versions of images with themes, which may be useful if you want several sets of
images that use a different color scheme based on the current skin. However, themes do not displace
the need to use CSS; you can use both CSS fi les and skin fi les to achieve a great deal of fl exibility and
control.

A special note about Web Controls and CSS: out of the box most do not render the content using container
controls and instead use tables. A good example is the Menu control, which the default version does not
even function correctly in IE 7 and above. This can be very ineffi cient and make your pages heavy. There is
a set of “CSS Friendly Control Adapters” that you can download to change the way the some of the default
Web Controls are rendered in the browser (http://cssfriendly.codeplex.com/). While we will
not cover the use of the control adapters in this book, it is worth your time to check out.

A theme is a group of related fi les stored in a subfolder under the site’s /App_Themes folder, which can
contain the following items:

Stylesheet . ❑ css fi les that defi ne the appearance of HTML objects.

Skin fi les that defi ne the appearance of server-side ASP.NET controls. You can think of them as ❑

server-side stylesheet fi les.

Other resources, such as images. ❑

One cool thing about the way ASP.NET implements themes is that when you apply a theme to the page
(you’ll learn how to do this shortly), ASP.NET automatically creates a <link> metatag in each page
for every .css fi le located in the theme’s folder at runtime. You should be aware the links generated
by Themes are in alphabetical order. This is very important because CSS rules are applied in a specifi c
order and you may have rules overridden if they are applied in an unexpected order. This is good
because you can rename an existing CSS fi le or add a new one, and all your pages will still automati-
cally link to all of them. This is especially important because, as you will see, you can dynamically
change the theme at runtime (as you can do with the master page), and ASP.NET will link the fi les in
the new theme’s folder, thus changing the site’s appearance to suit the preferences of individual users.
Without this mechanism, you would need to manually create all the <link> metatags at runtime
according to the theme selected by the user, which would be a pain.

87586c02.indd 2687586c02.indd 26 9/13/09 9:47:14 PM9/13/09 9:47:14 PM

27

Chapter 2: Developing the Site Design

As mentioned, themes can contain skin fi les. These are fi les with a .skin extension that contain one or
more declarations of ASP.NET controls, such as the following one:

<asp:TextBox runat=”server” BorderStyle=”Dashed” BorderWidth=”1px” />

Everything is the same as a normal declaration you would put into an .aspx page, except that in the
skin fi le you don’t specify the controls’ ID. Once you apply the theme to your page(s), their controls will
take on the appearance of the defi nitions written in the skin fi le(s). For a TextBox control, it may not
seem such a great thing, because you could do the same by writing a style class for the <input> HTML
element in a .css stylesheet fi le. However, as soon as you realize that you can do the same for more
complex controls such as the Calendar or the GridView control, you will see that it makes much more
sense. Those controls don’t have a one-to-one relationship with an HTML element, and thus you could
not easily defi ne their style with a single class in the classic stylesheet fi le. Note that not every control,
nor every attribute of the skinable controls, can be styled via skins.

You can have a single .skin fi le in which you place the defi nition for controls of any type, or you
can create a separate .skin fi le for every control type, such as TextBox.skin, DataGrid.skin,
Calendar.skin, and so on. At runtime, these fi les will be merged together in memory, so it’s just a
matter of organizing things the way you prefer.

To apply a theme to a single page, you use the Theme attribute in the @Page directive:

<%@ Page Language=”VB” Theme=”DarkBeer” MasterPageFile=”~/TBHMain.master” … %>

To apply it to all pages, you can set the theme attribute of the <pages> element in web.config, as
follows:

<pages theme=”DarkBeer” masterPageFile=”~/TBHMain.master” />

As for master pages, you can also change the theme programmatically, from inside the PreInit event
of the Page class. For example, this is how you apply the theme whose name is stored in a Session
variable:

Protected Sub Page_PreInit(ByVal sender As Object, ByVal e As EventArgs)
 If Me.Session(“CurrentTheme”) IsNot Nothing Then
 Me.Theme = Me.Session(“CurrentTheme”)
 End If
End Sub

In Chapter 5, we will improve this mechanism by replacing the Session variables with Profile
properties.

When you use the Theme attribute of the @Page directive (or the theme attribute in
web.config), the appearance attributes you specify in the skin fi les override the
same attributes that you may have specifi ed in the .aspx fi les. If you want themes
to work like .css stylesheets — whereby you defi ne the styles in the .skin fi les,
but you can override them in the .aspx pages for specifi c controls — you can do
that by linking to a theme with the StylesheetTheme attribute of the @Page direc-
tive, or the styleSheetTheme attribute of the <pages> element in web.config. Try
not to confuse the Theme attribute with the StylesheetTheme attribute.

87586c02.indd 2787586c02.indd 27 9/13/09 9:47:14 PM9/13/09 9:47:14 PM

28

Chapter 2: Developing the Site Design

So far, I’ve described unnamed skins — namely, skins that defi ne the appearance of all the controls of
a specifi c type. However, in some cases you will need to have a control with an appearance that differs
from what you’ve defi ned in the skin fi le. You can do this in three different ways:

 1. As described previously, you can apply a theme with the StylesheetTheme property (instead
of the Theme property), so that the visual properties you write in the .aspx fi les override what
you write in the skin fi le. However, the default behavior of the theming mechanism ensures that
all controls of some type have the same appearance, which was intended for situations in which
you have many page developers and you can’t ensure that everyone uses attributes in the .aspx
pages only when strictly required.

 2. Disable theming for that control only, and apply the appearance attributes normally, as in the
following code:

<asp:TextBox runat=”server” ID=”btnSubmit” EnableTheming=”False”
 BorderStyle=”Dotted” BorderWidth=”2px” />

 3. Use a named skin for a control, which is a skin defi nition with the addition of the SkinID attri-
bute, as shown here:

<asp:Label runat=”server” SkinID=”FeedbackOK” ForeColor=”green” />
<asp:Label runat=”server” SkinID=”FeedbackKO” ForeColor=”red” />

When you declare the control, you’ll need to use a matching value for its SkinID property, such
as the following:

<asp:Label runat=”server” ID=”lblFeedbackOK”
 Text=”Your message has been successfully sent.”
 SkinID=”FeedbackOK” Visible=”false” />

<asp:Label runat=”server” ID=”lblFeedbackKO”
 Text=”Sorry, there was a problem sending your message.”
 SkinID=”FeedbackKO” Visible=”false” />

In my opinion, this is the best way to go, because it enables you to defi ne multiple appearances for the
same control type, all in a single fi le, and then apply them in any page. Additionally, if you keep all
style defi nitions in the skin fi les instead of in the pages themselves, you’ll be able to completely change
the look and feel of the site by switching the current theme (which is the intended purpose behind
themes). Otherwise, with hard-coded styles, this is only partially possible.

In the “Solution” section of this chapter, you’ll use themes to create a few different visual representa-
tions for the same master page.

Creating a Navigation System
The Menu control and the use of a static SiteMap fi le to defi ne navigation are useful for relatively static
sites, but a truly dynamic and growing site like the Beer House needs a way to grow and adjust as new
content is added to the site. While the main navigation of the site will stay fairly static, the use of the
BreadCrumb navigation control will benefi t from a full and accurate site map.

ASP.NET sites are dynamic and grow and expand all the time. Many are a content management system
if you actually look at them objectively. An online store, for example, routinely changes its catalog and,
thus, the overall site map.

87586c02.indd 2887586c02.indd 28 9/13/09 9:47:14 PM9/13/09 9:47:14 PM

29

Chapter 2: Developing the Site Design

Because the vast majority of ASP.NET sites are driven by a backend database, typically SQL Server, we
will create a custom SiteMapProvider driven by a table in the database. The nice thing about driving
from a site map table is we can add and remove nodes to and from the overall map as needed. This means
that each time there is a new article, event, photo, or poll added to the site it can be added to the site map
table. It also means that, when an article expires or content is removed from the site, it can be removed
from the site in real time.

Maintaining the site map in the database will also make it easier for search engine spiders to crawl our
site. We will create a custom HttpHandler to render a SiteMaps.org-compliant site map.

In addition to showing the menu, you want to provide users with a visual clue as to where they are and
some way to allow them to navigate backward from their current location to the home page. This is
usually done through the use of breadcrumbs, a navigation bar that shows links to all pages or sections,
starting from the home page, that the user visited to arrive on the current page, such as the following:

 Home > Store > Shopping cart

With this navigation system, the user can go back two pages without pressing the browser’s Back button
and without starting over from the home page and trying to remember the path previously followed.
With ASP.NET, you can add a breadcrumb bar with a single line of code by declaring an instance of the
SiteMapPath control on the page:

<asp:SiteMapPath ID=”SiteMapPath1” runat=”server” />

As usual, this control has a number of properties that enable you to fully customize its look and feel, as
you’ll see in practice in the “Solution” section.

Creating XHTML-Compliant and -Accessible Sites
All ASP.NET built-in standard controls render well-formatted XHTML 1.0 Transitional code by default.
XHTML code is basically HTML written as XML, which means it must comply with much stricter
syntax rules. For example, all attribute values must be enclosed within double quotation marks, all
tags must have a closing tag or must be explicitly self-closing (e.g., no more
 and ,
but
 and), and nested tags must be closed in the right order (e.g., no more
<p>hello Chris</p> but <p>Hello Chris</p>). In addition, many HTML tags
meant to format the text, such as , <center>, <s>, and the like are now deprecated and should
be replaced by CSS styles (such as font-family: Verdana; text-align: center). The same is true
for some attributes of other tags, such as width and align.

The reasoning behind this new standard is to attain a greater separation of presentation and content
(something I’ve explained earlier) and to create cleaner code — code that can be read by programs that
work with XML data. The fact that ASP.NET automatically renders XHTML code, as long as you use
its controls, is a great time saver for the developer and makes the process of getting used to XHTML
smoother. The offi cial W3C documentation about XHTML 1.0 can be found at www.w3.org/TR/xhtml1/.

W3C’s online HTML validator (http://validator.w3.org) allows you to supply
your HTML, which it analyzes and then provides you with a list of improper
markup. You can supply your HTML by pasting the code in the browser and sub-
mitting it, uploading a fi le, or pointing the validator to a public URL.

87586c02.indd 2987586c02.indd 29 9/13/09 9:47:14 PM9/13/09 9:47:14 PM

30

Chapter 2: Developing the Site Design

At the top of every top-level master page (one without a parent) or Web Form not using a master page,
you will fi nd the following markup:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

This is a directive telling the browser which version of HTML or XHTML the page is using. If this
directive is omitted, the browser will render the page in Quirks mode. This is a mode in which the
browser assumes the page is invalid, and therefore the page may not render correctly in the browser.
The !DOCTYPE directive is required for XHTML compliance.

As for accessibility, the W3C defi nes a set of rules meant to ease the use of the site by users with disabil-
ities. The offi cial page of the Web Content Accessibility Guidelines 1.0 (commonly referred as WCAG)
can be found at www.w3.org/TR/WCAG10. Section 508 guidelines were born from WCAG, and must be
followed by U.S. federal agencies’ sites, as well as by the sites of most companies that want to do busi-
ness with the U.S. government. You can read more at www.section508.gov. For example, you must use
the alt attribute in tags to provide an alternate text for visually impaired users, so that screen
readers can describe the image, and you must use the <label> tag to associate a label to an input fi eld.

Other guidelines are more diffi cult to implement and are not specifi cally related to ASP.NET, so
you can check out the offi cial documentation for more information. ASP.NET makes it easier to
follow some of the simpler rules, such as those mentioned previously. For example, the Image
control has a GenerateEmptyAlternateText property that, when set to true, generates alt=”“
(setting AlternateText=”“ would generate nothing instead), and the Label control has the
AssociatedControlID property that is set to the name of an input control and at runtime generates
the <label> control for it (this should be used together with the AccessKey property, to create short-
cuts to the input fi eld).

If you want to read more about XHTML, accessibility, and the ASP.NET features that pertain to this
subject, you can refer to the following online articles: Alex Homer’s “Accessibility Improvements in
ASP.NET 2.0 — Part 1” (www.15seconds.com/issue/040727.htm) and “Accessibility Improvements
in ASP.NET 2.0 - Part 2” (www.15seconds.com/issue/040804.htm), or Stephen Walther’s “Building
ASP.NET 2.0 Web Sites Using Web Standards” (http://msdn.microsoft.com/en-us/library/
aa479043.aspx).

Sharing a Common Behavior among All Pages
Master pages and themes do a great job of sharing the same design and look and feel among all pages
of the site. However, you may also want the pages to share some common behavior, that is, code to
run at a certain point of their life cycle. For example, if you want to log access to all pages so that
you can build and show statistics for your site, you have to execute some code when the page loads.
Another case where you need to run some code for every page is when you need to set the page’s Theme
property in the PreInit event handler. It’s true that you can isolate the common code in an external
function and just add a line of code to execute it from within each page, but this approach has two
drawbacks:

You must never forget to insert that line to call the external function when you design a new ❑

page. If multiple developers are creating .aspx pages — which is often the case — you will need
to make sure that nobody forgets it.

87586c02.indd 3087586c02.indd 30 9/13/09 9:47:14 PM9/13/09 9:47:14 PM

31

Chapter 2: Developing the Site Design

You may want to run some initialization from inside the ❑ PreInit event and some other code
from the Load event. In this case, you have to write two separate xxxInitialize methods, and
add more lines to each page to call the proper method from inside the proper event handler.
Therefore, don’t rely on the fact that adding a single line to each page is easy, because later you
may need to add more and more. When you have hundreds of pages, I’m sure you’ll agree that
going back and modifying all the pages to add these lines is not a workable solution.

These two disadvantages are enough to make me discard that option. Another option is to write the
common code in the master page’s code-behind. This may be a very good choice in many situations.
Not in our case, however, because we must handle the PreInit event, and the MasterPage class (and
its base classes) does not have such an event. You can handle the Init or Load events, for example, but
not PreInit, so we must think of something else.

In the previous editions of this book, there was a BasePage class from which all the content pages would
inherit, instead of inheriting directly from the standard System.Web.UI.Page class. I believe this is still
the best option, because you can handle any page event from inside this class by overriding the OnXXX
methods, where XXX is the event name.

The snippet that follows is a basic skeleton for such a custom base class that inherits from Page and
overrides the OnPreInit and OnLoad methods:

Public Class BasePage
Inherits System.Web.UI.Page

Protected Overrides Sub OnPreInit(ByVal e As System.EventArgs)

 ‘ add custom code here...

MyBase.OnPreInit(e)
End Sub

Protected Overrides Sub OnLoad(e as EventArgs)

 ‘ add custom code here

 Mybase.OnLoad(e)
End Sub
End Class

The classes in the pages’ code-behind fi les will then inherit from your custom BasePage, rather than
the standard Page, as shown here:

Public Partial Class Contact
 Inherits BasePage

 ‘ normal page code here...

End Sub

You still need to change some code in the code-behind class of every page but, once that’s done, you can
later go back to BasePage, add code to the existing methods or overload new methods, and you will not
need to modify any additional lines in the code-behind classes. If you take this approach initially, you’ll

87586c02.indd 3187586c02.indd 31 9/13/09 9:47:14 PM9/13/09 9:47:14 PM

32

Chapter 2: Developing the Site Design

modify the code-behind classes one by one as you create them, so this will be easy and it gives you a
future-proof design.

Solution
Now that we have laid out the visual requirements of the site, it’s time to start working on the layout.
You can go about this many different ways. If you are working with a designer, they will most likely
work on a complete layout in Photoshop and provide a PSD fi le. Designers can often create some pretty
amazing layouts. What I have experienced over the years, though, is that some of those designs are not
fl exible enough for dynamic sites that ASP.NET data-driven applications require because the content
is variable. For this reason, you should strive to be a part of the design process to advise the designers
about what ramifi cations their choices may have on the actual implementation.

I have learned to keep my site designs simple, fl exible, and manageable, over the years. So, the layout
that I created for this version of the Beer House consists of a stock photo under Creative Commons
license and some supporting graphics I created using Paint.NET. The layout is applied by CSS stylesheets,
as part of a theme. This choice means that I can quickly change the color scheme and supporting graphics
simply by changing the stylesheet or theme applied to the site or even the page.

First, create a new website project in Visual Studio .NET 2008 (File ➪ New Web Site or Shift+Alt+N).
You can create a project by specifying a folder on the fi le system (instead of specifying a web location)
if you select File System in the Location drop-down list, as shown in Figure 2-4. You can also specify a
location via Http or Ftp as well. Also notice that, in Visual Studio 2008, you can also specify the frame-
work version the site will be developed against. You can select 3.5 (which you will want to keep to build
the application in this book), 3.0, or 2.0. The reason you can do this with Visual Studio 2008 is the .NET
Common Language Runtime (CLR) for each of these platforms is built around version 2.0, so in essence
the 3.x versions of the .NET Framework are merely additions to the 2.0 release.

Figure 2-7

87586c02.indd 3287586c02.indd 32 9/13/09 9:47:15 PM9/13/09 9:47:15 PM

33

Chapter 2: Developing the Site Design

This enables you to create an ASP.NET project without creating a related virtual application or virtual
directory in the IIS metabase (the metabase is where IIS stores its confi guration data), and the project is
loaded from a real hard disk folder, and executed by an integrated lightweight web server (called ASP.
NET Development Server) that handles requests on a TCP/IP port other than the one used by IIS (IIS
uses port 80). The actual port number used is determined randomly every time you press F5 to run the
website in debug mode or Ctrl+F5 to run without debug mode. For example, it handles requests such as
http://localhost:1168/ProjName/Default.aspx. This makes it much easier to move and back up
projects, because you can just copy the project’s folder and you’re done — there’s no need to set up any-
thing from the IIS Management console. In fact, Visual Studio 2008 does not even require IIS unless you
choose to deploy to an IIS web server, or you specify a web URL instead of a local path when you create
the website project.

If you’ve developed with any previous version of ASP.NET or Visual Studio prior to 2005, I’m sure
you will welcome this option. I say this is an option because you can still create the project by using a
URL as project path — creating and running the site under IIS — by selecting HTTP in the Location
drop-down list. I suggest you create and develop the site by using the File System location, with the
integrated web server, and then switch to the full-featured IIS web server for the test phase. VS2008
includes a deployment wizard that makes it easier to deploy a complete solution to a local or remote
IIS web server. For now, however, just create a new ASP.NET website in a folder you want, and call it
TheBeerHouse35.

The integrated web server was developed to make development and quick testing
easier. However, you should never use it for fi nal quality assurance or integration
testing. Use IIS for that. IIS has more features, such as caching, HTTP compression,
and many security options that can make your site run very differently from what
you see in the new integrated ASP.NET Development Server.

One of the reasons for this is that all requests for any resource are passed through
the development web server and processed by the ASP.NET engine. This means
that any images, stylesheets, and so forth will be processed by the entire ASP.NET
pipeline. Therefore, you may notice some minor differences between the experience
with the development web server from a production deployment using IIS 6 or 7. All
testing prior to approving a production push should be done in as close to real
environment as possible to ensure that the application functions as desired the
fi nal environment.

After creating the new website, right-click on Default.aspx and delete it. We’ll make our own default
page soon.

Creating the Site Design
Creating the master page with the shared site design is not that diffi cult once you have a mocked-up
image (or a set of images if you made them separately). Basically, you cut the logo and the other graph-
ics and put them in the HTML page. The other parts of the layout, such as the menu bar, the columns,
and the footer, can easily be reproduced with HTML elements such as DIVs. Figure 2-8 shows the site
layout. It is composed of an image found under a Creative Commons license and a few custom-created
graphics. I used Paint.NET to create the simple Beer House logo and a gradient background for the
menu. The remaining elements are a collection of DIV elements and cascading stylesheets.

87586c02.indd 3387586c02.indd 33 9/13/09 9:47:15 PM9/13/09 9:47:15 PM

34

Chapter 2: Developing the Site Design

Header DIV Logo Photo from Creative Commons Gradient

Content DIV Footer DIV

Figure 2-8

In this book I am assuming a certain amount of familiarity with ASP.NET and
Visual Studio .NET. More specifi cally, I assume that you have a working knowledge
of the basic operation of any previous version of Visual Studio .NET. Therefore, the
steps I explain here focus on the changes in version 2.0–3.5 but do not cover every
small detail. If you are not comfortable following the steps presented here, consult
a beginner’s book on ASP.NET before tackling this project.

Creating the Master Page
After creating the website, create a new master page fi le (select Website ➪ Add New Item ➪ Master
Page, and name it TBHMain.master), and then use the visual designer to add the ASP.NET server-side
controls and static HTML elements to its surface. However, when working on laying out a page, I’ve
found that the visual designer cannot provide the fl exibility and control I desire. I fi nd it easier to work
directly in the Source View and write the code by hand. As I said earlier, creating the master page is not
much different from creating a normal page; the most notable differences are just the @Master directive
at the top of the fi le and the presence of ContentPlaceHolder controls where the .aspx pages will plug
in their own content. What follows is the code that defi nes the basic layout for the new Beer House site
in the fi le TBHMain.master:

87586c02.indd 3487586c02.indd 34 9/13/09 9:47:15 PM9/13/09 9:47:15 PM

35

Chapter 2: Developing the Site Design

<%@ Master Language=”VB” CodeFile=”TBHMain.master.vb” Inherits=”TBHMain” %>

<%@ Register Src=”controls/FooterCopyright.ascx” TagName=”FooterCopyright”
TagPrefix=”uc1” %>
<%@ Register Src=”controls/ThemeSelector.ascx” TagName=”ThemeSelector”
TagPrefix=”uc2” %>
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml”>
<head id=”Head1” runat=”server”>
 <title>The Beer House</title>
 <asp:ContentPlaceHolder ID=”head” runat=”server”>
 </asp:ContentPlaceHolder>
</head>
<body runat=”server” id=”pageBody”>
 <form id=”form1” runat=”server”>
 <div id=”dHeader”>
 ...
 </div>
 <div id=’dContainer’>
 <asp:ContentPlaceHolder ID=”MainContent” runat=”server”>
 </asp:ContentPlaceHolder>
 </div>
 <div id=”dMainfooter”>
 …
 </div>
 </form>
</body>
</html>

Similar to the way that the table content does not render until the entire table has
been downloaded, all rendering is stopped as soon as JavaScript is encountered.
By specifi cation, all browsers stop everything until the entire script is loaded and
evaluated; this mean loaded either from the server or inline scripts. This is why
pushing any JavaScript routines to dedicated fi les instead of inline scripts is vital
to a web application’s performing fast.

A page is composed of a series of nested DIV elements, such as the header, content, and footer areas.
Inside each of these DIV elements will be more DIV or SPAN tags that further defi ne the actual layout
of the page. Something of interest in the new layout is that it leverages nested master pages. This gives
us the fl exibility of defi ning multiple implementations of a classic two- or three-column layout. For
example, the home page is a three-column layout where the main content section is the wider than the
two side columns. There are two nested master pages used in the site, one with a narrow column to the
left of the primary content, the other with a narrow column to the right of the main content.

The primary master page is a collection of DIVs that are used throughout the site, such as the header, the
main content area, and the footer. At the top of the layout architecture is a main DIV with the ID of dHeader.
This DIV contains the markup that defi nes the common header used in the layout, the header, and hori-
zontal navigation. Inside the dHeader element there are two child DIV tags, dMainHeader and dMainNav.

 <div id=”dHeader”>
 <div id=”dMainHeader”>

87586c02.indd 3587586c02.indd 35 9/13/09 9:47:15 PM9/13/09 9:47:15 PM

36

Chapter 2: Developing the Site Design

 </div>
 <div id=”dMainNav”>
 </div>
 </div>

The dHeader, dContent, and dMainFooter elements share common positioning style rules, so they
have a common style defi nition. This defi nition is used to position the elements in the horizontal center
with a width of 780 pixels and no border. Further, the use of a background image is defi ned to start at
the top-left corner with no scrolling.

Why 780 pixels? Until recently a large majority of computer users had a screen res-
olution of 800 × 600 pixels, so a browser set to full screen would only have 800 pixels
available to it horizontally. Add a vertical scroll bar 20 pixels wide and you have
780 pixels. Even with the advent of higher screen resolutions and much larger mon-
itors, sticking to this rule is generally a good idea. Average users are still in the
1024 × 768 or just slightly higher resolutions. Advanced users will go much higher,
but with the added real estate, most users do not go full screen with their browsers.
The style defi nitions can be altered to allow the page to fi ll 100% of the horizontal
space, but in the case of this layout, the header background image will not extend
to fi ll anything past 780 pixels. Background images do not scale using CSS, but
rather repeat. This means that setting the width of the Beer House to 100% width
would cause the header image to repeat. The ultimate decision is usually a matter
of personal preference rather than a functional decision.

Here are the style properties shared by all of the main layout elements:

div#dHeader, div#footer, div#dContainer
{
 background-position: 0 0;
 background: none repeat scroll 0 0;

 border: none;
 width: 780px;
 margin: auto;
}

Creating the Header Element
The dMainHeader DIV is composed of several child DIV elements for the logo, login elements, and
theme selection.

<div id=”dMainHeader”>
 <div id=”dLogo”>
 <img src=”~/images/tbh_logo.gif” runat=”server”
alt=”The Beer House” enableviewstate=”false” />
 </div>
 <div id=”dLoginLinks”>
 <div id=”dLoginMenu”>
 <a id=”btnDisplayLogin”
href=”javascript:DisplayLoginHandler();”
class=”LoginLink”>Login</div>

87586c02.indd 3687586c02.indd 36 9/13/09 9:47:15 PM9/13/09 9:47:15 PM

37

Chapter 2: Developing the Site Design

 <div id=”dLogoutMenu”>
 <div id=”dUserName”>
 </div>
 <a id=”btnDisplayLogout” href=”javascript:logoutHandler();”
class=”LoginLink”>Log Out
 </div>
 </div>
 <div id=”dThemeselector”>
 <uc2:ThemeSelector ID=”ThemeSelector1” runat=”server” />
 </div>
</div>

Each of these elements has further style rules used to defi ne their positioning and visual representa-
tions. The dMainHeader uses a background-image (the beer steins from Creative Commons), a height
of 80 pixels, and width of 780 pixels. clear is set to both, clearing the element’s fl oating inheritance
from its parent element. both designates both left and right clearing.

/* Header Elements */

#dMainHeader
{
 background-image: url(‘images/bh_header.png’);
 clear: both;
 color: #800000;
 float: left;
 height: 80px;
 padding: 0;
 width: 780px;
}

H1.dMainHeader
{
 font-size: 24px;
 font-weight: bold;
 color: #996633;
}

#dLogo
{
 width: 480px;
 float: left;
 margin-right: 40px;
 margin-left: 40px;
}

#dLoginLinks
{
 width: 200px;
 float: right;
 margin-top: 10px 5px 0 0;
 padding-right: 10px;
 padding-top: 10px;
}

87586c02.indd 3787586c02.indd 37 9/13/09 9:47:15 PM9/13/09 9:47:15 PM

38

Chapter 2: Developing the Site Design

/* Login */

#dLoginMenu
{
 text-align: right;
 display: none;
}

#dLogoutMenu
{
 text-align :right;
 display: none;
}

a.LoginLink:link
{
 padding: 2px 1px 2px 1px;
 color: #FFFFFF;
 font-size: Small;
 text-decoration: none;
 font-weight: bolder;
}

a.LoginLink:visited
{
 padding: 2px 1px 2px 1px;
 color: #FFFFFF;
 font-size: Small;
 text-decoration: none;
 font-weight: bolder;
}

a.LoginLink:active
{
 padding: 2px 1px 2px 1px;
 color: #FFFFFF;
 font-size: Small;
 text-decoration: none;
 font-weight: bolder;
}

a.LoginLink:hover
{
 padding: 2px 1px 2px 1px;
 color: #FFFFFF;
 font-size: Small;
 text-decoration: none;
 font-weight: bolder;
}

/* Themes */
#dThemeselector
{
 text-align: right;

87586c02.indd 3887586c02.indd 38 9/13/09 9:47:15 PM9/13/09 9:47:15 PM

39

Chapter 2: Developing the Site Design

 height: 80px;
 padding: 2px;
 font-size: 10px;
 margin-top: 50px;
 margin-right: 10px;
 color: #FFFFFF;
}

#dThemeselector select
{
 color: black;
 background-color: #e1e1e1;
 font-size: 10px;
}

Creating a Menu with CSS
The next section in the header is the site’s primary horizontal navigation, composed of a specially styled
unordered list (). There are actually two child DIVs in the dMainNav DIV: dMenu and dSocial. The
fi rst DIV is the traditional menu; the second is a series of image links pointing to Beer House pages on
various social networking sites. Following is a list of the dMainNav’s style properties; they defi ne the
background gradient image, dimensions, and position of the element.

#dMainNav
{
 background: url(images/menu_bg.gif) repeat-x;
 float: left;
 padding: 2px 0 0px 0;
 top: 85px;
 height: 28px;
 bottom: 100px;
 left: 1px;
 width: 780px;
 font-family: Arial, Helvetica, sans-serif;
}

The horizontal menu is defi ned by a series of style selectors applied to the UL and its child elements. The
most important rule to notice is the one applied to the list items (). It defi nes how each of the list
items is rendered in the list, which is inline. This tells the browser not to render the list as a stacked
list of elements, but rather as if it is normal text or horizontal. Once this is defi ned, the remaining rules
defi ne the actual appearance, such as spacing, size, and colors for the elements in the list. Collectively,
these rules defi ne a list of horizontal links that compose a nice horizontal menu. The resulting HTML
output is much thinner than the output of the Menu control, which outputs a large set of nested tables to
accomplish the same effect. Similar rules are applied to the dSocial element to display the social site
icon links. Following is the HTML markup:

<div id=”dMenu”>

 <a href=”<% =ResolveUrl(“default.aspx”) %>”>
Home
 <a href=”<% =ResolveUrl(“showcategories.aspx”) %>”>
Articles
 <a href=”<% =ResolveUrl(“ShowDepartments.aspx”) %>”>

87586c02.indd 3987586c02.indd 39 9/13/09 9:47:15 PM9/13/09 9:47:15 PM

40

Chapter 2: Developing the Site Design

Store
 <a href=”<% =ResolveUrl(“BrowseEvents.aspx”) %>”>
Events
 <a href=”<% =ResolveUrl(“ShowForums.aspx”) %>”>
Forum
 <a href=”<% =ResolveUrl(“BrowseAlbums.aspx”) %>”>
Gallery
 <a href=”<% =ResolveUrl(“About.aspx”) %>”>
About
 <li id=”liAdmin”><a href=”<% =ResolveUrl(“Admin”) %>”>
Admin

</div>

Here are the styles applied to the menu:

#dMenu
{
 width: 550px;
 float: left;
}

#dMenu ul
{
 clear: left;
 float: left;
 width: 100%;
 list-style: none;
 margin: 1px 0 0 0;
 padding: 0;
}

#dMenu ul li
{
 display: inline;
 list-style: none;
 margin: 0;
 padding: 0;
}

#dMenu ul li a
{
 display: block;
 float: left;
 margin: 0 0 0 1px;
 padding: 3px 10px;
 text-align: center;
 color: #FFFFFF;
 text-decoration: none;
 position: relative;
 left: 15px;
 font-size: medium;
}

87586c02.indd 4087586c02.indd 40 9/13/09 9:47:15 PM9/13/09 9:47:15 PM

41

Chapter 2: Developing the Site Design

#dMenu ul li a:hover
{
 background: transparent;
 color: #CECECE;
}

#dMenu ul li a.active, #dMenu ul li a.active:hover
{
 font-weight: bolder;
}

#dMenu ul li a span
{
 display: block;
}

Creating the Footer Section
The footer section is a collection of two DIVs — one for navigation and one for a copyright notice. The
menu is, again, a UL and applies similar style rules as the primary navigation. The other DIV contains
the site’s copyright notice — more on that later.

<div id=”dMainfooter”>
<div id=”footermenu”>

 <a href=”<% =ResolveUrl(“default.aspx”) %>”>
Home
 <a href=”<% =ResolveUrl(“showcategories.aspx”) %>”>
News
 <a href=”<% =ResolveUrl(“ShowDepartments.aspx”) %>”>
Store
 <a href=”<% =ResolveUrl(“BrowseEvents.aspx”) %>”>
Events
 <a href=”<% =ResolveUrl(“BrowseAlbums.aspx”) %>”>
Gallery
 <a href=”<% =ResolveUrl(“Contact.aspx”) %>”>
Contact
 <a href=”<% =ResolveUrl(“Privacy.aspx”) %>”>
Privacy
 <a href=”<% =ResolveUrl(“Terms.aspx”) %>”>
Terms
 <a href=”<% =ResolveUrl(“SiteMap.aspx”) %>”>
Site Map

 </div>
 <div id=”footerCopyright”>
 <uc1:FooterCopyright ID=”FooterCopyright1” runat=”server”
CompanyName=”The BeerHouse”
 StartYear=”2003” EnableViewState=”false” />
 </div>

</div>

87586c02.indd 4187586c02.indd 41 9/13/09 9:47:15 PM9/13/09 9:47:15 PM

42

Chapter 2: Developing the Site Design

There are some more elements that complete the main master page for the login dialog, and those will
be explained in Chapter 4. The remaining element is nested between the header and footer elements
and contains a ContentPlaceHolder control named MainContent.

Creating the Main Content Sections in Nested Master Pages
There are two more master pages used in the site, plus another for the site’s administration. The
remaining two master pages; LCMaster.master (2-Column layout with thin right column and left
primary content) and CRMaster.master (another 2-Column layout with a thin left column and
right primary content). Both of these master pages are nested master pages from the primary master
page. Inside each of these master pages is a Content control that corresponds to the MainContent
ContentPlaceHolder of the TBHMain.master page. Each of these child master pages contains two
DIV elements, one for the primary content of the page and one for a side column with ancillary content.
The side column contains a link to the site’s overall RSS feed and then a ContentPlaceHolder control
that lets the actual page set the remaining content.

<div id=’left-column’>
 <div id=”dRSS”>
 Subscribe:
 <img id=”Img1” runat=”server” src=”~/images/beercap.gif” border=”0”
 alt=”Follow The BeerHouse via RSS.” />
 <hr />
 </div>
 <asp:ContentPlaceHolder ID=”RightColumn” runat=”server”>
 </asp:ContentPlaceHolder>
</div>
<div id=’right-main-content’>
 <asp:SiteMapPath runat=”server” ID=”TBHSiteMapPath”
CssClass=”tbhSiteMapPath” ParentLevelsDisplayed=”2”>
 </asp:SiteMapPath>
 <asp:ContentPlaceHolder ID=”CenterColumn” runat=”server”>
 </asp:ContentPlaceHolder>
</div>

The primary content DIV contains a SiteMapPath control and a ContentPlaceHolder. I’ll discuss the
SiteMapPath in more detail in the next chapter. I want to point out here the use of a DIV element with
a specifi c name. In the preceding example, the content DIV is named right-main-content. The other
child master page uses left-main-content. This allows different style rules to be defi ned for each ele-
ment to position them either on the left or right side of the page.

When pages are rendered by ASP.NET, the markup will contain the DIV elements in the desired nesting
hierarchy. The reason the columns are contained within a wrapping DIV element is to keep the footer
element below the dynamic content rendered by the site. The two columns apply style rules that defi ne
their fl oat or horizontal position and their width:

#left-main-content, #right-main-content
{
 background-color:#FFF;
 margin:5px;
 min-height:400px;
 width:570px;
}

#left-main-content

87586c02.indd 4287586c02.indd 42 9/13/09 9:47:15 PM9/13/09 9:47:15 PM

43

Chapter 2: Developing the Site Design

{
 border-right:thin solid #000080;
 float:left;
}

#right-main-content
{
 border-right:thin solid #000080;
 float:right;
}

#right-column, #left-column
{
 background-color: #E6BB70;
 margin: 4px;
 min-height: 190px;
 width: 180px;
}

#right-column
{
 float: right;
 left: 380px;
}

#left-column
{
 clear:left;
 float: left;
 margin-right: 5px;
}

A quick tutorial on the CSS Box Model is in order. Every element in HTML is defi ned as a box or a rect-
angle. The position of the box is determined by the Top, Left, Right, and Bottom values, which are
either an integer value or a percentage. There are different unit types, but I use pixels (px) throughout
this book to keep it simple. Generally I use absolute positioning, but this may vary from relative to
static as needed. When absolute positioning is used the values for the position are calculated from the
containing element, which would be the body, a DIV, and so on. As you will see by examining the lay-
out of the new Beer House, this helps control where content is rendered (see Figure 2-9).

Margin
Padding

Border

Content

Figure 2-9

87586c02.indd 4387586c02.indd 43 9/13/09 9:47:15 PM9/13/09 9:47:15 PM

44

Chapter 2: Developing the Site Design

In the actual Box Model, there are three important value groups to understand: margin, border, and pad-
ding. The margin is the effective space around the box from another element. Think of it as cellspacing
in a table. The border defi nes a line that designates one or more of the sides of the box and can have its
style, width, and color defi ned. Padding refers to the space between the border and the actual content of
the element. Effective use of these values enables you to produce some pretty stunning layout effects.

Figure 2-10 shows these concepts being applied to the About page.

Margin: 0px; or Margin: auto;Padding

Figure 2-10

Creating a Three-Column Layout
A three-column layout that keeps the footer below all the page’s content is often referred to as the Holy
Grail of CSS layouts.

The only page in the new Beer House that uses a three-column layout is the home page. I chose to use
the two-column layouts on the remaining pages because I wanted more room for the actual content.
The home page, however, needs to expose as much content as possible to the visitor, so using three
columns on the page — a column on each side of 180 pixels in width and a center column — made the
most sense. The difference between a three-column layout and a two- column layout is that one of the
thin columns is contained within the larger content DIV element. This keeps the footer element from
overlapping any of the content elements.

87586c02.indd 4487586c02.indd 44 9/13/09 9:47:15 PM9/13/09 9:47:15 PM

45

Chapter 2: Developing the Site Design

<div id=”MainColHome”>
 <div id=”center-main-content”>
 /* Main Content */
 </div>
 <div id=”right-column”>
 /* Side Content */
 </div>
</div>

Following are the style rules applied to the layout elements:

#center-main-content
{
 background-color:#FFFFFF;
 border-right:thin solid #000080;
 float:left;
 margin:5px;
 min-height:400px;
 width:360px;
}

#left-main-content, #right-main-content
{
 background-color:#FFF;
 margin:5px;
 min-height:400px;
 width:570px;
}

#left-main-content
{
 border-right:thin solid #000080;
 float:left;
}

#right-main-content
{
 float:right;
}

Binding a BreadCrumb to the SiteMap
Helping users know where they are in the site is not just a feature but a requirement to help users feel
comfortable using your site. BreadCrumb navigation is a common way to let users see where they are
in the site from a hierarchical perspective, meaning that it not only provides a visual representation but
also lets users quickly navigate back up the site tree.

The SiteMapPath control was introduced with a series of navigation controls in ASP.NET 2.0. It is used
to create a BreadCrumb navigation strip for a website and relies on the presence of a site map as part
of the website; to be more specifi c, it automatically works with the site’s SiteMapProvider. Again, I
will cover creating a data-driven custom SiteMapProvider after we establish how to use the Entity
Framework.

87586c02.indd 4587586c02.indd 45 9/13/09 9:47:15 PM9/13/09 9:47:15 PM

46

Chapter 2: Developing the Site Design

The SiteMapPath creates a link from each of the nodes in the hierarchy to the current page. There is a
node for each parent URL above the current page, so it shows users where they are in relation to the rest
of the site.

Creating the First Theme
It’s time to create the fi rst theme for the master page: DarkBeer. There are two ways to do this that are
functionally equivalent. You could add a new folder to the project named App_Themes and then a new
subfolder under it called DarkBeer. Alternately, you could let Visual Studio assist you: select Website ➪
Add Folder ➪ Theme Folder, and name it DarkBeer (the App_Themes folder is created for you in
this case). The App_Themes folder is special because it uses a reserved name, and appears in gray in
Solution Explorer. Select the App_Themes\DarkBeer folder, add a stylesheet fi le to this folder (select
Website ➪ Add New Item ➪ Stylesheet, and name it Default.css). The name you give to the CSS fi le
is not important because all CSS fi les found in the current theme’s folder will automatically be linked
by the .aspx page at runtime.

I could go on and on about how and why the styles are defi ned the way they are, but that would make
an entire book to itself. My advice is to carefully study the CSS used to create this layout and adjust it
to your liking. A great resource to get up to speed on CSS layouts is www.csszengarden.com. There
you will fi nd a large set of examples using the same HTML page but with various stylesheets or themes
applied to the site.

All images pointed to in this stylesheet fi le are located in an Images folder under App_Themes/DarkBeer.
That keeps together all related objects that make up the theme. The ASP.NET engine sort of fakes things
and automatically maps them correctly for you when the page renders.

Creating a Sample Default.aspx Page
Now that you have a complete master page and a theme, you can test it by creating a sample content
page. To begin, add a new web page named Default.aspx to the project (select the project in Solution
Explorer and choose Website ➪ Add New Item ➪ Web Form), select the checkbox called Select Master
Page in the Add New Item dialog box, and you’ll be presented with a second dialog window from
which you can choose the master page to use — namely, Template.master. When you select this
option, the page will just contain Content controls that match the master page’s ContentPlaceHolder
controls, and not the <html>, <body>, <head>, and <form> tags that would be present otherwise. You
can put some content in the central ContentPlaceHolder, as shown here:

<%@ Page Language=”vb” AutoEventWireup=”false” CodeBehind=”Default.aspx.vb”
 Inherits=”TBH_Web35._Default”
 MasterPageFile=”~/CRMaster.Master” %>
<%@ Import Namespace=”System.IO” %>
<%@ Register Src=”controls/RSSReader.ascx” TagName=”RSSReader” TagPrefix=”uc3” %>
<asp:Content ID=”CenterColumnContent” ContentPlaceHolderID=”CenterColumn”
runat=”Server”>
 <div id=”MainColHome”>
 <div id=”center-main-content”>
 <asp:ListView ID=”lvArticles” runat=”server”>
 <LayoutTemplate>
 <div id=”itemPlaceholder” runat=”server” />

87586c02.indd 4687586c02.indd 46 9/13/09 9:47:15 PM9/13/09 9:47:15 PM

47

Chapter 2: Developing the Site Design

 </LayoutTemplate>
 <EmptyDataTemplate>
 <p>
 Sorry there are no articles available at this time.</p>
 </EmptyDataTemplate>
 <ItemTemplate>
 <div class=”Homearticlebox”>
 <div class=”articletitle”>
 <a class=”articletitle” href=’<%# ResolveUrl(“~/” &
SEOFriendlyURL(_
 Settings.Articles.URLIndicator & “\” & Eval(“Title”),
“.aspx”)) %>’>
 <%# HttpUtility.HTMLEncode(Eval(“Title”)) %>
 </div>
 <div class=”articleabstract”>
 <p>
 <%# Eval(“Abstract”) %>’></p>
 </div>
 </div>
 </ItemTemplate>
 <AlternatingItemTemplate>
 <div class=”Homearticlebox”>
 <div class=”articletitle”>
 <a class=”articletitle” href=’<%#
ResolveUrl(SEOFriendlyURL(“~/” & _
 Path.Combine(Settings.Articles.URLIndicator, Eval(“Title”)),
 “.aspx”)) %>’>
 <%# HttpUtility.HTMLEncode(Eval(“Title”)) %>
</div>
 <div class=”articleabstract”>
 <p>
 <%# Eval(“Abstract”) %>’></p>
 </div>
 </div>
 </AlternatingItemTemplate>
 </asp:ListView>
 </div>
 <div id=”right-column”>
 <uc1:PollBox ID=”PollBox1” runat=”server” />
 <uc3:RSSReader ID=”RSSReader1” runat=”server” />
 </div>
 </div>
</asp:Content>
<asp:Content ID=”leftColumnContent” ContentPlaceHolderID=”RightColumn”
runat=”Server”>
 <uc1:Featuredproduct ID=”Featuredproduct1” runat=”server” />
 <uc1:ShoppingCartBox ID=”ShoppingCartBox1” runat=”server” />
 <uc1:NewsletterBox ID=”NewsletterBox1” runat=”server” />
</asp:Content>

You could have also added the Theme attribute to the @Page directive, setting it equal to “DarkBeer”.
However, instead of doing that here, you can do it in the web.config fi le, once, and have it apply
to all pages. Select the project ➪ Website ➪ Add New Item ➪ Web Confi guration File. Remove the

87586c02.indd 4787586c02.indd 47 9/13/09 9:47:15 PM9/13/09 9:47:15 PM

48

Chapter 2: Developing the Site Design

MasterPageFile attribute from the code of the Default.aspx page, because you’ll also put that in
web.config, as follows:

<?xml version=”1.0”?>
<configuration xmlns=”http://schemas.microsoft.com/.NetConfiguration/v2.0”>
 <system.web>
 <pages theme=”DarkBeer” masterPageFile=”~/CRMaster.master” />
 <!-- other settings here... -- >
 </system.net>
</configuration>

Why select a master page from the New Item dialog box when creating Default.aspx, just to remove
the master page attribute immediately afterward? Because that way, VS2008 will create the proper
Content controls and not the HTML code of a normal page.

Creating the Second Theme
To test the user-selectable theming feature described earlier in the chapter, we must have more than one
theme. Thus, under the App_Themes folder, create another folder, named LightBeer (select the proj-
ect, right-click Add Folder ➪ Theme Folder, and name it DomesticBeer), and then copy and paste the
whole Default.css fi le from the DarkBeer folder, modifying it to make it look different.

In the provided example, I’ve changed most of the containers so that no background image is used, and
the header and footer are fi lled with simple solid colors, like the left and right columns. Not only is the
size for some elements different but the position is as well. The positions of the left and right columns
in particular (which use absolute positioning) are completely switched, so that the container named
leftcol is docked on the right border, and the rightcol container is docked on the left. This is done
by changing just a couple of style classes, as shown here:

body
{
 font-family: Arial, Helvetica, sans-serif;
 font-size: 12px;
 background-color: #FFCC00;
}

div#dHeader, div#footer, div#dContainer
{
 background-position: 0 0;
 background: none repeat scroll 0 0;

 border: none;
 width: 780px;
 margin: auto;
}

/* Header Elements */

#dMainHeader
{
 clear: both;
 color: #800000;

87586c02.indd 4887586c02.indd 48 9/13/09 9:47:15 PM9/13/09 9:47:15 PM

49

Chapter 2: Developing the Site Design

 float: left;
 height: 80px;
 padding: 0;
 width: 780px;
 background-color: #CC6600;
}

H1.dMainHeader
{
 font-size: 24px;
 font-weight: bold;
 color: #996633;
}

#dLogo
{
 width: 480px;
 float: left;
 margin-right: 40px;
 margin-left: 40px;
}

This is the power of DIVs and stylesheets: change a few styles, and the colors change and there are no
background images. This was a pretty simple example, but you can push this much further and create
completely different layouts, with some parts hidden and others made bigger, and so on.

Creating the ThemeSelector User Control
You now have a master page, with a couple of themes for it, so now you can develop a user control that
will display the list of available themes and allow the user to pick one. Once you have this control, you
will plug it into the master page, in the “themeselector” DIV container. Before creating the user con-
trol, create a new folder named “Controls”, inside of which you’ll put all your user controls so that
they are separate from the pages for better organization (select the project, right-click Add Folder ➪
Regular folder, and name it Controls). To create a new user control, right-click on the Controls folder,
select Add New Item ➪ Web User Control, and name it ThemeSelector.ascx. The content of this
.ascx fi le is very simple and includes just a string and a DropDownList:

<%@ Control Language=”VB” AutoEventWireup=”false” CodeFile=”ThemeSelector.ascx.vb”
 Inherits=”MB.TheBeerHouse.UI.Controls.ThemeSelector” %>
<asp:DropDownList runat=”server” ID=”ddlThemes” AutoPostBack=”True”
 meta:resourcekey=”ddlThemesResource1” />

Note that the drop-down list has the AutoPostBack property set to true, so that the page is automati-
cally submitted to the server as soon as the user changes the selected value. The real work of fi lling the
drop-down list with the names of the available themes, and loading the selected theme, will be done in
this control’s code-behind fi le, and in a base page class that you’ll see shortly. In the code-behind fi le,
you need to fi ll the drop-down list with an array of strings returned by a helper method and then select
the item that has the same value as the current page’s Theme:

87586c02.indd 4987586c02.indd 49 9/13/09 9:47:16 PM9/13/09 9:47:16 PM

50

Chapter 2: Developing the Site Design

Public Partial Class ThemeSelector
 Inherits System.Web.UI.UserControl
 Protected Sub Page_Load(ByVal sender As Object, ByVal e As EventArgs)
 ddlThemes.DataSource = Helpers.GetThemes()
 ddlThemes.DataBind()

 ddlThemes.SelectedValue = Me.Page.Theme
 End Sub
End Class

The GetThemes method is defi ned in a Helpers.vb fi le that is located in the root folder of the TBHBLL
class library; you will have to compile the library after any changes before those changes can be used
by the site. You’ll read more about the compilation model later in the book, and especially in Chapter 13
about deployment.

Going forward with the new Beer House application, you will need a class library
as part of the overall solution. This can easily be added by selecting File ➪ Add ➪
New Project from the Visual Studio menu. That invokes the Add New Project dialog,
in which you select Class Library.

You work is still not done, and we will cover more of the details in remaining chap-
ters. But you need to add a reference to the class library in your website. You can do
this by right-clicking on the root node of the website and selecting Add Reference
from the context menu. Select the Projects tab in the dialog, double-click the name
of your new class library, and you have a reference. You will have to compile the
class library before any changes you make can be used by the website.

Several supporting classes are discussed in the rest of the chapter. While you can
just as easily place them in the App_Code folder, for the purposes of this book, I
will be including these classes in a supporting class library. There will be more
details on this process in the next chapter.

The GetThemes method uses the GetDirectories method of the System.IO.Directory class to
retrieve an array with the paths of all folders contained in the ~/App_Themes folder (this method
expects a physical path, not a URL — you can, however, use a URL to point to the physical path by
using the Server.MapPath method). The returned array of strings contains the entire path, not just the
folder name, so you must loop through this array and overwrite each item with that item’s folder name
part (returned by the System.IO.Path.GetFileName static method). Once the array is fi lled for the
fi rst time, it is stored in the ASP.NET cache, so that subsequent requests will retrieve it from there, more
quickly. The following code shows the entire content of the Helpers class (Helpers.vb):

Imports System.IO
Imports Microsoft.VisualBasic
Imports System.Collections.Specialized
Imports System.Web
Imports System.Web.Caching
Imports System.Web.UI
Imports System.Web.UI.WebControls

Namespace UI
 Public NotInheritable Class Helpers

87586c02.indd 5087586c02.indd 50 9/13/09 9:47:16 PM9/13/09 9:47:16 PM

51

Chapter 2: Developing the Site Design

‘
‘ Returns an array with the names of all local Themes
‘
Public Shared Function GetThemes() As String()
If Not IsNothing(HttpContext.Current.Cache(“SiteThemes”)) Then
Return DirectCast(HttpContext.Current.Cache(“SiteThemes”), String())
Else
Dim themesDirPath As String = HttpContext.Current.Server.MapPath(“~/App_Themes”)
 ‘ get the array of themes folders under /App_Themes
 Dim themes As String() = Directory.GetDirectories(themesDirPath)
 For i As Integer = 0 To themes.Length - 1
 themes(i) = Path.GetFileName(themes(i))
 Next
 Dim dep As New CacheDependency(themesDirPath)
 HttpContext.Current.Cache.Insert(“SiteThemes”, themes, dep)

Return themes
End If

End Function
 End Class
End Namespace

Now that you have the control, go back to the master page, and add the following line at the top of the
fi le in the Source view to reference the external user control:

<%@ Register Src=”Controls/ThemeSelector.ascx” TagName=”ThemeSelector”
TagPrefix=”uc2” %>

Then, declare an instance of the control where you want it to appear — namely, within the
“themeselector” container:

<div id=”themeselector”>
 <uc2:ThemeSelector id=”ThemeSelector1” runat=”server” />
</div>

The code that handles the switch to a new theme can’t be placed in the DropDownList’s
SelectedIndexChanged event, because that happens too late in the page’s life cycle. As I said in the
“Design” section, the new theme must be applied in the page’s PreInit event. Also, instead of recoding
it for every page, we’ll just write that code once in a custom base page. Our objective is to read the value
of the DropDownList‘s selected index from within our custom base class, and then we want to apply
the theme specifi ed by the DropDownList.

You can’t access the controls and their values from the PreInit event handler because it’s still too early
in the page’s life cycle. Therefore, you need to read the value of this control in a server event that occurs
later: the Load event is a good place to read it. However, when you’re in the Load event handler, you
won’t know the specifi c ID of the DropDownList control, so you’ll need a way to identify this control,
and then you can read its value by accessing the row data that was posted back to the server, via the
Request.Form collection.

And there is a remaining problem: you must know the ID of the control to retrieve its value from the
collection, but the ID may vary according to the container in which you place it, and it’s not a good

87586c02.indd 5187586c02.indd 51 9/13/09 9:47:16 PM9/13/09 9:47:16 PM

52

Chapter 2: Developing the Site Design

idea to hard-code it because you might decide to change its location in the future. Instead, when the
control is fi rst created, you can save its client-side ID in a static fi eld of a class, so that it will be main-
tained for the entire life of the application, between different requests (postbacks), until the application
shuts down (more precisely, until the application domain of the application’s assemblies is unloaded).
Therefore, add a Globals.vb fi le to the supporting class library, and write the following code inside it:

Imports System.Web.Configuration
Imports Microsoft.VisualBasic

Public NotInheritable Class Globals

 Public Shared ThemesSelectorID As String = String.Empty

End Class

Then, go back to the ThemeSelector’s code-behind fi le and add the code to save its ID in that static fi eld:

Imports TheBeerHouse
Imports TheBeerHouse.UI

Namespace UI.Controls
 Partial Class ThemeSelector
 Inherits System.Web.UI.UserControl

 Protected Sub Page_Load(ByVal sender As Object, ByVal e As
System.EventArgs) Handles Me.Load
 If Globals.ThemesSelectorID.Length = 0 Then
 Globals.ThemesSelectorID = ddlThemes.UniqueID
 End If

 ddlThemes.DataSource = Helpers.GetThemes()
 ddlThemes.DataBind()

 ddlThemes.SelectedValue = Me.Page.Theme
 End Sub
 End Class
End Namespace

You’re ready to create the custom base class for your pages, and this will just be another regular class
you place in UI folder in the class library and that inherits from System.Web.UI.Page. You override its
OnPreInit method to do the following:

 1. Check whether the current request is a postback. If it is, check whether it was caused by the
ThemeSelector drop-down list. In ASP.NET, all pages with a server-side form have a hidden
fi eld named “__EVENTTARGET”, which will be set with the ID of the HTML control that causes
the postback (if it is not a Submit button). To verify this condition, you can just check whether
the “__EVENTTARGET” element of the Form collection contains the ID from the drop-down list,
based on the ID read from the Globals class.

 2. If the conditions of point 1 are all verifi ed, you retrieve the name of the selected theme from the
Form collection’s element with an Id equal to the ID saved in Globals, and use it for setting
the page’s Theme property. Then, you also store that value in a Session variable. This is done

87586c02.indd 5287586c02.indd 52 9/13/09 9:47:16 PM9/13/09 9:47:16 PM

53

Chapter 2: Developing the Site Design

so that subsequent requests made by the same user will correctly load the newly selected theme
and will not reset it to the default theme.

 3. If the current request is not a postback, check whether the Session variable used in point 2 is
empty (null) or not. If it is not, retrieve that value and use it for the page’s Theme property.

The following snippet translates this description into real code:

Namespace TheBeerHouse.UI
 Public Class BasePage
 Inherits System.Web.UI.Page
 Protected Overloads Overrides Sub OnPreInit(ByVal e As EventArgs)
 Dim id As String = Globals.ThemesSelectorID
 If id.Length > 0 Then
 If Me.Request.Form(“__EVENTTARGET”) = id AndAlso Not
 String.IsNullOrEmpty(Me.Request.Form(id)) Then
 Me.Theme = Me.Request.Form(id)
 Me.Session(“CurrentTheme”) = Me.Theme
 Else
 If Me.Session(“CurrentTheme”) IsNot Nothing Then
 Me.Theme = Me.Session(“CurrentTheme”).ToString()
 End If
 End If
 End If

 MyBase.OnPreInit(e)
 End Sub
 End Class
End Namespace

The downside of the approach used here is that the selected theme is stored in a session variable, which
is cleared when the session ends — namely, when the user closes the browser or when the user does not
make a page request for 20 minutes (the duration can be customized). A much better solution would be
to use Profi le properties, which are persistent between sessions and also have other advantages. You’ll
examine this feature of ASP.NET — and modify this code to use it — in Chapter 5.

The last thing you have to do is change the default code-behind class for the Default.aspx page so
that it uses your own BasePage class instead of the default Page class. Your custom base class, in turn,
will call the original Page class. You only need to change one word, as shown here (change Page to
BasePage):

Public Partial Class _Default
 Inherits TheBeerHouse.UI.BasePage
 Protected Sub Page_Load(ByVal sender As Object, ByVal e As EventArgs)
 End Sub
End Class

You’re done! Run the project; by default, you’ll see the home page shown earlier in Figure 2-7 (except for
the login box, which doesn’t contain anything so far — it will be fi lled in Chapter 5) with the DarkBeer
theme applied to it. If you pick the LightBeer item from the ThemeSelector drop-down list, the home
page should change to something very similar to what is shown in Figure 2-11.

87586c02.indd 5387586c02.indd 53 9/13/09 9:47:16 PM9/13/09 9:47:16 PM

54

Chapter 2: Developing the Site Design

Figure 2-11

The same page with the LightBeer theme applied is shown in Figure 2-12.

Figure 2-12

87586c02.indd 5487586c02.indd 54 9/13/09 9:47:16 PM9/13/09 9:47:16 PM

55

Chapter 2: Developing the Site Design

Creating Consistent Sidebar Content
The user control elements in the sidebar boxes have a consistent layout and style applied to them. Each
content box is composed of a wrapper DIV element and two child DIVs. The fi rst child DIV is the con-
tent’s title bar. The second child element is the actual content. Notice how style classes are applied to
the elements; remember, these elements are repeated several times on each page. Therefore, you need to
apply the style settings using the class attribute:

<div class=”SideBarbox”>
 <div class=”SideBarTitle”>
 <asp:Image ID=”imgArrow” runat=”server” ImageUrl=”~/images/arrowr.gif”
 GenerateEmptyAlternateText=”True” meta:resourcekey=”imgArrowResource1” />
 Newsletter
 </div>
 <div class=”SideBarContent”>
/* Content Goes Here */
 </div>
</div>

Here are the corresponding styles:

/* Side Bar Box */

.SideBarbox
{
 padding: 0px 1px 3px 1px;
 font-size: 11px;
 text-align: center;
 border: 1px dashed #FFFFFF;
 background-color: #CC6600;

}

.SideBarbox a
{
 color: #521300;
 font-weight: bold;
}

.SideBarTitle
{
 font-family: Arial, Helvetica, sans-serif;
 font-size: small;
 font-weight: bold;
 color: #FFFFFF;
 background-color: #800000;
}

.SideBarTitle img
{
 float: left;
 margin-left: 3px;
 margin-right: 3px;

87586c02.indd 5587586c02.indd 55 9/13/09 9:47:16 PM9/13/09 9:47:16 PM

56

Chapter 2: Developing the Site Design

}

.SideBarContent
{
 padding: 6px;
}

Figure 2-13 shows an example of these styles in action.

Figure 2-13

Another Small Touch of Style
A single page (Default.aspx) is not enough to test everything we’ve discussed and implemented in this
chapter. For example, we haven’t really seen the SiteMapPath control in practice, because it doesn’t show
any link until we move away from the home page, of course. You can easily implement the Contact.aspx
and About.aspx pages if you want to test it. I’ll take the Contact.aspx page as an example for this chap-
ter. The fi nal page is represented in Figure 2-14.

SiteMapPath Control

Figure 2-14

87586c02.indd 5687586c02.indd 56 9/13/09 9:47:16 PM9/13/09 9:47:16 PM

57

Chapter 2: Developing the Site Design

Summary
In this chapter, you’ve built the foundations for the site’s user interface layer. You’ve designed and
implemented nested master pages with common HTML and graphics, making it easy to change the lay-
out and the graphics of the site by modifying a single fi le. You have seen how to create a variety of two-
and three-column page layouts using CSS. You’ve also used themes to create a couple of different visual
appearances for the same master page. You’ve created a mechanism to enable users to dynamically pick
their own favorite theme from a drop-down list, so that they can change the appearance of your site
to meet their needs and desires. You have also created a lean set of menus using Unordered List and
stylesheets. You have also added a SiteMapPath control to display breadcrumb navigation based on
the SiteMapProvider we will build in a later chapter. Finally, you’ve used a custom BasePage class to
provide not just a common look and feel among the pages but also some common behavior. All in all,
you’ve already developed some signifi cant new features, but with comparatively few lines of code. In
the next chapter, we’ll continue to talk about foundations, but for the business layer and data layers.

87586c02.indd 5787586c02.indd 57 9/13/09 9:47:16 PM9/13/09 9:47:16 PM

87586c02.indd 5887586c02.indd 58 9/13/09 9:47:16 PM9/13/09 9:47:16 PM

Planning an Architecture

This chapter lays the groundwork for the rest of the book by creating a number of basic services
that will be shared among all future modules: confi guration classes to process custom sections
and elements in web.config, base business classes and the Entity Framework model, caching
strategies, and more. I’ll show you the ListView control introduced in ASP.NET 3.5, and we’ll
build an n-tier architecture to manage interacting with the database.

Problem
Our website is made up of a number of separate modules for managing dynamic content such as
articles, forums, photo galleries, events, and polls, and sending out newsletters. However, all the
modules have a number of common “design” tasks that you must deal with:

Create a sound Entity Framework model that will manage the data access. ❑

Create a base for a business logic layer to manage interaction with the Entity Framework ❑

and to validate data.

Expand and customize the business object architecture generated by the Entity Framework ❑

Wizard to expose the data retrieved by the data access layer in an object-oriented format.
This will leverage the use of partial classes introduced in .NET 2.0.

Separate the business logic code from the presentation code (user interface) so that the site ❑

is much more maintainable and scalable. This is called a multi-tier design.

Support the caching of business objects to save the data you’ve already fetched from the ❑

data store so that you don’t have to make unnecessary fetches to retrieve the same data
again. This results in less CPU, and database resource usage and less network traffi c,
resulting in better general performance.

Create a class library to house various components and classes that compose the core ❑

infrastructure of the application.

87586c03.indd 5987586c03.indd 59 9/13/09 10:02:44 PM9/13/09 10:02:44 PM

60

Chapter 3: Planning an Architecture

Handle and log exceptions to help diagnose problems in the event of a system failure and to ❑

provide an audit trail.

Standardize a common user interface methodology to display list of records, details, and admin- ❑

istrative editing.

Create a custom confi guration section to hold site specifi c data. ❑

Create a common location in which to store information about each page or resource in the site ❑

so that it can be distributed as needed.

Create a data-driven custom ❑ SiteMapProvider that will allow automatic updating of content
as it is added to and removed from the site.

Create a custom SiteMap.org ❑ HttpHandler to produce the appropriate feed, based on the cur-
rent site structure.

Create an infrastructure to ensure optimized search engine techniques. ❑

Create an RSS infrastructure to syndicate items from the site, such as articles, photos, and the like. ❑

The task in this chapter is to devise a common set of classes and guidelines to address these problems
so that the common classes can be utilized by the various modules to be covered in later chapters. Once
you fi nish this chapter, you’ll have a foundation upon which to build, and you can even distribute the
development of future modules to various other developers, who can leverage the same common code
to build each module.

Design
The “Problem” section identifi ed many core tasks that must be addressed before we can proceed to
building the site. Having a solid foundation is the most important aspect of building any application,
in software development this starts with the operating system and bubbles its way up. We have estab-
lished the use of the Windows platform and .NET as the application framework, so some core architec-
ture decisions need to be made to implement the solution to the problems.

The .NET Framework now has so many ways to solve just about every problem you can have in an
application that sometimes the hardest thing is to decide which solution to leverage. By defi ning a solid
foundation, the Beer House will have a highly performant, fl exible, and extendible architecture.

Creating a Common Class Library
Class libraries are way to contain custom objects and resources in a common location that can be used
by multiple applications. A class library is simply a .NET assembly or .dll fi le that can be added to the
Global Assembly Cache (GAC) and referenced directly by any application on the machine, or added
to the application’s folder to be loaded at runtime. Housing common objects in one location makes the
code more portable and manageable for large applications and systems. For example, the Beer House
uses the web as a common user interface but is considering expanding the application’s frontend to
WPF and Silverlight in the near future. Separating common business logic and resources means that the

87586c03.indd 6087586c03.indd 60 9/13/09 10:02:45 PM9/13/09 10:02:45 PM

61

Chapter 3: Planning an Architecture

user interface layer or application can be thinner and code will not need to be modifi ed on the backend
to implement the new media.

In the previous edition of this book, the majority of this code was added to the App_Code folder. In this
edition most, of this code is added to a class library referenced by the web application. I am going to use
just one class library, but as the application code grows, it will be benefi cial to break this code into even
more focused class libraries, such as Data, UI, SEO, and so on.

Adding a Class Library to a Visual Studio Solution
Visual Studio 2008 provides a couple of ways to add a new class library to a project; you can select
File Add New Project, or you can right-click on the root node of the solution in the Solution Explorer
window and select Add New Project from the context menu. Either way, the Add New Project dialog
opens (see Figure 3-1). Select Visual Basic in the Project Types list, and choose Class Library from the
Visual Studio installed templates.

Figure 3-1

The new Class Library project is added to the solution with an initial class Class1. Delete that class fi le;
you’ll add fi les for the real classes as you work through this book.

For the website to leverage the class library, it must reference the library. Right-Click on the website’s
root and select Add Reference from the context menu. The Add Reference dialog (see Figure 3-2) dis-
plays. Change to the Projects tab and select the new class library.

87586c03.indd 6187586c03.indd 61 9/13/09 10:02:45 PM9/13/09 10:02:45 PM

62

Chapter 3: Planning an Architecture

Figure 3-2

This adds a reference to the class library in the website. The class library should defi ne a root
namespace that can be assumed by all the classes contained in the library. That’s not a requirement, but
it makes things easier to manage. This is done by opening the properties page for the project by right-
clicking the root of the class library project and selecting Properties at the bottom of the context menu.
The page shown in Figure 3-3 is displayed, and the Root Namespace can be defi ned.

Figure 3-3

The namespace can be automatically imported by the website project by opening the site’s property
page the same way and selecting the References tab. At the bottom of the References tab is the Imported
Namespaces section (see Figure 3-4). This section lists all the available namespaces with a check-
box. Namespaces that are imported on a global level are checked, if TheBeerHouse namespace is not
selected, then it can be selected, making it available to all the pages and classes within the site.

You can designate any available namespace to be imported. Because the TheBeerHouse.Bll
namespace is part of the referenced TBHBLL class library, it can be imported at an application level.
Because that namespace is used quite a bit in the site, this very nice convenience saves you the trouble
of importing it over and over.

87586c03.indd 6287586c03.indd 62 9/13/09 10:02:45 PM9/13/09 10:02:45 PM

63

Chapter 3: Planning an Architecture

Figure 3-4

Designing a Layered Infrastructure
If you have not heard of n-tier architecture, you will become familiar with it as you read through this
book. As software development has evolved over the years, we have learned to separate logic or work
into separate layers, typically a data store, and data access, business logic, and presentation layers.
While there are times when these layers can be subdivided further, this is typically what you will see in
most applications. Here are descriptions of each layer:

Data store: ❑ Where the data resides. This can be a relational database, an XML fi le, a text fi le, or a
proprietary storage system, such as SQL Server, Oracle or MySQL.

Data access layer: ❑ The code that takes care of retrieving and manipulating the raw data saved in
the data store.

Business logic layer: ❑ The code that takes the data retrieved by the data access tier and exposes
it to the client in a more abstracted and intuitive way, hiding low-level details such as the data
store’s schema, and adding all the validation and authorization logic that ensures that the input
is safe and consistent.

Presentation layer (user interface): ❑ The code that defi nes what a user should see on the screen,
including formatted data and system navigation menus. This layer will be designed to operate
inside a web browser in the case of ASP.NET, but there are so many more user interfaces in use
today. WPF and Silverlight are some of the emerging new technologies to build desktop and
web interfaces. Mobile applications are also increasing in demand as well. So never think your
application will just be a web application.

Depending on the size of the project, you might have additional tiers, or some tiers may be merged
together. For example, in the case of very small projects, the data access and business tiers may be
merged together so that a single component takes care of retrieving the data and exposing it in the
UI in a more accessible way. The SQLDataSource, AccessDataSource, and XmlDataSource controls
introduced with ASP.NET 2.0, as well as the LinqDataSource and EntityDataSource controls intro-
duced in ASP.NET 3.5, combine the UI, business, and data access layers into one layer in what is known
as Line-of-Sight architecture, meaning that there is direct communication between the database and the
user interface.

When discussing multi-tier architecture and design, the terms tier and layer are frequently used inter-
changeably, but there’s actually a subtle difference between them: tiers indicate a physical separation
of components, which may mean different assemblies (DLL, EXE, or other fi le types if the project is not
all based on .NET) on the same computer or on multiple computers, whereas layers refer to a logical

87586c03.indd 6387586c03.indd 63 9/13/09 10:02:45 PM9/13/09 10:02:45 PM

64

Chapter 3: Planning an Architecture

separation of components, such as having distinct classes and namespaces for the DAL, BLL, and UI
code. Therefore, tiers are about physical separation and units of deployment, but layers are about logical
separation and units of design.

In the last edition of this book the classes for the business, data tier, and utility classes were merged into
the website in an effort to reduce the overhead of maintaining the code base. The argument was made
that separating these classes is fi ne for large, enterprise-level sites but is not that good for small and
medium applications. This is correct; now that the App_Code folder in ASP.NET 2.0 is available, it
does help at least with organizing code for a website.

The Beer House business is increasing, and the demand for the site is growing. The owners are also
starting to look into creating customized mobile, WPF desktop applications (for point of sale), SharePoint
integration, and even Silverlight in a future version. This is a common scenario in today’s world, and
you need a strong, robust backend infrastructure with the capability to quickly add multiple frontend
interfaces.

So, in this version of the Beer House, all the supporting classes that can be reused in multiple applica-
tions are placed in a class library. Eventually, you will want to separate the various classes into more
targeted class libraries. But for this project, having one class library will keep it cleaner.

This book uses the Entity Framework as a data access layer. One of the main features of the Entity
Framework is that it’s inherently designed to be leveraged against any backend data store. Data provid-
ers, such as Oracle, DB2, or MySQL, can easily build custom providers that work with Entity Framework
to access their database. So, in essence, the Entity Framework is the data provider layer for this version of
theBeerHouse application.

The Entity Framework provides a rich foundation on which to build a data model for the application,
while abstracting the actual data store from the rest of the application. The Entity Framework Wizard
generates the data model and supporting classes to interact with the model and the Entity Framework.
These classes can be extended and added upon to make a rich business logic layer.

In the previous editions of this book the root namespace was MB, which stands for
Marco Bellinaso. Because the application is built around the Beer House, I removed
that level of the namespace, making TheBeerHouse the top-level namespace.

Choosing a Data Store
Having an infrastructure that is fl exible when it comes to choosing a data store is important for some.
If you are producing an application as a vendor who has clients that use different data stores for
example. Most businesses chose a database vendor and stick with them rather that change every few
years. Generally, in creating an application that will only be used internally, architecting for a data store
change is not as important, because a change that drastic typically means drastic changes to the appli-
cation itself.

But it is nice knowing that the core application architecture can easily support these types of changes,
not only in the choice of the backend data store but also in all components of the application. Since

87586c03.indd 6487586c03.indd 64 9/13/09 10:02:45 PM9/13/09 10:02:45 PM

65

Chapter 3: Planning an Architecture

the Entity Framework is designed to be fl exible toward the backend database this gives you an instant
advantage because we do not need to concern ourselves with that code. If the Beer House decides to
change from SQL Server to another data store technology or vendor, as long as there is an ADO.NET
data provider for that platform, the application can quickly be modifi ed.

The Beer House has not changed its choice of database, SQL Server. So you will continue to build the
application on top of SQL Server, but because the application is using Entity Framework, it will be built
around the entities in the data model, rather than the data schema of the database.

Designing the Data Access Layer
The data access layer (DAL) is the code that executes queries to the database to retrieve data, and to
update, insert, and delete data. It is the code that’s closest to the database, and it must know all the
database details — the schema of the tables, the name of the fi elds, stored procedures, views, and so on.
Keep database-specifi c code separated from your site’s pages for a number of reasons:

The developer who builds the user interfaces (i.e., the pages and user controls) may not be the ❑

same developer who writes the data access code. In fact, for midsized to large sites, they are
usually different people. The UI developer may ignore most things about the database but still
provide the user interface for it, because all the details are wrapped into separate objects that
provide a high-level abstraction of the table, the stored procedure and fi eld names, and the SQL
to work with them.

Typically, some queries that retrieve data will be used from different pages. If you put them ❑

directly into the pages themselves, and later you have to change a query to add some fi elds or
change the sorting, you’d have to review all your code and fi nd every place where it’s used. If,
instead, the data access code is contained in some common DAL classes, then you’d just need to
modify those, and the pages calling them will remain untouched.

Having hard-coded queries inside web pages would make it extremely diffi cult to migrate to ❑

a new relational database management system (RDBMS) or to support more than one RDBMS.
Plus, they are often an easy target of SQL Injection attacks because the developers who hard-
coded queries often neglect to parameterize the queries.

Introduction to the Entity Framework
In 2006, Microsoft announced a new data framework, ADO.NET vNext. This has since become the
ADO.NET Entity Framework (EF) and was released with .NET 3.5/Visual Studio 2008 SP1 in August of
2008. The Entity Framework is an entry from Microsoft into the object relational mapping (ORM) space.
ORMs are data frameworks aimed at bridging the gap between data stores (databases) and applications.
Entity Framework is an example of an ORM; Linq to SQL, nHibernate, Wilson ORM, and many others
are also available for the .NET platform. All have attractive features and provide a way to abstract the
database from the application to make it easier for developers to program an application based on busi-
ness needs and not the database schema.

The Entity Framework’s Entity Data Model (EDM) is composed of several elements and is ultimately
based on Dr. Peter Chen’s Entity Relationship (ER). ER is the conceptual representation of business ele-
ments and the relationships they have with each other. The EDM is what really differentiates the Entity
Framework from other ORM products. The EDM builds a layer of abstraction above the ER model, but
preserves the concepts of entities and their relationships.

87586c03.indd 6587586c03.indd 65 9/13/09 10:02:45 PM9/13/09 10:02:45 PM

66

Chapter 3: Planning an Architecture

What the Entity Framework does provide is a consistent way to program against a model that is
abstracted away from the way the data is actually stored. As applications have evolved, the data is no
longer necessarily stored in a manner that is easy to conceptualize in an application. Data is often opti-
mized for speed, indexing, and other considerations for the actual data store technology, which can
create a problem — often referred to as an impedance mismatch — when you’re trying to effi ciently
create applications around the data model. This is where EF becomes a valuable tool to the developer
because it abstracts the complex data storage schemas from the developer. The developer can then sim-
ply concern herself with the business entity model when architecting solutions.

The actual data model for the Beer House is pretty straightforward, so we will not be dealing with this
issue as you might have to in more complex applications. All the entity mappings in the Beer House are
one-to-one, instead of being an entity composed of related data in many tables.

The EDM (see Figure 3-5) consists of two concepts: entities and relationships. An entity is a thing,
such as an article or an article category. A relationship is an association, such as the category an article
belongs or a list of comments for the article. Article Categories, Comments, and Articles are all entities
or things; the association they have to each other is the relationship. Typically, you can think of these as
tables and foreign key relationships, and often this is how the model will be generated.

Associations

Entities

Figure 3-5

A group of entities is called an EntitySet, which is a collection of entities such as Articles, Categories,
and Comments. The EntitySet class implements IList, ICollection, IList(of TEntity),
ICollection(of TEntity), IEnumerable(of TEntity),IEnumerable, and IListSource. By
implementing these interfaces, it provides a rich set of members to manage a collection of entities in a

87586c03.indd 6687586c03.indd 66 9/13/09 10:02:45 PM9/13/09 10:02:45 PM

67

Chapter 3: Planning an Architecture

fashion familiar to those used to working with generics. Similarly, AssociationSets are a collection of
associations. An EntityContainer wraps a group of entities and associations.

Entity SQL
The EF introduces a new query language, Entity SQL (ESQL), which supports inheritance and polymor-
phism. These two concepts are not supported in existing SQL languages. Entity SQL does not query
against the data store but against the modeled objects composed from the data store. Therefore, it needs
to work against objects but still retain a familiar SQL-like syntax to make programming easier.

This also means that ESQL is not bound to a specifi c backend data store. For example, SQL Server SQL
is slightly different than Oracle’s SQL and IBM’s SQL, and so forth. This abstraction frees developers
from having to be tightly concerned with the vendor-specifi c version of SQL. The following ESQL code
example shows how to retrieve a list of articles and their comments when at least one comment exists
for the article.

Select a, a.Comment
From ArticlesModel.Articles as a
Where a.Comment.Count > 0

The Entity Framework comes with built-in support for SQL Server but has already been extended
too many other vender platforms. Vendors need to simply create or modify existing ADO.NET data
providers.

You may be asking yourself how does the Entity Framework actually communicate with the data
store, or where is the actual SQL? Entity framework does the lifting for you because it creates an opti-
mized, parameterized SQL query to communicate with the database. You can still use existing stored
procedures and create your own, but you do lose some LINQ to Entities fl exibility in querying over the
results. Basically, calling a stored procedure returns a result set or just performs an action, and there is no
IQueryable result to query against.

ESQL Parameterized Concepts
Using Parameterized SQL and ESQL is important to guarding against SQL Injection
attacks. No platform is immune to potential SQL Injection attacks, but they are eas-
ily prevented. Most SQL Injection attacks are successful because of lazy coding habits.
Using stored procedures has long been a common way to protect against these attacks
because the parameters passed to the procedure are done using a SQLParameter object.

SQL Injection attacks are a common way that hackers attack a website by injecting SQL
code into a poorly written website. This is usually done by passing a SQL string as a
parameter to a Web Form. The reason it works is that many web developers hard-code
SQL statements into their application and do a string concatenation to insert parameter
values. Hackers simply inject their desired SQL as a form parameter, terminating the
original SQL statement and causing theirs to be executed. There are many examples
on the web that go into great detail on specifi c attacks, and if you have not investi-
gated this issue, I encourage you to do so. Use parameterized SQL statements to guard
against these attacks.

Continued

87586c03.indd 6787586c03.indd 67 9/13/09 10:02:46 PM9/13/09 10:02:46 PM

68

Chapter 3: Planning an Architecture

EF provides the same parameterization methodologies, but you still have the capa-
bility to pass values unchecked to an ESQL query. This should never be done. The
ObjectParameter class acts just like the SQLParameter class used to directly pass
parameters to ad hoc queries and stored procedures, as shown in the following code
snippet.

Using lArticlectx As New ArticlesEntities()

Dim queryString As String = _
 “SELECT VALUE Article FROM Articles “ & _
 “AS Article WHERE Article.Approved = @as”

Dim ArticleQuery As New ObjectQuery(Of Article)(queryString, _
 lArticlectx)

‘ Add parameters to the collection.
ArticleQuery.Parameters.Add(New ObjectParameter(“as”, True))

Dim lArticles As ObjectResult(Of Article) =
ArticleQuery.Execute(MergeOption.NoTracking)

 Dim lArticle As Article
 For Each lArticle In lArticles
 Console.WriteLine(“Title: {0}”, lArticle.Title)
Next

A platform specifi c Entity Framework provider typically extends an existing vendor-specifi c ADO.
NET data provider by creating platform optimized syntax to interact with the database. This is a very
nice feature because now you as the developer do not have to worry about this and have the freedom to
build your application in the language you prefer, such as C# or VB.NET.

The EF introduces the EntityClient that runs on top of the ADO.NET providers. It leverages the
existing Connection, Command, and DataReader objects with which all .NET developers should
be familiar by now. There are special classes for each of these familiar objects, EntityConnection,
EntityCommand, and EntityReader. You will not need to be concerned with using these objects in the
scope of this book, but it is nice to know that you can leverage them if you want.

Object Services
Object Services is a layer of abstractions that sits on top of the EntityClient. It acts a bridge between the
application and the datastore. The EntityClient is responsible for the ORM aspects, and Entity Framework
and object querying. You can think of Object Services as the workhorse of EF. The Object Services layer
takes LINQ or ESQL queries, passes them to the EntityClient and returns an IQueryable(of T). The
EntityClient is the data provider, customized for the data store.

What is more important to understand about the Object Services is the ObjectContext, which pro-
vides the interface for the developer to interact with the entities and, ultimately, the database. The
ObjectContext also tracks changes to entities through the ObjectStateManager. That’s because
each entity is attached to the context. While an entity can be detached or retrieved unattached, this is

87586c03.indd 6887586c03.indd 68 9/13/09 10:02:46 PM9/13/09 10:02:46 PM

69

Chapter 3: Planning an Architecture

not done by default. Attached entities can have their changes tracked (optimistic concurrency) by the
ObjectStateManager. This is an important feature to understand, and you’ll see how to take advan-
tage of it when we revisit how to implement EF in the solution section.

LINQ to Entities
Since Language Integrated Query (LINQ) was introduced with the release of .NET 3.5, there have
been many implementations of LINQ, such as LINQ to Objects, LINQ to XML, LINQ to SQL, LINQ
to DataSets, and so on. Entity framework has its own implementation of LINQ as well, LINQ to
Entities. LINQ to Entities is a very thin layer built on top of Object Services that takes advantage of the
ObjectQuery class to perform queries.

LINQ to SQL was the fi rst LINQ extension released that allowed developers to interact with SQL Server.
The big difference is LINQ to Entities does not talk directly to the database but instead queries the
Entity Framework that does the talking. This means that LINQ to Entities can talk to any data store as
long as there is an EF provider for the platform. LINQ queries are converted to expression trees and
executed against the Object Services layer and return an IQueryable(of T) result (see Figure 3-6).

LINQ to
Entities

IQueryable(of T)

EF Object Services

Figure 3-6

The EF ObjectServices layer exposes a conceptual view of the data, which is ideal for LINQ queries
to manipulate. This gives the developer a Transact SQL–like programming experience in the applica-
tion and development environment. LINQ also adds lambda expressions, making for an even richer
development experience. Because the queries are written in the application, the developer has develop-
ment aides, such as IntelliSense, compile-time syntax checking, and so forth, to make building queries
against the Entity Model much easier. LINQ to Entities gives the developer the ability to create strongly
typed queries that will have any errors in syntax caught by the compiler.

To perform LINQ to Entities, the application must reference System.Core.dll and System.Data
.Entity.dll. It must also import the System.Linq and System.Data.Objects namespaces. Of
course, the application must either contain or reference an Entity Data Model as well.

Many of the LINQ to SQL concepts are supported by LINQ to Entities, but there are a few instances
where things are done slightly differently or are not supported at all.

The LINQ standard query operators are supported, so query results can be shaped, fi ltered, sorted, and
grouped. Common operators like Select, Where, Join, and OrderBy, and the aggregate and set
operators are all supported. For more details read more about standard query operators on MSDN at
http://msdn.microsoft.com/en-us/library/bb738551.aspx.

87586c03.indd 6987586c03.indd 69 9/13/09 10:02:46 PM9/13/09 10:02:46 PM

70

Chapter 3: Planning an Architecture

A LINQ to Entities query is executed by creating an expression tree that is executed by EF against the
data source. All EF queries are executed using deferred execution, meaning that they must be either
explicitly executed or are not executed until they are used. The concept of implicit and deferred execu-
tion is important to understand when discussing ORM frameworks. You will also hear the term lazy
loading in reference to deferred loading. This means that data is not actually loaded or queried from the
database until it is explicitly requested.

In the following example, a Linq to SQL statement is used to load an article’s comments into a
ListView control, using deferred execution.

Using linqToSqlContext as new L2SDataContext()

lvComments.DataSource = linqToSqlContext.Articles.First().Comments
lvComments.DataBind()

End Using

Using the same pattern with an EF model will result in 0 comments being returned because EF does
not support lazy loading. Instead, you must explicitly load the comments as illustrated in the following
snippet because you have to tell EF you want to include an article’s comments:

Using EFContext as new EFDataContext()

lvComments.DataSource = EFContext.Articles.Include(“Comments”).First().Comments
lvComments.DataBind()

End Using

Or

Using EFContext as new EFDataContext()

Dim lArticle as List(of Articles) = EFContext.Articles
lArticle.Comments.Load()
lvComments.DataSource = lArticle.Comments
lvComments.DataBind()

End Using

The reason for this is to make developers aware that they are accessing the database. The fi rst example
eagerly loads the list of comments when the article is retrieved. The second example explicitly loads
the list of comments only when they are needed. Eagerly loading typically results in fewer hits on the
database, which makes DBAs happy but can put more pressure on system memory because more data
is loaded that may not be used; it also causes the extra data to travel across the wire. Explicit loading
ultimately results in more hits on the database but uses less memory as well as resulting in a lighter
load being sent across the wire. Ultimately, the choice is up to you, based on your system design and
overall demands.

Because queries are deferred, multiple queries can be executed at once. The query variable actually
stores the commands, as they are added and not executed until the command is iterated over. For
example, you could designate a query to retrieve a list of articles, another to retrieve a list of categories

87586c03.indd 7087586c03.indd 70 9/13/09 10:02:46 PM9/13/09 10:02:46 PM

71

Chapter 3: Planning an Architecture

and yet another query to get a list of approved comments against the same DataContext. These queries
will not be executed until at least one is explicitly executed; that causes all three to be exectuted against
the data store simultaneously. If you look at the connection string generated by the Entity Data Model
Wizard, you will see that it sets MultipleActiveResultSets= true. MultipleActiveResultSets
(MARS) allows applications to execute more than one SQL statement on a connection in the same
request. EF leverages MARS by executing any statements that need to be executed in a single transac-
tion, thus increasing application performance.

Immediate execution is done whenever a scalar query is executed, Avg, Max, Sum, Min, and so forth.
These queries require all the query results to be returned so that the scalar value can be calcu-
lated. Immediate execution can also be forced by calling one of the enumeration methods: ToArray,
ToDictionary and ToList. These methods return the results to a corresponding collection object.

Extending Entity Framework in an N-Tier Environment
The Visual Studio Entity Framework experience provides a helpful visual Designer to create and man-
age the Entity Model. The wizard creates a strongly typed ObjectContext and one or more custom
entity classes derived from EntityObject. These objects can be easily extended using the partial class
model, introduced in .NET 2.0.

While it may not be obvious at fi rst glance, the Entity Framework is easily integrated into a standard
n-tier model. The Entity Framework itself sits on top of the actual data access layer, ADO.NET 3.5.
Above the Entity Framework sits a custom business layer. But the bridge between the Entity Framework
and the business logic layer is a thin layer of customized objects that further customize the Entity
Framework services.

The n-tier architecture used in the Beer House consists of a custom ObjectContext class generated by the
Entity Model Wizard, a series of entity repositories, and custom entity classes generated by the wizard and
extended. The Repository model is similar to the Active Record model, except the entity just holds data
that composes an object, for example a SiteMapInfo in the SiteMap. Instead of the entity also containing
members responsible for retrieving records from the database, the Repository class contains members
responsible for interacting with the database, such as doing standard CRUD operations. The Entity Data
Model Wizard creates a series of classes that represent each of the entities and a derived ObjectContext
with some basic members for interacting with EF. The classes the wizard generates are all marked par-
tial, as are some of the class members. For example, each property in an entity has an OnChanging and
OnChanged partial method. These partial methods can be extended or defi ned in your own partial class.
The following code example demonstrates the generated SiteMapInfo’s SiteMapId property code.

<Global.System.Data.Objects.DataClasses.EdmScalarPropertyAttribute(
EntityKeyProperty:=true, IsNullable:=false),
 Global.System.Runtime.Serialization.DataMemberAttribute()> _
 Public Property SiteMapId() As Integer
 Get
 Return Me._SiteMapId
 End Get
 Set
 Me.OnSiteMapIdChanging(value)
 Me.ReportPropertyChanging(“SiteMapId”)
 Me._SiteMapId =
Global.System.Data.Objects.DataClasses.StructuralObject.SetValidValue(value)

87586c03.indd 7187586c03.indd 71 9/13/09 10:02:46 PM9/13/09 10:02:46 PM

72

Chapter 3: Planning an Architecture

 Me.ReportPropertyChanged(“SiteMapId”)
 Me.OnSiteMapIdChanged
 End Set
 End Property
 Private _SiteMapId As Integer
 Partial Private Sub OnSiteMapIdChanging(ByVal value As Integer)
 End Sub
 Partial Private Sub OnSiteMapIdChanged()
 End Sub

The two partial members are stubbed out in the generated class and marked as partial. These meth-
ods can be defi ned in your extension class, most likely to add some sort of validation to the process of
changing the value. For example if the SiteMapId is out of an expected range of numbers, maybe a
description is too long or a phone number is unacceptable. In the following example the SiteMapId has
to be greater than 0; if it is a negative value, an ArgumentException is thrown. This exception can then
be caught and handled appropriately, rather than letting the invalid data get caught by the database or,
worse yet, committed to the database.

 Public Class SiteMapInfo

 Private Sub OnSiteMapIdChanging(ByVal value As Integer)
 If value < 0 Then
 Throw New ArgumentException(“The SiteMapId cannot be less than 0.”)
 End If
 End Sub

 End Class

The code generated by the wizard creates two types of classes, a custom ObjectContext class with
some helper methods to facilitate interacting with the Entity Model and a EntityObject for each
entity. Figure 3-7 shows these relationships.

Model Context

ObjectContext

Custom Entity

EntityObject

Figure 3-7

The custom ObjectContext class not only wraps up all the members of the ObjectContext but also
provides read-only properties that represent an ObjectQuery of each of the entities in the model.
This makes querying each of the entity types fairly trivial as well as making LINQ queries much sim-
pler. The following example shows the property that represents a collection of SiteMapInfos in the
database:

Public ReadOnly Property SiteMaps() As Global.System.Data.Objects.ObjectQuery(
Of SiteMapInfo)
Get

87586c03.indd 7287586c03.indd 72 9/13/09 10:02:46 PM9/13/09 10:02:46 PM

73

Chapter 3: Planning an Architecture

 If (Me._SiteMaps Is Nothing) Then
 Me._SiteMaps = MyBase.CreateQuery(Of SiteMapInfo)(“[SiteMaps]”)
 End If
 Return Me._SiteMaps
End Get
End Property
Private _SiteMaps As Global.System.Data.Objects.ObjectQuery(Of SiteMapInfo)

 In this code, SiteMaps is of type ObjectQuery(Of SiteMapInfo). The CreateQuery call processes
the ESQL statement “[SiteMaps]” to return a collection of SiteMapInfo objects. The Get accessor
also checks to see if the collection has already been built before it makes the query to the database, add-
ing a little performance gain.

If you are familiar with basic LINQ syntax, the next example should be easy. The property exposes the
data as an ObjectQuery(T), which can be further manipulated or used as is. ObjectQuery(T) is a
query that uses the ObjectContext connection and metadata information to perform a query against
an entity model. Before an ObjectQuery(T) actually executes the query against the entity model it
can be further transformed, such as adding a Sort By or Where clause to the query. In the example,
Categories is exposed as an ObjectQuery(T), and you can see how to retrieve a list of active
SiteMapInfos using basic LINQ syntax.

Public Function GetSiteMapNodes() As List(Of SiteMapInfo)

Dim lSiteMapNodes As List(Of SiteMapInfo)

SiteMapctx.SiteMaps.MergeOption = MergeOption.NoTracking
lSiteMapNodes = (From lSiteMapNode In SiteMapctx.SiteMaps _
 Where lSiteMapNode.Active = True _
Order By lSiteMapNode.SortOrder).ToList()

Return lSiteMapNodes

End Function

In the example, I set the MergeOption to NoTracking, which means that the entities returned will not
be attached to the context. This is important when returning collections of entities that will not need to
have their state tracked by the context. This is common when caching content, and I will show this in
practice later as I explore how a repository will be architected and results cached.

As I continue explaining how the Entity Framework can be leveraged in theBeerHouse application,
I will continue to expand the model into a true n-tier architecture by extending the generated entity
objects and creating corresponding object repositories to manage the queries to and from the database.

Generating an Entity Framework Data Model
While there are command-line tools to generate a model for the Entity Framework, Visual Studio 2008
SP1 has a built-in wizard that takes care of making all the necessary code for a valid model. Once you
have a model built with the wizard, you have a graphical surface to manage the model from, making it
easy to apply updates and customize the model.

To add an Entity Model to a website, WPF application, or class library, fi rst you add a new ADO.NET
Entity Data Model to the project. This is added just like any new item, by right-clicking the root node

87586c03.indd 7387586c03.indd 73 9/13/09 10:02:46 PM9/13/09 10:02:46 PM

74

Chapter 3: Planning an Architecture

or folder in the project and selecting Add New Item from the context menu (or by using the keyboard
shortcut Ctrl+Shift+A) to open Visual Studio’s Add New Item dialog (see Figure 3-8). For theBeerHouse
application I am going to add the model to the class library I am creating to hold the business side of
the application.

Figure 3-8

You will fi nd the ADO.NET Entity Data Model item in the Common items, but you can probably fi nd it
more quickly by selecting the Data node in the Categories tree on the left side of the dialog.

Once you select the model type, give it a valid name. In this case, I am adding the SiteMap table that
will be the foundation of all the navigation in the site and naming it SiteMapModel.

Click the Add button on the New Item dialog to start the Entity Data Model Wizard. In the fi rst window
(see Figure 3-9), select the option Generate From Database.

The next screen in the wizard builds the connection string needed by the Entity Framework to con-
nect to the data source. If you already have a valid Entity Framework connection string available, you
will see it in a drop-down at the top of the window. If you do not have a connection string or you need
to create a new one, click the New Connection button to open the Connection Properties dialog (see
Figure 3-10).

This should be a familiar dialog if you have ever set up a connection string from a Microsoft develop-
ment tool like SQL Management Studio or Visual Studio. To use this dialog, enter the server name or
address. If you are connecting to a database on your development machine, you can use (local) or just
a “.” as shown in Figure 3-10. Note that you can connect to a database fi le if you are using SQL Express.
The connection string will be slightly different, but because the wizard creates it for you, there is noth-
ing you need to do different in the rest of the wizard. Just use the connection dialog to make the con-
nection to your SQL Express database the way you normally would.

87586c03.indd 7487586c03.indd 74 9/13/09 10:02:46 PM9/13/09 10:02:46 PM

75

Chapter 3: Planning an Architecture

Figure 3-9

Figure 3-10

87586c03.indd 7587586c03.indd 75 9/13/09 10:02:46 PM9/13/09 10:02:46 PM

76

Chapter 3: Planning an Architecture

Once you have created the connection string to the data source, you will notice the name has been pre-
defi ned and consists of the server name, a period, the name of the database, another period, and dbo.

The Entity Connection String (outlined in Figure 3-11) shows you the real connection string used by the
Entity Framework to connect to the data source.

Figure 3-11

Notice that there is more information in this connection string than in a traditional .NET connection
string. The Wizard will ultimately place a copy of the model’s connection string in either web.config
(if being added directly to a web site project) or app.config (if being added to a Class Library or non-
web application project) as shown in the following snippet:

<connectionStrings>
<add name=”TheBeerHouseEntities”
connectionString=”metadata=res://*;provider=System.Data.SqlClient;
provider connection string="Data Source=.;
Initial Catalog=TheBeerHouseVB;
Integrated Security=True;
MultipleActiveResultSets=True"”
providerName=”System.Data.EntityClient”/>
</connectionStrings>

An Entity Framework connection string is actually composed of a series of semicolon-delimited values;
metadata, provider, and provider connection string. The metadata pair specifi es a pipe-delimited list of
directories, fi les, and resources that contain metadata and mapping information for the Entity Framework.

87586c03.indd 7687586c03.indd 76 9/13/09 10:02:46 PM9/13/09 10:02:46 PM

77

Chapter 3: Planning an Architecture

The wizard typically creates a generic value for this “res://*”. This value tells the Entity Framework to
load any possible values from the application, including all referenced assemblies and anything else
that might be in the bin folder.

For a more detailed explanation of the Entity Framework Connection String please refer to the following
MSDN article: http://msdn.microsoft.com/en-us/library/cc716756.aspx.

Typically, the metadata will point to a fi le resource containing the EDM and metadata mapping; these
values can be stored as a resource in an assembly. In this case, the values need to be supplied in the fol-
lowing format: res://<assemblyFullName>/<resourceName>. assemblyFullName would be the same
complete format you would use to register an assembly in the references section of the web.config fi le;
assembly fi le name, version, culture, andPublicKeyToken. The resourceName value points to the
specifi c resource embedded in the assembly.

But the metadata value can be used to specify the location of particular resources that defi ne the Entity
Model. For example, the CSDL (Conceptual Schema Defi nition Language), SSDL (Store Schema Defi nition
Language), and MSL (Mapping Specifi c Language) fi les. When the wizard generates the model for you,
the content of these fi les is stored in the Designer fi le, .edmx. Unless you plan on generating the CSDL,
SSDL, and MSL at the command line, you will never have to deal with these model defi nition fi les.
In fact, it is in your best interest to not modify the content of these sections; remember that they are
generated sections in the Designer fi le when using the wizard, because they are not well documented
and very interrelated. The wizard generates a Designer fi le that contains each of these sections for the
model. You can read more detail on these sections on MSDN (http://msdn.microsoft.com/en-us/
library/bb399604.aspx); because intimate knowledge of these sections is not needed to work with
Entity Framework I will not pursue them any further. Any changes you want to make to these sections
can be done through the Designer in Visual Studio and will be done correctly.

The provider pair specifi es the type of provider for the Entity Framework to use. Remember Entity
Framework is not database-specifi c, and various providers are available to work with it. When work-
ing with SQL Server, this value is System.Data.SQLClient, which is the familiar namespace we have
been using since the beginning of .NET to connection to SQL Server.

The Provider Connection String pair is where the value of the more traditional connection string is
located. So, if you have an existing connection string to connect to the database, you can still use that;
you would need to place it in this section of the Entity Framework–specifi c connection string.

At the bottom of the wizard, check the box to Save entity connection settings in App.Confi g as. That
stores the connection string in the confi g fi le of the application, which will save you work later because
the wizard will create the correct connection string instead of you having to do it.

Creating an Entity Model in a class library causes the wizard to add an App.Config
fi le to the class library. Because this is a DLL and not an application, it is not used
directly, it but should be referenced to copy the connection string for your applica-
tion, whether it is a website (web.config) or desktop application (app.config). Of
course, if you generate the Entity Model within a website (in the App_Code folder),
the connection string is added to the web.config fi le.

87586c03.indd 7787586c03.indd 77 9/13/09 10:02:47 PM9/13/09 10:02:47 PM

78

Chapter 3: Planning an Architecture

Clicking the Next button takes you to the Choose Your Database Objects page (see Figure 3-12), which
displays a list of tables, views, and stored procedures you can use to build the model. For this example,
you are going to build a model around the site map, so expand the Tables node and scroll down the list
of tables till the SiteMap table is displayed. Check the node so that it will be used to build the model.
If there were more tables to add to the model, you would check them as well. You will do this in later
chapters.

Figure 3-12

At the bottom of the page, specify the name of the Entity Model, in this case enter SiteMapModel. This
will be used to identify the Entity Model and context for the site map. Click Finish to create the model.
When the model has been created, the Designer will be displayed, showing a list of entities in the
model. This looks a lot like the class diagram that was introduced with Visual Studio 2005, as shown in
Figure 3-13.

Before you save the model, rename the entity something other than SiteMap to avoid confusion with
the SiteMap already built into the .NET framework. I chose SiteMapInfo. It is also smart to change the
Entity Set Name. The wizard will call it SiteMapSet, which just does not sound natural; I changed it to
SiteMapInfos.

You can change both of these values by selecting the SiteMap entity in the Model Designer and press-
ing F4. This opens the entity’s properties, which allows you to modify these properties as shown in
Figure 3-14.

87586c03.indd 7887586c03.indd 78 9/13/09 10:02:47 PM9/13/09 10:02:47 PM

79

Chapter 3: Planning an Architecture

Figure 3-13

Figure 3-14

87586c03.indd 7987586c03.indd 79 9/13/09 10:02:47 PM9/13/09 10:02:47 PM

80

Chapter 3: Planning an Architecture

Additionally, you can change the property names in the entity by bringing up their property window
or clicking on the name itself in the Designer. You can change even more of a property’s values in the
Properties window (see Figure 3-15), accessed by selecting the property in the Designer and pressing F4.

Figure 3-15

Each property has a getter and a setter, and the access modifi er can be changed from the default
Public to Internal, Private, or Protected. It is interesting to note the getter and setter of a property
can have differing access modifi ers.

To make the Entity Framework check for optimistic concurrency on the property, change the
Concurrency Mode to Fixed.

You can also set a default value for the property, which you should do for the Active fi eld in the tables.
This fi eld is used to indicate if a record has been deleted, so it should be set to true. As I review more
entities in the site, you will see that there are a few other fi elds that should have default values. These
default values are assigned to the properties backing property. For example Active’s backing property,
_Active : Private _Active As Boolean = true.

Active is a new fi eld added to each of the tables in the database from previous versions of the BeerHouse.
I was taught early in my career when dealing with records in a database to rarely actually delete a record
from the database. In many cases, there are legal reasons for this, but practically it can make running
your application much easier. A common scenario is that a user accidentally deletes a record from the
database; if you physically deleted the record from the database, you would have to either go through
a full database restore to return the record or reenter the record. The fi rst resolution is a major task that

87586c03.indd 8087586c03.indd 80 9/13/09 10:02:47 PM9/13/09 10:02:47 PM

81

Chapter 3: Planning an Architecture

may or may not be allowed by the system DBAs. The latter method often means you have corrupted
data, since the original data is gone along with any relationships and activity trail. If you add the extra
Active fi eld to a table, you can simply fl ip the bit to true or false. If a record needs to be restored, this
can be done with a simple operation, instead of a major one.

The Documentation property gives you a place to store a long description and a summary for the
entity. Entity Key is true if the fi eld is part of the primary key of the associated table(s). Typically, you
will want to let the wizard determine this for you.

The Name property is the Name used to access the value of the fi eld. For example, you may have a fi eld
name that is not the friendliest of names or more commonly the name of a relationship. Later I will
explain the architecture of the Articles module, which has a relation between the Articles table and the
Categories table. There is only one category per article, so renaming the property to Category makes
more sense.

Nullable indicates if the fi eld accepts null values or not. This actually sets the
EdmScalarPropertyAttribute’s IsNullable property. This basically indicates that the database fi eld
can accept null as a valid value.

Finally, the Type property indicates what type of object is represented by the property. For example,
value types like String and Integer or any custom object you may want to use.

The actual classes created by the Entity Framework Model Wizard are located in a
code-behind fi le associated with the model’s .edmx fi le. If you expand the node for
the Designer, you will see this fi le. It contains the custom ObjectContext and
entity classes for the model. Try to avoid customizing the code in this fi le because
any future changes to the model will result in them being overwritten by the code
generator. I will make a few slight modifi cations to the fi le to make sure that the
classes are part of the correct namespace, but that is it. All other modifi cations will
be done in partial classes.

Customizing Relationships
I want to step ahead a little and talk about customizing relationships in the Designer. Because the
SiteMap consists of just one table, I am going to use the model for the Articles module. I will go over
this model in detail in Chapter 5, but for now I want to focus on the relationships.

When an entity has a relationship to another entity a Navigational Property is generated. This will
be initially defi ned as the name of the foreign entity. So, in the case of an Article, it has a many-to-one
relationship to Categories and a one-to-many relationship to Comments. Just like the names of the
entities, the name of the Navigational Property can be changed. Just click on the name in the entity
and change it to the desired name. The Navigational Property can also be opened and the name
changed there as well.

Notice the other Navigation properties are disabled (see Figure 3-16). That’s because they are tied to
the underlying data store and should not be changed in the Designer.

87586c03.indd 8187586c03.indd 81 9/13/09 10:02:47 PM9/13/09 10:02:47 PM

82

Chapter 3: Planning an Architecture

Figure 3-16

Examining the Generated Entity Model
After customizing any values in the entity Designer, save the model. Behind the Designer is a code-
behind fi le (in this case, SiteMapModel.Designer.vb) that contains a custom ObjectContext class
and a custom EntityObject class to represent any entities.

Back in the Data Connection step of the wizard, it asks the developer to designate the Model Namespace
value, for the SiteMap model, I designated SiteMapEntities as the name. This value is used as the
name of the custom ObjectContext class the wizard generates.

Partial Public Class SiteMapEntities
 Inherits Global.System.Data.Objects.ObjectContext

Each model has one class that derives from System.Data.Objects.ObjectContext, SiteMapEntities
in this case. The System.Data.Objects.ObjectContext class actually does the heavy lifting to interact
with the Entity Framework. The ObjectContext class has numerous methods and properties and the
SavingChanges event. I’ll explain many of these as I review how the repositories work.

The following table describes the class’s methods.

Method Description

AcceptAllChanges Accepts all changes made to objects in the object context.

AddObject Adds an object to the object context.

ApplyPropertyChanges Applies property changes from a detached object to an object
already attached to the object context.

87586c03.indd 8287586c03.indd 82 9/13/09 10:02:47 PM9/13/09 10:02:47 PM

83

Chapter 3: Planning an Architecture

Method Description

Attach Attaches an object or object graph to the object context when the
object has an entity key.

AttachTo Attaches an object or object graph to the object context in a spe-
cifi c entity set.

CreateEntityKey Creates the entity key for a specifi c object, or returns the entity
key if it already exists.

CreateQuery(T) Creates an ObjectQuery(T) in the current object context by
using the specifi ed query string.

DeleteObject Marks an object for deletion.

Detach Removes the object from the object context.

Dispose Releases the resources used by the object context.

Equals Determines whether the specifi ed Object is equal to the current
Object. (Inherited from Object.)

ExecuteFunction(TElement) Executes the given stored procedure or function against the data
source to return an ObjectResult(T).

GetObjectByKey Returns an object that has the specifi ed entity key.

Refresh Overloaded. Updates specifi c objects in the object context with
data from the data source.

SaveChanges Overloaded. Persists all updates to the data source.

TryGetObjectByKey Returns an object that has the specifi ed entity key.

Here’s a look at the properties of the ObjectContext class:

Property Description

CommandTimeout Gets or sets the timeout value, in seconds, for all object context operations.

Connection Gets the connection used by the object context.

DefaultContainerName Gets or sets the default container name.

MetadataWorkspace Gets the metadata workspace used by the object context.

ObjectStateManager Gets the object state manager used by the object context to track object
changes.

The SavingChanges event occurs when changes are saved to the data source.

87586c03.indd 8387586c03.indd 83 9/13/09 10:02:47 PM9/13/09 10:02:47 PM

84

Chapter 3: Planning an Architecture

ObjectContext Constructors
The custom ObjectContext has three public constructors: one parameterless, one that accepts a
connectionString, and one that accepts a connection string and an existing EntityConnection.

Public Sub New()
 MyBase.New(“name=SiteMapEntities”, “SiteMapEntities”)
 Me.OnContextCreated
End Sub

Public Sub New(ByVal connectionString As String)
 MyBase.New(connectionString, “SiteMapEntities”)
 Me.OnContextCreated
End Sub

Public Sub New(ByVal connection As
Global.System.Data.EntityClient.EntityConnection)
 MyBase.New(connection, “SiteMapEntities”)
 Me.OnContextCreated
End Sub

Typically, the fi rst constructor will be used, taking advantage of the settings in the web.config con-
nections element. But depending on the way your application is confi gured you may want to use the
second constructor.

As I evolve the business architecture, I will start explaining the use of a class repository. The repository
classes create a context used to interact with the entity model. Therefore the repostories will ultimately
be responsible for passing along the connection string value to the context, as shown in the following
example:

Private _SiteMapctx As SiteMapEntities
Public Property SiteMapctx() As SiteMapEntities
Get
 If IsNothing(_SiteMapctx) Then
 _SiteMapctx = New SiteMapEntities(GetActualConnectionString())
 End If

 Return _SiteMapctx
End Get
Set(ByVal Value As SiteMapEntities)
 _SiteMapctx = Value
End Set
End Property

Public Sub New(ByVal sConnectionString As String)
 ConnectionString = sConnectionString
 CacheKey = “SiteMap”
End Sub

Public Sub New()
 ConnectionString = Globals.Settings.DefaultConnectionStringName
 CacheKey = “SiteMap”
End Sub

87586c03.indd 8487586c03.indd 84 9/13/09 10:02:47 PM9/13/09 10:02:47 PM

85

Chapter 3: Planning an Architecture

The Default ObjectQuery
The next major member is the SiteMaps property, an ObjectQuery(of SiteMapInfo). Remember
that I named the site map entity SiteMapInfo to avoid confusion with other classes already in use in
the .NET Framework. An ObjectQuery is special generic class that represents a collection of entities
returned from a query (select statement) through the Entity Framework.

Public ReadOnly Property SiteMapInfos()
As Global.System.Data.Objects.ObjectQuery(Of SiteMapInfo)
 Get
 If (Me._SiteMapInfos Is Nothing) Then
 Me._SiteMapInfos = _
 MyBase.CreateQuery(Of SiteMapInfo)(“[SiteMapInfos]”)
 End If
 Return Me._SiteMapInfos
 End Get
End Property
Private _SiteMapInfos As Global.System.Data.Objects.ObjectQuery(Of SiteMapInfo)

The property checks to see if it has already created a list of SiteMapInfo objects; if not, it calls
CreateQuery to get an ObjectQuery of SiteMapInfo objects. The CreateQuery method accepts a
query string and an optional ObjectParameter collection. It returns an ObjectQuery that allows
you to construct queries against the SiteMapInfo entity. Think of an ObjectQuery as a generic
List(of T), but it has special features that allow it to be queried by LINQ. Notice that the private
_SiteMapInfos variable is an ObjectQuery of SiteMapInfo objects.

The SiteMapInfos property is defi ned so LINQ to Entities can be executed to return data. The LINQ
engine uses the ObjectQuery to work its magic.

Updating an Entity
There is only one method to the custom context, AddToSiteMaps, which accepts a SiteMapInfo object.
This method is basically a helper method that allows new or disconnected entity objects to be added
and updated within the context.

 Public Sub AddToSiteMaps(ByVal siteMapInfo As SiteMapInfo)
 MyBase.AddObject(“SiteMaps”, siteMapInfo)
 End Sub

When entities are retrieved from the database via the Entity Framework, they are returned attached
to the context by default so that the framework can manage changes to each entity and subsequent con-
currency issues.

Entities can exist without being attached to a context; they are just normal objects after all. TheBeerHouse
application uses detached entities in many instances, typically when a list of entities is cached. In
order to save any entity through the Entity Framework, it must be attached to the context and the
AddToSiteMaps helper method manages this operation by calling the ObjectContext’s AddObject
method. It passes the name of the data set and the entity it belongs to.

Adding the entity to the context adds the object to the ObjectStateManager, which is used by the
ObjectContext to manage how to treat an entity when the SaveChanges method is called. When

87586c03.indd 8587586c03.indd 85 9/13/09 10:02:47 PM9/13/09 10:02:47 PM

86

Chapter 3: Planning an Architecture

SaveChanges is called the Entity Framework context will perform any necessary insert, update, or
delete operations needed by iterating over an internal collection of entities. Each will have an assigned
EntityState value to indicate the type of operation to be performed: Added, Modified, Deleted,
Detached or Unchanged.

Working with the Partial Custom ObjectContext Class
All the classes generated by the Entity Framework Wizard are partial and use partial members where
appropriate. If you are not familiar with partial classes they allow you to literally split a class across
multiple fi les. Partial classes were introduced with the .NET 2.0 Framework and primarily used to
split the generated user interface support code from the code used to program the page in an ASP.
NET site or forms in a Windows application. This provides a nice clean surface to write the business
code of the page.

The feature has been leveraged by the Entity Framework generated classes as well. Think of the classes
generated by the Entity Framework classes as the user interface support code generated by Visual
Studio for a Web Form that has been separated out.

Taking advantage of the partial class methodology the custom ObjectContext class,
SiteMapEntities, can be extended by adding a new partial class to the project, also named
SiteMapEntities.

 Public Class SiteMapEntities

 Private Sub SiteMapEntities_SavingChanges(ByVal sender As Object,
ByVal e As System.EventArgs) Handles Me.SavingChanges
 Dim typeEntries = (From entry _
 In Me.ObjectStateManager.GetObjectStateEntries(EntityState.Added Or
 EntityState.Modified) _
 Where TypeOf entry.Entity Is IBaseEntity).ToList()

 For Each ose As System.Data.Objects.ObjectStateEntry In typeEntries

 Dim lBaseEntity As IBaseEntity = DirectCast(
ose.Entity, IBaseEntity)

 If lBaseEntity.IsValid = False Then
 Throw New BeerHouseDataException(
String.Format(“{0} is Not Valid”, lBaseEntity.SetName), “”, “”)
 End If

 Next

 End Sub
 End Class

For the purposes of theBeerHouse architecture, I am going to add one event handler, SavingChanges.
This event provides a way to intercept any changes being made to the context, that is, the objects being
modifi ed, added or deleted from the database. While I have not covered it yet, I am leveraging an inter-
face called IBaseEntity that has an IsValid property that must be implemented by each of the entity
objects, more about that shortly.

87586c03.indd 8687586c03.indd 86 9/13/09 10:02:47 PM9/13/09 10:02:47 PM

87

Chapter 3: Planning an Architecture

The SavingChanges event handler iterates through any new or modifi ed entities and makes sure the
IsValid property returns true. If the entity does not meet its defi ned requirements to be a valid object
a custom exception is thrown, keeping the update from executing.

A list of SiteMapInfo objects that have either an Added or Modified state is retrieved by calling the
GetObjectStateEntries, passing in an ORed list of EntityStates. The list is then iterated over, cast-
ing each entity to an IBaseEntity object so the IsValid property can be checked.

Notice the use of LINQ to create the list of entries? This is a relatively basic LINQ query that returns
a List of ObjectStateEntry objects. I will certainly go over more LINQ statements as this book
progresses.

Designing the Business Logic Layer
The DAL discussed in the previous section is made from the Entity Framework and some supporting
classes that retrieve data from the database by running SQL queries and returning as a collection of
custom entities that wrap the fi elds of the retrieved data. The data returned by the DAL is still raw data,
even though it’s wrapped in objects. These entity objects do not add any functionality per se; they are
just strongly typed containers with a series of properties that map to the underlying data, typically a
series of immutable properties and validation logic to represent data. Immutable properties wrap calcu-
lated values that cannot be explicitly set. Each entity can have its own logic that defi nes if it is in a valid
or acceptable state. The BLL consumes data from the Entity Framework and exposes it to the UI layer
adding validation logic, and adds instance and static methods to delete, edit, insert, and retrieve data in
class repositories.

For a domain object, or entity, named Employee that represents an employee, there may be a property
named Boss that returns a reference to another entity, Employee that represents the fi rst object’s boss.
In middle-sized to large projects, there are usually dozens, hundreds, or maybe even thousands of
such entities, with relationships between them. This object-oriented and strongly typed representa-
tion of any data provides an extremely strong abstraction from the database, which merely stores the
data, and it provides a simple and powerful set of classes for the UI developer to work with, without
needing to know any details about how and where the raw data will be stored, how many tables are
in the database, or which relationships exist between them. This is one of the primary goals of the
Entity Framework and why it is an ideal choice to use as the data access layer and the support classes it
generates.

In the previous edition of the book, the Active Record pattern was used. This pattern adds a series of
methods to interact with the DAL to manage data. This means an entity not only holds the data for one
record, but it also holds the members to interact with the DAL. This is many developers’ their pattern
of choice, but if you believe in separation of concerns this will not work. The Repository Pattern sepa-
rates the entity object from the worker methods. The worker methods are separated into a helper class
known as a repository. Some take it so far as to create a corresponding interface for the members of the
repository so that inversion of control and mocking can be done more easily. I also think this architec-
ture is good because it identifi es what the object is responsible for. It is commonly known as separation
of concerns, but I like to think of it as delegating responsibility to objects that specialize in specifi c
tasks, as managers should do with their people.

This makes the UI developer’s job easier, and makes it possible for us to change low-level database struc-
tures without breaking any of the UI code (which is one of the primary reasons for using a multi-tier

87586c03.indd 8787586c03.indd 87 9/13/09 10:02:47 PM9/13/09 10:02:47 PM

88

Chapter 3: Planning an Architecture

design). This can require more development time initially, and more talented and experienced develop-
ers to create this design (which is why you’re reading this book) than would be required if you just used
a DataSet to pass data around, but in the long run it pays off in the form of easier maintainability and
increased reliability. The Entity Framework Wizard helps by generating a good base to start building a
solid business layer.

Once you have a well-designed, completed BLL using entities and repositories, developing the user
interface will be very easy, and can be done by less experienced developers in less time, so some of the
upfront time you spend early in the project can be recovered later when you develop the UI.

Figure 3-17 illustrates the relationship between the Entity Framework and the entity repository.

Figure 3-17

Building a Repository
The Active Record pattern contains a series of methods that interact with the database. These methods
(I call them worker methods) make the record’s object active, so to speak. An active record places all the
worker methods in the entity object, which means that it is all one self-contained class, but that can lead
to architecture issues as the application grows. This is a very popular pattern to use and keeps things
pretty simple to manage. There are fewer objects to instantiate and manage; the problem that arises
is separating concerns. Because all the business methods are built into the class, you cannot separate
these from the values in the record itself.

Introducing the Repository Pattern
Over the past few years I found myself creating classes to hold and self-validate records held in my
databases. Because I wanted all my sites to follow a standard n-tier architecture, I designed a partner
class that would hold all the members to perform any business logic and talk to the data access layer.
This is known as the Repository Pattern.

The Repository Pattern separates the worker methods into a separate repository class and leaves the
data specifi c members in the entity. By isolating the members responsible for managing data access,
the repository can not only be separated into a separate tier but can also easily be transformed into a
portable interface.

IoC containers such as Castle Windsor are used by many to allow them to program against a business
domain without needing a real backend data store. The basic principle is to program against interfaces
rather than actual objects. This way, you can easily swap providers to a different data store without
having to reprogram the application. I decided not to go this far because the Entity Framework handles
managing communication to any database you might use.

87586c03.indd 8887586c03.indd 88 9/13/09 10:02:47 PM9/13/09 10:02:47 PM

89

Chapter 3: Planning an Architecture

Reviewing a Repository
A repository is a class that contains members that interact with the data layer and validates data.
Just like many other cases in programming there are always common methods and routines that are
repeated throughout an application and across applications. These pieces of code should be refactored
into either a common base class to derive from or a utility class that can be called from all sorts of
objects in an application.

Imports System.Web
Imports System.Web.Caching
Imports System.Security.Principal

Namespace BLL

Public MustInherit Class BaseRepository
Implements IDisposable

In the previous edition of the book, a BizObject class was created to contain many of these methods.
This version takes that class and changes it to a base repository class and adds some new functionality.
The class, BaseRepository, is a MustInherit (VB.NET) or abstract (C#), which means it cannot be
used directly but must be inherited by a subclass that can be instantiated.

The next thing to note is it implements the IDisposable interface, which means that it implements
a Dispose method. Interestingly enough this interface method is not really implemented in the
BaseRepository itself, but marked as MustOverride (abstract in C#) in the derived class.

 Private disposedValue As Boolean = False ‘ To detect redundant calls

 ‘ IDisposable
 Protected MustOverride Sub Dispose(ByVal disposing As Boolean)

#Region “ IDisposable Support “
 ‘ This code added by Visual Basic to correctly implement the
disposable pattern.
 Public MustOverride Sub Dispose() Implements IDisposable.Dispose

This pattern is automatically created by Visual Studio when the IDisposable interface is implemented
in a class. The Dispose method is used to clean up any resources created by the class that need to be
released. In the case of a repository class, it needs to at least ensure that the ObjectContext object is
disposed of.

 Private disposedValue As Boolean = False ‘ To detect redundant calls

 ‘ IDisposable
 Protected Overrides Sub Dispose(ByVal disposing As Boolean)
 If Not Me.disposedValue Then
 If disposing Then

 If IsNothing(_SiteMapctx) = False Then
 _SiteMapctx.Dispose()

87586c03.indd 8987586c03.indd 89 9/13/09 10:02:48 PM9/13/09 10:02:48 PM

90

Chapter 3: Planning an Architecture

 End If

 End If

 End If
 Me.disposedValue = True
 End Sub

 ‘ This code added by Visual Basic to correctly implement the
disposable pattern.
 Public Overrides Sub Dispose()

 Dispose(True)

 GC.SuppressFinalize(Me)
 End Sub

The fi rst things defi ned in the BaseRepository class are a couple of constants that can be used by the
child repositories, DefPageSize and MAXROWS. The DefPageSize constant is used when performing
paging operations and is used as a default value for how many records the result or page will contain.
The MAXROWS constant is set to the MaxValue an integer can be. This can be used as a limiting value to
the number of records a query can contain.

Public Const DefPageSize As Integer = 50
Protected Const MAXROWS As Integer = Integer.MaxValue

The next section is a set of properties that help manage caching data in memory. The fi rst two relate to
caching, EnableCaching and CacheDuration. These values can be set at runtime but have default val-
ues, so they do not have to be set each time. If EnableCaching is set to false, then any data will not be
cached from that instance of the repository. It also means that, if there is a cached version of the result
set, it will not be used and a query will be made to the database. The CacheDuration value specifi es
how many seconds a result set will be stored in memory.

#Region “ Properties “

 ‘Needs to be definable in the config file and stored in the app cache
 Private _enableCaching As Boolean = True
 Private _cacheDuration As Integer = 0

 Protected Property EnableCaching() As Boolean
 Get
 Return _enableCaching
 End Get
 Set(ByVal value As Boolean)
 _enableCaching = value
 End Set
 End Property

 Protected Property CacheDuration() As Integer
 Get
 Return _cacheDuration
 End Get
 Set(ByVal value As Integer)

87586c03.indd 9087586c03.indd 90 9/13/09 10:02:48 PM9/13/09 10:02:48 PM

91

Chapter 3: Planning an Architecture

 _cacheDuration = value
 End Set
 End Property

 Private _cacheKey As String = “CacheKey”
 Public Property CacheKey() As String
 Get
 Return _cacheKey
 End Get
 Set(ByVal Value As String)
 _cacheKey = Value
 End Set
 End Property

#End Region

The CacheKey property is used by inheriting repositories as a prefi x to the objects and collections they
cache. The reason that a common CacheKey property is a member of the BaseRepository class is to
help with managing the purging of cache objects. As repositories retrieve entities they can place them
in memory as a named cache object. This will typically be a list of entities but can be individual entities
as the situation warrants. Each cached object will have a name associated with it to access it. As entities
are added to and updated in the data store, the cache may need to be purged, or possibly all the cached
objects of a specifi c type may need to be purged. By prefi xing all the cache objects with a common key
for the repository, there should be a uniform way to access these objects.

If you examine the CacheData method in the code sample that follows, you can see that it takes a key
and data to cache. The key is a string passed to it to identify the data being cached. The method checks
to make sure that the data being passed in is not null and inserts it into the repository’s Cache object. For
this example, the Cache object is simply the current context’s cache object.

#Region “ Cache “

 Protected Shared ReadOnly Property Cache() As Cache
 Get
 Return HttpContext.Current.Cache
 End Get
 End Property

 Protected Shared Sub CacheData(ByVal key As String, ByVal data As Object)
 If Not IsNothing(data) Then
 Cache.Insert(key, data, Nothing, _
 DateTime.Now.AddSeconds(120), TimeSpan.Zero)
 End If
 End Sub

 Protected Sub PurgeCacheItems(ByVal prefix As String)
 prefix = prefix.ToLower
 Dim itemsToRemove As New List(Of String)

 Dim enumerator As IDictionaryEnumerator = Cache.GetEnumerator()
 While enumerator.MoveNext
 If enumerator.Key.ToString.ToLower.StartsWith(prefix) Then
 itemsToRemove.Add(enumerator.Key.ToString)

87586c03.indd 9187586c03.indd 91 9/13/09 10:02:48 PM9/13/09 10:02:48 PM

92

Chapter 3: Planning an Architecture

 End If
 End While

 For Each itemToRemove As String In itemsToRemove
 Cache.Remove(itemToRemove)
 Next
 End Sub

#End Region

The PurgeCacheItems method accepts a prefix, which should correspond to the repository’s
CacheKey property. As I start examining the repositories, you will start to see that a repository may
cache data in various forms based on a variety of data fi lters.

The next section of code focuses on the Entity Framework connection string. There is a ConnectionString
property and a GetActualConnectionString function that returns the actual connection string from
the site’s confi guration fi le. The ConnectionString property actually refers to the name of the connec-
tion string in the connection string section of the confi guration fi le. This methodology forces the storage
of the connection string in the confi guration fi le and keeps it from being hard-coded as a piece of the
application.

Private _connectionString As String = “Set the ConnectionString”
Public Property ConnectionString() As String
Get
 Return _connectionString
End Get
Set(ByVal Value As String)
 _connectionString = Value
End Set
End Property

Protected Function GetActualConnectionString() As String
Return ConfigurationManager.ConnectionStrings(ConnectionString).ConnectionString

End Function

The GetActualConnectionString function calls the ConfigurationManger’s ConnectionStrings
collection and retrieves the connection string for the model.

The following code comes from the SiteMapRepository’s constructor methods. The fi rst one
accepts the name of a connection string and uses it, making it fl exible enough to use a different
connection string if needed. The second method uses the ConnectionString property from the
TheBeerHouseSection class. A class that manages access to the site’s custom confi guration section.
Both constructors set the CacheKey to “SiteMap”.

Public Sub New(ByVal sConnectionString As String)
ConnectionString = sConnectionString
CacheKey = “SiteMap”
End Sub

Public Sub New()

 ConnectionString = Globals.Settings.DefaultConnectionStringName

87586c03.indd 9287586c03.indd 92 9/13/09 10:02:48 PM9/13/09 10:02:48 PM

93

Chapter 3: Planning an Architecture

CacheKey = “SiteMap”

End Sub

The next section of code I want to discuss is what I call user information properties. At one time, they
were contained in the BaseObject class, but because they can be used in many places outside of the
repository or entity classes, I moved them to the Helpers class. The fi rst property, CurrentUser, returns
a reference to the current IPrincipal object. This simply wraps a call to the HttpContext.Current
.User call. The CurrentUserName property returns the username if the user has been authenticated; if
not, then it returns an empty string. Notice how it uses the CurrentUser property to reduce the amount
of code it uses.

Both of these properties are used throughout the application concerning user authentication. You will
see shortly that the CurrentUser property will play a role in extending the authentication properties of
entities.

Protected Shared ReadOnly Property CurrentUser() As IPrincipal
Get
 Return HttpContext.Current.User
 End Get
End Property

Protected Shared ReadOnly Property CurrentUserName() As String
Get
 Dim userName As String = String.Empty
 If CurrentUser.Identity.IsAuthenticated Then
 userName = CurrentUser.Identity.Name
 End If
 Return userName
 End Get
End Property

Protected Shared ReadOnly Property CurrentUserIP() As String
Get
 Return HttpContext.Current.Request.UserHostAddress
 End Get
End Property

The fi nal property is CurrentUserIP, which returns a string of the client IP address. This is obtained
from the Request’s UserHostAddress property. This property is important because it can be used to
analyze where the user is logged for analysis and authentication purposes, and so forth. As I introduce
new concepts in later chapters, we will integrate Akismet spam comment fi ltering and wants the cli-
ent IP address to determine if the comment is potentially spam or not. The CurrentUserIP property
makes it very convenient to obtain this value.

The EncodeText function takes a string and encodes it so that it can be safely displayed in HTML.
First, it runs the string through the HtmlEncode method, then it replaces double spaces with the
HTML-encoded and line returns with a
 tag.

Protected Shared Function EncodeText(ByVal content As String) As String
 content = HttpUtility.HtmlEncode(content)

87586c03.indd 9387586c03.indd 93 9/13/09 10:02:48 PM9/13/09 10:02:48 PM

94

Chapter 3: Planning an Architecture

 content = content.Replace(“ “, “ ”).Replace(“\n”, “
”)
 Return content
End Function

The next method is ConvertNullToEmptyString, which is a safety method to make sure that the
application does not attempt to use a null string. If a null string is used in an application, an exception
will typically be thrown, converting it to an empty string is a safe way to keep this from happening. A
null string happens when a string is created but not initialized.

Protected Shared Function ConvertNullToEmptyString(ByVal input As String) As String
 If String.IsNullOrEmpty(input) Then
 Return String.Empty
 Else
 Return input
 End If
End Function

More members can be added in a similar manner that can be used by child classes.

Examining a Repository
It all starts with a BaseRepository class that contains some common properties and methods that
will be used by all the repositories in the BLL. It is marked as MustInherit, (abstract in C#), meaning
that it cannot be instantiated on its own and must be inherited by another class and it can be instanti-
ated. The BaseRepository class only provides common helper properties and methods that help you
work with data.

The next class in the hierarchy is the BaseArticleRepository class, which contains one key member,
Articlesctx. The Articlesctx property wraps around an ArticlesEntities object ArticlesEntities
is a customized ObjectContext object created by the Entity Framework Wizard. The Articlesctx
property wraps around a private variable. The property checks to see if an ArticlesEntities context
has already been created, and if not, creates one and returns it. The structure and relationship of these
classes is illustrated in Figure 3-18.

Private _Articlesctx As ArticlesEntities
Public Property Articlesctx() As ArticlesEntities
Get
If IsNothing(_Articlesctx) Then
 _Articlesctx = New ArticlesEntities(GetActualConnectionString())
 End If
 Return _Articlesctx
 End Get
 Set(ByVal Value As ArticlesEntities)
 _Articlesctx = Value
 End Set
End Property

The reason why there is a BaseArticleRepository class is that the news module consists of three
entity types: Article, Category, Comment. I have created a targeted repository for each entity. In this
example, I am showing the ArticleRepository class. The ArticleRepository class contains a series

87586c03.indd 9487586c03.indd 94 9/13/09 10:02:48 PM9/13/09 10:02:48 PM

95

Chapter 3: Planning an Architecture

of methods to interact with the Entity Framework and database to retrieve, insert, update, and delete
articles. I will detail the members in Chapter 5. The BaseArticleRepository holds common members
used by each of the child repositories. In this case, it is a set of constructors and the ArticleContext
object. Each of these members is used by the child repositories.

Figure 3-18

Examining an Entity Class
The Entity Framework Model Wizard generates a series of partial classes that can be extended to inte-
grate custom logic and properties. Each entity in the Entity Model is derived from the System.Data
.Objects.DataClasses.EntityObject class. This ensures each entity contains some base members
that allow it to interact with the EF Object Services.

The Article class consists of a partial class distributed across two fi les. The Entity Framework Wizard
generates the core class that consists of properties, methods, and events related to the data that repre-
sents a news article. All custom entities inherit from EntityObject and extend its functionality. The
entity’s class is adorned with attributes that describe it to the Entity Framework.

<Global.System.Data.Objects.DataClasses.EdmEntityTypeAttribute(
NamespaceName:=”ArticlesModel”, Name:=”Article”), _
 Global.System.Runtime.Serialization.DataContractAttribute(
IsReference:=True), _
 Global.System.Serializable()> _
 Partial Public Class Article
 Inherits Global.System.Data.Objects.DataClasses.EntityObject

87586c03.indd 9587586c03.indd 95 9/13/09 10:02:48 PM9/13/09 10:02:48 PM

96

Chapter 3: Planning an Architecture

Each entity contains at least a series of properties that represent data. They are prefi xed with a series of
attributes that describe the property to the Entity Framework. Examining the code sample that follows
for the ArticleID property, you can see it is an EntityKeyProperty and is not nullable. I assume
that you are familiar with how tables are defi ned in SQL Server, so looking at these attributes, you can
quickly ascertain this property probably represents at least one of the primary key fi elds in a table. In
this case, it is the primary key in the database, and it is the primary key of the entity as well. Remember,
an entity does not have to actually have a one-to-one mapping with database tables.

The setter portion of the property has some features I want to discuss. First, there are a couple of extra
methods defi ned below it: OnArticleIDChanging and OnArticleIDChanged. These are both marked
as partial methods, meaning that you can create another partial class to extend these methods and
give them body. Typically, if you had some sort of custom validation logic that needed to be executed,
extending these methods would be a good idea.

<Global.System.Data.Objects.DataClasses.EdmScalarPropertyAttribute(
EntityKeyProperty:=True, IsNullable:=False), _
Global.System.Runtime.Serialization.DataMemberAttribute()> _

Public Property ArticleID() As Integer
Get
 Return Me._ArticleID
End Get
Set(ByVal value As Integer)
 Me.OnArticleIDChanging(value)
 Me.ReportPropertyChanging(“ArticleID”)
 Me._ArticleID =
Global.System.Data.Objects.DataClasses.
StructuralObject.SetValidValue(value)
 Me.ReportPropertyChanged(“ArticleID”)
 Me.OnArticleIDChanged()
End Set
End Property
Private _ArticleID As Integer
Partial Private Sub OnArticleIDChanging(ByVal value As Integer)
End Sub
Partial Private Sub OnArticleIDChanged()
End Sub

This example creates the body of the OnArticleIdChanging method in a custom extension to the
Article class to validate the value is 0 or greater. If it is not, a new ArgumentException is thrown
explaining the issue.

Private Sub OnArticleIDChanging(ByVal value As Integer)
If value < 0 Then
Throw New ArgumentException(“The ArticleId cannot be less than 0.”)
 End If
End Sub

The next items to note are the calls to the ReportPropertyChanging and ReportPropertyChanged
methods in the Set accessor of the ArticleID property. The ReportPropertyChanging method is

87586c03.indd 9687586c03.indd 96 9/13/09 10:02:48 PM9/13/09 10:02:48 PM

97

Chapter 3: Planning an Architecture

part of the EntityObject class and is called to notify the IEntityChangeTracker that the value is
about to change, so it can cache the initial value. Similarly, the ReportPropertyChanged method is
called to commit the cached value and call the EntityMemberChanged method. This collectively works
with the state manager to manage the current state of the entity. So, when the SaveChanges method is
called on the entity context, it will know which entities to commit to the database.

The next thing to examine in the generated code is how references are handled. In the case of an article,
it needs to belong to a category, which is a many to one foreign key relationship. This is indicated by the
EdmRelationshipNavigationPropertyAttribute attribute. This attribute does the linking between
the entity and the related entity. In this case, it defi nes the foreign key relationship to the category. The
Category property manages the value of the category entity to which the article belongs.

<Global.System.Data.Objects.DataClasses.EdmRelationshipNavigationPropertyAttribute(
“ArticlesModel”, “FK_tbh_Articles_tbh_Categories”, “tbh_Categories”), _
Global.System.Xml.Serialization.XmlIgnoreAttribute(), _
Global.System.Xml.Serialization.SoapIgnoreAttribute(), _
Global.System.Runtime.Serialization.DataMemberAttribute()> _
Public Property Category() As Category
Get
 Return CType(Me,
Global.System.Data.Objects.DataClasses.IEntityWithRelationships)
.RelationshipManager.GetRelatedReference(Of Category)(
“ArticlesModel.FK_tbh_Articles_tbh_Categories”, “tbh_Categories”).Value

End Get
 Set(ByVal value As Category)
 CType(Me,
Global.System.Data.Objects.DataClasses.IEntityWithRelationships)
.RelationshipManager.GetRelatedReference(Of Category)(
“ArticlesModel.FK_tbh_Articles_tbh_Categories”, “tbh_Categories”).Value = value
 End Set
End Property

<Global.System.ComponentModel.BrowsableAttribute(False), _
Global.System.Runtime.Serialization.DataMemberAttribute()> _
Public Property CategoryReference() As
Global.System.Data.Objects.DataClasses.EntityReference(Of Category)
Get
 Return CType(Me,
Global.System.Data.Objects.DataClasses.IEntityWithRelationships)
.RelationshipManager.GetRelatedReference(Of Category)(
“ArticlesModel.FK_tbh_Articles_tbh_Categories”, “tbh_Categories”)
End Get
Set(ByVal value As Global.System.Data.Objects.DataClasses.EntityReference(
Of Category))
 If (Not (value) Is Nothing) Then
 CType(Me,
Global.System.Data.Objects.DataClasses.IEntityWithRelationships)
.RelationshipManager.InitializeRelatedReference(Of Category)(
“ArticlesModel.FK_tbh_Articles_tbh_Categories”, “tbh_Categories”, value)
 End If
End Set
End Property

87586c03.indd 9787586c03.indd 97 9/13/09 10:02:48 PM9/13/09 10:02:48 PM

98

Chapter 3: Planning an Architecture

The CategoryReference property is of type EntityReference(Of Category . An EntityReference
represents the navigational relationship between an article and a category in this case. If the relation-
ship were one-to-many, it would have an associated EntityCollection property, which is the case for
article comments. But since the article can only belong to one category, the Category property is simply
a single category entity.

