
www.allitebooks.com

http://www.allitebooks.org

Adobe AIR in Action
www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Adobe AIR
in Action

JOSEPH LOTT
KATHRYN ROTONDO

SAMUEL AHN
 ASHLEY ATKINS

M A N N I N G
Greenwich

(74° w. long.)
www.allitebooks.com

http://www.allitebooks.org

For online information and ordering of this and other Manning books, please visit
www.manning.com. The publisher offers discounts on this book when ordered in quantity.
For more information, please contact:

Special Sales Department
Manning Publications Co.
Sound View Court 3B fax: (609) 877-8256
Greenwich, CT 06830 email: orders@manning.com

©2009 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by means electronic, mechanical, photocopying, or otherwise, without prior written
permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial caps
or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books we publish printed on acid-free paper, and we exert our best efforts to that end.
Recognizing also our responsibility to conserve the resources of our planet, Manning books are
printed on paper that is at least 15% recycled and processed without elemental chlorine.

Manning Publications Co. Development editor: Nermina Miller
Sound View Court 3B Copyeditor: Benjamin Berg
Greenwich, CT 06830 Typesetter: Dottie Marsico

Cover designer: Leslie Haimes

ISBN 1-933988-48-7

Printed in the United States of America

1 2 3 4 5 6 7 8 9 10 – MAL – 14 13 12 11 10 09 08
www.allitebooks.com

http://www.manning.com
mailto:orders@manning.com
http://www.allitebooks.org

contents
preface xi
acknowledgments xiii
about this book xv

1 Introducing Adobe AIR 1
1.1 Anatomy of Adobe AIR 2

Developing for a runtime environment 2 ■ Why build desktop
applications? 3 ■ Exploring AIR possibilities 4

1.2 Running AIR applications 5
1.3 AIR application security and authenticity 6

Understanding AIR application security 6 ■ Ensuring
application authenticity 7

1.4 Building AIR applications 9
1.5 Introducing AIR application descriptors 10

The application element 11 ■ The id element 11 ■ The version
element 11 ■ The filename element 11 ■ The initialWindow
element 12 ■ The name element 13 ■ The title and description
elements 13 ■ The installFolder element 14 ■ The
programMenuFolder element 14 ■ The icon element 14 ■ The
customUpdateUI element 15 ■ The fileTypes element 15
v

CONTENTSvi
1.6 Building AIR applications using Flex Builder 15
Configuring a new AIR project 16 ■ Creating AIR project
files 17 ■ Testing the AIR application 17 ■ Creating an
installer 18

1.7 Building AIR applications using Flash 20
Configuring a new AIR project 20 ■ Creating AIR project
files 21 ■ Testing the AIR application 21 ■ Creating an
installer 21

1.8 Building AIR applications using the Flex SDK 24
Configuring a new AIR project 24 ■ Creating AIR project
files 24 ■ Testing the AIR application 24 ■ Creating an
installer 25

1.9 Quick-start AIR application for Flex 28

1.10 Quick-start AIR application for Flash 29

1.11 Summary 32

2 Applications, windows, and menus 33
2.1 Understanding applications and windows 34

ActionScript application and windows 35 ■ Flex application
and windows 44

2.2 Managing windows 49
Retrieving window references 49 ■ Positioning windows 49
Closing windows 54 ■ Ordering windows 58 ■ Moving and
resizing windows 60

2.3 Managing applications 63
Detecting idleness 63 ■ Launching applications on startup 64
Setting file associations 64 ■ Alerting the user 65 ■ Full-screen
mode 66

2.4 Menus 68
Creating menus 68 ■ Adding elements to menus 68 ■ Listening
for menu selections 68 ■ Creating special menu items 69
Using menus 69

2.5 Starting the AirTube application 75
Overview of AirTube 76 ■ Getting started 77 ■ Building the
data model 78 ■ Building the AirTube service 81
Retrieving .flv URLs 83 ■ Building the AirTube main
window 86 ■ Adding the video and HTML windows 89

2.6 Summary 93

CONTENTS vii
3 File system integration 94
3.1 Understanding synchronicity 95

Canceling asynchronous file operations 98

3.2 Getting references to files and directories 99
Introducing the File class 99 ■ Referencing common
directories 99 ■ Relative referencing 101 ■ Absolute
referencing 102 ■ Accessing a full path 103 ■ User
referencing 104 ■ Making paths display nicely 109

3.3 Listing directory contents 112
Getting directory listings synchronously 112 ■ Getting directory
listings asynchronously 112

3.4 Creating directories 113
3.5 Removing directories and files 117
3.6 Copying and moving files and directories 118
3.7 Reading from and writing to files 121

Reading from files 121 ■ Writing to files 132

3.8 Reading and writing music playlists 136
Building the data model 137 ■ Building the controller 140
Building the user interface 144

3.9 Storing data securely 146
3.10 Writing to files with AirTube 148
3.11 Summary 153

4 Copy-and-paste and drag-and-drop 155
4.1 Using a clipboard to transfer data 156

What’s a clipboard? 156 ■ Understanding data formats 157
Reading and writing data 158 ■ Removing data from a
clipboard 159 ■ Understanding transfer modes 160
Deferred rendering 161

4.2 Copy-and-paste 162
Selecting a clipboard 162 ■ Copying content 163 ■ Pasting
content 168 ■ Cutting content 170 ■ Using custom
formats 172

4.3 Drag-and-drop 176
Understanding drag-and-drop 176 ■ Drag-and-drop events 177
Using the drag manager 178 ■ Adding drag indicators 182
Dragging out of an AIR application 184 ■ Dragging into an AIR
application 185

CONTENTSviii
4.4 Adding drag-and-drop to AirTube 187
4.5 Summary 188

5 Using local databases 189
5.1 What is a database? 190
5.2 Understanding SQL 193

Creating and deleting tables 194 ■ Adding data to tables 196
Editing data in tables 197 ■ Deleting data from tables 198
Retrieving data from tables 198

5.3 Creating and opening databases 204
5.4 Running SQL commands 205

Creating SQL statements 206 ■ Running SQL statements 206
Handling SELECT results 207 ■ Typing results 207
Paging results 208 ■ Parameterizing SQL statements 208
Using transactions 209

5.5 Building a ToDo application 211
Building the to-do item data model class 212 ■ Creating a to-do
item component 213 ■ Creating the database 214 ■ Creating
an input form 215 ■ Adding SQL statements 216

5.6 Working with multiple databases 222
5.7 Adding database support to AirTube 223

Updating ApplicationData to support online/offline modes 223
Adding a button to toggle online/offline modes 225 ■ Supporting
offline saving and searching 226

5.8 Summary 230

6 Network communication 232
6.1 Monitoring network connectivity 233

Monitoring HTTP connectivity 233 ■ Monitoring socket
connectivity 235

6.2 Adding network monitoring to AirTube 237
6.3 Summary 240

7 HTML in AIR 241
7.1 Displaying HTML in AIR 242

Using native Flash HTML display objects 242 ■ Loading PDF
content 244 ■ Using the Flex component 244

CONTENTS ix
7.2 Controlling how AIR loads HTML 246
Controlling content caching 247 ■ Controlling
authentication 247 ■ Specifying a user agent type 247
Managing persistent data 248 ■ Setting defaults 248

7.3 Scrolling HTML content 248
Scrolling HTML in Flex 249 ■ Scrolling HTML content using
ActionScript 249 ■ Creating autoscrolling windows 252

7.4 Navigating HTML history 252
7.5 Interacting with JavaScript 255

Controlling HTML/JavaScript elements from ActionScript 255
Handling JavaScript events from ActionScript 260 ■ Building a
hybrid application 261 ■ Handling standard JavaScript
commands 264 ■ Referencing ActionScript elements from
JavaScript 269

7.6 Managing security issues 273
Sandboxes 273 ■ Sandbox bridges 274

7.7 Adding HTML to AirTube 276
7.8 Summary 280

8 Distributing and updating AIR applications 281
8.1 Distributing applications 282

Using the default badge 282 ■ Creating a custom badge 285

8.2 Updating applications 288
8.3 Launching AIR applications 295

Handling invoke events 296 ■ Launching AirTube with a
file 296 ■ Listening for browser events 298

8.4 Summary 301

index 303

preface
My friend Paul Newman (yes, that’s really his name, and no, not that Paul Newman)
called me a year ago to ask if I’d like to help write a book about Apollo, which was the
codename for Adobe AIR at that time. I was already overworked, but I hesitantly
agreed. Although I’d known of Apollo in a general way prior to that, it was only at that
point that I started to seriously take a look at the technology. Paul later had to bow out
of the project due to other demands on his time, but I continued to look at Apollo
and prepare to write this book.

 Previously, I’d held a few prejudices in regard to Apollo. I’ve worked with Flash
and Flex for a decade, and the idea of using Flash or Flex to build desktop applica-
tions was hardly a new one. I’d been building executables from Flash for nearly as
long as I’d worked with it. I’ve used programs such as FlashJester, Northcode SWF Stu-
dio, and Multidmedia Zinc with varying degrees of success to enable enhanced fea-
tures for desktop applications built using Flash, and I’d previously seen Apollo as
merely another alternative to these programs. Frankly, I felt a bit of resentment that
Adobe, a huge corporation, would try to swoop in and crush these existing companies
with a competing product. However, after working with Apollo, I saw that it was really
quite different from these other products.

 Soon after, Adobe changed the name from Apollo to Adobe AIR. AIR allows devel-
opers to use existing Flash and Flex skills to build desktop applications. In that regard,
it’s similar to the other products I previously mentioned. However, AIR doesn’t create
xi

PREFACExii
system-specific executables. Instead, AIR applications require the AIR runtime. In this
regard, AIR has less in common with programs such as Zinc, and more in common
with runtime environments such as Java or .NET. This understanding changed how I
looked at AIR.

 Nearly a year on and the manuscript is written, edited, and ready to go to print.
During that time, the authors have learned a lot about AIR, and we’ve endeavored to
share that with you in the pages of this book. We sincerely hope you find this book valu-
able and that we can provide you with useful understanding of how to work with AIR.

JOEY LOTT

acknowledgments
The authors of this book would like to thank all of the people who have contributed
to the printed version you’re reading. This includes a long list of people at Manning
who helped shape the book. Michael Stephens had the initial vision to see the poten-
tial for an Adobe AIR title, and for that we thank him. Nermina Miller was the devel-
opment editor for this book; without her, the book schedule and process would surely
have deteriorated entirely. It’s thanks to Nermina that you have a complete and coher-
ent manuscript to read! We’d also like to thank Benjamin Berg for copyediting the
manuscript when it was final.

 We’d like to thank Karen Tegtmeyer for coordinating the reviews of the manu-
script, which helped us to improve the content and writing in response to the com-
ments of early access readers as well as of peer reviewers. Their feedback, as we
continued to write and revise, was invaluable. Special thanks to our peer reviewers,
Bernard Farrell, Ryan Stewart, Dusty Jewett, Christopher Haupt, Tim O’Hare, Robi
Sen, Mike Clymer, Sean Moore, Clint Tredway, Jeremy Anderson, Patrick Peak, Oliver
Goldman, Jack D. Herrington, Nathan Levesque, Bruno Lowagie, Daniel Todd, and
Brendan Murray.

 Robert Glover was the technical editor for this book, which means he went
through every chapter and every line of code to ensure its technical accuracy. As you
can imagine, this is a very important role, and we offer our sincere thanks to Robert
for his fine work.

 Thanks are also due to the following production staff who contributed to the book
in various ways such as book design, cover design, typesetting, and proofreading:
xiii

ACKNOWLEDGMENTSxiv
Dottie Marsico, Tiffany Taylor, Anna Welles, Leslie Haimes, Gabriel Dobrescu, Ron
Tomich, and Mary Piergies.

 We’d also like to thank the AIR team at Adobe for building a great product, for
providing excellent documentation, and for making themselves available to address
our queries. Special thanks to Oliver Goldman, who not only reviewed several chap-
ters in detail, but also took time to personally respond to emails regarding technical
details of AIR and digital signing.

 Without you, our readers, colleagues, and peers, there would be no need or
demand for this book—so we’d like to thank you too for your interest and enthusiasm.

about this book
This is a book about Adobe AIR for Flash and Flex developers. Although it’s entirely
possible to create AIR applications using HTML and JavaScript, this book focuses
exclusively on using Flash and Flex to build AIR applications. The AIR APIs are
remarkably similar in ActionScript and JavaScript. However, we found that trying to
address all the JavaScript nuances at the same time as the Flash and Flex nuances
would have resulted in an unfocused book. We opted instead to hone in on just Flash
and Flex.

 It’s possible that some readers will still feel that we’ve tried to cover too much ter-
ritory by including both Flash and Flex coverage in one book. That is a fair critique.
By including both, we necessarily had to compromise at certain points, opting to
show code examples more suitable for Flash at some times and code examples more
suitable for Flex at other times. Although this can be seen as a weakness, we also see it
as a strength. We think this provides a greater context for understanding AIR, and it
allows you to make better decisions about how best to solve a problem when building
AIR applications. Ultimately, you’ll make up your own mind about whether our
approach works well or not, but we certainly encourage you to view the book from
our perspective.

Audience

It’s no surprise that this book is intended for Flash and Flex developers who want to
use their existing skills to build AIR applications. There are tens, if not hundreds, of
books in the market that provide detailed introductions to Flash, ActionScript, and
xv

ABOUT THIS BOOKxvi
Flex development. We don’t attempt to provide any such introductory material in
this volume. Therefore, if you aren’t already familiar with Flash, Flex, or common
ActionScript APIs, you’ll probably struggle with this book. We’d encourage you to
first learn the basics of Flash and Flex before attempting to build AIR applications.
Everything in this book builds upon what we assume is a preexisting foundation in
Flash and/or Flex.

Organization

This book is remarkably straightforward. It’s a relatively thin volume of only eight
chapters. Therefore, we didn’t think it necessary to break the book into parts themati-
cally. Chapter 1 provides an introduction to what AIR is, as well as the necessary basics
for getting started. Chapter 8 ties everything together by covering how to actually
build, deploy, and update AIR applications. Each of the remaining six chapters
focuses on one logical grouping of AIR APIs. For example, chapter 2 covers local file
system access such as reading and writing files.

Code conventions

This book is rife with code, ranging from short snippets to full applications. You’ll find
that all code is shown in monospaced font to help it stand out from the rest of the
text. Additionally, many of the longer blocks of code are presented in the form of
numbered code listings with headers. These code listings are always referenced in the
surrounding text, and are frequently annotated.

Code downloads

Almost all of the code listings in this book are available for download from the book’s
web site at www.manning.com/AdobeAIRinAction.

Author Online

The purchase of Adobe AIR in Action includes free access to a private forum run by
Manning Publications where you can make comments about the book, ask technical
questions, and receive help from the authors and other users. You can access and sub-
scribe to the forum at www.manning.com/AdobeAIRinAction. This page provides
information on how to get on the forum once you are registered, what kind of help is
available, and the rules of conduct in the forum.

 Manning’s commitment to our readers is to provide a venue where a meaningful
dialogue among individual readers and between readers and authors can take place.
It’s not a commitment to any specific amount of participation on the part of the
authors, whose contribution to the book’s forum remains voluntary (and unpaid). We
suggest you try asking the authors some challenging questions, lest their interest stray!

 The Author Online forum and the archives of previous discussions will be accessi-
ble from the publisher’s web site as long as the book is in print.

http://www.manning.com/AdobeAIRinAction
http://www.manning.com/AdobeAIRinAction
http://www.manning.com/AdobeAIRinAction

ABOUT THIS BOOK xvii
About the authors

JOEY LOTT has extensive professional experience using Adobe technologies like Flex,
Flash, and ActionScript. He is the author, or coauthor, of ActionScript Cookbook, Pro-
gramming Flash Communication Server, The Flash 8 Cookbook, and several other related
books. With Sam Ahn, he is a partner and founder of The Morphic Group.

 KATHRYN ROTONDO is a software developer at Schematic. She received a graduate
certificate in software engineering from the Harvard Extension School and a certifi-
cate in Flash from the Rhode Island School of Design.

 SAM AHN has architected and built RIAs over the past several years for clients
including Pfizer, Wyeth, MINIUSA, and Puma. Along with Joey Lott, he is a partner
and founder of The Morphic Group, an interactive development company focusing
on Flash/Flex application development.

 ASHLEY ATKINS is a senior software developer at Six Red Marbles, and has over six
years of experience developing in ActionScript. His range of work extends from creat-
ing simple educational interactions to architecting and developing applications in
Flex and AIR.

About the title

By combining introductions, overviews, and how-to examples, the In Action books are
designed to facilitate learning and remembering. According to research in cognitive
science, the things people remember are things they discover during self-motivated
exploration.

 Although no one at Manning is a cognitive scientist, we are convinced that for
learning to become permanent it must pass through stages of exploration, play, and,
interestingly, retelling of what is being learned. People understand and remember
new things, which is to say they master them, only after actively exploring them.
Humans learn in action. An essential part of an In Action guide is that it is example-
driven. It encourages the reader to try things out, to play with new code, and to
explore new ideas.

 There is another, more mundane, reason for the title of this book: our readers are
busy. They use books to do a job or to solve a problem. They need books that allow
them to jump in and jump out easily and learn just what they want just when they want
it. They need books that aid them in action. The books in this series are designed for
such readers.

About the cover illustration

The figure on the cover of Adobe AIR in Action is a “Backwoods Legislator, a Deputy
from the Provinces.” The illustration is taken from an early 19th century travel book,
L’Encyclopedie des Voyages, published in France. Travel for pleasure was a relatively new
phenomenon at the time and travel guides such as this one were popular, introduc-
ing both the tourist and the armchair traveler to the inhabitants of other regions of

ABOUT THIS BOOKxviii
France, to its soldiers, civil servants, and aristocracy—as well as to people from for-
eign lands.

 The diversity of the drawings in the Encyclopedie des Voyages speaks vividly of the
uniqueness and individuality of the world’s towns and provinces just 200 years ago.
This was a time when the dress codes of two regions separated by a few dozen miles
identified people uniquely as belonging to one or the other. The travel guide brings
to life a sense of isolation and distance of that period and of every other historic
period except our own hyperkinetic present.

 Dress codes have changed since then and the diversity by region, so rich at the
time, has faded away. It is now often hard to tell the inhabitant of one continent from
another. Perhaps, trying to view it optimistically, we have traded a cultural and visual
diversity for a more varied personal life. Or a more varied and interesting intellectual
and technical life.

 We at Manning celebrate the inventiveness, the initiative, and the fun of the com-
puter business with book covers based on the rich diversity of regional life two centu-
ries ago brought back to life by the pictures from this travel guide.

Introducing Adobe AIR
Whether you’re using HTML, Flash, Flex, or any of the other myriad technologies,
there’s one common thread among them: all these applications are built using
technologies that are designed for the Web. That's fantastic if your goal is to build a
web application, but it’s a real bummer if you want to build a desktop application.
Adobe integrated runtime (AIR) solves this problem for you. Using Adobe AIR, you
can leverage your existing web application skills with Flash and Flex (and HTML
and JavaScript) to create desktop applications. This is an exciting prospect.

 Every flight starts with a preparation for takeoff. Your journey through Adobe
AIR is no different. We’ll start you off with a review of AIR and then delve into how
you can use Flex and Flash to build AIR applications. Specifically, we’ll look at nec-
essary introductory concepts for creating a solid foundation with AIR, such as these:

This chapter covers
■ Learning about the elements of Adobe AIR
■ Understanding AIR application descriptors
■ Creating new AIR projects
■ Compiling AIR applications
1

2 CHAPTER 1 Introducing Adobe AIR
■ The different parts of Adobe AIR—including the runtime environment, install-
ers, and AIR applications—and the relationships among all these parts.

■ Application security and authenticity issues, including digital signing. You’ll
learn what digital signing is, different types of digital signing, and why and
when to choose which.

■ Basic steps for creating AIR applications using Flex Builder, Flash CS3, or the
Flex 3 SDK.

Without any further ado, let’s go ahead and jump to understanding what this whole
AIR thing is about.

1.1 Anatomy of Adobe AIR
Adobe AIR allows web application developers to use their existing skill sets to build
desktop applications. You can use your HTML, JavaScript, Flash, and Flex skills to cre-
ate applications that can run on desktop systems with runtime environment without
the need to compile them for running natively on specific operating systems.

 In this section, we’ll define runtime environment and talk about why you might
want to build desktop applications. On top of that, we’ll tell you why you’d want to use
your existing skills to do that.

1.1.1 Developing for a runtime environment

If you use a Windows computer, you’ve undoubtedly run many .exe files. An .exe file is
a compiled application that’s capable of issuing commands directly to the system on
which it’s running. That means that an .exe file (or the equivalent) has the advantage
of being relatively self-contained. However, there’s a setback as well, because this
approach requires that you compile the application to a platform-specific format.
That means that you must create a Windows-only or an OS X–only version of an appli-
cation using this approach. The steps for the traditional approach to building applica-
tions are as follows:

1 Write the code in a preferred language.
2 Compile the code to a format that can be run natively on a specific operating

system.
3 Run the compiled application.

A more flexible way is to use a runtime environment rather than targeting a specific
operating system. This runtime environment approach is used by many popular
application platforms, including Java and .NET, and it’s the approach used by Adobe
AIR as well. When using a runtime environment, the application creation process is
as follows:

1 Write the code in a preferred language.
2 Compile the code to an intermediate format.
3 Run the compiled intermediate format in a runtime environment.

3Anatomy of Adobe AIR
Runtime environments give developers the freedom to write code once and run it
from any computer regardless of the operating system, as long as the runtime environ-
ment is installed. A runtime environment is itself a library that runs natively on an
operating system. The runtime environment is responsible for acting as a proxy for
the programs that it runs. Because the runtime environment provides this level of
abstraction between the programs that it runs and the system on which it’s running,
it’s theoretically possible to create runtime environments on many different types of
computer systems that can all run the exact same application files without any differ-
ences among the platforms.

 What does all this have to do with Adobe AIR? As we mentioned earlier, AIR is a
runtime environment. When you create an AIR application, you compile it and then
package it to an intermediate format called an .air file. An .air file and its contents
won’t install or run on a computer unless the user has previously installed the AIR run-
time environment. If the AIR runtime is installed, the .air file enables running the
application on both a Windows machine and an OS X machine. That is a huge boon to
you as an application developer.

 Web applications have advantages over traditional desktop applications, to be cer-
tain. So why would you even want to create desktop applications in the first place? Pre-
sumably, if you’re reading this book, you already have a few reasons, but it’s worth
discussing some of the important motivations.

1.1.2 Why build desktop applications?

A web-based email client allows you to read your email from any computer connected
to the internet. This illustrates one of the primary advantages of web applications,
which is that they aren’t restricted to one machine. Consider that web applications

■ Allow you to easily deploy updates and new versions of your software.
■ Generally provide a level of security for users because they’re subject to the

security limitations of the browser and player (Flash Player, for example) used.
■ Allow you to distribute computing by running some behaviors on the client

machine and some behaviors on the server.

However, web applications aren’t without disadvantages. The two really big ones are
that they

■ Don’t have access to operating system–level features and functionality like desk-
top applications do.

■ Require that the computer be connected to the internet to work. This is disad-
vantageous if you want to use the application when you’re not online, such as
when you’re on an airplane or in the park.

AIR applications bring together the best of both web applications and desktop applica-
tions. Because AIR applications are based on web application technologies, you (as the
developer) have extraordinarily easy ways to access web resources and integrate exist-
ing web applications in part or whole. However, because AIR applications run on the

4 CHAPTER 1 Introducing Adobe AIR
desktop, they have access to system resources normally not accessible to web applica-
tions. That means you can do things such as drag-and-drop between AIR applications
and the file system, access local databases, and, perhaps most importantly, create effec-
tive sometimes-connected user experiences that allow the user to work with the appli-
cation both online and off. AIR applications also have features that allow you to enable
seamless updates, so that users can always be assured they’re working with the latest
version of the application (a topic discussed in chapter 8).

 The other question we’d like to answer is why you’d want to create desktop applica-
tions using web technologies. The most obvious reason for this is that you have exist-
ing skills with web technologies that you’d like to leverage in different ways. If you can
create desktop applications using skills you already have, that’s an advantage over hav-
ing to learn a new language and new technologies just to create an application for the
desktop. But there are more reasons why you might want to create desktop applica-
tions using web technologies. Web technologies are uniquely suited for creating appli-
cations that connect to and use web resources. In a world that increasingly demands
online and networked experiences in desktop software, it’s advantageous to create
those desktop applications using languages that are designed specifically for online
experiences. Yet another reason to use HTML, JavaScript, Flash, and Flex to create
desktop applications is that these languages tend to be vastly superior to other, more
traditional desktop application languages when you want to create compelling, engag-
ing, and interesting user interfaces.

1.1.3 Exploring AIR possibilities

AIR represents all sorts of exciting possibilities for web application developers to cre-
ate desktop applications. But what exactly can you expect? Here we’ll give you the
basics of what you can do with AIR. Throughout the book, you’ll learn all the details.

 Everything you can do when building web applications you can do when building
AIR applications. That’s because AIR includes the WebKit engine (the same engine
used in the Safari browser) and Flash Player. Therefore, you can still use the same
core ActionScript and JavaScript features that you would use when deploying to the
Web. In addition, you have access to an AIR-specific API. This includes the features
outlined in table 1.1.

Table 1.1 Understanding AIR-specific API feature categories

Feature Description

File system integration AIR enables reading, writing, deleting, and all basic file system operations.

Drag-and-drop Users can drag-and-drop files and directories from the operating system to
the AIR application.

Copy-and-paste Users can use operating system–level copy-and-paste features to copy data
between AIR applications and the operating system.

Local databases AIR applications have the ability to create and connect to local databases.

5Running AIR applications
You have access to all these behaviors in AIR applications. In order to use them, how-
ever, AIR applications need to run in a runtime environment that supports them. In
the next section, we’ll look at how to run AIR applications.

1.2 Running AIR applications
When you create an AIR application, you use the AIR toolset, whether Flex Builder 3,
the AIR SDK, or whatever other AIR tool is appropriate, and package up the files for
your application in an .air file. You’ll learn more about the specifics of how to package
the files in an .air file later in this chapter, in section 1.4. For now, you only need to
know that an .air file is the one file you distribute when you want someone to install
your application. You’ll likely hear the term installer file used interchangeably with the
term .air file.

 Once you have an .air file, you can distribute that file to anyone who already has
the AIR environment installed on her computer, and she will be able to easily install it.
If that user already has AIR installed, all she’ll have to do to install your application is
double-click on the .air file you’ve sent her or that she’s downloaded.

 On the other hand, if a user doesn’t already have AIR installed on her computer,
she’ll have to install it before she can install your application. There are two ways that
users can install AIR:

■ Manual install—A manual install is achieved by downloading the platform-
specific (Windows or OS X) installer from Adobe and running that.

■ Seamless install—The seamless install feature requires that you publish an .swf
file (called a badge) to the Web, and users must click on that .swf in order to
install your application. If they already have AIR installed, they’ll immediately
be able to install your application. On the other hand, if they don’t have AIR
installed, they’ll be able to install it first.

NOTE Cross-reference—You can learn more about distributing AIR applications,
including the seamless install feature, in chapter 8.

However a user goes about installing an AIR application, whether by double-clicking
an .air file you've emailed him or by clicking on an install badge in a web page, once
he’s started the installation, he’ll be prompted through several standard install wizard
steps. Figure 1.1 shows an example of what the first step looks like.