<Global.System.Data.Objects.DataClasses.EdmRelationshipNavigationPropertyAttribute(
“ArticlesModel”, “FK_tbh_Comments_tbh_Articles”, “tbh_Comments”), _
Global.System.Xml.Serialization.XmlIgnoreAttribute(), _
Global.System.Xml.Serialization.SoapIgnoreAttribute(), _
Global.System.Runtime.Serialization.DataMemberAttribute()> _
Public Property Comments() As
Global.System.Data.Objects.DataClasses.EntityCollection(Of Comment)
Get
 Return CType(Me,
Global.System.Data.Objects.DataClasses.IEntityWithRelationships)
.RelationshipManager.GetRelatedCollection(Of Comment)(
“ArticlesModel.FK_tbh_Comments_tbh_Articles”, “tbh_Comments”)
End Get
Set(ByVal value As Global.System.Data.Objects.DataClasses.EntityCollection(
Of Comment))
 If (Not (value) Is Nothing) Then
 CType(Me,
Global.System.Data.Objects.DataClasses.IEntityWithRelationships)
.RelationshipManager.InitializeRelatedCollection(Of Comment)(
“ArticlesModel.FK_tbh_Comments_tbh_Articles”, “tbh_Comments”, value)
 End If
End Set
End Property

Notice the difference between the Comments property and the Category property is comments are a
one-to-many relationship and, thus, require a collection of comments. In short, an EntityCollection
represents the many end of the relationship.

The IBaseEntity Interface
In the last edition of this book, a common base class, BizObject, that contained several helper methods
and properties. Since entities are derived from the EntityObject, this cannot be done in this architec-
ture. Since most of helper members actually help in the interaction with the database, it does not make
sense to hold those methods in the entity object structure anyway. Instead, I created the IBaseEntity
interface that all entities should implement. This interface is pretty simple, it contains an IsValid and a
SetName Property.

 Public Interface IBaseEntity
 ReadOnly Property IsValid() As Boolean
 Property SetName() As String

 ReadOnly Property CanEdit() As Boolean
 ReadOnly Property CanRead() As Boolean
 ReadOnly Property CanDelete() As Boolean
 ReadOnly Property CanAdd() As Boolean

 End Interface

87586c03.indd 9887586c03.indd 98 9/13/09 10:02:48 PM9/13/09 10:02:48 PM

99

Chapter 3: Planning an Architecture

Earlier, I talked about using the IsValid property in the entity object; it is used to determine if the
object satisfi es a set of rules that determine if the object is complete. Each entity is responsible for
checking the data to ensure that it is valid in its own unique fashion. For example, a SiteMapInfo
entity should have at least a URL, a RealURL, and a Title to be considered valid. These are the mini-
mum requirements needed to be able to actually function in the scope of the navigation infrastructure.
If these values have not been set, then this entity is not valid and should not be committed. If these con-
ditions are met, the property returns true; if not, it returns false, indicating that it is either not ready or
cannot be used.

Public ReadOnly Property IsValid() As Boolean Implements IBaseEntity.IsValid
Get
If String.IsNullOrEmpty(URL) = False And _
 String.IsNullOrEmpty(RealURL) = False And _
 String.IsNullOrEmpty(Title) = False Then
 Return True
 End If
 Return False
End Get
End Property

The SetName property is used when the name of the entity’s set is needed. We will investigate these
instances as we examine how modules are designed.

Extending an Entity
While the Entity Data Model Wizard generates a class that inherits from EntityObject, which contains
series of properties to represent each fi eld in the entity, it has built-in limitations. The entity classes can
be extended by using partial classes and partial methods. Each generated property follows a pattern
with the usage of EDM attributes, a common setter pattern, a private variable to hold the value, and pair
of partial methods to indicate the value is changing and has changed.

<Global.System.Data.Objects.DataClasses.EdmScalarPropertyAttribute(
EntityKeyProperty:=True, IsNullable:=False), _
Global.System.Runtime.Serialization.DataMemberAttribute()> _
Public Property SiteMapId() As Integer
Get
 Return Me._SiteMapId
End Get
Set(ByVal value As Integer)
 Me.OnSiteMapIdChanging(Value)
 Me.ReportPropertyChanging(“SiteMapId”)
 Me._SiteMapId =
Global.System.Data.Objects.DataClasses.StructuralObject.SetValidValue(Value)
 Me.ReportPropertyChanged(“SiteMapId”)
 Me.OnSiteMapIdChanged()
End Set
End Property
Private _SiteMapId As Integer
Partial Private Sub OnSiteMapIdChanging(ByVal value As Integer)
End Sub
Partial Private Sub OnSiteMapIdChanged()
End Sub

87586c03.indd 9987586c03.indd 99 9/13/09 10:02:48 PM9/13/09 10:02:48 PM

100

Chapter 3: Planning an Architecture

Within the property setter, the OnSiteMapIDChanging method is called, allowing an opportunity to
perform custom validation on the value being passed to the property. While the value can be validated,
the only way to stop the process is to throw an exception.

Private Sub OnSiteMapIdChanging(ByVal value As Integer)
If value < 0 Then
 Throw New ArgumentException(“The SiteMapId cannot be less than 0.”)
End If
End Sub

After the changing event is executed, the ReportPropertyChanging method is called, letting
the Entity Object Services indicate a value is changing. The object services then knows to track
the property for changes in the ObjectStateManager. The tracking is completed by calling the
ReportPropertyChanged method.

Finally, similarly to the OnSiteMapIDChanging method, the OnSiteMapID_Changed method is called
at the end of the setting. Again, custom validation can be performed in this partial method.

Extending the generated entity class is done by creating custom members in a customized partial class.
A common method of extending the entity is to create immutable properties that manipulate values.
In this example, an article’s Average rating is calculated by ensuring that there is at least one vote and
averaging the TotalRating by the number of Votes.

Public ReadOnly Property AverageRating() As Double
 Get
 If Me.Votes >= 1 Then
 Return CDbl(Me.TotalRating) / CDbl(Me.Votes)
 Else
 Return 0.0
 End If
 End Get
End Property

There is no limitation on how much an entity can be directly extended by adding members by extend-
ing the partial class generated by the Entity Data Model Wizard.

Caching Data for Better Performance
In every site- or web-based application, there is some data that doesn’t change very often, which is
requested very frequently by a lot of end users. Examples are a list of article categories, an e-store’s
product categories and product items, a list of countries and states, and so on. The most common solu-
tion to increase the performance of your site is to implement a caching system for that type of data,
so that once the data is retrieved from the data store, it will be kept in memory for some interval, and
subsequent requests for the same data will retrieve it from the memory cache, avoiding a round trip
to the database server and running another query. This will save processing time and network traffi c
and, thus, produce faster output to the user. In ASP.NET 1.x, the System.Web.Caching.Cache class
was commonly used to cache data. The cache works as an extended dictionary collection, whereby each

87586c03.indd 10087586c03.indd 100 9/13/09 10:02:48 PM9/13/09 10:02:48 PM

101

Chapter 3: Planning an Architecture

entry has a key and a related value. You can store an item in cache by writing Cache.Insert(“key“,
data), and you retrieve it by writing data = Cache[“key“]. The Insert method of the Cache class
has a number of other overloads through which you can specify either the cached data’s expiration time
or how long the data will be kept in the cache, and whether it is a sliding interval (a sliding interval is
reset every time the cached data is accessed), plus a dependency on a fi le or other cached item. When
the dependent fi le is changed, the expiration time is reached, or the interval passes, the data will be
purged from the cache, and at the next request, you will need to query the data directly from the data-
base, storing it in the cache again.

Choosing a Caching Strategy That Fits Your Needs
The Cache class, which was greatly improved with the release of ASP.NET 2.0, has not changed in ASP.
NET 3.5. Support for CacheDependency is still available and its child SQLCacheDependency is sup-
ported in tandem with Entity Framework. In fact, it has nothing to do with Entity Framework because
entities and objects are cached after they are returned from Entity Framework; the SQLDependency
simply hooks the cache object into database changes based on the dependency.

It is important to disconnect entities from the context before caching them because tying them to a par-
ticular context adds overhead and causes issues when trying to work with the entities against another
context. The proper way to retrieve entities that will be cached is by setting the entity set’s MergeOption
to NoTracking. This retrieves the entities without their being attached to the context being used, reducing
the overhead needed to retrieve them and have them in a state that is not attached to the context. The fol-
lowing method shows retrieving a list of SiteMapInfo with MergeTracking turned off to allow caching
the results.

Public Function GetSiteMapNodes() As List(Of SiteMapInfo)

Dim lSiteMapNodes As List(Of SiteMapInfo)

If EnableCaching AndAlso Not IsNothing(Cache(key)) Then
 lSiteMapNodes = CType(Cache(key), List(Of SiteMapInfo))
End If

SiteMapctx.SiteMaps.MergeOption = MergeOption.NoTracking
 lSiteMapNodes = (From lSiteMapNode In SiteMapctx.SiteMaps _
 Order By lSiteMapNode.SortOrder).ToList()

 If EnableCaching Then
 CacheData(key, lSiteMapNodes)
 End If

Return lSiteMapNodes

End Function

Looking at the GetSiteMapNodes function you can see that it also checks the EnableCaching prop-
erty to verify that caching is enabled, and if so, it checks to see if the results already exist. If they do, it
returns the results; if not, then it retrieves the values form the database. Again, if caching is enabled, it
will cache the results before returning the them.

87586c03.indd 10187586c03.indd 101 9/13/09 10:02:48 PM9/13/09 10:02:48 PM

102

Chapter 3: Planning an Architecture

It is interesting the Entity Framework team is working on a transparent caching mechanism that will
be data-store-agnostic. For now there is a way it can be done and detailed in a blog entry by the Entity
Framework Design team; http://blogs.msdn.com/efdesign/archive/2008/07/09/
transparent-caching-support-in-the-entity-framework.aspx. The idea being that EF
will cache the results and manage purging stale data from the cache. This would all happen above the
DAL but below the object services layer. This way, it is done before any query is passed to the data store
but still below where any queries would have access to query the cached data instead. The ultimate idea
is to make caching a fi rst-class or natural part of EF.

Transaction Management with ADO.NET Entity Framework
Transactions are automatically managed within the same object context by the Entity Framework Object
Services. This includes multiple operations that are dependent on successful completion of queries or
transactions that depend on distributed systems, such as e-mail or Microsoft Message Queue (MSMQ).
Entity Framework operations can also be executed within a System.Transactions Transaction to
ensure that the requirements are met.

The use of transactions and Object Services requires the following considerations: only operations
against the data source are transacted, SaveChanges will use any existing transaction to perform the
operation, and if none exists, it will create one. Changes to objects in the object context are not accepted
until the entire transaction is complete. If you retry an operation within a transaction the SaveChanges
method should be called with acceptChangesDuringSave set to false, then AcceptAllChanges
should be called after the transaction operations have completed. Avoid calling SaveChanges after call-
ing AcceptAllChanges; this will cause the context to reapply all the changes to the data source.

Storing Connection Strings and Other Settings
The web.config fi le is composed of multiple sections of related elements that are used by the applica-
tion to determine how the site should work. There are numerous sections provided by ASP.NET out of
the box, but this can be extended to add custom sections. The Beer House site contains numerous con-
fi guration sections for each of the modules that help defi ne module defaults, paths, and so forth.

The BLL will need the caching settings, and the user interface will need other settings, such as the recipi-
ent’s e-mail address for e-mail sent from the site’s Contact Us form, the prefi x for their subject lines (so that
it’s easy to spot them among all the other e-mails, and one to set up a rule to move them to a dedicated
folder in your favorite e-mail client program). All these settings are saved in the web.config fi le, so it’s
easy for an administrator to change them using only a text editor. Anytime the web.config fi le is changed,
ASP.NET will automatically reload it, and its modifi ed settings will be used for new users, and will not
require you to restart the IIS application (which would have terminated any users already online) because
changes to the web.config fi le will automatically recycle the application.

Connection string settings have their own dedicated section in web.config: <connectionStrings>.
Here’s an example that shows how to store a connection string and give it a shorter and friendlier name
that will be used to retrieve it later from code, or from other confi guration elements of web.config:

<connectionStrings>
<remove name=”LocalSqlServer”/>
<add name=”TheBeerHouseEntities”
connectionString=”metadata=res://*;provider=System.Data.SqlClient;

87586c03.indd 10287586c03.indd 102 9/13/09 10:02:48 PM9/13/09 10:02:48 PM

103

Chapter 3: Planning an Architecture

provider connection string="Data Source=.;
Initial Catalog=TheBeerHouseVB;Integrated Security=True;MultipleActiveResultSets=
True"”
 providerName=”System.Data.EntityClient”/>
<add name=”LocalSqlServer” connectionString=”Data Source=.;
Integrated Security=True;Initial Catalog=TheBeerHouseVB;”
 providerName=”System.Data.SqlClient”/>
</connectionStrings>

These connection strings settings are referenced by many other confi guration elements — for example,
the element that confi gures the ELMAH system (Error Logging Modules and Handlers, which is used to
log details about exceptions and gracefully handle them), or the SQL-dependency caching settings. By
default, all these elements have a connectionStringName attribute set to LocalSqlServer (remember
the EF has a different connection string, so having a traditional connection string is very important),
which refers to a connection string pointing to a local SQL Server database called ASPNETDB.MDF —
for convenience, we’ll use that same fi le name for our database. If you choose to rename the fi le, you
can create a new connection string element under <connectionStrings>, and change all elements’
connectionStringName attribute to your new connection string name. A more drastic option would
be to remove the LocalSqlServer entry from machine.config, and then register it again with the
new connection string.

By doing this, all modules pointing to the LocalSqlServer setting will take the new connection
string, and you won’t have to change their individual connectionStringName attribute. However, I
generally don’t recommend changing machine.config because it creates deployment issues, and any
syntax error in that fi le can render the whole web server (not just that site) inoperable. And, of course,
a web hosting provider is not going to let you make this change. I mention it only for completeness and
because it might be the right solution on a tightly controlled corporate intranet web server, for example.

To retrieve the connection strings from code, there’s a new class called System.Web.Configuration.
WebConfigurationManager, which has a ConnectionStrings dictionary property to retrieve the
connection string by name, as follows (note the square brackets used to index into the dictionary):

Dim connString as = WebConfigurationManager.ConnectionStrings(
 “LocalSqlServer”).ConnectionString

This class also has an AppSettings dictionary property that lets you read the values stored in the
<appSettings> section. However, a better option would be to create a class that reads from a custom
section in web.config, so each subapplication would have its settings isolated from one another. You
just write a class that inherits from the System.Configuration.ConfigurationSection class and
decorate its public properties with the ConfigurationProperty attribute to indicate that they need
to be fi lled with settings read from the web.config fi le, and the actual reading will be done for you
when your getter reads that setting from your base class! For elements nested under a parent cus-
tom section, you need to create a new class that inherits from ConfigurationElement (instead of
ConfigurationProperty) and, again, defi ne your properties with the ConfigurationProperty
attribute. Here’s an abbreviated example:

Public Class TheBeerHouseSection
 Inherits ConfigurationSection

 <ConfigurationProperty(“defaultConnectionStringName”,
DefaultValue:=”LocalSqlServer”)> _

87586c03.indd 10387586c03.indd 103 9/13/09 10:02:49 PM9/13/09 10:02:49 PM

104

Chapter 3: Planning an Architecture

 Public Property DefaultConnectionStringName() As String
 Get
 Return CStr(Me(“defaultConnectionStringName”))
 End Get
 Set(ByVal value As String)
 Me(“DefaultConnectionStringName”) = value
 End Set
 End Property

 <ConfigurationProperty(“articles”, IsRequired:=True)> _
 Public ReadOnly Property Articles() As ArticlesElement
 Get
 Return CType(Me(“articles”), ArticlesElement)
 End Get
 End Property

End Class

Public Class ArticlesElement
 Inherits ConfigurationElement

 <ConfigurationProperty(“ratingLockInterval”, DefaultValue:=”15”)> _
 Public Property RatingLockInterval() As Integer
 Get
 Return CInt(Me(“ratingLockInterval”))
 End Get
 Set(ByVal value As Integer)
 Me(“ratingLockInterval”) = value
 End Set
 End Property

End Class

This TheBeerHouseSection class will be mapped to a custom confi guration section. It has a property
named DefaultConnectionStringName that maps a “defaultconnectionstringname” attri-
bute, which has a default value of “LocalSQLServer”. It also has the Articles property of type
ArticlesElement, which maps to a subelement named articles with the RatingLockInterval
Integer attribute. Note that the ConfigurationProperty attribute of the ArticlesElement property
has the IsRequired option set to true, meaning that the element is required to be present in the web
.config fi le. The other properties do not have this constraint because they have a default value.

Once the class is ready you must register it in the web.config fi le and defi ne the mapping to a section
named “site”, as follows:

<configuration xmlns=”http://schemas.microsoft.com/.NetConfiguration/v2.0”>
 <configSections>
 <section name=”theBeerHouse” type=”TheBeerHouse.TheBeerHouseSection,
TBHBLL, Version=3.5.0.1, Culture=neutral, PublicKeyToken=null”/>
 </configSections>

<theBeerHouse defaultConnectionStringName=”TheBeerHouseEntities”
siteDomainName=”[Add Your Base URL Here]”>

87586c03.indd 10487586c03.indd 104 9/13/09 10:02:49 PM9/13/09 10:02:49 PM

105

Chapter 3: Planning an Architecture

<articles RatingLockInterval=”10” />
</theBeerHouse>

 <!-- other configuration sections... -- >
</configuration>

To read the settings from code, you use the WebConfigurationManager’s GetSection to get a refer-
ence to the “theBeerHouse” section, and cast it to the TheBeerHouseSection type. Then, you can use
its properties and subproperties:

Public Shared ReadOnly Settings As TheBeerHouseSection = _
CType(WebConfigurationManager.GetSection(“theBeerHouse”), TheBeerHouseSection)

This book’s sample site requires a number of settings for each module, so there will be a single custom
confi guration section with one subelement for each module. Each module will have its own connection
string and caching settings. However, it’s useful to provide some default values for these settings at the
section level, so that if you want to use the same connection string for all modules, you don’t have to
specify it separately for each module, just once for the entire site. In the “Solution” section of this chap-
ter, you’ll see the custom section class, while the module-specifi c elements will be added in their spe-
cifi c chapters later in the book. Also in this chapter, we’ll develop a class to map a subelement named
contactForm with settings for sending the e-mails from the Contact Us page (the subject line’s prefi x,
and the To and CC fi elds).

User Interface
With the data and business layers covered, it is time to start defi ning how the data will be presented to
and collected from the user. ASP.NET provides a great set of resources to produce a very rich interface
for customers and staff to be productive and interactive with theBeerHouse site. Layout issues were dis-
cussed in the preceding chapter, so here we’ll discuss design issues pertaining to a common pattern for
displaying and administering data.

A Base Page Class
When adding a new Web Form (Page) to an ASP.NET website, Visual Studio automatically adds the
corresponding code-behind fi le with a class for the page that inherits from System.Web.UI.Page.
When building an application like theBeerHouse, there is always common code that each page uses.
Adding redundant code is a sign of poor programming because it adds unnecessary maintenance to the
application.

In the previous edition of the book, a BasePage class was leveraged to contain those common members.
This class inherits from System.Web.UI.Page and, thus, inherits all the features of the Page class
needed by the BasePage class. As you examine the code of theBeerHouse site, there will be other page
classes that inherit from the BasePage class. For example, there is an ArticlePage class that contains
common members related to article management.

 Public Class BasePage
 Inherits System.Web.UI.Page

I am going to review a few of the new members I have added to the BasePage class since the last edi-
tion. The fi rst members manage moving Hidden Fields (think ViewState) to the bottom of the page.

87586c03.indd 10587586c03.indd 105 9/13/09 10:02:49 PM9/13/09 10:02:49 PM

106

Chapter 3: Planning an Architecture

A hidden fi eld is used by pages to hold values that need to be passed back to the server but not dis-
played to the user. The reason they exist is because the web is stateless, meaning that each request or
action against the site is a completely independent action. Cookies and hidden fi elds are used to link
requests from the server’s perspective.

ViewState is unique to ASP.NET and is used to hold a variety of values, typically for web controls,
but it is not limited to that duty. One of the problems with the ViewState is that it can get very bloated
very quickly. It is also rendered at the top of the content. There are two problems with this; it hurts
search engine optimization and it hurts perceived client-side performance.

I have seen a few studies that show search engines tend to only index the topmost parts of the content
of a page. This means that if the content you want to get indexed has been pushed down the page by a
large ViewState, it might not be indexed because the ViewState counts towards those precious bytes.

Large ViewState aside, page content is rendered as it is received by the browser, and hidden fi elds at
the top of the page only hinder this by being at the front of the content stream. There are many factors
that play into how fast content is rendered, but that is way outside the scope of this book. However, mov-
ing these hidden fi elds to the bottom of the page is important to help rendering and on-page SEO. There
are drawbacks to this technique because there are many instances where ASP.NET AJAX is involved
because it relies on the ViewState being present to properly function. So, if you have the ViewState
moved to the bottom of the page and have issues with AJAX functioning properly, then return the
ViewState to the top of the page.

Since hidden fi elds are injected into the content rendered by the page typically at the top of the content
by ASP.NET the request has to be intercepted right after it has been rendered by the page and any con-
trols but before it is sent down the wire. The Page class has a Render method that can be overwritten,
which provides the opportunity needed to massage the content.

The BasePage class has a MoveHiddenFields Boolean property that tells the custom Render method
if it should move the hidden fi elds to the bottom of the page. One problem I have seen with moving the
hidden fi elds is that some controls do not execute correctly because they are looking for those fi elds dur-
ing the page load event processing. For example, the FCKEditor does not function if the hidden fi elds
are moved.

Private _moveHiddenFields As Boolean = True
Public Property MoveHiddenFields() As Boolean
 Get
 Return _moveHiddenFields
 End Get
 Set(ByVal Value As Boolean)
 _moveHiddenFields = Value
 End Set
End Property

Private Function MoveHiddenFieldsToBottom(ByVal html As String) As String
 Dim sPattern As String = “<input type=”“hidden”“.*/*>|
<input type=”“hidden”“.*></input>”
 Dim mc As MatchCollection = Regex.Matches(html, sPattern, _
 RegexOptions.IgnoreCase & RegexOptions.IgnorePatternWhitespace)

87586c03.indd 10687586c03.indd 106 9/13/09 10:02:49 PM9/13/09 10:02:49 PM

107

Chapter 3: Planning an Architecture

 Dim sb As New StringBuilder

 For Each m As Match In mc

 sb.AppendLine(m.Value)
 html = html.Replace(m.Value, String.Empty)

 Next

 Return html.Replace(“</form>”, sb.ToString & “</form>”)
End Function

If MoveHiddenFields is true the custom Render method calls the MoveHiddenFieldsToBottom
method, passing the string that contains the HTML to be rendered in the browser. This method uses a
regular expression to match all the hidden fi elds and loop through them, removing them and append-
ing them to a StringBuilder. Once the loop is done, all the hidden fi elds have been stripped from the
HTML, but the last line of the method inserts them back in at the very bottom of the <form> tag. It is
important to insert the hidden fi elds before the form tag close because they need to be included in the
post back to the server managed by the form.

Protected Overrides Sub Render(ByVal writer As System.Web.UI.HtmlTextWriter)

 Dim stringWriter As New System.IO.StringWriter
 Dim htmlWriter As New HtmlTextWriter(stringWriter)
 MyBase.Render(htmlWriter)
 Dim html As String = stringWriter.ToString()

 If MoveHiddenFields Then

 html = MoveHiddenFieldsToBottom(html)

 End If

 writer.Write(html)

End Sub

Finally, the Render method writes the optimized HTML to the HTMLTextWriter, which ultimately sends
the content down the wire to the client. The overall process incurs negligible overhead to optimize the
page content.

The next element I want to discuss is the PrimaryKeyId property. This a common pattern used to check
for the existence of a primary key being passed in the URL or stored in the page’s ViewState. It fi rst
checks to see if the value has been stored in the ViewState, and if not, it then checks to see if it was
passed in the URL’s QueryString. If either of those criteria is not met, then it returns 0. This value will
be used in pages to retrieve content, such as an article, from the database.

Public Property PrimaryKeyId(ByVal vPrimaryKey As String) As Integer
 Get
 If Not IsNothing(ViewState(vPrimaryKey)) AndAlso
 IsNumeric(ViewState(vPrimaryKey)) Then
 Return CInt(ViewState(vPrimaryKey))

87586c03.indd 10787586c03.indd 107 9/13/09 10:02:49 PM9/13/09 10:02:49 PM

108

Chapter 3: Planning an Architecture

 ElseIf Not IsNothing(Request.QueryString(vPrimaryKey))
AndAlso IsNumeric(Request.QueryString(vPrimaryKey)) Then
 ViewState(vPrimaryKey) = CInt(Request.QueryString(vPrimaryKey))
 Return CInt(Request.QueryString(vPrimaryKey))
 End If
 Return 0
 End Get
 Set(ByVal Value As Integer)
 ViewState(vPrimaryKey) = Value
 End Set
End Property

In this example, the ArticleId property of the ArticlePage class calls the PrimaryKeyId property to
retrieve the value.

Public Property ArticleId() As Integer
Get
 Return PrimaryKeyId(“ArticleId”)
End Get
Set(ByVal Value As Integer)
 PrimaryKeyId(“ArticleId”) = Value
End Set
End Property

There are other members of the BasePage class that will be used as the balance of the book is presented.
There are also helper classes or what I think of as utility classes that are also used to contain common
methods. The reason they are important is these methods are not page-specifi c (meaning tied to a specifi c
page) and might need to be used in other classes. For example, the site takes advantage of user controls
and Web Parts as part of its UI architecture. They will need to access some of these methods, too.

Introducing the ListView Control
The ListView control is new in ASP.NET 3.5 and combines the functionality of the Repeater,
GridView, and Datalist controls but adds the capability to page and sort the data naturally. While it
is not as lightweight as the Repeater or DataList control, it is pretty close and adds the paging and
sorting capabilities built into the GridView control. Editing capabilities are also available with the
ListView control, but I will not leverage this feature. All these features make it a very rich tool to dis-
play tables of data on the web.

Most examples and demos of the ListView control show how to bind the control to one of the DataSource
controls. While the previous edition of this book leveraged the ObjectDataSource control and there
is an EntityDataSource control, I will not use them to bind data. This technique is often not done in
high-demand production sites and reduces an n-tier architecture to a fl at model by making databinding
line of sight to the database. Since it is very easy to bind collections to a ListView from a business layer,
I have opted to use this technique.

Once data is bound to a ListView, it is displayed in an ordered fashion by using templates. If you have
ever used a Repeater, a DataList, or templates to build the layout of a GridView, this will seem like
second nature. There are a few new twists to the template model used in the Repeater and DataList
controls, but they are minor. The ListView offers a rich set of possible templates to control how data is
displayed to the end user.

87586c03.indd 10887586c03.indd 108 9/13/09 10:02:49 PM9/13/09 10:02:49 PM

109

Chapter 3: Planning an Architecture

Template Name Description

LayoutTemplate Identifi es the root template that defi nes the main layout of the control.
It contains a placeholder object, such as a table row (tr), div, or span
element. This element will be replaced with the content that is defi ned
in the ItemTemplate template or in the GroupTemplate template. It
might also contain a DataPager object.

ItemTemplate Identifi es the data-bound content to display for single items.

ItemSeparatorTemplate Identifi es the content to render between single items.

GroupTemplate Identifi es the content for the group layout. It contains a placeholder
object, such as a table cell (td), div, or span that will be replaced with
the content defi ned in the other templates, such as the ItemTemplate
and EmptyItemTemplate templates.

GroupSeparatorTemplate Identifi es the content to render between groups of items.

EmptyItemTemplate Identifi es the content to render for an empty item when a GroupTem-
plate template is used. For example, if the GroupItemCount property
is set to 5, and the total number of items returned from the data source
is 8, the last row of data displayed by the ListView control will con-
tain three items as specifi ed by the ItemTemplate template, and two
items as specifi ed by the EmptyItemTemplate template.

EmptyDataTemplate Identifi es the content to render if the data source returns no data.

SelectedItemTemplate Identifi es the content to render for the selected data item to differentiate
the selected item from the other displayed items.

AlternatingItemTemplate Identifi es the content to render for alternating items to make it easier
to distinguish between consecutive items.

EditItemTemplate Identifi es the content to render when an item is being edited. The
EditItemTemplate template is rendered in place of the ItemTemplate
template for the data item being edited.

InsertItemTemplate Identifi es the content to render when an item is being inserted. The
InsertItemTemplate template is rendered in place of an ItemTemplate
template at either the start of the items displayed by the ListView
control or the end. You can specify where the InsertItemTemplate
template is rendered by using the InsertItemPosition property
of the ListView control.

The ListView displays data using a set of templates, allowing declarative and code-behind databind-
ing. It actually uses a nested layout structure where everything starts with the LayoutTemplate and
proliferates from there. The only real requirement for the LayoutTemplate is that it contains at least
one control marked as a placeholder.

87586c03.indd 10987586c03.indd 109 9/13/09 10:02:49 PM9/13/09 10:02:49 PM

110

Chapter 3: Planning an Architecture

For the administration pages of theBeerHouse application, I use a table to create the layout of the
ListView control. The fi rst row of the table contains the header row of the data. In the example, there
are Title, Edit, and Delete column. These columns are mapped to the Title property of the bound enti-
ties, followed by a column that contains image buttons that will either link to a page to edit the record
or delete the record from the database.

<asp:ListView ID=”lvSiteMap” runat=”server”>
<LayoutTemplate>
 <table cellspacing=”0” cellpadding=”0” class=”AdminList”>
 <THead>
 <tr class=”AdminListHeader”>
 <td>Title</td>

 <td>Edit</td>

 <td>Delete</td>
</tr>
 </THead>
 <TBody>
<tr id=”itemPlaceholder” runat=”server”></tr>
 </TBody>
</table>

</LayoutTemplate>
</asp:ListView>

The next row is changed to a server control by adding the runat=”server” attribute. It has the ID of
itemPlaceholder, which is important because this tells the ListView to use this control to add items
to the list. In this case, the item templates should be a table row <tr> with the appropriate table cells <td>.

<EmptyDataTemplate>
<tr>
<td colspan=”3”><p>Sorry there are no Categories available at this time.</p></td>
</tr>
</EmptyDataTemplate>
<ItemTemplate>
<tr>
<td class=”ListTitle”><a href=’<%# String.Format(
“AddEditSiteMap.aspx?categoryid={0}”, Eval(“siteMapid”)) %>’>
<%# Eval(“Title”) %>
</td>
<td><a href=”<%# String.Format(
“AddEditSiteMap.aspx?categoryid={0}”, Eval(“siteMapId”)) %>”>
<img src=”../images/edit.gif” alt=”“ width=”16” height=”16”
class=”AdminImg” />
</td>
<td><asp:ImageButton runat=”server” ID=”ibtnDelete” ImageAlign=”Middle”
 ImageUrl=”~/Images/Delete.gif” AlternateText=”Delete Node” /></td>
</tr>
</ItemTemplate>

The actual templates are declaratively defi ned as the table row to fi ll the placeholder control designated in
the LayoutTemplate. The fi rst template is the EmptyDataTemplate. It defi nes what is displayed if there
are no records returned from the data source. Figure 3-19 shows an example of how this page looks.

87586c03.indd 11087586c03.indd 110 9/13/09 10:02:49 PM9/13/09 10:02:49 PM

111

Chapter 3: Planning an Architecture

Figure 3-19

The next template is the ItemTemplate, it defi nes how data is displayed in each row. An
AlternatingItemTemplate that defi nes the layout for every other row is also available, giving
you a chance to change the visual appearance on every other row.

The template use declarative databinding, which is code embedded between <%# %>. The data
is actually bound to the ListView in the code-behind. The binding methods take advantage of the
Using syntax that uses an object that implements the IDisposable interface to clean up its resources
in a transparent fashion. In the example, a CategoryRepository is created and the GetCategories
method is called to bind the records to the ListView.

Private Sub BindCategories()

 Using Categoryrpt As New CategoryRepository

 lvCategories.DataSource = Categoryrpt.GetCategories()
 lvCategories.DataBind()

 End Using

End Sub

I think it is important to note a difference between the previous edition of the book, where data was
retrieved in small chunks or pages of data and this version. The former version involved getting a
matching row count for the full set of records matching the query results and doing math behind the
scenes. This was done to reduce the amount of data carried across the wire from the database, but this
approach causes more hits on the database.

87586c03.indd 11187586c03.indd 111 9/13/09 10:02:49 PM9/13/09 10:02:49 PM

112

Chapter 3: Planning an Architecture

I like to cache data in memory to reduce the number of times I need to hit the database. The ListView
has the logic baked into it to correctly calculate the number of pages, how to display the navigation in
the DataPager, and so forth. So, I think trying to duplicate this effort is not a productive use of time.

Paging and Sorting the ListView
Manipulating the records displayed in the ListView is important to make it effective; this is typically
done by paging and sorting the data. The ListView provides built-in mechanisms to help make devel-
oping these routines easy.

ASP.NET 3.5 added the DataPager control, which is a complementary control designed to page through
the ListView control contents. It is added to the LayoutTemplate in the position in which you want it
to appear. I tend to add it at the bottom, but you are not limited to that. It can actually be added outside
the ListView control all together, the DataPager control has a PageControlId property that needs to
be set to the id of the ListView.

<div class=”pager”>
<asp:DataPager ID=”pagerBottom” runat=”server” PageSize=”15”>
 <Fields>
 <asp:NextPreviousPagerField ButtonCssClass=”command”
 FirstPageText=”«” PreviousPageText=”‹” RenderDisabledButtonsAsLabels=”true”
ShowFirstPageButton=”true” ShowPreviousPageButton=”true”
ShowLastPageButton=”false” ShowNextPageButton=”false” />
<asp:NumericPagerField ButtonCount=”7” NumericButtonCssClass=”command”
CurrentPageLabelCssClass=”current”
NextPreviousButtonCssClass=”command” />
<asp:NextPreviousPagerField ButtonCssClass=”command” LastPageText=”»”
NextPageText=”›” RenderDisabledButtonsAsLabels=”true”
ShowFirstPageButton=”false” ShowPreviousPageButton=”false”
ShowLastPageButton=”true” ShowNextPageButton=”true” />
</Fields>
</asp:DataPager>
</div>

The DataPager control causes the ListView control to post back to the server and cause the
PagePropertiesChanged event to be executed. In PagePropertiesChanged, the data needs to be
rebound to the control; the ListView takes care of rendering the proper page.

Private Sub lvSiteMap_PagePropertiesChanged(ByVal sender As Object,
ByVal e As System.EventArgs) Handles lvSiteMap.PagePropertiesChanged
BindSiteMapNodes()
End Sub

The ListView content can be sorted as well. The only requirement is to add a postback control (Button,
LinkButton, or ImageButton,) with the CommandName of “Sort” and a CommandArgument with the
name of the sort criteria. The ListView automatically handles changing the sort order from ascending
to descending. The same PagePropertiesChanged event used to manage paging. The ListView has
the SortExpression and SortDirection properties that can be used to build the query to retrieve the
data. I hope you see why I chose not to retrieve just the page of records that will displayed and instead
chose to cache the full recordset to be manipulated by the ListView.

87586c03.indd 11287586c03.indd 112 9/13/09 10:02:49 PM9/13/09 10:02:49 PM

113

Chapter 3: Planning an Architecture

Using the Update Panel with the ListView Control
ASP.NET 3.5 has added the ASP.NET AJAX framework to the user interface tools that can be quickly
integrated in a site to build rich user interfaces. The framework is a set of JavaScript methods built to
mirror the .NET Framework in organization, classes, and methods that help build client-side function-
ality. It has a set of web controls: ScriptManager, ScriptManagerProxy, UpdatePanel, Timer, and
UpdateProgress.

Each page that needs to use the ASP.NET AJAX framework must have a ScriptManager control. When
a master page is used the content page must have a ScriptManagerProxy control, so the content page
can leverage the ScriptManager on the master page.

The UpdatePanel control is the poor man’s JavaScript helper, it allows blocks of content to be contained
in the UpdatePanel control and all requests are automatically converted to AJAX instead of a traditional
postback. This means that you do not have to lift a fi nger to change an existing page that performs post-
backs to the server to change those postbacks to an asynchronous operation. This means the user will
not have to see the page fl icker associated with the postback.

The ListView control works naturally inside an UpdatePanel control, making the paging and sorting
methods work asynchronously. Once the page is working an UpdatePanel just needs to be added with
the ListView embedded in the panel’s ContentTemplate.

 [f0000.xxx] [f0000.xxx] [f0000.xxx] [f0000.xxx] [f0000.xxx]
 [f0000.xxx] [f0000.xxx] [f0000.xxx]<asp:UpdatePanel runat=
“server” ID=”uppnlComments”>
<ContentTemplate>
<asp:ListView ID=”lvComments” runat=”server”>
<LayoutTemplate>

Nothing more is required; the UpdatePanel will make the postback to the server; that, in turn, causes
the normal page request to be performed on the server. The updated content is then parsed by the
UpdatePanel, and it manages updating the ListView content based on the server’s response. It is that
simple! I will go over some more involved AJAX scenarios in later chapters.

A Standard Administration Form
In the previous edition of theBeerHouse application, FormViews were used to bind data to edit and
insert records into the database. In this edition, I am going to slim things down a bit in the user inter-
face and take more control in the code-behind. The edit form is laid out in a table, with the appropriate
controls used to represent the data. These can be a TextBox, CheckBox, DropDownList, and so forth.
When possible, controls and extenders from the ASP.NET AJAX control toolkit are used. At the bottom
of the form is a series of buttons to perform inserting, updating, deleting, or canceling.

One of the reasons I do not like to use the FormView and DetailView controls is that they tend to
limit the capability to customize the display, or add complexity to the form that ultimately defeats the
purpose the View controls are meant to serve.

The ASP.NET AJAX Control Toolkit is a set of controls and control extenders that Microsoft produces
the toolkit and maintains it on CodePlex at www.codeplex.com/AjaxControlToolkit. It is a com-
munity project though which anyone, including you, can suggest changes and report bugs. The source

87586c03.indd 11387586c03.indd 113 9/13/09 10:02:49 PM9/13/09 10:02:49 PM

114

Chapter 3: Planning an Architecture

code of the entire toolkit is available for downloading, so you can make changes and examine how the
controls are built. Figure 3-20 shows how the AddEdit form for the Category entity looks.

Figure 3-20

The administrative form’s code-behind is responsible for retrieving the entity, displaying the data,
updating the data, and storing it. All this responsibility is handled by fi ve methods: the Page Load
event handler, ClearItems, the Bind Entity method, and the Cancel and Submit event handlers.
The page also inherits from the AdminPage class or possibly a descendant of the AdminPage class.

The AdminPage contains a PreInit event handler that sets the MoveHiddenFields to false. This is
done because the FCKEditor is used on many of the administration pages and does not work when the
hidden fi elds are moved.

Private Sub Page_PreInit(ByVal sender As Object,
ByVal e As System.EventArgs) Handles Me.PreInit

MoveHiddenFields = False

End Sub

The remaining properties of the AdminPage are to help manage primary keys that I detailed earlier.

In the Page Load event handler checks to see if a primary key was passed to the form, and if so, then
binds the entity to the controls; if not, it clears the form.

 Protected Sub Page_Load(ByVal sender As Object,
ByVal e As System.EventArgs) Handles Me.Load

87586c03.indd 11487586c03.indd 114 9/13/09 10:02:49 PM9/13/09 10:02:49 PM

115

Chapter 3: Planning an Architecture

 If Not IsPostBack Then

 If CategoryId > 0 Then
 BindCategory()
 Else
 ClearItems()
 End If

 End If

 End Sub

The ClearItems method is called when the form is being loaded to add a new entity to the database.
Notice the last item in the method sets the status literal control text to instruct the user what to do. The
status control is used to provide feedback to the user as to the status of the form.

 Private Sub ClearItems()

 ltlCategoryID.Text = String.Empty
 ltlAddedDate.Text = String.Empty
 txtTitle.Text = String.Empty
 txtImportance.Text = String.Empty
 txtDescription.Text = String.Empty
 txtImageUrl.Text = String.Empty
 ltlUpdatedDate.Text = String.Empty
 iLogo.Visible = False

 ltlStatus.Text = “Create a New Category.”

 End Sub

The bind method, BindCategory in the example, retrieves the entity that corresponds to the primary
key value passed to the page. It then binds the data to the appropriate controls as needed.

 Private Sub BindCategory()

 Using Categoryrpt As New CategoryRepository

 Dim lCategories As Category = Categoryrpt.GetCategoryById(CategoryId)

 If Not IsNothing(lCategories) Then

 ltlCategoryID.Text = lCategories.CategoryID
 ltlAddedDate.Text = lCategories.AddedDate
 ltlAddedBy.Text = lCategories.AddedBy
 txtTitle.Text = lCategories.Title
 txtImportance.Text = lCategories.Importance
 txtDescription.Text = lCategories.Description

 If String.IsNullOrEmpty(lCategories.ImageUrl) = False Then
 txtImageUrl.Text = System.IO.Path.GetFileName(
lCategories.ImageUrl)
 iLogo.ImageUrl = lCategories.ImageUrl

87586c03.indd 11587586c03.indd 115 9/13/09 10:02:49 PM9/13/09 10:02:49 PM

116

Chapter 3: Planning an Architecture

 Else
 iLogo.Visible = False
 End If

 cbActive.Checked = lCategories.Active
 ltlUpdatedDate.Text = lCategories.UpdatedDate
 ltlUpdatedBy.Text = lCategories.UpdatedBy

 ltlStatus.Text = String.Format(“Edit The Category - {0}.”,
 lCategories.Title)
 Else
 CategoryId = 0
 ltlStatus.Text = “Create a New Category.”
 End If

 End Using

 End Sub

The Submit button’s click event manages changing, updating or creating a new entity. First, it gets a
copy of the existing version of the entity if a primary key value has been supplied.

Then each fi eld gets updated if the value has been changed. This is done because the Entity Framework
will create a SQL Update command that updates only the changed fi elds, making it perform slightly
better.

 Private Sub UpdateCategory()
 Using Categoryrpt As New CategoryRepository

 Dim lCategory As Category

 If CategoryId > 0 Then
 lCategory = Categoryrpt.GetCategoryById(CategoryId)
 Else
 lCategory = New Category()
 End If

 lCategory.Title = txtTitle.Text
 lCategory.Importance = CInt(txtImportance.Text)
 lCategory.Description = txtDescription.Text

 lCategory.ImageUrl = GetItemImage(fuImageURL, txtImageUrl)
 lCategory.Active = cbActive.Checked

 lCategory.UpdatedBy = UserName
 lCategory.UpdatedDate = Now

 If lCategory.CategoryID = 0 Then
 lCategory.Active = True
 lCategory.AddedBy = UserName
 lCategory.AddedDate = Now
 End If

 If Not IsNothing(Categoryrpt.AddCategory(lCategory)) Then

87586c03.indd 11687586c03.indd 116 9/13/09 10:02:49 PM9/13/09 10:02:49 PM

117

Chapter 3: Planning an Architecture

 IndicateUpdated(Categoryrpt, “Category”, ltlStatus, cmdDelete)

 cmdUpdate.Text = “Update”
 IndicateUpdated(Categoryrpt, “Category”, ltlStatus, cmdDelete)
 Dim sURL As String = SEOFriendlyURL(_
 Settings.Articles.CategoryUrlIndicator & “/” &
lCategory.Title, “.aspx”)
 Dim sRealURL As String =
String.Format(“BrowseArticles.aspx?Categoryid={0}”, lCategory.CategoryID)

 CommitSiteMap(lCategory.Title, sURL, sRealURL, _
 lCategory.Description.Substring(0,
If(lCategory.Description.Length >= 200, 199, lCategory.Description.Length - 1)), _
 If(String.IsNullOrEmpty(lCategory.Title) = False,
lCategory.Title, String.Empty), “Category”)

 Else
 IndicateNotUpdated(Categoryrpt, “Category”, ltlStatus)
 End If

 End Using

 End Sub

After the fi elds have been updated, the UpdatedBy and UpdatedDate values are set to the current user-
name and the current time. It then checks to see if it is a new entity or an update to an entity by checking
the CategoryId value. If it is greater than 0, then the entity’s repository Update method is called. If not
then the entity is added to the database by calling the AddCategory method.

Based on the result of the Add or Update method, the status message is updated to refl ect the outcome.

When the Cancel button is clicked, it causes the response to be sent to the entity’s list administration page.

Private Sub btnCancel_Click(ByVal sender As Object,
ByVal e As System.EventArgs) Handles cmdCancel.Click
 Response.Redirect(“ManageCategories.aspx”)
End Sub

Clicking the Delete button calls the Delete method of the entity’s repository class. According to the
outcome of the Delete method, the page’s status is updated to let the user know what happened.

Protected Sub cmdDelete_Click(ByVal sender As Object,
ByVal e As System.EventArgs) Handles cmdDelete.Click

 Using Categoryrpt As New CategoryRepository
 If Categoryrpt.DeleteCategory(CategoryId) Then
 Response.Redirect(“ManageCategories.aspx”)
 Else
 ltlStatus.Text = “Sorry the Category was not Deleted.”
 End If
 End Using

 End Sub

87586c03.indd 11787586c03.indd 117 9/13/09 10:02:50 PM9/13/09 10:02:50 PM

118

Chapter 3: Planning an Architecture

Error Logging
Tracking exceptions with any application is very important to understand what has happened when
something goes wrong. No matter how many unit, integration, and manual tests are created and rerun,
every application will eventually hit a moment where something goes wrong and an exception is
thrown. Fortunately, there are numerous ways to log exceptions in .NET applications.

In the last edition of this book, Marco showed how to use health monitoring and instrumentation to
log and monitor an application. This is a great way to plug into the application and track down issues.
Another popular choice is the Logging Application Block available in the Microsoft Enterprise Library,
http://microsoft.com/patterns. But I wanted to add to the choices for monitoring your appli-
cations with the Error Logging Modules and Handlers (ELMAH) components, www.raboof.com/
Projects/ELMAH.

ELMAH is a free utility built by Atif Aziz and added to by several members of the ASP.NET com-
munity. It is a class library with a collection of httpModules and httpHandlers to log and report
application exceptions. The real power ELMAH offers ASP.NET developers is ease of confi guration
and multiple means to alert site administrators to issues. You can read more details about implement-
ing ELMAH in an article by Scott Mitchell and Atif Aziz, http://msdn.microsoft.com/en-us/
library/aa479332.aspx.

With ELMAH, exceptions can be logged to a SQL database, XML fi le, e-mail, or a variety of other
data stores. This provides a very fl exible reporting platform. The e-mail option is particularly helpful
because this can be set up to alert several administrators at once. The database and XML options keep
a permanent record of exceptions that later can be reviewed, transformed, or brought into a reporting
platform, such as SQL Server Reporting Services.

Errors are logged by a custom httpModule that hooks into the ASP.NET pipeline’s OnError event. The
same error information is logged that is displayed in the error page, also known as the Yellow Screen of
Death by many. Once the exception is logged, processing continues without interfering with the normal
user experience.

For production sites, it is a good idea to designate an error page to be displayed instead of the default
exception reporting page. This creates a better user experience when things are not going so well. It
also suppresses sensitive error information from being rendered to the user. This is not only abrasive to
a typical user, but it also exposes information that can be very valuable to a hacker for launching a suc-
cessful attack against the application.

Once exceptions are logged, they can be retrieved through a set of custom httpHandlers that provide a
secure and organized reporting infrastructure. The main reporting interface is a nonexistent page with
the .axd extension, shown in Figure 3-21. This extension is commonly used in ASP.NET as a resource
extension for content streamed by custom httpHandlers. The handler produces a page that lists all
the errors in the log, allowing you to page through exceptions if there are many that have been logged.
Each exception in the list has a link that will display a detailed report of the exception.

The detailed exception shows the exception details and the page’s trace log. This is the same trace infor-
mation that would be displayed at the bottom of the page if tracing were enabled. All this information
is helpful to trace the source of the exception and examine the state of the request.

87586c03.indd 11887586c03.indd 118 9/13/09 10:02:50 PM9/13/09 10:02:50 PM

119

Chapter 3: Planning an Architecture

Figure 3-21

The report information can be protected by confi guring ELMAH to require authentication. ELMAH
automatically leverages the ASP.NET authentication confi gured for the site, protecting this sensitive
information from prying eyes.

Another feature I like about ELMAH as an error-logging and reporting tool is that it also provides and
RSS feed that can be used to monitor a site for exceptions.

Search Engine Optimization Techniques
Search engine visibility or placement is one of the most important aspects of any public website.
Obtaining high rankings is one of the most important aspects of online marketing and can be the dif-
ference between success and failure for many online businesses. Obtaining those top positions can be
extremely diffi cult, but it is not impossible.

While this book is not going to cover details of search engine fundamentals, there are standard things
that can be done from a technical perspective that can be done to make an ASP.NET website more
search-engine-friendly. The pages of an ASP.NET site should contain site-, page-, and content-level
optimizations, much of which can be controlled or aided by good application architecture.

Site-Level Optimizations
Search engines are known for penalizing sites for duplicate content, which can commonly happen when
multiple URLs can retrieve the same content. While search engines have gotten a lot better, accounting for
common duplications, such as www and non-www access, it helps to have only one true URL for content.

87586c03.indd 11987586c03.indd 119 9/13/09 10:02:50 PM9/13/09 10:02:50 PM

120

Chapter 3: Planning an Architecture

The www/non-www Canonical Issue
The fi rst way this needs to be addressed is eliminating the ability for visitors to use the www alias of
the website. Second-level domains, and third-level domains controlled by site owners, should be the
way a site is accessed. The www prefi x to a domain is really an artifact from the early days of the web
and stands for World Wide Web. It was prepended to the domain to indicate the protocol being used as
a domain alias or CNAME. When the Internet gained mainstream traction, this did not change. A good
website should respond to both the www alias and the actual domain.

The problem with this is that search engines will index both URLs, potentially earning a duplicate con-
tent penalty; if not, it will certainly dilute the actual score the search engine gives the page by spreading
it between both URLs. This is also referred to as canonicalization. In ASP.NET, this can be dealt with in
either the global.asax fi le or a custom httpModule.

Use 301 Redirects Properly
Inevitably, you will one day restructure your site by changing the landscape of the URLs used on the
site, or retiring content and adding new content. It could be a simple change like changing the URL
~/ShowProduct.aspx?ProductId=3 to ~/Gadgets-for-beer-fanatics/Beer-Cap.aspx. But
whatever the need, using 301 redirects not only tells visitors where the content is located but also tells
search engines how to reindex existing resources on your site in a way that will not cause you to lose
your rankings.

A 301 redirect refers to the HTTP status code sent from the server to the client. In this case, a status
code of 301 tells the client that the resource requested has been permanently moved to a new location,
which is added to the response location header.

This technique is also good for ensuring against duplicate content issues discussed in the previous
section. In the previous product example, the old URL still works and, ultimately, is what the ASP.NET
engine actually processed, but this URL should not be used as the way to access the content. While not
using the old URL on the site is one way to eliminate the URL from being indexed, there is no 100% way
to eliminate this link from being indexed. What must be done is a 301 redirect for the URL to the new
URL at the site application level.

Search-Engine-Friendly URLs and Site Structure
Organizing the structure of a website is another important aspect of search engine optimization
because it not only tells the search engines about the content but also guides potential visitors looking
at results to click on a page. URLs should be organized by category, department, or other logical groups.
In the case of theBeerHouse application, there are various application modules that produce content of
different types. News, for example, can be identifi ed by the ‘News’ container, which is analogous to a
folder or directory. From there, each article is contained within a selected category and, fi nally, the title
of the article. A sample article URL might be represented by ‘~/News/Beer-related-articles/
Top 10-of-brewing-methods.aspx’. This relays the content of the article is about brewing methods
and is a topic about beer. It also indicates it is a news article, also important in identifying the content.
So, a person searching for online articles about brewing beer could feel pretty confi dent that this might
be the article for them, and they will be more likely to visit the site.

87586c03.indd 12087586c03.indd 120 9/13/09 10:02:50 PM9/13/09 10:02:50 PM

121

Chapter 3: Planning an Architecture

Notice that “-“ is used to separate words in the example of the URL. This is done intentionally to delin-
eate words in a URL because it is thought that search engines tend to understand this better. It is also
easier for visitors to quickly look at a URL and isolate the words into a readable format. If you simply
URLEncode an article’s title, it replaces spaces with “+”, which is not as easy for a human to distin-
guish between words. There are some cases, such as “Beer-related” that contain dash that will have to be
dealt with in the core architecture, but this can be handled in ASP.NET.

Page-Level Optimizations
It has long been known that having the proper content on a page helps you get better search engine vis-
ibility. In the early days of the Internet, sites could rely on the content of their header tags to get them
reasonable visibility in most cases. That is not as true today but is still a very relevant task that should
be done for each page in a site. This includes having valid, targeted content in the page’s Title, and
META tags.

The Title Tag
The Title tag is one of the most important pieces of the page because it is one of the primary factors
search engines use to determine the content of the page. It is also used as the page’s clickable text in the
search engine results and is displayed at the top of the browser every time it is displayed. The text of
the Title tag should be compelling, relevant, and less than 65 characters long. Search engines typically
do not display more than 65 characters in their results.

Figure 3-22 shows the results for my blog on live.com. I have highlighted the Title tag used to link to
my blog from the result list.

Figure 3-22

Viewing the source of my blog’s home page, you will see the same text contained in the Title tag.

<head>
<title>Chris Love’s Official Blog - Professional ASP.NET</title>
</head>

All Title tags in the site should be unique and should never start with “Welcome to. . . .” If you do a
quick search for “Welcome to” you will see how many sites are indexed for that term. The title should
include content that describes the page’s content and is targeted to specifi c keyword phrases if at all
possible. Generic terms like “Welcome to” just reduce the relevance of the page. Avoiding this common
mistake could be the difference between a fi rst page listing and a fi fth page listing.

The Description META Tag
The Description META tag no longer carries the signifi cance it once had with place in search
engine results, but it is very important for each page to have a unique description. The content of the
Description META tag is often used by search engines as the description in the search results. Having

87586c03.indd 12187586c03.indd 121 9/13/09 10:02:50 PM9/13/09 10:02:50 PM

122

Chapter 3: Planning an Architecture

a relevant description will help a site get more visitors from search engines. If this tag is not added to a
page, the search engine is forced to assume the description from other sections of the page, thus taking
it out of your control.

Searching for “Chris Love” on Live.com returns the following result. I have highlighted the content
located in the title tag of my blog, Figure 3-23. Notice how it appended more content from the page to
help add more content to the result? I will talk more about this shortly.

Figure 3-23

Viewing the source of my blog’s home page, you can see the Description META tag and see where
Live.com gathered the initial content for the description in the search result.

<meta name=”description” content=”Chris Love’s official Blog,
I cover ASP.NET programming related issues.” />

The Keyword META Tag
Like the Description META tag, the Keyword META tag is not leveraged by search engines to determine
placement and indexing, but it should still be used to add a list of relevant phrases for each page. The
reason this is no longer used by search engines is that it was spammed by many in the mid-1990s to gain
higher rankings. Yet it should not be disregarded, as it can always add some value to the page.

<meta name=”keywords” content=”ASP.NET, VB.NET, C#, Silverlight,
SQL Server, SharePoint” />

Add a Robots META Tag
One of the most direct ways to talk to a search engine spider is through the robots.txt fi le, but each
page can also contain a Robots META tag to further dictate how a search engine can index a page. The
Robots META tag can contain a collection of the following directives: index, noindex, follow, nofollow.
The index directives tell the search engine if it should index the content or not. The following directive
tells tell it not to follow the links on the page.

<META NAME=”robots” CONTENT=”index, nofollow”/>

You can only use one directive per action, either follow or nofollow, for example. You can also use
all and none to tell the spider to index and follow or noindex and nofollow, respectively.

Use Header Tags and Modifi ers
Using Header Tags, such as <H1>, and modifi er tags tell search engines to use the enclosed text with
higher relevance when ranking the page.

Header tags, such as <H1>, <H2>, and the like, are used to indicate important phrases; typically, they help
segment or outline a document’s content, too. They add value to the visitor because they can serve as a

87586c03.indd 12287586c03.indd 122 9/13/09 10:02:50 PM9/13/09 10:02:50 PM

123

Chapter 3: Planning an Architecture

section title; for example, Use Header Tags and Modifi ers would be an <H4>, if this entire chapter were a
page. <H1> carries the highest signifi cance, and the signifi cance progressively decreases at each level.

<H1>Planning an Architecture</H1>
<H2>Search Engine Optimization Techniques</H2>
<H3>Page Level Optimizations</H3>
<H4>Use Header Tags</H4>

Search engines are looking text that is emphasized, and header tags do just that. Often you will want
to wrap keyword phrases in header tags to help set them apart. This also forces you to write more tar-
geted content.

You do not have to rely upon header tags to provide emphasis; text modifi ers also add value to phrases.
A modifi er is simply a tag that should make a phrase stand out from the surrounding text, ,
, <I> and are all modifi ers. So, as you compose the text of a page and design the layout, con-
sider how these tags will be used to draw attention to the text they contain. The use of header and modifi er
tags helps to identify the content on the page a search engine should emphasize when ranking it.

Use Valid HTML
Valid HTML is important to help search engines spider and parse the content of a web page. Invalid
HTML can hinder a spider from properly reading the content. If a spider tries to parse an improperly
formatted HTML element, this could cause the spider to stop processing the page or cause it to improp-
erly read the page. It can also cause the page to not render properly in some browsers, resulting in users
becoming frustrated with the site.

The World Wide Web Consortium (W3C) creates the standards for HTML and Cascading Style Sheets.
They also provide a handy online tool to validate the markup of a page, http://validator.w3.org.
By using this tool, you can quickly identify potential problems that might keep spiders or visitors from
reading a page.

Company Information and Privacy Pages
While it is not proven the common thinking among the search engine optimization community is that
including a Company Information or About Us and a Privacy Policy pages adds to a site’s credibility.
Search engines are known to look for common features of a site to distinguish a valid site from a spam
site. Simply adding these two pages to the site can add value for overall search engine placement, not to
mention customer satisfaction.

The Direct Marketing Association has an online tool to help create a privacy policy for your website.
You can access its online generation tool at www.dmaresponsibility.org/PPG.

Navigation
Creating a sound navigation system for a data-driven website is a fundamental component of a success-
ful website. This includes one that allows the URLs to be naturally understood by both users and search
engines alike. The ASP.NET SiteMapProvider can also be dynamically driven from the database. There
should also be an available SiteMap.org fi le for spiders to know the most current version of the site’s
structure.

87586c03.indd 12387586c03.indd 123 9/13/09 10:02:50 PM9/13/09 10:02:50 PM

124

Chapter 3: Planning an Architecture

URL Rewriting
Building web applications has long meant leveraging the QueryString to pass parameters to the appli-
cation. For example, to retrieve an article in theBeerHouse application an ArticleId parameter would
be added to the URL, ShowArticle.aspx?articleid=28. While this is not terribly bad, it can quickly
become a long series of parameters. There is a great deal of competition in the market to garner search
engine visibility for targeted keywords. It is equally important to reduce potential attack surfaces for
potential hackers to hit. URL Rewriting can help in both of these cases.

Creating friendly URLs is pretty easy in ASP.NET, but it does require the use of a custom httpModule.
An httpModule is registered with the ASP.NET application and allows developers to create an event
handler or a series of event handlers to hook into the ASP.NET life cycle.

In short, httpModules are classes that implement the IhttpModule interface, which requires methods
to handle the Init and Dispose methods. Each module must also be registered in the site’s web.config
fi le, in the httpModules section. Once the module is registered the ASP.NET engine will call the Init
method when the application fi rst starts. The Dispose method is called when the application is closed.

<httpModules>
<add name=”URLRewrite” type=”URLRewrite”/>
<add name=”ScriptModule” type=”System.Web.Handlers.ScriptModule,
System.Web.Extensions, Version=3.5.0.0, Culture=neutral,
PublicKeyToken=31BF3856AD364E35”/>
</httpModules>

In the Init method, you are not limited to what you can do, but generally event handlers are wired
to specifi c life cycle events. For the case of URL rewriting, it is advisable to intercept the request in the
AuthorizeRequest event.

Public Sub Init(ByVal context As System.Web.HttpApplication)
Implements System.Web.IHttpModule.Init
AddHandler context.AuthorizeRequest, AddressOf AuthorizeRequest
End Sub

This provides the capability to intercept the request, check to see if the requested URL should be rewrit-
ten, rewrite the requested URL using the RewritePath method if necessary, and proceed with the
request. For theBeerHouse application, URL rewriting leverages the list of entities in the site’s site map,
stored in the database. Each module that creates a potential URL in the site must be responsible for stor-
ing its URLs in the SiteMap database table.

Custom SiteMap
Maintaining an up-to-date map of theBeerHouse application is important for two reasons: breadcrumbs
and search engines. Breadcrumbs are a way to provide the user a sense of where they are and how
to easily navigate back up the tree. Letting search engines know what the site currently consists of is
important so that your content gets indexed. It is also helpful to leverage a custom site map so that URL
rewriting can be done easily.

To maintain a central site map for the site, it should be stored in a table in the site’s database,
Figure 3-24. The table needs to store the URL, the actual URL on the site, a title, description, keywords,
a reference to a parent URL, what type of node it is, and a value to indicate its order with sibling nodes.

87586c03.indd 12487586c03.indd 124 9/13/09 10:02:50 PM9/13/09 10:02:50 PM

125

Chapter 3: Planning an Architecture

Of course, the table should have a SiteMapId primary key and fi elds that indicate if the node is active,
and when it was added or updated and by whom.

Figure 3-24

There are two URL-related fi elds: the URL and the RealURL. The URL fi eld holds the path from the
site’s domain that will be publically available. In other words, this will be the URL used by visitors
to access the page but not necessarily the URL to the item in the site. For example, articles will be
accessed by requesting a URLEncoded version of the article’s title suffi xed with the .aspx extension.
This URL is mapped to the traditional ShowArticle.aspx?ArticleId=X url that was used in the
previous edition of theBeerHouse application.

Custom SiteMapProvider
In the previous edition of this book, a SiteMap.xml fi le was used to manage the nodes in the
SiteMapProvider. This is fi ne when a site is small and does not change very often. But theBeerHouse
site is a dynamic application that can change quite often. A physical fi le needs to be maintained on each
change in the site. Since changes to the site are made in the database this can be leveraged for a custom
SiteMapProvider based on the database.

Jeff Prosise wrote a few articles for MSDN magazine in 2006 (http://msdn.microsoft.com/en-us/
magazine/cc163657.aspx) that walked through creating a SQL SiteMapProvider, which serves as
a good starting point to be creating a custom provider for theBeerHouse application. A good custom
SiteMapProvider will quickly build a site map for the site, based on the page hierarchy stored in the
database, and honor any security requirements.

The custom provider inherits from StaticSiteMapProvider, an abstraction of the SiteMapProvider
class. A custom SiteMap provider must be registered in the web.config’s system.web section.

<siteMap defaultProvider=”TBHSiteMapProvider” enabled=”true”>
<providers>
<add name=”TBHSiteMapProvider” type=”TheBeerHouse.TBHSiteMapProvider”
 securityTrimmingEnabled=”true”/>

87586c03.indd 12587586c03.indd 125 9/13/09 10:02:50 PM9/13/09 10:02:50 PM

126

Chapter 3: Planning an Architecture

</providers>
</siteMap>

There can be more than one provider registered in the site. The SiteMapPath control and the
SiteMapDataSource control can both designate which provider to use if more than one is registered.

SiteMaps.org File
A few years ago Google created a standard way for site owners to let the search engine’s spiders know
what content comprises the site. Later, other search engines, such as Yahoo.com and Live.com, adopted
the standard, which is known as a SiteMap.org site map fi le. It is an XML document containing infor-
mation about the URL. The details of the site map format are available at SiteMap.org.

<?xml version=”1.0” encoding=”UTF-8”?>
<urlset xmlns=”http://www.sitemaps.org/schemas/sitemap/0.9”>
 <url>
 <loc>http://www.example.com/</loc>
 <lastmod>2005-01-01</lastmod>
 <changefreq>monthly</changefreq>
 <priority>0.8</priority>
 </url>
</urlset>

The search engine spiders use this fi le to know what to index. It also tells them when the content was
last updated, how often it changes, and a priority. Knowing if a URL has changed since a spider last
visited it allows the search engine to avoid spidering the resource if it has not changed. This is a big
bandwidth and resource saver for sites because the spider should not request resources that have not
changed since it last visited.

Custom SiteMap File httpHandler
When the search engine spider comes to your site, it will begin its quest by asking for the latest
sitemap.xml fi le. You can, and typically will, register another site map fi le name with each search
engine, if you want; in that case, it will ask for that fi le. No matter, the spider tries to consume the up-
to-date site map fi le. Since the website is a living application that changes its composure at any time,
maintaining a static fi le is not feasible. Because the site map information is stored in the database, it can
be retrieved as needed to compose the site map fi le.

A custom httpHandler is an ideal way to compose the required XML from the information stored in
the database. A custom httpHandler is one of the core elements used to compose content in ASP.NET.
In fact the Page class is actually an httpHandler. A custom httpHandler is a class that implements
the IHttpHandler interface and can either register as the handler for specifi c requests, or a generic
handler, the .ashx fi le, that is requested directly from the client.

Imports System.Linq
Imports System.Xml.Linq
Imports System.Web
Imports TheBeerHouse.BLL
Imports <xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”>

Public Class SiteMapsHandler
 Implements IHttpHandler

87586c03.indd 12687586c03.indd 126 9/13/09 10:02:50 PM9/13/09 10:02:50 PM

127

Chapter 3: Planning an Architecture

The IHttpHandler interface requires two methods are implemented by the class: IsReusable and
ProcessRequest. The IsReusable property indicates to the ASP.NET engine if the httpHandler can
be used simultaneously by more than one request. In other words, is there anything in the handler that
has to be mutually exclusive with other requests. For requests that produce static output, this can be
true; with dynamic requests, this can vary depending on what the handler is performing.

The ProcessRequest method is invoked by the ASP.NET engine to begin actual processing
and composition of the content sent to the client. A reference to the current context is passed to
ProcessRequest; this gives the handler access to the Request and Response objects.

Public Sub ProcessRequest(ByVal context As System.Web.HttpContext)
Implements System.Web.IHttpHandler.ProcessRequest

 BaseContext = context
 CreateSiteMap()

 Response.Flush()
 Response.End()

End Sub

The site map handler composes the site map content in a method called CreateSiteMap. Since the site
map format is XML, the Response.ContentType or MIME type is set to “application/xml”. Before com-
posing the XML content, a request is made to the database to retrieve the site map nodes by creating a
SiteMapRepository and retrieving a List(of SiteMapInfo) entities.

In VB.NET the map is composed using XML Literals; in C#, it requires a little more complex coding
using the LINQ XDocument classes.

Using XML Literals is a very intuitive way to compose and parse XML content in .NET that were intro-
duced with VB 9 (.NET 3.5). With XML Literals XML can be processed in a declarative manner in a VB
class member. Instead of having to deal with unnatural classes, XML is managed in its natural format,
making it much easier to see XML structure in the code.

Site map fi les can contain no more than 50,000 URLs and can be no more than 10MB
in size, which can be an issue for large sites. HTTP compression (GZIP or Defl ate)
can be used to reduce the size of the fi les as they are transported to the spider. The
SiteMap.org protocol allows for multiple site map fi les to be specifi ed by providing
a site map index fi le that lists all the site map fi les. There can be no more than 1000
index fi les, and the index fi le itself cannot exceed 10MB in size.

<?xml version=”1.0” encoding=”UTF-8”?>
<sitemapindex xmlns=”http://www.sitemaps.org/schemas/
sitemap/0.9”>
 <sitemap>
 <loc>http://www.example.com/sitemap1.xml.gz</loc>
 <lastmod>2004-10-01T18:23:17+00:00</lastmod>
 </sitemap>
 <sitemap>
 <loc>http://www.example.com/sitemap2.xml.gz</loc>
 <lastmod>2005-01-01</lastmod>
 </sitemap>
</sitemapindex>

87586c03.indd 12787586c03.indd 127 9/13/09 10:02:50 PM9/13/09 10:02:50 PM

128

Chapter 3: Planning an Architecture

To create a site map using XML Literals, it is ideal to paste the required components of a valid site map
into the code itself, then manipulate the code snippet to produce the desired dynamic output. The XML
content is set to an XDocument object, xSiteMap. The site map XML is composed by integrating a LINQ
query using declarative syntax much as you would do in ASP.NET to integrate server-side coding using
the <% %> syntax. The LINQ query is a select statement executed on the list of SiteMapInfo entities,
returning a list of <url> elements that compose the resulting site map fi le.

VB.NET
 Private Sub CreateSiteMap()

 Response.ContentType = “application/xml”

 Dim lsiteMapNodes As List(Of SiteMapInfo)

 Using siteMaprpt As New SiteMapRepository
 lsiteMapNodes = siteMaprpt.GetSiteMapNodes
 End Using

 Dim xSiteMap As XDocument = <?xml version=”1.0” encoding=”UTF-8”?>
 <urlset xmlns=”http://www.sitemaps.org/schemas/sitemap/0.9”>
 <%= From lSiteMapNode In lsiteMapNodes.AsEnumerable _
 Select <url>
 <loc><%= lSiteMapNode.URL %></loc>
 <lastmod><%= lSiteMapNode.DateUpdated %></lastmod>
 <changefreq>weekly</changefreq>
 <priority>0.8</priority>
 </url> %>
 </urlset>

 Response.Write(xSiteMap.ToString)

 End Sub

Finally, the xSiteMap content is written to the Response content by calling the ToString method.

Composing the content in C# is not quite as simple because it requires more formal use of the LINQ
to XML classes. I call the special classes in the LINQ namespace related to XML “X classes” because
they are all prefi xed with X followed by the object type: XDocument, XElement, and XAttribute, for
example.

C#
 private void CreateRSSFeed()
 {
 TheBeerHouseSection Settings = Helpers.Settings;
 this.Response.ContentType = “application/xml”;
 using (ArticleRepository lArticlectx = new ArticleRepository())
 {
 List<Article> lArticles = lArticlectx.GetActiveArticles();

87586c03.indd 12887586c03.indd 128 9/13/09 10:02:51 PM9/13/09 10:02:51 PM

129

Chapter 3: Planning an Architecture

 var xRss = new XDocument(new XDeclaration(“1.0”, “utf-8”, “yes”),
new XElement(“rss”,
 new XAttribute(“version”, “2.0”),
 new XElement(“channel”,
 new XElement(“title”,
“The Beer House Articles”),
 new XElement(“link”, “http://www.TheBeerHouseBook.com/”),
 new XElement(“description”,
 “RSS Feed containing The Beer House News Articles.”),

 from item in lArticles
 select
 new XElement(“item”,
 new XElement(“title”, item.Title),
 new XElement(“description”, item.Abstract),
 new XElement(“link”,
Helpers.SEOFriendlyURL(Settings.Articles.URLIndicator +
“/” + item.Title, “.aspx”)),
 new XElement(“pubDate”,
item.ReleaseDate.ToString())
)
)
)
);
 this.Response.Write(xRss.ToString());
 }
 this.Response.Flush();
 this.Response.End();
 }

Once the content of the document is composed, the request is wrapped up by fl ushing the content to the
browser and ending the response.

Before this handler can respond to the request for sitemap.xml, it has to be registered in the
httpHandlers section of the web.config fi le. All the request for the sitemap.xml fi le are GET
requests, so the verb should refl ect that and the path is set to “sitemap.xml”, limiting the scope
of this handler to only that resource name.

<add verb=”GET” path=”sitemap.xml” validate=”false”
type=”TheBeerHouse.SiteMapsHandler, TBHBLL, Version=3.5.0.1,
Culture=neutral, PublicKeyToken=null”/>

Once the handler is registered the only thing left is to verify that the sitemap.xml fi le is properly composed
and served. Retrieving the fi le in a browser should produce the desired content as shown in Figure 3-25.

Because the site map handler composes the XML from the database, each time a spider requests the
document you can be assured that the content is up to date, ensuring that your site is properly indexed
by each search engine.

87586c03.indd 12987586c03.indd 129 9/13/09 10:02:51 PM9/13/09 10:02:51 PM

130

Chapter 3: Planning an Architecture

Figure 3-25

Solution
The “Solution” section of this chapter is thinner than those found in most of the other chapters. In fact,
in this chapter you’ve been presented with some new controls and features that won’t be part of a com-
mon custom framework but will be used in most of the upcoming chapters as parts of other classes to
be developed. The discussion about the DAL and BLL design will be extremely useful for the next chap-
ters, because they follow the design outlined here. Understand that ASP.NET 3.5 already has a number
of built-in common services to handle many of your general framework-level needs, which allows you
to focus more of your time and efforts on your specifi c business problems. The rest of the chapter shows
the code for the small base classes for the DAL and the BLL, the custom confi guration section, and the
code for raising and handling web events.

TheBeerHouse Confi guration Section
Following is the code for the classes that map the <theBeerHouse> custom confi guration section, and
the inner <contactForm> element, whose meaning and properties were already described earlier:

Public Class TheBeerHouseSection
 Inherits ConfigurationSection

 <ConfigurationProperty(“defaultConnectionStringName”,
DefaultValue:=”LocalSqlServer”)> _
 Public Property DefaultConnectionStringName() As String
 Get
 Return CStr(Me(“defaultConnectionStringName”))
 End Get
 Set(ByVal value As String)
 Me(“DefaultConnectionStringName”) = value
 End Set

87586c03.indd 13087586c03.indd 130 9/13/09 10:02:51 PM9/13/09 10:02:51 PM

131

Chapter 3: Planning an Architecture

 End Property

 <ConfigurationProperty(“devSiteName”, DefaultValue:=”BeerHouse35”)> _
 Public Property devSiteName() As String
 Get
 Return CStr(Me(“devSiteName”))
 End Get
 Set(ByVal value As String)
 Me(“devSiteName”) = value
 End Set
 End Property

 <ConfigurationProperty(“siteDomainName”, DefaultValue:=”localhost”)> _
 Public Property SiteDomainName() As String
 Get
 Return CStr(Me(“siteDomainName”))
 End Get
 Set(ByVal value As String)
 Me(“siteDomainName”) = value
 End Set
 End Property

 <ConfigurationProperty(“defaultCacheDuration”, DefaultValue:=”600”)> _
 Public Property DefaultCacheDuration() As Integer
 Get
 Return CInt(Me(“defaultCacheDuration”))
 End Get
 Set(ByVal value As Integer)
 Me(“defaultCacheDuration”) = value
 End Set
 End Property

 <ConfigurationProperty(“contactForm”, IsRequired:=True)> _
 Public ReadOnly Property ContactForm() As ContactFormElement
 Get
 Return CType(Me(“contactForm”), ContactFormElement)
 End Get
 End Property

The TheBeerHouseSection class must be mapped to the <theBeerHouse> section through a new
element under the web.config fi le’s <configSections> section. Each module has its own custom
confi guration section that resides within theBeerHouse element. Once you’ve defi ned the mapping,
you can write the custom settings as follows:

<theBeerHouse defaultConnectionStringName=”TheBeerHouseEntities”
siteDomainName=”[Add Your Base URL Here]”>
<contactForm mailTo=”thebeerhouse@wrox.com”/>
<articles pageSize=”10” twitterUrserName=”[Username]”
twitterPassword=”[Password]” enableTwitter=”true”
 akismetKey=”12abcdf23456” enableAkismet=”True”/>
<polls archiveIsPublic=”true” votingLockByIP=”false”/>
<newsletters fromEmail=”thebeerhouse@wrox.com”
fromDisplayName=”TheBeerHouse” archiveIsPublic=”true”
hideFromArchiveInterval=”10”/>

87586c03.indd 13187586c03.indd 131 9/13/09 10:02:51 PM9/13/09 10:02:51 PM

132

Chapter 3: Planning an Architecture

<forums threadsPageSize=”8” hotThreadPosts=”10”
bronzePosterPosts=”10” silverPosterPosts=”20”
goldPosterPosts=”50”/>
<store sandboxMode=”true” businessEmail=”thebeerhouse@wrox.com”/>
</theBeerHouse>

To make the settings easily readable from any part of the site, you will add a public fi eld of type
TheBeerHouseSection in the Globals class and set it as follows:

Public NotInheritable Class Globals
 Public Shared ReadOnly Settings As TheBeerHouseSection = _
 CType(WebConfigurationManager.GetSection(“theBeerHouse”),
TheBeerHouseSection)

End Class

The WebConfigurationManager class is used to access confi guration content, including custom sections
such as TheBeerHouseSection. As you can notice in the preceding code, TheBeerHouseSection is
retrieved and the values are cast into a TheBeerHouseSection object.

To see how these settings are actually used, let’s create the Contact.aspx page, which enables users to
send mail to the site administrator by fi lling in a form online. Figure 3-26 shows the page at runtime.

Figure 3-26

87586c03.indd 13287586c03.indd 132 9/13/09 10:02:51 PM9/13/09 10:02:51 PM

133

Chapter 3: Planning an Architecture

The following code is the markup for the page, with the layout structure removed to make it easier to
follow:

Your name: <asp:TextBox runat=”server” ID=”txtName” Width=”100%” />
<asp:RequiredFieldValidator runat=”server” Display=”dynamic” ID=”valRequireName”
 SetFocusOnError=”true” ControlToValidate=”txtName”
 ErrorMessage=”Your name is required”>*</asp:RequiredFieldValidator>

Your e-mail: <asp:TextBox runat=”server” ID=”txtEmail” Width=”100%” />
<asp:RequiredFieldValidator runat=”server” Display=”dynamic” ID=”valRequireEmail”
 SetFocusOnError=”true” ControlToValidate=”txtEmail”
 ErrorMessage=”Your e-mail address is required”>*</asp:RequiredFieldValidator>
<asp:RegularExpressionValidator runat=”server” Display=”dynamic”
 ID=”valEmailPattern” SetFocusOnError=”true” ControlToValidate=”txtEmail”
 ValidationExpression=”\w+([-+.’]\w+)*@\w+([-.]\w+)*\.\w+([-.]\w+)*”
 ErrorMessage=”The e-mail address you specified is not well-formed”>*
</asp:RegularExpressionValidator>

Subject: <asp:TextBox runat=”server” ID=”txtSubject” Width=”100%” />
<asp:RequiredFieldValidator runat=”server” Display=”dynamic” ID=”valRequireSubject”
 SetFocusOnError=”true” ControlToValidate=”txtSubject”
 ErrorMessage=”The subject is required”>*</asp:RequiredFieldValidator>

Body: <asp:TextBox runat=”server” ID=”txtBody” Width=”100%”
 TextMode=”MultiLine” Rows=”8” />
<asp:RequiredFieldValidator runat=”server” Display=”dynamic” ID=”valRequireBody”
 SetFocusOnError=”true” ControlToValidate=”txtBody”
 ErrorMessage=”The body is required”>*</asp:RequiredFieldValidator>

<asp:Label runat=”server” ID=”lblFeedbackOK” Visible=”false”
 Text=”Your message has been successfully sent.” SkinID=”FeedbackOK” />
<asp:Label runat=”server” ID=”lblFeedbackKO” Visible=”false”
 Text=”Sorry, there was a problem sending your message.” SkinID=”FeedbackKO” />

<asp:Button runat=”server” ID=”txtSubmit” Text=”Send” OnClick=”txtSubmit_Click” />
<asp:ValidationSummary runat=”server” ID=”valSummary”
 ShowSummary=”false” ShowMessageBox=”true” />

When the Send button is clicked, a new System.Net.Mail.MailMessage is created, with its To, CC,
and Subject properties set from the values read from the site’s confi guration; the From and Body are set
with the user input values, and then the mail is sent:

Protected Sub txtSubmit_Click(ByVal sender As Object,
ByVal e As System.EventArgs) Handles txtSubmit.Click
 Try
 ‘ send the mail
 Dim msg As New MailMessage
 msg.IsBodyHtml = False
 msg.From = New MailAddress(txtEmail.Text, txtName.Text)
 msg.To.Add(New MailAddress(Globals.Settings.ContactForm.MailTo))
 If Not String.IsNullOrEmpty(
Globals.Settings.ContactForm.MailCC) Then
 msg.CC.Add(New MailAddress(

87586c03.indd 13387586c03.indd 133 9/13/09 10:02:51 PM9/13/09 10:02:51 PM

134

Chapter 3: Planning an Architecture

Globals.Settings.ContactForm.MailCC))
 End If
 msg.Subject = String.Format(_
 Globals.Settings.ContactForm.MailSubject, txtSubject.Text)
 msg.Body = txtBody.Text
 Dim client As New SmtpClient()
 client.Send(msg)
 ‘ show a confirmation message, and reset the fields
 lblFeedbackOK.Visible = True
 lblFeedbackKO.Visible = False
 txtName.Text = String.Empty
 txtEmail.Text = String.Empty
 txtSubject.Text = String.Empty
 txtBody.Text = String.Empty
 Exit Try

 Catch ex As Exception
 lblFeedbackOK.Visible = False
 lblFeedbackKO.Visible = True
 End Try
End Sub

The SMTP settings used to send the message must be defi ned in the web.config fi le, in the
<mailSettings> section, as shown here:

<configuration xmlns=”http://schemas.microsoft.com/.NetConfiguration/v2.0”>
 <system.web> <!-- some settings here...-- > </system.web>
 <system.net>
 <mailSettings>
 <smtp deliveryMethod=” Network “ from=”thebeerhouse@wrox.com”>
 <network defaultCredentials=”true” host=”(localhost)” port=”25” />
 </smtp>
 </mailSettings>
 </system.net> </configuration>

Implementing Good Search Engine Optimization Techniques
Applying good search engine optimization techniques is not always the easiest thing to do from a
programming perspective, but creating a good SEO-friendly architecture can make this very easy to
accomplish.

The URLRewrite httpModule
In the “Design” section of this chapter, I talked about various search engine optimization techniques
that should be employed to help the site earn better search engine placement. Two of those techniques
involved search-engine-friendly URLs and 301 redirecting requests going to one version of the domain
instead of both the www alias and the actual domain name. Both of these tasks can be handled in a
custom httpModule called URLRewrite.

If you are not familiar with httpModules, they are part of the foundation of the ASP.NET model and
provide a means to hook into the ASP.NET pipeline to intercept requests and modify them according to

87586c03.indd 13487586c03.indd 134 9/13/09 10:02:51 PM9/13/09 10:02:51 PM

135

Chapter 3: Planning an Architecture

your business rules. In this case, the module will intercept the request, analyze the requested URL, and
reroute it as necessary.

A custom httpModule implements the IHttpModule interface, which consist of two methods: Init
and Dispose. The Dispose method is the same as I discussed earlier; it is called when the module is
being destroyed and allows you to release any resources that may be opened by the module. In the case
of the URLRewrite module, there are no ongoing resources in use, so this method will be empty.

Imports Microsoft.VisualBasic
Imports System.IO
Imports TheBeerHouse.BLL
Imports System.Web
Imports System.Text.RegularExpressions

Public Class URLRewrite
 Implements IHttpModule

There is one variable declared in the module, wwwRegex, a regular expression used to match the
requested URL to see if “www.” has been used. If you are not familiar with regular expressions or feel
a little intimidated with the syntax, I encourage you to investigate them further. They are a great way
to parse text effi ciently. Another nice thing is they are essentially language agnostic, meaning that they
are used with just about every platform and programming language. There are a few subtle differences
across languages, but they seem to be minor.

This regular expression looks for a URL string that contains “http://www.” or “https://www.”, which
is important because this is a way to catch SSL and non-SSL requests. The expression looks almost
exactly like the pattern I am trying to catch. The fi rst deviation is the ? after https. This tells the regu-
lar expression parser to look for 0 or 1 of the previous characters. The next deviation is \., which is sim-
ply an escape character “\” to tell the parse to look for a period.

Private Shared wwwRegex As New Regex(“https?://www\.”,
RegexOptions.IgnoreCase Or RegexOptions.Compiled)

The next parameter combination is the regular expression options for the Regex object. In this case,
Regex is instructed to ignore the case of the characters it is matching and to compile the expression.
Compiling the expression means that it will be part of the assembly and perform slightly faster. The
RegexOptions Enum can be ORed together, as shown in the example. There are many other options
available for regular expressions that can be used to control how an expression performs its matching.

The Init method is called by the ASP.NET engine the fi rst time a request is made to the website. This
method is called only once, and it is typically used to register event handlers. In the URLRewrite module,
I am registering a single event handler to intercept the BeginRequest event. There are over 20 events
in the ASP.NET page life cycle. I talk about these and many more concepts related to httpModules in a
WROX BLOX, Leveraging httpModules for Better ASP.NET Applications, which is available from the WROX
website.

 Public Sub Dispose() Implements System.Web.IHttpModule.Dispose

 End Sub

 Public Sub Init(ByVal context As System.Web.HttpApplication)

87586c03.indd 13587586c03.indd 135 9/13/09 10:02:51 PM9/13/09 10:02:51 PM

136

Chapter 3: Planning an Architecture

Implements System.Web.IHttpModule.Init
 AddHandler context.BeginRequest, AddressOf BeginRequest
 End Sub

All the events in the ASP.NET page life cycle have the standard Microsoft event signature: an
Object named sender and an EventArgs object named e. The sender object is the application, an
HttpApplication object. The BeginRequest method uses this parameter by casting the sender to
an HttpApplication object named app. I then create local variables for the Request and Response
objects as well to save some coding.

Following the declaration of those variables the method declares a series of variables; sRequestedURL,
bWWW, and redirectURL. The sRequestedURL variable holds the URL requested by the user, converted
to lower case. This is important because all string comparisons are case sensitive. The bWWW Boolean
variable is a fl ag that indicates if there was a match to the regular expression to catch requests made
using the www. prefi x. The redirectURL variable is initially set to an empty string and will ultimately
be set to the real URL if the method needs to perform a 301 redirect.

 Private Sub BeginRequest(ByVal sender As Object, ByVal e As EventArgs)
 Dim app As HttpApplication = CType(sender, HttpApplication)
 Dim Request As HttpRequest = app.Request
 Dim Response As HttpResponse = app.Response

 Dim sRequestedURL As String = Request.Url.ToString.ToLower

 Dim bWWW As Boolean = wwwRegex.IsMatch(sRequestedURL)
 Dim redirectURL As String = String.Empty
 If bWWW Then
 redirectURL = wwwRegex.Replace(sRequestedURL,
String.Format(“{0}://”, Request.Url.Scheme))
 End If

 Rewrite(app)

 End Sub

If there was a match to the regular expression, then the RegEx object is used to perform a quick replace
to remove the www. from the URL and set the updated version to redirectURL. The next section of
code checks to see if the redirectURL contains any text, and if so, then proceeds to do a 301 redirect.
Before the redirect, it does another check to see if the URL ends with “default.aspx,” which is impor-
tant because you need to minimize the use of default.aspx as the home page. Again, this is to avoid
duplicate content penalties.

Here is an interesting situation that ASP.NET poses: this will only check for the use of “default
.aspx” if the user requested “http://www.thebeerhouse.com/default.aspx” and not
“http:// thebeerhouse.com/default.aspx”. The reason goes to the root of ASP.NET and
IIS. The ASP.NET engine is an ISAPI fi lter that is registered with IIS to process request for specifi ed
fi le name extensions, such as .aspx. You can map any extension you like to be processed by the ASP.
NET engine; just realize there will be a slight bit of added overhead for this choice. In fact, you could do
a wildcard mapping, which means you tell IIS to use the ASP.NET engine to process all requests to the
site. If you wanted to use URLs that did not have a fi le extension you would have to do this for example.
That is also the way you can get around the “default.aspx” issue.

87586c03.indd 13687586c03.indd 136 9/13/09 10:02:51 PM9/13/09 10:02:51 PM

137

Chapter 3: Planning an Architecture

If you make a request to the core domain without specifying a fi le, IIS will, by
default, change the URL and append the default fi le to the end of the URL and pro-
cess it accordingly. In this case, default.aspx has been confi gured to be the default
page for the site and, because it has the .aspx extension, it will be processed by the
ASP.NET engine. If the request did not append the default fi le name to the requested
URL, it would not be processed by ASP.NET, which is not what we want.

So, why did I check for this in the BeginRequest method? In this case, the 301 redirect is being sent
back to the client without default.aspx appended, which means the search engine will only see the
actual domain as the URL. The fi le name is appended only on the server. If this were checked, say in
the regular expression, it would cause an infi nite loop because the module would be continually send-
ing 301 redirect notices to the browser or spider because each request would keep having default
.aspx appended to the end of the URL. Figure 3-27 shows an example of the expected result.

Figure 3-27

This still leaves us with a potential hole in the module to allow duplicate content to be indexed by the
search engine. Unfortunately, without mapping every request through the ASP.NET engine, it leaves
to the URL the responsibility to not use any links to the home page of the site with default.aspx fi le
appended. This takes discipline, and there is no good answer as to how to avoid this without investing
in a third-party ISAPI fi lter.

The last piece of the duplicate content checking code actually performs the 301 redirect. The
RedirectLocation of the Response object is set to the redirectURL variable. The StatusCode
property of the Response is set to 301. The StatusCode refers to the HTTP Status code returned to the
client (a browser or search engine spider) that lets the client know how the request was processed. For
example, a normal request returns a status of 200; one where the user is not authenticated to access the
resource returns a 403 status code. This tells the client what to do next. In the case of a 301 status code,
the client knows it should look for the Location header to see where the URL has been permanently
moved to. Search engines see this and know not to index the fi rst URL and instead index the new URL.

Finally, if the requested URL does not need to be redirected from the www version, it still needs to be
checked against the site map. The Rewrite method accepts the requestedPath and a reference to the
HttpApplication object.

 Private Sub Rewrite(ByVal app As HttpApplication)

 Using lSiteMapRst As New SiteMapRepository()
 Dim lSiteMap As SiteMapInfo =
lSiteMapRst.GetSiteMapInfoByURL(
Path.GetFileName(app.Context.Request.RawUrl))

 If Not IsNothing(lSiteMap) Then
 HttpContext.Current.RewritePath(lSiteMap.RealURL)
 End If
 End Using

 End Sub

87586c03.indd 13787586c03.indd 137 9/13/09 10:02:51 PM9/13/09 10:02:51 PM

138

Chapter 3: Planning an Architecture

The logic in the Rewrite method is wrapped in a using statement, where a new SiteMapRepository
object is created. In the using statement the GetSiteMapInfoByURL method is called, passing the fi le
name of the requested resource. The reason the fi le name is used instead of the domain portion of the
URL is that should be the same value for every request.

The GetSiteMapInfoByURL method makes a simple LINQ query over the SiteMap and returns either
the fi rst match to the requested URL or nothing. The return statement wraps the LINQ query in ()
and called the FirstOrDefault method, which returns the fi rst object matching returned from the
data source or null if there are no matches in the database. If just First was used and there were no
matches, it would throw an exception; FirstOrDefault manages that scenario.

 Public Function GetSiteMapInfoByURL(ByVal URL As String) As SiteMapInfo

 Return (From lai In SiteMapctx.SiteMaps _
 Where lai.URL = URL).FirstOrDefault

 End Function

The next line of code checks to see if a match was found; if there was, then the requested path is rewrit-
ten by calling the RewritePath method. This method does not do a 301 redirect; it actually transforms
the requested URL to the desired URL and lets the ASP.NET engine continue processing the request.
In essence, it tricks the engine into thinking the client requested a URL they didn’t. The only trick you
need to have is a way to transform the requested URL to the URL you want ASP.NET to process. There
are several ways to manage this; I have found that, for larger sites, it is easier to do this with a database
table maintaining various types of information that makes up a page and using that as the ultimate
transform. Regular expressions are also very popular.

Microsoft has also recently released the ASP.NET MVC framework, which is
featured in the MVC version of the Beer House (ASP.NET MVC Problem–Design–
Solution). It uses a routing subsystem that has been made available to all forms of
ASP.NET to leverage. You can fi nd more information about using the Route subsys-
tem at http://msdn.microsoft.com/en-us/library/system.web.routing.aspx.

Page-Level Optimizations
Implementing good search engine practices not only helps the site garner better search engine place-
ment but also makes the overall user experience on the site better. In the base page class, there are sev-
eral properties to manage the page description, keywords, and other META tag members.

In ASP.NET, there are two basic types of controls: web and HTML. While the web controls garner the
vast majority of attention, the HTML controls are very useful. For search engine optimization purposes,
the HtmlMeta control renders a META tag used for description, keywords, and other tags. The BasePage
class contains a method that creates an HtmlMeta control and adds it to the page’s header, composing
it with the appropriate tag name and value. It takes care to work with both a master page and a page
without a master template.

Public Sub CreateMetaControl(ByVal sTagName As String, ByVal TagValue As String)

 Dim meta As New HtmlMeta()
 meta.Name = sTagName

87586c03.indd 13887586c03.indd 138 9/13/09 10:02:52 PM9/13/09 10:02:52 PM

139

Chapter 3: Planning an Architecture

 meta.Content = TagValue

 If Not IsNothing(Master) AndAlso Not IsNothing(Master.Page) Then
 Master.Page.Header.Controls.Add(meta)
 Else
 Page.Header.Controls.Add(meta)
 End If

End Sub

Similarly, retrieving the value of a META tag is just as important. This is done by interrogating the page
for the metatag control. This is done by using the FindControl method and returning the content of
the control.

Public Function GetMetaValue(ByVal sTagName As String) As String

 Dim meta As HtmlMeta

 If Not IsNothing(Master) Then
 meta = Master.Page.Header.FindControl(sTagName)
 Else
 meta = Page.Header.FindControl(sTagName)
 End If

 If Not IsNothing(meta) Then
 Return meta.Content
 End If

 Return String.Empty

End Function

The BasePage class contains targeted properties to get and set the values of these metatags. The set-
ter creates the META tag by calling the CreateMetaControl method. It gets the value by calling the
GetMetaValue method.

Protected Property PageKeyWords() As String
 Get
 Return GetMetaValue(“KEYWORDS”)
 End Get
 Set(ByVal value As String)
 CreateMetaControl(“KEYWORDS”, value)
 End Set
End Property

Confi guring ELMAH
The nice thing about confi guring ELMAH is that it takes very little effort. First, you download the
library, http://code.google.com/p/elmah. You can download a setup project or the source code
and compile your own copy.

87586c03.indd 13987586c03.indd 139 9/13/09 10:02:52 PM9/13/09 10:02:52 PM

140

Chapter 3: Planning an Architecture

Once the ELMAH library has been compiled or installed on the development machine, a reference to
ELMAH needs to be added to theBeerHouse site, Figure 3-28. Right-click on the root node of the site, and
select Add Reference. Then fi nd the ELMAH library either in the machine’s GAC or browse for the DLL.

Figure 3-28

The next step is to add a couple of entries in the site’s web.config fi le. First, add a sectionGroup ele-
ment to the configSection of the web.config fi le. You can grab this and copy it from the supplied
sample site that comes with the ELMAH library.

<sectionGroup name=”elmah”>
<!-- NOTE! If you are using ASP.NET 1.x then remove the
 requirePermission=”false” attribute from the section
 elements below as those are only needed for
 partially trusted applications in ASP.NET 2.0 -- >
<section name=”security” requirePermission=”false”
type=”Elmah.SecuritySectionHandler, Elmah”/>
<section name=”errorLog” requirePermission=”false”
type=”Elmah.ErrorLogSectionHandler, Elmah”/>
<section name=”errorMail” requirePermission=”false”
type=”Elmah.ErrorMailSectionHandler, Elmah”/>
<section name=”errorFilter” requirePermission=”false”
 type=”Elmah.ErrorFilterSectionHandler, Elmah”/>
</sectionGroup>

Once the ELMAH sectionGroup has been added to the confi guration, the actual ELMAH section can
be added to the fi le. The ELMAH section contains several child elements that allow confi guration of the
various pieces of the tool. The fi rst section is security, which has only one attribute, allowRemoteAccess.
This can be set to 0 to allow anyone to access the ELMAH reports. If ELMAH is to be protected, the value
can be any of the following: true, yes, on, and 1.

<elmah>
<security allowRemoteAccess=”0”/>

87586c03.indd 14087586c03.indd 140 9/13/09 10:02:52 PM9/13/09 10:02:52 PM

141

Chapter 3: Planning an Architecture

<errorLog type=”Elmah.SqlErrorLog, Elmah” connectionStringName=”LocalSqlServer”/>
<errorFilter>
<test>
<equal binding=”HttpStatusCode” value=”404” valueType=”Int32”/>
</test>
</errorFilter>
</elmah>

The errorLog element, which defi nes which type of data store the errors are logged. For theBeerHouse
site the errors are logged to SQL Server and the same database with the rest of the site’s data. Notice
that the connectionStringName is not set to the same connection string as the Entity Framework’s
connection string. That’s because the Entity Framework has all the metadata built into the string. There
are many other potential data stores that can be used with ELMAH, such as an XML or SQLLite fi le.

The next section is the errorFilter element. It holds a series of rules that can be used to limit the
errors that are logged. The preceding example is designed to eliminate 404 or page not found errors.
This keeps certain errors from being overreported and clogging up the logs.

If you want errors sent to an e-mail address, then the errorMail section needs to be properly
confi gured.

 <errorMail
 from=”error@thebeerhouse.com”
 to=”info@thebeerhouse.com”
 subject=”Exception in the Beer House Site”
 async=”true”
 smtpPort=”25”
 smtpServer=”mail.thebeerhouse.com”/>

For ELMAH to actually log errors, the modules must be registered. This is actually a set of modules;
notice that the e-mail module is optional. HttpModules are registered in the httpModules element of
the system.web section.

<add name=”ErrorLog” type=”Elmah.ErrorLogModule, Elmah”/>
<!--
 Uncomment the entries below if error mail reporting
 and filtering is desired.
 -- >
<add name=”ErrorMail” type=”Elmah.ErrorMailModule, Elmah”/>
<add name=”ErrorFilter” type=”Elmah.ErrorFilterModule, Elmah”/>

The fi nal confi guration steps register the ELMAH custom handler to report the errors. Like http-
Modules, httpHandlers are registered in the httpHandlers section of the system.web confi guration
section.

<add verb=”POST,GET,HEAD” path=”elmah.axd”
type=”Elmah.ErrorLogPageFactory, Elmah”/>

87586c03.indd 14187586c03.indd 141 9/13/09 10:02:52 PM9/13/09 10:02:52 PM

142

Chapter 3: Planning an Architecture

Summary
This chapter provided several guidelines for building a fl exible, easily confi gurable and instrumented
site. First, we discussed implementing the Entity Framework for data access. Next, we covered a busi-
ness logic layer built on the top of the DAL, which exposes the data in an object-oriented way, with the
required validation logic, event logging, and caching. Finally, we examined the user interface presenta-
tion layer, which takes advantage of the new ListView, and UpdatePanel controls to quickly generate
complex and feature-rich data-enabled UI controls. In the “Solution” section, we created custom con-
fi guration sections and implemented the ELMAH framework.

You now have a good foundation to start building the site upon! In the next chapter, you’ll discover the
ASP.NET’s Membership system to manage user’s account subscriptions and profi les and will build a
complete administration area for managing users, profi les, preferences, roles, and security settings.

87586c03.indd 14287586c03.indd 142 9/13/09 10:02:52 PM9/13/09 10:02:52 PM

Membership and
User Profiling

The sample website developed in this book contains dynamic content such as news, events, news-
letters, polls, forum posts, and more. It can be considered a content-based site, where signifi cant
parts of the site can be easily changed or updated by privileged users (this functionality is some-
times called a content management system), although it differs from many content-based sites because
we’ve also added an important e-commerce section that enables our investors to earn a healthy
return on their investment.

Here’s a secret (although not a well-kept one) for any content-based site that you want to be suc-
cessful: build a vigorous and thriving community of users! If you have a lot of loyal users, you
can be sure that the site will increase its user base and, thus, its size, its popularity, and your
revenues. You want to encourage users to register for a free account on the site, so you can enable
them to customize their view, participate in message forums, and even order merchandise from
e-commerce pages. Once they obtain a free account, they will be a member of the site. Membership
is a form of empowerment — they will feel special because they are a member, and you want to
reward their loyalty by enabling them to customize certain visual aspects, and to remember their
settings on their return visits.

To track members, it is necessary to have some sort of identity to describe and distinguish them
from other members and, more importantly, from anonymous users who have not logged in. This
chapter will explain how to develop user registration functionality and user profi les. The user
account will also be used to grant or deny access to special restricted pages of the site. The profi le
will be used by modules developed later in this book to customize content and give users a public
“virtual face,” visible to other members and users.

87586c04.indd 14387586c04.indd 143 9/13/09 10:15:50 PM9/13/09 10:15:50 PM

144

Chapter 4: Membership and User Profi ling

Problem
In reality, a membership system is a requirement for most websites — not just for community and con-
tent-based sites. Sites typically have a number of administration pages to which visitors should not have
access. The administration section can be a complete application in itself or just a couple of simple pages
to allow people to change some settings. However, you always need to identify each user who tries to
access those restricted pages and check whether they are authorized to do so.

The process of identifying a user is called authentication, and the process of determining what access a
user has is called authorization. Unfortunately, it’s easy to confuse these terms, so it helps to think of the
root words: authenticate (who are you?) and authorize (now that I know you, what are you allowed to
do?). The authentication and authorization processes are part of the site’s membership system, which
includes the creation of new user accounts, the management of the user’s credentials (including protec-
tion mechanisms such as encryption and password recovery in case passwords are lost or forgotten),
and roles associated with an account.

For the sample site, the membership system must be complete because it will be used by administra-
tors and editors to access protected areas, and by users who want to have their own identity within the
community, post messages to the forums, and be recognized by other members. It must enable users to
create their account interactively without administrator intervention and to update their profi le infor-
mation on demand.

Administrators must also be able to see a list of registered users and to control them. For example, if
there is a user who regularly posts spam or offending messages to the forum, a good administrator (or
forum moderator) will want to temporarily or permanently disable this user’s account. Conversely, if a
user always behaves well and respects the site’s policies, an administrator may decide to promote him
or her to the status of moderator, or even editor. In other words, modifying user account settings and
their roles should be an easy thing to do, because the administrator may need to do it frequently. Thus,
we require an easy-to-use administration section to manage user accounts.

To make it easier to manage security permissions, we’ll create roles that are basically a group of users who
have special permission in addition to the normal user permissions. For example, the Administrators role
will be used to designate certain individuals who will have the capability to manage user accounts and
site content.

Although a membership system is necessary for common security-related tasks, other things are needed
in order to build an effective community of happy users. The users expect to have some benefi ts from
their registration. For example, they could receive newsletters with useful information (with links back
to the website), and they could customize the home page so that it highlights the type of content they
are most interested in. Furthermore, their preferred site template could be saved and restored between
sessions. All this information makes up what’s called a user profi le. Implementing a system for profi ling
the user is a good thing not just for the end user but also for the site administrators. Among the infor-
mation stored in the profi le is the user’s age, gender, and full address. A savvy administrator could later
make use of such data in a variety of ways:

To customize the user appearance for registered and profi led users: ❑ For example, the news
and events modules developed in the next chapter will use the details stored in the user’s pro-
fi le to highlight with different colors the news and events that happen in the user’s country,
state, or city, to identify the items closest to home. This rather simple feature can improve the
user experience, and gives users an incentive to provide such personal details in their profi le.

87586c04.indd 14487586c04.indd 144 9/13/09 10:15:51 PM9/13/09 10:15:51 PM

145

Chapter 4: Membership and User Profi ling

To implement targeted marketing: ❑ For example, you could send a newsletter about a concert
or some other event to all users that reside in a particular country, state, or city. You can do the
same with banners or text notices on the site. Multiple criteria could be used for targeting the
sponsored news, other than that from the user’s location: it could be chosen according to age,
gender, or a combination of multiple conditions. The more details you have about your users,
the more chances you have to sell advertisement spaces on your site(s) to external companies,
or to effectively use the ad possibilities yourself.

To offer a choice of identity authorization: ❑ Username and passwords have been the traditional
means to be authenticated on websites for years and are still the standard means to identify
yourself. There are a few problems with the traditional username and password combinations
because they require users to keep track of numerous combinations across all the sites the users
visit and such combinations have been coming under more and more scrutiny these days. To
resolve these issues, new identity management mechanisms have been introduced: OpenID and
CardSpace. Offering a choice of authentication mechanism makes the site more usable by more
visitors.

To implement authentication via ASP.NET AJAX: ❑ AJAX was created to make a better user
experience for visitors. ASP.NET AJAX leverages Forms authentication, the membership pro-
vider, and profi le services via web services.

The site administrator will need an intuitive console from which she can see and edit the profi le of any
user — to remove an offending signature or avatar image (an avatar image is a small picture of a user,
or a “cool” signature picture a user wants to display next to his or her name) used in the forums.

Design
To recap, the “virtual client” has commissioned a membership system that handles the following opera-
tions and features:

Users must be able to create new accounts independently, by fi lling out an online registration form. ❑

Users must be able to later change their own credentials or recover them if they forget them. ❑

The administrator must be able to grant or deny access to specifi c sections or individual pages ❑

by certain users. The permissions should be editable even after deploying the site, without
requiring the intervention of a developer to change complex code or settings.

The administrator must be able to temporarily or permanently suspend a user account, for ❑

example, when a user does not respect the site’s policy of conduct.

The administrator should be able to see summary and statistical data such as the number of ❑

total registered users and how many of them are online at a particular time. The administrator
may also want to know when specifi c users registered, and the last time they logged in.

A profi ling system should enable each registered user to save data such as site preferences and ❑

personal details in a data store (such as a database), so that the information will be remembered
on future visits. The administrator must be able to view and edit the profi le of each user.

ASP.NET 2.0 introduced some great features that help to develop the membership subsystem.

87586c04.indd 14587586c04.indd 145 9/13/09 10:15:51 PM9/13/09 10:15:51 PM

146

Chapter 4: Membership and User Profi ling

Password Storage Mechanisms
There are basically three methods for storing passwords, with each one offering different trade-offs
between security and the convenience of developers, administrators, and users.

 1. The most convenient method of password storage for developers and administrators is to store
the password as plain text in a database fi eld. This is also convenient for users because you can
easily e-mail a user’s password to them in case they forget it. However, this is the least secure
option because all of the passwords are stored as plain text — if your database were compro-
mised by a hacker, he’d have easy access to everyone’s password. You need to be extremely
careful about locking down your database and ensuring that you secure your database backup
fi les.

 2. To enhance the security of password storage, you can encrypt the passwords before storing
them in a database. There are many ways to encrypt passwords, but the most common method
is symmetric encryption, which uses a guarded system password to encrypt all user passwords.
This is two-way encryption: you can encrypt a password and also decrypt it later. This offers
medium convenience for developers but still offers a lot of convenience for users because you
can still e-mail them a forgotten password.

 3. The highest level of security requires a form of encryption that prevents administrators and
developers from gaining access to any user’s password. This uses a one-way type of encryption
known as hashing. You can always encrypt a password by hashing the password with a proven
algorithm, but you can never decrypt it. Therefore, you store the hashed version of the password,
and later, when you want to verify a user’s password when he logs in again, you can perform the
same hashing algorithm on whatever he types in as his password. You can then compare this
hash against the hash you stored in the database — if the two match, then you know the user
entered his password correctly. This offers a low amount of convenience to developers, adminis-
trators, and users because it’s not possible to e-mail forgotten passwords. Instead, if a user forgets
his password, your only choice is to change the user’s password to a known value and then save
the hash for his new password.

Hashing (method 3) was used in the fi rst edition of this book, but it caused a lot of confusion for admin-
istrators and frustration for users because people generally prefer having the option of “recovering” a
lost password without requiring a new one. We will use symmetric encryption (method 2) in this edition,
but please keep in mind that password hashes should always be used to protect websites containing
fi nancial data or other very sensitive data (such as medical records, test scores, etc.). Most users would
not like to see their super-secret banking password mailed to them in an e-mail message, and most don’t
even want bank employees to have access to passwords. A bank employee who is trusted today might
become a disgruntled former employee tomorrow, and it’s nice to know that he won’t be taking your
password with him!

Authentication Modes: Windows Security or Custom
Login Form?

The fi rst thing you have to decide when you set up a security mechanism for a website is whether you
want to use Windows or Forms authentication. Windows authentication is the easiest to set up and
use, while Forms authentication requires you to create a custom database and a login form. Windows
security is usually the best choice when you are developing an intranet site for which all users who
have access to the site are also users of a company’s internal network (where they have domain user

87586c04.indd 14687586c04.indd 146 9/13/09 10:15:51 PM9/13/09 10:15:51 PM

147

Chapter 4: Membership and User Profi ling

accounts). With Windows security, users enjoy the capability to use restricted web pages without hav-
ing to formally log in to the website; the page is executed under the context of the user requesting it,
and security restrictions are automatically enforced on all resources that the code tries to access and
use (typically fi les and database objects). Another advantage is that Windows will securely store and
encrypt user credentials so that you don’t have to.

However, the requirement to have a local network account is a huge disadvantage that makes it a bad
choice for Internet sites. If you use Windows security for users located outside of a company’s network,
the company would be required to create a network user account for each website user, which makes it
slow for users to gain access and expensive for companies to administer. While you could conceivably
write some code to automate the creation of Windows network accounts, and could write a login page
that uses Windows impersonation behind the scenes, it just doesn’t make sense to employ Windows
security with those nasty workarounds in our context (a public website with possibly thousands of users).
Instead, it makes more sense to use Forms authentication, and store user account credentials and related
profi le data in a custom database.

The Let’s Do Everything on Our Own Approach
Designing a module for handling user membership and profi ling is not easy. It may not seem particu-
larly diffi cult at fi rst: you can easily devise some database tables for storing the required data (roles,
account credentials, and details; the associations between roles and accounts; and account profi les) and
an API that allows the developer to request, create, and modify this data. However, things are rarely as
easy as they appear at fi rst!

You must not downplay the signifi cance of these modules because they are crucial to the operation of
the website, and properly designing these modules is important because all other site modules rely on
them. If you design and implement the news module poorly, you can go back and fi x it without affecting
all the other site’s modules (forum, e-commerce, newsletter, polls, etc.). However, if you decide to change
the design of the membership module after you have developed other modules that use it, chances are
good that you will need to modify something in those modules as well. The membership module must
be complete but also simple to use, and developers should be able to use its classes and methods when
they design administration pages. They should also be able to create and edit user accounts by writing
just a few lines of code or, better yet, no code at all. ASP.NET 1.1 provided a partial security framework
that allowed you to specify roles that could or could not access specifi c pages or folders by specifying
role restrictions in web.config. It also took care of creating an encrypted authentication cookie for the
user, once the user logged in. The developer, though, was completely responsible for all the work of writ-
ing the login and registration pages, authenticating the user against a database of credentials, assigning
the proper roles, and administering accounts. In the fi rst edition of this book, we did everything our-
selves with custom code. The solution worked fi ne but still suffered from a couple of problems:

The developer had to perform all security checks programmatically, typically in the ❑ Page_Load
event, before doing anything else. If you later wanted to add roles or users to the ACL (access
control list) of a page or site area, you had to edit the code, recompile it, and redeploy the
assembly.

The membership system also included user profi ling. The database table had columns for the ❑

user’s fi rst and last name, address, birth date, and other related data. However, the table schema
was fi xed, so if you wanted to add more information to the profi le later, you had to change the
database, the related stored procedures, and many API methods, in addition to the user interface
to insert the data.

87586c04.indd 14787586c04.indd 147 9/13/09 10:15:51 PM9/13/09 10:15:51 PM

148

Chapter 4: Membership and User Profi ling

Things could have been made more fl exible, but it would have been more diffi cult to develop. You have
to weigh the advantages of design extensibility against the time and effort required to implement it.
Fortunately, ASP.NET has full-featured membership and profi ling systems out of the box! Yes, that’s
right, you don’t have to write a single line of code to register users, protect administrative pages, and
associate a profi le with the users, unless you want to customize the way they work (for example, to
change the format in which the data is stored, or the storage medium itself).

This section introduces the built-in security and profi ling framework of ASP.NET; after that, you will
learn how to profi tably use it in your own project instead of “rolling your own” solution.

The Membership and MembershipUser Classes
ASP.NET 2.0 included many features to help developers solve common problems quickly; one of these
features is the Membership and Role providers. The principal class of the ASP.NET’s security frame-
work is System.Web.Security.Membership, which exposes a number of static methods to create,
delete, update, and retrieve registered users. The following table describes the most important class
methods.

Method Description

CreateUser Creates a new user account.

DeleteUser Deletes the specifi ed user.

FindUsersByEmail Returns an array of users with the specifi ed e-mail address. If SQL
Server is used to store accounts, the input e-mail can contain any
wildcard characters supported by SQL Server in LIKE clauses,
such as % for any string of zero or more characters, or _ for a single
character.

FindUsersByName Returns an array of users with the specifi ed name. Wildcard charac-
ters are supported.

GeneratePassword Generates a new password with the specifi ed length, and the speci-
fi ed number of non-alphanumeric characters.

GetAllUsers Returns an array with all the registered users.

GetNumberOfUsersOnline Returns an integer value indicating how many registered users are
currently online.

GetUser Retrieves a specifi c user by name.

GetUserNameByEmail Returns the username of a user with the given e-mail address.

UpdateUser Updates a user.

ValidateUser Returns a Boolean value indicating whether the input credentials cor-
respond to a registered user.

87586c04.indd 14887586c04.indd 148 9/13/09 10:15:51 PM9/13/09 10:15:51 PM

149

Chapter 4: Membership and User Profi ling

Some of these methods (CreateUser, GetAllUsers, GetUser, FindUsersByName, FindUsersByEmail,
and UpdateUser) accept or return instances of the System.Web.Security.MembershipUser class,
which represents a single user, and provides quite a lot of details about it. The following tables describe
the instance properties and methods exposed by this class.

Property Description

Comment A comment (typically entered by the administrator) associated
with a given user.

CreationDate The date when the user registered.

Email The user’s e-mail address.

IsApproved Indicates whether the account is enabled and whether the user
can log in.

IsLockedOut Indicates whether the user account was disabled after a number
of invalid logins. This property is read-only, and the administrator
can only indirectly set it back to false, by calling the UnlockUser
method described below.

IsOnline Indicates whether the user is currently online.

LastActivityDate The date when the user logged in or was last authenticated. If the
last login was persistent, this will not necessarily be the date of
the login, but it may be the date when the user accessed the site
and was automatically authenticated through the cookie.

LastLockoutDate The date when the user was automatically locked out by the
membership system, after a (confi gurable) number of invalid
logins.

LastLoginDate The date of the last login.

LastPasswordChangedDate When the user last changed his or her password.

PasswordQuestion The question asked of users who forget their password — used
to prove it’s really the user.

UserName The user’s username.

Method Description

ChangePassword Changes the user’s password. The current password
must be provided.

ChangePasswordQuestionAndAnswer Changes the question and answer asked of a user who
forgets his or her password. Requires the current pass-
word as input (so someone can’t change this for some-
body else).

Continued

87586c04.indd 14987586c04.indd 149 9/13/09 10:15:51 PM9/13/09 10:15:51 PM

150

Chapter 4: Membership and User Profi ling

Method Description

GetPassword Returns the current password. Depending on how the
membership system is set up, it may require the answer
to the user’s password question as input and will not
work if only a password hash is stored in the database.

ResetPassword Creates a new password for the user. This is the only
function to change the password if the membership
system was set up to hash the password.

UnlockUser Unlocks the user if she was previously locked out by the
system because of too many invalid attempts to log in.

When you change a user property, the new value is not immediately persisted to the data store; you
have to call the UpdateUser method of the Membership class for that. This is done so that with a single
call you can save multiple updated properties and, thus, improve performance.

By using these two classes together, you can completely manage the accounts’ data in a very intuitive
and straightforward way. It’s outside the scope of this book to provide a more exhaustive coverage of
every method and overload, but I can show you a few examples about their usage in practice — please
consult MSDN for all the details on these classes. Following is some code for registering a new account
and handling the exception that may be raised if an account with the specifi ed username or e-mail
address already exists:

Dim msg As String = “User created successfully!”
Try
 Dim newUser As MembershipUser = Membership.CreateUser(“Marco”,
“secret”, “mbellinaso@wrox.com”)
Catch exc As MembershipCreateUserException
 msg = “Unable to create the user. “
 Select Case exc.StatusCode
 Case MembershipCreateStatus.DuplicateEmail
 msg += “An account with the specified e-mail already exists.”
 Exit Select
 Case MembershipCreateStatus.DuplicateUserName
 msg += “An account with the specified username already exists.”
 Exit Select
 Case MembershipCreateStatus.InvalidEmail
 msg += “The specified e-mail is not valid.”
 Exit Select
 Case MembershipCreateStatus.InvalidPassword
 msg += “The specified password is not valid.”
 Exit Select
 Case Else
 msg += exc.Message
 Exit Select
 End Select
End Try
lblResult.Text = msg

87586c04.indd 15087586c04.indd 150 9/13/09 10:15:51 PM9/13/09 10:15:51 PM

151

Chapter 4: Membership and User Profi ling

If you want to change some of the user’s information, you fi rst retrieve a MembershipUser instance that
represents that user, change some properties as desired, and then update the user, as shown here:

Dim user As MembershipUser = Membership.GetUser(“Marco”)
If DateTime.Now.Subtract(user.LastActivityDate).TotalHours < 2 Then
 user.Comment = “very knowledgeable user; strong forum participation!”
End If
Membership.UpdateUser(user)

Validating user credentials from a custom login form requires only a single line of code (and not even
that, as you’ll see shortly):

dim isValid as Boolean = Membership.ValidateUser(“Marco”, “secret”)

In the “Solution” section of this chapter, you will use these classes to implement the following features
in the site’s Administration area:

Retrieve the total number of users and determine how many of them are currently online. ❑

Find users by partial username or e-mail address. ❑

Display some information about the users returned by the search, listed in a grid, such as the ❑

date of the user’s last activity and whether they are active or not. In another page we will
display all the details of a specifi c user and will allow the administrator to change some details.

The Provider Model Design Pattern
I use the term data store to refer to any physical means of persisting (saving) data — this usually means
saving data in a database or in Active Directory, but .NET abstracts the actual data storage mechanism
from the classes that manipulate the data. The provider class is the one that stores the data on behalf
of other classes that manipulate data. This provider model design pattern, introduced in Chapter 3, is
pervasive in .NET since the 2.0 release — you can frequently “plug in” a different backend provider to
change the mechanism used to save and retrieve data. The Membership class uses a secondary class
(called a membership provider) that actually knows the details of a particular data store and implements
all the supporting logic to read and write data to/from it. You can almost think of the Membership
class as a business layer class (in that it only manipulates data), and the provider class as the data
access class, which provides the details of persistence (even though a pure architect might argue the
semantics). Two built-in providers are available for the Membership system, and you can choose one
by writing some settings in the web.config fi le. The built-in providers are the ones for SQL Server
(SqlMembershipProvider) and for Active Directory (ActiveDirectoryMembershipProvider), but
you can also write your own or fi nd one from a third party (for use with Oracle, MySQL, DB2, and so
on, or perhaps XML fi les). Figure 4-1 illustrates the provider model design pattern.

I fi nd that the use of the provider model provides tremendous fl exibility, because you can change the
provider used by the Membership API under the hood without affecting the rest of the code, because
you just access the Membership “business” class from the pages and the other business classes, and not
the providers directly. Actually, you may even ignore which provider is used, and where and how the
data is stored (this is the idea behind abstraction of the data store). Abstraction is obviously provided to
users in the sense that they don’t need to know exactly how their data will be stored, but now we also
have abstraction for developers because they, too, don’t always need to know how the data is stored!

87586c04.indd 15187586c04.indd 151 9/13/09 10:15:51 PM9/13/09 10:15:51 PM

152

Chapter 4: Membership and User Profi ling

SQL Server
2000/2005

Providers

Data
stores

Active
Directory

Other
Data store

SqlMembershipProvider ActiveDirectoryMembershipProvider

Membership API

MembershipUserMembership

CustomMembershipProvider

Figure 4-1

To create a new provider, you can either start from scratch by building a completely new provider
that inherits directly from System.Web.Security.MembershipProvider (which in turn inher-
its from System.Configuration.Provider.ProviderBase) or you can just customize the way
some methods of an existing provider work. For example, let’s assume that you want to modify the
SqlMembershipProvider so that it validates a user’s password to make sure that it’s not equal to his
username. You simply need to defi ne your own class, which inherits from SqlMembershipProvider,
and you can just override the CreateUser method like this:

Class SqlMembershipProviderEx
 Inherits SqlMembershipProvider
 Public Overloads Overrides Function CreateUser(ByVal username As String,
ByVal password As String, ByVal email As String,
ByVal passwordQuestion As String, ByVal passwordAnswer As String,
ByVal isApproved As Boolean, _
 ByVal providerUserKey As Object, ByRef status As MembershipCreateStatus)
As MembershipUser
 If username.ToLower() = password.ToLower() Then
 status = MembershipCreateStatus.InvalidPassword
 Return Nothing
 Else
 Return MyBase.CreateUser(username, password, email,
passwordQuestion, passwordAnswer, isApproved, _
 providerUserKey, status)
 End If
 End Function
End Class

The provider model design pattern is also very useful in the migration of legacy systems that already
use their own custom tables and stored procedures. Your legacy database may already contain thou-
sands of records of user information, and you want to avoid losing them, but now you want to modify
your site to take advantage of the new Membership class. Instead of creating a custom application to

87586c04.indd 15287586c04.indd 152 9/13/09 10:15:51 PM9/13/09 10:15:51 PM

153

Chapter 4: Membership and User Profi ling

migrate data to a new data store (or using SQL Server DTS or SQL Server Integration Services to copy
the data from your tables to the new tables used by the standard SqlMembershipProvider), you can
just create your own custom provider that directly utilizes your existing tables and stored procedures.
If you’re already using a business class to access your account’s data from the ASP.NET pages, then
creating a compliant provider class may be just a matter of changing the name and signature of some
methods. Alternatively, you can follow this approach: keep your current business class intact but make
it private, and then move it inside a new provider class that delegates the implementation of all its
methods and properties to that newly private legacy business class. The advantage of doing this instead
of just using your current business class “as is” is that you can change to a different data store later by
just plugging it into the membership infrastructure — you wouldn’t have to change anything in the
ASP.NET pages that call the built-in Membership class.

Once you have the provider you want (either one of the default providers, a custom one you developed
on your own, or a third-party offering), you have to tell ASP.NET which one you want to use when you
call the Membership class’ methods.

The web.config fi le is used to specify and confi gure the provider for the Membership system. Many
of the default confi guration settings are hard-coded in the ASP.NET runtime instead of being saved in
the Machine.Config fi le. This is done to improve performance by reading and parsing a smaller XML
fi le when the application starts, but you can still modify these settings for each application by assigning
your own values in web.config to override the defaults. You can read the default settings by looking at
the Machine.config.default fi le found in the following folder (the “xxxxx” part should be replaced
with the build number of your installation):

 C:\<Windows Folder>\Microsoft.NET\Framework\v2.0.xxxxx\CONFIG

What follows is the defi nition of the <membership> section of the fi le, where the
SqlMembershipProvider is specifi ed and confi gured:

<system.web>
 <membership>
 <providers>
 <add name=”AspNetSqlMembershipProvider”
 type=”System.Web.Security.SqlMembershipProvider, System.Web,
 Version=2.0.0.0, Culture=neutral, PublicKeyToken=b03f5f7f11d50a3a”
 connectionStringName=”LocalSqlServer”
 enablePasswordRetrieval=”false”
 enablePasswordReset=”true”
 requiresQuestionAndAnswer=”true”
 applicationName=”/”
 requiresUniqueEmail=”false”
 passwordFormat=”Hashed”
 maxInvalidPasswordAttempts=”5”
 passwordAttemptWindow=”10”
 passwordStrengthRegularExpression=”“
 />
 </providers>
 </membership>

 <!-- other settings... -- >
</system.web>

87586c04.indd 15387586c04.indd 153 9/13/09 10:15:52 PM9/13/09 10:15:52 PM

154

Chapter 4: Membership and User Profi ling

You can register more providers inside the <providers> section and choose which one you want
to use by specifying its name in the defaultProvider attribute of the <membership> element (not
shown above). Another attribute of <membership> is userIsOnlineTimeWindow, which specifi es how
many minutes after the last activity a user is still considered online. That is, if a user logs in, brings up
one page, but then closes her browser immediately, she will be counted as being online for this num-
ber of minutes. We need this kind of parameter because we have no defi nite way to know when a user
has left the site or closed down his or her browser. You can test this by checking the value returned by
Membership.GetNumberOfUsersOnline as users come to your site and then leave.

For this site, we will use SQL Server 2008 Developer Edition, a simple version of SQL Server
Enterprise Edition designed for developers to install on their local development workstation. It is not a
full enterprise-powered version, but it is great for a developer to test against.

More Details about SqlMembershipProvider
In the last code snippet, you saw the default settings used to register the SqlMembershipProvider. The
following table lists the attributes you can specify when you register the provider, in the <provider>
element.

Attribute Description

applicationName The name of the web application; used if you want
to store data on user account’s for multiple web-
sites in a single database.

connectionStringName The name of the connection string, registered in
the <connectionStrings> section of web.config,
that points to the SQL Server database used to store
the data.

Important: This is not the actual connection string!
This is only a name that refers to web.config,
where the actual connection string is stored.

description A description for the provider.

enablePasswordReset Indicates whether you want to enable the methods
and controls for resetting a password to a new,
auto-generated one.

enablePasswordRetrieval Indicates whether you want to enable the methods
and controls that allow a user to retrieve her for-
gotten password.

maxInvalidPasswordAttempts The maximum number of invalid login attempts.
If the user fails to log in after this number of
times within the number of minutes specifi ed by
the passwordAttemptWindow attribute, the user
account is “locked out” until the administrator
explicitly calls the UnlockUser method of a
MembershipUser instance representing the
specifi c user.

87586c04.indd 15487586c04.indd 154 9/13/09 10:15:52 PM9/13/09 10:15:52 PM

155

Chapter 4: Membership and User Profi ling

Attribute Description

minRequiredNonalphanumericCharacters The minimum number of non-alphanumeric char-
acters a password must have to be valid.

minRequiredPasswordLength The minimum number of characters for a valid
password.

name The name used to register the provider. This
is used to choose the provider by setting the
defaultProvider attribute of the <membership>
element.

passwordAttemptWindow The number of minutes used to time invalid
login attempts. See the description for
maxInvalidPasswordAttempts.

passwordFormat Specifi es how the password is stored in the data store.
Possible values are Clear, Encrypted, and Hashed.

passwordStrengthRegularExpression The regular expression that a password must
match to be considered valid.

requiresQuestionAndAnswer Indicates whether the user must respond to a per-
sonal secret question before retrieving or resetting
her password. Questions and answers are chosen
by users at registration time.

requiresUniqueEmail Indicates whether the same e-mail address can be
used to create multiple user accounts.

By default, minRequiredPasswordLength is set to 7 and minRequiredNonalphanumericCha-
racters is set to 1, meaning that you must register with a password that is at least seven characters
long and contains at least one non-alphanumeric character. Whether you leave these at their default
settings or change them to suit your needs, remember to list these values on your registration page to let
users know your password requirements.

These attributes let you fi ne-tune the membership system. For example, the capability to specify a regu-
lar expression that the password must match gives you great fl exibility to meet stringent requirements.
But one of the most important properties is certainly passwordFormat, used to specify whether you
want passwords to be encrypted, or whether you just want a hash of them saved. Passwords are hashed
or encrypted using the key information supplied in the <machineKey> element of the confi guration
fi le (you should remember to synchronize this machine key between servers if you will deploy to a
server farm). The default algorithm used to calculate the password’s hash is SHA1, but you can change
it through the validation attribute of the machineKey element. Storing passwords in clear text offers
the best performance when saving and retrieving the passwords, but it’s the least secure solution.
Encrypting a password adds some processing overhead, but it can greatly improve security. Hashing
passwords provides the best security because the hashing algorithm is one-way, which means that the
passwords cannot be retrieved in any way, even by an administrator. If a user forgets her password,
she can only reset it to a new auto-generated one (typically sent by e-mail to the user). The best option
always depends on the needs of each particular website: if I were saving passwords for an e-commerce
site on which I might also save user credit card information, I would surely hash the password and use

87586c04.indd 15587586c04.indd 155 9/13/09 10:15:52 PM9/13/09 10:15:52 PM

156

Chapter 4: Membership and User Profi ling

a Secure Sockets Layer (SSL) connection in order to have the strongest security. For our content-based
website, however, I fi nd that encrypting passwords is a good compromise. It’s true that we’re also build-
ing a small e-commerce store, but we’re not going to store very critical information (credit cards numbers
or other sensitive data) on our site.

Never store passwords in clear text. The small processing overhead necessary to
encrypt and decrypt passwords is defi nitely worth the increased security and, thus,
the confi dence that the users and investors have in the site.

Exploring the Default SQL Server Data Store
Even though the ASP.NET membership system is prebuilt and ready to go, this is not a good reason
to ignore its design and data structures. You should be familiar with this system to help you diagnose
any problems that might arise during development or deployment. Figure 4-2 shows the tables used by
the SqlMembershipProvider class to store credentials and other user data. Of course, the data store’s
design of other providers may be completely different (especially if they are not based on relational
databases).

Figure 4-2

The interesting thing you can see from Figure 4-2 is the presence of the aspnet_Applications table,
which contains a reference to multiple applications (websites). Both the aspnet_Users table and the
aspnet_Membership table contain a reference to a record in aspnet_Applications through the
ApplicationId foreign key. This design enables you to use the same database to store user accounts
for multiple sites, which can be very helpful if you have several sites using the same database server
(commonly done with corporate websites or with commercial low-cost shared hosting). In a situation

87586c04.indd 15687586c04.indd 156 9/13/09 10:15:52 PM9/13/09 10:15:52 PM

157

Chapter 4: Membership and User Profi ling

where you have a critical application that requires the maximum security, you’ll want to store the mem-
bership data in a dedicated database that only the site administrator can access. If you are using a SQL
Server 2008 Express Edition database, it this requires you to use your own private database, deployed
as a simple fi le under the App_Data special folder. In addition to these tables, there are also a couple of
views related to membership (vw_aspnet_MembershipUsers and vw_aspnet_Users) and a number
of stored procedures (aspnet_membership_xxx) for the CRUD (Create, Read, Update, and Delete)
operations used for authorization. You can explore all these objects by using the Visual Studio’s Server
Explorer window or SQL Server Management Studio, as shown in Figure 4-3.

Figure 4-3

If you confi gure the provider so that it uses the default SQL Server Express database named ASPNETDB
located under the App_Data folder, the ASP.NET runtime will automatically create all these database
objects when the application is run for the fi rst time! Because we are using this database for our site,
we don’t need to do anything else to set up the data store. However, if you’re using a full edition of SQL
Server 2008, you’ll need to set up the tables manually by running the aspnet_sql.exe tool from the
Visual Studio 2008 command prompt. You can fi nd the aspnet_sql.exe in the C:\<Windows Folder>\
Microsoft.NET\Framework\v2.0.xxxxx\ folder if you want to just open it by hand. This little

87586c04.indd 15787586c04.indd 157 9/13/09 10:15:52 PM9/13/09 10:15:52 PM

158

Chapter 4: Membership and User Profi ling

program lets you to choose an existing database on a specifi ed server, and it creates all the required
objects to support membership, along with caching, profi les, personalization, and more. Figure 4-4
shows a couple of screens generated by this tool.

Figure 4-4

The Graphical Login Controls
As you saw earlier, creating, validating, and managing users programmatically requires only a few
lines of code. But what about writing no code at all? That’s actually possible now, thanks to the new
Login family of controls introduced with ASP.NET 2.0. These controls provide a premade user inter-
face for the most common operations dealing with membership and security, such as creating a new
account, logging in and out, retrieving or resetting a forgotten password, and showing different output
according to the authenticated status of the current user. Figure 4-5 shows the Visual Studio IDE with
the Login controls section of the Toolbox. It also shows a CreateUserWizard control dropped on a
form, and its Smart Tasks pop-up window.

87586c04.indd 15887586c04.indd 158 9/13/09 10:15:52 PM9/13/09 10:15:52 PM

159

Chapter 4: Membership and User Profi ling

Figure 4-5

The CreateUserWizard Control
A wizard is an ASP.NET feature used to create a visual interface for a process that involves multiple
steps. Each step has a separate visual panel or frame containing its own group of controls. After the
user fi lls in values for controls of each step, he can press a link to advance to the next step in the wizard.

The CreateUserWizard control creates a user interface for a user to register, by providing the user-
name, password, and e-mail address. The secret question and answer are also requested, but only if the
current membership provider has the requiresQuestionAndAnswer attribute set to true; otherwise,
these two last textboxes are hidden. When the Submit button is clicked, the control calls Membership
.CreateUser under the hood on your behalf. By default, the code produced by the designer (and
visible in the Source View) is:

<asp:CreateUserWizard ID=”CreateUserWizard1” runat=”server”>
 <WizardSteps>
 <asp:CreateUserWizardStep runat=”server”>
 </asp:CreateUserWizardStep>
 <asp:CompleteWizardStep runat=”server”>
 </asp:CompleteWizardStep>
 </WizardSteps>
</asp:CreateUserWizard>

87586c04.indd 15987586c04.indd 159 9/13/09 10:15:52 PM9/13/09 10:15:52 PM

160

Chapter 4: Membership and User Profi ling

It contains no appearance attributes, and the control will look plain and simple, with the default font,
background, and foreground colors. However, you can specify values for all the attributes used to con-
trol the appearance. An easy way to do that is by clicking Auto Format from the Smart Tasks window
and selecting one of the premade styles. Figure 4-6 shows the control in the Elegant style.

Figure 4-6

The corresponding source code was automatically updated as follows:

<asp:CreateUserWizard ID=”CreateUserWizard1” runat=”server”
 BackColor=”#F7F7DE” BorderColor=”#CCCC99” BorderStyle=”Solid”
 BorderWidth=”1px” Font-Names=”Verdana” Font-Size=”10pt”>
 <WizardSteps>
 <asp:CreateUserWizardStep runat=”server”>
 </asp:CreateUserWizardStep>
 <asp:CompleteWizardStep runat=”server”>
 </asp:CompleteWizardStep>
 </WizardSteps>
 <SideBarStyle BackColor=”#7C6F57” BorderWidth=”0px”
 Font-Size=”0.9em” VerticalAlign=”Top” />
 <SideBarButtonStyle BorderWidth=”0px” Font-Names=”Verdana”
 ForeColor=”#FFFFFF” />
 <NavigationButtonStyle BackColor=”#FFFBFF” BorderColor=”#CCCCCC”
 BorderStyle=”Solid” BorderWidth=”1px” Font-Names=”Verdana”
 ForeColor=”#284775” />
 <HeaderStyle BackColor=”#F7F7DE” BorderStyle=”Solid” Font-Bold=”True”
 Font-Size=”0.9em” ForeColor=”#FFFFFF” HorizontalAlign=”Left” />
 <CreateUserButtonStyle BackColor=”#FFFBFF” BorderColor=”#CCCCCC”
 BorderStyle=”Solid” BorderWidth=”1px” Font-Names=”Verdana”
 ForeColor=”#284775” />
 <ContinueButtonStyle BackColor=”#FFFBFF” BorderColor=”#CCCCCC”
 BorderStyle=”Solid” BorderWidth=”1px” Font-Names=”Verdana”
 ForeColor=”#284775” />
 <StepStyle BorderWidth=”0px” />
 <TitleTextStyle BackColor=”#6B696B” Font-Bold=”True” ForeColor=”#FFFFFF” />
</asp:CreateUserWizard>

Back in Chapter 2, we discussed the disadvantages of having the appearance properties set in the .aspx
source fi les, in comparison to having them defi ned in a separate skin fi le as part of an ASP.NET theme.
Therefore, I strongly suggest that you not leave the auto-generated appearance attributes in the page’s
source code, but instead cut and paste them into a skin fi le. You can paste everything except for the ID
property and the <WizardSteps> section, as they are not part of the control’s appearance.

87586c04.indd 16087586c04.indd 160 9/13/09 10:15:52 PM9/13/09 10:15:52 PM

161

Chapter 4: Membership and User Profi ling

The <WizardSteps> section lists all the steps of the wizard. By default it includes the step with the
registration form, and a second one with the confi rmation message. You can add other steps between
these two, and in our implementation we’ll add a step immediately after the registration form, where
the user can associate a profi le to the new account. The wizard will automatically provide the but-
tons for moving to the next or previous step, or to fi nish the wizard, and raise a number of events
to notify your program of what is happening, such as ActiveStepChanged, CancelButtonClick,
ContinueButtonClick, FinishButtonClick, NextButtonClick, and PreviousButtonClick.

If the available style properties are not enough for you, and you want to change the structure of the
control, that is, how the controls are laid down on the form, you can do that by defi ning your own
template for the CreateUserWizardStep (or for the CompleteWizardStep). As long as you create the
textboxes with the IDs the control expects to fi nd, the control will continue to work without requiring
you to write code to perform the registration manually. The best and easiest way to fi nd which ID to
use for each control is to have Visual Studio .NET convert the step’s default view to a template (click the
Customize Create User Step link in the control’s Smart Tasks window), and then modify the generated
code as needed. The code that follows is the result of Visual Studio’s conversion and the deletion of the
HTML layout tables:

<WizardSteps>
 <asp:CreateUserWizardStep runat=”server”>
 <ContentTemplate>
 Sign Up for Your New Account<p></p>
 User Name: <asp:TextBox ID=”UserName” runat=”server” />
 <asp:RequiredFieldValidator ID=”UserNameRequired” runat=”server”
 ControlToValidate=”UserName” ErrorMessage=”User Name is required.”
 ValidationGroup=”CreateUserWizard1”>*</asp:RequiredFieldValidator>

 Password: <asp:TextBox ID=”Password” runat=”server” TextMode=”Password” />
 <asp:RequiredFieldValidator ID=”PasswordRequired” runat=”server”
 ControlToValidate=”Password” ErrorMessage=”Password is required.”
 ValidationGroup=”CreateUserWizard1”>*</asp:RequiredFieldValidator>

 Confirm Password: <asp:TextBox ID=”ConfirmPassword” runat=”server”
 TextMode=”Password” />
 <asp:RequiredFieldValidator ID=”ConfirmPasswordRequired” runat=”server”
 ControlToValidate=”ConfirmPassword”
 ErrorMessage=”Confirm Password is required.”
 ValidationGroup=”CreateUserWizard1”>*</asp:RequiredFieldValidator>
 <asp:CompareValidator ID=”PasswordCompare” runat=”server”
 ControlToCompare=”Password” ControlToValidate=”ConfirmPassword”
 ErrorMessage=”The Password and Confirmation Password must match.”
 ValidationGroup=”CreateUserWizard1”></asp:CompareValidator>

 E-mail: <asp:TextBox ID=”Email” runat=”server” />
 <asp:RequiredFieldValidator ID=”EmailRequired” runat=”server”
 ControlToValidate=”Email” ErrorMessage=”E-mail is required.”
 ValidationGroup=”CreateUserWizard1”>*</asp:RequiredFieldValidator>

 Security Question: <asp:TextBox ID=”Question” runat=”server” />
 <asp:RequiredFieldValidator ID=”QuestionRequired” runat=”server”
 ControlToValidate=”Question” ErrorMessage=”Security question is required.”
 ValidationGroup=”CreateUserWizard1”>*</asp:RequiredFieldValidator>

87586c04.indd 16187586c04.indd 161 9/13/09 10:15:52 PM9/13/09 10:15:52 PM

162

Chapter 4: Membership and User Profi ling

 Security Answer: <asp:TextBox ID=”Answer” runat=”server” />
 <asp:RequiredFieldValidator ID=”AnswerRequired” runat=”server”
 ControlToValidate=”Answer” ErrorMessage=”Security answer is required.”
 ValidationGroup=”CreateUserWizard1”>*</asp:RequiredFieldValidator>

 <asp:Literal ID=”ErrorMessage” runat=”server” EnableViewState=”False” />
 </ContentTemplate>
 </asp:CreateUserWizardStep>
 <asp:CompleteWizardStep runat=”server”>
 </asp:CompleteWizardStep>
</WizardSteps>

All of the various validation controls are declared with a ValidationGroup prop-
erty set to the control’s name, that is, CreateUserWizard1. The CreateUserWizard
creates a Submit button with the same property, set to the same value. When that
button is clicked, only those validators that have the ValidationGroup property
set to the same value will be considered. This is a powerful feature of ASP.NET
that you can use anywhere to create different logical forms for which the validation
is run separately, according to which button is clicked.

For the custom-made Create User step of the wizard, the Question and Password fi elds are not automat-
ically hidden if the current membership provider has the requiresQuestionAndAnswer attribute
set to false, as would happen otherwise.

You can also set up the control so that it automatically sends a confi rmation e-mail to users when
they complete the registration process successfully. The setup is defi ned by the CreateUserWizard’s
<MailDefinition> subsection, and consists of the sender’s e-mail address, the mail subject, and a
reference to the text fi le that contains the e-mail’s body. The following code shows an example:

<asp:CreateUserWizard runat=”server” ID=”CreateUserWizard1”>
 <WizardSteps>
 ...
 </WizardSteps>
 <MailDefinition
 BodyFileName=”~/RegistrationMail.txt”
 From=”yourname@yourserver.co”
 Subject=”Mail subject here”>
 </MailDefinition>
</asp:CreateUserWizard>

The RegistrationMail.txt fi le can contain the <% UserName %> and <% Password %> special place-
holders, which at runtime will be replaced with the values taken from the new registration’s data. To
send the mail, you must have confi gured the SMTP server settings in the web.config file, through
the <mailSettings> element and its subelements, as shown in the following code:

<configuration xmlns=”http://schemas.microsoft.com/.NetConfiguration/v2.0”>
 <system.web> <!-- some settings here...-- > </system.web>
 <system.net>
 <mailSettings>
 <smtp deliveryMethod=” Network “ from=”thebeerhouse@wrox.com”>

87586c04.indd 16287586c04.indd 162 9/13/09 10:15:52 PM9/13/09 10:15:52 PM

163

Chapter 4: Membership and User Profi ling

 <network defaultCredentials=”true” host=”(localhost)” port=”25” />
 </smtp>
 </mailSettings>
 </system.net> </configuration>

The Login Control
The Login control does exactly what its name suggests: it allows the user to log in. It provides the user
interface for typing the username and password, and choosing whether the login will be persistent
(saved across different sessions) or not. For the default simple appearance, you just need to declare the
control as follows:

<asp:Login ID=”Login1” runat=”server” />

However, if you apply the Elegant prebuilt style to it, it will look as shown in Figure 4-7.

Figure 4-7

Under the covers, this control calls the Membership.ValidateUser method to check whether
the provided credentials are found in the data store, and if so, it calls FormsAuthentication
.RedirectFormLoginPage to create the encrypted authentication ticket, saves it into a client cookie,
and redirects the user to the page that he or she originally tried to access before being redirected to
the login page. The control exposes a lot of properties: many are for changing its appearance (colors,
fonts, etc.), and others enable you to specify whether you want to show a link to the registration page
(CreateUserText and CreateUserUrl properties), a link to the page to recover a forgotten password
(PasswordRecoveryText and PasswordRecoveryUrl properties), and whether the control should be
hidden when the user is already logged in (the VisibleWhenLoggedIn property). Of course, you can
completely customize the way the CreateUserWizard control looks, by defi ning a template. Here’s
an example:

<asp:Login ID=”Login1” runat=”server”>
 <LayoutTemplate>
 Username: <asp:TextBox ID=”UserName” runat=”server” />
 <asp:RequiredFieldValidator ID=”UserNameRequired” runat=”server”
 ControlToValidate=”UserName” ErrorMessage=”User Name is required.”
 ValidationGroup=”Login1”>*</asp:RequiredFieldValidator>
 Password: <asp:TextBox ID=”Password” runat=”server” TextMode=”Password” />
 <asp:RequiredFieldValidator ID=”PasswordRequired” runat=”server”
 ControlToValidate=”Password” ErrorMessage=”Password is required.”
 ValidationGroup=”Login1”>*</asp:RequiredFieldValidator>
 <asp:CheckBox ID=”RememberMe” runat=”server” Text=”Remember me next time.” />
 <asp:Literal ID=”FailureText” runat=”server” EnableViewState=”False” />
 <asp:Button ID=”LoginButton” runat=”server” CommandName=”Login”
 Text=”Log In” ValidationGroup=”Login1” />
 </LayoutTemplate>
</asp:Login>

87586c04.indd 16387586c04.indd 163 9/13/09 10:15:52 PM9/13/09 10:15:52 PM

164

Chapter 4: Membership and User Profi ling

Remember that the only important thing is that you give textboxes, buttons, labels, and other controls
the specifi c IDs that the parent control expects to fi nd. If you start defi ning the template from the
default template created by VS2008, this will be very easy.

The ChangePassword Control
The ChangePassword control allows users to change their current password through the user interface
shown in Figure 4-8.

Figure 4-8

This control is completely customizable in appearance, by means of either properties or a new template.
As with the CreateUserWizard control, its declaration can contain a <MailDefinition> section,
where you can confi gure the control to send a confi rmation e-mail to the user with her new credentials.

The PasswordRecovery Control
The Password Recovery control enables users to recover or reset their password, in case they forgot it.
The fi rst step, shown in Figure 4-9, is to provide the username.

Figure 4-9

For the next step, the user will be asked the question he or she chose at registration time. If the
answer is correct, the control sends the user an e-mail message. As expected, there must be the usual
MailDefinition, along with the current password, or a newly generated one if the membership pro-
vider’s enablePasswordRetrieval attribute is set to false or if the provider’s passwordFormat is
hashed.

The LoginStatus, LoginName, and LoginView Controls
These last three controls are the simplest ones, and are often used together. The LoginName control
shows the name of the current user. It has a FormatString property that can be used to show the
username as part of a longer string, such as “Welcome {0}!”, where the username will replace
the {0} placeholder. If the current user is not authenticated, the control shows nothing, regardless
of the FormatString value.

87586c04.indd 16487586c04.indd 164 9/13/09 10:15:52 PM9/13/09 10:15:52 PM

165

Chapter 4: Membership and User Profi ling

The LoginStatus control shows a link to log out or log in, according to whether the current user is or
is not authenticated. The text of the liks can be changed by means of the LoginText and LogoutText
properties, or you can use graphical images instead of plain text, by means of the LoginImageUrl and
LogoutImageUrl properties. When the Login link is clicked, it redirects the user to the login page
specifi ed in the web.config fi le’s <forms> element, or to the Login.aspx page if the setting is not
present. When the Logout link is clicked, the control calls FormsAuthentication.SignOut to remove
the client’s authentication ticket, and then can either refresh the current page or redirect to a different
one according to the values of the LogoutAction and LogoutPageUrl properties.

The LoginView allows you to show different output according to whether the current user is authen-
ticated. Its declaration contains two subsections, <AnonymousTemplate> and <LoggedInTemplate>,
where you place the HTML or ASP.NET controls that you want to display when the user is anonymous
(not logged in) or logged in, respectively. The code that follows shows how to display the login control
if the user is not authenticated yet, or a welcome message and a link to log out otherwise:

<asp:LoginView ID=”LoginView1” runat=”server”>
 <AnonymousTemplate>
 <asp:Login runat=”server” ID=”Login1” />
 </AnonymousTemplate>
 <LoggedInTemplate>
 <asp:LoginName ID=”LoginName1” runat=”server” FormatString=”Welcome {0}” />

 <asp:LoginStatus ID=”LoginStatus1” runat=”server” />
 </LoggedInTemplate>
</asp:LoginView>

Integrating ASP.NET AJAX Authentication
Since ASP.NET 2.0 was released Microsoft has released an AJAX framework to build rich user inter-
faces. It was originally an add-on to the .NET Framework, but became part of the framework with the
3.5 release. The ASP.NET AJAX framework is a natural extension of programming with .NET, except
that it is a JavaScript framework that executes in the browser. The main benefi t of the ASP.NET AJAX
framework is the capability to program in JavaScript the way you can against the .NET Framework.
This should drastically reduce the learning curve needed for ASP.NET programmers to leverage
this AJAX framework. While there are great AJAX frameworks available, such as JQuery, ASP.NET
AJAX is specifi cally designed to integrate tightly with the server-side aspects of ASP.NET, such as the
Membership and Profi le providers.

The ASP.NET AJAX framework is composed of a series of pseudo-namespaces and -classes. I use the
prefi x “pseudo” because there are no true object-oriented concepts in JavaScript. But the ASP.NET AJAX
framework provides a series of common classes that can be used to build the rich user experiences
demanded by users today. For more information on the AJAX namespaces and classes visit http://
msdn.microsoft.com/en-us/library/bb397536.aspx.

The Sys.Services namespace contains a set of classes that interact with the Membership, Role, and
Profile providers on the server through web services. The Authentication class is the proxy class
used to interact with the Membership provider. This class has two members, Login and Logout. The

87586c04.indd 16587586c04.indd 165 9/13/09 10:15:53 PM9/13/09 10:15:53 PM

166

Chapter 4: Membership and User Profi ling

Login method performs forms authentication and sets the authentication cookie upon successful
authentication. The following table describes the arguments to Login:

Argument Description

Username The account’s username.

Password The account’s password.

isPersistent A Boolean fl ag indicating to forms authentication whether to save
the users’ authentication token so they are not required to authenti-
cate themselves next time.

redirectURL URL to take the user to after a successful authentication.

customInfo Reserved.

loginCompletedCallback The function name the script calls when the login is completed.

failedCallback Name of the function the script calls when an authentication fails.

userContext Custom data that is passed to the callback function.

Similarly, the Logout function clears the form’s authentication cookie, and the user must log back in to
the site to access secured content areas. The Logout function takes a series of arguments, too:

Argument Description

redirectUrl The URL the user is redirected to after logging out.

logoutCompletedCallback The callback function the script calls when the logout is complete.

failedCallback The callback function the script calls if the logout fails.

userContext Custom data that is passed to the callback function.

Before forms authentication can be executed using ASP.NET AJAX, it must be enabled to do so in the
web.config fi le. If you are creating a new website with Visual Studio 2008, there will be a line in the
web.config fi le that needs to be uncommented to enable grant access from the application’s services.
The section is actually part of the system.web.extensions section, which holds the key to implement-
ing the ASP.NET AJAX interfaces to profi les and roles:

<system.web.extensions>
<scripting>

<webServices>

 <authenticationService enabled=”true” requireSSL=”false” />

 <profileService enabled=”true” readAccessProperties=”FirstName, LastName” />

87586c04.indd 16687586c04.indd 166 9/13/09 10:15:53 PM9/13/09 10:15:53 PM

167

Chapter 4: Membership and User Profi ling

 <roleService enabled=”true” />

</webServices>

<scriptResourceHandler enableCompression=”true” enableCaching=”true” />
</scripting>
</system.web.xtensions>

Once these sections have been offi cially added to the site, client-side script can be written to access
these providers.

Setting Up and Using Roles
An authentication/authorization system is not complete without support for roles. Roles are used to
group users for the purpose of assigning a set of permissions, or authorizations. You could decide to
control authorizations separately for each user, but that would be an administrative nightmare! Instead,
it’s helpful to assign a user to a predetermined role and give him the permissions that accompany the
role. For example, you can defi ne an Administrator’s role to control access to the restricted pages used
to add, edit, and delete the site’s content, and only users who belong to the Administrators role will be
able to post new articles and news. It is also possible to assign more than one role to a given user. In
ASP.NET 1.x, there wasn’t any built-in support for roles in Forms authentication — roles were only sup-
ported with Windows security. You could have added role support manually (as shown in the fi rst edi-
tion of this book), but that required you to create your own database tables and write code to retrieve
the roles when the user logged in. You could have written the code so that the roles were retrieved
at runtime — and then encrypted together by the authentication ticket on a client’s cookie — so that
they were not retrieved separately from the database with each request. Besides taking a considerable
amount of development time that you could have spent adding value to your site, it was also a crucial
task: any design or implementation bugs could impact performance, or even worse, introduce serious
security holes. The good news is that as of 2.0 ASP.NET has built-in support for roles, and it does it the
right way with regard to performance, security, and fl exibility. In fact, as is true in many other pieces
of ASP.NET (membership, sessions, profi les, personalization), it is built on the provider model design
pattern: a provider for SQL Server is provided, but if you don’t like some aspect of how it works, or you
want to use a different data store, you can write your own custom provider or acquire one from a third
party.

The role management is disabled by default to improve performance for sites that don’t need roles —
role support requires the execution of database queries, and consequent network traffi c between the
database server and the web server. You can enable it by means of the <roleManager> element in the
web.config fi le, as shown here:

<roleManager enabled=”true” cacheRolesInCookie=”true” cookieName=”TBHROLES” />

This element allows you to enable roles and confi gure some options. For example, the preceding code
enables role caching in the client’s cookie (instead of retrieving them from the database on each web
request), which is a suggested best practice. Unless specifi ed otherwise, the default provider will be
used, with a connection string to the default local SQL Server Express database (the ASPNETDB fi le
under the App_Data folder). If you want to use a different database, just register a new provider within
the <roleManager> element, and choose it by setting the roleManager’s defaultProvider attribute.

87586c04.indd 16787586c04.indd 167 9/13/09 10:15:53 PM9/13/09 10:15:53 PM

168

Chapter 4: Membership and User Profi ling

System.Web.Security.Roles is the class that allows you to access and manage role information pro-
grammatically. It exposes several static methods, the most important of which are listed in the follow-
ing table.

Method Description

AddUserToRole,
AddUserToRoles,
AddUsersToRole,
AddUsersToRoles

Adds one or more users to one or more roles.

CreateRole Creates a new role with the specifi ed name.

DeleteRole Deletes an existing role.

FindUsersInRole Finds all users who belong to the specifi ed role and who have a user-
name that matches the input string. If the default provider for SQL server
is used, the username can contain any wildcard characters supported by
SQL Server in LIKE clauses, such as % for any string of zero or more
characters, or _ for a single character.

GetAllRoles Returns an array with all the roles.

GetRolesForUser Returns an array with all the roles to which the specifi ed user belongs.

GetUsersInRole Returns the array of usernames (not MembershipUser instances) of
users who belong to the specifi ed role.

IsUserInRole Indicates whether the specifi ed user is a member of the specifi ed role.

RemoveUserFromRole,
RemoveUserFromRoles,
RemoveUsersFromRole,
RemoveUsersFromRoles

Removes one or more users from one or more roles.

RoleExists Indicates whether a role with the specifi ed name already exists.

Using these methods is straightforward, and you will see some practical examples in the “Solution”
section of this chapter, where we implement the administration console to add and remove users to and
from roles.

The roles system integrates perfectly with the standard IPrincipal security interface, which is imple-
mented by the object returned by the page’s User property. Therefore, you can use the User object’s
IsInRole method to check whether the current user belongs to the specifi ed role.

The SQL Server provider retrieves and stores the data from and to the tables aspnet_Roles and
aspnet_UsersInRoles. The latter links a user from the aspnet_Users table (or another user table,
if you’re using a custom membership provider for a custom database) to a role in the aspnet_Roles
table. Figure 4-10 shows the database diagram, again, updated with the addition of these two tables.

87586c04.indd 16887586c04.indd 168 9/13/09 10:15:53 PM9/13/09 10:15:53 PM

169

Chapter 4: Membership and User Profi ling

Figure 4-10

Using Roles to Protect Pages and Functions against Unauthorized Access
Basically, you have two ways to control and protect access to sensitive pages: you can do it either imper-
atively (programmatically) or declaratively (using a config fi le). If you want to do it by code, in the
page’s Load event you would write something like the following snippet:

If Not Roles.IsUserInRole(“Administrators”) Then
 Throw New System.Security.SecurityException(“Sorry, this is a restricted
function you are not authorized to perform”)
End If

When you don’t pass the username to the Roles.IsUserInRole method, it takes the name of the current
user, and then “forwards” the call to the IsInRole method of the current user’s IPrincipal interface.
Therefore, you can call it directly and save some overhead by using the following code:

If Not Me.User.IsInRole(“Administrators”) Then
 Throw New System.Security.SecurityException(“Sorry, this is a restricted
function you are not authorized to perform”)
End If

When Roles.IsUserInRole is called with the overload that takes in the username (which is not
necessarily equal to the current user’s username), the check is done by the selected role’s provider.
In the case of the built-in SqlRoleProvider, a call is made to the aspnet_UsersInRoles_
IsUserInRole stored procedure.

The biggest disadvantage of imperative (programmatic) security is that to secure an entire folder, you have
to copy and paste this code in multiple pages (or use a common base class for them). Even worse, when you
want to change the ACL (access control list) for a page or folder (because, for example, you want to allow
access to a newly created role), you will need to change the code in all those fi les! Declarative security
makes this job much easier: you defi ne an <authorization> section in a web.config (either for the
overall site or for a subfolder), which specifi es the users and roles who are allowed to access a certain

87586c04.indd 16987586c04.indd 169 9/13/09 10:15:53 PM9/13/09 10:15:53 PM

170

Chapter 4: Membership and User Profi ling

folder or page. The following snippet of web.config gives access to members of the Administrators
role, while everyone else (*) is denied access to the current folder’s pages:

<configuration xmlns=”http://schemas.microsoft.com/.NetConfiguration/v2.0”>
 <system.web>
 <authorization>
 <allow roles=”Administrators” />
 <deny users=”*” />
 </authorization>
 <!-- other settings... -- >
 </system.web>
</configuration>

Authorization conditions are evaluated from top to bottom, and the fi rst one that matches the user or
role stops the validation process. This means that if you switched the two preceding conditions, the
<deny> condition would match for any user, and the second condition would never be considered; as
a result, nobody could access the pages. This next example allows everybody except anonymous users
(those who have not logged in and who are identifi ed by the ? character):

<authorization>
 <deny users=”?” />
 <allow users=”*” />
</authorization>

If you want to have different ACLs for different folders, you can have a different <authorization>
section in each folder’s web.config fi le. As an alternative, you can place all ACLs in the root web.config,
within different <location> sections, as in this code:

<configuration xmlns=”http://schemas.microsoft.com/.NetConfiguration/v2.0”>
 <system.web>
 <!-- settings for the current folder -- >
 <authorization>
 <allow users=”*” />
 </authorization>
 </system.web>

 <location path=”Admin”>
 <!-- settings for the Admin sub-folder -- >
 <system.web>
 <authorization>
 <allow roles=”Administrators” />
 <deny users=”*” />
 </authorization>
 </system.web>
 </location>

 <location path=”Members”>
 <!-- settings for the Members sub-folder -- >
 <system.web>
 <authorization>
 <deny users=”?” />
 <allow users=”*” />
 </authorization>

87586c04.indd 17087586c04.indd 170 9/13/09 10:15:53 PM9/13/09 10:15:53 PM

171

Chapter 4: Membership and User Profi ling

 </system.web>
 </location>
</configuration>

The path attribute of the <location> section can be the name of a subfolder (as shown above) or the
virtual path of a single page. Using the <location> section is the only way to declaratively assign a
different ACL to specifi c individual pages, since you can’t have page-level web.config fi les. Although
it’s possible to restrict individual pages, it’s more common to restrict entire subfolders.

Programmatic security checks are still useful and necessary in some cases, though, such as when you
want to allow everybody to load a page but control the visibility of some visual controls (e.g., buttons
to delete a record, or a link to the administration section) of that page to specifi c users. In these cases,
you can use the code presented earlier to show, or hide, some server-side controls or containers (such
as Panel) according to the result of a call to User.IsInRole. Alternatively, you can use a LoginView
control that, in addition to its sections for anonymous and logged-in users, can also defi ne template
sections visible only to users who belong to specifi c roles. The next snippet produces different output
according to whether the current user is anonymous, is logged in as a regular member or is logged in
and belongs to the Administrators role:

<asp:LoginView ID=”LoginView1” runat=”server”>
 <AnonymousTemplate>anonymous user</AnonymousTemplate>
 <LoggedInTemplate>member</LoggedInTemplate>
 <RoleGroups>
 <asp:RoleGroup Roles=”Administrators”>
 <ContentTemplate>administrator</ContentTemplate>
 </asp:RoleGroup>
 </RoleGroups>
</asp:LoginView>

Note that in cases where the currently logged-in user is also in the Administrators role, the LoginView
control only outputs the content of the <Administrators> section, not that of the more general
<LoggedInTemplate> section.

Finally, roles are also integrated with the site map, which lets you specify which roles will be able to see
a particular link in the Menu or TreeView control that consumes the site map. This is a very powerful
feature that makes it easy to show a user only the menu options he is actually allowed to access! For
example, if you want the Admin link to be visible only to Administrators, here’s how you defi ne the
map’s node:

<siteMapNode title=”Admin” url=”~/Admin/Default.aspx” roles=”Administrators”>

However, to enable this to work you must also register a new provider for the SiteMap system (in the
<siteMap> section of the web.config fi le), and set its securityTrimmingEnabled attribute to true.
Registering the provider for the site map is very similar to registering a provider for the membership or
roles system; in the “Solution” section you will see code examples to illustrate this.

Integrating ASP.NET AJAX Roles Service
Like the Authentication service, ASP.NET AJAX provides an interface to leverage Roles through web
services on the client. The service has to be turned on by enabling in the web.config (shown in the

87586c04.indd 17187586c04.indd 171 9/13/09 10:15:53 PM9/13/09 10:15:53 PM

172

Chapter 4: Membership and User Profi ling

previous section on authentication). The Sys.Services.RoleService class has three methods that
need to be discussed: Load, IsUserInRole, and Roles.

The Load method loads the roles for the currently authenticated user. The Roles themselves are stored
in client-side memory if the call to the load function is successful.

Argument Description

loadCompletedCallback The function that is called when the load operation has completed. The
default is null.

failedCallback The function that is called if loading has failed. The default is null.

userContext User context information that is passed to the callback functions.

The IsUserInRole function checks to see if the current user belongs to a specifi ed role and takes one
parameter, role, which is the name of the role to check. The function returns true if the current user
belongs to the role; otherwise, it returns false.

The Roles function returns an array listing all the roles that the current user belongs to. The Load
method must be called before accessing the Roles function; otherwise, no roles will be returned.

Setting Up and Using User Profi les
In the ASP.NET 1.x days, if you wanted to associate a profi le with a registered user, you typically added
a custom table to your database, or stored them together with the user credentials, in the same table.
You also had to write quite a lot of code for the business and data access layers, to store, retrieve, and
update that data from your web pages. ASP.NET provides a built-in mechanism to manage user profi les,
in an easy, yet very complete and fl exible, way. This feature can save you hours or even days of work! The
Profi le module takes care of everything — you just need to confi gure what the profi le will contain, that is,
defi ne the property name, type, and default value. This confi guration is done in the root web.config
fi le, within the <profile> section. The following snippet shows how to declare two properties:
FavoriteTheme of type String, and BirthDate of type DateTime:

<configuration xmlns=”http://schemas.microsoft.com/.NetConfiguration/v2.0”>
 <system.web>
 <profile>
 <properties>
 <add name=”FavoriteTheme” type=”String” />
 <add name=”BirthDate” type=”DateTime” />
 </properties>
 </profile>
 <!-- other settings... -- >
 </system.web>
</configuration>

Amazingly, that is all you need to do to set up a profi le structure! When the application is run, the ASP.
NET runtime dynamically adds a Profile property to the Page class, which means that you will not
fi nd such a property in the Object Browser at design time. The object returned is of type ProfileCommon

87586c04.indd 17287586c04.indd 172 9/13/09 10:15:53 PM9/13/09 10:15:53 PM

173

Chapter 4: Membership and User Profi ling

(inherited from System.Web.Profile.ProfileBase); you will not fi nd this class in the Object Browser
either, or on the documentation, because this class is generated and compiled on-the-fl y, according to
the properties defi ned in the web.config fi le. The result is that you can just access the page’s Profile
property and read/write its subproperties. The following code demonstrates how to read the values
of the current user’s profi le to show them on the page when it loads, and then updates them when a
Submit button is clicked:

Protected Sub Page_Load(ByVal sender As Object, ByVal e As EventArgs)
 If Not Me.IsPostBack Then
 ddlThemes.SelectedValue = Me.Profile.FavoriteTheme
 txtBirthDate.Text = Me.Profile.BirthDate.ToShortDateString()
 End If
End Sub

Protected Sub btnSubmit_Click(ByVal sender As Object, ByVal e As EventArgs)
 Me.Profile.FavoriteTheme = ddlThemes.SelectedValue
 Me.Profile.BirthDate = DateTime.Parse(txtBirthDate.Text)
End Sub

Even though you can’t see these properties in the Object Browser, Visual Studio is smart enough to com-
pile this class in the background when the web.config fi le is modifi ed, so you get full IntelliSense in
the IDE, just as if the Profile properties were built-in properties of the Page class, like all the others.
Figure 4-11 shows the IDE with IntelliSense in action.

Figure 4-11

87586c04.indd 17387586c04.indd 173 9/13/09 10:15:53 PM9/13/09 10:15:53 PM

174

Chapter 4: Membership and User Profi ling

Having a class dynamically generated by Visual Studio with all the custom profi le
properties (and the IntelliSense for them) doesn’t just speed up development but
also helps developers reduce inadvertent coding errors. In fact, this class provides
strongly typed access to the user’s profi le, so if you try to assign a string or an inte-
ger to a property that expects a date, you’ll get a compile-time error, and you can
correct the problem immediately!

When you defi ne a profi le property, you can also assign a default value to it, by means of the
defaultValue attribute:

<add name=”FavoriteTheme” type=”String” defaultValue=”Colorful” />

The default value for strings is an empty string, not null, as you may have thought. This makes it easier
to read string properties, because you don’t have to check whether they are null before using the value
somewhere. The other data types have the same default values that a variable of the same type would
have (e.g., zero for integers).

When you declare profi le properties, you can also group them into subsections, as shown here:

<profile>
 <properties>
 <add name=”FavoriteTheme” type=”String” />
 <add name=”BirthDate” type=”DateTime” />
 <group name=”Address”>
 <add name=”Street” type=”String” />
 <add name=”City” type=”String” />
 </group>
 </properties>
</profile>

The Street property will be accessible as Profile.Address.Street. Note, however, that you can’t
defi ne nested groups under each other but can only have a single level of groups. If this limitation is not
acceptable to you, you can defi ne your own custom class with subcollections and properties, and refer-
ence it in the type attribute of a new property. In fact, you are not limited to base types for profi le
properties; you can also reference more complex classes (such as ArrayList or Color), and your own
enumerations, structures, and classes, as long as they are serializable into a binary or XML format (the
format is dictated by the property’s serializeAs attribute).

The Profi le system is built upon the provider model design pattern. ASP.NET comes with a single
built-in profi le provider that uses a SQL Server database as a backing store. However, as usual, you
can build your own providers or fi nd them from third parties.

Accessing Profi les from Business Classes
Sometimes you may need to access the user’s profi le from a business class, such as we are doing in this
book. The Profile property is dynamically added only to the ASPX pages’ code-behind classes, so you
can’t use it in those situations. However, you can still access it through the Profile property exposed
by the current HttpContext. The HttpContext class is the container for the current web request —
it’s used to pass around objects that are part of the request: forms, properties, ViewState, and so on.

87586c04.indd 17487586c04.indd 174 9/13/09 10:15:53 PM9/13/09 10:15:53 PM

175

Chapter 4: Membership and User Profi ling

Anytime you process a page, you will have this HttpContext information, so you can always pull a
Profile class instance out of the HttpContext class. The returned type is ProfileBase, though, not the
ProfileCommon object generated on-the-fl y that enabled you to use IntelliSense and access properties
in a strongly typed manner. Therefore, the resulting Profile class instance read from the HttpContext
.Current.Profile will not be strongly typed. No problem — just create a ProfileBase object and
use its methods to retrieve values. I have added a series of methods to the Helpers class to help with
this in the Beer House. The fi rst step is a series of overloaded GetUserProfile methods that return a
ProfileBase object. The Create method has two overloads, one that accepts just the username and one
that accepts the username and if they are authenticated. I created three versions of the GetUserProfile
method, one to handle each of the Create overloads and one to automatically retrieve the profi le for the
current user, passing in his or her authentication status.

Public Shared Function GetUserProfile() As ProfileBase
 Return ProfileBase.Create(CurrentUserName,
CurrentUser.Identity.IsAuthenticated)
End Function

Public Shared Function GetUserProfile(ByVal vUserName As String) As ProfileBase
 Return ProfileBase.Create(vUserName, CurrentUser.Identity.IsAuthenticated)
End Function

Public Shared Function GetUserProfile(ByVal vUserName As String,
ByVal isAuthenticated As Boolean) As ProfileBase
 Return ProfileBase.Create(vUserName, isAuthenticated)
End Function

The next method to investigate is the ProfileBase.GetProfileGroup method. It accepts the name
of the profi le group you want to access and returns it as a ProfileGroupBase object. In the following
example, I return the ProfileGroup as an object instead of a ProfileGroupBase. This seems to make
it easier to cast the group as a custom object, such as the shopping cart, if needed.

Private Shared Function GetProfileSubGroup(ByVal profile As ProfileBase,
ByVal vSubGroup As String) As Object
 Return profile.GetProfileGroup(vSubGroup)
End Function

The ProfileBase’s GetPropertyValue and SetPropertyValue can be used to access and update
profi le values. If a value is a member of a SubGroup, you simply need to access the SubGroup and
call these methods from it. The wrapper methods that follow demonstrate using the PropertyValue
functions.

Public Shared Function GetProfileSubGroupStringProperty(
ByVal profile As ProfileBase, ByVal vSubGroup As String,
ByVal vProperty As String) As String
 If Not IsNothing(profile) AndAlso Not
IsNothing(profile.GetProfileGroup(vSubGroup)) Then
 Return profile.GetProfileGroup(vSubGroup).GetPropertyValue(vProperty)
 Else
 Return String.Empty
 End If
End Function

Public Shared Function GetProfileSubGroupIntegerProperty(ByVal profile As

87586c04.indd 17587586c04.indd 175 9/13/09 10:15:53 PM9/13/09 10:15:53 PM

176

Chapter 4: Membership and User Profi ling

ProfileBase, ByVal vSubGroup As String, ByVal vProperty As String) As Integer
 If Not IsNothing(profile) Then
 Return GetProfileSubGroup(profile, vSubGroup).GetPropertyValue(vProperty)
 Else
 Return 0
 End If
End Function

Public Shared Function GetProfileSubGroupObjectProperty(ByVal profile As
ProfileBase, ByVal vSubGroup As String, ByVal vProperty As String) As Object
 If Not IsNothing(profile) Then
 Return GetProfileSubGroup(profile, vSubGroup).GetPropertyValue(vProperty)
 Else
 Return Nothing
 End If
End Function

Public Shared Function GetProfileTheme(ByVal profile As ProfileBase) As String
 Return GetProfileSubGroupStringProperty(profile, “Preferences”,
“Theme”).ToString
End Function

Public Shared Sub SetProfileTheme(ByVal profile As ProfileBase,
ByVal sTheme As String)
 GetProfileSubGroup(profile, “Preferences”).setpropertyvalue(“Theme”, sTheme)
End Sub

Public Shared Function GetSubscriptionType(ByVal profile As ProfileBase) As
 SubscriptionType
 Return CType(GetProfileSubGroupStringProperty(profile, “Preferences”,
“Newsletter”), SubscriptionType)
End Function

As we proceed through the application, you will see places where these helper methods are used, such
as in the Newsletter module:

‘ retreive all subscribers to the plain-text and HTML newsletter
Dim subscribers As New List(Of SubscriberInfo)

For Each user As MembershipUser In Membership.GetAllUsers
Dim userProfile As ProfileBase = Helpers.GetUserProfile(user.UserName, False)
 If Not Helpers.GetSubscriptionType(userProfile) <> SubscriptionType.None Then
 Dim subscriber As New SubscriberInfo(user.UserName, user.Email, _
 Helpers.GetProfileFirstName(userProfile), _
 Helpers.GetProfileLastName(userProfile),
Helpers.GetSubscriptionType(userProfile))
 subscribers.Add(subscriber)
 Newsletter.Lock.AcquireWriterLock(Timeout.Infinite)
 Newsletter.TotalMails += 1
 Newsletter.Lock.ReleaseWriterLock()

End If
Next

87586c04.indd 17687586c04.indd 176 9/13/09 10:15:53 PM9/13/09 10:15:53 PM

177

Chapter 4: Membership and User Profi ling

An option that I did not employ in the Beer House is to create a custom profi le class that inherits from
ProfileBase and automatically instantiates itself with properties that map to the profi le properties defi ned
in the web.config. Lee Dumond does a great job explaining this on his blog, http://leedumond.com/
blog/getting-strongly-typed-profile-properties-from-a-class-library/. Either way works
just fi ne and the choice is yours.

Accessing the Profi le for Users Other Than the Current User
So far, all the examples have shown how to read and write the profi le for the current user. However, you
can also access other users’ profi les — very useful if you want to implement an administration page to
read and modify the profi les of your registered members. Your administrator must be able to read and
edit the profi le properties for any user. The ProfileCommon class exposes a GetProfile method that
returns the profi le for any specifi ed user, and once you obtain this profi le instance you can read and edit
the profi le properties just as you can do for the current user’s profi le. The only difference is that after
changing some values of the retrieved profi le, you must explicitly call its Save method, which is not
required when you modify the profi le for the current user. (In the case of the current user, Save is called
automatically by the runtime when the page unloads.) Here’s an example of getting a profi le for a speci-
fi ed user and then modifying a property value in that profi le:

Dim profile As ProfileCommon = Profile.GetProfile(“Marco”)
profile.BirthDate = New DateTime(1980, 9, 28)
profile.Save()

Adding Support for Anonymous Users
The preceding code works only for registered users who are logged in. Sometimes, however, you want
to be able to store profi le values for users who are not logged in. You can explicitly enable anonymous
identifi cation support by adding the following line to web.config:

<anonymousIdentification enabled=”true”/>

After that, you must indicate what properties are available to anonymous users. By default, a property
is only accessible for logged-in users, but you can change this by setting the property’s allowAnonymous
attribute to true, as follows:

<add name=”FavoriteTheme” type=”String”
 allowAnonymous=”true” defaultValue=”Colorful” />

This is useful to allow an anonymous user to select a theme for his current session. This would not be
saved after his session terminates because we don’t have an actual user’s identity to allow us to persist
the settings. Another important concern regarding profi les for anonymous users is the migration from
anonymous to authenticated status. Consider the following situation: a registered user comes to the site
and browses it without logging in. He or she then changes some profi le properties available to anonymous
users, such as the name of the favorite theme. At some point, he or she wants to access a restricted page
and needs to log in. Now, because the favorite theme was selected while the user was anonymous, it
was stored into a profi le linked to an anonymous user ID. After the user logs in, he or she then becomes
an authenticated user with a different user ID. Therefore, that user’s previous profi le settings are loaded,
and the user will get a site with the theme selected during a previous session, or the default one. What
you wanted to do, however, was to migrate the anonymous user’s profi le to the authenticated user’s
profi le at the time he or she logged in. This can be done by means of the Profile_MigrateAnonymous
global event, which you can handle in the Global.asax fi le. Once this event is raised, the

87586c04.indd 17787586c04.indd 177 9/13/09 10:15:53 PM9/13/09 10:15:53 PM

178

Chapter 4: Membership and User Profi ling

HttpContext.Profile property will already have returned the authenticated user’s profi le, so it’s too
late for us to save the anonymous profi le values. You can, however, get a reference to the anonymous
profi le previously used by the user and then copy values from it to the new profi le. In the “Solution”
section, you will see how to implement this event to avoid losing the user’s preferences.

Integrating the ASP.NET AJAX Profi le Service
Along with the Authentication and Roles, the Sys.Services.ProfileService class provides client-
side access to the Profile service. There are two main functions to become familiar with: Load and Save.
The Load function loads the user’s profi le into client memory. The method accepts an array of profi le
properties to load, along with the typical callback function names. If null is passed into the Load function,
the full set of profi le properties is loaded.

Sys.Services.ProfileService.load(null,

LoadCompletedCallback, ProfileFailedCallback, null);

The profileServer also has to be enabled in the web.config fi le, as shown earlier. When you enable
the ProfileService class, you have to explicitly defi ne what fi elds can be read and which fi elds can be
written to. You cannot create new profi le fi elds through the ProfileService. You also cannot change
the Read/Write status of a property through the service.

Readonly properties are defi ned as a comma-separated list in the readAccessProperties value.
A similar list can be set to the witeAccessProperties. The list does not have to match, and it can
overlap.

<profileService enabled=”true” readAccessProperties=”FirstName, LastName” />

OpenId Identity Services
One of the usability problems all users face with the web is managing a never-ending list of passwords.
The technical term that embodies the challenges and solutions to this real-world issue is “identity.”
The marketplace has been creating some solutions to this problem; Microsoft, for example, introduced
CardSpace with the release of .NET 3.5. The developer community has also created a technology called
OpenId. The reality is the two technologies are very complementary because CardSpace targets the
more secure websites requiring SSL, such as sites used in online banking. OpenId is more general
purpose and ideal for a site that is not mission critical, although it could be suffi cient to address sites
that are. Because the Beer House is a simple site that does not have a SSL certifi cate, which is currently
required by CardSpace, we will integrate OpenId authentication as an option for our users.

OpenId was originally created by Brad Fitzpatrick as the identity system for LiveJournal. It has matured
into a system that is ultimately managed by the OpenId Foundation, http://OpenId.net. The main
paradigm change that OpenId brings to the table is the concept that instead of a username/password
combination, an identity relies on a URL. For example, http://TheBeerHouse.MyOpenId.net. Instead
of providing a username and password to the site, known as the Relaying party, the user supplies an
OpenId URL. The Relaying party, your website, then redirects the user to the OpenId provider at the
URL. The URL can point to any number of providers; there is no one single OpenId provider. Here, the
user is authenticated, typically through a username and password, but that is not an absolute require-
ment, and upon successful authentication, the user is redirected back to the Relaying party.

87586c04.indd 17887586c04.indd 178 9/13/09 10:15:53 PM9/13/09 10:15:53 PM

179

Chapter 4: Membership and User Profi ling

Typically, a user remains authenticated with their OpenId provider, usually through a persistent cookie,
but this is also not a requirement. Once authenticated on the site, the user decides what information he
or she wants to share with the Relaying party. The user can decide at this point if he or she is comfort-
able sharing the required and optional data with the Relaying party. I try to keep these requests as min-
imal as possible to create a valid user account in the ASP.NET membership provider. If this is the user’s
fi rst experience authenticating with my site, he or she will need to have an account to authenticate against.
So the create user process is drastically changed from the CreateUserWizard process also described
in this chapter.

When a user creates an OpenId account he or she will supply the provider with much of this information.
As part of the OpenId protocol the Relaying party tells the identity provider what fi elds it requires to
perform a successful authentication; it can also request optional information. Before the user tells the
identity provider to trust the Relaying party, the user is asked if he or she is comfortable sharing per-
sonal information with the Relaying party. Figure 4-12 illustrates the steps required to perform OpenId
authentication.

Client/Browser

7. Server URL

5. Credentials
2. Discovery

3. Shared Key

6. Approval

4. Redirect to OP

1. Request URL

RP (Relaying Party)
Requested Site

OP (OpenID Provider)
ex. MyOpenId.com

Figure 4-12

Ultimately, the user is more in control of his or her personal identifi cation and has one central location
in which to store this data. This should help the user when trying to authenticate with numerous sites,
and save time in the registration process because the same information can be seamlessly passed back
to the relaying party without having to be reentered by the user.

Designing Our Solution
So far, we have described the general features of the membership and profi le services, and we can now
build upon this knowledge and design exactly how we can implement these features in our particular
website. Here’s the summary of our design objectives regarding membership and profi le features, and
a description of the corresponding web pages:

A login box will be visible in the top-right corner of each page whenever the user is anonymous. ❑

After the user logs in, the login box will be hidden. Instead, we’ll show a greeting message and
links for Logout and Edit Profi le.

87586c04.indd 17987586c04.indd 179 9/13/09 10:15:53 PM9/13/09 10:15:53 PM

180

Chapter 4: Membership and User Profi ling

A faux login dialog box will be displayed using ASP.NET AJAX and CSS that allows users to ❑

authenticate themselves using either ASP.NET AJAX or OpenId. The dialog box is embedded in
the main master page for the site and will be hidden by default. It will perform authentication
by calling the membership services built into ASP.NET AJAX. If a user wants to authenticate
him- or herself using OpenId, an additional interface will provide for it.

A ❑ Register.aspx page will allow new users to register (create their own account), and we’ll
populate it with some profi le settings upon registration. The profi le will have the following
fi rst-level properties: FirstName (String), LastName (String), Gender (String), BirthDate
(DateTime), Occupation (String), and Website (String). A profi le group named Address
will have the following subproperties: Street, PostCode, City, State, and Country, all of
type String. Another group, named Contacts, will have the following string subproper-
ties: Phone and Fax. A fi nal group, named Preferences, will have the Theme, Culture, and
Newsletter properties. The Theme property is the only one that will be made available to
anonymous users.

Our ❑ PasswordRecovery.aspx page will allow users to recover forgotten passwords; it can
e-mail the password to the user’s e-mail address that is on fi le. This is possible because we’ll
confi gure the membership module to encrypt the password, instead of storing it as a hash (a
hashed password is a one-way encryption that is not reversible). We had to decide whether
we wanted the best possible security (hashing) or a more user-friendly encryption method that
enables us to recover the user’s password. In our scenario, we’ve determined that the user-
friendly option is the best choice.

Our ❑ EditProfile.aspx page will only be accessible to registered members, and it will allow them
to change their account’s password and the profi le information they set up at registration time.

We’ll create some administration pages to allow the administrator to read and edit all the infor- ❑

mation about registered users (members). A ManageUsers.aspx page will help the administra-
tor look up records for members by either their username or e-mail address (searches by partial
text will also be supported). Among the data returned will be their username, e-mail address,
when they registered or last accessed the site, and whether they are active or not. A second
page, EditUser.aspx, will show additional details about a single user, and will allow the
administrator to enable or disable the account, assign new roles to the user, remove roles from
the user, and edit the user’s personal profi le.

Solution
We’ll get right into the implementation because we’ve already covered the basic material and our objec-
tives in the “Design” section of this chapter. Now we’ll put all the pieces together to create the pages
and the supporting code to make them work. These are the steps used to tackle our solution:

 1. Defi ne all the settings required for membership, roles, and profi les in web.config.

 2. Create the login box on the master page, and the “access denied” page. To test the login process
before creating the registration page, we can easily create a user account from the ASP.NET
Web Administration Tool.

 3. Create the registration and profi ling page.

87586c04.indd 18087586c04.indd 180 9/13/09 10:15:54 PM9/13/09 10:15:54 PM

181

Chapter 4: Membership and User Profi ling

 4. Create the password recovery page.

 5. Create the page to change the current password and all the profi le information.

 6. Design profi les to save the user’s favorite theme, and handle the migration from an anonymous
user to an authenticated user so we won’t lose his theme preference.

 7. Create the administration pages to display all users, as well as edit and delete them.

The Confi guration File
Following is a partial snippet of the web.config fi le (located in the site’s root folder) used to confi gure
the authentication type, membership, role manager, profi le, and site map provider (in this order):

<configuration xmlns=”http://schemas.microsoft.com/.NetConfiguration/v2.0”>
 <!-- other settings... -- >
 <system.web>
 <authentication mode=”Forms”>
 <forms cookieless=”AutoDetect”
 loginUrl=”~/AccessDenied.aspx” name=”TBHFORMAUTH” />
 </authentication>

 <membership defaultProvider=”TBH_MembershipProvider”
 userIsOnlineTimeWindow=”15”>
 <providers>
 <add name=”TBH_MembershipProvider”
 connectionStringName=”LocalSqlServer”
 applicationName=”/”
 enablePasswordRetrieval=”true”
 enablePasswordReset=”true”
 requiresQuestionAndAnswer=”true”
 requiresUniqueEmail=”true”
 passwordFormat=”Encrypted”
 maxInvalidPasswordAttempts=”5”
 passwordAttemptWindow=”10”
 minRequiredPasswordLength=”5”
 minRequiredNonalphanumericCharacters=”0”
 type=”System.Web.Security.SqlMembershipProvider, System.Web,
Version=2.0.0.0, Culture=neutral, PublicKeyToken=b03f5f7f11d50a3a”
 />
 </providers>
 </membership>

 <roleManager enabled=”true” cacheRolesInCookie=”true”
 cookieName=”TBHROLES” defaultProvider=”TBH_RoleProvider”>
 <providers>
 <add name=”TBH_RoleProvider”
 connectionStringName=”LocalSqlServer”
 applicationName=”/”
 type=”System.Web.Security.SqlRoleProvider, System.Web,
Version=2.0.0.0, Culture=neutral, PublicKeyToken=b03f5f7f11d50a3a”
 />

87586c04.indd 18187586c04.indd 181 9/13/09 10:15:54 PM9/13/09 10:15:54 PM

182

Chapter 4: Membership and User Profi ling

 </providers>
 </roleManager>

 <anonymousIdentification cookieless=”AutoDetect” enabled=”true”/>

 <profile defaultProvider=”TBH_ProfileProvider”>
 <providers>
 <add name=”TBH_ProfileProvider”
 connectionStringName=”LocalSqlServer”
 applicationName=”/”
 type=”System.Web.Profile.SqlProfileProvider, System.Web,
Version=2.0.0.0, Culture=neutral, PublicKeyToken=b03f5f7f11d50a3a”
 />
 </providers>
 <properties>
 <add name=”FirstName” type=”String” />
 <add name=”LastName” type=”String” />
 <add name=”Gender” type=”String” />
 <add name=”BirthDate” type=”DateTime” />
 <add name=”Occupation” type=”String” />
 <add name=”Website” type=”String” />
 <group name=”Address”>
 <add name=”Street” type=”String” />
 <add name=”PostalCode” type=”String” />
 <add name=”City” type=”String” />
 <add name=”State” type=”String” />
 <add name=”Country” type=”String” />
 </group>
 <group name=”Contacts”>
 <add name=”Phone” type=”String” />
 <add name=”Fax” type=”String” />
 </group>
 <group name=”Preferences”>
 <add name=”Theme” type=”String” allowAnonymous=”true” />
 <add name=”Culture” type=”String” defaultValue=”en-US” />
 <add name=”Newsletter”
type=”MB.TheBeerHouse.BLL.Newsletters.SubscriptionType” />
 </group>
 </properties>
 </profile>

 <machineKey validationKey=”287C5D125D6B7E7223E1F719E3D58D17BB967703017E1BBE28
618FAC6C4501E910C7E59800B5D4C2EDD5B0ED98874A3E952D60BAF260D9D374A74C76CB741803”
 decryptionKey=”5C1D8BD9DF3E1B4E1D01132F234266616E0D5EF772FE80AB”
 validation=”SHA1”/>

 <siteMap defaultProvider=”TBH_SiteMapProvider” enabled=”true”>
 <providers>
 <add name=”TBH_SiteMapProvider”
 type=”System.Web.XmlSiteMapProvider”
 securityTrimmingEnabled=”true”
 siteMapFile=”web.sitemap”
 />
 </providers>

87586c04.indd 18287586c04.indd 182 9/13/09 10:15:54 PM9/13/09 10:15:54 PM

183

Chapter 4: Membership and User Profi ling

 </siteMap>
 </system.web>

 <location path=”EditProfile.aspx”>
 <system.web>
 <authorization>
 <deny users=”?” />
 <allow users=”*” />
 </authorization>
 </system.web>
 </location>

 <system.net>
 <mailSettings>
 <smtp deliveryMethod=”Network”>
 <network defaultCredentials=”true” host=”vsnetbeta2” port=”25”
 from=”mbellinaso@wrox.com”></network>
 </smtp>
 </mailSettings>
 </system.net>
</configuration>

As you can see, a provider is defi ned and confi gured for all modules that support this pattern. I
specifi ed the provider settings even though they are often the same as the default providers found
in machine.config.default, because I can’t be sure whether the defaults will always be the same in
future ASP.NET releases, and I like to have this information handy in case I might want to make further
changes someday. To create these settings, I copied them from machine.config.default, and then I
made a few tweaks as needed.

I defi ned a Newsletter profi le property as type TheBeerHouse.BLL.Newsletters.SubscriptionType,
which is an enumeration defi ned in the SubscriptionType.vb fi le located under /Newsletter in the
class library:

Namespace BLL.Newsletters

 Public Enum SubscriptionType As Integer
 None = 0
 PlainText = 1
 Html = 2
 End Enum

End Namespace

To confi gure the cryptographic keys, we need to set the validationKey and decryptionKey attri-
butes of the machineKey element. Because we are confi guring the membership module to encrypt pass-
words, we can’t leave them set at AutoGenerate, which is the default. You can fi nd some handy utilities
on the Internet that will help you set these values. You can check the following Microsoft Knowledge
Base article for more information: http://support.microsoft.com/kb/313091. This article shows
how to implement a class that makes use of the cryptographic classes and services to create values for
these keys. Alternatively, if you want an easier way to create these keys, check out this online tool: www
.aspnetresources.com/tools/keycreator.aspx.

87586c04.indd 18387586c04.indd 183 9/13/09 10:15:54 PM9/13/09 10:15:54 PM

184

Chapter 4: Membership and User Profi ling

I want to reiterate a point I made earlier in this chapter: if you’ll be deploying your application to a web
farm (more than one web server confi gured to distribute the load between the servers), then you need
to specify the same machine keys for each server. In addition to password encryption, these keys are
also used for session state. By synchronizing these keys with all your servers, you ensure that the same
encryption will be used on each server. This is essential if there’s a chance that a different server might
be used to process the next posting of a page.

Creating the Login Box
The user interface for user authentication is fairly common across all websites; a username, password
textbox combination, an optional Remember Me checkbox, a link to register on the site, and a link to
retrieve a lost password. Something like this is ideal to collect together in a user or Web Control, which
is exactly with the ASP.NET team did in ASP.NET 2.0. The Login control combined all these common
user interface elements into a fully customizable control that seamlessly works with the membership
provider.

Now it’s time to fi ll that <div> with the code for the login box. ASP.NET typically uses customizable
templates to control the visual rendering of many controls. In this section, we will customize the default
user interface of the login controls by providing our own template. Using custom templates offers the
following advantages:

 1. You have full control over the appearance of the produced output, and you can change many
aspects of the behavior. For example, our custom template can be used with validator controls,
and you can set their SetFocusOnError property to true (this defaults to false in the default
template). This property specifi es whether the validator will give the focus to the control it vali-
dates if the client-side validation fails. This is desirable in our case because we want the focus
to go to the fi rst invalid control after the user clicks the Submit button if some controls have
invalid input values.

 2. If you don’t redefi ne the TextBox controls, the SetInputControlsHighlight method we
developed in Chapter 2 will not fi nd them, and thus the textboxes will not get the special high-
light behavior that gives users a visual cue as to which TextBox currently has the focus.

Here’s the complete code that uses a LoginView to display a login box. This login box contains links
to register a new account or to recover a forgotten password when the user is anonymous, or it will
contain a welcome message, a logout link, and a link to the EditProfile page if the user is currently
logged in:

<div id=”loginbox”>
<asp:LoginView ID=”LoginView1” runat=”server”>
 <AnonymousTemplate>
 <asp:Login ID=”Login” runat=”server” Width=”100%”
 FailureAction=”RedirectToLoginPage”>
 <LayoutTemplate>
 <table border=”0” cellpadding=”0” cellspacing=”0” width=”100%”>
 <tr>
 <td width=”60px”>Username:</td>
 <td><asp:TextBox id=”UserName” runat=”server” Width=”95%” /></td>
 <td width=”5px” align=”right”>
 <asp:RequiredFieldValidator ID=”valRequireUserName”
 runat=”server” SetFocusOnError=”true” Text=”*”

87586c04.indd 18487586c04.indd 184 9/13/09 10:15:54 PM9/13/09 10:15:54 PM

185

Chapter 4: Membership and User Profi ling

 ControlToValidate=”UserName” ValidationGroup=”Login” />
 </td>
 </tr>
 <tr>
 <td>Password:</td>
 <td><asp:TextBox ID=”Password” runat=”server”
 TextMode=”Password” Width=”95%” /></td>
 <td width=”5px” align=”right”>
 <asp:RequiredFieldValidator ID=”valRequirePassword”
 runat=”server” SetFocusOnError=”true” Text=”*”
 ControlToValidate=”Password” ValidationGroup=”Login” />
 </td>
 </tr>
 </table>
 <table border=”0” cellpadding=”0” cellspacing=”0” width=”100%”>
 <tr>
 <td><asp:CheckBox ID=”RememberMe” runat=”server”
 Text=”Remember me”></asp:Checkbox></td>
 <td align=”right”>
 <asp:ImageButton ID=”Submit” runat=”server”
 CommandName=”Login” ImageUrl=”~/images/go.gif”
 ValidationGroup=”Login” />
 </td>
 <td width=”5px” align=”right”> </td>
 </tr>
 </table>
 <div style=”border-top: solid 1px black; margin-top: 2px”>
 <asp:HyperLink ID=”lnkRegister” runat=”server”
 NavigateUrl=”~/Register.aspx”>Create new account
 </asp:HyperLink>

 <asp:HyperLink ID=”lnkPasswordRecovery” runat=”server”
 NavigateUrl=”~/PasswordRecovery.aspx”>I forgot my password
 </asp:HyperLink>
 </div>
 </LayoutTemplate>
 </asp:Login>
 </AnonymousTemplate>
 <LoggedInTemplate>
 <div id=”welcomebox”>
 <asp:LoginName ID=”LoginName1” runat=”server”
 FormatString=”Hello {0}!” />

 <small>
 4
 <asp:HyperLink ID=”lnkProfile” runat=”server” Text=”Edit Profile”
 NavigateUrl=”~/EditProfile.aspx” />
 3

 4
 <asp:LoginStatus ID=”LoginStatus1” Runat=”server” />
 3
 </small>
 </div>
 </LoggedInTemplate>
</asp:LoginView>
</div>

87586c04.indd 18587586c04.indd 185 9/13/09 10:15:54 PM9/13/09 10:15:54 PM

186

Chapter 4: Membership and User Profi ling

Absolutely no code is needed in the master page’s code-behind fi les. In fact, because we used the right IDs
for the textboxes and other controls in the template sections of the Login control, it will continue working
autonomously as if it were using the default UI. To test the control, fi rst create a new user through the
ASP.NET Website Confi guration Tool described earlier, and then try to log in. In Figure 4-13, you can see
what the home page looks like from an anonymous user’s and an authenticated user’s point of view.

Figure 4-13

Observe the login box in the fi rst window (only displayed for anonymous users), and the new greeting
message and links in the second window that are displayed after the user logs in. Also, note that an
Admin link is visible on the second browser’s menu bar. That Admin link only appears for users who
have been assigned the Administrators role. The web.sitemap fi le is used to generate the menu, and
the item representing the Admin link was modifi ed by adding the roles attribute, which was set to
Administrators:

<siteMap xmlns=”http://schemas.microsoft.com/AspNet/SiteMap-File-1.0” >
 <siteMapNode title=”Home” url=”~/Default.aspx”>
 <!-- other items -- >
 <siteMapNode title=”Admin” url=”~/Admin/Default.aspx”
 roles=”Administrators” />
 </siteMapNode>
</siteMap>

Of course, you can test the site-map-controlled menu by assigning the Administrators role to your
sample user. You can even do this role assignment from the online confi guration application!

The AccessDenied.aspx Page
If you look a few pages back, you’ll see that the loginUrl attribute of the web.config’s <forms> is set
to AccessDenied.aspx. As its name clearly suggests, this is the URL of the page we want to redirect
control to when the user tries to access a protected page to which he doesn’t have permission. In many

87586c04.indd 18687586c04.indd 186 9/13/09 10:15:54 PM9/13/09 10:15:54 PM

187

Chapter 4: Membership and User Profi ling

cases, you would place the login box in this page, hence the attribute name (loginUrl). In our case,
however, we have a site that lets anonymous users access many different pages, and we only require the
user to log in to gain access to a small number of pages, so we want to make sure the login box is visible
from any page when the user is anonymous. The login box invites users to log in if they already have
an account, or to register if they don’t have one. This AccessDenied page is also loaded when users
try to log in but give invalid credentials, or when they are already logged in but they don’t have a role
required by the page they requested. Therefore, the page has three possible messages, and the following
code uses three labels for them:

 <div id=”ContentTitleDiv”>
 <asp:Literal runat=”server” ID=”ltlTitle”></asp:Literal></div>
 <div id=”ContentBodyDiv”>
 <asp:Image ID=”imgLock” runat=”server” ImageUrl=”~/images/lock.gif”
 ImageAlign=”left”
 AlternateText=”Access denied” />

 <asp:Label runat=”server” ID=”lblLoginRequired” Font-Bold=”true”>
You must be a registered user to access this page. If you already have an account,
please login with
your credentials in the box on the upper-right corner. Otherwise click here to register now for free.
 </asp:Label>
 <asp:Label runat=”server” ID=”lblInsufficientPermissions” Font-Bold=”true”>
Sorry, the account you are logged with does not have the permissions required to
access this page.
 </asp:Label>
 <asp:Label runat=”server” ID=”lblInvalidCredentials” Font-Bold=”true”>
The submitted credentials are not valid. Please check they are correct and try
again.
If you forgot your password, click here to
recover it.
 </asp:Label>
 </div>

Since OpenId has been added to the authentication options, the Login control has been changed to have
a LayoutTemplate defi ned. This affords us the fl exibility of using the built-in authentication logic that
comes with the Login control but lets us extend the available layout to include some extra controls to
work with OpenId. When you create a custom layout for the Login control or any of the stock member-
ship controls, special care must be taken to create controls with the same ID values the stock control
uses. Otherwise the control will look for them and throw exceptions.

 <asp:Login runat=”server” ID=”adLogin” CreateUserUrl=”~/Register.aspx”
 Width=”300”>
 <LayoutTemplate>
 <table border=”0” cellpadding=”0” cellspacing=”0” width=”100%”>
 <tr>
 <td width=”60px”>
 <asp:Label runat=”server” ID=”lblUserName”
AssociatedControlID=”UserName” Text=”Username:”
 meta:resourcekey=”lblUserNameResource1” />
 </td>
 <td>
 <asp:TextBox ID=”UserName” runat=”server” Width=”95%”

87586c04.indd 18787586c04.indd 187 9/13/09 10:15:54 PM9/13/09 10:15:54 PM

188

Chapter 4: Membership and User Profi ling

Columns=”30” meta:resourcekey=”UserNameResource2” />
 </td>
 <td width=”5px” align=”right”>
 <asp:RequiredFieldValidator ID=”valRequireUserName”
runat=”server” SetFocusOnError=”True”
 ControlToValidate=”UserName” Text=”*”
ValidationGroup=”Login” meta:resourcekey=”valRequireUserNameResource1” />
 </td>
 </tr>
 <tr>
 <td>
 <asp:Label runat=”server” ID=”lblPassword”
AssociatedControlID=”Password” Text=”Password:”
 meta:resourcekey=”lblPasswordResource1” />
 </td>
 <td>
 <asp:TextBox ID=”Password” runat=”server”
TextMode=”Password” Width=”95%” meta:resourcekey=”PasswordResource2” />
 </td>
 <td width=”5px” align=”right”>
 <asp:RequiredFieldValidator ID=”valRequirePassword”
runat=”server” SetFocusOnError=”True”
 ControlToValidate=”Password” Text=”*”
ValidationGroup=”Login” meta:resourcekey=”valRequirePasswordResource1” />
 </td>
 </tr>
 </table>
 <table border=”0” cellpadding=”0” cellspacing=”0” width=”100%”>
 <tr>
 <td>
 <asp:CheckBox ID=”RememberMe” runat=”server”
Text=”Remember me” meta:resourcekey=”RememberMeResource1”>
 </asp:CheckBox>
 </td>
 <td align=”right”>
 <asp:ImageButton ID=”Submit” runat=”server”
 AlternateText=”Login” CommandName=”Login”
 ImageUrl=”~/images/go.gif” ValidationGroup=”Login”
 meta:resourcekey=”SubmitResource1” />
 </td>
 <td width=”5px” align=”right”>

 </td>
 </tr>
 </table>
 <table border=”0” cellpadding=”0” cellspacing=”0” width=”100%”>
 <tr>
 <td>
 <asp:TextBox runat=”server” ID=”txtOpenId” Width=”200”
class=”openid_identifier” />
 </td>
 <td>

87586c04.indd 18887586c04.indd 188 9/13/09 10:15:54 PM9/13/09 10:15:54 PM

189

Chapter 4: Membership and User Profi ling

 <asp:ImageButton runat=”server” ID=”btnLogon”
AlternateText=”Login Using OpenId”
 ImageUrl=”~/images/open-id-login.gif”
onclick=”btnLogon_Click” />

 </td>
 <td width=”5px” align=”right”>

 </td>
 </tr>
 </table>
 <div style=”border-top: solid 1px black; margin-top: 2px;
padding-top: 2px”>
 <asp:HyperLink ID=”lnkRegister” runat=”server” NavigateUrl=
“~/Register.aspx” meta:resourcekey=”lnkRegisterResource1”>Create new
account</asp:HyperLink>

 <asp:HyperLink ID=”lnkPasswordRecovery” runat=”server”
 NavigateUrl=”~/PasswordRecovery.aspx”
 meta:resourcekey=”lnkPasswordRecoveryResource1”>
I forgot my password</asp:HyperLink>
 </div>
 </LayoutTemplate>
 </asp:Login>

The Page_Load event handler in the code-behind fi le contains the logic for showing the proper label
and hiding the other two. You need to do some tests to determine which of the three cases applies:

If the querystring contains a ❑ loginfailure parameter set to 1, it means that the user tried to
log in but the submitted credentials were not recognized.

If the user is not authenticated and there is no ❑ loginfailure parameter on the querystring, it
means that the user tried to access a page that is not available to anonymous users.

If the current user is already authenticated and the page is loaded anyway, it means the user ❑

does not have suffi cient permission (read “does not belong to a required role”) to access the
requested page.

Here is how to translate this description to code:

Partial Public Class AccessDenied
 Inherits BasePage

 Protected Sub Page_Load(ByVal sender As Object, ByVal e As System.EventArgs)
Handles Me.Load
 lblInsufficientPermissions.Visible = Me.User.Identity.IsAuthenticated
 lblLoginRequired.Visible = Not (Me.User.Identity.IsAuthenticated) AndAlso _
 String.IsNullOrEmpty(Me.Request.QueryString(“loginfailure”))
 lblInvalidCredentials.Visible = Not (Me.Request.QueryString(“loginfailure”)
 = Nothing) AndAlso _
 Me.Request.QueryString(“loginfailure”) = “1”

 If OpenID.IsOpenIdRequest Then
 Dim data As OpenIdData = OpenID.Authenticate()

87586c04.indd 18987586c04.indd 189 9/13/09 10:15:54 PM9/13/09 10:15:54 PM

190

Chapter 4: Membership and User Profi ling

 If data.IsSuccess Then

 Dim mu As MembershipUser = Membership.GetUser(data.Identity)

 If IsNothing(mu) Then
 mu =
Membership.GetUser(Membership.GetUserNameByEmail(data.Parameters(“email”)))
 End If

 If IsNothing(mu) Then
 Response.Redirect(String.Format(
“Register.aspx?fullname={0}&email={1}&dob={2}&gender={3}
&postcode&{4}&country{5}”, _
 data.Parameters(“fullname”), data.Parameters(“email”),
data.Parameters(“dob”), _
 data.Parameters(“gender”), data.Parameters(“postcode”),
 data.Parameters(“country”)))
 End If

 FormsAuthentication.RedirectFromLoginPage(mu.UserName,
adLogin.RememberMeSet)

 End If

 End If

 End Sub

Implementing OpenId Authentication
Now that OpenId has been explained, it is time to actually implement it in the Beer House. There are
several ASP.NET solutions available (http://code.google.com/p/dotnetopenid), including full-
blown libraries with Web Controls and the like. However, for now I want to keep the implementation
simple, and Mads Kristensen provides a bare bones implementation (http://blog.madskristensen
.dk/post/OpenId-implementation-in-Csharp-and-ASPNET.aspx) that is easy to integrate. This is
a single-class solution that handles the base needs of interacting with an identity provider. It takes care
of all the fundamental requirements of requesting an OpenId authentication through the designated
OpenId URL (identity provider) and managing the subsequent response.

If the user decides to authenticate using OpenId, the btnLogon click event is fi red to initiate the OpenId
process. A simple call to the shared Login method, with some key parameters, and the process is man-
aged for us.

 Protected Sub btnLogon_Click(ByVal sender As Object, ByVal e As
System.Web.UI.ImageClickEventArgs)
 Dim success As Boolean =
OpenID.Login(DirectCast(adLogin.FindControl(“txtOpenId”), TextBox).Text, _
 “email,fullname”,
“country,language,nickname,dob,gender,postcode”)

 If Not success Then
 Response.Write(“The OpenID is not valid”)

87586c04.indd 19087586c04.indd 190 9/13/09 10:15:54 PM9/13/09 10:15:54 PM

191

Chapter 4: Membership and User Profi ling

 End If
 End Sub

The Login method takes the user’s OpenId URL (identity), a comma-separated list of required parame-
ters (email and fullname) and a comma-separated list of optional parameters. The method then builds
a StringDictionary of values to pass the OpenId URL and redirects the user to their URL.

Public Shared Function Login(ByVal identity As String, ByVal requiredParameters As
String, ByVal optionalParameters As String) As Boolean
 Try
 Dim dic As StringDictionary = GetIdentityServer(identity)
 Dim server As String = dic(“openid.server”)
 Dim delgate As String = If(dic(“openid.delegate”), identity)

 If Not String.IsNullOrEmpty(server) Then
 Dim redirectUrl As String = CreateRedirectUrl(requiredParameters,
 optionalParameters, delgate, identity)

 ‘ Add the provided data to session so it can be tracked after
authentication
 Dim data As New OpenIdData(identity)
 HttpContext.Current.Session(“openid”) = data

 HttpContext.Current.Response.Redirect(server + redirectUrl, True)
 End If
 Catch generatedExceptionName As Exception
 End Try

 Return False
End Function

Once users complete the verifi cation and confi rmation process at their OpenId provider they are
redirected back to the Access Denied page. In a similar fashion, as we check to see if the page is in a
PostBack or not, the Page Load event handler checks to see if the page is being loaded in response to
an OpenId request, if so and the authentication was successful, the user is reconciled with an account
and authenticated.

Public Shared ReadOnly Property IsOpenIdRequest() As Boolean
 Get
 ‘ All OpenID request must use the GET method
 If Not HttpContext.Current.Request.HttpMethod.Equals(“GET”,
StringComparison.OrdinalIgnoreCase) Then
 Return False
 End If

 Return HttpContext.Current.Request.QueryString(“openid.mode”)
IsNot Nothing
 End Get
End Property

The OpenId.Authenticate method returns an OpenIdData object, which contains all the requested
data, including if the authentication was successful (isSuccess), the user’s OpenId identity and any
returned parameters.

87586c04.indd 19187586c04.indd 191 9/13/09 10:15:54 PM9/13/09 10:15:54 PM

192

Chapter 4: Membership and User Profi ling

Public Shared Function Authenticate() As OpenIdData
 Dim data As OpenIdData = DirectCast(HttpContext.Current.Session(“openid”),
OpenIdData)

 ‘ Make sure the client has been through the Login method
 If data Is Nothing Then
 Return New OpenIdData(String.Empty)
 End If

 Dim query As NameValueCollection = HttpContext.Current.Request.QueryString

 ‘ Make sure the incoming request’s identity matches the one stored in session
 If query(“openid.claimed_id”) <> data.Identity Then
 Return data
 End If

 data.IsSuccess = query(“openid.mode”) = “id_res”

 For Each name As String In query.Keys
 If name.StartsWith(“openid.sreg.”) Then
 data.Parameters.Add(name.Replace(“openid.sreg.”, String.Empty),
query(name))
 End If
 Next

 HttpContext.Current.Session.Remove(“openid”)
 Return data
End Function

The following routine fi rst checks to see if there is an account that corresponds to the OpenId Identity
value, if not it tries to retrieve the membership by the e-mail supplied by the identity provider. If the
account still cannot be reconciled the user is then passed to the Register page with the supplied creden-
tials in tow. I chose to place this code in the main MasterPage’s Page Load event handler.

If OpenID.IsOpenIdRequest Then
Dim data As OpenIdData = OpenID.Authenticate()
If data.IsSuccess Then

 Dim mu As MembershipUser = Membership.GetUser(data.Identity)

 If IsNothing(mu) Then
 mu = Membership.GetUser(Membership.GetUserNameByEmail(
data.Parameters(“email”)))
 End If

 If IsNothing(mu) Then
 Response.Redirect(String.Format(“Register.aspx?fullname=
{0}&email={1}&dob={2}&gender={3}&postcode&{4}&country{5}”, _
 data.Parameters(“fullname”), data.Parameters(“email”),
data.Parameters(“dob”), _
 data.Parameters(“gender”), data.Parameters(“postcode”),
data.Parameters(“country”)))
 Else
 FormsAuthentication.RedirectFromLoginPage(mu.UserName,

87586c04.indd 19287586c04.indd 192 9/13/09 10:15:54 PM9/13/09 10:15:54 PM

193

Chapter 4: Membership and User Profi ling

adLogin.RememberMeSet)
 End If
End If

End If

Figure 4-14 shows the Access Denied page.

Figure 4-14

The UserProfi le Control
The user interface and the logic required to show and update a user’s profi le are contained in a user
control named UserProfile.ascx and placed under the Controls folder. Profi le properties can be
edited in the registration page, the page that users access to change their profi le, and the site’s admin-
istration area, so it makes sense to put this code in a user control that can easily be reused in multiple
places. The user interface part consists of simple HTML code to lay out a number of server-side controls
(textboxes and drop-down lists) that will show users their profi le properties and let them edit those
properties:

<%@ Control Language=”VB” AutoEventWireup=”true” CodeFile=”UserProfile.ascx.vb”
 Inherits=”UserProfile” %>
<div class=”sectionsubtitle”>Site preferences</div>
<p></p>
<table cellpadding=”2”>
 <tr>
 <td width=”130” class=”fieldname”>Newsletter:</td>

87586c04.indd 19387586c04.indd 193 9/13/09 10:15:54 PM9/13/09 10:15:54 PM

194

Chapter 4: Membership and User Profi ling

 <td width=”300”>
 <asp:DropDownList runat=”server” ID=”ddlSubscriptions”>
 <asp:ListItem Text=”No subscription” Value=”None” Selected=”true” />
 <asp:ListItem Text=”Subscribe to plain-text version”
 Value=”PlainText” />
 <asp:ListItem Text=”Subscribe to HTML version” Value=”Html” />
 </asp:DropDownList>
 </td>
 </tr>
 <tr>
 <td class=”fieldname”>Language:</td>
 <td>
 <asp:DropDownList runat=”server” ID=”ddlLanguages”>
 <asp:ListItem Text=”English” Value=”en-US” Selected=”true” />
 <asp:ListItem Text=”Italian” Value=”it-IT” />
 </asp:DropDownList>
 </td>
 </tr>
</table>

<table cellpadding=”2” width=”95%”>
 <tr>
 <td><img alt=”Avatar” src=”<%= GetAvatarURL() %>” /></td>
 <td>More About Gravatar</td>
 </tr>
 <tr>
 <td style=”width: 110px;” class=”fieldname”><asp:Label runat=”server” ID=
“lblAvatarUrl” AssociatedControlID=”txtAvatarUrl” Text=”Avatar Url:” /></td>
 <td><asp:TextBox runat=”server” ID=”txtAvatarUrl” Width=”99%” /></td>
 </tr>
 <tr>
 <td class=”fieldname”><asp:Label runat=”server” ID=”lblSignature”
AssociatedControlID=”txtSignature” Text=”Signature:” /></td>
 <td><asp:TextBox runat=”server” ID=”txtSignature” Width=”99%”
MaxLength=”500” TextMode=”multiLine” Rows=”4” /></td>
 </tr>
</table>
<p></p>
<div class=”sectionsubtitle”>Personal details</div>
<p></p>
<table cellpadding=”2”>
 <tr>
 <td width=”130” class=”fieldname”>First name:</td>
 <td width=”300”>
 <asp:TextBox ID=”txtFirstName” runat=”server” Width=”99%”></asp:TextBox>
 </td>
 </tr>
 <tr>
 <td class=”fieldname”>Last name:</td>
 <td>
 <asp:TextBox ID=”txtLastName” runat=”server” Width=”99%” />
 </td>
 </tr>
 <tr>

87586c04.indd 19487586c04.indd 194 9/13/09 10:15:54 PM9/13/09 10:15:54 PM

195

Chapter 4: Membership and User Profi ling

 <td class=”fieldname”>Gender:</td>
 <td>
 <asp:DropDownList runat=”server” ID=”ddlGenders”>
 <asp:ListItem Text=”Please select one...” Value=”“ Selected=”True” />
 <asp:ListItem Text=”Male” Value=”M” />
 <asp:ListItem Text=”Female” Value=”F” />
 </asp:DropDownList>
 </td>
 </tr>
 <tr>
 <td class=”fieldname”>Birth date:</td>
 <td>
 <asp:TextBox ID=”txtBirthDate” runat=”server” Width=”99%”></asp:TextBox>
 <asp:CompareValidator runat=”server” ID=”valBirthDateFormat”
 ControlToValidate=”txtBirthDate”
 SetFocusOnError=”true” Display=”Dynamic” Operator=”DataTypeCheck”
 Type=”Date” ErrorMessage=”The format of the birth date is not valid.”
 ValidationGroup=”EditProfile”>

The format of the birth date is not valid.
 </asp:CompareValidator>
 </td>
 </tr>
 <tr>
 <td class=”fieldname”>Occupation:</td>
 <td>
 <asp:DropDownList ID=”ddlOccupations” runat=”server” Width=”99%”>
 <asp:ListItem Text=”Please select one...” Value=”“ Selected=”True” />
 <asp:ListItem Text=”Academic” />
 <asp:ListItem Text=”Accountant” />
 <asp:ListItem Text=”Actor” />
 <asp:ListItem Text=”Architect” />
 <asp:ListItem Text=”Artist” />
 <asp:ListItem Text=”Business Manager” />
 <%-- other options... -- %>
 <asp:ListItem Text=”Other” />
 </asp:DropDownList>
 </td>
 </tr>
 <tr>
 <td class=”fieldname”>Website:</td>
 <td>
 <asp:TextBox ID=”txtWebsite” runat=”server” Width=”99%” />
 </td>
 </tr>
</table>
<p></p>
<div class=”sectionsubtitle”>Address</div>
<p></p>
<table cellpadding=”2”>
 <tr>
 <td width=”130” class=”fieldname”>Street:</td>
 <td width=”300”>
 <asp:TextBox runat=”server” ID=”txtStreet” Width=”99%” />
 </td>

87586c04.indd 19587586c04.indd 195 9/13/09 10:15:54 PM9/13/09 10:15:54 PM

196

Chapter 4: Membership and User Profi ling

 </tr>
 <tr>
 <td class=”fieldname”>City:</td>
 <td><asp:TextBox runat=”server” ID=”txtCity” Width=”99%” /></td>
 </tr>
 <tr>
 <td class=”fieldname”>Zip / Postal code:</td>
 <td><asp:TextBox runat=”server” ID=”txtPostalCode” Width=”99%” /></td>
 </tr>
 <tr>
 <td class=”fieldname”>State / Region:</td>
 <td><asp:TextBox runat=”server” ID=”txtState” Width=”99%” /></td>
 </tr>
 <tr>
 <td class=”fieldname”>Country:</td>
 <td>
 <asp:DropDownList ID=”ddlCountries” runat=”server”
 AppendDataBoundItems=”True” idth=”99%”>
 <asp:ListItem Text=”Please select one...” Value=”“ Selected=”True” />
 </asp:DropDownList>
 </td>
 </tr>
</table>
<p></p>
<div class=”sectionsubtitle”>Other contacts</div>
<p></p>
<table cellpadding=”2”>
 <tr>
 <td width=”130” class=”fieldname”>Phone:</td>
 <td width=”300”><asp:TextBox runat=”server” ID=”txtPhone” Width=”99%” /></td>
 </tr>
 <tr>
 <td class=”fieldname”>Fax:</td>
 <td><asp:TextBox runat=”server” ID=”txtFax” Width=”99%” /></td>
 </tr>
</table>

There is a custom StateDropDownList control that was added to the class library project (in the con-
trols folder). It derives from the DropDownList control and overrides the Init method to bind the states.
The DataTextField and DataValueField names are set and the CreateDataSource method is called.
This populates the list. There are two additional properties, IncludeCanada and IncludeUS. These are
simple Boolean fl ags that tell the CreateDataSource method if it should bind the provinces and states
for each of the two countries. I hope you can see that this control could be expanded to include all the
states, provinces, or any other geographical region for any of the numerous countries on the globe. But
for simplicity’s sake I limited it to these two countries.

<ToolboxData(“<{0}:StateDropDownList runat=server></{0}:StateDropDownList>”)> _
Public Class StateDropDownList
 Inherits DropDownList

 Protected Sub CreateDataSource()

 Me.Items.Clear()

 If IncludeUS And IncludeCanada Then

87586c04.indd 19687586c04.indd 196 9/13/09 10:15:54 PM9/13/09 10:15:54 PM

197

Chapter 4: Membership and User Profi ling

 Me.Items.Add(New ListItem(“Choose a State/Province”, “0”))
 ElseIf IncludeUS And IncludeCanada = False Then
 Me.Items.Add(New ListItem(“Choose a State”, “0”))
 ElseIf IncludeUS = False And IncludeCanada Then
 Me.Items.Add(New ListItem(“Choose a Province”, “0”))
 End If

 If IncludeUS Then
 Me.Items.Add(New ListItem(“Alabama”, “AL”))
 Me.Items.Add(New ListItem(“Alaska”, “AK”))
 Me.Items.Add(New ListItem(“Arizona”, “AZ”))

‘All 50 US States, but could add all terrirtories too!
 Me.Items.Add(New ListItem(“Wisconsin”, “WI”))
 Me.Items.Add(New ListItem(“Wyoming”, “WY”))
 End If

 If IncludeCanada Then
 Me.Items.Add(New ListItem(“British Columbia”, “BC”))
 Me.Items.Add(New ListItem(“Manitoba”, “MB”))
 Me.Items.Add(New ListItem(“New Brunswick”, “NB”))
 Me.Items.Add(New ListItem(“Newfoundland and Labrador”, “NL”))
 Me.Items.Add(New ListItem(“Northwest Territories”, “NT”))
 Me.Items.Add(New ListItem(“Nova Scotia”, “NS”))
 Me.Items.Add(New ListItem(“Nunavut”, “NU”))
 Me.Items.Add(New ListItem(“Ontario”, “ON”))
 Me.Items.Add(New ListItem(“Prince Edward Island”, “PE”))
 Me.Items.Add(New ListItem(“Quebec”, “QC”))
 Me.Items.Add(New ListItem(“Saskatchewan”, “SK”))
 Me.Items.Add(New ListItem(“Yukon Territories”, “YT”))
 End If

 End Sub

 <Category(“Control Flags”), DefaultValue(“True”)> _
 Public Property IncludeCanada() As Boolean
 Get
 If Not IsNothing(ViewState(“Canada”)) Then
 Return CBool(ViewState(“Canada”))
 End If
 Return True
 End Get
 Set(ByVal Value As Boolean)
 ViewState(“Canada”) = Value
 End Set
 End Property

 <Category(“Control Flags”), DefaultValue(“True”)> _
 Public Property IncludeUS() As Boolean
 Get
 If Not IsNothing(ViewState(“US”)) Then
 Return CBool(ViewState(“US”))
 End If
 Return True
 End Get

87586c04.indd 19787586c04.indd 197 9/13/09 10:15:54 PM9/13/09 10:15:54 PM

198

Chapter 4: Membership and User Profi ling

 Set(ByVal Value As Boolean)
 ViewState(“US”) = Value
 End Set
 End Property

 Protected Overloads Overrides Sub OnInit(ByVal e As EventArgs)

 Me.DataTextField = “Text”
 Me.DataValueField = “Value”
 CreateDataSource()
 MyBase.OnInit(e)
 End Sub

End Class

There is also a DropDownList control that enables users to select their country. This is another custom
Web Control that derives from the DropDownList control. The control’s Init method is overridden to
set the control’s data source, a list of countries, and their corresponding codes:

<ToolboxData(“<{0}:CountryDropDownList runat=server></{0}:CountryDropDownList>”)> _
Public Class CountryDropDownList
 Inherits DropDownList

 Protected Sub CreateDataSource()

 Me.Items.Clear()

 Me.Items.Add(New ListItem(“Choose a Country”, “0”))
 Me.Items.Add(New ListItem(“United States”, “US”))
 Me.Items.Add(New ListItem(“Canada”, “CA”))
 Me.Items.Add(New ListItem(“Afghanistan”, “AF”))
 Me.Items.Add(New ListItem(“Albania”, “AL”))
 Me.Items.Add(New ListItem(“Algeria”, “DZ”))

‘Long list of Countries here!
 Me.Items.Add(New ListItem(“Zambia”, “ZM”))
 Me.Items.Add(New ListItem(“Zimbabwe”, “ZW”))

 End Sub

 Protected Overloads Overrides Sub OnInit(ByVal e As EventArgs)

 Me.DataTextField = “Text”
 Me.DataValueField = “Value”
 CreateDataSource()
 MyBase.OnInit(e)

 End Sub

End Class

87586c04.indd 19887586c04.indd 198 9/13/09 10:15:55 PM9/13/09 10:15:55 PM

199

Chapter 4: Membership and User Profi ling

Persisting Properties through the New Control State
Because this control will be used in the administration area to read and edit the profi le for any user,
it needs a public property that stores the name of the user for whom you are querying. In ASP.NET
1.x, the typical way to make a property value persistent across postbacks is to save it in the control’s
ViewState collection, so that it is serialized into a blob of base-64 encoded text, together with all the
other property values, and saved in the __VIEWSTATE HTML hidden fi eld. This is better than session
state because it doesn’t use server resources to save temporary values because the values are saved as
part of the overall page. The user won’t see the hidden values, but they are there in the user’s browser
and he’ll post them back to the server along with the other form data each time he does a postback. The
problem with view state is that it can be disabled, by setting the page’s or control’s EnableViewState
property to False. Disabling this feature is a common way to minimize the volume of data passed back
and forth across the network. Unfortunately, controls that use view state to store values will not work
correctly if view state is disabled on any particular host page. To resolve this issue, ASP.NET 2.0 intro-
duced a new type of state called control state, which is a similar to view state, except that it’s only related
to a particular control, and it can’t be disabled. Values that a control wants to save across postbacks can
be saved in the control state, while values that are not strictly necessary can go into the view state. In
reality, both categories of values will be serialized and saved into the same single __VIEWSTATE fi eld,
but the internal structure makes a difference between them. With the view state, you would just read
and write the property value from and to the control’s ViewState object from inside the property’s
accessor functions. To use control state, you need to do the following:

 1. Defi ne the property so that it uses a private fi eld to store the value.

 2. Call the parent page’s RegisterRequiresControlState method, from the control’s
Init event handler. This notifi es the page that the control needs to store some control state
information.

 3. Override the control’s SaveControlState method to create and return an array of objects you
want to save in the control state. The array values consist of the property values you need to be
persisted, plus the base class’ control state (this always goes into the array’s fi rst slot).

 4. Override the LoadControlState method to unpack the input array of objects and initialize
your properties’ private fi elds with the values read from the array.

Following is the complete code needed to defi ne and persist a control’s UserName property:

Partial Class UserProfile
 Inherits System.Web.UI.UserControl

#Region “ Properties “

 Public ReadOnly Property FirstName() As String
 Get
 Return FullName.Split(“ “)(0)
 End Get
 End Property

 Public ReadOnly Property LastName() As String
 Get
 Return FullName.Split(“ “)(FullName.Split(“ “).Length - 1)

87586c04.indd 19987586c04.indd 199 9/13/09 10:15:55 PM9/13/09 10:15:55 PM

200

Chapter 4: Membership and User Profi ling

 End Get
 End Property

 Public ReadOnly Property FullName() As String
 Get
 Return Request(“fullname”)
 End Get
 End Property

 Public ReadOnly Property EMail() As String
 Get
 Return Me.Request.QueryString(“Email”)
 End Get
 End Property

 Public ReadOnly Property DOB() As String
 Get
 Return Request(“dob”)
 End Get
 End Property

 Public ReadOnly Property Gender() As String
 Get
 Return Request(“gender”)
 End Get
 End Property

 Public ReadOnly Property PostCode() As String
 Get
 Return Request(“postcode”)
 End Get
 End Property

 Public ReadOnly Property Country() As String
 Get
 Return Request(“country”)
 End Get
 End Property

#End Region

 Private _userName As String = String.Empty
 Public Property Username() As String
 Get
 If String.IsNullOrEmpty(_userName) Then
 Return Helpers.CurrentUser.Identity.Name
 End If
 Return _userName
 End Get
 Set(ByVal value As String)
 _userName = value
 End Set
 End Property

 Protected Sub Page_Init(ByVal sender As Object, ByVal e As System.EventArgs)

87586c04.indd 20087586c04.indd 200 9/13/09 10:15:55 PM9/13/09 10:15:55 PM

201

Chapter 4: Membership and User Profi ling

Handles Me.Init
 Me.Page.RegisterRequiresControlState(Me)
 End Sub

 Protected Overrides Sub LoadControlState(ByVal savedState As Object)
 Dim ctlState As Object() = CType(savedState, Object())
 MyBase.LoadControlState(savedState)
 _userName = CStr(ctlState(1))
 End Sub

 Protected Overrides Function SaveControlState() As Object
 Dim ctlState() As Object
 ReDim ctlState(1) ‘ Initializes the array with 2 objects
 ctlState(0) = MyBase.SaveControlState()
 ctlState(1) = _userName
 Return ctlState
 End Function
End Class

This is somewhat more complicated than the older method of using the host page’s view state, but
you gain the advantage of independence from that page’s confi guration. You have to weigh the added
complexity against the needs of your application. If you’ll have a large application with many pages, it
is probably wise to use control state because you can’t be sure if one of the host pages might have view
state disabled (in a large system it’s almost guaranteed that some pages will have it disabled). Also, if
your controls might be used by other applications within your company, or even other companies, you
should defi nitely use control state to give you the added peace of mind to know that your controls will
always work.

Loading and Editing a Profi le
Now you can write some code for handling user profi les within a control. In the control’s code-behind,
you should handle the Load event to load the specifi ed user’s profi le, so you can populate the various
input controls with profi le values. If no username is specifi ed, the current user’s profi le will be loaded:

Protected Sub Page_Load(ByVal sender As Object, ByVal e As System.EventArgs)
Handles Me.Load
 If Not Me.IsPostBack Then

 ‘ if the UserName property contains an empty string, retrieve the profile
 ‘ for the current user, otherwise for the specified user
 Dim profile As ProfileBase = GetProfile()
 ddlSubscriptions.SelectedValue = profile.GetProfileGroup(“Preferences”)
.GetPropertyValue(“Newsletter”).ToString
 ddlLanguages.SelectedValue = profile.GetProfileGroup(“Preferences”)
.GetPropertyValue(“Culture”)
 txtFirstName.Text = profile.GetPropertyValue(“FirstName”)
 txtLastName.Text = profile.GetPropertyValue(“LastName”)

 If String.IsNullOrEmpty(Gender) Then
 ddlGenders.SelectedValue = Gender
 Else
 ddlGenders.SelectedValue = profile.GetPropertyValue(“Gender”)

87586c04.indd 20187586c04.indd 201 9/13/09 10:15:55 PM9/13/09 10:15:55 PM

202

Chapter 4: Membership and User Profi ling

 End If

 If Not profile.GetPropertyValue(“BirthDate”) = DateTime.MinValue Then
 txtBirthDate.Text = profile.GetPropertyValue(“BirthDate”)
.ToShortDateString
 End If
 ddlOccupations.SelectedValue = profile.GetPropertyValue(“Occupation”)
 txtWebsite.Text = profile.GetPropertyValue(“Website”)
 txtStreet.Text = profile.GetProfileGroup(“Address”)
.GetPropertyValue(“Street”)
 txtCity.Text = profile.GetProfileGroup(“Address”).GetPropertyValue(“City”)
 txtPostalCode.Text =
profile.GetProfileGroup(“Address”).GetPropertyValue(“PostalCode”)
 ddlState.SelectedValue =
profile.GetProfileGroup(“Address”).GetPropertyValue(“State”)

 If String.IsNullOrEmpty(Country) Then
 ddlCountry.SelectedValue = Country
 Else
 ddlCountry.SelectedValue =
profile.GetProfileGroup(“Address”).GetPropertyValue(“Country”)
 End If

 txtPhone.Text = profile.GetProfileGroup(“Contacts”)
.GetPropertyValue(“Phone”)
 txtFax.Text = profile.GetProfileGroup(“Contacts”).GetPropertyValue(“Fax”)
 txtAvatarUrl.Text = GetAvatarURL()
 txtSignature.Text = profile.GetProfileGroup(“Forum”)
.GetPropertyValue(“Signature”)
 End If
End Sub

This control doesn’t have a Submit button to initiate saving profi le values, so create a public method
named SaveProfile that the host page will call when needed:

 Public Sub SaveProfile()
 ‘ if the UserName property contains an emtpy string, save the
current user’s profile,
 ‘ othwerwise save the profile for the specified user
 Dim profile As ProfileBase = GetProfile()

 profile.GetProfileGroup(“Preferences”).SetPropertyValue(“Newsletter”,
CType([Enum].Parse(_
 GetType(SubscriptionType), ddlSubscriptions.SelectedValue),
SubscriptionType))
 profile.GetProfileGroup(“Preferences”).SetPropertyValue(“Culture”,
ddlLanguages.SelectedValue)
 profile.SetPropertyValue(“FirstName”, txtFirstName.Text)
 profile.SetPropertyValue(“LastName”, txtLastName.Text)
 profile.SetPropertyValue(“Gender”, ddlGenders.SelectedValue)
 If txtBirthDate.Text.Trim().Length > 0 Then
 profile.SetPropertyValue(“BirthDate”, DateTime.Parse(txtBirthDate.Text))

87586c04.indd 20287586c04.indd 202 9/13/09 10:15:55 PM9/13/09 10:15:55 PM

203

Chapter 4: Membership and User Profi ling

 End If
 profile.SetPropertyValue(“Occupation”, ddlOccupations.SelectedValue)
 profile.SetPropertyValue(“Website”, txtWebsite.Text)
 profile.GetProfileGroup(“Address”).SetPropertyValue(“Street”, txtStreet.Text)
 profile.GetProfileGroup(“Address”).SetPropertyValue(“City”, txtCity.Text)
 profile.GetProfileGroup(“Address”).SetPropertyValue(“PostalCode”,
txtPostalCode.Text)
 profile.GetProfileGroup(“Address”).SetPropertyValue(“State”,
ddlState.SelectedValue)
 profile.GetProfileGroup(“Address”).SetPropertyValue(“Country”,
ddlCountry.SelectedValue)
 profile.GetProfileGroup(“Contacts”).SetPropertyValue(“Phone”, txtPhone.Text)
 profile.GetProfileGroup(“Contacts”).SetPropertyValue(“Fax”, txtFax.Text)
 profile.GetProfileGroup(“Forum”).SetPropertyValue(“AvatarUrl”,
txtAvatarUrl.Text)
 profile.GetProfileGroup(“Forum”).SetPropertyValue(“Signature”,
txtSignature.Text)
 profile.Save()

 End Sub

The Register Page
Users can create an account for themselves through the Register.aspx page that is linked just below
the login box. This page uses the CreateUserWizard control described earlier. The fi rst step is to create
the account; the user interface for this is implemented by our custom template. The second step allows
the user to fi ll in some profi le settings, and uses the UserProfile control we just developed. The regis-
tration code that follows is pretty long, but it should be easy to follow without further comments:

 <asp:CreateUserWizard runat=”server” ID=”CreateUserWizard1” AutoGeneratePassword
=”False”
 ContinueDestinationPageUrl=”~/Default.aspx”
 FinishDestinationPageUrl=”~/Default.aspx”>
 <WizardSteps>
 <asp:CreateUserWizardStep ID=”CreateUserWizardStep1” runat=”server”>
 <ContentTemplate>
 <div class=”sectiontitle”>
 Create your new account</div>
 <p>
 </p>
 <table cellpadding=”2”>
 <tr>
 <td style=”width: 110px;” class=”fieldname”>
 <asp:Label runat=”server” ID=”lblUserName”
AssociatedControlID=”UserName” Text=”Username:” /></td>
 <td style=”width: 300px;”>
 <asp:TextBox runat=”server” ID=”UserName” Width=”100%” />
</td>
 <td>
 <asp:RequiredFieldValidator ID=”valRequireUserName”
runat=”server” ControlToValidate=”UserName”

87586c04.indd 20387586c04.indd 203 9/13/09 10:15:55 PM9/13/09 10:15:55 PM

204

Chapter 4: Membership and User Profi ling

 SetFocusOnError=”true” Display=”Dynamic” ErrorMessage
=”Username is required.”
 ToolTip=”Username is required.” ValidationGroup=
“CreateUserWizard1”>*</asp:RequiredFieldValidator>
 </td>
 </tr>
 <tr>
 <td class=”fieldname”>
 <asp:Label runat=”server” ID=”lblPassword”
AssociatedControlID=”Password” Text=”Password:” /></td>
 <td>
 <asp:TextBox runat=”server” ID=”Password” TextMode=
“Password” Width=”100%” /></td>
 <td>
 <asp:RequiredFieldValidator ID=”valRequirePassword” runat=
“server” ControlToValidate=”Password”
 SetFocusOnError=”true” Display=”Dynamic” ErrorMessage=
“Password is required.”
 ToolTip=”Password is required.” ValidationGroup=
“CreateUserWizard1”>*</asp:RequiredFieldValidator>
 <asp:RegularExpressionValidator ID=”valPasswordLength”
runat=”server” ControlToValidate=”Password”
 SetFocusOnError=”true” Display=”Dynamic”
ValidationExpression=”\w{5,}” ErrorMessage=”Password must be at least 5
characters long.”
 ToolTip=”Password must be at least 5 characters long.”
ValidationGroup=”CreateUserWizard1”>*</asp:RegularExpressionValidator>
 </td>
 </tr>
 <tr>
 <td class=”fieldname”>
 <asp:Label runat=”server” ID=”lblConfirmPassword”
AssociatedControlID=”ConfirmPassword”
 Text=”Confirm password:” /></td>
 <td>
 <asp:TextBox runat=”server” ID=”ConfirmPassword” TextMode=
“Password” Width=”100%” /></td>
 <td>
 <asp:RequiredFieldValidator ID=”valRequireConfirmPassword”
runat=”server” ControlToValidate=”ConfirmPassword”
 SetFocusOnError=”true” Display=”Dynamic” ErrorMessage=
“Confirm Password is required.”
 ToolTip=”Confirm Password is required.” ValidationGroup
=”CreateUserWizard1”>*</asp:RequiredFieldValidator>
 <asp:CompareValidator ID=”valComparePasswords” runat=
“server” ControlToCompare=”Password”
 SetFocusOnError=”true” ControlToValidate=
“ConfirmPassword” Display=”Dynamic”
 ErrorMessage=”The Password and Confirmation Password
must match.” ValidationGroup=”CreateUserWizard1”>*</asp:CompareValidator>
 </td>
 </tr>

87586c04.indd 20487586c04.indd 204 9/13/09 10:15:55 PM9/13/09 10:15:55 PM

205

Chapter 4: Membership and User Profi ling

 <tr>
 <td class=”fieldname”>
 <asp:Label runat=”server” ID=”lblEmail”
AssociatedControlID=”Email” Text=”E-mail:” /></td>
 <td>
 <asp:TextBox runat=”server” ID=”Email” Width=”100%” Text=
‘<%# Email %>’ ></asp:TextBox></td>
 <td>
 <asp:RequiredFieldValidator ID=”valRequireEmail” runat=
“server” ControlToValidate=”Email”
 SetFocusOnError=”true” Display=”Dynamic” ErrorMessage=
“E-mail is required.” ToolTip=”E-mail is required.”
 ValidationGroup=”CreateUserWizard1”>*
</asp:RequiredFieldValidator>
 <asp:RegularExpressionValidator runat=”server” ID=
“valEmailPattern” Display=”Dynamic”
 SetFocusOnError=”true” ValidationGroup=
“CreateUserWizard1” ControlToValidate=”Email”
 ValidationExpression=”\w+([-+.’]\w+)*@\w+([-.]\w+)*\.
\w+([-.]\w+)*” ErrorMessage=”The e-mail address you specified is not
well-formed.”>*
</asp:RegularExpressionValidator>
 </td>
 </tr>
 <tr>
 <td class=”fieldname”>
 <asp:Label runat=”server” ID=”lblQuestion”
AssociatedControlID=”Question” Text=”Security question:” /></td>
 <td>
 <asp:TextBox runat=”server” ID=”Question” Width=
“100%” /></td>
 <td>
 <asp:RequiredFieldValidator ID=”valRequireQuestion” runat=
“server” ControlToValidate=”Question”
 SetFocusOnError=”true” Display=”Dynamic” ErrorMessage=
“Security question is required.”
 ToolTip=”Security question is required.”
ValidationGroup=”CreateUserWizard1”>*</asp:RequiredFieldValidator>
 </td>
 </tr>
 <tr>
 <td class=”fieldname”>
 <asp:Label runat=”server” ID=”lblAnswer”
AssociatedControlID=”Answer” Text=”Security answer:” /></td>
 <td>
 <asp:TextBox runat=”server” ID=”Answer” Width=
“100%” /></td>
 <td>
 <asp:RequiredFieldValidator ID=”valRequireAnswer” runat=
“server” ControlToValidate=”Answer”
 SetFocusOnError=”true” Display=”Dynamic” ErrorMessage=
“Security answer is required.”

87586c04.indd 20587586c04.indd 205 9/13/09 10:15:55 PM9/13/09 10:15:55 PM

206

Chapter 4: Membership and User Profi ling

 ToolTip=”Security answer is required.” ValidationGroup=
“CreateUserWizard1”>*</asp:RequiredFieldValidator>
 </td>
 </tr>
 <tr>
 <td colspan=”3” style=”text-align: right;”>
 <asp:Label ID=”ErrorMessage” SkinID=”FeedbackKO” runat=
“server” EnableViewState=”False”></asp:Label>
 </td>
 </tr>
 </table>
 <asp:ValidationSummary ValidationGroup=”CreateUserWizard1” ID=
“ValidationSummary1”
 runat=”server” ShowMessageBox=”True” ShowSummary=”False” />
 </ContentTemplate>
 </asp:CreateUserWizardStep>
 <asp:WizardStep ID=”WizardStep1” runat=”server” Title=”Set preferences”>
 <div class=”sectiontitle”>
 Set-up your profile</div>
 <p>
 </p>
 All settings in this section are optional. The address information is
required only if you want to order products from our e-store. However, we ask
you to fill in these details in all cases, because they help us know our target
audience, and improve the site and its contents accordingly. Thank you for your
cooperation!
 <p>
 </p>
 <uc1:UserProfile ID=”UserProfile1” runat=”server” />
 </asp:WizardStep>
 <asp:CompleteWizardStep ID=”CompleteWizardStep1” runat=”server”>
 </asp:CompleteWizardStep>
 </WizardSteps>
 <MailDefinition BodyFileName=”~/RegistrationMail.txt” From=
“webmaster@effectivedotnet.com”
 Subject=”The Beer House: Your registration “>
 </MailDefinition>
 </asp:CreateUserWizard>

The CreateUserWizard’s <MailDefinition> section contains all the settings needed for sending the
confi rmation mail. The most interesting property is BodyFileName, which references a disk fi le contain-
ing the mail’s body text. In this fi le, you will typically write a welcome message, and maybe the credentials
used to register, so that users will be reminded of the username and password that they selected for
your site Following is the content of RegistrationMail.txt that specifi es the body text:

Thank you for registering to The Beer House website! Following are the
credentials you selected for logging in:
UserName: <% UserName %>
Password: <% Password %>

See you online!
- The Beer House Team

87586c04.indd 20687586c04.indd 206 9/13/09 10:15:55 PM9/13/09 10:15:55 PM

207

Chapter 4: Membership and User Profi ling

This example is e-mailing the username and password because this is a low-risk site, and we chose user-
friendliness over the tightest possible security. Besides, I wanted to demonstrate how to use placeholders
in the body text fi le (<% UserName %> and <% Password %>). For serious e-commerce sites or in
situations where your company (or your client) doesn’t approve of e-mailing usernames and passwords,
do not follow this example!

The page’s code-behind fi le is impressively short: you only need to handle the wizard’s FinishButtonClick
event and have it call the UserProfile’s SaveProfile method. The code that implements the registra-
tion it not placed here because it’s handled by the user control:

 Protected Sub CreateUserWizard1_FinishButtonClick(ByVal sender As Object,
ByVal e As System.Web.UI.WebControls.WizardNavigationEventArgs)
Handles CreateUserWizard1.FinishButtonClick
 UserProfile1.SaveProfile()
End Sub

Figure 4-15 shows the registration page on the fi rst step of the wizard.

Figure 4-15

Figure 4-16 shows the second step, enabling users to set up their profi le.

87586c04.indd 20787586c04.indd 207 9/13/09 10:15:55 PM9/13/09 10:15:55 PM

208

Chapter 4: Membership and User Profi ling

Figure 4-16

The PasswordRecovery Page
Under the login box is a link to PasswordRecover.aspx, which allows a user to recover a forgotten
password, by sending an e-mail with the credentials. The page uses a PasswordRecovery control with
a custom template for the two steps (entering the username and answering the secret question). The
code follows:

<%@ Page Language=”VB” MasterPageFile=”~/Template.master” AutoEventWireup=”true”
 CodeFile=”PasswordRecovery.aspx.vb” Inherits=”PasswordRecovery”
 Title=”The Beer House - Password Recovery” %>
<asp:Content ID=”MainContent” ContentPlaceHolderID=”MainContent” Runat=”Server”>
<div class=”sectiontitle”>Recover your password</div>
<p></p>If you forgot your password, you can use this page to have it sent to you
by e-mail. <p></p>
<asp:PasswordRecovery ID=”PasswordRecovery1” runat=”server”>
 <UserNameTemplate>
 <div class=”sectionsubtitle”>Step 1: enter your username</div>
 <p></p>
 <table cellpadding=”2”>
 <tr>
 <td width=”80” class=”fieldname”>Username:</td>
 <td width=”300”>
 <asp:TextBox ID=”UserName” runat=”server” Width=”100%” />

87586c04.indd 20887586c04.indd 208 9/13/09 10:15:55 PM9/13/09 10:15:55 PM

209

Chapter 4: Membership and User Profi ling

 </td>
 <td>
 <asp:RequiredFieldValidator ID=”valRequireUserName” runat=”server”
 ControlToValidate=”UserName” SetFocusOnError=”true”
 Display=”Dynamic” ErrorMessage=”Username is required.”
 ValidationGroup=”PasswordRecovery1”>*
 </asp:RequiredFieldValidator>
 </td>
 </tr>
 <td colspan=”3” align=”right”>
 <asp:Label ID=”FailureText” runat=”server” SkinID=”FeedbackKO”
 EnableViewState=”False” />
 <asp:Button ID=”SubmitButton” runat=”server” CommandName=”Submit”
 Text=”Submit” ValidationGroup=”PasswordRecovery1” />
 </td>
 </table>
 </UserNameTemplate>
 <QuestionTemplate>
 <div class=”sectionsubtitle”>Step 2: answer the following question</div>
 <p></p>
 <table cellpadding=”2”>
 <tr>
 <td width=”80” class=”fieldname”>Username:</td>
 <td width=”300”>
 <asp:Literal ID=”UserName” runat=”server” />
 </td>
 <td></td>
 </tr>
 <tr>
 <td class=”fieldname”>Question:</td>
 <td><asp:Literal ID=”Question” runat=”server”></asp:Literal></td>
 <td></td>
 </tr>
 <tr>
 <td class=”fieldname”>Answer:</td>
 <td><asp:TextBox ID=”Answer” runat=”server” Width=”100%” />
 </td>
 <td>
 <asp:RequiredFieldValidator ID=”valRequireAnswer” runat=”server”
 ControlToValidate=”Answer” SetFocusOnError=”true”
 Display=”Dynamic” ErrorMessage=”Answer is required.”
 ValidationGroup=”PasswordRecovery1”>*
 </asp:RequiredFieldValidator>
 </td>
 </tr>
 <tr>
 <td colspan=”3” align=”right”>
 <asp:Label ID=”FailureText” runat=”server”
 SkinID=”FeedbackKO” EnableViewState=”False” />
 <asp:Button ID=”SubmitButton” runat=”server” CommandName=”Submit”
 Text=”Submit” ValidationGroup=”PasswordRecovery1” />
 </td>

87586c04.indd 20987586c04.indd 209 9/13/09 10:15:55 PM9/13/09 10:15:55 PM

210

Chapter 4: Membership and User Profi ling

 </tr>
 </table>
 </QuestionTemplate>
 <SuccessTemplate>
 <asp:Label runat=”server” ID=”lblSuccess” SkinID=”FeedbackOK”
 Text=”Your password has been sent to you.” />
 </SuccessTemplate>
 <MailDefinition
 BodyFileName=”~/PasswordRecoveryMail.txt”
 From=”webmaster@effectivedotnet.com”
 Subject=”The Beer House: your password”>
 </MailDefinition>
</asp:PasswordRecovery>
</asp:Content>

The body of the mail sent with the credentials is almost the same as the previous one, so we won’t show
it again here. Figure 4-17 shows a couple of screenshots for the two-step password recovery process.

Figure 4-17

The EditProfi le Page
Once users log in, they can go to the EditProfile.aspx page, linked in the top-right corner of any page,
and change their password or other profi le settings. The password-changing functionality is implemented
by way of a custom ChangePassword control, and the profi le settings functionality is handled by the

87586c04.indd 21087586c04.indd 210 9/13/09 10:15:55 PM9/13/09 10:15:55 PM

211

Chapter 4: Membership and User Profi ling

UserProfile control we already developed. Following is the code for the EditProfile.aspx fi le
(with some layout code removed for clarity and brevity):

 <div class=”sectiontitle”>
 Change your password</div>
 <p>
 </p>
 <asp:ChangePassword ID=”ChangePassword1” runat=”server”>
 <ChangePasswordTemplate>
 <table cellpadding=”2”>
 <tr>
 <td style=”width: 110px;” class=”fieldname”>
 <asp:Label runat=”server” ID=”lblCurrentPassword”
AssociatedControlID=”CurrentPassword”
 Text=”Current password:” />
 </td>
 <td style=”width: 300px;”>
 <asp:TextBox ID=”CurrentPassword” TextMode=”Password”
 runat=”server” Width=”100%”></asp:TextBox>
 </td>
 <td>
 <asp:RequiredFieldValidator ID=”valRequireCurrentPassword”
 runat=”server” ControlToValidate=”CurrentPassword”
 SetFocusOnError=”true” Display=”Dynamic”
ErrorMessage=”Password is required.”
 ToolTip=”Password is required.”
ValidationGroup=”ChangePassword1”>*</asp:RequiredFieldValidator>
 </td>
 </tr>
 <tr>
 <td class=”fieldname”>
 <asp:Label runat=”server” ID=”lblNewPassword”
 AssociatedControlID=”NewPassword” Text=”New password:” />
 </td>
 <td>
 <asp:TextBox ID=”NewPassword” TextMode=”Password”
runat=”server” Width=”100%”></asp:TextBox>
 </td>
 <td>
 <asp:RequiredFieldValidator ID=”valRequireNewPassword”
runat=”server” ControlToValidate=”NewPassword”
 SetFocusOnError=”true” Display=”Dynamic”
ErrorMessage=”New Password is required.”
 ToolTip=”New Password is required.”
ValidationGroup=”ChangePassword1”>*</asp:RequiredFieldValidator>
 <asp:RegularExpressionValidator ID=”valPasswordLength”
runat=”server” ControlToValidate=”NewPassword”
 SetFocusOnError=”true” Display=”Dynamic”
ValidationExpression=”\w{5,}” ErrorMessage=”New Password must be at
least 5 characters long.”
 ToolTip=”New Password must be at least 5 characters long.”
ValidationGroup=”ChangePassword1”>*</asp:RegularExpressionValidator>
 </td>
 </tr>

87586c04.indd 21187586c04.indd 211 9/13/09 10:15:55 PM9/13/09 10:15:55 PM

212

Chapter 4: Membership and User Profi ling

 <tr>
 <td class=”fieldname”>
 <asp:Label runat=”server” ID=”lblConfirmPassword”
AssociatedControlID=”ConfirmNewPassword”
 Text=”Confirm password:” />
 </td>
 <td>
 <asp:TextBox ID=”ConfirmNewPassword” TextMode=”Password” runat=
“server” Width=”100%”></asp:TextBox>
 </td>
 <td>
 <asp:RequiredFieldValidator ID=”valRequireConfirmNewPassword”
runat=”server” ControlToValidate=”ConfirmNewPassword”
 SetFocusOnError=”true” Display=”Dynamic” ErrorMessage=
“Confirm Password is required.”
 ToolTip=”Confirm Password is required.” ValidationGroup=
“ChangePassword1”>*</asp:RequiredFieldValidator>
 <asp:CompareValidator ID=”valComparePasswords” runat=”server”
ControlToCompare=”NewPassword”
 ControlToValidate=”ConfirmNewPassword” SetFocusOnError=
“true” Display=”Dynamic”
 ErrorMessage=”The Confirm Password must match the New
Password entry.” ValidationGroup=”ChangePassword1”>*</asp:CompareValidator>
 </td>
 </tr>
 <td colspan=”3” style=”text-align: right;”>
 <asp:Label ID=”FailureText” runat=”server” SkinID=
“FeedbackKO” EnableViewState=”False” />
 <asp:Button ID=”ChangePasswordPushButton” runat=”server”
CommandName=”ChangePassword”
 Text=”Change Password” ValidationGroup=”ChangePassword1” />
 </td>
 </table>
 <asp:ValidationSummary runat=”server” ID=”valChangePasswordSummary”
 ValidationGroup=”ChangePassword1”
 ShowMessageBox=”true” ShowSummary=”false” />
 </ChangePasswordTemplate>
 <SuccessTemplate>
 <asp:Label runat=”server” ID=”lblSuccess” SkinID=”FeedbackOK” Text=
“Your password has been changed successfully.” />
 </SuccessTemplate>
 <MailDefinition BodyFileName=”~/ChangePasswordMail.txt” From=
“webmaster@effectivedotnet.com”
 Subject=”The Beer House: password changed”>
 </MailDefinition>
 </asp:ChangePassword>
 <p>
 </p>
 <hr style=”width: 100%; height: 1px;” noshade=”noshade” />
 <div class=”sectiontitle”>
 Change your profile</div>
 <p>
 </p>
 All settings in this section are required only if you want to order products
from our e-store. However, we ask you to fill in these details in all cases,

87586c04.indd 21287586c04.indd 212 9/13/09 10:15:55 PM9/13/09 10:15:55 PM

213

Chapter 4: Membership and User Profi ling

because they help us know our target audience, and improve the site and its
contents accordingly. Thank you for your cooperation!
 <p>
 </p>
 <uc1:UserProfile ID=”UserProfile1” runat=”server” />
 <table cellpadding=”2” style=”width: 525px;”>
 <tr>
 <td style=”text-align: right;”>
 <asp:Label runat=”server” ID=”lblFeedbackOK” SkinID=”FeedbackOK” Text
=”Profile updated successfully”
 Visible=”false” />
 <asp:Button runat=”server” ID=”btnUpdate” ValidationGroup=
“EditProfile” Text=”Update Profile”
 OnClick=”btnUpdate_Click” />
 </td>
 </tr>
 </table>

In the code-behind, you don’t have to do anything except handle the Update Profi le Submit button’s
Click event, where you call the UserProfile control’s SaveProfile method, and then show a confi r-
mation message:

Protected Sub btnUpdate_Click(ByVal sender As Object, ByVal e As System.EventArgs)
Handles btnUpdate.Click
 UserProfile1.SaveProfile()
 lblFeedbackOK.Visible = True
End Sub

Figure 4-18 shows part of this page at runtime.

Figure 4-18

87586c04.indd 21387586c04.indd 213 9/13/09 10:15:55 PM9/13/09 10:15:55 PM

214

Chapter 4: Membership and User Profi ling

The last thing to do on this page is to ensure that anonymous users — who, of course, don’t have a
password or profi le to change — cannot access this page. To do this, you can create a <location> sec-
tion for this page in the root web.config and then write an <authorization> subsection that denies
access to the anonymous user (identifi ed by “?”) and grant access to everyone else. This is the code you
should add to the web.config fi le:

<configuration xmlns=”http://schemas.microsoft.com/.NetConfiguration/v2.0”>
 <system.web> <!-- some settings here...-- > </system.web>
 <location path=”EditProfile.aspx”>
 <system.web>
 <authorization>
 <deny users=”?” />
 <allow users=”*” />
 </authorization>
 </system.web>
 </location>
</configuration>

Creating an AJAX Login Dialog
The access denied page is great for protecting resources from users that do not have permission to view
them, but in today’s competitive market, richer user experiences are driving competition. With the use
of some CSS, AJAX, and the ASP.NET AJAX AuthenticateService, we can add a rich login experience
that offers both username/password and OpenId authentication. This solution consists of two DIV
tags that are hidden by default and located at the bottom of the page’s markup. When the user clicks
the Login link located in the page’s header, the faux login dialog is rendered on top of the page. The
PopUpBackGround DIV has an opaque gray background that simulates the feel of the site being dis-
abled and even a sense of security. This looks somewhat similar to the experience a user has when they
use CardSpace. Since the DIV is set to expand to the full size of the browser window, the user cannot
click or interact with anything on the page, also fostering this sense of security.

Layered on top of the PopUpBackGround DIV is the LoginDlg DIV. This DIV contains the controls needed
to collect the user’s credentials or OpenId URL. It is composed of some HTML markup and HTML input
elements. Raw HTML elements are used because Web Controls are much more complicated to work
with when AJAX is involved because of the names generated by the ASP.NET framework on the server.
While working with Web Controls is possible, it is very complicated compared to using pure HTML
elements.

 <div id=”PopUpBackGround”>
 </div>
 <div id=”LoginDlg”>
 <div id=”dLoginError” />
 <div id=”AnonymousView”>
 <img src=”~/images/lock.gif” runat=”server” hspace=”5” vspace=”12” align
=”left” alt=”Login to the Beer House.” />
 Username:
 <input id=”txtUsername” type=”text” onkeypress=”ValidateLoginValues();”
/>

 Password:
 <input id=”pwdPassword” type=”password” onkeypress=
“ValidateLoginValues();” />

87586c04.indd 21487586c04.indd 214 9/13/09 10:15:55 PM9/13/09 10:15:55 PM

215

Chapter 4: Membership and User Profi ling

 <input id=”chkRememberMe” type=”checkbox” />Remember Me

 <input id=”btnCancel” type=”button” value=”Cancel” /><input id=
“btnLogIn” type=”button”
 value=”Login” />

 <a href=”~/Register.aspx” runat=”server” class=
“LoginDialog”>Register

Retrieve Password

 <div id=”dOpenId”>
 Login with your OpenId.

 <asp:TextBox runat=”server” type=”text” ID=”txtOpenId” class=
“openid_identifier_dlg” />
 <asp:Button runat=”server” ID=”btnLoginOpenId” Text=”Go” />
 </div>
 </div>
 <div id=”LoggedInView” style=”display: none;”>
 Logged in.

 <input id=”btnLogOut” type=”button” value=”Log Out” />
 </div>
 </div>

<div id=”dLoginLinks”>
<div id=”dLoginMenu”>

<a id=”btnDisplayLogin” href=”javascript:DisplayLoginHandler();” class=
“LoginLink”>Login</div>
<div id=”dLogoutMenu”>
 <div id=”dUserName”></div>

<a id=”btnDisplayLogout” href=”javascript:logoutHandler();” class=
“LoginLink”>Log Out
</div>
</div>

The corresponding style properties:

/* Modal Dialog */
#PopUpBackGround
{
 z-index: 1400;
 position: fixed;
 top: 0;
 left: 0;
 height: 100%;
 width: 100%;
 background-color: #333333;
 filter: alpha(opacity=70);
 opacity: 0.7;
 display:none;
}

#LoginDlg
{
 background-color : White;

87586c04.indd 21587586c04.indd 215 9/13/09 10:15:56 PM9/13/09 10:15:56 PM

216

Chapter 4: Membership and User Profi ling

 left: 275px;
 top: 150px;
 width:325px;
 height : 190px;
 z-index : 1500;
 position :fixed;
 border: thin ridge #CC6600;
 padding: 2px 2px 2px 2px;
 display :none;
}

The username and password input fi elds both call the ValidateLoginValues function as keys are
pressed. This does a couple of things; it checks to see if the user pressed the Enter key and verifi es that
there is text in each fi eld before the authentication occurs. Users typically try pressing the Enter key to
submit the page instead of clicking buttons, so handling this action is important.

function ValidateLoginValues() {

 if (event.which || event.keyCode) {
 if ((event.which == 13) || (event.keyCode == 13)) {

 Username = $get(‘txtUsername’);
 Password = $get(‘pwdPassword’);

 if (Username.value.length > 0 && Password.value.length > 0) {

 ProcessEnter(‘btnLogIn’);

 } else {

 alert(‘You must enter both a Username and a Password to authenticate.’);

 }
 }
 }
}

The ProcessEnter function simulates the Submit button being pressed, thus initiating the authentica-
tion process.

function ProcessEnter(btnSubmit) {

 if (event.which || event.keyCode) {
 if ((event.which == 13) || (event.keyCode == 13)) {
 $get(btnSubmit).click();
 return false;
 }
 } else {
 return true;
 };

}

87586c04.indd 21687586c04.indd 216 9/13/09 10:15:56 PM9/13/09 10:15:56 PM

217

Chapter 4: Membership and User Profi ling

The reason that you do not have to explicitly hook up a method to the Submit button’s click event is it was
registered in the site’s JavaScript fi le when it was loaded. The ASP.NET AJAX framework has the concept
of wiring event handlers in a very similar fashion as we do in server-side code. The $addHandler method
takes the element ID, the client-side event name and the function to associate to manage this for us. Here
are some examples from the Beer House’s TBH.js fi le:

// Hook up the click events of the log in and log out buttons.
if ($get(‘btnLogIn’) != null) {
 $addHandler($get(‘btnLogIn’), ‘click’, loginHandler);
}
if (null != $get(‘btnLogOut’)) {
 $addHandler($get(‘btnLogOut’), ‘click’, logoutHandler);
}
if (null != $get(‘btnCancel’)) {
 $addHandler($get(‘btnCancel’), ‘click’, CancelLoginHandler);
}

Here are the corresponding client-side functions:

var ssa = Sys.Services.AuthenticationService;

function CancelLoginHandler() {
 $get(‘LoginDlg’).style.display = ‘none’;
 $get(‘PopUpBackGround’).style.display = ‘none’;
}

function loginHandler() {
 var username = $get(‘txtUsername’).value;
 var password = $get(‘pwdPassword’).value;
 var isPersistent = $get(‘chkRememberMe’).checked;
 var customInfo = null;
 var redirectUrl = null;
 // Log them in.
 ssa.login(username,
 password,
 isPersistent,
 customInfo,
 redirectUrl,
 onLoginComplete,
 onError);

}

function logoutHandler() {
 // Log them out.
 var redirectUrl = null;
 var userContext = null;
 ssa.logout(redirectUrl,
 onLogoutComplete,
 onError,
 userContext);
}

87586c04.indd 21787586c04.indd 217 9/13/09 10:15:56 PM9/13/09 10:15:56 PM

218

Chapter 4: Membership and User Profi ling

The loginHandler function gets the username and password supplied by the user and calls the
Authentication Services Login method. It passes the name of the function to call upon a completed
login (onLoginComplete) and when an error occurs (onError).

The onLoginComplete function checks the result, meaning whether authentication was successful, and
changes the on-screen display of different sections of the page for an authenticated user. If the authenti-
cation failed, a simple alert dialog is displayed to inform the user that the credentials failed authentication.

function onLoginComplete(result, context, methodName) {

 if (result) {
 // Logged in. Hide the anonymous view.
 $get(‘LoggedInView’).style.display = ‘block’;
 $get(‘AnonymousView’).style.display = ‘none’;
 $get(‘LoginDlg’).style.display = ‘none’;
 $get(‘PopUpBackGround’).style.display = ‘none’;

 $get(‘dLoginMenu’).style.display = ‘none’;
 $get(‘dLogoutMenu’).style.display = ‘block’;

 LoadProfile();
 loadRoles();

 } else {
 alert(‘Sorry those Credentials did not work.’);
 $get(‘txtUsername’).value = ‘’;
 $get(‘pwdPassword’).value = ‘’;

 }
}

Similarly, when a user logs out of the site, the visible display of the page is changed.

function onLogoutComplete(result, context, methodName) {
 $get(‘dLoginMenu’).style.display = ‘’;
 $get(‘dLogoutMenu’).style.display = ‘none’;
 $get(“adminView”).style.display = ‘none’;
}

A simple error alert dialog is displayed if an exception was thrown. This method passes the exception
message to the alert dialog. That’s not necessarily the best idea for security or user-friendliness, but it
serves the purpose for now.

function onError(error, context, methodName) {
 alert(error.get_message());
}

If you review the onLoginComplete function, you will see that it calls the LoadProfile function. This
function loads the profi le service and provides access to the user’s associated profi le settings. Once the
profi le is loaded, the site displays a simple welcome message containing the user’s fi rst name.

var profileService = Sys.Services.ProfileService;
var propertyNames = new Array();

// Loads the profile of the current

87586c04.indd 21887586c04.indd 218 9/13/09 10:15:56 PM9/13/09 10:15:56 PM

219

Chapter 4: Membership and User Profi ling

// authenticated user.
function LoadProfile() {

 Sys.Services.ProfileService.load(null,
 OnLoadCompleted, OnProfileFailed, null);

}

// Reads the profile information and displays it.
function OnLoadCompleted(numProperties, userContext, methodName) {

 firstName = Sys.Services.ProfileService.properties.FirstName;

 if (firstName.length > 0){
 alert(“Welcome “ + firstName);
 }

}

The ShowProfileInfo function checks to see if a full name can be displayed; if so, it sets the
innerHTML of the dUserName DIV, located in the site’s header, to a link for the user to edit his profi le
with his name hyperlinked. If the full name cannot be composed, then the user simply sees an Update
Profi le link in the same location.

function ShowProfileInfo() {

 if (null != $get(‘dUserName’)) {

 if (undefined != Sys.Services.ProfileService.properties.FirstName &&
 undefined != Sys.Services.ProfileService.properties.LastName) {

 $get(‘dUserName’).innerHTML =
 ‘’ +

 Sys.Services.ProfileService.properties.FirstName + ‘ ‘ +
 Sys.Services.ProfileService.properties.LastName + ‘
’ +
 ‘Edit Profile’;

 } else {
 $get(‘dUserName’).innerHTML =
 ‘Update Profile
’
 }
 }

}

Another function called by onLoginComplete is the loadRoles. It calls RoleService to load the role
information for the site. Like the authentication and profi le services, it also has on complete, failed, and
error method callbacks that need to be set.

function loadRoles() {
 Sys.Services.RoleService.load(onLoadRolesCompleted, onLoadRolesFailed, null);
}

function onLoadRolesCompleted(result, userContext, methodName) {
 if (Sys.Services.RoleService.isUserInRole(“Administrators”)) {

87586c04.indd 21987586c04.indd 219 9/13/09 10:15:56 PM9/13/09 10:15:56 PM

220

Chapter 4: Membership and User Profi ling

 $get(“adminView”).style.display = ‘’;
 $get(“adminView”).innerHTML = “Hello Admin”;
 }
}

function onLoadRolesFailed(error, userContext, methodName) {
 alert(error.get_message());
}

If the user wants to authenticate him- or herself via OpenId, this is handled by calling the GoOpenId
function. This will open the user’s OpenId URL so he can be authenticated.

function GoOpenId() {
 OpenIdURL = $get(txtOpenId);
 window.open(OpenIdURL.value, ‘MyOpenId’, null, null);
}

Persisting the Favorite Theme between Sessions
In Chapter 2, we created a base page class from which all other pages inherit. One of the tasks of this
class is to set the page’s Theme property according to what is stored in a Session variable, which tells
us what theme the user selected from the Themes drop-down list near the top-right corner. The problem
with Session variables is that they only exist as long as the user’s session is active, so we’ll have to store
this value in a persistent location. Thankfully, it turns out that we have a great place to store this — in
the user profi le. The following code highlights the changes done to the base page to allow us to save the
Profile.Preferences.Theme property in the user’s profi le, and because we’re putting it
in the base page class, we will not have to do this in all the other pages:

Private Sub Page_PreInit(ByVal sender As Object, ByVal e As System.EventArgs)
Handles Me.PreInit

Dim id As String = Helpers.ThemesSelectorID

If String.IsNullOrEmpty(id) = False Then

 ‘ if this is a postback caused by the theme selector’s dropdownlist,
 ‘ retrieve the selected theme and use it for the current page request

If Me.Request.Form(“__EVENTTARGET”) = id AndAlso _
 Not String.IsNullOrEmpty(Me.Request.Form(id)) Then
 Me.Theme = Me.Request.Form(id)
 Helpers.SetProfileTheme(profile, Me.Theme)
 Else
 ‘ if not a postback, or a postback caused by controls other then
 ‘ the theme selector,
 ‘ set the page’s theme with the value found in the user’s profile,
 ‘ if present
 If Not String.IsNullOrEmpty(Helpers.GetProfileTheme(profile)) Then
 Me.Theme = Helpers.GetProfileTheme(profile)
 End If

87586c04.indd 22087586c04.indd 220 9/13/09 10:15:56 PM9/13/09 10:15:56 PM

221

Chapter 4: Membership and User Profi ling

 End If
End If

End Sub

As mentioned before, we must also handle the Profile_MigrateAnonymous global event, so that when
an anonymous user selects a theme and then logs in, his or her favorite theme will be migrated from
the anonymous profi le to the authenticated one. After this, the old profi le can be deleted from the data
store, and the anonymous ID can be deleted as well. Following is the complete code:

Sub Profile_MigrateAnonymous(ByVal sender As Object, ByVal e As
ProfileMigrateEventArgs)
 ‘ get a reference to the previously anonymous user’s profile
 Dim anonProfile As ProfileBase = ProfileBase.Create(e.AnonymousID)
 ‘ if set, copy its Theme to the current user’s profile
 If Not String.IsNullOrEmpty(anonProfile.GetProfileGroup(“Preferences”)
.GetPropertyValue(“Theme”)) Then
 Profile.Preferences.Theme = anonProfile.GetProfileGroup(“Preferences”)
.GetPropertyValue(“Theme”)
 End If
 ‘ delete the anonymous profile
 ProfileManager.DeleteProfile(e.AnonymousID)
 AnonymousIdentificationModule.ClearAnonymousIdentifier()
End Sub

The Administration Section
Now that the end-user part of the work is done, we only have the administration section to complete.
The ~/Admin/Default.aspx page linked to the Admin menu item is the administrator’s home page,
which contains links to all the administrative functions. First, we will develop the page used to manage
users and their profi les. To protect all the pages placed under the Admin folder against unauthorized
access, you should add a web.config fi le under this ~/Admin folder, and write an <authorization>
section that grants access to the Administrators role and denies access to everyone else. In the Design
section is a sample snippet to demonstrate this.

The Admin Master Page
In Chapter 2, we discussed the use of master pages and CSS to create a consistent user interface for
the public facing website. The same techniques are just as important for the site’s administration. The
administrative section has its own dedicated master page, which primarily differs from the public site’s
layout by having an accordion panel to use for navigation in the admin area.

The Accordion control is actually a part of the ASP.NET AJAX control toolkit, a set of free controls produced
by Microsoft that extend the ASP.NET AJAX framework (www.codeplex.com/AjaxControlToolkit). The
version I am using with this site is 3.0.20820; you should check the project’s page to use the most current
bits as they change from time to time.

The Accordion control allows multiple panes to be defi ned, but only one is visible at a time. Each of
the panels is collapsible, meaning that they are neatly hidden from the user when they are not needed.

87586c04.indd 22187586c04.indd 221 9/13/09 10:15:56 PM9/13/09 10:15:56 PM

222

Chapter 4: Membership and User Profi ling

The user can select the pane he or she wants to see by clicking on the visible header. In the Beer House
administrative section, the header defi nes a module’s administrative pages and tasks.

<ajaxToolkit:Accordion ID=”aAdminMenu” runat=”server” FadeTransitions=”false”
 FramesPerSecond=”100”
 TransitionDuration=”250” CssClass=”accordion” HeaderCssClass=”header”
ContentCssClass=”content” RequireOpenedPane=”True” AutoSize=”None”>
<Panes>

<ajaxToolkit:AccordionPane ID=”apArticles” runat=”server”>

<!-- Content (ListView) -- >

</ajaxToolkit:AccordionPane>

<!-- Other Panes -- >
</Panes>
</ajaxToolkit:Accordion>

Inside each pane is a dedicated ListView containing links to the administrative duties of the module.
Typically, this includes links to manage any items as well as adding new items. The lists are actually
manually built by calling a series of methods in a AdminMenuItems class, but you could drive them
from a table or confi guration setting. Considering the size and scope of the Beer House site, it is simpler
to create a class to manually build the navigation. Each of the methods in the AdminMenuItems class
is a shared method that builds an ArrayList of AdminMenuItems. An AdminMenuItem contains a
MenuName, ImageURL and URL property. The MenuName is the test displayed in the hyperlink to the
page. The ImageURL is the path to an associated image icon. The URL is the path to the actual page
to be loaded.

Public Shared Function FetchSecurityMenuItems() As ArrayList

 Dim userItems As New ArrayList()
 userItems.Add(New AdminMenuItem(“Users”, “ManageUsers.aspx”))
 userItems.Add(New AdminMenuItem(“New User”, “AddEditUser.aspx”))
 userItems.Add(New AdminMenuItem(“Roles”, “ManageRoles.aspx”))
 userItems.Add(New AdminMenuItem(“New Role”, “AddEditRole.aspx”))

 Return userItems

End Function

The AdminMenuItem has several overloaded constructors; I am using the version that accepts the
MenuName and URL. This creates a simple text-based navigation list. The FetchSecurityMenuItems
method returns an ArrayList of AdminMenuItems that are ultimately bound to the ListView in the
security panel of the Accordion control.

Private Sub BindNavItems()

 ‘Other Admin Menu ListView binding code

 lvSecurity.DataSource = AdminMenuItems.FetchSecurityMenuItems
 lvSecurity.DataBind()

End Sub

87586c04.indd 22287586c04.indd 222 9/13/09 10:15:56 PM9/13/09 10:15:56 PM

223

Chapter 4: Membership and User Profi ling

Each AccordionPane in the Accordion has a header that list what the pane contains, for example the
Security pane holds links to manage users and roles. The Header template defi nes the content listed in
the pane’s header, which is always visible. When the user clicks on the header, it will expand if it is not
the currently visible pane, and the open pane will contract.

The Content template defi nes the elements contained in the expanded pane. For the administration
navigation, this means the ListView bound to the module’s admin links. Each of the ListView holds
an unordered list (), with each list item () containing the navigational link.

<ajaxToolkit:AccordionPane ID=”apSecurity” runat=”server”>
<Header>

<div>
 Security

</div>
</Header>
<Content>

<asp:ListView ID=”lvSecurity” runat=”server”>

<LayoutTemplate>

 <li id=”itemPlaceholder” runat=”server” />

</LayoutTemplate>

<ItemTemplate>

 <a href=”<%#Eval(“URL”)%>”>

 <%#Eval(“MenuName”)%>

</ItemTemplate>

</asp:ListView>
</Content>
</ajaxToolkit:AccordionPane>

The Accordion completes its visual look by applying a series of styles that assigns background images
and font colors.

/* Accordion */

.accordion
{
 font-size:8.5pt;
 font-family:Tahoma;
 background:url(images/item_bg.gif);
}

87586c04.indd 22387586c04.indd 223 9/13/09 10:15:56 PM9/13/09 10:15:56 PM

224

Chapter 4: Membership and User Profi ling

.accordion .header
{
 cursor: pointer;
 background: url(images/hd_bg.gif) repeat-x;
 border-bottom: solid 1px #57566f;
 border-bottom-color: #800000;
}
.accordion .header DIV
{
 cursor:pointer;
 height:30px;
 padding-left:40px;
 background-color:Transparent;
 background-position:center left;
 background-repeat:no-repeat;
}
.accordion .header SPAN
{
 cursor:pointer;
 font-weight:bold;
 display:block;
 padding-top:8px;
 color:#fff;
}
.accordion .header:hover
{
 cursor:pointer;
 height:31px;
 background-color:Transparent;
 background:url(images/hd_hover_bg.gif) repeat-x;
 border-bottom:none;
}
.accordion UL
{
 padding:0;
 margin:5px 5px 5px 15px;
 list-style-type:none;
}
.accordion LI
{
 background-color:Transparent;
 background-repeat:no-repeat;
 background-position:left center;
 vertical-align:middle;
 padding:6px 5px 6px 25px;
 cursor:hand;
}
.accordion LI DIV
{
 padding-left: 10px;
 color: #993333;
 cursor: hand;
}
.accordion LI:hover

87586c04.indd 22487586c04.indd 224 9/13/09 10:15:56 PM9/13/09 10:15:56 PM

225

Chapter 4: Membership and User Profi ling

{
 text-decoration:underline;
}

The balance of the Admin master page is very similar to the public master page. The menu links refer to
the primary management pages for the related modules instead of the public pages.

The ManageUsers Administrative Page
This page’s user interface can be divided into three parts:

 1. The fi rst part tells the administrator the number of registered users and how many of them are
currently online.

 2. The second part provides controls for fi nding and listing the users. There is an “alphabet bar”
with all the letters of the alphabet; when one is clicked, a grid is fi lled with all the users whose
names start with that letter. Additionally, an All link is present to show all users with a single
click. The search functionality allows administrators to search for users by providing a partial
username or e-mail address.

 3. The third part of the page contains a grid that lists users and some of their properties.

The following code provides the user interface for the fi rst two parts:

<asp:UpdatePanel runat=”server” ID=”uppnlUsers”>
 <ContentTemplate>
 <table style=”width: 95%”>
 <tr>
 <td>
 <p>
 </p>
 - Total registered users:
 <asp:Literal runat=”server” ID=”lblTotUsers” />

 - Users online now:
 <asp:Literal runat=”server” ID=”lblOnlineUsers” />

 <p>
 </p>
 Click one of the following link to display all
users whose name begins with that
 letter:
 <p>
 </p>
 <asp:ListView runat=”server” ID=”lvAlphabet”>
 <LayoutTemplate>

 </LayoutTemplate>
 <ItemTemplate>

 <asp:LinkButton ID=”LinkButton1” runat=
“server” Text=’<%# Container.DataItem %>’
 CommandArgument=’<%# Container.DataItem
%>’ />

87586c04.indd 22587586c04.indd 225 9/13/09 10:15:56 PM9/13/09 10:15:56 PM

226

Chapter 4: Membership and User Profi ling

 </ItemTemplate>
 </asp:ListView>
 <p>
 </p>
 Otherwise use the controls below to search users
by partial username or e-mail:
 <p>
 </p>
 <asp:DropDownList runat=”server” ID=
“ddlSearchTypes” CssClass=”formStyleDropDown”>
 <asp:ListItem Text=”UserName” Selected=”true” />
 <asp:ListItem Text=”E-mail” />
 </asp:DropDownList>
 contain
 <asp:TextBox runat=”server” ID=”txtSearchText”
CssClass=”formField” />
 <asp:Button runat=”server” ID=”btnSearch” Text=
“Search” />
 <p>
 </p>
 </td>
 </tr>
 <tr>
 <td align=”right”>
 <asp:Literal runat=”server” ID=”ltlstatus” />
 <asp:Button ID=”Button1” runat=”server” Text=
“New User” />
 </td>
 </tr>

As you see, the alphabet bar is built by a ListView control, not a fi xed list of links. The ListView will
be bound to an array of characters, displayed as links. I used a ListView instead of static links for a
couple of reasons. First, this will make it much easier to change the bar’s layout, if you want to do so later,
because you only need to change the template, not a series of links. Second, if you decide to add local-
ization to this page later, the ListView’s template can remain exactly the same, and it is suffi cient to
bind it to a different array containing the selected language’s alphabet.