 After an AIR application is installed on a user’s system, he can run it at any time just
as he can any other application: by double-clicking on a desktop icon or selecting the
application from a menu.

Audio HTML-based AIR applications can utilize audio easily.

Embedded HTML Flex- and Flash-based AIR applications can render HTML and JavaScript
within display objects.

Table 1.1 Understanding AIR-specific API feature categories (continued)

Feature Description

6 CHAPTER 1 Introducing Adobe AIR
Now that you know how to run AIR applications, we’re ready to look at how you can
begin building applications.

1.3 AIR application security and authenticity
Our introduction to Adobe AIR would be remiss without a discussion of two related
issues: security and authenticity. These two issues are important for you to consider as
an application developer, because any breaches or violations would reflect poorly on
you. Therefore it’s important that you have a good understanding of what AIR does
and doesn’t enforce in the way of application security and authenticity, and what steps
you need to take to protect users of your applications.

1.3.1 Understanding AIR application security

One of Adobe’s flagship products is Flash Player, a product that has been so success-
ful, in part, because of the extraordinary measures taken by Adobe (and previously
Macromedia) to ensure that Flash developers can’t intentionally or unintentionally
harm a user’s computer system. Flash Player has a lot of security features to protect
users. This gives them peace of mind when viewing Flash content on the Web. Users
know that the Flash content won’t cause problems for their computer systems.

 AIR applications are desktop applications, and as such it’s essential that they have
greater access to the user’s computer system than web-based Flash applications. Even
though AIR applications can run Flash content, that Flash content has more opportu-
nities to harm the user’s system than web-based Flash content. It’s a trade-off: a vastly
greater feature set, but increased risk as well.

 AIR applications still run through a mediator—the runtime environment itself.
Therefore, Adobe has a great deal of control over what an AIR application can and

Figure 1.1 Installing an
AIR application brings up
the AIR install screen with
information about the
publisher and application.

7AIR application security and authenticity
can’t do. However, while many risks are mitigated by the runtime environment, AIR
still allows applications many more privileges than their web counterparts might have.

 The first thing that you as an AIR developer must be aware of is that it’s incumbent
on you to treat the users of your application with great respect by taking security mat-
ters seriously. For example, it’s important that you closely manage all parameters to
code that might run in your application. Don’t allow users to arbitrarily enter values,
and don’t use dynamic, network-originating values as parameters for code that can do
things such as access the file system. You can read a more detailed security whitepaper
from Adobe at download.macromedia.com/pub/labs/air/air_security.pdf.

1.3.2 Ensuring application authenticity

In order to give users of your application peace of mind, Adobe requires that all AIR
applications be digitally signed. (Note that signing is only necessary to build the
installer, and you can still build and test your AIR applications without a signature of
any sort.) A digital signature helps to potentially verify two things to the user: authen-
ticity and integrity. A digital signature is meant to mimic a traditional handwritten sig-
nature of ink on paper in that it verifies the publisher of the application (authenticity)
and that it hasn’t been altered since it was published (integrity).

 You can prove that AIR enforces integrity if you’d like with a simple test. What you
can do is verify that the AIR runtime will refuse to install a modified .air file. All that
you need is an .air file and zip utility. The .air format is an archive format that any zip
utility can read. Do the following:

1 Run the .air file to verify that the AIR runtime will initially prompt you to run
the installation. You don’t need to actually click the Install button on the wizard
once it appears. All you need to verify is that the AIR runtime will give you the
option to install.

2 Click the Cancel button to exit the install wizard.
3 Use a zip utility to add a file to the archive. Any file will work. For the purposes

of this exercise, you can create a new blank text file and add it to the archive. If
you’re on a Windows computer, the simplest way to achieve this is to change the
.air file extension to .zip, drag the text file into the .zip archive, and then
change the file extension back to .air.

4 Run the .air file. This time you’ll receive an error message saying that the .air
file is damaged and can’t be installed.

For AIR applications, digital signatures appear together with digital certificates. There
are two basic types of certificates: self-signed certificates and those issued by certifica-
tion authorities. There are advantages and disadvantages to each.

 Self-signed certificates are advantageous in that they’re the easiest to procure.
The Flash CS3 AIR update and the Flex 3 SDK (and subsequently Flex Builder 3) pro-
vide mechanisms for creating self-signed certificates for your AIR applications. You
can read the details of how to create these types of certificates later in this chapter.

8 CHAPTER 1 Introducing Adobe AIR
Self-signed certificates provide a level of security to users, in that they verify the
integrity of the application. However, they do little or nothing to assure users about
the authenticity of the publisher. It’s a bit like acting as a notary for your own docu-
ments. As a result, Adobe displays the publisher identity as unknown in the installa-
tion wizard for self-signed certificates. This is clearly disadvantageous, because it
doesn’t create a feeling of security for users, and they’re less likely to opt to install an
application from an unknown publisher than they would be if the identity of the
publisher could be verified.

 A certification authority is an organization that issues certificates and acts as a
third party to verify your identity. A certification authority issues certificates only after
it has verified your identity, usually by requesting documents such as government-
issued IDs. The advantage of a certificate issued by a certification authority is that it
gives more assurance of your actual identity than a self-signed certificate. When a cer-
tificate is issued by a certification authority, Adobe displays the identity listed in the
certificate as the publisher identity in the installation wizard. On the other hand,
some of the disadvantages might be obvious: obtaining a certificate from a certifica-
tion authority is more difficult and requires more time than a self-signed certificate.
Also, be aware that most certification authorities charge a fee for certificates. (At the
time of this writing, the largest issuer charges $299 USD for a code-signing certificate
for an AIR application.)

 Two of the best-known certificate issuers are VeriSign (www.verisign.com) and
thawte (www.thawte.com), though technically thawte is now owned by VeriSign. If you
want to provide the highest level of certification for your AIR application, you’ll need
to purchase a certificate from one of these issuers. You’ll need what’s called a code-
signing certificate. You can find more information about purchasing a certificate from
the web sites of the issuers.

NOTE There are certification authorities other than VeriSign and thawte, and
there are even noncommercial certification authorities such as CAcert.org
that grant code-signing certificates. You should do your research before
purchasing or otherwise acquiring a certificate (CAcert.org still requires
that you do a fair amount of legwork to obtain a code-signing certificate)
to make sure that the certificate will be trusted on the majority of comput-
ers. If the certificate isn’t trusted, the publisher of the AIR application will
still show up as unknown. Speak to someone at the organization that
grants the certificates and ask questions if you’re in doubt.

When getting started building AIR applications, you’ll probably be hesitant to invest in
purchasing a certificate just to put together a few examples and send the installers to
your friends. Again, remember that the certificate is only necessary when you want to
create the installer. You can always test AIR applications without a certificate.

 However, when you’re ready to create an .air file for your application, you’ll need
to give careful consideration to how you want to digitally sign the application. You
can only associate a certificate with an application once. That means you can’t use a

http://www.verisign.com
http://www.thawte.com

9Building AIR applications
self-signed certificate initially and change to a certificate from a certification author-
ity later on. If you re-sign with a different certificate, users of earlier versions of the
application won’t be able to upgrade.

1.4 Building AIR applications
Now that you’ve learned about what AIR is, the various pieces of AIR, how to run AIR
applications, and AIR security and authenticity issues, you’re almost ready to learn
how to build an AIR application. In fact, in the next few sections of this chapter, that’s
exactly what you’ll learn. You’ll even have a chance to build a few simple AIR applica-
tions to wet your feet in preparation for the rest of the book. Before rushing into
uncharted territory, we’ll take a few moments to map the terrain so that you can get a
sense of what’s in store.

 There are many ways you can create AIR applications. Table 1.2 provides a quick
guide to the toolsets.

 We’ve included HTML/JavaScript toolsets for creating AIR applications in table 1.2
in order to provide a complete picture of AIR toolsets. However, in this book we focus
exclusively on using Flex and Flash to create AIR applications. In sections 1.6, 1.7, and
1.8, you can read more about how to build AIR applications using Flex Builder, Flash,
and the Flex SDK, respectively.

NOTE All the AIR toolsets are available from the Adobe web site
(www.adobe.com/go/air).

Table 1.2 The Adobe AIR toolsets

Name
AIR application

source type
Free Description

Flex Builder 3 Flex/ActionScript No Commercial tool for building Flex-based web
and AIR applications. The tool itself is built on
Eclipse. Flex Builder 3 automates and simpli-
fies building AIR applications.

Flex 3 SDK Flex/ActionScript Yes The Flex 3 SDK is the free SDK that includes
all the compilers and tools that power Flex
Builder 3, but doesn’t include the automation
and graphic user interface of Flex Builder.

Flash CS3 with AIR
update

Flash/ActionScript No Flash CS3 doesn’t ship with AIR capabilities.
However, with the free update for Flash CS3,
you can build AIR applications directly from
Flash authoring.

Dreamweaver CS3
with AIR extension

HTML/JavaScript No A commercial HTML editor with an AIR exten-
sion that automates much of the building of
an AIR application.

AIR SDK HTML/JavaScript Yes The free SDK that includes all the necessary
command-line tools for building HTML/
JavaScript-based AIR applications.

http://www.adobe.com/go/air

10 CHAPTER 1 Introducing Adobe AIR
In section 1.5, you’ll first learn about application descriptors. An understanding of
application descriptors is essential to a full picture of how to create AIR applications.
Even though many of the AIR tools (Flex Builder and Flash CS3 with the AIR update)
will automatically create the descriptor file for a project, it’s still a good idea to famil-
iarize yourself with what a descriptor looks like and what data it contains. You’re
encouraged to read all of section 1.5 before jumping to 1.6, 1.7, or 1.8. However, if
you’re anxious to start building an application and you do jump ahead, we won’t tell
on you.

 We’ll next continue with application descriptors. Once you’ve read the next sec-
tion, go ahead and jump to the section that discusses the toolset you’ll be using to
build AIR applications.

1.5 Introducing AIR application descriptors
Regardless of which toolset you use to create an AIR application, you’ll need to create
an application descriptor. Some of the toolsets will autogenerate a basic application
descriptor for you, but it’s important to understand what an application descriptor is
and how you can use it.

 AIR application descriptors are XML files, which describe AIR applications. When
you package an AIR application to distribute, you’ll need the descriptor to provide
some information that the AIR toolset can use to correctly assemble the application
for distribution. This information includes, but is not limited to, a unique identifier
for the application, a version, and information that gets displayed during install.

 To give you an idea of what a basic descriptor file looks like, here’s an example.
Note that all descriptor files should begin with an XML declaration (<?xml ver-
sion="1.0" encoding="utf-8" ?>).

<?xml version="1.0" encoding="utf-8" ?>
<application xmlns="http://ns.adobe.com/air/application/1.0.M4">

 <id>com.manning.books.airinaction.Example</id>

 <version>1.0</version>

 <filename>ExampleApplication</filename>

 <initialWindow>
 <content>ExampleMain.swf</content>
 </initialWindow>

</application>

If you want to jump ahead to get started building AIR applications, you can do so. The
preceding example descriptor file provides what you’ll need in a descriptor file for a
basic AIR application. If you do choose to jump ahead, you’ll want to revisit this sec-
tion later to learn more about descriptors in greater depth.

 In the following sections, you’ll learn the details of the elements of a descriptor
file.

http://ns.adobe.com/air/application/1.0.M4

11Introducing AIR application descriptors
1.5.1 The application element

The application element is always required, and it’s the root element of the descrip-
tor file. The application element requires an xmlns attribute. The xmlns attribute
defines the namespace for the descriptor. The namespace value is always predefined,
and, for every application you build for a version of AIR, the namespace value will
always be the same. For AIR 1.0, the value should be http://ns.adobe.com/air/
application/1.0.M4. The namespace indicates which version of AIR is required to
run the application. Each new version of AIR will use a new namespace.

 Additionally, you can specify a minimumPatchLevel attribute. Use the minimum-
PatchLevel attribute if you want to require the user to have an AIR (the runtime) patch
applied in order to run the application. This attribute is optional. You should only use
it if you know that your application requires a particular patch to run correctly.

 Because the application element is the root element of the descriptor file, all
the elements that follow are nested as children within the application element. The
next four elements (id, version, filename, and initialWindow) are the only
required elements.

1.5.2 The id element

The id element should be a unique identifier for the application. Only one applica-
tion with a given identifier can be installed on a system at a time. The application
identifier is a combination of the publisher identifier (gathered from the certificate
used to publish the .air file) and the value of the id element. That means that, strictly
speaking, the value of the id element needs to be unique only within the scope of all
applications for the publisher. Although it’s not absolutely necessary, we find it conve-
nient to create a globally unique id by using the existing convention of reverse
domain names. The example used in the earlier simple descriptor example is
com.manning.books.air.Example. This uses com.manning, which is the reverse of
manning.com, to ensure global uniqueness. The id value must be between 1 and 212
characters, and only alphanumeric characters plus dots and hyphens are permitted.

1.5.3 The version element

The version element is a way you can specify the version number of your application.
AIR won’t interpret the version value in any way, but you can use the value to program-
matically test that the user has the latest version of your application. Because AIR
doesn’t try to interpret the version value in a particular way, you can use any string
value. Versions are typically numeric, such as 1.0 or 2.5.1, or they might include alpha-
betical characters denoting revisions, such as 4.0a.

1.5.4 The filename element

The filename element is how you specify the name of the .air file. The filename value
is also used for the application name (in the installer) if no name element is specified.

http://ns.adobe.com/air/

12 CHAPTER 1 Introducing Adobe AIR
A filename value must include only valid filename characters, and it shouldn’t
include a file extension. Furthermore, a filename value may not end with a dot.

1.5.5 The initialWindow element

The initialWindow element provides information about the actual content (either
an .swf or .html file) that should be used to build the application. The initialWindow
element is a container for additional elements. The only required child element is the
content element, which specifies the .swf (or .html) file to use. The following illus-
trates a basic initialWindow element:

<initialWindow>
 <content>ExampleMain.swf</content>
</initialWindow>

Additionally, the initialWindow element allows for the following optional elements:

■ systemChrome—This value indicates whether the window containing the appli-
cation should use the chrome (frame and title bar) provided by the operating
system. If you set this to standard, the standard operating system chrome is
applied. If you set the attribute to none, the system chrome is not applied. For
Flex-based AIR applications, the Flex components apply a custom chrome when
the systemChrome attribute is set to none.

■ transparent—This Boolean value indicates whether the application window
should support alpha blending with the rest of the desktop (meaning you can
see through the application). If you set this to true, you can create alpha
effects, but be aware that setting transparent to true requires more system
resources and can cause the application to render more slowly. Additionally,
you must set systemChrome to none if you want to set transparent to true.

■ visible—This Boolean value indicates whether or not the application window
should be visible initially. Typically you set this attribute to false only when you
want to hide the window until you can programmatically position and resize it
from within the application code itself. You can then use code within the appli-
cation to toggle the visibility of the application window.

■ height—The height of the application window in pixels.
■ width—The width of the application window in pixels.
■ minimizable, maximizable, resizable—These elements allow you to specify

Boolean values indicating whether or not the application is minimizable, maxi-
mizable, or resizable when running. The default values are all true.

■ x, y—The x and y coordinates of the initial placement of the application.
■ minSize, maxSize—The minimum and maximum sizes of the window when

resized.

The following is an example of an initialWindow element with most of these values
set:

13Introducing AIR application descriptors
<initialWindow>
 <content>ExampleMain.swf</content>
 <systemChrome>none</systemChrome>
 <transparent>true</transparent>
 <height>500</height>
 <width>500</width>
 <minimizable>false</minimizable>
 <maximizable>false</maximizable>
 <resizable>false</resizable>
 <x>0</x>
 <y>0</y>
</initialWindow>

As you saw earlier in this section, the only required value for initialWindow is the
content value. If you omit the others, the default values are used.

1.5.6 The name element

The name element is a sibling of initialWindow, meaning it should be nested as a
child of the application tag. The name value is used to determine the default installa-
tion directory. The name value is also displayed in the title bar when the application is
running. Additionally, the name appears on the first screen of the installer, as seen in
figure 1.1. If no name value is specified, the value of filename is used instead.

1.5.7 The title and description elements

The title and description elements are all siblings of initialWindow, meaning they
should be nested as children of the application tag. Each of these elements is
optional, and these elements control what values are displayed in the installer.

 The title element determines what appears in the headers in the installer, as
shown in figures 1.1 and 1.2. The description is shown on the second screen of the
installer, as shown in figure 1.2.

Figure 1.2 The second
screen of the installer for an
AIR application, allowing
the user to specify
installation settings

14 CHAPTER 1 Introducing Adobe AIR
The title and description are only used during the installation, and they never appear
while the application itself is running.

1.5.8 The installFolder element

The installFolder element is an optional element that determines the name of the
subdirectory used as the default install directory. The user always has the option to
change the install directory during installation of the AIR application. However, using
the installFolder element, you can specify a subdirectory that should appear as part
of the default value as seen in figure 1.2.

NOTE You cannot change the main directory of the default installation direc-
tory used by AIR applications.

On Windows, that directory is always the Program Files directory of the primary disk;
on OS X, that directory is always /Applications. However, using the installFolder
element, you can change the subdirectory. For example, if you use an installFolder
value of ExampleInc/ExampleApplication, on a Windows machine the application
will be installed in Program Files\ExampleInc\ExampleApplication, and on an OS X
machine the application will be installed to /Applications/ExampleInc/ExampleAp-
plication.app.

 The installFolder element should be a child of the application tag. It’s an
optional element. If you omit the element, the application is installed in a subdirec-
tory based on the name or filename element value.

1.5.9 The programMenuFolder element

The programMenuFolder element is used only by Windows and ignored by other oper-
ating systems. This element allows you to specify a folder name from which the short-
cut should be accessible within the All Programs menu in the Start menu.

1.5.10 The icon element

By default, AIR applications use the standard AIR icons for use on the desktop, in the
Start menu, on the task bar, and so forth. However, you can customize the icons by
using the icon element in the application descriptor XML file. The icon element
should have four child elements called image16x16, image32x32, image48x48, and
image128x128. Each of these child elements should have values of paths to image files.
The images specified must be in .png format, and are compiled into the AIR applica-
tion. The following is an example of a value icon element:

<icon>
 <image16x16>icon16.png</image16x16>
 <image32x32>icon32.png</image32x32>
 <image48x48>icon48.png</image48x48>
 <image128x128>icon128.png</image128x128>
</icon>

Remember to save .png files with transparency if you’re using nonrectangular shapes.

15Building AIR applications using Flex Builder
1.5.11 The customUpdateUI element

If present in the descriptor file, customUpdateUI configures the application to be
capable of handling updating itself programmatically. (See chapter 8 for more infor-
mation on how to do this.) The value should be true if you want the application to
programmatically update itself. Otherwise, if false or omitted, the standard AIR
update dialogs are used.

1.5.12 The fileTypes element

The fileTypes element is an optional element that allows you to register file types
with the application. When you register a file type with an application, double-clicking
on a file of that type will automatically launch the AIR application if it isn’t yet run-
ning. An event is then sent to the running AIR application, providing information
about the file that was just double-clicked, and the AIR application can determine how
to handle the event. You can learn more about handling this event in chapter 3.

 If you use a fileTypes element, it should contain one or more fileType elements
nested within it. Each fileType element should contain name and extension ele-
ments. Optionally, a fileType element can also contain description and content-
Type elements. The contentType value can be a MIME type. (You can read more about
MIME types at en.wikipedia.org/wiki/MIME.) The following is an example of a file-
Types element that registers just one file type:

<fileTypes>
 <fileType>
 <name>com.manning.ExampleApplicationSavedSettings</name>
 <extension>exp</extension>
 <description>A saved settings file for Example Application

 ➥</description>
 <contentType>text/xml</contentType>
 </fileType>
</fileTypes>

You’ll notice that the name element uses reverse domain names in this example in
order to ensure global uniqueness for this arbitrary name. You’ll also notice that the
extension value doesn’t include the preceding dot.

1.6 Building AIR applications using Flex Builder
Flex Builder 3 has built-in AIR application development features, and it includes all
necessary AIR tools. If you intend to build Flex-based AIR applications, Flex Builder 3
is an excellent choice.

 In the next few sections, you’ll learn the basics of working with Flex Builder 3 to
create AIR applications. Specifically, you’ll learn about configuring a new AIR project,
creating the MXML and other file(s) for the project, testing/debugging the project,
and creating an installer for the application.

16 CHAPTER 1 Introducing Adobe AIR
1.6.1 Configuring a new AIR project

When you want to start a new AIR application using Flex Builder 3, the first thing you
should do is create an AIR project. You can create an AIR project by selecting File >
New > Flex Project from the Flex Builder 3 menus. Doing so will open the New Flex
Project dialog, as shown in figure 1.3.

The wizard is the same you’d use to create a new Flex project in Flex Builder 3, and
you can consult your Flex Builder reference if you’re uncertain about any of the
details of those steps. The only thing you’ll do dif-
ferently is select Desktop application as the applica-
tion type from the first screen of the wizard. In
figure 1.3, this option is selected.

 Once you’ve created the project, the Flex
Builder automatically creates two files in the src
directory: a main MXML file and a default applica-
tion descriptor XML file. Figure 1.4 shows the Navi-
gator pane from Flex Builder listing these files for a
new project.

Figure 1.3 The first step
of the New Adobe AIR
Project dialog in Flex
Builder 3 asks for a
project name and an
application type. Set the
application type to
desktop application for
AIR applications.

Figure 1.4 The Navigator pane
listing the files for a new AIR project
lists the source files for the AIR
application as well as the descriptor
XML file.

17Building AIR applications using Flex Builder
Of course, you can edit the descriptor file in the way that you learned earlier in this
chapter. You can also edit the main MXML file and add additional files as described in
the next section.

1.6.2 Creating AIR project files

Once you’ve created an AIR Project in Flex Builder, you’ll undoubtedly want to edit
the main MXML file, and you’ll likely want to add additional MXML, ActionScript, CSS,
and other types of files. For the most part, you can use the same file types, MXML and
ActionScript code, CSS, and structure you’d use for a standard Flex application. The
primary difference between an AIR application and a Flex application is that the root
tag for an AIR application is WindowedApplication rather than Application. The fol-
lowing is the default code placed in the main MXML file when Flex Builder creates a
new AIR project:

<?xml version="1.0" encoding="utf-8"?>
<mx:WindowedApplication xmlns:mx="http://www.adobe.com/2006/mxml"

 ➥layout="absolute">

</mx:WindowedApplication>

The WindowedApplication component is a subclass of the Application component,
meaning that all the functionality of a standard Flex application is included in an AIR
application. However, WindowedApplication instances have additional functionality
for AIR-specific behaviors. For example, WindowedApplication has a title property
you can use to change the title shown in the title bar and taskbar for the application.
You can learn more about using WindowedApplication in chapter 2.

1.6.3 Testing the AIR application

As you’re building an AIR application, you’ll undoubtedly
want to test along the way. As with any other type of appli-
cation, it’s important to be able to see the progress incre-
mentally as you build an AIR application. Flex Builder 3
makes it easy to test your application along the way. You
can do this by way of the run, debug, or profile options in Flex Builder. You can access
these options from the Run menu or by clicking on the corresponding buttons in the
Flex Builder toolbar, as shown in figure 1.5.

 The run option allows you to test the AIR application in the standard fashion with-
out any additional information, as is provided by the debug and profile options. When
you select the debug option, Flex Builder launches your AIR application in debug
mode, which outputs trace() statements to the console and allows you to step
through the code using breakpoints. The profile option launches the application in a
profile mode that allows you to see memory usage details in real time as the applica-
tion runs.

 When you test an AIR application using the run, debug, or profile options, you
don’t need to digitally sign the application. That’s only necessary when you publish
the .air file.

Figure 1.5 The Flex Builder
toolbar has options to run,
debug, and profile an AIR
application.

http://www.adobe.com/2006/mxml

18 CHAPTER 1 Introducing Adobe AIR
1.6.4 Creating an installer

When you’re ready to distribute your AIR application, you’ll need to create an .air file
to use as an installer. As you’ll recall from the discussion earlier in this chapter, an .air
file packages up all the necessary files for your AIR application and allows a user to
double-click on the one file in order to install the application.

 Creating an .air file in Flex Builder 3 is simple. All you need to do is the following:

1 Select the File > Export > Release Build or Project > Export Release Build
option from the Flex Builder menus. This will open the Export Release Build
dialog, as shown in figure 1.6. There are two steps to the wizard: selecting the
project, application, and .air file to export; and digitally signing the application.

2 Fill out the form, selecting the project and application you want to export and
then specifying an .air file to save, as shown in the figure. Once you’ve com-
pleted this first step, click Next.

3 Digitally sign the application, as shown in figure 1.7. This is done by applying a
certificate. (You read about certificates in the application authenticity section,
earlier in this chapter.) If you have a certificate that you obtained from a certifi-
cation authority or you have a preexisting self-signed certificate, you can simply
browse to select that certificate. In that case, you can jump ahead to step 5. Oth-
erwise, create a new self-signed certificate by clicking the Create button and
continue to step 4.

Figure 1.6 The first screen of the Export Release Build dialog prompts you to
select the type of export.

19Building AIR applications using Flex Builder
4 Click the Create button to see the Create Self-Signed Digital Certificate dialog,
as shown in figure 1.8. Fill out the form and click OK. If you’ve filled out valid
information, you’ll get a message telling you the certificate was created success-
fully, and then you’ll be returned to the Export Release Build dialog.

5 Browse to the keystore for the certificate you’d like to apply. (If you just created
a self-signed certificate, you should select the .pfx file that was created in the
previous step.) Once you’ve selected a keystore, whether a preexisting one or a

Figure 1.7 The second screen of the Export Release Build dialog asks you to
digitally sign the application.

Figure 1.8 Creating a
self-signed certificate

20 CHAPTER 1 Introducing Adobe AIR
new one, specify the password for that certificate in the Password field of the
Export Release Build dialog.

6 Click the Finish button, and Flex Builder will create the .air file. That is all
that’s necessary to create the distributable installer for an AIR application using
Flex Builder 3.

We’ve completed our discussion of building AIR applications using Flex Builder 3.
Next we’ll look at how to do the same using Flash CS3.

1.7 Building AIR applications using Flash
If you’re using Flash to build AIR applications, you’ll need Flash CS3 (earlier editions
cannot output AIR files) and you’ll need the AIR update, available for free from the
Adobe web site at www.adobe.com/go/air. For the rest of this section (and the rest of
the book for that matter), we’ll assume that you’ve already installed the free update.

 In the next few sections, we look at the details of how to start new AIR projects in
Flash, test them, and then create installers.

1.7.1 Configuring a new AIR project

In order to create a new AIR project using Flash, you must use the Flash welcome
screen. If you’ve disabled the display of the welcome screen, you need to select Edit >
Preferences from the Flash CS3 menus, and in the General category you need to
select Welcome Screen from the On launch menu option.

 From the welcome screen, you’ll see an option called
Flash File (Adobe AIR) under the Create New column, as
shown in figure 1.9. (If you don’t see that option,
chances are you either haven’t yet installed the AIR
update as described in the previous section, or the
update didn’t install correctly.) Click on the Flash File
(Adobe AIR) option in the Create New column to start a
new AIR project. It’s just that simple.

 In order to test the application, Flash and AIR need
to locate the descriptor file, so it’s important that you
save the .fla file before you try to test it. Until you save
the .fla file, Flash won’t be able to automatically create
the accompanying descriptor file. Once you’ve saved the
file, a descriptor XML file is saved in the same directory.
In section 1.7.4, you’ll see how to modify that descriptor
file. However, the default values in the file will be
enough to allow you to test the application.