The third part of the page, which lists users and some of their properties, contains a ListView. A
ListView can automatically take care of sorting, paging, and editing, without requiring us to write a
lot of code. Following is the complete code used to defi ne the ListView:

<asp:ListView ID=”lvUsers” runat=”server”>
 <LayoutTemplate>
 <table cellspacing=”0” cellpadding=”0” class=”AdminList”>
 <tr class=”AdminListHeader”>
 <td>
 UserName
 </td>
 <td>
 Edit
 </td>
 <td>

87586c04.indd 22687586c04.indd 226 9/13/09 10:15:56 PM9/13/09 10:15:56 PM

227

Chapter 4: Membership and User Profi ling

 Delete
 </td>
 </tr>
 <tr id=”itemPlaceholder” runat=”server”>
 </tr>
 </table>
 </LayoutTemplate>
 <EmptyDataTemplate>
 <tr>
 <td colspan=”3”>
 <p>
 Sorry there are no Users available at this time.</p>
 </td>
 </tr>
 </EmptyDataTemplate>
 <ItemTemplate>
 <tr>
 <td class=”ListTitle”>
 <a href=”AddEditUser.aspx?CurrentUserName=<%#Eval(“UserName”)%>”>
 <%#Eval(“UserName”)%>
 </td>
 <td>
 <a href=”AddEditUser.aspx?CurrentUserName=<%#Eval(“UserName”)%>”>
 <img src=”../images/edit.gif” alt=”“ width=”16” height=”16”
class=”AdminImg” />
 </td>
 <td>
<asp:ImageButton ID=”btnDelete” AlternateText=”Delete this User?” ImageUrl=
‘~/images/delete.gif’ CausesValidation=”False” runat=”server” CommandName=
“DeleteUser” OnClientClick=”ConfirmMsg(‘User’);” /></td>
 </tr>
 </ItemTemplate>
</asp:ListView>
<div class=”pager”>
 <asp:DataPager ID=”pagerBottom” runat=”server” PageSize=”10” PagedControlID
=”lvUsers”
QueryStringField=”pageNo”>
<Fields>
 <asp:NextPreviousPagerField ButtonCssClass=”command” FirstPageText=”«”
 PreviousPageText=”‹”
 RenderDisabledButtonsAsLabels=”true” ShowFirstPageButton=”true”
ShowPreviousPageButton=”true”
 ShowLastPageButton=”false” ShowNextPageButton=”false” />
 <asp:NumericPagerField ButtonCount=”7” NumericButtonCssClass=”command”
 CurrentPageLabelCssClass=”current”
 NextPreviousButtonCssClass=”command” />
 <asp:NextPreviousPagerField ButtonCssClass=”command” LastPageText=”»”
 NextPageText=”›”
 RenderDisabledButtonsAsLabels=”true” ShowFirstPageButton=”false”
ShowPreviousPageButton=”false”
 ShowLastPageButton=”true” ShowNextPageButton=”true” />
</Fields>
 </asp:DataPager>
</div>

87586c04.indd 22787586c04.indd 227 9/13/09 10:15:56 PM9/13/09 10:15:56 PM

228

Chapter 4: Membership and User Profi ling

Deleting a user account is a serious action that can’t be undone, so have the administrator confi rm this
action before proceeding! This can be done by adding a JavaScript “confi rm” in the link’s onclick client-
side event, through the button’s new OnClientClick property. This is done by adding the JavaScript to
the button’s markup, OnClientClick=”ConfirmMsg(‘User’);”, which calls the ConfirmMsg function
defi ned in the TBH.js fi le. It will be used throughout the site to question users before they perform a
delete operation.

function ConfirmMsg(entityName) {
 return confirm(‘Warning: This will delete the ‘ + entityName + ‘ from the
 database.’);
}

Before looking at the code-behind fi le, I want to point out another small, but handy, new feature: the
ListView has a <EmptyDataTemplate> section that contains the HTML markup to show when the list
is bound to an empty data source. This is a very cool feature because you can use this template to show
a message when a search produces no results.

In the page’s code-behind fi le there is a class-level MemershipUserCollecion object that is initialized
with all the user information returned by Membership.GetAllUsers. The Count property of this col-
lection is used in the page’s Load event to show the total number of registered users, together with the
number of online users. In the same event, we also create the array of letters for the alphabet bar, and
bind it to the ListView control. The code is:

 Protected Sub Page_Load(ByVal sender As Object, ByVal e As System.EventArgs)
 Handles Me.Load

 If Not IsPostBack Then
 BindAlphabet()
 End If

 End Sub

 Private Sub BindAlphabet()
 Dim alphabet As Char() = {“A”c, “B”c, “C”c, “D”c, “E”c, “F”c, _
 “G”c, “H”c, “I”c, “J”c, “K”c, “L”c, _
 “M”c, “N”c, “O”c, “P”c, “Q”c, “R”c, _
 “S”c, “T”c, “U”c, “V”c, “W”c, “X”c, _
 “Y”c, “Z”c}

 lvAlphabet.DataSource = alphabet
 lvAlphabet.DataBind()

 lblTotUsers.Text = allUsers.Count.ToString()
 lblOnlineUsers.Text = Membership.GetNumberOfUsersOnline().ToString()
 End Sub

 Private Sub BindUsers()

 BindAlphabet()

 Dim users As MembershipUserCollection = Nothing

 Dim lSearchText As StringBuilder = New StringBuilder()
 If String.IsNullOrEmpty(lvUsers.Attributes(“SearchText”)) = False Then

87586c04.indd 22887586c04.indd 228 9/13/09 10:15:56 PM9/13/09 10:15:56 PM

229

Chapter 4: Membership and User Profi ling

 lSearchText.Append(lvUsers.Attributes(“SearchText”))
 End If

 Dim searchByEmail As Boolean = False
 If String.IsNullOrEmpty(lvUsers.Attributes(“SearchByEmail”)) = False Then
 searchByEmail = Boolean.Parse(lvUsers.Attributes(“SearchByEmail”))
 End If

 If lSearchText.Length > 0 Then
 If (searchByEmail) Then
 users = Membership.FindUsersByEmail(lSearchText.ToString())
 Else
 users = Membership.FindUsersByName(lSearchText.ToString())
 End If
 Else
 users = allUsers
 End If

 lvUsers.DataSource = users
 lvUsers.DataBind()

End Sub

The grid is not populated when the page fi rst loads, but rather after the user clicks a link on the alphabet
bar or runs a search. This is done in order to avoid unnecessary processing and, thus, have a fast-loading
page. When a letter link is clicked, the ListView’s ItemCommand event is raised. You handle this event
to retrieve the clicked letter and then run a search for all users whose name starts with that letter. If
the All link is clicked, you’ll simply show all users. Because this page also supports e-mail searches, a
“SearchByEmail” attribute is added to the control and set to false, to indicate that the search is by
username by default. This attribute is stored in the grid’s Attributes collection so that it is persisted in
the view state and doesn’t get lost during a postback. Here’s the code:

 Private Sub lvAlphabet_ItemCommand(ByVal sender As Object, ByVal e As
System.Web.UI.WebControls.ListViewCommandEventArgs) Handles lvAlphabet.ItemCommand
 lvUsers.Attributes.Add(“SearchByEmail”, False.ToString())
 If (e.CommandArgument.ToString().Length = 1) Then

 lvUsers.Attributes.Add(“SearchText”, e.CommandArgument.ToString() + “%”)
 BindUsers()
 Else
 lvUsers.Attributes.Add(“SearchText”, “”)
 BindUsers()
 End If

 End Sub

The code that actually runs the query and performs the binding is in the BindUsers method. It takes a
Boolean value as an input parameter that indicates whether the allUsers collection must be repopulated
(necessary just after a user is deleted). The text to search for and the search mode (e-mail or username) are
not passed as parameters, but rather are stored in the grid’s Attributes. Here is the code:

 Private Sub BindUsers()

 Dim users As MembershipUserCollection = Nothing

 Dim lSearchText As StringBuilder = New StringBuilder()

87586c04.indd 22987586c04.indd 229 9/13/09 10:15:56 PM9/13/09 10:15:56 PM

230

Chapter 4: Membership and User Profi ling

 If String.IsNullOrEmpty(lvUsers.Attributes(“SearchText”)) = False Then
 lSearchText.Append(lvUsers.Attributes(“SearchText”))
 End If

 Dim searchByEmail As Boolean = False
 If String.IsNullOrEmpty(lvUsers.Attributes(“SearchByEmail”)) = False Then
 searchByEmail = Boolean.Parse(lvUsers.Attributes(“SearchByEmail”))
 End If

 If lSearchText.Length > 0 Then
 If (searchByEmail) Then
 users = Membership.FindUsersByEmail(lSearchText.ToString())
 Else
 users = Membership.FindUsersByName(lSearchText.ToString())
 End If
 Else
 users = allUsers
 End If

 lvUsers.DataSource = users
 lvUsers.DataBind()

 End Sub

The BindUsers method is also called when the Search button is clicked. In this case, the SeachByEmail
attribute will be set according to the value selected in the ddlSearchTypes drop-down list, and the
SearchText will be equal to the entered search string with the addition of a leading and a trailing “%”,
so that a full LIKE query is performed:

 Protected Sub btnSearch_Click(ByVal sender As Object, ByVal e As EventArgs)
Handles btnSearch.Click
 Dim searchByEmail As Boolean = (ddlSearchTypes.SelectedValue = “E-mail”)
 lvUsers.Attributes.Add(“SearchText”, “%” + txtSearchText.Text + “%”)
 lvUsers.Attributes.Add(“SearchByEmail”, searchByEmail.ToString())
 BindUsers()

 End Sub

When the trashcan icon is clicked, the ListView raises the ItemDeleting event. Notice the username
is not accessible through the DataKeys property, but rather by accessing the DataItem property
of the ListView. This is because the users were bound to the ListView as an array of strings and,
therefore, do not have a primary key or even a fi eld to access the values. This event handler then calls
the DeleteUser method, passing the username. From inside this event handler, you can use the static
methods of the Membership and ProfileManager classes to delete the user account and its accompa-
nying profi le. After that, BindUsers is called again with true as a parameter, so that the collection of
all users is refreshed, and the label displaying the total number of users is also refreshed:

Private Sub lvUsers_ItemDeleting(ByVal sender As Object, ByVal e As
System.Web.UI.WebControls.ListViewDeleteEventArgs) Handles lvUsers.ItemDeleting

87586c04.indd 23087586c04.indd 230 9/13/09 10:15:56 PM9/13/09 10:15:56 PM

231

Chapter 4: Membership and User Profi ling

 DeleteUser(lvUsers.Items(e.ItemIndex).DataItem)
 End Sub

 Private Sub DeleteUser(ByVal UserName As String)

 If Membership.DeleteUser(UserName) Then

 BindUsers()

 ltlstatus.Text = “The user was deleted.”

 Else

 ltlstatus.Text = “The user was not deleted.”

 End If

End Sub

Figure 4-19 shows the page listing all current users.

Figure 4-19

87586c04.indd 23187586c04.indd 231 9/13/09 10:15:56 PM9/13/09 10:15:56 PM

232

Chapter 4: Membership and User Profi ling

The AddEditUser Administrative Page
The AddEditUser.aspx page is linked from a row of the ManagedUsers.aspx list. It takes a username
parameter on the querystring, and allows an administrator to see all the membership details about that
user (i.e., the properties of the MembershipUser object representing that user), and supports editing the
user’s personal profi le. The user interface of the page is simple and is divided in three sections:

 1. The fi rst section shows the data read from MembershipUser. All controls are read-only, except
for those that are bound to the IsApproved and IsLockedOut properties. For IsLockedOut,
you can set it to false to unlock a user account, but you can’t set it to true to lock a user
account, as only the membership provider can lock out a user.

 2. The second section contains a CheckBoxList that displays all the roles defi ned for the appli-
cation, and allows the administrator to add or remove users to and from roles. There is also a
TextBox control and a button to create a new role.

 3. The third and last section displays a user’s profi le and allows edits to the profi le, through the
UserProfile user control developed earlier.

Following is the code for AddEditUser.aspx:

<table id=”Table1” cellspacing=”1” cellpadding=”1” width=”525” align=”center”
border=”0”>
 <tr>
 <td>
 <asp:Literal ID=”ltlMessage” runat=”server”></asp:Literal>
 </td>
 </tr>
 <tr>
 <td>
 <table id=”Table2” cellspacing=”0” cellpadding=”0” width=
“100%” align=”center” border=”0”>
 <tr>
 <td class=”fieldname”>
 Username
 </td>
 <td width=”10”>
 </td>
 <td>
 <asp:Literal runat=”server” ID=”ltlUserName”>
</asp:Literal>
 <div runat=”server” id=”dUserName”>
 <asp:TextBox ID=”txtUserName” runat=”server”
CssClass=”formField”></asp:TextBox><sup>*</sup>
 <asp:RequiredFieldValidator ID=
“RequiredFieldValidator3” runat=”server” ControlToValidate=”txtUserName”
 Display=”None” ErrorMessage=”You must supply
a Username.”></asp:RequiredFieldValidator>
 <asp:ValidatorCalloutExtender ID=
“ValidatorCalloutExtender1” runat=”server” TargetControlID=
“RequiredFieldValidator1”>
 </asp:ValidatorCalloutExtender>
 </div>

87586c04.indd 23287586c04.indd 232 9/13/09 10:15:56 PM9/13/09 10:15:56 PM

233

Chapter 4: Membership and User Profi ling

 </td>
 </tr>
 <tr>
 <td class=”fieldname”>
 E-Mail
 </td>
 <td width=”10”>
 </td>
 <td>
 <asp:Literal runat=”server” ID=”ltlEMail”>
</asp:Literal>
 <div runat=”server” id=”dEMail”>
 <asp:TextBox ID=”txtEmail” runat=”server”
CssClass=”formField”></asp:TextBox><span
 style=”font-size: 10pt; vertical-align: super;
color: #ff0000”>*
 <asp:RequiredFieldValidator ID=
“RequiredFieldValidator2” runat=”server” ControlToValidate=”txtEmail”
 Display=”None” ErrorMessage=”You must supply
a valid E-Mail”></asp:RequiredFieldValidator>
 <asp:ValidatorCalloutExtender ID=
“ValidatorCalloutExtender2” runat=”server” TargetControlID=
“RequiredFieldValidator2”>
 </asp:ValidatorCalloutExtender>
 </div>
 </td>
 </tr>
 <tr runat=”server” id=”trQuestion”>
 <td class=”fieldname”>
 <asp:Label runat=”server” ID=”lblQuestion”
AssociatedControlID=”Question” Text=”Security question:” />
 </td>
 <td width=”10”>
 </td>
 <td>
 <asp:TextBox runat=”server” ID=”Question” Width
=”100%” />
 <asp:RequiredFieldValidator ID=”valRequireQuestion”
runat=”server” ControlToValidate=”Question”
 SetFocusOnError=”true” Display=”Dynamic”
ErrorMessage=”Security question is required.”
 ToolTip=”Security question is required.”
ValidationGroup=”CreateUserWizard1”>*</asp:RequiredFieldValidator>
 </td>
 </tr>
 <tr runat=”server” id=”trAnswer”>
 <td class=”fieldname”>
 <asp:Label runat=”server” ID=”lblAnswer”
AssociatedControlID=”Answer” Text=”Security answer:” />
 </td>
 <td width=”10”>
 </td>
 <td>
 <asp:TextBox runat=”server” ID=”Answer” Width=

87586c04.indd 23387586c04.indd 233 9/13/09 10:15:56 PM9/13/09 10:15:56 PM

234

Chapter 4: Membership and User Profi ling

“100%” />
 <asp:RequiredFieldValidator ID=”valRequireAnswer”
runat=”server” ControlToValidate=”Answer”
 SetFocusOnError=”true” Display=”Dynamic”
ErrorMessage=”Security answer is required.”
 ToolTip=”Security answer is required.”
ValidationGroup=”CreateUserWizard1”>*</asp:RequiredFieldValidator>
 </td>
 </tr>
 <tr runat=”server” id=”trRegistered”>
 <td class=”fieldname”>
 Registered:
 </td>
 <td width=”10”>
 </td>
 <td>
 <asp:Literal runat=”server” ID=”lblRegistered” />
 </td>
 </tr>
 <tr runat=”server” id=”trLastLogin”>
 <td class=”fieldname”>
 Last Login:
 </td>
 <td width=”10”>
 </td>
 <td>
 <asp:Literal runat=”server” ID=”lblLastLogin” />
 </td>
 </tr>
 <tr runat=”server” id=”trLastActivity”>
 <td class=”fieldname”>
 Last Activity:
 </td>
 <td width=”10”>
 </td>
 <td>
 <asp:Literal runat=”server” ID=”lblLastActivity” />
 </td>
 </tr>
 <tr>
 <td colspan=”3”>
 <table runat=”server” id=”tUserStatus” cellspacing
=”0” cellpadding=”0” width=”100%”
 align=”center” border=”0”>
 <tr>
 <td class=”fieldname”>
 <asp:Label runat=”server” ID
=”lblOnlineNow” AssociatedControlID=”chkOnlineNow” Text=”Online Now:” />
 </td>
 <td width=”10”>
 </td>
 <td>
 <asp:CheckBox runat=”server” ID
=”chkOnlineNow” Enabled=”false” />

87586c04.indd 23487586c04.indd 234 9/13/09 10:15:56 PM9/13/09 10:15:56 PM

235

Chapter 4: Membership and User Profi ling

 </td>
 </tr>
 <tr>
 <td class=”fieldname”>
 <asp:Label runat=”server” ID
=”lblApproved” AssociatedControlID=”chkApproved” Text=”Approved:” />
 </td>
 <td width=”10”>
 </td>
 <td>
 <asp:CheckBox runat=”server” ID=
“chkApproved” AutoPostBack=”true” />
 </td>
 </tr>
 <tr>
 <td class=”fieldname”>
 <asp:Label runat=”server” ID=
“lblLockedOut” AssociatedControlID=”chkLockedOut” Text=”Locked Out:” />
 </td>
 <td width=”10”>
 </td>
 <td>
 <asp:CheckBox runat=”server” ID=
“chkLockedOut” AutoPostBack=”true” />
 </td>
 </tr>
 </table>
 </td>
 </tr>
 <tr>
 <td colspan=”3”>
 </td>
 </tr>
 <tr>
 <td colspan=”3”>
 <div runat=”server” id=”dPassword”>
 Password
 <asp:TextBox ID=”txtPwd” runat=”server”
TextMode=”Password” CssClass=”formField”></asp:TextBox>*
 <asp:RequiredFieldValidator ID
=”RequiredFieldValidator1” runat=”server” ControlToValidate=”txtPwd”
 Display=”None” ErrorMessage=”You must
supply a Password.”></asp:RequiredFieldValidator>

 <asp:ValidatorCalloutExtender ID
=”ValidatorCalloutExtender3” runat=”server” TargetControlID=
“RequiredFieldValidator3”>
 </asp:ValidatorCalloutExtender>
 Confirm Password
 <asp:TextBox ID=”txtPwdConfirm” runat=”server”
TextMode=”Password” CssClass=”formField”></asp:TextBox>
 <asp:CompareValidator ID=”CompareValidator1”
runat=”server” ControlToCompare=”txtPwdConfirm”

87586c04.indd 23587586c04.indd 235 9/13/09 10:15:56 PM9/13/09 10:15:56 PM

236

Chapter 4: Membership and User Profi ling

 ControlToValidate=”txtPwd” Display=”None”
ErrorMessage=”The Passwords do not Match.”></asp:CompareValidator>
 <asp:ValidatorCalloutExtender ID=
“ValidatorCalloutExtender4” runat=”server” TargetControlID=”CompareValidator1”>
 </asp:ValidatorCalloutExtender>
 </div>
 </td>
 </tr>
 <tr>
 <td colspan=”3”>
 </td>
 </tr>
 </table>
 </td>
 </tr>
 <tr>
 <td>
 <div class=”sectiontitle”>
 Edit user’s roles</div>
 </td>
 </tr>
 <tr>
 <td>
 <asp:CheckBoxList ID=”cblRoles” runat=”server”
 RepeatColumns=”3”>
 </asp:CheckBoxList>
 </td>
 </tr>
 <tr>
 <td>
 <uc1:UserProfile ID=”UserProfile1” runat=”server” />
 </td>
 </tr>
 <tr>
 <td>
 <table id=”Table11” cellspacing=”1” cellpadding=”1” width
=”300” align=”center” border=”0”>
 <tr>
 <td class=”AdminDetailsAction”>
 <asp:LinkButton ID=”lbDelete” CssClass=
“AdminButton” runat=”server” CausesValidation=”false”>Delete</asp:LinkButton>
 </td>
 <td class=”AdminDetailsAction”>
 <asp:LinkButton ID=”lbCancel” CssClass=
“AdminButton” runat=”server” CausesValidation=”false”>Cancel</asp:LinkButton>
 </td>
 <td class=”AdminDetailsAction”>
 <asp:LinkButton ID=”lbUpdate” CssClass=
“AdminButton” runat=”server”>Update</asp:LinkButton>
 </td>
 </tr>
 </table>
 </td>

87586c04.indd 23687586c04.indd 236 9/13/09 10:15:57 PM9/13/09 10:15:57 PM

237

Chapter 4: Membership and User Profi ling

 </tr>
 </table>

When the page loads, the username parameter is read from the querystring, a MembershipUser instance
is retrieved for that user, and the values of its properties are shown by the fi rst section’s controls.
Remember, as an administrator you are authenticated, so you must keep the username you want to edit
separate from your account credentials. The membership provider assumes your account is to be used,
if one is not specifi ed, so there is some work required to keep these separated. The CurrentUserName
property helps with this problem:

 Private Property CurrentUserName() As String
 Get
 If Not IsNothing(ViewState(“CurrentUserName”)) Then
 Return ViewState(“CurrentUserName”).ToString
 Else
 If Not IsNothing(Request(“CurrentUserName”)) Then
 Return Request(“CurrentUserName”).ToString
 Else
 Return String.Empty
 End If
 End If
 End Get
 Set(ByVal value As String)
 ViewState(“CurrentUserName”) = value
 End Set
 End Property

The Page Load event handler checks to see if a username was passed and either loads the user’s infor-
mation to be edited or clears the controls so a new user can be added to the site.

 Protected Sub Page_Load1(ByVal sender As Object, ByVal e As System.EventArgs)
Handles Me.Load

 If Not IsPostBack Then

 If String.IsNullOrEmpty(CurrentUserName) = False Then ‘Better make sure
 BindUser()
 Else
 ClearUser()
 End If

 End If

 End Sub

The GetMember function wraps the Membership.GetUser method so that it can be consistently called
as needed in the site.

 Private Function GetMember() As MembershipUser
 Dim mu As MembershipUser = Membership.GetUser(CurrentUserName)
 Return mu
 End Function

87586c04.indd 23787586c04.indd 237 9/13/09 10:15:57 PM9/13/09 10:15:57 PM

238

Chapter 4: Membership and User Profi ling

The BindUser method gets the Membership user object for the desired user and binds the controls to
the corresponding values.

 Private Sub BindUser()

 Dim mu As MembershipUser = GetMember()

 dUserName.Visible = False
 dEMail.Visible = False
 dPassword.Visible = False
 tUserStatus.Visible = True
 trRegistered.Visible = True
 trLastActivity.Visible = True
 trLastLogin.Visible = True
 trQuestion.Visible = False
 trAnswer.Visible = False

 lbUpdate.Text = “Update”

 ltlUserName.Text = mu.UserName
 ltlEMail.Text = mu.Email
 lblRegistered.Text = mu.CreationDate.ToString(“f”)
 lblLastLogin.Text = mu.LastLoginDate.ToString(“f”)
 lblLastActivity.Text = mu.LastActivityDate.ToString(“f”)

 chkOnlineNow.Checked = mu.IsOnline
 chkApproved.Checked = mu.IsApproved
 chkLockedOut.Checked = mu.IsLockedOut
 chkLockedOut.Enabled = mu.IsLockedOut

 BindRoles()

 End Sub

In the Page_Load event handler you also call the BindRoles method, as follows, which fi lls a
CheckBoxList with all the available roles and then retrieves the roles the user belongs to, and fi nally
selects them in the CheckBoxList:

Protected Sub BindRoles()
 BindRoles(String.Empty)
End Sub

Protected Sub BindRoles(ByVal vUserName As String)

 cblRoles.DataSource = Roles.GetAllRoles
 cblRoles.DataBind()

 For Each role As String In Roles.GetRolesForUser(vUserName)
 cblRoles.Items.FindByText(role).Selected = True
 Next

End Sub

When the Update Roles button is pressed, the user is fi rst removed from all her roles, and then is added
to the selected ones. The removal that occurs fi rst is necessary because a call to Roles.AddUserToRole
will fail if the user is already a member of that role. This is a list collection that enables you to specify
the datatype you wish to support for objects stored in the list. When you declare an instance of this

87586c04.indd 23887586c04.indd 238 9/13/09 10:15:57 PM9/13/09 10:15:57 PM

239

Chapter 4: Membership and User Profi ling

collection, you have to indicate which datatype you want to store in it by enclosing it in angle brack-
ets. Therefore, if you say “List<string>” you are asking for a list collection that is strongly typed to
accept strings. You could have also asked for a collection of any other datatype, including any custom
class you might create to hold related data.

Here’s the code for the UpdateRoles method:

Private Sub UpdateRoles(ByVal mu As MembershipUser)

 Dim currRoles() As String = Roles.GetRolesForUser(mu.UserName)

 If currRoles.Length > 0 Then
 Roles.RemoveUserFromRoles(UserName, currRoles)
 End If

 ‘ and then add the user to the selected roles
 Dim newRoles As New List(Of String)
 For Each item As ListItem In cblRoles.Items
 If item.Selected Then
 newRoles.Add(item.Text)
 End If
 Next
 Dim userNames() As String = {mu.UserName}
 Roles.AddUsersToRoles(userNames, newRoles.ToArray)

 lblRolesFeedbackOK.Visible = True

End Sub

As you see, you don’t make individual calls to Roles.AddUserToRole for each selected role. Instead,
you fi rst fi ll a list of strings with the names of the selected roles and then make a single call to Roles
.AddUserToRoles. When the Create Role button is pressed, you fi rst check to see if a role with the
same is already present, and if not, you create it. Then, the BindRoles method is called to refresh the
list of available roles:

 Protected Sub btnNewRole_Click(ByVal sender As Object, ByVal e As EventArgs)
Handles btnNewRole.Click
 If Not Roles.RoleExists(txtNewRole.Text.Trim) Then
 Roles.CreateRole(txtNewRole.Text.Trim)
 BindRoles()
 End If
 End Sub

When the Approved checkbox is clicked, an auto-postback is made, and in its event handler you update
the MembershipUser object’s IsApproved property according to the checkbox’s value, and then save
the change:

Protected Sub chkApproved_CheckedChanged(ByVal sender As Object, ByVal e As
System.EventArgs) Handles chkApproved.CheckedChanged
 Dim User As MembershipUser = Membership.GetUser(CurrentUserName)
 If Not IsNothing(User) Then
 User.IsApproved = chkApproved.Checked
 Membership.UpdateUser(User)
 End If
End Sub

87586c04.indd 23987586c04.indd 239 9/13/09 10:15:57 PM9/13/09 10:15:57 PM

240

Chapter 4: Membership and User Profi ling

It works in a similar way for the Locked Out checkbox, except that the corresponding MembershipUser
property is read-only, and the user is unlocked by calling the UnlockUser method. After this is done,
the checkbox is made read-only because you can’t lock out a user here (as mentioned previously). Take
a look at the code:

Protected Sub chkLockedOut_CheckedChanged(ByVal sender As Object, ByVal e As
System.EventArgs) Handles chkLockedOut.CheckedChanged
 If chkLockedOut.Checked = False Then
 Dim user As MembershipUser = Membership.GetUser(CurrentUserName)
 If Not IsNothing(user) Then
 user.UnlockUser()
 chkLockedOut.Enabled = False
 End If
 End If
End Sub

Finally, when the Update button is clicked, a call to the UserProfile’s SaveProfile is made, as you’ve
done in other pages:

Protected Sub lbUpdate_Click(ByVal sender As Object, ByVal e As System.EventArgs)
Handles lbUpdate.Click

 UpdateUser(Membership.GetUser(CurrentUserName))
 UserProfile1.SaveProfile()

End Sub

Figure 4-20 shows this page.

Figure 4-20

87586c04.indd 24087586c04.indd 240 9/13/09 10:15:57 PM9/13/09 10:15:57 PM

241

Chapter 4: Membership and User Profi ling

ManageRoles.aspx Page
The ManageRoles page provides a list of the site’s roles with links to edit and delete them. The two role
administration pages both derive from RoleAdminPage, which in turn derives from AdminPage. The
RoleAdminPage contains the RoleName property, which is built upon the PrimaryKeyIdAsString
property defi ned in the BasePage class.

Public Class RoleAdminPage
 Inherits AdminPage

#Region “ Properties “

 Protected Property RoleName() As String
 Get
 Return PrimaryKeyIdAsString(“Role”)
 End Get
 Set(ByVal value As String)
 PrimaryKeyIdAsString(“Role”) = value
 End Set
 End Property

#End Region

End Class

The PrimaryKeyIdAsString property is a catch-all sort of pattern designed to catch string parameters
entered in the querystring or stored in the page’s view state. I call it the PrimaryKeyIdAsString
property because it is primarily used to manage values associated with primary keys in tables. However
it can be used for any value that might potentially be passed in the querystring. The main difference
between PrimaryKeyId and PrimaryKeyIdAsString property is the string version returns an empty
string when no matching parameter is found. The PrimaryKeyId returns 0 for an empty integer
parameter.

Public Property PrimaryKeyIdAsString(ByVal vPrimaryKey As String) As String
Get
 If Not IsNothing(ViewState(vPrimaryKey)) Then
 Return ViewState(vPrimaryKey)
 ElseIf Not IsNothing(Request.QueryString(vPrimaryKey)) Then
 ViewState(vPrimaryKey) = Request.QueryString(vPrimaryKey)
 Return Request.QueryString(vPrimaryKey)
 End If
 Return String.Empty
End Get
Set(ByVal Value As String)
 ViewState(vPrimaryKey) = Value
End Set
End Property

The ManageRoles page relies on a ListView, which follows a common pattern with a table used for
the layout, and a column to display the role, and edit and delete it. The fi rst row of the table defi nes
a header row, with column titles and applies the AdminList style class. In the case of the DarkBeer
theme, this uses a maroon background and bold white font.

87586c04.indd 24187586c04.indd 241 9/13/09 10:15:57 PM9/13/09 10:15:57 PM

242

Chapter 4: Membership and User Profi ling

The ItemTemplate defi nes the binding responsible for rendering the content for each record. This is more
than just echoing the text, it also renders the links and buttons for the user to edit and delete an existing
role. The role name itself is wrapped in an anchor tag that loads the AddEditRole.aspx page, passing the
role to modify.

The delete ImageButton leverages the built-in Deleting event handler of the ListView to handle the
deleting process. Notice the ListView’s DataKeyNames property is left blank, this is because the collec-
tion of roles bound to the ListView is a collection of strings, and therefore does not contain any primary
key values.

<asp:ListView ID=”lvRoles” runat=”server” DataKeyNames=”Role”>
 <LayoutTemplate>
 <table cellspacing=”0” cellpadding=”0” class=”AdminList”>
 <tr class=”AdminListHeader”>
 <td>
 Role
 </td>
 <td>
 Edit
 </td>
 <td>
 Delete
 </td>
 </tr>
 <tr id=”itemPlaceholder” runat=”server”>
 </tr>
 </table>
<!-- Common Data Pager Control Here -- >
 </div>
 </LayoutTemplate>
 <EmptyDataTemplate>
 <tr>
 <td colspan=”3”>
 <p>
 Sorry there are no Roles available at this time.</p>
 </td>
 </tr>
 </EmptyDataTemplate>
 <ItemTemplate>
 <tr>
 <td class=”ListTitle”>
 <a href=”<%# String.Format(“AddEditRole.aspx?Role
={0}”, Container.DataItem.ToString()) %>”>
 <%# Container.DataItem.ToString() %>
 </td>
 <td>
 <a href=”<%# String.Format(“AddEditRole.aspx?Role
={0}”, Container.DataItem.ToString()) %>”>
 <img src=”../images/edit.gif” alt=”“ width=”16”
height=”16” class=”AdminImg” />
 </td>
 <td>
 <asp:ImageButton runat=”server” ID=
“btnDeleteEvents” CommandArgument=’<%# Eval(“Role”)%>’
 CommandName=”Delete” ImageUrl=

87586c04.indd 24287586c04.indd 242 9/13/09 10:15:57 PM9/13/09 10:15:57 PM

243

Chapter 4: Membership and User Profi ling

“~/images/delete.gif” AlternateText=”Delete” CssClass=”AdminImg”
 OnClientClick=”return confirm(‘Warning: This
will delete the Role from the database.’);” />
 </td>
 </tr>
 </ItemTemplate>
 </asp:ListView>

Similarly to the ManageUsers page, when a user clicks the trash can icon to delete a row the ItemDeleting
event fi res, and the role name is passed to the DeleteRoles function. This function fi rst purges any users
from the role before it deletes it from the site.

Private Sub lvRoles_ItemDeleting(ByVal sender As Object, ByVal e As
 System.Web.UI.WebControls.ListViewDeleteEventArgs) Handles lvRoles.ItemDeleting
 DeleteRole(lvRoles.Items(e.ItemIndex).DataItem)
 End Sub

 Private Sub DeleteRoles(ByVal vRole As String)
 If Roles.GetUsersInRole(vRole).Length > 0 Then
 Roles.RemoveUsersFromRole(Roles.GetUsersInRole(vRole), vRole)
 End If
 Roles.DeleteRole(vRole)
 BindRoles()
End Sub

AddEditRole.aspx Page
In this edition of the Beer House, the user and user and role management is broken into two distinct
groups of pages that enables you to add a little more functionality. The AddEditRole page allows us to
add new roles, edit existing roles, and add users to a specifi c role.

When the page is loaded, it checks to see if there has been a role name passed to the page, if not it clears
the controls by calling the ClearRoleInfo method. If there is a role to work on, it binds the role and
any associated users to the controls.

 Protected Sub Page_Load(ByVal sender As Object, ByVal e As System.EventArgs)
Handles Me.Load

 If Not IsPostBack Then

 MultiView1.ActiveViewIndex = 0

 If String.IsNullOrEmpty(RoleName) = False Then
 BindRoleInfo()
 Else
 clearRoleinfo()
 End If

 End If

 End Sub

 Private Sub ClearRoleInfo()

 txtRole.Text = String.Empty

87586c04.indd 24387586c04.indd 243 9/13/09 10:15:57 PM9/13/09 10:15:57 PM

244

Chapter 4: Membership and User Profi ling

 flUser.visible = False
 lvUsers.Items.Clear

 End Sub

The BindRoleInfo method sets the text of the txtRole to the role, if it exists. I did this because, if the
role does not exist, it needs to be added. If the role exists, then it is bound to the txtRole and a list of
UsersInRole is bound to the lvUsers ListView. The list just shows the users in this role. There is also
a delete button to remove the user from the list.

 Private Sub BindRoleInfo()
 BindRoleInfo(RoleName)
 End Sub

 Private Sub BindRoleInfo(ByVal sRole As String)

 If Roles.RoleExists(sRole) = False Then
 txtRole.Text = String.Empty

 Exit Sub
 End If

 txtRole.Text = sRole

 lvUsers.DataSource = Roles.GetUsersInRole(sRole)
 lvUsers.DataBind()

 End Sub

The MultiView control, introduced with ASP.NET 2.0, allows the defi nition of different panes of infor-
mation that can be displayed based on runtime logic. It is great for exchanging what is visible based on
server-side logic. In the case of administering a role, it can display either the role information or a view
where a new user can be added. When the Add User to Role button is clicked, the second view is displayed
and the fi rst view is hidden. In fact the content of the hidden view is not even sent to the browser, making
the actual content sent to the client thinner. However, this does mean that any activity to hide or display a
view must involve a round trip to the server to determine which view should be displayed. We will see
in the next chapter how to hide and display DIVs using JavaScript in a similar fashion, but all the activity
is managed on the client.

A TextBox is used to collect the username to be added to the role. A TextBox is a better solution in
this situation because the list of usernames could be very large. The TextBox is extended with an
AutoCompleteExtender that retrieves a list of potential usernames as the administrator types char-
acters in the TextBox. The AutoCompleteExtender is part of the ASP.NET AJAX Control Toolkit, dis-
cussed earlier in this chapter. The AutoCompleteExtender provides a suggestion effect that allows the
administrator to see potential accounts without being overwhelmed with a large list of usernames.

To make the AutoCompleteExtender work, there must be a web service with a web method it can
call to retrieve the suggestions. The method signature has to be in the form of a String and an
Integer. The String is the phrase to be used as the search fi lter, and the Integer is a count limit the
AutoCompleteExtender wants. This is used to limit the size of the list displayed below the TextBox.
If there were no limit, the list could be infi nitely long. The MaximumPrefixLength property signals to

87586c04.indd 24487586c04.indd 244 9/13/09 10:15:57 PM9/13/09 10:15:57 PM

245

Chapter 4: Membership and User Profi ling

the AutoCompleteExtender how many characters need to be entered before it queries the web service
for a list. This again is useful to help limit any potential long list of results. The ServicePath is the
URL to the web service, and the ServiceMethod is the name of the method in the web service used
to perform the fi ltering.

<asp:View runat=”server” ID=”vAddUserToRole”>
 <fieldset id=”Fieldset1”>
 <legend>Assign New User</legend>

 Role:
 <asp:Literal runat=”server” ID=”ltlRole” />

 User
 <asp:TextBox ID=”txtUser” runat=”server” CssClass=
“formField”></asp:TextBox>
 <asp:Button runat=”server” ID=”btnAddUserToRole2” Text=
“Add User To Role” />
 <asp:Button runat=”server” ID=”btnCancelAddUserToRole” Text=”Cancel” />

 <asp:AutoCompleteExtender runat=”server” ID=”autoComplete1” TargetControlID
=”txtUser”
 ServicePath=”~/MembersService.asmx” ServiceMethod=”SearchUsersByName”
 MinimumPrefixLength=”1”
 CompletionInterval=”1000” EnableCaching=”true” CompletionSetCount=”12” />
 </fieldset>
</asp:View>

The SearchUsersByName method uses the same search routine used in the ManageUsers.aspx
page, Membership.FindUsersByName method. The AutoCompleteExtender passes in each charac-
ter as it is typed and builds a list of potential usernames that match the characters already entered.
The SearchUsersByName method retrieves the list of potential MembershipUsers and adds the
usernames to a StringCollection. This is then copied to an array of Strings and returned to the
AutoCompleteExtender to display as a list below the targeted TextBox control.

<WebMethod()> _
<System.Web.Script.Services.ScriptMethod()> _
Public Shared Function SearchUsersByName(ByVal vName As String,
ByVal count As Integer) As String()

 Dim saUsers As String()
 Dim UserNames As New StringCollection

 Dim users As MembershipUserCollection = Membership.FindUsersByName(vName)

 For Each mu As MembershipUser In users
 UserNames.Add(mu.UserName)
 Next

 Dim saUsers As String() = New String(UserNames.Count - 1) {}
 UserNames.CopyTo(saUsers, 0)

 Return saUsers
End Function

87586c04.indd 24587586c04.indd 245 9/13/09 10:15:57 PM9/13/09 10:15:57 PM

246

Chapter 4: Membership and User Profi ling

Summary
This chapter covered a great deal of information regarding the membership and profi ling features intro-
duced in ASP.NET. The “Solution” section contains surprisingly little code yet produces a complete
membership system! We even managed to reimplement and extend the Security area of the ASP.NET
Web Administration Tool. In addition, much of the code is for HTML layout, which gives the pages a
good appearance, but the code-behind code we’ve written is just over a hundred lines.

We have also extended the membership, role, and profi le systems to the client using ASP.NET AJAX
and the corresponding systems. While the code has a certain coolness factor to it, there is much more
that could be exploited to make an even sexier experience for our users.

One thing that can be improved upon is the fact that the membership module only supports users
and roles, not individual permissions. It might be useful in some cases to defi ne a list of permissions,
associate them with a role, add users to the role, and then check for the presence of a permission from
code, instead of just checking whether the user belongs to a role. This would give much fi ner granular-
ity to the security settings and is something that we did in the custom security module developed in
the fi rst edition of this book. However, while that level of security control is almost always required in
large browser-based applications, it is overkill for many small-to-medium websites and unnecessarily
complicates the code. By sticking with simple built-in role security, we are able to completely meet our
requirements, and we can do so with simpler code that is easier to test and deploy. If you decide that
your particular application requires a fi ne amount of control that can be enumerated in a list of permis-
sions, you can extend the membership support by writing your own permissions module that links to
the current users and roles.

87586c04.indd 24687586c04.indd 246 9/13/09 10:15:57 PM9/13/09 10:15:57 PM

News and Article
Management

The example site is basically a container for content targeted to beer, food, and pub enthusiasts.
Content can be in the form of news, articles, reports of special events, reviews, photo galleries,
and so forth. This chapter describes the typical content-related problems that should be consid-
ered for a site of this type. You’ll then design and develop an online article manager that allows
the complete management of the site’s content, in terms of acquiring articles; adding, activating,
and removing articles; sharing articles with other parties, and so on.

Problem
Different sites use different methods of gathering news and information: some site administra-
tors hunt for news events and write their own articles, while others get news and articles directly
from their users (a great example of this is the Add Your News link at www.aspwire.com) or they
rely upon a company whose business is to gather and organize news to be sold to third-party
sites. In the old days, some sites did screen-scraping, retrieving data from an external site’s page
and showing it on their pages with a custom appearance (of course, you must have the authori-
zation from the external company and you must know the format they use to show the news on
their pages). During the last few years, we’ve seen an explosion in the use of RSS (Really Simple
Syndication), a simple XML format for syndicating content, making it available to other clients.
Atom is another XML-based syndication standard that was created to solve some problems of
RSS — it is relatively new but already very popular. The basic idea with RSS and ATOM is for
sites to provide an index of news items in the form of an XML document. A client program can
fetch that XML document and provide users with a list of news items and hyperlinks that can
direct them to the individual stories they are interested in. One site’s XML index document is
called a newsfeed. The client program is called a news aggregator (or feed reader) because it can
extract newsfeeds from many sites and present them in one list, possibly arranged by categories.
Users can subscribe to the XML feed and their aggregator program can periodically poll for new

87586c05.indd 24787586c05.indd 247 9/11/09 3:04:10 PM9/11/09 3:04:10 PM

248

Chapter 5: News and Article Management

stories by fetching new XML documents automatically in the background. Because RSS and Atom are
open standards, there are many web-based and fat-client desktop applications that can subscribe to
any site that provides such feeds. Some popular open-source feed readers written in C# are RSS Bandit
(www.rssbandit.org) and SharpReader (www.sharpreader.com). RSS and Atom are very convenient
for users who want to keep up on the latest news and articles. You can advertise your new content via
RSS and ATOM feeds, or you can even display a list of content from other sites by showing RSS links on
one of your web pages. Your page can have an aggregator user control that makes it simple to display
the content of specifi ed RSS and ATOM feeds. This adds to any unique content you provide, and users
will fi nd value in returning to your site frequently to see your own updated content as well as a list of
interesting links to updated news items on other sites.

It doesn’t matter which methods you decide to use, but you must have fresh and updated content as
often as possible for your site to be successful and entice users to return. Users will not return regularly
to a site if they rarely fi nd new content. You should use a variety of methods to acquire new content.
You can’t rely entirely on external content (retrieved as an RSS feed, by screen-scraping, or by inserting
some JavaScript) because these methods often imply that you just publish a small extract of the external
content on your site, and publish a link to the full article, thus driving traffi c away from your site. It can
be a solution for daily news about weather, stock exchanges, and the like, but not for providing original
content, which is why users surf the web. You must create and publish some content on your own, and
possibly syndicate that content as RSS feeds, so that other sites can consume it, and bring new visitors
to your site.

Once you have a source of articles, a second problem arises: how do you add them to your site? You
can immediately rule out manually updating pages or adding new static HTML pages — if you have
to add news several times a day, or even just every week, creating and uploading pages and editing all
the links becomes an administrative nightmare. Additionally, the people who administer the site on a
daily basis may not have the skills required to edit or create new HTML pages. You need a much more
fl exible system, one that allows the site administrators to easily publish fresh content without requiring
special HTML code generation tools or knowledge of HTML. You want it to have many features, such
as the capability to organize articles in categories and show abstracts, and even to allow some site users
to post their own news items. You’ll see the complete list of features you’re going to implement in the
“Design” section of this chapter. For now, suffi ce it to say that you must be able to manage the content
of your site remotely over the web, without requiring any other tools. Think about what this implies:
you can add or edit news as soon as it is available, in a few minutes, even if you’re not in your offi ce and
even if you don’t have access to your own computer; all you need is a connection to the Internet and a
browser. And this can work the same way for your news contributors and partners. They won’t have to
e-mail the news to you and then wait for you to publish it. They can submit and publish content without
your intervention (although in our case we will give administrators and editors the option to approve
or edit the content before publication).

The last problem is the implementation of security. We want to give full control to one or more admin-
istrators and editors, allow a specifi c group of users (contributors) to submit news, and allow normal
users to just read the news. You could even prevent them from reading the content if they have not
registered with the site.

Once new articles or news is made available, you need to promote the content. In today’s Web 2.0 world,
this involves pushing content to social media sites such as Twitter, Facebook, and many other locations. The
other side of Web 2.0 design is allowing visitors to comment on the content. The Beer House already
allows comments, but the user interface needs a slight facelift.

87586c05.indd 24887586c05.indd 248 9/11/09 3:04:10 PM9/11/09 3:04:10 PM

249

Chapter 5: News and Article Management

To summarize the problem, you need the following:

An online tool for managing news content that allows specifi c users to add, update, and delete ❑

articles without knowing HTML or other publishing software.

A common infrastructure to post announcements to Twitter. This will provide a way to get ❑

news to patrons through the web and SMS (Short Message Service). Twitter also allows the Beer
House to reach a growing Web 2.0 crowd of very interactive customers.

A common infrastructure to leverage Gravatar.com to create user avatars used to visually ❑

identify them on the site when they post a comment to an article.

A method of allowing other sites to use your content so that they publish an extract and link to ❑

your site for the entire articles, thus bringing more traffi c.

A system that allows various users different levels of access to the site’s content. ❑

Design
This section introduces the design of the solution and an online tool for acquiring, managing, and shar-
ing the content of our site. Specifi cally, we will do the following:

Provide a full list of the features we want to implement. ❑

Design the database tables for this module. ❑

Create a list and a description of the stored procedures needed to provide access to the ❑

database.

Design the object models of the data and business layers. ❑

Describe the user interface services needed for content management, such as the site pages and ❑

reusable user controls.

Explain how we will ensure security for the administration section and for other access- ❑

restricted pages.

Features to Implement
Let’s start our discussion by writing down a partial list of the features that the article manager module
should provide to be fl exible and powerful, but still easy to use:

An article can be added to the database at any time, with an option to delay publication until a ❑

specifi ed release date. Additionally, the person submitting the article must be able to specify an
expiration date, after which the article will be automatically retired. If these dates are not speci-
fi ed, then the article should be immediately published and remain active indefi nitely.

Articles can have an approved status. If an administrator or editor submits the article, it should ❑

be approved immediately. If you allow other people, such as staff or users of the site (we will
call them contributors), to post their own news and articles, then this content should be added to
the database in a “pending” state. The site administrators or editors will then be able to control
this content, apply any required modifi cations, and fi nally approve the articles for publishing
once they are ready.

87586c05.indd 24987586c05.indd 249 9/11/09 3:04:10 PM9/11/09 3:04:10 PM

250

Chapter 5: News and Article Management

The system must also track who originally submitted an article or news item. This is important ❑

because it provides information regarding whether a contributor is active, who is responsible
for incorrect content, who to contact for further details if the article is particularly interesting,
and so on.

The administrator/editor must be able to decide whether an article can be read by all readers or ❑

only by registered users.

There can be multiple categories, enabling articles to be organized in different virtual folders. ❑

Each category should have a description and an image that graphically represents it.

There should be a page with the available categories as a menu. Each category should be linked ❑

to a page that shows a short abstract for each published article. Clicking on the article’s title
should allow the user to read the whole text.

Articles can be targeted to users from a specifi ed location, for example, country, state/province, ❑

or city. Consider the case where you might have stories about concerts, parties, and special
events that will happen in a particular location. In Chapter 4, you implemented a registration
and profi ling system that includes the user’s address. That will be used here to highlight events
that are going to happen close to the user’s location. This is a feature that can entice readers to
provide that personal information, which you could use later for marketing purposes (ads can
be geographically targeted also).

Users can leave comments or ask questions about articles, and this feedback should be pub- ❑

lished at the end of the article itself, so that other readers can read it and create discussions
around it (this greatly helps to increase traffi c). You might recognize this approach as being
common to blogs, which are web logs in which an individual publishes personal thoughts and
opinions and other people add comments. As another form of feedback, users can rate articles
to express how much they liked them.

Each comment needs to be screened for spam. Letting comment spam infi ltrate the site can ❑

quickly diminish the desirability of the site to users. It could also degrade the quality of the
site in the eyes of search engines, meaning fewer potential customers. Automatic checking and
manual approval must be implemented.

The module must count how many times an article is read. This information will also be shown ❑

to the reader, together with the abstract, the author name, the publication date, and other infor-
mation. But it will be most important for the editors/administrators because it greatly helps
them understand which topics the readers fi nd most interesting, enabling administrators to
direct energy, money, and time to adding new content on those topics.

The new content must be available as an RSS feed to which a reader can subscribe to read ❑

through his or her favorite RSS aggregator.

Above all, the article manager and the viewer must be integrated with the existing site. In our ❑

case, this means that the pages must tie in with the current layout and that we must take advan-
tage of the current authentication/authorization system to protect each section and to identify
the author of the submitted content.

It’s essential to have this list of features when designing the database tables, as we now know what
information we need to store, and the information that we should retrieve from existing tables and
modules (such as the user account data).

87586c05.indd 25087586c05.indd 250 9/11/09 3:04:10 PM9/11/09 3:04:10 PM

251

Chapter 5: News and Article Management

Designing the Database Tables
As described in Chapter 3 (where we looked at building the foundations for our site), we’re going to use
the tbh_ prefi x for all our tables, so that we avoid the risk of naming a table such that it clashes with
another table used by another part of the site (this may well be the case when you have multiple appli-
cations on the site that store their data on the same shared DB). We need three tables for this module:
one for the categories, another one for the articles, and the last one for the user feedback. The diagram
shown in Figure 5-1 illustrates how they are linked to each other.

Figure 5-1

Let’s start by looking at these tables and their relationship in more detail.

The tbh_Categories Table
Unsurprisingly, the tbh_Categories table stores some information about the article categories:

Column Name Type Size
Allow
Null Description

CategoryID int - PK 4 No Unique ID for the category.

AddedDate datetime 8 No Category creation date/time.

AddedBy nvarchar 256 No Name of the user who created the category.

Title nvarchar 256 No Category’s title.

Continued

87586c05.indd 25187586c05.indd 251 9/11/09 3:04:10 PM9/11/09 3:04:10 PM

252

Chapter 5: News and Article Management

Column Name Type Size
Allow
Null Description

Importance int 4 No Category’s importance. Used to sort the cat-
egories with a custom order, other than by
name or by date.

Description nvarchar 4000 Yes Category’s description.

ImageUrl nvarchar 256 Yes URL of an image that represents the category
graphically.

Active Bit 1 No Indicates if the record has been deleted or is
active.

UpdatedDate datetime 8 No Category last update date/time.

UpdatedBy nvarchar 256 No Name of the user who last updated the
category.

This system supports a single-level category, meaning that we cannot have subcategories. This is
plenty for small-to-midsized sites that don’t have huge numbers of new articles on a wide variety of
topics. Having too many categories in sites of this size can even hinder the user’s experience, because
it makes it more diffi cult to locate desired content. Enhancing the system to support subcategories is
left as an exercise if you really need it, but as a suggestion, the DB would only require an additional
ParentCategoryID column containing the ID of the parent category.

AddedDate, AddedBy, UpdatedDate, and UpdatedBy are four columns that you will fi nd in all our
tables — they record when a category/article/comment/product/message/newsletter was created and
last updated, and by whom, to provide an audit trail. Of course, this will only provide information about
when the record was created and last modifi ed. For a more robust auditing system, you might look at
adding a general table to log all changes to the database, but again this is a bit more than the Beer Houses
needs at this point. You may have thought that, instead of having an nvarchar column for storing the
username, we could use an integer column that would contain a foreign key pointing to records of
the aspnet_Users table introduced in Chapter 4. However, that would be a bad choice for a couple
of reasons:

 1. The membership data may be stored in a separate database, and possibly on a different server.

 2. The membership module might use a provider other than the default one that targets SQL
Server. In some cases, the user account data will be stored in Active Directory or maybe an
Oracle database, and thus there would be no SQL Server table to link to.

Another column that has been added to all the tables is Active. This is a bit value that is either true (1)
or false (0) to indicate if the record has been deleted or not. One of the rules I was taught early in my
development career is to retain all records and to set fl ags to indicate the state each record is in. Active
allows records to be retained in the database, yet be considered deleted by the application. This is also
pretty handy when a record was accidentally deleted by a user and needs to be restored. Simply fl ipping
the bit back to true saves you from having to restore the record or, even worse, the entire database.

87586c05.indd 25287586c05.indd 252 9/11/09 3:04:10 PM9/11/09 3:04:10 PM

253

Chapter 5: News and Article Management

The tbh_Articles Table
The tbh_Articles table contains the content and all further information for all the articles in all cat-
egories. It is structured as follows.

Column Name Type Size
Allow
Null Description

ArticleID int – PK 4 No Unique ID for the article.

AddedDate Datetime 8 No Date/time the article was added.

AddedBy Nvarchar 256 No Name of the user who created the article.

CategoryID int – FK 4 No ID of the category to which the news item
belongs.

Title Nvarchar 256 No Article’s title.

Abstract Nvarchar 4000 Yes Article’s abstract (short summary) to be
shown in the page that lists the article, and in
the RSS feed.

Body Ntext No Article’s content (full version).

Country Nvarchar 256 Yes Country to which the article (concert/event)
refers.

State nvarchar 256 Yes State/province to which the article refers.

City nvarchar 256 Yes City to which the article refers.

ReleaseDate datetime 8 Yes Date/time the article will be publicly readable.

ExpireDate datetime 8 Yes Date/time the article will be retired and no
longer readable by the public.

Approved bit 1 No Approved status of the article. If false, an
administrator/editor has to approve the
article before it is actually published and
available to readers.

Listed bit 1 No Whether the article is listed in the articles
page (indexed). If false, the article will not be
listed, but will be still accessible if the user
types the right URL, or if there is a direct link
to it.

CommentsEnabled bit 1 No Whether the user can leave public comments
on the article.

OnlyForMembers bit 1 No Whether the article is available to registered
and authenticated users only or to everyone.

Continued

87586c05.indd 25387586c05.indd 253 9/11/09 3:04:10 PM9/11/09 3:04:10 PM

254

Chapter 5: News and Article Management

Column Name Type Size
Allow
Null Description

ViewCount int 4 No Number of times the article has been viewed.

Votes int 4 No Number of votes the article has received.

TotalRating int 4 No Total rating score the article has received.
This is the sum of all the ratings posted by
users.

Active Bit 1 No Indicates if the record has been deleted.

UpdateDate Datetime 8 No Datetime when the last update to the record
was made.

UpdatedBy nvarchar 256 No Who made the last update to the record.

The ReleaseDate and ExpireDate columns are useful because the site’s staff can prepare content in
advance and postpone its publication, and then let the site update itself at the specifi ed date/time. In
addition to the obvious benefi t of spreading out the workload, this is also great during vacation periods,
when the staff would not be in the offi ce to write new articles but you still want the site to publish fresh
content regularly.

The Listed column is also very important, because it enables you to add articles that will be hidden
from the main article list page, and from the RSS feeds. Why would you want to do this? Suppose that
you have a category called Photo Galleries (we’ll actually create it later in the chapter) in which you
publish the photos of a past event or meeting. In such photo gallery articles, you would insert thumb-
nails of the photos with links to their full-sized version. It would be nice if the reader could comment
and rate each and every photo, not just the article listing them all, right? You can do that if instead of
linking the big photo directly you link a secondary article that includes the photo. However, if you have
many photos, and thus many short articles that contain each of them, you certainly don’t want to fi ll the
category’s article listing with a myriad of links to the single photos. Instead, you will want to list only
the parent gallery. To do this, you set the Listed property of all the photo articles to false, and leave
it set to true only on the article with the thumbnails.

The Country, State, and City fi elds enable you to specify an accurate location for those articles that
refer to an event (such as parties, concerts, beer contests, etc.). You may recall that we created the same
properties in Chapter 2 for the user’s profi le. If the location for the article matches a specifi c user’s location,
even partially, then you could highlight the article with a particular color when it’s listed on the web
page. You may be wondering why it was necessary to defi ne the Country and State fi elds as varchar
fi elds, instead of an int foreign key pointing to corresponding records of the tbh_Countries and
tbh_States lookup tables. The answer is that I want to use the City fi eld to support not only U.S.
states, but states and provinces for any other country, so I defi ned this as free text fi eld. It’s also good
for performance if we denormalize these fi elds. Using a lookup table is particularly useful when there
is the possibility that some values may change; storing the information in one location minimizes the
effort to update the data and makes it easier to ensure that we don’t get out of sync. However, realisti-
cally, the list of countries will not change, so this isn’t much of a problem. In the remote case that this
might happen, you will simply execute a manual update for all those records that have Country=”USA”

87586c05.indd 25487586c05.indd 254 9/11/09 3:04:10 PM9/11/09 3:04:10 PM

255

Chapter 5: News and Article Management

instead of “United States”, for example. This design decision can greatly improve the performance
of the application.

Be aware that IP address databases are available that can be used to determine the
user’s location as close as his ZIP Code in the United States. The targeting detail
varies among these databases, but even one that gets the general area correct can be
very useful for most sites to target the user’s content.

You may be wondering why I decided to put the Votes and TotalRating columns into this table, instead
of using a separate table to store all the single votes for all articles. That alternative has its advantages,
surely: you could track the name and IP address of the user who submits the vote, and produce inter-
esting statistics such as the number of votes for every level of rating (from one to fi ve stars). However,
retrieving the total number of votes, the total rating, and the number of votes for each rating level would
require several SUM operations, in addition to the SELECT to the tbh_Articles table. I don’t think the
additional features are worth the additional processing time and traffi c over the network, and thus I opted
for this much lighter solution instead.

The tbh_Comments Table
The tbh_Comments table contains the feedback (comments, questions, answers, etc.) for the published
articles. The structure is very simple:

Column Name Type Size
Allow
Null Description

CommentID int - PK 4 No Unique ID for the comment.

AddedDate datetime 8 No Date/time the comment was added.

AddedBy nvarchar 256 No Name of the user who wrote the comment.

AddedByEmail nvarchar 256 No User’s e-mail address.

AddedByIP nchar 15 No User’s IP address.

ArticleID int 4 No Article to which the comment refers.

Body ntext No Text of the comment.

Active Bit 1 No Indicates if the record has been deleted.

UpdatedDate Datetime 8 No When the record was last updated.

UpdatedBy nvarchar 256 No The username of the user who last updated
the record.

We will track the name of the user posting the comment, but she could even be an anonymous user,
so this value will not necessarily be one of the registered usernames. We also store the user’s e-mail
address, so that the reader can be contacted with a private answer to her questions. Storing the IP
address might be legally necessary in some cases, especially when you allow anonymous users to post

87586c05.indd 25587586c05.indd 255 9/11/09 3:04:10 PM9/11/09 3:04:10 PM

256

Chapter 5: News and Article Management

content on a public site. In case of offensive or illegal content, it may be possible to geographically locate
the user if you know her IP address and the time when the content was posted. In simpler cases, you
may just block posts from that IP (not a useful option if it were a dynamically assigned IP, though).

Creating the Entity Model
Chapter 3 walked through creating an Entity Data Model using the Entity Framework Wizard. The
same process holds for the articles model, but uses the tbh_Articles, tbh_Categories and tbh_
Comments tables.

But, just as you saw with the SiteMap model, the Articles model needs to be customized. The thb_
Articles entity needs to have the Entity Set Name set to Articles and the Name set to Article.
The navigational properties need to be changed to Category and Comments, respectively. For the thb_
Categories entity, change the Entity Set Name to Categories and the Name to Category. Rename
the tbh_Articles navigational property to Article. Similary rename the tbh_Comments entity
appropriately, so the fi nal result looks like Figure 5-2.

Figure 5-2

Once the model is generated, the classes in the model need to be placed in the TheBeerHouse.BLL
.Articles namespace. This requires editing the generated code fi le by adding the namespace wrap-
per around classes. This is done below the Assembly defi nitions at the top of the fi le, which means an
Imports TheBeerHouse.BLL.Articles directive at the top of the page. That’s because the Assembly
defi nitions reference the classes, now wrapped in the Articles namespace. Each of these entities is
extended in corresponding partial classes defi ned in the class library.

87586c05.indd 25687586c05.indd 256 9/11/09 3:04:11 PM9/11/09 3:04:11 PM

257

Chapter 5: News and Article Management

One property exposed by the Comment entity is EncodedBody, which returns the same text returned
by the Body property, but fi rst performs HTML encoding on it. This protects us against the so-called
script-injection and cross-site scripting attacks. As a very simple example, consider a page on which you
allow users to anonymously post a comment. If you don’t validate the input, they may write something
like the following:

<script>document.location = ‘http://www.usersite.com’;</script>

This text is sent to the server, and you save it into the DB. Later, when you have to show the comments,
you would retrieve the original comment text and send to the browser as is. However, when you out-
put the preceding text, it won’t be considered as text by the browser, but rather as a JavaScript routine
that redirects the user to another website, hijacking the user away from your website! And this was
just a basic attack — more complex scripts could be used to steal users’ cookies, which could include
authentication tickets and personal data, with potentially grave consequences. For our protection, ASP.
NET automatically validates the user input sent to the server during a postback, and checks whether it
matches a pattern of suspicious text. If so, it raises an exception and shows an error page. You should
consider the case where a legitimate user tries to insert some simple HTML just to format the text, or
maybe hasn’t really typed HTML but only a < character. In that case, you don’t want to show an error
page; you only need to ensure that the HTML code isn’t displayed in a browser (because you don’t want
users to put links or images on your site, or text with a font so big that it creates a mess with your lay-
out). To make sure it isn’t displayed, you can disable ASP.NET’s input validation (only for those pages
on which the user is actually expected to insert text, not for all pages!), and save the text into the DB,
but only show it on the page after HTML encoding, as follows:

<script> document.location = ‘http://www.usersite.com’; </script>

This way, text inserted by the user is actually shown on the page, instead of being considered HTML.
The link will show as a link, but it will not be a clickable link, and no JavaScript can be run this way.
The EncodedBody property returns the HTML encoded text, but it can’t completely replace the Body
property, because the original comment text is still required in certain situations — for example, in the
administration pages where you show the text in a textbox and allow the administrator to edit it.

Scripting-based attacks must not be taken lightly, and you should ensure that your site is not vulner-
able. One good reference on the web is www.technicalinfo.net/gunter/index.html, but you
can easily fi nd many others. Try searching for “XSS,” using your favorite search engine.

There are two new features for the comment functionality of the Beer House, validating comments through
Akismet and Gravatar support. Akismet is a comment spam-fi ltering service. Simply put a site can pass a
comment through the Akismet API and it will return if Akismet thinks the comment is spam or not.

The last helper members help with accessing the user’s Gravatar. Simply put, a Gravatar is a Globally
Recognized Avatar and is managed at www.Gravatar.com. Anyone can go to Gravatar.com and create
an account and assign images or photos to be used anywhere to represent them. If a commentor does not
have a Gravatar account, the API returns a random image to represent the user, but more about that
later, too.

87586c05.indd 25787586c05.indd 257 9/11/09 3:04:11 PM9/11/09 3:04:11 PM

258

Chapter 5: News and Article Management

Building Repository Classes
Instead of using stored procedures and a DAL (Data Access Layer) to access those stored procedures,
with the Entity Framework and LINQ these tasks are contained within a repository class. As explained in
Chapter 3, repository classes now manage the business aspect of the Beer House application. Repositories
provide for some separation of concerns that will allow the architecture to be further extended in the future
if desired. Figure 5-3 shows the class diagram for the Articles module.

Each of the entities related to the articles module has its own repository class. Each of these classes
inherits a BaseRepository class that contains some common logic used by all the repository classes, such
as the Dispose method and a common reference to the ArticlesEntities DataContext class to interact
with the Entity Data Model for the articles module.

Figure 5-3

ArticleRepository
The ArticleRepository manages all the interactions with the Article entity, using LINQ to entities to
build queries in the database. The repository is a class composed of methods to create, retrieve, update,

87586c05.indd 25887586c05.indd 258 9/11/09 3:04:11 PM9/11/09 3:04:11 PM

259

Chapter 5: News and Article Management

and delete (CRUD) records in the tbh_Articles table, most manage retrieving and caching records in
memory.

In the previous edition of the Beer House, the articles were retrieved in chunks or pages. This can still
be done, but since the records are going to be cached in memory and pages using AJAX, this is not as
important. If the site were to contain hundreds of thousands of records, then caching by page is slightly
more feasible and can be done with LINQ by using the Skip and Take methods on the IQueryable(of
Article) list returned by the LINQ query.

lArticles = (From lArticle In Articlesctx.Articles _
 Where lArticle.Published = True _
 Order By lArticle.ReleaseDate Descending).Skip(15).Take(15).ToList()

Skip accepts a numerical value that indicates how many rows to skip over before beginning the list of
records to return. Similarly, the Take method accepts a numerical value to indicate how many records
should be returned. So, the sample query returns the second displayed page of records.

Method Description

GetArticles Returns a list of Article instances and has three overloads to
wrap all LINQ to Entities queries that retrieve the list of articles
described above (to retrieve all articles, only published
articles, etc.).

GetArticleCount There are four overloads of this method that return the number
of articles given no constraints (all articles), the parent category,
the published status (but not the category), or the parent cat-
egory plus the published status.

GetArticleByID Returns an Article instance that fully describes the article
identifi ed by the input ID.

InsertArticle Takes all the data for creating a new article, and returns its ID.

UpdateArticle Updates data for an existing article and returns a Boolean value
indicating whether or not the operation was successful.

DeleteArticle Deletes the article identifi ed by an ID and returns a Boolean
value indicating whether or not the operation was successful.

ApproveArticle Approves the article identifi ed by an ID.

IncrementArticleViewCount Increments the view count of the article identifi ed by an ID.

RateArticle Rates the article identifi ed by the ID, with a value from 1 to 5.

GetPublishedArticles A wrapper around the GetArticles overload passing a true
value for the PublishedOnly parameter.

GetHomePageArticles Returns a list of the three most recently added articles to have
their titles and abstracts displayed on the home page.

87586c05.indd 25987586c05.indd 259 9/11/09 3:04:11 PM9/11/09 3:04:11 PM

260

Chapter 5: News and Article Management

The GetArticleById method returns a single article by its ID, but the method contains a couple of over-
loads. The primary returns just the article entity itself and does not retrieve the associated category or
list of comments. This is the most effi cient query but may not always meet the needs of the page asking
for the article. In that case, the second overload accepts Boolean parameters to indicate if the associated
category and comments should also be retrieved.

Public Function GetArticleById(ByVal ArticleId As Integer, ByVal
bIncludeCategories As Boolean, ByVal bIncludeComments As Boolean) As Article

 If ArticleId > 0 Then

 If bIncludeCategories And bIncludeComments Then

 Return (From lai In
Articlesctx.Articles.Include(“Categories”).Include(“Comments”) _
 Where lai.ArticleID = ArticleId).FirstOrDefault

 ElseIf bIncludeCategories And Not bIncludeComments Then

 Return (From lai In Articlesctx.Articles.Include(“Categories”)
_ Where lai.ArticleID = ArticleId).FirstOrDefault

 ElseIf Not bIncludeCategories And Not bIncludeComments Then

 Return (From lai In Articlesctx.Articles _
 Where lai.ArticleID = ArticleId).FirstOrDefault

 End If

 End If

 Throw New ArgumentException(“The ArticleId is not valid.”)

End Function

The RateArticle method is not necessarily the most effi cient use of SQL because it retrieves an
instance of the article’s entity and changes the TotalRating and Votes members, then commits the
changes to the database. What is more effi cient is to change the values in an existing article entity
you may be working with and save that to the database, but that may not always be possible. So, this
method performs that duty for you using LINQ.

Public Function RateArticle(ByVal ArticleId As Integer,
ByVal rating As Integer) As Boolean

 Dim lArticle As Article = GetArticleById(ArticleId)

 lArticle.TotalRating += rating
 lArticle.Votes += 1

 Try
 Articlesctx.SaveChanges()
 MyBase.PurgeCacheItems(CacheKey)

87586c05.indd 26087586c05.indd 260 9/11/09 3:04:11 PM9/11/09 3:04:11 PM

261

Chapter 5: News and Article Management

 Return True
 Catch ex As OptimisticConcurrencyException
 ‘ catching this exception allows you to
 ‘ refresh entities with either store/client wins
 ‘ project the entities into this failed entities.
 Dim failedEntities = From e1 In ex.StateEntries _
 Select e1.Entity

 ‘ Note: in future you should be able to just pass the
opt.StateEntities in to refresh.
 Articlesctx.Refresh(RefreshMode.ClientWins,
failedEntities.ToList())
 Articlesctx.SaveChanges()

 Catch ex As Exception
 Return False
 End Try

End Function

The RateArticle method commits the changes to the database and also includes some special code
to check for a OptimisticConcurrencyException and deals with it by specifying how the issue is to
be resolved. While this should not be an issue with this method because the entity is being retrieved
so fast, I thought it would be a good idea to include the code to demonstrate how this is done with the
Entity Framework.

The IncrementArticleViewCount and ApproveArticle methods are structured in much the
same way as the RateArticle method. They retrieve the article, change the relevant (ViewCount or
Approved) value, and commit the change to the database.

The AddArticle method accepts an article entity and adds it to the database. There is a corresponding
overload that accepts a series of parameters to create a new Article object. First, it checks to see if the
Article already exists; if so, it uses the existing entity to make updates against. If it does not already
exist, the method creates a new instance of an Article, and it is committed to the database by calling
the other version of the AddArticle method.

Public Function AddArticle(ByVal articleID As Integer, ByVal title As String,
ByVal body As String, _
 ByVal approved As Boolean, ByVal listed As Boolean,
ByVal commentsEnabled As Boolean, _
 ByVal onlyForMembers As Boolean, ByVal viewCount As Integer,
ByVal votes As Integer, ByVal totalRating As Integer) As Article

 Dim article As Article

 If articleID > 0 Then

 article = GetArticleById(articleID)

 article.ArticleID = articleID
 article.UpdatedDate = Now
 article.UpdatedBy = Helpers.CurrentUserName

87586c05.indd 26187586c05.indd 261 9/11/09 3:04:11 PM9/11/09 3:04:11 PM

262

Chapter 5: News and Article Management

 article.Title = title
 article.Body = body
 article.Approved = approved
 article.Listed = listed
 article.CommentsEnabled = commentsEnabled
 article.OnlyForMembers = onlyForMembers
 article.ViewCount = viewCount
 article.Votes = votes
 article.TotalRating = totalRating

 Else
 article = article.CreateArticle(articleID, Now,
Helpers.CurrentUserName, Now, True, title, body, _
 approved, listed, commentsEnabled, onlyForMembers,
viewCount, votes, totalRating)
 End If

 Return AddArticle(article)

End Function

In the second AddArticle method leverages the built-in functionality of the Entity Framework to simply
update the existing record. If the entity is not attached to the current context, it is added to the context
before it is saved to the database. All the cache related to the Article entity is fl ushed from the system
as well, to ensure that the freshest data is used by the application. Finally, a ternary If statement is
used to return True or False, depending on if any records were affected, which typically will be true.
If an exception occurs in the save operation, it is added to the ActiveExceptions list, which can then
be used by the page working with the entity to inform the user about what happened.

Public Function AddArticle(ByVal vArticle As Article) As Article

 Try
 If vArticle.EntityState = EntityState.Detached Then
 Articlesctx.AddToArticles(vArticle)
 End If
 MyBase.PurgeCacheItems(CacheKey)
 Return If(Articlesctx.SaveChanges > 0, vArticle, Nothing)

 Catch ex As Exception
 ActiveExceptions.Add(CacheKey & “_“ & vArticle.ArticleID, ex)
 Return Nothing
 End Try

End Function

ActiveExceptions is a property defi ned in the BaseRepository class. It is a Dictionary of excep-
tions, so more than one exception can be caught and stored. I did this in case more than one exception
was thrown, so that the page could loop through the exceptions and inform the user about each issue.
Generally, there will be one exception, but there are some fringe cases where there might be more than
one exception.

Private _activeExceptions As Dictionary(Of String, Exception)
Public Property ActiveExceptions() As Dictionary(Of String, Exception)

87586c05.indd 26287586c05.indd 262 9/11/09 3:04:11 PM9/11/09 3:04:11 PM

263

Chapter 5: News and Article Management

 Get
 If IsNothing(_activeExceptions) Then
 _activeExceptions = New Dictionary(Of String, Exception)
 End If
 Return _activeExceptions
 End Get
 Set(ByVal Value As Dictionary(Of String, Exception))
 _activeExceptions = Value
 End Set
End Property

The AddEdit pages in the site’s admin all use the following routine to echo a list of the exceptions that
occurred during a commit to the database:

Private Sub IndicateNotUpdated(ByVal vRepository As BaseRepository)

 ltlStatus.Text = String.Empty
 If vRepository.ActiveExceptions.Count > 0 Then
 For Each kv As KeyValuePair(Of String, Exception) In
vRepository.ActiveExceptions
 ltlStatus.Text += DirectCast(kv.Value, Exception).Message & “
”
 Next
 Else
 ltlStatus.Text = String.Format(My.Resources.EntityHasNotBeenUpdated,
“Article”)
 End If

End Sub

DeleteArticle and UnDeleteArticle both call the ChangeDeletedState method but pass in either
false to delete or true to undelete a record. The ChangeDeleteState method sets the Active fi eld to the
supplied vState parameter value, sets the UpdatedDate property to the current time and the UpdatedBy
property to the current user’s UserName.

Private Function ChangeDeletedState(ByVal vArticle As Article,
ByVal vState As Boolean) As Boolean
 vArticle.Active = vState
 vArticle.UpdatedDate = Now()
 vArticle.UpdatedBy = CurrentUserName

 Try
 Articlesctx.SaveChanges()
 MyBase.PurgeCacheItems(CacheKey)
 Return True
 Catch ex As Exception
 ActiveExceptions.Add(vArticle.ArticleID, ex)
 Return False
 End Try

End Function

87586c05.indd 26387586c05.indd 263 9/11/09 3:04:11 PM9/11/09 3:04:11 PM

264

Chapter 5: News and Article Management

CategoryRepository
The overall composition of the CategoryRepository class is very similar to the ArticleRepository
as it applies to the basic CRUD operations.

Method Description

GetCategories Returns a list of Category Entities.

GetActiveCategories Returns a list of all active Category Entities.

GetCategoryByID Returns a Category entity by the CategoryID.

AddCategory Takes all the data for creating a new category and returns true if the
addition was successful.

UpdateCategory Updates data for an existing category, and returns a Boolean value
indicating whether the operation was successful.

DeleteCategory Changes the Active fl ag for the category to indicate it is not active.

UnDeleteCategory Changes the Active fl ag for the category to indicate it is active.

GetCategoryCount Returns the number of categories stored in the database.

The CategoryRepository, located in the Articles folder of the class library, works much like the
ArticleRepository. It does contain fewer members, since there are not many custom views of cat-
egories in the application. It differs from the previous edition of the Beer House; the AllArticles and
PublishedArticles members have been removed and replaced with adequate corresponding mem-
bers in the ArticleRepository class.

CommentRepository
The CommentRepository is a little simpler than the other two repository classes because it contains
fewer methods and does not allow the deletion of comments. Instead, a comment is not going to be dis-
played unless it is approved.

Method Description

GetComments Returns a list of Comment Entities.

GetApprovedComments Overloaded function that returns a list of all active Comment
Entities, or all Comments by Article sorted in a desired order by
date added.

GetCommentsByArticleId Returns a list of Comments for an Article sorted in the specifi ed
order.

GetCommentCount Returns the total number of Comments.

GetCommentByID Returns a Comment entity by the CommentID.

AddComment Takes all the data for creating a new comment and returns true if the
addition was successful.

87586c05.indd 26487586c05.indd 264 9/11/09 3:04:11 PM9/11/09 3:04:11 PM

265

Chapter 5: News and Article Management

Method Description

UpdateComment Updates data for an existing comment and returns a Boolean value
indicating whether the operation was successful.

ApproveComment Changes the Approved fl ag for the Comment to indicate its approval
state.

DeleteComment Changes the Active fl ag for the Comment to indicate it has been
deleted.

UnDeleteComment Changes the Active fl ag for the Comment to indicate it has not been
deleted.

The AddComment method does more than just add the comment to the database; it can also call the
Akismet service to determine if the comment is spam or not. The method creates a new instance of
the Akismet class, part of the Akismet.net library and passes an AkismetCommet object to the library,
which subsequently calls Akisment to score the comment. If the comment is determined to be a spam
comment, the method returns true; otherwise, it returns false to indicate the comment should be safe.

Working with Akismet requires having an account at WordPress.com, which is free to anyone who
signs up (http://akismet.com). If you have higher traffi c, there is a commercial license you might
need to get, so check the Akismet website for more details.

The Akismet.net library has four methods that can be used to communicate with Akismet, VerifyKey,
CommentCheck, SubmitSpam, and SubmitHam. If you want to verify your Word Press Key and blog, call
the VerifyKey method, it returns True if you have a valid combination. To check a comment for spam,
call the CommentCheck method, if Akismet returns false, then the comment should be safe. If you fi nd
items you want to submit to Akismet for their database, then use SubmitSpam, but only for something
that is absolutely spam. Use the SubmitHam method if you are not quite sure if the comment is spam or
not. Submitting suspect comments helps the Akismet system work better to protect the Internet from
comment spam in the future!

We will not implement sorting features for the categories and the articles. This is because categories
will always be sorted by importance (the Importance fi eld) and then by name, whereas articles will
always be sorted by release date, from the newest to the oldest, which is the right kind of sorting for
these features. However, comments should be sorted in two different ways according to the situation:

From the oldest to the newest when they are listed on the user page, under the article itself, so ❑

that users will read them in chronological order, allowing them to follow a discussion made
up of questions and answers between the readers and the article’s author, or among different
readers.

From the newest to the oldest in the administration page, so that the administrator fi nds ❑

the new comments at the top of the list, and in the fi rst page (remember that comments sup-
port pagination), so they can be immediately read, edited, and, if necessary, deleted if found
offensive.

87586c05.indd 26587586c05.indd 265 9/11/09 3:04:11 PM9/11/09 3:04:11 PM

266

Chapter 5: News and Article Management

Designing the Confi guration Module
Chapter 3 introduced a custom confi guration section named <theBeerHouse> that you must defi ne
in the root folder’s web.config fi le, to specify some settings required in order for the site’s modules
to work. In that chapter, we also developed a confi guration class that would handle the <contact>
subelement of <theBeerHouse>, with settings for the Contact form in the Contact.aspx page. For
the articles module of this chapter, you’ll need some new settings that will be grouped into a new con-
fi guration subelement under <theBeerHouse>, called <articles>. This will be read by a class called
ArticlesElement that will inherit from System.Configuration.ConfigurationElement and that
will have the public properties shown in the following table.

Property Description

ProviderType Full name (namespace plus class name) of the concrete provider class
that implements the data access code for a specifi c data store.

ConnectionStringName Name of the entry in web.config’s new <connectionStrings> sec-
tion that contains the connection string to the module’s database.

PageSize Default number of articles listed per page. The user will be able to
change the page size from the user interface.

RssItems Number of items returned by the module’s RSS feeds.

EnableCaching Boolean value indicating whether the caching of data is enabled.

CacheDuration Number of seconds for which the data is cached.

UrlIndicator Used in the search engine friendly URLs to indicate the request is an
article.

EnableTwitter Boolean value indicating is posting to Twitter is enabled.

TwitterUserName The site’s Twitter account username.

TwitterPassword The site’s Twitter account password.

AkismetKey Holds the Word Press Key needed to use Akismet.

EnableAkismet Indicates if Akismet checking is turned on.

ReportAkismet Indicates if automatic submission of comment spam to Akismet should
be done.

The settings in the web.config fi le will have the same name, but will follow the camelCase naming
convention; therefore, you will use providerType, connectionStringName, pageSize, and so on, as
shown in the following example:

<theBeerHouse>
 <contactForm mailTo=”thebeerhouse@wrox.com” />
 <articles pageSize=”10” twitterUrserName=”twitterBH”
twitterPassword=”twitterPHPwd” enableTwitter=”false” />
 :
</theBeerHouse>

87586c05.indd 26687586c05.indd 266 9/11/09 3:04:11 PM9/11/09 3:04:11 PM

267

Chapter 5: News and Article Management

A Helpers class is part of the BeerHouse class library that contains a series of shared (VB.NET) or static
(C#) members. One of the members returns an instance of theBeerHouse confi guration section.

Public Shared ReadOnly Settings As TheBeerHouseSection = _
 CType(WebConfigurationManager.GetSection(“theBeerHouse”), TheBeerHouseSection)

An instance of ArticlesElement is returned by the Articles property of the TheBeerHouseSection
class, described in Chapter 3, that represents the <theBeerHouse> parent section. This class will also
have a couple of other new properties, DefaultConnectionStringName and DefaultCacheDuration,
to provide default values for the module-specifi c ConnectionStringName and CacheDuration set-
tings. These settings will be available for each module, but you want to be able to set them differently
for each module. For example, you may want to use one database for storing articles data, and a second
database to store forums data, so that you can easily back them up independently and with a different
frequency according to how critical the data is and how often it changes. This is one of the reasons for
having dedicated Entity Data Models for each module used in the site.

The same goes for the cache duration. However, in case you want to assign the same settings to all mod-
ules (which is probably what you will do for small to midsized sites), you can just assign the default val-
ues at the root section level, instead of copying and pasting them for every confi guration subelement.

In addition to the properties listed earlier, the ArticlesElement will have another property,
ConnectionString. This is a calculated property, though, not one that is read from web.config. It uses
the <articles>’s connectionStringName or the <theBeerHouse>’s defaultConnectionStringName
and then looks up the corresponding connection string in the web.config fi le’s <connectionStrings>
section, so the caller will get the fi nal connection string and not just the name of its entry.

Designing the User Interface
The design of the ASP.NET pages in this module is not particularly special, so there’s not much to dis-
cuss. We have a set of pages, some for the administrators and some for the end users, which allow us
to manage articles, and navigate through categories and read articles, respectively. In the fi rst edition
of this book, the most important consideration for the UI section of the fi rst chapters was the approach
used to integrate the module-specifi c pages into the rest of the site. However, you’ve already seen from
previous chapters that this is very straightforward in ASP.NET 2.0, thanks to master pages. Following
are the pages we will code later:

~/Admin/ManageCategories.aspx — ❑ Lists the current categories, and allows administrators to
create new ones and delete and update existing ones.

~/Admin/AddEditCategory.aspx — ❑ Allows administrators to create new categories and update
existing categories.

~/Admin/ManageArticles.aspx — ❑ Lists the current articles (with pagination support) and
allows administrators to delete them. The creation of new articles and the editing of existing
articles will be delegated to a secondary page.

~/Admin/AddEditArticle.aspx — A ❑ llows administrators to create new articles and update
existing articles.

87586c05.indd 26787586c05.indd 267 9/11/09 3:04:11 PM9/11/09 3:04:11 PM

268

Chapter 5: News and Article Management

~/Admin/ManageComments.aspx — ❑ Lists the current comments for any article, has pagination
support, and supports deletion and updates of existing comments.

~/ShowCategories.aspx — ❑ An end-user page that lists all categories, with their title, descrip-
tion, and image.

~/BrowseArticles.aspx — ❑ An end-user page that allows users to browse published articles for
a specifi c category or for all categories. The page shows the title, abstract, author, release date,
average rating, and location of the articles.

~/ShowArticle.aspx — ❑ An end-user page that shows the complete article, along with the cur-
rent comments at the bottom, and a box to let users post new comments and rate the article.

RSSFeed.vb — ❑ A custom HttpHandler that is mapped to handle all requests for any .RSS
resource in the Beer House site. It is intelligent enough to apply appropriate fi ltering to the list
of RSS items it serves.

Writing Articles with a WYSIWYG Text Editor
The fi rst and most important challenge you face is that the site must be easily updatable by the client
herself, without requiring help from any technical support people. Some regular employees working in
the pub must be able to write and publish new articles, and make them look good by applying various
formatting, colors, pictures, tables, and so forth. All this must be possible without knowing any HTML,
of course! This problem can be solved by using a WYSIWYG (the acronym for “what you see is what
you get”) text editor: these editors enable users to write and format text, and to insert graphical ele-
ments, much like a typical word processor (which most people are familiar with), and the content is
saved in HTML format that can be later shown on the end-user page “as is.” There are various editors
available, some commercial and some free. Among the different options I picked FCKeditor (www
.fckeditor.net), mainly because it is open source and because it is compatible with most Internet
browsers, including IE 5.5+, Firefox 1.0+, Mozilla 1.3+, and Netscape 7+. Figure 5-4 shows a screenshot
of an online demo from the editor’s website.

Figure 5-4

87586c05.indd 26887586c05.indd 268 9/11/09 3:04:11 PM9/11/09 3:04:11 PM

269

Chapter 5: News and Article Management

The editor is even localizable (language packs for many languages are already provided), and its user
interface can be greatly customized, so you can easily decide what toolbars and what command buttons
(and thus formatting and functions) you want to make available to users.

Uploading Files
The editor must be able to upload fi les, typically images for an article or to publish in a photo gallery,
and maybe upload documents, screen savers, or other goodies that editors want to distribute to their
end users. An administrator of a site would be able to use an FTP program to upload fi les, but an editor
typically does not have the expertise, or the credentials, needed to access the remote server and its fi le
system. An online fi le manager might be very helpful in this situation. In the fi rst edition of this book,
an entire chapter was devoted to showing you how to build a full-featured online fi le manager that
would enable users to browse and remove folders and fi les; upload new fi les; download, rename, copy
and delete existing fi les; and even edit the content of text fi les. However, this would be overkill in most
situations, as the administrator is the only one who needs to have full control over the fi les and fold-
ers and structure of the site, and the administrator will presumably use an FTP client for this purpose.
Editors and contributors only need the capability to upload new fi les. To implement this functionality,
we will develop a small user control that allows users to upload one fi le at a time, and when done, dis-
plays the full URL of the fi le saved on the server, so the user can easily link to it using the WYSIWYG
editor. The control will be used in various pages: in the page used to add and edit an article and in the
page used to manage categories (as each category can have an image representing it); later in the book,
we’ll use this in the pages that send newsletters and submit forum posts.

This user control, named FileUploader.ascx, will utilize the new ASP.NET 2.0 FileUpload con-
trol to select the fi le, submit it, and save it on the server. This control simply translates to an <input
type=”file” /> control, with server-side methods to save the image. Under ASP.NET 1.x there was
no such control; you had to add the runat=”server” attribute to a plain HTML control declaration.

One important design decision we need to consider is how to avoid the possibility that different editors
might upload fi les with the same name, overwriting previous fi les uploaded by someone else. A simple,
but effective, solution is to save the fi le under ~/Uploads/{UserName}, where the {UserName} place-
holder is replaced by the actual user’s name. This works because only registered and authenticated users
will have access to pages where they can upload fi les. We do want to let users overwrite a fi le that they
uploaded themselves, as they might want to change the fi le.

Remember that you will need to add NTFS write permission to the remote Uploads
folder at deployment time, for the ASP.NET (Windows 2000 and XP) or Network
Service user account (Windows Server 2003). It’s easy to overlook this kind of
thing, and you don’t want to leave a bad impression with users when you set up
a new site for them.

Article List User Control
You will need a way to quickly add the list of articles (with title, author, abstract, and a few more
details) to any page. It’s not enough to have entirely new articles; you also need to show them on exist-
ing pages so users will know about them! You’ll need to show the list on the BrowseArticles.aspx
page for end users and on the ManageArticles.aspx page for administrators. You may also want

87586c05.indd 26987586c05.indd 269 9/11/09 3:04:11 PM9/11/09 3:04:11 PM

270

Chapter 5: News and Article Management

to show the article list on the home page. If you’ve got a good understanding of user controls, you
may have already guessed that a user control is the best solution for this list because it enables us to
encapsulate this functionality into a single code unit (the .ascx fi le plus the cs code-behind fi le), which
enables us to write the code once and then place that user control on any page using one line of code.

This user control will be named ArticleListing.ascx. It produces different output according to
whether the user is a regular user, an administrator, or an editor. If they belong to one of the special
roles, each article item will have buttons to delete, edit, or approve them. This way, we can have a single
control that will behave differently according to its context. Besides this, when the control is placed into
an administration page, it must show all articles, including those that are not yet published (approved),
or those that have already been retired (based on the date). When the control is on an end-user page, it
must show only the active and published articles. The control will expose the following public proper-
ties (all Boolean), so that its content and its behavior can be changed in different pages:

Property Description

EnableHighlighter Indicates whether articles referring to events in the user’s country, state/
province, or city are highlighted with different colors.

PublishedOnly Indicates whether the control lists only articles that are approved, and
whose ReleaseDate–ExpireDate interval includes the current date.

RatingLockInterval The number of days that must pass before a user can again rate the same
article.

ShowCategoryPicker Indicates whether the control shows a drop-down list fi lled with all arti-
cle categories, which lets the user fi lter articles by category. If the prop-
erty is false the drop-down list will be hidden, and the control will fi lter
the articles by category according to the CategoryID parameter passed
on the querystring.

ShowPageSizePicker Indicates whether the control shows a drop-down list representing the
number of articles to be listed per page. If the property is true, the user
will be able to change the page size to a value that best meets his desires
and his connection speed (users with a slow connection may prefer to
have fewer items per page so that it loads faster).

EnablePaging Indicates whether the control will paginate the collection of articles result-
ing from the current fi lters (category and published status). When false,
the control will have no paging bar and will only show the fi rst n articles,
where n is the page size. This allows us to use the control on the home
page, for example, to list the n most recent additions. When true, it will
show only the fi rst n articles but will also show an indication of which
page is displayed, and the user can switch between pages of articles.

Producing and Consuming RSS Feeds
You’ve already learned from the introduction that we’re going to implement a mechanism to provide
the headlines of the site’s new content as an RSS feed, so that external (online or desktop-based) aggre-
gator programs can easily consume them, adding new content to their own site, but also driving new
traffi c to our site. This process of providing a list of articles via RSS is called syndication. The XML

87586c05.indd 27087586c05.indd 270 9/11/09 3:04:12 PM9/11/09 3:04:12 PM

271

Chapter 5: News and Article Management

format used to contain RSS content is simple in nature (it’s not an accident that the RSS acronym stands
for “Really Simple Syndication”), and here’s an example of one RSS feed that contains an entry for two
different articles:

<rss version=”2.0”>
 <channel>
 <title>My RSS feed</title>
 <link>http://www.contoso.com</link>
 <description>A sample site with a sample RSS</description>
 <copyright>Copyright 2005 by myself</copyright>

 <item>
 <title>First article</title>
 <author>Marco</author>
 <description>Some abstract text here...</description>
 <link>http://www.contoso.com/article1.aspx</link>
 <pubDate>Sat, 03 Sep 2005 12:00:34 GMT</pubDate>
 </item>
 <item>
 <title>Second article</title>
 <author>Mary</author>
 <description>Some other abstract text here...</description>
 <link>http://www.contoso.com/article2.aspx</link>
 <pubDate>Mon, 05 Sep 2005 10:30:22 GMT</pubDate>
 </item>
 </channel>
</rss>

As you can see, the root node indicates the version of RSS used in this fi le, and just below that is a
<channel> section, which represents the feed. It contains several required subelements, <title>,
<link>, and <description>, whose names are self-descriptive. There can also be a number of optional
subelements, including <copyright>, <webMaster>, <pubDate>, 
 <%= From lArticle In lArticlectx.GetRSSArticles
.AsEnumerable _
 Select <item>
 <title><%= lArticle.Title %></title>
 <link><%= SEOFriendlyURL(_
 Path.Combine(Settings.Articles
.URLIndicator, lArticle.Title)) %></link>
 <description><%= lArticle.Abstract
%></description>
 </item> %>
 </channel>

87586c05.indd 32187586c05.indd 321 9/11/09 3:04:15 PM9/11/09 3:04:15 PM

322

Chapter 5: News and Article Management

 </rss>

 Response.Write(xRss.ToString)

 End Using

 Response.Flush()
 Response.End()

End Sub

The Response’s ContentType property is not set to “text/xml”. This is necessary for the browser to
correctly recognize the output as an XML document. The XDocument’s ToString method is called
to get an XML string that is sent to the client by calling the Response.Write method. Finally, the
Response.Flush and Response.End methods are called to ensure that any content remaining in the
buffer is fl ushed to the client and to close off any more content from being sent.

An XDocument object, xRSS, is created by setting it to the XML template. Embedded within the XML
template is a LINQ query that retrieves Article entities as an Enumerable by calling the AsEnumerable
operator. The AsEnumerable operator changes the list of objects to an IEnumerable(Of T), which the
XML Literal can traverse through. This is done with a special method in the ArticleRepository
class, GetRSSArticles.

Public Function GetRSSArticles() As IEnumerable(Of Article)

 Dim key As String = String.Format(CacheKey)

 If EnableCaching AndAlso Not IsNothing(Cache(key)) Then
 Return CType(Cache(key), List(Of Article))
 End If

 Dim lArticles As IEnumerable(Of Article) = (From lArticle In
Articlesctx.Articles _
 Where lArticle.Active = True And lArticle.Approved = True And _
 lArticle.Listed = True And lArticle.ReleaseDate < Now() And _
 lArticle.ExpireDate > Now() _
 Order By lArticle.ReleaseDate Descending).AsEnumerable

 If EnableCaching Then
 CacheData(key, lArticles)
 End If

 Return lArticles

End Function

The RSSFeed handler uses the Title and Abstract fi elds to populate the RSS feed. The <link>
element of the feed is built with a helper method, SEOFriendlyURL and the Path.Combine method.
Path.Combine takes two strings related to a path, which can be a URL or a UNC fi le name, and com-
bines them with the proper / or \ separation. I have found this method to be extremely helpful when

87586c05.indd 32287586c05.indd 322 9/11/09 3:04:15 PM9/11/09 3:04:15 PM

323

Chapter 5: News and Article Management

composing fi le paths. The SEOFriendlyURL method accepts a URLIndicator and the article title. It
then combines and massages these values to produce a search engine friendly URL that contains the
article’s title. The result can be seen in Figure 5-15, which shows FireFox consuming the feed.

Figure 5-15

Also notice the URLs are fully composed and not relative. This is because the RSS feed will be con-
sumed outside the Beer House’s website and, thus, need the full URL to be included in the <link>
elements.

The RssReader.ascx User Control
The fi nal piece of code for this chapter’s module is the RssReader user control. In the ascx fi le, you
defi ne a ListView that displays the title and description of the bound RSS items and makes the title a
link pointing to the full article. It also has a header that will be set to the channel’s title, a graphical link
pointing to the source RSS fi le, and a link at the bottom that points to a page with more content:

<%@ Control Language=”vb” AutoEventWireup=”false” CodeBehind=”RSSReader.ascx.vb”
 Inherits=”TBH_Web35.RSSReader” %>
<asp:ListView runat=”server” ID=”lvRSSReader” ItemPlaceholderID=”itemPlaceHolder”>
 <LayoutTemplate>
 <dl runat=”server” id=”itemPlaceHolder”>
 </dl>
 </LayoutTemplate>
 <ItemTemplate>
 <dt><a href=”<%#Eval(“Url”)%>”>
 <%#Eval(“Title”)%> </dt>
 <dd>
 <%#Eval(“description”)%>
 <a href=”<%#Eval(“Url”)%>”>...</dd>
 </ItemTemplate>
</asp:ListView>

87586c05.indd 32387586c05.indd 323 9/11/09 3:04:15 PM9/11/09 3:04:15 PM

324

Chapter 5: News and Article Management

The RssReader.ascx.cs Code-behind File
The fi rst part of the RssReader.ascx.cs code-behind fi le defi nes all the custom properties defi ned in
the “Design” section that are used to make this user control a generic RSS reader, and not specifi c to our
site’s content and settings:

Public Partial Class RSSReader
 Inherits System.Web.UI.UserControl

 Protected Sub Page_Load(ByVal sender As Object, ByVal e As System.EventArgs)
Handles Me.Load

 If Not IsPostBack Then
 BindData()
 End If
 End Sub

 Private Sub BindData()

 Trace.Write(Helpers.FormatUrl(“TheBeerHouse.rss”))

 Dim rssFeed As XDocument =
XDocument.Load(Helpers.FormatUrl(“TheBeerHouse.rss”))

 Dim rssItems = (From rss In rssFeed.<rss>.<channel>.<item> _
 Select New With {.Title = rss.<title>.Value, _
 .Url = rss.<link>.Value, _
 .description = rss.<description>.Value}).Take(5).ToList

 lvRSSReader.DataSource = rssItems
 lvRSSReader.DataBind()

 End Sub
End Class

You don’t need to persist the property values in the ControlState here as we did in previous controls
because all properties wrap a property of some other server-side control, and it will be that other con-
trol’s job to take care of persisting the values. All the real work of loading and binding the data is done
in BindData method. With XML literals, a simple LINQ statement can be used over the RSS source to
retrieve the items and bind them to the ListView.

<mb:RssReader id=”RssReader1” runat=”server” Title=”Latest Articles”
 RssUrl=”~/GetArticlesRss.aspx”
 MoreText=”More articles...” MoreUrl=”~/BrowseArticles.aspx” />

The output is shown in Figure 5-16.

87586c05.indd 32487586c05.indd 324 9/11/09 3:04:15 PM9/11/09 3:04:15 PM

325

Chapter 5: News and Article Management

Figure 5-16

Confi guring Security Settings
Many security checks have been implemented programmatically from the page’s code-behind. Now
you need to edit the Admin folder’s web.config fi le to add the Contributors role to the list of allowed
roles for the AddEditArticle.aspx page:

<configuration xmlns=”http://schemas.microsoft.com/.NetConfiguration/v2.0”>
 <system.web>
 <authorization>
 <allow roles=”Administrators,Editors” />
 <deny users=”*“ />
 </authorization>
 </system.web>

 <location path=”AddEditArticle.aspx”>
 <system.web>
 <authorization>
 <allow roles=”Administrators,Editors,Contributors” />
 <deny users=”*“ />
 </authorization>
 </system.web>
 </location>

 <!-- ManageUsers.aspx and EditUser.aspx pages... -- >
</configuration>

87586c05.indd 32587586c05.indd 325 9/11/09 3:04:15 PM9/11/09 3:04:15 PM

326

Chapter 5: News and Article Management

Summary
This chapter showed you how to build a complex and articulate module to completely manage the site’s
articles and announcements. It covered all of the following:

An administrative section for managing the data in the database. ❑

Pages for browsing the published content. ❑

Integration with the built-in membership system to secure the module and track the authors of ❑

the articles.

A syndication service that publishes a RSS feed of recent content for a specifi c category, or for ❑

every category, by means of an ASP.NET page.

A generic user control that consumes any RSS feed. It has been used in this chapter to list the ❑

new articles on the home page, but you could also use it in the forums module, and in other
situations.

By following along in this chapter, you’ve seen some of the powerful things you can do with the
ListView control, the Entity Framework, and a properly designed business logic layer (BLL).

This system is fl exible enough to be utilized in many real-world applications, but you can also consider
making some of the following improvements:

Support multilevel categories (subcategories management). ❑

A search engine could be added to the public section of the modules. Currently, when users ❑

want to fi nd a particular article, they have to go through all the content (which could fi ll several
pages in the article list). You could add a Search box that searches for the specifi ed words in the
selected category, or in all the categories, and with further options.

Extend the ❑ ShowArticle.aspx page, or create a separate page that outputs a printer-friendly
version of the article, that is, the article without the site’s layout (header, menus, footer, left- and
right-hand columns). This could be done easily by adding a new stylesheet to the page (when
the page is loaded with a PrinterFriendly=1 parameter on the querystring) that hides some
DIVs (use the visibility:hidden style).

Create a web service that allows other applications to retrieve the list of articles as an alterna- ❑

tive to the RSS feed. This could also be used by Contributors to submit new articles, or even by
Administrators and Editors to perform their duties. You could use the Microsoft Web Service
Extensions (WSE) to make authentication much easier and even to support encryption — other-
wise, you’d have to pass credentials in the SOAP headers, and encryption would only be pos-
sible by using SSL.

In the next chapter, you’ll work on a module for creating, managing, displaying, and archiving opinion
polls, to implement a form of user-to-site communication.

87586c05.indd 32687586c05.indd 326 9/11/09 3:04:15 PM9/11/09 3:04:15 PM

Opinion Polls

Opinion polls consist of questions with a set of options from which users can select their response.
Once a user votes in a poll, it’s customary to show them current statistics about how the poll is
going at that particular time. This chapter explains why polls are useful and important for differ-
ent websites. Then you will learn how to design and implement a simple and maintainable voting
module for the TheBeerHouse site.

Problem
There are basically two reasons why polls are used on a website: because the site’s managers may
be interested in what their users like (perhaps so they can modify their advertising or product
offerings, or maybe in a more general sense to understand their users better) and to help users
feel like they have some input to a site and are part of a community of users. Good polls always
contain targeted questions that can help the site’s managers learn who their users are and what
they want to fi nd on the site. This information can be used to identify which parts of the site to
improve or modify. Polls are valuable for e-commerce sites, too, because they can indicate which
products are of interest and in high demand. Armed with this information, e-commerce busi-
nesses can highlight those products, provide more detailed descriptions or case studies, or offer
discounts to convince users to buy from their site. Another use for the information is to attract
advertising revenue. Medium to large sites frequently display an “Advertise with Us” link or
something similar. If you were to inquire about the possibility of advertising on a particular site,
that site’s advertising department would likely give you some demographics regarding the typi-
cal users of that site, such as age, the region or country they live in, common interests, and so on.
This information is often gathered by direct or indirect polls. The more details you provide about
your typical audience, the more chance you have of fi nding a sponsor to advertise on your site.

The other major benefi t is user-to-user communication. Users generally like to know what their
peers think about a product or a subject of interest to them. I must admit that I’m usually curious
when I see a poll on a website. Even if I don’t have a very clear opinion about the question being
asked, I often vote just so I can see the statistics of how the other users voted! This explains why

87586c06.indd 32787586c06.indd 327 9/11/09 3:13:19 PM9/11/09 3:13:19 PM

328

Chapter 6: Opinion Polls

polls are usually well accepted, and why users generally vote quite willingly. Another reason why users
may desire to cast a vote is that they think their opinion may infl uence other users or the site’s managers.
In addition, their votes really are important, as you’ve seen, and the results can defi nitely drive the future
content of the site and perhaps even business decisions. For these reasons, you or your client may real-
ize that you want the benefi ts of a poll feature, and thus you will implement some form of polling on
the website.

There are some web poll design issues to consider — namely, the problems that you must address to
successfully run a poll system. First of all, as with the news and other content, the same poll shouldn’t
remain active for too long. If you left the same poll on the page for, say, two months, you might gather
some more votes, but you would lose the interest of users who voted early. If you keep a poll up for just
a couple of days, you may not achieve signifi cant results because some of your users may not have vis-
ited your site within that time frame. The right duration depends mostly on the average number of visi-
tors you have and how often they return to your site. As a rule of thumb, if you know that several
thousands of users regularly come to visit the site each week, then that is a good duration for the active
poll. Otherwise, if you have fewer visitors, you can leave the poll open for two or more weeks, but prob-
ably not longer than a month.

There are several services that enable you to easily retrieve statistics such as the frequency and number
of visitors and much more for your site. Some of these services are commercial, but you can fi nd some
good free ones. If you have a hosted website, you probably have access to some statistics through your
hosting company’s control panel, which gathers information by analyzing the IIS (Internet Information
Server) log fi les. Of course, you could implement your own hit counter — it would be pretty easy to
track visitors and generate some basic statistics — but if you want to reproduce all the advanced fea-
tures offered by specialized services, it would be quite a lot of work, and it may be cheaper in the long
run to subscribe to a professional service.

When you change the active poll, a new question arises: What do you do with the old questions and
their results? Throw them away? Certainly not! They might be very interesting for new users who
didn’t take part in the vote, and the information will probably remain valid for some time, so keep them
available for viewing. Old polls can be part of the useful content of your site — you could build an
archive of past polls.

If you allow a user to vote as many times as he wants to, you’ll end up with incorrect results. The over-
all results will be biased toward that user’s personal opinion. Having false results is just as useless as
having no results at all, because you can’t base any serious decisions on them. Therefore, you want to
prevent users from voting more than once for any given question. There are occasions when you might
want to allow the user to vote several times, though. For example, during your own development and
testing stage, you may need to post many votes to determine whether the voting module is working
correctly. The administrator could just manually add some votes by entering them directly into the SQL
table, but that would not tell you if the polling frontend is working right. If you enter votes using the
polling user interface that you’ll build in this chapter, it’s more convenient and it thoroughly tests the
module. There are reasons for wanting to allow multiple votes after deployment, too. Imagine that you
are running a competition to select the best resource on any selected topic. The resources might be
updated frequently, and if the poll lasts a month, then users may change their mind in the meantime,
after voting. You may then decide to allow multiple votes, but no more than once per week (but you
probably won’t want to go to the trouble of letting a user eliminate his earlier vote).

87586c06.indd 32887586c06.indd 328 9/11/09 3:13:20 PM9/11/09 3:13:20 PM

329

Chapter 6: Opinion Polls

This discussion talks only about polls that allow a single option to be selected (poll boxes with a series of
radio buttons). Another type of poll box enables users to vote for multiple options in a single step (the
options are listed with checkboxes, and users can select more than one). That might be useful for a ques-
tion like “What do you usually eat at pubs?” for which you want to allow multiple answers through
multiple separate checkboxes. However, this type of poll is quite rare, and you could probably reword
the question to ask what food they most like to eat at pubs to allow only one answer. The design of a
multiple-answer poll would needlessly complicate this module, so the example here won’t use that kind
of functionality.

To summarize what we’ve discussed here: you want to implement a poll facility on the site to gauge the
opinions of your users and to generate a sense of community. You don’t want users to lose interest by
seeing the same poll for a long time, but you do want a meaningful number of users to vote, so you’ll
add new questions and change the current poll often. You also want to allow users to see old polls
because that helps to add useful content to your page, but they won’t be allowed to vote in the old polls.
Finally, you want to be able to easily add the poll to any page, and you want the results to be as unbi-
ased and accurate as possible. Now let’s look at the design in more detail, and consider how to meet
these challenges.

Design
The poll functionality for the site will store the data (questions, answers, votes, and so on) in the data-
base shared by all modules of this book (although the confi guration settings do allow each module to
use a separate database, if there’s a need to do that). To easily access the DB you’ll need tables, an Entity
Data Model, and a business layer to keep the presentation layer separate from the DB and the details of
its structure. Of course, some sort of user interface will allow administrators to see and manage the
data using their favorite browser.

Here’s the list of features needed in the polls module:

An access-protected administration console to easily change the current poll and add or remove ❑

questions. It should allow multiple polls and their response options to be added, edited, or
deleted. The capability to have multiple polls is important because you might want to have dif-
ferent polls in different sections of your site. The administration pages should also show the
current statistical results for each poll, and the total number of votes for each poll, as a quick
general summary.

A user control that builds the poll box that can be inserted into any page. The poll box should ❑

display the question text and the available options (usually rendered as radio buttons to allow
only one choice). Each poll will be identifi ed by a unique ID, which should be specifi ed as a cus-
tom property for the user control, so that the webmaster can easily change the currently displayed
question by setting the value for that property.

Prevent users from voting multiple times for the same poll. Or, even better, you should be able ❑

to dynamically decide if you want to allow users to vote more than once, or specify the period
during which they will be prevented from voting again.

87586c06.indd 32987586c06.indd 329 9/11/09 3:13:20 PM9/11/09 3:13:20 PM

330

Chapter 6: Opinion Polls

You can only have one poll question declared as the current default. When you set a poll ques- ❑

tion as being current, the previous current one should change its state. The current poll will be
displayed in a poll box unless you specify a nondefault poll ID. Of course, you can have differ-
ent polls on the site at the same time depending on the section (perhaps one for the Beer-related
article category, and one for party bookings), but it’s useful to set a default poll question because
you’ll be able to add a poll box without specifying the ID of the question to display, and you
can change the poll question through the administration console, without manually changing
the page and redeploying it.

A poll should be archived when you decide that you no longer want to use it as an active poll. ❑

Once archived, if a poll box is still explicitly bound to that particular poll, the poll will only be
shown in Display state (read-only), and it will show the recorded results.

A page that displays all the archived polls and their results. A page for the results of the current ❑

poll is not necessary because they will be shown directly by the poll box — instead of the list of
response options — when it detects that the user has voted. This way, users are forced to express
their opinion if they want to see the poll’s results (before the poll expires), which will bring in
more votes than we would get if we made the current results freely available to users who have
not yet voted. There must also be an option that specifi es whether the archive page is accessible
by everyone, or just by registered users. You may prefer the second option to give the user one
more reason to register for the site.

Now let’s look at designing the database tables, stored procedures, data and business layers, user inter-
face services, and security needed for this module.

Handling Multiple Votes
As discussed in the “Problem” section, we want to be able to control whether users can cast multiple
votes, and allow them to vote again after a specifi ed period. Therefore, you would probably like to give
the administrator the capability to prevent multiple votes, or to allow multiple votes but with a speci-
fi ed lock duration (one week in the previous example). You still have to fi nd a way to ensure that the
user does not vote more times than is allowed. The simplest, and most common and reliable, solution is
writing a cookie to the client’s browser that stores the PollID of the poll for which the user has voted.
Then, when the poll box loads, it fi rst tries to fi nd a cookie matching the poll. If a cookie is not found,
the poll box displays the options and lets the user vote. Otherwise, the poll box shows the latest results
and does not allow the user to vote again. To allow multiple votes, the cookie will have an expiration
date. If you set it to the current date plus seven days, it means that the cookie expires in seven days,
after which the user will be allowed to vote again on that same question.

Writing and checking cookies is straightforward, and in most cases it is suffi cient. The drawback to this
method is that users can easily turn off cookies through a browser option, or delete the cookies from
their machine, and then be allowed to vote as many times as they want to. Only a very small percentage
of users keep cookies turned off — except for company users where security is a major concern —
because they are used on many sites and are sometimes actually required. Because of this, it shouldn’t
be much of an issue because most people won’t bother to go to that much trouble to re-vote, and this is
not a high-security type of voting mechanism that would be suitable for something very important,
such as a political election.

There’s an additional method to prevent multiple votes: IP locking. When users vote, their computer’s
IP address can be retrieved and stored in the cache together with the other voting details. Later in the
same user session, when the poll box loads or when the user tries to vote again, you can check whether
the cache contains a vote for a specifi c poll, by a specifi ed IP. To implement this, the PollID and user’s

87586c06.indd 33087586c06.indd 330 9/11/09 3:13:20 PM9/11/09 3:13:20 PM

331

Chapter 6: Opinion Polls

IP address may be part of the item’s key if you use the Cache class; otherwise, the PollID is enough,
if you choose to store it in Session state storage, because that’s already specifi c to one user. If a vote
is found, the user has already voted and you can prevent further voting. This method only prevents
re-voting within the same session — the same user can vote again the next day. We don’t want to store
the user’s IP address in the database because it might be different tomorrow (because most users today
have dynamically assigned IP addresses). Also, the user might share an IP with many other users if
they are in a company using network address translation (NAT) addresses, and we don’t want to pre-
vent other users within the same company from voting. Therefore, the IP locking method is normally
not my fi rst choice.

There’s yet another option. You could track the logged users through their usernames instead of their
computer’s IP address. However, this only works if the user is registered. In our case we don’t want to
limit the vote to registered users only, so we won’t cover this method further.

In this module we’ll provide the option to employ both methods (cookie and IP), only one of them, or
neither. Employing neither of them means that you will allow multiple votes with no limitations, and
this method should only be used during the testing stage. In a real scenario, you might need to disable
one of the methods — maybe your client doesn’t want to use cookies for security reasons, or maybe
your client is concerned about the dynamic IP issue and doesn’t want to use that method. I personally
prefer the cookie option in most cases.

In conclusion, the polls module will have the following options:

Multiple votes per poll can be allowed or denied. ❑

Multiple votes per poll can be prevented with client cookies or IP locking. ❑

Limited multiple votes can be allowed, in which case the administrator can specify the lock ❑

duration for either method (users can vote again in seven days, for example).

This way, the polls module will be simple and straightforward, but still fl exible, and it can be used with
the options that best suit the particular situation. Online administration of polls follows the general
concept of allowing the site to be remotely controlled by managers and administrators using a web
browser.

Designing the Database Tables
We will need two tables for this module: one to contain the poll questions and their attributes (such as
whether a poll is current or archived) and another one to contain the polls’ response options and the
number of votes each received. Figure 6-1 shows how they are linked to each other.

Figure 6-1

87586c06.indd 33187586c06.indd 331 9/11/09 3:13:20 PM9/11/09 3:13:20 PM

332

Chapter 6: Opinion Polls

Here you see the primary and foreign keys, the usual AddedDate and AddedBy fi elds that are used in
most tables for audit and recovery purposes, and a few extra fi elds that store the poll data. The tbh_
Polls table has a QuestionText fi eld that stores the poll’s question, an IsArchived bit fi eld to indicate
whether that poll was archived and no longer available for voting, and an ArchivedDate fi eld for the
date/time when the poll was archived (this last column is the only one that is nullable). There is also an
IsCurrent bit fi eld, which can be set to 1 only for a single poll, which is the overall default poll. The
other table, tbh_PollOptions, contains all the confi gurable options for each poll, and makes the link
to the parent poll by means of the PollID foreign key. There is also a Votes integer fi eld that contains
the number of user votes received by the option.

Designing the Confi guration Module
I’ve already mentioned that the polls module will need a number of confi guration settings that enable
or disable multiple votes, make the archive public to everyone, and more. Following is the list of proper-
ties for a new class, named PollsElement, which inherits from the framework’s ConfigurationElement
class and will read the settings of a <polls> element under the <theBeerHouse> custom confi guration
section (introduced in Chapter 3 and used again in Chapter 5).

Property Description

ProviderType Made obsolete with the Entity Framework. Retained from previous
editions.

ConnectionStringName The name of the entry in web.config’s new <connectionStrings>
section, which contains the connection string to the module’s database.

VotingLockInterval An integer indicating when the cookie with the user’s vote will expire
(number of days to prevent re-voting).

VotingLockByCookie A Boolean value indicating whether a cookie will be used to remember
the user’s vote.

VotingLockByIP A Boolean value indicating whether the vote’s IP address is kept in mem-
ory to prevent duplicate votes from that IP in the current session.

ArchiveIsPublic A Boolean value indicating whether the poll’s archive is accessible by
everyone, or if it’s restricted to registered members.

EnableCaching A Boolean value indicating whether the caching of data is enabled.

CacheDuration The number of seconds for which the data is cached if there aren’t
inserts, deletes, or updates that invalidate the cache.

Creating the Entity Data Model
As in the previous chapters, a dedicated Entity Data Model (see Figure 6-2) is generated for the Poll
module. It contains an entity for the Poll and PollOption. And as usual The EntitySet and relation-
ships need to be renamed to something more friendly.

87586c06.indd 33287586c06.indd 332 9/11/09 3:13:20 PM9/11/09 3:13:20 PM

333

Chapter 6: Opinion Polls

Figure 6-2

Designing the Business Layer
The BLL for this module is composed of a series of classes, Poll and PollOption, which wrap the data
of the tbh_Poll and tbh_PollOption, respectively. Both the Poll and PollOption have dedicated
repositories that handle calling the entity model to retrieve and manipulate the data. Just as you saw in
Chapter 5, there is a BasePollRepository class that both repositories inherit common features from.
The PollEntities class is the data model’s DataContext class. Figure 6-3 illustrates the business
classes and their relationships.

Figure 6-3

The PollRepository
The PollRepository contains the normal CRUD members, but also has a series of methods that allow
it to manage the data for specifi c polling-related tasks. These include methods to archive and retrieve

87586c06.indd 33387586c06.indd 333 9/11/09 3:13:20 PM9/11/09 3:13:20 PM

334

Chapter 6: Opinion Polls

just archived polls, obtain a count of polls, get the current poll, and get its PollId. The following table
describes those methods.

Method Description

GetPolls Retrieves a full list of polls.

GetArchivedPolls Retrieves a list of archived polls.

GetPollById Retrieves a poll by its PollId.

GetPollCount Returns the number of polls in the database.

AddPoll Adds a new poll to the database.

UpdatePoll Updates an existing poll.

DeletePoll Deletes a poll by setting the Active fl ag to false.

UnDeletePoll Undeletes a poll by setting the Active fl ag to true.

ArchivePoll Archives the designated poll by setting the CurrentPoll value to 0 and
IsArchived to 1.

GetCurrentPollId Returns the PollId of the poll designated as the currently active poll.

CurrentPoll Retrieves an instance of the current Poll.

The PollOptionRepository
The PollOptionRepository is similar with common CRUD members and a few custom members.
Custom members get the poll options for a poll and a method to register a vote. Here are the methods:

Method Description

GetPollOptions Retrieves a full list of poll options.

GetActivePollOptionsByPollId Retrieves a list of active poll options by the specifi ed PollId.

GetPollOptionsByPollId Retrieves a list of poll options by the specifi ed PollId.

GetPollOptionById Retrieves the PollOption by the specifi ed PollOptionId.

GetPollOptionCount Returns a count of poll options.

AddPollOption Adds a new poll option to the database.

UpdatePollOption Updates an existing poll option.

DeletePollOption Deletes a poll option by setting the Active fl ag to false.

UnDeletePollOption Undeletes a poll by setting the Active fl ag to true.

Vote Returns the PollId of the poll designated as the currently
active poll.

87586c06.indd 33487586c06.indd 334 9/11/09 3:13:20 PM9/11/09 3:13:20 PM

335

Chapter 6: Opinion Polls

Designing the User Interface Services
Following are the pages and controls that constitute the user interface layer of this module:

~/Admin/ManagePolls.aspx: ❑ This is the page through which an administrator or editor can
view a list of polls. Icon buttons for each poll give the administrator the ability to archive, edit,
or delete the poll. Before a poll is deleted, the administrator is prompted to confi rm the action.
Clicking the Edit button takes the administrator to the AddEditPoll.aspx page. This page
only lists active polls, however. Once a poll is archived, it will be visible only in the archived
polls page (you can’t change history).

~/Admin/AddEditPoll.aspx: ❑ This is the page through which an administrator or editor can man-
age a poll: add, edit, archive, and defi ne poll options; see current results; and set the current poll.

~/ArchivedPolls.aspx: ❑ This page lists the archived polls and shows their results. If the user
accessing it is an administrator or an editor, she will also see buttons for deleting polls. The
archived polls are not editable; they can only be deleted if you don’t want them to appear on the
archive page.

The ❑ PollBox user control will enable us to insert the poll box into any page, with only a couple
of lines of code. This control is central to the poll module and is described in further detail in the
following section.

For now, let’s look at the PollBox user control, which has two functions:

 1. If it detects that the user has not voted for the question yet, the control will present a list of radio
buttons with the various response options and a Vote button.

 2. If it detects that the current user has already voted, instead of displaying the radio buttons, it
displays the results. It will show the percentage of votes for each option, both as a number and
graphically, as a colored bar. This will also happen if the poll being shown was archived.

In both cases, the control can optionally show header text and a link at the bottom. The link points to
the archive page. This method of changing behavior based on whether the user has already voted is
elegant, doesn’t need an additional window, and intelligently hides the radio buttons if the user can’t
vote. The control’s properties, which enable us to customize its appearance and behavior, are described
in the following table.

Property Description

PollID The ID of the poll to display in the poll box. If no ID is specifi ed, or if it is
explicitly set to -1, the poll with the IsCurrent fi eld set to 1 will be used.

HeaderText The text for the control’s header bar.

ShowHeader Specifi es whether the control’s header bar is visible.

ShowQuestion Specifi es whether the poll’s question is visible.

ShowArchiveLink Specifi es whether the control shows a link at the bottom of the control point-
ing to the poll’s Archive page.

87586c06.indd 33587586c06.indd 335 9/11/09 3:13:20 PM9/11/09 3:13:20 PM

336

Chapter 6: Opinion Polls

When you add this control to a page, you will normally confi gure it to show the header, the question,
and the link to the archive page. If, however, you have multiple polls on the page, you may want to show
the link to the archive in just one poll box, maybe the one with the poll marked as the current default.
The control will also be used in the archive page itself, to show the results of the old polls (the second
mode described previously). In this case, the question text will be shown by some other control that
lists the polls, and thus the PollBox control will have the ShowHeader, ShowQuestion, and
ShowArchiveLink properties set to false.

Solution
Now that the design is complete, you should have a very clear idea about what is required, so now we can
consider how we’re going to implement this functionality. You’ll follow the same order as the “Design” sec-
tion, starting with the creation of database tables and stored procedures, the confi guration, DAL and
BLL classes, and fi nally the ASPX pages and the PollBox user control.

Working on the Database
The tables required for this module are added to the same sitewide SQL Server database shared by all
modules, although the confi guration settings enable you to have the data and the db objects separated
into multiple databases if you prefer to do it that way. It’s easy to create the required objects with Visual
Studio using the integrated Server Explorer or SQL Server Management Studio, right from within the
Visual Studio IDE. Figure 6-4 is a screenshot of the IDE when adding columns to the tbh_Polls tables,
and setting the properties for the PollID primary key column.

Figure 6-4

87586c06.indd 33687586c06.indd 336 9/11/09 3:13:20 PM9/11/09 3:13:20 PM

337

Chapter 6: Opinion Polls

After creating the two tables with the columns shown in Figure 6-1, you need to create a relationship
between them over the PollID column, and set up cascade updates and deletes (Select Data ➪ Add
New ➪ Diagram to bring up the interactive diagram that enables you to create the relationship — as
explained in Chapter 5). Figure 6-5 shows the relationship diagram with the Tables and Columns dialog
displayed to select the primary and foreign key relationship.

Figure 6-5

Implementing the Confi guration Module
The custom confi guration class must be developed before any other code because the custom settings
are used in all other layers. This class is similar to the one seen in the previous chapter. It inherits from
ConfigurationElement and has the properties previously defi ned:

Public Class PollsElement
 Inherits ConfigurationElement

 <ConfigurationProperty(“connectionStringName”)> _
 Public Property ConnectionStringName() As String
 Get
 Return CStr(Me(“connectionStringName”))
 End Get
 Set(ByVal value As String)
 Me(“connectionStringName”) = value
 End Set
 End Property

 Public ReadOnly Property ConnectionString() As String
 Get
 Dim connStringName As String

87586c06.indd 33787586c06.indd 337 9/11/09 3:13:20 PM9/11/09 3:13:20 PM

338

Chapter 6: Opinion Polls

 If String.IsNullOrEmpty(Me.ConnectionStringName) Then
 connStringName = Globals.Settings.DefaultConnectionStringName
 Else
 connStringName = Me.ConnectionStringName
 End If
 Return WebConfigurationManager.ConnectionStrings(connStringName)
.ConnectionString
 End Get
 End Property

 <ConfigurationProperty(“votingLockInterval”, DefaultValue:=”15”)> _
 Public Property VotingLockInterval() As Integer
 Get
 Return CInt(Me(“votingLockInterval”))
 End Get
 Set(ByVal value As Integer)
 Me(“votingLockInterval”) = value
 End Set
 End Property

 <ConfigurationProperty(“votingLockByCookie”, DefaultValue:=”true”)> _
 Public Property VotingLockByCookie() As Boolean
 Get
 Return CBool(Me(“votingLockByCookie”))
 End Get
 Set(ByVal value As Boolean)
 Me(“votingLockByCookie”) = value
 End Set
 End Property

 <ConfigurationProperty(“votingLockByIP”, DefaultValue:=”true”)> _
 Public Property VotingLockByIP() As Boolean
 Get
 Return CBool(Me(“votingLockByIP”))
 End Get
 Set(ByVal value As Boolean)
 Me(“votingLockByIP”) = value
 End Set
 End Property

 <ConfigurationProperty(“archiveIsPublic”, DefaultValue:=”false”)> _
 Public Property ArchiveIsPublic() As Boolean
 Get
 Return CBool(Me(“archiveIsPublic”))
 End Get
 Set(ByVal value As Boolean)
 Me(“archiveIsPublic”) = value
 End Set
 End Property

 <ConfigurationProperty(“enableCaching”, DefaultValue:=”true”)> _
 Public Property EnableCaching() As Boolean
 Get
 Return CBool(Me(“enableCaching”))
 End Get

87586c06.indd 33887586c06.indd 338 9/11/09 3:13:20 PM9/11/09 3:13:20 PM

339

Chapter 6: Opinion Polls

 Set(ByVal value As Boolean)
 Me(“enableCaching”) = value
 End Set
 End Property

 <ConfigurationProperty(“cacheDuration”)> _
 Public Property CacheDuration() As Integer
 Get
 Dim duration As Integer = CInt(Me(“cacheDuration”))
 If duration <= 0 Then
 duration = Globals.Settings.DefaultCacheDuration
 End If
 Return duration
 End Get
 Set(ByVal value As Integer)
 Me(“cacheDuration”) = value
 End Set
 End Property

 <ConfigurationProperty(“urlIndicator”)> _
 Public Property URLIndicator() As String
 Get
 Dim lurlIndicator As String = Me(“urlIndicator”).ToString
 If String.IsNullOrEmpty(lurlIndicator) Then
 lurlIndicator = “Poll”
 End If
 Return lurlIndicator
 End Get
 Set(ByVal Value As String)
 Me(“urlIndicator”) = Value
 End Set
 End Property

End Class

To make this class map a <polls> element under the top-level <theBeerHouse> section, we add a
property of type PollsElement to the TheBeerHouseSection class developed in the previous chapter
and then use the ConfigurationProperty attribute to do the mapping:

<ConfigurationProperty(“polls”, IsRequired:=True)> _
Public ReadOnly Property Polls() As PollsElement
 Get
 Return CType(Me(“polls”), PollsElement)
End Get
End Property

To make the archive available to everyone and disable vote locking by the user’s IP, use these settings in
the web.config fi le:

<theBeerHouse defaultConnectionStringName=”LocalSqlServer”>
 <contactForm mailTo=”mbellinaso@wrox.com”/>
 <articles pageSize=”10” />
 <polls archiveIsPublic=”true” votingLockByIP=”false” />
</theBeerHouse>

87586c06.indd 33987586c06.indd 339 9/11/09 3:13:20 PM9/11/09 3:13:20 PM

340

Chapter 6: Opinion Polls

The default value will be used for all those settings not explicitly defi ned in the confi guration fi le, such
as connectionStringName, providerType, votingLockByCookie, votingLockInterval, and the
others.

Implementing the Repositories
Similar to how things were structured in the Articles module in Chapter 5 the Polls module has a set
of repository classes that are located in the Polls folder of the TBHBLL class library project. There is a
BasePollRepository, which contains the common constructors, a reference to the entity model’s
DataContext, and the Dispose members. The Poll and PollOption entities each have a correspond-
ing repository to manage the business logic associated for each. Since most of the patterns used in the
repository members were discussed in Chapters 3 and 5, I will limit this chapter to new items.

Implementing the PollRepository
The PollRepository contains standard CRUD business members and some that perform targeted
operations. These include archiving a poll and retrieving the current poll. All the queries are LINQ to
Entities statements and cache the results when a list is retrieved according to the cache settings in the
web.config fi le.

Implementing the PollOptionRepository
Like the PollRepository, the PollOptionRepository contains common CRUD members and a
member to cast a vote for an option and another member to get options by a PollId.

Extending the Entity Model Entities
Each of the entity classes generated by the Entity Data Model Wizard is a partial class that can be extended.
The Polling module has two entities, Poll and PollOption. The main extensions that I will discuss
revolve around managing the votes for a poll and each of its options.

Extending the Poll Entity
The Poll entity has a property that holds the number of total votes cast in a poll by calculating the
SUM of the votes for each option. This is done using a LINQ statement with a LAMBDA expression.

Private _Votes As Integer = 0
Public Property Votes() As Integer
Get
 If Me._Votes = 0 Then
 If PollOptions.IsLoaded = False Then
 Me.PollOptions.Load()
 End If

 _Votes = (From po In Me.PollOptions _
 Select New With {.Votes = po.Votes})
.Sum(Function(p) p.Votes)
 End If
 Return _Votes

End Get

87586c06.indd 34087586c06.indd 340 9/11/09 3:13:20 PM9/11/09 3:13:20 PM

341

Chapter 6: Opinion Polls

Set(ByVal value As Integer)
 _Votes = value
End Set
End Property

The Get section of the Votes property checks to see if the _Votes variable is set to 0 and if it is, it tries
to calculate the votes. First, it checks to see if the associated PollOptions have been loaded in the Poll
entity; if not, they are manually loaded. This is an example of when deferred loading is not desired but
easily dealt with. Now that all poll options have been loaded, a simple LINQ statement is executed call-
ing the Sum operator and passing in the Votes value of each poll option in a LAMBDA expression.
Finally the total value is returned. This value is then used in the binding operation when the poll results
are displayed.

Extending the PollOption Entity
The PollOption entity also has a few members added to the extended partial class, a custom ToString
method, and PollId, TotalVotes, and Percentage properties. The ToString method returns a cus-
tom formatted string with the PollId, the OptionText, and the number of votes cast for that option.
This can be used as a quick method to display information about the option. PollId is the property used
to access the foreign key value of the associated Poll. The TotalVotes property is number of votes cast
for the poll, this means a total of all the votes cast by all the poll’s options. The Percentage property
returns the percentage value of the option’s votes in relation to the total number of votes cast in the poll.

Public Overrides Function ToString() As String
 Return String.Format(“{0}, {1}, {2}”, Me.PollId, Me.OptionText,
Me.Votes) ‘, {3:N1} , Me.Percentage)
End Function

Public Property PollId() As Integer
 Get
 If Not IsNothing(Me.PollReference.EntityKey) Then
 Return Me.PollReference.EntityKey.EntityKeyValues(0).Value
 End If
 Return 0
 End Get
 Set(ByVal Value As Integer)
 If Not IsNothing(Me.PollReference.EntityKey) Then
 Me.PollReference = Nothing
 End If
 Me.PollReference.EntityKey = New EntityKey(“PollEntities.Polls”,
 “PollID”, Value)
 End Set
End Property

Private _TotalVotes As Double = 0
Public Property TotalVotes() As Integer
 Get
 If Not IsNothing(Me.Poll) Then
 _TotalVotes = Poll.Votes
 End If
 Return _TotalVotes
 End Get

87586c06.indd 34187586c06.indd 341 9/11/09 3:13:21 PM9/11/09 3:13:21 PM

342

Chapter 6: Opinion Polls

 Set(ByVal value As Integer)
 _TotalVotes = value
 End Set
End Property

Public ReadOnly Property Percentage() As Double
 Get
 If TotalVotes = 0 Then
 Return -1D
 End If
 Return ((Votes * 100) / TotalVotes)
 End Get
End Property

Implementing the User Interface
Now it’s time to build the user interface: the administration page, the poll box user control, and the
archive page.

The ManagePolls.aspx Page
The ManagePolls.aspx page (see Figure 6-6), located under the ~/Admin folder, allows the admin-
istrator to view a list of polls, add a new poll, and edit, delete, or archive existing polls. The page is
composed of the common administration layout with a menu across the top and a combination of an
Accordion and ListView of detailed navigation on the left. It uses the Admin master page to imple-
ment the common navigation features. The table listing the polls is a ListView with paging capabili-
ties. The link to edit a poll is a pencil icon and the archive link is a fi le folder. The delete icon is the
familiar trash can.

Figure 6-6

87586c06.indd 34287586c06.indd 342 9/11/09 3:13:21 PM9/11/09 3:13:21 PM

343

Chapter 6: Opinion Polls

The ListView is wrapped in an UpdatePanel so that it can take advantage of ASP.NET AJAX without
having to add any more code to the solution. The effects of the UpdatePanel can be seen when paging
through the list, or archiving or deleting a poll. These operations will occur on the server and provide
seamless updates in the browser. If the poll is the current poll a checkbox icon is displayed before the
action items are listed. To the left of the current icon is a tally of the total votes. The following code
shows the MainContent’s markup:

<asp:Content ID=”MainContent” ContentPlaceHolderID=”AdminContent” runat=”Server”>
 <table cellpadding=”0” cellspacing=”0” class=”AdminLayout”>
 <tr>
 <td>
 <h1>
 Manage Polls</h1>
 </td>
 </tr>
 <tr>
 <td>
 <div id=”dAdminHeader”>

 Manage Polls

 New Poll

 </div>
 </td>
 </tr>
 <tr>
 <td>
 <asp:UpdatePanel runat=”server” ID=”uppnlCategories”>
 <ContentTemplate>
 <asp:ListView runat=”server” ID=”lvPolls”
DataKeyNames=”PollId”>
 <LayoutTemplate>
 <table cellpadding=”0” cellspacing=”0” border=”0”>
 <tr class=”AdminListHeader”>
 <td>
 ID
 </td>
 <td>
 Poll
 </td>
 <td>
 Votes
 </td>
 <td>
 Is Current
 </td>
 <td colspan=”3”>
 </td>
 </tr>
 <tr id=”itemPlaceholder” runat=”server”>
 </tr>

87586c06.indd 34387586c06.indd 343 9/11/09 3:13:21 PM9/11/09 3:13:21 PM

344

Chapter 6: Opinion Polls

 </table>
 </LayoutTemplate>
 <ItemTemplate>
 <tr>
 <td>
 <%#Eval(“PollId”)%>
 </td>
 <td>
 <%#Eval(“QuestionText”)%>
 </td>
 <td align=”center”>
 <%#Eval(“Votes”)%>
 </td>
 <td align=”center”>
 <asp:Image ID=”imgIsCurrent” runat=”server”
ImageUrl=”~/Images/OK.gif” Visible=’<%# Eval(“IsCurrent”) %>’ />
 </td>
 <td align=”center”>
 <a href=”<%#
String.Format(“AddEditPoll.aspx?PollID={0}”, Eval(“PollId”)) %>”>
 <img src=”../images/edit.gif” alt=”“
width=”16” height=”16” class=”AdminImg” />
 </td>
 <td align=”center”>
 <asp:ImageButton runat=”server”
ID=”ibtnArchive” CommandArgument=’<%# Eval(“PollID”).ToString() %>’
 CommandName=”Archive”
ImageUrl=”~/images/folder.gif” AlternateText=”Archive”
 CssClass=”AdminImg” />
 </td>
 <td>
 <asp:ImageButton runat=”server”
 ID=”btnDeleteOption” CommandArgument=’<%# Eval(“PollID”).ToString() %>’
 CommandName=”Delete”
ImageUrl=”~/images/delete.gif” AlternateText=”Delete” CssClass=”AdminImg”
 OnClientClick=”return
confirm(‘Warning: This will delete the Event from the database.’);” />
 </td>
 </tr>
 </ItemTemplate>
 </asp:ListView>
 <div class=”pager”>
 <asp:DataPager ID=”pagerBottom” runat=”server”
PageSize=”15” PagedControlID=”lvPolls”>
 <Fields>
 <asp:NextPreviousPagerField
ButtonCssClass=”command” FirstPageText=”«” PreviousPageText=”‹”
 RenderDisabledButtonsAsLabels=”true”
 ShowFirstPageButton=”true” ShowPreviousPageButton=”true”
 ShowLastPageButton=”false”
ShowNextPageButton=”false” />
 <asp:NumericPagerField ButtonCount=”7”
NumericButtonCssClass=”command” CurrentPageLabelCssClass=”current”
 NextPreviousButtonCssClass=”command” />

87586c06.indd 34487586c06.indd 344 9/11/09 3:13:21 PM9/11/09 3:13:21 PM

345

Chapter 6: Opinion Polls

 <asp:NextPreviousPagerField
ButtonCssClass=”command” LastPageText=”»” NextPageText=”›”
 RenderDisabledButtonsAsLabels=”true”
ShowFirstPageButton=”false” ShowPreviousPageButton=”false”
 ShowLastPageButton=”true”
ShowNextPageButton=”true” />
 </Fields>
 </asp:DataPager>
 </div>
 </ContentTemplate>
 </asp:UpdatePanel>
 </td>
 </tr>
 </table>
</asp:Content>

The ListView itself is composed of a table that is dynamically built as the Poll entities are bound to it. If
the list of polls is less than needed to invoke paging the pager is suppressed from the bottom of the list.

Above the table are a couple of administrative links that are common in each of the Beer House module
administrations. In the case of the Poll module, there are links to navigate to the ManangePolls.aspx
page and to add a new poll via the AddEditPoll.aspx page. The Edit button on each poll’s record is also
a hyperlink to the AddEditPoll.aspx page, but it passes the PollID.

Notice the JavaScript added to the Delete ImageButton. It displays a confi rmation MessageBox to the
user before it executes the delete operation. Use this technique anyplace data is being deleted or
affected in a major way.

The ManagePolls.aspx.vb Code-Behind File
In the code-behind for the ManagePolls.aspx page is the code to bind the polls to the ListView, Delete,
and Archive selected polls. The Page Load event handler checks to see if this is a postback before binding
the list of polls to the ListView. The BindPolls method uses a PollsRepository to get a list of polls
and check whether the ListView’s DataPager should be visible:

Protected Sub Page_Load(ByVal sender As Object, ByVal e As System.EventArgs)
Handles Me.Load
 If Not IsPostBack Then
 BindPolls()
 End If
End Sub

Private Sub BindPolls()

Using Pollrpt As New PollsRepository

 Dim lPolls As List(Of Poll) = Pollrpt.GetPolls
 lvPolls.DataSource = lPolls
 lvPolls.DataBind()

 Dim pagerBottom As DataPager = lvPolls.FindControl(“pagerBottom”)

 If Not IsNothing(pagerBottom) Then

87586c06.indd 34587586c06.indd 345 9/11/09 3:13:21 PM9/11/09 3:13:21 PM

346

Chapter 6: Opinion Polls

 If lPolls.Count <= pagerBottom.PageSize Then
 pagerBottom.Visible = False
 Else
 pagerBottom.Visible = True
 End If
 End If

 End Using

End Sub

Each poll listed in the ListView has an archive and delete ImageButton on the row. When these buttons
are clicked the ListView’s ItemCommand event is fi red. Based on the command name associated with the
ImageButton, the appropriate action is taken. Here’s the event’s code:

Private Sub lvPolls_ItemCommand(ByVal sender As Object, ByVal e As
System.Web.UI.WebControls.ListViewCommandEventArgs)
Handles lvPolls.ItemCommand

 Select Case e.CommandName
 Case “Delete”
 DeletePoll(e.CommandArgument)
 Case “Archive”
 ArchivePoll(e.CommandArgument)

 End Select

End Sub

Both the ArchivePoll and DeletePoll methods use the associated methods of a PollRepository to
execute the desired action:

Private Sub ArchivePoll(ByVal pollid As Integer)

 Using Pollrpt As New PollsRepository

 Pollrpt.ArchivePoll(pollid)

 End Using

End Sub

Private Sub DeletePoll(ByVal pollId As Integer)

 Using Pollrpt As New PollsRepository

 Pollrpt.DeletePoll(pollId)

 End Using

87586c06.indd 34687586c06.indd 346 9/11/09 3:13:21 PM9/11/09 3:13:21 PM

347

Chapter 6: Opinion Polls

 Me.BindPolls()
End Sub

Private Sub lvPolls_ItemDeleting(ByVal sender As Object,
ByVal e As System.Web.UI.WebControls.ListViewDeleteEventArgs)
Handles lvPolls.ItemDeleting
 DeletePoll(lvPolls.DataKeys(e.ItemIndex).Value)
End Sub

The AddEditPoll.aspx page
The AddEditPoll.aspx page (see Figure 6-7) provides the visual representation to manage the infor-
mation about a poll, including the poll question and the associated poll options. When a new poll is
being created, the poll options are suppressed until the poll question has been submitted. Once a poll
exists, a list of editable poll options is displayed.

Figure 6-7

Figure 6-8 shows the page for editing an existing poll. Notice that the poll options are listed in a table
on the right with the built-in capability to insert (add) a new option at the bottom of the list. Each
option in the list can be edited by clicking the pencil, or deleted by clicking the trash can.

87586c06.indd 34787586c06.indd 347 9/11/09 3:13:21 PM9/11/09 3:13:21 PM

348

Chapter 6: Opinion Polls

Figure 6-8

Editing the poll or a poll option can be canceled by clicking the associated Cancel hyperlink. When
editing a poll is canceled, the administrator is taken to the ManagePolls.aspx page. When a poll
option is canceled, the Option textbox is cleared.

The AddEditPoll.aspx.vb Code-Behind File
The code in the AddEditPoll.aspx.vb code-behind fi le that drives the managing of a specifi c poll is
divided into two distinct sections, one related to the poll itself and one to manage the associated poll
options. The Page Load event handler chooses either to bind the designated poll data to the corre-
sponding controls or to clear the values for a new poll. If this is an edit operation, the BindPollOptions
method is called to bind the associated options to a ListView. When the Update/Insert button is
clicked by the administrator, the poll information is committed to the database.

Protected Sub Page_Load(ByVal sender As Object, ByVal e As System.EventArgs)
Handles Me.Load

 If Not IsPostBack Then

 If PollId > 0 Then
 BindPoll()
 Else
 ClearPoll()
 End If
 End If
End Sub

87586c06.indd 34887586c06.indd 348 9/11/09 3:13:21 PM9/11/09 3:13:21 PM

349

Chapter 6: Opinion Polls

Private Sub BindPoll()

 Using Pollrpt As New PollsRepository

 Dim vPoll As Poll = Pollrpt.GetPollById(PollId)

 If Not IsNothing(vPoll) Then

 lblPollId.Text = vPoll.PollID
 lblDateAdded.Text = vPoll.AddedDate.ToShortDateString
 lblAddedBy.Text = vPoll.AddedBy
 lblDateUpdated.Text = vPoll.UpdatedDate.ToShortDateString
 lblUpdatedBy.Text = vPoll.UpdatedBy
 lblVotes.Text = vPoll.Votes
 txtQuestion.Text = vPoll.QuestionText
 cbIsCurrent.Checked = vPoll.IsCurrent

 BindPollOptions()

 lbtnInsertPoll.Text = “Update”

 tOptionDetail.Visible = True

 End If

 End Using

End Sub

Private Sub ClearPoll()

 lblPollId.Text = String.Empty
 lblDateAdded.Text = String.Empty
 lblAddedBy.Text = String.Empty
 lblDateUpdated.Text = String.Empty
 lblUpdatedBy.Text = String.Empty
 lblVotes.Text = String.Empty
 txtQuestion.Text = String.Empty
 cbIsCurrent.Checked = False
 lbtnInsertPoll.Text = “Insert”

 tOptionDetail.Visible = False

End Sub

Protected Sub lbtnInsertPoll_Click(ByVal sender As Object, ByVal e As EventArgs)
Handles lbtnInsertPoll.Click

 Using Pollrpt As New PollsRepository

 Dim vPoll As Poll = Pollrpt.GetPollById(PollId)

 If IsNothing(vPoll) Then
 vPoll = New Poll

87586c06.indd 34987586c06.indd 349 9/11/09 3:13:21 PM9/11/09 3:13:21 PM

350

Chapter 6: Opinion Polls

 End If

 vPoll.QuestionText = txtQuestion.Text
 vPoll.IsCurrent = cbIsCurrent.Checked

 vPoll.UpdatedBy = UserName
 vPoll.UpdatedDate = Now

 If vPoll.PollID > 0 Then
 If Pollrpt.UpdatePoll(vPoll) Then
 ltlStatus.Text = “The Poll Has Been Updated.”
 Else
 ltlStatus.Text = “The Poll Has Not Been Updated.”
 End If
 Else
 vPoll.AddedBy = UserName
 vPoll.AddedDate = Now
 If Pollrpt.AddPoll(vPoll) Then
 ltlStatus.Text = “The Poll Has Been Added.”
 tOptionDetail.Visible = True
 Else
 ltlStatus.Text = “The Poll Has Not Been Added.”
 End If
 End If

 End Using

End Sub

The poll options are bound to the ListView if an existing poll is being edited. If there are no options, a
message lets the user know. As soon as a new option is added it is added to the option list. This list does
not contain a pager because it is more feasible to have all the poll options listed on the page.

Updating or adding a poll option works just as with any other entity; if the option exists, the OptionText
is updated and stored in the database. A new option is added to the database. The balance of the code
manages deleting or selecting options from the ListView.

Private Sub BindPollOptions()

 Using PollOptionRpt As New PollOptionsRepository

 lvPollOptions.DataSource = PollOptionRpt.GetActivePollOptionsByPollId(
PollId)
 lvPollOptions.DataBind()

 End Using

End Sub

Protected Sub lbInsert_Click(ByVal sender As Object, ByVal e As EventArgs)
Handles lbInsert.Click
 UpdatePollOptions()

87586c06.indd 35087586c06.indd 350 9/11/09 3:13:21 PM9/11/09 3:13:21 PM

351

Chapter 6: Opinion Polls

End Sub

Private Sub UpdatePollOptions()

 Using PollOptionsrpt As New PollOptionsRepository

 Dim lPollOption As PollOption

 If PollOptionId > 0 Then
 lPollOption = PollOptionsrpt.GetPollOptionById(PollOptionId)
 Else
 lPollOption = New PollOption()
 End If

 lPollOption.PollId = PollId
 lPollOption.OptionText = txtOption.Text

 lPollOption.UpdatedDate = Now
 lPollOption.UpdatedBy = UserName

 If lPollOption.OptionID > 0 Then
 If PollOptionsrpt.UpdatePollOption(lPollOption) Then
 IndicateOptionUpdated()
 Else
 IndicateOptionNotUpdated(PollOptionsrpt)
 End If
 Else
 lPollOption.Active = True
 lPollOption.AddedBy = UserName
 lPollOption.AddedDate = Now
 If PollOptionsrpt.AddPollOption(lPollOption) Then
 IndicateOptionUpdated()
 Else
 IndicateOptionNotUpdated(PollOptionsrpt)
 End If
 End If

 lbInsert.Text = “Insert”

 End Using

End Sub

Private Sub IndicateOptionNotUpdated(ByVal vRepository As BaseRepository)

 ltlStatus.Text = String.Empty
 If vRepository.ActiveExceptions.Count > 0 Then
 For Each kv As KeyValuePair(Of String, Exception) In
vRepository.ActiveExceptions
 ltlStatus.Text += DirectCast(kv.Value, Exception).Message & “
”
 Next
 Else

87586c06.indd 35187586c06.indd 351 9/11/09 3:13:21 PM9/11/09 3:13:21 PM

352

Chapter 6: Opinion Polls

 ltlStatus.Text = “The Option Has Not Been Updated.”
 End If

End Sub

Private Sub IndicateOptionUpdated()
 ltlStatus.Text = “The Option Has Been Updated.”
 ‘ cmdDelete.Visible = True
 txtOption.Text = String.Empty
 Me.BindPollOptions()
End Sub

Private Sub DeletePollOption(ByVal OptionId As Integer)
 Using PollOptionsrpt As New PollOptionsRepository
 PollOptionsrpt.DeletePollOption(PollOptionsrpt
.GetPollOptionById(OptionId))
 End Using
 Me.BindPollOptions()
End Sub

Private Sub lvPollOptions_ItemDeleting(ByVal sender As Object, ByVal e As
System.Web.UI.WebControls.ListViewDeleteEventArgs)
Handles lvPollOptions.ItemDeleting
 DeletePollOption(lvPollOptions.DataKeys(e.ItemIndex).Value)
End Sub

Private Sub lvPollOptions_ItemEditing(ByVal sender As Object, ByVal e As
System.Web.UI.WebControls.ListViewEditEventArgs)
Handles lvPollOptions.ItemEditing
 PollOptionId = lvPollOptions.DataKeys(e.NewEditIndex).Value

 Using lPollOptionrpt As New PollOptionsRepository

 Dim lPollOption As PollOption =
lPollOptionrpt.GetPollOptionById(PollOptionId)

 txtOption.Text = lPollOption.OptionText
 lbInsert.Text = “Update”

 End Using
End Sub

The PollBox.ascx User Control
You’ll plug the PollBox user control into the site’s common layout (the master page). The PollBox.ascx
user control is created under the ~/Controls folder, together with all other user controls.

This user control can be divided into four parts. The fi rst defi nes a panel with an image and a label for the
confi gurable header text. This content is placed into a Panel so that it can be hidden if the ShowHeader
property is set to false. It also defi nes another label for the poll’s question text. Here’s the code:

<%@ Control Language=”C#” AutoEventWireup=”true” CodeFile=”PollBox.ascx.cs”
 Inherits=”PollBox” %>
<div class=”pollbox”>

87586c06.indd 35287586c06.indd 352 9/11/09 3:13:21 PM9/11/09 3:13:21 PM

353

Chapter 6: Opinion Polls

<asp:Panel runat=”server” ID=”panHeader”>
<div class=”sectiontitle”>
<asp:Image ID=”imgArrow” runat=”server” ImageUrl=”~/images/arrowr.gif”
 style=”float: left; margin-left: 3px; margin-right: 3px;”/>
<asp:Label runat=”server” ID=”lblHeader”></asp:Label>
</div>
</asp:Panel>
<div class=”pollcontent”>
<asp:Label runat=”server” ID=”lblQuestion” CssClass=”pollquestion”></asp:Label>

The second part is a Panel to show when the poll box allows the user to vote (i.e., when it detects that
the poll being shown is not archived, and the user has not already voted for it). The Panel contains a
RadioButtonList to list the options, a RequiredFieldValidator that ensures that at least one option
is selected when the form is submitted, and the button to do the postback:

<asp:Panel runat=”server” ID=”panVote”>
 <div class=”polloptions”>
 <asp:RadioButtonList runat=”server” ID=”optlOptions”
 DataTextField=”OptionText” DataValueField=”ID” />
 <asp:RequiredFieldValidator ID=”valRequireOption” runat=”server”
 ControlToValidate=”optlOptions” SetFocusOnError=”true”
 Text=”You must select an option.” ToolTip=”You must select an option”
 Display=”Dynamic” ValidationGroup=”PollVote”></asp:RequiredFieldValidator>
 </div>
 <asp:Button runat=”server” ID=”btnVote” ValidationGroup=”PollVote”
 Text=”Vote” OnClick=”btnVote_Click” />
</asp:Panel>

The third part defi nes the Panel to be displayed when the control detects that the user has already
voted for the current poll. In this situation, the control displays the results, which is done by means of a
Repeater that outputs the option text and the number of votes it has received. It also creates a <div>
element whose width style attribute is set to the option’s Percentage value, so that the user will get a
visual representation of the vote percentage, in addition to seeing the percentage as a number:

<asp:Panel runat=”server” ID=”panResults”>
 <div class=”polloptions”>
<asp:ListView runat=”server” ID=”lvOptions”>
<LayoutTemplate>
 <div runat=”server” id=”itemPlaceHolder”>
 </div>
</LayoutTemplate>
<ItemSeparatorTemplate>
<img runat=”server” src=”~/Images/spacer.gif” height=”5”
meta:resourcekey=”imgSeparatorResource1”
 alt=”“ />

</ItemSeparatorTemplate>
<ItemTemplate>
<div>
 <%# Eval(“OptionText”) %>
 <small>(<%# Eval(“Votes”) %>
 vote(s) -
 <%# GetFixedPercentage(Eval(“Votes”),
TotalVotes) %>

87586c06.indd 35387586c06.indd 353 9/11/09 3:13:21 PM9/11/09 3:13:21 PM

354

Chapter 6: Opinion Polls

 %)</small>

 <div class=”pollbar” style=”width: <%#
GetFixedPercentage(Eval(“Votes”), TotalVotes) %>%”> </div>
</div>
</ItemTemplate>
</asp:ListView>

 Total votes: <asp:Label runat=”server” ID=”lblTotalVotes” />
 </div>
</asp:Panel>

Finally, the last section of the control defi nes a link to the archive page, which can be hidden by means
of the control’s ShowArchiveLink custom property, plus a couple of closing tags for <div> elements
opened earlier to associate some CSS styles to the various parts of the control:

<asp:HyperLink runat=”server” ID=”lnkArchive”
 NavigateUrl=”~/ArchivedPolls.aspx” Text=”Archived Polls” />
</div>
</div>

The PollBox.ascx.vb Code-Behind File
The PollBox.ascx control’s code-behind fi le begins by defi ning all those custom properties described
in the “Design” section. Most of these properties are just wrappers for the Text or Visible properties
of inner labels and panels, so they don’t need their values persisted:

Partial Public Class PollBox
 Inherits System.Web.UI.UserControl

#Region “ Property “

 Private _pollID As Integer = -1

 <Personalizable(PersonalizationScope.Shared), _
 WebBrowsable(), _
 WebDisplayName(“Show Archive Link”), _
 WebDescription(“Specifies whether the link to the archive page is
displayed”)> _
 Public Property ShowArchiveLink() As Boolean
 Get
 Return lnkArchive.Visible
 End Get
 Set(ByVal value As Boolean)
 lnkArchive.Visible = value
 End Set
 End Property

 Public Property ShowQuestion() As Boolean
 Get
 Return lblQuestion.Visible
 End Get
 Set(ByVal value As Boolean)
 lblQuestion.Visible = value
 End Set

87586c06.indd 35487586c06.indd 354 9/11/09 3:13:21 PM9/11/09 3:13:21 PM

355

Chapter 6: Opinion Polls

 End Property

 Public Shared ReadOnly Settings As TheBeerHouseSection = Helpers.Settings

#End Region

The PollID property does not wrap any other property, and therefore its value is manually stored in
and retrieved from the control’s state, as part of the control’s ViewState collection. As already shown in
previous chapters, this is done by overriding the control’s LoadControlState and SaveControlState
methods and registering the control to specify that it requires the control state, from inside the Init
event handler:

 <Personalizable(PersonalizationScope.Shared), _
 WebBrowsable(), _
 WebDisplayName(“Poll ID”), _
 WebDescription(“The ID of the poll to show”)> _
 Public Property PollID() As Integer
 Get
 Return _pollID
 End Get
 Set(ByVal value As Integer)
 _pollID = value
 End Set
 End Property

Protected Sub Page_Init(ByVal sender As Object, ByVal e As System.EventArgs)
Handles Me.Init
 Me.Page.RegisterRequiresControlState(Me)
End Sub

Protected Overrides Sub LoadControlState(ByVal savedState As Object)
 Dim ctlState() As Object = CType(savedState, Object())
 MyBase.LoadControlState(ctlState(0))
 Me.PollID = CInt(ctlState(1))
End Sub

Protected Overrides Function SaveControlState() As Object
 Dim ctlState() As Object
 ReDim ctlState(2)
 ctlState(0) = MyBase.SaveControlState()
 ctlState(1) = Me.PollID
 Return ctlState
End Function

The control can be shown because it is explicitly defi ned on the page, or because it is dynamically created
by some template-based control, such as ListView, Repeater, DataList, DataGrid, GridView, and
DetailsView. In the fi rst case, the code that loads and shows the response options (in either edit or dis-
play mode) will be run from the control’s Load event handler. Otherwise, it will run from the control’s
DataBind method, which you can override. The code itself is placed in a separate method, DoBinding,
and it’s called from these two methods, as follows:

Protected Sub Page_Load(ByVal sender As Object, ByVal e As System.EventArgs)
Handles Me.Load

87586c06.indd 35587586c06.indd 355 9/11/09 3:13:21 PM9/11/09 3:13:21 PM

356

Chapter 6: Opinion Polls

 If Not Me.IsPostBack Then DoBinding()
End Sub

Public Overrides Sub DataBind()
 ‘ the call to the base DataBind makes a call to OnDataBinding,
 ‘ which parses and evaluates the control’s binding expressions, i.e.
the PollID prop
 MyBase.DataBind()
 ‘ with the PollID set, do the actual binding
 DoBinding()
End Sub

Note that in the DataBind method, the base version of DataBind is called before executing the custom
binding code of DoBinding. The call to the base version, in turn, makes a call to the control’s standard
OnDataBinding method, which parses and evaluates the control’s expressions. This is necessary because
when the control is placed into a template, it will have the PollID property bound to some expression,
and this binding expression must be evaluated before actually executing the DoBinding method, so that
it will fi nd the fi nal PollID value.

The DoBinding method retrieves the data from the database (via the BLL), binds it to the proper
RadioButtonList and the Repeater controls, and either shows or hides the options or results, depend-
ing on whether the user has already voted for the question being asked. However, before retrieving the
poll and its options, it must check whether the PollID property is set to -1, in which case it must fi rst
retrieve the ID of the current poll:

Public Property TotalVotes() As Integer
 Get
 If Not IsNothing(ViewState(“TotalVotes”)) AndAlso
IsNumeric(ViewState(“TotalVotes”)) Then
 Return CInt(ViewState(“TotalVotes”))
 End If
 Return 0
 End Get
 Set(ByVal Value As Integer)
 ViewState(“TotalVotes”) = Value
 End Set
End Property

Protected Sub DoBinding()

 panResults.Visible = False
 panVote.Visible = False

 Using Pollrpty As New PollsRepository

 Dim lpollID As Integer = If(Me.PollID = -1, Pollrpty.CurrentPollID,
 Me.PollID)

 If lpollID > -1 Then

 Dim lpoll As Poll = Pollrpty.GetPollById(lpollID, False)

 If Not IsNothing(lpoll) Then

 lblQuestion.Text = lpoll.QuestionText

87586c06.indd 35687586c06.indd 356 9/11/09 3:13:21 PM9/11/09 3:13:21 PM

357

Chapter 6: Opinion Polls

 TotalVotes = lpoll.Votes.ToString
 lblTotalVotes.Text = TotalVotes
 valRequireOption.ValidationGroup &= lpoll.PollID.ToString
 btnVote.ValidationGroup = valRequireOption.ValidationGroup

 If lpoll.IsArchived Or GetUserVote(lpollID) > 0 Then
 lvOptions.DataSource = lpoll.PollOptions
 lvOptions.DataBind()
 panResults.Visible = True
 Else
 optlOptions.DataSource = lpoll.PollOptions
 optlOptions.DataBind()
 panVote.Visible = True
 End If

 End If

 End If

 End Using

End Sub

To check whether the current user has already voted for the poll, a call to the GetUserVote method is
made. If the method returns a value greater than 0, it means that a vote for the specifi ed poll was found.
You’ll see the code for this method in a moment, but fi rst consider the code executed when the Vote but-
ton is clicked. The button’s Click event handler calls the Poll.VoteOption business method to add a
vote for the specifi ed option (whose ID is read from the RadioButtonList’s SelectedValue), and
then shows the results panel and hides the edit panel. In order to remember that the user has voted for
this poll, you create a cookie named Vote_Poll{x}, where {x} is the ID of the poll. The cookie’s value
is the ID of the option the user has voted for. The cookie is created only if the VotingLockByCookie
confi guration property is set to true (the default) and the cookie’s expiration is set to the current date
plus the number of days also stored in the <polls> custom confi guration element (15 by default).
Finally, it saves the votes in the cache (unless the VotingLockByIP setting is set to false), to ensure
that it will be remembered at least for the current user’s session even if the client has his cookies turned
off. The cache’s key is defi ned as {y}_Vote_Poll{x}, where {y} is replaced by the client’s IP address.
This is necessary because the Cache is not user-specifi c like session state, and thus you need to create
different keys for different users. Here’s the code of the Click event handler:

Protected Sub btnVote_Click(ByVal sender As Object, ByVal e As System.EventArgs)
Handles btnVote.Click

 Using Pollrpty As New PollsRepository

 Dim lpollID As Integer = If(Me.PollID = -1, Pollrpty.CurrentPollID,
Me.PollID)

 ‘ check that the user has not already voted for this poll
 Dim userVote As Integer = GetUserVote(lpollID)
 If userVote = 0 Then
 ‘ post the vote and then create a cookie to remember this user’s vote
 userVote = Convert.ToInt32(optlOptions.SelectedValue)

 Using PollOptionRptry As New PollOptionsRepository

87586c06.indd 35787586c06.indd 357 9/11/09 3:13:21 PM9/11/09 3:13:21 PM

358

Chapter 6: Opinion Polls

 PollOptionRptry.Vote(userVote)
 End Using

 ‘ hide the panel with the radio buttons, and show the results
 DoBinding()
 panVote.Visible = False
 panResults.Visible = True

 Dim expireDate As DateTime = DateTime.Now.AddDays(_
 Settings.Polls.VotingLockInterval)
 Dim key As String = “Vote_Poll” & lpollID.ToString

 ‘ save the result to the cookie
 If Settings.Polls.VotingLockByCookie Then
 Dim cookie As New HttpCookie(key, userVote.ToString)
 cookie.Expires = expireDate
 Me.Response.Cookies.Add(cookie)
 End If

 ‘ save the vote also to the cache
 If Settings.Polls.VotingLockByIP Then
 Cache.Insert(_
 Me.Request.UserHostAddress.ToString & “_” & key, _
 userVote)
 End If
 End If

 End Using

End Sub

The fi nal piece of code is the GetUserVote method discussed earlier, which takes the ID of a poll, and
checks whether it fi nds a vote in a client’s cookie or in the cache, according to the VotingLockByCookie
and VotingLockByIP settings, respectively. If no vote is found in either place, 0 is returned, indicating
that the current user has not yet voted for the specifi ed poll:

Protected Function GetUserVote(ByVal vpollID As Integer) As Integer
 Dim key As String = “Vote_Poll” & vpollID.ToString
 Dim key2 As String = Me.Request.UserHostAddress.ToString & “_” & key

 ‘ check if the vote is in the cache
 If Settings.Polls.VotingLockByIP And Not IsNothing(Cache(key2)) Then
 Return CInt(Cache(key2))
 End If

 ‘ if the vote is not in cache, check if there’s a client-side cookie
 If Settings.Polls.VotingLockByCookie Then
 Dim cookie As HttpCookie = Me.Request.Cookies(key)
 If Not IsNothing(cookie) Then
 Return Integer.Parse(cookie.Value)
 End If
 End If

 Return 0
End Function

87586c06.indd 35887586c06.indd 358 9/11/09 3:13:22 PM9/11/09 3:13:22 PM

359

Chapter 6: Opinion Polls

Protected Function GetFixedPercentage(ByVal vVotes As Integer,
ByVal vTotalVotes As Integer) As Integer
 Dim val As Double = (vVotes * 100) / If(vTotalVotes > 0, vTotalVotes, 1)
 Dim percentage As Integer = Convert.ToInt32(val)
 Select Case val
 Case 100
 percentage = 98
 Case -1
 percentage = 0
 End Select
 Return percentage
End Function

Plugging the PollBox Control into the Site’s Layout
The PollBox user control is now ready, and you can fi nally plug it into any page. For this sample site we’ll
put it into the site’s master page, so that the polls will be visible in all pages. As an example of adding
more, you can add two PollBox instances to the master page: the fi rst will have no PollID specifi ed, so
that it will dynamically use the current poll, and the second one has the PollID property set to a specifi c
value so that it can reference a different poll and has the ShowArchiveLink property set to false to hide
the link to the archive page, as it’s already shown by the fi rst poll box. Here’s the code:

<%@ Register Src=”Controls/PollBox.ascx” TagName=”PollBox” TagPrefix=”mb” %>
...
<mb:PollBox id=”PollBox1” runat=”server” HeaderText=”Poll of the week” />
<mb:PollBox id=”PollBox2” runat=”server” HeaderText=”More polls”
 PollID=”18” ShowArchiveLink=”False” />

Figure 6-9 shows the result: the home page with the two poll boxes displayed in the site’s left-hand
column. You can change the fi rst poll simply by going to the administrative page and setting a different
(existing or new) poll as the current one. If you want to change the second, you’ll need to change the ID
in the master page’s source code fi le.

Figure 6-9

87586c06.indd 35987586c06.indd 359 9/11/09 3:13:22 PM9/11/09 3:13:22 PM

360

Chapter 6: Opinion Polls

The ArchivedPolls.aspx Page
ArchivedPolls.aspx is the last page to develop for this module. It lists all archived polls, one per line,
and when the user clicks one it has to expand and display its options and results. The page allows you to
have multiple questions expanded at the same time if you prefer. It initially shows them in “collapsed”
mode because you don’t want to create a very long page, distracting users and making it hard for them
to search for a particular question. Displaying the questions only when the page is fi rst loaded produces
a cleaner and more easily navigable page. If the current user is an administrator or an editor, she will
also see command links on the right side of the listed polls to delete them. Figure 6-10 shows the page
as seen by a normal anonymous user, with two of the three polls on the page expanded.

Figure 6-10

If you compare the poll results on the page’s central section with the results of the poll in the left col-
umn, you’ll notice that they look similar. Actually, they are nearly identical, except for the fact that in
the former case the question text is shown as a link and not as bold text. As you can easily guess, the
poll results rendered in the page’s content section are created by PollBox controls, which have the
ShowHeader, ShowQuestion, and ShowArchiveLink properties set to false. The link with the poll’s
text is created by a binding expression defi ned within the ItemTemplate of a parent ListView control.
The PollBox control itself is defi ned inside the sample template section and has its PollID property set
to a binding expression that retrieves the PollID value from the Poll object being bound to every row,
and is wrapped by a <div> that is hidden by default (it has the display style attribute set to none).
When the user clicks the link, he doesn’t navigate to another page, but executes a local JavaScript func-
tion that takes the name of a <div> (named after poll{x}, where {x} is the ID of a poll) and toggles its

87586c06.indd 36087586c06.indd 360 9/11/09 3:13:22 PM9/11/09 3:13:22 PM

361

Chapter 6: Opinion Polls

display state (if set to none, it sets it to an empty string to make it visible, and vice versa). Following is
the code for the JavaScript function, located in the TBH.js fi le, which hides and shows the <div> with
the results:

 function toggleDivState(divName)
 {
 var ctl = window.document.getElementById(divName);
 if (ctl.style.display == “none”)
 ctl.style.display = “”;
 else
 ctl.style.display = “none”;
 }

Here is the HTML markup containing the ListView defi nition and other page information:

<div class=”sectiontitle”>Archived Polls</div>
<p>Here is the complete list of archived polls run in the past. Click on
the poll’s question to see its results.</p>
<asp:ListView ID=”lvPolls” runat=”server” ItemPlaceholderID=”itemPlaceHolder”>
<LayoutTemplate>
 <div runat=”server” id=”itemPlaceHolder” />
 </LayoutTemplate>
 <ItemTemplate>
 <div>

 <a href=”javascript:toggleDivState(‘poll<%# Eval(“PollID”) %>’);”>
 <%# Eval(“QuestionText”) %> <small>(archived on
 <%# Eval(“ArchivedDate”, “{0:d}”) %>)</small>
 <div style=”display: none;” id=”poll<%# Eval(“PollID”) %>”>
 <uc1:PollBox ID=”PollBox1” runat=”server” PollID=’
<%# Eval(“PollID”) %>’ ShowHeader=”False”
 ShowQuestion=”False” ShowArchiveLink=”False” />
 </div>
 <asp:ImageButton runat=”server” ID=”ibtnDelete”
ImageUrl=”~/Images/Delete.gif” CommandName =”Delete” />
 </div>
 </ItemTemplate>
 <EmptyDataTemplate>
 <div>
 No polls to show</div>
 </EmptyDataTemplate>
</asp:ListView>

The ArchivedPolls.aspx.vb Code-Behind File
In the ListView just defi ned, an ImageButton is declared to create a Delete command for each of
the listed polls. However, this command must be visible only to users who belong to the Editors and
Administrators roles. When the page loads, if the user is not authorized to delete polls, then the delete
ImageButton is hidden. Before doing this, however, you have to check whether the user is anonymous
and, if so, whether the page is accessible to everyone or only to registered members. If the check fails,

87586c06.indd 36187586c06.indd 361 9/11/09 3:13:22 PM9/11/09 3:13:22 PM

362

Chapter 6: Opinion Polls

the RequestLogin method of the BasePage base class is called to redirect the user to the login page.
Here’s the code:

Protected Sub Page_Load(ByVal sender As Object, ByVal e As System.EventArgs)
Handles Me.Load
 If Not Me.User.Identity.IsAuthenticated AndAlso Not
Settings.Polls.ArchiveIsPublic Then
 Me.RequestLogin()
 End If

 If Not IsPostBack Then
 BindPolls()
 End If

End Sub

The list of archived polls is bound to the ListView by calling the GetArchivedPolls method of the
PollRepository in a using statement.

Private Sub BindPolls()

 Using lPollrpty As New PollsRepository

 lvPolls.DataSource = lPollrpty.GetArchivedPolls
 lvPolls.DataBind()

 End Using

End Sub

The only other code in the code-behind fi le for this page is the event handler for the ListView’s
ItemCreated event, from which you add the JavaScript confi rmation pop-up to the Delete command
buttons:

Private Sub lvPolls_ItemCreated(ByVal sender As Object, ByVal e As
System.Web.UI.WebControls.ListViewItemEventArgs) Handles
lvPolls.ItemCreated
 If e.Item.ItemType = ListViewItemType.DataItem Then
 Dim ibtnDelete As ImageButton = CType(e.Item
.FindControl(“ibtnDelete”), ImageButton)

 ibtnDelete.Visible = Me.User.Identity.IsAuthenticated And _
 (Me.User.IsInRole(“Administrators”) Or Me.User.IsInRole(“Editors”))

 ibtnDelete.OnClientClick = “if (confirm(‘Are you sure you want to
delete this poll?’) == false) return false;”
 End If

End Sub

87586c06.indd 36287586c06.indd 362 9/11/09 3:13:22 PM9/11/09 3:13:22 PM

363

Chapter 6: Opinion Polls

Summary
This chapter presents a working solution for handling multiple dynamic polls on your website. The
complete polls module is made up of an administration console for managing the polls through a web
browser, integration with the membership system to secure the administration and archive pages, and a
user control that enables us to show different polls on any page using only a couple of lines of code.
This module can easily be employed in many real-world sites as it is now, but of course you can expand
and enhance it as desired. Here are a few suggestions:

Add the capability to remind users which option they voted for. Currently, they can see the ❑

results, but the control does not indicate how they voted; the vote is stored in a cookie, which is
easy to retrieve.

Add a ❑ ReleaseDate and an ExpireDate to the polls, so that you can schedule the current poll
to change automatically. We do this type of thing with the articles module.

Provide the option to allow only registered users to vote. ❑

Expand the capabilities of the Poll module to create a survey by chaining questions together. ❑

Add the ability to let users register once they have completed a poll or survey for contest prizes. ❑

Allow voting to be multiple choice for selected questions. ❑

In the next chapter, you continue the development of the TheBeerHouse site through the addition of
another module that integrates with the rest of the site’s architecture. The new module will be used for
creating and sending out newsletters to users who subscribed to the newsletter at registration time.

87586c06.indd 36387586c06.indd 363 9/11/09 3:13:22 PM9/11/09 3:13:22 PM

87586c06.indd 36487586c06.indd 364 9/11/09 3:13:22 PM9/11/09 3:13:22 PM

Newsletters

In this chapter we’ll design and implement a newsletter mailing list system that allows users
to subscribe to online newsletters, and administrators to manage the newsletter content. First,
we’ll look at what newsletters can offer to web sites like the one developed in this book, and we’ll
examine the various management aspects that must be addressed in order to make the mailing list
administrator’s life as easy as possible. By the end of the chapter, we’ll have a powerful newsletter
module fully developed and integrated into our site.

Problem
Relationship marketing was developed back in the 1970s as a way to create a long term, more
profi table customer relationship. It encourages customers to buy products and services from ven-
dors with whom they have a long standing trust established. This relationship works best when
there are competitive alternatives for the customer to choose from; for example, the Beer House
competes with many other similar establishments for the same patrons.

The Beer House practices modern relationship marketing by letting customers create a profi le
and select different settings to refl ect their preferences. One of those choices is to receive periodic
newsletters. In today’s competitive marketplace there needs to be more incentive for a user to visit
the site than just announcing new web site content. Often this is in the form of a coupon and pro-
motional and event announcements. Effective use of announcing things on social networking like
Twitter and Facebook is great, but directly sending the information to existing customers compounds
the chance of success. Many studies show that compound marketing efforts — using more than
one medium to reach a customer — drastically increase positive response rates.

Part of good customer relations is managing how often you contact customers and of course
which customers. We have already seen how profi les are used to allow customers to opt into the
newsletter. We also need to keep track of what we have already sent and when. It is also a good
idea not to over send promotional e-mails as this can become very annoying to customers and
ultimately drive them away. For the purposes of the Beer House this can be accomplished with

87586c07.indd 36587586c07.indd 365 9/11/09 3:16:16 PM9/11/09 3:16:16 PM

366

Chapter 7: Newsletters

the basic administration structure we have already explained in previous chapters. Because the demands
of the Beer House are relatively simple, displaying the dates newsletters were sent will suffi ce. In a more
demanding scenario a scheduling mechanism might need to be employed that will que newsletters to be
sent and automatically process them at the exact time desired.

In the previous version of the Beer House only one newsletter was allowed to be sent at once, which
only makes sense from a marketing point of view. We are going to retain this feature, but change much
of the user interface around sending newsletters. A newsletter module presents a great opportunity to
explore how to send e-mail in .NET, how to run a long process on a background thread and how to use
AJAX to monitor the progress of a long running background task. While there are many ways to execute
the use of a newsletter, this chapter is going to stay focused on the technical requirements and leave
the details of planning a complete marketing program around newsletters for an online marketing book,
such as the New Rules of Marketing and PR by David Scott: (www.wiley.com/WileyCDA/WileyTitle/
productCd-0470379286.html).

Design
There are several issues that need to be addressed in a basic newsletter module, managing user subscrip-
tions, sending e-mails and managing content. The previous edition of the Beer House took advantage of
the Membership and Profi le systems to track registered users who wanted to receive periodic newsletters
from the Beer House. Since this is a very simple and adequate methodology this is not going to change.
Sending e-mail can be a tricky thing to deal with programmatically; fortunately .NET offers a very rich
set of classes to create and send messages. In particular it is pretty easy to create an e-mail message that
contains both plain-text and HTML formatting by conforming to the e-mail RFCs and supporting multi-
part MIME messages. Each user can also designate which format they would like to receive e-mail and
have that stored as part of their profi le.

Administering newsletters, sending them, and tracking those that have already been sent, this is going
to be done by using the same Manage/AddEdit administration architecture we have used in previous
chapters. One key difference is the use of a background thread and AJAX to send and monitor the prog-
ress of a newsletter. Because sending e-mail to a list can take a long time (for larger lists) there is no
need for a page to be waiting on these e-mails to be sent when handing this task over to a background
thread is a much better way to accomplish this task. Web servers are designed to receive requests for
content and serve it up as quickly as possible. While this process can manage many long running tasks,
often the request will hit a time threashold and timeout. This leaves the user hanging and ultimately
unsure if the process completed or not.

Creating and Sending E-mails
The .NET framework has an entire namespace of classes devoted to managing e-mail communications,
System.Net.Mail. While this namespace is composed of more than 60 classes, including all the Friend
(VB.NET) or sealed (C#) classes (these are classes that cannot be accessed by us directly), we are only going
to be concerned with the SMTPClient, MailMessage, and MailAddress classes. Before looking into how
to use these classes to send e-mail there are some basic confi guration settings that need to be made.

The system.net element in the web.config fi le can contain several child elements pertaining to
confi gurations for objects within the namespace, but for our purposes we are going to focus on the

87586c07.indd 36687586c07.indd 366 9/11/09 3:16:16 PM9/11/09 3:16:16 PM

367

Chapter 7: Newsletters

mailSettings element, which contains one thing, the smtp section. Simple Mail Transport Protocol
(SMTP, www.faqs.org/rfcs/rfc2554.html) is the protocol used to send e-mail. (Post Offi ce Protocol
(POP-3, www.faqs.org/rfcs/rfc1939.html) is the protocol used to check e-mail, which we won’t cover
because the Beer House site does not check e-mail.) Some confi guration is needed so that things like the
membership controls and the newsletter module can just send e-mail without having to explicitly set the
values. While adding these values to web.config is not required to send e-mail, it is a great place to store
it so you do not have to programmatically set it each place you need to send e-mail in the site. It does
not mean you cannot also explicitly set the values at runtime.

The SMTPClient class has properties for both the Host and From addresses. The Host is either the DNS
name of the server or its IP address used to send the e-mail. The From address is the e-mail address used
to send the message, think of this as the return address on the envelope. An e-mail address is different
from an e-mail account. Often addresses are aliases to accounts and the SMTP protocol does not care if
the address is an account or an alias.

A lot of developers ask questions about sending e-mail and many times their problem lies with them not
confi guring the mailSettings in the confi g fi le. The primary issue is not confi guring the Host, either
because they are not aware they need to specify the host or they do not know what their SMTP host
address is. Just because the classes exist to manage sending e-mail does not mean they automatically
know which server to send the mail through; that has to be explicitly set somewhere. For small busi-
nesses like the Beer House the site is typically hosted in a shared hosting environment by a hosting
provider. Generally the SMTP server address is supplied by the host as part of your setup or account
information. In larger corporations you usually need to follow the IT department’s SMTP policy, which
includes using the designated SMTP server. Also, many IT departments have SMTP blocked except to
and from the designated SMTP server. The main point is to know what SMTP server your site is sup-
posed to use and add it to the web.config fi le as shown here, or set it at runtime:

<system.net>
<mailSettings>
<smtp from=”thebeerhouse@wrox.com”>
<network host=”smtp.thebeerhouse.com”/>
</smtp>
</mailSettings>
</system.net>

Managing Long Operations on the Server
Sending groups of e-mails to a long list of recipients can be a time-consuming process that can tie up
any user interface, even a desktop application. Web pages are designed to be a request and immediate
response model. IIS or any web server is designed to timeout or kill the request if it takes too long to
process. This helps keep the overhead on the server from getting out of control with an infi nite loop,
etc. It is also by design to help combat denile of service or other malicious attacks a site might see. A
long list of e-mail recipients has a good chance at hitting the timeout threshold.

From a user’s perspective seeing a blank web page is not very encouraging. Often a user will become
frustrated and think they did something wrong, users need immediate feedback. Fortunately we can
use background threads in ASP.NET to pass these long running tasks and AJAX to provide comforting
feedback to the user confi rming the process is working.

87586c07.indd 36787586c07.indd 367 9/11/09 3:16:16 PM9/11/09 3:16:16 PM

368

Chapter 7: Newsletters

The SMTPClient class has built asynchronous methods to allow for e-mail to be sent on background
threads, SendAsync, SendAsyncCancel and SendCompleted. These are good when sending a single
message, but will throw an exception if a second message is attempted to be sent before the previous
one has been sent. This is known as a blocking call. The Send method sends an e-mail synchronously,
meaning the Send method keeps the application from executing the next line until the message has
been sent. The SendAsynch moves the sending process to another thread and allows the next line to be
called. While the SendAsynch may sound like the solution needed for the Newsletter module it actually
is not because the sending process is already on a background thread.

Because the newsletter will be sent to a list of recipients, one after the other, taking the chance the
SendAsynch has not completed gets a bit trickier. By sending the newsletter synchronously we can
accurately increment the status of the newsletter progress, loop to the next recipient and send the next
e-mail with confi dence it will process correctly. The process that sends the newsletters is done on its
own background thread.

Creating multithreaded applications can be very easy in .NET; the task of managing how a multithreaded
application actually runs is the challenge on any platform. The System.Threading namespace is rich
with classes to build such applications. The basic steps are as follows:

 1. Create a ThreadStart delegate that points to the method that will run in the secondary thread.
The method must return void and can’t accept any input parameters.

 2. Create a Thread object that takes the ThreadStart delegate in its constructor. You can also set
a number of properties for this thread, such as its name (useful if you need to debug threads and
identify them by name instead of by ID) and its priority. The Priority property, in particular, can
be dangerous, because it can seriously affect the performance of the whole application. It’s of type
ThreadPriority, an enumeration, and by default it’s set to ThreadPriority.Normal, which
means that the primary thread and the secondary thread have the same priority, and the CPU
time given to the process is equally divided between them. Other values of the ThreadPriority
enumeration are AboveNormal, BelowNormal, Highest, and Lowest. In general, you should
never assign the Priority property an AboveNormal or Highest value for a background thread.
Instead, set the property to BelowNormal, so that the background thread doesn’t slow down the
primary thread any noticeable degree, and it won’t interfere with ASP.NET.

 3. Call the Start method of the Thread object. The thread starts, and you can control its lifetime
from the thread that created it. For example, to affect the lifetime of the thread you can call the
Abort method to start terminating the thread (in an asynchronous way), the Join method to
make the primary thread wait until the secondary thread has completed, and the IsAlive prop-
erty, which returns a Boolean value indicating whether the background thread is still running.

The following snippet shows how to start the ExecuteTask method, which can be used to perform a
long task in a background thread:

‘ create and start a background thread
dim ts as new ThreadStart(Test)
Thread thread = new Thread(ts)
thread.Priority = ThreadPriority.BelowNormal
thread.Name = “TestThread”
thread.Start()
‘ main thread goes ahead immediately

87586c07.indd 36887586c07.indd 368 9/11/09 3:16:17 PM9/11/09 3:16:17 PM

369

Chapter 7: Newsletters

...

‘ the method run asynchronously by the background thread
Public sub ExecuteTask()
 ‘ execute time consuming processing here
 ...
End sub

The Newsletter module only needs a fairly simple background thread to operate effi ciently. The main
problem lies in managing access to shared data between the user interface thread and the background
process. The ParameterizedThreadStart delegate, which points to methods that take an object
parameter, makes passing resources to a background thread fairly easy. Because an object can be any-
thing, you can pass a custom object with properties that you defi ne as parameters, or simply pass an
array of objects if you prefer. The following snippet shows how you can call the ExecuteTask method
and pass an array of objects to it, where the fi rst object is a string, the second is an integer (that is boxed
into an object), and the last is a DateTime. The ExecuteTask method takes the object parameter and
casts it to a reference of type object array, and then it extracts the single values and casts them to the
proper type, and fi nally performs the actual processing:

‘ create and start a background thread with some input parameters
Dim parameters As Object() = New Object() {“val1”, 10, DateTime.Now}
Dim pts As New ParameterizedThreadStart(ExecuteTask)
Dim thread As New Thread(pts)
thread.Priority = ThreadPriority.BelowNormal
thread.Start(parameters)
‘ main thread goes ahead immediately
...

‘ the method run asynchronously by the background thread
Private Sub ExecuteTask(ByVal data As Object)
 ‘ extract the parameters from the input data object
 Dim parameters As Object() = DirectCast(data, Object())
 Dim val1 As String = DirectCast(parameters(0), String)
 Dim val2 As Integer = CInt(parameters(1))
 Dim val3 As DateTime = DirectCast(parameters(2), DateTime)

 ‘ execute time consuming processing here
 …
End Sub

The most serious issue with multi-threaded programming is synchronizing access to shared resources.
That is, if you have two threads reading and writing to the same variable, you must fi nd some way to
synchronize these operations so that one thread cannot read or write a variable while another thread is
also writing it. If you don’t take this into account, your program may produce unpredictable results and
have strange behaviors, it may lock up at unpredictable times, and possibly even cause data integrity
problems. A shared resource is any variable or fi eld within the scope of the current method, including
class-level public and private fi elds and static variables. The simplest way to synchronize access to these
resources is through the lock statement. It takes a non-null object (i.e., a reference type — value types are
not accepted), which must be accessible by all threads, and is typically a class-level fi eld. The type of
this object is not important, so many developers just use an instance of the root System.Object type
for this purpose. You can simply declare an object fi eld at the class level, assign it a reference to a new

87586c07.indd 36987586c07.indd 369 9/11/09 3:16:17 PM9/11/09 3:16:17 PM

370

Chapter 7: Newsletters

object, and use it from the methods running in different threads. Once the code enters a lock block, the
execution must exit the block before another thread can enter a lock block for the same locking variable.
Here’s an example:

Private lockObj As New Object()
Private counter As Integer = 0

Private Sub MethodFromFirstThread()
 SyncLock lockObj
 counter = counter + 1
 End SyncLock
 ‘ some other work...
End Sub

Private Sub MethodFromSecondThread()
 SyncLock lockObj
 If counter >= 10 Then
 DoSomething()
 End If
 End SyncLock
End Sub

In many situations, however, you don’t want to completely lock a shared resource against both read
and write operations. That is, you normally allow multiple threads to read the same resource at the
same time, but no write operation can be done from any thread while another thread is reading or
writing the resource (multiple reads, but exclusive writes). To implement this type of lock, you use the
ReaderWriterLock object, whose AcquireWriterLock method protects code following that method call
against other reads or writes from other threads, until a call to ReleaseWriterLock is made. If you
call AcquireReaderLock (not to be confused with AcquireWriterLock), another thread will be able
to enter its own AcquireReaderLock block and read the same resources, but an AcquireWriterLock
call would wait for all the other threads to call ReleaseReaderLock. Following is an example that
shows how you can synchronize access to a shared fi eld when you have two different threads that read
it, and another one that writes it:

Public Shared Lock As New ReaderWriterLock()
Private counter As Integer = 0

Private Sub MethodFromFirstThread()
 Lock.AcquireWriterLock(Timeout.Infinite)
 counter = counter + 1
 Lock.ReleaseWriterLock()

 ‘ some other work...
End Sub

Private Sub MethodFromSecondThread()
 Lock.AcquireReaderLock(Timeout.Infinite)
 If counter >= 10 Then
 DoSomething()
 End If
 Lock.ReleaseReaderLock()

87586c07.indd 37087586c07.indd 370 9/11/09 3:16:17 PM9/11/09 3:16:17 PM

371

Chapter 7: Newsletters

End Sub

Private Sub MethodFromThirdThread()
 Lock.AcquireReaderLock(Timeout.Infinite)
 If counter <> 50 Then
 DoSomethingElse()
 End If
 Lock.ReleaseReaderLock()
End Sub

In our specifi c case, you’ll have a business class that runs a background thread to asynchronously send
out the newsletters; after sending each mail, it updates a number of server-side variables that indicate the
total number of mails to send, the number of mails already sent, the percentage of mails already sent, and
whether the task has completed. Then, the web page from the presentation layer, and thus from a different
thread, will read this information to update the status information on the client’s screen. Because the infor-
mation is shared between two threads, you’ll need to synchronize the access, and the ReaderWriterLock
will be used for this purpose.

Multi-threaded programming is a very complex subject, and there are further con-
siderations regarding the proper way to design code so that it performs well and
doesn’t cause deadlocks that may freeze the entire application. You should avoid
creating too many threads if it’s not strictly required, because the operating system
and the thread scheduler (the portion of the OS that distributes the CPU time among
the existing threads) consume CPU time and memory for managing them. There
are also other classes that I haven’t discussed here (such as Monitor, Semaphore,
Interlocked, ThreadPoll, etc.) because they will not be necessary for implement-
ing the solution of this specifi c module.

Designing the Database Tables
There is only one table in the Newsletter module, tbh_Newsletter (see Figure 7-1). There are fi elds to
hold the subject, plainbody, HTML Body and a new fi eld from the previous version DateSent. The
remainder fi elds are the standard fi elds to track the reacord’s activity. The DateSent fi eld is nullable
and holds the value for when the newsletter was actually sent.

Figure 7-1

87586c07.indd 37187586c07.indd 371 9/11/09 3:16:17 PM9/11/09 3:16:17 PM

372

Chapter 7: Newsletters

Designing the Confi guration Module
Like the other modules in this site, the newsletter module has its own confi guration setting, which will be
defi ned as attributes of the <newsletter> element under the <theBeerHouse> section in web.config.
That element is mapped by a NewsletterElement class, which has the following properties:

Property Description

ProviderType The full name (namespace plus class name) of the concrete
provider class that implements the data access code for a
specifi c data store

ConnectionStringName The name of the entry in web.config’s new
<connectionStrings> section that contains the
connection string to the module’s database

EnableCaching A Boolean value indicating whether the caching of data is
enabled

CacheDuration The number of seconds for which the data is cached if there
aren’t any inserts, deletes, or updates that invalidate the cache

FromEmail The newsletter sender’s e-mail address, used also as a reply
address

FromDisplayName The newsletter sender’s display name, which will be shown by
the e-mail client program

HideFromArchiveInterval The number of days before a newsletter appears in the archive.

ArchiveIsPublic A Boolean value indicating whether the polls archive is acces-
sible by everyone, or restricted to registered members

The fi rst four settings are common to all modules. You may argue that the sender’s e-mail address can
be read from the built-in <mailSettings> section of web.config, as shown earlier. However, that is
usually set to the postmaster’s or administrator’s e-mail address, which is used to send service e-mails
such as the confi rmation for a new registration, the lost password e-mail, and the like. In other situations
you may want to differentiate the sender’s e-mail address, and use one for someone on your staff, so
that if the user replies to an e-mail, his reply will actually be read. In the case of a newsletter, you may
have a specifi c e-mail account, such as newseditor@contoso.com, used by your newsletter editor.

The ArchiveIsPublic property has the same meaning as the similarly named property found in the
poll module’s confi guration class — it enables the administrator to decide whether the archived news-
letters can be read only by registered members; she may want to set this to True to give users another
reason to subscribe. HideFromArchiveInterval is also very important, because it allows you to
decide how many days must pass before the newsletter just sent is available from the archive. If you set
this property to zero, some users may decide not to subscribe to the newsletter, and just go to the
archive occasionally to see it. If you set this to 15 instead (which is the default value), they will have to
subscribe to the newsletter if they want to read it without waiting 15 days to see it in the archives.

87586c07.indd 37287586c07.indd 372 9/11/09 3:16:17 PM9/11/09 3:16:17 PM

373

Chapter 7: Newsletters

Designing the User Interface Services
The last part of the design phase is to design the pages and user controls that make up the module’s
presentation layer. Here is list of the user interface fi les that we’ll develop later in the “Solution” section:

~/Admin/AddEditNewsletter.aspx: ❑ This page lets the administrator or editor send a newsletter
to current subscribers. If another newsletter is already being sent when this page is fi rst loaded,
an error message appears instead of the normal form showing the other newsletter’s subject and
body, and a link to the page that displays that newsletter’s progress. The page must also take
into account situations in which no newsletter is being sent when the page loads, but later when
the user clicks the Submit button to send this newsletter another newsletter is found to be under
way at that time, because another user may have sent it from another location while the fi rst
editor was completing the form on her browser. In this case, the current newsletter is not sent
and a message explaining the situation is shown, but the form showing the current newsletter’s
data is kept visible so that the data is not lost and can be sent later when the other newsletter
has completed transmission. This page also allows viewing of previously sent newsletters, but
not the editing of them.

~/Admin/ManageNewsletter.aspx: ❑ This page simply lists all the newsletters that have been
sent. It does not provide the ability to delete the newsletter, but does provide a link to view the
content of the newsletter.

~/ArchivedNewsletters.aspx: ❑ This page lists all past newsletters sent at least “x” days before
the current date, where x is equal to the HideFromArchiveInterval custom confi guration
setting. Anonymous users will be able to access this page only if the ArchiveIsPublic setting
is set to true in the web.config fi le’s <newsletters> element, under the <theBeerHouse>
section. The list of newsletters will show the date when each newsletter was sent and its subject.
The subject is rendered as a link that points to another page showing the newsletter’s entire
content.

~/ShowNewsletter.aspx: ❑ This page displays the full plain-text and HTML body of the newslet-
ter whose ID is passed on the querystring.

~/Controls/NewsletterBox.ascx: ❑ This user control determines whether the current site user is
logged in; if not, it assumes she is not registered and not subscribed to the newsletter, and thus
it displays a message inviting her to subscribe by typing her e-mail address into a textbox.
When the user clicks the Submit button, the control redirects her to the Register.aspx page
developed in Chapter 4, passing her e-mail on the querystring, so that Register.aspx will be
able to read it and prefi ll its own e-mail textbox. If the user is already a member and is logged
in, the control instead displays a message explaining that she can change her subscription
type or cancel the subscription by going to the EditProfile.aspx page (also developed in
Chapter 4) to which it links. In both cases, a link to the newsletter archive page is shown at the
bottom of the control.

~/NewsLetterService.asmx: ❑ While this is not a true user interface page, it is an interface used to
both send a newsletter and check on the status of a newsletter being sent.

87586c07.indd 37387586c07.indd 373 9/11/09 3:16:17 PM9/11/09 3:16:17 PM

374

Chapter 7: Newsletters

Solution
With all the features that are new and unique to the Newsletter module explained it is time to combine
this knowledge with the patterns and features of the previous modules to create a fully functioning
newsletter module.

Implementing the Confi guration Module
The code for the NewslettersElement custom confi guration element is found in the Confi g folder of
the application’s class library ConfigSection.vb fi le, together with the classes that map the other ele-
ments under the <theBeerHouse> section. Following is the whole class, which defi nes the properties
listed in the design section, their default values, whether they are required or not, and their mapping
to the respective attributes of the <newsletters> element:

Public Class NewslettersElement
 Inherits ConfigurationElement

 <ConfigurationProperty(“connectionStringName”)> _
 Public Property ConnectionStringName() As String
 Get
 Return CStr(Me(“connectionStringName”))
 End Get
 Set(ByVal value As String)
 Me(“connectionStringName”) = value
 End Set
 End Property

 Public ReadOnly Property ConnectionString() As String
 Get
 Dim connStringName As String
 If String.IsNullOrEmpty(Me.ConnectionStringName) Then
 connStringName =
Globals.Settings.DefaultConnectionStringName
 Else
 connStringName = Me.ConnectionStringName
 End If
 Return WebConfigurationManager.ConnectionStrings(_
 connStringName).ConnectionString
 End Get
 End Property

 <Obsolete(“No longer a factor with the Entity Framework.”)> _
 Public Property ProviderType() As String
 Get
 Return CStr(Me(“providerType”))
 End Get
 Set(ByVal value As String)
 Me(“providerType”) = value
 End Set
 End Property

 <ConfigurationProperty(“fromEmail”, IsRequired:=True)> _

87586c07.indd 37487586c07.indd 374 9/11/09 3:16:17 PM9/11/09 3:16:17 PM

375

Chapter 7: Newsletters

 Public Property FromEmail() As String
 Get
 Return CStr(Me(“fromEmail”))
 End Get
 Set(ByVal value As String)
 Me(“fromEmail”) = value
 End Set
 End Property

 <ConfigurationProperty(“fromDisplayName”, isrequired:=True)> _
 Public Property FromDisplayName() As String
 Get
 Return CStr(Me(“fromDisplayName”))
 End Get
 Set(ByVal value As String)
 Me(“fromDisplayName”) = value
 End Set
 End Property

 <ConfigurationProperty(“hideFromArchiveInterval”,
defaultvalue:=”15”)> _
 Public Property HideFromArchiveInterval() As Integer
 Get
 Return CInt(Me(“hideFromArchiveInterval”))
 End Get
 Set(ByVal value As Integer)
 Me(“hideFromArchiveInterval”) = value
 End Set
 End Property

 <ConfigurationProperty(“archiveIsPublic”, defaultvalue:=”false”)> _
 Public Property ArchiveIsPublic() As Boolean
 Get
 Return CBool(Me(“archiveIsPublic”))
 End Get
 Set(ByVal value As Boolean)
 Me(“archiveIsPublic”) = value
 End Set
 End Property

 <ConfigurationProperty(“enableCaching”, defaultvalue:=”true”)> _
 Public Property EnableCaching() As Boolean
 Get
 Return CBool(Me(“enableCaching”))
 End Get
 Set(ByVal value As Boolean)
 Me(“enableCaching”) = value
 End Set
 End Property

 <ConfigurationProperty(“cacheDuration”)> _
 Public Property CacheDuration() As Integer
 Get
 Dim duration As Integer = CInt(Me(“cacheDuration”))

87586c07.indd 37587586c07.indd 375 9/11/09 3:16:17 PM9/11/09 3:16:17 PM

376

Chapter 7: Newsletters

 If duration > 0 Then
 Return duration
 Else
 Return Globals.Settings.DefaultCacheDuration
 End If
 End Get
 Set(ByVal value As Integer)
 Me(“cacheDuration”) = value
 End Set
 End Property

 <ConfigurationProperty(“urlIndicator”)> _
 Public Property URLIndicator() As String
 Get
 Dim lurlIndicator As String = Me(“urlIndicator”).ToString
 If String.IsNullOrEmpty(lurlIndicator) Then
 lurlIndicator = “Newsletter”
 End If
 Return lurlIndicator
 End Get
 Set(ByVal Value As String)
 Me(“urlIndicator”) = Value
 End Set
 End Property

End Class

A property named Newsletters of type NewslettersElement is added to the
TheBeerHouseSection (found in the same fi le), which maps the <theBeerHouse> section:

public class TheBeerHouseSection
Inherits ConfigurationSection
 ‘ other properties...

 <ConfigurationProperty(“newsletters”, IsRequired:=True)> _
 Public ReadOnly Property Newsletters() As NewslettersElement
 Get
 Return CType(Me(“newsletters”), NewslettersElement)
 End Get
 End Property
End Class

Now you can go to the web.config fi le and confi gure the module with the attributes of the
<newsletters> element. The SenderEmail and SenderDisplayName are required, the others are
optional. The following extract shows how you can confi gure these two attributes, plus others that make
the archive public (it is not by default) and specify that 10 days must pass before a sent newsletter
appears in the archive:

<theBeerHouse defaultConnectionStringName=”LocalSqlServer”>
 <contactForm mailTo=”mbellinaso@wrox.com”/>
 <articles pageSize=”10” />
 <polls archiveIsPublic=”true” votingLockByIP=”false” />

87586c07.indd 37687586c07.indd 376 9/11/09 3:16:17 PM9/11/09 3:16:17 PM

377

Chapter 7: Newsletters

 <newsletters fromEmail=”mbellinaso@wrox.com”
fromDisplayName=”TheBeerHouse”
 archiveIsPublic=”true” hideFromArchiveInterval=”10” />
</theBeerHouse>

Implementing the Data Access Layer
Like the other chapters, the Newsletter module (see Figure 7-2) has a table that is mapped to a dedicated
Entity Data Model, NewsletterModel.emdx. A corresponding repository (NewletterRepository) and
entity extension class are also included to add the custom behavior needed for the Beer House applica-
tion. Since there are no related tables to the tbh_Newsletters table, the only thing that needs to be done
to the model created by the wizard is changing the name of the entity to Newsletter and the Entity Set
Name to Newsletters.

Figure 7-2

Implementing the Business Logic Layer
The Newsletter’s Business layer consists of the repository class, an extended entity class, NewsletterStatus
class, SubscriberInfo class and SubscriptionType enum. The repository contains the normal CRUD
methods that have been explained in the previous chapters, it does add some members to manage send-
ing e-mails on a background thread. The Newsletter entity is extended by adding a few shared mem-
bers to store information about an active newsletter during the e-mail process. The SubscriberInfo,
NewsletterStatus and SubscriptionType enum are all helper classes to supplement the newsletter
process.

Extending the Newsletter Entity
The Newsletter entity created by the Entity Data Model wizard is exending using a partial class to add
shared (Static in C#) members used to monitor the status of a newsletter as it is being sent. The reason
these members are shared is to make them available across threads; the values themselves will not be
stored values for the newsletter.

The fi rst member is a ReaderWriterLock, which is used to lock the values of the shared members
across threads. A ReaderWriterLock is primarly used to synchronize access to a value across threads

87586c07.indd 37787586c07.indd 377 9/11/09 3:16:17 PM9/11/09 3:16:17 PM

378

Chapter 7: Newsletters

where the value is mostly read. This lock will be acquired anytime we are reading or writing to any of
the Newletter shared members. I will discuss this more process in more detail in the repository section.

The next four members are all properties used to track the status of an active newsletter as it is being
sent. The IsSending member is a Boolean that indicates if there is an active newsletter being sent. The
TotalMails property indicates how many e-mails are ging sent with the active newsletter. Similarly
SentMails is the number of e-mails sent during the active process; it is incremented as each e-mail is
sent. Finally the PercentageComplete property is ReadOnly member that is calculated by dividing the
number of SentMails by the TotalMails value. If there are no TotalMail, meaning there is no active
newsletter at the moment, it returns zero. Otherwise it would cause a divide by zero exception.

 Public Shared Lock As New ReaderWriterLock

 Private Shared _isSending As Boolean = False
 Public Shared Property IsSending() As Boolean
 Get
 Return _isSending
 End Get
 Set(ByVal value As Boolean)
 _isSending = value
 End Set
 End Property

 Public Shared ReadOnly Property PercentageCompleted() As Double
 Get
 If TotalMails = 0 Then
 Return 0D
 End If
 Return CDbl(SentMails) * 100 / CDbl(TotalMails)
 End Get
 End Property

 Private Shared _totalMails As Integer = -1
 Public Shared Property TotalMails() As Integer
 Get
 Return _totalMails
 End Get
 Set(ByVal value As Integer)
 _totalMails = value
 End Set
 End Property

 Private Shared _sentMails As Integer = 0
 Public Shared Property SentMails() As Integer
 Get
 Return _sentMails
 End Get
 Set(ByVal value As Integer)
 _sentMails = value
 End Set
 End Property

87586c07.indd 37887586c07.indd 378 9/11/09 3:16:17 PM9/11/09 3:16:17 PM

379

Chapter 7: Newsletters

Implementing the NewslettersRepository
The common CRUD opertations are including in the NewslettersRepository and follow the patterns
we have already reviewed. The repository does contain four extra members, two to manage sending
e-mails and two methods to customize the message to the user.

The HasPersonalizationPlaceholders method reviews a string to determine if there are any cus-
tomization placeholders in the text. It uses a set of regular expressions to see if there are any matches to
a series of personalization placeholders in the text. There are four personalization placeholders that can
be added to the newsletter: <username>, <email>, <fi rstname> and <lastname>. As they are entered in
the body of the message they are added with the <> brackets on each side of the placeholder. The method
also accepts the isHtml parameter to indicate if the string should be evaluated as HTML or plain text,
an important distinction. The <> characters are HTML encoded, or changed to < and > respec-
tively to avoid any parser confusion with the same characters being used as deliminters in HTML
markup.

As the string is passed through the method, it is matched against the appropriate expressions for each
placeholder. If a match is found the method immediately returns true and does not check the remaining
placeholders. Since the main purpose of the method is to simply check to see if there are any placehold-
ers to replace, as soon as one is found return true, saving processor cycles.

Private Shared Function HasPersonalizationPlaceholders(ByVal text
As String, ByVal isHtml As Boolean) As Boolean
 If isHtml Then
 If Regex.IsMatch(text, “<%\s*username\s*%>”,
 RegexOptions.IgnoreCase Or _
 RegexOptions.Compiled) Then
 Return True
 End If
 If Regex.IsMatch(text, “<%\s*email\s*%>”,
RegexOptions.IgnoreCase Or _
 RegexOptions.Compiled) Then
 Return True
 End If
 If Regex.IsMatch(text, “<%\s*firstname\s*%>”,
RegexOptions.IgnoreCase Or _
 RegexOptions.Compiled) Then
 Return True
 End If
 If Regex.IsMatch(text, “<%\s*lastname\s*%>”,
 RegexOptions.IgnoreCase Or _
 RegexOptions.Compiled) Then
 Return True
 End If
 Else
 If Regex.IsMatch(text, “<%\s*username\s*%>”,
RegexOptions.IgnoreCase Or _
 RegexOptions.Compiled) Then
 Return True
 End If

87586c07.indd 37987586c07.indd 379 9/11/09 3:16:17 PM9/11/09 3:16:17 PM

380

Chapter 7: Newsletters

 If Regex.IsMatch(text, “<%\s*email\s*%>”,
RegexOptions.IgnoreCase Or _
 RegexOptions.Compiled) Then
 Return True
 End If
 If Regex.IsMatch(text, “<%\s*firstname\s*%>”,
RegexOptions.IgnoreCase Or _
 RegexOptions.Compiled) Then
 Return True
 End If
 If Regex.IsMatch(text, “<%\s*lastname\s*%>”,
RegexOptions.IgnoreCase Or _
 RegexOptions.Compiled) Then
 Return True
 End If
 End If
 Return False
 End Function

If there is a match found for any of the placeholders, then the ReplacePersonalizationPlaceholders
method is called. You should note you do not have to call HasPersonalizationPlaceholders before
calling ReplacePersonalizationPlaceholders, because the regular expressions used to perform
the placeholder replacements will not replace any text that does not match the placeholders.

Again a set of regular expressions are used to process the text, but instead of looking for matches the
RegEx is used to performa a replace operation. Regular Expressions, RegEx in .NET, are great to process
a string and perform tasks like replace based on a pattern, instead of a set string. Using a Regex
.Replace to perform a toke replacement, like being done in the ReplacePersonalizationPlaceholders
method is more ideal because the String.Replace method does not match patterns, but instead the
exact string being passed. Regular expressions also tend to perform much faster than methods like
Replace, Contains, etc in the String class. Beginning Regular Expressions, www.wiley.com/WileyCDA/
WileyTitle/productCd-0764574892.html is a good place to start learning about regular expressions.
www.Regexlib.com is one of the primary online resources for regular expressions in the .NET world
and a defi nite site to bookmark.

Private Shared Function ReplacePersonalizationPlaceholders(ByVal
text As String, _
 ByVal subscriber As SubscriberInfo, ByVal isHtml As
Boolean) As String

 If isHtml Then
 text = Regex.Replace(text, “<%\s*username\s*%>”, _
 subscriber.UserName, RegexOptions.IgnoreCase Or
RegexOptions.Compiled)
 text = Regex.Replace(text, “<%\s*email\s*%>”, _
 subscriber.Email, RegexOptions.IgnoreCase Or
RegexOptions.Compiled)
 Dim firstName As String = “reader”
 If subscriber.FirstName.Length > 0 Then
 firstName = subscriber.FirstName
 End If
 text = Regex.Replace(text, “<%\s*firstname\s*%>”,
firstName, _

87586c07.indd 38087586c07.indd 380 9/11/09 3:16:17 PM9/11/09 3:16:17 PM

381

Chapter 7: Newsletters

 RegexOptions.IgnoreCase Or RegexOptions.Compiled)
 text = Regex.Replace(text, “<%\s*lastname\s*%>”, _
 subscriber.LastName, RegexOptions.IgnoreCase Or
RegexOptions.Compiled)
 Else
 text = Regex.Replace(text, “<%\s*username\s*%>”, _
 subscriber.UserName, RegexOptions.IgnoreCase Or
RegexOptions.Compiled)
 text = Regex.Replace(text, “<%\s*email\s*%>”, _
 subscriber.Email, RegexOptions.IgnoreCase Or
RegexOptions.Compiled)
 Dim firstName As String = “reader”
 If subscriber.FirstName.Length > 0 Then
 firstName = subscriber.FirstName
 End If
 text = Regex.Replace(text, “<%\s*firstname\s*%>”,
firstName, _
 RegexOptions.IgnoreCase Or RegexOptions.Compiled)
 text = Regex.Replace(text, “<%\s*lastname\s*%>”, _
 subscriber.LastName, RegexOptions.IgnoreCase Or
RegexOptions.Compiled)
 End If
 Return text
 End Function

The worker methods in the NewlettersRepository are SendNewsletter and SendEMails. The
SendNewsletter function accepts a Newsletter object and uses it to create a background thread to
send a newsletter. First it creates a Writer Lock on the newsletter to initialize the the values used to
track the progress of the newsletter as it is e-mailed to its recipients. Calling the AquireWriterLock
method creates a lock where all attempts to read or write to the Newsletter’s shared members will be
blocked or this method will wait until other locks have been released. The writer lock is released by
calling the ReleaseWriterLock.

After initializing the shared members an array of parameters is created to hold the values that comprise
the newsletter, Subject, plainBody, HTMLBody and the current context of the request. These values are
passed as a generic object to the constructor of a ParameteriedThreadStart object; this makes these
values available to the SendEmails method once the thread is started.

Public Shared Function SendNewsletter(ByVal vNewsLetter As
Newsletter) As Integer

 If Not IsNothing(vNewsLetter) Then

 Newsletter.Lock.AcquireWriterLock(Timeout.Infinite)
 Newsletter.TotalMails = -1
 Newsletter.SentMails = 0
 Newsletter.IsSending = True
 Newsletter.Lock.ReleaseWriterLock()

 ‘ send the newsletters asyncronously
 Dim parameters() As Object = {vNewsLetter.Subject,
 vNewsLetter.PlainTextBody, vNewsLetter.HtmlBody, HttpContext.Current}
 Dim pts As New ParameterizedThreadStart(AddressOf
SendEmails)

87586c07.indd 38187586c07.indd 381 9/11/09 3:16:17 PM9/11/09 3:16:17 PM

382

Chapter 7: Newsletters

 Dim thread As New Thread(pts)
 thread.Name = “SendEmails”
 thread.Priority = ThreadPriority.BelowNormal
 thread.Start(parameters)

 End If

End Function

The SendEmails method performs the task of sending a copy of the newsletter to all the subscribers. It
takes the data passed from the SendNewsletter method and parses it to use in building the messages.
Before any e-mails are set the TotalMails value is set to an initial value of 0. The next step is to replace
any personalization values. Next a loop is performed to check every member’s profi le to see if they have
subscribed to receive newsletters; if so new SubscriberInfo object is created for the member and added
to a list of recipients. As recipients are added to the list, the TotalMails value is incremented.

Public Shared Sub SendEmails(ByVal data As Object)

 Dim parameters() As Object = CType(data, Object())
 Dim subject As String = CStr(parameters(0))
 Dim plainTextBody As String = CStr(parameters(1))
 Dim htmlBody As String = CStr(parameters(2))
 Dim context As HttpContext = CType(parameters(3), HttpContext)

 Newsletter.Lock.AcquireWriterLock(Timeout.Infinite)
 Newsletter.TotalMails = 0
 Newsletter.Lock.ReleaseWriterLock()

 ‘ check if the plain-text and HTML bodies have
personalization placeholders
 ‘ the will need to be replaced on a per-mail basis. If not,
the parsing will
 ‘ be completely avoided later.
 Dim plainTextIsPersonalized As Boolean =
HasPersonalizationPlaceholders(plainTextBody, False)
 Dim htmlIsPersonalized As Boolean =
HasPersonalizationPlaceholders(htmlBody, True)

The fi nal step is actually sending the e-mails. A new SMTPClient class is created. Then the list of sub-
scribers is looped through and an individual e-mail is created and sent to them. Instead of using the
from address defi ned in the system.net element of the web.confi g fi le, the from address defi ned in the
Newsletter custom confi guration section is used. The reason you might want the newsletters to origi-
nate from a different address than the overall site address is to give them a unique source, since it is a
dedicated purpose.

Each subscriber is checked to see what type of e-mail they have requested plain text or HTML and
assign the message’s body appropriately. If the subscriber wants HTML e-mails then the IsBodyHTML
property is set to true, otherwise it is false. Any personalization placeholders are also set. This informa-
tion is stored in the SubscriberInfo class, a helper class used here to hold the nessecary information
for each subscriber. The SubscriberInfo class has 5 public members; Username, Email, FirestName,
LastName and SubscriptionType and a single constructor that accepts and sets all these values.

87586c07.indd 38287586c07.indd 382 9/11/09 3:16:17 PM9/11/09 3:16:17 PM

383

Chapter 7: Newsletters

 ‘ retreive all subscribers to the plain-text and HTML
newsletter
 Dim subscribers As New List(Of SubscriberInfo)
 Dim profile As ProfileBase = CType(context.Profile,
ProfileBase)

 For Each user As MembershipUser In Membership.GetAllUsers
 Dim userProfile As ProfileBase =
Helpers.GetUserProfile(user.UserName, False)
 If Not Helpers.GetSubscriptionType(userProfile) <>
SubscriptionType.None Then
 Dim subscriber As New SubscriberInfo(user.UserName,
user.Email, _
 Helpers.GetProfileFirstName(userProfile), _
 Helpers.GetProfileLastName(userProfile),
 Helpers.GetSubscriptionType(userProfile))
 subscribers.Add(subscriber)
 Newsletter.Lock.AcquireWriterLock(Timeout.Infinite)
 Newsletter.TotalMails += 1
 Newsletter.Lock.ReleaseWriterLock()
 End If
 Next

Once all the MailMessage values have been set the message is sent using the synchronous Send member
of the SMTPClient. As each message is sent the SentEmails value is incremented. Once all the mes-
sages have been sent the isSending property is set to false, allowing any other newsletters to be sent.

 ‘ send the newsletter
 Dim smtpClient As New Net.Mail.SmtpClient

 For Each subscriber As SubscriberInfo In subscribers
 Dim mail As New MailMessage
 mail.From = New MailAddress(
Helpers.Settings.Newsletters.FromEmail, _
 Helpers.Settings.Newsletters.FromDisplayName)
 mail.To.Add(subscriber.Email)
 mail.Subject = subject
 If subscriber.SubscriptionType =
SubscriptionType.PlainText Then
 Dim body As String = plainTextBody
 If plainTextIsPersonalized Then
 body = ReplacePersonalizationPlaceholders(body,
subscriber, False)
 End If
 mail.Body = body
 mail.IsBodyHtml = False
 Else
 Dim body As String = htmlBody
 If htmlIsPersonalized Then
 body = ReplacePersonalizationPlaceholders(body,
subscriber, True)
 End If
 mail.Body = body
 mail.IsBodyHtml = True

87586c07.indd 38387586c07.indd 383 9/11/09 3:16:17 PM9/11/09 3:16:17 PM

384

Chapter 7: Newsletters

 End If
 Try
 smtpClient.Send(mail)
 Catch

 End Try

 Newsletter.Lock.AcquireWriterLock(Timeout.Infinite)
 Newsletter.SentMails += 1
 Newsletter.Lock.ReleaseWriterLock()

 Next

 Newsletter.Lock.AcquireWriterLock(Timeout.Infinite)
 Newsletter.IsSending = False
 Newsletter.Lock.ReleaseWriterLock()

 End Sub

Implementing the User Interface
In this last part of the “Solution” section you’ll implement the administration pages for sending out
a newsletter and checking its progress, as well as the end-user pages that display the list of archived
newsletters, and the content of a specifi c newsletter. Finally, there is the NewsletterBox user con-
trol that you will plug into the site’s master page, which creates a subscription box and a link to the
archive page.

The AddEditNewsletter.aspx Page
The AddEditNewsletter.asp page serves the same purpose as its sibling pages that allow administra-
tors to edit individual records. It does differ drastically because it also sends newsletters to subscribers
and provides real-time feedback on the progress of the process. One feature added to the newsletter is
the capability to save a newsletter without sending it, so it can be retrieved later.

First let’s review the layout of the page. It has two main panels, panSend and panWait. The fi rst panel
contains all the controls to edit a newsletter or view its contents after it has been sent. The panWait is
displayed if there is an active newsletter being sent and provides continual progress updates. The Page
Load event handler checks to see if a newsletter is being sent. If this is a request to edit an existing
newsletter the page shows the appropriate edit fi elds with the stored information ready to edit. If this is
a new newsletter request and one is currently being sent, the panWait panel is displayed and the prog-
ress of the current newsletter begins updating. Otherwise a clean page to create a new newsletter is
rendered.

Protected Sub Page_Load(ByVal sender As Object, ByVal e As
System.EventArgs) Handles Me.Load

 If Not Me.IsPostBack Then

 Dim isSending As Boolean = False
 Newsletter.Lock.AcquireReaderLock(Timeout.Infinite)
 isSending = Newsletter.IsSending
 Newsletter.Lock.ReleaseReaderLock()

87586c07.indd 38487586c07.indd 384 9/11/09 3:16:17 PM9/11/09 3:16:17 PM

385

Chapter 7: Newsletters

 If NewsLetterId > 0 Then
 BindNewsletter()
 ElseIf isSending Then
 ShowSending()
 Else
 ClearInfo()
 End If

 End If
 txtHtmlBody.BasePath = Me.BaseUrl + “FCKeditor/“
End Sub

The panSend contains a set of parallel controls to receive the newsletter subject, plain body and HTML
body (see Figure 7-3). For each input control there is also a Literal control to display the values once
the newsletter has been sent. The HTML body is created using the FCKeditor. This panel also contains
two buttons, one to save and submit and the other to just save the newsletter.

Figure 7-3

 <asp:Panel runat=”server” ID=”panSend”>
 <asp:Literal runat=”server” ID=
“ltlAddInstruction”></asp:Literal>
 Fill the fields below with the newsletter’s subject,
the body in plain-text and
 HTML format. Only the plain-text body is compulsory.

87586c07.indd 38587586c07.indd 385 9/11/09 3:16:18 PM9/11/09 3:16:18 PM

386

Chapter 7: Newsletters

If you don’t specify the HTML
 version, the plain-text body will be used for HTML
subscriptions as well.
 <asp:Literal runat=”server” ID=”ltlDateSent”></asp:Literal>

 <small>
 <asp:Literal runat=”server” ID=”lblTitle”
Text=”Subject:” /></small>

 <asp:Literal ID=”ltlSubject” runat=”server”></asp:Literal>
 <asp:TextBox ID=”txtSubject” runat=”server”
MaxLength=”256” Width=”90%“></asp:TextBox>
 <asp:RequiredFieldValidator ID=”valRequireSubject”
runat=”server” ControlToValidate=”txtSubject”
 Display=”Dynamic” ErrorMessage=”RequiredFieldValidator”
 SetFocusOnError=”True”
 ValidationGroup=”Newsletter”>The Subject field
is required.</asp:RequiredFieldValidator>

 <small>
 <asp:Literal runat=”server” ID=”lblPlainTextBody”
Text=”Plain-text Body:” /></small>

 <asp:Literal ID=”ltlPlainTextBody”
runat=”server”></asp:Literal>
 <asp:TextBox ID=”txtPlainTextBody” runat=”server”
Rows=”14” TextMode=”MultiLine”
 Width=”90%“></asp:TextBox>
 <asp:RequiredFieldValidator ID=”valRequirePlainTextBody”
runat=”server” ControlToValidate=”txtPlainTextBody”
 Display=”Dynamic” ErrorMessage=”RequiredFieldValidator”
 SetFocusOnError=”True”
 ValidationGroup=”Newsletter”>The plain-text body
is required.</asp:RequiredFieldValidator>

 <small>
 <asp:Literal runat=”server” ID=”lblHtmlBody”
Text=”HTML Body:” /></small>

 <asp:Literal ID=”ltlHtmlBody” runat=”server”></asp:Literal>
 <FCKeditorV2:FCKeditor ID=”txtHtmlBody” runat=”server”
Height=”400px” ToolbarSet=”TheBeerHouse”>
 </FCKeditorV2:FCKeditor>

 <asp:Button ID=”btnSave” runat=”server” Text=”Save”/>
 <asp:Button ID=”btnSend” runat=”server” Text=”Send”
OnClientClick=”if (confirm(‘Are you sure you want to send the
newsletter?’) == false) return false;”
 ValidationGroup=”Newsletter” />
 </asp:Panel>

Note that there are RequiredFieldValidators for the subject and plain body TextBoxes force input in
each of these fi elds before a newsletter can be saved or sent. If there is no HTML body specifi ed, the

87586c07.indd 38687586c07.indd 386 9/11/09 3:16:18 PM9/11/09 3:16:18 PM

387

Chapter 7: Newsletters

plain text version will be used for the HTML versions. The send button also has JavaScript to display a
confi rmation dialog to ask the user to confi rm they want to send the newsletter. This saves the user
from accidentally sending a newsletter instead of just saving it. This can be a real-life issue that can lead
to some real problems if a draft is accidentally sent to subscribers. While the confi rmation dialog is not
fool-proof, it does provide a small layer of protection against this issue.

Figure 7-4 shows how the page is rendered for a newsletter that has been saved. The TextBox and
FCKEditor are replaced with Literal controls and the plain and HTML versions of the newsletter are
displayed with a yellow background.

Figure 7-4

The panWait contains a series of DIV elements that will be used to display a progress bar as each of the
e-mails is sent and the SentMails value is incremented. The dProgress DIV will have a text value that
is set via JavaScript as it checks the progress of the newsletter. The progess bar is incremented by an
AJAX driven script that periodically checks the progress of the newsletter and changes the style of the
progressbar DIV element.

 <asp:Panel ID=”panWait” runat=”server” Visible=”false”>
 <p>
 Another newsletter is currently being sent.
Please wait until it completes before
 compiling and sending a new one.</p>
 <div>
 <div id=”dIsSending”>

87586c07.indd 38787586c07.indd 387 9/11/09 3:16:18 PM9/11/09 3:16:18 PM

388

Chapter 7: Newsletters

 Checking to see if sending a NewsLetter....
 </div>
 <div id=”dProgress”>
 </div>

 <div class=”progressbarcontainer”>
 <div class=”progressbar” id=”progressbar”>
 </div>
 </div>
 </div>
 </asp:Panel>

Just like we examined with article comments, we can use AJAX to call a web service to monitor the
progress of the newsletter and update the progressbar and dProgress DIV. The NewsletterService.
asmx has one member, GetNewsletterStatus which returns a NewsletterStatus object with updated
values using JSON. JSON stands for JavaScript Object Notation and is a lightweight data interchange
format often used with AJAX to perform communication with the server. Traditionally web services trans-
mit data using large XML data structures; JSON on the other hand uses a simple delineation schema
to transmit data between a client and the server. It is defi ned in RFC 4627, www.ietf.org/mail-archive/
web/ietf-announce/current/msg02778.html. You can also learn more about JSON at www.json.org.
ASP.NET AJAX and .NET web services automatically serialize and deserialize objects using JSON when
exchanging data between a client and the server.

<WebMethod()> _
<ScriptMethod()> _
Public Function GetNewsLetterStatus() As NewsletterStatus

 Dim lNewsletterStatus As New NewsletterStatus

 Newsletter.Lock.AcquireReaderLock(Timeout.Infinite)

 lNewsletterStatus.SentMails = Newsletter.SentMails
 lNewsletterStatus.TotalMails = Newsletter.TotalMails
 lNewsletterStatus.IsSending = Newsletter.IsSending

 Newsletter.Lock.ReleaseReaderLock()

 Return lNewsletterStatus

End Function

The Newsletter module also has its own JavaScript fi le, “~/scripts/Newsletter.js” that calls the
GetNewsletterStatus method and updates the page. The function UpdateStatus calls the web ser-
vices and assings the GetNewsletterStatus callback method to be used when the call to the web
service completes.

function UpdateStatus() {
 NewsLetterService.GetNewsLetterStatus(GetNewsLetterStatusCompleted);
}

87586c07.indd 38887586c07.indd 388 9/11/09 3:16:18 PM9/11/09 3:16:18 PM

389

Chapter 7: Newsletters

The GetNewsletterStatusCompleted function accepts the result, which is actually a NewsletterStatus
object. The NewsletterStatus is another helper class used explicitly to send status information from the
server through the web service to the page via AJAX. It is a class that contains 4 properties to report the
number of e-mails, total sent, percentage sent and if a newsletter is being sent currently.

Public Class NewsletterStatus

 Private _isSending As Boolean = False
 Public Property IsSending() As Boolean
 Get
 Return _isSending
 End Get
 Set(ByVal value As Boolean)
 _isSending = value
 End Set
 End Property

 Public ReadOnly Property PercentageCompleted() As Double
 Get
 If TotalMails = 0 Then
 Return 0D
 End If
 Return CDbl(SentMails) * 100 / CDbl(TotalMails)
 End Get
 End Property

 Private _totalMails As Integer = -1
 Public Property TotalMails() As Integer
 Get
 Return _totalMails
 End Get
 Set(ByVal value As Integer)
 _totalMails = value
 End Set
 End Property

 Private _sentMails As Integer = 0
 Public Property SentMails() As Integer
 Get
 Return _sentMails
 End Get
 Set(ByVal value As Integer)
 _sentMails = value
 End Set
 End Property

End Class

The function takes these values and sets the width in perecent of the progressbar DIV and the text of
the dIsSending DIV to verbally indicate the progress of the newsletter. Finally, as long as a newsletter
is being sent the function sets a timer to call the UpdateStatus function in 5 seconds. This time can

87586c07.indd 38987586c07.indd 389 9/11/09 3:16:18 PM9/11/09 3:16:18 PM

390

Chapter 7: Newsletters

be adjusted to be faster or slower depending on the actual situation. For newsletters with fewer sub-
scribers maybe a 1 second interval would be more desirable since it will not take long for the process
to execute.

function GetNewsLetterStatusCompleted(result) {

 var lNewsletterStatus = result;

 var percentage = lNewsletterStatus.PercentageCompleted;
 var sentMails = lNewsletterStatus.SentMails;
 var totalMails = lNewsletterStatus.TotalMails;
 var isSending = lNewsletterStatus.IsSending;

 if (totalMails < 0)
 totalMails = ‘???’;

 var dIsSending = $get(‘dIsSending’);
 var progBar = $get(‘progressbar’);

 progBar.style.width = percentage + ‘%‘;
 dIsSending.innerHTML = ‘’ + percentage + ‘% Complete: ‘
 ‘
’ + sentMails + ‘ out of ‘ + totalMails + ‘
emails have been sent.’;

 if (isSending) {
 dIsSending.innerHTML = dIsSending.innerHTML + ‘
Currently
sending a NewsLetter....’;
 setTimeout(UpdateStatus, 5000);
 } else {
 dIsSending.innerHTML = dIsSending.innerHTML + ‘

Not sending a NewsLetter....’;
 }

}

Using a tool like Fiddler, www.fiddlertools.com, you can examine the data travelling between the
browser and the server. Below is the JSON returned from the server in response to a status update
request. There is no data passed from the client in this case because the GetNewsletterStatus accepts
no parameters.

{“d”:{“__type”:”TheBeerHouse.NewsletterStatus”,”IsSending”:true,
“PercentageCompleted”:20,”TotalMails”:20,”SentMails”:4}}

As the progress bar is expanded, beer mugs are displayed (see Figure 7-5). I thought this would be
more fun than a solid bar! The corresponding style defi nes a background image of a beer mug that is
32x32 pixels. It is also set to repeat in the x or horizontal direction.

Figure 7-5

87586c07.indd 39087586c07.indd 390 9/11/09 3:16:18 PM9/11/09 3:16:18 PM

391

Chapter 7: Newsletters

As the width of the DIV is expanded by the JavaScript, more and more beer mugs are displayed. For
this layout the width of the progress bar container DIV is defi ned as 544 pixels, exactly the width of 17
beer mugs. This way there are no partial mugs displayed when the newsletter fi nishes, as this would
lead to confusion for many end users. This technique can be employed in just about any progress bar
scenario to provide a much richer effect than a plain colored bar or even a traditional gradient bar.

#progressbar
{
 width: 0px;
 height: 32px;
 background-repeat: repeat-x;
 background: url(images/glass1_small.jpg);
}

As I mentioned earlier the AddEditNewsletter page not only saves and sends a newsletter, but can
also just store a draft of a newsletter to be edited and sent at a later time. The difference is setting the
newsletter’s DateSent value when the newsletter is actually sent. When the newsletter is loaded this
value is checked, if it is null then the TextBoxes are displayed, if there is a value, then the literals are
displayed. The click event handlers both call the SaveNewsletter method and pass either a true or
false to indicate if the newsletter should be sent after it is saved to the database. If the newsletter is to be
sent and another newsletter is already being sent, then the wait panel will be displayed, but any changes
to the newsletter are committed to the database. If the newsletter can be sent, then it is stored and the
send process begins.

Private Sub SaveNewsletter(ByVal bSendNow As Boolean)

 Dim isSending As Boolean = False

 If bSendNow Then

 Newsletter.Lock.AcquireReaderLock(Timeout.Infinite)
 isSending = Newsletter.IsSending
 Newsletter.Lock.ReleaseReaderLock()

 If isSending Then
 bSendNow = False

 panWait.Visible = True
 panSend.Visible = False

 End If
 End If

 Using lNewsletterrpt As New NewslettersRepository

 Dim lNewsletter As Newsletter = lNewsletterrpt.AddNewsletter(
NewsLetterId, txtSubject.Text, _
txtPlainTextBody.Text, txtHtmlBody.Value, bSendNow)

 If bSendNow And Not isSending Then
 panWait.Visible = True
 panSend.Visible = False

 NewslettersRepository.SendNewsletter(lNewsletter)

87586c07.indd 39187586c07.indd 391 9/11/09 3:16:18 PM9/11/09 3:16:18 PM

392

Chapter 7: Newsletters

 ShowSending()

 End If

 End Using

End Sub

The ArchivedNewsletters.aspx Page
The ArchivedNewsletters page displays a list of previously sent newsletters. The list displays the
newsletter’s subject and the date it was sent. The subject is linked to the ShowNewsletterpage, passing
the NewsletterId. The list is bound to a List(of Newsletter) retrieved from an overloaded version
of the repository’s GetNewsletters method that accepts a cutoff date. This feature allows old newsletters
to gracefully degrade from the list as time passes. Of course any date could be used to ensure the list
include a reference to every newsletter sent.

Public Function GetNewsletters(ByVal vToDate As DateTime)
As List(Of Newsletter)
 Return (From lNewsletter In Newsletterctx.Newsletters _
 Where lNewsletter.DateSent < vToDate Order By
lNewsletter.DateSent Descending).ToList()
End Function

If viewing archived newsletters has been designated as a members-only activity, an unauthenticated
user is redirected to the site’s login page. This check is done in the Page Load event and not as a security
setting in the site’s web.config. Anonymous accesses to archived newsletters is an optional setting and
by making it a module specifi c setting you make administration a little easier.

Protected Sub Page_Load(ByVal sender As Object,
ByVal e As System.EventArgs) Handles Me.Load

 ‘ check whether this page can be accessed by anonymous
users. If not, and if the
 ‘ current user is not authenticated, redirect to the login page
 If Not Me.User.Identity.IsAuthenticated AndAlso Not
Helpers.Settings.Newsletters.ArchiveIsPublic Then
 Me.RequestLogin()
 End If

 If Not IsPostBack Then
 BindArchivedNewsLetters()
 End If

End Sub

The ShowNewsletter.aspx page incorporates the same security check before it binds the value of the
newsletter content to the page.

87586c07.indd 39287586c07.indd 392 9/11/09 3:16:18 PM9/11/09 3:16:18 PM

393

Chapter 7: Newsletters

The NewsletterBox User Control
The NewsletterBox user control (~/controls/newsletterbox.ascx) displays targeted content depend-
ing on the user’s authentication status. If the user is logged into the site the LoggedInTemplate is
displayed, showing instructions on how to change their subscription status. It also has a link to the
ArchivedNewsletter page. If the user is not authenticated a simple registration fi eld is displayed tell-
ing the user they can register for newsletters by supplying their e-mail address. Once the user submits
their e-mail address they will be asked to create their account using the Register.aspx page. Because the
LoginView automatically displays the correct template based on user authentication, there is no need to
write any code.

<div class=”SideBarbox”>
 <div class=”SideBarTitle”>
 <asp:Image ID=”imgArrow” runat=”server” ImageUrl=”~
/images/arrowr.gif” Style=”float: left;
 margin-left: 3px; margin-right: 3px;”
GenerateEmptyAlternateText=”True” meta:resourcekey=
“imgArrowResource1” />
 Newsletter
 </div>
 <div class=”SideBarContent”>
 <asp:LoginView ID=”LoginView1” runat=”server”>
 <AnonymousTemplate>
 <asp:Localize runat=”server” ID=”locSubscribe1”
meta:resourcekey=”locSubscribe1Resource1”
 Text=”
 Register to the site for free, and
subscribe to the newsletter. Every month you will receive new
 articles and special content not available elsewhere on
the site, right into your e-mail box!
 “></asp:Localize>

 <input id=”NewsletterEmail” style=”width: 140px”
type=”text” value=”E-mail here”
 onfocus=”javascript:this.value = ‘’;” />
 <input type=”button” value=”OK”
onclick=”javascript:SubscribeToNewsletter();” />
 </AnonymousTemplate>
 <LoggedInTemplate>
 <asp:Localize runat=”server” ID=”locSubscribe2”
meta:resourcekey=”locSubscribe2Resource1”
 Text=”
 You can change your subscription type (plain-text, HTML or
no newsletter) from your”></asp:Localize>
 <asp:HyperLink runat=”server” ID=”lnkProfile”
NavigateUrl=”~/EditProfile.aspx” Text=”profile”
 meta:resourcekey=”lnkProfileResource1” />
 <asp:Localize runat=”server” ID=”locSubscribe3”
 meta:resourcekey=”locSubscribe3Resource1”

87586c07.indd 39387586c07.indd 393 9/11/09 3:16:18 PM9/11/09 3:16:18 PM

394

Chapter 7: Newsletters

 Text=”page. Click the link below to read
the newsletters run in the past.”></asp:Localize>
 </LoggedInTemplate>
 </asp:LoginView>

 <asp:HyperLink runat=”server” ID=”lnkArchive”
NavigateUrl=”~/ArchivedNewsletters.aspx”
 Text=”Archived Newsletters” meta:resourcekey=
“lnkArchiveResource1” /> </div>
</div>

Figure 7-6 shows content this code renders based on the user’s subscription status.

Figure 7-6

Summary
In this chapter you’ve implemented a complete module for sending out newsletters to members who
registered to receive them, either at initial registration time or later. The module sends out the e-mails
from a background thread instead of the main thread used to process the page request, so that you
don’t risk page timeouts, and, above all, so that you don’t leave the editor with a blank page that may
last several minutes or more. To provide some feedback to the editor about the newsletter being sent,
the AddEditNewsletter page uses AJAX to call a web service that updates a progress bar and shows the
updated status information every couple of seconds. Finally, end users can look at past newsletters
listed in an archive page.

To implement all this, you’ve used advanced features such as multi-threaded programming, script call-
backs, and the SmtpClient and MailMessage classes to compose and send e-mail messages. However,
although this module works fi ne, there’s always room for enhancements. Here are some suggestions for
improvements you may wish to make:

Add the capability to send attachments with the newsletters. This can be very useful if you want ❑

to send HTML newsletters with images. Currently, you can only send e-mails with images, by
referencing the full URL of the images on your server.

Add support for setting the priority of the newsletter e-mails. ❑

Add the capability to have different mailing lists, for different topics, such as Parties, New Articles, ❑

or New Products in your store. This would require having more profi le properties, and an
expanded SendNewsletter page, so that you can choose the target mailing list.

87586c07.indd 39487586c07.indd 394 9/11/09 3:16:18 PM9/11/09 3:16:18 PM

395

Chapter 7: Newsletters

The personalization placeholder’s list may be further expanded — to include placeholders for the ❑

subscriber’s location, for example. You may also build a parser that manages custom tags defi ned
into the newsletter’s body, and includes or excludes their content according to the user’s pro-
fi le. For example, the content of a section <profileProperty language=”Italian”>...
</profileProperty> could be included only in the newsletters for subscribers who choose
Italian for the Language property in their profi le. Or <profileProperty state=”NY”>...
</profileProperty> could be used to include content only for subscribers living in New York
state. This mechanism would not be diffi cult to implement, and it would allow editors to create
very targeted newsletters, something that is especially important for commercial and marketing
purposes.

When the messages are sent out, you won’t get an error or exception if the e-mail doesn’t reach ❑

its destination because the e-mail address isn’t valid. The SMTP server does its work without
letting you know about the results. However, messages sent to non-existent addresses usually
come back to the sender with an error message saying that the message couldn’t be successfully
delivered because the address does not exist. These error messages are sent to the server’s post
master and then forwarded to the site’s administrator. At this point, when you get such a message,
you can manually set that account’s Newsletter profi le property to none. However, a much
better and automated approach would be to write a program (probably as a Windows service)
that parses the incoming messages to fi nd the error messages, automatically performing the
unsubscribe operation.

Create a newsletter queing system to allow administrators to create newsletters and designate a ❑

specifi c time to have the e-mails sent.

Expand the user interface of the entire site to add a newsletter status visual on each page so the ❑

newsletter administrators can keep track of the progress without being tied to the newsletter’s
administrative page.

In the last few chapters we’ve developed modules to strengthen the site-to-user communications, such
as the polls module and this newsletter manager. In the next chapter you’re going to implement a
module to manage forums, which is an important form of user-to-user communication.

87586c07.indd 39587586c07.indd 395 9/11/09 3:16:18 PM9/11/09 3:16:18 PM

87586c07.indd 39687586c07.indd 396 9/11/09 3:16:18 PM9/11/09 3:16:18 PM

Forums

Internet users like to feel part of a community of people with similar interests. A successful site
should build a community of loyal visitors, providing a place where they can discuss their favorite
subjects, ask questions, and reply to others. Community members return often to talk to other people
with whom they’ve already shared messages, or to fi nd comments and opinions about their interests.
This chapter outlines some of the advantages of building such a virtual community, its goals, and
the design and implementation of a new module for setting up and managing discussion boards.

Problem
User-to-user communication is important in many types of sites. For example, in a content site for
pub enthusiasts, visitors to the site may want advice about the best way to brew their own beer,
suggestions for good pubs in their area, to share comments on the last event they attended, and so
on. Having contact with their peers is important so that they can ask questions and share their
own knowledge. E-commerce sites have an added benefi t of enabling users to review products
online. Two ways to provide user-to-user communication are opinion polls and discussion boards.
We’ve already looked at opinion polls in Chapter 6, and in this chapter we’ll look at discussion
boards, also known as forums. Visitors can browse the various messages in the forums, post their
questions and topics, reply to other people’s questions, and share ideas and tips. Forums act as a
source of content, and provide an opportunity for users to participate and contribute. One reason
why forums are especially attractive from a manager’s perspective is that they require very little
time and effort from employees because end users provide most of the content. However, a few
minutes a day should be spent to ensure that nobody has posted any offensive messages, and that
any problems that may be mentioned in a message receive some attention (maybe problems with
the site or questions about products, locations, etc.).

As for TheBeerHouse site, we will offer discussion boards about brewing beers, pubs, concerts
and parties, and more. These will be separate forums, used to group and categorize the threads
by topic, so that it’s easier for visitors to read what they are interested in. Early web forum sys-
tems often threw up long lists of messages on a single page, which took ages to load. This can be

87586c08.indd 39787586c08.indd 397 9/11/09 3:20:54 PM9/11/09 3:20:54 PM

398

Chapter 8: Forums

avoided by displaying lists in pages, with each page containing a particular number of messages. The
website already has a way to identify users, and the forums will need to be integrated with that member-
ship system. Besides being identifi ed by username in the forum module, users may like something
“catchy” in order to be recognized by the community: something such as an avatar image (a small picture
that represents the user on their messages) and a signature line. This information will be added to every
post and will help readers quickly identify the post’s author. Of course, as with any other module you’ve
developed so far, the site’s administrators and editors must be able to add, remove, or edit forums, topics,
and replies.

Design
Before looking at the design, let’s consider a more accurate list of features to be implemented:

Support for multiple categories, or subforums, that are more or less specifi c to a single topic/ ❑

argument. Subforums are identifi ed by name and description, and optionally by an image.

Forums must support moderation. When a forum is moderated (this is a forum-level option), all ❑

messages posted by anyone except power users (administrators, editors, and moderators) are
not immediately visible on the forum but must be approved by a member of one of the power
user roles fi rst. This is a useful option to ensure that posts are pertinent, not offensive, and com-
ply with the forum’s policy. However, this also places a bigger burden on the power users
because posts have to be approved often (at least several times a day, even on weekends), or
users will lose interest. Because of the timeliness needed for moderation, most forums are not
moderated, but they are checked at least once a day to ensure that their policies have not been
violated (with no particular need to check on weekends).

The list of threads for a subforum, and the list of posts for a thread, must be paginable. In addi- ❑

tion, the list of threads must be sortable by the last posting date, or the number of replies or views,
in ascending or descending order. Sort options are very helpful if there are a lot of messages.

Posting is only permitted by registered members, whereas browsing is allowed by everybody. ❑

An extension of the forum implemented in this chapter may include more options to specify that
browsing also requires login or that posting is allowed by anonymous users.

Users will be able to format their messages with a limited, and safe, set of HTML tags. This will ❑

be done by means of the FCKeditor control already used in Chapter 5, with a reduced toolbar.

While creating a new thread, a user must be able to immediately close the thread so that other ❑

users cannot reply. If replies are allowed, they can later be disabled (and thus the thread closed)
only by administrators, editors, and moderators.

Users can modify their own posts anytime, but the operation must be logged in the message ❑

itself (a simple note in the message saying that it was edited will avoid confusion if another user
remembers seeing something in a message but the next time they look it’s gone).

Users can have an avatar image associated with their account, which is displayed on every post ❑

they make. This helps them create a virtual, digital identity among other users of the forum. Users
can also defi ne a signature to be automatically added at the end of each post, so that it doesn’t need
to be copied and pasted every time. Signatures often include a special greeting, motto, old saying,
or any other quote taken from a movie, taken from a famous person, or coined by the member her-
self. Sometimes it will contain a URL of that person’s own site — this is normally OK, but you
probably don’t want any kind of advertising in this manner (e.g., www.BuyMyProduct.com).

87586c08.indd 39887586c08.indd 398 9/11/09 3:20:54 PM9/11/09 3:20:54 PM

399

Chapter 8: Forums

The messages posted by users are counted, and the count is displayed, together with the user’s ❑

avatar, on each of the user’s messages. This count is a form of recognition, and it lets other users
know that this person might be more knowledgeable, or at least that they’ve hung around in the
forums a lot (it tends to lend them more credibility). In addition, the forum system supports
three special user levels; these are descriptions tied to the number of posts each user has made.
The number of posts needed to advance to the next level can be confi gured, just like the
descriptions.

Full support for RSS 2.0 feeds should allow users to track new messages in an RSS aggregator ❑

program (such as the free SharpReader or RSS Bandit). There will be a fl exible syndication
system that provides distinct feeds to specifi c subforums, or all forums, and it will sort posts
in different ways. This enables users to get a feed with the 10 newest threads posted into any
forum, or with the 10 most popular threads (if sorted by number of replies). The feeds will be
consumed by the generic RSS Reader control already developed in Chapter 5.

Administrators, editors, and moderators can edit and delete any post. Additionally, they can ❑

move an entire thread to a different forum, which is helpful for ensuring that all threads are
published in the appropriate place.

Remember that you need some kind of policy statement somewhere in the forum
pages that tells users what the rules are. This is usually needed for legal reasons in
case a nasty, hateful, or untruthful message is posted and not caught quickly — just
some kind of disclaimer to protect the site owners/administrators from lawsuits.

Designing the Database Tables
Since the last version of the book only one modifi cation has been made to the Forum tables: a Sticky fi eld
was added to the tbh_Post table. This was added to allow administrators to make a post stick to the top
of the list on the fi rst page of the forum. The Active, DateUpdated, and UpdatedBy fi elds were also
added. Figure 8-1 represents the tables as shown by the Database Diagram Editor window of VS 2008’s
Server Explorer tool (which is similar to what Enterprise Manager would show in SQL Server 2005).

Figure 8-1

87586c08.indd 39987586c08.indd 399 9/11/09 3:20:54 PM9/11/09 3:20:54 PM

400

Chapter 8: Forums

The tbh_Forums table is similar to the tbh_Categories table used in Chapter 5 for the articles module,
with the addition of the Moderated column, which indicates whether the messages posted by normal
users must be approved before they become visible in the forums’ pages. The tbh_Posts table contains
the following columns (the usual AddedDate and AddedBy fi elds aren’t shown here):

PostID: ❑ The primary key.

AddedByIP: ❑ The IP of the user who authored the message — used for auditing purposes.
Remember that you may become partially responsible for what users write (this also depends
on the laws of your country). You should try to log information about the user who posted a
message (such as the date/time and IP address), so you can provide this to legal authorities in
the unlikely event that it might be needed.

ForumID: ❑ The foreign key to a parent forum.

ParentPostID: ❑ An integer referencing another record in the same table, which is the fi rst mes-
sage of a thread. When this fi eld contains 0, it means that the post has no parent post; therefore,
this is a thread post. Otherwise, this is a reply to an existing thread.

Title: ❑ The title of the post. Reply posts also have a title; it will usually be “Re: {thread title
here}”, but it’s not absolutely necessary and the user will be free to change it while posting a
new reply.

Body: ❑ The body of the post, in HTML format (only limited HTML tags are allowed).

Approved: ❑ A Boolean value indicating whether the post has been approved by a power user
(administrators, editors, and moderators), and visible on the end-user pages. If the parent forum
is not moderated, this fi eld is automatically set to 1 when the post is created.

Sticky: ❑ This fi eld is only used for thread posts, and is a Boolean value indicating whether the
thread is to always be listed at the top of the thread list for the forum. Administrators will have
the ability to turn this feature on an off.

Closed: ❑ This fi eld is only used for thread posts and is a Boolean value indicating whether the
thread is closed and no more replies can be added. The user will be able to specify this option only
while creating the thread. Once a thread has been created, only power users can close the thread.

ViewCount: ❑ An integer indicating the number of times a thread has been read. If the record
represents a reply, this fi eld will contain 0.

ReplyCount: ❑ The number of replies for the thread post. If the record represents a reply, this
fi eld will contain 0.

LastPostBy: ❑ The name of the member who submitted the last post to this thread. As long as
there are no replies, the fi eld contains the name of the member who created the thread, which is
also the name stored in the record’s AddedBy fi eld.

LastPostDate: ❑ The date and time of the last post to this thread. As long as there are no replies,
the fi eld contains the date and time when the thread was created, which is also the value stored
in the record’s AddedDate fi eld.

In the case of ParentPostID, the replies will always link to the fi rst post of the thread, not to another
reply. Therefore, the proposed structure does not support threaded discussions, such as those in
Internet newsgroups. Instead, posts of nonthreaded discussions will be shown to the reader, sorted by
creation date, from the oldest to the newest, so that they are read in chronological order. Both of these
two types of forum systems, threaded or not, have their pros and cons. Threaded discussions make it

87586c08.indd 40087586c08.indd 400 9/11/09 3:20:54 PM9/11/09 3:20:54 PM

401

Chapter 8: Forums

easier to follow replies to previous posts, but nonthreaded discussions make it easier to follow the dis-
cussion with the correct temporal order (time-sequenced). To make it easier for the reader to follow the
discussion, nonthreaded discussions usually allow users to quote a previous reply, even if the refer-
enced reply is a number of posts prior to that one. In my research, nonthreaded discussions are more
widely used, and easier to develop, so we’ll use them for our sample site. If you want to modify the
forum system to support threaded discussions, you’ll be able to do that without modifying the DB; you
just need to set the post’s ParentPostID to the appropriate value.

Designing the Confi guration Module
The confi guration settings of the forums module are defi ned in a <forums> element within the
<theBeerHouse> section of the web.config fi le. The class that maps the settings and exposes them
is ForumsElement, which defi nes the properties in the following table.

Property Description

ProviderType The full name (namespace plus class name) of the concrete provider
class that implements the data access code for a specifi c data store.

ConnectionStringName The name of the entry in web.config’s new <connectionStrings>
section containing the connection string for this module’s database.

EnableCaching A Boolean value indicating whether caching is enabled.

CacheDuration The number of seconds for which the data is cached if there aren’t
any inserts, deletes, or updates that invalidate the cache.

ThreadsPageSize The number of threads listed per page when browsing the threads
of a subforum.

PostsPageSize The number of posts listed per page when reading a thread.

RssItems The number of threads included in the RSS feeds.

HotThreadPosts The number of posts that make a thread hot. Hot threads will be
rendered with a special icon to be distinguished from the others.

BronzePosterPosts The number of posts that the user must reach to earn the status
description defi ned by BronzePosterDescription.

BronzePosterDescription The title that the user earns after reaching the number of posts
defi ned by BronzePosterPosts.

SilverPosterPosts The number of posts that the user must reach to earn the status
description defi ned by SilverPosterDescription.

SilverPosterDescription The title that the user earns after reaching the number of posts
defi ned by SilverPosterPosts.

GoldPosterPosts The number of posts that the user must reach to earn the status
description defi ned by GoldPosterDescription.

GoldPosterDescription The title that the user earns after reaching the number of posts
defi ned by GoldPosterPosts.

87586c08.indd 40187586c08.indd 401 9/11/09 3:20:54 PM9/11/09 3:20:54 PM

402

Chapter 8: Forums

Designing the Business Layer
The design of the core business layer follows the same rules as the previous modules, a set of entity
model classes extended through the partial class functionality and a set of corresponding repository
classes. Figure 8-2 is a class diagram of the Forum module Business classes.

Figure 8-2

Designing the User Interface Services
The last thing we need to defi ne are the UI pages and user controls that enable the user to browse
forums and threads, post new messages, and administer the forum’s content. Following is a list of the
user interface pieces that you’ll develop shortly in the “Solution” section:

~/Admin/ManageForums.aspx: ❑ Lists forums and allows deletes.

~/Admin/AddEditForums.aspx: ❑ Adds, updates, and deletes a designated forum.

87586c08.indd 40287586c08.indd 402 9/11/09 3:20:54 PM9/11/09 3:20:54 PM

403

Chapter 8: Forums

~/Admin/ManageUnapprovedPosts.aspx: ❑ Lists all unapproved posts (fi rst thread posts and
then replies, all sorted from the oldest to the newest), shows the entire content of a selected
post, and approves or deletes it.

~/Admin/MoveThread.aspx: ❑ Moves a thread (i.e., the thread post and all its replies) to another
forum.

~/ShowForums.aspx: ❑ Shows the list of all subforums, with their title, description, and image.
Clicking on the forum’s title will bring the user to another page showing the list of threads for
that forum. For each forum, this also provides a link to its RSS feed, which returns the last “n”
threads of that forum (where “n” is specifi ed in web.config).

~/BrowseThreads.aspx: ❑ Browses a forum’s threads, page by page. The grid that lists the threads
shows the thread’s title, the number of times it was read, the number of replies, the author of
the last post, and when the last post was created. Power users also see special links to delete,
close, or move the thread. The results can be sorted by date, reply count, or view count.

~/ShowThread.aspx: ❑ Shows all posts of a thread, in a paginated grid. For each post, it shows
the title, body, author’s signature, submission date and time, author’s name, avatar image, and
status description. Power users also see links to delete or edit any post, and a link to close the
thread to stop replies. Normal members only see links to edit their own posts.

~/AddEditPost.aspx: ❑ Creates a new thread, posts a new reply, or edits an existing message,
according to the parameters on the querystring.

~/Forum.rss: ❑ Returns an RSS feed of the forum’s content. According to the querystring param-
eters, it can return the feed for a specifi c subforum or include threads from any subforum, and
supports various sorting options. This can retrieve a feed for the sitewide threads (if sorting by
date) or for the most active threads (if sorting by reply count).

~/Controls/UserProfi le.ascx: ❑ This control already exists, as it was developed in Chapter 4 while
implementing the membership and profi ling system. However, you must extend it here to sup-
port the Avatar image and Signature profi le properties.

Solution
In this section, we’ll cover the implementation of key parts of this module, as described in the “Design”
section. But you won’t fi nd complete source code printed here, as many similar classes were discussed
in other chapters. See the code download to get the complete source code.

Implementing the Database
The most interesting stored procedure is tbh_Forums_InsertPost. This inserts a new record into the
tbh_Posts table, and if the new post being inserted is approved it must also update the ReplyCount,
LastPostBy, and LastPostDate fi elds of this post’s parent post. Because there are multiple statements
in this stored procedure, a transaction is used to ensure that they are both either committed successfully
or rolled back:

ALTER PROCEDURE dbo.tbh_Forums_InsertPost
(
 @AddedDate datetime,
 @AddedBy nvarchar(256),

87586c08.indd 40387586c08.indd 403 9/11/09 3:20:54 PM9/11/09 3:20:54 PM

404

Chapter 8: Forums

 @AddedByIP nchar(15),
 @ForumID int,
 @ParentPostID int,
 @Title nvarchar(256),
 @Body ntext,
 @Approved bit,
 @Closed bit,
 @PostID int OUTPUT
)
AS
SET NOCOUNT ON

BEGIN TRANSACTION InsertPost

INSERT INTO tbh_Posts
 (AddedDate, AddedBy, AddedByIP, ForumID, ParentPostID, Title, Body, Approved,
 Closed, LastPostDate, LastPostBy)
 VALUES (@AddedDate, @AddedBy, @AddedByIP, @ForumID, @ParentPostID, @Title,
 @Body, @Approved, @Closed, @AddedDate, @AddedBy)

SET @PostID = scope_identity()

-- if the post is approved, update the parent post’s
-- ReplyCount and LastReplyDate fields
IF @Approved = 1 AND @ParentPostID > 0
 BEGIN
 UPDATE tbh_Posts SET ReplyCount = ReplyCount + 1, LastPostDate = @AddedDate,
 LastPostBy = @AddedBy
 WHERE PostID = @ParentPostID
 END

IF @@ERROR > 0
 BEGIN
 RAISERROR(‘Insert of post failed’, 16, 1)
 ROLLBACK TRANSACTION InsertPost
 RETURN 99
 END

COMMIT TRANSACTION InsertPost

If the post being inserted must be reviewed before being approved, its parent posts won’t be modifi ed
because you don’t want to count posts that aren’t visible. When it gets approved later, the tbh_Forums_
ApprovePost stored procedure will set this post’s Approved fi eld to 1 and then update its parent
post’s fields mentioned previously. The ReplyCount field must also be incremented by one, but to
update the parent post’s LastPostBy and LastPostDate fi elds, the procedure needs the values of the
AddedBy and AddedDate fi elds of the post being approved, so it executes a fast query to retrieve this
information and stores it in local variables, and then it performs the parent post’s update using those
values, as shown here:

ALTER PROCEDURE dbo.tbh_Forums_ApprovePost
(
 @PostID int
)

87586c08.indd 40487586c08.indd 404 9/11/09 3:20:54 PM9/11/09 3:20:54 PM

405

Chapter 8: Forums

AS

BEGIN TRANSACTION ApprovePost

UPDATE tbh_Posts SET Approved = 1 WHERE PostID = @PostID

-- get the approved post’s parent post and added date
DECLARE @ParentPostID int
DECLARE @AddedDate datetime
DECLARE @AddedBy nvarchar(256)

SELECT @ParentPostID = ParentPostID, @AddedDate = AddedDate, @AddedBy = AddedBy
 FROM tbh_Posts
 WHERE PostID = @PostID

-- update the LastPostDate, LastPostBy and ReplyCount fields
-- of the approved post’s parent post
IF @ParentPostID > 0
 BEGIN
 UPDATE tbh_Posts
 SET ReplyCount = ReplyCount + 1, LastPostDate = @AddedDate,
 LastPostBy = @AddedBy
 WHERE PostID = @ParentPostID
 END

IF @@ERROR > 0
 BEGIN
 RAISERROR(‘Approval of post failed’, 16, 1)
 ROLLBACK TRANSACTION ApprovePost
 RETURN 99
 END

COMMIT TRANSACTION ApprovePost

Implementing the Data Access Layer
Most of the DAL methods are simply wrappers for stored procedures, so they won’t be covered here. The
GetThreads method is interesting: it returns the list of threads for a specifi ed forum (a page of the results),
and it is passed the page index and the page size. It also takes the sort expression used to order the threads.
The method uses SQL Server 2005’s ROW_NUMBER function to provide a unique auto-incrementing number
to all rows in the table, sorted as specifi ed, and then selects those rows with an index number between
the lower and the upper bound of the specifi ed page. The SQL code is very similar to the tbh_Articles_
GetArticlesByCategory stored procedure developed for the articles module in Chapter 5. The only
difference (other than having the SQL code in a C# class instead of inside a stored procedure) is the fact
that the sorting expression expected by the ORDER BY clause is dynamically added to the SQL string, as
specifi ed by an input parameter. Here’s the method, which is implemented in the MB.TheBeerHouse
.DAL.SqlClient.SqlForumsProvider class:

public override List<PostDetails> GetThreads(
 int forumID, string sortExpression, int pageIndex, int pageSize)
{
 using (SqlConnection cn = new SqlConnection(this.ConnectionString))
 {

87586c08.indd 40587586c08.indd 405 9/11/09 3:20:54 PM9/11/09 3:20:54 PM

406

Chapter 8: Forums

 sortExpression = EnsureValidSortExpression(sortExpression);
 int lowerBound = pageIndex * pageSize + 1;
 int upperBound = (pageIndex + 1) * pageSize;
 string sql = string.Format(@“
SELECT * FROM
(
 SELECT tbh_Posts.PostID, tbh_Posts.AddedDate, tbh_Posts.AddedBy,
 tbh_Posts.AddedByIP, tbh_Posts.ForumID, tbh_Posts.ParentPostID, tbh_Posts.Title,
 tbh_Posts.Approved, tbh_Posts.Closed, tbh_Posts.ViewCount, tbh_Posts.ReplyCount,
 tbh_Posts.LastPostDate, tbh_Posts.LastPostBy, tbh_Forums.Title AS ForumTitle,
 ROW_NUMBER() OVER (ORDER BY {0}) AS RowNum
 FROM tbh_Posts INNER JOIN tbh_Forums ON tbh_Posts.ForumID = tbh_Forums.ForumID
 WHERE tbh_Posts.ForumID = {1} AND ParentPostID = 0 AND Approved = 1
) ForumThreads
WHERE ForumThreads.RowNum BETWEEN {2} AND {3} ORDER BY RowNum ASC”,
 sortExpression, forumID, lowerBound, upperBound);

 SqlCommand cmd = new SqlCommand(sql, cn);
 cn.Open();
 return GetPostCollectionFromReader(ExecuteReader(cmd), false);
 }
}

At the beginning of the preceding method’s body, the sortExpression string is passed to a method
named EnsureValidSortExpression (shown below), and its result is assigned to the sortExpression
variable. EnsureValidSortExpression, as its name clearly suggests, ensures that the input string is a
valid sort expression that references a fi eld in the tbh_Posts table, and not some illegitimate SQL sub-
string used to perform a SQL injection attack. You should always do this kind of validation when build-
ing a dynamic SQL query by concatenating multiple strings coming from different sources (this is not
necessary when using parameters, but unfortunately the ORDER BY clause doesn’t support the use of
parameters). Following is the method’s implementation:

protected virtual string EnsureValidSortExpression(string sortExpression)
{
 if (string.IsNullOrEmpty(sortExpression))
 return “LastPostDate DESC”;

 string sortExpr = sortExpression.ToLower();
 if (!sortExpr.Equals(“lastpostdate”) && !sortExpr.Equals(“lastpostdate asc”) &&
 !sortExpr.Equals(“lastpostdate desc”) && !sortExpr.Equals(“viewcount”) &&
 !sortExpr.Equals(“viewcount asc”) && !sortExpr.Equals(“viewcount desc”) &&
 !sortExpr.Equals(“replycount”) && !sortExpr.Equals(“replycount asc”) &&
 !sortExpr.Equals(“replycount desc”) && !sortExpr.Equals(“addeddate”) &&
 !sortExpr.Equals(“addeddate asc”) && !sortExpr.Equals(“addeddate desc”) &&
 !sortExpr.Equals(“addedby”) && !sortExpr.Equals(“addedby asc”) &&
 !sortExpr.Equals(“addedby desc”) && !sortExpr.Equals(“title”) &&
 !sortExpr.Equals(“title asc”) && !sortExpr.Equals(“title desc”) &&
 !sortExpr.Equals(“lastpostby”) && !sortExpr.Equals(“lastpostby asc”) &&
 !sortExpr.Equals(“lastpostby desc”))
 {
 return “LastPostDate DESC”;
 }
 else
 {
 if (sortExpr.StartsWith(“title”))

87586c08.indd 40687586c08.indd 406 9/11/09 3:20:54 PM9/11/09 3:20:54 PM

407

Chapter 8: Forums

 sortExpr = sortExpr.Replace(“title”, “tbh_posts.title”);
 if (!sortExpr.StartsWith(“lastpostdate”))
 sortExpr += “, LastPostDate DESC”;
 return sortExpr;
 }
}

As you see, if the sortExpression is null or an empty string, or if it doesn’t reference a valid fi eld, the
method returns “LastPostDate DESC” as the default, which will sort the threads from the newest to
the oldest.

Implementing the Business Logic Layer
The Entity Model and the BLL of this module are similar to those used in other chapters — Chapter 5
in particular. It employs the same patterns for retrieving and managing data by using LINQ to Entities,
caching and purging data, and so on. The business layer is composed of two repositories, each inherit
from BaseForumRepository. The BaseForumRepository then inherits from BaseRepository, the
same architecture used in the Articles module where the BaseForumRepository holds values specifi c
to the forums modules shared between the PostsRepository and the ForumsRepository. Both of the
repositories should have methods that parallel the methods contained in the previous editions BLL
classes.

The GetUnapprovedPosts method returns a list of post that need to be approved by an administrator.
The main difference between this version and the last edition is the ability to sort by the IsThreadPost
property. This is an immutable property and not actually part of the entity model and, therefore, cannot
be used in the LINQ query used against the database.

Public Function GetUnapprovedPosts() As List(Of Post)

 Return (From lPost In MyBase.Forumctx.Posts.Include(“Forum”) _
 Where lPost.Approved = False _
 Order By lPost.AddedDate Descending).ToList

End Function

Implementing the User Interface
Before you start coding the user interface pages, you should modify the web.config fi le to add the
necessary profi le properties to the <profile> section. The required properties are AvatarUrl and
Signature, both of type string, and a Posts property, of type integer, used to store the number of
posts submitted by the user. They are used by authenticated users, and are defi ned within a Forum
group, as shown here:

<profile defaultProvider=”TBH_ProfileProvider”>
 <providers>…</providers>
 <properties>
 <add name=”FirstName” type=”String” />
 <add name=”LastName” type=”String” />
 <!-- …other properties here… -- >
 <group name=”Forum”>
 <add name=”Posts” type=”Int32” />
 <add name=”AvatarUrl” type=”String” />

87586c08.indd 40787586c08.indd 407 9/11/09 3:20:54 PM9/11/09 3:20:54 PM

408

Chapter 8: Forums

 <add name=”Signature” type=”String” />
 </group>
 <group name=”Address”>…</group>
 <group name=”Contacts”>…</group>
 <group name=”Preferences”>…</group>
 </properties>
</profile>

You must also change the UserProfile.ascx user control accordingly, so that it sets the new
AvatarUrl and Signature properties (but not the Posts property, because that can only be set pro-
grammatically). This modifi cation just needs a few lines of markup code in the .ascx fi le, and a couple
of lines of C# code to read and set the properties, so I won’t show them here. Once this “background
work” is done, you can start creating the pages.

Administering and Viewing Forums
The defi nition of a subforum is almost identical to that of article categories employed in Chapter 5, with
the unique addition of the Moderated fi eld. The DAL and BLL code is similar to that developed earlier,
but the UI for adding, updating, deleting, and listing forums is also quite similar. Therefore, I won’t
cover those pages here, but Figure 8-3 shows how they should look. As usual, consult the code down-
load for the complete code.

Figure 8-3

87586c08.indd 40887586c08.indd 408 9/11/09 3:20:55 PM9/11/09 3:20:55 PM

409

Chapter 8: Forums

The AddEditPost.aspx Page
The AddEditPost.aspx page has a simple interface, with a textbox for the new post’s title, a FCKeditor
instance to create the post’s body with a limited set of HTML formatting, and a checkbox to indicate
that you won’t allow replies to the post (the checkbox is only visible when a user creates a new thread
and is not replying to an existing thread, or the user is editing an existing post). Figure 8-4 shows how
it is presented to the user who wants to create a new thread.

Figure 8-4

The page’s markup is as simple, having only a few controls, so it’s not shown here. The page inherits
from the ForumPage class that defi nes a few properties that are driven by the querystring and use the
PrimaryKey property pattern discussed in previous chapters.

 Public Property ForumId() As Integer
 Get
 Return PrimaryKeyId(“ForumId”)
 End Get

87586c08.indd 40987586c08.indd 409 9/11/09 3:20:55 PM9/11/09 3:20:55 PM

410

Chapter 8: Forums

 Set(ByVal Value As Integer)
 PrimaryKeyId(“ForumId”) = Value
 End Set
 End Property

 Public Property PostId() As Integer
 Get
 Return PrimaryKeyId(“PostId”)
 End Get
 Set(ByVal Value As Integer)
 PrimaryKeyId(“PostId”) = Value
 End Set
 End Property

 Public Property ThreadId() As Integer
 Get
 Return PrimaryKeyId(“ThreadId”)
 End Get
 Set(ByVal Value As Integer)
 PrimaryKeyId(“ThreadId”) = Value
 End Set
 End Property

 Public Property QuotePostID() As Integer
 Get
 Return PrimaryKeyId(“QuotePostID”)
 End Get
 Set(ByVal Value As Integer)
 PrimaryKeyId(“QuotePostID”) = Value
 End Set
 End Property

The page’s code-behind class defi nes a few private variables used to store calculated values:

Private isNewThread As Boolean = False
Private isNewReply As Boolean = False
Private isEditingPost As Boolean = False

Not all variables are used in every function of the page. The following list defi nes whether these variables
are used and how they are set for each function of the page:

Creating a new thread: ❑

forumID ❑ — Set with the ForumID querystring parameter.

threadID ❑ — Not used.

postID ❑ — Not used.

quotePostID ❑ — Not used.

isNewThread ❑ — Set to true.

isNewReply ❑ — Set to false.

isEditingPost ❑ — Set to false.

87586c08.indd 41087586c08.indd 410 9/11/09 3:20:55 PM9/11/09 3:20:55 PM

411

Chapter 8: Forums

Posting a new reply to an existing thread: ❑

forumID ❑ — Set with the ForumID querystring parameter.

threadID ❑ — Set with the ThreadID querystring parameter, which is the ID of the target
thread for the new reply.

postID ❑ — Not used.

quotePostID ❑ — Not used.

isNewThread ❑ — Set to false.

isNewReply ❑ — Set to true.

isEditingPost ❑ — Set to false.

Quoting an existing post to be used as a base for a new reply to an existing thread: ❑

forumID ❑ — Set with the ForumID querystring parameter.

threadID ❑ — Set with the ThreadID querystring parameter.

postID ❑ — Not used.

quotePostID ❑ — Set with the QuotePostID querystring parameter, which is the ID of
the post to quote.

isNewThread ❑ — Set to false.

isNewReply ❑ — Set to true.

isEditingPost ❑ — Set to false.

Editing an existing post: ❑

forumID ❑ — Set with the ForumID querystring parameter.

threadID ❑ — Set with the ThreadID querystring parameter (necessary for linking back
to the thread’s page after submitting the change, or if the editor wants to cancel the
editing and go back to the previous page).

postID ❑ — Set with the PostID querystring parameter, which is the ID of the post
to edit.

quotePostID ❑ — Not used.

isNewThread ❑ — Set to false.

isNewReply ❑ — Set to false.

isEditingPost ❑ — Set to true.

The variables are set in the Page’s Load event handler, which also calls the code to load the body of the
post to edit or quote, sets the link to go back to the previous page, and checks whether the current user
is allowed to perform the requested function. Here’s the code:

Protected Sub Page_Load(ByVal sender As Object, ByVal e As System.EventArgs)
Handles Me.Load

 isNewThread = ((PostId = 0) And (ThreadId = 0))

87586c08.indd 41187586c08.indd 411 9/11/09 3:20:55 PM9/11/09 3:20:55 PM

412

Chapter 8: Forums

 isEditingPost = Not (PostId = 0)
 isNewReply = (Not isNewThread And Not isEditingPost)

 ‘ show/hide controls and load data according to the parameters above
 If Not Me.IsPostBack Then

 lnkThreadList.NavigateUrl = String.Format(lnkThreadList.NavigateUrl,
ForumId)
 lnkThreadPage.NavigateUrl = String.Format(lnkThreadPage.NavigateUrl,
ThreadId)
 txtBody.BasePath = Me.BaseUrl & “FCKeditor/“
 chkClosed.Visible = isNewThread

 BindPost()

 End If
End Sub

The BindPost method actually retrieves the post and binds the contents to the appropriate controls.
The method takes care to bind the controls as needed for either editing or posting a new thread. It also
has a security check to force a login is the user is not authorized to make edit the post. For example, if
someone happened to fi gure out a hack to retrieve the post for editing and was not a site administrator
or the original poster, it would ask them to authenticate.

Private Sub BindPost()
 Using lPost As New PostsRepository

 If isEditingPost Then
 ‘ load the post to edit, and check that the current user has the
 ‘ permission to do so
 Dim post As Post = lPost.GetPostById(PostId)
 If Not isModerator AndAlso _
 Not (Me.User.Identity.IsAuthenticated And _
 Me.User.Identity.Name.Equals(post.AddedBy.ToLower)) Then
 Me.RequestLogin()
 End If

 lblEditPost.Visible = True
 btnSubmit.Text = “Update”
 txtTitle.Text = post.Title
 txtBody.Value = post.Body
 panTitle.Visible = isModerator
 ElseIf isNewReply Then
 ‘ chech whether the thread the user is adding a reply to is still open
 Dim post As Post = lPost.GetPostById(ThreadId)
 If post.Closed Then
 Throw New ApplicationException(_
 “The thread you tried to reply to has been closed.”)
 End If

 lblNewReply.Visible = True
 txtTitle.Text = “Re: “ & post.Title
 lblNewReply.Text = String.Format(lblNewReply.Text, post.Title)
 ‘ if the ID of a post to be quoted is passed on the querystring, load

87586c08.indd 41287586c08.indd 412 9/11/09 3:20:55 PM9/11/09 3:20:55 PM

413

Chapter 8: Forums

 ‘ that post and prefill the new reply’s body with that post’s body
 If quotePostID > 0 Then
 Dim quotePost As Post = lPost.GetPostById(quotePostID)
 txtBody.Value = String.Format(_
 “<blockquote><hr noshade=”“”“ size=”“1”“ />” & _
 “Originally posted by {0}

{1}“ & _
 “<hr noshade=”“”“ size=”“1”“ /></blockquote>”, _
 quotePost.AddedBy, quotePost.Body)
 End If
 ElseIf isNewThread Then
 lblNewThread.Visible = True
 lnkThreadList.Visible = True
 lnkThreadPage.Visible = False
 End If

 End Using
End Sub

When the user clicks the Submit button, the previously discussed class fi elds are used again to determine
whether an AddPost or an UpdatePost is required. When editing a post, a line is dynamically added at
the end of the post’s body to log the date and time of the update, and the editor’s name. When the post is
inserted, you must also check whether the target forum is moderated, and if it is, you can only pass true
to the InsertPost’s approved parameter if the current user is a power user (administrator, editor, or
moderator). After inserting the post, you also increment the author’s Posts profi le property. Here’s the
full code for the Submit button’s OnClick event handler:

Protected Sub btnSubmit_Click(ByVal sender As Object, ByVal e As System.EventArgs)
 Handles btnSubmit.Click

 Using lPostrpt As New PostsRepository

 If isEditingPost Then
 ‘ when editing a post, a line containing the current Date/Time and the
 ‘ name of the user making the edit is added to the post’s body so that
 ‘ the operation gets logged
 Dim body As String = Helpers.FilterProfanity(txtBody.Value)
 body &= String.Format(“<p>-- {0}: post edited by {1}.</p>”, _
 DateTime.Now.ToString, Me.User.Identity.Name)
 ‘ edit an existing post
 Dim lPostItem As Post = lPostrpt.GetPostById(PostId)
 lPostItem.Title = txtTitle.Text
 lPostItem.Body = body

 lPostItem.UpdatedDate = Now
 lPostItem.UpdatedBy = UserName

 lPostrpt.UpdatePost(lPostItem)
 panInput.Visible = False
 panFeedback.Visible = True
 Else

 Dim lPostItem As New Post

 Using lForumrpt As New ForumsRepository

87586c08.indd 41387586c08.indd 413 9/11/09 3:20:55 PM9/11/09 3:20:55 PM

414

Chapter 8: Forums

 Dim forum As Forum = lForumrpt.GetForumById(ForumId)

 lPostItem.ForumId = ForumId
 lPostItem.ParentPostID = ThreadId
 lPostItem.Title = txtTitle.Text
 lPostItem.Body = txtBody.Value
 lPostItem.Closed = chkClosed.Checked
 lPostItem.LastPostDate = Now
 lPostItem.LastPostBy = UserName
 lPostItem.UpdatedDate = Now
 lPostItem.UpdatedBy = UserName

 If (forum.Moderated) Then
 If Not isModerator Then
 lPostItem.Approved = False
 End If
 End If

 lPostItem.Active = True
 lPostItem.AddedDate = Now
 lPostItem.AddedBy = UserName
 lPostItem.AddedByIP = Request.UserHostAddress

 ‘ insert the new post
 If lPostrpt.AddPost(lPostItem) Then

 panInput.Visible = False
 ‘ increment the user’s post counter
 Dim lPosts As Integer =
 profile.GetProfileGroup(“Forum”).GetPropertyValue(“Posts”)
 profile.GetProfileGroup(“Forum”).SetPropertyValue(“Posts”,
lPosts + 1)

 ‘ show the confirmation message saying that approval is
 ‘ required, according to the target forum’s moderated property

 If forum.Moderated Then
 If Not isModerator Then
 panApprovalRequired.Visible = True
 Else
 panFeedback.Visible = True
 End If
 Else
 panFeedback.Visible = True
 End If

 ‘Just in case they corrected an error.
 ltlStatus.Visible = False
 Else

 ltlStatus.Visible = True

 For Each kv As KeyValuePair(Of String, Exception) In
 lForumrpt.ActiveExceptions

87586c08.indd 41487586c08.indd 414 9/11/09 3:20:55 PM9/11/09 3:20:55 PM

415

Chapter 8: Forums

 ltlStatus.Text += “
” & DirectCast(kv.Value, Exception)
.Message & “
”
 Next

 End If

 End Using

 End If

 End Using

End Sub

The ManageUnapprovedPosts.aspx Page
The ManageUnapprovedPosts.aspx page enables power users to see the list of messages waiting for
approval for moderated forums, and allows them to review their content and then either approve or
delete them. The page is pretty simple, as there’s just a ListView that shows the title and a few other
fi elds of the posts, without support for pagination or sorting. Next to the poster’s name is an icon to
expand the body of the post for review. The entire ListView is wrapped in an UpdatePanel to make
interacting with the items more seamless. A screenshot is shown in Figure 8-5.

Figure 8-5

87586c08.indd 41587586c08.indd 415 9/11/09 3:20:55 PM9/11/09 3:20:55 PM

416

Chapter 8: Forums

The code to manage this list has a small peculiarity: when the editor clicks on the post’s title or the
GoDown.gif icon the full body of the post is exposed. This way the administrator can review the body
of the post before approving or deleting it. This is done through the ListView’s ItemDataBound event
handler by adding OnClick event handlers to a SPAN wrapping the title and the image. Both of these
elements are designated as server-side controls.