Figure 1.9 Select the Flash
File (Adobe AIR) option from
the welcome screen to start a
new AIR project.

http://www.adobe.com/go/air

21Building AIR applications using Flash
1.7.2 Creating AIR project files

Flash-based AIR projects are similar to standard Flash projects intended for the Web in
terms of necessary project files. You don’t have to do anything differently in terms of
the types of files you create or where you create them. You can still add assets to the
library, work with timelines, use the drawing tools, and write ActionScript code in the
same way you would for any Flash project. It’s worth noting that AIR requires Action-
Script 3 for any ActionScript that you might write.

NOTE AIR applications are capable of playing back Flash content that uses
ActionScript 1.0 and ActionScript 2.0 if you load that content into the
AIR application at runtime. However, if you want to create a new AIR
application, you must use ActionScript 3 for the ActionScript contained
within the main .swf file of that application.

1.7.3 Testing the AIR application

Testing an AIR application is also exactly the same as testing a standard Flash applica-
tion. You can simply select Control > Test Movie or use the keyboard shortcut that
you’re used to. The only difference is that an AIR application will run in an AIR win-
dow rather than in the standard Flash player.

 If you’d like to debug an AIR application, you’ll find that too is exactly the same
process you’d use to debug a standard Flash application. You can simply select Debug
> Debug Movie or use the keyboard shortcut, and you can debug the AIR application
just the same as a regular Flash application.

1.7.4 Creating an installer

Flash has a few commands that allow you to create the .air file for your application
without having to run anything from a command line or edit anything by hand. In the
Commands menu are two options for AIR: AIR—Application & Installer Settings and
AIR—Create AIR File.

 The AIR—Application & Installer Settings command allows you to modify the
descriptor file from a form rather than having to edit the XML by hand. Figure 1.10
shows what the form looks like by default for a project called Example.fla. You can see
that the file name, name, and ID are all based on the name of the .fla file. Further-
more, the default ID uses com.adobe.example to precede the name based on the .fla
file name. The version defaults to 1.0. You can modify any and all of the elements of
the form, and those changes will be reflected in the descriptor file.

 The form requires that you specify a digital signature. As you read in section 1.3.2,
all AIR applications must have a digital signature. When building an AIR application
using Flash, you specify the certificate using this option in the form. Complete the fol-
lowing steps to apply a certificate:

22 CHAPTER 1 Introducing Adobe AIR
1 Click the Change button to open the Digital Signature dialog, as shown in fig-
ure 1.11.

2 Select the Sign the AIR file with a digital certificate option, then select a certifi-
cate to use. If you’re using a certificate from a certification authority or an exist-
ing self-signed certificate you already created, you can immediately browse to
find that certificate file. In that case, you can skip ahead to step 6. Otherwise, if
you need to create a new self-signed certificate, continue to step 3.

3 Click the Create button to open the Create Self-Signed Digital Certificate dia-
log, as shown in figure 1.12.

Figure 1.10 Editing the Application & Installer Settings for an AIR
application in Flash

23Building AIR applications using Flash
4 Fill in all the fields in the Digital Signature dialog, including the password,
which you need to remember because you’ll use it to apply the certificate to
your AIR application.

5 Save the certificate somewhere on your system by clicking OK. This returns you
to the previous dialog.

Figure 1.11 Use the Digital Signature dialog to specify the certificate for the AIR application.

Figure 1.12 Use the Create Self-Signed Digital Certificate dialog to create a
new certificate for your AIR application.

24 CHAPTER 1 Introducing Adobe AIR
6 Browse to find and select the keystore for the certificate that you’d like to apply.
7 Specify the password for the certificate, once you’ve selected a certificate to use.

Click OK in the Digital Signature dialog and you'll be returned to the AIR—
Application & Installer Settings dialog.

8 Create an .air file from this dialog by clicking the Publish AIR File button. If you
aren’t ready to publish the .air file yet, simply click OK.

You can return to the AIR—Application & Installer Settings dialog to publish the .air
file at any time. Or, having already applied the certificate, you can now simply select
the Commands > AIR—Create AIR File menu option in Flash.

 We’ve now completed our discussion of building AIR applications using Flash CS3.
We’ll next look at how to do the same using the Flex SDK.

1.8 Building AIR applications using the Flex SDK
If you build Flex applications using the Flex SDK, you can use the Flex 3 SDK to create
AIR applications as well. The Flex 3 SDK is free, yet isn’t limited in terms of the fea-
tures you can build into your AIR applications. You can build the same AIR applica-
tions using the Flex 3 SDK as you could using Flex Builder 3. The differences are that
the Flex SDK doesn’t automate tasks (such as creating main application MXML files
and default application descriptor XML files), and the Flex SDK doesn’t include the
same graphical user interface as Flex Builder. With that said, the next few sections
describe how to create AIR applications using the Flex SDK.

1.8.1 Configuring a new AIR project

Because the Flex SDK doesn’t automate anything, all of the responsibility for creating
the directory structure and AIR project files falls to you. Typically you’ll want to create
a directory for your new AIR project. You should then create two subdirectories, one
for the source files and one for the output (the .swf files and the .air file).

1.8.2 Creating AIR project files

Again, because the Flex SDK doesn’t automatically create project files, that responsi-
bility is yours. At a minimum, you always need to have at least one MXML file with Win-
dowedApplication as the root tag and one application descriptor XML file. See
section 1.6 for more information regarding WindowedApplication. You can also learn
more about WindowedApplication in chapter 2.

1.8.3 Testing the AIR application

Testing AIR applications using the Flex SDK requires two steps. First you must compile
the application. Then you can run the application using the AIR debug launcher.

 You can compile an AIR application using the mxmlc compiler, much as you’d com-
pile a standard Flex application. The difference is that you must add a compiler
option when calling mxmlc in order to use the AIR-specific configuration file included

25Building AIR applications using the Flex SDK
in the SDK. The compiler option is +configname=air. Here’s an example of the com-
mand that compiles Main.mxml as an AIR application:

mxmlc +configname=air Main.mxml

To simplify things, the Flex SDK also includes amxmlc, which merely calls mxmlc with
the +configname=air option. Therefore, you can omit that compiler option if you call
amxmlc instead of mxmlc:

amxmlc Main.mxml

When you compile the application, you have an .swf file. You then need to launch that
.swf using the AIR debug launcher, an executable called adl. The adl executable is in
the same directory as the compilers, meaning that if the compilers are in your system
path then so too is adl. When you want to launch the application, you merely specify
the descriptor file that you want to test as an argument to adl:

adl Main-descriptor.xml

Running the preceding command will launch the application described by
Main.descriptor.xml.

1.8.4 Creating an installer

In order to create an AIR installer (an .air file) using the Flex SDK, you need to use the
AIR packaging tool, an executable called adt. You’ll find adt in the same directory as
the Flex compilers and the AIR debug launcher.
CREATING A CERTIFICATE

The first thing you need to do is make sure you have a certificate for your AIR applica-
tion. If you have a certificate from a certification authority or if you’ve already created
a self-signed certificate, you’re done with that step. However, if you need to create a
self-signed certificate, you must use adt to accomplish that. Use the following syntax
to create a self-signed certificate:

adt –certificate –cn name key_type pfx_file password

Substitute the name, key_type, pfx_file, and password for values you want to use in
the certificate. The name is the common name of the certificate, and it can be an arbi-
trary string that you choose. The key_type value should be either 1024-RSA or 2048-
RSA. The pfx_file value should be the path to which you want to save the certificate
(which should use a .pfx file extension). The password is a value that you’ll need to
remember when you apply the certificate to an AIR application. The following exam-
ple creates a new certificate:

adt –certificate –cn ExampleCertificate 1024-RSA certificate.pfx 2u4fs8

PACKAGING THE AIR APPLICATION

Once you have a certificate, you can create an AIR installer using the following syntax:

adt –package SIGNING_OPTIONS air_file descriptor FILES_TO_INCLUDE

26 CHAPTER 1 Introducing Adobe AIR
In this syntax, the air_file and descriptor should be replaced by the actual values you
want to use. The air_file value should be the path to which you want to save the .air
file. The descriptor should be the path to the descriptor .xml file for the application.
The SIGNING_OPTIONS and FILES_TO_INCLUDE are complex groups of arguments that
we'll discuss in more detail next.

 The SIGNING_OPTIONS group of arguments varies significantly depending on how
you digitally sign the application. There are a variety of signing option arguments that
are all described in detail in Adobe AIR documentation. Rather than repeat that here,
we’ll instead talk about the most common signing scenarios and how you would go
about achieving each using adt.

■ Signing with a PKCS#12 certificate (includes using a .pfx file such as you might
generate when creating a self-signed certificate). If you have a PKCS#12 certifi-
cate, you need only specify two arguments: storetype and keystore. The
storetype argument value should be pkcs12, and the keystore value should
be the path to the keystore file that holds the certificate (for example, the .pfx
file). The following is an example of a call to adt that uses a self-signed certifi-
cate stored in a .pfx file:

 adt –package –storetype pkcs12 –keystore selfsigned.pfx installer.air
 ➥descriptor.xml Main.swf

■ Signing with a Java keystore. A Java keystore is of type JKS. The simplest way to
work with a Java keystore is if the keystore contains only one certificate and you
want to use the default Java keystore. In such a case, you need only to specify
the storetype argument using the value jks, as in the following example:

 adt –package –storetype jks installer.air descriptor.xml Main.swf

If the keystore has more than one certificate, you can specify the alias of the certificate
to use with the alias argument, as shown in the following example:

adt –package –alias sampleCertificateAlias –storetype jks installer.air

➥descriptor.xml Main.swf

And if you want to use a nondefault keystore, you can do that simply by specifying a
value for the keystore argument, as in the following example:

adt –package –storetype jks –keystore codeSigningCertificates.keystore

➥installer.air descriptor.xml Main.swf

When using adt, you can also use other keystore types, including PKCS#11 (hard-
ware-based keystore), KeychainStore (OS X Keychain store), and Windows-MY and
Windows-ROOT.

 Certificates issued by certification authorities expire after a certain amount of time
(normally one year). When you create an AIR application using a certificate, normally
that application installer will expire when the certificate expires. (Note that installed
instances of the application will be unaffected, but the installer itself will no longer
work after the certificate expires.) However, if you can verify that the certificate is valid
at the time you sign the application (when you create the .air file), the AIR application

27Building AIR applications using the Flex SDK
installer will not expire. In order to verify that the certificate is valid, you must point
adt to a time stamp server (must be RFC3161-compliant) using the tsa argument. The
following is an example that time stamps the application using http://ns.szik-
szi.hu:8080/tsa as the time stamp server:

adt –package –storetype pkcs12 –keystore certificates.pfx –tsa

➥http://ns.szikszi.hu:8080/tsa installer.air descriptor.xml Main.swf

The FILES_TO_INCLUDE group allows you to specify all the files to include in the .air
file. Remember that the .air format is an archive format. Any files you specify in the
FILES_TO_INCLUDE group will be packaged in the archive, and when the application is
installed, those files will be extracted.

 You must always include the initial window content file (.swf) in your installer. The
following is an example that creates an .air file including just the initial window con-
tent (which we assume in this example is Main.swf):

adt –package –storetype pkcs12 –keystore selfsigned.pfx installer.air

➥descriptor.xml Main.swf

However, you may want to include additional files in your installer—images, audio
files, video files, text files, and so on. You can simply list these files along with the ini-
tial window content:

adt –package –storetype pkcs12 –keystore selfsigned.pfx installer.air

➥descriptor.xml Main.swf image.jpg video.flv data.txt

You can also specify entire directories. The following example simply includes all the
files in the current directory:

adt –package –storetype pkcs12 –keystore selfsigned.pfx installer.air

➥descriptor.xml

You can also use the -C flag to change directories, and everything that follows will be
assumed to be relative to that directory. For example, the following includes Main.swf
from the current directory and several images from the assets/images subdirectory:

adt –package –storetype pkcs12 –keystore selfsigned.pfx installer.air

➥descriptor.xml Main.swf assets/images/image1.jpg

➥assets/images/image2.jpg assets/images/image3.jpg

➥assets/images/image4.jpg

When you package the application this way, the directory structure is preserved
exactly as you’ve specified in the list of files. That means that, once the application is
installed on a system, the image files will all exist in an assets/images directory relative
to Main.swf. If that’s how your application expects the files to be organized, there’s no
problem. However, if you want to add files from disparate locations, but you want
them organized differently in the .air file (and subsequently when the application is
installed), you’ll want to use the –C flag. Consider the following command:

adt –package –storetype pkcs12 –keystore selfsigned.pfx installer.air

➥descriptor.xml Main.swf -C assets/images image1.jpg image2.jpg

➥image3.jpg image4.jpg

http://ns.szik-szi.hu:8080/tsa
http://ns.szik-szi.hu:8080/tsa
http://ns.szik-szi.hu:8080/tsa
http://ns.szikszi.hu:8080/tsa

28 CHAPTER 1 Introducing Adobe AIR
In this example, the images are added to the archive in the same directory as
Main.swf. That means that, if Main.swf looks for image files in the same directory as
itself, this way of adding files to the archive is correct.

NOTE There are additional options when running adt to create an installer.
We’ve outlined the necessary steps for creating an .air file. Consult the
official documentation for more information.

Once you run adt, you’ll have an .air file you can then distribute.
 We’ve now completed the discussion of building AIR applications using the Flex

SDK. Next we’ll look at a few quick-start applications. These quick-start applications will
allow you to use what you’ve learned so far to build simple, working AIR applications.

1.9 Quick-start AIR application for Flex
In this section, you’ll build a quick-start application using Flex Builder. This applica-
tion is simple, and not very practical. The point in this exercise is not to build a really
useful application, but to walk through the steps of building an AIR application using
Flex. This application simply uses a tree component to list the contents of a user’s file
system, and allows the user to select image files and display them.

 The first step is to create a new Flex project, selecting Desktop application as the
Application type. Give this project a name of QuickStartAIRApplication. When you
create this project, Flex Builder automatically creates QuickStartAIRApplica-
tion.mxml and the descriptor file.

 Add the code shown in listing 1.1 to QuickStartAIRApplication.mxml.

<?xml version="1.0" encoding="utf-8"?>
<mx:WindowedApplication xmlns:mx="http://www.adobe.com/2006/mxml">

 <mx:Script>
 <![CDATA[

 private function changeHandler(event:Event):void {
 var ext:String = event.target.selectedItem.extension;

 if(ext == "jpg" || ext == "png") {
 image.source = event.target.selectedItem.nativePath;
 }
 }

]]>
 </mx:Script>
 <mx:HBox width="100%" height="100%">
 <mx:FileSystemTree width="50%" height="100%"
 change="changeHandler(event);"/>
 <mx:Image id="image" width="50%" height="100%"
 scaleContent="true" />
 </mx:HBox>
</mx:WindowedApplication>

Listing 1.1 The MXML document for the Flex quick-start

B
Root element is

WindowedApplication

CGet file
extension

Is jpg or png

D Display file
system contents

http://www.adobe.com/2006/mxml

29Quick-start AIR application for Flash
The overall structure of this code should be familiar to you if you have worked with
Flex before. However, there are a few items that are probably new to you since they are
AIR-specific. Don’t worry. We’ll explain many of these items in more detail throughout
this book. For now, we’ll just briefly explain each of these unfamiliar pieces. The first
thing you’ll note is that the root tag is WindowedApplication B instead of Applica-
tion. This is a requirement for Flex-based AIR applications. You’ll notice that we are
using an AIR-specific component called FileSystemTree D that displays the contents
of the local file system. When the user clicks on an item in that component, the
selectedItem of that component is a File object with an extension property C that
will return the file extension of the selected file.

 That’s all there is to the quick-start application for Flex. Go ahead and run the
application. Figure 1.13 shows the result.

As you can see, Flex Builder makes building AIR applications simple. Although this
example probably has a few things that are new to you, much of it is likely to be famil-
iar. You already know MXML and most of the components used in this example. Those
components that are new to you follow the same rules as other components you
already know.

 Next we’ll build a different quick-start application using Flash CS3.

1.10 Quick-start AIR application for Flash
In this section, you’ll build a quick-start application using Flash. This application is
necessarily simple and fairly impractical. However, the point is not to make a really
useful AIR application, but to walk through the steps and build a real, working AIR
application using Flash. The application uses a List component to display a file system
directory listing from the user’s desktop. Double-clicking on directories allows the
user to navigate through the file system.

Figure 1.13 The quick-start
application allows you to browse
your local disk for image files.

30 CHAPTER 1 Introducing Adobe AIR
 The first thing you want to do is create a new AIR project in Flash by selecting Flash
File (Adobe AIR) from the Create New column of the welcome screen. This opens a
new Flash file configured for AIR. You should save this file right away as QuickStart-
AIRApplication.fla.

 Now that you’ve saved the file, create a new directory structure of com/manning/
books/airinaction in the same directory to which you’ve just saved the Flash file. Then
create a new ActionScript file from Flash, and save the file in com/manning/books/
airinaction using the filename QuickStartAIRApplication.as.

 In the Flash file, open the components panel and the library panel. Then drag the
List component from the components panel into the library panel. This adds the List
component to the project, and we can now create instances of it using ActionScript
code. Go ahead and save the Flash file again.

 Return to the ActionScript file, and add the code in listing 1.2. We’ll use this class
file as the document class for the Flash application.

package com.manning.books.airinaction {

 import flash.display.MovieClip;
 import flash.events.MouseEvent;
 import fl.controls.List;
 import fl.data.DataProvider;
 import flash.filesystem.File;

 public class QuickStartAIRApplication extends MovieClip {

 private var _list:List;

 public function QuickStartAIRApplication() {

 _list = new List();
 addChild(_list);

 _list.addEventListener(MouseEvent.DOUBLE_CLICK, clickHandler);

 _list.width = 550;
 _list.height = 400;

 _list.labelField = "name";

 _list.dataProvider = new

➥DataProvider(File.desktopDirectory.getDirectoryListing());
 }

 private function clickHandler(event:MouseEvent):void {
 if(_list.selectedItem.isDirectory) {
 _list.dataProvider = new

➥DataProvider(_list.selectedItem.getDirectoryListing());

 }
 }

 }

}

Listing 1.2 The code for the document class for the Flash quick-start

B Import the
File class

Display file/
directory name

C

Display
user’s
desktop

D

Test if
selected is
directory

E

Update list F

31Quick-start AIR application for Flash
Some of this code may be new to you since it is AIR-specific. We’ll talk about all of the
new code in more detail throughout the book. For now we’ll quickly mention what
some of the unfamiliar code is and what it does. First you might notice that we import
the File class B. This class is used to represent files and directories on the local file
system, and you’ll learn about this in chapter 2. Next you can see that we’re setting
the list to display the value of the name property of each element in its data provider

C. The data provider we’ll use is a collection of File objects, and File objects have
name properties. The File.desktopDirectory property is a reference to the user’s
desktop directory, and calling getDirectoryListing() returns an array of the con-
tents of that directory. We then place that in a DataProvider instance D and assign
that to the list. The isDirectory property will tell us if a File object represents a
directory or not. We only want to change the directory listing if the user double-clicks
on a directory. Therefore we test for the value of isDirectory E. And only in that
case do we update the list’s data provider, this time calling getDirectoryListing()

F for the selected item.
 Save the ActionScript file and return to the Flash file. In the Flash file, set the doc-

ument class to com.manning.books.airinaction.QuickStartAIRApplication. Save
the Flash file, and test the application. You should see a listing of the desktop files and
directories. If you double-click on an item in the list, it’ll refresh with the contents of
the new directory if you’ve double-clicked on a directory. Figure 1.14 shows what the
application looks like.

 You've just written your first (albeit simple) AIR application using Flash. This is just
the starting point. Now that you’ve seen how easy it can be to create an AIR applica-
tion, you’ll build more complex, sophisticated, and useful applications throughout
the book.

Figure 1.14 The Flash quick-start application allows the user to navigate the
local file system.

32 CHAPTER 1 Introducing Adobe AIR
1.11 Summary
In this chapter, we started from the premise that you didn’t know anything about AIR,
and by the end of the chapter you built your first AIR application(s) using Flex and/or
Flash. You learned what AIR is, what toolsets to use, and how to get started. Specifi-
cally, you learned that you can use Flex Builder 3, Flex 3 SDK, or Flash CS3 with the
AIR extension to build Flash- or Flex-based AIR applications. Because AIR applications
run within a runtime environment other than Flash Player, they have access to a
greater scope of behavior than their web-based counterparts. AIR applications can
access the local file system; create, read, and write to local databases; and participate
in system-level drag-and-drop features among other behaviors that are above and
beyond what is available to a web-based Flash or Flex application.

 In the next chapter you’ll learn more about how to use and manage windows,
menus, and AIR applications. You’ll learn how to create new windows, and the different
types of windows you can create. You’ll also learn how to correctly work with windows
once they’ve been opened. Then you’ll learn about the different ways to work with
menus in AIR applications, from application and window menus to context menus.

Applications, windows,
and menus
In chapter 1, you learned a lot of important foundational information that should
provide context for understanding what AIR is and the general process for building
and deploying AIR applications. Now we’re ready to start looking at all the details of
building AIR applications. We’re going to start from the ground up. In this chapter,
we’ll cover the following:

■ Applications —The first thing we’ll look at is how to work with and under-
stand an AIR application programmatically. In the first part of this chapter,
you’ll learn everything you need to know about programmatically creating
AIR applications.

This chapter covers
■ Creating new windows
■ Managing open windows
■ Running application-level commands
■ Adding system-level menus to applications
33

34 CHAPTER 2 Applications, windows, and menus
■ Windows—Every AIR application, no matter how simple or complex, contains at
least one window, and many contain more than one. Windows are fundamental
but fairly sophisticated at the same time. AIR gives you a lot of control over win-
dows, including window style, shape, behavior, and more. All of these topics are
covered in this chapter.

■ Menus—AIR applications allow you to create a variety of different types of
menus, including system menus, application menus, context menus, and icon
menus. We’ll talk about all these types of menus in this chapter.

With what you learn in this chapter, you’ll have much of what you need for the build-
ing of all sorts of amazing AIR applications. In fact, in this chapter you’ll start work on
an application that uses the YouTube service to allow users to search YouTube videos
and play them back from their desktop. You’ll be able to accomplish all of that using
just the material contained in this chapter.

 We’ll get started by looking at the metaphor that AIR uses for how it organizes an
application into an application object and window objects. In the next section, you’ll
learn how to work an application object and window objects using both Flash and Flex.

2.1 Understanding applications and windows
This may seem a bit obvious, but it’s worth explicitly pointing out that AIR applications
have programmatic constructs for everything that’s represented visually or behavior-
ally in the application. That’s true not only of things that you may already be familiar
with from your Flex and Flash background (movie clips, buttons, UI controls) but also
of AIR-specific concepts such as the concept of an application or a window.

 There is just one application, and there are one or more windows per AIR applica-
tion. Therefore, it follows that every Flex- or Flash-based AIR application has just one
ActionScript object representing that application, providing access to application-
level information (application descriptor data, user idle timeout) and behavior (regis-
tering file types, exiting the application). Furthermore, every window in a Flex- or
Flash-based AIR application has an ActionScript object representing it. Those window
objects provide access to window-specific information (width, height, screen place-
ment) and behavior (minimize, restore).

 Every AIR application has at least one window, the window specified as the content
for the initial window in the application descriptor file. That window is what you see
when you run the application. However, you can open more than one window per
application. You can think of each window as a new thread of the application, much
like new instances of a web browser, or you can think of each window as a panel in
your application. Both are perfectly valid ways to think of and treat windows in an AIR
application. It depends on what you’re trying to accomplish. What’s true in any case
is that there’s just one application ActionScript object per AIR application, and that
object keeps track of all the windows in your application (see figure 2.1). We’ll look
at how to work with these objects and their relationships to one another throughout
this chapter.

35Understanding applications and windows
The ways in which you work with an application and its windows are related, yet
slightly different, depending on whether you’re using Flash or Flex to build your AIR
application. However, the core ActionScript principles used when building Flash-
based AIR applications are fundamental both for Flash-based and Flex-based AIR
application development. Therefore, if you use Flex to build AIR applications, you’ll
want to learn the underlying ActionScript principles as well as the Flex-specific con-
cepts. In the following sections, we’ll talk about these foundational concepts. If you
use only Flash to build AIR applications, you need only read section 2.1.2. If you use
Flex, read both that section and section 2.1.3.

2.1.1 ActionScript application and windows

When you’re working with the intrinsic AIR ActionScript API for applications and
windows, you need to understand two primary classes: flash.desktop.Native-
Application and flash.display.NativeWindow. If you’re building Flash-based AIR
applications, these are the only two application and window classes you’ll need to
work with.
CREATING AN APPLICATION

Every AIR application automatically has one instance of NativeApplication. You
can’t create more than one NativeApplication instance. In fact, you can’t create a
NativeApplication instance at all. The one instance is created for you when the
application starts, and is accessible as a static property of the NativeApplication class
as NativeApplication.nativeApplication. We’ll see lots of ways you can use this
NativeApplication instance later in the chapter.
CREATING WINDOWS

Every window in an AIR application is fundamentally a NativeWindow object. While
the initial window is automatically created when the application starts, it’s your
responsibility as the application developer to programmatically create any additional
windows your application requires. You can create new windows by constructing new
NativeWindow objects and then opening them.

 Before you can create a NativeWindow object, you first must create a flash.dis-
play.NativeWindowInitOptions object that the NativeWindow constructor uses to
determine a handful of initial parameters such as the type of window, the chrome the

window (main) window

window

window

application

Figure 2.1 Every AIR
application has one
application object and
one or more window
objects.

36 CHAPTER 2 Applications, windows, and menus
window should use, and so forth. Arguably the most important properties of a
NativeWindowInitOptions object are the type, systemChrome, and transparent
properties. These properties have dependencies on one another as well.

 The type property has three possible values defined by three constants of the
flash.display.NativeWindowType class: STANDARD, UTILITY, and LIGHTWEIGHT. The
default type is standard, which means that the window uses full system chrome and
shows up as a unique system window. (It shows up in the task bar for Windows or win-
dow menu for OS X.) Standard windows are most appropriate for opening things that
are conceptually new instances, such as a new photo for editing in a photo-editing
program. Utility windows have a thinner version of system chrome. Unlike standard
windows, utility windows don’t show up in the task bar or window menu. That makes
utility windows best suited for content that’s conceptually linked with the main win-
dow, such as tool palettes. Lightweight windows have no system chrome. Like utility
windows, they don’t show up in the task bar or window menu. Because lightweight
windows don’t have any system chrome, you must set the systemChrome property to
none as well.

 The systemChrome property determines the chrome that appears around the win-
dow. The possible values are defined by two constants of the flash.dis-

play.NativeWindowSystemChrome class: STANDARD and NONE. The standard chrome
uses the system chrome for the operating system. That means that AIR windows using
standard chrome will look just like other native applications running on the same
computer. Setting the systemChrome property to none will remove any chrome from
the window. (Note that the initial window is an exception to this rule, because it uses
AIR chrome if the system chrome is configured to none in the descriptor file.) That
means that windows initialized with systemChrome set to none won’t have built-in
mechanisms for maximizing, minimizing, restoring, closing, resizing, or moving. If
you want to enable those behaviors on such a window, it’s up to you to do that pro-
grammatically. (These topics are covered later in this chapter.)

 The transparent property is a Boolean property that indicates whether or not the
window can use alpha blending to allow transparency such that other windows can be
seen beneath it. The default value for this property is false. Setting it to true enables
alpha blending. Be aware that enabling transparency will use more system resources
than would be used with a nontransparent window. Also be aware that, if you set trans-
parent to true, you must also set the systemChrome to none. Unlike standard windows,
a transparent window allows you to create nonrectangular shapes and fading effects.

NOTE By default, windows have a background color. Setting transparent to
true will remove the background color, allowing for alpha blending. It
also allows you to create irregularly shaped windows. See the section
titled “Creating irregularly shaped windows” later in this chapter for
more details.

You can also use the minimizable, maximizable, and resizable properties of a
NativeWindowInitOptions object to specify whether or not the window will allow for

37Understanding applications and windows
minimizing, maximizing, and resizing of the window. The default value for all these
properties is true.

 Once you’ve created a NativeWindowInitOptions object, you can construct a
NativeWindow object by calling the constructor and passing the NativeWindowInit-
Options object to the constructor, as shown in listing 2.1.

package {

 import flash.display.MovieClip;
 import flash.display.NativeWindow;
 import flash.display.NativeWindowInitOptions;
 import flash.display.NativeWindowType;

 public class Example extends MovieClip {

 public function Example() {
 var options:NativeWindowInitOptions =

 ➥new NativeWindowInitOptions();
 options.type = NativeWindowType.UTILITY;

 var window:NativeWindow = new NativeWindow(options);

 window.width = 200;
 window.height = 200;

 }

 }

}

In this example, we first create the window options and set the type and chrome values
on that options object B. Next we create the window itself, passing it the options C.
We also set the initial width and height to 200-by-200 D. See the “Adding content to
windows” section for more information on how setting the width and height works.

 We’ve successfully created a window, set options on the window, and even set the
size of the window. However, the code up to this point won’t actually display the win-
dow. We’ll look at how to do that next.
OPENING WINDOWS

If you were to run the code in listing 2.1, you wouldn’t see a new window appear. The
reason is that, although you’ve constructed a new window, you haven’t yet told the
application to open it. You can open a window by calling the activate() method.
Adding one line of code (see bold text in listing 2.2) to the code from listing 2.1 will
launch a new 200-by-200 utility window.

package {

 import flash.display.MovieClip;
 import flash.display.NativeWindow;
 import flash.display.NativeWindowInitOptions;

Listing 2.1 Creating a NativeWindow object

Listing 2.2 Opening the new window

Create the
window options

B

Construct the
new window CSet the initial

width and height
D

38 CHAPTER 2 Applications, windows, and menus
 import flash.display.NativeWindowType;

 public class Example extends MovieClip {

 public function Example() {

 var options:NativeWindowInitOptions =

 ➥new NativeWindowInitOptions();
 options.type = NativeWindowType.UTILITY;

 var window:NativeWindow = new NativeWindow(options);
 window.width = 200;
 window.height = 200;

 window.activate();

 }

 }

}

The new window that’s created in this example is 200-by-200 pixels with a white back-
ground. But it doesn’t have any other content yet. Most windows have some sort of
content, and it’s your responsibility to add it, as you’ll see in the next section.
ADDING CONTENT TO WINDOWS

When you create a new window, it doesn't have any content other than a background
(and even the background is absent if you’ve created a transparent window). It’s your
responsibility to add content to the window using the window’s stage property.

 You may be surprised to learn that NativeWindow, despite being in the flash.dis-
play package, isn’t actually a display object. It doesn’t inherit from DisplayObject,
the base display type in ActionScript. Instead, windows manage display objects. A
NativeWindow object has a stage property of type flash.display.Stage. The stage is
a reference to the display object used as the container for the contents of the window.
Because a Stage object is a display object container, it allows you to add and remove
and manage content just as with any other display object container via the
addChild(), removeChild(), and related methods.

 Listing 2.3 uses the code from listing 2.2 as a starting point, and then adds a text
field to the window. The new code is shown in bold.

package {

 import flash.display.MovieClip;
 import flash.display.NativeWindow;
 import flash.display.NativeWindowInitOptions;
 import flash.display.NativeWindowType;
 import flash.text.TextField;
 import flash.text.TextFieldAutoSize;

 public class Example extends MovieClip {

 public function Example() {

Listing 2.3 Adding content to the window

39Understanding applications and windows
 var options:NativeWindowInitOptions =

 ➥new NativeWindowInitOptions();
 options.type = NativeWindowType.UTILITY;

 var window:NativeWindow = new NativeWindow(options);
 window.width = 200;
 window.height = 200;

 var textField:TextField = new TextField();
 textField.autoSize = TextFieldAutoSize.LEFT;
 textField.text = "New Window Content";

 window.stage.addChild(textField);

 window.activate();

 }

 }

}

We change two things in this example. First we add a
text field with the text New Window Content B. In this
example, we’re using a text field, but you could also
use any other type of display object. Then we add the
text field to the window via its stage C. We use the
addChild() method to add the text field to the stage,
which is the standard way to add content to a display
object container. Figure 2.2 shows what the result of
this code looks like (on Windows).

 You'll probably notice that the text appears differ-
ently than you would have expected. That's because
(perhaps unexpectedly) the stage of the new window is
set to scale by default. That means that when you set
the width and height of the window (as we have in this
example), the content scales accordingly based on a
default initial size for the window. In this case, the stage scaled larger considerably,
and that causes the text to be larger than you might have expected

 Using the scaleMode property of the stage, you can adjust that setting if appropri-
ate. In this particular example, it would be better if the content didn’t scale. As such,
we can set the scaleMode property to the StageScaleMode.NO_SCALE constant, and
it’ll no longer scale. As soon as we do that and test the application, it’s apparent that
the align property of the stage needs to be set as well. In this case, it’s best if the stage
is always aligned to the top left. Listing 2.4 shows these additions in bold.

package {

 import flash.display.MovieClip;
 import flash.display.NativeWindow;

Listing 2.4 Adjusting the scale and alignment of the contents of a new window

Create new
display object

B

Add content to
the windowC

Figure 2.2 The new window with
text scales its content, causing
the text to appear differently than
you might expect.

40 CHAPTER 2 Applications, windows, and menus
 import flash.display.NativeWindowInitOptions;
 import flash.display.NativeWindowType;
 import flash.text.TextField;
 import flash.text.TextFieldAutoSize;
 import flash.display.StageScaleMode;
 import flash.display.StageAlign;

 public class Example extends MovieClip {

 public function Example() {

 var options:NativeWindowInitOptions =

 ➥new NativeWindowInitOptions();
 options.type = NativeWindowType.UTILITY;

 var window:NativeWindow = new NativeWindow(options);
 window.width = 200;
 window.height = 200;

 var textField:TextField = new TextField();
 textField.autoSize = TextFieldAutoSize.LEFT;
 textField.text = "New Window Content";

 window.stage.scaleMode = StageScaleMode.NO_SCALE;
 window.stage.align = StageAlign.TOP_LEFT;

 window.stage.addChild(textField);

 window.activate();

 }

 }

}

 Figure 2.3 shows what this new window looks like.

NOTE If you test any of the preceding examples, you
may discover that utility windows don’t automat-
ically close when you close the main application
window. Even though the utility window isn’t
accessible from the task bar or window menu, it
remains open until you close it. As long as the
window is open, it may prevent you from testing
your application again. Make sure to close the
utility windows each time you close your main
application window. For more information
regarding how to manage utility windows, con-
sult section 2.2.3.

Now that you’ve had a chance to see how to create and
work with windows using ActionScript in a basic man-
ner, we can look at how to create ActionScript classes for windows.

Figure 2.3 By setting the
stage’s scaleMode and align
properties, the content appears
correctly in the new window.

41Understanding applications and windows
CREATING ACTIONSCRIPT CLASS–BASED WINDOWS

Thus far we’ve seen how to create new windows using the basic ActionScript concepts.
As you create more and more sophisticated windows, it’s generally advantageous to
encapsulate the window code into ActionScript classes. Each window class should
inherit from NativeWindow. The class can then contain all the code to add content,
manage scale and alignment issues, and so on. Listing 2.5 shows an example of a sim-
ple window class.

package {

 import flash.display.NativeWindow;
 import flash.display.NativeWindowType;
 import flash.display.NativeWindowInitOptions;

 public class ExampleWindow extends NativeWindow {

 public function ExampleWindow() {
 var options:NativeWindowInitOptions =

 ➥new NativeWindowInitOptions();

 options.type = NativeWindowType.UTILITY;

 super(options);

 width = 200;
 height = 200;

 }

 }

}

You can see that this window is responsible for setting its own chrome and type as well
as its width and height. Note that the first thing it does is create a NativeWindowInit-
Options object and then pass that in to the super constructor.

 You can create an instance of this sort of window in much the same way you would
any other NativeWindow instance: construct an instance and then call activate() to
open it. Listing 2.6 shows what that code looks like.

package {

 import flash.display.MovieClip;

 public class Example extends MovieClip {

 public function Example() {

 var window:ExampleWindow = new ExampleWindow();
 window.width = 200;
 window.height = 200;

Listing 2.5 Creating a basic window class

Listing 2.6 Creating and opening an instance of ExampleWindow

42 CHAPTER 2 Applications, windows, and menus
 window.activate();

 }

 }

}

We have just one more basic concept to discuss before moving on to new topics. So far
you’ve seen how to create rectangular windows. Next we’ll look at how to create irreg-
ularly shaped windows.
CREATING IRREGULARLY SHAPED WINDOWS

The ability to easily create irregularly shaped windows is a nice feature of AIR applica-
tions. Creating an irregularly shaped window is the same as creating a rectangular win-
dow except that you must turn off system chrome and set the window to be
transparent. Then you can add a nonrectangular background to the window using the
window’s stage property. Listing 2.7 shows an example of this by modifying the code
from listing 2.5.

package {

 import flash.display.NativeWindow;
 import flash.display.NativeWindowSystemChrome;
 import flash.display.NativeWindowType;
 import flash.display.NativeWindowInitOptions;
 import flash.display.Sprite;
 import flash.display.Stage;
 import flash.display.StageAlign;
 import flash.display.StageScaleMode;

 public class ExampleWindow extends NativeWindow {

 private var _background:Sprite;

 public function ExampleWindow() {
 var options:NativeWindowInitOptions =

 ➥new NativeWindowInitOptions();

 options.systemChrome = NativeWindowSystemChrome.NONE;
 options.type = NativeWindowType.LIGHTWEIGHT;

 options.transparent = true;

 super(options);

 _background = new Sprite();
 drawBackground(200, 200);
 stage.addChild(_background);

 width = 200;
 height = 200;

 stage.align = StageAlign.TOP_LEFT;
 stage.scaleMode = StageScaleMode.NO_SCALE;

Listing 2.7 Creating a nonrectangular window

Set systemChrome
to none

B

Make window
transparentC

Create
background

D

43Understanding applications and windows
 }

 private function drawBackground(newWidth:Number, newHeight:Number):

 ➥void {
 _background.graphics.clear();
 _background.graphics.lineStyle(0, 0, 0);
 _background.graphics.beginFill(0x0000FF, .5);
 _background.graphics.drawRoundRectComplex(0, 0, newWidth,
 newHeight, 20, 20, 20, 1);
 _background.graphics.beginFill(0xFFFFFF, .9);
 _background.graphics.drawRoundRectComplex(5, 5, newWidth - 10,
 newHeight – 10, 20, 20, 20, 1);
 _background.graphics.endFill();

 }

 }

}

There’s a lot of code in this example, but it’s not difficult to understand when we
break it down. The first thing we do is make sure we set the systemChrome property of
the options object to none B. This removes any chrome from the window, which
would otherwise force a rectangular border. Next we set the window to use transpar-
ent mode C. This is important because normally the window has a solid rectangular
background. To create a nonrectangular shape, we need to hide the background.
Then we create a background display object, draw a nonrectangular shape in it, and
add it to the stage D. In this example, we’re drawing a rounded-corner rectangle that
is a subtle variation on the standard, square-cornered rectangular background.

 Figure 2.4 shows what the result of this example looks like.
 If you create irregularly shaped windows, it’s your responsibility to add the neces-

sary user interface elements and code for the behaviors that are usually provided auto-
matically by the system chrome: closing, minimizing, maximizing, and moving. See
section 2.2 for more information on how to do this.

Figure 2.4 An irregularly shaped window
with transparency overlaps desktop icons
and the main application window.

44 CHAPTER 2 Applications, windows, and menus
2.1.2 Flex application and windows

When you create AIR applications using Flex, the workflow is a little different when it
comes to creating and managing windows. But the underlying essentials are the same
as those used by Flash-based AIR applications using NativeApplication and
NativeWindow. The difference is that, when using Flex, there are two Flex compo-
nents that simplify the process of working with an application or windows program-
matically. The WindowedApplication component is how you work with applications,
and the Window component is how you work with windows.
CREATING AN APPLICATION

All Flex-based AIR applications must be compiled from application MXML documents
that use WindowedApplication as the root element. That’s why, when you create a new
MXML application document in an AIR project in Flex Builder, you see the following
stub code:

<?xml version="1.0" encoding="utf-8"?>
<mx:WindowedApplication xmlns:mx="http://www.adobe.com/2006/mxml"
 layout="absolute">

</mx:WindowedApplication>

Because you can only have one MXML application document per Flex project, it fol-
lows that you can only have one WindowedApplication object per application. The
WindowedApplication component extends the Application component normally
used by web-based Flex applications. Therefore, the properties and methods of
Application are accessible to WindowedApplication as well. However, static proper-
ties aren’t inherited by subclasses. Therefore the Application.application property,
which references the main application object, isn’t inherited. If you want to reference
the one WindowedApplication instance (outside of the MXML document itself, within
which you can simply reference it using this), you must use Application.applica-
tion. The Application.application object is typed as Application rather than Win-
dowedApplication. Therefore you must cast the object if you intend to reference it as
a WindowedApplication:

var windowedApplication:WindowedApplication =

➥Application.application as WindowedApplication;

WindowedApplication instances have a bunch of properties and methods, many of
which we’ll look at in more detail later in this chapter. However, for the most part, the
principal property that you need to know about to access core underlying values and
behaviors is the nativeApplication property, which is a reference to the underlying
NativeApplication object.
CREATING WINDOWS

When creating Flex-based AIR applications, all windows should be based on the Win-
dow component. Although it’s possible to create windows directly using NativeWindow

http://www.adobe.com/2006/mxml

45Understanding applications and windows
(and although NativeWindow is still used behind the scenes), the Flex-specific Window
component integrates well with the rest of the Flex framework and simplifies aspects
of creating windows, as you'll see in the “Adding content to windows” section that fol-
lows shortly.

 Creating a window using Flex is even simpler and more direct than creating a win-
dow using Flash. When working directly with NativeWindow objects, as you’ve learned,
you have to first create a NativeWindowInitOptions object. The Window component
in Flex hides that from you. You only need to create a new Window object (or an object
from a subclass of Window), then set a few properties directly on that object if appro-
priate. For example, the code in listing 2.8 creates a new utility window.

<?xml version="1.0" encoding="utf-8"?>
<mx:WindowedApplication xmlns:mx="http://www.adobe.com/2006/mxml"
 layout="absolute" creationComplete="creationCompleteHandler();">
 <mx:Script>
 <![CDATA[
 import mx.core.Window;

 private function creationCompleteHandler():void {
 var window:Window = new Window();

 window.width = 200;

 window.height = 200;

 window.type = NativeWindowType.UTILITY;
 }

]]>
 </mx:Script>
</mx:WindowedApplication>

NOTE Just as WindowedApplication objects have nativeApplication proper-
ties that reference the underlying NativeApplication object, Window
objects have nativeWindow properties that reference the underlying
NativeWindow. It’s worth noting as well that WindowedApplication
objects also have a nativeWindow property that references the underlying
NativeWindow object for the main window.

You may have noticed, assuming you tested the preceding code, that no window
appears when running the code. As when working with NativeWindow objects directly,
you need to explicitly open the window once you’ve created it.
OPENING WINDOWS

As we just saw, you still need to programmatically open a window once you’ve created
it. For Window objects, you need to call the open() method to open the window. List-
ing 2.9 modifies the code from listing 2.8 by simply adding a call to open() in order to
open a new window.

Listing 2.8 Creating a new window using Flex

Construct new
windowSet initial

dimensions

Make it a
utility window

http://www.adobe.com/2006/mxml

46 CHAPTER 2 Applications, windows, and menus
<?xml version="1.0" encoding="utf-8"?>
<mx:WindowedApplication xmlns:mx="http://www.adobe.com/2006/mxml"
 layout="absolute" creationComplete="creationCompleteHandler();">
 <mx:Script>
 <![CDATA[
 import mx.core.Window;

 private function creationCompleteHandler():void {
 var window:Window = new Window();

 window.width = 200;
 window.height = 200;

 window.type = NativeWindowType.UTILITY;

 window.open();
 }

]]>
 </mx:Script>
</mx:WindowedApplication>

In this example, the new window that appears is a 200-by-200 pixel window with the
(Flex) default gray background and no other content. Next we’ll look at how to add
content to windows using Flex.
ADDING CONTENT TO WINDOWS

Adding content to windows in Flex is typically different from adding content to
NativeWindow objects in Flash. When working with the latter, you must programmati-
cally add content to the stage of the NativeWindow object after you’ve created it.
When working with Flex-based windows, it’s more common to simply create new
MXML components based on Window, place the content in those components, and
then open instances of those components as windows. Let’s look at an example of this.

 In the section on working with windows using NativeWindow, you saw an example
in which you created a new window and then added text content to it. We’ll now
achieve a similar result, but this time using the Flex approach. Start by creating a new
MXML component and call it SimpleTextWindow.mxml. The code for that compo-
nent is shown in listing 2.10.

<?xml version="1.0" encoding="utf-8"?>
<mx:Window xmlns:mx="http://www.adobe.com/2006/mxml" width="200"
 height="200" type="utility">
 <mx:Label text="New Window Content" />
</mx:Window>

Note that this component uses Window as the root element. This is important. All com-
ponents that you want to use as windows must extend Window. Also note that we’re set-
ting the width and height as well as the type of the component in the MXML
document itself. You could set those properties in the ActionScript instead, but in this

Listing 2.9 Opening a window is as simple as calling the open() method

Listing 2.10 Creating a simple window component

http://www.adobe.com/2006/mxml
http://www.adobe.com/2006/mxml

47Understanding applications and windows
case it’s more sensible to set them in the window component itself if they should be
consistent across all instances of the window.

 Next we create an instance of the window in the main application MXML docu-
ment, as shown in listing 2.11.

<?xml version="1.0" encoding="utf-8"?>
<mx:WindowedApplication xmlns:mx="http://www.adobe.com/2006/mxml"
 layout="absolute" creationComplete="creationCompleteHandler();">
 <mx:Script>
 <![CDATA[

 private function creationCompleteHandler():void {
 var window:SimpleTextWindow = new SimpleTextWindow();
 window.open();
 }

]]>
 </mx:Script>
</mx:WindowedApplication>

Note that in this code we construct a new instance of the
SimpleTextWindow component instead of creating a
generic Window object. Note also that, because we set the
width, height, and type properties in the MXML compo-
nent itself, we don’t need to set them when instantiating it.
Figure 2.5 shows what the window looks like.

 That wraps up our discussion of basic, rectangular win-
dows in Flex. Before we move on to an entirely different
topic, we’ll discuss how to create irregularly shaped win-
dows using Flex.
CREATING IRREGULARLY SHAPED WINDOWS

You’ve already learned how to create irregularly shaped
windows using ActionScript, and therefore it seems only
fair to discuss how to do it using Flex. The basic concept is the same in ActionScript
and Flex: create a window that has a transparent background and no system chrome.
The steps to achieve this (set systemChrome to none and transparent to true) are
similar in both cases. However, with Flex windows, there’s a small wrench thrown in
the works. Listing 2.12 shows a window component MXML document. The code sets
the systemChrome property to none and the transparent property to true. It then
uses ActionScript to draw a circle and add it to the display list.

<?xml version="1.0" encoding="utf-8"?>
<mx:Window xmlns:mx="http://www.adobe.com/2006/mxml" systemChrome="none"
 type="lightweight" transparent="true" width="200" height="200"
 creationComplete="creationCompleteHandler();">

Listing 2.11 Creating an instance of the window component

Listing 2.12 Creating a transparent window in Flex with systemChrome set to none

Figure 2.5 A simple text
window created in Flex

http://www.adobe.com/2006/mxml
http://www.adobe.com/2006/mxml

48 CHAPTER 2 Applications, windows, and menus
 <mx:Script>
 <![CDATA[

 private function creationCompleteHandler():void {

 var shape:Shape = new Shape();
 shape.graphics.lineStyle(0, 0, 0);
 shape.graphics.beginFill(0xFFFFFF, 1);
 shape.graphics.drawCircle(100, 100, 100);
 shape.graphics.endFill();

 rawChildren.addChild(shape);

 }

]]>
 </mx:Script>
</mx:Window>

If you create an instance of this window, you’ll discover that
there’s still chrome applied to the window. You can see what this
looks like in figure 2.6.

 By default, Flex applies Flex chrome when systemChrome is set
to none. If you want to remove all chrome, as is the goal in this
example, you must take one additional step and set the showFlex-
Chrome property of the window to false. All the other properties
we’ve looked at for Flex windows thus far can be set on the
instance using ActionScript or in the MXML using attributes. The
showFlexChrome property can only be set using MXML, because it
must be set before the window instantiates. The code in
listing 2.13 shows this change to the code. With the addition of setting this one prop-
erty, the Flex chrome is also removed and the window is now shaped like a circle.

<?xml version="1.0" encoding="utf-8"?>
<mx:Window xmlns:mx="http://www.adobe.com/2006/mxml" showFlexChrome="false"
 systemChrome="none" type="lightweight" transparent="true" width="200"
 height="200" creationComplete="creationCompleteHandler();">
 <mx:Script>
 <![CDATA[

 private function creationCompleteHandler():void {

 var shape:Shape = new Shape();
 shape.graphics.lineStyle(0, 0, 0);
 shape.graphics.beginFill(0xFFFFFF, 1);
 shape.graphics.drawCircle(100, 100, 100);
 shape.graphics.endFill();

 rawChildren.addChild(shape);

 }

]]>

Listing 2.13 Setting showFlexChrome to false to hide the Flex window chrome

Figure 2.6 Flex
window with
systemChrome
set to none

http://www.adobe.com/2006/mxml

49Managing windows
 </mx:Script>
</mx:Window>

Now that you’ve had a chance to learn how to create windows using lower-level Action-
Script and Flex-specific techniques, we’ll look at how to manage those windows.

2.2 Managing windows
Creating and opening windows is only the first step in effectively using windows.
There are a handful of core skills that you must master to be proficient at working
with windows. In the next few sections, we’ll look at how to position, order, move,
resize, and close windows.

2.2.1 Retrieving window references

Generally it’s useful to be able to retrieve references to open windows for an applica-
tion. Retrieving references is important for a variety of purposes, including (though
not limited to) positioning windows, ordering windows, and communicating
between windows.

 The NativeApplication object for an AIR application keeps track of all the win-
dows open for that application. The mainWindow property references the main appli-
cation window (the initial window). The openedWindows property holds an array of all
the windows currently opened in the application. You can also retrieve a reference to
a NativeWindow object that corresponds to a Stage object by using a Stage object’s
nativeWindow property. We’ll see how to use these properties in a variety of ways
throughout the next few sections.

2.2.2 Positioning windows

Positioning windows is such an essential task that you must understand the basics
before working with windows extensively. Otherwise, you’re likely to open windows at
seemingly random locations, sometimes hidden by other windows and sometimes
overlapping existing windows in unintended ways.
POSITIONING NATIVEWINDOW OBJECTS

You can set the x and y properties of a NativeWindow object to set the x and y coordi-
nates of the window in the desktop. When you position NativeWindow objects directly,
this feat is achieved simply. You can merely set the x and y properties immediately
after creating the object or at any time after that. However, when you create a Window
component using Flex, you need to be aware that the underlying NativeWindow object
for a Window component doesn’t get created immediately when you construct a new
Window object. We’ll look at how to address this issue in the next section.
POSITIONING WINDOW OBJECTS

As already mentioned, the NativeWindow object that’s associated with a Window com-
ponent doesn’t get instantiated immediately when you construct a Window compo-
nent. Instead, you need to wait for that Window object to dispatch a windowComplete
event before you can access the underlying NativeWindow object and set the x and y

50 CHAPTER 2 Applications, windows, and menus
properties. There are two common ways you can go about setting the x and y coordi-
nates of a window: from the window that instantiates the new window or from within
the new window itself.

 When positioning the new window from the window that instantiates it, you want
to register an event listener to listen for the windowComplete event, and then set the x
and y properties of the new window’s nativeWindow object when that event occurs.
Listing 2.14 illustrates this. Listing 2.14 is a modification to listing 2.9, and changes are
shown in bold.

<?xml version="1.0" encoding="utf-8"?>
<mx:WindowedApplication xmlns:mx="http://www.adobe.com/2006/mxml"
 layout="absolute" creationComplete="creationCompleteHandler();">
 <mx:Script>
 <![CDATA[
 import mx.events.AIREvent;

 private function creationCompleteHandler():void {
 var window:SimpleTextWindow = new SimpleTextWindow();

 window.addEventListener(
 AIREvent.WINDOW_COMPLETE,
 windowCompleteHandler);

 window.open();
 }

 private function windowCompleteHandler(event:AIREvent):void {
 event.target.stage.nativeWindow.x = 0;
 event.target.stage.nativeWindow.y = 0;
 }

]]>
 </mx:Script>
</mx:WindowedApplication>

In this example, you can see that, right after we create the window instance, we regis-
ter a method as a listener for the windowComplete event B. The event handler
method itself C sets the x and y properties of the window.

 In the preceding example, you saw how to position a window from the window that
opened it. If you prefer to position a window from within that new window itself, you
can do that by simply listening for the windowComplete event within that component
instead. We’ll next look at an example of that. Listing 2.15 shows the SimpleTextWin-
dow from listing 2.8 with a few changes in bold. In this example, you can assume that
the application document still looks just as it did in listing 2.11.

<?xml version="1.0" encoding="utf-8"?>
<mx:Window xmlns:mx="http://www.adobe.com/2006/mxml" width="200"
 height="200" type="utility"

Listing 2.14 Positioning a new window from the window that instantiates it

Listing 2.15 Positioning a window from within the window component

Register
listenerB

Set window
coordinates

C

http://www.adobe.com/2006/mxml
http://www.adobe.com/2006/mxml

51Managing windows
 windowComplete="windowCompleteHandler();">
 <mx:Script>
 <![CDATA[

 private function windowCompleteHandler():void {
 nativeWindow.x = 0;
 nativeWindow.y = 0;
 }

]]>
 </mx:Script>
 <mx:Label text="New Window Content" />
</mx:Window>

In these examples, we’ve looked at how to position windows when they first open. Of
course, you can also use the same x and y properties of the nativeWindow object to
position a window at any time, not just when it initially opens. Furthermore, you can
use these same techniques to position the main application window when it initializes.
Listing 2.16 shows one way to center the application on the screen.