The method fi rst grabs an instance of each of the controls, the SPAN is cast as an HTMLGenericControl
and the Image as an HTMLImage control. Then the same attribute is applied to use the toggleDivState
function defi ned in the TBH.js fi le. The body of the post is contained in a DIV element that is dynami-
cally named ‘body’ + PostId. I wanted to do this to have control over the ID on the client because
ASP.NET would have made the ID hard to work with otherwise. I could have made the DIV a server-side
element, too, and used the UniqueID property but chose not to, to make it simpler. Also notice the Approve
and Delete ImageButtons also have a special confi rmation message applied to their click events.

Private Sub lvPosts_ItemDataBound(ByVal sender As Object, ByVal e As
System.Web.UI.WebControls.ListViewItemEventArgs)
Handles lvPosts.ItemDataBound

 Dim lvdi As ListViewDataItem = DirectCast(e.Item, ListViewDataItem)

 If lvdi.ItemType = ListViewItemType.DataItem Then

 Dim iGoDown As System.Web.UI.HtmlControls.HtmlImage =
DirectCast(e.Item.FindControl(“iGoDown”),
System.Web.UI.HtmlControls.HtmlImage)
 Dim btnApprove As ImageButton = DirectCast(
e.Item.FindControl(“btnApprove”), ImageButton)
 btnApprove.OnClientClick = “if (
confirm(‘Are you sure you want to approve this post?’) == false)
return false;”
 btnApprove.ToolTip = “Approve this post”
 Dim btnDelete As ImageButton =
DirectCast(e.Item.FindControl(“btnDelete”), ImageButton)
 btnDelete.OnClientClick = “if (
confirm(‘Are you sure you want to delete this post?’) == false)
 return false;”
 btnDelete.ToolTip = “Delete this post”
 Dim dTitle As HtmlGenericControl = DirectCast(e.Item.FindControl(“dTitle”)
, HtmlGenericControl)

 Dim lPost As Post = DirectCast(lvdi.DataItem, Post)

 If Not IsNothing(iGoDown) Then
 iGoDown.Attributes.Add(“OnClick”,
String.Format(“toggleDivState(‘{0}‘);”, “body” & lPost.PostID))
 End If

 If Not IsNothing(dTitle) Then
 dTitle.Attributes.Add(“OnClick”,
String.Format(“toggleDivState(‘{0}‘);”, “body” & lPost.PostID))
 End If

 End If

End Sub

87586c08.indd 41687586c08.indd 416 9/11/09 3:20:55 PM9/11/09 3:20:55 PM

417

Chapter 8: Forums

When the administrator deletes a post, the ListView’s ItemDeleting event is fi red and the typical
delete routine is used. When the administrator approves a post the ItemCommand event handler is
called and the ApprovePost method of the PostRepository is called.

Private Sub lvPosts_ItemCommand(ByVal sender As Object, ByVal e As
System.Web.UI.WebControls.ListViewCommandEventArgs)
Handles lvPosts.ItemCommand

 Select Case e.CommandName
 Case “Approve”

 Using lPostrpt As New PostsRepository

 lPostrpt.ApprovePost(Convert.ToInt32(e.CommandArgument))

 End Using

 BindUnapprovedPosts()

 End Select

End Sub

The BrowseThreads.aspx Page
The BrowseThreads.aspx page takes a ForumID parameter on the querystring with the ID of the
forum the user wants to browse and fi lls a paginable GridView control with the thread list returned by
the Post.GetThreads business method. Figure 8-6 shows a screenshot of this page.

Figure 8-6

87586c08.indd 41787586c08.indd 417 9/11/09 3:20:55 PM9/11/09 3:20:55 PM

418

Chapter 8: Forums

In addition to the GridView control with the threads, the page also features a DropDownList at the
top of the page, which lists all available forums (retrieved by an ObjectDataSource that uses the
Forum.GetForums business method) and allows users to quickly navigate to a forum by selecting one.
The DropDownList onchange client-side (JavaScript) event redirects the user to the same BrowseThreads
.aspx page but with the newly selected forum’s ID on the querystring:

<asp:DropDownList ID=”ddlForums” runat=”server” DataSourceID=”objForums”
 DataTextField=”Title” DataValueField=”ID”
 onchange=”javascript:document.location.href=’BrowseThreads.aspx?ForumID=’
+ this.value;” />
<asp:ObjectDataSource ID=”objForums” runat=”server” SelectMethod=”GetForums”
 TypeName=”MB.TheBeerHouse.BLL.Forums.Forum” />

The GridView is bound to another ObjectDataSource control, which specifi es the methods to select
and delete data. Because you want to support pagination, you use the GetThreadCount method to
return the total thread count. To support sorting you must set SortParameterName to the name of the
parameter that the SelectMethod (i.e., GetThreads) will use to receive the sort expression; in this case,
as shown earlier, it’s sortExpression. Here’s the complete declaration of the ObjectDataSource:

<asp:ObjectDataSource ID=”objThreads” runat=”server”
 TypeName=”MB.TheBeerHouse.BLL.Forums.Post”
 DeleteMethod=”DeletePost” SelectMethod=”GetThreads”
 SelectCountMethod=”GetThreadCount”
 EnablePaging=”true” SortParameterName=”sortExpression”>
 <DeleteParameters>
 <asp:Parameter Name=”id” Type=”Int32” />
 </DeleteParameters>
 <SelectParameters>
 <asp:QueryStringParameter Name=”forumID”
 QueryStringField=”ForumID” Type=”Int32” />
 </SelectParameters>
</asp:ObjectDataSource>

The following GridView control has both the AllowPaging and AllowSorting properties set to true,
and it defi nes the following columns:

A ❑ TemplateColumn that displays an image representing a folder, which is used to identify a
discussion thread. A templated column is used in place of a simpler ImageColumn, because the
image being shown varies according to the number of posts in the thread. If the post count
reaches a certain value (specifi ed in the confi guration), it will be considered a hot thread, and a
red icon will be used to highlight it.

A ❑ TemplateColumn defi ning a link to the ShowThread.aspx page on the fi rst line, with the
thread’s title as the link’s text, and the thread’s author’s name in smaller text on the second line.
The link on the fi rst line also includes the thread’s ID on the querystring so that the page will
load that specifi c thread’s posts.

A ❑ TemplateColumn that shows the date of the thread’s last post on the fi rst line, and the name
of the author who entered the thread’s last post on the second line. The column’s
SortExpression is LastPostDate.

A ❑ BoundField column that shows the thread’s ReplyCount and has a header link that sorts
threads on this column.

87586c08.indd 41887586c08.indd 418 9/11/09 3:20:55 PM9/11/09 3:20:55 PM

419

Chapter 8: Forums

A ❑ BoundField column that shows the thread’s ViewCount and has a header link that sorts
threads on this column.

A ❑ HyperLinkField column pointing to the MoveThread.aspx page, which takes the ID of the
thread to move on the querystring. This column will not be shown if the current user is not a
power user.

A ❑ ButtonField column to close the thread and stop replies to it. This column will not be
shown if the current user is not a power user.

A ❑ ButtonField column to delete the thread with all its posts. This column will not be shown if
the current user is not a power user.

Following is the complete markup code for the ❑ GridView:

<asp:GridView ID=”gvwThreads” runat=”server” AllowPaging=”True”
 AutoGenerateColumns=”False” DataSourceID=”objThreads” PageSize=”25”
 AllowSorting=”True” DataKeyNames=”ID” OnRowCommand=”gvwThreads_RowCommand”
 OnRowCreated=”gvwThreads_RowCreated”>
 <Columns>
 <asp:TemplateField ItemStyle-Width=”16px”>
 <ItemTemplate>
 <asp:Image runat=”server” ID=”imgThread” ImageUrl=”~/Images/Thread.gif”
 Visible=’<%# (int)Eval(“ReplyCount”) <
 Globals.Settings.Forums.HotThreadPosts %>’
 GenerateEmptyAlternateText=”“ />
 <asp:Image runat=”server” ID=”imgHotThread”
 ImageUrl=”~/Images/ThreadHot.gif”
 Visible=’<%# (int)Eval(“ReplyCount”) >=
 Globals.Settings.Forums.HotThreadPosts %>’
 GenerateEmptyAlternateText=”“ />
 </ItemTemplate>
 <HeaderStyle HorizontalAlign=”Left” />
 </asp:TemplateField>
 <asp:TemplateField HeaderText=”Title”>
 <ItemTemplate>
 <asp:HyperLink ID=”lnkTitle” runat=”server” Text=’<%# Eval(“Title”) %>’
 NavigateUrl=’<%# “ShowThread.aspx?ID=” + Eval(“ID”) %>’ />

 <small>by <asp:Label ID=”lblAddedBy” runat=”server”
 Text=’<%# Eval(“AddedBy”) %>’></asp:Label></small>
 </ItemTemplate>
 <HeaderStyle HorizontalAlign=”Left” />
 </asp:TemplateField>
 <asp:TemplateField HeaderText=”Last Post” SortExpression=”LastPostDate”>
 <ItemTemplate>
 <small><asp:Label ID=”lblLastPostDate” runat=”server”
 Text=’<%# Eval(“LastPostDate”, “{0:g}“) %>’></asp:Label>

 by <asp:Label ID=”lblLastPostBy” runat=”server”
 Text=’<%# Eval(“LastPostBy”) %>’></asp:Label></small>
 </ItemTemplate>
 <ItemStyle HorizontalAlign=”Center” Width=”130px” />
 <HeaderStyle HorizontalAlign=”Center” />
 </asp:TemplateField>
 <asp:BoundField HeaderText=”Replies” DataField=”ReplyCount”
 SortExpression=”ReplyCount” >
 <ItemStyle HorizontalAlign=”Center” Width=”50px” />

87586c08.indd 41987586c08.indd 419 9/11/09 3:20:55 PM9/11/09 3:20:55 PM

420

Chapter 8: Forums

 <HeaderStyle HorizontalAlign=”Center” />
 </asp:BoundField>
 <asp:BoundField HeaderText=”Views” DataField=”ViewCount”
 SortExpression=”ViewCount” >
 <ItemStyle HorizontalAlign=”Center” Width=”50px” />
 <HeaderStyle HorizontalAlign=”Center” />
 </asp:BoundField>
 <asp:HyperLinkField
 Text=””
 DataNavigateUrlFormatString=”~/Admin/MoveThread.aspx?ThreadID={0}“
 DataNavigateUrlFields=”ID”>
 <ItemStyle HorizontalAlign=”Center” Width=”20px” />
 </asp:HyperLinkField>
 <asp:ButtonField ButtonType=”Image” ImageUrl=”~/Images/LockSmall.gif”
 CommandName=”Close”>
 <ItemStyle HorizontalAlign=”Center” Width=”20px” />
 </asp:ButtonField>
 <asp:CommandField ButtonType=”Image” DeleteImageUrl=”~/Images/Delete.gif”
 DeleteText=”Delete thread” ShowDeleteButton=”True”>
 <ItemStyle HorizontalAlign=”Center” Width=”20px” />
 </asp:CommandField>
 </Columns>
 <EmptyDataTemplate>No threads to show</EmptyDataTemplate>
</asp:GridView>

There are just a few lines of code in the page’s code-behind class. In the Page_Init event handler, you
set the grid’s PageSize to the value read from the confi guration settings, overwriting the default hard-
coded value used previously:

protected void Page_Init(object sender, EventArgs e)
{
 gvwThreads.PageSize = Globals.Settings.Forums.ThreadsPageSize;
}

In the Page_Load event handler, there’s some simple code that uses the ID passed on the querystring
to load a Forum object representing the forum: the forum’s title read from the object is used to set the
page’s Title. Then the code preselects the current forum from the DropDownList at the top, sets the
ForumID parameter on the hyperlinks that create a new thread, and hides the last three GridView col-
umns if the current user is not a power user:

protected void Page_Load(object sender, EventArgs e)
{
 if (!this.IsPostBack)
 {
 string forumID = this.Request.QueryString[“ForumID”];
 lnkNewThread1.NavigateUrl = string.Format(lnkNewThread1.NavigateUrl,
 forumID);
 lnkNewThread2.NavigateUrl = lnkNewThread1.NavigateUrl;

 Forum forum = Forum.GetForumByID(int.Parse(forumID));
 this.Title = string.Format(this.Title, forum.Title);
 ddlForums.SelectedValue = forumID;

 // if the user is not an admin, editor or moderator, hide the grid’s column

87586c08.indd 42087586c08.indd 420 9/11/09 3:20:55 PM9/11/09 3:20:55 PM

421

Chapter 8: Forums

 // with the commands to delete, close or move a thread
 bool canEdit = (this.User.Identity.IsAuthenticated &&
 (this.User.IsInRole(“Administrators”) || this.User.IsInRole(“Editors”) ||
 this.User.IsInRole(“Moderators”)));
 gvwThreads.Columns[5].Visible = canEdit;
 gvwThreads.Columns[6].Visible = canEdit;
 gvwThreads.Columns[7].Visible = canEdit;
 }
}

The click on the threads’ Delete button is handled automatically by the GridView and its companion
ObjectdataSource control. To make the Close button work, you have to manually handle the
RowCommand event handler and call the Post.CloseThread method, as shown here:

protected void gvwThreads_RowCommand(object sender, GridViewCommandEventArgs e)
{
 if (e.CommandName == “Close”)
 {
 int threadPostID = Convert.ToInt32(
 gvwThreads.DataKeys[Convert.ToInt32(e.CommandArgument)][0]);
 MB.TheBeerHouse.BLL.Forums.Post.CloseThread(threadPostID);
 }
}

The MoveThread.aspx Page
The MoveThread.aspx page contains a DropDownList with the list of available forums and allows
power users to move the thread (whose ThreadID is passed on the querystring) to one of the forums,
after selecting it and clicking the OK button. Figure 8-7 shows this simple user interface.

Figure 8-7

The DropDownList is fi lled with an instructional message by calling the BindForums method in the
ForumPage class. The BindForums method uses a ForumsRepository to bind the ActiveForums
to the supplied ListControl. Using a ListControl ultimately provides the fl exibility to bind to a
DropDownList, RadioButtonList, or any other web control derived from ListControl. Ultimately,
they all work the same when it comes to binding. Finally, a customized instruction string is inserted at

87586c08.indd 42187586c08.indd 421 9/11/09 3:20:55 PM9/11/09 3:20:55 PM

422

Chapter 8: Forums

the top of the ListContol’s items collection. If the ForumId is greater than 0, then it is selected in
the list.

Protected Sub BindForums(ByVal vListControl As ListControl,
ByVal vInstruction As String)

 Using lforumRpt As New ForumsRepository

 vListControl.DataSource = lforumRpt.GetActiveForums
 vListControl.DataBind()

 vListControl.Items.Insert(0, New ListItem(vInstruction, “0”))

 If ForumId > 0 Then
 vListControl.SelectedValue = ForumId
 End If

 End Using

End Sub

The MoveThread page calls the BindPostInfo method after it binds the forum’s DropDownList. This
method binds information about the post that is being moved to the associated controls.

Private Sub BindPostInfo()

 Using lPostrpt As New PostsRepository
 Dim post As Post = lPostrpt.GetPostById(ThreadId)
 lblThreadTitle.Text = post.Title
 lblForumTitle.Text = post.ForumTitle
 ddlForums.SelectedValue = post.ForumId.ToString()
 End Using

End Sub

When the user clicks the Submit button the PostsRepository is used to move the thread and then
redirect to the BrowseThreads.aspx page at the root of the site.

Private Sub btnSubmit_Click(ByVal sender As Object, ByVal e As System.EventArgs)
Handles btnSubmit.Click

 Using lPostrpt As New PostsRepository
 Dim lforumID As Integer = Integer.Parse(ddlForums.SelectedValue)
 lPostrpt.MoveThread(ThreadId, ForumId)
 Me.Response.Redirect(“~/BrowseThreads.aspx?ForumID=” & forumID.ToString())
 End Using

End Sub

The ShowThread.aspx Page
The ShowThread.aspx page renders a paginable list showing all posts of the thread, whose ThreadID
is passed on the querystring. Figure 8-8 shows this ListView in action.

87586c08.indd 42287586c08.indd 422 9/11/09 3:20:55 PM9/11/09 3:20:55 PM

423

Chapter 8: Forums

Figure 8-8

Some of the information (such as the post’s title, body, author, and date/time) is retrieved from the
bound data retrieved by calling the GetThread method of the PostRepository. Some other data, such
as the author’s avatar, number of posts, and signature are retrieved from the profi le associated with the
membership account named after the post author’s name. The controls that show this profi le data are
bound to an expression that calls the GetUserProfile method, which takes the author’s name and
returns an instance of ProfileCommon for that user. Using the dynamically generated, strongly typed
ProfileCommon object, you can easily reference the profi le groups and subproperties. The following
code declares the ListView’s ItemTemplate, which defi nes the links to edit and delete the post (these
will be hidden by code in the code-behind if the current user should not see them), and then defi nes
controls bound to the user’s Posts and AvatarUrl profi le properties in the fi rst table cell:

<ItemTemplate>
 <tr>
 <td valign=”top”>
 <div class=”posttitle”>
 <asp:HyperLink runat=”server” ID=”lnkEditPost”
ImageUrl=”~/Images/Edit.gif”
NavigateUrl=”~/AddEditPost.aspx?ForumID={0}
&ThreadID={1}&PostID={2}“ />
 <asp:ImageButton runat=”server” ID=”btnDeletePost”
ImageUrl=”~/Images/Delete.gif”
 OnClientClick=”if (
confirm(‘Are you sure you want to delete this {0}?’) == false)
return false;” />

87586c08.indd 42387586c08.indd 423 9/11/09 3:20:56 PM9/11/09 3:20:56 PM

424

Chapter 8: Forums

 </div>
 <asp:Literal ID=”lblAddedDate” runat=”server”
Text=’<%# Eval(“AddedDate”, “{0:D}

{0:T}“) %>’ />
 <hr />
 <asp:Literal ID=”lblAddedBy” runat=”server”
Text=’<%# Eval(“AddedBy”) %>’ />

 <small>
 <asp:Literal ID=”lblPosts” runat=”server”
Text=’<%# “Posts: “ &
GetNoofPostForUser(Eval(“AddedBy”)).ToString() %>’ />
 <asp:Literal ID=”lblPosterDescription” runat=”server”
Text=’<%# “
” &
GetPosterDescription(GetNoofPostForUser(Eval(“AddedBy”))) %>’
 Visible=’<%# GetNoofPostForUser(Eval(“AddedBy”)) >=
Settings.Forums.BronzePosterPosts %>’ /></small>

 <asp:Panel runat=”server” ID=”panAvatar” Visible=’<%#
GetPosterAvatar(Eval(“AddedBy”)).Length > 0 %>’>
 <asp:Image runat=”server” ID=”imgAvatar”
ImageUrl=’<%# GetPosterAvatar(Eval(“AddedBy”)) %>’ />

 </asp:Panel>
 </td>
 <td valign=”top”>
 <div class=”posttitle”>
 <asp:Literal ID=”lblTitle” runat=”server”
Text=’<%# Eval(“Title”) %>’ /></div>
 <div class=”postbody”>
 <asp:Literal ID=”lblBody” runat=”server”
Text=’<%# Eval(“Body”) %>’ />

 <asp:Literal ID=”lblSignature” runat=”server”
Text=’<%# ConvertToHtml(GetPosterSignature(Eval(“AddedBy”)))
%>’ />

 <div style=”text-align: right;”>
 <asp:HyperLink runat=”server” ID=”lnkQuotePost”
NavigateUrl=”~/AddEditPost.aspx?ForumID={0}&ThreadID={1}&QuotePostID={2}“>
Quote Post</asp:HyperLink>
 </div>
 </div>
 </td>
 </tr>
</ItemTemplate>

The second cell renders the post’s title, the body, and then the user’s Signature profi le property.
Because the signature is in plain text, though, it fi rst passes through a helper method named
ConvertToHtml, which transforms the signature into simple HTML (it replaces carriage returns with

 tags, replaces multiple spaces and tabs with “ ”, etc.). At the bottom, it has a HyperLink
to the AddEditPost.aspx page, which creates a new reply by quoting the current post’s body.

87586c08.indd 42487586c08.indd 424 9/11/09 3:20:56 PM9/11/09 3:20:56 PM

425

Chapter 8: Forums

There’s some interesting code in the code-behind class: in the preceding code, you can see that the
GetUserProfile method is called six times for every single post. This can cause performance prob-
lems when you consider how many times this might execute in one page cycle. The same thread will
likely have multiple posts by the same user: in a typical thread of 20 posts, four of them might be from
the same user. This means we make 24 calls to GetUserProfile for the same user. This method uses
ASP.NET’s Profile.GetProfile method to retrieve a ProfileCommon object for the specifi ed user,
which unfortunately doesn’t cache the result. This means that every time you call Profile.GetProfile,
it will run a query to SQL Server to retrieve the user’s profi le, and then build the ProfileCommon object
to be returned. In our situation, this would be an incredible waste of resources, because after the fi rst
query for a specifi c user, the next 23 queries for that user would produce the same result. To prevent
this kind of waste, we’ll use the GetUserProfile method to wrap the call to Profile.GetProfile by
adding simple caching support that will last as long as the page’s lifetime. It uses a Hashtable, which
uses the username as a key, and the ProfileCommon object as the value; if the requested profi le is not
found in the Hashtable when the method is called, it forwards the call to Profile.GetProfile and
then saves the result in the Hashtable for future needs. Here’s how it’s implemented:

Dim profiles As New Hashtable()

Protected Function GetPostUserProfile(ByVal userName As Object) As ProfileBase
 Dim name As String = CStr(userName)
 If Not profiles.Contains(name) Then
 Dim profile As ProfileBase = Helpers.GetUserProfile(name)
 profiles.Add(name, profile)
 Return profile
 Else
 Return CType(profiles(userName), ProfileBase)
 End If
End Function

There’s another helper method on the page, GetPosterDescription, which returns the user’s status
description according to the user’s number of posts. It compares the number with the values of the
GoldPosterPosts, SilverPosterPosts, and BronzePosterPosts confi guration settings and returns
the appropriate description:

Protected Function GetPosterDescription(ByVal posts As Integer) As String
 If posts >= Settings.Forums.GoldPosterPosts Then
 Return Settings.Forums.GoldPosterDescription
 ElseIf posts >= Settings.Forums.SilverPosterPosts Then
 Return Settings.Forums.SilverPosterDescription
 ElseIf posts >= Settings.Forums.BronzePosterPosts Then
 Return Settings.Forums.BronzePosterDescription
 Else
 Return String.Empty
 End If
End Function

The rest of the page’s code-behind is pretty typical. For example, you handle the list’s ItemDataBound
event to show, or hide, the post’s edit link according to whether the current user is the post’s author or a
power user, or just another user. It also sets the delete button’s CommandName to either DeleteThread or

87586c08.indd 42587586c08.indd 425 9/11/09 3:20:56 PM9/11/09 3:20:56 PM

426

Chapter 8: Forums

DeletePost or hides the link to quote the post according to whether the thread is closed. The following
code shows this:

Private Sub lvPosts_ItemDataBound(ByVal sender As Object,
ByVal e As System.Web.UI.WebControls.ListViewItemEventArgs)
Handles lvPosts.ItemDataBound

 If e.Item.ItemType = ListViewItemType.DataItem Then

 Dim lvdi As ListViewDataItem = DirectCast(e.Item, ListViewDataItem)
 Dim lPost As Post = CType(lvdi.DataItem, Post)
 Dim threadID As Integer = lPost.ParentPostID
 If lPost.IsFirstPost Then threadID = lPost.PostID

 If Not IsNothing(lPost) Then

 ‘ the link for editing the post is visible to the post’s author, and to
 ‘ administrators, editors and moderators
 Dim lnkEditPost As HyperLink =
CType(e.Item.FindControl(“lnkEditPost”), HyperLink)

 lnkEditPost.NavigateUrl = String.Format(lnkEditPost.NavigateUrl,
lPost.ForumId, threadID, lPost.PostID)
 lnkEditPost.Visible = IsModeratorOrPoster(lPost.AddedBy.ToLower())

 ‘ the link for deleting the thread/post is visible only to
administrators, editors and moderators
 Dim btnDeletePost As ImageButton =
CType(e.Item.FindControl(“btnDeletePost”), ImageButton)
 If lPost.IsFirstPost Then
 btnDeletePost.OnClientClick =
String.Format(btnDeletePost.OnClientClick, “entire thread”)
 btnDeletePost.CommandName = “DeleteThread”
 Else
 btnDeletePost.OnClientClick =
String.Format(btnDeletePost.OnClientClick, “post”)
 btnDeletePost.CommandName = “DeletePost”
 End If
 btnDeletePost.CommandArgument = lPost.PostID.ToString()
 btnDeletePost.Visible = isModerator

 ‘ if the thread is not closed, show the link to quote the post
 Dim lnkQuotePost As HyperLink =
CType(e.Item.FindControl(“lnkQuotePost”), HyperLink)
 lnkQuotePost.NavigateUrl = String.Format(lnkQuotePost.NavigateUrl, _
 lPost.ForumId, threadID, lPost.PostID)
 If lPost.IsFirstPost Then
 lnkQuotePost.Visible = Not lPost.Closed
 Else
 lnkQuotePost.Visible = Not lPost.ParentPost.Closed

87586c08.indd 42687586c08.indd 426 9/11/09 3:20:56 PM9/11/09 3:20:56 PM

427

Chapter 8: Forums

 End If

 End If

 End If

End Sub

You also handle the grid’s ItemCommand event to process the click action of the post’s Delete button.
You always call Post.DeletePost to delete a single post, or an entire thread (the situation is indicated
by the CommandName property of the method’s e parameter), but in the fi rst case you just rebind the
ListView to its data source, whereas in the second case you redirect to the page that browses the thread’s
parent forum’s threads after deleting it:

Private Sub lvPosts_ItemCommand(ByVal sender As Object,
ByVal e As System.Web.UI.WebControls.ListViewCommandEventArgs)
Handles lvPosts.ItemCommand

 Select e.CommandName
 Case “DeleteThread”
 Using lPostrpt As New PostsRepository
 Dim threadPostID As Integer = Convert.ToInt32(e.CommandArgument)
 Dim forumID As Integer = lPostrpt.GetPostById(threadPostID).PostID
 lPostrpt.DeletePost(threadPostID)
 Me.Response.Redirect(“BrowseThreads.aspx?ForumID=” &
forumID.ToString())
 End Using

 Case “DeletePost”
 Using lPostrpt As New PostsRepository
 Dim postID As Integer = Convert.ToInt32(e.CommandArgument)
 lPostrpt.DeletePost(postID)

 Dim pagerBottom As DataPager =
DirectCast(lvPosts.FindControl(“pagerBottom”), DataPager)
 pagerBottom.SetPageProperties(0,
Settings.Forums.PostsPageSize, False)
 lvPosts.DataBind()
 End Using

 End Select

End Sub

Producing and Consuming RSS Feeds
The forums module includes the RSSForum handler, which returns an RSS feed of the forums’ threads,
either for a single subforum or for all subforums, depending on whether a ForumID parameter is passed
on the querystring or not. It also supports a SortExpr parameter that specifi es one of the supported
sort expressions, such as “LastPostDate DESC” (the default), “ReplyCount DESC”, and so forth.

87586c08.indd 42787586c08.indd 427 9/11/09 3:20:56 PM9/11/09 3:20:56 PM

428

Chapter 8: Forums

The main difference between the handler and the previous edition is the use of a custom httpHandler
instead of a Web Form to produce the RSS. As discussed in the Article’s module chapter, this is a much
more effi cient method to produce an RSS feed. The handler uses the same XML Literal mechanisms for
VB.NET used in Chapter 5 and LINQ to XML, XDocument, methodology used for C#. The only real dif-
ference is the specifi c query used to retrieve the posts.

Public Function GetRSSForum(ByVal vForumId As Integer) As IEnumerable(Of Post)

 Dim key As String = CacheKey & “_IEnumerable”

 Forumctx.Posts.MergeOption = Objects.MergeOption.NoTracking
 Dim lPosts As IEnumerable(Of Post)

 If vForumId > 0 Then

 lPosts = (From lPost In Forumctx.Posts _
 Order By lPost.LastPostDate Descending).Take(10).AsEnumerable

 Else

 lPosts = (From lPost In Forumctx.Posts _
 Where lPost.Forum.ForumID = vForumId _
 Order By lPost.LastPostDate Descending).Take(10).AsEnumerable

 End If

 Return lPosts

End Function

Remember to make the custom handler actually execute, it must be registered in the web.config fi le.
Since we set the *.rss to invoke the articles handler, this declaration must be before that declaration.

<add verb=”*“ path=”forum.rss” validate=”false” type=”TheBeerHouse.RSSForum,
TBHBLL, Version=3.5.0.1, Culture=neutral, PublicKeyToken=null” />
<add verb=”*“ path=”*.rss” validate=”false” type=”TheBeerHouse.RSSFeed,
TBHBLL, Version=3.5.0.1, Culture=neutral, PublicKeyToken=null” />

Securing the Forum Module
While developing the pages, we’ve already inserted many checks to ensure that only certain users can
perform actions such as closing, moving, deleting, and editing posts. Programmatic security is required
in some circumstances, but in other cases it suffi ces to use declarative security to allow or deny access
to a resource by a given user or role. For example, the AddEditPost.aspx page must never be accessed
by anonymous users in this implementation, and you can easily enforce this restriction by adding a dec-
laration to the web.config fi le found in the site’s root folder: you just need to add a new <location>
section with a few <allow> and <deny> elements. There’s one other aspect of the AddEditPost.aspx
page that should be considered: if a member doesn’t respect the site’s policies and repeatedly submits
messages with spam or offensive language, then you’d like to be able to ban the member from adding
any new posts. One way to do this is to block messages coming from that IP address, but it’s even better
to block that user account from accessing the page. However, you don’t want to block that account com-
pletely; otherwise, that member would lose access to any other section of the site, which would be too
restrictive for that particular crime! The easiest way to handle this is to add a new role called “Posters”

87586c08.indd 42887586c08.indd 428 9/11/09 3:20:56 PM9/11/09 3:20:56 PM

429

Chapter 8: Forums

to all new users at registration time and then add a declarative restriction to web.config that ensures
that only users who belong to the Administrators, Editors, Moderators, or Posters role can access the
AddEditPost.aspx page, as shown here:

<location path=”AddEditPost.aspx”>
 <system.web>
 <authorization>
 <allow roles=”Administrators,Editors,Moderators,Posters” />
 <deny users=”*“/>
 </authorization>
 </system.web>
</location>

To automatically add a user to the Posters role immediately after the user has registered, you must mod-
ify the Register.aspx page developed in Chapter 4 to handle the CreateUserWizard’s CreatedUser
event (which is raised just after the user has been created), and then call the AddUserToRole method of
ASP.NET’s Roles class, like this:

Protected Sub CreateUserWizard1_CreatedUser(ByVal sender As Object,
ByVal e As System.EventArgs) Handles CreateUserWizard1.CreatedUser
 Roles.AddUserToRole(CreateUserWizard1.UserName, “Posters”)
End Sub

In the future, if you want to remove a given user’s right to post new messages, you only need to remove
the user from the Posters role, using the EditUser.aspx administration page developed in Chapter 4.
This module’s administration page also has some <location> section restrictions in the web.config
fi le located under the Admin folder to ensure that only Administrators, Editors, and Moderators can
access them.

Summary
In this chapter, you’ve built a forums system from scratch, and you did it by leveraging much of the work
done in earlier chapters, and many of the new features in ASP.NET 2.0. This was a further example
showing how to integrate the built-in membership and profi le systems into a custom module, as well as
reusing other pages and controls (such as the RssReader control) developed previously. Our forums
module supports multiple subforums, with optional moderation; it lists threads and replies through
custom pagination (with different sorting options), offers support for publishing and consuming stan-
dard RSS feeds, and extends the user profi les with forum-specifi c properties. We also created adminis-
tration features for deleting, editing, approving, moving, and closing threads and posts. This is a fairly
complete forums module that should work well with many small to midsized sites. However, the sub-
ject of user forums in general is a big area, and there are many possible options and features that you
might want to consider adding to your forums module. Here are a few suggestions to get you started:

Add support for some open forums, as a subforum-level option, which would be accessible by ❑

anonymous posters.

Allow some subforums to have different moderators for more granular security control (espe- ❑

cially useful for larger sites that may have multiple moderators who specialize in certain
subforums).

87586c08.indd 42987586c08.indd 429 9/11/09 3:20:56 PM9/11/09 3:20:56 PM

430

Chapter 8: Forums

Add e-mail notifi cation of new forum activity, or you can even send out e-mail message digests. ❑

E-mails could also be used by moderators to be notifi ed about new messages waiting to be
approved, and you might even allow the moderator to approve a message simply by clicking a
link contained in the e-mail, after reviewing the post’s body, also included in the e-mail.

Support a list of banned words and use regular expressions to replace them with acceptable ❑

alternatives, or maybe just a generic “###” pattern. Or, you can just tag offending messages for
moderation, even if the forum is not a moderated forum (would require a little more work on
the plumbing).

Add private forums, whereby members can send each other messages, but each member can ❑

only read messages that were specifi cally addressed to them. This is a handy way to encourage
people to communicate with each other, while allowing them to keep their own personal e-mail
address hidden from other users (which is often desirable as a means of limiting spam). To
make this easier to use, whenever you see the username of someone who posted a message in a
forum, that username could have a link to another page that gives you the option to send that
user a private message. To ensure that she will read your message, you could add an automatic
check for private messages that would occur each time a registered user logs in.

Implement a search feature to enable users to locate messages containing certain words or ❑

phrases.

Let members upload their own attachments, which would be accessed from a link in a forum ❑

message (be sure to make this an option, because some site owners may not like this idea for
security and bandwidth reasons). You could allow confi gurable fi lename extensions (disallow-
ing .exe, .bat, .vbs, and so forth, but allowing .doc, .txt, and the like) and a confi gurable
limit on allowable fi le size. You might also want to force any messages containing an attach-
ment to be moderated so that a power user can review the attachment before allowing it (this is
especially important if you want to allow images to be uploaded).

There are numerous very complex and complete forums systems for ASP.NET, and many of them are
free. You might want to use one of them if the simple forums module presented here doesn’t meet your
needs, or you might just want to study the others to get ideas for features you might want to add to
your own forum module. One of the best, and most feature-rich, forums modules for ASP.NET is the
Community Server, available at www.communityserver.org. This is 100% free for nonprofi t sites, and
fairly inexpensive for use on commercial sites. This is the same forums module used by the famous
www.asp.net site, Microsoft’s offi cial ASP.NET developer site. But don’t be too quick to discard the forums
module developed in this chapter, because even though it’s missing some of the more advanced features,
it still has several big benefi ts, including the fact that it’s already integrated with the site’s common layout
and membership system (while others do not, unless you modify them, as they need to be installed on a
separate virtual folder that makes it more diffi cult to share pieces of the parent site); it uses many of the
features in ASP.NET 2.0, and it is fairly easy to maintain and understand.

In the next chapter, we’ll implement another common requirement in a modern, full-featured website:
an e-commerce store with support for real-time electronic payments.

87586c08.indd 43087586c08.indd 430 9/11/09 3:20:56 PM9/11/09 3:20:56 PM

E-Commerce Store

In this chapter, we’ll implement a simple working e-commerce store for The Beer House, to enable
users to shop for mugs, T-shirts, and other gadgets for beer-fanatics. In addition to the existing
patterns and knowledge we have covered in this book the store gives us a chance to extend the
application of AJAX and custom profi le objects. We’ll also drill down into e-commerce-specifi c
design and coding issues as we implement a persistent shopping cart, and we’ll integrate a third-
party payment processor service to support real-time credit card transactions. At the end of the
chapter you’ll have a complete e-commerce module that you can easily adapt to suit your own needs.

Problem
The Beer House wants to extend its brand and turn the website into a direct revenue stream instead
of just a promotional vehicle. Many bars and restaurants sell branded products to customers, which
is both profi table and actually provides valuable free advertising. Nothing like customers who are
willing to pay you to promote your business!

This chapter covers the design and implementation of an e-commerce store — this option was
chosen for our demo website because it’s a good example of nontrivial design and coding, and it
gives you a chance to examine some additional ASP.NET technology in a real-world scenario.
Building an e-commerce store from scratch is one of the most diffi cult jobs for a web developer,
and it requires a good design up front, including accounting for security, leading the shopper to
place a profi table order, and the most important thing — collecting money. It’s not just a matter of
building the site to handle the catalog, the orders, and the payments; a complete business analysis
is required. You must identify your audience (potential customers), your competitors, a marketing
strategy to promote your site, marketing offers to convince people to shop on your site rather than
somewhere else, and plan for offers and other incentives to turn an occasional buyer into a repeat
buyer. You also need to arrange a supplier for products that you can sell (if you are not producing

87586c09.indd 43187586c09.indd 431 9/13/09 10:24:16 PM9/13/09 10:24:16 PM

432

Chapter 9: E-Commerce Store

them yourself), which involves the order management and shipping functions, and some consideration
of local laws (licenses, tax collection, etc.). All of this could require a considerable amount of time, energy,
and money, unless you are already running some kind of physical store that you merely want to extend.
In this case, we assume that the sample site will use a pub that already has the business knowledge needed
to answer the marketing-related questions, and we’ll focus on the technical side of this project (a reason-
able assumption because we are software developers and not marketing specialists).

I recommend any web developer building public-facing sites take some time to learn some basic online
marketing skills because doing so can go a long way toward understanding how to effectively build a
business’s public interface.

For the sample project, let’s say that the owner of TheBeerHouse wants to add an electronic store to the
site — to sell beer glasses, T-shirts, key chains, and other gift items for beer enthusiasts. She needs the
capability to create an online catalog that lists products divided into categories, one that provides a
detailed and appealing description for each product, has pictures of products, and allows users to add
them to an electronic shopping cart and pay for them online using a credit card (with a possible option
of letting users phone in their orders in case they don’t want to divulge their credit card information
online). The owner needs the capability to run special promotions by setting up discounts for certain
products, and to offer multiple shipping options at different prices. All this must be easily maintainable
by the store keeper herself, without routine technical assistance, so you must also provide a very com-
plete and intuitive administrative user interface. Finally, she also needs some kind of order-reporting
page that retrieves and lists the latest orders, the orders with a specifi c status (completed orders, orders
that were confi rmed but not yet processed, etc.) or orders for a specifi c customer. It should also enable
her to change the order status, the shipment date, and the shipment tracking information, and, of course,
see all order details, such as the customer’s full address and contact information. In the next section,
you’ll fi nd a detailed list of requirements and features to be implemented.

Customer service is a very important aspect of any retail business, but there are differences between
online and brick-and-mortar service. In person, a customer with a question or product problem can inter-
face directly with a clerk or manager. This is not always the case with online stores, but there are steps
that can be taken to improve the user experience when something goes wrong. The most basic features
include a contact form or phone number prominently displayed on the site. This gives customers a sense
of comfort; they can always contact you if they need help. Because the Beer House site is a demonstration
site, no phone number is displayed, but you should do this for any small online store.

One of the most overlooked customer service features any online store can have is a policies or terms
and conditions page. Simply put this is your policies and procedures concerning common issues that
happen, such as broken merchandise, lost items in shipping, returns, and the like. My experience over
the years is this is the one statement that can give you leverage against a bad customer. Most of the time
you will not have to deal with this situation, but it will occur. The other important aspect is a privacy
policy; this should also be have a link from every page in the site.

Design
As you can gather from the “Problem” section, implementing a custom e-commerce module can easily
be a big challenge, and entire books have been devoted to this subject. With this in mind, and because
of space constraints, this is the only chapter to cover that subject, including selected features that any

87586c09.indd 43287586c09.indd 432 9/13/09 10:24:17 PM9/13/09 10:24:17 PM

433

Chapter 9: E-Commerce Store

such store must have. Although this module won’t compete with sites like Amazon.com in terms of
features, it will be complete enough to actually run a real, albeit small, e-store. As you’ve done in
other chapters, you’ll leverage much of the other functionality already developed, such as membership
and profi le management (see Chapter 4), and our general DAL/BLL design, ASP.NET AJAX, and URL
Rewriting (see Chapter 3). Therefore, the following list specifi es the new functionality you’ll implement
in this chapter:

Support for multiple store departments, used to categorize products so that they’re easy to fi nd ❑

if the catalog has a lot of items

Products need a description with support for rich formatting, and images to graphically repre- ❑

sent them. Because customers can’t hold the product in their own hands, any written details and
visual aids will help them understand the product and may lead to a sale. It is also very impor-
tant in earning high search engine position for search phrases. A small thumbnail image will be
shown in the products listing and on the product page, while a bigger image can be shown
when the user clicks on the small image to zoom in.

Products will support a discount percentage that the storekeeper will set when she wants to run ❑

a promotion for that item. The customer will still see the full price on the product page, along
with the discount percentage (so that she can “appreciate” the sale, and feel compelled to order
the product), and the fi nal price that she will pay to buy the product.

As you’ve already done for the articles and forums modules, this module will also expose an ❑

RSS feed for the products catalog, which can be consumed on the home page of the site itself, or
by external RSS readers set up by customers who want to be notifi ed about new products.

Also the use of Search Engine Friendly URLS will be implemented like the Articles module. ❑

Both the store department and individual product pages will use friendly URLs.

Some simple stock availability management will be needed, such as the possibility to specify ❑

how many units of a particular item are in stock. This value will be decreased every time some-
one confi rms an order for that product, and the storekeeper will be able to see which products
need to be reordered (i.e., when there are only a few units left in stock).

The storekeeper will be able to easily add, remove, and edit shipping methods, such as Standard ❑

Ground, Next Business Day, and Overnight, each with a different price. Customers will be able
to specify a preferred shipping option when completing the order.

The module needs a persistent shopping cart for items that the customer wants to purchase. ❑

Making it persistent means that the user can place some items in the shopping cart, close the
browser, and end her session, and come back to the site later and still fi nd her shopping cart as
she left it, so that she doesn’t need to browse the entire catalog again to fi nd the products she
previously put in the cart. The customer may want time to consider the purchase before sub-
mitting it, she may want to compare your price with competitors fi rst, or she may not have her
credit card with her in that moment, so it’s helpful for users to be able to put items in the cart
and come back later to fi nalize the deal.

The current content of the shopping cart (the names of the items that were put inside it, as well ❑

as their quantity and unit price) and the subtotal should be always visible on each page of the
catalog, and possibly on the entire site, so that the user can easily keep it in mind (you want it to
be easy for customers to check out when they are ready, and you don’t want them to forget to
check out).

87586c09.indd 43387586c09.indd 433 9/13/09 10:24:17 PM9/13/09 10:24:17 PM

434

Chapter 9: E-Commerce Store

A user account is required to complete the order, because you’ll need some way to identify ❑

users when they come back to the site after submitting the order, to see the status of their order.
However, a well-designed e-commerce module should not ask users to log in or create a user
account until actually required, to ease the shopping process. If a new user is asked to create an
account (and thus fi ll up a long form, providing personal information, etc.) before even begin-
ning to shop, this may be a bother and prevent visitors from even looking at your products. If,
instead, you allow visitors to browse for products, add them to a shopping cart, and only ask
them to log in or create a new account just before confi rming the order, they’ll consider this
request as a normal step of the checkout process, and won’t complain about it (and you’ve
already hooked them into putting items in their cart).

To make the checkout process as smooth as possible, the shipping address information should ❑

be prefi lled with the address stored in the user’s profi le, if found (remember that those details
were optional at registration time). However, the shipping address may be different from the
customer’s address (possibly because the purchase is a gift for someone else), and thus the address
may be edited for any order. The profi le address should only be used as the default value. The bill-
ing address may be different also, but that will be collected by the payment processor service
(more details later).

The storekeeper must have a page that lists the orders of any specifi c interval of dates, using the ❑

last n days as a default interval (n is confi gurable in the default web.config fi le). She may also
need to retrieve all orders for a specifi c customer, or jump directly to a particular order if she
already knows its ID. The list will show a few order details, while a separate page will show the
complete information, including the list of items ordered, the customer’s contact information,
and the shipping address. Besides this read-only history data, the storekeeper must be able to
edit the order’s status (the number and title of order statuses must also be customizable by the
store’s administrator), the shipping date, and optionally the transaction ID and tracking ID (if
tracking is available by the shipping method chosen by the customer during checkout).

Add a Privacy and Terms and Conditions page to the site. ❑

As anticipated, you may want, or need, to add many additional features. However, the features in the
preceding list will give you a basic starting point for a working solution. In the following sections, you’ll
read more about some e-commerce-specifi c issues, such as choosing a service for real-time credit card
processing, and then you’ll create the typical design of the Entity Model, BLL, and UI parts of the module.

Choosing an Online Payment Solution
The user has visited your site, browsed the catalog, read the description of some products, and put them
into the shopping cart. She fi nally decides that the prices and conditions are good, and wants to fi nalize
the order. This means providing her personal information (name, contact details, and shipping address)
and, of course, paying by credit card. You should plan for, and offer, as many payment solutions as you
can, to satisfy all types of customers. Some prefer to send a check via snail mail; others prefer to provide
the credit card information by fax or phone, and others are fi ne with paying via their credit card online.

The best option for the storekeeper is, of course, the online transaction, as it is the most secure (informa-
tion is encrypted and no physical person sees it), it gives immediate feedback to the user, and it doesn’t
require the storekeeper to do anything. Several third-party services, called payment gateways, provide
this service. They receive some order details, perform a secure transaction for the customer, and keep a
small fee for each order — typically a percentage of the transaction amount, but it may also be a fi xed

87586c09.indd 43487586c09.indd 434 9/13/09 10:24:17 PM9/13/09 10:24:17 PM

435

Chapter 9: E-Commerce Store

fee, or possibly a combination of the two. You can integrate your site with these services in one of
two ways:

HTML forms ❑

Fully integrated payments ❑

Implementing HTML Forms
The customer clicks the button on your site to confi rm the order and pays for it. At this point, the user
is redirected to the external site of the payment gateway. That site will ask your customer for her billing
information (name, address, and credit card number) and will execute the transaction. The gateway’s
site resides on a secure server, that is, a server where the SSL protocol is used to encrypt the data sent
between the customer’s browser and the server. After the payment, the customer is redirected back to
your site. Figure 9-1 illustrates the process.

YOUR
SITE

YOUR SITE

EXTERNAL
PAYMENT
GATEWAY

PAYMENT GATEWAY

YOUR
SITE

YOUR SITE

Figure 9-1

The Secure Sockets Layer (SSL) is a secure web protocol that encrypts all data between a web server and
a user’s computer to prevent anyone else from knowing what information was sent over that connection.
SSL certifi cates are used on web servers and are issued by third-party certifi cate authorities (CA), which
guarantee to the customer that the site they’re shopping at really has the identity it declares. A customer
can identify the use of SSL by the presence of “https:” instead of “http:” in the URL, and by the padlock
icon typically shown in the browser’s status bar. To learn more about SSL, you can search on Google or
visit the websites of CAs such as GeoTrust, VeriSign, or Comodo. These providers ultimately offer the
same security product, but their prices and requirements vary.

Our store’s checkout page sends the payment gateway’s page the amount to charge, the recipient account
where it should place the money, the currency, and the URL where the customer will be redirected in case
of a successful or canceled order, using an HTML form that posts the data contained in a few hidden fi elds.
Here’s an example:

<form method=”post” action=”https://payment_gateway_url_here”>
 <input type=”hidden” name=”LoginName” value=”THEBEERHOUSE”>
 <input type=”hidden” name=”OrderAmount” value=”46.50 “>
 <input type=”hidden” name=”OrderCurrency” value=”USD”>
 <input type=”hidden” name=”OrderID” value=”#12345”>
 <input type=”hidden” name=”OrderDescription” value=”Beer Glass #2 (4 pieces)”
 <input type=”hidden” name=”ConfirmUrl”
 value=”http://www.yoursite.com/order_ok.aspx”>
 <input type=”hidden” name=”CancelUrl”
 value=”http://www.yoursite.com/order_ko.aspx”>
 <input type=”submit” value=”CLICK HERE TO PAY NOW!”>
</form>

87586c09.indd 43587586c09.indd 435 9/13/09 10:24:17 PM9/13/09 10:24:17 PM

436

Chapter 9: E-Commerce Store

Every payment gateway has its own parameters, with different names, and accepts data following their
own conventions, but the overall principle is the same for all of them. Many gateways also accept the
expected parameters through a GET request instead of a POST, which means that parameters are passed
on the querystring: in this case, you can build the complete URL on your site, possibly from within the
Click event handler of your ASP.NET form’s Submit button, and then redirect the customer to it (but
this method is less desirable because the querystring is visible).

Most of the information you pass to the gateway is also forwarded to the store site once the customer
comes back to it, either in the Order Confi rmed or the Order Canceled page, so that the original order is
recognized (by means of its ID) and the record representing it in your database is updated with the appro-
priate status code. Some payment gateway services encrypt the data they send to you and give you a private
key used to decrypt the data, so that you can ensure that the customer did not manually jump directly to
your order fi nalization page. Others use different mechanisms, but you always have some way to be noti-
fi ed whether payment was made (despite this automatic notifi cation, it would be wise to validate that the
payment was actually processed to ensure that a hacker has not tried to give us a false indication that a
payment was made).

The advantage of using an external payment service is its ease of integration and management. You
only forward the user to the external gateway (to a URL built according the gateway’s specifi cations
guide), and handle the customer’s return after she has paid for the order, or canceled it. You don’t have
to deal with the actual money transaction, nor do you have to worry about the security of the transac-
tion, which would at least imply setting up SSL on your site, and you don’t have to worry about keeping
the customer’s credit card information stored in a safe manner and complying with privacy laws (if you
only keep the customer’s name and address you don’t have to worry about the kinds of laws that protect
account numbers).

The disadvantage is that the customer actually leaves your site for the payment process, which may
be disorienting and inconvenient. While it’s true that most payment gateway services allow the site’s
owner/developer to change their payment page’s colors and insert the store’s logo inside it, the customi-
zation often does not go much further, so the difference between the store’s pages and the external
payment page will be evident. This would not be a problem if you’ve just created and launched an
e-commerce site that nobody knows and trusts. A customer may be more inclined to leave her credit
card information on the site of a well-known payment gateway, instead of on your lesser known site. In
that case, the visibility of the external payment service may actually help sales. For larger e-commerce
sites that already have a strong reputation and are trusted by a large audience, this approach won’t be
as appealing because it looks less professional than complete integration.

Implementing Fully Integrated Payments
The second approach to handling online payments also relies on an external payment gateway, but
instead of physically moving the user to the external site and then bringing her back to your site, she
never leaves your site in the fi rst place: she enters all her billing and credit card information on our
page, which you then pass to the external service behind the scenes (and you don’t store it within your
own system). The gateway will ultimately return a response code that indicates the transaction’s suc-
cess or failure (plus some additional information such as the transaction ID), and you can display some
feedback to the user on your page. This approach is depicted in Figure 9-2.

87586c09.indd 43687586c09.indd 436 9/13/09 10:24:17 PM9/13/09 10:24:17 PM

437

Chapter 9: E-Commerce Store

EXTERNAL
PAYMENT
GATEWAY

PAYMENT GATEWAY

YOUR
SITE

YOUR SITE

Figure 9-2

The manner in which your page communicates and exchanges data with the gateway service may be a
web service or some other simpler server-to-server technology, such as programmatically submitting
a POST request with the System.Net.HttpWebRequest class of the .NET Framework, and handling the
textual response (usually a simple string with some code indicating success or failure). The obvious
advantage of this approach is that the customer stays at your site for the entire process, so that all the pages
have the same look and feel, which you can customize as you prefer, and you don’t need to worry about
fake or customer-generated confi rmation requests from the payment gateway, because everything hap-
pens from server to server during a single postback.

A disadvantages of this approach is that you’re in charge of securing the transmission of sensitive infor-
mation from the customer’s browser to your site (even though you don’t store the info, it will still be
transferred to and from your web server), by installing a SSL certifi cate on your server, and using HTTPS
to access your own checkout pages. If credit card information is hijacked somehow during the trans-
mission, or if you don’t comply with all the necessary security standards, you may get into big legal
trouble, and you may lose all your other customers if they hear about the problem. Another disadvan-
tage is that if your site is small and unknown, then some customers may be reluctant to give you their
credit card number, something they would feel comfortable doing with a large and well-known credit
card–processing service.

It should be clear by now which of the two approaches you may prefer, and this will be infl uenced by
the size of the store, its transaction volume, its popularity among the customers, and how much money
the store owner wants to invest. Implementing the second approach requires buying and installing a
SSL certifi cate, it leaves more responsibilities to both you and the store’s owner, so you might choose the
fi rst approach, which is simpler, more cost-effective, and still very good for small sites. Conversely, if
you’re implementing a new e-commerce storefront for a large site that is already selling online and is
very popular, then the complete integration of the payment process into the store is defi nitely the best
and most professional option.

For the e-commerce store of TheBeerHouse, we’ll follow the simpler approach and implement a payment
solution that forwards the customer to the external payment service’s page. As the store grows, you may
wish to upgrade the site to use a fully integrated payment mechanism in the future.

There are many payment services to choose from, but some of them can only be used in one country, or
may only accept a small variety of credit cards. Because I wanted to implement a solution that could
work for as many readers as possible and be simple to integrate with, I selected PayPal. PayPal is widely
known as the main service used by eBay, and it accepts many popular credit cards and works in many
countries.

87586c09.indd 43787586c09.indd 437 9/13/09 10:24:17 PM9/13/09 10:24:17 PM

438

Chapter 9: E-Commerce Store

Using PayPal as the Payment Service
PayPal started as a service that enabled people to exchange money from one user’s account to another,
or to have payment sent to the user’s home in the form of a check, but it has grown into a full-featured
payment service that is used by a huge number of merchants worldwide as their favorite payment
method, for a number of reasons:

Competitive transaction fees, which are lower than most payment gateways. ❑

Great recognition among customers worldwide. At the time of writing, it reports more than ❑

86 million registered users. Much of their popularity stems from their relationship with eBay,
but PayPal is defi nitely not restricted to use within eBay.

It is available to 56 countries, and it supports multiple languages and multiple currencies. ❑

It supports taking orders via phone, fax, or mail, and processes credit cards from a management ❑

console called Virtual Terminal (available in the United States only).

Support for automated recurring payments, which is useful for sites that offer subscription-based ❑

access to their content, and need to bill their members regularly — on a monthly basis, for example.

Easy integration. Just create an HTML form with the proper parameters to redirect the customer ❑

to the payment page, and specify the return URL for confi rmed and canceled payments.

Multiple products that target business of all sizes for online payment processing. PayPal offers ❑

integrated gateway products as well as PayPal hosted payment forms.

Almost immediate setup. However, your store needs to use a validated PayPal account, which ❑

requires a simple process whereby they can send a small deposit to your linked bank account,
and you verify the amount and date of the transfer. This validation step is simple but necessary
to prove that the electronic transfer works with your bank account, and it proves your identity.

It has some good customization options, such as changing the payment pages’ colors and logo, ❑

so that it integrates, at least partially, with your site’s style.

Multiple payment integration opportunities, including both types of gateway interfaces previously ❑

described.

It offers complete control over which customers can make a purchase (for example, only U.S. ❑

customers with a verifi ed address) and enables merchants to set up different tax and shipping
amounts for different countries and states.

It provides a robust sandbox to allow developers to test their applications without fear of run- ❑

ning up transaction fees against the live payment gateway.

Choosing PayPal as the payment processor for TheBeerHouse allows you to start with its Website Payments
Standard option, https://www.paypal.com/cgi-bin/webscr?cmd=_wp-standard-overview-
outside, (the HTML form that redirects the customer to the PayPal’s pages) and later upgrade to Website
Payments Pro, https://www.paypal.com/cgi-bin/webscr?cmd=_wp-pro-overview-outside, or
PayFlow Pro gateway, https://www.paypal.com/cgi-bin/webscr?cmd=_payflow-gateway-overview-
outside. if you want to completely integrate the payment process into your site, hiding PayPal from the
customer’s eyes. All in all, PayPal offers a lot of options for fl exibility, as well as support and detailed
guides for merchants and developers who want to use it. I’ll outline a few steps for setting up the
PayPal integration here. See the offi cial documentation at https://cms.paypal.com/us/cgi-bin/?
cmd=_render-content&content_ID=developer/howto_html_landing and http://developer
.paypal.com for further details and examples. Even without prior knowledge of PayPal, it’s still trivial
to set up, and it works well.

87586c09.indd 43887586c09.indd 438 9/13/09 10:24:18 PM9/13/09 10:24:18 PM

439

Chapter 9: E-Commerce Store

Of special interest for developers is the Sandbox, a complete replication of PayPal used for development
and testing of systems that interact with PayPal (including all the administrative and management
pages, where you confi gure all types of settings). This test environment doesn’t make real transactions
but works with test credit card numbers and accounts. Developers can create an account for free (on
developer.paypal.com) and then create PayPal test business accounts for use within the Sandbox.
These test accounts can then be used as the recipient for sample transactions. You only need to know
a few basic parameters, described in the following table:

Property Description

cmd Specifi es in which mode you’re using PayPal’s pages. A value equal to _xclick
specifi es that you’re using the Pay Now mode, whereby the customer lands on
the PayPal’s checkout page, types in her billing details, and completes the order.
If the value is _cart, then you’ll be using PayPal’s integrated shopping cart,
which allows users to keep going back and forth from your store site to PayPal
to add multiple items to a cart managed by PayPal, until the customer wants to
check out. In this case, you’ll be implementing your own shopping cart and only
use PayPal only for the fi nal processing, so you’ll use the _xclick value.

upload A value of 1 indicates that you’re using your own shopping cart.

currency_code Specifi es the currency in which the other amount parameters (see below) are
denoted. If not specifi ed, the default value is USD (United States Dollar). Other
possible values are AUD (Australian Dollar), CAD (Canadian Dollar), EUR
(Euro), GBP (Pound Sterling), and JPY (Japanese Yen). We’ll allow our site
administrator to confi gure this setting.

business The e-mail address that identifi es the PayPal business account that will be the
recipient for the transaction. For example, I’ve created the account thebeerhouse@
wrox.com through the Sandbox, to use for my tests. You should create a Sandbox
account of your own for testing.

item_number A number/string identifying the order.

first_name First name

last_name Last name

address1 Street (1 of 2 fi elds)

city City

state State

zip Postal code

custom A custom variable that can contain anything you want. This is called a pass-
through parameter, because its value will be passed back to your store site when
PayPal notifi es you of the outcome of the transaction by calling our server-side
page indicated by the notify_url page (see below).

item_name A descriptive string for the order the customer is going to pay for, for example,
Order #25, or maybe “TheBeerHouse order 12345.”

Continued

87586c09.indd 43987586c09.indd 439 9/13/09 10:24:18 PM9/13/09 10:24:18 PM

440

Chapter 9: E-Commerce Store

Property Description

amount The amount the user will pay, in the currency specifi ed by currency_code.
You must use the point (.) as the separator for the decimal part of the number,
regardless of the currency and language being used, for example, 33.80.

shipping The cost of the shipping, specifi ed in the same currency of the amount, and in
the same format. This will be added to the amount parameter to calculate the
total price the customer must pay. Example: 6.00

return The URL the customer will be redirected to after completing the payment on
PayPal’s page, for example, www.yoursite.com/paypal/orderconfirmed
.aspx. In this page, you’ll typically provide some form of static feedback
to your customer that provides further instructions to track the order status,
and will mark the order as confi rmed. The URL must be encoded, so the
previous URL would become http%3a%2f%2fwww.yoursite
.com%2fPayPal%2fOrderCompleted.aspx.

cancel_return The URL to which the customer will be redirected after canceling the payment
on PayPal’s page, for example, www.yoursite.com/paypal/ordercancelled
.aspx. In this page, you’ll typically provide your customer some information to
make the payment later. This URL must be encoded as explained for the return
parameter.

notify_url The URL used by PayPal’s Instant Payment Notifi cation (IPN) to asynchronously
notify you of the outcome of a transaction. This is done in addition to the redi-
rection to the return URL, which happens just after the payment, and which you
can’t trust because a smart customer might manually type in the URL for your
site’s order confi rmation page, once she has discovered its format (possibly from
a previous regular order). IPN is a mechanism based on server-to-server com-
munication: PayPal calls your page by passing some information that identifi es
the transaction (such as the order ID, the amount paid, etc.), and you interrogate
PayPal to determine whether this notifi cation is real or was created by a mali-
cious user. To verify the notifi cation, you forward all the parameters received
in the notifi cation back to PayPal, making a programmatic asynchronous POST
request (through the HttpWebRequest class), and see if PayPal responds with
a “VERIFIED” string. If that’s the case, you can fi nally mark the order as con-
fi rmed and verifi ed.

Instead of creating a form making an HTTP POST (and thus passing the required parameters in the
request’s body), you can make a GET request and pass all parameters in the querystring, as in the example
that follows:

https://www.sandbox.paypal.com/us/cgi-bin/webscr?cmd=_xclick&upload=1&rm=2
&no_shipping=1&no_note=1¤cy_code=USD&business=thebeerhouse%40wrox.com
&item_number=25&custom=25&item_name=Order+%2325&amount=33.80
&shipping=6.00¬ify_url=http%3a%2f%2fwww.yoursite.com%2fPayPal%2fNotify.aspx
&return=http%3a%2f%2fwww.yoursite.com%2fPayPal%2fOrderCompleted.aspx%3fID%3d25
&cancel_return=http%3a%2f%2fwww.yoursite.com%2fPayPal%2fOrderCancelled.aspx

The preceding URL would redirect the customer to the Sandbox test environment. To handle real pay-
ments later, all you need to do is replace the “https://www.sandbox.paypal.com/us/cgi-bin/

87586c09.indd 44087586c09.indd 440 9/13/09 10:24:18 PM9/13/09 10:24:18 PM

441

Chapter 9: E-Commerce Store

webscr” part with “https://www.paypal.com/us/cgi-bin/webscr”. Later in the chapter you’ll see
how to dynamically build URLs for order-specifi c checkout pages, and how to implement the return
and verifi cation pages. For now, however, you should have enough background information to get started!
So let’s proceed with the design of the database, and then the DAL, BLL, and UI.

Designing the Database Tables
The e-commerce store module uses six tables for the catalog of products and order management, as
shown in Figure 9-3.

Figure 9-3

All catalog data is stored in tbh_Departments (the categories of products, which is similar to tbh_
Categories used by the articles module in Chapter 5) and tbh_Products, which contains the title, price,
description, images, and other information about specifi c products. Note that it contains a UnitPrice
fi eld and a DiscountPercentage fi eld, but the fi nal price is not saved in the database; rather, it is
dynamically calculated on the BLL. Similarly, there are the Votes and TotalRating fi elds (which have
a similar usage to the tbh_Articles table), and the AverageRating information will be dynamically
calculated later. The relationship between the two tables makes tbh_Products.DepartmentID a foreign
key and establishes cascade updates and deletes, so that if a department is deleted, then all of its products
are automatically deleted as well.

A similar relationship exists between tbh_Orders and tbh_OrderItems. The former stores informa-
tion about the order, such as its subtotal and shipping amount, the complete customer’s contact infor-
mation and shipping address, shipping method, current order status, and transaction and tracking ID.
The latter is the Details table of the master-detail relationship, and stores the order lines of the product,
whereby a line describes each ordered product, with its title, ID, unit price, quantity, and stock-keeping
unit (SKU) — a SKU is a marketing term designating a product; it’s basically a model number (you will

87586c09.indd 44187586c09.indd 441 9/13/09 10:24:18 PM9/13/09 10:24:18 PM

442

Chapter 9: E-Commerce Store

use the SKU to reorder more items of a given type). There are also two more support tables, which store
shipping options and order status.

You may be wondering why the tbh_Orders and tbh_OrderItems tables maintain a copy of many values
that could be retrieved by joining two tables. Take, for example, the tbh_Orders.ShippingMethod and
tbh_Orders.Shipping fi elds, which you may assume could be replaced with a single ShippingMethodID
foreign key that references a record in tbh_ShippingMethods. As another example, consider that tbh_
OrderItems contains the title, price, and SKU of the ordered product, even if it already has a reference
to the product in the tbh_Products table through the ProductID foreign key. However, think about
the situation when a shipping method is deleted or edited, which changes its title and price. If you only
linked an order record to a record of ShippedMethods, this would result in a different total amount
and a different shipping method after the change, which obviously can’t be permitted after an order
was submitted and confi rmed (you can’t modify data of a confi rmed order because it would be too late).
The same is true for products: you can delete or change the price of a product, but orders made before the
change cannot be modifi ed, and they must keep the price and all other information as they were at
the time of the order. If a product is deleted, the storekeeper must still be able to determine the product’s
name, SKU, and price, to identify and ship it correctly. All this wouldn’t be possible if you only stored
the ID of the product because that would become useless once the product were deleted. The product
ID is still kept in the tbh_OrderItems table, but only as optional information that would enable you
to create a hyperlink to the product page if the product is still available. The tbh_Orders and tbh_
OrderItems tables are self-contained history tables.

The exception to this rule is the tbh_Orders.StatusID fi eld, which actually references a record of
tbh_OrderStatuses: there will be three built-in statuses in this table (of which you can customize at
least the title), which identify an order waiting for payment, a confi rmed order (PayPal redirected to the
OrderConfirmed.aspx page), and a verifi ed order (an order for which you’ve verifi ed the payment’s
authenticity by means of PayPal’s IPN notifi cation). The tbh_Orders and tbh_OrderItems tables are also
read-only for the most part, except for some information in the tbh_Orders table, such as the StatusID,
ShippedDate, TrackingID, and TransactionID fi elds, which must be updatable to refl ect the changes
that happen to the order during its processing.

Designing the Confi guration Module
The confi guration settings of the store module are defi ned in a <store> element within the
<theBeerHouse> section of the web.config fi le. The class that maps the settings is StoreElement,
which defi nes the following properties:

Property Description

RatingLockInterval Number of days that must pass before a customer can rate a prod-
uct that she has already rated previously.

PageSize Default number of products listed per page. The user will be able
to change the page size from the user interface.

RssItems Number of products included in the RSS feeds.

DefaultOrderListInterval Number of days from the current date used to calculate the start
date of the default date interval in which to retrieve the orders in a
specifi c state (in the storekeeper’s management console). The inter-
val’s start and end date can be changed in the administration page.

87586c09.indd 44287586c09.indd 442 9/13/09 10:24:18 PM9/13/09 10:24:18 PM

443

Chapter 9: E-Commerce Store

Property Description

SandboxMode Boolean value indicating whether the transactions will be run in
PayPal’s Sandbox test environment or in the real PayPal.

BusinessEmail E-mail address of the PayPal business account that will be the recip-
ient for the money transfer executed on PayPal to pay for the order.

CurrencyCode String identifying the currency for the amounts that the customer
will pay on PayPal. The default is USD. This currency code will
also be used in the amounts shown in the end-user pages on the
right side of the amounts (e.g., 12.50 USD).

LowAvailability Lower threshold of units in stock that determines when a product
should be reordered to replenish the stock. This condition will be
displayed graphically on the page with special icons.

ProductURLIndicator The string designating the path token used in the Search Engine
Friendly URL to retrieve a Catalog Department page.

DepartmentURLIndicator The string designating the path token used in the Search Engine
Friendly URL to retrieve a Product Detail page.

Designing the Entity Model
As usual, the Entity Model is created by running the wizard, which creates the entities for each table
in the database and their relationships. After the wizard completes, the entity names and relationships
should be adjusted to make them more human readable by removing the tbh_ prefix and adjusting
the singular and plural state for the Set and entity name. Figures 9-4 through 9-6 show the Entity Model
with the fi nal names.

Figure 9-4

87586c09.indd 44387586c09.indd 443 9/13/09 10:24:18 PM9/13/09 10:24:18 PM

444

Chapter 9: E-Commerce Store

Figure 9-5

Figure 9-6

Designing the Business Layer
The business layer for the E-Commerce module follows the same rules that have been reviewed
in previous chapters. Each entity has a corresponding repository class that inherits from a
BaseShoppingCartRepository class. Each of these repositories contains members that manage
querying, inserting, and updating records. Each entity also has a class that extends the partial class
nature of the entity class. Here additional properties and validation logic is managed. Figure 9-7 shows
the classes that manage the store’s catalog.

Figure 9-8 illustrates the classes needed for managing orders: the shopping cart, the shipping methods,
the order statuses, and the actual order storage.

87586c09.indd 44487586c09.indd 444 9/13/09 10:24:18 PM9/13/09 10:24:18 PM

445

Chapter 9: E-Commerce Store

Figure 9-7

Figure 9-8

87586c09.indd 44587586c09.indd 445 9/13/09 10:24:18 PM9/13/09 10:24:18 PM

446

Chapter 9: E-Commerce Store

Most of the classes displayed in the fi gure don’t require further explanation. However, the classes related
to the shopping cart are not typical, and we’ll examine these now. As mentioned earlier, we want to
make the shopping cart persistent between different sessions of the same user. Prior to ASP.NET 2.0,
projects like this would have required creating your own tables, stored procedures or SQL statements,
and classes for saving the shopping cart data in a durable medium, instead of using Session variables
that would only last a short time. Now, however, we can create a domain class that represents the cart,
and, assuming the class is serializable, you can use it as a data type for a profi le variable, and let ASP.
NET’s profi le module persist and load it for the current user automatically, including anonymous users!

The ShoppingCart class displayed earlier is such a class: its methods add, modify, and remove items
(represented by ShoppingCartItem objects) to and from an internal Dictionary object (the generic
version of Dictionary actually, which has been specialized for storing ShoppingCartItem objects, so
that explicit casting is no longer necessary when retrieving an item from it), and its Total property
dynamically calculates the shopping cart’s total amount by multiplying the quantity by the unit price
of each product, adding the result for each item. The other class, CurrentUserShoppingCart, provides
static methods that just call the similarly named method of the ShoppingCart object for the current
user. The CurrentUserShoppingCart class is used as the object referenced because it cannot directly
reference a profile property in its TypeName property.

Finally, note the Order.InsertOrder method does not take a list of items, with all their details, to be
copied into records of thb_OrderItems, but rather, takes an instance of the ShoppingCart class, which
already contains all this data. Additionally, it also takes the customer’s details and the shipping
address, which is not contained in the ShoppingCart.

Designing the User Interface Services
This module is made up of many pages. As usual, there is a complete administration console that allows
you to edit practically all the data it uses. In addition to the existing roles (Administrators, Editors,
Contributors, and Posters) a new role named StoreKeepers should be created to designate which users
will be allowed to administer the store. A new role, separate from the current Editors role, was necessary
because people managing articles, polls, and newsletters are not necessarily the same people who will
manage products and orders (and vice versa). However, there are a few sensitive functions that only an
Administrator can perform, such as deleting orders. Here is a complete list of pages and user controls
used by the module:

~/Admin/ManageDepartments.aspx: ❑ Let’s an administrator or storekeeper add, edit, and delete
store departments.

~/Admin/AddEditDepartment.aspx: ❑ Lets an administrator or storekeeper add a new department
or edit an existing one.

~/Admin/ManageShippingMethods.aspx: ❑ Lets an administrator or storekeeper add, edit, and
delete shipping methods.

~/Admin/AddEditShippingMethod.aspx: ❑ Lets an administrator or storekeeper add a new
shipping method or edit an existing one.

~/Admin/ManageOrderStatuses.aspx: ❑ Lets an administrator or storekeeper add, edit, and
delete store order statuses.

~/Admin/AddEditOrderStatus.aspx: ❑ Lets an administrator or storekeeper add a new order
status or edit an existing one.

87586c09.indd 44687586c09.indd 446 9/13/09 10:24:18 PM9/13/09 10:24:18 PM

447

Chapter 9: E-Commerce Store

~/Admin/ManageDepartments.aspx: ❑ Lets an administrator or storekeeper view the list of
departments, with their title, description, and associated image. Also contains links and com-
mands to edit, delete departments, and display the administration of the department’s products.

~/Admin/AddEditDepartment.aspx: ❑ Lets an administrator or storekeeper add a new depart-
ment or edit an existing one.

~/Admin/ManageProducts.aspx: ❑ Lets an administrator or storekeeper view the list of products,
with their title, unit price, average rating, availability, and other information. Also contains
links and commands to edit and delete products.

~/Admin/AddEditProduct.aspx: ❑ Lets an administrator or storekeeper add a new product or edit
an existing one.

~/Admin/ManageOrders.aspx: ❑ Lets an administrator or storekeeper fi nd and review orders by
customer name, status, or ID. However, only administrators can delete orders.

~/Admin/EditOrder.aspx: ❑ Lets an administrator or storekeeper manage a specifi c order, that is,
review all of its details and edit a few of its properties, such as the status, the shipping date, and
the transaction and tracking ID.

~/ShowDepartments.aspx: ❑ This end-user page displays the list of store departments, with an
image and a description for each of them, along with a link to browse their products.

~/BrowseProducts.aspx: ❑ Renders a list of products with paging support, for a specifi c depart-
ment or for all departments. Information such as the product’s title, unit price, discount, aver-
age rating, availability, and a small image are displayed.

~/ShowProduct.aspx: ❑ Shows all details about a specifi c product, allows a customer to rate the
product, and allows them to add the product to their shopping cart, for later review or
purchase.

~/ShoppingCart.aspx: ❑ Shows the current contents of the customer’s shopping cart, allowing
them to change the quantity of any item, remove an item, choose a shipping method, and then
recalculate the subtotal, shipping, and total amounts. This page also provides a three-step wizard
for checkout: the fi rst step is the actual shopping cart just described; in the second step, the cus-
tomers provide the shipping address (by default this is retrieved from the user’s address, stored
in their profi le, if present), and in the fi nal step customers can review all the order information,
that it, the list of items they’re about to order (with unit price and quantity), the subtotal, the
shipping method and its cost, the total amount, and the address to which the products will be
shipped. After the last step is confi rmed, the order is saved in the database, and the customer is
sent to the PayPal site to pay for the order.

~/PayPal/OrderCompleted.aspx: ❑ This is the page to which PayPal redirects customers after they
pay for the order. The page provides some feedback to the user and marks the order as
confi rmed.

~/PayPal/OrderCancelled.aspx: ❑ This is the page to which PayPal redirects customers after they
have canceled the order. The page provides some feedback to the customer, explaining that the
order was saved, and that it can be paid for later.

~/PayPalIPN.ashx: ❑ This is the page to which PayPal sends the transaction’s result, as part of
the Instant Payment Notifi cation. It confi rms that the notifi cation is verifi ed, and if so, marks it
as such.

87586c09.indd 44787586c09.indd 447 9/13/09 10:24:19 PM9/13/09 10:24:19 PM

448

Chapter 9: E-Commerce Store

~/OrderHistory.aspx: ❑ This lets customers review their past orders, to check their status, or if/
when they were shipped, and so forth. For orders that were canceled during payment, a link to
return to PayPal and complete the payment is provided.

~/Products.rss: ❑ This is a custom HttpHandler that produces the RSS feed for the store catalog,
returning a number of products (the number is specifi ed by the RssItems confi guration setting
described earlier) sorted according to a querystring parameter. For example, it may return the
10 most recent products, the 10 least expensive products, or the 10 most discounted products
(great for immediate syndication of special offers).

~/Controls/ShoppingCartBox.ascx: ❑ This user control statically displays the current contents of
the customer’s shopping cart, with the name and quantity of the products. It doesn’t support
editing but provides a link to the ShoppingCart.aspx page where this can be done. It also has
a link to the OrderHistory.aspx page. The control will be plugged into the site’s shared lay-
out, so that these links and information are easily reachable from anywhere on the site.

~/Privacy.aspx: ❑ A static page contains the site’s privacy policy.

~/Terms.aspx: ❑ A static page contains the site’s terms and conditions.

Solution
We’ll go very quickly through much of the implementation of the solution, as the structure of many
classes and pages is similar to those developed for previous modules. In particular, creation of the
database tables, the Entity Data Model, and the confi guration code is completely skipped in this chapter,
because of space constraints. Of course, you’ll fi nd the complete details in the code download. Instead,
I’ll focus this space on the implementation of code containing features not already discussed, and code
containing interesting logic, such as the shopping cart profi le class and the companion classes, as well
as the checkout process and the integration with PayPal.

Implementing the Business Logic Layer
First, we’ll examine the BLL classes related to the shopping cart, starting with the ShoppingCartItem
class, which is a class that wraps data for an item in the cart, with its title, SKU, ID, unit price, and quan-
tity. This class is decorated with the [Serializable] attribute, which is necessary to allow the ASP.NET
profi le system to persist the ShoppingCartItem objects. Here’s the code:

<Serializable()> _
Public Class ShoppingCartItem

 Private _id As Integer = 0
 Private _title As String = String.Empty
 Private _sku As String = String.Empty
 Private _unitPrice As Decimal
 Private _quantity As Integer = 1

 Public Property ID() As Integer
 Get
 Return _id
 End Get
 Private Set(ByVal value As Integer)

87586c09.indd 44887586c09.indd 448 9/13/09 10:24:19 PM9/13/09 10:24:19 PM

449

Chapter 9: E-Commerce Store

 _id = value
 End Set
 End Property

 Public Property Title() As String
 Get
 Return _title
 End Get
 Private Set(ByVal value As String)
 _title = value
 End Set
 End Property

 Public Property SKU() As String
 Get
 Return _sku
 End Get
 Private Set(ByVal value As String)
 _sku = value
 End Set
 End Property

 Public Property UnitPrice() As Decimal
 Get
 Return _unitPrice
 End Get
 Private Set(ByVal value As Decimal)
 _unitPrice = value
 End Set
 End Property

 Public Property Quantity() As Integer
 Get
 Return _quantity
 End Get
 Set(ByVal value As Integer)
 _quantity = value
 End Set
 End Property

 Public Sub New(ByVal id As Integer, ByVal title As String, _
ByVal sku As String, ByVal unitPrice As Decimal)
 Me.ID = id
 Me.Title = title
 Me.SKU = sku
 Me.UnitPrice = unitPrice
 End Sub
End Class

The ShoppingCart class exposes a number of methods for inserting, removing, and retrieving multiple
ShoppingCartItem objects to and from an internal Dictionary object instantiated for that type. When an
item is inserted, the class checks whether the Dictionary already contains an item with the same ID: if
not, it adds it; otherwise, it increments the Quantity property of the existing item. The RemoveItem method
works similarly, but it decrements the Quantity if the item is found; if the Quantity reaches 0, it

87586c09.indd 44987586c09.indd 449 9/13/09 10:24:19 PM9/13/09 10:24:19 PM

450

Chapter 9: E-Commerce Store

completely removes the item from the shopping cart. RemoveProduct suggests the same action, but it’s
actually different, because it removes a product from the cart, regardless of its quantity. UpdateItemQuantity
updates an item’s quantity, and is used when the customer edits the quantities in the shopping cart page.
Finally, the Clear method empties the shopping cart by clearing the internal Dictionary. Here’s the
complete code:

<Serializable()> _
Public Class ShoppingCart
 Private _items As New Dictionary(Of Integer, ShoppingCartItem)()

 Public ReadOnly Property Items() As ICollection
 Get
 Return _items.Values
 End Get
 End Property

 ‘ Gets the sum total of the items’ prices
 Public ReadOnly Property Total() As Decimal
 Get
 Dim sum As Decimal = 0.0
 For Each item As ShoppingCartItem In _items.Values
 sum += item.UnitPrice * item.Quantity
 Next
 Return sum
 End Get
 End Property

 ‘ Adds a new item to the shopping cart
 Public Sub InsertItem(ByVal id As Integer, ByVal title As String, _
ByVal sku As String, ByVal unitPrice As Decimal)
 If _items.ContainsKey(id) Then
 _items(id).Quantity += 1
 Else
 _items.Add(id, New ShoppingCartItem(id, title, sku, unitPrice))
 End If
 End Sub

 ‘ Removes an item from the shopping cart
 Public Sub DeleteItem(ByVal id As Integer)
 If _items.ContainsKey(id) Then
 Dim item As ShoppingCartItem = _items(id)
 item.Quantity -= 1
 If item.Quantity = 0 Then _
 _items.Remove(id)
 End If
 End Sub

 ‘ Removes all items of a specified product from the shopping cart
 Public Sub DeleteProduct(ByVal id As Integer)
 If _items.ContainsKey(id) Then
 _items.Remove(id)
 End If
 End Sub

 ‘ Updates the quantity for an item

87586c09.indd 45087586c09.indd 450 9/13/09 10:24:19 PM9/13/09 10:24:19 PM

451

Chapter 9: E-Commerce Store

 Public Sub UpdateItemQuantity(ByVal id As Integer, _
ByVal quantity As Integer)
 If _items.ContainsKey(id) Then
 Dim item As ShoppingCartItem = _items(id)
 item.Quantity = quantity
 If item.Quantity <= 0 Then _
 _items.Remove(id)
 End If
 End Sub

 ‘ Clears the cart
 Public Sub Clear()
 _items.Clear()
 End Sub
End Class

If you now go to the root’s web.config fi le and change the <profile> section according to what is
shown here, you’ll have a fully working persistent shopping cart, also available to anonymous users:

<profile defaultProvider=”TBH_ProfileProvider”>
 <providers>...</providers>
 <properties>
 <add name=”FirstName” type=”String” />
 <add name=”LastName” type=”String” />
 ...
 <add name=”ShoppingCart” type=”TheBeerHouse.BLL.Store.ShoppingCart”
serializeAs=”Binary” allowAnonymous=”true” />
 </properties>
</profile>

The ShoppingCartItem class is not serializable to XML, because a default construc-
tor for the ShoppingCartItem is not present, and the ShoppingCart’s Item property
does not have a setter accessory. These requirements do not exist for binary serial-
ization, though, and because of this I chose to use this serialization method and
create more encapsulated classes.

With a few dozen lines of code we’ve accomplished something that in previous versions of .NET and most
other frameworks would have required hours of work to accomplish by creating database tables, stored
procedures, and DAL classes. Remember to update the Profile_MigrateAnonymous event handler in
the global.asax fi le to migrate the ShoppingCart property from the anonymous user’s profi le to the
profi le of the member who just logged in. However, you must do it only if the anonymous customer’s
shopping cart is not empty, because otherwise you would always erase the registered customer’s shop-
ping cart:

Sub Profile_MigrateAnonymous(ByVal sender As Object,
ByVal e As ProfileMigrateEventArgs)
 ‘ get a reference to the previously anonymous user’s profile
 Dim anonProfile As ProfileBase = ProfileBase.Create(e.AnonymousID)
 ‘ if set, copy its Theme and ShoppingCart to the current user’s profile
 If anonProfile.GetPropertyValue(“ShoppingCart”).Items.Count > 0 Then
 Me.Profile.ShoppingCart = anonProfile.GetPropertyValue(“ShoppingCart”)

87586c09.indd 45187586c09.indd 451 9/13/09 10:24:19 PM9/13/09 10:24:19 PM

452

Chapter 9: E-Commerce Store

 End If
 ...
End sub

Next we’ll look at the Order class, for which GetOrderByID looks like all the Get{xxx}ByID methods
of the other business classes in other modules:

Public Function GetOrderById(ByVal OrderId As Integer) As Order

Dim key As String = CacheKey & “_” & OrderId

If EnableCaching AndAlso Not IsNothing(Cache(key)) Then
 Return CType(Cache(key), Order)
End If

Shoppingctx.Orders.MergeOption = MergeOption.NoTracking
Dim lOrder As Order = (From lai In Shoppingctx.Orders _
 Where lai.OrderID = OrderId).FirstOrDefault

If EnableCaching Then
 CacheData(key, lOrder)
End If

Return lOrder

End Function

Another interesting method is InsertOrder, which accepts an instance of ShoppingCart with all the
order items, and other parameters for the customer’s contact information and the shipping address. It must
insert multiple records (a record into tbh_Orders, and one or more records into tbh_OrderDetails).
Thanks to the transactional nature of the Entity Framework, you do not have to use a TransActionScope
object to manage the insertion process. Each item in the customer’s shopping cart is added to the
Order’s OrderItems list before the object graph is committed to the database in one single transaction.
TransactionScope can still be used to wrap code using the Entity Framework to update the database
but is best served in situations where the transaction involves coordination with external services such
as MSMQ. The following code shows how it’s used in a real situation:

Public Function InsertOrder(ByVal vshoppingCart As ShoppingCart,
ByVal shippingMethod As String, _
 ByVal shipping As Decimal, ByVal shippingFirstName As String,
ByVal shippingLastName As String, _
 ByVal shippingStreet As String, ByVal shippingPostalCode As String,
ByVal shippingCity As String, _
 ByVal shippingState As String, ByVal shippingCountry As String,
ByVal customerEmail As String, _
 ByVal customerPhone As String, ByVal customerFax As String,
ByVal transactionID As String) As Order

 Dim lOrder As Order

 Dim userName As String = Helpers.CurrentUserName

 ‘ insert the master order

87586c09.indd 45287586c09.indd 452 9/13/09 10:24:19 PM9/13/09 10:24:19 PM

453

Chapter 9: E-Commerce Store

 lOrder = Order.CreateOrder(0, DateTime.Now, _
 userName, 1, shippingMethod, vshoppingCart.Total, shipping, _
 shippingFirstName, shippingLastName, shippingStreet,
shippingPostalCode, _
 shippingCity, shippingState, shippingCountry, customerEmail,
customerPhone, _
 customerFax, Now, True)

 lOrder.TransactionID = transactionID

 ‘insert the child order items
 For Each item As ShoppingCartItem In vshoppingCart.Items
 lOrder.OrderItems.Add(OrderItem.CreateOrderItem(0,
DateTime.Now, userName, _
 item.ID, item.Title, item.SKU, item.UnitPrice,
item.Quantity, DateTime.Now, True))
 Next

 lOrder = Me.AddOrder(lOrder)

 Return lOrder

End Function

The StatusCode enumeration used in the preceding code includes the three built-in statuses required
by the module: waiting for payment, confi rmed, and verifi ed, and is defi ned as follows:

Public Enum StatusCode As Integer
 WaitingForPayment = 1
 Confirmed = 2
 Verified = 3
 Shipped = 4
 Canceled = 5
End Enum

Note, however, that because the StatusID property is an integer, an explicit cast to int is required. The
StatusID type is int and not StatusCode because users can defi ne their own additional status codes,
and thus working with numeric IDs is more appropriate in most situations.

The Store module has a dedicated helper class, StoreHelper, which contains several methods to help
with common routines that could be used in various places in the store. The GetPayPalPaymentUrl
returns the URL to redirect the customer to PayPal to pay for the order. A valid Order entity must be
passed to the method to compile a valid URL to post to PayPal. It dynamically builds the URL shown in
the “Design” section with the amount, shipping, and OrderID values taken from the current order, plus
the recipient business e-mail and currency code taken from the confi guration settings, and the return
URLs that point to the OrderCompleted.aspx, OrderCancelled.aspx, and PayPalIPN.ashx pages
described earlier:

Public Shared Function GetPayPalPaymentUrl(ByVal vOrder As Order) As String

 If Not vOrder.IsValid Then
 Return “Not a valid order”

87586c09.indd 45387586c09.indd 453 9/13/09 10:24:19 PM9/13/09 10:24:19 PM

454

Chapter 9: E-Commerce Store

 End If

 Dim serverUrl As String
 If Globals.Settings.Store.SandboxMode Then
 serverUrl = “https://www.sandbox.paypal.com/us/cgi-bin/webscr”
 Else
 serverUrl = “https://www.paypal.com/us/cgi-bin/webscr”
 End If
 Dim amount As String = vOrder.SubTotal.ToString(“N2”).Replace(“,”, “.”)
 Dim shipping As String = vOrder.Shipping.ToString(“N2”).Replace(“,”, “.”)

 Dim firstname As String = HttpUtility.UrlEncode(vOrder.ShippingFirstName)
 Dim lastname As String = HttpUtility.UrlEncode(vOrder.ShippingLastName)
 Dim address As String = HttpUtility.UrlEncode(vOrder.ShippingStreet)
 Dim city As String = HttpUtility.UrlEncode(vOrder.ShippingCity)
 Dim state As String = HttpUtility.UrlEncode(vOrder.ShippingState)
 Dim zip As String = HttpUtility.UrlEncode(vOrder.ShippingPostalCode)

 Dim baseUrl As String =
HttpContext.Current.Request.Url.AbsoluteUri.Replace
(HttpContext.Current.Request.Url.PathAndQuery, “”) & _
 HttpContext.Current.Request.ApplicationPath
 If Not baseUrl.EndsWith(“/”) Then baseUrl &= “/”

 Dim notifyUrl As String = HttpUtility.UrlEncode(baseUrl
& “PayPal/PayPalIPN.ashx”)
 Dim returnUrl As String = HttpUtility.UrlEncode(baseUrl
& “PayPal/OrderCompleted.aspx?OrderID=” & _
 vOrder.OrderID.ToString())
 Dim cancelUrl As String = HttpUtility.UrlEncode(baseUrl
& “PayPal/OrderCancelled.aspx”)
 Dim business As String = HttpUtility.UrlEncode(
Globals.Settings.Store.BusinessEmail)
 Dim itemName As String = HttpUtility.UrlEncode(
“Order #” & vOrder.OrderID.ToString())

 Dim url As New StringBuilder()
 url.AppendFormat(_
 “{0}?cmd=_xclick&upload=1&rm=2&no_shipping=1&no_note=1¤cy_code={1}
&business={2}&item_number={3}&custom={3}&item_name={4}&amount={5}
&shipping={6}¬ify_url={7}&return={8}&cancel_return={9}
&first_name={10}&last_name={11}&address1={12}&city={13}
&state={14}&zip={15}”, _
 serverUrl, Globals.Settings.Store.CurrencyCode, business,
vOrder.OrderID, itemName, _
 amount, shipping, notifyUrl, returnUrl, cancelUrl, firstname,
lastname, address, city, state, zip)

 Return url.ToString()
End Function

87586c09.indd 45487586c09.indd 454 9/13/09 10:24:19 PM9/13/09 10:24:19 PM

455

Chapter 9: E-Commerce Store

Note that the method uses a different base URL according to whether the store runs in real or test
mode, as indicated by the Sandbox confi guration setting. Also note that PayPal expects all amounts to
use the period (.) as a separator for the amount’s decimal parts, and only wants two decimal digits. You
use variable.ToString(“N2”) to format the double or decimal variable as a string with two decimal
digits. However, if the current locale settings are set to Italian or some other country’s settings for which
a comma is used, you’ll get something like “33,50” instead of “33.50.” For this reason you also do a
Replace for “,” with “.” just in case.

Implementing the User Interface
As stated earlier, the Shopping Cart module is composed of many pages to manage the store and allow
customers to shop. There are really two distinct user interface sections: administrative and consumer.

Implementing the Store Administration Pages
Many administrative and end-user pages of this module are similar in structure of those in previous
chapters, especially to those of the articles module described and implemented in Chapter 5. For example,
in Figure 9-8 you can see how similar the page to manage departments is to the page to manage article
categories.

Figure 9-9

The page to manage a shipping option (see Figure 9-10) is also similar: the controls used to list and
insert/modify records just defi ne different fi elds, but the structure of the page is nearly identical.

87586c09.indd 45587586c09.indd 455 9/13/09 10:24:19 PM9/13/09 10:24:19 PM

456

Chapter 9: E-Commerce Store

Figure 9-10

In the page for managing order status, status records with IDs from 1 to 5 cannot be deleted, because
they identify special, hard-coded values. For example, you’ve just seen in the implementation of the
Order class that the UpdateOrder method checks whether the current order status is 2, in which case
it decrements the UnitsInStock fi eld of the ordered products. Because of this, you should handle the
ItemDataBound event of the ListView displaying the records, and ensure that the Delete ImageButton
is hidden for the fi rst three records. Following is the code to place into this event handler, and Figure 9-11
shows the fi nal result on the page:

Protected Sub lvOrderStatuses_ItemDataBound(ByVal sender As Object,
ByVal e As System.Web.UI.WebControls.ListViewItemEventArgs)
Handles lvOrderStatuses.ItemDataBound

 Dim lvdi As ListViewDataItem = DirectCast(e.Item, ListViewDataItem)

 If lvdi.ItemType = ListViewItemType.DataItem Then

 Dim btnDelete As ImageButton = CType(lvdi.FindControl(“btnDelete”),
ImageButton)
 Dim lOrderStatus As OrderStatus = CType(lvdi.DataItem, OrderStatus)

 If Not IsNothing(lOrderStatus) And Not IsNothing(btnDelete) Then

 If lOrderStatus.OrderStatusID <= 5 Then
 btnDelete.Visible = False
 End If

 End If

 End If

End Sub

87586c09.indd 45687586c09.indd 456 9/13/09 10:24:19 PM9/13/09 10:24:19 PM

457

Chapter 9: E-Commerce Store

Figure 9-11

The AddEditProduct.aspx page uses a familiar set of controls with some AJAX control extenders to
provide client-side validation, and enables to you to edit an existing product or insert a new one accord-
ing to the presence of an ProductID parameter on the querystring. The same thing was done (and shown
in detail) in Chapter 5, so please refer to that chapter to see the implementation. Figure 9-12 shows the
resulting page.

Figure 9-12

87586c09.indd 45787586c09.indd 457 9/13/09 10:24:19 PM9/13/09 10:24:19 PM

458

Chapter 9: E-Commerce Store

The ManageProducts.aspx page shows the list of the products of a specifi c department if a DepartmentID
parameter is found on the querystring; otherwise, it shows products from all departments. The page
contains a ListView control that defi nes the following columns:

An ❑ IMG tag that shows the product’s small image, whose URL is stored in the SmallImageUrl
fi eld. The IMG is wrapped by an anchor tag that links to the product’s detail admin page
(AddEditProduct.aspx).

A column containing the product’s Title, anchored to its detailed admin page. Below the title ❑

the product’s SKU is displayed.

A column that displays all the pricing information, including the ❑ UnitPrice, the Discount
Percent and the units currently available.

The fi nal two columns contain the edit and delete Image Buttons used in all the admin list ❑

pages.

Finally the ListView contains an AlternatingItemTemplate that uses a slightly different back-
ground color to help differentiate the rows. Here’s the code that defi nes the ListView just described:

<asp:ListView ID=”lvProducts” runat=”server”>
 <LayoutTemplate>
 <table cellspacing=”0” cellpadding=”0” class=”AdminList”>
 <tr class=”AdminListHeader”>
 <td colspan=”2”>
 Product
 </td>
 <td>
 Price Info
 </td>
 <td>
 Edit
 </td>
 <td>
 Delete
 </td>
 </tr>
 <tr id=”itemPlaceholder” runat=”server”>
 </tr>
 <tr>
 <td colspan=”5”>
 <div class=”pager”>
<asp:DataPager ID=”pagerBottom” runat=”server” PageSize=”10”
PagedControlID=”lvProducts”>
 <Fields>
 <asp:NextPreviousPagerField ButtonCssClass=”command”
FirstPageText=”«” PreviousPageText=”‹”
 RenderDisabledButtonsAsLabels=”true” ShowFirstPageButton=”true”
ShowPreviousPageButton=”true”
 ShowLastPageButton=”false” ShowNextPageButton=”false” />
 <asp:NumericPagerField ButtonCount=”7” NumericButtonCssClass=”command”
CurrentPageLabelCssClass=”current”
 NextPreviousButtonCssClass=”command” />
 <asp:NextPreviousPagerField ButtonCssClass=”command” LastPageText=”»”

87586c09.indd 45887586c09.indd 458 9/13/09 10:24:20 PM9/13/09 10:24:20 PM

459

Chapter 9: E-Commerce Store

NextPageText=”›”
 RenderDisabledButtonsAsLabels=”true” ShowFirstPageButton=”false”
ShowPreviousPageButton=”false”
 ShowLastPageButton=”true” ShowNextPageButton=”true” />
 </Fields>
</asp:DataPager>
 </div>
 </td>
 </tr>
 </table>
 </LayoutTemplate>
 <EmptyDataTemplate>
 <tr>
 <td colspan=”5”>
 <p>
 Sorry there are no Productss available at this time.</p>
 </td>
 </tr>
 </EmptyDataTemplate>
 <ItemTemplate>
 <tr>
 <td>
 <a href=”<%# String.Format(“AddEditProduct.aspx?ProductId={0}”,
 Eval(“ProductId”)) %>”>
 <img id=”Img1” runat=”server”
src=’<%# Eval(“SmallImageUrl”) %>’ alt=’<%# Eval(“Title”) %>’
border=”0” />
 </td>
 <td>
 <a href=”<%# String.Format(“AddEditProduct.aspx?ProductId={0}”,
Eval(“ProductId”)) %>”>
 <%# Eval(“Title”) %>

 <%# Eval(“SKU”) %>
 </td>
 <td>
 <%#FormatPrice(Eval(“UnitPrice”))%>

 Discount:
 <%# Eval(“DiscountPercentage”) %>%

 Units in Stock:
 <%# Eval(“UnitsInStock”) %>
 </td>
 <td align=”center”>
 <a href=”<%# String.Format(“AddEditProduct.aspx?ProductId={0}”,
 Eval(“ProductId”)) %>”>
 <img src=”../images/edit.gif” alt=”“ width=”16”
height=”16” class=”AdminImg” />
 </td>
 <td align=”center”>
 <asp:ImageButton runat=”server” ID=”btnDelete”
CommandArgument=’<%# Eval(“DepartmentID”).ToString() %>’
 CommandName=”Delete” ImageUrl=”~/images/delete.gif”

87586c09.indd 45987586c09.indd 459 9/13/09 10:24:20 PM9/13/09 10:24:20 PM

460

Chapter 9: E-Commerce Store

AlternateText=”Delete” CssClass=”AdminImg”
 OnClientClick=”return confirm(‘Warning: This will delete the
Product from the database.’);” />
 </td>
 </tr>
 </ItemTemplate>
 <AlternatingItemTemplate>
 <tr class=”AltAdminRow”>
 <td>
 <a href=”<%# String.Format(“AddEditProduct.aspx?ProductId={0}”,
Eval(“ProductId”)) %>”>
 <img id=”Img1” runat=”server”
src=’<%# Eval(“SmallImageUrl”) %>’ alt=’<%# Eval(“Title”) %>’
border=”0” />
 </td>
 <td>
 <a href=”<%# String.Format(“AddEditProduct.aspx?ProductId={0}”,
Eval(“ProductId”)) %>”>
 <%# Eval(“Title”) %>

 <%# Eval(“SKU”) %>
 </td>
 <td>
 <%#FormatPrice(Eval(“UnitPrice”))%>

 Discount:
 <%# Eval(“DiscountPercentage”) %>%

 Units in Stock:
 <%# Eval(“UnitsInStock”) %>
 </td>
 <td align=”center”>
 <a href=”<%# String.Format(“AddEditProduct.aspx?ProductId={0}”,
Eval(“ProductId”)) %>”>
 <img src=”../images/edit.gif” alt=”“ width=”16” height=”16”
class=”AdminImg” />
 </td>
 <td align=”center”>
 <asp:ImageButton runat=”server” ID=”btnDelete”
CommandArgument=’<%# Eval(“DepartmentID”).ToString() %>’
 CommandName=”Delete” ImageUrl=”~/images/delete.gif”
AlternateText=”Delete” CssClass=”AdminImg”
 OnClientClick=”return confirm(‘Warning: This will delete
the Product from the database.’);” />
 </td>
 </tr>
 </AlternatingItemTemplate>
 <ItemSeparatorTemplate>
 <tr>
 <td colspan=”5”>
 <hr />
 </td>

87586c09.indd 46087586c09.indd 460 9/13/09 10:24:20 PM9/13/09 10:24:20 PM

461

Chapter 9: E-Commerce Store

 </tr>
 </ItemSeparatorTemplate>
</asp:ListView>

There are other controls on the page, such as DropDownList controls to choose the parent department and
the number of products to list on the page. The Department’s DropDownList is bound in the Page Load
event by calling the BindDepartmentsToListControl method defi ned in the AdminPage class. This
method is used to bind a list of departments to a ListControl, which the DropDownList control inherits.
I chose to bind the list to the base ListControl class because the RadioButtonList, BulletedList,
RadioButtonList and ListBox all inherit from ListControl and the members needed to accomplish
the data binding are all defi ned in the ListControl class. The method takes two parameters, the
ListControl and a Boolean to indicate if an extra instructional item should be added at the top of the
list. It also automatically sets the SelectedValue based on the current value of the DepartmentId
property also defi ned in the AdminPage class:

Public Sub BindDepartmentsToListControl(ByVal vDepartmentListControl
As ListControl, ByVal bAddInstruction As Boolean)

 Using lDepartmentrpt As New DepartmentRepository

 vDepartmentListControl.DataValueField = “DepartmentId”
 vDepartmentListControl.DataTextField = “Title”

 vDepartmentListControl.DataSource = lDepartmentrpt.GetDepartments
 vDepartmentListControl.DataBind()

 If bAddInstruction Then
 vDepartmentListControl.Items.Insert(0,
New ListItem(“All Departments”, 0))
 End If

 vDepartmentListControl.SelectedValue = DepartmentId

 End Using

End Sub

If you look closely at the column that displays the product’s price, you’ll see that it calls a method named
FormatPrice to show the amount. This method is added to the Helpers class and wrapped in BasePage
class to help with legacy code based on previous versions of TheBeerHouse. It formats the input value as a
number with two decimal digits, followed by the currency code defi ned in the confi guration settings:

Public Shared Function FormatPrice(ByVal vPrice As Object) As String
Return Convert.ToDecimal(vPrice).ToString(“N2”) & “ “ &
 Globals.Settings.Store.CurrencyCode
End Function

Amounts are not displayed on the page with the default currency format (which would use the “C”
format string) because you may be running the store in another country, such as Italy, which would
display the euro symbol in the string, but you want to display USD regardless of the current locale
settings. Figure 9-13 shows the page at runtime.

87586c09.indd 46187586c09.indd 461 9/13/09 10:24:20 PM9/13/09 10:24:20 PM

462

Chapter 9: E-Commerce Store

Figure 9-13

Implementing the Consumer Interface
Presenting a good clean, easy to use store front is one of the most important things to make an e-commerce
site work. This does not mean there has to be over the top graphics and eye candy, but customers must
feel they can trust you, fi nd the products they want, and be able to check out easily and intuitively.
Making a customer think or work hard to place an order quickly leads to an investment that loses the
company money.

The ShowProduct.aspx Page
The BrowseProducts.aspx page is a very simple page that displays a list of store departments with
links to a product listing for each department. So we can jump straight to the product-specifi c
ShowProduct.aspx page. This shows all the possible details about the product whose ProductID is
passed on the querystring: the title, the average rating, the availability icon, the HTML long description,
the small image (or a default “no image available” image if the SmallImageUrl fi eld is empty), a link to
the full-size image (displayed only if the FullImageUrl fi eld is not empty), and the product’s price. As
for the product listing, the UnitPrice amount is shown if the DiscountPercentage is 0; otherwise,
that amount is rendered as crossed out, and DiscountPercentage along with the FinalUnitPrice
are displayed. Finally, there’s a button on the page that will add the product to the customer’s shopping
cart and will redirect the customer to the ShoppingCart.aspx page. Following is the content of the
.aspx markup page:

 <div>
 <div id=”ContentTitle”>
 <h1>
 <asp:Label runat=”server” ID=”lblTitle” /></h1>
 <asp:Panel runat=”server” ID=”panEditProduct”>

87586c09.indd 46287586c09.indd 462 9/13/09 10:24:20 PM9/13/09 10:24:20 PM

463

Chapter 9: E-Commerce Store

 <asp:HyperLink runat=”server” ID=”lnkEditProduct”
ImageUrl=”~/images/edit.gif” ToolTip=”Edit product”
 NavigateUrl=”~/Admin/AddEditProduct.aspx?ID={0}” />

 <asp:ImageButton runat=”server” ID=”btnDelete”
CausesValidation=”false” AlternateText=”Delete product”
 ImageUrl=”~/Images/Delete.gif” OnClientClick=”if
(confirm(‘Are you sure you want to delete this product?’) == false)
return false;” />
 </asp:Panel>
 </div>
 <div id=”ContentBody”>
 <div id=”ProductImage”>
 <asp:HyperLink runat=”server” ID=”HyperLink1”
Target=”_blank”></asp:HyperLink>
 </div>
 <div id=”productinfo”>
 Price:
 <asp:Literal runat=”server” ID=”lblDiscountedPrice”><s>{0}</s>
 {1}% Off = </asp:Literal>
 <asp:Literal runat=”server” ID=”lblPrice” />

 Availability:
 <asp:AvailabilityImage runat=”server” ID=”availDisplay” />

 Rating:
 <asp:Literal runat=”server” ID=”lblRating” Text=”{0} user(s)
have rated this product “ />

 <div class=”ProductThumb”>
 <img runat=”Server” id=”imgProduct” class=”ProductThumb”
src=”~/Images/noimage.gif” />

 </div>
 <asp:HyperLink runat=”server” ID=”lnkFullImage”
Target=”_blank”></asp:HyperLink>
 <asp:Literal runat=”server” ID=”lblDescription” />

 <asp:Button ID=”btnAddToCart” runat=”server” Text=”Add to
Shopping Cart” />

 <hr class=”ProductHR” />
 <div class=”sectiontitle”>
 How would you rate this product?
 <asp:UpdatePanel ID=”UpdatePanel1” runat=”server”>
 <ContentTemplate>
 Rate This Product:

 <asp:Rating ID=”ProductRating” runat=”server”
BehaviorID=”ratDisplay” CssClass=”ArticleRating”
 StarCssClass=”ratingStar”
WaitingStarCssClass=”savedRatingStar”
FilledStarCssClass=”filledRatingStar”
 EmptyStarCssClass=”emptyRatingStar”>
 </asp:Rating>
 </ContentTemplate>
 </asp:UpdatePanel>

87586c09.indd 46387586c09.indd 463 9/13/09 10:24:20 PM9/13/09 10:24:20 PM

464

Chapter 9: E-Commerce Store

 </div>
 <asp:Literal runat=”server” ID=”ltlAvgRating” Text=”The average
rating for {1} is {0} beer(s).” />
 <asp:Literal runat=”server” ID=”lblUserRating” Visible=”False”
Text=”Your rated this product {0} beer(s). Thank you for your feedback.” />
 </div>
 </div>

You can see that there’s no binding expression in the preceding code, because everything is done in
the BindProduct method, which is called from the Page_Load event handler, after loading a Product
object according to the ProductID value read from the querystring; actually, it is a PrimaryKey prop-
erty defi ned in the base page classes. Remember the shopping cart is using search engine friendly URLs,
just like we used in the Articles module. So, there should be a valid ProductId passed in the URL via
the URL Rewrite function. If not, the page throws an ApplicationException with the message a
parameter is missing in the querystring. Assuming that there is a ProductId, the product BindProduct
method is called, and then the user rating for the product is set:

 Protected Sub Page_Load(ByVal sender As Object, ByVal e As System.EventArgs)
Handles Me.Load
 If Me.ProductId < 1 Then
 Throw New ApplicationException(“Missing parameter on the querystring.”)
 End If

 If Not Me.IsPostBack Then
 ‘ try to load the product with the specified ID, and raise an
exception if it doesn’t exist
 BindProduct()

 ‘ hide the rating box controls if the current user has already voted
for this product
 Dim userRating As Integer = GetUserRating()
 If userRating > 0 Then _
 ShowUserRating(userRating)
 End If
 End Sub

The BindProduct method follows the standard pattern we have used to bind value to the controls on
the page. Notice the method is the use of String.Format to apply values to specifi c textual controls on
the page. For example, the lblRating Literal control has its Text property defi ned in the markup as
“{0} user(s) have rated this product”. In the BindProduct method the number of users that
have submitted product ratings is inserted to the control’s Text.

Private Sub BindProduct()

 Using lProductrpt As New ProductsRepository

 Dim lproduct As Product = lProductrpt.GetProductById(ProductId)
 If IsNothing(lproduct) Then _
 Throw New ApplicationException(“No product was found for the
specified ID.”)

 ‘ display all article’s data on the page
 lblTitle.Text = lproduct.Title

87586c09.indd 46487586c09.indd 464 9/13/09 10:24:20 PM9/13/09 10:24:20 PM

465

Chapter 9: E-Commerce Store

 Title = lproduct.Title
 lblRating.Text = String.Format(lblRating.Text, lproduct.Votes)
 availDisplay.Value = lproduct.UnitsInStock
 lblDescription.Text = lproduct.Description
 panEditProduct.Visible = Me.UserCanEdit
 lnkEditProduct.NavigateUrl = String.Format(lnkEditProduct.NavigateUrl,
ProductId)
 lblPrice.Text = Me.FormatPrice(lproduct.FinalUnitPrice)
 lblDiscountedPrice.Text = String.Format(lblDiscountedPrice.Text, _
 Me.FormatPrice(lproduct.UnitPrice), lproduct.DiscountPercentage)
 lblDiscountedPrice.Visible = (lproduct.DiscountPercentage > 0)

 ltlAvgRating.Text = String.Format(ltlAvgRating.Text,
lproduct.AverageRating, lproduct.Title)

 If lproduct.SmallImageUrl.Length > 0 Then _
 imgProduct.Src = lproduct.SmallImageUrl
 imgProduct.Alt = lproduct.Title
 If lproduct.FullImageUrl.Length > 0 Then
 lnkFullImage.NavigateUrl = lproduct.FullImageUrl
 lnkFullImage.Visible = True
 Else
 lnkFullImage.Visible = False
 End If

 End Using

End Sub

The page’s markup lays out where the product image and details are displayed. The image is wrapped
in its own DIV tag to make it easier to apply different styles to the image via themes. The balance of the
product descriptive information is a series of Hyperlink and Literal controls to hold the product’s
information. It also has the very important Add to Shopping Cart button, this does just what it says, adds
the product to the customer’s shopping cart. Below that is a Rating control, wrapped in a dedicated
UpdatePanel. The functionality of the rating control was discussed in the Article module chapter.
Another important feature is the availability control. I will detail this web control very shortly.

 <div id=”ProductImage”>
 <asp:HyperLink runat=”server” ID=”HyperLink1”
Target=”_blank”></asp:HyperLink>
 </div>
 <div id=”productinfo”>
 Price:
 <asp:Literal runat=”server” ID=”lblDiscountedPrice”><s>{0}</s>
{1}% Off = </asp:Literal>
 <asp:Literal runat=”server” ID=”lblPrice” />

 Availability:
 <asp:AvailabilityImage runat=”server” ID=”availDisplay” />

 Rating:
 <asp:Literal runat=”server” ID=”lblRating” Text=”{0} user(s) have
rated this product “ />

87586c09.indd 46587586c09.indd 465 9/13/09 10:24:20 PM9/13/09 10:24:20 PM

466

Chapter 9: E-Commerce Store

 <div class=”ProductThumb”>
 <img runat=”Server” id=”imgProduct” class=”ProductThumb”
src=”~/Images/noimage.gif” />

 </div>
 <asp:HyperLink runat=”server” ID=”lnkFullImage”
Target=”_blank”></asp:HyperLink>
 <asp:Literal runat=”server” ID=”lblDescription” />

 <asp:Button ID=”btnAddToCart” runat=”server” Text=”Add to
Shopping Cart” />

 <hr class=”ProductHR” />
 <div class=”sectiontitle”>
 How would you rate this product?
 <asp:UpdatePanel ID=”UpdatePanel1” runat=”server”>
 <ContentTemplate>
 Rate This Product:

 <asp:Rating ID=”ProductRating” runat=”server”
 BehaviorID=”ratDisplay” CssClass=”ArticleRating”
 StarCssClass=”ratingStar”
WaitingStarCssClass=”savedRatingStar”
FilledStarCssClass=”filledRatingStar”
 EmptyStarCssClass=”emptyRatingStar”>
 </asp:Rating>
 </ContentTemplate>
 </asp:UpdatePanel>
 </div>
 <asp:Literal runat=”server” ID=”ltlAvgRating” Text=”The average
rating for {1} is {0} beer(s).” />
 <asp:Literal runat=”server” ID=”lblUserRating” Visible=”False”
Text=”Your rated this product {0} beer(s). Thank you for your feedback.” />
 </div>

Figure 9-14 shows the result.

Figure 9-14

87586c09.indd 46687586c09.indd 466 9/13/09 10:24:20 PM9/13/09 10:24:20 PM

467

Chapter 9: E-Commerce Store

When the customer clicks the Add to Shopping Cart button, we call the InsertItem method of the
ShoppingCart object returned by the profile property, and pass in the product’s data read from the
Product object. Finally, we redirect the customer to the ShoppingCart.aspx page, where he can change
the quantity of the products to order and proceed to the checkout process:

Protected Sub btnAddToCart_Click(ByVal sender As Object,
ByVal e As System.EventArgs) Handles btnAddToCart.Click
 Using lProductrpt As New ProductsRepository
 Dim lProduct As Product = lProductrpt.GetProductById(ProductId)
 Dim lprofile As ProfileBase = Helpers.GetUserProfile
 Dim lShoppingCart As ShoppingCart = Profile.ShoppingCart
 lShoppingCart.InsertItem(lProduct.ProductID, lProduct.Title,
lProduct.SKU, lProduct.FinalUnitPrice)
 Profile.ShoppingCart = lShoppingCart

 Me.Response.Redirect(“ShoppingCart.aspx”, False)
 End Using

End Sub

The AvailabilityImage Web Control
In the previous edition of TheBeerHouse a user control was defi ned called AvailabilityImage.ascx,
which was used to visually indicate how many items were in stock for a particular product. Red meant
it was out of stock, yellow meant running low, and green meant there were plenty available. There was
one public property, Value, that was set when a product was bound to indicate how many units were in
stock. For this edition, I took that user control and made a WebControl out of it, AvailablityImage.
By making this into a more fl exible WebControl, it can potentially be used for more than just an indica-
tor of units in stock and on many other sites when a three-way visual indicator is needed.

Like the Country and State DropDownList controls inherited from an existing WebControl, I have
already discussed, the AvailabilityImage control inherits from an Image WebControl. There are eight
public properties available to customize the way the image is rendered. Three properties — RedImage,
YellowImage, and GreenImage — set the corresponding images that can be used. The RedAlt, YellowAlt,
and GreenAlt properties set the Alt attribute values rendered for the image. The LowAvailability
property is the value used to indicate an item is in short supply. Finally, Value indicates the number of
units in stock for the product.

<ToolboxData(“<{0}:AvailabilityImage runat=server></{0}:AvailabilityImage>”)> _
Public Class AvailabilityImage
 Inherits System.Web.UI.WebControls.Image

 Private _RedAlt As String = “Currently not available”
 <Category(“The Beer House”), DefaultValue(“Currently not available”)> _
Public Property RedAlt() As String
 Get
 Return _RedAlt
 End Get
 Set(ByVal value As String)
 _RedAlt = value
 End Set
 End Property

 Private _YellowAlt As String = “Few units available”

87586c09.indd 46787586c09.indd 467 9/13/09 10:24:20 PM9/13/09 10:24:20 PM

468

Chapter 9: E-Commerce Store

 <Category(“The Beer House”), DefaultValue(“Few units available”)> _
Public Property YellowAlt() As String
 Get
 Return _YellowAlt
 End Get
 Set(ByVal value As String)
 _YellowAlt = value
 End Set
 End Property

 Private _GreenAlt As String = “Available”
 <Category(“The Beer House”), DefaultValue(“Available”)> _
Public Property GreenAlt() As String
 Get
 Return _GreenAlt
 End Get
 Set(ByVal value As String)
 _GreenAlt = value
 End Set
 End Property

 Private _RedImage As String = “~/images/lightred.gif”
 <Category(“The Beer House”), DefaultValue(“~/images/lightred.gif”)> _
Public Property RedImage() As String
 Get
 Return _RedImage
 End Get
 Set(ByVal value As String)
 _RedImage = value
 End Set
 End Property

 Private _YellowImage As String = “~/images/lightyellow.gif”
 <Category(“The Beer House”), DefaultValue(“~/images/lightyellow.gif”)> _
Public Property YellowImage() As String
 Get
 Return _YellowImage
 End Get
 Set(ByVal value As String)
 _YellowImage = value
 End Set
 End Property

 Private _GreenImage As String = “~/images/lightgreen.gif”
 <Category(“The Beer House”), DefaultValue(“~/images/lightgreen.gif”)> _
Public Property GreenImage() As String
 Get
 Return _GreenImage
 End Get
 Set(ByVal value As String)
 _GreenImage = value
 End Set

87586c09.indd 46887586c09.indd 468 9/13/09 10:24:20 PM9/13/09 10:24:20 PM

469

Chapter 9: E-Commerce Store

 End Property

 Private _lowAvailability As Integer = 5
 <Category(“The Beer House”), DefaultValue(“5”)> _
 Public Property LowAvailability() As Integer
 Get
 Return _lowAvailability
 End Get
 Set(ByVal Value As Integer)
 _lowAvailability = Value
 End Set
 End Property

 Private _value As Integer = 0
 <Category(“The Beer House”), DefaultValue(“0”)> _
Public Property Value() As Integer
 Get
 Return _value
 End Get
 Set(ByVal value As Integer)
 _value = value
 SetProperties()
 End Set
 End Property

 Private Sub SetProperties()
 If _value <= 0 Then
 MyBase.ImageUrl = RedImage
 MyBase.AlternateText = RedAlt
 ElseIf _value <= LowAvailability Then
 MyBase.ImageUrl = YellowImage
 MyBase.AlternateText = YellowAlt
 Else
 MyBase.ImageUrl = GreenImage
 MyBase.AlternateText = GreenAlt
 End If
 End Sub

 Protected Overloads Overrides Sub OnInit(ByVal e As EventArgs)
 SetProperties()
 MyBase.OnInit(e)
 End Sub

End Class

The ShoppingCart.aspx Page
As described earlier in the “Design” section for the user interface, this page is actually more complex
than a page that just manages the shopping cart, as it includes a complete wizard for the checkout pro-
cess, which includes steps to provide the contact information and the shipping address, and to review
the order a last time before being redirected to PayPal for the payment. The page uses the Wizard con-
trol, which allows you to defi ne different views within it, and it automatically creates and manages the

87586c09.indd 46987586c09.indd 469 9/13/09 10:24:20 PM9/13/09 10:24:20 PM

470

Chapter 9: E-Commerce Store

buttons/links at the bottom of the wizard to move backward and forward through the wizard’s steps.
The control’s structure is outlined in the following code:

<asp:Wizard ID=”wizSubmitOrder” runat=”server” ActiveStepIndex=”0”
 CancelButtonText=”Continue Shopping”
 CancelButtonType=”Link” CancelDestinationPageUrl=”~/BrowseProducts.aspx”
DisplayCancelButton=”True”
 DisplaySideBar=”False” FinishPreviousButtonType=”Link”
StartNextButtonText=”Proceed with order”
 StartNextButtonType=”Link” Width=”100%” StepNextButtonText=”Proceed with order”
 StepNextButtonType=”Link” StepPreviousButtonText=”Modify data in previous step”
 StepPreviousButtonType=”Link” FinishCompleteButtonText=”Submit Order”
FinishCompleteButtonType=”Link”
 FinishPreviousButtonText=”Modify data in previous step”>
 <WizardSteps>
 <asp:WizardStep ID=”WizardStep1” runat=”server” Title=”Shopping Cart”>
 </asp:WizardStep>
 <asp:WizardStep ID=”WizardStep2” runat=”server” Title=”Shipping Address”>
 </asp:WizardStep>
 <asp:WizardStep runat=”server” Title=”Order Confirmation”>
 </asp:WizardStep>
 </WizardSteps>
 <StepNextButtonStyle CssClass=”BHButton” />
 <StartNextButtonStyle CssClass=”BHButton” />
 <FinishCompleteButtonStyle CssClass=”BHButton” />
 <FinishPreviousButtonStyle CssClass=”BHButton” />
 <StepPreviousButtonStyle CssClass=”BHButton” />
</asp:Wizard>

There’s a <WizardSteps> section used to defi ne one <asp:WizardStep> control for each step you want
the wizard to have. The WizardStep is a template-based control used to declare the content of that step.
The parent Wizard control has a number of properties that enable you to completely customize the
visual appearance of the commands at the bottom, in addition to their text. The properties used in the
preceding code are self-explanatory. The Wizard control also exposes a number of methods that a
developer can handle to run code when the current step changes, or when the user clicks the button to
complete the wizard. There will also be a Cancel command in each step that we’ll use as the command
to continue shopping, so it just redirects the user to the BrowseProducts.aspx page.

The entire Wizard is wrapped by an UpdatePanel, which makes stepping through the check out pro-
cess seamless to the end user. It does however introduce some changes to the code that runs behind the
scenes to manage the shopping cart information. Stepping through the wizard is an automatic opera-
tion; it is managing changes to the quantity of items and shipping selection that has to be effectively
handled differently than in the previous version of TheBeerHouse, but more on that later.

Let’s start with the fi rst step. It defi nes a ListView control that binds to the list of ShoppingCartItem
objects returned by CurrentUserShoppingCart.GetItems in the BindShoppingCart method in the
code-behind. The BindShoppingCart method is called when the page fi rst loads or a change is made to
the contents of the shopping cart by the user. The list has a column for the item’s title, a column that
shows the item’s price, a column with an editable textbox with the quantity for that product, and fi nally

87586c09.indd 47087586c09.indd 470 9/13/09 10:24:20 PM9/13/09 10:24:20 PM

471

Chapter 9: E-Commerce Store

a column with a command link to completely remove that item from the shopping cart (which would be
the same as manually setting the product’s quantity to 0 and clicking the button to update the totals).

 <asp:ListView ID=”lvOrderItems” runat=”server” DataKeyNames=”ID”>
 <LayoutTemplate>
 <table>
 <tr class=”AdminListHeader”>
 <td class=”CartProductName”>
 Product
 </td>
 <td>
 Price
 </td>
 <td>
 Quantity
 </td>
 <td>
 </td>
 </tr>
 <tr runat=”server” id=”itemPlaceHolder”>
 </tr>
 </table>
 </LayoutTemplate>
 <ItemTemplate>
 <tr>
 <td>
 <asp:HyperLink runat=”server” ID=”hlnkProduct”
ForeColor=”#800000” NavigateUrl=’<%# SEOFriendlyURL(_
 Path.Combine(Settings.Store.ProductURLIndicator,
Eval(“Title”).ToString()), “.aspx”) %>’>
<%# Eval(“Title”) %></asp:HyperLink>
 </td>
 <td class=”AdminRightCell”>
 <%# FormatPrice(Eval(“UnitPrice”)) %>
 </td>
 <td class=”AdminRightCell”>
 <asp:TextBox runat=”server” ID=”txtQuantity”
Text=’<%# Bind(“Quantity”) %>’ MaxLength=”6”
 Width=”30px” AutoPostBack=”true”
OnTextChanged=”QtyChanged”></asp:TextBox>
 <asp:RequiredFieldValidator ID=”valRequireQuantity”
runat=”server” ControlToValidate=”txtQuantity”
 SetFocusOnError=”true” ValidationGroup=”ShippingAddress”
Text=”The Quantity field is required.”
 ToolTip=”The Quantity field is required.”
 Display=”Dynamic”></asp:RequiredFieldValidator>
 <asp:CompareValidator ID=”valQuantityType”
runat=”server” Operator=”DataTypeCheck”
 Type=”Integer” ControlToValidate=”txtQuantity”
Text=”The Quantity must be an integer.”
 ToolTip=”The Quantity must be an integer.”
Display=”dynamic” />
 </td>

87586c09.indd 47187586c09.indd 471 9/13/09 10:24:20 PM9/13/09 10:24:20 PM

472

Chapter 9: E-Commerce Store

 <td>
 <asp:ImageButton runat=”server” ID=”btnDelete”
CommandArgument=’<%# Eval(“ID”).ToString() %>’
 CommandName=”Delete” ImageUrl=”~/images/delete.gif”
AlternateText=”Delete” CssClass=”AdminImg”
 OnClientClick=”return confirm(‘Warning: This will delete
the Product from the shopping cart.’);” />
 </td>
 </tr>
 </ItemTemplate>
 <EmptyDataTemplate>
 The shopping cart is empty</EmptyDataTemplate>
 </asp:ListView>

Below the list you defi ne a Panel containing several controls that display the total cost of the order, a
drop-down to select shipping method and a grand total including the shipping. The Update Totals but-
ton is retained from the previous version of TheBeerHouse, just in case a user has disable JavaScript, or
there just happens to be an unforeseen JavaScript error on the client. The totals are recalculated as soon
as an item’s quantity or shipping selection is changed by the user. The UpdatePanel makes this pos-
sible because the quantity TextBoxes and shipping method DropDownList are set to AutoPostback
and a server-side event handler is defi ned to handle the OnTextChanged and SelectedIndexChanged
events. The event handlers call the UpdateTotal method that review the quantity values in the cart list
and the selected shipping method to update the active shopping cart and the values echoed in the
browser.

 <asp:Panel runat=”server” ID=”panTotals”>
 <div style=”text-align: right; font-weight: bold; padding-top: 4px;”>
 Subtotal:
 <asp:Literal runat=”server” ID=”lblSubtotal” />
 <p>
 Shipping Method:
 <asp:DropDownList ID=”ddlShippingMethods” runat=”server”
DataTextField=”TitleAndPrice”
 DataValueField=”Price” AutoPostBack=”true”>
 </asp:DropDownList>
 <asp:RequiredFieldValidator ID=”valRequireQuantity”
runat=”server” ControlToValidate=”ddlShippingMethods”
 SetFocusOnError=”true” ValidationGroup=”ShippingMethod”
Text=”A Shipping method is required.”
 ToolTip=”A Shipping method is required.”
Display=”Dynamic” InitialValue=”0”></asp:RequiredFieldValidator>
 </p>
 <p>
 <u>Total:</u>
 <asp:Literal runat=”server” ID=”lblTotal” />
 </p>
 <asp:Button ID=”btnUpdateTotals” runat=”server” Text=”Update totals” />

 </div>
 </asp:Panel>

87586c09.indd 47287586c09.indd 472 9/13/09 10:24:21 PM9/13/09 10:24:21 PM

473

Chapter 9: E-Commerce Store

The UpdateTotals method is also called when a row is deleted from the ListView (a product was
completely removed from the shopping cart). Before calling UpdateTotals after a product has been
removed, the BindShoppingCart method must be called. If UpdateTotals was called without rebind-
ing the ListView to the items in the shopping cart, UpdateTotals would operate over the previous
version of the cart. If you call BindShoppingCart fi rst, the ListView will refl ect the most current shop-
ping cart list. UpdateTotals loops through the rows of the ListView control, and for each row it fi nds
the textbox control with the product’s quantity, reads its value, and uses it to update the quantity of the
product stored in the shopping cart, by means of the ShoppingCart.UpdateItemQuantity method.

Notice that I also used an index i to track the cart item being processed; this is because access to the
row’s ShoppingCartItem DataItem is not guaranteed upon postback not initiated by a ListView
event, such as the OnTextChanged event. After looping through the cart items the order’s subtotal and
total amounts are displayed according to the updated quantities and the currently selected shipping
method. Finally, it checks whether the shopping cart actually contains something, because if that’s
not the case, it doesn’t make sense for the customer to proceed to the next step of the checkout wizard.
Curiously, the Wizard control has no properties to explicitly disable the Next and Previous commands,
but you can do that by setting the command’s text to an empty string, so that they won’t be visible. The
property to set in this case is StartNextButtonText, because you are in the Start step (i.e., the fi rst one),
and you want to disable the Next command. Here’s the implementation for this fi rst part of the wizard:

 Protected Sub UpdateTotals()

 Dim i As Integer = 0

 For Each lvdi As ListViewDataItem In lvOrderItems.Items

 Dim lCartItem As ShoppingCartItem =
DirectCast(lShoppingCart.Items(i), ShoppingCartItem)

 If Not IsNothing(lCartItem) Then

 Dim id As Integer = lCartItem.ID
 Dim quantity As Integer = Convert.ToInt32(CType(lvdi.FindControl(
“txtQuantity”), TextBox).Text)
 lShoppingCart.UpdateItemQuantity(id, quantity)

 End If

 i += 1

 Next

 ‘ display the subtotal and the total amounts
 lblSubtotal.Text = FormatPrice(lShoppingCart.Total)
 lblTotal.Text = FormatPrice(lShoppingCart.Total + _
 Convert.ToDecimal(ddlShippingMethods.SelectedValue))

 ‘ if the shopping cart is empty, hide the link to proceed
 If lShoppingCart.Items.Count = 0 Then
 wizSubmitOrder.StartNextButtonText = String.Empty
 panTotals.Visible = False

87586c09.indd 47387586c09.indd 473 9/13/09 10:24:21 PM9/13/09 10:24:21 PM

474

Chapter 9: E-Commerce Store

 Else
 wizSubmitOrder.StartNextButtonText = “Proceed with order”
 End If

 Profile.ShoppingCart = lShoppingCart

 BindShoppingCart()

End Sub

Figure 9-15 shows this fi rst step at runtime.

Figure 9-15

The second step is simpler than the fi rst one; it’s just a form that asks for contact information and the
shipping address. This information is prefi lled with the information stored in the customer’s profi le, if
provided, but customers can change everything in this form if they’re buying a gift for someone and
want the product(s) to be shipped directly to that person. Also, at this point a user account is required
to proceed, so if the current user is anonymous, then she will be asked to log in or create a new user
account, instead of displaying the input form. To do this, a MultiView control with two views is used,
and the index of the desired view will be dynamically set when the page loads if the index of the wiz-
ard’s current step is 1 (second step), according to whether the user is authenticated. This version uses a
MaskedEditExtender to format data such as a phone number as the user enters it and the StateDropDown
control. In practice, it’s just a wizard control under the hood without the automatically created buttons
to move forward and backward. Here’s the markup code:

 <asp:MultiView ID=”mvwShipping” runat=”server”>
 <asp:View ID=”vwLoginRequired” runat=”server”>
 <p>
 An account is required to proceed with the order submission. If you
 already have
 an account please log in now, otherwise

87586c09.indd 47487586c09.indd 474 9/13/09 10:24:21 PM9/13/09 10:24:21 PM

475

Chapter 9: E-Commerce Store

create a new account
 for free.</p>
 </asp:View>
 <asp:View ID=”vwShipping” runat=”server”>
 <p>
 Fill the form below with the shipping address for your order.
All information is
 required, except for phone and fax numbers.
 </p>
 <table cellpadding=”2” width=”410”>
 <tr>
 <td width=”110” class=”fieldname”>
 <asp:Label runat=”server” ID=”lblFirstName”
 AssociatedControlID=”txtFirstName” Text=”First name:” />
 </td>
 <td width=”300”>
 <asp:TextBox ID=”txtFirstName” runat=”server”
Width=”100%” />
 <asp:RequiredFieldValidator ID=”valRequireFirstName”
runat=”server” ControlToValidate=”txtFirstName”
 SetFocusOnError=”True”
ValidationGroup=”ShippingAddress” Text=”The First Name field is required.”
 ToolTip=”The First Name field is required.”
 Display=”Dynamic”></asp:RequiredFieldValidator>
 </td>
 </tr>
 <tr>
 <td class=”fieldname”>
 <asp:Label runat=”server” ID=”lblLastName”
AssociatedControlID=”txtLastName” Text=”Last name:” />
 </td>
 <td>
 <asp:TextBox ID=”txtLastName” runat=”server”
Width=”100%” />
 <asp:RequiredFieldValidator ID=”valRequireLastName”
runat=”server” ControlToValidate=”txtLastName”
 SetFocusOnError=”True”
ValidationGroup=”ShippingAddress” Text=”The Last Name field is required.”
 ToolTip=”The Last Name field is required.”
Display=”Dynamic”></asp:RequiredFieldValidator>
 </td>
 </tr>
 <tr>
 <td class=”fieldname”>
 <asp:Label runat=”server” ID=”lblEmail”
AssociatedControlID=”txtEmail” Text=”E-mail:” />
 </td>
 <td>
 <asp:TextBox runat=”server” ID=”txtEmail” Width=”100%” />
 <asp:RequiredFieldValidator ID=”valRequireEmail”
runat=”server” ControlToValidate=”txtEmail”
 SetFocusOnError=”True”
ValidationGroup=”ShippingAddress” Text=”The E-mail field is required.”
 ToolTip=”The E-mail field is required.”

87586c09.indd 47587586c09.indd 475 9/13/09 10:24:21 PM9/13/09 10:24:21 PM

476

Chapter 9: E-Commerce Store

Display=”Dynamic”></asp:RequiredFieldValidator>
 <asp:RegularExpressionValidator runat=”server”
ID=”valEmailPattern” Display=”Dynamic”
 SetFocusOnError=”True”
ValidationGroup=”ShippingAddress” ControlToValidate=”txtEmail”
 ValidationExpression=
“\w+([-+.’]\w+)*@\w+([-.]\w+)*\.\w+([-.]\w+)*”
Text=”The E-mail address you specified is not well-formed.”
 ToolTip=”The E-mail address you specified is not
well-formed.”></asp:RegularExpressionValidator>
 </td>
 </tr>
 <tr>
 <td class=”fieldname”>
 <asp:Label runat=”server” ID=”lblStreet”
AssociatedControlID=”txtStreet” Text=”Street:” />
 </td>
 <td>
 <asp:TextBox runat=”server” ID=”txtStreet” Width=”100%” />
 <asp:RequiredFieldValidator ID=”valRequireStreet”
runat=”server” ControlToValidate=”txtStreet”
 SetFocusOnError=”True”
ValidationGroup=”ShippingAddress” Text=”The Street field is required.”
 ToolTip=”The Street field is required.”
 Display=”Dynamic”></asp:RequiredFieldValidator>
 </td>
 </tr>
 <tr>
 <td class=”fieldname”>
 <asp:Label runat=”server” ID=”lblPostalCode”
 AssociatedControlID=”txtPostalCode”
 Text=”Zip / Postal code:” />
 </td>
 <td>
 <asp:TextBox runat=”server” ID=”txtPostalCode”
Width=”100%” />
 <asp:RequiredFieldValidator ID=”valRequirePostalCode”
 runat=”server” ControlToValidate=”txtPostalCode”
 SetFocusOnError=”True”
ValidationGroup=”ShippingAddress” Text=”The Postal Code field is required.”
 ToolTip=”The Postal Code field is required.”
Display=”Dynamic”></asp:RequiredFieldValidator>
 </td>
 </tr>
 <tr>
 <td class=”fieldname”>
 <asp:Label runat=”server” ID=”lblCity”
AssociatedControlID=”txtCity” Text=”City:” />
 </td>
 <td>
 <asp:TextBox runat=”server” ID=”txtCity” Width=”100%” />
 <asp:RequiredFieldValidator ID=”valRequireCity”
runat=”server” ControlToValidate=”txtCity”
 SetFocusOnError=”True”

87586c09.indd 47687586c09.indd 476 9/13/09 10:24:21 PM9/13/09 10:24:21 PM

477

Chapter 9: E-Commerce Store

ValidationGroup=”ShippingAddress” Text=”The City field is required.”
 ToolTip=”The City field is required.”
Display=”Dynamic”></asp:RequiredFieldValidator>
 </td>
 </tr>
 <tr>
 <td class=”fieldname”>
 <asp:Label runat=”server” ID=”lblState”
 AssociatedControlID=”ddlState” Text=”State / Region:” />
 </td>
 <td>
 <asp:StateDropDownList runat=”server” ID=”ddlState”
Width=”100%” CssClass=”formField”>
 </asp:StateDropDownList>
 <asp:RequiredFieldValidator ID=”valRequireState”
runat=”server” ControlToValidate=”ddlState”
 SetFocusOnError=”True”
ValidationGroup=”ShippingAddress” Text=”The State field is required.”
 ToolTip=”The State field is required.”
InitialValue=”0” Display=”Dynamic”></asp:RequiredFieldValidator>
 </td>
 </tr>
 <tr>
 <td class=”fieldname”>
 <asp:Label runat=”server” ID=”lblCountry”
AssociatedControlID=”ddlCountries” Text=”Country:” />
 </td>
 <td>
 <asp:CountryDropDownList ID=”ddlCountries” runat=”server”
 CssClass=”formField”>
 </asp:CountryDropDownList>
 </td>
 </tr>
 <tr>
 <td class=”fieldname”>
 <asp:Label runat=”server” ID=”lblPhone”
AssociatedControlID=”txtPhone” Text=”Phone:” />
 </td>
 <td>
 <asp:TextBox runat=”server” ID=”txtPhone” Width=”100%” />
 <asp:MaskedEditExtender ID=”MaskedEditExtender1”
runat=”server” TargetControlID=”txtPhone”
 Mask=”(999)999-9999” MaskType=”Number”
ClearMaskOnLostFocus=”false”>
 </asp:MaskedEditExtender>
 </td>
 </tr>
 <tr>
 <td class=”fieldname”>
 <asp:Label runat=”server” ID=”lblFax”
AssociatedControlID=”txtFax” Text=”Fax:” />
 </td>
 <td>
 <asp:TextBox runat=”server” ID=”txtFax” Width=”100%”

87586c09.indd 47787586c09.indd 477 9/13/09 10:24:21 PM9/13/09 10:24:21 PM

478

Chapter 9: E-Commerce Store

/><asp:MaskedEditExtender ID=”MaskedEditExtender2”
 runat=”server” TargetControlID=”txtFax”
Mask=”(999)999-9999” MaskType=”Number”
 ClearMaskOnLostFocus=”false”>
 </asp:MaskedEditExtender>
 </td>
 </tr>
 </table>
 </asp:View>
 </asp:MultiView>

Following is the code-behind that prefi lls the various textboxes if the current user is logged in. Also
note that UpdateTotals is called in this event so that the totals are updated correctly even when the
customer has changed some quantities and proceeded to the next step without clicking the Update
Total button and the AJAX updates did not fi re:

 Private Sub wizSubmitOrder_ActiveStepChanged(ByVal sender As Object,
ByVal e As System.EventArgs) Handles wizSubmitOrder.ActiveStepChanged

 If wizSubmitOrder.ActiveStepIndex = 1 Then

 UpdateTotals()

 If Me.User.Identity.IsAuthenticated Then

 If txtFirstName.Text.Trim().Length = 0 Then _
 txtFirstName.Text = Profile.FirstName
 If txtLastName.Text.Trim().Length = 0 Then _
 txtLastName.Text = Profile.LastName
 If txtEmail.Text.Trim().Length = 0 Then _
 txtEmail.Text = Membership.GetUser().Email
 If txtStreet.Text.Trim().Length = 0 Then _
 txtStreet.Text = Profile.Address.Street
 If txtPostalCode.Text.Trim().Length = 0 Then _
 txtPostalCode.Text = Profile.Address.PostalCode
 If txtCity.Text.Trim().Length = 0 Then _
 txtCity.Text = Profile.Address.City

 If ddlState.SelectedIndex = 0 AndAlso Not
String.IsNullOrEmpty(Profile.Address.State) Then _
 ddlState.SelectedValue = Profile.Address.State

 If ddlCountries.SelectedIndex = 0 AndAlso Not
String.IsNullOrEmpty(Profile.Address.Country) Then _
 ddlCountries.SelectedValue = Profile.Address.Country

 If txtPhone.Text.Trim().Length = 0 Then _
 txtPhone.Text = Profile.Contacts.Phone
 If txtFax.Text.Trim().Length = 0 Then _
 txtFax.Text = Profile.Contacts.Fax
 End If
‘ Code to handle the last step ...
End Sub

87586c09.indd 47887586c09.indd 478 9/13/09 10:24:21 PM9/13/09 10:24:21 PM

479

Chapter 9: E-Commerce Store

Figure 9-16 shows what this step looks like on the page at runtime.

Figure 9-16

The last step allows the customer to review all data inserted so far: the name, price, and quantity of the
products she’s about to order; the subtotal amount; the shipping method and its cost; and the total amount,
as well as her personal contact information and the shipping address. The WizardStep template defi nes a
number of Labels for most of this information, and a Repeater control bound to the items in the shop-
ping cart:

 <div id=”ContentBody”>
 <p>
 Please carefully review the order information below.
If you want to change something
 click the link below to go back to the previous pages and
make the corrections.
 If everything is ok go ahead and submit your order.
 </p>

 Order Details

 <asp:Repeater runat=”server” ID=”repOrderItems”>
 <ItemTemplate>

 <%# Eval(“Title”) %>
 -
 <%# FormatPrice(Eval(“UnitPrice”)) %>
 <small>(Quantity =
 <%# Eval(“Quantity”) %>)</small>

 </ItemTemplate>
 </asp:Repeater>

 Subtotal =
 <asp:Literal runat=”server” ID=”lblReviewSubtotal” />

87586c09.indd 47987586c09.indd 479 9/13/09 10:24:21 PM9/13/09 10:24:21 PM

480

Chapter 9: E-Commerce Store

 Shipping Method =
 <asp:Literal runat=”server” ID=”lblReviewShippingMethod” />

 <u>Total</u> =
 <asp:Literal runat=”server” ID=”lblReviewTotal” />

 Shipping Details

 <asp:Literal runat=”server” ID=”lblReviewFirstName” />
 <asp:Literal runat=”server” ID=”lblReviewLastName” />

 <asp:Literal runat=”server” ID=”lblReviewStreet” />

 <asp:Literal runat=”server” ID=”lblReviewCity” />,
 <asp:Literal runat=”server” ID=”lblReviewState” />
 <asp:Literal runat=”server” ID=”lblReviewPostalCode” />

 <asp:Literal runat=”server” ID=”lblReviewCountry” />
 </div>

When this step loads, you confi rm that the wizard’s ActiveStepIndex is 2 and then show all the infor-
mation in the controls:

 ElseIf wizSubmitOrder.ActiveStepIndex = 2 Then
 lblReviewFirstName.Text = txtFirstName.Text
 lblReviewLastName.Text = txtLastName.Text
 lblReviewStreet.Text = txtStreet.Text
 lblReviewCity.Text = txtCity.Text
 lblReviewState.Text = ddlState.SelectedValue
 lblReviewPostalCode.Text = txtPostalCode.Text
 lblReviewCountry.Text = ddlCountries.SelectedValue

 lblReviewSubtotal.Text = Me.FormatPrice(lShoppingCart.Total)
 lblReviewShippingMethod.Text = ddlShippingMethods.SelectedItem.Text
 lblReviewTotal.Text = Me.FormatPrice(lShoppingCart.Total + _
 Convert.ToDecimal(ddlShippingMethods.SelectedValue))

 repOrderItems.DataSource = lShoppingCart.Items
 repOrderItems.DataBind()

The results of this step are displayed as shown in Figure 9-17.

Figure 9-17

87586c09.indd 48087586c09.indd 480 9/13/09 10:24:21 PM9/13/09 10:24:21 PM

481

Chapter 9: E-Commerce Store

If the Finish button is clicked, the wizard’s FinishButtonClick event handler will save the shopping
cart’s content as a new order in the database, clear the shopping cart, and use the StoreHelper’s
GetPayPalPaymentUrl method to get the PayPal URL with the customer’s shipping information, then
you’ll redirect the customer to pay for the ordered products. However, before doing all this, you must
determine whether the customer is still authenticated. In fact, consider the situation in which the cus-
tomer gets to this last step and then goes away from the computer, maybe to fi nd her credit card. When
she comes back, her authentication cookie may have expired, in which case you’d get an empty shop-
ping cart for an anonymous user when accessing Profile.ShoppingCart. Therefore, if the current
user is not authenticated at this point, you’ll redirect her to the page that requests the login; otherwise,
you’ll go ahead and send her to the PayPal site:

Private Sub wizSubmitOrder_FinishButtonClick(ByVal sender As Object,
ByVal e As System.Web.UI.WebControls.WizardNavigationEventArgs)
Handles wizSubmitOrder.FinishButtonClick

 If Me.User.Identity.IsAuthenticated Then

 Dim shippingMethod As String = ddlShippingMethods.SelectedItem.Text
 shippingMethod = shippingMethod.Substring(0,
shippingMethod.LastIndexOf(“(“)).Trim

 Dim lorder As Order
 Using lorderrpt As New OrdersRepository

 Dim lShoppingCart As ShoppingCart = Profile.ShoppingCart

 lorder = lorderrpt.InsertOrder(lShoppingCart, shippingMethod, _
 Convert.ToDecimal(ddlShippingMethods.SelectedValue), _
 txtFirstName.Text, txtLastName.Text, txtStreet.Text,
txtPostalCode.Text, txtCity.Text, _
 ddlState.SelectedValue, ddlCountries.SelectedValue,
txtEmail.Text, txtPhone.Text, txtFax.Text, “”)

 lShoppingCart.Clear()

 Profile.ShoppingCart = lShoppingCart

 End Using

 Me.Response.Redirect(StoreHelper.GetPayPalPaymentUrl(lorder), False)

 Else
 Me.RequestLogin()
 End If
End Sub

Figure 9-18 shows the PayPal payment page run from inside the Sandbox test environment. The sub-
total, shipping, and total amounts are exactly the same as those in the previous fi gures.

87586c09.indd 48187586c09.indd 481 9/13/09 10:24:21 PM9/13/09 10:24:21 PM

482

Chapter 9: E-Commerce Store

Figure 9-18

Handing the Customer’s Return from PayPal
When the customer cancels the order while she’s on PayPal’s page, she is redirected to the OrderCancelled
.aspx page, which has just a couple of lines of static feedback instructions explaining how she can pay
at a later time. If she completes the payment, she’ll be directed to the OrderCompleted.aspx page
instead. It expects the ID of the order paid by the customer on the querystring, so that it can load an
Order object for it. It then it updates its StatusID property from “waiting for payment” to “confi rmed”
but not yet “verifi ed”:

Protected Sub Page_Load(ByVal sender As Object, ByVal e As System.EventArgs)
Handles Me.Load

 Using lorderrpt As New OrdersRepository

 Dim order As Order = lorderrpt.GetOrderById(Convert.ToInt32(

87586c09.indd 48287586c09.indd 482 9/13/09 10:24:21 PM9/13/09 10:24:21 PM

483

Chapter 9: E-Commerce Store

Me.Request.QueryString(“OrderID”)))
 If order.StatusID = CInt(StatusCode.WaitingForPayment) Then
 order.StatusID = CInt(StatusCode.Confirmed)
 lorderrpt.AddOrder(order)
 End If

 End Using

End Sub

Figure 9-19 shows both pages.

Figure 9-19

The PayPalIPN.ashx generic handler is the one that receives the IPN notifi cation. (In a previous ver-
sion of TheBeerHouse, this was a full-blown Web Form, which is completely unnecessary because a
browser never opens the response and a form is not needed.) As explained earlier, the fi rst thing you do
in this page is verify that the notifi cation is real and was not faked by a dishonest user. To do this, you
send the notifi cation data back to PayPal using HttpWebRequest, and see if PayPal responds with a
VERIFIED string:

 Protected Function IsVerifiedNotification() As Boolean
 Dim response As String = String.Empty
 Dim post As String = Request.Form.ToString() & “&cmd=_notify-validate”
 Dim serverUrl As String
 If Helpers.Settings.Store.SandboxMode Then
 serverUrl = “https://www.sandbox.paypal.com/us/cgi-bin/webscr”
 Else
 serverUrl = “https://www.paypal.com/us/cgi-bin/webscr”
 End If

 Dim req As HttpWebRequest = CType(WebRequest.Create(serverUrl), _
HttpWebRequest)

87586c09.indd 48387586c09.indd 483 9/13/09 10:24:21 PM9/13/09 10:24:21 PM

484

Chapter 9: E-Commerce Store

 req.Method = “POST”
 req.ContentType = “application/x-www-form-urlencoded”
 req.ContentLength = post.Length

 Dim writer As New StreamWriter(req.GetRequestStream(), _
System.Text.Encoding.ASCII)
 writer.Write(post)
 writer.Close()

 Dim reader As New StreamReader(req.GetResponse().GetResponseStream())
 response = reader.ReadToEnd()
 reader.Close()

 Return (response = “VERIFIED”)
End Function

This method is called from inside the ProcessRequest method, and if the check succeeds, you extract
some data from the request’s parameters, such as custom (the order ID), payment_status (a string
describing the current status for the order transaction), and mc_gross (the order’s total amount). Then
you get a reference to the Order object according to the order ID obtained from the notifi cation, and
you check whether the total amount stored in the database matches the amount indicated by the PayPal
notifi cation. If so, you update the order status to “verifi ed.” Here’s the code:

Public Sub ProcessRequest(ByVal context As HttpContext)
Implements IHttpHandler.ProcessRequest

 Request = context.Request
 response = context.Response

 If IsVerifiedNotification() Then

 Dim orderID As Integer = Convert.ToInt32(Me.Request.Params(“custom”))
 Dim status As String = Me.Request.Params(“payment_status”)
 Dim amount As Decimal = Convert.ToDecimal(
Me.Request.Params(“mc_gross”), _
 CultureInfo.CreateSpecificCulture(“en-US”))

 Using lorderrpt As New OrdersRepository

 Dim order As Order = lorderrpt.GetOrderById(Convert.ToInt32(
Me.Request.QueryString(“OrderID”)))
 Dim origAmount As Decimal = (order.SubTotal + order.Shipping)
 If amount >= origAmount Then
 order.StatusID = CInt(StatusCode.Confirmed)
 lorderrpt.AddOrder(order)
 End If

 End Using

 End If

End Sub

87586c09.indd 48487586c09.indd 484 9/13/09 10:24:21 PM9/13/09 10:24:21 PM

485

Chapter 9: E-Commerce Store

In the preceding code, when parsing the mc_gross string to a decimal value, a CultureInfo object for
en-US (English for U.S.) is passed to the Convert.ToDecimal call. This is because PayPal always uses a
period (.) as separator for the decimal part of the number, but if the current thread’s locale is set to some
other culture that uses a comma for the separator, the string would have been parsed incorrectly with-
out this code.

You should also make a mental note that supplying PayPal with an Instant Pay Notifi cation URL on
your local machine (using the built-in development server with localhost in its URL) will not allow you
to test that page. PayPal is an external party and it cannot see your localhost, so to test the handler you
must have this on a public server.

There can be many more parameters that PayPal passes to your page in the IPN
notifi cations than those used here. I strongly suggest you to refer to PayPal’s docu-
mentation for the full coverage of these parameters, and for the guide on how to
activate and set up the IPN notifi cations from your PayPal’s account settings, which
is not covered here.

The ShoppingCart.ascx User Control
So far I haven’t shown any links to the ShoppingCart.aspx page, but we want the cart to be visible on
any page. The shopping cart’s current content should always be visible as well, so that the customer does
not need to go to ShoppingCart.aspx just to see whether she’s already put a product into the cart. We
also want customers to see the subtotal so they won’t get any surprises when they proceed to checkout.
All this information can easily be shown on a user control that will be plugged into the site’s master
page, so it will always be present. The ShoppingCart.ascx control defi nes a ListView control that’s
similar to the one used earlier in the last step of the ShoppingCart.aspx page, which shows the current
list of shopping cart items with their name, unit price, and quantity. Below that is a label for displaying
the shopping cart’s total amount, and a hyperlink to the full ShoppingCart.aspx page, where the cus-
tomer can change quantities and proceed with the checkout. It also defi nes a link to the OrderHistory
.aspx page, which you’ll create next:

<asp:ListView runat=”server” ID=”lvOrderItems” ItemPlaceholderID=”itemPlaceHolder”>
 <LayoutTemplate>
 <div runat=”server” id=”itemPlaceHolder”>
 </div>
 </LayoutTemplate>
 <ItemTemplate>
 <div id=”ShoppingCartItem”>
 <asp:Image runat=”Server” ID=”imgProduct”
ImageUrl=”~/Images/ArrowR3.gif” GenerateEmptyAlternateText=”true” />
 <%# Eval(“Title”) %>
 -
 <%#CType(Me.Page, BasePage).FormatPrice(Eval(“UnitPrice”))%>
 <small>(<%# Eval(“Quantity”) %>)

 </small>
 </div>
 </ItemTemplate>
 <EmptyDataTemplate>
 <div>

87586c09.indd 48587586c09.indd 485 9/13/09 10:24:21 PM9/13/09 10:24:21 PM

486

Chapter 9: E-Commerce Store

 <asp:Literal runat=”server” ID=”lblCartIsEmpty”
Text=”Your cart is currently empty.”
 meta:resourcekey=”lblCartIsEmptyResource1” /></div>
 </EmptyDataTemplate>
</asp:ListView>

<asp:Literal runat=”server” ID=”lblSubtotalHeader”
Text=”Subtotal = “ meta:resourcekey=”lblSubtotalHeaderResource1” /><asp:Literal
 runat=”server” ID=”lblSubtotal” />

<asp:Panel runat=”server” ID=”panLinkShoppingCart”
meta:resourcekey=”panLinkShoppingCartResource1”>
<asp:HyperLink runat=”server” ID=”lnkShoppingCart”
NavigateUrl=”~/ShoppingCart.aspx”
 meta:resourcekey=”lnkShoppingCartResource1”>
Detailed Shopping Cart</asp:HyperLink>

</asp:Panel>
<asp:HyperLink runat=”server” ID=”lnkOrderHistory”
NavigateUrl=”~/OrderHistory.aspx”
 meta:resourcekey=”lnkOrderHistoryResource1”>Order History
</asp:HyperLink>

In the control’s code-behind class, you just handle the Load event to bind the ListView with the data
returned by the Items property of the Profile.ShoppingCart object, show the total amount in the
label, and hide the panel with the link to ShoppingCart.aspx if the cart is empty:

Protected Sub Page_Load(ByVal sender As Object, ByVal e As System.EventArgs)
Handles Me.Load
 If Not Me.IsPostBack Then

 Dim lBasePage As BasePage = CType(Me.Page, BasePage)
 Dim lShoppingCart As ShoppingCart = Profile.ShoppingCart
 lvOrderItems.DataSource = lShoppingCart.Items
 lvOrderItems.DataBind()

 If Not IsNothing(lShoppingCart) AndAlso
lShoppingCart.Items.Count > 0 Then

 lblSubtotal.Text = lBasePage.FormatPrice(lShoppingCart.Total)
 lblSubtotal.Visible = True
 lblSubtotalHeader.Visible = True
 panLinkShoppingCart.Visible = True
 Else
 lblSubtotal.Visible = False
 lblSubtotalHeader.Visible = False
 panLinkShoppingCart.Visible = False
 End If
 End If
End Sub

Figure 9-20 shows how the control looks — both empty and with items.

87586c09.indd 48687586c09.indd 486 9/13/09 10:24:22 PM9/13/09 10:24:22 PM

487

Chapter 9: E-Commerce Store

Figure 9-20

The FeaturedProduct.ascx Control
Constantly promoting catalog products on every page in the site is a great way to tempt visitors to place
an order. The FeaturedProducts.ascx control does just that by randomly selecting an active product
from the database and displaying its details in promotional square on the side of selected pages in the
site. Like the Shopping cart control, it tries to take up just a small piece of the page to promote the prod-
uct, so it shows only the title, thumbnail image, price, and links to add the product to the shopping cart
or view the product details.

<asp:HyperLink ID=”hlnkProductImage” runat=”server”></asp:HyperLink>

 <asp:Literal ID=”ltlUnitPrice” runat=”server”></asp:Literal>

<asp:LinkButton ID=”lbtnAddToCart” runat=”server”>
Add To Cart</asp:LinkButton>
<asp:HyperLink ID=”hlnkMoreDetails” runat=”server”>More Details...</asp:HyperLink>

The product is retrieved in a way similar to that used by the ShowProduct.aspx page; if there happens
to be a ProductId passed in the querystring, it will display that product; if not, a random product is
selected.

 Private Sub BindData()

 Using Productrpt As New ProductsRepository

 Dim lProduct As Product

 If ProductId > 0 Then
 lProduct = Productrpt.GetProductById(ProductId)
 Else
 lProduct = Productrpt.GetRandomProduct()
 ProductId = lProduct.ProductID
 End If

 If Not IsNothing(lProduct) Then

 ltlTitle.Text = String.Format(“{0}”, lProduct.Title)

 Dim sURL As String = Helpers.SEOFriendlyURL(“~/” & _
 Path.Combine(
Helpers.Settings.Store.ProductURLIndicator,
lProduct.Title), “.aspx”)

 hlnkProductImage.Text = lProduct.Title

87586c09.indd 48787586c09.indd 487 9/13/09 10:24:22 PM9/13/09 10:24:22 PM

488

Chapter 9: E-Commerce Store

 hlnkProductImage.ImageUrl = ResolveUrl(lProduct.SmallImageUrl)
 hlnkProductImage.NavigateUrl = sURL

 ltlUnitPrice.Text = Helpers.FormatPrice(lProduct.UnitPrice)

 hlnkMoreDetails.NavigateUrl = sURL

 End If

 End Using

 End Sub

The GetRandomProduct function returns a randomly selected product by retrieving a list of products
then getting a random number and returning the product matching that index in the list.

Public Function GetRandomProduct() As Product

 Dim lProductList As List(Of Product) = Me.GetProducts
 Dim lRandProdIndex As Integer = MyBase.GetRandItem(0, lProductList.Count - 1)
 Return lProductList.Item(lRandProdIndex)

End Function

The OrderHistory.aspx Page
This page contains a ListView wrapped in an UpdatePanel that lists all past orders for the current
authenticated user. The ListView’s template section shows the order’s title, the total amount, and the
title of the current status, plus the detailed list of all items in the order, rendered by a Repeater, similar
to those used earlier. If the order’s StatusID is 1 (waiting for payment), it also renders a link to the PayPal
payment page, retrieved by means of the order’s GetPayPalPaymentUrl method, already used in the
last step of the ShoppingCart.aspx page’s Checkout Wizard. At the end of the template, it also displays
the subtotal amount, and the shipping method’s title and cost:

<asp:ListView runat=”server” ID=”lvOrders” DataKeyNames=”OrderId”>
 <LayoutTemplate>
 <div runat=”server” id=”itemPlaceHolder”>
 </div>
 <div class=”pager”>
 <asp:DataPager ID=”pagerBottom” runat=”server”
PageSize=”5” PagedControlID=”lvOrders”>
 <Fields>
 <asp:NextPreviousPagerField ButtonCssClass=”command”
FirstPageText=”«” PreviousPageText=”‹”
 RenderDisabledButtonsAsLabels=”true”
ShowFirstPageButton=”true” ShowPreviousPageButton=”true”
 ShowLastPageButton=”false”
ShowNextPageButton=”false” />
 <asp:NumericPagerField ButtonCount=”7”
NumericButtonCssClass=”command” CurrentPageLabelCssClass=”current”
 NextPreviousButtonCssClass=”command” />
 <asp:NextPreviousPagerField

87586c09.indd 48887586c09.indd 488 9/13/09 10:24:22 PM9/13/09 10:24:22 PM

489

Chapter 9: E-Commerce Store

ButtonCssClass=”command” LastPageText=”»” NextPageText=”›”
 RenderDisabledButtonsAsLabels=”true”
ShowFirstPageButton=”false” ShowPreviousPageButton=”false”
 ShowLastPageButton=”true” ShowNextPageButton=”true” />
 </Fields>
 </asp:DataPager>
 </div>
 </LayoutTemplate>
 <ItemTemplate>
 <div class=”sectionsubtitle”>
 Order #<%#Eval(“OrderID”)%>
 -
 <%# Eval(“AddedDate”, “{0:g}”) %></div>

 <u>Total</u> =
 <%# FormatPrice(CDec(Eval(“SubTotal”)) + CDec(Eval(“Shipping”))) %>

 <u>Status</u> =
 <%# Eval(“StatusTitle”) %>

 <asp:HyperLink runat=”server” ID=”lnkPay” Font-Bold=”true”
Text=”Pay Now” NavigateUrl=’<%# StoreHelper.GetPayPalPaymentUrl
(CType(Container.DataItem, Order)) %>’
 Visible=’<%# (CInt(Eval(“StatusID”))) = 1 %>’ />

 <small>Details

 <small>
 <asp:Repeater runat=”server” ID=”repOrderItems”>
 <ItemTemplate>

 [<%# Eval(“SKU”) %>]
 <asp:HyperLink runat=”server” ID=”lnkProduct”
Text=’<%# Eval(“Title”) %>’ NavigateUrl=
‘<%# “~/ShowProduct.aspx?productID=” & Eval(“ProductID”) %>’ />
 - (<%# Eval(“Quantity”) %>)

 </ItemTemplate>
 </asp:Repeater>
 </small>

 Subtotal =
 <%# FormatPrice(Eval(“SubTotal”)) %>

 Shipping Method =
 <%# Eval(“ShippingMethod”) %>
 (<%# FormatPrice(Eval(“Shipping”)) %>) </small>
 </ItemTemplate>
 <ItemSeparatorTemplate>
 <hr style=”width: 99%;” />
 </ItemSeparatorTemplate>
</asp:ListView>

87586c09.indd 48987586c09.indd 489 9/13/09 10:24:22 PM9/13/09 10:24:22 PM

490

Chapter 9: E-Commerce Store

The page’s code-behind contains only a couple of lines that bind the ListView with the list of orders
returned by the Order.GetOrdersByUser method, which accepts the name of the current user:

Dim lOrders As List(Of Order) = lOrderrpt.GetOrdersByUser(Helpers.CurrentUserName)
lvOrders.DataSource = lOrders
lvOrders.DataBind()

Figure 9-21 shows the page.

Figure 9-21

The ManageOrders.aspx and AddEditOrder.aspx Pages
This administrative page is used by storekeepers to retrieve the list of orders in a certain status created
in a specifi ed date interval, or to retrieve the list of all orders made by a given customer. If the store-
keeper already knows the OrderID of a specifi c order and wants to update it, there’s a form that lets her
enter the OrderID and click the button to jump to the edit page.

The form utilizes some of the AJAX extenders and the Membership web service introduced back in
Chapter 4 to provide some client-side help. First the Order Status drop-down sets the AutoPostBack
property to true, meaning anytime a new selection is made the list of orders is changed to refl ect that
choice. The OrderStatusId property is set the selected value and the BindOrders method is called.
BindOrders has logic that checks for each of the possible fi lters and applies them as needed.

Next, the date range can be selected by the user to limit the number of orders. It uses two TextBoxes
extended with the AJAX Calendar and MaskedEdit extenders. There is an accompanying Submit but-
ton to apply the desired date range. The fi lter is designed to let the user specify either a from or to date
or both. If only one of the date values is entered, it is used as a cutoff point in the desired direction.
Additionally, a CompareValidator is employed to make sure that the two values entered are not the
same; if they were, then no records would be displayed.

Next, orders can be fi ltered for specifi c users. A TextBox allows the user to type in the username. Once
the username is entered, there is a Submit button that can be pressed to submit the user fi lter. While the
user is typing the username, an AutoCompleteExtender displays a list of possible matches in a hint
drop-down. This helps when the user is not quite sure what the username actually is.

<fieldset>
 <legend>Orders by status</legend>Status:

87586c09.indd 49087586c09.indd 490 9/13/09 10:24:22 PM9/13/09 10:24:22 PM

491

Chapter 9: E-Commerce Store

 <asp:DropDownList ID=”ddlOrderStatuses” runat=”server”
DataTextField=”Title” DataValueField=”OrderStatusID”
 AutoPostBack=”True” />

 Order Date from:
 <asp:TextBox ID=”txtFromDate” runat=”server” Width=”80px” />
<asp:Image runat=”Server”
 ID=”iFromDate” ImageUrl=”~/images/Calendar.png” />
 <asp:CalendarExtender ID=”ceEventDate” runat=”server”
TargetControlID=”txtFromDate”
 PopupButtonID=”iFromDate”>
 </asp:CalendarExtender>
 <asp:MaskedEditExtender ID=”meeEventDate” runat=”server”
TargetControlID=”txtFromDate”
 Mask=”99/99/9999” MessageValidatorTip=”true”
OnFocusCssClass=”MaskedEditFocus”
 OnInvalidCssClass=”MaskedEditError” MaskType=”Date”
DisplayMoney=”Left” AcceptNegative=”Left” />
 to:
 <asp:TextBox ID=”txtToDate” runat=”server” Width=”80px” />
 <asp:Image runat=”Server” ID=”Image1” ImageUrl=”~/images/Calendar.png” />
 <asp:CalendarExtender ID=”CalendarExtender1” runat=”server”
TargetControlID=”txtToDate”
 PopupButtonID=”iToDate”>
 </asp:CalendarExtender>
 <asp:MaskedEditExtender ID=”MaskedEditExtender1” runat=”server”
 TargetControlID=”txtToDate”
 Mask=”99/99/9999” MessageValidatorTip=”true”
OnFocusCssClass=”MaskedEditFocus”
 OnInvalidCssClass=”MaskedEditError” MaskType=”Date”
DisplayMoney=”Left” AcceptNegative=”Left” />
 <asp:Button ID=”btnListByStatus” runat=”server” Text=”Load”
 ValidationGroup=”ListByStatus” />
 <asp:RequiredFieldValidator ID=”valRequireFromDate” runat=”server”
 ControlToValidate=”txtFromDate”
 SetFocusOnError=”true” ValidationGroup=”ListByStatus” Text=”

The From Date field is required.”
 ToolTip=”The From Date field is required.”
Display=”Dynamic”></asp:RequiredFieldValidator>
 <asp:CompareValidator runat=”server” ID=”valFromDateType”
ControlToValidate=”txtFromDate”
 SetFocusOnError=”true” ValidationGroup=”ListByStatus” Text=”

The format of the From Date is not valid.”
 ToolTip=”The format of the From Date is not valid.”
Display=”Dynamic” Operator=”DataTypeCheck”
 Type=”Date” />
 <asp:RequiredFieldValidator ID=”valRequireToDate”
runat=”server” ControlToValidate=”txtToDate”
 SetFocusOnError=”true” ValidationGroup=”ListByStatus”
Text=”
The To Date field is required.”
 ToolTip=”The To Date field is required.”
Display=”Dynamic”></asp:RequiredFieldValidator>
 <asp:CompareValidator runat=”server” ID=”valToDateType”
ControlToValidate=”txtToDate”
 SetFocusOnError=”true” ValidationGroup=”ListByStatus”

87586c09.indd 49187586c09.indd 491 9/13/09 10:24:22 PM9/13/09 10:24:22 PM

492

Chapter 9: E-Commerce Store

Text=”
The format of the To Date is not valid.”
 ToolTip=”The format of the To Date is not valid.”
Display=”Dynamic” Operator=”DataTypeCheck”
 Type=”Date” />

 <div class=”sectionsubtitle”>
 Orders by customer</div>
 Name:
 <asp:TextBox ID=”txtCustomerName” runat=”server” />
 <asp:Button ID=”btnListByCustomer” runat=”server”
Text=”Load” ValidationGroup=”ListByCustomer” />
 <asp:RequiredFieldValidator ID=”valRequireCustomerName”
runat=”server” ControlToValidate=”txtCustomerName”
 SetFocusOnError=”true” ValidationGroup=”ListByCustomer”
Text=”
The Customer Name field is required.”
 ToolTip=”The Customer Name field is required.”
Display=”Dynamic”></asp:RequiredFieldValidator>
 <asp:AutoCompleteExtender runat=”server”
ID=”autoComplete1” BehaviorID=”AutoCompleteEx”
 TargetControlID=”txtCustomerName”
ServicePath=”~/MembersService.asmx” ServiceMethod=”SearchUsersByName”
 MinimumPrefixLength=”2” CompletionInterval=”500”
EnableCaching=”true” CompletionSetCount=”12” />

 <div class=”sectionsubtitle”>
 Order Lookup</div>
 ID:
 <asp:TextBox ID=”txtOrderID” runat=”server” />
 <asp:Button ID=”btnOrderLookup” runat=”server”
Text=”Find” ValidationGroup=”OrderLookup” />
 <asp:Label runat=”server” ID=”lblOrderNotFound” SkinID=”FeedbackKO”
Text=”Order not found!”
 Visible=”false” />
 <asp:RequiredFieldValidator ID=”valRequireOrderID” runat=”server”
ControlToValidate=”txtOrderID”
 SetFocusOnError=”true” ValidationGroup=”OrderLookup”
Text=”
The Order ID field is required.”
 ToolTip=”The Order ID field is required.”
Display=”Dynamic”></asp:RequiredFieldValidator>
 </fieldset>

The fi lter criteria are shown in Figure 9-22

Figure 9-22

87586c09.indd 49287586c09.indd 492 9/13/09 10:24:22 PM9/13/09 10:24:22 PM

493

Chapter 9: E-Commerce Store

Finally the OrderId lookup lets the user type in an OrderId to bring up the order information. If the
OrderId does not exist, an informational message is displayed to the right of the Submit button. All the
fi ltering and potential empty result messages is done pretty seamlessly because the entire form is wrapped
in an UpdatePanel, which means without writing any code all the fi lter submissions are done instanta-
neously without a full page postback.

Protected Sub btnOrderLookup_Click(ByVal sender As Object, _
 ByVal e As System.EventArgs) _
 Handles btnOrderLookup.Click

 Using lOrderrpt As New OrdersRepository

 Dim lOrder As Order = lOrderrpt.GetOrderById(txtOrderID.Text)
 If IsNothing(lOrder) Then
 lblOrderNotFound.Visible = True
 Exit Sub
 End If

 Response.Redirect(“AddEditOrder.aspx?orderid=” & txtOrderID.Text)

 End Using

End Sub

The ListView that actually displays the found orders, with their title, list of order items (through the
usual Repeater as utilized in other areas of the store, which shows the SKU fi eld in addition to the
others, as this is useful information for storekeepers), the subtotal amount, and the shipping amount.
On the right side of each order row, there’s also a button to delete the order, but that will only be shown
to Administrators, not to StoreKeepers, as it’s a sensitive operation that should only be performed
rarely, and never by accident:

<asp:ListView ID=”lvOrders” runat=”server”>
 <LayoutTemplate>
 <table cellspacing=”0” cellpadding=”0” class=”AdminList”>
 <tr class=”AdminListHeader”>
 <td>

 </td>
 <td>
 Items
 </td>
 <td>
 Cost
 </td>
 <td>
 Edit
 </td>
 <td>
 Delete
 </td>
 </tr>
 <tr id=”itemPlaceholder” runat=”server”>
 </tr>

87586c09.indd 49387586c09.indd 493 9/13/09 10:24:22 PM9/13/09 10:24:22 PM

494

Chapter 9: E-Commerce Store

 <tr>
 <td colspan=”5”>
 <div class=”pager”>
<asp:DataPager ID=”pagerBottom” runat=”server” PageSize=”15”
PagedControlID=”lvOrders”>
 <Fields>
 <asp:NextPreviousPagerField ButtonCssClass=”command”
FirstPageText=”«” PreviousPageText=”‹”
 RenderDisabledButtonsAsLabels=”true”
ShowFirstPageButton=”true” ShowPreviousPageButton=”true”
 ShowLastPageButton=”false” ShowNextPageButton=”false” />
 <asp:NumericPagerField ButtonCount=”7”
NumericButtonCssClass=”command” CurrentPageLabelCssClass=”current”
 NextPreviousButtonCssClass=”command” />
 <asp:NextPreviousPagerField ButtonCssClass=”command”
LastPageText=”»” NextPageText=”›”
 RenderDisabledButtonsAsLabels=”true”
ShowFirstPageButton=”false” ShowPreviousPageButton=”false”
 ShowLastPageButton=”true” ShowNextPageButton=”true” />
 </Fields>
</asp:DataPager>
 </div>
 </td>
 </tr>
 </table>
 </LayoutTemplate>
 <EmptyDataTemplate>
 <tr>
 <td colspan=”5”>
 <p>
 Sorry there are no Orders available at this time.</p>
 </td>
 </tr>
 </EmptyDataTemplate>
 <ItemTemplate>
 <tr>
 <td>
 <%#Eval(“AddedBy”)%>
 on
 <%#String.Format(“{0:d}”, Eval(“AddedDate”))%>

 Shipping: <%#Eval(“ShippingMethod”)%>
 </td>
 <td>
 <small>
 <asp:Repeater runat=”server” ID=”repOrderItems”
DataSource=’<%# Eval(“OrderItems”) %>’>
<ItemTemplate>

 [<%# Eval(“SKU”) %>]
 <asp:HyperLink runat=”server” ID=”lnkProduct” Text=’<%# Eval(“Title”) %>’
 NavigateUrl=’<%# “~/ShowProduct.aspx?productID=” & Eval(“ProductID”) %>’ />
 - (<%# Eval(“Quantity”) %>)

</ItemTemplate>

87586c09.indd 49487586c09.indd 494 9/13/09 10:24:22 PM9/13/09 10:24:22 PM

495

Chapter 9: E-Commerce Store

 </asp:Repeater>
 </small>
 </td>
 <td>
 Sub Total:
 <%#String.Format(“{0:C2}”, Eval(“SubTotal”))%>

 Shipping:
 <%#String.Format(“{0:C2}”, Eval(“Shipping”))%>

 Grand Total:
 <%#String.Format(“{0:C2}”, Eval(“GrandTotal”))%>
 </td>
 <td align=”center”>
 <a href=”<%# String.Format(“AddEditOrder.aspx?OrderId={0}”,
 Eval(“OrderId”)) %>”>
 <img src=”../images/edit.gif” alt=”“ width=”16”
height=”16” class=”AdminImg” />
 </td>
 <td align=”center”>
 <asp:ImageButton runat=”server” ID=”btnDelete”
CommandArgument=’<%# Eval(“OrderId”).ToString() %>’
 CommandName=”Delete” ImageUrl=”~/images/delete.gif”
 AlternateText=”Delete” CssClass=”AdminImg”
 OnClientClick=”return confirm(‘Warning: This will
delete the Product from the database.’);” />
 </td>
 </tr>
 </ItemTemplate>
</asp:ListView>

When the page loads, the textbox for the end date of the date interval is prefi lled with the current date,
while the textbox for the start date is prefi lled with the current date minus the number of days specifi ed
in the DefaultOrderListInterval confi guration setting:

Protected Sub Page_Load(ByVal sender As Object, ByVal e As System.EventArgs)
Handles Me.Load

If Not IsPostBack Then
 BindOrderStatuses(ddlOrderStatuses)

 txtToDate.Text = DateTime.Now.ToShortDateString()
 txtFromDate.Text = DateTime.Now.Subtract(_
 New TimeSpan(Helpers.Settings.Store.DefaultOrderListInterval, _
 0, 0, 0)).ToShortDateString()

 BindOrders()
 End If

End Sub

The BindOrders method takes on the responsibility of tracking what fi lters are in play. It is designed
to allow one or more fi lter criteria to be applied to the list of orders by fi rst retrieving the entire list of
orders and applying the criteria one at a time, until the desired list is fi nally bound to the ListView
control. Now here is where an architectural decision was made out of convenience. If the site gets large

87586c09.indd 49587586c09.indd 495 9/13/09 10:24:22 PM9/13/09 10:24:22 PM

496

Chapter 9: E-Commerce Store

numbers of orders a complicated ESQL query will be more desirable because it will apply these fi lters
before it queries the database, which is more effi cient. This is not the easiest thing to achieve. And
because the list of orders in TheBeerHouse is still relatively small this is a much faster way to get things
running.

 Private Sub BindOrders()
 Using lOrdersrpt As New OrdersRepository

 Dim lOrders As List(Of Order)

 lOrders = lOrdersrpt.GetOrders

 If OrderId > 0 Then
 lOrders = (From lOrder In lOrders Where
lOrder.OrderID = OrderId).ToList
 End If

 If OrderStatusId > 0 Then
 lOrders = (From lOrder In lOrders Where
lOrder.StatusID = OrderStatusId).ToList
 End If

 If OrderStatusId > 0 Then
 lOrders = (From lOrder In lOrders Where
lOrder.AddedBy.StartsWith(CustomerName)).ToList
 End If

 If FromDate > DateTime.MinValue Then
 lOrders = (From lOrder In lOrders Where
lOrder.AddedDate > FromDate).ToList
 End If

 If ToDate > DateTime.MinValue Then
 lOrders = (From lOrder In lOrders Where
lOrder.AddedDate < ToDate).ToList
 End If

 lvOrders.DataSource = lOrders
 lvOrders.DataBind()

 Dim pagerBottom As DataPager = lvOrders.FindControl(“pagerBottom”)

 If Not IsNothing(pagerBottom) Then
 If lOrders.Count <= pagerBottom.PageSize Then
 pagerBottom.Visible = False
 Else
 pagerBottom.Visible = True
 End If
 End If
 End Using
 End Sub

Figure 9-23 shows this page in action.

87586c09.indd 49687586c09.indd 496 9/13/09 10:24:22 PM9/13/09 10:24:22 PM

497

Chapter 9: E-Commerce Store

Figure 9-23

The EditOrder.aspx page defi nes a form with controls that allows an administrator to edit a few fi elds
of the order whose OrderID is passed on the querystring. The code is not presented here because it’s
similar to the other AddEdit{xxx}.aspx pages developed for this module (but actually simpler because
most of the data is read-only), and other modules. Figure 9-24 shows the page, however, so that you can
get an idea of what it looks like and what it can do.

Figure 9-24

87586c09.indd 49787586c09.indd 497 9/13/09 10:24:22 PM9/13/09 10:24:22 PM

498

Chapter 9: E-Commerce Store

Creating a Policies and Procedures Page
As mentioned in the “Problem” section, a Policies page can go a long way toward making customers
feel comfortable doing business with you, as well as give you a fi rm standing when problems escalate.
Because you are not a lawyer and The Beer House’s owner is not either, you need to get a lawyer to draft
a policy page for the site, copy and modify one from a similar site, or use the online Policy Wizard at
www.the-dma.org/privacy/privacypolicygenerator.shtml (see Figure 9-25).

Figure 9-25

The wizard asks a series of questions about how you collect and use visitor data. Based on the answers
you select, it will produce a privacy policy you can use on your site. Figure 9-26 shows a basic privacy
page for The Beer House site.

87586c09.indd 49887586c09.indd 498 9/13/09 10:24:22 PM9/13/09 10:24:22 PM

499

Chapter 9: E-Commerce Store

Figure 9-26

Summary
An e-commerce module is a big challenge for any site developer, and there are a lot of features we
couldn’t implement in this chapter that you may fi nd useful, especially for larger sites. In fact, you can
fi nd many commercial modules for managing electronic stores among third-party vendors, and some-
times it can be cheaper to buy one than to develop one yourself. You need to consider the features that
you want and weigh the cost of commercial solutions against the cost of doing it yourself. One thing
that seems to be very common is that customers always want a highly customized solution but do not
always want to pay what it takes, so fi nd the best compromise to get a viable solution online in a timely
manner. The module in this chapter may be entirely adequate for small sites, or for a small store of a
larger site, but you might also want to add some advanced features such as the capability to list a prod-
uct under multiple categories, handle tax calculations on the store itself instead of leaving it to PayPal,
support products with variations (color, size, etc.) that could also affect their price, support customer-
level discounts (so that loyal customers get a better discount percentage, for example), support bundle
offers and discounts based on the quantity of ordered products and the total price reached, integrate
the shipment tracking offered by some shipping companies such as FedEx and UPS, and much more.

Nevertheless, in this chapter we’ve implemented a fully working e-commerce store with most of the basic
features, including complete catalog and order management, a persistent shopping cart, integrated online
payment via credit card, product rating, and more. All this required a fairly short amount of time to
design and implement.

87586c09.indd 49987586c09.indd 499 9/13/09 10:24:23 PM9/13/09 10:24:23 PM

87586c09.indd 50087586c09.indd 500 9/13/09 10:24:23 PM9/13/09 10:24:23 PM

Calendar of Events

Offering a list of upcoming and even past events is a very important feature a successful busi-
ness’ online presence can offer its patrons. Everyday life for people keeps getting faster and faster
paced and keeping track of everything one needs to do is hard enough, knowing when they can
have fun can easily get lost. Providing patrons easy access to a schedule of events at the Beer House
is a great way method to boost response in the pub. Giving customers the means to quickly add
events to their calendar as reminders is another great way to remind them of the fun things they
can do after they have worked all day or all week long.

Problem
The Beer House tries to maintain a regular schedule of popular events and activities to increase
traffi c in the pub on a nightly basis. Fortunately with sporting events and holidays the schedule
has many nights covered. But the Beer House also likes to fi ll in the night where there is not some-
thing already scheduled that will attract folks in such as Karaoke, Ladies night and live entertain-
ment. Promoting these events in the bar is one thing, but it is common for customers to forget these
activities once they leave the bar, especially if they have enjoyed a bit too much of the Beer!

Because most of the potential Beer House customers are active online keeping an up to date sched-
ule available on the web site is very important to keeping them informed. It gives them a way to
quickly check to see what is happening and refer their friends as well. Offering a natural way to add
a reminder to their digital calendars is another great way to let them be more active in scheduling
their time to include a trip to the Beer House.

87586c10.indd 50187586c10.indd 501 9/11/09 3:40:15 PM9/11/09 3:40:15 PM

502

Chapter 10: Calendar of Events

Design
Here’s the list of features needed in the Events module:

Display a list of upcoming events. ❑

Display events in a calendar format. ❑

Allow visitors to see full event details. ❑

Allow visitors to easily add an event reminder to their calendar. ❑

Promote upcoming events in the common layout of the site. ❑

For some events allow customers to RSVP. ❑

Designing the Database Tables
The Events Module consists of two tables, one for Events and one for Event RSVPs. Instead of calling
the event table Event, I called it EventInfo because using the name Event tends to cause issues because
Event is a keyword in the .NET languages.

The tbh_EventInfo table contains a title, description, event time and duration, location, an
AllowRegistration fi elds. The tbh_EventRSVP table contains some basic fi elds to collect information
about the user attending, or not attending the event. The tables are related by a one-to-many relation-
ship on the EventId fi eld (see Figure 10-1).

Figure 10-1

Creating the Entity Data Model
As in the previous chapters a dedicated Entity Data Model is generated for the Event module, called
CalendarofEvents. It contains an entity for EventInfo and EventRSVP, shown in Figure 10-2. And
as usual the EntitySet and relationships need to be renamed to something more friendly. The module

87586c10.indd 50287586c10.indd 502 9/11/09 3:40:15 PM9/11/09 3:40:15 PM

503

Chapter 10: Calendar of Events

namespace is Bll.EventCalendar, so after the model is generated this namespace needs to be added
to the accompanying designer fi le.

Figure 10-2

Designing the Business Layer
Like the other module business layers, each of the tables has corresponding entities and repositories.
Each one inherits from the BaseEventRepository (see Figure 10-3) that manages the disposing mem-
bers and wraps the DataContext in a common property.

Figure 10-3

87586c10.indd 50387586c10.indd 503 9/11/09 3:40:16 PM9/11/09 3:40:16 PM

504

Chapter 10: Calendar of Events

The EventRepository
Like all the entity repositories in the site, the EventRepository contains members to do basic retrieval,
inserting, and updating of EventInfo entities. There are a few custom retrieval methods to retrieve a
list of events based on a specifi ed date. They’re described in the following table.

Method Description

GetEvents Retrieves a full list of events

GetActiveEvents Retrieves a list of active events

GetEventInfoById Retrieves an event by its EventId

GetEventInfoCount Returns the number of events in the database

AddEventInfo Adds a new event to the database

UpdateEventInfo Updates an existing event

DeleteEventInfo Deletes an event by setting the Active fl ag to false

UnDeleteEventInfo UnDeletes an event by setting the Active fl ag to true

DaysEvents Returns a list events for the day passed to the method

GetTodaysEvents Returns a list events for the current day

GetUpcomingEvents Retrieves a list of events after the day passed to the method

The EventRSVPRepository
The EventRSVPRepository contains the basic repository members to perform CRUD operations
against the entity data model. Here’s a look at them:

Method Description

GetEventRSVPs Retrieves a full list of poll optionss

GetActiveActiveEventRSVPs Retrieves a list of active poll options by the specifi ed PollId

GetEventRSVPById Retrieves a list of poll options by the specifi ed PollId

GetEventRSVPByEventId Retrieves the PollOption by the specifi cied PollOptionId

GetEventRSVPCount Returns a count of poll options

AddEventRSVP Adds a new poll option to the database

UpdateEventRSVP Updates an existing poll option

DeleteEventRSVP Deletes a poll option by setting the Active fl ag to false

UnDeleteEventRSVP Undeletes a poll by setting the Active fl ag to true

87586c10.indd 50487586c10.indd 504 9/11/09 3:40:16 PM9/11/09 3:40:16 PM

505

Chapter 10: Calendar of Events

Designing the User Interface Services
Following are the pages and controls that constitute the user interface layer of this module:

~/Admin/ManageEvents.aspx: ❑ An administrative list of events with icons to edit or delete the
event.

~/Admin/AddEditEvent.aspx: ❑ Allows adding or editing of an event.

~/Admin/ManageEventRSVPs.aspx: ❑ An administrative list of event RSVPs with icons to edit or
delete the RSVP. The list can be edited by event.

~/Admin/AddEditEventRSVP.aspx: ❑ Allows a site admin to either add or edit an event RSVP.

~/BrowseEvents.aspx: ❑ List upcoming events and displays a calendar that highlights days with
events scheduled.

~/ShowEvent.aspx: ❑ Displays the details of the event, with a link to RSVP is the event allows
registrations.

~/MakeEventRSVP.aspx: ❑ Allows visitors to RSVP for an event.

The ❑ EventiCal Httphandler: Returns an iCal card to the user that can be imported into Outlook
or personal information manager.

Let’s look at the user control now, and we’ll cover the ASP.NET pages as we go through the rest of the
chapter.

The vCalendar Httphandler
The vCalendar Httphandler control sends an iCal card to the user. iCalendar is based on the
vCalendar standard defi ned to exchange personal calendar information. Often used in group situations
to coordinate meetings, free/busy services allow users to publish their schedules to others. The Beer House
can use this to enable patrons to easily track what is happening in their favorite watering hole, which also
meets the overall goals of distributing information about the Beer House. Fortunately distributing this
type of information is very easy with a custom HttpHandler because it is just a formatted text document.
For more information, see Request for Comment (RFC) 2445 (www.ietf.org/rfc/rfc2445.txt),
which defi nes the format, and RFCs 2446 and 2447 (www.ietf.org/rfc/rfc2446.txt and www.ietf
.org/rfc/rfc2447.txt), which defi ne interoperability of the content between systems and free/busy
services.

Several years ago I found a couple of useful projects on CodeProject.com (www.codeproject.com/KB/
vb/vcalendar.aspx) to easily manage vCalendar and vCard documents. They work by adding values
to the object graph that represents the data format, vCalendar in this case. Once the data has been
added to the object calling the ToString method returns the properly formatted data as a string. This
string can be returned however desired, for a web site this means setting the MIME type and adding the
resulting string to the output stream. The MIME type for an iCalendar fi le is “text/calendar”, which tells
the browser which application should consume the resource being loaded. For most people this will be
Outlook, but with the proliferation of mobile devices this could be almost anything, and because this is
an open standard format it is nothing we need to be concerned with.

87586c10.indd 50587586c10.indd 505 9/11/09 3:40:16 PM9/11/09 3:40:16 PM

506

Chapter 10: Calendar of Events

The handler’s ProcessRequest method checks to make sure there is an EventId value passed in the
QueryString. If not it calls the SendNoEventMessage to the browser, a nice message to the user letting
them know what is wrong without throwing a hard exception that may not help the end user.

If Not IsNothing(Request.QueryString(“EventId”)) Then

BuildVCal()

Else

SendNoEventMessage()

End If

Private Sub SendNoEventMessage()
 ‘Instead of throwing an error, let the user know what they did wrong
in a graceful manner.
 CurrentContext.Response.ContentType = “text/HTML”
 CurrentContext.Response.Write(“<P>Sorry, Please supply a valid EventId.</P>”)
 CurrentContext.Response.Flush()
 CurrentContext.Response.End()
 Exit Sub
End Sub

If an EventId value is present the BuildVCal method is called. It again does a quick test to make sure
the EventId value is positive, if not the SendNoEventMessage is called. Next the event is retrieved
from the database and the values are passed to a vCalendar object. The way the vCalendar works
is it can contain multiple vEvent and vAlarm objects, both defi ned within the vCalendar class. The
handler is concerned with just a single event, so only one vEvent object is created. The Description,
Location, and URL properties are set fi rst. Then the event date and times are set.

Setting the event date and time takes a little extra effort because the event start and end times are
defi ned in separate database fi elds from the start and end dates. A new composite DateTime value
must be created for each. The logic has to be aware of empty end dates and times. The time fi elds are
stored as a string, so I used a regular expression to parse the Hour, Minute and AM/PM values. I
chose to keep this pretty simple, assuming the data should be formatted in the format according to the
MaskEditExtender I will talk about in the Solution section.

Be aware the EventEndDate value is a Nullable type and therefore you need to convert this to a
real DateTime class using the GetValueOrDefault method. If the EventEndDate is null, then the
EventDate is assumed to be the EventEndDate. This will be the case for most events because they
should be more like appointments that last a few minutes or a few hours.

Dealing with Null Values
Null values are a common problem for programmers in any language and platform. Null dates in particu-
lar seem to be a common issue developers experience when they start dealing with null values. The .NET
framework provides three things that can help the situation: nullable types in C# and VB.NET, a coalesce
operator in C# (int x = y ?? 5), and the inline If statement in VB.NET (Dim x as integer = If(y, 5)).

87586c10.indd 50687586c10.indd 506 9/11/09 3:40:16 PM9/11/09 3:40:16 PM

507

Chapter 10: Calendar of Events

In .NET value types can be declared as a nullable type, which ultimately gets compiled to the
Nullable(of T) structure. This structure has four members: Value, HasValue, GetValueOrDefault
and GetValueOrDefault(defaultValue as T).

When the Entity Data Model Wizard encounters a fi eld that allows null values, it creates the corre-
sponding property as a nullable value:

Public Property EventEndDate() As Global.System.Nullable(Of Date)
 Get
 Return Me._EventEndDate
 End Get
 Set(ByVal value As Global.System.Nullable(Of Date))
 Me.OnEventEndDateChanging(value)
 Me.ReportPropertyChanging(“EventEndDate”)
 Me._EventEndDate = Global.System.Data.Objects.DataClasses
.StructuralObject.SetValidValue(value)
 Me.ReportPropertyChanged(“EventEndDate”)
 Me.OnEventEndDateChanged()
 End Set
End Property

In addition to using the GetValueOrDefault member I have also found the use of the Coalesce func-
tionality to be very valuable. In C# this is represented by ??; here’s an example:

int? x = null;
int y = x ?? 5;

VB.NET uses a hybrid of the if statement to manage coalescing:

Dim x as Integer? = Nothing
Dim y as Integer = if(x, 5)

This is why the following line is used to set the actual event end date:

Dim dtEnd As DateTime = If(lEventInfo.EventEndDate, lEventInfo.EventDate)
Private Sub BuildVCal()

 Using lEventrpt As New EventRepository

 Dim lEventId As Integer = CInt(Request.QueryString(“EventId”))

 If lEventId <= 0 Then
 SendNoEventMessage()
 End If

 Dim lEventInfo As EventInfo = lEventrpt.GetEventInfoById(lEventId)

 If Not IsNothing(lEventInfo) Then

 Dim lvCal As New vCalendar
 Dim lEvent As New vCalendar.vEvent

 lEvent.Description = lEventInfo.EventTitle

87586c10.indd 50787586c10.indd 507 9/11/09 3:40:16 PM9/11/09 3:40:16 PM

508

Chapter 10: Calendar of Events

 lEvent.Location = lEventInfo.EventLocation
 lEvent.URL = String.Format(“{0}?eventid={1}”, _
 Path.Combine(Helpers.WebRoot, “ShowEvent.aspx”), _
 lEventId)
 lEvent.Summary = lEventInfo.EventDesc

 Dim rgTime As New Regex(“^(\d{2}):(\d{2}):(\d{2})\ (PM|AM)$”)

 Dim mHour As Integer = 0
 Dim mMinute As Integer = 0

 For Each m As Match In rgTime.Matches(lEventInfo.EventTime)

 If m.Groups.Count > 3 Then

 If m.Groups(4).Value = “PM” Then
 mHour = 12 + m.Groups(1).Value
 Else
 mHour = m.Groups(1).Value
 End If

 mMinute = m.Groups(2).Value

 End If

 Next

 lEvent.DTStart = New Date(lEventInfo.EventDate.Year,
lEventInfo.EventDate.Month, lEventInfo.EventDate.Day, _
 mHour, mMinute, 0)

 mHour = 0
 mMinute = 0

 For Each m As Match In rgTime.Matches(lEventInfo.EndTime)

 If m.Groups.Count > 3 Then

 If m.Groups(4).Value = “PM” Then
 mHour = 12 + m.Groups(1).Value
 Else
 mHour = m.Groups(1).Value
 End If

 mMinute = m.Groups(2).Value

 End If

 Next

 ‘EventEndDate is a Nullable type, so we need to convert it
to a hard date and time.
 Dim dtEnd As DateTime = If(lEventInfo.EventEndDate,
lEventInfo.EventDate)

 If mHour > 0 Then

87586c10.indd 50887586c10.indd 508 9/11/09 3:40:16 PM9/11/09 3:40:16 PM

509

Chapter 10: Calendar of Events

 lEvent.DTEnd = New Date(dtEnd.Year, dtEnd.Month,
dtEnd.Day, mHour, mMinute, 0)
 End If

 lvCal.Events.Add(lEvent)

 CurrentContext.Response.ContentType = “text/calendar”
 CurrentContext.Response.ContentEncoding = Text.Encoding.UTF8
 CurrentContext.Response.Write(lvCal.ToString)
 CurrentContext.Response.Flush()
 CurrentContext.Response.End()

 Else

 SendNoEventMessage()

 End If

 End Using

End Sub

Just like the other HttpHandlers I have introduced in this version of the book, the custom handler
needs to be registered in the web.confi g fi le and associated with a URL. For the iCalendar fi le type the
standard extension is .ics, so we will stick with that standard and associate any request for an .ics
fi le with the custom handler:

<add verb=”*” path=”*.ics” validate=”false” type=”TheBeerHouse.vCalHandler,
TBHBLL, Version=3.5.0.1, Culture=neutral, PublicKeyToken=null”/>

With these pieces in place, iCalendar fi les can be streamed dynamically from the Beer House’s web site
with the click of a hyperlink and added to the patron’s personal schedule Figure 10-4.

Figure 10-4

87586c10.indd 50987586c10.indd 509 9/11/09 3:40:16 PM9/11/09 3:40:16 PM

510

Chapter 10: Calendar of Events

Solution
Again, we will discuss the details of implementing the Calendar of Events modules, but not repeat com-
mon patterns and features that have already been explored in previous chapters.

Implementing the Repositories
For the most part the business layer repositories follow the same patterns for the CRUD operations and
will not be reviewed. Custom methods for each one will be added, but for the most part the module is
implemented with very basic functionality.

Implementing the EventRepository
In addition to the basic CRUD methods that follow the same patterns used in previous repositories
there are three custom functions in the EventRepository to return a list of events based on specifi ed
dates.

The GetDaysEvents function runs a LINQ to Object query over the results of the GetActiveEvents
function to return just a list of events for the specifi ed day. The GetTodaysEvents function returns
a list of events for the current date by passing the current date to the GetDaysEvents function. The
results of the GetActiveEvents are cached (assuming that is enabled), so these methods should be
very fast because they are querying against an in-memory list.

Public Function GetTodaysEvents() As List(Of EventInfo)

Return GetDaysEvents(Today)

End Function

Public Function GetDaysEvents(ByVal vDate As DateTime) As List(Of EventInfo)

Return (From lEventInfo In GetActiveEvents() Where lEventInfo.EventDate =
vDate).ToList

End Function

The GetUpcomingEvents function retrieves a list of events occurring on the current day and after.
Because it is a LINQ statement, the EventDate property can be compared against the Today value
using the >= operator. Notice I am still using the Active=True fi lter. I tend to do this because you will
very rarely work with inactive records in the database; remember the default GetEvents or get a list
method in each repository does not apply this fi lter, so retrieving and working with inactive data can
always be done.

Public Function GetUpcomingEvents() As List(Of EventInfo)

 Dim key As String = CacheKey & “_Upcoming_” & Today

 If EnableCaching AndAlso Not IsNothing(Cache(key)) Then
 Return CType(Cache(key), List(Of EventInfo))
 End If

87586c10.indd 51087586c10.indd 510 9/11/09 3:40:16 PM9/11/09 3:40:16 PM

511

Chapter 10: Calendar of Events

 Dim lEvents As List(Of EventInfo)
 Eventctx.EventInfos.MergeOption = Objects.MergeOption.NoTracking

 lEvents = (From lEventInfo In Eventctx.EventInfos _
 Where lEventInfo.EventDate >= Today _
 And lEventInfo.Active = True).ToList()

 If EnableCaching Then
 CacheData(key, lEvents)
 End If

 Return lEvents

End Function

Implementing the EventRSVPRepository
Outside the standard repository methods, the EventRSVPRepository has a the
GetEventRSVPByEventId method, which returns a list of EventRSVP entities for the specifi ed event.

Public Function GetEventRSVPByEventId(ByVal EventId As Integer) As List(Of
EventRSVP)

Dim key As String = CacheKey & “_List_By_EventId_” & EventId

If EnableCaching AndAlso Not IsNothing(Cache(key)) Then
 Return CType(Cache(key), List(Of EventRSVP))
End If

Dim lEventRSVPs As List(Of EventRSVP)
Eventctx.EventRSVPs.MergeOption = Objects.MergeOption.NoTracking

lEventRSVPs = (From lEventRSVP In Eventctx.EventRSVPs.Include(“EventInfo”) _
 Where lEventRSVP.Active = True And
lEventRSVP.EventInfo.EventId = EventId).ToList()

If EnableCaching Then
 CacheData(key, lEventRSVPs)
End If

Return lEventRSVPs

End Function

Extending the Entity Model Entities
There is not much beyond what has already been covered as far as entity patterns to extend the base
entity generated by the Entity Data Model Wizard. So I will omit fi lling these pages with the source
code and advise you to review the previous chapters where I go into detail about the patterns employed
by the partial class extensions of the generated entities.

87586c10.indd 51187586c10.indd 511 9/11/09 3:40:16 PM9/11/09 3:40:16 PM

512

Chapter 10: Calendar of Events

The IsValid property of the EventRSVP entity checks to make sure the person’s First and Last name
have been supplied, if not it returns false.

Public ReadOnly Property IsValid() As Boolean Implements IBaseEntity.IsValid
 Get
 If String.IsNullOrEmpty(Me.FirstName) = False And _
 String.IsNullOrEmpty(Me.LastName) = False Then
 Return True
 End If
 Return False
 End Get
End Property

The FullName property concatenates the First and Last Name properties into a string for the full name
for convenience. The EventTitle property returns the event’s title the person RSVPed, if the associated
EventInfo object was not retrieved, it returns “NA”.

Public ReadOnly Property FullName() As String
 Get
 Return String.Format(“{0} {1}”, Me.FirstName, Me.LastName)
 End Get
End Property

Public ReadOnly Property EventTitle() As String
 Get
 If Not IsNothing(Me.EventInfo) Then
 Return EventInfo.EventTitle
 End If
 Return “NA”
 End Get
End Property

Implementing the User Interface
Now it’s time to build the user interface: the administration pages, the Upcoming Events user control,
and the public pages. The module’s administration pages consist of the usual list and Add/Edit pages
for events and the corresponding RSVPs.

The ManageEvents.aspx page
This page, located under the ~/Admin folder, allows the administrator to view a list of events, add a
new event, edit and event, and delete an event. The page is composed of a ListView surrounded by
an UpdatePanel to list the events. Each event list the event title and the date in the fi rst column. The
ListView also contains the familiar Pencil icon that is a hyper link to edit the event and the delete
icon is the familiar trash can icon. The RSVP column contains a hot linked image that opens the
ManageEventRSVPs.aspx page, fi ltered for the specifi ed event. Figure 10-5 is a screenshot of the page.

87586c10.indd 51287586c10.indd 512 9/11/09 3:40:16 PM9/11/09 3:40:16 PM

513

Chapter 10: Calendar of Events

Figure 10-5

The AddEditEvent.aspx page
The AddEditEvent.aspx page provides the visual representation to manage the information about an
event. The page uses some of the ASP.NET AJAX control toolkit controls and extenders to add to the
user experiences of the page. Primarily it uses the CalendarExtender and the MaskedEditExtender.
The use of these controls to help users enter valid dates was covered in Chapter 4. But for a quick
review, the CalendarExtender is used to display a Calendar control when the user clicks on the cal-
endar icon to the right of the corresponding TextBox. The MaskEditExtender uses a mask, which
looks somewhat like a regular expression, to format a date. For a date the Mask property is set to
“99/99/9999” and the MaskType is set to Date.

The Allow Registration checkbox (near the bottom of Figure 10-6) is important to note simply because
checking this control will enable users to RSVP for the event. If this is left unchecked, then registration
is suppressed for visitors. Because some events need to have a projected attendance ahead of time for
planning purposes, while others to do not, keep this in mind when defi ning an event.

87586c10.indd 51387586c10.indd 513 9/11/09 3:40:16 PM9/11/09 3:40:16 PM

514

Chapter 10: Calendar of Events

Figure 10-6

The BrowseEvents.aspx Page
The BrowseEvents.aspx page uses a Calendar control and a ListView to display information about
the event calendar. The Calendar is used to display highlighted days when events are scheduled. The
ListView displays a list of upcoming events, but when a date is selected on the Calendar control a list
of events for that date is displayed. The list displays the event title, date, start time, and location along
with the title and a More Information link to the ShowEvent.aspx page for the event. The actual busi-
ness area of the page is wrapped in an UpdatePanel to make fi ltering for specifi c days pretty seamless
for the user’s experience.

The Calendar control is styled so the current day and days with events stand out from other days,
which helps users know when events are scheduled:

<asp:Calendar ID=”objCalendar” runat=”server” BorderColor=”Black”
BorderStyle=”Solid” BorderWidth=”1px”>
<TodayDayStyle CssClass=”TodayDayStyle”></TodayDayStyle>
<DayStyle CssClass=”DayStyle”></DayStyle>
<DayHeaderStyle CssClass=”DayHeaderStyle”></DayHeaderStyle>

87586c10.indd 51487586c10.indd 514 9/11/09 3:40:16 PM9/11/09 3:40:16 PM

515

Chapter 10: Calendar of Events

<TitleStyle CssClass=”TitleStyle”></TitleStyle>
<OtherMonthDayStyle CssClass=”OtherMonthDayStyle”></OtherMonthDayStyle>
</asp:Calendar>

Figure 10-7 shows the page in action.

Figure 10-7

The BrowseEvents.aspx.vb Code-Behind File
The real work in the BrowseEvents.aspx page is in the event handlers for the Calendar control. As
the Calendar is being rendered the DayRender event is executed, letting you format and add content to
the cell for the day on the calendar. For the Beer House calendar, it checks to see if there are any events
on the day and, if so, sets the background color to a dark red and the number to white. It also sets the
IsSelectable property to true. This is important because for a user to fi lter just for that specifi c day
the cell has to have some sort of post back mechanism in place. The IsSelectable property deter-
mines if this is the case. If there are no events on the day being rendered, then this is set to false, and
the user cannot use this day to fi lter for events. Here’s the code:

Protected Sub objCalendar_DayRender(ByVal sender As Object, ByVal e
As System.Web.UI.WebControls.DayRenderEventArgs) Handles objCalendar.DayRender

 Using lEventrpt As New EventRepository

 Dim lEventList As List(Of EventInfo) =
lEventrpt.GetDaysEvents(e.Day.Date.ToShortDateString())
 If lEventList.Count > 0 Then

87586c10.indd 51587586c10.indd 515 9/11/09 3:40:16 PM9/11/09 3:40:16 PM

516

Chapter 10: Calendar of Events

 Dim EventStyle As New Style()
 With EventStyle

 .BackColor = System.Drawing.Color.DarkRed
 .Font.Bold = True
 .ForeColor = Drawing.Color.White

 End With

 e.Day.IsSelectable = True
 e.Cell.ApplyStyle(EventStyle)

 Else

 e.Day.IsSelectable = False

 End If

 End Using

End Sub

When a user selects a day the SelectionChanged event is fi red, which calls the BindDaysEvents
method, passing the Calendar’s SelectedDate value. This in turn binds the list of events for the
selected date to the ListView.

Protected Sub objCalendar_SelectionChanged(ByVal sender As Object, ByVal e
As System.EventArgs) Handles objCalendar.SelectionChanged
 BindDaysEvents(objCalendar.SelectedDate)
End Sub

If the user pages the Calendar control to a new month, the BindData method is called, which resets
the ListView to the list of upcoming events:

Protected Sub objCalendar_VisibleMonthChanged(ByVal sender As Object, ByVal e
As System.Web.UI.WebControls.MonthChangedEventArgs) Handles
objCalendar.VisibleMonthChanged
 BindData()
End Sub

This is an often overlooked event to create a handler for because as the user pages through the months,
it is a good idea to keep the ListView up to date. You could also create a method to bind just the events
for the displayed month.

The BindDaysEvents method binds the events for the specifi ed date to the ListView, and also shows
or hides the DataPager control depending on how many events are bound to the ListView:

Private Sub BindDaysEvents(ByVal vDate As DateTime)

 Using lEventrpt As New EventRepository

87586c10.indd 51687586c10.indd 516 9/11/09 3:40:16 PM9/11/09 3:40:16 PM

517

Chapter 10: Calendar of Events

 Dim lEventList As List(Of EventInfo) =
lEventrpt.GetDaysEvents(objCalendar.SelectedDate)

 If lEventList.Count > 0 Then

 lvEvents.DataSource = lEventList
 lvEvents.DataBind()

 Dim pagerBottom As DataPager = lvEvents.FindControl(“pagerBottom”)

 If Not IsNothing(pagerBottom) Then
 If lEventList.Count <= pagerBottom.PageSize Then
 pagerBottom.Visible = False
 Else
 pagerBottom.Visible = True
 End If
 End If

 Else

 lvEvents.Items.Clear()

 End If

 End Using

End Sub

MakeEventRSVP.aspx Page
If an event has the AllowRegisration fl ag set to true the user can RSVP for the event. A link to do so
is available on the event’s ShowEvent.aspx page and loads the MakeEventRSVP.aspx page. This page
operates almost exactly like an entity Add/Edit page in the site’s Admin section. The main difference is
the use of the MultiView. Initially the registration form is displayed, but once the RSVP has been suc-
cessfully submitted a confi rmation view is displayed to the user.

<asp:MultiView runat=”server” ID=”mvRegistration”>
<asp:View runat=”server” ID=”vRegister”>
‘Registration Form
</asp:View>
<asp:View runat=”server” ID=”vConfirmation”>
‘Confirmation Form
</asp:View>
</asp:MultiView>

Figure 10-8 shows the registration and confi rmation views.

87586c10.indd 51787586c10.indd 517 9/11/09 3:40:16 PM9/11/09 3:40:16 PM

518

Chapter 10: Calendar of Events

Figure 10-8

Summary
This chapter has presented a working solution for a calendar of events. The complete calendar of events
module is made up of an administration console for managing the events and their corresponding
RSVPs through a web browser. The module takes advantage of the Calendar control to provide a rich
display of upcoming events for the Beer House to share with its patrons. This module can easily be
employed in many real-world sites as it is now, but of course you can expand and enhance it as desired.
Here are a few suggestions:

Add the capability for users to forward event, iCalendar, reminders to friends. ❑

Add an Event Type fi lter and identifi er to an event defi nition. For example the Beer House might ❑

have live entertainment, sporting events, etc and fi ltering them by type might be helpful to patrons.

Correlate events with photo gallery albums. ❑

87586c10.indd 51887586c10.indd 518 9/11/09 3:40:17 PM9/11/09 3:40:17 PM

Photo Gallery

With the proliferation of digital cameras these days, photo galleries have become a very popular
component of websites over the past few years. Since the nature of the Beer House is a social setting,
sharing photos of events at the Beer House is a natural use of the website.

Problem
Photo galleries are a great way to let visitors see the atmosphere in the pub. Showing happy patrons
having a good time in the Beer House is a great way to show what happened at previous events in
the bar and maybe the food and beverages and the variety of entertainment offered by the Beer
House.

A modern photo gallery should be easy to administer and allow users to organize the photos in
albums. When photos are uploaded to the site, the creation of thumbnails and “display” versions
should be done automatically. Visitors should be able to see a list of albums, with a featured or
sample photo from each. An album should show all the photos as thumbnails and allow visitors
to see a display version of the image and possibly the original image.

Design
Here’s the list of features needed in the Photo Gallery module:

Display a list of albums. ❑

Display the photos in an album. ❑

Display each photo using an AJAX invoked dialog/lightbox. ❑

87586c11.indd 51987586c11.indd 519 9/11/09 3:42:45 PM9/11/09 3:42:45 PM

520

Chapter 11: Photo Gallery

Allow site administrators to create albums. ❑

Allow site administrators to upload photos to an album. ❑

Automatically create thumbnail and a display version of each photo as it is uploaded. ❑

Set the name of each photo to a URL-friendly name by replacing non-URL characters with “-”. ❑

Automatically create the album directory structure when the album is created. ❑

Designing the Database Tables
The Photo Gallery module consists of two tables: Albums and Pictures. The two tables are related in a
one-to-many relationship on the AlbumId fi eld in the tbh_Album table to the PictureAlbumId fi eld in
the tbh_Pictures table. Figure 11-1 shows the database diagram.

Figure 11-1

Albums can be nested beneath albums by setting the ParentAlbumId to the AlbumId of the parent
album. The tbh_Picture‘s AlbumOrder fi eld stores a numerical value that allows you to sort the images
in a designated order. This means images can be displayed by more than just the PictureTitle or the
PictureId.

Creating the Entity Data Model
As in the previous chapters a dedicated Entity Data Model is generated for the Photo Gallery module,
called GalleryModel. It contains entities for the Album and Picture tables. And, as usual, the EntitySet
and relationships need to be renamed to something more friendly. The module namespace is Bll.Gallery,
so after the model is generated, this namespace needs to be added to the accompanying Designer fi le.
Figure 11-2 shows the Entity Model from the Designer.

87586c11.indd 52087586c11.indd 520 9/11/09 3:42:46 PM9/11/09 3:42:46 PM

521

Chapter 11: Photo Gallery

Figure 11-2

Designing the Business Layer
Like the other module business layers, each of the tables have corresponding entities and repositories.
Each one inherits from the BaseGalleryRepository (see Figure 11-3) that manages the disposing
members and wraps the DataContext in a common property.

Figure 11-3

The AlbumRepository
Like all the entity repositories in the site, the AlbumRepository contains members to do basic retrieval,
inserting, and updating of Album entities. There are a few custom retrieval methods to retrieve a list of
events based on a specifi ed date, shown in the following table.

87586c11.indd 52187586c11.indd 521 9/11/09 3:42:46 PM9/11/09 3:42:46 PM

522

Chapter 11: Photo Gallery

Method Description

GetAlbums Retrieves a full list of albums.

GetActiveAlbums Retrieves a list of active albums.

GetAlbumById Retrieves an album by its AlbumId.

GetAlbumCount Returns the number of albums in the database.

AddAlbum Adds a new album to the database.

UpdateAlbum Updates an existing album.

DeleteAlbum Deletes an album by setting the Active fl ag to false.

UnDeleteAlbum Undeletes an album by setting the Active fl ag to true.

GetChildAlbums Returns a list albums with the specifi ed ParentAlbumId.

GetActiveChildAlbums Returns a list of active albums with the specifi ed ParentAlbumId.

GetAlbumByIdWithPictures Returns an album with a list of its pictures.

The PictureRepository
The PictureRepository contains the basic repository members to perform CRUD operations against
the entity data model.

Method Description

GetPictures Retrieves a full list of pictures.

GetActivePictures Retrieves a list of active pictures.

GetPictureById Retrieves a list of pictures by the specifi ed PictureId.

GetPicturesByAlbumId Retrieves the pictures by the specifi ed AlbumId.

GetPictureCount Returns a count of pictures.

AddPicture Adds a new picture to the database.

UpdatePicture Updates an existing picture.

DeletePicture Deletes a picture by setting the Active fl ag to false.

UnDeletePicture Undeletes a picture setting the Active fl ag to true.

87586c11.indd 52287586c11.indd 522 9/11/09 3:42:46 PM9/11/09 3:42:46 PM

523

Chapter 11: Photo Gallery

Designing the Confi guration Module
Like any other module of this book, the photo gallery module has its own confi guration setting, which
will be defi ned as attributes of the <galleryElement> element under the <theBeerHouse> section in
web.config. That element is mapped by a GalleryElement class, which has the following properties.

Property Description

PhotosDirectory The name of the root or parent photo gallery directory of all photo
galleries.

OriginalsDirectory The name of the album originals directory.

AlbumThumbnailsDirectory The name of the album thumbnail directory.

AlbumDisplayDirectory The name of the album display directory.

ThumbWidth An integer used to defi ne the maximum width for a thumbnail
image.

ThumbHeight An integer used to defi ne the maximum height for a thumbnail
image.

DisplayHeight An integer used to defi ne the maximum height for a display
image.

DisplayWidth An integer used to defi ne the maximum width for a display
image.

The fi rst four settings allow fl exibility in the naming conventions used to defi ne the photo gallery
folder structure. One thing to be aware is that if the names are changed the existing folder names will
not be changed to match the settings and will have to be adjusted manually.

The next four properties manage the maximum height and width properties of the display and thumb-
nail images. These values can be changed to match the layout of your site, but again be aware that mak-
ing any changes after the site is live means the display and thumbnail images should be reset manually.

If you look in the web.config fi le that comes with the Beer House application, there is no entry for the
galleryElement. This is because all the default settings are used and, therefore, no customizations are
needed.

<ConfigurationProperty(“photosDirectory”, DefaultValue:=”Photos”)> _
Public Property PhotosDirectory() As String
 Get
 Return CStr(Me(“photosDirectory”))
 End Get
 Set(ByVal value As String)
 Me(“photosDirectory”) = value
 End Set
End Property

87586c11.indd 52387586c11.indd 523 9/11/09 3:42:46 PM9/11/09 3:42:46 PM

524

Chapter 11: Photo Gallery

The Photo Gallery Storage
Storing the gallery images is one of the most important choices of the gallery module. There are several
options used by photo galleries: store the original image in the database, store just the original image
on disk, or store the original image and resized versions on disk at creation. I chose the latter because I
have found it to be the easiest to work with in the long run. But I want to examine each strategy before
proceeding.

Storing the images as a binary fi eld in the database is one of the most popular choices. The problem with
this strategy is that the image has to be transferred from a byte array to a fi le stream using a custom
HttpHandler each time a version of the image is requested. On top of converting the bytes to a stream
each time, the image dimensions need to be calculated and the image resized as it is being served. I fi nd
this to be a lot of overhead for each request, thus slowing the performance of the site under high demand.
While SQL Server is perfectly capable of holding binary data, it and the .NET Framework are not opti-
mized to serve fi les this way.

The next option is to store the original fi le to the disk and serve a resized version upon each request.
Again, this will use a custom HttpHandler to perform the image resizing for each request, and while it
resizes fairly quickly, it still adds some overhead. I do like this approach because it keeps the disk
requirements to a minimum. This and the previous strategy both employ custom HttpHandlers to
serve the requested image. This means that either all image fi le extensions must be confi gured to be
processed by the ASP.NET engine, adding much more overhead to each request, or a generic handler or
custom fi le extension must be mapped through ASP.NET.

When a fi le extension is mapped to be processed by ASP.NET that means each request for a resource
of that fi le type will invoke the entire processing pipeline, all 20-plus events. For images, this is a lot of
overhead because every image request would invoke this pipeline, even if it were a normal image used
in the site layout. Yuk! The next option is to use a custom fi le extension to serve the gallery images. Again,
this is not ideal because then the images might not get mapped properly by the search engines, and
we have to be responsible for serving the correct MIME type for each image. Finally, we could map to a
generic handler, an .ashx fi le, but this would just get us back to the previous problem. The use of
a generic handler is one of the most common ways to solve this problem, but I think not the most
optimal.

The choice I have settled on over the years is to let the administrator upload the image fi le in its original
format and create resized versions for the photo gallery at that time. This means that the resizing opera-
tion only occurs once. The resized images are then processed just by IIS as a static resource when they
are requested and the client-side caching rules will be applied to them by IIS. The only downside to this
strategy is the amount of disk space it requires, but since hard drives are very cheap these days, I do not
see this as a real issue.

Another advantage this strategy could have is letting the site administrator change the dimensions of the
displayed images. Since the original picture is stored on the server, any time the administrator decides to
change the dimensions used for thumbnails and display images, the stored fi les can be quickly replaced
with new versions. To preserve space used in the book, I am going to refrain from demonstrating this
process, but it would be a rather trivial set of code to add to the site.

Now how to decide on an actual storage strategy? First, all albums will be stored in the Photos folder. I
am going to assume that each photo album will have its own unique name and that name will be used
to create a dedicated folder for that album. Since the use of spaces is a bad idea, these will be replaced

87586c11.indd 52487586c11.indd 524 9/11/09 3:42:46 PM9/11/09 3:42:46 PM

525

Chapter 11: Photo Gallery

with “-” to make them more URL-friendly. Under the album folder there are three folders created, one
to hold each version of the picture: Original, Display, and Thumbnails.

I have referred to a display image several times and not explained it. This is the version of the picture
that is displayed when the thumbnail is clicked. I call it a display image because it is the one that is dis-
played within the framework of the web page. With today’s digital cameras, high-resolution photos are
very common and often are 3–5 times the size of most users’ monitors, so the original version of the
photo is not ideal to display to the user. Sometimes, when creating an online catalog or photo gallery, I
provide links from the display version to open the original in a new window and let the users decide
how they want to view the photo’s details.

The main advantages I have found to using this strategy is the original photo is preserved, the photos
are stored in the desired format needed to run the site and the photos can be quickly resized to meet the
needs of a changing site if needed. Figure 11-4 shows this directory hierarchy.

Web Root

/Photos

/{Album-Name}

/Display

/Thumbnails

/Originals

Figure 11-4

Designing the User Interface Services
This section describes the pages and controls that constitute the user interface layer of this module. In
particular, there are two ASP.NET pages, and one user control:

~/Admin/ManageAlbums.aspx ❑ — An administrative list of events with icons to edit or delete
the album.

~/Admin/AddEditAlbum.aspx ❑ — Allows adding or editing of an album.

~/Admin/AddEditPicture.aspx ❑ — Allows a site admin to either add or edit a picture.

~/BrowseAlbums.aspx ❑ — List albums with a featured or sample picture from the album.

~/ShowAlbum.aspx ❑ — Displays the pictures in the album and displays each picture in an AJAX
dialog when clicked.

87586c11.indd 52587586c11.indd 525 9/11/09 3:42:46 PM9/11/09 3:42:46 PM

526

Chapter 11: Photo Gallery

Solution
As in the previous chapters, we will discuss the details of implementing the Photo Gallery module but
not repeat common patterns and features that have already been explored in previous chapters. This
one will vary slightly in how the data is managed and the use of another AJAX framework to add some
pizzazz to the site.

Implementing the Repositories
For the most part, the business layer repositories follow the patterns for the CRUD operations and will
not be reviewed. Custom methods for each one will be added, but for the most part the module is
implemented with very basic functionality.

Implementing the AlbumRepository
The AlbumRepository uses the basic CRUD methods that follow the patterns used in previous reposi-
tories, so I will not review them. GetAlbumByIdWithPictures uses the Include operator to tell LINQ
to Entities to include the related Picture entities for the album.

Public Function GetAlbumByIdWithPictures(ByVal AlbumId As Integer) As Album

 Return (From lai In Galleryctx.Albums.Include(“Pictures”) _
 Where lai.AlbumID = AlbumId).FirstOrDefault

End Function

Implementing the PictureRepository
Again, there is nothing really new in the PictureRepository class that has not been discussed. The
UpdatePicOrder method changes just the AlbumOrder value of the picture and commits it to the data-
base. This will create an Update SQL statement that just updates the one fi eld instead of the entire
record.

Public Function UpdatePicOrder(ByVal PictureId As Integer,
ByVal AlbumOrder As Integer) As Boolean

 Dim vPicture As Picture = Me.GetPictureById(PictureId)
 vPicture.AlbumOrder = AlbumOrder
 Return AddPicture(vPicture)

End Function

Extending the Entity Model Entities
There is not much beyond what has already been covered as far as entity patterns to extend the base
entity generated by the Entity Data Model Wizard. So I will omit fi lling these pages with the source code
and advise you to review the previous chapters, where I go into detail about the patterns employed by
the partial class extensions of the generated entities.

87586c11.indd 52687586c11.indd 526 9/11/09 3:42:46 PM9/11/09 3:42:46 PM

527

Chapter 11: Photo Gallery

Extending the Picture Entity
The IsValid property of the Picture entity checks to make sure the PictureTitle, PictureCaption
and PictureFileName have been supplied, if not it returns false. It also checks to make sure the
ThumbHeight and ThumbWidth are greater than 0 and that there is an AlbumId greater than 0.

Public ReadOnly Property IsValid() As Boolean Implements IBaseEntity.IsValid
 Get
 If String.IsNullOrEmpty(Me.PictureTitle) = False And _
 String.IsNullOrEmpty(Me.PictureCaption) = False And _
 String.IsNullOrEmpty(Me.PictureFileName) = False And _
 Me.ThumbHeight > 0 And Me.ThumbWidth > 0 And _
 Me.AlbumId > 0 Then
 Return True
 End If
 Return False
 End Get
End Property

The GalleryHelper
The GalleryHelper class contains a series of methods to help with managing the directory structures
and URLs to the actual images. The methods are arranged into three regions: Directory Helpers,
URL Helpers, and Directory Maintenance. The fi rst series of functions manage retrieving the actual
folder names. The fi rst function, GetPhotosDirectory, returns the physical path to the root Photos
folder that all albums sit below. The next function, GetAlbumDirectory, combines the result of the
GetPhotosDirectory with a formatted AlbumName to return the path to the album’s folder. The next
three functions combine the result of the GetAlbumDirectory with the corresponding child folder to
return the path to each image type’s physical path.

Also, notice how the directory names are not hard-coded, but call the settings value from the web.config
fi le. Whenever an album-specifi c folder name is needed the Helpers.Settings.Gallery.<FolderName>
is used.

Public Class GalleryHelper

#Region “ Directory Helpers “

 Public Shared Function GetPhotosDirectory() As String
 Return Helpers.GetPhyscialPath(Helpers.Settings.Gallery.PhotosDirectory)
 End Function

 Public Shared Function GetAlbumDirectory(ByVal AlbumName As String) As String
 Return Path.Combine(GetPhotosDirectory(),
Helpers.FormatSpacesForURL(AlbumName))
 End Function

 Public Shared Function GetAlbumOriginalsDirectory(ByVal AlbumName As String)
As String
 Return Path.Combine(GetAlbumDirectory(AlbumName),
Helpers.Settings.Gallery.OriginalsDirectory)

87586c11.indd 52787586c11.indd 527 9/11/09 3:42:46 PM9/11/09 3:42:46 PM

528

Chapter 11: Photo Gallery

 End Function

 Public Shared Function GetAlbumThumbNailsDirectory(ByVal AlbumName As String)
 As String
 Return Path.Combine(GetAlbumDirectory(AlbumName),
 Helpers.Settings.Gallery.AlbumThumbNailsDirectory)
 End Function

 Public Shared Function GetAlbumDisplayDirectory(ByVal AlbumName As String)
 As String
 Return Path.Combine(GetAlbumDirectory(AlbumName),
 Helpers.Settings.Gallery.AlbumDisplayDirectory)
 End Function

#End Region

The next set of functions perform the same type of work, but instead of returning a physical folder path,
it returns the full URL to the folder. It does this by combining the WebRoot value with the corresponding
folder name. Again, the functions build on top of each other to build the appropriate URL. GetPictureURL
is called by each of the three image type folder functions. Since there should be no one directly accessing
the folders in a browser, the GetPictureURL function is marked as private and only used by the three
folder-specifi c functions. Each of these functions takes two parameters, the AlbumName and the FileName,
which are used to combine with the folder settings to produce a full URL to the desired image fi le.

#Region “ URL Helpers “

 Private Shared Function GetPictureURL(ByVal vAlbumName As String,
ByVal vPictureType As String, ByVal vFileName As String) As String
 Return Path.Combine(Helpers.WebRoot, _
 Path.Combine(Helpers.Settings.Gallery.PhotosDirectory,
Path.Combine(Helpers.FormatSpacesForURL(
vAlbumName), Path.Combine(vPictureType, vFileName))))
 End Function

 Public Shared Function GetThumbnailURL(ByVal vAlbumName As String,
ByVal vFileName As String)
 Return GetPictureURL(vAlbumName,
Helpers.Settings.Gallery.AlbumThumbNailsDirectory, vFileName)
 End Function

 Public Shared Function GetDispalyURL(ByVal vAlbumName As String,
ByVal vFileName As String)
 Return GetPictureURL(vAlbumName,
Helpers.Settings.Gallery.AlbumDisplayDirectory, vFileName)
 End Function

 Public Shared Function GetOriginalURL(ByVal vAlbumName As String,
ByVal vFileName As String)
 Return GetPictureURL(vAlbumName,
Helpers.Settings.Gallery.OriginalsDirectory, vFileName)
 End Function

#End Region

87586c11.indd 52887586c11.indd 528 9/11/09 3:42:46 PM9/11/09 3:42:46 PM

529

Chapter 11: Photo Gallery

The fi nal set of helper methods work to create the desired folder structure. There are four creation
methods that call the Helpers class MakeDirectory method. This method checks to see if the folder
exists; if so, it returns the folder’s DirectoryInfo. If the folder does not exist, it creates the folder and
returns the new folder’s DirectoryInfo.

Public Shared Function MakeDirectory(ByVal vDirectoryPath As String)
 As DirectoryInfo

 Dim di As DirectoryInfo

 If Directory.Exists(vDirectoryPath) = True Then
 di = New DirectoryInfo(vDirectoryPath)
 Else
 di = Directory.CreateDirectory(vDirectoryPath)
 End If

 Return di

End Function

There is a creation method for each of the four folders that an album needs: the album name and the
three image types. The next three methods are concerned with making sure that the album folder
structure exists correctly. The CreateAlbumTree function creates the folder structure for an album.
The EnsureAlbumExists function returns true or false, depending on whether the album tree already
exists. The UpdateAlbumTree function is used when an album is renamed. It simply checks to see if the
original album exists, and if so, it moves the folder to the new album name’s corresponding folder. If
the old album does not exist, UpdateAlbumTree simply creates the album tree.

#Region “ Directory Maintenance “

 Public Shared Sub CreateAlbumDirectory(ByVal AlbumName As String)
 Helpers.MakeDirectory(GetAlbumDirectory(AlbumName))
 End Sub

 Public Shared Sub CreateAlbumOriginalsDirectory(ByVal AlbumName As String)
 Helpers.MakeDirectory(GetAlbumOriginalsDirectory(AlbumName))
 End Sub

 Public Shared Sub CreateAlbumThumbNailsDirectory(ByVal AlbumName As String)
 Helpers.MakeDirectory(GetAlbumThumbNailsDirectory(AlbumName))
 End Sub

 Public Shared Sub CreateAlbumDisplayDirectory(ByVal AlbumName As String)
 Helpers.MakeDirectory(GetAlbumDisplayDirectory(AlbumName))
 End Sub

 Public Shared Sub CreateAlbumTree(ByVal AlbumName As String)
 CreateAlbumDirectory(AlbumName)
 CreateAlbumOriginalsDirectory(AlbumName)
 CreateAlbumThumbNailsDirectory(AlbumName)
 CreateAlbumDisplayDirectory(AlbumName)
 End Sub

 Public Shared Function EnsureAlbumTreeExist(ByVal AlbumName As String)

87586c11.indd 52987586c11.indd 529 9/11/09 3:42:46 PM9/11/09 3:42:46 PM

530

Chapter 11: Photo Gallery

 As Boolean

 If Directory.Exists(GetAlbumDirectory(AlbumName)) = False Then
 Return False
 End If

 If Directory.Exists(GetAlbumOriginalsDirectory(AlbumName)) = False Or _
 Directory.Exists(GetAlbumDisplayDirectory(AlbumName)) = False Or _
 Directory.Exists(GetAlbumThumbNailsDirectory(AlbumName)) = False Then
 Return False
 End If

 Return True

 End Function

 Public Shared Sub UpdateAlbumTree(ByVal OldAlbumName As String,
 ByVal AlbumName As String)
 If Directory.Exists(GetAlbumDirectory(OldAlbumName)) = True Then
 Directory.Move(GetAlbumDirectory(OldAlbumName),
 GetAlbumDirectory(AlbumName))
 Else
 CreateAlbumTree(AlbumName)
 End If
 End Sub

#End Region

End Class

The GalleryImage Class
When .NET was fi rst released, I was very excited to see that the Image class contained a GetThumbnailImage
function, but found that it often created pixilated or less than desirable results for my clients. So I
invested the time to research and create a custom routine to create better quality photo thumbnails. The
GalleryImage uses the core logic to produce resized images. I want to point out that making an image
larger than the original image will most likely not result in a desirable outcome. The image resizing
algorithm has to assume or interpolate pixels to fi ll the gaps, often resulting in a poor quality image.
This is one of the reasons why I keep the original version of any image fi le uploaded to the server and
use that fi le to create any resized versions.

The Photo Gallery logic prevents this from happening by choosing either desired dimensions or the
original image itself. So, if you uploaded an image smaller than the display image, the original image
will be used as the display version, resulting in a smaller than desired image, but nonetheless one not
distorted from its original state. The resizing logic actually checks the dimensions of the original image
and chooses to fi rst limit the resulting width over the height. The reasoning behind this is that visitors
do not like to scroll horizontally, but fi nd vertical scrolling to be natural. So any image that is resized is
actually resized to make a best fi t to the desired box dimensions without distorting the image scale. So,
a 300x400 pixel image would be resized to 75x100 to fi t a maximum height and width of 100 pixels. But a
400x300 image would be resized to 100x75 pixels.

87586c11.indd 53087586c11.indd 530 9/11/09 3:42:46 PM9/11/09 3:42:46 PM

531

Chapter 11: Photo Gallery

The GalleryImage class ultimately uses two functions, StoreImage and MakeThumbnail, and each
have several overloads. The StoreImage function checks to make sure a fi le by the same name does not
already exist; if so it deletes the existing fi le before a thumbnail is created.

Public Function StoreImage(ByVal DestinationPath As String,
 ByVal DestinationFileName As String, _
 ByVal ImageFileName As String, ByVal ImageWidth As Integer, _
 ByVal ImageHeight As Integer, ByVal CurrentImageFileName As String,
 ByVal ImageQuality As Integer) As String

 If String.IsNullOrEmpty(DestinationFileName) = False Then

 DestinationFileName = Path.GetFileName(DestinationFileName).Replace(
“#”, String.Empty)
 DestinationFileName = Path.Combine(DestinationPath,
 StoreImageExtracted(DestinationFileName))
 CheckFileExists(DestinationFileName)

 MakeThumbnail(ImageFileName, DestinationFileName, ImageWidth,
 ImageHeight, _
 Drawing.Drawing2D.InterpolationMode.HighQualityBicubic,
 ImageQuality)

 Return Path.GetFileName(DestinationFileName)

 End If

 Return String.Empty

End Function

The MakeThumbnail method opens the original image in a Bitmap object and calculates the original
dimensions and calculates the dimensions for the resized image based on the MaxWidth and MaxHeight
passed to the method. Ultimately, the best height-to-width ratio is chosen to fi t the desired containing
box. Once the new height and width are determined, a new Bitmap object is created using those dimen-
sions. Next, a new graphics object, objGraphics, is created by using the shared Graphics.FromImage
method, which takes the new Bitmap object as its only parameter. The content of the original image is
copied to the new Graphics object by passing the DrawImage method the original image and the four
points that designate the new image size. For this, the fi rst two parameters are both 0, specifying the
top-left corner of the image and the new width and height, to complete the full image size. There are many
overloads of the DrawImage method that take every possible combination of points and rectangles to pro-
duce the image.

Next, a new EncoderParameters object is created, actually as a one-dimensional array to match the
expectations of the Image.Save method. The one parameter is set to a quality setting, which should be
100 for the best, but could be anything ranging from 0 to 100. The top quality setting produces the larg-
est fi le size, but the highest-quality results. The lower the quality value, the smaller the fi le size, but
reducing the fi le size sacrifi ces image quality.

87586c11.indd 53187586c11.indd 531 9/11/09 3:42:47 PM9/11/09 3:42:47 PM

532

Chapter 11: Photo Gallery

Finally, the image is saved by calling the Save method on the new Bitmap object. The process is actu-
ally using the Save method of the base Image class. The overload used in the MakeThumbnail method
uses the fi le destination, the type of image (GIF, JPG, or PNG) and the quality parameter just discussed
to produce the new, resized image. Performing the image resizing like this gives you more control over
the image quality and size that calling the Image.GetThumbnailImage method.

Public Sub MakeThumbnail(ByRef sSource As String, _
 ByVal sDestination As String, _
 ByRef MaxWidth As Integer, ByRef MaxHeight As Integer, _
 ByVal nMode As Drawing2D.InterpolationMode, _
 Optional ByVal iJPGQuality As Integer = 100)

 Dim objImage As System.Drawing.Image
 Dim objBitmap As Bitmap
 Dim objGraphics As Graphics
 Dim iWidth As Integer
 Dim iHeight As Integer
 Dim objEncoder As Imaging.EncoderParameters

 ‘ Try
 ‘ Open the source image
 objImage = New Bitmap(sSource)

 ‘get image original width and height
 Dim intOldWidth As Integer = objImage.Width
 Dim intOldHeight As Integer = objImage.Height
 Dim dblCoef As Double

 If intOldWidth > MaxWidth Then
 iWidth = MaxWidth

 dblCoef = MaxWidth / CDbl(intOldWidth)

 If MaxHeight <= Convert.ToInt32((dblCoef * intOldHeight)) Then
 iHeight = MaxHeight
 dblCoef = MaxHeight / CDbl(intOldHeight)
 iWidth = Convert.ToInt32((dblCoef * intOldWidth))
 Else
 iHeight = Convert.ToInt32((dblCoef * intOldHeight))
 End If

 ElseIf intOldHeight > MaxHeight Then
 iHeight = MaxHeight
 dblCoef = MaxHeight / CDbl(intOldHeight)
 iWidth = Convert.ToInt32((dblCoef * intOldWidth))
 Else
 iWidth = intOldWidth
 iHeight = intOldHeight
 End If

 ‘ Create a new bitmap object with the thumbnail’s dimensions

87586c11.indd 53287586c11.indd 532 9/11/09 3:42:47 PM9/11/09 3:42:47 PM

533

Chapter 11: Photo Gallery

 objBitmap = New Bitmap(iWidth, iHeight)

 ‘ Create a graphics object, used for resizing
 objGraphics = Graphics.FromImage(objBitmap)

 ‘ Set the graphics object’s InterpolationMode
 objGraphics.InterpolationMode = nMode

 ‘ Draw the actual thumbnail
 objGraphics.DrawImage(objImage, 0, 0, iWidth, iHeight)

 ‘ Now, create a new Imaging Encoder...
 objEncoder = New Imaging.EncoderParameters(1)

 ‘ Tell it to be “Encoder.Quality” with the desired iJPGQuality
 objEncoder.Param(0) = New Imaging.EncoderParameter(
Imaging.Encoder.Quality, iJPGQuality)

 ‘ Using function GetEncoderInfo, write the thumbnail to disc
 sDestination = sDestination.ToLower

 If Path.GetExtension(sDestination) = “.gif” Then
 objBitmap.Save(sDestination, GetEncoder(ImageFormat.Gif), objEncoder)
 ElseIf Path.GetExtension(sDestination) = “.jpg” Then
 objBitmap.Save(sDestination, GetEncoder(ImageFormat.Jpeg), objEncoder)
 ElseIf Path.GetExtension(sDestination) = “.png” Then
 objBitmap.Save(sDestination, GetEncoder(ImageFormat.Png), objEncoder)
 End If

 objBitmap.Dispose()
 objImage.Dispose()

End Sub

Implementing the User Interface
Now it’s time to build the user interface: the administration pages and the public pages. The module’s
administration pages consist of the usual list and Add/Edit pages for albums and the corresponding
pictures.

The ManageAlbums.aspx Page
The ManageAlbums.aspx page, located under the ~/Admin folder, allows the administrator to view a
list of albums, add a new album, and edit and delete an existing album. The page is composed of a
ListView surrounded by an UpdatePanel to list the albums. Each album lists the Album Name pre-
ceded by a sample thumbnail image. The ListView also contains the familiar Pencil icon that is a
hyperlink to edit the album and the delete icon is the familiar trash can icon. Figure 11-5 is a screenshot
of the page.

87586c11.indd 53387586c11.indd 533 9/11/09 3:42:47 PM9/11/09 3:42:47 PM

534

Chapter 11: Photo Gallery

Figure 11-5

The thumbnail image is bound in the ItemDataBound event handler. This involves casting a reference to
the item’s ListViewDataItem.DataItem value to the bound Album entity. The image is an HTMLImage
and an instance of the control is created using the ListViewDataItem’s FindControl method. Once
both of these have been created the iThumb’s Src property is set to the image of the fi rst picture in the
album. If there are no photos in the album, a default image is used.

Private Sub lvAlbums_ItemDataBound(ByVal sender As Object,
 ByVal e As System.Web.UI.WebControls.ListViewItemEventArgs)
 Handles lvAlbums.ItemDataBound

 Dim lvdi As ListViewDataItem = DirectCast(e.Item, ListViewDataItem)

 If lvdi.ItemType = ListViewItemType.DataItem Then

 Dim iThumb As HtmlImage = CType(lvdi.FindControl(“iThumb”), HtmlImage)
 Dim lAlbum As Album = DirectCast(lvdi.DataItem, Album)

 If Not IsNothing(lAlbum) And Not IsNothing(iThumb) Then

 If Not IsNothing(lAlbum.Pictures) AndAlso
lAlbum.Pictures.Count > 0 Then
 iThumb.Src = String.Format(“~/Photos/{0}/thumbnails/{1}”, _
 Helpers.FormatSpacesForURL(lAlbum.AlbumName),
 lAlbum.Pictures(0).PictureFileName)

87586c11.indd 53487586c11.indd 534 9/11/09 3:42:47 PM9/11/09 3:42:47 PM

535

Chapter 11: Photo Gallery

 Else
 iThumb.Src = “~/Images/generic.jpg”
 End If

 iThumb.Alt = lAlbum.AlbumName
 End If

 End If

End Sub

The AddEditAlbum.aspx Page
The AddEditEvent.aspx page provides the visual representation to manage the information about an
album. This page really uses two forms, one to edit the values of the album; name, description, and any
parent album. There are a series of Hyperlinks to perform specifi c actions such as adding a new photo
to the album, returning to the ManageAlbums.aspx page, deleting the album, and of course updating
or adding the album.

The “second form” is a ListView of the album’s photos and their display order. The photo list displays
the thumbnail for each photo in the album, a TextBox with the photo’s AlbumOrder value, and a delete
icon. Clicking the thumbnail takes you to the AddEditPhoto.aspx page for the photo. Clicking the trash
can (delete icon) deletes the photo. Changing the Album order value does not do anything directly, but
once the numerical values are set for the photos clicking either of the Update Order button will update
the AlbumOrder values of each photo and reload the photos to represent the order. Figure 11-6 shows the
page for a sample album.

Figure 11-6

87586c11.indd 53587586c11.indd 535 9/11/09 3:42:47 PM9/11/09 3:42:47 PM

536

Chapter 11: Photo Gallery

The AddEditPhoto.aspx Page
The AddEditPhoto.aspx page functions pretty much like all the other entity-editing pages in the Beer
House. The photo’s Title and Album are required fi elds and have RequiredFieldValidators assigned
to them. The form does allow you to set the thumbnails’ width and height, but the default values from
the confi guration will always be set. This gives you some fl exibility in defi ning the thumbnail constraint
box. The thumbnail dimensions and the AlbumOrder fi eld use the ASP.NET AJAX Control Toolkit’s
Numeric Up/Down extender to display helpful buttons to set the numeric values. They also have
MaskedEditEtenders associated with them to force a numeric value be entered.

The FileUpload control has a RegularExpressionValidator assigned to it to enforce only upload-
ing image fi les. This is something I have found invaluable over the years when I have built forms for
clients to upload images. Inevitably, they will try to upload PDFs, Word Documents, Excel fi les, and so
forth. This is one of those instances where you cannot assume that users will do what is expected of
them, and I learned this the hard way many years ago. The web really only uses three image types: GIF,
JPG and PNG. Internet Explorer can also render BMP fi les, but it is a good idea to avoid them. You could
implement a conversion routine in the image storage routine, but I am not going to cover that in this book
because there are all sorts of issues this could introduce that would go outside the scope of this book.

<asp:FileUpload ID=”fPicture” runat=”server” CssClass=”formField” />
<asp:RegularExpressionValidator runat=”server” ID=”rvfPicture”
 ControlToValidate=”fPicture”
 ValidationExpression=”^(([a-zA-Z]:)|
(\\{2}\w+)\$?)(\\(\w[\w].*))+(.jpg|.JPG|.png|.PNG|.gif|.GIF)$”
 ErrorMessage=”You can only upload .jpg, .gif or .png image types.” />

The one thing that stands out is the creation of the display and thumbnail images when a new photo is
uploaded. First, the HasFile property is checked on the FileUpload control. If the control contains a
new fi le the PictureFileName is set to the name of the fi le and the StorePics method is called.
Otherwise, the ResizeThumbnail method is called.

If fPicture.HasFile Then
lPicture.PictureFileName = Helpers.FormatSpacesForURL(
Path.GetFileName(fPicture.FileName))
StorePics()
Else
 If lPicture.ThumbWidth <> txtWidth.Text Or _
 lPicture.ThumbHeight <> txtHeight.Text Then
 ResizeThumbnail()
 End If
End If

The StorePics method takes the fi le contained in the FileUpload control and saves it as the original
photo fi rst. This fi le is then used to create the display and thumbnail images. These versions are created
by calling the GalleryImage.StoreImage method discussed earlier.

Private Sub StorePics()

 Dim sfName As String = ViewState(“PictureFileName”).ToString
 Dim lgi As New GalleryImage

 Dim lOriginalFileName As String = String.Empty

87586c11.indd 53687586c11.indd 536 9/11/09 3:42:47 PM9/11/09 3:42:47 PM

537

Chapter 11: Photo Gallery

 Dim lDisplayFileName As String = String.Empty
 Dim lThumbnailFileName As String = String.Empty

 If fPicture.HasFile Then

 If PhotoExtension.ToLower.Contains(“jpg”) = False And _
 PhotoExtension.ToLower.Contains(“gif”) = False Then
 Response.Write(“You can Only Upload JPGs or GIFs”)
 Exit Sub
 End If

 If Not GalleryHelper.EnsureAlbumTreeExist(Helpers.FormatSpacesForURL(
ddlAlbums.SelectedItem.Text)) Then
 GalleryHelper.CreateAlbumTree(ddlAlbums.SelectedItem.Text)
 End If

 ‘Save Original
 lOriginalFileName = Path.Combine(
GalleryHelper.GetAlbumOriginalsDirectory(_
 ddlAlbums.SelectedItem.Text), UploadedFileName)

 If File.Exists(lOriginalFileName) = True Then
 File.Delete(lOriginalFileName)
 End If

 fPicture.PostedFile.SaveAs(lOriginalFileName)

 lThumbnailFileName = Path.Combine(
GalleryHelper.GetAlbumThumbNailsDirectory(_
 ddlAlbums.SelectedItem.Text), UploadedFileName)

 ‘Save Thumbnails
 If File.Exists(lThumbnailFileName) = True Then
 File.Delete(lThumbnailFileName)
 End If

 lgi.StoreImage(GalleryHelper.GetAlbumThumbNailsDirectory(_
 ddlAlbums.SelectedItem.Text), _
 Path.GetFileName(lThumbnailFileName), _
 lOriginalFileName, _
 Convert.ToInt32(txtWidth.Text), _
 Convert.ToInt32(txtHeight.Text))

 ‘Save Display or Large Version
 lDisplayFileName = Path.Combine(
GalleryHelper.GetAlbumDisplayDirectory(_
 ddlAlbums.SelectedItem.Text), UploadedFileName)

 If File.Exists(lDisplayFileName) = True Then
 File.Delete(lDisplayFileName)
 End If

 lgi.StoreImage(GalleryHelper.GetAlbumDisplayDirectory(

87586c11.indd 53787586c11.indd 537 9/11/09 3:42:47 PM9/11/09 3:42:47 PM

538

Chapter 11: Photo Gallery

ddlAlbums.SelectedItem.Text), _
 Path.GetFileName(lDisplayFileName), _
 lOriginalFileName, _
 lGallerySettings.DisplayWidth, _
 lGallerySettings.DisplayHeight)

 End If

End Sub

The ResizeThumbnail method is called if there is not a new image present to make sure the thumbnail
fi ts the constraining box defi ned in the form. It is only called if either the height or width has been
changed. Again, it uses the StoreImage method to create the new thumbnail.

Private Sub ResizeThumbnail()

 Dim ei As New GalleryImage

 If File.Exists(GalleryHelper.GetAlbumOriginalsDirectory(_
 ddlAlbums.SelectedItem.Text) & UploadedFileName) = True Then

 ei.StoreImage(GalleryHelper.GetAlbumOriginalsDirectory(_
 ddlAlbums.SelectedItem.Text), UploadedFileName, _
 GalleryHelper.GetAlbumThumbNailsDirectory(_
 ddlAlbums.SelectedItem.Text) & UploadedFileName, _
 Convert.ToInt32(txtWidth.Text), _
 Convert.ToInt32(txtHeight.Text))

 End If

End Sub

Figure 11-7 shows this page in action.

Figure 11-7

87586c11.indd 53887586c11.indd 538 9/11/09 3:42:47 PM9/11/09 3:42:47 PM

539

Chapter 11: Photo Gallery

The BrowseAlbums.aspx Page
The BrowseAlbums.aspx page uses a ListView to display a representative thumbnail from each active
photo album and the album’s title. The ListView uses its grouping capabilities to display a row of
ItemTemplates, in this case up to fi ve. Each ItemTemplate is a table cell that contains two DIV elements,
one with the thumbnail and the second with the album name. Each one is surrounded by a hyperlink
that points to the ShowAlbum.aspx page for the album.

<ItemTemplate>
<td>
<div class=”dAlbumImage”>
<a href=”ShowAlbum.aspx?albumid=<%#Eval(“AlbumId”) %>”>
 <img runat=”server” id=”iThumb” border=”0”
 width=”50” align=”middle” />
</div>
<div class=”dAlbumTitle”>
 <a href=’<%# String.Format(
“AddEditAlbum.aspx?Albumid={0}”, Eval(“AlbumId”)) %>’>
 <%# Eval(“AlbumName”) %>
</div>
</td>
</ItemTemplate>

Just as you saw in the AddEditAlbum.aspx code-behind, the representative thumbnail is bound in
the ItemDataBound event handler. If there are no active photos in the album, then a generic image is
displayed.

Private Sub lvPictures_ItemDataBound(ByVal sender As Object,
ByVal e As System.Web.UI.WebControls.ListViewItemEventArgs)
 Handles lvPictures.ItemDataBound

 Dim lvdi As ListViewDataItem = DirectCast(e.Item, ListViewDataItem)

 If lvdi.ItemType = ListViewItemType.DataItem Then

 Dim iThumb As HtmlImage = CType(lvdi.FindControl(“iThumb”), HtmlImage)
 Dim lAlbum As Album = DirectCast(lvdi.DataItem, Album)

 If Not IsNothing(lAlbum) And Not IsNothing(iThumb) Then
 If Not IsNothing(lAlbum.Pictures) AndAlso
lAlbum.Pictures.Count > 0 Then
 Dim lPicture As Picture = lAlbum.Pictures(0)
 iThumb.Src = String.Format(“~/Photos/{0}/thumbnails/{1}”, _
 Helpers.FormatSpacesForURL(lAlbum.AlbumName),
 lPicture.PictureFileName)
 iThumb.Alt = lPicture.PictureCaption
 Else
 iThumb.Src = “~/Images/generic.jpg”
 iThumb.Alt = “No Pictues Yet.”
 End If

 End If

 End If

End Sub

87586c11.indd 53987586c11.indd 539 9/11/09 3:42:47 PM9/11/09 3:42:47 PM

540

Chapter 11: Photo Gallery

Figure 11-8 shows the BrowseAlbums.aspx page.

Figure 11-8

ShowAlbum.aspx Page
The ShowAlbum.aspx page displays thumbnails of each photo in the album with a title below it. It does
this in a grid that shows images side by side with a vertical line separating each image. This layout
leverages the GroupTemplate and EmptyItemTemplate.

The ListView combines functionalities of the Repeater, the DataList, and the GridView to accomplish
much of its functionality. To display the album, as you saw on the previous page, we have to leverage the
GroupTemplate to display the images side by side. The ListView’s GroupItemCount property is declara-
tively set to 5, meaning that fi ve pictures can be displayed on each row. The GroupItemTemplate has to
have an itemPlaceHolder control to emit the actual content.

<asp:ListView ID=”lvPictures” runat=”server” GroupItemCount=”5”
 GroupPlaceholderID=”groupPlaceHolder” ItemPlaceholderID=”itemPlaceHolder”>
<LayoutTemplate>
<table id=”tblPictures” runat=”server” cellspacing=”0” cellpadding=”2”>
 <tr runat=”server” id=”groupPlaceholder” />
</table>
</LayoutTemplate>
<GroupTemplate>

87586c11.indd 54087586c11.indd 540 9/11/09 3:42:47 PM9/11/09 3:42:47 PM

541

Chapter 11: Photo Gallery

<tr runat=”server” id=”ContactsRow” style=”background-color: #FFFFFF”>
 <td runat=”server” id=”itemPlaceholder” />
</tr>
</GroupTemplate>
<ItemTemplate>
…
</ItemSeparatorTemplate>
</asp:ListView>

The ItemTemplate holds the layout for the actual image and its caption. I will go over the
ItemTemplate’s layout detail in the lightbox section. Figure 11-9 shows an album with each picture’s
image and title displayed.

Figure 11-9

Implementing an AJAX Lightbox
The ShowAlbum.aspx page displays a grid of photo thumbnails using the ListView’s grouping capa-
bilities, but it does not link to a ShowPicture.aspx page. Instead, I chose to go outside the box and
implement a lightbox script, written by Lokesh Dhakar that runs on top of Scriptaculous (http://
script.aculo.us), another AJAX framework, www.huddletogether.com/projects/lightbox2.
I did this because there was a great script with animation already done and available to display the
image to the user. It also has built-in paging capabilities, making it even more user-friendly.

Lightbox, as far as the web is concerned, is a term to describe isolating a photo from its surroundings for
viewing. This combination of CSS and JavaScript create a very stunning lightbox to display the indi-
vidual photos in the album. As the image is being loaded, the page is covered in a dark opaque layer,
just as we did for the Login dialog in Chapter 4. A white dialog layer is created on top and resizes to fi t
the dimensions of the display image with an animation effect. Once that is done, a caption area is built
below the image, displaying the image’s Title property, the image number in the album, and a Close
image to take the user back to the page. An example of the result is shown in Figure 11-10.

87586c11.indd 54187586c11.indd 541 9/11/09 3:42:47 PM9/11/09 3:42:47 PM

542

Chapter 11: Photo Gallery

Figure 11-10

Implementing the lightbox script is very easy. First, the support images for the lightbox should be added
to the Images folder, then the included script fi les are added to the site. I chose to keep them in a “js”
folder to keep them isolated from the rest of the site. Finally, the CSS fi le should be added to the site.

The tricky part was deciding how to include the CSS and script fi les in the page’s header section, since
the Beer House leverages nested master pages. If you examine the TBHMain.master markup, there is a
ContentPlaceHolder control in the layout’s header tag that can be used to insert the fi le references.
The remaining issue is how to do this through the nested master page CRMaster.master. The answer
is to add a ContentPlaceHolder control inside its Content control that manages the content emitted
in the desired ContentPlaceHolder in the primary master page.

<asp:Content ID=”headContent” ContentPlaceHolderID=”head” runat=”Server”>
 <asp:ContentPlaceHolder ID=”cphMainHeader” runat=”server”>
 </asp:ContentPlaceHolder>
</asp:Content>

Ultimately, the normal script and link references can be added to the ShowAlbum.aspx page. This
enables the page to leverage the lightbox script and keeps the scripts from being downloaded to the
client unless they are viewing an album in the photo gallery.

<asp:Content ID=”headContent” ContentPlaceHolderID=”cphMainHeader” runat=”Server”>
 <link rel=”stylesheet” href=”lightbox.css” type=”text/css” media=”screen” />
 <script type=”text/javascript” src=”js/prototype.js”></script>
 <script type=”text/javascript”
src=”js/scriptaculous.js?load=effects,builder”></script>
 <script type=”text/javascript” src=”js/lightbox.js”></script>
</asp:Content>

87586c11.indd 54287586c11.indd 542 9/11/09 3:42:47 PM9/11/09 3:42:47 PM

543

Chapter 11: Photo Gallery

The only thing left is to have the HTML created as Picture entities are bound to the ListView control.
The lightbox script only requires the rel tag specify the “lightbox,” but to get the Previous and Next
paging feature, a group name must be added to the attribute value in brackets ([]). The script interro-
gates the page to fi nd the other images that are part of the group automatically. It gets the links to the
images by evaluating the href targets of the <a..> tags associated with the album’s images. One thing
to note is I included an extra ‘img’ on the rel attribute value. I did this because the image and the asso-
ciated caption have separate links in the album’s layout, If they both had the same group name value, it
would cause the lightbox to include duplicate images. To include a caption below the image in the light-
box, it must be added to the title attribute of the anchor tag.

<a href=’<%#GetDisplayPicturePath(Eval(“AlbumName”), Eval(“PictureFileName”))%>’
rel=”lightbox[<%#Eval(“AlbumName”) %>img]” title=’<%#Eval(“PictureTitle”)%>’>

The reference to the display image is built by calling a function I added to the page’s code-behind,
GetDisplayPicturePath. It takes the album and picture’s name to combine into a string that fi ts the
path I discussed earlier. Finally, notice that the album name is scrubbed to format the spaces that might
be in the name and replace them with the more friendly “-”.

Public Function GetDisplayPicturePath(ByVal vAlbumName As String,
ByVal vPicture As String) As String
Return String.Format(“{2}Photos/{0}/Display/{1}”, _
Helpers.FormatSpacesForURL(vAlbumName), vPicture, Helpers.WebRoot)
End Function

Summary
This chapter presents a working solution for a photo gallery. The complete Photo Gallery module is
made up of an administration console for managing the albums and their photos. The module takes
advantage of the .NET graphics classes and the FileUpload control to let administrators upload only a
single photo that can be manipulated as needed by the site to produce thumbnails and display images.
On top of that we also integrated a powerful lightbox script built on Scriptaculous. This module can
easily be employed in many real-world sites as it is now, but of course you can expand and enhance it
as desired. Here are a few suggestions:

Let users comment on and rate the photos. This could be done by leveraging the ❑ Rating control
and the comment infrastructure we examined in Chapter 5.

Allow users to tag photos with the names of people they know, similarly to what Facebook ❑

allows.

Correlate the Photo Gallery albums with events, articles, and other content in the site. ❑

Enable administrators to upload more than one photo at a time and possibly select an entire ❑

folder on their computer to upload. This would involve using an ActiveX control to interact
with the user’s fi le system, but there are many large image-hosting sites that do just this.

87586c11.indd 54387586c11.indd 543 9/11/09 3:42:47 PM9/11/09 3:42:47 PM

87586c11.indd 54487586c11.indd 544 9/11/09 3:42:47 PM9/11/09 3:42:47 PM

Localizing the Site

We live in a global community consisting of people from many countries. The term localizing refers
to the capability to present a site in the language of the local user, and to use the correct symbols
for currency, decimals, dates, and so on. ASP.NET 2.0 added some new features to its arsenal for
localizing a site that make it easier than ever before. Since then the proliferation of AJAX means
there is a new set of issues that need to be tackled. The developer is freed from writing clumsy
code for managing multiple languages and locale settings, and translated strings and other
resources can be compiled into independent fi les that can be easily plugged into the site, even after
deployment, to add support for a new language that wasn’t even considered when the site was
designed. In this chapter, you’ll look at the importance of localization and learn how ASP.NET
features can help you localize your site with little effort.

Problem
These days, it seems that the word globalization is used everywhere. The beauty of the Internet
and the World Wide Web is that you can reach anyone who has a computer and a phone line
or some other sort of Internet connection, be it for fun, passion, business, or another purpose.
Nevertheless, if you want to be able to communicate with people, you must speak (or write) a
language the people can understand. Due to the proliferation of English as a primary or second-
ary language, many sites use English as their base language, even if they are not run by people
for which this language is the main tongue. However, offering a site in the user’s fi rst language
is often a great advantage over competitors that don’t, because all users fi nd it easier and more
comfortable reading their primary language even when they can understand others. This is true
not only for text but also for the format used to display and parse numbers, dates, and currency
names. In fact, an Italian would interpret 07/02/2006 as the February 2, whereas an American
would interpret it to be July 2. And while this may cause misunderstandings when reading the date,
it may cause errors when users insert data in one format when the system expects a different one. For
this reason, any modern site that wants to target a worldwide audience must be multi-language,

87586c12.indd 54587586c12.indd 545 9/13/09 10:36:26 PM9/13/09 10:36:26 PM

546

Chapter 12: Localizing the Site

displaying numbers and dates according to the user’s local settings, and translating the full site’s text (or
at least the most important parts) into the user’s primary language.

Fully localizing a site based on dynamic content (articles, products, forums, polls, etc.) is an extremely
diffi cult task, and there are a number of ways to approach it. The diffi culty varies considerably, depend-
ing on whether you intend to localize everything or just static content (text on the page layouts, menus,
links, and page, section and fi eld titles and descriptions, and so forth). ASP.NET has features that signif-
icantly simplify localizing static parts of a site, and this is what I’ll cover in this chapter. The ASP.NET
AJAX framework has also been designed to be conscience of language needs. Conversely, localizing the
dynamic content would be much harder and would require quite a lot of rework on the database, the
UI structure, and the object model. If that’s what you really need to achieve, it’s usually better to create
separate language-specifi c sites with their own content.

Design
The fi rst thing you need to decide when localizing a site is whether you want to localize only static con-
tent (menus, links, copyright notices, usage agreement, titles and descriptions for pages, tables, fi elds,
buttons, and other controls) or whether you want to provide a translation for everything, including arti-
cles, poll questions, product listings, and so on. Let me state up front that adding support for complete
localization would be very diffi cult at this stage of development, as it would require a complete rework-
ing of the database design, the DAL, the BLL, and the UI. It’s something that should be planned very
early, during the initial site design and the foundations development. Complete localization in a single
website is not a common requirement: you normally wouldn’t translate every article on the site, forums,
polls, and newsletters, but rather, only those that have a special appeal to one country or language-
specifi c audience. You may also want to present information differently for different languages —
changing something in the site’s layout, for example. Because of this, most sites that want to be fully
localized “simply” provide multiple copies of their pages under different subdomains or folders, one
copy for each language. For example, there could be www.contoso.com/en and www.contoso.com/it
or http://en.contoso.com/ and http://it.contoso.com/. Each copy of the site would target
an independent database that only contains data for that specifi c language. If you take this approach,
you’ll only need to make static content localizable, and then install the site multiple times for multiple
languages. Another advantage of this strategy is that, with completely separate websites, you can have
different people managing them independently, who would be able to create content that best suits the
audience for that particular language. In this chapter, we’ll localize the site’s static content, and we’ll
support the different locale settings for dates and numbers in different languages.

Our sample site will only be installed once, and the language for which the site is localized will be
specifi ed by each user at registration time or later from the Edit Profi le page. This setting is mapped to
the Preferences.Culture profi le property, which was described and implemented in Chapter 4. An
alternative would be to detect the user’s favorite language from her browser’s settings, which is sent to
the web server with the request’s header. However, many nontechnical users don’t understand how to
set this, and it would be diffi cult to explain it on your site and answer support questions from people
who don’t understand this. Therefore, it’s better to directly ask users which language they’d like to use,
so they understand what the language choice is for and how to change it. The next section provides an
overview of the ASP.NET features regarding localization of static content.

87586c12.indd 54687586c12.indd 546 9/13/09 10:36:27 PM9/13/09 10:36:27 PM

547

Chapter 12: Localizing the Site

Localization Features of ASP.NET
Although the previous framework had technology for localizing sites, the solution outlined in the pre-
ceding section had a number of problems that made the process unwieldy and prone to error. The most
signifi cant issues were as follows:

You had to create the resource fi les manually, in a folder of your choice. However, the fi nal ❑

name of the resource class would change because of the inclusion of the folder name, and many
developers didn’t realize this. This often resulted in errors whereby resources could not be found.

You had to specify the resource key as a string, and if you misspelled this string, it resulted in ❑

errors whereby resources could not be found. If this were an enumeration, you could avoid the
possibility of misspelling it.

You had to invent your own naming convention to choose key names that would identify ❑

the same resource but for different pages, such as Page1_Title and Page2_Title. This was
the case because there were only sitewide global resources, and not page-specifi c resources.
You could also create different .resx fi les, one for each page and thus simulate page specifi c
resources. This was merely a way to physically separate resources as they were still accessible
by any other page.

Above all, you had to manually write the code to set the ❑ Text property (or any other localiz-
able property) to the proper string loaded by means of a ResourceManager, as there wasn’t a
declarative way to do it from the .aspx markup fi le.

With ASP.NET 2.0, all this changed considerably, and even though under the cover things work pretty
much the same, from the developer’s viewpoint, things are much easier and more intuitive now. Here’s
a list of improvements, which are described in detail in the following subsections:

Strongly typed global resources: ❑ Once you create a global resource fi le (like the ones you may
have used under ASP.NET 1.x), it is dynamically compiled into a class, and you can immedi-
ately see and access the class listed under the Resources namespace. Each resource of the fi le is
accessible as a property, and IntelliSense is provided by Visual Studio to make it easier to select
the right one. No more mistyped resource names!

Page-level resources: ❑ In addition to global resource fi les, you also have page-specifi c resource
fi les, so that you can place the resource strings only in the page that uses them. This enables
you to have a resource called Title for every page, with different values, as they are stored in
separate fi les. You no longer have to come up with a naming convention such as using the page
name as the prefi x for the resource keys.

New localization expressions: ❑ Similar to data binding expressions, these enable a developer
to associate an expression to the properties to localize directly in the .aspx markup fi le, so you
don’t need any C# code. A special declarative syntax is also available to bind all localizable
properties to resources in a single step. Programmatic localization is still possible, of course, and
has been improved as mentioned before for the global resources.

Improved Visual Studio designer support: ❑ This enables you to graphically associate a localiza-
tion expression to a resource string from a dialog box, without requiring the developer to write
any code. There’s also a command to automatically generate the neutral language page-level
resource fi le for the current page, which you can copy, rename, or translate to another language.

87586c12.indd 54787586c12.indd 547 9/13/09 10:36:27 PM9/13/09 10:36:27 PM

548

Chapter 12: Localizing the Site

Auto detection of the Accept-Language HTTP header: ❑ This is used to automatically set
the page’s UICulture and Culture properties, which correspond to the current thread’s
CurrentUICulture and CurrentCulture properties.

Custom providers: ❑ Should you want to store localized resources in a data store other than .resx
fi les, such as a database, you can do that by writing your own custom provider. This enables
you to build some sort of online UI for managing existing resources, and create new ones for
additional languages, without the need to create and upload new resource fi les to the server.

Using Global Resources
Global resources are shared among all pages, controls, and classes, and are best suited to store localized
data used in different places. When I say “data,” I don’t just mean strings but also images, icons, sounds,
and any other binary content. Although this was already possible in ASP.NET 1.x, VS.NET 2003 had
worse graphical support for resource fi les. Now you access a resource fi le item (from the Add Item dia-
log box) under a folder named App_GlobalResources, which is a special folder, handled by the ASP.
NET runtime and VS2008; and you can insert data into the grid-style editor represented in Figure 12-1.

Figure 12-1

87586c12.indd 54887586c12.indd 548 9/13/09 10:36:27 PM9/13/09 10:36:27 PM

549

Chapter 12: Localizing the Site

If you click the arrow on the right side of the editor’s Add Resource toolbar button, you will be able to
create an image or icon, or insert any other fi le. Figure 12-2 shows the window after choosing Images
from the drop-down menu of the fi rst toolbar icon (where Strings was selected in Figure 12-1) and after
adding a few image fi les.

Figure 12-2

After adding a few strings and a few images, you can go to a .vb fi le in the editor and type Resources.
IntelliSense will pop up a drop-down list with the names of the resource fi les added to the project, that
is, Messages in the example shown in Figure 12-1. Then, when you type Resources.Messages, it will
list the string and image resources added earlier; and if you look closely at Figure 12-3, you’ll also note
that image resources are returned with the proper type of System.Drawing.Bitmap.

Figure 12-3

This results in less manual typing, less probability of mistyping a resource or key name, and less casting.

87586c12.indd 54987586c12.indd 549 9/13/09 10:36:27 PM9/13/09 10:36:27 PM

550

Chapter 12: Localizing the Site

Programmatic access of resources is necessary in some cases, particularly when you need to retrieve them
from business or helper classes, and in this case you’ll be happy to know that IntelliSense for dynamically
compiled resources works also! However, when the resource will be used as the value for a property of a
control on a page, there’s an even easier approach: just select the control in the page’s graphical designer
and click the ellipses button on the right side of the “(Expressions)” item in the Properties window. From
the dialog box that pops up, you can select the property you want to localize, select Resources as the
expression type, and select then the resource class name and key, as shown in Figure 12-4. Note that
you just select the resource you want from a prefi lled drop-down list, so you don’t need to type
that yourself.

Figure 12-4

After using this dialog box on an ASP control, if you go to the Source View, the declaration of the local-
ized Label control will look like this:

<asp:Label ID=”lblGreeting2” runat=”server”
 Text=’<%$ Resources:Messages, Greeting2 %>’ / >

The Text property is set to a new localization expression (also called dollar-expression, because of the
leading $ character), which at runtime will return the resource string from the Greeting2 item of the
Messages class. You can also write these expressions yourself if you prefer coding your pages directly
in the Source View (as I do). In either case, these expressions in the .aspx code are much better than
manually writing C# code in the code-behind fi le, as you had to do with ASP.NET 1.x.

87586c12.indd 55087586c12.indd 550 9/13/09 10:36:27 PM9/13/09 10:36:27 PM

551

Chapter 12: Localizing the Site

Using Page-Level Resources
You can create page-level resources by generating resource fi les, just as you do for global resources, but
placing them under a folder named App_LocalResources (as opposed to App_GlobalResources used
for global resources) located at the same level as the page to localize. For example, if the page is in the
root folder, then you’ll create the App_LocalResources under the root folder, but if the page is under
/Test, then you’ll create a /Test/App_LocalResources folder. This means you can have multiple
App_LocalResources folders, whereas you can only have one App_GlobalResources folder for the
whole site. The name of the resource fi lename is also fundamental, as it must be named after the page
or control fi le for which it contains the localized resources, and include the culture name: for example,
a culture-neutral resource fi le for Localization.aspx would be named Localization.aspx.resx,
whereas it would be named Localization.aspx.it-IT.resx for the Italian resources. In Figure 12-5,
you can see the organization of fi les in the Solution Explorer and the resource fi le being edited in the
grid editor.

Figure 12-5

You can still use the Expressions dialog shown in Figure 12-4 to bind a control’s property to an expres-
sion pointing to a localized resource: when you point to a page-specifi c resource you just leave the
ClassKey textbox empty. Following is the generated expression:

<asp:Label ID=”lblCopyright” runat=”server”
 Text=”<%$ Resources:CopyrightMessage %>” / >

It differs from the expression shown in the previous section, as it doesn’t include the class name; it just
specifi es the resource key. If you want to access local resources programmatically, you use the page’s
GetLocalResourceObject method, which takes the resource key name and returns an Object that
you must cast to string or to the proper destination type (such as Bitmap if you stored an image):

string copyrightMsg = (string)this.GetLocalResourceObject(“CopyrightMessage”);

87586c12.indd 55187586c12.indd 551 9/13/09 10:36:27 PM9/13/09 10:36:27 PM

552

Chapter 12: Localizing the Site

Even with localization expressions and local resources, localizing full pages will be a slow task if you need
to create the expressions for dozens of controls, and things get worse if you need to localize multiple prop-
erties for the same control, such as Text, ToolTip, ImageUrl, NavigateUrl, and so on, which is often the
case. To speed things up, Visual Studio offers the Tools ➪ Generate Local Resource command, which gener-
ates a local resource fi le for the current page, and creates entries for all localizable properties of all controls on
the page, following the ControlName.PropertyName naming convention for the names of the resources.
Resource items are also automatically set with the value extracted from the page’s markup; if a property
is not used in the control’s declaration, a resource item for it is generated anyway and left empty.

Localizable properties are those that are decorated with a [Localizable(true)] attribute, which
you can add to the properties of your custom controls. However, even when you add it to properties of
user controls, resources for those properties will not be automatically generated by the Generate Local
Resource command. You can create the local resources for those properties yourself, and write the local-
ization expressions to make the association: everything will work perfectly at runtime, so this is only a
design-time limitation. In addition, you’ll have to write the localization expressions manually, because
the (Expressions) item is not available from the Properties window when a user control is selected.

Figure 12-6 shows the resource editor for the Localization.aspx.resx local resource fi le after exe-
cuting the Generate Local Resource command on the test page.

Figure 12-6

Besides the automatic generation of the resource fi le (or the addition of the resource items, if a resource
fi le for that page was already present in the proper folder), what’s even more interesting is that each
control’s declaration is modifi ed as follows (note the code in bold):

<asp:Label ID=”lblTitle” runat=”server” Font-Size=”X-Large” ForeColor=”#C00000”
 meta:resourcekey=”lblTitleResource1” Text=”Localization Demo”
 Text=”This page provides a nice demo of new ASP.NET 2.0 localization features”
/>

A meta:resourcekey attribute is added to the declaration and is set to the prefi x used in the local
resource fi le to identify all localized properties of that control, such as lblTitleResource1.Text
and lblTitleResource1.ToolTip. These are called implicit localization expressions (expressions used
earlier are considered explicit). At runtime, the framework parses all resources and applies them to the

87586c12.indd 55287586c12.indd 552 9/13/09 10:36:27 PM9/13/09 10:36:27 PM

553

Chapter 12: Localizing the Site

properties of the corresponding controls, making the mapping of the fi rst part of the key with the value
of meta:resourcename. This means that the control’s declaration is decorated with just a single new
attribute, but may make multiple properties localizable. Later, if you want to localize a property that
you didn’t take into account originally, you just need to go to the resource editor and add an item fol-
lowing the naming schema described above, or edit its value if it already exists.

Note that the controls retain their original property declarations after running the
Generate Local Resource command. These declarations are no longer necessary,
though, as the property’s value will be replaced at runtime with the values saved in
the resource fi le; therefore, you can completely remove the defi nition of the Text,
ToolTip, and the other localized properties, from the .aspx fi les to avoid confusion.

This behavior works with the page’s title as well, originally defi ned in the @Page directive, which is
modifi ed as follows:

<%@ Page Language=”C#“ meta:resourcekey=”PageResource1” …other attributes… %>

Localizing More Static Content
All content that you want to localize must be displayed by some sort of server-side control, such as the
Label or Literal controls. You’ll typically want to use a Literal over a Label if you don’t need the
appearance properties of a Label, either because you don’t need to format the text or because the for-
matting is done through raw HTML tags present directly within the text, which is frequently the case
for static text such as section and fi eld titles, descriptions, copyright notices, and so on. An alternative
to Literal is the new Localize control, listed in the last position under the Toolbox’s Standard tab.
If you declare it manually from the Source View, it’s identical to a Literal. If, however, you work in
the graphical designer, you’ll notice that it doesn’t have any properties listed in the Properties window
beside the ID, not even a Text property. The way you fi ll it with text in the Designer is to place the caret
inside it and type the text directly. Figure 12-7 shows the test page with the description text under the
title placed inside a Localize control.

Figure 12-7

87586c12.indd 55387586c12.indd 553 9/13/09 10:36:28 PM9/13/09 10:36:28 PM

554

Chapter 12: Localizing the Site

Specifying Alternate Language Pages
A LINK element can be added to the header of a page that specifi es the hreflang attribute to associate
an alternate version of the page in a specifi c language.

The declaration produced, after executing the Generate Local Resource command, is the following:

<asp:Localize ID=”locDescription” runat=”server”
 meta:resourcekey=”locDescriptionResource1” Text=”The page provides a demo... “
/>

As mentioned earlier, you can completely remove the Text property from the declaration, as it will be
set from the localized resources at runtime.

When wrapping static content in a Localize or Literal control, it’s advisable that
you don’t include HTML formatting tags in the control’s Text, because that would
go into the resource when the page is localized. If you were to pass that resource
fi le to a nontechnical translator, she may not understand what those HTML tags are
and may modify them in some undesirable way. Because of this, if you have static
content with HTML tags in the middle, then it may be wise to split it into multiple
Localize controls, leaving the HTML formatting outside.

Setting the Current Culture
Once you’ve modifi ed your page with localization expressions for the various controls displaying static
content, and you’ve created local or global resource fi les for the different languages you want to sup-
port, it’s time to implement some way to enable users to change the page’s language. One method is to
read the Accept-Language HTTP header sent by the client to the server, which contains the array of cul-
tures set in the browser’s preferences, as shown in the dialog box in Figure 12-8.

Figure 12-8

87586c12.indd 55487586c12.indd 554 9/13/09 10:36:28 PM9/13/09 10:36:28 PM

555

Chapter 12: Localizing the Site

In ASP.NET 1.x, you would set the current thread’s CurrentCulture and CurrentUICulture
properties to the fi rst item of the UserLanguage array of the Request object, which would contain
the fi rst language in the list. You would execute this code in the Init or Load event of a page (typi-
cally a BasePage class, so that all others would inherit the same behavior), or from the Application’s
BeginRequest event, as shown here:

Private Sub Application_BeginRequest(ByVal sender As Object, ByVal e As EventArgs)
 If Request.UserLanguages.Length > 0 Then
 Dim culture As CultureInfo =
CultureInfo.CreateSpecificCulture(Request.UserLanguages(0))
 Thread.CurrentThread.CurrentCulture = culture
 Thread.CurrentThread.CurrentUICulture = culture
 End If
End Sub

In ASP.NET 2.0 and above, however, you only need to set the culture and uiCulture attributes of the
web.config fi le’s <globalization> element to “auto”, so that the user’s favorite language will be
retrieved and used automatically:

<configuration>
 <system.web>
 <globalization culture=”auto” uiCulture=”auto” />
 ...
 </system.web>
</configuration>

You can also specify these setting at the page-level, with the Culture and UICulture attributes of the
@Page directive:

<%@ Page Culture=”auto” UICulture=”auto” ... %>

Figure 12-9 shows what the same page looks like when loaded for the American English or Italian lan-
guage selected in the browser.

Figure 12-9

87586c12.indd 55587586c12.indd 555 9/13/09 10:36:28 PM9/13/09 10:36:28 PM

556

Chapter 12: Localizing the Site

The “auto” setting only saves a few lines of code, but it’s nice to have. In many situations, however,
you’ll prefer to set the culture by yourself anyway, because you’ll need to extract the current culture
from the user’s profi le, from a session variable, or according to some other logic (I mentioned earlier
that it’s a good idea to let users specify their language of choice). If that’s the case, the preceding code
showing how to handle the application’s BeginRequest is still valid, but you may actually prefer han-
dling the application’s PostAcquireRequestState event, so that the profi le and session variables have
been initialized already with the proper values. An even better solution is to override the page’s new
InitializeCulture method, to programmatically set the page’s Culture and UICulture properties
to the culture string (and not to a CultureInfo object as you do with the Thread properties). Here’s an
example:

Protected Overloads Overrides Sub InitializeCulture()
 Dim culture As String = Helpers.GetCurrentCulture()
 Me.Culture = culture
 Me.UICulture = culture
End Sub

Helpers.GetCurrentCulture is a custom function that would return something like “en-US” or “it-
IT” after reading the desired current culture from somewhere. In the “Solution” section, you’ll read the
culture from the user’s profi le, and override this method in the custom BasePage class, so that all pages
inherit this behavior without the need to replicate the code more than once.