<?xml version="1.0" encoding="utf-8"?>
<mx:WindowedApplication xmlns:mx="http://www.adobe.com/2006/mxml"
 layout="absolute"
 windowComplete="windowCompleteHandler();"
 creationComplete="creationCompleteHandler();">

 <mx:Script>
 <![CDATA[
 import mx.events.AIREvent;

 private function creationCompleteHandler():void {
 var window:SimpleTextWindow = new SimpleTextWindow();
 window.open();
 }

 private function windowCompleteHandler():void {
 nativeWindow.x = (Capabilities.screenResolutionX - width) / 2;
 nativeWindow.y = (Capabilities.screenResolutionY - height) / 2;
 }

]]>
 </mx:Script>
</mx:WindowedApplication>

In this example, the first thing we do is tell the window how to handle the windowCom-
plete event B. In this case, we tell the window to call a method named windowCom-
pleteHandler() C that we’ve defined in the script block. The event handler method
uses the screen resolution that it retrieves from the intrinsic Capabilities object in
order to move the window to the center of the screen.

 Next we’ll look at how to do a slightly more sophisticated version of this same thing
by working with a virtual desktop.

Listing 2.16 Centering the application on the screen

Listen for
windowCompleteB

Center
window C

http://www.adobe.com/2006/mxml

52 CHAPTER 2 Applications, windows, and menus
WORKING WITH A VIRTUAL DESKTOP

It’s not uncommon for systems to have more than one monitor these days. If a user of
your application has more than one monitor, it’s a good idea for you to allow her to
take advantage of the extra screen space when using your application. AIR applica-
tions allow users to drag windows anywhere on the desktop, including additional mon-
itors. However, you should also consider extra monitors when programmatically
placing windows. Frequently, users opt to place the main application window on their
main monitor while utility windows go on a second monitor. But a user might just as
well choose to move the main application window onto her second monitor. In any
case, it’s courteous for your AIR application to remember where a user has placed win-
dows previously and put them there again when restarting the application. You can
store user preferences such as window placement in a shared object (this is a basic
ActionScript skill), in a local database (see chapter 5), or even in a text file (see chap-
ter 3). The actual storage of the values is not particularly relevant to this chapter. What
is relevant is how you can determine the correct values and how you can figure out
whether a window is on one screen or another.

 AIR applications treat the entire space of any and
all monitors as one virtual desktop. Figure 2.7 illus-
trates this idea.

 In programmatic terms, each of these monitors
has a representation as a flash.display.Screen

object. A Screen object provides information about
the size of the screen by way of a bounds property and
a visibleBounds property. Because AIR applications
can’t change the resolution of monitors, the bounds
and visibleBounds properties are read-only. Both these properties are flash.
geom.Rectangle values with x and y values relative to the upper-left corner of the vir-
tual desktop.

 The Screen class also has two static properties that allow you to retrieve references
to the Screen objects available to an AIR application. The Screen.mainScreen prop-
erty returns a reference to the primary screen for the computer. The Screen.screens
property returns an array of all the screens, the first of which is the same as the main-
Screen reference.

 The Screen class also has a static method called getScreensForRectangle(). This
method allows you to retrieve an array of Screen objects over which a given Rectangle
(relative to the virtual desktop) overlaps. The practical significance of this is that you
can find out if a particular region (perhaps a window) exists on one screen or another,
or both, or none.

 The example in listing 2.17 illustrates a few of the virtual desktop and screen con-
cepts by way of a crudely implemented window-snapping algorithm. In this example,
the window snaps to the edge of the screen it’s on if it’s within 100 pixels of the edge.
Much of this example is the same as listing 2.2. The changes are shown in bold.

Monitor 1 Monitor 2

Virtual Desktop

Figure 2.7 AIR applications treat
all monitors as one virtual desktop.

53Managing windows
package {

 import flash.display.MovieClip;
 import flash.display.NativeWindow;
 import flash.display.NativeWindowInitOptions;
 import flash.display.NativeWindowType;
 import flash.display.NativeWindowSystemChrome;
 import flash.events.NativeWindowBoundsEvent;
 import flash.display.Screen;

 public class Example extends MovieClip {

 public function Example() {

 var options:NativeWindowInitOptions =

 ➥new NativeWindowInitOptions();
 options.type = NativeWindowType.UTILITY;

 var window:NativeWindow = new NativeWindow(options);
 window.width = 200;
 window.height = 200;

 window.activate();

 window.addEventListener(NativeWindowBoundsEvent.MOVE,
 moveHandler);

 }

 private function moveHandler(event:NativeWindowBoundsEvent):void {

 var window:NativeWindow = event.target as NativeWindow;

 var screens:Array =

 ➥Screen.getScreensForRectangle(window.bounds);
 var screen:Screen;

 if(screens.length == 1) {
 screen = screens[0];
 }
 else if(screens.length == 2) {
 screen = screens[1];
 }

 if(window.x < screen.bounds.x + 100) {
 window.x = screen.bounds.x;
 }
 else if(window.x > screen.bounds.x + screen.bounds.width –

 ➥window.width - 100) {
 window.x = screen.bounds.x + screen.bounds.width –

 ➥window.width;
 }
 if(window.y < screen.bounds.y + 100) {
 window.y = screen.bounds.y;
 }
 else if(window.y > screen.bounds.y + screen.bounds.height –

 ➥window.height - 100) {
 window.y = screen.bounds.y + screen.bounds.height –

 ➥window.height;

Listing 2.17 Snapping a window to the edge of the screen

Listen for
move event

B

Determine
screen overlapC

Select screen for
snapping

D

Snap to edges
within 100 pixelsE

54 CHAPTER 2 Applications, windows, and menus
 }
 }

 }

}

The first thing that’s necessary in this example is to listen for the move event B that
the window dispatches when the user drags it. When the move event is handled, we
tell the window to take action. The first thing it needs to do is retrieve an array of all
the screens that the window currently overlaps using the Screen.getScreensFor-
Rectangle() method C. We then make a judgment: if the window overlaps just one
screen, get a reference to that screen; otherwise use the second screen of the two that
the window overlaps D. The remaining logic E tests which edges of the screen the
window is nearest and then snaps to them if it’s within 100 pixels.

 You can see that this example illustrates several key skills in working with screens,
including determining which screen a window resides on and getting the bounds of a
screen. Next we’ll look at the important concept of closing windows.

2.2.3 Closing windows

Closing windows may seem like a simple task, but it’s an important one with nuances
you need to consider. In the next few sections, we’ll examine how to deal with several
window-closing issues, including reopening closed windows, closing all windows on
application exit, and closing windows with no chrome.
REOPENING CLOSED WINDOWS

As we’ve been working through the concepts in this chapter, you’ve likely followed
along with the example code and created quite a few windows. In doing so, you’ve
probably noticed that, when chrome is applied to a window, the close button auto-
matically gets wired up to allow the user to close the window. As convenient as that is,
it’s also potentially problematic because, in an AIR application, a window can’t be
reopened once it’s been closed. While that may be the intended behavior in some
cases, in many cases you intend to allow a user to reopen a window after he’s closed
it. Consider an example of a utility window that shows a color palette for a drawing
program. The user should be able to show and hide the window. If you use the
default close behavior for a window in such a case, AIR would prevent you from show-
ing the window once the user closed it. Listing 2.18 shows an example that illustrates
the problem.

package {

 import flash.display.NativeWindowType;
 import flash.display.NativeWindowInitOptions;
 import flash.display.NativeWindow;
 import flash.display.MovieClip;
 import flash.events.MouseEvent;

 public class WindowExample extends MovieClip {

Listing 2.18 You can’t reopen a window that has been closed

55Managing windows
 private var _window:NativeWindow;

 public function WindowExample() {

 var options:NativeWindowInitOptions =

 ➥new NativeWindowInitOptions();
 options.type = NativeWindowType.UTILITY;

 _window = new NativeWindow(options);
 _window.width = 200;
 _window.height = 200;

 _window.activate();

 stage.addEventListener(MouseEvent.CLICK, openWindow);
 }

 private function openWindow(event:MouseEvent):void {
 _window.activate();
 }

 }

}

In this example, the intent is that, any time the user clicks on the main window, the
application should open the utility window by calling the activate() method. How-
ever, if you were to test this example, you’d discover that, once you’ve closed the utility
window, any attempt to reopen it results in a runtime error stating that you can’t open
a window that’s been closed.

 What’s the solution to this dilemma? The answer is simpler than you might think:
rather than closing the window when the user clicks on the close button, you should
instead set its visibility to false. That hides the window but allows it to be reopened. In
order to achieve this, you must catch the window after the user clicks on the close but-
ton but before AIR has had a chance to take the default action and really close the win-
dow. You can do that by listening for a closing event. All windows dispatch an event of
type Event.CLOSING an instant after the user clicks on the close button but just before
the window actually closes. When handling the closing event, you must then do two
things: set the visible property to false and cancel the default behavior. Canceling
the default behavior is critical because otherwise AIR will still close the window. You
can cancel the default behavior for cancelable events in ActionScript (of which the
closing event is one) by calling the preventDefault() method on the event object.
Listing 2.19 shows how you can listen for the closing event, toggle the visibility, and
prevent the default behavior.

package {

 import flash.display.NativeWindowType;
 import flash.display.NativeWindowInitOptions;
 import flash.display.NativeWindow;
 import flash.display.MovieClip;
 import flash.events.MouseEvent;

Listing 2.19 Allowing a user to hide and show a window

56 CHAPTER 2 Applications, windows, and menus
 import flash.events.Event;

 public class WindowExample extends MovieClip {

 private var _window:NativeWindow;

 public function WindowExample() {

 var options:NativeWindowInitOptions =

 ➥new NativeWindowInitOptions();
 options.type = NativeWindowType.UTILITY;

 _window = new NativeWindow(options);
 _window.width = 200;
 _window.height = 200;

 _window.activate();

 stage.addEventListener(MouseEvent.CLICK, openWindow);

 _window.addEventListener(Event.CLOSING, closingHandler);
 }

 private function closingHandler(event:Event):void {
 _window.visible = false;
 event.preventDefault();
 }

 private function openWindow(event:MouseEvent):void {
 _window.activate();
 }

 }

}

You can see that basic closing of windows is something you must consider when build-
ing applications if users need to be able to reopen windows that they’ve hidden.
CLOSING ALL WINDOWS ON APPLICATION EXIT

As you may have noticed throughout earlier examples in this chapter, windows you
open from the initial application window don’t automatically close when the initial
application window closes. That is expected behavior if the additional windows are
standard windows that show up in the task bar or window menu. However, if the addi-
tional windows are utility or lightweight windows, you likely want them to close when
the main application window with which they’re associated closes.

 You can use the openedWindows property of a NativeApplication object to
retrieve an array of references to all the NativeWindow objects for the application. By
looping through the openedWinodows array, you can programmatically close all the
utility and lightweight windows. Typically you’ll want to do this when closing the appli-
cation. You can detect when an application is closing by listening for the exiting event
that the NativeApplication object dispatches. You can programmatically close a win-
dow by calling the close() method on the NativeWindow object. Listing 2.20 shows an
example that programmatically closes all other windows when the main application
window is closed.

57Managing windows
package {

 import flash.display.MovieClip;
 import flash.display.NativeWindow;
 import flash.display.NativeWindowInitOptions;
 import flash.display.NativeWindowType;
 import flash.desktop.NativeApplication;
 import flash.events.Event;

 public class Example extends MovieClip {

 public function Example() {

 var options:NativeWindowInitOptions =

 ➥new NativeWindowInitOptions();
 options.type = NativeWindowType.UTILITY;

 var window:NativeWindow = new NativeWindow(options);
 window.width = 200;
 window.height = 200;

 window.activate();

 this.stage.nativeWindow.addEventListener(

 ➥Event.CLOSING, closingHandler);
 }

 private function closingHandler(event:Event):void {
 var windows:Array =

 ➥NativeApplication.nativeApplication.openedWindows;
 for(var i:Number = 0; i < windows.length; i++) {
 windows[i].close();
 }
 }

 }

}

In order to know when to close all the windows, we need to listen for the closing event
that the NativeApplication instance dispatches B. Then, when handling that event
C, we loop through the openedWindows array of the NativeApplication instance and
call the close() method for all the windows.

 We’ve looked at closing all open windows when the closing event occurs for the
main window. If you don’t close all the windows when you close an application, you
can potentially cause problems for users. If a window is hidden but still technically
open, the user won’t have any way to close the window once she’s exited the applica-
tion. That would unnecessarily tie up system resources.
ADDING CUSTOM CLOSE MECHANISMS FOR WINDOWS

As you learned in the preceding section, you can close a window using the close()
method. You can use that same method to close a window via a custom user interface
element designed to allow the user to close a window. This is an important consider-
ation when building windows that have no chrome (such as an irregularly shaped win-
dow) because such windows have no default close button.

Listing 2.20 Closing windows on application exit

Listen for
exiting eventB

Close all
open
windowsC

58 CHAPTER 2 Applications, windows, and menus
2.2.4 Ordering windows

You can change the z-axis values of windows in a variety of ways. Typically, the window
with focus appears in front of all other windows, and users generally expect to have
control over the stacking order of windows on their desktop. However, there are legit-
imate reasons to control the order of windows programmatically, some of which are
as follows:

■ When creating new windows, you might want to intentionally open them in
front of or behind existing windows.

■ You might want to create a window that always stays in front of all other win-
dows, even if it doesn’t have focus. This is useful for windows that require user
attention or that contain information that should always be available to the user
even if he is using other applications.

■ You might want to make sure utility windows are brought to the front of other
applications when the corresponding AIR application receives focus.

There are a handful of methods and a property that control ordering. All of these
methods and the property are available for NativeWindow objects in ActionScript as
well as Window components in Flex. These methods and the property are as follows:

■ orderToFront()—Move the window in front of all other windows in the same
AIR application.

■ orderToBack()—Move the window behind all other windows in the same AIR
application.

■ orderInFrontOf(window:IWindow)—Move the window in front of another win-
dow.

■ orderInBackOf(window:IWindow)—Move the window behind another window.
■ alwaysInFront—This window should always appear in front of all other win-

dows on the desktop.

As you may have noticed in earlier examples, when you have a utility window running
for an application and another application gets focus on your system, returning focus
to the AIR application with the utility window doesn’t return the utility window to the
front of other running application windows on your system. That makes it easy to
“lose” utility windows behind other applications. A useful feature to build into AIR
applications with utility windows is automatically bringing those utility windows to the
front along with the application’s main window when it receives focus. When an appli-
cation loses focus, the NativeApplication object dispatches a deactivate event; when
the application receives focus, it dispatches an activate event. Therefore, if you listen
for the activate event, cycle through all the opened windows, and move each opened
window to the front, you’ll make sure no utility windows get lost behind other applica-
tions. Listing 2.21 shows a simple example of this.

59Managing windows
package {

 import flash.display.MovieClip;
 import flash.display.NativeWindow;
 import flash.display.NativeWindowInitOptions;
 import flash.display.NativeWindowType;
 import flash.desktop.NativeApplication;
 import flash.events.Event;
 import flash.text.TextField;
 import flash.text.TextFieldAutoSize;
 import flash.display.StageScaleMode;
 import flash.display.StageAlign;

 public class Example extends MovieClip {

 public function Example() {

 var options:NativeWindowInitOptions =

 ➥new NativeWindowInitOptions();
 options.type = NativeWindowType.UTILITY;

 var window:NativeWindow = new NativeWindow(options);
 window.width = 200;
 window.height = 200;

 var textField:TextField = new TextField();
 textField.autoSize = TextFieldAutoSize.LEFT;
 textField.text = "New Window Content";

 window.stage.scaleMode = StageScaleMode.NO_SCALE;
 window.stage.align = StageAlign.TOP_LEFT;

 window.stage.addChild(textField);

 window.activate();

 this.stage.nativeWindow.addEventListener(Event.ACTIVATE,
 activateHandler);

 }

 private function activateHandler(event:Event):void {
 var windows:Array =

 ➥NativeApplication.nativeApplication.openedWindows;
 for(var i:Number = 0; i < windows.length; i++) {
 windows[i].orderToFront();
 }
 }

 }

}

If you were to test the preceding code, you’d see that, every time you bring the
application window to the foreground, all of the utility windows also move to the
foreground.

Listing 2.21 Moving utility windows to the front along with the main window

60 CHAPTER 2 Applications, windows, and menus
2.2.5 Moving and resizing windows

When a window has chrome around it, the user is able to move and resize the window
through the standard user interface elements (dragging the title bar to move the win-
dow and dragging the borders to resize the window). When you don’t display any sys-
tem chrome for a window, the user won’t have those options. Instead, if you want the
user to be able to move or resize the window, you need to programmatically add that
behavior. The good news is that AIR makes it simple to do so.

 All NativeWindow objects have startMove() and startResize() methods. When
you call these methods from an event handler for a mouseDown event, a mouseUp event
will automatically stop the move or resize behavior—exactly the way a user would
expect the feature to work.

 The startMove() method doesn’t require any parameters. You can simply call
startMove() on the window when the user clicks on an object. The window will then
move with the mouse until the user releases the mouse button. Listing 2.22 shows an
example of this by modifying the ExampleWindow code from listing 2.7.

package {

 import flash.display.NativeWindow;
 import flash.display.NativeWindowSystemChrome;
 import flash.display.NativeWindowType;
 import flash.display.NativeWindowInitOptions;
 import flash.display.Sprite;
 import flash.display.Stage;
 import flash.display.StageAlign;
 import flash.display.StageScaleMode;
 import flash.events.MouseEvent;
 import flash.events.Event;

 public class ExampleWindow extends NativeWindow {

 private var _background:Sprite;

 public function ExampleWindow() {
 var options:NativeWindowInitOptions =

 ➥new NativeWindowInitOptions();

 options.systemChrome = NativeWindowSystemChrome.NONE;
 options.type = NativeWindowType.LIGHTWEIGHT;
 options.transparent = true;

 super(options);
 _background = new Sprite();
 drawBackground(200, 200);
 stage.addChild(_background);

 width = 200;
 height = 200;

 stage.align = StageAlign.TOP_LEFT;
 stage.scaleMode = StageScaleMode.NO_SCALE;

Listing 2.22 Enable dragging on a window using startMove()

61Managing windows
 _background.addEventListener(MouseEvent.MOUSE_DOWN,
 startMoveWindow);

 }

 private function drawBackground(newWidth:Number, newHeight:Number):

 ➥void {
 _background.graphics.clear();
 _background.graphics.lineStyle(0, 0, 0);
 _background.graphics.beginFill(0x0000FF, .5);
 _background.graphics.drawRoundRectComplex(0, 0, newWidth,
 newHeight, 20, 20, 20, 1);
 _background.graphics.beginFill(0xFFFFFF, .9);
 _background.graphics.drawRoundRectComplex(5, 5, newWidth - 10,
 newHeight - 10, 20, 20, 20, 1);
 _background.graphics.endFill();

 }

 private function startMoveWindow(event:MouseEvent):void {
 startMove();
 }

 }

}

The startResize() method requires that you specify the side or corner of the win-
dow from which to resize. Valid values are constants of the flash.dis-

play.NativeWindowResize class: TOP, BOTTOM, LEFT, RIGHT, TOP_LEFT, TOP_RIGHT,
BOTTOM_LEFT, and BOTTOM_RIGHT. For example, if you call startResize() with a value
of NativeWindowResize.BOTTOM_RIGHT, the bottom-right corner of the window will
move along with the mouse while the top-left corner stays fixed. You can call start-
Resize() when the user clicks on an object. The window will start to resize along with
the mouse movement until the user releases the mouse button. Listing 2.23 shows an
example of resizing a window. The code is based on the window from listing 2.22.

package {

 import flash.display.NativeWindow;
 import flash.display.NativeWindowSystemChrome;
 import flash.display.NativeWindowType;
 import flash.display.NativeWindowInitOptions;
 import flash.display.Sprite;
 import flash.display.Stage;
 import flash.display.StageAlign;
 import flash.display.StageScaleMode;
 import flash.events.MouseEvent;
 import flash.events.Event;
 import flash.display.NativeWindowResize;

 public class ExampleWindow extends NativeWindow {

 private var _background:Sprite;

Listing 2.23 Resizing a window

62 CHAPTER 2 Applications, windows, and menus
 private var _resizer:Sprite;

 public function ExampleWindow() {
 var options:NativeWindowInitOptions =

 ➥new NativeWindowInitOptions();

 options.systemChrome = NativeWindowSystemChrome.NONE;
 options.type = NativeWindowType.LIGHTWEIGHT;
 options.transparent = true;

 super(options);
 _background = new Sprite();
 drawBackground(200, 200);
 stage.addChild(_background);

 width = 200;
 height = 200;

 stage.align = StageAlign.TOP_LEFT;
 stage.scaleMode = StageScaleMode.NO_SCALE;

 _background.addEventListener(MouseEvent.MOUSE_DOWN,
 startMoveWindow);

 _resizer = new Sprite();
 _resizer.graphics.lineStyle(0, 0, 0);
 _resizer.graphics.beginFill(0xCCCCCC, 1);
 _resizer.graphics.drawRect(0, 0, 10, 10);
 _resizer.graphics.endFill();
 _resizer.x = 180;
 _resizer.y = 180;
 stage.addChild(_resizer);

 _resizer.addEventListener(MouseEvent.MOUSE_DOWN,
 startResizeWindow);

 addEventListener("resizing", resizingHandler);

 }

 private function drawBackground(newWidth:Number, newHeight:Number):

 ➥void {
 _background.graphics.clear();
 _background.graphics.lineStyle(0, 0, 0);
 _background.graphics.beginFill(0x0000FF, .5);
 _background.graphics.drawRoundRectComplex(0, 0, newWidth,
 newHeight, 20, 20, 20, 1);
 _background.graphics.beginFill(0xFFFFFF, .9);
 _background.graphics.drawRoundRectComplex(5, 5, newWidth - 10,
 newHeight - 10, 20, 20, 20, 1);
 _background.graphics.endFill();

 }

 private function startMoveWindow(event:MouseEvent):void {
 startMove();
 }

 private function resizingHandler(event:Event):void {
 drawBackground(width, height);
 _resizer.x = width - 20;

63Managing applications
 _resizer.y = height - 20;
 }

 private function startResizeWindow(event:MouseEvent):void {
 startResize(NativeWindowResize.BOTTOM_RIGHT);
 }

 }

}

You’ll likely notice in this example that the window dispatches a resizing event as it
resizes. You can use that event to redraw or rearrange the contents of the window
appropriately.

 We’ve now covered all the topics related to window behavior, and we’re ready to
move on to a more macroscopic view by looking at application-wide behavior. In the
next section, we’ll look at a variety of these topics, including detecting idleness and
running an application in full-screen mode.

2.3 Managing applications
You’ve now learned all the basic window-specific information for building AIR applica-
tions. Next we’ll look at application-level issues related to managing the application.
We’ll look at the following topics:

■ Detecting idle users
■ Launching AIR applications when the system starts
■ Creating file associations
■ Alerting the user
■ Running applications in full-screen mode

AIR makes each of these tasks simple, as we’ll see in the next few sections.

2.3.1 Detecting idleness

Often it’s useful or important to detect when a user is no longer interacting with an
application. For example, an instant messenger application can automatically set a
user’s status to away or idle if the user has stepped away from the computer. AIR appli-
cations automatically detect when a user hasn’t interacted with the application for a
specified amount of time. Once that threshold has been reached, the NativeApplica-
tion object dispatches a userIdle event. When the user returns to the application,
the NativeApplication object dispatches a userPresent event. Both events are of
type flash.events.Event, and the Event.USER_IDLE and Event.USER_PRESENT con-
stants define the event names.

 Default timeout value is 300 seconds. You can adjust this value by setting the
idleThreshold property of the NativeApplication object. The value must be an inte-
ger representing the number of seconds without any detected activity before the
NativeApplication object should dispatch a userIdle event.

64 CHAPTER 2 Applications, windows, and menus
 In addition, you can request the amount of time since user interaction was last
detected. The timeSinceLastUserInput property of the NativeApplication object
will tell you how many seconds have elapsed since any mouse or keyboard input was
received by the application.

2.3.2 Launching applications on startup

Typically, an AIR application runs only when the user double-clicks the application or
a file of a type that’s associated with it. However, you can also flag an AIR application to
automatically launch when the user logs on to her computer system. Simply set the
startAtLogin property of the NativeApplication object to true.

 Note that, if startAtLogin is true, the application must be installed on the system.
If you simply test this setting by testing your application from Flash or from Flex
Builder, you’ll receive a runtime error.

2.3.3 Setting file associations

By setting a file association, you allow the user to automatically launch the AIR applica-
tion when he double-clicks a file of that type. In chapter 1, you learned how to define
file types for an AIR application using the descriptor file. When you list file types in the
descriptor, there are two possible options: if the file type isn’t already associated with
another application on the system, it’s automatically registered with the AIR applica-
tion; if the file type is registered with another application, no new association is made.
In the second case, what happens is that the file type is then available for you to pro-
grammatically override the existing association. You can only do so at runtime using
the methods listed in table 2.1.

 When you want to create associations with file types that are commonly used by
other applications, it’s generally a best practice to request the user’s permission to
make the association. Consider, for example, if you associated .mp3 files with your AIR
application using the descriptor file (hence not asking the user’s permission).
Because many users already have a preferred association for .mp3 files, you’d be likely
to upset users if you changed that automatically without ever asking them. Therefore,
although you can programmatically create associations for file types without first ask-
ing the user’s permission, it’s advisable that you do ask first.

Table 2.1 Methods for working with file associations

Method name Description

setAsDefaultApplication() Set the current AIR application as the default applica-
tion for a particular file type.

removeAsDefaultApplication() Remove the association between the current AIR appli-
cation and a file type.

isSetAsDefaultApplication() Find out if the current AIR application is already the
default application for a file type.

getDefaultApplication() Get the name of the default application for a file type.

65Managing applications
 To create associations for file types at runtime, use the setAsDefaultApplica-
tion() method of the NativeApplication object. The method requires that you pass
it one parameter specifying the file extension for the type of file you want to associate
with the AIR application. The parameter value should include just the file extension as
a string, not including an initial dot. For example, the following code associates .mp3
files with the application that is currently running:

NativeApplication.nativeApplication.setAsDefaultApplication("mp3");

If you’d like to remove an association, you can simply call the removeAsDefaultAp-
plication() method, passing it the extension of the file type for which you’d like to
remove the association:

NativeApplication.nativeApplication.removeAsDefaultApplication("mp3");

The isSetAsDefaultApplication() method returns a Boolean value indicating
whether the AIR application is the default application for a specified file extension:

var isDefault:Boolean = NativeApplication.nativeApplication.

➥isSetAsDefaultApplication("mp3");

You can also use the getDefaultApplication() method to retrieve the name of the
application with which a file type is associated. The method requires one parameter
specifying the file extension as a string:

var defaultApplication:String = NativeApplication.nativeApplication.

➥getDefaultApplication("mp3");

All of these methods will only work for file types that have been included in the
descriptor file in the fileTypes section. Also note that these methods will only work
for an AIR application once it’s been installed. That means these methods won’t work
correctly when testing the application in Flash or Flex Builder.

2.3.4 Alerting the user

Occasionally an AIR application needs to notify the user that something has occurred
requiring the user’s attention, even though the application may be minimized or not
have focus. Operating systems have standard ways of alerting users about these sorts of
things. For example, on Windows the corresponding item in the task bar flashes, and
on OS X the item bounces in the application dock. AIR allows you to alert the user in
these standard ways with a notifyUser() method on a NativeWindow object.

 The notifyUser() method requires that you pass it a parameter with one of the two
constants of the flash.desktop.NotificationType class: NotificationType.INFOR-
MATIONAL or NotificationType.CRITICAL. These two types correspond to the two
types of notifications that are allowed by the operating system.

 The following example (listing 2.24) illustrates notification. Every five seconds,
the application tests to see if the main window is active (has focus). If not, it notifies
the user.