The Generate Local Resource command automatically sets the Culture and
UICulture attributes of the @Page directive to auto. If you use one of the applica-
tion’s events in the Global.asax fi le to programmatically set the current culture,
you must remember to remove those attributes from the @Page directive after run-
ning the command on .aspx pages; otherwise, the automatic settings will override
what you do by hand, because the page is parsed after the global.asax events
you would typically use. (There is no such problem when generating localization
resources for user controls, though, because the @Control directive doesn’t have
those page-level attributes, of course.) If you follow the approach of overriding the
page’s InitializeCulture event, this isn’t important, because this method is raised
after the page is parsed, so your code will override the culture set by the framework,
as desired.

Solution
As a sample implementation for this chapter, I fully localized the command layout stored in the
template.master fi le, and most of the user controls, especially those that are part of the site’s common
structure, such as NewsletterBox, PollBox, ShoppingCartBox, ThemeSelector, WelcomeBox, and
PersonalizationManager. To do this, you start by editing the template.master fi le and wrapping
the static text you want to localize (such as the copyright notices, or the acknowledgments to Template
Monster for providing the sample layout) in Localize controls. Then, from the Design View, you exe-
cute the Generate Local Resource command for the master page, thus creating a Template.master
.resx fi le under the root App_LocalResources special folder. You copy this fi le into the same folder,

87586c12.indd 55687586c12.indd 556 9/13/09 10:36:28 PM9/13/09 10:36:28 PM

557

Chapter 12: Localizing the Site

rename it to Template.master.it-IT.resx (for Italian), open it in Visual Studio’s resource editor,
and translate all string values to the destination language. Figure 12-10 shows the resource fi le for
Italian opened in the editor.

Figure 12-10

Then you follow the exact same process for the previously mentioned controls, which will produce a
number of resource fi les under /Controls/App_LocalResources, as shown in Figure 12-11.

Yet another thing you want to localize is the Web.sitemap fi le. There isn’t a command that localizes
this automatically for you, however, so you must manually create global resource fi les for it, named
SiteMap.resx and SiteMap.it-IT.resx, and located under the root App_GlobalResources folder.
You create a key-value pair for each link defi ned in the site map, and translate them to the other lan-
guage. At this point, the Solution Explorer and the resource fi le for the localized site map look like the
example shown in Figure 12-12.

87586c12.indd 55787586c12.indd 557 9/13/09 10:36:28 PM9/13/09 10:36:28 PM

558

Chapter 12: Localizing the Site

Figure 12-11

Figure 12-12

87586c12.indd 55887586c12.indd 558 9/13/09 10:36:28 PM9/13/09 10:36:28 PM

559

Chapter 12: Localizing the Site

You then modify the original Web.sitemap fi le, by replacing the value of the title attribute with a
localization expression referencing the proper key in the shared SiteMap resource fi le. Here is partial
content of the modifi ed fi le:

<siteMap xmlns=”http://schemas.microsoft.com/AspNet/SiteMap-File-1.0”
 enableLocalization=”true” >

 <siteMapNode title=”$Resources: SiteMap, Home” url=”~/Default.aspx”>
 <siteMapNode title=”$Resources: SiteMap, Articles”
 url=”~/ShowCategories.aspx”>
 <siteMapNode title=”$Resources: SiteMap, Browse_Articles”
 url=”~/BrowseArticles.aspx”>
 <siteMapNode title=”$Resources: SiteMap, Article”
 url=”~/ShowArticle.aspx” />
 </siteMapNode>
 </siteMapNode>
 <!-- more nodes here... -- >
 </siteMapNode>
</siteMap>

Finally, you override the InitializeCulture method in the custom BasePage class, from which all
your pages inherit, and set the page’s Culture and UICulture properties to the Preferences.Culture
profile property:

Public Class BasePage
 Inherits System.Web.UI.Page
 Protected Overloads Overrides Sub InitializeCulture()
 Dim culture As String = TryCast(HttpContext.Current.Profile,
ProfileCommon).Preferences.Culture
 Me.Culture = culture
 Me.UICulture = culture
 End Sub
‘ the rest of the class here...
End Class

Recall that in Chapter 4 this profile property was made accessible for anonymous users also, with
a default value of “en-US”, so you don’t need to verify that the current user is authenticated to safely
read this property. You’re now ready to test the localized home page: run the site and log in with your
test user, go to your profi le page, switch the language to Italian (or to whatever language you’ve added
support for), and return to the home page to see how it is translated. Figure 12-13 shows the home page
fully translated to Italian, except for the dynamic data (such as poll questions and options, and forum
thread and article titles) stored in the database, of course.

If you intend to fully localize all the pages of the site, you’ll fi nd some hard-coded strings in a few
.cs code-behind fi les. To localize them you can add resource strings into the Messages.resx and
Messages.it-IT.resx global resource fi les created earlier as a test in the “Design” section, and
replace the hard-coded strings with something like Resources.Messages.ResourceKeyName, as
described earlier.

87586c12.indd 55987586c12.indd 559 9/13/09 10:36:28 PM9/13/09 10:36:28 PM

560

Chapter 12: Localizing the Site

Figure 12-13

Localizing ASP.NET AJAX
While much of an AJAX application should be concerned with application logic, there are still times
when resources might need to be localized in the scripts. ASP.NET AJAX is sensitive to this need and
provides a way to embed localized scripts in assemblies. The framework actually uses this to cre-
ate debug and release versions of the scripts, too. Scripts are added to an assembly with the culture
appended to the fi le name before the .js extension, Script.en-CA.js for Canadian English or
Script.it-IT.js for Italian, and the like.

To embed localized scripts you must be using Visual Studio 2008, as the Visual Web Developer Express
does not allow class libraries to be created. Once you have an AJAX-enabled website created, add a class
library project to the solution and make the website reference the class library project. The class library
must also reference the System.Web and System.Web.Extensions libraries.

87586c12.indd 56087586c12.indd 560 9/13/09 10:36:28 PM9/13/09 10:36:28 PM

561

Chapter 12: Localizing the Site

Add the script fi le to the class library, Validation.js. Then add ValidationResources.resx for
language-neutral resources and ValidationResources.it.resx for Italian resources. In the script
fi le add the following code:

function IsValidFirstName(firstName) {
 if (firstName == ‘’) {
 alert(Validation.InValidFirstName);
 } else {
 alert(Validation.InValidFirstName);
 }
}

The script uses Validation as a placeholder to reference the desired resource strings. In the
ValidationResources.resx fi le add two resource strings, ValidFirstName and InValidFirstName. Add
the following values respectively: ‘This is a valid First Name.’ and ‘This not is a valid First
Name.’ Next open the Italian resource fi le and add the same two resource strings, but this time set the
values to the following phrases: ‘Ciò è un nome valido.’ and ‘Ciò è un ne nome valido.’ Before
compiling the class library, the following code should be added to the assembly’s AssemblyInfo.vb fi le:

<Assembly: System.Web.UI.WebResource(“LocalizingResources.Validation.js”,
“text/javascript”)>
<Assembly: System.Web.UI.ScriptResource(“LocalizingResources.Validation.js”,
“LocalizingResources.ValidationResources”, “Validation”)>

Compile the class library. Not only do you get the normal .dll assembly, but there is also a subfolder
“it” created that contains the Italian resources in its own assembly, TBHBLL.resources.dll. You can
really see this if you examine the binary fi les created in the ASP.NET AJAX Control Toolkit, shown in
Figure 12-14.

Figure 12-14

87586c12.indd 56187586c12.indd 561 9/13/09 10:36:29 PM9/13/09 10:36:29 PM

562

Chapter 12: Localizing the Site

To enable the ScriptManager control to leverage the language resources, the EnableScriptLocalization
property must be set to true. In addition, the UICulture and Culture page directives must be set to
“auto”. In the Beer House application this can be accomplished in the TBHMain.master fi le.

<%@ Master Language=”VB” AutoEventWireup=”false” CodeBehind=”TBHMain.master.vb”
Inherits=”TBH_Web35.TBHMain”
 UICulture=”auto” Culture=”auto” %>

....
 <form id=”form1” runat=”server”>
 <asp:ScriptManager ID=”ScriptManager1” runat=”server”
AllowCustomErrorsRedirect=”true”
 EnablePartialRendering=”true” LoadScriptsBeforeUI=”false”
ScriptMode=”Auto” EnableScriptLocalization=”true”>
 <Scripts>
 <asp:ScriptReference Path=”~/TBH.js” />
 <asp:ScriptReference Assembly=”TBHBLL”
Name=”LocalizingResources.Validation.js” />
 </Scripts>
 </asp:ScriptManager>

If you run a page that calls the IsValidFirstName function, the response string will be returned in the
appropriate language.

Summary
This chapter described the localization features of ASP.NET. Automatic resource generation, implicit
and explicit localization expressions, strongly typed, dynamically compiled global resources, and good
Visual Studio Designer support can all greatly speed up the implementation of localization support in
your website. The “Solution” section of this chapter was fairly short because you only need to follow a
few simple steps, repeating them for all the pages you want to localize. It only took me a couple of hours
to fully localize the site’s common layout and the home page. I know from personal experience that this
would have taken much longer with the previous version of ASP.NET and, of course, infi nitely longer
with even older technologies. If this power and fl exibility still isn’t enough for your needs, I invite you
to go deeper and study the provider model for localization, which enables you to store and retrieve
resources to and from any data store you prefer.

Now that the site is 100% feature complete, you can start thinking about its packing, distribution, and
publication to the Internet for global usage. The next chapter shows you how to deploy the site to both
a shared hosted server and a dedicated server under your control, and how to create redistributable
installers for packaged applications.

87586c12.indd 56287586c12.indd 562 9/13/09 10:36:29 PM9/13/09 10:36:29 PM

Deploying the Site

You’ve come to the end of the development: your site is ready, you’ve tested it locally and it all
works fi ne, and now you have to publish it online. If you’ve ever had any experience with older
legacy ASP/COM applications, and later with ASP.NET 1.x applications, you already know that
.NET made deployment much easier: you no longer had any COM components to register, or
shared components that might overwrite an existing version and thus break other applications.
For pure ASP.NET applications, it may suffi ce to do an XCOPY of all your deployment-related fi les
(such as .aspx, .dll, .config, and image fi les) to the remote server, and then deploy the data-
base. However, in the real world, things usually tend to get a little more complex than that
because you have constraints and company policies to respect regarding the deployment of your
application. Database deployment and confi guration are also nontrivial, and you should consider
this carefully before you start rolling out the site. In this fi nal chapter, I will guide you through all
of the different options to successfully deploy your website’s fi les and the database, explaining
why and when some techniques are more suitable than another.

Problem
The problem described and solved here was a real problem that I faced while completing the
sample site. I wanted to put the site online somewhere so that potential readers could browse it and
consider whether it was worth the purchase, and so that I could show it to clients and colleagues
during presentations about ASP.NET 2.0.

Not having a private dedicated server connected to the Internet available for this project, I chose
to deploy the site to a typical shared web hosting service that uses servers running Windows
Server and supports ASP.NET 2.0 and SQL Server. Most of these Microsoft-centric web hosting
companies now support this platform, and several of them offer plans that cost as little as $10 per
month. When evaluating hosting service companies, you need to ensure that they offer you
enough disk space and bandwidth, and that you factor in the cost of SQL Server (some companies
charge extra for this). Of course, your specifi c hosting requirements may vary according to the
type of project you’re working on. For large or high-usage sites, or just sites that require high

87586c13.indd 56387586c13.indd 563 9/11/09 3:47:53 PM9/11/09 3:47:53 PM

564

Chapter 13: Deploying the Site

availability, you’ll want dedicated servers confi gured as a web farm (whereby a number of servers are
running the same applications and load-balancing is used to determine which server will process a
specifi c web request).

IIS and ASP.NET is a very scalable web platform where most websites have a very over abundant hard-
ware allocation. Marcus Frind has a great discussion about his experiences with ASP.NET 2.0 with the
demand Plentyoffi sh.com receives, http://plentyoffish.wordpress.com/2006/06/10/
microsoft-aspnet-20-performance. This article is a little outdated. With the release of IIS 7.0
the numbers are even better.

Also consider that our sample website is 100% pure ASP.NET, with no legacy COM components, COM+
services, or Windows services: these things would require special installation and are usually not
allowed by basic low-cost hosting plans. In our case, we don’t need the benefi ts of a dedicated server or
web farm, so a shared hosting plan is fi ne. For the situation just described, the problem statements are
pretty simple to formulate:

What fi les do I need to deploy? ❑

How do I deploy those fi les? ❑

How can I protect my source code against prying eyes once the website has been published ❑

on a shared remote server?

How do I move my local SQL Server Express database into a full SQL Server 2005 database ❑

(when SQL Server Express has been used to develop the site)?

How do I create an installer that automates the whole site’s setup, which would be useful if I ❑

sold the website as a product, or if I wish to deploy to a dedicated web server?

In the following pages you’ll fi nd answers for all of these questions.

Design
The complete deployment is basically split into two parts: deploying the database and deploying the
site’s fi les. If your web server supports SQL Server Express (only recommended for small workgroups),
deploying the database is as simple as copying the contents of the App_Data folder to the remote serv-
er’s App_Data folder, and the .mdf and .ldf fi les will automatically be attached to the remote SQL
Server Express that is installed on the web server! However, production deployment normally requires
a full-featured SQL Server (not the Express edition), for security, performance, and scalability reasons.
Because of this, you need to fi nd some way to turn the current SQL Server Express database into a SQL
Server database. As for the site’s fi les, you have different options here, as you’ll see shortly.

Make the effort to know the version the destination SQL Server. Most corporate environments are still
using SQL Server 2005 or even 2000. There is nothing in the Beer House’s database that should cause
any problems with these earlier versions, but you may have to adjust the database properties to the
proper version.

One important point to consider is the fact that we did all our development using VS2008’s integrated
web server and not IIS. The integrated web server is fi ne for local testing but your site must be tested on
IIS before deploying to a production server. Therefore, before deploying the site to the remote server,

87586c13.indd 56487586c13.indd 564 9/11/09 3:47:53 PM9/11/09 3:47:53 PM

565

Chapter 13: Deploying the Site

you’ll fi rst test it on a local installation under IIS, replicating the confi guration you have on the produc-
tion server as much as possible. This will be a test of your deployment procedures and confi guration, in
addition to the obvious test of your code and pages. The following sections provide a detailed tutorial
of the steps to take for a complete local deployment of the database and the application, and later you
can follow the same steps for production deployment.

There are several common website deployment options: shared hosting, dedicated hosting/co-location,
or an internal infrastructure. Shared hosting is great for the vast majority of websites because they have
relatively low traffi c and have minimal disk space needs, but there is limited administrative control
over the server. A shared hosting environment has one instance of IIS running, with numerous web-
sites. Think of it as leasing an offi ce in a large offi ce building. You have a key to your offi ce but share the
vast majority of infrastructure with other tenants. Some hosting companies stuff as many sites on the
server as it physically can hold; often they will oversell the capacity on the server to make it profi table.
It pays to do background research on any company you are thinking of choosing before committing
your site to them.

Dedicated hosting provides much more control over the server and provides a more private experience,
since there is no one else sharing the machine. You should note that it is very common for large hosting
companies to offer virtual dedicated servers. This is not a dedicated physical server but a dedicated
virtual server with several other dedicated virtual servers running on the same hardware. Typically,
this will use a technology like Windows Hyper-V as the core operating system and run several virtual
machines at once. You should also determine which type of dedicated hosting you are using. Virtualization
is a great way to manage servers because the operating system image is not bound to the physical hard-
ware and can be easily backed up and restored in the case of a hardware failure. Co-location is similar to
renting a dedicated server environment from a hosting provider, except that you own the box and only rent
the cabinet space, power, and bandwidth from the data center. Often it is slightly cheaper, but it places some
extra responsibilities on you that you would not have in shared and dedicated environments.

Finally, most large enterprise operations have a dedicated IT staff and possibly a data center. They may
actually utilize a third party and use the dedicated or co-location solutions described earlier. Either
way, there will typically be a set of policies, procedures, and rules that must be followed for deploy-
ment. Often they will not allow you any sort of access to the servers hosting your database and site. You
will instead have to provide them with the database or database script, the website fi les, and detailed
instructions on installation. Understanding how to use the tools provided by SQL Server and Visual
Studio 2008 should make this process much easier for any of the possible hosting scenarios.

Deploying the Database to SQL Server 2008
When using a shared hosting service, you will typically have an empty database on a shared SQL
Server database, which you can access remotely through the SQL Server Management Studio (SSMS)
desktop application (the new replacement for both Enterprise Manager and Query Analyzer), or with
an online web front end provided by the hoster. However, they usually don’t give you the access rights
to upload an .MDF fi le and attach it by running the sp_attach_db stored procedure (which was intro-
duced in Chapter 3), because that would require administrative rights, and nor do you have permission
to restore a database from backup fi les generated on your local server. Your hosting company’s support
staff may do this for you if you make a special request, but they may not. However, most hosting com-
panies have some kind of web application that lets you run queries and SQL scripts on your remote
database; and as mentioned earlier, they do allow you to connect remotely with SSMS (SSMS is usually
better than the hosting company’s web application).

87586c13.indd 56587586c13.indd 565 9/11/09 3:47:53 PM9/11/09 3:47:53 PM

566

Chapter 13: Deploying the Site

When deploying to a particular server under your control (as opposed to a shared hosting company
server), you can just create a new database on the server, and then create a new login and give that
login permissions in your new database. This is not an end-user account; it’s the account that your web-
site will use to access the database. The following SQL commands will do this (please select a good
password in place of ‘password’):

USE Master
GO
CREATE DATABASE TheBeerHouse
GO
USE TheBeerHouse
GO
EXEC sp_addlogin ‘BeerHouseUser’, ‘password’, ‘TheBeerHouse’
EXEC sp_grantdbaccess ‘BeerHouseUser’, ‘BeerHouseUser’
EXEC sp_addrolemember ‘db_owner’, ‘BeerHouseUser’
EXEC sp_addrolemember ‘db_datareader’, ‘BeerHouseUser’
EXEC sp_addrolemember ‘db_datawriter’, ‘BeerHouseUser’
GO

To set up a remote database just like your local database, you need to create all its objects: tables, stored
procedures, views, triggers, indexes, constraints, roles, and so forth. In addition to your own objects,
you also have to re-create all the objects required by the SQL Server providers used by ASP.NET for fea-
tures such as membership, profi ling, personalization, and web events.

There are many ways to create all the database objects in a new remote database, but the following are
among the best options (only the fi rst option is covered in detail due to space constraints):

 1. Make SQL scripts from your development server and execute those scripts on the new server
(the code download for this book has SQL scripts, or you can make them yourself).

 2. Use SQL Server Management Studio (SSMS) to copy the whole database from your local devel-
opment database directly to the new server.

 3. Copy your .mdf (database fi le) and .ldf (log fi le) from your local computer to the remote com-
puter, and attach them to the remote instance of SQL Server.

 4. Use SSMS or SQL commands to create a backup of your local database to a fi le, and restore from
the fi le on the new server.

 5. Use the new SQL Server Integration Services, which is a powerful and fl exible replacement for
the older DTS services.

 6. Write your own data migration program using the SQL Server Management Objects (SMO),
which is a new set of classes that enable you to manipulate SQL objects from a .NET program
(SMO replaces the older SQL-DMO COM objects).

Option 2 is the easiest, but it requires you to have administrator access on both computers (not possible
for a shared hosting deployment). In fact, options 2, 3, and 4 are normally not available for shared
hosted sites, and options 5 and 6 may not be available in some shared hosting environments. This
leaves option 1 as the most portable option that will always work for every situation. The only problem
with option 1 is that you can’t script data for image columns (used in the aspnet_profile table), so
you need an alternate way to populate the data once the objects have been created.

87586c13.indd 56687586c13.indd 566 9/11/09 3:47:54 PM9/11/09 3:47:54 PM

567

Chapter 13: Deploying the Site

Most of the aforementioned options are easiest to implement using SQL Server Management Studio
(SSMS) on your local development computer, where both the local and remote databases are registered
in the confi guration. Either edition of SSMS (full or express) can be used for this purpose. Because of
space constraints here, I can’t cover SSMS in detail, but I’ll walk you through some of its most useful
features that are helpful for deployment.

Create the Standard ASP.NET Objects
There’s a convenient shortcut for creating the ASP.NET required objects (for profi les, membership, etc.):
if you remember from Chapter 4, all those objects can be created by executing the aspnet_regsql
command-line tool and specifying the target server and database. Of course, this requires that you can
access the remote SQL Server over the Internet (i.e., you can connect to it from your desktop and not
only from the web server running your site). This is the syntax you can use to install the ASP.NET
tables on a remote server at a specifi ed IP address:

aspnet_regsql.exe -U username -P password -S 111.222.333.444 -d DBname –A all

An alternative, in case you can’t access your remote database this way, is to use the hoster’s database
manager (or SSMS) to manually run a set of SQL scripts to create those objects. Microsoft has provided
these scripts under the C:\WINDOWS\Microsoft.NET\Framework\v2.0.50727 folder. The fi les have
not changed since ASP.NET 2.0 was released. These script fi les must be run in the following order:

InstallCommon.sql ❑

InstallMembership.sql ❑

InstallPersonalization.sql ❑

InstallProfile.sql ❑

InstallRoles.sql ❑

InstallWebEventSqlProvider.sql ❑

Important! All of these scripts reference a database named aspnedb. Your database
is probably named differently, so you’ll need to edit the scripts to specify the name
of your database (you should make copies and only edit the copies, of course).

As you can see, it’s very easy to create the standard objects, but you normally don’t have to do this as a
separate step. Instead, you can just script these objects along with your own objects, as you’ll see in the
following section.

Script All Your Database Objects
You can generate SQL CREATE scripts from your local development database, and then execute them on
the remote database server. Although Visual Studio 2008 is not quite as good as SSMS when it comes to
generating scripts, it can be used for this. Using Visual Studio 2008, open the Server Explorer Window
(select View ➪ Server Explorer or press Ctrl+Alt+S). If your database is not already listed, you will need
to add it by clicking the Connect to Database button at the top of the window. This displays the Add
Connection dialog (see Figure 13-1).

87586c13.indd 56787586c13.indd 567 9/11/09 3:47:54 PM9/11/09 3:47:54 PM

568

Chapter 13: Deploying the Site

Figure 13-1

Script objects can be created one by one by browsing the local database on Visual Studio’s Server Explorer
window and clicking the Generate Create Script to Project command from the object’s context menu, see
Figure 13-2.

Although this method of creating SQL scripts works fi ne, it’s not the most convenient approach because
you have to generate scripts one object at a time, in separate fi les, and then merge everything.

It’s easier to generate one script that contains all the objects using SSMS. If you loaded the .MDF data fi le
on your computer but haven’t attached it to the local database yet, you can do this by means of the
Attach command from the Databases item’s context menu (see Figure 13-3).

From the dialog box that pops up you select the .MDF fi le to attach and the name you want to give it in
the SQL Server 2008 instance. For example, in Figure 13-4 the AdventureWorksLT.MDF fi le is being
named after AdventureWorksLTDemo.

If you receive an error when attaching the fi le from SQL Server’s dialog box, ensure that it is not being
used by some other process, and is not already attached to Visual Studio’s Server Explorer tool. In the
former case, just stop the guilty process; in the latter case, simply detach the fi le by means of the Detach
comment, reachable from the database fi le’s context menu.

87586c13.indd 56887586c13.indd 568 9/11/09 3:47:54 PM9/11/09 3:47:54 PM

569

Chapter 13: Deploying the Site

Figure 13-2

Figure 13-3

87586c13.indd 56987586c13.indd 569 9/11/09 3:47:54 PM9/11/09 3:47:54 PM

570

Chapter 13: Deploying the Site

Figure 13-4

Once the database is attached to your local database, you can launch the Script Wizard by selecting the
database from the Explorer window and then selecting Tasks ➪ Generate Scripts from the context
menu (see Figure 13-5).

This launches the Script Wizard, which allows you to select the objects you want to include in the
script. You can select all the objects by checking the “Script all objects in the selected database” option
at the bottom of the dialog. In the next step, you can choose to script all tables, stored procedures, user-
defi ned functions, roles, and views, and you have many more options to optionally script primary and
foreign keys, check constraints, triggers, indexes, and so on (see Figure 13-6). This includes all the
objects required by the ASP.NET features and providers, so if you follow this approach there will be no
need to execute the individual scripts previously listed.

Once you have generated the script to create all the objects, you can execute the script on your new
database to recreate the whole schema. This can be done with SSMS or any other tool that lets you exe-
cute SQL commands on your new database. First, you have to register your remote database in SSMS
(select View ➪ Registered Servers, and then right-click in that window to add a new registered server).
Then do a File ➪ Open on your creation script, and have it connect to the remote server (make sure that
your database is selected in the drop-down list in the toolbar area), and run your creation script by
pressing Execute or using the F5 shortcut key (see Figure 13-7).

87586c13.indd 57087586c13.indd 570 9/11/09 3:47:54 PM9/11/09 3:47:54 PM

571

Chapter 13: Deploying the Site

Figure 13-5

Figure 13-6

87586c13.indd 57187586c13.indd 571 9/11/09 3:47:54 PM9/11/09 3:47:54 PM

572

Chapter 13: Deploying the Site

Figure 13-7

Importing Existing Data
The script we created and executed created the objects but didn’t populate the tables with data. While
developing the site on your local computer, you created quite a lot of data to defi ne article categories,
forums, polls, products, users, and so on, and you’ll want to import all that information into the new
database instead of recreating it from scratch. You might think that you could generate a script with
INSERT statements for all the records from all your tables and then execute it on the new database.
However, neither Visual Studio’s Server Explorer nor your local installation of SSMS have the ability to
create SQL INSERT scripts for your data, and you may end up coding the statements manually. If you
only need to script a few dozen records, writing statements by hand may be feasible, but if you have to
generate hundreds or thousands of INSERT statements for any table, then you will want to look at one
of the many third-party tools that can automatically generate the script for you.

If you can connect to both the local and remote database by means of SQL Server Management Studio
(SSMS), things are much easier. When you use the tool’s Import Data feature, it allows you to choose all
tables, but you can’t select the order in which they will be imported, and you’ll get many import errors
if the tool tries to insert data into a detail table that has a foreign key to a master table for which the
data hasn’t been imported yet. To solve the problem, you need to temporarily disable the referential
integrity checks during the import, so that the tool can insert data into a table even if the records refer-
ence other records that are not present in the master table yet. To do this, you use the ALTER TABLE
<tablename> NOCHECK CONSTRAINT ALL statement for every table, as follows:

ALTER TABLE tbh_Articles NOCHECK CONSTRAINT ALL
ALTER TABLE tbh_Categories NOCHECK CONSTRAINT ALL

87586c13.indd 57287586c13.indd 572 9/11/09 3:47:54 PM9/11/09 3:47:54 PM

573

Chapter 13: Deploying the Site

ALTER TABLE tbh_Comments NOCHECK CONSTRAINT ALL
...do the same for all other tables required by ASP.NET and your application

After disabling constraints, select the target database in which you want to import the data (this may be
a local database or a database on the remote server) in the Object Explorer, and select Tasks ➪ Import
Data from its context menu (see Figure 13-8) to open the Import and Export Wizard.

Figure 13-8

In the fi rst wizard step, you select the source database, which will be the TheBeerHouse database
attached to the .MDF SQL Server Express fi le (see Figure 13-9).

Figure 13-9

87586c13.indd 57387586c13.indd 573 9/11/09 3:47:54 PM9/11/09 3:47:54 PM

574

Chapter 13: Deploying the Site

In the second step you choose the destination database, which will already be selected. If you’re target-
ing a remote database (not on your own computer), you probably also need to modify the options to
choose SQL Server Authentication, and enter your credentials to connect to it. In the next step, you
select all the tables you want to import, which will be all tables starting with aspnet_ and tbh_ (see
Figure 13-10).

Figure 13-10

You could omit the following tables if you prefer: sysdiagrams and aspnet_WebEventEvents. Also,
make sure you do not select the objects beginning with vw_aspnet, as these are views that don’t con-
tain their own data in reality. Before proceeding to the next step, you must go into the import options of
each selected table, by clicking the Edit button on the right side of the grid listing the objects. Select the
Enable Identity Insert option (see Figure 13-11) to ensure that records are imported with their original
identity values (for columns such as ApplicationID, CategoryID, ArticleID, PollID, etc.). This is
necessary so that inserted rows will respect the referential integrity (other tables have foreign keys that
reference the specifi c values in these identity columns, so we have to insert the original values instead
of letting it assign new values). You might think it’s a good idea to select Delete Rows in Destination
Table so that you won’t get duplicate key errors if you’re re-importing the data. This won’t work, however,
because it will try to use truncate statements that don’t work on any table that has foreign keys (even if the
constraints are off). So you need to use a script to delete all rows fi rst if you want to re-import data, rather
than use this checkbox.

Complete the wizard and check the box that lets you save the SSIS package, and check File System. When
you see the Package Protection dialog, select “Encrypt all data with password” and specify a password.
Select a fi lename for this package and run the actual process; it will import all rows as specifi ed. Save
the SSIS package in a fi le so that you can easily rerun this import in the future without having to do all

87586c13.indd 57487586c13.indd 574 9/11/09 3:47:54 PM9/11/09 3:47:54 PM

575

Chapter 13: Deploying the Site

the setup steps again (just double-click on that fi le). However, be careful because you have to empty
your tables before doing this and you don’t want to do this once you have real users in a production
environment! Figure 13-12 shows the screen providing feedback about the process.

Figure 13-11

Figure 13-12

87586c13.indd 57587586c13.indd 575 9/11/09 3:47:54 PM9/11/09 3:47:54 PM

576

Chapter 13: Deploying the Site

The last thing to do is reenable the constraints you previously disabled, by running the following
statements on the remote database, from a query window:

ALTER TABLE tbh_Articles CHECK CONSTRAINT ALL
ALTER TABLE tbh_Categories CHECK CONSTRAINT ALL
ALTER TABLE tbh_Comments CHECK CONSTRAINT ALL
...do the same for all other tables required by ASP.NET and custom features

The entire import takes a couple of minutes to complete, and you end up with a perfect replication of
the local SQL Server database.

When you’re done, remember to detach the original SQL Server Express .MDF fi le used as a source;
otherwise, you will no longer be able to open it from Visual Studio and run the site against it. This is
not a concern if you used a full edition of SQL Server on your development computer.

Deploying the Site
There are three main methods to deploy the site’s fi les:

You can simply copy all fi les to the remote hosting space, including . ❑ aspx and .ascx fi les, .vb/.
cs source code fi les, etc. Visual Studio includes a tool that allows you to copy the web project’s
fi le to another directory on the local machine, to a UNC path, to an IIS virtual application, or to
a remote FTP site. This is the simplest option, but it’s sometimes not desirable because your
source code fi les will be copied as is, in “clear-text” format on the server, and many developers
don’t like this. As long as you deploy the site on your own in-house server that’s fi ne, of course,
but as soon as you need to deploy on a shared hosting space you’ll probably want to precompile
the source code so that you protect it (at least a bit, as it can always be decompiled if someone
really wants to see your code) from prying eyes.

Even if your source code fi les are deployed to the server, they still cannot be downloaded by users
because of the IIS settings, but it’s probably best not to have them on the server at all.

In addition to precompiling the site’s source code fi les (the ❑ .vb or .cs fi les), you can also pre-
compile the fi les containing the markup code (such as .aspx and .ascx fi les). Then, you’ll only
deploy the compiler-generated .dll assemblies, plus the .aspx/.ascx fi les as usual. However,
because you precompiled the markup fi les, their content was stripped out by the compilation
process, and they now only contain a placeholder string. For the actual deployment you can use
an FTP client to copy the precompiled fi les to the server. In addition to offering better protection
of your code, you’re also making it harder for anyone to change your site’s UI: this is particu-
larly important if you sell the site as a packaged product and you put copyright notices and
logos on the pages, and you don’t want your client to remove or change them. Another advan-
tage is that your code won’t have to be compiled the fi rst time a user accesses the site (but there
will still be a JIT compile to go from IL to native code), which leads to slightly better perfor-
mance the fi rst time your site is accessed after deployment, or after IIS recycles the application.

You can generate an installer program that takes care of the complete setup of the web appli-
cation, including extracting the site’s fi les from CAB fi les, copying them to a folder selected
by the user, creating a virtual directory/IIS application on the destination server, executing
SQL scripts to create and prefi ll the database, and more. This option is particularly attractive
to those of you who are developing a site that will be sold as a packaged application. In that
case, it’s standard to give users an installer program that takes care of the application’s setup as
much as possible. Note, however, that this approach isn’t always useful because the user must

87586c13.indd 57687586c13.indd 576 9/11/09 3:47:54 PM9/11/09 3:47:54 PM

577

Chapter 13: Deploying the Site

have administrative rights on the destination server to install the site, and he needs to launch
your installer program directly on the server itself. Therefore, this is not viable if you’re target-
ing a shared hosting space. You can, however, create the installer anyway, so that clients will
have the option to use it if they decide to deploy the site to their own server, or they can use
FTP to deploy the site to a shared hosting service. The following sections explore these options
in more detail.

Copying the Site Locally or Remotely
One of the problems that developers need to be aware of when developing websites with Visual Studio
is that the built-in web server is not equivalent to IIS. It’s normally very good, but you need to be aware
that your website may function differently in some ways when deployed to a real IIS server. For this
reason, you should always deploy your site to IIS and test it before deploying it to a production server.
To demonstrate the Visual Studio Copy Website built-in tool, I’ll show you how to copy the site to an IIS
application, so that you can test the site on a real web server. Only professional and server versions of
Windows have IIS, and even then it’s not installed by default. If you have a home version of Windows,
you’ll have to deploy to a different system that has IIS installed. First, create a virtual folder/IIS appli-
cation from the IIS Administration console, as shown in Figure 13-13.

Figure 13-13

87586c13.indd 57787586c13.indd 577 9/11/09 3:47:54 PM9/11/09 3:47:54 PM

578

Chapter 13: Deploying the Site

Ensure that ASP.NET version 2.0 is selected in the Edit Application Pool dialog: IIS 7.0 only offers the 2.0
framework by default. ASP.NET 3.5 uses the .NET 2.0 CLR, so there is no ASP.NET 3.5 version available
in IIS. Also note the Managed Pipeline Mode is set to Integrated as opposed to Classic. IIS 7.0 adds a new
processing model known as integrated. In integrated mode HttpModules are executed as part of IIS and
not the website directly. This does not mean that all custom HttpModules, such as the URL Rewrite
module you created in Chapter 3, have to be executed at the server level. For more detailed information
about IIS 7, I recommend Professional IIS, ISBN: 978-0-470-09782-3, www.wiley.com/WileyCDA/
WileyTitle/productCd-0470097825.html.

Once the website has been created in IIS, it can be copied directly from Visual Studio, click the Copy
Website item from the IDE’s Web Site menu. First you must connect to the destination, which can be a
normal folder, an IIS/HTTP site, or an FTP site. In Figure 13-14, I’m connecting to the TheBeerHouse
application folder (created previously) on my local IIS server.

Figure 13-14

The tool’s user interface is simple: once you select the destination, you can choose to copy everything
from the source (the local copy of the site’s fi les) to the destination, to copy everything from the destina-
tion back to the source (useful when someone else has updated the site and you want to download the
latest version to your computer), or to synchronize the fi les on the source and destination according to
their date. To deploy all your fi les, including source code, fi rst make sure that your web.config fi le has
the connection string for your remote database. Then, connect to your remote site on the right side and
select everything on the left, except for the App_Data folder, and copy it to the right side. Figure 13-15
shows the tool after a successful complete copy.

87586c13.indd 57887586c13.indd 578 9/11/09 3:47:55 PM9/11/09 3:47:55 PM

579

Chapter 13: Deploying the Site

Figure 13-15

Although you can choose an FTP site as the destination for the copy, Visual Studio’s Copy Web Site
feature is slower than most third-party FTP clients, and it hung a few times while I was testing this
feature. Therefore I prefer using an external FTP client instead of the Copy Web Site feature when I am
deploying to a remote site using FTP. Personally, I like the freeware FileZilla FTP client (http://
filezilla.sourceforge.net/). However, the Copy Web Site feature works well when copying
to a local folder or an IIS application.

It is a good idea to hide the updating process from site visitors because as the fi les are being updated
the application will most likely not respond and will throw numerous exceptions until the update pro-
cess is complete. This has been a problem since applications have been on the web. When ASP.NET 2.0
was released, there was a feature added called app_offl ine.htm. Whenever this fi le is present in the
site’s root directory it is displayed in response to any request. This gives you the opportunity to put up
a sign about the site being temporarily closed, without any ugly errors occurring. As soon as this fi le is
removed or renamed, the normal application execution resumes.

87586c13.indd 57987586c13.indd 579 9/11/09 3:47:55 PM9/11/09 3:47:55 PM

580

Chapter 13: Deploying the Site

Precompiling the Site
If you deploy the site by copying all the fi les (including the source code), the pages and the source
code fi les are compiled dynamically at runtime when they are fi rst requested by a user. This is called
in-place compilation, and the generated assemblies are compiled into a temporary folder. As an alterna-
tive, instead of deploying source fi les, you can use the aspnet_compiler.exe tool (located under C:\
WINDOWS\Microsoft.NET\Framework\v2.0.50727) to precompile the source code fi les and (option-
ally) the markup fi les. This is the command you could use to precompile everything (this should all be
entered on one line):

aspnet_compiler.exe -p c:\Projects\ASP.NET\TheBeerHouse\TBH_Web
-v /TheBeerHouse c:\Deployment\TheBeerHouse

The -p parameter specifi es the source directory, and the -v parameter specifi es the virtual directory
used at runtime by the site. The path at the end of the command is the destination directory for the
compiler output fi les. If you look under the c:\Deployment\TheBeerHouse\bin folder, you’ll fi nd
multiple .dll assembly fi les, plus one .compiled XML fi le for each .aspx and .ascx fi le (see
Figure 13-16).

Figure 13-16

The fi les named with a .compiled extension contain XML text that shows the relationship between the
virtual path of a page or user control and the corresponding type compiled into one of the assemblies.

87586c13.indd 58087586c13.indd 580 9/11/09 3:47:55 PM9/11/09 3:47:55 PM

581

Chapter 13: Deploying the Site

If you look into any of the .aspx fi les, you won’t fi nd any HTML/ASPX markup code, but rather the fol-
lowing markup string:

This is a marker file generated by the precompilation tool,
and should not be deleted!

After executing the aspnet_compiler, you take all the output generated by this tool and upload it to
the remote server, typically via FTP. If you’re deploying to a server within your network you might sim-
ply copy the fi les to a shared folder on that server. However, even local servers are often isolated behind
a fi rewall, so FTP may be needed anyway.

Compiling the markup code may defi nitely be appealing in some circumstances, such as for packaged
commercial products for which you don’t want the client to change anything; however, if you’re deploy-
ing to your own site, this may not be particularly useful or necessary. Furthermore, it would complicate
updates, because every time you needed to change a line of markup you’d have to recompile everything
and redeploy the generated fi les. In the case of deploying to your own sites, it’s simpler to precompile
only the source code fi les but not the markup fi les. To do this, just add the -u switch (which stands for
updateable) to the command line, as follows:

aspnet_compiler.exe -p c:\Projects\ASP.NET\TheBeerHouse\TBH_Web
-v /TheBeerHouse -u c:\Deployment\TheBeerHouse

With this command no .compiled fi les will be generated under the /bin folder, and the content of the
.aspx and .ascx fi les won’t be removed. However, the CodeFile attribute of the @Page and @Control
directives will be removed, and the Inherits will be updated with a reference to the type compiled
into one of the generated assemblies.

All static fi les (images, .htm fi les, .css stylesheet fi les, etc.) are always copied “as
is” to the target folder. These are never included as part of a precompile.

However, there’s a small deployment issue when using one of the two precompile commands described
previously: the assemblies they generate always have a different name, which makes it diffi cult to update
the site locally and then replicate the changes remotely, because the assembly names will be different after
each precompile. If you don’t want to leave old and unused assemblies in the remote /bin folder, you
need to delete them fi rst and then upload all new .dll fi les. This is very annoying and time-consuming,
so you can add the -fixednames compiler switch to cause the aspnet_compiler to create an assembly
for each fi le it compiles, using a fi xed name scheme. This is good because it allows you to update the site
locally, recompile it, and then upload only the changed assembly fi le. This is the modifi ed command line:

aspnet_compiler.exe -p c:\Projects\ASP.NET\TheBeerHouse\TBH_Web
-v /TheBeerHouse -u -fixednames c:\Deployment\TheBeerHouse

I covered the syntax of the command-line tool for completeness (and because many of you will want to
script this procedure), but you don’t have to remember all the various switches because Visual Studio
provides a simple integrated UI for aspnet_compiler, which you can access by clicking Build ➪ Publish
Web Site. Figure 13-17 shows the graphical front end that it provides, making it easy to select your options,
and to select a local or remote IIS site, or an FTP site, as the destination for the operation, in addition to a
local folder.

87586c13.indd 58187586c13.indd 581 9/11/09 3:47:55 PM9/11/09 3:47:55 PM

582

Chapter 13: Deploying the Site

Figure 13-17

Some of you may be concerned about the large quantity of assemblies produced by the precompilation
step. In large projects with hundreds of pages, the /bin folder will contain a lot of fi les, and it may be
more convenient for deployment if you could combine all those .dll fi les into a single assembly fi le.
This is done with a tool called asp_merge.exe. You can read more detail about the tool at http://
msdn.microsoft.com/en-us/library/bb397866.aspx. It is located under the C:\Program Files\
Microsoft SDKs\Windows\v6.0A\Bin folder. As its name suggests, it enables you to merge the
multiple assemblies generated by the aspnet_compiler tool into a single dll. When you run this
program you only need to specify the path of the precompiled website where it can fi nd the assemblies
you want to merge:

aspnet_merge.exe c:\Deployment\TheBeerHouse

The preceding command generates a dll for each of the website’s folders containing fi les that were pre-
compiled by aspnet_compiler. This is useful when you have folders that include a subapplication
supported by different developers (such as the administration console), and you want to have separate
assemblies for separate sections so that you can update them independently on the production server.
In other cases, however, you may prefer to merge everything into a single assembly; you can do so with
the -o switch, which specifi es the name of the assembly being generated:

aspnet_merge.exe c:\Deployment\TheBeerHouse -o TheBeerHouse.dll

The tool can be used whether aspnet_compiler.exe precompiled the markup
code or not. But the tool never merges in any external libraries referenced by the
website’s source fi les and pages, such as the FredCK.FCKEditorV2.dll assemblies.
It only merges assemblies generated by aspnet_compiler.exe.

87586c13.indd 58287586c13.indd 582 9/11/09 3:47:55 PM9/11/09 3:47:55 PM

583

Chapter 13: Deploying the Site

Using the Visual Studio Web Deployment Projects
As for aspnet_compiler, there’s also a front end UI for aspnet_merge. The Visual Studio Web
Deployment Projects package, www.microsoft.com/downloads/details.aspx?FamilyId=0AA30AE8-
C73B-4BDD-BB1B-FE697256C459&displaylang=en, is installed as an add-in for VS, and it adds a new
project type called a “Deployment Project.” You add a new deployment project to your solution by click-
ing the Add Web Deployment Project option on the IDE’s Build menu or via the same option on the
context menu of the website in the Solution Explorer window. You create the project by choosing its
name and location from the dialog box shown in Figure 13-18.

Figure 13-18

The project added to the Solution Explorer contains no fi les; you have to double-click the project name
to open its confi guration dialog box, from which you can specify a number of options. Among other
things, you can specify how you want the precompiler to work, and how you want the fi les merged. In
the fi rst fi eld of the dialog box (see Figure 13-19), you specify the output folder and choose whether the
user interface pages and controls should be precompiled (which is the updatable option, corresponding
to the -u switch of the aspnet_compiler.exe tool).

Figure 13-19

87586c13.indd 58387586c13.indd 583 9/11/09 3:47:55 PM9/11/09 3:47:55 PM

584

Chapter 13: Deploying the Site

In the second tab, Output Assemblies (see Figure 13-20), you specify whether you want to compile every-
thing into a single assembly, have an assembly for each folder, have an assembly for the user interface
pages and controls, or have an assembly for each class and page being compiled (this last option means
you don’t want to use aspnet_merge.exe). From here, you can also specify the version information of
the generated assemblies. If this information is not provided, the settings specifi ed in the web.config
fi le located under the /App_code folder will be used instead (if the fi le is present, which is not a
requirement).

Figure 13-20

The third tab, Signing, enables you to sign the generated assemblies with a key fi le generated by the
sn.exe command-line tool, to give them a strong name. This isn’t normally desired for your own sites,
but may be useful when you’re creating a packaged application and you want to ensure that your assem-
blies will not be tampered with. In the last tab, Deployment (see Figure 13-21), you can choose to replace
one or more sections of the site’s web.config fi le with the content from another fi le. For example, if you
write connectionStrings=productionConnectionStrings.config, the whole <connectionStrings>
section will be replaced with the content of the ProductionConnectionStrings.config fi le at the
end of the build process. This enables you to have a connection string pointing the SQL Server Express
database to be used while testing the site locally, and later have it automatically replaced with a connec-
tion string referencing a local or remote SQL Server database after building the project for deployment.
You can specify additional sections to replace, one per line. You can also use this window to specify a
virtual directory to be created during the build process, and whether the App_Data folder will be
deleted from the fi les generated (useful when you will use a SQL Server database after the build, in
which case you do not want to deploy your express fi les under App_Data).

87586c13.indd 58487586c13.indd 584 9/11/09 3:47:55 PM9/11/09 3:47:55 PM

585

Chapter 13: Deploying the Site

Figure 13-21

Once you’ve completed the confi guration, you can build the project. At the end of the build process, you’ll
fi nd a copy of the site with the precompiled and merged assemblies, plus all other fi les such as pages, con-
trols, images, stylesheets, and so on in the output folder. You can then take this entire output and upload
everything to the production server, typically via FTP.

Deployment projects simply consist of an XML fi le used to pass options to MSBuild.exe, the new
Microsoft build tool capable of compiling and building complex projects and solutions. MSBuild is an
extensible tool that uses confi guration fi les that can contain many different options. And if an option or
a task that you’d like doesn’t exist yet, you can create it as a class and have MSBuild call it. Many of the
confi guration settings described here were implemented as custom settings and tasks by the developers
of the Web Deployment Projects add-in. There are many more available options in addition to those
you can confi gure from the Properties window explored earlier, such as the option to exclude fi les
from the build, create new folders, grant the ASP.NET account write access to a folder (only on your
local machine, though — you’ll still need to replicate these security settings on the remote production
server), execute external programs, and much more. You can add more settings and tasks (i.e., opera-
tions to run before or after the build and the merge processes) directly from the XML confi guration
fi le, which can be opened by clicking the Open Project File option from the Web Deployment project’s
context menu. Covering MSBuild is beyond the scope of this book, but you can fi nd a lot of good docu-
mentation about this on the web and in the documents that come with the Web Deployment Projects
package.

87586c13.indd 58587586c13.indd 585 9/11/09 3:47:55 PM9/11/09 3:47:55 PM

586

Chapter 13: Deploying the Site

By default, all projects added to the solution are built in Visual Studio when you
launch the primary project, that is, the website. Building the deployment project
takes quite a lot of time, however, depending on the size of the site (on my machine
it takes around 30 seconds to generate the precompiled site), and it is not some-
thing you want to do while testing the site locally. In order to avoid this waste of
time, you can just exclude the project from the Debug Build from the Build ➪
Confi guration Manager dialog box.

Creating an Installer for a Packaged Application
Creating an installer package that you can give to your clients, and that completely installs and sets up
your site automatically, may be simpler than you think. In the old days, the setup programs were typi-
cally created with tools such as InstallShield or Wise Installation System, but starting with VS.NET 2003
they can be created with VS itself, thanks to the Web Setup Project types you fi nd by selecting Other
Project Types ➪ Setup and Deployment, from the Add New Project dialog box (see Figure 13-22).

Figure 13-22

The Web Setup Project is tailor-made for creating installers for web-based applications. You add one such
project to your current solution, and then you must tell it which fi les you want to include in the package.
You could choose fi les one by one, but there may be thousands of fi les (including images and all static
content fi les), so instead you can add the output of another project to the package (see Figure 13-23), and,
in particular, the output of the Web Deployment project created earlier (see Figure 13-24). This includes
everything you need (pages, controls, precompiled assemblies, and static content), so you shouldn’t
need to add anything else. If you do, however, then you could still add individual fi les from other
sources — for example, if you wanted to include a manual that isn’t among the website’s deployment-
related fi les.

87586c13.indd 58687586c13.indd 586 9/11/09 3:47:55 PM9/11/09 3:47:55 PM

587

Chapter 13: Deploying the Site

Figure 13-23

Figure 13-24

After you create the project, it preconfi gures the creation of a Web Folder in the File System editor, as
the destination for the installation process (see Figure 13-25). You can change its default name, the default
page, application mappings, and related options that you would have manually confi gured from the
virtual directory’s Properties window in the IIS Administration console.

87586c13.indd 58787586c13.indd 587 9/11/09 3:47:55 PM9/11/09 3:47:55 PM

588

Chapter 13: Deploying the Site

Figure 13-25

The default user interface includes steps for choosing the destination server and the folder name, and
default options for the execution of the installation process. You can, however, open the User Interface
editor (click the sixth icon from the left in Server Explorer’s toolbar, after ensuring that the Setup proj-
ect is selected) and add, remove, or modify steps. For example, you can put an image banner on them to
customize their default appearance. Or, as shown in Figure 13-26, you can add a step that shows a
license fi le, which users must agree to before proceeding.

After you’ve confi gured everything, you can build the project, and you’ll end up with a setup.exe fi le
that launches an .MSI fi le. Figure 13-27 shows the installer at runtime, demonstrating the step where
you choose the destination server and folder, and the classic progress bar.

Creating a setup program in a matter of minutes is very cool! This basic setup does quite a lot of things
(it creates a destination folder, turns it into an IIS virtual application with the proper settings, and copies
all the necessary fi les into it), but it could be further extended with custom steps and actions. For example,
you could create an additional step that enables users to choose whether they want to use a SQL Server
Express database or a SQL Server database, and in the latter case it could execute .SQL scripts to auto-
matically create the database and the required objects. Covering these advanced topics is beyond the
scope of this book, as it pertains to the Installer projects and desktop programming in general, but I
wanted you to know that you can create some useful setup programs using only Visual Studio. However,
in some situations where you have advanced needs, there is still some benefi t to be obtained from third-
party installation builders such as InstallShield and Wise.

87586c13.indd 58887586c13.indd 588 9/11/09 3:47:55 PM9/11/09 3:47:55 PM

589

Chapter 13: Deploying the Site

Figure 13-26

Figure 13-27

87586c13.indd 58987586c13.indd 589 9/11/09 3:47:56 PM9/11/09 3:47:56 PM

590

Chapter 13: Deploying the Site

Solution
The “Solution” section of this chapter was actually merged with the “Design” section when I demonstrated
how to solve the deployment problems while discussing some of the ASP.NET features, and I provided
the background knowledge necessary to deploy the site. The solution I actually implemented for deploy-
ing the sample site consisted of using a Web Deployment Project to create a local precompiled copy of
the site in an IIS virtual application, which I later deployed to the production server by means of an FTP
client. I also switched from using SQL Server Express on my development computer to using the full
SQL Server as my deployed target. To see my result, you can browse the sample site online by going to
www.beerhouse.extremewebworks.com. I also created a web installer so that I could easily redistrib-
ute the site to colleagues, friends, and other people.

Summary
In this chapter, you’ve looked at all the options for deploying an ASP.NET 3.5 site, either on a local IIS
server or to a remote production site. The new ASP.NET compilation model enables you to use a simple
XCOPY deployment that includes everything but lacks protection of source code and takes a little time to
compile upon the fi rst page request. If that’s a problem for you, you can use the command-line tools and
the Visual Studio wizards to precompile the site and generate one or more assemblies to deploy. Different
options for different needs; this new model is very fl exible, and everyone will fi nd something they like!
This brings us to the end of our journey. I hope you like what you have read, and I wish you happy coding!

87586c13.indd 59087586c13.indd 590 9/11/09 3:47:56 PM9/11/09 3:47:56 PM

Index

A
About.aspx, 56
Abstract, 286

RSSFeed, 322
abstract, 89
AcceptAllChanges, 82, 102
acceptChangesDuringSave, 102
access control list (ACL), 147, 169
AccessDenied, 187
AccessDenied.aspx, 186–190
AccessKey, 30
Accordion, 221–223, 342
AccordionPane, 223
ACID 2 compliance, 11
AcquireReaderLock, 370
AcquireWriterLock, 381
Active, 263, 399
Active Directory, 151
Active fi eld, 80–81
Active Record, 71, 88
ActiveDirectoryMembershipProvider, 151
ActiveExceptions, 262
ActiveStepIndex, 480
AddAlbum, 522
AddArticle, 261
AddArticles, 261
AddCategory, 116, 264
AddComment, 264, 265

CommentRepository, 318
PostComment, 318

Added, 86, 87
AddedBy, 252, 300, 332, 400, 404
AddedByIP, 400
AddedDate, 252, 300, 332, 400, 404
AddEdit, 263, 298
AddEditAlbum, 539

AddEditAlbum.aspx, 535
AddEditArticle, 298
AddEditArticle.aspx, 273, 300–305, 325

Hyperlink, 312
TextBoxes, 301

AddEditArticle.aspx.vb, 302–305
AddEditCategories.aspx.vb, 299
AddEditCategory, 296
AddEditCategory.aspx, 294, 298–299
AddEditComment.aspx, 308–309
AddEditEvent.aspx, 513–514
AddEditNewsletter, 391
AddEditNewsletter.aspx, 384–392
AddEditOrder.aspx, 490–497
AddEditPhoto.aspx, 536–538

GalleryImage.StoreImage, 536
HasFile, 536
MaskedEdit, 536
PictureFileName, 536
RegularExpressionValidator, 536
RequiredFieldValidators, 536
StorePics, 536
Title, 536

AddEditPoll.aspx, 347–352
ManagePolls.aspx, 345

AddEditPoll.aspx.vb, 348–352
AddEditPost.aspx, 409–415, 428

HyperLink, 424
web.confi g, 429

~/AddEditPost.aspx, 403
AddEditProduct.aspx, 457, 458
AddEditRole.aspx, 242
AddEditUser.aspx, 232–240
AddEdit{xxx}.aspx, 497
AddEventInfo, 504
AddEventRSVP, 504
$addHandler, 217

87586bindex.indd 59187586bindex.indd 591 9/13/09 10:41:25 PM9/13/09 10:41:25 PM

592

AddObject

AddObject, 82
AddPicture, 522
AddPoll, 334
AddPollOption, 334
AddPost, 413
address1, 439
AddToSiteMaps, 85
AddUserToRole, 429
AddUserToRoles, 239
Admin

master page, 221–225
web.confi g, 325

~/Admin, 293, 512
~/Admin/, 307
~/Admin/AddEditAlbum.aspx, 525
~/Admin/AddEditArticles.aspx, 267
~/Admin/AddEditCategory.aspx, 267
~/Admin/AddEditDepartment.aspx, 446, 447
~/Admin/AddEditEvent.aspx, 505
~/Admin/AddEditForums.aspx, 402
~/Admin/AddEditNewsletter.aspx, 373
~/Admin/AddEditOrderStatus.aspx, 446
~/Admin/AddEditPicture.aspx, 525
~/Admin/AddEditPoll.aspx, 335
~/Admin/AddEditProducts.aspx, 447
~/Admin/AddEditShippingMethod.aspx, 446
~/Admin/EditOrder.aspx, 447
Administrators, 186
<Administrators>, 171
AdminList, 241
~/Admin/ManageAlbums.aspx, 525
~/Admin/ManageArticles.aspx, 267
~/Admin/ManageCategories.aspx, 267
~/Admin/ManageComments.aspx, 268
~/Admin/ManageDepartments.aspx, 446, 447
~/Admin/ManageEventRSVPs.aspx, 505
~/Admin/ManageEvents.aspx, 505
~/Admin/ManageForums.aspx, 402
~/Admin/ManageNewsletter.aspx, 373
~/Admin/ManageOrders.aspx, 447
~/Admin/ManageOrderStatuses.aspx, 446
~/Admin/ManagePolls.aspx, 335
~/Admin/ManageProducts.aspx, 447
~/Admin/ManageShippingMethods.aspx, 446

~/Admin/ManageUnapprovedPosts.aspx, 403
AdminMenuItems, 222
~/Admin/MoveThread.aspx, 403
AdminPage, 114, 296

BindDepartmentToListControl, 461
DepartmentId, 461
RoleAdminPage, 241

Adobe Flex, 10
Adobe Photoshop, 13, 32
ADO.NET. See Entity Framework
AdventureWorksLTDemo, 568
aggregate, 69
AJAX, 5, 6, 9

authentication, 145, 165–167
HTML, 214
Lightbox, 541–543
localization, 560–562
login, 214–220
newsletters, 388
roles, 171–172
TextBoxes, 490
UpdatePanel, 113, 314
UpdateTotals, 478
user profi le, 178
ViewState, 106
Web Controls, 214

Akismet, 265
AkismetComment, 265, 292
AkismetKey, 266
Akismet.net, 257, 265, 283

Comment, 291
WorldPress.com, 292

Album, 520, 536
AlbumName, 528
AlbumOrder, 526

AddEditAlbum.aspx, 535
AddEditPhoto.aspx, 536
tbh_Picture, 520

AlbumRepository, 521–522, 526
AlbumThumbnailsDirectory, 523
AllArticles, 264
<allow>, 428
AllowPaging, 418
AllowRegistration, 502, 517

87586bindex.indd 59287586bindex.indd 592 9/13/09 10:41:25 PM9/13/09 10:41:25 PM

593

.ascx

allowRemoteAccess, 140
AllowSorting, 418
allUsers, 229
alt=" ", 30
ALTER TABLE <tablename> NOCHECK

CONSTRAINT ALL, 572
AlternateText=" ", 30
AlternatingItemTemplate, 109, 111, 458
amount, 440
anonymous users, 177–178, 480
<AnonymousTemplate>, 165
APIs, 5
/App_code, 584
App_Code, 77
~/App_Code/Confi gSection.cs, 274
App.Confi g, 77
app.confi g, 76, 77
App_Data, 157, 167, 584
App_GlobalResources, 548
ApplicationException, 464
ApplicationID, 574
ApplicationId, 156
applicationName, 154
App_LocalResources, 551, 556
ApplyPropertyChanges, 82
ApproveArticle, 259
ApproveComment, 265, 284
Approved, 284, 400, 404
approved, 413
ApprovePost, 417
<appSettings>, 103
App_Themes, 46, 48
~/App_Themes, 50
Archive, 345
ArchivedNewsletters.aspx, 392
~/ArchivedNewsletters.aspx, 373
ArchivedPolls.aspx, 360–362
~/ArchivedPolls.aspx, 335
ArchivedPolls.aspx.vb, 361–362
ArchiveIsPublic, 332, 371
ArchivePoll, 334, 346
ArgumentException, 72, 96, 287
ArrayList, 174, 222

article. See also news/articles
categories, 408

Article, 95, 256, 285–289
AddArticle, 261
CategoryId, 287
CategoryReference, 287
IBaseEntity, 285
Rating, 314

ArticleContext, 95
ArticleHelper.BindCategoriesToListControl, 304
ArticleID, 96, 274, 300, 574
ArticleId, 108, 124

BindArticle, 302–303, 305
Comment, 291
Hidden, 318
QueryString, 302

ArticleIDChanging, 287
ArticleListing, 307
ArticleListing.ascx, 270, 272
ArticlePage, 105, 108
ArticleReleaseDate, 288
ArticleRepository, 258–263, 280–283

ShowCategories.aspx, 313
Articles, 81, 94, 104, 256, 289

ArticlesElement, 267
DropDownList, 304
Entity, 279
ObjectContext, 279

articles, 104
<articles>

ArticlesElement, 274
CacheDuration, 278

Articles/Article.vb, 285
Articlesctx, 94
ArticlesElement, 104

~/App_Code/Confi gSection.cs, 274
Articles, 267
<articles>, 274
ConnectionString, 267
ReportAkismet, 284

ArticlesEntities, 94
ArticlesEntitlesDataContext, 258
ArticlesRepository, 281
ArticlesRepository.vb, 280
.ascx, 576, 580

87586bindex.indd 59387586bindex.indd 593 9/13/09 10:41:25 PM9/13/09 10:41:25 PM

594

AsEnumerable

AsEnumerable, 322
.ashx, 126
aspnedb, 567
aspnet_, 574
aspnet_Applications, 156
aspnet_compiler, 581, 582
aspnet_compiler.exe, 580, 582
ASPNETDB, 167
aspnet_Membership, 156
aspnet_merge, 583
aspnet_merge.exe, 584
aspnet_profi le, 566
aspnet_Roles, 168
aspnet_Users, 156, 252
aspnet_UsersInRoles, 168
aspnetUsersInRoles_isUserInRole, 169
aspnet_WebEventEvents, 574
aspwire.com, 247
<asp.WizardStep>, 470
.aspx, 16, 23, 27, 30, 125, 160, 550, 553,

576, 580
Content PlaceHolder, 34
CSS, 46
HTML, 581

AssemblyInfo.vb, 561
AssociatedControlID, 30
AssociationSets, 67
ATOM, 247–248
Attach, 83
AttachTo, 83
Attributes, 229
authentication, 144

AJAX, 145, 165–167
Forms, 146–147
OpenId, 187, 190–193
Windows, 146–147

Authentication, 165, 178
authorization, 144

roles, 169–171
<authorization>, 213

web.confi g, 169–170
AuthorizeRequest, 124
auto, 555–556, 562

AutoCompleteExtender, 490
Integer, 244
MaximumPrefi xLength, 244–245
String, 244
Strings, 245
TextBox, 245

AutoGenerate, 18
AutoPostBack, 49
AutoPostback, 472
AvailabilityImage.ascx, 467–469
avatars, 249
AvatarUrl, 423
Average, 100
AverageRating, 288

B
, 123
background-image, 37
BaseArticleRepository, 94, 280
BaseEventRepository, 503
BaseForumRepository, 407
BaseGalleryRepository, 521
BaseObject, 93
BasePage, 31, 54, 105–108, 138–139, 555

Helpers, 461
InitializeCulture, 559
RequestLogin, 362
SetupListViewPager, 297

BasePollRepository, 333, 340
BaseRepository, 89–91, 94, 258

ActiveExceptions, 262
BaseShoppingCartRepository, 444
BeginRequest, 137
/bin, 582
Bind Entity, 114
BindArticle

ArticleId, 302–303, 305
Rating, 314

BindCategories
CategoryRepository, 296–297
ListView, 296

BindCategory, 115
BindData, 516
BindDaysEvents, 516

87586bindex.indd 59487586bindex.indd 594 9/13/09 10:41:25 PM9/13/09 10:41:25 PM

595

calendar of events

BindDepartmentToListControl, 461
BindForums, 421
BindOrders, 490, 495
BindPollOptions, 348
BindPolls, 345
BindPost, 412
BindPostInfo, 422
BindProduct, 464
BindRoleInfo, 244
BindRoles, 238
BindShoppingCart

CurrentUserShoppingCart.GetItems, 470
UpdateTotals, 473

BindUser, 238
BindUsers, 229–230
BirthDate, 172
Bitmap, 531
BizObject, 89, 98
BLL. See business logic layer
Bll.EventCalendar, 503
Bll.Gallery, 520
Body, 257, 286, 400

IsValid, 292
runat=server, 316

<body>, 17, 21, 46
BodyFileName, 206
Boolean, 461
both, 37
Bottom, 43
BoundField

ReplyCount, 418
ViewCount, 419

Box Model, 43–44
<p>hello, 29

, 93, 424

, 29
BreadCrumb, 28, 45–46
breadcrumbs, 9, 29, 124
BronzePosterDescription, 401
BronzePosterPosts, 401, 425
BrowseAlbums.aspx, 539–540
~/BrowseAlbums.aspx, 525
BrowseArticles.aspx, 269, 311, 319
~/BrowseArticles.aspx, 268
BrowseEvents.aspx, 514–517

~/BrowseEvents.aspx, 505
BrowseEvents.aspx.vb, 515–517
BrowseProducts.aspx, 462

cancel, 470
~/BrowseProducts.aspx, 447
browser compatibility, 2, 11
BrowseThreads.aspx, 417–421

ForumID, 417
~/BrowseThreads.aspx, 403
btnLogon, 190
btnUpload_Click, 306
BuildVCal, EventId, 505
business, 439
business classes, user profi le, 174–177
business logic layer (BLL), 63, 87–100, 102

calendar of events, 503–504
e-commerce, 444–446, 448–455
forums, 402, 407
news/articles, 279–292
newsletters, 377–384
opinion polls, 333–334
photo gallery, 521–522

BusinessEmail, 443
Button, 24, 112
ButtonField, 419
bWWW, 136

C
CA. See certifi cate authorities
Cache, 91, 101
CacheData, 91
CacheDependency, 101
CacheDuration, 90, 266, 332, 371, 401

<articles>, 278
Cache.Insert(“key,”data), 100–101
CacheKey, 91, 92, 280
Calendar, 6, 27, 490

BindData, 516
BrowseEvents.aspx, 514

calendar of events, 501–518
BLL, 503–504
database, 502
EDM, 502–503, 511–512
repository classes, 510–511
UI, 505–509, 512–518

87586bindex.indd 59587586bindex.indd 595 9/13/09 10:41:25 PM9/13/09 10:41:25 PM

596

CalendarExtender

CalendarExtender, 301–302
AddEditEvent.aspx, 513

CalendarofEvents, 502
camelCase, web.confi g, 266
CanAdd, 285
Cancel, 114
cancel, 470
cancel_return, 440
CanDelete, 285
CanEdit, 285
CanRead, 285
Cardspace, 178
Cascading Style Sheets (CSS), 4, 11, 14

.aspx, 46
Box Model, 43–44
HTML, 14–18
JavaScript, 541
menu, 31–41
Web Controls, 26

Castle Windsor, 88
Categories, 81, 256
Category, 81, 94, 97, 289–291

IsValid, 290
Category ID, 274
CategoryID, 574
CategoryId, 116

Article, 287
EntityKey, 288
ListControl, 304

CategoryIdQueryString, 298
CategoryReference, 98

Article, 287
CategoryRepository, 111, 264, 296

BindCategories, 296–297
CRUD, 283

CategoryTitle, 288
<center>, 29
certifi cate authorities (CA), 435
ChangeDeletedState, 263
ChangeDeleteState, 263
ChangePassword, 149, 164, 210
ChangePasswordQuestionAndAnswer ,̀ 149
<channel>, 271
CheckBox, 113

CheckBoxList, 232
BindRoles, 238

City, 254
city, 439
class, 55
class=, 16
class library, 60–63

App.Confi g, 77
EDM, 77
namespace, 62
Visual Studio, 61–63

Class1, 61
ClassKey, 551
Clear, 450
clear, 37
ClearItems, 114, 115

DropDownList, 303
TextBox, 303

ClearRoleInfo, 243
Closed, 400
cmd, 439
codeplex.com, 113
codeproject.com, 505
Color, 174
color scheme, 10, 14
Command, 67
CommandArgument, 112
CommandName, 112, 425

ListView, 427
CommandTimeout, 83
Comment, 94, 149, 291–292

ApproveComment, 284
ArticleId, 291

CommentCheck, 265
CommentId, 284
CommentRepository, 264–265, 283–285

AddComment, 318
Comments, 98
CommentService, 318
common behaviors, 30–32
Common Language Runtime (CLR), 32
Comodo, 435
Company Information, 123
CompareValidator, 490

87586bindex.indd 59687586bindex.indd 596 9/13/09 10:41:26 PM9/13/09 10:41:26 PM

597

culture

.compiled, 580
Concurrency Mode, EF, 80
confi gSection, 140
<confi gSections>, 131
confi guration module

forums, 401
news/articles, 266–267, 274–279
newsletters, 372, 374–377
opinion polls, 332, 337–340
photo gallery, 523

Confi gurationElement, 103, 337
Confi gurationManager, 92
Confi gurationProperty, 103, 339

XML, 275
Confi rmMsg, 228
Connection, 67, 83
ConnectionString, 92

ArticlesElement, 267
web.confi g, 278

connectionString, 84
ConnectionStringName, 266, 267, 332,

371, 401
connectionStringName, 103, 141, 154,

266, 340
<connectionStrings>, 278
Contact.aspx, 56, 132
<contactForm>, 130
container elements, 18
Content, 20, 22

MainContent, 42
content management system, 143
content pages, 24–25
Content PlaceHolder, 34
ContentPlaceHolder, 19–22, 23, 46–47

master pages, 42
ContentPlaceHolderID, 21
ContentTemplate, 113
ContentType, 322
contributors, 249, 273
Control, 24
@Control, 556
Controls

ThemeSelector.ascx, 49
UserProfi le.ascx, 193

~/Controls, 306, 352
/Controls/App_LocalResources, 557
~/Controls/NewsletterBox.ascx, 373
~/Controls/ShoppingCartBox.ascx, 448
ControlState, 324
~/Controls/UserProfi le.ascx, 403
ConvertNullToEmptyString, 94
ConvertToHtml, 424
<copyright>, 271
Count

GetArticleCount, 283
List, 283

Country, 254
create, retrieve, update, and delete (CRUD),

258–259
ArticleRepository, 280
CategoryRepository, 283
PollRepository, 333, 340

CREATE, 567
CreateAlbumTree, 529
CreateDataSource, 196
CreateEntityKey, 83
CreateMetaControl, 139
CreateQuery, 73, 85
CreateQuery(T), 83
CreateRSSFeed, 320–321
CreateSiteMap, 127
CreateUser, 148

Register.aspx, 429
CreateUserText, 163
CreateUserUrl, 163
CreateUserWizard, 158–163, 203

<MailDefi nition>, 206
CreationDate, 149
CRMaster.master, 21, 42
CRUD. See create, retrieve, update, and delete
.cs, 559, 576
CSS. See Cascading Style Sheets
.css, 15

HTML, 26
cssfriendly.codeplex.com, 26
csszengarden.com, 46
Culture, 548, 555
culture, 555

87586bindex.indd 59787586bindex.indd 597 9/13/09 10:41:26 PM9/13/09 10:41:26 PM

598

CultureInfo

CultureInfo, 485
CurrencyCode, 443
currency_code, 439
CurrentCulture, 548, 554–556
CurrentPoll, 334
CurrentRating, 314
CurrentUICulture, 548, 554–556
CurrentUser, 93
CurrentUserIP, 93
CurrentUserName, 93, 237
CurrentUserShoppingCart, 446
CurrentUserShoppingCart.GetItems, 470
custom, 484
customInfo, 166, 439

D
DAL. See data access layer
data, 91
data = [“key”], 101
data access layer (DAL), 5, 63, 65–87, 258

EF, 64
forums, 405–407
newsletters, 377

data store, 63, 64–65
data tables, 18
database

calendar of events, 502
e-commerce, 441–442
forums, 399–401, 403–405
IP address, 255
news/articles, 251–256
newsletters, 371
opinion polls, 331–332, 336–337
photo gallery, 520
SQL Server, 565–576

DataBind, 356
DataContext, 71, 280

BaseEventRepository, 503
BaseGalleryRepository, 521
PollEntities, 333

DataItem, 230
DataKeyNames, 242
DataKeys, 230

DataList, 272, 294
ListView, 108
ShowAlbum.aspx, 540

DataPager, 112
ArticleRepository, 280
LayoutTemplate, 296
ListView, 294, 345, 516
UpdatePanel, 294

DataReader, 67
DataSet, 88
DataTable, 272
DataTextField, 196
DataValueField, 196
DateSent, 371, 391
DateTime, 172, 288, 505
DateUpdated, 399
DayRender, 515
DaysEvents, 504
dbo, 76
dComment, 314–315
dContent, 36
ddlSearchTypes, 230
declarative coding, 273
decryptionKey, 183
Default.aspx, 46–48

BasePage, 54
MasterPageFile, 48

default.aspx, 136–137
defaultCacheDuration, 278
DefaultConnectionStringName, 104, 267
“defaultconnectionstringname”, 104
DefaultContainerName, 83
DefaultOrderListInterval, 442, 495
defaultProvider, 167
defaultValue, 174
DefPageSize, 90
Delete, 116, 345
DeleteAlbum, 522
DeleteArticle, 259, 263
DeleteCategory, 264, 296
DeleteComment, 265
Deleted, 86
DeleteEventInfo, 504

87586bindex.indd 59887586bindex.indd 598 9/13/09 10:41:26 PM9/13/09 10:41:26 PM

599

EditUser.aspx

DeleteEventRSVP, 504
DeleteObject, 83
DeletePicture, 522
DeletePoll, 334, 346
DeletePollOption, 334
DeletePost, 426
DeleteRoles, 243
DeleteThread, 425
DeleteUser, 148, 230
Deleting, 242
<deny>, 170, 428
DepartmentId, 461
DepartmentURLIndicator, 443
deployment, 563–590

XML, 585
Description, 505
description, 154
<description>, 271
Description META tag, 121–122
Detach, 83
Detached, 86
Details, 441
dHeader, 35–36
Dictionary, 262

Clear, 450
ShoppingCartItem, 446, 449

DiscountPercentage, 462
DisplayHeight, 523
DisplayTitle, 291
DisplayWidth, 523
Dispose, 83, 124, 135, 258, 280

ObjectContext, 89
dIsSending, 389
DIV, 16
<div>, 353
<div>, 184
DIV:dMenu, 39
DIVs, 15, 19, 35, 416. See also footer; header;

main content sections
dComment, 314–315
dMakeComment, 318
dProgress, 388
dthinking, 318
HTML, 33

.dll, 60, 576, 580
aspnet_compiler, 582

dMainFooter, 36
dMainHeader, 35, 36–39
dMainNav, 35, 39
dMakeComment, 318
DoBinding, 356
!DOCTYPE, 30
Documentation, 81
dollar-expression, 550
dProgress, 387, 388
DrawImage, 531
DropDownList, 113, 196, 298, 301

AddEditArticle.aspx, 301
Articles, 304
AutoPostback, 472
BindForums, 421
BindPostInfo, 422
ClearItems, 303
ForumID, 420
GridView, 418
Init, 198
ListControl, 304, 421, 461
Load, 51
MoveThread.aspx, 421
Page Load, 461
WebControl, 467

DropDownList onchange, 418
dSocial, 39
dthinking, 318
dUserName, 219

E
e-commerce, 6, 431–499

BLL, 444–446, 448–455
database, 441–442
EDM, 443–444
payment, 434–441
UI, 455–497

EditItemTemplate, 109
EditOrder.aspx, 497
EditProfi le, 184
EditProfi le.aspx, 210–214
EditUser.aspx, 180, 429

87586bindex.indd 59987586bindex.indd 599 9/13/09 10:41:26 PM9/13/09 10:41:26 PM

600

EDM

EDM. See Entity Data Model
EdmRelationshipNavigationPropertyAttribute, 97
EdmScalarPropertyAttribute, 81
.edmx, 77, 81
EF. See Entity Framework
ELMAH. See Error Logging Modules and Handlers
, 123
email, 366–367
Email, 149
email, 191
<email>, 379
EMailHash, 292
EmptyDataTemplate, 109, 110, 294
<EmptyDataTemplate>, 228
EmptyItemTemplate, 109, 540
EnableAkismet, 266
EnableCaching, 90, 101, 266, 332, 371, 401
EnableHighlighter, 270
EnablePaging, 270
enablePasswordReset, 154
enablePasswordRetrieval, 154, 164
EnablePersonalization, 24, 25
EnableScriptLocalization, 562
EnableTwitter, 266
EnableViewState, 199
EncodedBody, 257, 291
EncoderParameters, 531
EncodeText, 93
encryption, 146, 183
EnsureAlbumExists, 529
EnsureValidSortExpression, 406
Entity, 279
Entity Data Model (EDM), 65–67, 73–81, 287

calendar of events, 502–503, 511–512
class library, 77
e-commerce, 443–444
HTML, 257
news/articles, 256–257
newsletters, 377–378
opinion polls, 332–333, 340–342
photo gallery, 520–521, 526–533
PollOption, 341–342

Entity Framework (EF), 5, 59, 65–81
Active fi eld, 80–81
Concurrency Mode, 80
DAL, 64
metadata, 76–77
n-tier architecture, 71–73
transaction management, 102
Visual Studio, 73

Entity Framework Connection String, 77
Entity Key, 81
Entity Relationship (ER), 65
Entity SQL (ESQL), 67–68
EntityClient, 67
EntityCollection, 98
EntityCommand, 67
EntityConnection, 67, 84
EntityContainer, 67
EntityDataSource, 63, 108
EntityKey, 288
EntityKeyProperty, 96
EntityKeyValues, 287
EntityMemberChanged, 97
EntityObject, 71, 82, 95

ObjectContext, 72
EntityReader, 67
EntitySet, 66, 332, 502, 520
EntityState, 86
en-US, 485, 559
Equals, 83
ER. See Entity Relationship
error logging, 118–119
Error Logging Modules and Handlers (ELMAH),

102, 118–119, 139–141
errorFilter, 141
errorLog, 141
errorMail, 141
ESQL. See Entity SQL
EventArgs, 136
EventDate, 510
EventEndDate, 506
~/EventiCal Httphandler, 505
EventId, 502, 505
EventInfo, 502, 504
EventRepository, 504, 510–511

87586bindex.indd 60087586bindex.indd 600 9/13/09 10:41:26 PM9/13/09 10:41:26 PM

601

GET

EventRSVP, 502, 512
EventRSVPRepository, 504, 511
“_EVENTTARGET”, 52
ExecuteFunction(TElement), 83
ExecuteTask, 369
ExpireDate, 254, 286

F
Facebook, 2, 3
failedCallback, 166, 172
FavoriteTheme, 172
FCKEditor, 106, 114, 298, 300–301, 385
fckeditor.net, 268
FeaturedProduct.ascx, 487–488
feed reader, 247
fi ddlertools.com, 390
[FieldName]Changed, 287
[FieldName]Changing, 287
FileName, 528
FileUpload, 269

AddEditPhoto.aspx, 536
HasFile, 299
RegularExpressionValidator, 536

FileUploader.ascx, 269, 306–307
fi lezilla.net, 580
FilledStarCssClass, 313
FindControl, 533
FindUsersByEmail, 148
FindUsersByName, 148
FinishButtonClick, 207, 480
Firefox, 2, 11
FirstName, 382
<fi rstname>, 379
fi rst_name, 439
FirstOrDefault, 138
Fixed, 80
-fi xednames, 581
, 29
footer, 41–42, 44
<form>, 21, 46, 107
FormatPrice, 461
FormatString, 164
<forms>, 165, 186

Forms authentication, 146–147
FormsAuthentication.RedirectFormLoginPage, 163
FormViews, 113
Forum, 420
Forum.GetForums, 418
ForumID, 400, 410, 411

BrowseThreads.aspx, 417
DropDownList, 420

ForumId, 422
forumID, 410, 411
ForumPage, 409
~/Forum.rss, 403
forums, 6, 397–430

BLL, 402, 407
confi guration module, 401
DAL, 405–407
database, 399–401, 403–405
RSS, 427–428
UI, 402–403, 407–429

<forums>, 401
ForumsRepository, 421
FredCK.FCKEditorV2.dll, 582
FromDisplayName, 371
FromEmail, 371
FTP, 269, 585

Visual Studio, 580
FullImageUrl, 462
fullname, 191

G
GAC. See Global Assembly Cache
GalleryElement, 523
galleryElement, 523
<galleryElement>, 523
GalleryHelper, 527–530
GalleryImage, 530–533
GalleryImage.StoreImage, 536
GalleryModel, 520
Generate Local Resource, 556
GenerateEmptyAlternateText, 30
GeneratePassword, 148
GeoTrust, 435
GET, 129, 435, 440

87586bindex.indd 60187586bindex.indd 601 9/13/09 10:41:26 PM9/13/09 10:41:26 PM

602

GetActiveActiveEventRSVPs

GetActiveActiveEventRSVPs, 504
GetActiveAlbums, 522
GetActiveCategories, 264
GetActiveChildAlbums, 522
GetActiveEvents, 504, 510
GetActivePictures, 522
GetActivePollOptionsByPollId, 334
GetActualConnectionString, 92
GetAkismetComment, 292
GetAlbumById, 522
GetAlbumByIdWithPictures, 522, 526
GetAlbumCount, 522
GetAlbumDirectory, 527
GetAlbums, 522
GetAllOthers, 148
GetApprovedComments, 264
GetAraticleByID, 259
GetArchivedPolls, 334, 362
GetArticleByID, 260
GetArticleCount, 259, 283
GetArticles, 259, 281, 282
GetCategories, 111, 264
GetCategoryByID, 264
GetCategoryCount, 264
GetChildAlbums, 522
GetCommentCount, 264
GetComments, 264
GetCommentsByArticleId, 264
GetCurrentPollId, 334
GetDaysEvents, 510
GetDirectories, 50
GetDisplayPicturePath, 543
GetEventInfoById, 504
GetEventInfoCount, 504
GetEventRSVPByEventId, 504, 511
GetEventRSVPById, 504
GetEventRSVPCount, 504
GetEventRSVPs, 504
GetEvents, 504, 510
GetHomePage, 282
GetHomePageArticles, 259
GetItemImage, 299
GetLocalResourceObject, 551
GetMember, 237

GetMetaValue, 139
GetNewsletters, 392
GetNewsletterStatus, 388
GetNewsletterStatusCompleted, 389
GetNumberOfUsersOnline, 148, 154
GetObjectByKey, 83
GetOrderBy, 452
GetPassword, 150
GetPayPalPaymentUrl, 480, 488
GetPhotosDirectory, 527
GetPictureById, 522
GetPictureCount, 522
GetPictures, 522
GetPicturesByAlbumId, 522
GetPictureURL, 528
GetPollById, 334
GetPollCount, 334
GetPollOptionCount, 334
GetPollOptions, 334
GetPollOptionsById, 334
GetPollOptionsByPollId, 334
GetPolls, 334
GetPosterDescription, 425
GetPosterPosts, 425
GetProfi le, 177
GetPropertyValue, 175
GetPublishedArticles, 259
GetRandomProduct, 488
GetRSSArticles, 322
GetSection, 105
GetSiteMapeNodes, 101
GetSiteMapInfoByURL, 138
getter, 80
GetThemes, 50
GetThread, 423
GetThumbnailImage, 530
GetTodaysEvents, 504, 510
GetUnapprovedPosts, 407
GetUpcomingEvents, 504, 510
GetUser, 148
GetUserNameByMail, 148
GetUserProfi le, 175, 423, 425
GetUserVote, 358
GetValueOrDefault, 288, 506, 507

87586bindex.indd 60287586bindex.indd 602 9/13/09 10:41:26 PM9/13/09 10:41:26 PM

603

HttpHandler

GetValueOrDefault(defaultValue as T), 507
Get{xxx}ByID, 452
Global Assembly Cache (GAC), 60
global resources, 548–550
Global.asax, 177
global.asax, 120, 451
<globalization>, 555
Globally Recognized Avatar, 257
Globals, 52
Globals.vb, 52
GoDown.gif, 416
GoldPosterDescription, 401
GoldPosterPosts, 401
Google Chrome, 11
GoOpenId, 220
Graphics.FromImage, 531
Gravatar

Comment, 291
EMailHash, 292

Gravatar.com, 249, 257, 293
GreenAlt, 467
GreenImage, 467
Greeting2, 550
GridView, 27, 418, 421

ListView, 108
Post.GetThreads, 417
ShowAlbum.aspx, 540

GroupSeparatorTemplate, 109
GroupTemplate, 109, 540

H
<H1>, 122–123
<h1>, 16
HasFile, 299, 536
Hashtable, 425
HasPersonalizationPlaceholders, 379
HasValue, 507
<head>, 21, 46
header, 36–39
#header, 17
Header Tags, 122–123
HeaderText, 335
Helpers, 50, 267, 529

BasePage, 461
Helpers.CurrentUser, 287

Helpers.GetCurrentCulture, 556
Helpers.vb, 50
Hidden, 318
HideFromArchiveInterval, 371
HotThreadPosts, 401
href, 543
hrefl ang, 554
.htm, 16
HTML

AJAX, 214
.aspx, 581
CSS, 14–18
.css, 26
DIVs, 33
EDM, 257
layout, 13, 18–19
Literal, 554
Localize, 554
Picture, 543
RSS, 271
search engines, 123
stylesheets, 18
UI, 11
WebControls, 214

<html>, 46
HTML controls, 138–139
HTML forms, 435–436
HtmlEncode, 93
HTMLEncoded, 291
HtmlMeta, 138
HTMLTextWriter, 107
HTTP

compression, 127
IIS, 33

HTTP POST, 440
HttpApplication, 136, 137
HttpContext, 174–175
HttpContext.Current.Profi le, 175
HttpContext.Current.User, 93
HttpContext.Profi le, 178
HttpHandler, 29, 268, 524

IsReusable, 320
ProcessRequest, 320
RSS, 271
RSSFeed, 320–323

87586bindex.indd 60387586bindex.indd 603 9/13/09 10:41:26 PM9/13/09 10:41:26 PM

604

httpHandler

httpHandler, 6, 126–127, 428
HttpHandlers, 5

web.confi g, 509
httpHandlers, 118, 129

system.web, 141
httpModule, 118, 120

URLRewrite, 134–138
httpModules, 124

system.web, 141
HTTPS, 437
https, 135
huddletogether.com, 541
HyperLink, 424
Hyperlink, 465

AddEditArticle.aspx, 312
HyperLinkField, 419
Hyperlinks, 535
Hyper-V, 565

I
<I>, 123
IBaseEntity, 98–99

Article, 285
IsValid, 86, 98
SetName, 98

iCalendar, 505
ICollection, 66
ICollection(of TEntity), 66
.ics, 509
ID, 160
Id, 52
id, 17
IDE, 173
IDisposable, 89, 111
IE. See Internet Explorer
IEntityChangeTracker, 96–97
IEnumerable, 66
IEnumerable(of TEntity), 66
IHttpHandler, 126–127

Page, 272
IHttpModule, 135
IhttpModule, 124
IIS. See Internet Information Server
IList, 66

IList(of TEntity), 66
IListSource, 66
Image, 530
<image>, 271
ImageButton, 112, 456

Deleting, 242
ListView, 346, 361

ImageButtons, 416
ImageColumn, 418
Image.GetThumbnailImage, 532
images, 26
Image.Save, 531–532
ImageURL, 222
ImageUrl, 552
IMG, 458
, 29
imperative coding, 273
implicit localization expressions, 552
Importance, 265

IsValid, 290
Include, 526
IncludeCanada, 196
IncludeUS, 196
IncrementArticleViewCount, 259, 261
Init, 25, 31, 124

DropDownList, 198
RegisterRequiresControlState, 199

InitializeCulture, 556
BasePage, 559

inline, 39
innerHTML, 219
Insert, 101
InsertArticle, 259
InsertItem

profi le, 467
ShoppingCart, 467

InsertItemTemplate, 109
InsertOrder, 452
InsertPost, 413
InstallCommon.sql, 567
InstallMembership.sql, 567
InstallPersonalization.sql, 567
InstallProfi le.sql, 567
InstallRoles.sql, 567

87586bindex.indd 60487586bindex.indd 604 9/13/09 10:41:26 PM9/13/09 10:41:26 PM

605

JavaScript

InstallShield, 586
InstallWebEventSqlProvider.sql, 567
Instant Payment Notifi cation (IPN), 440, 447

PayPal, 485
int, 453
Integer, 81

AutoCompleteExtender, 244
integer, 407
IntelliSense

IDE, 173
Visual Studio, 24

Interlocked, 371
Internal, 80
Internet Explorer (IE), 2, 11
Internet Information Server (IIS), 6, 136, 137,

328, 524, 576
HTTP, 33
metabase, 33

InValidFirstName, 561
InvalidOperationException, 20
IP address, 93

database, 255
IPN. See Instant Payment Notifi cation
IPrincipal, 93

Helpers.CurrentUser, 287
IQueryable, 67
IQueryable(of T), 68, 69
IsApproved, 149, 232

MembershipUser, 239
IsCurrent, 332
isEditingPost, 410, 411
isHtml, 379
IsInRole, 169
IsLockedOut, 149, 232
isNewReply, 410, 411
isNewThread, 410, 411
IsNullable, 81
IsOnline, 149
isPersistent, 166
IsRequired, 104
IsReusable, 127, 272

HttpHandler, 320
IsSelectable, 515
IsSending, 378

isSending, 383
isSuccess, 191
IsThreadPost, 407
IsUserInRole, 172
IsValid, 285–286, 287

Body, 292
Category, 290
EventRSVP, 512
IBaseEntity, 86, 98–99
Importance, 290
Picture, 527
SavingChanges, 86–87
Title, 290

IsValidFirstName, 562
Item, 451
<item>, 271, 272
ItemCommand, 427

ListView, 229, 346
ItemCreated, 362
ItemDataBound, 425

AddEditAlbum, 539
ListView, 416, 456
ListViewDataItem.DataItem, 533

ItemDeleted, 296
ItemDeleting, 296

DeleteRoles, 243
ListView, 230, 417

item_name, 439
item_number, 439
itemPlaceholder, 110

ShowAlbum.aspx, 540
Items, 486
ItemSeparatorTemplate, 109
ItemTemplate, 109, 111, 242, 541

BrowseAlbums.aspx, 539
ListView, 423

iThumb, 533

J
Jasc Paint Shop Pro, 13
JavaScript, 14, 35, 113, 165, 228, 244,

300–303, 315, 362, 472
CSS, 541
UpdatePanel, 113

87586bindex.indd 60587586bindex.indd 605 9/13/09 10:41:26 PM9/13/09 10:41:26 PM

606

Join

Join, 69
.js, 560
JSON, 388

K
key, 91
Keyword META tag, 122
kuler.adobe.com, 14

L
Label, 30, 320

localization, 553
<label>, 30
Labels, 319

WizardStep, 479
lambdas, 340
Language Integrated Query (LINQ), 69–71

ObjectStateEntry, 87
LastActivityDate, 149
LastLockoutDate, 149
LastLoginDate, 149
LastName, 382
<lastname>, 379
last_name, 439
LastPasswordChangedDate, 149
LastPostBy, 400, 403
LastPostDate, 400, 403

SortExpression, 418
LastPostDate DESC, 427
layered infrastructure, 63–64
layout, 13–19

HTML, 13, 18–19
tables, 18
three-column, 44–45

LayoutTemplate, 109, 110
DataPager, 296
Login, 187
runat, 296

lblRatingLiteral, 464
lblTitleResource1.Text, 552
lblTitleResource1.ToolTip, 552
LCMaster.master, 42
.ldf, 566

Left, 43
leftcol, 48
left-main-content, 42
, 39

ListView, 223
Lightbox, AJAX, 541–543
LIKE, 230
Line-of-Sight architecture, 63
<link>, 26, 271
LinkButton, 112, 312
LINQ. See Language Integrated Query
LINQ to Entities, 69–71
LINQ to SQL, 65, 69–71
LinqDataSource, 63
Linux, 11
List, 283
List(of SiteMapInfo), 127
List(of T), 85
ListControl

CategoryId, 304
DropDownList, 304, 421, 461
RadioButtonList, 421
selectedId, 304

Listed, 254
List<string>, 239
ListView, 5, 6, 108–113

AddEditAlbum.aspx, 535
AdminList, 241
AdminMenuItems, 222
AlternatingItemTemplate, 458
ArticleRepository, 280
BindCategories, 296
BindData, 516
BindDaysEvents, 516
BindOrders, 495
BindPollOptions, 348
BrowseAlbums.aspx, 539
BrowseEvents.aspx, 514
CommandName, 427
DataKeyNames, 242
DataPager, 294, 345, 516
<EmptyDataTemplate>, 228
GetArchivedPolls, 362
ImageButton, 346, 361
ItemCommand, 229, 346

87586bindex.indd 60687586bindex.indd 606 9/13/09 10:41:26 PM9/13/09 10:41:26 PM

607

<mailSettings>

ItemCreated, 362
ItemDataBound, 416, 456
ItemDeleting, 230, 417
Items, 486
ItemTemplate, 423
, 223
Load, 486
ManageAlbums.aspx, 533
ManageComments.aspx, 307
ManagePolls.aspx, 342–343, 345
ManageRoles, 241
ManageUsers, 226
Order.GetOrdersByUser, 490
PagedControlId, 296
PagePropertiesChanged, 298
Picture, 543
Profi le.ShoppingCart, 486
Repeater, 488, 493
RssReader.ascx, 323
ShoppingCart.aspx, 486
ShoppingCartItem, 470
ShowAlbum.aspx, 540, 541
, 223
UpdatePanel, 113, 308, 415, 488, 512
UpdateTotals, 473

ListViewDataItem, 533
ListViewDataItem.DataItem, 533
Literal, 304, 320, 465

HTML, 554
localization, 553
XML, 321

Load, 25, 31, 178
DropDownList, 51
ListView, 486
Page, 411

loadCompletedCallback, 172
LoadControlState, 199, 355
LoadProfi le, 218
loadRoles, 219
localization, 6, 545–562

AJAX, 560–562
Label, 553
Literal, 553

Localization.aspx, 551
Localization.aspx.resx, 551

Localize, 553
HTML, 554

LocalSqlServer, 103
Location, 137, 288, 505
<location>, 170–171, 428

web.confi g, 213, 429
LoggedInTemplate, 393
<LoggedInTemplate>, 165, 171
login

AJAX, 214–220
box, 184–186

Login, 158, 163–164, 165, 190–191
LayoutTemplate, 187

loginCompletedCallback, 166
LoginDlg, 214
loginfailure, 189
loginHandler, 218
LoginName, 164–165
LoginStatus, 164–165
loginUrl, 186
LoginView, 164–165, 184, 393

<Administrators>, 171
Logout, 165
logoutCompletedCallback, 166
LogoutImageUrl, 165
LowAvailability, 443, 467
lvUsersListView, 244

M
Mac OS, 11
Machine.Confi g, 153
machine.confi g, 103
Machine.confi g.default, 153
machine.confi g.default, 183
machineKey, 155, 183
<machineKey>, 155
MailAddress, 366
MailDefi nition, 164
<MailDefi nition>, 162

CreateUserWizard, 206
MailMessage, 383
mailSettings, 367
<mailSettings>, 134, 162

87586bindex.indd 60787586bindex.indd 607 9/13/09 10:41:26 PM9/13/09 10:41:26 PM

608

main content sections

main content sections, 42–44
MainContent, 42
MakeEventRSVP.aspx, 517–518

AllowRegistration, 517
~/MakeEventRSVP.aspx, 505
MakeThumbnail, 531
ManageAlbums.aspx, 533–535

ListView, 533
UpdatePanel, 533

ManageArticles.aspx, 269, 299
ManageCategories.aspx, 293–298
ManageCategories.aspx.vb, 296–298
ManageComments.aspx, 307–308
ManagedUsers.aspx, 232
ManageEvents.aspx, 512–513
ManageOrders.aspx, 490–497
ManagePolls.aspx, 342–347

AddEditPoll.aspx, 345
ManagePolls.aspx.vb, 345–347
ManageProducts.aspx, 458
ManageRoles, 241
ManageRoles.aspx, 241–243
ManageUnapprovedPosts.aspx, 415–417
ManageUsers, 225–231

ListView, 226
ManageUsers.aspx, 180, 245
MARS. See MultipleActiveResultSets
Mask, 513
MaskedEdit, 490

AddEditPhoto.aspx, 536
MaskedEditExtender

AddEditEvent.aspx, 513
StateDropDown, 474

MaskEditExtender, 301–302, 505
MaskType, 513
Master, 25
master pages, 34–45

Admin, 221–225
content pages, 24–25
ContentPlaceHolder, 42
model, 19–23
RSS, 42
runtime, 25–26
themes, 46, 48–49
Visual Studio, 23

MasterPage, 24–26, 31
Page Load, 192

MasterPageFile, 21, 22–23
Default.aspx, 48
PreInit, 25

MasterType, 25
MaxHeight, 531
MaximumPrefi xLength, 244–245
maxInvalidPasswordAttempts, 154
MAXROWS, 90
MaxValue, 90
MaxWidth, 531
mc_gross, 485

ProcessRequest, 484
.MDF, 565, 568
.mdf, 566
Me.Master., 24
membership, 143–246
Membership, 151–153, 165, 230

BindUser, 238
<membership>, 154
Membership.CreateUser, 159
Membership.FindUsersByName, 245
Membership.GetAllUsers, 228
Membership.Getuser, 237
MembershipUser, 232

IsApproved, 239
UnlockUser, 240

MembershipUserCollection, Membership.
GetAllUsers, 228

MembershipUsers, 245
menu, CSS, 31–41
Menu, 171

SiteMap, 28
MenuName, 222
MergeOption, 73

NoTracking, 101
Messages, Greeting2, 550
Messages.it-IT.resx, 559
Messages.resx, 559
metabase, IIS, 33
metadata, EF, 76–77
MetadataWorkspace, 83

87586bindex.indd 60887586bindex.indd 608 9/13/09 10:41:26 PM9/13/09 10:41:26 PM

609

nvarchar

meta:resourcekey, 552
meta:resourcename, 553
Microsoft Message Queue (MSMQ), 102, 452
MIME, 505, 524
minRequiredNonalphanumericCharacters, 155
minRequiredPasswordLength, 155
mobile devices, 19
mock-up, 13–14
Moderated, 408
Modifi ed, 86

SiteMapInfo, 87
Monitor, 371
MoreText, 272
MoreUrl, 272
MoveHiddenFields, 106–107, 114
MoveHiddenFieldsToBottom, 107
MoveThread.aspx, 421–422

DropDownList, 421
HyperLinkField, 419

MSBuild.exe, 585
.MSi, 588
MSMQ. See Microsoft Message Queue
multiple votes, opinion polls, 330–331
MultipleActiveResultSets (MARS), 71
multi-tier design, 59
MultiView, 6, 244, 474
MustInherit, 89
MySpace, 3
mystyles.css, 16

N
Name, 81
name, 155
namespace, class library, 62
NAT. See network address translation
NavigateUrl, 552
navigation, 9, 11, 12, 28–29, 123–130
Navigation, 81
Navigational Property, 81
 , 424
nested master pages, 23

main content sections, 42–44

.NET Framework, 14, 32
network address translation (NAT), 331
news aggregator, 247
news/articles

confi guration module, 266–267, 274–279
EDM, 256–257
management, 247–326
repository classes, 258–265
UI, 267–272

<newsletter>, 371
NewsletterBox, 393–394, 556
NewsletterElement, 371
NewsletterId, 392
NewsletterRepository, 377
newsletters, 5, 365–395

AJAX, 388
BLL, 377–384
confi guration module, 372, 374–377
DAL, 377
database, 371
EDM, 377–378
email, 366–367
UI, 373, 384–394

Newsletters, 376
<newsletters>, 374

web.confi g, 376
NewsLettersElement, 37
NewslettersElement, 376
~/NewsLetterService.asmx, 373
NewslettersRepository, 379–384
NewsletterStatus, 388
Next, 473
notify_url, 439, 440
NoTracking, 73

MergeOption, 101
NTFS, 269
n-tier architecture, 63

EF, 71–73
null values, 506–509
Nullable, 81

DateTime, 505
Nullable(of T), 507
nvarchar, 252

87586bindex.indd 60987586bindex.indd 609 9/13/09 10:41:26 PM9/13/09 10:41:26 PM

610

Object

O
Object, 551
Object Relational Mapping (ORM), 2

EF, 65
Object Services, 68–69
ObjectContext, 68, 71, 81, 84, 86–87

Articles, 279
Dispose, 89
EntityObject, 72
ObjectQuery, 72
SaveChanges, 85
SiteMapEntities, 86

ObjectDataSource
Forum.GetForums, 418
GridView, 418, 421

ObjectQuery, 69, 85
ObjectContext, 72
Sitemaps, 85

ObjectQuery(T), 73
ObjectServices, 69
ObjectStateEntry, 87
ObjectStateManager, 68–69, 83, 85, 100
objGraphics, 531
odetocode.com, 19
OnArticleIDChanged, 96
OnArticleIDChanging, 96
OnChanged, 71
OnChanging, 71
OnClick, 413–415, 416
onclick, 228
OnClientClick, 228
OnDataBinding, 356
OnError, 118
onError, 218
OnLoad, 31
Onload, 315
onLoginComplete

LoadProfi le, 218
loadRoles, 219

OnlyForMembers, 273, 319
OnPreinit, 31
OnSiteMapID_Changed, 100
OnSiteMapIDChanging, 100
OnXXX, 31

OpenId, 178–179, 214
authentication, 187, 190–193
GoOpenId, 220

OpenId Identity, 192
OpenIdData, 191
Opera, 2, 11
opinion polls, 327–363

BLL, 333–334
confi guration module, 332, 337–340
database, 331–332, 336–337
EDM, 332–333, 340–342
multiple votes, 330–331
repository classes, 340
UI, 335–336, 342–362

OptimisticConcurrencyException, 261
Order

GetOrderBy, 452
OrderCompleted.aspx, 482
ProcessRequest, 484

ORDER BY, 405, 406
OrderBy, 69
OrderCancelled.aspx, 453

PayPal, 482–485
OrderCompleted.aspx, 453

Order, 482
StatusID, 482

Order.GetOrdersByUser, ListView, 490
OrderHistory.aspx, 488–490

ShoppingCart.aspx, 486
~/OrderHistory.aspx, 448
OrderID, 490

EditOrder.aspx, 497
OrderId, UpdatePanel, 493
Order.InsertOrder, 446
OrderItems, 452
OrderStatusId, 490
OriginalsDirectory, 523
ORM. See Object Relational Mapping

P
<p>, 17
Page, 19, 105

BasePage, 31
IHttpHandler, 272

87586bindex.indd 61087586bindex.indd 610 9/13/09 10:41:26 PM9/13/09 10:41:26 PM

611

PictureCaption

Load, 411
PreInit, 27
Render, 106

@Page, 24, 27
Theme, 47

@Page Directive, 20
Page Load, 114, 191

DropDownList, 461
ManagePolls.aspx, 345
MasterPage, 192
username, 237

Page1_Title, 547
Page2_Title, 547
PagedControlId, 296
pageIndex, 282
Page_Init, 420
page-level optimizations, 121–123
page-level resources, 551–553
Page_Load, 147, 189

BindProduct, 464
BindRoles, 238
Forum, 420

PagePropertiesChanged, 112
ListView, 298

<pages>, 22
theme, 27
web.confi g, 27

PageSize, 266, 442
Page_Init, 420

pageSize, 266, 282
Paint.NET, 13, 14, 32
Panel, 171

RadioButtonList, 353
Repeater, 353
ShowHeader, 352

panSend, 384–385
panWait, 384, 387
ParameterizedThreadStart, 369, 381
ParentCategoryID, 252
ParentPostID, 400
Password, 166
<%Password%>, 162, 207
Password Recovery, 164
passwordAttemptWindow, 155

passwordFormat, 155
PasswordQuestion, 149
PasswordRecover.aspx, 208
PasswordRecovery, 208–210
PasswordRecovery.aspx, 180
passwords, 146, 210
passwordStrengthRegularExpression, 155
Path.Combine, 322
payment, e-commerce, 434–441
payment gateways, 434

GET, 435
payment_status, 484
PayPal, 438–441

IPN, 485
OrderCancelled.aspx, 482–485

PayPalIPN.ashx, 453, 483
~/PayPalIPN.ashx, 447
~/PayPal/OrderCancelled.aspx, 447
~/PayPal/OrderCompleted.aspx, 447
<p>Hello Chris</p>, 29
PDAs, 19
Percentage, 353
PercentageComplete, 378
persistence

Theme, 220–221
user profi le, 199–201

PersonalizationManager, 556
photo gallery, 4, 519–543

AJAX, 6
BLL, 521–522
confi guration module, 523
database, 520
EDM, 520–521, 526–533
repository classes, 526
storage, 524–525
UI, 525, 533–543

PhotoDirectory, 523
PhotosDirectory, 523
Picture, 520, 526

HTML, 543
IsValid, 527
ListView, 543

PictureAlbumId, 520
PictureCaption, 527

87586bindex.indd 61187586bindex.indd 611 9/13/09 10:41:26 PM9/13/09 10:41:26 PM

612

PictureFileName

PictureFileName, 527, 536
PictureId, 520
PictureRepository, 522, 526
PictureTitle, 520, 527
pixels (px), 43
plentyoffi sh.com, 564
Poll, 332, 340
PollBox, 335, 360, 556
PollBox.ascx, 352–359
PollBox.ascx.vb, 354–359
PollEntities, 333
PollID, 330, 335, 574

Session, 331
ViewState, 355

PollOption, 332, 341–342
PollOptionRepository, 334
PollRepository, 333–334, 346

CRUD, 333, 340
<polls>, 339
PollsElement, 332, 339
PollsRepository, 345
PopUpBackground, 214
POST, 437
PostBack, 191
Post.CloseThread, 421
PostComment, 318
PostedFile, 306
Posters, 429
Post.GetThreads, 417
PostID, 400
postID, 410, 411
PostRepository, 417, 423
Posts, 407, 423
PostsPageSize, 401
PostsRepository, 422
Preferences.Culture.profi le, 559
prefi x, 92
PreInit, 20, 31

AdminPage, 114
MasterPageFile, 25
Page, 27
Theme, 30
themes, 51

presentation layer, 63

Previous, 473
PrimaryKeyId, 107, 108, 241, 409
PrimaryKeyIdAsString, 241
Privacy Policy, 123
~/Privacy.aspx, 448
Private, 80
ProcessEnter, 216
ProcessRequest, 127, 272

custom, 484
EventId, 505
HttpHandler, 320
mc_gross, 484
Order, 484
payment_status, 484
QueryString, 505

Product, 464
ProductID, 442

Product, 464
ProductId

BindProduct, 464
ShowProduct.aspx, 487

ProductionConnectionStrings.confi g, 584
~/Products.rss, 448
ProductURLIndicator, 443
Profi le, 5, 165, 172–173, 174–175
profi le

en-US, 559
InsertItem, 467

<profi le>, 172, 407
web.confi g, 451

Profi le.Address.Street, 174
Profi leBase, 175

web.confi g, 177
Profi leCommon, 172–173, 423

GetProfi le, 177
Profi le.GetProfi le, 425

Profi le.GetProfi le
Hashtable, 425
Profi leCommon, 425

Profi leManager, 230
Profi le_MigrateAnonymous, 177, 451
Profi le_migrateAnonymous, 221
profi leServer, 178
Profi leService, 178

87586bindex.indd 61287586bindex.indd 612 9/13/09 10:41:26 PM9/13/09 10:41:26 PM

613

ReplyCount

Profi le.ShoppingCart
anonymous users, 480
ListView, 486

progress, 389
progressbar, 387
properties, 78–80
PropertyValue, 175
Protected, 80
provider, 151
<provider>, 154
<providers>, 154
ProviderType, 266, 332, 371, 401
providerType, 266, 340
<pubDate>, 271
Public, 80
PublicKeyToken, 77
Published, 288
PublishedArticles, 264, 289
PublishedOnly, 259, 270
PurgeCacheItems, 92
px. See pixels

Q
Quantity, 449
queries, 70–71
QueryString, 107, 124

ArticleId, 302
ProcessRequest, 505

QuestionText, 332
quotePostID, 410, 411

R
RadioButtonList

ListControl, 421
Panel, 353

RateArticle, 259, 260–261
Rating, 313

Article, 314
BindArticle, 314
UpdatePanel, 314, 465

RatingLockInterval, 104, 270, 442
RDBMS. See relational database management

system

readAccessProperties, 178
ReaderWriterLock, 370–371, 377
ReadOnly, 291
Readonly, 178
Really Simple Syndication (RSS), 3, 5, 270–272

ArticleListing.ascx, 272
forums, 427–428
HTML, 271
HttpHandler, 271
master pages, 42
XML, 247–248, 321

RealURL, 99, 125
RedImage, 467
RedirectLocation, 137
redirectURL, 136, 166
redirectUrl, 166
Refresh, 83
RegexOptions Enum, 135
Register.aspx, 180, 203–208

CreateUser, 429
RegisterRequiresControlState, 199
RegistrationMail.txt, 162, 206
RegularExpressionValidator, 536
RelaseDate, 288
relational database management system

(RDBMS), 65
Relaying party, 178–179
ReleaseDate, 254

ExpireDate, 286
ReleaseReaderLock, 370
ReleaseWriterLock, 381
RemoveItem, 449
RemoveProduct, 450
Render

HTMLTextWriter, 107
Page, 106

Repeater, 272, 294
ListView, 108, 488, 493
Panel, 353
ShowAlbum.aspx, 540

Replace, 453
ReplacePersonlizationPlaceholders, 380
ReplyCount, 400, 403, 404

BoundField, 418

87586bindex.indd 61387586bindex.indd 613 9/13/09 10:41:26 PM9/13/09 10:41:26 PM

614

ReplyCount DESC

ReplyCount DESC, 427
ReportAkismet, 266

ArticlesElement, 284
ReportPropertyChanged, 96–97, 100
ReportPropertyChanging, 96, 100
Repository, 71
repository classes

calendar of events, 510–511
news/articles, 258–265, 280–285
opinion polls, 340
photo gallery, 526

Repository Pattern, 88–95
Request, 127, 136

UserHostAddress, 93
UserLanguage, 555

Request for Comment (RFC), 505
requestedPath, 137
Request.Form, 51
RequestLogin, 362
RequiredFieldValidators, 386

AddEditPhoto.aspx, 536
requiresQuestionAndAnswer, 155, 159
requiresUniqueEmail, 155
res://<assemblyFullName>/<resourceName>.

assemblyFullName, 77
ResetPassword, 150
ResizeThumbnail, 538
ResourceManager, 547
Resources, 547
Resources.Messages.ResourceKeyName, 559
resoureName, 77
Response, 127, 136

ContentType, 322
Response.ContentType, 127
Response.End, 322
Response.Flush, 322
.resx, 547
return, 440
Rewrite, 138
RewritePath, 138
RFC. See Request for Comment
Right, 43
rightcol, 48
right-main-content, 42

Robots META tag, 122
Role, 165
RoleAdminPage

AdminPage, 241
RoleName, 241

<roleManager>, 167
RoleName, 241
roles, 167–172

AJAX, 171–172
authorization, 169–171

Roles, 178
AddUserToRole, 429
Roles.AddUserToRole, 239

roles, 186
Roles.AddUserToRole, 238

Roles, 239
RoleService, 219
Roles.IsInRole, 169
RowCommand, 421
ROW_NUMBER, 405
RSS. See Really Simple Syndication
*.rss, 428
rssbandit.org, 248, 399
RSSFeed

Abstract, 322
HttpHandler, 320–323
Title, 322

RSSFeed.vb, 268
RSSForum, 427
RssItems, 266, 401, 442
RssReader.ascx, 323–325
RssReader.ascx.cs, 324–325
RssUrl, 272
runat, 296
runat=server, 316
runat=”server”, 110
runtime, 25–26

S
<s>, 29
Safari, 2, 11
Sandbox, 439, 440
SandboxMode, 443
Save, 177, 178

87586bindex.indd 61487586bindex.indd 614 9/13/09 10:41:26 PM9/13/09 10:41:26 PM

615

ShoppingCartBox

SaveAs, 306
SaveChanges, 83, 85, 86, 102
SaveControlState, 199, 355
SaveNewsletter, 391
SaveProfi le, 202

UserProfi le, 207, 213, 240
SavingChanges, 82, 86–87
screen readers, 18
screen-scraping, 247
<script runat=”server”>, 24
Scriptaculous, 541
Script.en-CA.js, 560
Script.it-IT.js, 560
ScriptManager, 113, 562
ScriptManagerProxy, 113, 316
ScriptMethod, 318
ScriptService, 318
search engine optimization (SEO), 4, 12,

119–123
search engines

HTML, 123
URLs, 120–121

SearchByEmail, 229
SearchText, 230
SearchUsersByName, 245
sectionbody, 17
sectionGroup, 140
sectiontitle, 17
Secure Sockets Layer (SSL), 156, 178, 435
security, 272–273, 325
SecurityException, 303
Select, 69
Select * from, 282
SelectedDate, 516
selectedId, 304
SelectedIndexChanged, 51
SelectedValue, 461
SelectionChanged, 516
SelectMethod, 418
Selector, 16, 17
Selectors, 14, 16
Semaphore, 371
SendAsync, 368
SendAsyncCancel, 368

SendCompleted, 368
SendEmails, 381, 382
SenderDisplayName, 376
SenderEmail, 376
SendNewsletter, 381
SendNoEventMessage, 505
SEO. See search engine optimization
SEOFriendlyURL, 322–323
separation of concerns, 15
[Serializable], 448
serializeAs, 174
Server Explorer, 568
Server.MapPath, 50
ServiceMethod, 245
ServicePath, 245
Session, 5, 52–53, 446

PollID, 331
Theme, 220

Set, 96
set, 69
SetFocusOnError, 184
SetInputControlsHighlight, 184
SetName, 98–99
SetPage, 315
SetPropertyValue, 175
setter, 80
setup.exe, 588
SetupListViewPager, 297
SharePoint, 11
SharpReader, 399
sharpreader.com, 248
shipping, 440
ShippingMethodID, 442
ShoppingCart, 446

InsertItem, 467
InsertOrder, 452
ShoppingCartItem, 449

ShoppingCart.aspx, 462, 469–482, 485–487
GetPayPalPaymentUrl, 488
ListView, 486
OrderHistory.aspx, 486

~/ShoppingCart.aspx, 447
ShoppingCartBox, 556

87586bindex.indd 61587586bindex.indd 615 9/13/09 10:41:26 PM9/13/09 10:41:26 PM

616

ShoppingCartItem

ShoppingCartItem, 446, 448, 449
Item, 451
ListView, 470
ShoppingCart, 449

ShoppingCart.UpdateItemQuantity, 473
Short Message Service (SMS), 249
ShowAlbum.aspx, 540–541

Repeater, 540
ShowPictures.aspx, 541

~/ShowAlbum.aspx, 525
ShowArchiveLink, 335, 359

PollBox, 360
ShowArticle, 316
ShowArticle.aspx, 311–320
~/ShowArticle.aspx, 268
ShowArticle.aspx.vb, 319–320
ShowCategories.aspx, 309–310

ArticleRepository, 313
~/ShowCategories.aspx, 268
ShowCategoryPicker, 270
~/ShowDepartments.aspx, 447
ShowEvent.aspx, 514
~/ShowEvent.aspx, 505
~/ShowForums.aspx, 403
ShowHeader, 335

Panel, 352
PollBox, 360

~/ShowNewsletter.aspx, 373
ShowNewsletterpage, 392
ShowPageSizePicker, 270
ShowPictures.aspx, 541
ShowProduct.aspx, 462–467, 487
~/ShowProducts.aspx, 447
ShowProfi leInfo, 219
ShowQuestion, 335, 360
ShowThread.aspx, 418, 422–427
~/ShowThread.aspx, 403
sidebars, 55–56
Signature, 407, 424
Silverlight, 10
SilverPosterDescription, 401
SilverPosterPosts, 401, 425
“site”, 104
site design, 33–34

site map, 9
site template, 10, 12
SiteMap, 256

BreadCrumb, 45–46
CacheKey, 92
custom, 124–125
Menu, 28
title, 559

<siteMap>, 171
SiteMapDataSource, 126
SiteMapEntities, 82, 86
SiteMapId, 71, 72
SiteMapInfo, 71, 72–73, 78, 85

Added, 87
Modifi ed, 87

SiteMap.it-IT.resx, 557
SiteMapModel, 78
SiteMapModel.Designer.vb, 82
SiteMap.org, 123, 126
SiteMapPath, 5, 29, 42, 45–46, 126
SiteMapProvider, 5, 29, 45, 123

custom, 125–126
SiteMapRepository, 127, 138, 280
SiteMap.resx, 557
Sitemaps, 85
“[SiteMaps]”, 73
SiteMapSet, 78
SiteMap.xml, 125
sitemap.xml, 126, 129
.skin, 27
SkinID, 28
skins, 26
Skip, 259
SKU. See stock-keeping unit
SmallImageUrl, 458, 462
smartphones, 19
SMO. See SQL Server Management Objects
SMPTClient, 366–368
SMS. See Short Message Service
SMTP, 134
SMTPClient, 382, 383
sn.exe, 584
social networking, 2, 3

search engine optimization, 4

87586bindex.indd 61687586bindex.indd 616 9/13/09 10:41:26 PM9/13/09 10:41:26 PM

617

System.Data.Objects.DataClasses.EntityObject

Sort, 73
SortDirection, 112
SortExpr, 427
SortExpression, 112, 418
sortExpression, 418
SortParameterName, 418
SPAN, 15
sp_attach_db, 565
.SQL, 588
SQL Server, 5, 6, 65, 151, 282, 564

App_Data, 584
data store, 156–158
database, 565–576

SQL Server Management Objects (SMO), 566
SQL Server Management Studio (SSMS), 565–

567, 572
SQLCacheDependency, 101
SQLDataSource, 63
SqlMembershipProvider, 151–153, 154
SQLParameter, 67
Src, iThumb, 533
sRequestedURL, 136
SSL. See Secure Sockets Layer
SSMS. See SQL Server Management Studio
StarCssClass, 313
StartNextButtonText, 473
State, 254
state, 439
StateDropDown, 474
StateDropDownList, 196
StaticSiteMapProvider, 125
StatusCode, 137, 453
StatusID, 442

int, 453
OrderCompleted.aspx, 482

StausCode, 453
Sticky, 400
stock-keeping unit (SKU), 441–442, 458
<store>, 442
StoreComment, 316

dMakeComment, 318
StoreElement, 442

StoreHelper
FinishButtonClick, 480
GetPayPalPaymentUrl, 480

StoreImage, 531
ResizeThumbnail, 538

StoreKeeper, 493
StorePics, 536
Street, 174
String, 81

AutoCompleteExtender, 244
string, 407

Object, 551
StringBuilder, 107
StringCollection, 245
StringDictionary, 191
String.Format, 464
String.Replace, 380
Strings, 245
, 123
<style>, 15, 18
styles.css, 16
stylesheets, 14–15

HTML, 18
skins, 26

StylesheetTheme, 27–28
styleSheetTheme, 27
subforums, 408
SubGroup, 175
Submit, 114
SubmitHam, 265
SubmitSpam, 265
SubscriberInfo, 377, 382
SubscriptionType, 382
SubscriptionType.vb, 183, 377
symmetric encryption, passwords, 146
syndication. See Really Simple Syndication
sysdiagrams, 574
Sys.Services, 165
Sys.Services.Profi leService, 178
Sys.Services.RolesService, 172
System.Confi guration.Confi gurationElement, 274
System.Data.Entity.dll, 69
System.Data.Objects.DataClasses

.EntityObject, 95

87586bindex.indd 61787586bindex.indd 617 9/13/09 10:41:26 PM9/13/09 10:41:26 PM

618

System.Data.Objects.ObjectContext

System.Data.Objects.ObjectContext, 82
System.Data.SQLClient, 77
System.Drawing.Bitmap, 549
System.IO.Directory, 50
System.IO.Directory.CreateDirectory, 306
System.IO.Path.GetFileName, 50
System.Linq, 69
system.net, 382

web.confi g, 366
System.Net.HttpWebRequest, 437
System.Net.Mail, 366
System.Net.Mail.MailMessage, 133
System.Object, 369
System.Web, 560
system.web, 141
System.Web.Caching.Cache, 100
System.Web.Confi guration.

WebConfi gurationManager, 103
System.Web.Extensions, 560
System.Web.Profi le.Profi leBase, 173
System.Web.Security.Roles, 168
System.Web.UI.Page, 31, 105

UI, 52
Sytem.Core.dll, 69

T
target marketing, 145
tbh_, 251, 574
tbh_Articles, 253–254, 256, 273–274, 441
tbh_Articles_GetArticlesByCategory, 405
TBHBLL class library, 62
TBHBLL.resources.dll, 561
tbh_Categories, 251–252, 273–274, 400
TBHComment.js, 315
tbh_Comments, 255, 256, 273–274
tbh_Countries, 254
tbh_Departments, 441
tbh_EventInfo, 502
tbh_EventRSVP, 502
tbh_Forums, 400
tbh_Forums_ApprovePost, 404
tbh_Forums_InsertPost, 403
TBH.js, 361, 416

tbh_OrderDetails, 452
tbh_OrderItems, 441, 442, 446
tbh_Orders, 441, 442
tbh_Orders.ShippingMethod, 442
tbh_OrderStatuses, 442
tbh_Picture, 520
tbh_Pictures, 520
tbh_Poll, 333
tbh_PollOption, 332, 333
tbh_Polls, 332
tbh_Post, 399
tbh_Posts, 400, 406
tbh_Posts table, 403
tbh_prefi x, 443
tbh_Products, 441, 442
tbh_States, 254
TCP/IP, 33
TemplateColumn, 418
Template.master, 46
template.master, 556
Template.master.it-IT.resx, 557
Template.master.resx, 556
TemplateMonster, 14
~/Terms.aspx, 448
Text, 552, 553

ResourceManager, 547
TextBox, 24, 113

AddEditAlbum.aspx, 535
AutoCompleteExtender, 245
ClearItems, 303
username, 244, 490

TextBoxes, 298
AddEditArticle.aspx, 301
AJAX, 490
UpdatePanel, 472

text/xml, 322
TheadID, 422
Theme, 27, 52–53

@Page, 47
persistence, 220–221
PreInit, 30
Session, 220
StylesheetTheme, 27–28
web.confi g, 47

87586bindex.indd 61887586bindex.indd 618 9/13/09 10:41:26 PM9/13/09 10:41:26 PM

619

UpdatePoll

theme, 27
themes

master pages, 46, 48–49
PreInit, 51

ThemeSelector, 49–54, 556
ThemeSelector.ascx, 49
ThreadID, 421
threadID, 410, 411
ThreadPoll, 371
ThreadPriority, 368
ThreadsPageSize, 401
ThreadStart, 368
301 redirect, 120
three-column layout, 44–45
ThumbHeight, 523, 527
ThumbWidth, 523, 527
Timer, 113
Title, 21, 99, 110, 272, 286, 400

AddEditPhoto.aspx, 536
IsValid, 290
RSSFeed, 322

title, 559
<title>, 21, 271
toggleDivState, 416
ToolbarSet, 302
ToolTip, 552, 553
Top, 43
ToString, 128, 322, 505
TotalMails, 378, 382
TotalRating, 100, 260, 441
<tr>, 110
transaction management, 102
TransactionScope, 452
TreeView, 171
TryGetObjectByKey, 83
Twitter, 2, 3, 249
TwitterPassword, 266
TwitterUserName, 266
txtImageURL, 299
txtRole, 244
Type, 81
TypeName, 24

U
UI. See user interface
UI, 52
UICulture, 548, 555
uiCulture, 555
UL, 33
, 38, 223
Unchanged, 86
UnDeleteAlbum, 522
UnDeleteArticle, 263
UnDeleteCategory, 264
UnDeleteComment, 265
UnDeleteEventInfo, 504
UnDeleteEventRSVP, 504
UnDeletePicture, 522
UnDeletePoll, 334
UnDeletePollOption, 334
UniqueID, 416
UnitPrice, 458, 462
UnitsInStock, 456
UnlockUser, 150, 240
Update, 115, 456
UpdateAlbumTree, 529
UpdateArticle, 259
UpdateBy, 116, 399
UpdateCategory, 264
UpdateComment, 265
UpdatedBy, 252, 263
UpdatedDate, 116, 252, 263
UpdateEventRSVP, 504
UpdatePanel, 113

AJAX, 314
DataPager, 294
ListView, 308, 415, 488, 512
ManageAlbums.aspx, 533
ManagePolls.aspx, 343
OrderId, 493
Rating, 314, 465
TextBoxes, 472
Wizard, 470

UpdatePicOrder, 526
UpdatePicture, 522
UpdatePoll, 334

87586bindex.indd 61987586bindex.indd 619 9/13/09 10:41:26 PM9/13/09 10:41:26 PM

620

UpdatePost

UpdatePost, 413
UpdateProgress, 113
UpdateStatus, 388, 389
UpdateTotal, 472
UpdateTotals

AJAX, 478
BindShoppingCart, 473
ListView, 473

UpdateUser, 148, 150
upload, 439
uploads, 269
~/Uploads/{UserName}, 269
URL, 222, 505
<url>, 128
URLEncoded, 125
URLIndicator, 323
UrlIndicator, 266
URLRewrite, 134–138
URLs

rewriting, 124
search engines, 120–121

user experience (UX), 2, 10
user interface (UI), 10, 105–117. See also

presentation layer
calendar of events, 505–509, 512–518
e-commerce, 455–497
forums, 402–403, 407–429
HTML, 11
news/articles, 267–272, 293–325
newsletters, 373, 384–394
opinion polls, 335–336, 342–362
photo gallery, 525, 533–543

user profi le, 143–246
AJAX, 178
business classes, 174–177
control, 193–203
loading and editing, 201–203
persistence, 199–201
set up, 172–178
Visual Studio, 174

userContext, 166, 172
UserControl, 19, 24
UserHostAddress, 93
User.IsInRole, 171
userIsOnlineTimeWindow, 154

UserLanguage, 555
UserName, 149, 199–201, 263
Username, 166, 382
username, 232

Page Load, 237
TextBox, 244, 490

<username>, 379
<%UserName%>, 162, 207
{UserName}, 269
UserProfi le, 203, 207, 213, 240
UserProfi le.ascx, 193, 408
UsersInRole, 244
user-to-site communication, 3
user-to-user communication, 3
UX. See user experience

V
vAlarm, 505
ValidateLoginValues, 216
ValidateUser, 148
Validation, 561
validation, 155
ValidationGroup, 162
Validation.js, 561
validationKey, 183
ValidationResources.it.resx, 561
ValidationResources.resx, 561
validator.w3.org, 29
ValidFirstName, 561
Value, 467
variable.ToString(“N2”), 453
vCalendar, 505
vCalendar Httphandler, 505–506
VERIFIED, 483
VerifyKey, 265
VeriSign, 435
vEvent, 505
video sharing, 4
ViewCount, 400

BoundField, 419
ViewState, 174

AJAX, 106
PollID, 355

87586bindex.indd 62087586bindex.indd 620 9/13/09 10:41:26 PM9/13/09 10:41:26 PM

621

WYSIWYG

_VIEWSTATE, 199
Visible, 354
VisibleWhenLoggedIn, 163
Visual Studio, 6, 21

class library, 61–63
EF, 73
FTP, 580
IntelliSense, 24
master pages, 23
Server Explorer, 568
user profi le, 174
Web Deployment Projects, 583–586
Web Form, 105

Vote, 334
Votes, 100, 260, 341
_Votes, 341
VotingLockByCookie, 332, 358
votingLockByCookie, 340
VotingLockByIP, 332, 358
VotingLockInterval, 332
vState, 263

W
W3C. See World Wide Web Consortium
WCAG. See Web Content Accessibility Guidelines
Web Content Accessibility Guidelines

(WCAG), 30
Web Controls, 138

AJAX, 214
AvailabilityImage.ascx, 467–469
CSS, 26
DropDownList, 467
HTML, 214

Web Deployment Projects, Visual Studio,
583–586

Web Form, 30
Visual Studio, 105

Web Parts, SharePoint, 11
Web Setup Project, 586
web.confi g, 20, 22–23, 76, 77, 84, 102, 129,

147, 151, 153, 162, 181–184
AddEditPost.aspx, 429
Admin, 325
~/Admin, 221

/App_code, 584
<authorization>, 169–170
camelCase, 266
confi gSection, 140
ConnectionString, 278
<connectionStrings>, 278
<forms>, 186
galleryElement, 523
<globalization>, 555
HttpHandlers, 509
<location>, 213, 429
<newsletters>, 376
<pages>, 27
<profi le>, 451
Profi leBase, 177
“site”, 104
system.net, 366
Theme, 47
theme, 27

web.confi g:<connectionStrings>, 102
WebConfi gurationManager, 105, 132
<webMaster>, 271
WebRoot, 528
Web.sitemap, 557
web.sitemap, 186
WelcomeBox, 556
Where, 73
where, 69
width, 353
Wilson ORM, 65
Windows authentication, 146–147
Windows Hyper-V, 565
Windows Presentation Foundation (WPF), 2,

9–10
Wise Installation System, 586
Wizard, 6, 473

UpdatePanel, 470
WizardStep, 479
<WizardSteps>, 160–161, 470
World Wide Web Consortium (W3C), 123
WorldPress.com, Akismet.net, 292
WPF. See Windows Presentation Foundation
writeAccessProperties, 178
www/non-www access, 119–120
WYSIWYG, 268–269

87586bindex.indd 62187586bindex.indd 621 9/13/09 10:41:27 PM9/13/09 10:41:27 PM

622

XAttribute

X
XAttribute, 128
XCOPY, 6
XDocument, 127, 128, 322
XElement, 128
XHTML, 29–30
XML

.compiled, 580
Confi gurationProperty, 275
deployment, 585
Literal, 321
RSS, 247–248, 321
XSL, 272

XML Literals, 128

XmlDataSource, 63
xRSS, 322
xSiteMap, 128
XSL, 272
XXX, 31
xxxInitialize, 31

Y
YellowImage, 467
YouTube, 3, 4

Z
zip, 439

87586bindex.indd 62287586bindex.indd 622 9/13/09 10:41:27 PM9/13/09 10:41:27 PM

Get more
fromWrox.

Available wherever books are sold or visit wrox.com

978-0-470-18757-9 978-0-470-19137-8 978-0-470-19136-1

G
orroffr

teetG
moom

ommo
rWWr

erreoor
xooxrroorroffr moom rWWr .xooxrro

9-75781-074-0-879 9 -879 879 8-73191-074-0- 8731910740 1-63191-074-0-879

obreverehwelbaliavAAv oc.xorwtisivrodloseraskoo mo

87586badvert.indd 62387586badvert.indd 623 9/11/09 3:50:52 PM9/11/09 3:50:52 PM

87586badvert.indd 62487586badvert.indd 624 9/11/09 3:50:53 PM9/11/09 3:50:53 PM

Get more out of
WROX.com

Programmer to Programmer™

Interact
Take an active role online by participating in
our P2P forums

Wrox Online Library
Hundreds of our books are available online
through Books24x7.com

Wrox Blox
Download short informational pieces and
code to keep you up to date and out of
trouble!

Chapters on Demand
Purchase individual book chapters in pdf
format

Join the Community
Sign up for our free monthly newsletter at
newsletter.wrox.com

Browse
Ready for more Wrox? We have books and
e-books available on .NET, SQL Server, Java,
XML, Visual Basic, C#/ C++, and much more!

Contact Us.
We always like to get feedback from our readers. Have a book idea?
Need community support? E-mail us at wrox-partnerwithus@wrox.com

Related Wrox Books

ASP.NET MVC 1.0 Test Driven Development Problem – Design – Solution
ISBN: 978-0-470-44762-8
A hands-on guide to creating a complete ASP.NET site using Test Driven Development methods. Shows how ASP.NET MVC is well suited
to TDD and testability. Covers the complete lifecycle including design, testing, deployment, beta releases, refactoring, and tool and
framework selection.

ASP.NET MVC 1.0 Website Programming Problem – Design – Solution
ISBN: 978-0-470-41095-0
A hands-on guide to creating ASP.NET websites using MVC. The book solves some of the most common problems that programmers run
into when creating their first application or when trying to upgrade a current application to this new technology, and demonstrates each
concept while building TheBeerHouse application.

Beginning ASP.NET MVC 1.0
ISBN: 978-0-470-43399-7
This book is a great choice for those who already have ASP.NET knowledge and need to grasp the new concepts of ASP.NET MVC. Readers
will learn about Test-Driven Development and unit testing, the principles of the MVC pattern and its role in TDD, how to implement the
pattern and how to move from traditional ASP.NET webforms to ASP.NET MVC. The book also includes detailed case studies that can be
applied in real world situations.

Professional ASP.NET 3.5 AJAX
ISBN: 978-0-470-39217-1
This book is aimed at experienced ASP.NET developers looking to add AJAX to their applications, and experienced Web developers who
want to move to using ASP.NET and AJAX together.

Professional ASP.NET 3.5 Security, Membership, and Role Management with C# and VB
ISBN: 978-0-470-37930-1
As the only book to address ASP.NET 3.5, AJAX, and IIS 7 security from the developer’s point of view, this book begins with a look at the
new features of IIS 7.0 and then goes on to focus on IIS 7.0 and ASP.NET 3.5 integration. You’ll walk through a detailed explanation of the
request life cycle for an ASP.NET application running on IIS 7.0 under the classicmode, from the moment it enters IIS 7.0 until ASP.NET
generates a corresponding response.

Professional ASP.NET 3.5 SP1
ISBN: 978-0-470-47826-4
With this updated edition of the bestselling ASP.NET book, a stellar author team covers the new controls in the AJAX toolbox, the back
button history, and script combining, and they also examine the new capabilities of WCF including changes to DataContractSerializer. In
addition, the accompanying CD-ROM features the entire book in PDF format.

Professional ASP.NET MVC 1.0
ISBN: 978-0-470-38461-9
This book begins with you working along as Scott Guthrie builds a complete ASP.NET MVC reference application, NerdDinner.com. He
begins by starting a new project and incrementally adding functionality and features. Along the way you’ll cover how to create a database,
build a model layer with business rule validations, implement listing/details data browsing, provide CRUD (Create, Update, Delete) data
form entry support, reuse UI using master pages and partials, secure the application using authentication and authorization, and implement
automated unit testing. From there, the bulk of the rest of the book goes into the ways that MVC is different from ASP.NET Web Forms,
exploring the structure of a standard MVC application and see what you get out of the box. The last third of the book focuses entirely on
advanced techniques and extending the framework.

Wrox Programmer to Programmer™Join the discussion! p2p.wrox.com

ASP.NET 3.5
Website Programming

Chris Love

Problem – Design – Solution

Love

 $44.99 USA
 $53.99 CANWeb Development / ASP.NET

wrox.com
Programmer
Forums
Join our Programmer to
Programmer forums to ask
and answer programming
questions about this book,
join discussions on the
hottest topics in the industry,
and connect with fellow
programmers from around
the world.

Code Downloads
Take advantage of free code
samples from this book, as
well as code samples from
hundreds of other books, all
ready to use.

Read More
Find articles, ebooks, sample
chapters and tables of contents
for hundreds of books, and
more reference resources on
programming topics that matter
to you.

The ASP.NET 2.0 version of this book was the first to introduce
experienced ASP.NET 2.0 programmers to building a web application
with a layered approach. Now updated for ASP.NET 3.5 and the
Entity Framework, this unique book takes good website design
beyond page-by-page coding by emphasizing n-tier ASP.NET web
application architectural design. Each chapter addresses a problem or
business need and then discusses the necessary pieces of the puzzle
you’ll use to solve that problem. In addition, a professional-level
website framework is at the ready, from which you can build real
websites, extend the code, and implement specific ASP.NET code.

• Explains how to implement core features, including master pages,
themes, membership, profiles, and personalization

• Demonstrates ways to best use ASP.NET AJAX, the Entity Framework,
and Visual Studio® code

• Shares techniques for compilation, deployment, instrumentation,
error handling, and logging

• Uncovers tips for separating a site’s UI and presentation layer from
the pluggable data access layer and business logic layer

• Features helpful examples and hands-on code, as well as resourceful
ways to handle common problems

• Features code examples in the book using Visual Basic and a complete
sample application download available in both C# and Visual Basic

Chris Love has been the principal developer for more than 250 ASP and ASP.NET
websites. He is a Microsoft MVP for ASP.NET.

Wrox Problem – Design – Solution references give you solid, workable solutions to
real-world development problems. Each is devoted to a single application, analyzing
every problem, examining relevant design issues, and implementing the ideal solution.

Sharpen your ASP.NET 3.5 skills as
you develop a real-world website

Problem
Design

Solution

A
SP.N

ET 3.5 W
ebsite Program

m
ing

	ASP.NET 3.5 Website Programming Problem-Design-Solution
	About the Author
	Acknowledgments
	Contents
	Introduction
	Who This Book Is For
	What This Book Covers
	How This Book Is Structured
	What You Need to Use This Book
	Conventions
	Source Code
	Errata
	p2p wrox.com

	Chapter 1: Introducing the Project: TheBeerHouse
	Problem
	Design
	Solution
	Summary

	Chapter 2: Developing the Site Design
	Problem
	Design
	Solution
	Summary

	Chapter 3: Planning an Architecture
	Problem
	Design
	Solution
	Summary

	Chapter 4: Membership and User Profiling
	Problem
	Design
	Solution
	Summary

	Chapter 5: News and Article Management
	Problem
	Design
	Solution
	Summary

	Chapter 6: Opinion Polls
	Problem
	Design
	Solution
	Summary

	Chapter 7: Newsletters
	Problem
	Design
	Solution
	Summary

	Chapter 8: Forums
	Problem
	Design
	Solution
	Summary

	Chapter 9: E-Commerce Store
	Problem
	Design
	Solution
	Summary

	Chapter 10: Calendar of Events
	Problem
	Design
	Solution
	Summary

	Chapter 11: Photo Gallery
	Problem
	Design
	Solution
	Summary

	Chapter 12: Localizing the Site
	Problem
	Design
	Solution
	Summary

	Chapter 13: Deploying the Site
	Problem
	Design
	Solution
	Summary

	Index