66 CHAPTER 2 Applications, windows, and menus
package {

 import flash.display.MovieClip;
 import flash.display.NativeWindow;
 import flash.desktop.NativeApplication;
 import flash.utils.Timer;
 import flash.events.TimerEvent;
 import flash.desktop.NotificationType;

 public class Example extends MovieClip {

 private var _timer:Timer;

 public function Example() {

 _timer = new Timer(5000);

 _timer.addEventListener(TimerEvent.TIMER, timerHandler);
 _timer.start();

 }

 private function timerHandler(event:TimerEvent):void {
 var mainWindow:NativeWindow =

➥NativeApplication.nativeApplication.openedWindows[0] as NativeWindow;
 if(!mainWindow.active) {
 mainWindow.notifyUser(NotificationType.INFORMATIONAL);
 }
 }

 }

}

As you can see, alerting or notifying a user that a window requires her attention is
simple.

 One sure-fire way to get a user’s attention is to launch an application in full-screen
mode. Continue to the next section, where we’ll learn how to do just that.

2.3.5 Full-screen mode

You can launch application windows in full-screen mode using the displayState
property of a window’s Stage object. Set the displayState property to StageDis-
playState.FULL_SCREEN as in this example in listing 2.25. Note that because these
applications run in full-screen mode without the standard mechanisms to close the
applications, you must close the application using the standard keyboard shortcuts for
your operating system.

package {

 import flash.display.MovieClip;
 import flash.text.TextField;
 import flash.display.StageDisplayState;

Listing 2.24 Alerting the user if the main window isn’t active

Listing 2.25 Opening a window in full-screen mode

67Managing applications
 public class Example extends MovieClip {

 public function Example() {

 stage.displayState = StageDisplayState.FULL_SCREEN;

 var textField:TextField = new TextField();
 textField.text = "Full screen example";
 addChild(textField);

 }

 }

}

This example uses a text field to illustrate a point. The default settings for a Stage
object specify that the object should scale. Unless you want the content to scale, you
should set the scaleMode property. In many cases, you’ll also want to modify the align
property. In this example, the text scales noticeably in most cases (depending on the
starting dimensions of the window and the screen resolution). Listing 2.26 makes
adjustments to the code, telling it not to scale the contents and to align them to the
upper left.

package {

 import flash.display.MovieClip;
 import flash.text.TextField;
 import flash.display.StageDisplayState;
 import flash.display.StageScaleMode;
 import flash.display.StageAlign;

 public class Example extends MovieClip {

 public function Example() {

 stage.displayState = StageDisplayState.FULL_SCREEN;

 stage.scaleMode = StageScaleMode.NO_SCALE;
 stage.align = StageAlign.TOP_LEFT;

 var textField:TextField = new TextField();
 textField.text = "Full screen example";
 addChild(textField);

 }

 }

}

We’ve now covered all the basic application-level management topics. Next we’ll move
on to a new subject altogether: working with menus.

Listing 2.26 Adjusting the scale mode and alignment of a full-screen window

68 CHAPTER 2 Applications, windows, and menus
2.4 Menus
AIR applications can use menus in a variety of ways. Menus can appear at the applica-
tion or window level, they can appear on application icons, they can appear as context
menus, and they can appear as pop-up menus. In the following sections, we’ll look at
how to create menus and then apply them in each of these ways.

2.4.1 Creating menus

All menus in AIR applications are of type flash.display.NativeMenu. You can create
a new menu by constructing a new NativeMenu object. The constructor doesn’t
require any parameters:

var exampleMenu:NativeMenu = new NativeMenu();

That's all there is to creating menus. Next we’ll look at adding elements to menus.

2.4.2 Adding elements to menus

Once you’ve created a menu, you can add elements to it. Elements can generally be
one of two types: menu items or other menus (submenus).

 Menu items are of type flash.display.NativeMenuItem. You can create a new
NativeMenuItem using the constructor and passing it the label for the item. The label
is what gets displayed in the menu:

var item:NativeMenuItem = new NativeMenuItem("Example Item");

Add a menu item to a menu using the addItem() method (or the addItemAt()
method if you want to insert the item at an index other than last):

exampleMenu.addItem(item);

As already mentioned, you can add other menus to menus in order to create sub-
menus. To do this, use the addSubmenu() (or addSubmenuAt()) method, passing it the
menu to add:

exampleMenu.addItem(submenu);

You’ve now seen how to create menus and add elements to them. In order for a menu
to be functional, though, you have to be able to detect when the user has selected an
option. Read on and we’ll discuss how to do that in the next section.

2.4.3 Listening for menu selections

When a user selects an item in a menu, that item (a NativeMenuItem object) dis-
patches a select event. It’s up to you to add listeners to items such that your applica-
tion can respond when the user selects the item.

 The select event is of type flash.events.Event. The target property of the event
object references the NativeMenuItem object that dispatched the event. Sometimes
menu items need to have data associated with them in order for the application to
take meaningful or contextual action when the user selects the item. To do that, you

69Menus
can assign data of any type to the data property of the NativeMenuItem object. You
can see examples of this in the example that follows later in listing 2.27.

 There’s just one more topic we need to cover before we start making menus
appear in your application: special menu items such as checked items or separator
lines. We’ll cover that next.

2.4.4 Creating special menu items

Normal menu items appear simply as text. However, there are a few special types of
menu items you can also use: checked items and separator items.

 Checked items are useful when you have menu items that allow the user to toggle
options on or off or to select among a list of items. You can display checks next to
items by setting the checked property of the NativeMenuItem object.

 Separator items are special types of menu items that serve simply to divide sections
of a menu logically. Separator items are standard NativeMenuItem objects for which
the isSeparator property is set to true. If the isSeparator property is true for an
item, the item will appear as a line, and it won’t be selectable.

 We’ve covered enough theory. Now we need to see some practical examples of
menus in use. In the next section, you’ll learn how to use menus in a variety of ways.

2.4.5 Using menus

You can use menus in a handful of ways in AIR applications: application or window
menus, dock application or system tray icon menus, context menus, and pop-up
menus. In all cases the menus are instances of NativeMenu. The difference in each
case is simply the way in which the menu is applied.
USING APPLICATION OR WINDOW MENUS

Application and window menus serve the same general pur-
pose. Application menus are available only on OS X, and win-
dow menus are only available on Windows. Figure 2.8 shows
an example of a window menu.

 To apply a window menu, set the menu property of the
NativeWindow object to which you want to apply the menu.
To apply an application menu, set the menu property of the
NativeApplication object. To determine whether the oper-
ating system supports one or the other, you can use the static
supportsMenu property of the NativeWindow and Native-
Application classes. If NativeWindow.supportsMenu is true,
you know that you can set the menu property of a Native-
Window object. If the NativeApplication.supportsMenu property is true, you can set
the menu property of the NativeApplication object for the application. Because
application menus and window menus typically are intended to accomplish the same
thing, you’ll usually want to use code such as the following after you’ve created the
NativeMenu object. In the following code, you can assume that customMenu is a
NativeMenu object you’ve already created:

Figure 2.8 Window
menus appear at the top
of a window in the
manner that’s familiar to
most computer users.

70 CHAPTER 2 Applications, windows, and menus
if(NativeApplication.supportsMenu) {
 NativeApplication.nativeApplication.menu = customMenu;
}
else if(NativeWindow.supportsMenu) {
 NativeApplication.nativeApplication.openedWindows[0].menu = customMenu;
}

Listing 2.27 shows a complete, working example of a window or application menu that
uses many of the concepts discussed through this section. This example creates a
menu that allows the user to save (nonfunctional) or close the application, open a
new window, and then toggle focus between opened windows.

package {

 import flash.display.MovieClip;
 import flash.display.NativeWindow;
 import flash.display.NativeWindowInitOptions;
 import flash.display.NativeWindowType;
 import flash.desktop.NativeApplication;
 import flash.display.NativeMenu;
 import flash.display.NativeMenuItem;
 import flash.events.Event;

 public class Example extends MovieClip {

 private var _windowsMenu:NativeMenu;

 public function Example() {

 var mainMenu:NativeMenu = new NativeMenu();

 var applicationMenu:NativeMenu = new NativeMenu();

 var save:NativeMenuItem = new NativeMenuItem("save");
 var close:NativeMenuItem = new NativeMenuItem("close");

 close.addEventListener(Event.SELECT, selectHandler);

 applicationMenu.addItem(save);
 applicationMenu.addItem(close);

 _windowsMenu = new NativeMenu();

 var newWindow:NativeMenuItem =

 ➥new NativeMenuItem("new window");
 newWindow.addEventListener(Event.SELECT, selectHandler);

 var line:NativeMenuItem = new NativeMenuItem("", true);

 _windowsMenu.addItem(newWindow);
 _windowsMenu.addItem(line);

 mainMenu.addSubmenu(applicationMenu, "Application");
 mainMenu.addSubmenu(_windowsMenu, "Windows");

 var mainWindow:NativeWindow =
NativeApplication.nativeApplication.openedWindows[0] as NativeWindow;

 if(NativeApplication.supportsMenu) {

Listing 2.27 Creating application or window menus

Create main menuB

Create
applications

menu

C

Listen for
select
eventD

Add menu
items

E

Listen for
select events G

Create
windows
menu

F

Create
separator

item H
Add
submenusI

Reference main window J

71Menus
 NativeApplication.nativeApplication.menu = mainMenu;
 }
 else if(NativeWindow.supportsMenu) {
 mainWindow.menu = mainMenu;
 }

 mainWindow.addEventListener(Event.CLOSE, closeAll);

 }

 private function closeAll(event:Event = null):void {
 var windows:Array =

 ➥NativeApplication.nativeApplication.openedWindows;
 for(var i:Number = 0; i < windows.length; i++) {
 windows[i].removeEventListener(Event.CLOSE, closeHandler);
 windows[i].close();
 }
 }

 private function selectHandler(event:Event):void {
 if(event.target.label == "close") {
 closeAll();
 }
 else if(event.target.label == "new window") {

 var windowTitle:String = "Window " +
NativeApplication.nativeApplication.openedWindows.length;

 var options:NativeWindowInitOptions =
new NativeWindowInitOptions();
 options.type = NativeWindowType.UTILITY;
 var window:NativeWindow = new NativeWindow(options);
 window.width = 200;
 window.height = 200;
 window.title = windowTitle;

 window.addEventListener(Event.ACTIVATE, activateHandler);
 window.addEventListener(Event.CLOSE, closeHandler);

 var menuItem:NativeMenuItem = new NativeMenuItem();
 menuItem.label = windowTitle;
 menuItem.data = window;
 menuItem.addEventListener(Event.SELECT,
 selectWindowHandler);

 _windowsMenu.addItem(menuItem);

 window.activate();
 }
 }

 private function selectWindowHandler(event:Event):void {
 event.target.data.activate();
 }

 private function activateHandler(event:Event):void {
 var item:NativeMenuItem;
 for(var i:Number = _windowsMenu.numItems - 1; i >= 0; i--) {
 item = _windowsMenu.getItemAt(i);
 item.checked = (item.data == event.target);

Apply menu 1)

Listen for
close 1!

Close all
opened
windows1@

Remove listener to
prevent error 1#

Close all
windows1$

Open new
window1%

Create unique
window title1^

Create new
utility window 1&

Handle
events 1*

Create window
menu item 1(

Add item
to menu2)

Activate corresponding window 2!

2@ Update
checked state
in menu

72 CHAPTER 2 Applications, windows, and menus
 }
 }

 private function closeHandler(event:Event):void {
 var item:NativeMenuItem;
 for(var i:Number = 0; i < _windowsMenu.numItems; i++) {
 item = _windowsMenu.getItemAt(i);
 if(item.data == event.target) {
 _windowsMenu.removeItem(item);
 break;
 }
 }
 }
 }

}

The preceding is a long example. We’ll break it down and look at each piece. The first
thing we do is create a new menu B, because that’s essential to everything that fol-
lows. We’ll call this the main menu, because it’s the container for all the rest of the
menus that we’ll add to it. Next we create another menu and two items C. This menu
will be a submenu of the main menu. We add an event listener to one of the items D
in order to be able to respond when the user selects that menu item. We’ve created
the menu items, but we haven’t yet added them to the menu. We do that next E
using the addItem() method. Our main menu is going to have one more submenu,
and we create that next F along with a menu option. As with the application menu’s
close option, we add a listener to the new window option G. The windows menu is a
dynamic menu because, as the application runs, we’ll add more options to it each
time the user opens a window. In order to differentiate between the static and
dynamic items in the windows menu, we want a separator line. We can create that line
by creating a new item with the second parameter set to true H. With the two sub-
menus created, we can add them to the main menu I. Now that we’ve created the
menu, we need only to apply it either as a window or an application menu. We get a
reference to the main window J, then test what type of menu the system supports
and assign the menu accordingly 1). We also listen for a close event in order to close
all the open windows when the main window closes 1!.

 The closeAll() method 1@ is a typical method for what it does. It loops through
all the open windows and calls the close() method for each. The one distinction in
this example is that, in addition to calling the close() method, closeAll()also
removes event listeners for the close event from each window 1#. This is important
because, as you’ll see, when we create new windows in this example, we listen for the
close event. If we didn’t remove the listener before closing the window, we’d create an
infinite loop.

 The selectHandler() method is the event handler method we’re using for the
menu’s options. We first determine what option the user selected. If he selected the
close option 1$, we call the closeAll() method. Otherwise, if the user selected the
new window option 1%, we run the code to open a new window. To create a new win-
dow, we first create a unique title for the window 1^ by utilizing the count of existing

Remove
corresponding
menu item

2#

73Menus
windows, making names such as Window 1, Window 2, and so on. Then we create a
new utility window that is 200-by-200 pixels 1&. We need to take action when the user
closes or activates the window, and therefore we register listeners for the correspond-
ing events 1*. Each window should have a menu item in the windows menu. We add
the menu item 1(using the window title as the item name, and we store a reference to
the window in the menu item’s data property. The reference is important because it
allows the application to activate the window when the user selects it from the menu.
Then we simply add the new item to the windows menu 2).

 There are three events that we still need to handle: selecting a menu item corres-
ponding to a window, activating a window, and closing a window. Selecting a window’s
menu item results in activating the window via the menu item’s data property 2!. Acti-
vating a window 2@ results in looping through the windows menu items and updating
the checked state of each, such that only the activated window’s menu item is
checked. Closing a window 2# requires looping through all the menu items to remove
the menu item that corresponds to the window.

 When you test this application, you have the option to add new windows by select-
ing the new window item from the windows menu. When you add new windows, you’ll
see new items added to the windows menu. Selecting windows changes the selected
window item in the menu. Closing windows removes the menu items to which they
correspond.
USING ICON MENUS

Icon menus are the menus that you can access from the system tray icon (Windows) or
dock application icon (OS X) for the application. You can configure and control the
icon menu using the icon.menu property of the NativeApplication object.

NativeApplication.nativeApplication.icon.menu = customMenu;

This is all that’s necessary to customize the icon menu.
 With window, application, and icon menus, we’ve seen how to use menus that can

appear external to your application’s content. Next we’ll look at ways to use menus
that appear within your application’s content.
USING CONTEXT MENUS

You can display context menus for any display object in a Flash- or Flex-based AIR
application. The mechanism for adding context menus to display objects in AIR appli-
cations is exactly the same as for web applications. You need to assign the menu to the
contextMenu property of the display object. This is a standard Flash or Flex skill, even
for web-based application development. However, when building AIR applications,
there are two important differences:

■ Context menus for AIR applications are instances of NativeMenu, whereas con-
text menus for web applications are instances of ContextMenu.

■ Context menus for AIR applications are system-level, meaning they can appear
in front of and outside the boundaries of the application window.

Listing 2.28 illustrates a simple context menu.

74 CHAPTER 2 Applications, windows, and menus
package {

 import flash.display.MovieClip;
 import flash.display.NativeMenu;
 import flash.display.NativeMenuItem;
 import flash.display.Sprite;

 public class Example extends MovieClip {

 public function Example() {

 var rectangle:Sprite = new Sprite();
 rectangle.graphics.lineStyle(0, 0, 1);
 rectangle.graphics.beginFill(0, 1);
 rectangle.graphics.drawRect(0, 0, 100, 100);
 rectangle.graphics.endFill();
 addChild(rectangle);

 var menu:NativeMenu = new NativeMenu();
 var item:NativeMenuItem = new NativeMenuItem("copy");
 menu.addItem(item);

 rectangle.contextMenu = menu;
 }
 }

}

Figure 2.9 shows the result of this example.
 There’s just one more way to use menus with AIR applications.

Next we’ll look at using menus as pop-up menus.
POP-UP MENUS

You can display pop-up menus at any time programmatically.
Often you’ll want to open pop-up menus when the user clicks the
mouse or presses a key. Whatever you use as the trigger to open
the menu, the code you use to actually display the menu is the
same. You simply need to call the display() method of a
NativeMenu object. The display() method requires that you
specify three parameters: the Stage object on which to display
the menu, and the x and y coordinates at which to display the menu. Listing 2.29 illus-
trates a simple pop-up menu.

package {

 import flash.display.MovieClip;
 import flash.display.NativeMenu;
 import flash.display.NativeMenuItem;
 import flash.display.Sprite;
 import flash.events.MouseEvent;

 public class Example extends MovieClip {

Listing 2.28 Adding a context menu

Listing 2.29 Adding a pop-up menu

Figure 2.9 AIR
context menus can
appear outside the
boundaries of the
application window.

75Starting the AirTube application
 private var _menu:NativeMenu;

 public function Example() {

 _menu = new NativeMenu();
 var item:NativeMenuItem = new NativeMenuItem("a");
 _menu.addItem(item);
 item = new NativeMenuItem("b");
 _menu.addItem(item);
 item = new NativeMenuItem("c");
 _menu.addItem(item);
 item = new NativeMenuItem("d");
 _menu.addItem(item);

 var rectangle:Sprite = new Sprite();
 rectangle.graphics.lineStyle(0, 0, 1);
 rectangle.graphics.beginFill(0, 1);
 rectangle.graphics.drawRect(0, 0, 100, 100);
 rectangle.graphics.endFill();
 addChild(rectangle);

 rectangle.addEventListener(MouseEvent.MOUSE_DOWN, showMenu);

 }

 private function showMenu(event:MouseEvent):void {
 _menu.display(stage, mouseX, mouseY);
 }
 }

}

In this example, we first create a new menu and add four options to it B. Then we
create a display object C that we’ll use to launch the pop-up menu. We’ll launch the
pop-up menu when the user clicks the rectangle. Therefore we register an event lis-
tener for the mouseDown event D. When the user clicks the rectangle, we display the
pop-up menu at the point where the user is clicking E.

 You’ve now seen all the ways you can use menus in AIR applications: window
menus, application menus, icon menus, context menus, and pop-up menus. Not only
have we wrapped up our discussion of menus, but we’ve also covered all of the theo-
retical material in this chapter. Next we’ll start applying some of this knowledge in
building a sample application.

2.5 Starting the AirTube application
Throughout this book, we’ll use a variety of smaller example applications. However,
we’ll also have one central, larger example application that we’ll revisit and add to as
we cover more and more topics. We’re calling the application AirTube because it uses
Adobe AIR to provide access to the popular YouTube video service. In this chapter,
we’ll build the foundation for the rest of the application by creating the windows that
the application will use. Furthermore, we’ll create some of the other foundational
classes and components used by the application.

Create
new
menu

B

Create
rectangle

C

Listen for mouseDown event D

Display pop-
up menu

E

76 CHAPTER 2 Applications, windows, and menus
2.5.1 Overview of AirTube

AirTube uses the public YouTube developer API to create an AIR application that
allows users to search the YouTube catalog by keywords, play videos, and store videos
for offline playback. AirTube highlights the following features:

■ Desktop application with multiple windows
■ Search YouTube videos by keyword
■ Play back videos
■ View YouTube page for videos
■ Save videos locally
■ Search and play back local videos
■ Detect network availability
■ Save shortcuts to videos on the desktop

Before we get into the details of how to build the application, we’ll first look at two
screenshots from the completed application. In figure 2.10, you can see the main
screen. The main screen allows users to search for videos using keywords/tags. The
results are displayed in a two-column tile list.

Figure 2.10 The main screen of the AirTube application allows for searching and browsing
through videos.

77Starting the AirTube application
Next we look at the video window. Figure 2.11 shows the video window, which not only
plays back the selected video, but also allows the user to click through to the YouTube
page for the video or to download the video for offline viewing.

 In the next sections, we’ll walk through the first few steps to begin building the
application.

2.5.2 Getting started

Before we can start writing code, there are a few preliminary steps you’ll need to take.
They are as follows:

■ Sign up for a YouTube developer API key
■ Download two ActionScript libraries
■ Configure a new AIR project

This application relies on the YouTube service. (See www.youtube.com/dev.) This is a
free public service that allows developers to build applications that search YouTube’s
video library and play back the videos. Although the service is free, you do need an
account to be able to access it.

1 If you don’t have one already, you can sign up for a free YouTube account at
www.youtube.com/signup. Simply fill out the form and click Sign Up.

2 Once you’ve created an account and logged in, you should go to your account
page at www.youtube.com/my_account.

3 From your account page, click on the Developer Profile option, or you can go
directly to www.youtube.com/my_profile_dev.

4 Request a new developer ID. This is the key that you’ll need to access the You-
Tube service.

Figure 2.11 The video screen allows you to
view a video, go to the YouTube page, or save
the video locally.

http://www.youtube.com/dev
http://www.youtube.com/signup
http://www.youtube.com/my_account
http://www.youtube.com/my_profile_dev

78 CHAPTER 2 Applications, windows, and menus
Now that you have the necessary YouTube account and key, you’ll next need to get set
up with the necessary ActionScript libraries. Although you could write your own code
in ActionScript to work with the YouTube service directly, it’s simpler to leverage exist-
ing libraries that are built expressly for that purpose. You’ll need to download the
as3youtubelib library as well as the as3corelib library. The official sites for these librar-
ies are code.google.com/p/as3youtubelib and code.google.com/p/as3corelib,
respectively. But to make sure you’re working with the same version of the libraries
that we use in this book, you can download those versions from this book’s official site
at www.manning.com/lott.

 The next step is to create a new AIR project for the AirTube application. There’s
nothing unusual about this project, so you can create a new project in the way you
normally would, whether using Flex Builder or configuring the project manually.
Once you’ve created the project, add the as3youtubelib and as3corelib libraries. If
you’ve downloaded the libraries from this book’s site, you’ll be downloading the
source code, and the easiest way to add the code to your project is to unzip the code to
the project’s source directory.

 That’s all you need to do to configure your project. Now we can get started build-
ing the application.

2.5.3 Building the data model

The AirTube application centers around a data model locator that we’ll call
ApplicationData. The ApplicationData class uses the Singleton design pattern to
ensure there’s only one globally accessible instance of the class throughout the appli-
cation. We use the ApplicationData instance to store all the information about the
application state: is the application online or offline, are there any video results to a
query, is a video currently downloading, and so forth. All that information gets stored
in ApplicationData.

 We’re going to build ApplicationData (or at least the start of it) in just a minute.
But first we have to create another class that we’ll use as part of the application’s data
model. Because AirTube is essentially a video searching and viewing application, the
one model class we’re going to build is a video model class that we’ll call AirTube-
Video. The AirTubeVideo class is a wrapper for the Video class from the as3youtube
library. The as3youtube Video class is how all the data from the API calls gets serialized
when it’s returned, and contains information such as video title, ID, thumbnail image,
and so on. We’re creating a wrapper class (AirTubeVideo) for modeling video data
because, in addition to the information returned by the YouTube API, we’re also going
to want to store a few extra pieces of data about each video, including the URL for the
.flv file and whether we’ve stored the particular video locally. Follow these steps to cre-
ate the data model for the AirTube application:

1 Create a new ActionScript class document and save it to com/manning/
airtube/data/AirTubeVideo.as relative to your project’s source directory.

http://www.manning.com/lott

79Starting the AirTube application
2 Add the code from listing 2.30 to the AirTubeVideo class. As you can see, Air-
TubeVideo requires a Video parameter when constructing a new instance. The
class has an accessor (getter) method for the Video object as well as two addi-
tional pieces of data: the URL for the .flv file and the offline status of the video
(whether or not it’s been downloaded locally).

package com.manning.airtube.data {

 import com.adobe.webapis.youtube.Video;

 import flash.events.Event;
 import flash.events.EventDispatcher;

 public class AirTubeVideo extends EventDispatcher {

 private var _video:Video;
 private var _flvUrl:String;
 private var _offline:Boolean;

 public function get video():Video {
 return _video;
 }

 [Bindable(event="flvUrlChanged")]
 public function get flvUrl():String {
 return _flvUrl;
 }

 public function set flvUrl(value:String):void {
 _flvUrl = value;
 dispatchEvent(new Event("flvUrlChanged"));
 }

 [Bindable(event="offlineChanged")]
 public function set offline(value:Boolean):void {
 _offline = value;
 dispatchEvent(new Event("offlineChanged"));
 }

 public function get offline():Boolean {
 return _offline;
 }

 public function AirTubeVideo(value:Video) {
 _video = value;
 }

 }
}

In the code, you can see that we’re using a [Bindable] metadata tag B that’s
used by Flex to enable data binding. We use the same convention throughout
the book for the event names and [Bindable] metadata tags: the event name is
the name of the getter/setter plus Changed. For example, in this case, the get-
ter/setter is named flvUrl and the event is therefore flvUrlChanged.

Listing 2.30 The AirTubeVideo class

Enable Flex
data binding

B

80 CHAPTER 2 Applications, windows, and menus
3 Create a new ActionScript class document and save it to com/manning/air-
tube/data/ApplicationData.as relative to your project’s source directory.

4 Add the code from listing 2.31 to the ApplicationData class. The Applica-
tionData class uses the Singleton pattern, which is why it has a static _instance
property and an accessor method (getInstance()) to retrieve the one instance
of the class. Otherwise, ApplicationData only has two pieces of data at this
time: an array of videos and a reference to a currently selected video.

package com.manning.airtube.data {

 import flash.events.Event;
 import flash.events.EventDispatcher;

 public class ApplicationData extends EventDispatcher {

 static private var _instance:ApplicationData;

 private var _videos:Array;
 private var _currentVideo:AirTubeVideo;

 [Bindable(event="videosChanged")]
 public function set videos(value:Array):void {
 _videos = value;
 dispatchEvent(new Event("videosChanged"));
 }

 public function get videos():Array {
 return _videos;
 }

 [Bindable(event="currentVideoChanged")]
 public function set currentVideo(value:AirTubeVideo):void {
 _currentVideo = value;
 dispatchEvent(new Event("currentVideoChanged"));
 }

 public function get currentVideo():AirTubeVideo {
 return _currentVideo;
 }

 public function ApplicationData() {

 }

 static public function getInstance():ApplicationData {
 if(_instance == null) {
 _instance = new ApplicationData();
 }
 return _instance;
 }

 }
}

If you’re unfamiliar with the Singleton pattern, there are two key things to look
at in this code. First, there’s a static property with the same type as the class itself

Listing 2.31 The ApplicationData class

Managed
instance of
classB

Accessor to
managed instance C

81Starting the AirTube application
B. We use this property to store the one instance of the class. Next, the get-
Instance() method C is a public static method that returns a reference to the
one instance of the class. You’ll see this same pattern used throughout several
other classes in the AirTube application.

That’s all that’s necessary to build the basics of the data model for the AirTube appli-
cation. Next we’ll start building the service that the AirTube uses.

2.5.4 Building the AirTube service

The AirTube application is built primarily around the YouTube developer API. We’ll
write a class called AirTubeService that acts as a proxy to the YouTube API. We’ll also
add other functionality into the service class over time. The following steps walk you
through building the initial stages of the service class:

1 Open a new ActionScript class document and save it to com/manning/air-
tube/services/AirTubeService.as relative to your AirTube project’s source direc-
tory.

2 Add the code from listing 2.32 to the AirTubeService class. You’ll notice that
AirTubeService also uses the Singleton design pattern.

package com.manning.airtube.services {

 import com.adobe.webapis.youtube.YouTubeService;
 import com.adobe.webapis.youtube.events.YouTubeServiceEvent;
 import com.manning.airtube.data.AirTubeVideo;
 import com.manning.airtube.data.ApplicationData;

 import flash.events.Event;

 public class AirTubeService {

 static private var _instance:AirTubeService;

 public function AirTubeService() {
 }

 static public function getInstance():AirTubeService {
 if(_instance == null) {
 _instance = new AirTubeService();
 }
 return _instance;
 }
 }
}

3 Add a _proxied property that references an instance of the YouTubeService
class from the as3youtube library. This instance allows AirTubeService to make
calls to methods of YouTubeService. Listing 2.33 shows AirTubeService with
the changes in bold.

Listing 2.32 The AirTubeService class

82 CHAPTER 2 Applications, windows, and menus
package com.manning.airtube.services {

 import com.adobe.webapis.youtube.YouTubeService;
 import com.adobe.webapis.youtube.events.YouTubeServiceEvent;
 import com.manning.airtube.data.AirTubeVideo;
 import com.manning.airtube.data.ApplicationData;

 import flash.events.Event;

 public class AirTubeService {

 static private var _instance:AirTubeService;

 private var _proxied:YouTubeService;

 public function set key(value:String):void {

 _proxied.apiKey = value;
 }

 public function AirTubeService() {

 _proxied = new YouTubeService();
 _proxied.addEventListener(

➥YouTubeServiceEvent.VIDEOS_LIST_BY_TAG, getVideosByTagsResultHandler);
 }

 static public function getInstance():AirTubeService {
 if(_instance == null) {
 _instance = new AirTubeService();
 }
 return _instance;
 }

 public function getVideosByTags(tags:String):void {
 if(_proxied.apiKey.length == 0) {
 throw Error("YouTube API key not set");
 }
 _proxied.videos.listByTag(tags);
 }

 private function getVideosByTagsResultHandler(

 ➥event:YouTubeServiceEvent):void {
 var videos:Array = event.data.videoList as Array;
 for(var i:Number = 0; i < videos.length; i++) {
 videos[i] = new AirTubeVideo(videos[i]);
 }
 ApplicationData.getInstance().videos = videos;
 }

 }
}

The _proxied property B is what we’ll use to store a reference to an instance
of the YouTubeService class from the as3youtube library. We’ll use the instance
to make calls to the YouTube service. You can see that we create an instance of
the service in the constructor C.

Listing 2.33 The AirTubeService class with the proxied service requests

Reference to
as3youtube
service

B

Set
developer
key

Create service and
listen to event

C

Search
for
videos

D

Video search
response handler

Loop
through
results

E

Update data model F

83Starting the AirTube application
The YouTube service requires a developer key that you created in the getting
started section. The YouTubeService class requires that you pass it the devel-
oper key via a property called apiKey. We’re creating a setter for the Air-
TubeService that allows you to pass along the developer key to the
YouTubeService instance.

The getVideosByTags() method D makes the request to retrieve videos
that contain one or more of the tags/keywords specified. This method merely
makes a call to the listByTag() method that’s available from the YouTube
service via the _proxied instance. The only thing we’re doing other than relay-
ing the request is ensuring that the developer key is defined. If the key isn’t
yet defined, the service won’t work. Therefore, we throw an error if the key
isn’t defined.

The getVideosByTagsResultHandler() method is the event handler when a
response is returned from the YouTubeService’s listByTag() method. This is
where we’ll take the result set, transform it into usable data, then assign that to
the ApplicationData instance. The data is returned as an array of Video objects
(from the as3youtube library). The array is stored in a data.videoList property
of the event object. We want to loop through all the results and wrap them in
AirTubeVideo objects E. Once the videos are properly formatted as AirTube-
Video objects, we can assign the array to the videos property of the Applica-
tionData object F. That will cause ApplicationData to dispatch an event,
notifying listeners that they should update themselves based on the new data.

We’ve now built the service class for the AirTube application. Next we’ll build the win-
dows for the application and wire everything up.

2.5.5 Retrieving .flv URLs

The YouTube API at the time of this writing doesn’t return a direct URL to the .flv files
for the videos. Instead, when you request videos from YouTube, it returns a URL to the
Flash-based video player that in turn accesses the .flv file. In order to retrieve videos
that we can download and save locally, the AirTube application needs to get a direct
URL to the .flv file for a video. To achieve this feat, we have to resort to a bit of magic.
In this section, we’ll build a class that retrieves the actual .flv URL for a given video
based on its YouTube player URL.

NOTE The mechanism by which we retrieve the URL for an .flv on YouTube is,
to put it bluntly, a hack. As a result, we can’t guarantee that YouTube will
continue to support access to files in this way. Should the system change,
please know that we’ll make every reasonable effort to find a new working
solution and make that available through the book’s web site.

At the time of this writing, the URL to retrieve an .flv file from YouTube requires two
pieces of information that YouTube calls video_id and t. These two pieces of infor-
mation can be retrieved by making a request to the player URL as returned by the You-
Tube service, and then reading the video_id and t values from the URL to which the

84 CHAPTER 2 Applications, windows, and menus
player URL redirects. An example might help clarify this. The following is an example
of a player URL returned from the YouTube service:

http://www.youtube.com/v/llRw9UG48Dw

If you view that in a web browser, you’ll notice that it redirects to the following URL:

http://www.youtube.com/swf/l.swf?video_id=llRw9UG48Dw&rel=1&eurl=&i

➥url=http%3A//i.ytimg.com/vi/llRw9UG48Dw/default.jpg&

➥t=OEgsToPDskJtLebBhzjJbUnpN-uo9iSI

In the preceding URL, we’ve shown in bold the video_id and t values to make them
easier to see. These are the values we want to retrieve from the URL. With those two
values, we can retrieve the .flv file using the following URL, with the video_id and t
values we’ve retrieved being substituted for the italicized text:

http://www.youtube.com/get_video.php?video_id=video_id&t=t

In order to achieve our goal, we write a helper class called YouTubeFlvUrlRetriever
and add a method to the AirTubeService class. Go ahead and complete the following
steps:

1 Open a new ActionScript class document and save it as com/manning/airtube/
utilities/YouTubeFlvUrlRetriever.as relative to the source directory.

2 Add the code from listing 2.34 to the YouTubeFlvUrlRetriever class.

package com.manning.airtube.utilities {
 import com.manning.airtube.data.AirTubeVideo;
 import flash.display.Loader;
 import flash.events.Event;
 import flash.net.URLRequest;

 import flash.net.URLVariables;

 public class YouTubeFlvUrlRetriever {

 private var _currentVideo:AirTubeVideo;
 private var _loader:Loader;

 public function YouTubeFlvUrlRetriever() {
 _loader = new Loader();
 }

 public function getUrl(video:AirTubeVideo):void {
 _currentVideo = video;
 var request:URLRequest = new
URLRequest(video.video.playerURL);
 _loader.contentLoaderInfo.addEventListener(Event.INIT,

 ➥videoInitializeHandler);
 _loader.load(request);
 }

 private function videoInitializeHandler(event:Event):void {
 var variables:URLVariables = new URLVariables();

Listing 2.34 The YouTubeFlvUrlRetriever class

Create
loader

B

Store
current
video

C

Compose
request to
player URL

D

Listen for
init eventE

http://www.youtube.com/v/llRw9UG48Dw
http://www.youtube.com/swf/l.swf?video_id=llRw9UG48Dw&rel=1&eurl=&i
http://www.youtube.com/get_video.php?video_id=video_id&t=t

85Starting the AirTube application
 variables.decode(

 ➥_loader.contentLoaderInfo.url.split("?")[1]);
 var flvUrl:String = "http://www.youtube.com/get_video.php?" +
 "video_id=" + variables.video_id + "&t=" + variables.t;
 _currentVideo.flvUrl = flvUrl;
 _loader.unload();
 }

 }
}

In this code, the first thing we do is construct a new Loader object B. We use a
Loader object to make the HTTP request to the YouTube player URL and
retrieve the video_id and t variables.

When we’re ready to request a URL, the first thing we do is store a reference
to the video C in order to update its flvUrl property once we’ve retrieved the
URL. Next we can create a request that points to the URL of the YouTube player
for the video D, and then we load the URL E. This will make the request and
receive the redirected URL once it initializes.

When the application receives an init response to the request, the Loader
object’s contentLoaderInfo.url property will be the redirect URL containing
the video_id and t variables. We’re splitting the URL on the question mark to
get just the querystring portion, then running that through decode() F in
order to have the URLVariables object parse out the variables. That enables us
to construct the URL to the .flv file using the variables we just decoded G. Once
we’ve composed the correct URL, we can update the flvUrl property of the cur-
rent video H. And we also need to unload the Loader object I to stop down-
loading the YouTube video player because we only needed to make the request
to retrieve the variables, not the player itself.

3 Open AirTubeService and add the method from listing 2.35. This method sets
the currentVideo property of ApplicationData in order to keep track of the
video that the user has selected, then it tests to see whether the flvUrl property
of the video is null. The property will be null if the video hasn’t yet been config-
ured by the YouTubeFlvUrlRetriever. If the property is null, we run it through
the YouTubeFlvUrlRetriever.

public function configureVideoForPlayback(video:AirTubeVideo):void {
 ApplicationData.getInstance().currentVideo = video;
 if(video.flvUrl == null) {
 new YouTubeFlvUrlRetriever().getUrl(video);
 }
}

We’ve now successfully written the code to retrieve the .flv URL. Next we’ll start build-
ing the windows that allow the user to search for videos, see the results, and even play
back video.

Listing 2.35 The configureVideoForPlayback() method

Decode URL
variablesF

Store
URL

Compose
URL to .flv GHStop

loading
playerI

http://www.youtube.com/get_video.php?

86 CHAPTER 2 Applications, windows, and menus
2.5.6 Building the AirTube main window

The main window for the AirTube application (which you can see in figure 2.10) con-
sists of a search control bar, a list view for video search results, and a button to launch
the selected video for playback. In this section, we’ll build the main window and wire
it up to allow the user to make requests to the YouTube service for video results. Fol-
low these steps:

1 Create a new MXML document and save it as AirTube.mxml to the source direc-
tory of the AirTube project.

2 Add the code from listing 2.36 to the document. You’ll notice that we’ve
designed AirTube.mxml such that it also uses the Singleton pattern.

<?xml version="1.0" encoding="utf-8"?>
<mx:WindowedApplication xmlns:mx="http://www.adobe.com/2006/mxml"
 layout="absolute" width="800" height="600"
 creationComplete="creationCompleteHandler();">
 <mx:Script>
 <![CDATA[
 import com.manning.airtube.services.AirTubeService;
 import com.manning.airtube.data.ApplicationData;

 static private var _instance:AirTube;

 private var _service:AirTubeService;

 static public function getInstance():AirTube {
 return _instance;
 }

 private function creationCompleteHandler():void {
 _service = AirTubeService.getInstance();
 _service.key = "YourAPIKey";
 _instance = this;
 }
]]>
 </mx:Script>
 <mx:VBox width="100%">
 <mx:Label text="AirTube: Adobe AIR and YouTube" />
 <mx:HBox>
 <mx:Label text="tags:" />
 <mx:TextInput id="tags" text="Adobe AIR" />
 <mx:Button label="Search For Videos" />
 </mx:HBox>
 <mx:TileList id="videoList"
 dataProvider="{ApplicationData.getInstance().videos}"
 width="100%" height="400"
 columnCount="2" horizontalScrollPolicy="off" />
 </mx:VBox>
</mx:WindowedApplication>

In most cases of the Singleton pattern, the getInstance() method uses lazy
instantiation, creating an instance of the class if it hasn’t been created already.

Listing 2.36 AirTube.mxml

B
No lazy
instantiation

Run
initialization

C

Get
serviceDSet

developer
key

Set
Singleton
instance

Component
to display
results

http://www.adobe.com/2006/mxml

87Starting the AirTube application
In this case, that isn’t necessary. We can simply return a reference to _instance

B without testing whether _instance is null. Because AirTube.mxml is the
WindowedApplication instance for the AirTube application, we know that it’ll
always exist before any other code tries to reference it.

The AirTube.mxml code is wired up to call the creationCompleteHandler()
method C when the creationComplete event occurs. In the creationCom-
pleteHandler() method, we add the code that needs to occur when the appli-
cation starts. We’ll use the AirTubeService instance a lot in this document.
Therefore, we’ll just store a reference to it D. We then need to set the devel-
oper key to use for the YouTube service. You must replace YourAPIKey with your
YouTube API key for this to work. And we also need to assign the this instance
to the _instance property. This is part of the Singleton pattern. We know that
there’s only one instance of AirTube.mxml ever created, and we know that it’s
automatically created when the application starts.

We use a tile list component to display the search results when the user
searches for videos. Note that we’re using databinding to wire up the compo-
nent with the videos property of the ApplicationData instance. Any time the
videos property updates, the tile list will refresh.

3 Add the code that makes the service request for the videos. This requires add-
ing an event handler to the search button. The changes to the code are shown
in bold in listing 2.37.

<?xml version="1.0" encoding="utf-8"?>
<mx:WindowedApplication xmlns:mx="http://www.adobe.com/2006/mxml"
 layout="absolute" width="800" height="600"
 creationComplete="creationCompleteHandler();">
 <mx:Script>
 <![CDATA[
 import com.manning.airtube.services.AirTubeService;
 import com.manning.airtube.data.ApplicationData;

 static private var _instance:AirTube;

 private var _service:AirTubeService;

 static public function getInstance():AirTube {
 return _instance;
 }

 private function creationCompleteHandler():void {
 _service = AirTubeService.getInstance();
 _service.key = "YourAPIKey";
 _instance = this;
 }

 private function getVideosByTags():void {
 _service.getVideosByTags(tags.text);
 }

Listing 2.37 Adding search behavior to AirTube.mxml

http://www.adobe.com/2006/mxml

88 CHAPTER 2 Applications, windows, and menus
]]>
 </mx:Script>
 <mx:VBox width="100%">
 <mx:Label text="AirTube: Adobe AIR and YouTube" />
 <mx:HBox>
 <mx:Label text="tags:" />
 <mx:TextInput id="tags" text="Adobe AIR" />
 <mx:Button label="Search For Videos" click=

 ➥"getVideosByTags();" />
 </mx:HBox>
 <mx:TileList id="videoList"
 dataProvider="{ApplicationData.getInstance().videos}"
 width="100%" height="400"
 columnCount="2" horizontalScrollPolicy="off" />
 </mx:VBox>
</mx:WindowedApplication>

4 Test your application at this point, and you’ll probably see something similar to
figure 2.12 (assuming you run the search). You’ll notice that the search results
show up simply as text in the list—and not particularly meaningful or useful
text to most users. We’d like to change that by creating a custom item renderer
for the tile list. To do that, first open a new MXML document and save it as
com/manning/airtube/ui/VideoTileRenderer.mxml relative to your project
source directory.

5 Add the code from listing 2.38 to the VideoTileRenderer component. The
code is simple. It uses an image and a label to display the thumbnail and the
title of the video that’s passed to the renderer via the data property.

Figure 2.12 The AirTube main window before customizing the item renderer for the
search results

89Starting the AirTube application
<?xml version="1.0" encoding="utf-8"?>
<mx:HBox xmlns:mx="http://www.adobe.com/2006/mxml" width="200"

➥height="100"
 verticalScrollPolicy="off" horizontalScrollPolicy="off">
 <mx:Image source="{data.video.thumbnailUrl}" />
 <mx:Label text="{data.video.title}" />
</mx:HBox>

6 Update AirTube.mxml to tell it to use the correct item renderer. All we need to
do is update one line of code by adding an itemRenderer attribute to the
TileList tag, as shown in listing 2.39.

<mx:TileList id="videoList"
 dataProvider="{ApplicationData.getInstance().videos}"
 width="100%" height="400"
 columnCount="2" horizontalScrollPolicy="off"
 itemRenderer="com.manning.airtube.ui.VideoTileRenderer" />

Now that we’ve created the main window, we’re going to add two more windows: the
video and HTML windows.

2.5.7 Adding the video and HTML windows

The AirTube application has two windows in addition to the main window. One allows
for the playback of videos and one allows for the viewing of HTML pages. (In this case
we’re allowing the user to view the YouTube page for a video.) To add these windows
to the application, complete the following steps:

1 Create a new MXML document and save it as com/manning/airtube/windows/
VideoWindow.mxml relative to the project’s source directory.

2 Add the code from listing 2.40 to the VideoWindow component.

<?xml version="1.0" encoding="utf-8"?>
<mx:Window xmlns:mx="http://www.adobe.com/2006/mxml"
 width="400" height="400"
 type="utility"
 closing="closingHandler(event);"
 creationComplete="creationCompleteHandler();">

 <mx:Script>
 <![CDATA[
 import com.manning.airtube.services.AirTubeService;
 import com.manning.airtube.data.ApplicationData;

 [Bindable]
 private var _applicationData:ApplicationData;

 private function creationCompleteHandler():void {
 _applicationData = ApplicationData.getInstance();

Listing 2.38 VideoTileRenderer.mxml

Listing 2.39 Using a custom item renderer with the tile list

Listing 2.40 VideoWindow.mxml

Set width
and height

Set type to utility

Handle
closing
eventHandle creationComplete event

http://www.adobe.com/2006/mxml
http://www.adobe.com/2006/mxml

90 CHAPTER 2 Applications, windows, and menus
 }

 private function closingHandler(event:Event):void {
 event.preventDefault();
 visible = false;
 }

 private function togglePlayback():void {
 if(videoDisplay.playing) {
 videoDisplay.pause();
 playPauseButton.label = "Play";
 }
 else {
 videoDisplay.play();
 playPauseButton.label = "Pause";
 }
 }

]]>
 </mx:Script>
 <mx:VBox>
 <mx:Label text=

 ➥"{_applicationData.currentVideo.video.title}" />
 <mx:VideoDisplay id="videoDisplay"
 source="{_applicationData.currentVideo.flvUrl}"
 width="400" height="300" />
 <mx:HBox>
 <mx:Button id="playPauseButton" label="Pause"
 click="togglePlayback();" />
 </mx:HBox>
 </mx:VBox>
</mx:Window>

Notice that when the closing event occurs, we handle it to prevent the default
behavior B and instead set the visibility of the window. Also note that the label
and video display components use data binding to wire themselves up to prop-
erties of the current video C D.

3 Create a new MXML document and save it as com/manning/airtube/windows/
HTMLWindow.mxml relative to the project’s source directory.

4 Add the code from listing 2.41 to HTMLWindow.mxml. This window has no con-
tent at this time. We’ll add content in chapter 7. You’ll notice that this compo-
nent also handles the closing event in the same way as VideoWindow.

<?xml version="1.0" encoding="utf-8"?>
<mx:Window xmlns:mx="http://www.adobe.com/2006/mxml" layout="absolute"
 width="800" height="800" closing="closingHandler(event);">
 <mx:Script>
 <![CDATA[

 private function closingHandler(event:Event):void {
 event.preventDefault();
 visible = false;

Listing 2.41 HTMLWindow.mxml

Prevent
window
from
closingB

Display video title C

Wire up video display D

http://www.adobe.com/2006/mxml

91Starting the AirTube application
 }

]]>
 </mx:Script>
</mx:Window>

5 Update AirTube.mxml to contain references to instances of the two windows we
just created, and allow the user to launch the video window and view a selected
video. Also, add code to close all the windows when the user closes the applica-
tion. Listing 2.42 shows the changes in bold.

<?xml version="1.0" encoding="utf-8"?>
<mx:WindowedApplication xmlns:mx="http://www.adobe.com/2006/mxml"
 layout="absolute" width="800" height="600"
 creationComplete="creationCompleteHandler();"
 closing="closingHandler();">
 <mx:Script>
 <![CDATA[
 import com.manning.airtube.services.AirTubeService;
 import com.manning.airtube.data.ApplicationData;

 static private var _instance:AirTube;

 private var _service:AirTubeService;
 private var _videoWindow:VideoWindow;
 private var _htmlWindow:HTMLWindow;
 static public function getInstance():AirTube {
 return _instance;
 }

 private function creationCompleteHandler():void {
 _service = AirTubeService.getInstance();
 _service.key = "YourAPIKey";
 _instance = this;
 _videoWindow = new VideoWindow();
 _htmlWindow = new HTMLWindow();
 }

 private function getVideosByTags():void {
 _service.getVideosByTags(tags.text);
 }

 private function playVideo():void {
 var video:AirTubeVideo =

 ➥videoList.selectedItem as AirTubeVideo;
 _service.configureVideoForPlayback(video);
 if(_videoWindow.nativeWindow == null) {
 _videoWindow.open();
 }
 else {
 _videoWindow.activate();
 }
 }

 public function launchHTMLWindow(url:String):void {

Listing 2.42 Updating AirTube.mxml with the windows

Create instance
of windows

B

Retrieve
selected video

C

Get .flv URLD
Open video

window E

Open
HTML
window

F

http://www.adobe.com/2006/mxml

92 CHAPTER 2 Applications, windows, and menus
 if(_htmlWindow.nativeWindow == null) {
 _htmlWindow.open();
 }
 else {
 _htmlWindow.activate();
 }
 }

 private function closingHandler():void {
 for(var i:Number = 0; i <

 ➥nativeApplication.openedWindows.length; i++) {
 nativeApplication.openedWindows[i].close();
 }
 }

]]>
 </mx:Script>
 <mx:VBox width="100%">
 <mx:Label text="AirTube: Adobe AIR and YouTube" />
 <mx:HBox>
 <mx:Label text="tags:" />
 <mx:TextInput id="tags" text="Adobe AIR" />
 <mx:Button label="Search For Videos"
 click="getVideosByTags();" />
 </mx:HBox>
 <mx:TileList id="videoList"
 dataProvider="{ApplicationData.getInstance().videos}"
 width="100%" height="400"
 columnCount="2" horizontalScrollPolicy="off" />
 <mx:Button label="Play Selected Video" click="playVideo();"
 enabled="{videoList.selectedItem != null}" />
 </mx:VBox>
</mx:WindowedApplication>

The application only allows one video window and one HTML window. We reuse
these instances for every video and every HTML page the application opens,
thus creating instances of each of them B. We open them based on user action.

When the user wants to play a video, we need to do several things. First we
need to retrieve the video that the user has selected from the list C. Then we
need to run the video through the configureVideoForPlayback() method to
make sure it has the URL to the .flv file D. And then we can open the video win-
dow instance E.

In our code, we’ve added a method that doesn’t get called yet. We’re defin-
ing the launchHTMLWindow() method F here in order to call it later. This
method simply opens the HTML window.

As with most of the applications we build, we want to make sure that, when
the user closes the main window, it closes all the windows in the application. We
use the closingHandler() method G for this purpose.

We also add a button to play the selected video H. When the user clicks on
the button, it calls playVideo(). The button is only enabled when a video has
been selected from the list.

Close all
windows

G

Button to play video H

93Summary
With that, we’ve completed the first phase of the AirTube application. Thus far, the
user can search for videos and play back a video in the video window. As we continue
through subsequent chapters, we’ll add more functionality to the application.

2.6 Summary
In this chapter, you've learned all the fundamentals of working with applications, win-
dows, and menus. That’s a lot of information, and much of it’s probably new to you,
because the concepts are more relevant to desktop applications than they are to web
applications.

 Take your time and reread any material from this chapter that you feel you need to
review. Here’s a summary of some of the key points you’ll want to be familiar with:

■ Applications and windows are represented programmatically using Native-
Application and NativeWindow objects in pure ActionScript, and Windowed-
Application and Window objects in Flex.

■ Creating windows, opening windows, and adding content to windows are inde-
pendent actions that you need to manage.

■ You can create windows that have irregular shapes.
■ Applications allow you to do a variety of application-level functions such as

detecting user idleness and launching an application in full-screen mode.
■ AIR allows you to create native operating system menus and use them in a vari-

ety of ways, including window menus, application menus, icon menus, context
menus, and pop-up menus.

When you’re ready, go ahead to the next chapter, where you’ll learn all about working
with the file system to do things such as read and write files.

File system integration
This chapter is practically brimming over with information, because there’s a tre-
mendous amount you can do with the file system capabilities in AIR. In fact, you’re
limited in large part only by your imagination. We have a lot of ground to cover in
this chapter, including the following:

■ Referencing files and directories
■ Getting directory listings
■ Copying and moving files and directories
■ Deleting files and directories
■ Reading from files
■ Writing to files

This chapter covers
■ Retrieving directory listings
■ Moving and copying files and directories
■ Reading from files
■ Writing to files
94

95Understanding synchronicity
We’re going to tackle all these topics in detail, with lots of examples you can use to fol-
low along. Before long you’ll be an old pro at working with the file system.

 Before we get to the core file system skills, we’re going to talk about the impor-
tant topic of synchronous and asynchronous programming. This is an important
concept for much of AIR programming, and especially important when working with
the file system.

3.1 Understanding synchronicity
The concepts of synchronous and asynchronous programming are important when
building AIR applications. These concepts aren’t unique to working with the file sys-
tem, but this is the first point in the book when these concepts are going to be impor-
tant, so we’ll cover the topic here.

 Synchronous programming is likely familiar to you, because it’s the most common
and the simplest form of programming. When code executes synchronously, each
statement runs in sequence with each statement completing and returning any result
before the next statement is executed. Listing 3.1 shows an example of typical syn-
chronous code.

var devoTracks:Array = new Array("Freedom Of Choice", "Planet Earth",

➥"Cold War", "Don't You Know");
devoTracks.push("Mr. B's Ballroom");
var trackCount:int = devoTracks.length;
for(var i:int = 0; i < trackCount; i++) {
 trace(devoTracks[i]);
}

In the listing, each statement must complete its execution before the next line of code
can execute. For example, the first line of code creates an array with initial values
before the next statement can execute, which appends a value to the array. Synchro-
nous programming is so normal and second nature, it’s likely that you hardly think of
it as anything other than just “programming.” While most ActionScript statements are
synchronous in nature, there are many statements that are asynchronous.

 Asynchronous statements don’t have to complete execution before the next state-
ment executes. This type of programming may seem chaotic, but it has real value in
scenarios where an operation may take a long time to execute, because that could
cause an application to halt or freeze up from the user’s perspective. Consider the fol-
lowing common scenario: you want to load XML data at runtime from an external
XML file in order to use it in an application. Using the flash.net.URLLoader class,
this task is simple. All you have to do is construct the URLLoader object and call the
load() method, telling it where to find the XML file. However, depending on the
amount of data and the network connection being used, it could take a little or a lot
of time to load the data. If the load() method of a URLLoader object executed syn-
chronously, everything in the application could freeze up until the XML data had

Listing 3.1 Sample synchronous code

96 CHAPTER 3 File system integration
loaded completely. Because of that possibility, the load() method is designed to exe-
cute asynchronously. That means that the application doesn’t have to wait until the
load() method has completely loaded the data before the next statement executes.
Listing 3.2 demonstrates this concept.

private var _loader:URLLoader;

private function startXmlRequest():void {
 _loader = new URLLoader();
 _loader.addEventListener(Event.COMPLETE, loaderCompleteHandler);
 _loader.load(new URLRequest("data.xml"));
 trace(_loader.data);
}

private function loaderCompleteHandler(event:Event):void {
 trace(_loader.data);
}

In the listing, you can see that there are two trace() statements. The trace() state-
ment that immediately follows the call to the load() method always executes before
the trace() statement in the loaderCompleteHandler() method. This is because the
load() method of a URLLoader object executes asynchronously. That means that the
trace() statement following the call to load() executes before the data completes
loading. The implication is that the first trace() statement always outputs null,
because the data property of the URLLoader object will be null until the data has com-
pleted loading. This is an important implication of asynchronous programming.
When a statement executes asynchronously, the results of that operation won’t be
available immediately after the statement begins execution.

 Because the results of asynchronous operations aren't immediately available, asyn-
chronous programming requires a little more careful planning than purely synchro-
nous programming. As an example, you wouldn’t want to try to do something with the
data from a load() request before it was actually available. Asynchronous program-
ming can prevent your application from appearing to freeze, but it means you need to
make sure that code executes in the right sequence. You can ensure the correct
sequence of code execution by using events and event listeners. An example of this is
shown in listing 3.2. Objects can broadcast events when something of significance
occurs. For example, when a URLLoader object completes loading data from a load()
request, it broadcasts (or dispatches) an event of type complete. You can register a
method with an object such that the method gets called when that object broadcasts a
particular event type. The method is then known as an event listener. In listing 3.2, the
URLLoader object is an event dispatcher that dispatches a complete event, and the
loaderCompleteHandler() method is an event listener that gets called when the URL-
Loader object dispatches the complete event. In that way, you can be sure that the
URLLoader object’s data will be loaded and available when the loaderCompleteHand-
ler() method is called.

Listing 3.2 Asynchronous statement execution

97Understanding synchronicity
 As you can see, while synchronous programming may be the most common sort of
programming, even standard ActionScript code has some operations that are inher-
ently asynchronous. Most core ActionScript operations are either synchronous or
asynchronous, but not both. But many AIR operations have both synchronous and
asynchronous versions. That gives you, the developer, more flexibility in how you
code, but it also gives you more responsibility for determining which version to select
in a given scenario.

 As a general rule, synchronous operations are most appropriate when the opera-
tion will execute quickly. Because a synchronous operation that requires a lot of time
to execute can cause the application to appear to freeze up, it’s usually advisable to
use asynchronous versions of operations in such cases.

 In this chapter, you’ll learn about using the flash.filesystem.File class to get a
directory listing from the local file system. This is an AIR operation that has both syn-
chronous and asynchronous versions. The synchronous version is the most intuitive to
use because it returns an array of the contents of the directory, which you can use
immediately. For example, listing 3.3 retrieves the contents of a directory (from a
File object called documentsDirectory), and immediately assigns that result to the
dataProvider property of a list component.

directoryContentList.dataProvider =

➥documentsDirectory.getDirectoryListing();

If a directory happens to have a large number of files and subdirectories, the opera-
tion can take a long time. That will halt all other operations in Flash player. Depend-
ing on what’s going on in the application at that time, it could potentially mean that
the user would be unable to click on buttons, video or animations might halt, audio
could be choppy, and the application could generally be unresponsive until the direc-
tory listing operation completed. In some cases it isn’t problematic if the application
appears to freeze during the directory listing operation, but in many cases it isn’t
ideal. Instead, you can use the asynchronous version of the operation, getDirectory-
ListingAsync(). The asynchronous version of the operation, as with nearly all
ActionScript asynchronous operations, doesn’t return a value. Instead, you must regis-
ter to listen for an event that occurs when the operation has completed. In the case of
getDirectoryListingAsync(), the File object from which you call the method will
dispatch a directoryListing event when the directory listing operation completes.
Because the method doesn’t immediately return the directory listing, you must wait
until the event occurs before you can read the data or do anything with it. The code
snippet in listing 3.4 illustrates how an asynchronous directory listing works.

private function getDocumentsDirectoryListing():void {
 var documentsDirectory:File = File.documentsDirectory;

Listing 3.3 Retrieving a directory listing synchronously

Listing 3.4 Retrieving a directory listing asynchronously

98 CHAPTER 3 File system integration
 documentsDirectory.addEventListener(FileListEvent.DIRECTORY_LISTING,

 ➥directoryListingHandler);
 documentsDirectory.getDirectoryListingAsync();
}

private function directoryListingHandler(event:FileListEvent):void {
 directoryListingList.dataProvider = event.files;
}

If you compare listings 3.3 and 3.4, you can see that achieving a result asynchronously
requires more code and more complex logic than achieving the same result synchro-
nously. However, asynchronous programming can help you build an application that
works without freezing up even when particular operations take a while to execute.

 Throughout this chapter and the rest of the book, we’ll tell you when there are
synchronous and asynchronous versions of an operation, and we’ll show you examples
of both in many cases. If you need a reminder about the differences between synchro-
nous and asynchronous programming, refer back to this section at any time.

3.1.1 Canceling asynchronous file operations

When you make a call to an asynchronous file system operation, you know when it’s
complete because an event is dispatched. For example, when you make a request for a
directory listing asynchronously, the File object from which you’ve called the method
dispatches a directoryListing event when the operation has completed. Even
though you know that at some point an operation will likely complete, you don’t nec-
essarily have a way of knowing ahead of time how long that operation will take. It’s
possible that you (as the developer of an AIR application) or a user of your application
may decide that an operation is taking too long. For example, retrieving a directory
listing, copying, or writing a file may take longer than users are willing to wait. AIR
allows you to cancel any asynchronous file system operation by calling the cancel()
method on the File object that initiated the request. Keep in mind that, while both
File and FileStream objects call asynchronous methods, you call cancel() on the
File object to cancel them.

NOTE Not only can synchronous file I/O methods make your application
appear to freeze, but normal nonfile I/O code can too. Say your applica-
tion reads an image file and runs a facial recognition algorithm on the
data to isolate the faces for further manipulation. The file may be read
asynchronously into memory, but, once loaded, the facial recognition
algorithm will be run synchronously. Depending on the design and effi-
ciency of the algorithm, this may make the application appear to freeze.
If you have code that’s likely to make your application appear frozen,
refactor the logic to spread out the processing over multiple frames or
intervals of time.

All of the file system operations you’ll learn about in this chapter require that you
have a reference to an actual directory or file on the user’s system. For example, to get

99Getting references to files and directories
a directory listing, you must first have a reference to a directory. In the next section,
you’ll learn how to get references to files and directories.

3.2 Getting references to files and directories
When you use your computer, there are lots of ways you can get access to a file or
directory. You can use the file system explorer to navigate to a file or directory, you
can use a shortcut or alias, and you can maybe even access a file or directory from a
launch pad or start menu or any number of other options. Just as you have all these
options when using your computer, AIR provides lots of ways to access files and direc-
tories programmatically. Throughout the following sections we’ll look at how to access
files and directories in a variety of ways, and we’ll explain why you would use each.

3.2.1 Introducing the File class

AIR uses instances of the flash.filesystem.File class to represent both files and
directories on the user’s local file system. In the sections that follow, you’ll learn how
to get references to files and directories in a variety of ways. Regardless of how you get
a reference to a file or directory, you’ll be working with a File object. Once you have
a File object, you can call any of the methods available to it in order to do things such
as create, read, write, and delete files and directories.

 Sometimes you’ll have a File object but you’ll be uncertain as to whether it repre-
sents a file or a directory. For example, you might retrieve an array of File objects
from a directory listing operation, and need to determine which are files and which
are directories. You can use a File object’s isDirectory property to determine if it’s a
directory. If this property is false, the object is a file.

 Now that you’ve learned a little about the File class, let’s look at how you can use
the File class to retrieve references to common directories on a local file system.

3.2.2 Referencing common directories

Every operating system has several common conceptual directories. For example,
both Windows and OS X have a user desktop directory and a documents directory.
Because these directories are common, you’re likely to want to reference them fre-
quently in your AIR applications. Yet even though they are common, it wouldn’t be
trivial to determine the correct absolute path to these directories. The good news is
that AIR helps us out by providing easy ways to reference these directories via static
properties of the File class. Not only is it convenient, it’s also platform-independent.
That means that, even though the actual paths to user desktop directories on your
Windows computer and your friend’s OS X computer are vastly different, AIR allows
you to gain a reference to them in exactly the same way using the File.desktop-
Directory property. Table 3.1 outlines these directories and the static properties used
to access them.

 As you might’ve guessed, all of the static properties listed in table 3.1 are File
objects themselves. That means you can call any of the methods of the File class on

100 CHAPTER 3 File system integration
those file objects. For example, if you want to retrieve the directory listing (synchro-
nously) for the user’s desktop, all you have to do is run the code as shown in
listing 3.5.

var listing:Array = File.desktopDirectory.getDirectoryListing();

There’s one other way you can access two of these special directories, application and
application storage. When you construct a new File object, you can pass the construc-
tor a parameter that specifies the path to the file or directory you’d like to reference
using that object. There are two special schemes supported by the File class: app and
app-storage.

NOTE You’re probably most familiar with schemes such as http or https (or
perhaps even file), as you’ve seen them used in web browsers. For exam-
ple, in the address http://www.manning.com, http is the scheme. AIR
allows you to use app and app-storage as schemes for File objects.
When you use them as schemes, you must follow them with a colon and
then a forward slash.

The following example creates a reference to the application directory:

var applicationDirectory:File = new File("app:/");

Note that the preceding code is equivalent to using File.applicationDirectory.
 Referencing common directories is useful, to be sure. But it’s hardly going to meet

all the needs of every AIR application by itself. For example, what if you wanted to
retrieve a reference to a file in the documents directory rather than the documents
directory itself? For this, you’ll need to take it a step further by using either relative or
absolute referencing. We’ll look at relative referencing next.

Table 3.1 Platform-independent common directories

Conceptual
directory

Description Property

User’s home Root directory of the user’s
account

File.userDirectory

User’s documents Documents directory typically
found in the home directory

File.documentsDirectory

Desktop Directory representing the
user’s desktop

File.desktopDirectory

Application storage Unique storage directory
created for each installed
application

File.applicationStorageDirectory

Application Directory where the application
is installed

File.applicationDirectory

Listing 3.5 Reading the directory listing for the user’s desktop directory

http://www.manning.com

101Getting references to files and directories
3.2.3 Relative referencing

One of the great features of AIR is that it enables you to easily create cross-platform
applications. Referencing directories can be a challenge when building cross-platform
applications. AIR alleviates this challenge to a degree by providing built-in references
to common directories, as you’ve seen in the previous section. Therefore, if you can
manage to always reference directories relatively, using the common directories as a
starting point, you’ll keep the applications you build truly cross-platform.

 The alternative to referencing directories relatively is referencing them abso-
lutely. Let’s look at an example to contrast the two ways of referencing directories
and see where the difficulties arise. For this example, imagine that we’re building an
application that needs to write a text file to a subdirectory (which we’ll name notes)
of the user’s documents directory. First we consider how to reference that directory
in an absolute fashion. To start, we have an obvious problem: the absolute location of
a user’s documents directory is different on Windows and OS X. On Windows sys-
tems, the documents directory for a user is generally located at DriveLetter:\Docu-
ments and Settings\username\My Documents, where DriveLetter is the letter name
assigned to the drive (most commonly named C) and username is the username of
the person currently logged in to the system. On OS X, the user’s documents direc-
tory is usually at /Users/username/Documents, where username is the username of
the person currently logged in to the system. Even once we’ve calculated the correct
operating system, we’re still faced with the dilemma of not knowing the correct user-
name to use. Even assuming we could gather all the necessary information to calcu-
late the correct absolute path to the notes subdirectory of the user’s documents
directory, it’s clearly a lot of work, and surely there must be a better way.

 The better way is to reference directories and files relatively instead of absolutely
whenever possible. We’ve already seen how to access a reference to the user’s docu-
ments directory using File.documentsDirectory. All we need now is a way to refer-
ence a directory relative to that. The File class makes this simple by providing a
resolvePath() method. The resolvePath() method allows you to pass it a string
containing a relative path to a directory or file, and it resolves that to a subdirectory or
file relative to the File object from which you’ve called the method. In our example,
we can get a reference to the notes subdirectory of the documents directory using the
following code:

var notesDirectory:File = File.documentsDirectory.resolvePath("notes");

You can use the resolvePath() method to access a subdirectory or a file within a
directory, as in the preceding example. You can also use resolvePath() to access a
subdirectory or file that’s nested further within a directory tree. For example, the fol-
lowing code resolves to a file called reminders.txt within the recent subdirectory of
the notes directory located inside the user’s documents directory.

var reminders:File = File.documentsDirectory.resolvePath(

➥"notes/recent/reminders.txt");

102 CHAPTER 3 File system integration
You’ll notice that the delimiter used between directories and files in a path is the for-
ward slash (/), similar to how a path is represented on a Unix system. You must use a
forward slash as the delimiter. The back slash has a special meaning when used within
an ActionScript string, and it won’t work as a delimiter in a path.

 You can also use two dots to indicate one directory up in a path. For example, the
following code resolves to the parent directory of the user’s documents directory:

var parent:File = File.documentsDirectory.resolvePath("..");

In addition to using resolvePath() to get relative paths, you can also retrieve a rela-
tive path to one file or directory from another using the getRelativePath() method.
The method requires that you pass it a reference to a File object to which you’d like
the relative path. For example, the following code determines the relative path from
the user directory to the documents directory:

var relativePath:String = File.userDirectory.getRelativePath(

➥File.documentsDirectory);

The documents directory is usually a subdirectory of the user directory. For instance,
on a Windows system, the value of relativePath would be My Documents, because
the documents directory is a subdirectory of the user directory, and that subdirectory
is called My Documents.

 If the relative path isn’t a subdirectory or a file located within a subdirectory of the
File object from which the method was called, then getRelativePath() returns an
empty string by default. You can specify an optional second parameter that indicates
whether or not to use the dot-dot notation in the path. If you specify a value of true,
getRelativePath()returns a value even when the path is outside of the directory
from which the method was called.

 As we’ve already stressed, it’s better to rely on relative referencing whenever possi-
ble. Not only will relative referencing allow you to more reliably build cross-platform
and flexible applications, but it’s usually a lot easier than the alternative. Relative ref-
erencing will work for almost all of your file system needs. But there are cases when
you simply need to reference a file or directory absolutely. We’ll look at how to do
that next.

3.2.4 Absolute referencing

When necessary, you can reference directories and files in an absolute manner. The
most direct way to do this is to pass the full path to the directory or file to the File
constructor, as in the following example:

var documentsAndSettings:File = new File("C:/Documents and Settings/");

You can see in this example that, even though the path clearly points to a directory on
a Windows computer system, the path uses forward slashes. Unlike the resolvePath()
method (which requires forward slashes as delimiters), you can use back slashes in the
path for the File constructor. Back slashes and forward slashes are interpreted as the

103Getting references to files and directories
same thing in a path passed to the File constructor. However, forward slashes are a lit-
tle easier, because back slashes require that you escape them by using two consecu-
tively, as in the following example:

var documentsAndSettings:File = new File("C:\\Documents and Settings\\");

When you need to reference files or directories using absolute paths, you need to
know the root directories available on the system. For example, in Windows, C:\ is fre-
quently the primary system drive, but you can’t rely on that always being true for all
systems. You can use the static File.getRootDirectories() method to return an
array of File objects referencing all the root directories.

3.2.5 Accessing a full path

Regardless of whether you’re referencing a file or directory absolutely or relatively,
you may still want to get the full native path on the system. All File objects have a
nativePath property that tells you this information. Listing 3.6 shows a simple test you
can run that outputs the native paths of all the static File properties of the File class.

<?xml version="1.0" encoding="utf-8"?>
<mx:WindowedApplication
 xmlns:mx="http://www.adobe.com/2006/mxml"
 layout="absolute"
 creationComplete="creationCompleteHandler();">
 <mx:Script>
 <![CDATA[
 import flash.filesystem.File;

 private function creationCompleteHandler():void {
 print(File.userDirectory.nativePath);
 print(File.documentsDirectory.nativePath);
 print(File.desktopDirectory.nativePath);

print(File.applicationStorageDirectory.nativePath);
 print(File.applicationDirectory.nativePath);
 }

 private function print(string:String):void {
 output.text += ">" + string + "\n";
 }

]]>
 </mx:Script>
 <mx:TextArea id="output" width="100%" height="100%" />
</mx:WindowedApplication>

The listing uses a print() function B to append the nativePath values of the com-
mon directories to a text area component. The values that this outputs will depend on
the following factors: operating system, system user, AIR application name, and AIR
application ID. We’ll create a fictitious scenario to give you some sample output val-
ues. In our scenario, the system user (the user who’s logged in to the computer) is

Listing 3.6 Native paths of common directories

Output user
directory path Output

documents
directory path

Output
application

storage path
Output application directory path

Append text
to text areaB

Output desktop path

http://www.adobe.com/2006/mxml

104 CHAPTER 3 File system integration
Christina, the Application ID is com.manning.airinaction.ExampleApplication, and
the application is named Example Application. In that case, if the application is run
on a Windows computer, the output would be as follows:

1 C:\Documents and Settings\Christina
2 C:\Documents and Settings\Christina\My Documents
3 C:\Documents and Settings\Christina\Desktop
4 C:\Documents and Settings\Christina\Application

Data\com.manning.airinaction.ExampleApplication.
AFA83DFB7118641978BF5E9EE3C49B0A3C82FA13.1\Local Store

5 C:\Program Files\Example Application

With the same set of parameters, the output would be as follows on an OS X computer:

1 /Users/Christina
2 /Users/Christina/Documents
3 /Users/Christina/Desktop
4 /Users/Christina/Library/Preferences/com/manning.airinaction/

ExampleAppliction. AFA83DFB7118641978BF5E9EE3C49B0A3C82FA13.1/
Local Store

5 /Applications/Example Application.app/Contents/Resources

Although we’ve only looked at examples that retrieve the native path of the common
system directories, you can use the nativePath property with any File object that ref-
erences any file or directory on the user’s system.

3.2.6 User referencing

Thus far we’ve seen how to create references to files and directories using both rela-
tive and absolute techniques. These two techniques work well when the AIR applica-
tion can determine the file or directory it should reference. For example, if you know
that there should be a subdirectory called preloadedAssets in the application direc-
tory, then you know that you can reference that directory as follows:

var preloadedAssets:File = File.applicationDirectory.resolvePath(

➥"preloadedAssets");

However, there are plenty of scenarios in which the AIR application simply can’t antic-
ipate what file or directory to reference. For example, if the application should show a
directory listing of a user-selected directory rather than a predetermined subdirectory
in the application directory, you can’t use the techniques you’ve learned thus far.
Instead, you need a way to allow the user to specify the reference. AIR allows you to
access file and directory references specified by the user using four methods of the
File class, listed in table 3.2.

 Each of these methods opens a dialog box that allows a user to browse her file sys-
tem and select one (or many, in one case) file or directory. The dialog box opened by
each of the methods is similar yet subtly different.

105Getting references to files and directories
BROWSING FOR A DIRECTORY

The browseForDirectory() method opens a dialog
similar to the one you see in figure 3.1. The dialog
prompts the user to select a directory. Only directo-
ries are available for selection in this dialog. You can
also see that below the title bar is a section for text.
In the figure, the text says “Select a directory”. This
text is configurable using the one parameter of the browse-
ForDirectory() method.

 The starting directory shown in the dialog is
determined by which directory the File object that
calls the method references. Figure 3.1 shows a dia-
log that would be opened using the following code:

var documents:File = File.documentsDirectory;
documents.browseForDirectory("Select a directory");

If you call browseForDirectory() on a File object that points to a file or a directory
that doesn’t exist, the selected directory in the dialog will be the first directory up the
path that does exist. If no part of the path points to a valid existing directory, then the
desktop is the default-selected directory.
BROWSING TO SELECT A FILE OR FILES

The browseForOpen() and browseForOpenMultiple() methods both allow you to
open a dialog that prompts the user to select files instead of directories. The differ-
ence between the two methods is that browseForOpen() allows the user to select only
one file, while browseForOpenMultiple() allows the user to select one or more files.
Both dialogs look identical. Figure 3.2 shows what they look like.

 Both methods require that you specify a string that appears in the title bar of the
dialog. In the dialog shown in figure 3.2, the value is “Select a file”, though you could
specify any value you like. The following code would open the dialog shown in
figure 3.2:

var desktop:File = File.desktopDirectory;
desktop.browseForOpen("Select a file");

Table 3.2 File class methods that open a dialog box

Method Description

browseForDirectory() Lets the user select a directory

browseForOpen() Lets the user select a file to open

browseForOpenMultiple() Lets the user select multiple files to open

browseForSave() Lets the user select a file location to save to

Figure 3.1
The browseForDirectory()
method opens a dialog such as this.

106 CHAPTER 3 File system integration
The browseForOpen() and browseForOpenMultiple() methods determine the initial
directory for the dialog in the same way browseForDirectory() does. In figure 3.2,
you can see that the initial directory is the desktop. That’s because the code used to
open that dialog called the browseForOpen() method from a File object that refer-
ences the desktop.

 These two methods also allow you to optionally specify filters that determine what
types of files to allow the user to select. You can do this by passing the methods a sec-
ond parameter: an array of flash.net.FileFilter objects. (The FileFilter class is
part of the standard ActionScript library, so we’re not going to go into detail on its
usage in this book.) Each FileFilter element creates a new entry in the Files of type
menu within the dialog, allowing the user to filter the view of files by type. The follow-
ing code demonstrates how you can create an array of filters and use them with the
browseForOpen() method:

var file:File = File.desktopDirectory;
var filters:Array = new Array();
filters.push(new FileFilter("JPEG Images", "*.jpg"));
filters.push(new FileFilter("GIF Images", "*.gif"));
filters.push(new FileFilter("PNG Images", "*.png"));
filters.push(new FileFilter("All Images", "*.jpg;*.gif;*.png"));
file.browseForOpenMultiple("Select a file", filters);

In this example we add four filters: JPEG images, GIF images, PNG images, and all
images. Figure 3.3 shows the result in the browse dialog.

 There’s just one more way in which you can allow users to select a file. We’ll look at
that next.
BROWSING TO SAVE A FILE

Thus far we’ve looked at methods for selecting directories and files that are gener-
ally intended for reading from the file or directory. There’s another scenario in

Figure 3.2 The
browseForOpen() and
browseForOpenMultiple
() dialogs allow users to
select files.

107Getting references to files and directories
which you’d want to allow the user to browse for files or directories, and that’s to
allow the user to select where to save a file. The browseForSave() method is
intended for this purpose.

 Like the other browse methods, the browseForSave() method requires that you
pass it a parameter specifying a value to display to the user. Like the browseForOpen()
and browseForOpenMultiple() methods, the browseForSave() method displays the
parameter value in the title bar of the dialog.

 The Save dialog allows the user to browse to and select an existing file or browse to
a directory and enter a name for a new file. You can see an example of the Save dialog
in Figure 3.4.

 The browseForSave() method uses the same rules as the other browse methods to
determine the initial directory when the dialog opens.

Figure 3.3 Use filters to allow
the user to display files of only
specific types.

Figure 3.4 The Save dialog allows
users to select a file location to save
something from an AIR application.

108 CHAPTER 3 File system integration
DETECTING WHEN A USER HAS SELECTED A FILE OR DIRECTORY

Up to this point, you’ve learned how to invoke the various browse methods. How-
ever, we’ve yet to mention how you can determine what a user selects from the dia-
log. All of the browse methods happen asynchronously. The application doesn’t
pause code execution while the browse dialog is open. Instead, it’s necessary to lis-
ten for specific events that occur when the user either selects a file or directory or
cancels the operation.

 The browseForDirectory(), browseForOpen(), and browseForSave() methods all
dispatch the same type of event when the user selects a directory or file, and they work
identically in that regard. When the user selects a directory or file (meaning he’s
clicked the Open or Save button in the dialog), two things happen:

1 The File object that launched the dialog is updated automatically to reference
the selected file or directory.

2 The same File object dispatches a select event.

Listing 3.7 shows a complete example that allows the user to select a file and then dis-
play the information about the selected file in a text area.

<?xml version="1.0" encoding="utf-8"?>
<mx:WindowedApplication xmlns:mx="http://www.adobe.com/2006/mxml"
 creationComplete="creationCompleteHandler();">
 <mx:Script>
 <![CDATA[
 import flash.filesystem.File;

 private function creationCompleteHandler():void {
 var file:File = File.desktopDirectory;
 file.browseForOpen("Select a file");
 file.addEventListener(Event.SELECT, selectEventHandler);
 }

 private function selectEventHandler(event:Event):void {
 var file:File = event.target as File;
 output.text = "File: " + file.name;
 output.text += "\nPath: " + file.nativePath;
 }

]]>
 </mx:Script>
 <mx:TextArea id="output" width="100%" height="100%" />
</mx:WindowedApplication>

The browseForOpenMultiple() method is similar yet slightly different from the other
browse methods. When the user selects one or more files in a dialog launched by
browseForOpenMultiple(), the File object dispatches a selectMultiple event of
type flash.events.FileListEvent. The FileListEvent object corresponding to the
action has a files property that’s an array of File objects, each referencing one of
the files that the user selected. Listing 3.8 shows an example of this.

Listing 3.7 Listening for select events to determine when a user selects a file

http://www.adobe.com/2006/mxml

109Getting references to files and directories
<?xml version="1.0" encoding="utf-8"?>
<mx:WindowedApplication xmlns:mx="http://www.adobe.com/2006/mxml"
 creationComplete="creationCompleteHandler();">
 <mx:Script>
 <![CDATA[
 import flash.filesystem.File;

 private function creationCompleteHandler():void {
 var file:File = File.desktopDirectory;
 file.browseForOpenMultiple("Select files");
 file.addEventListener(FileListEvent.SELECT_MULTIPLE,
 selectEventHandler);
 }

 private function selectEventHandler(event:FileListEvent):void {
 var file:File;
 output.text = event.files.length + " files selected";
 for(var i:Number = 0; i < event.files.length; i++) {
 file = event.files[i] as File;
 output.text += "\nFile: " + file.name;
 output.text += "\nPath: " + file.nativePath;
 output.text += "\n\n";
 }
 }

]]>
 </mx:Script>
 <mx:TextArea id="output" width="100%" height="100%" />
</mx:WindowedApplication>

If the user clicks on the Cancel button from any of the browse dialogs, the result is the
same: a cancel event.

3.2.7 Making paths display nicely

Under a variety of circumstances, paths to directories and files on a computer might not
display in an AIR application exactly as you’d like them to. There are three scenarios:

■ The case of the path used by the File object differs from the case of the path
on the system (for example, /aPpliCations versus /Applications).

■ The path used by the File object is the shortened form (for example, C:/doc-
ume~1 versus C:/Documents and Settings).

■ The path points to a symbolic link and you’d like to display the path to which
the symbolic link points.

In all these cases, there’s one solution: the canonicalize() method. The canonical-
ize() method is a method of the File class that automatically solves each of these
problems. All you need to do is call the canonicalize() method on a File object
after the path has been set by any of the means we’ve discussed thus far in the chapter.
Listing 3.9 illustrates how this works.

Listing 3.8 Result of browseForOpenMultiple()can be a selectMultiple event

http://www.adobe.com/2006/mxml

110 CHAPTER 3 File system integration
<?xml version="1.0" encoding="utf-8"?>
<mx:WindowedApplication xmlns:mx="http://www.adobe.com/2006/mxml"
 creationComplete="creationCompleteHandler();">
 <mx:Script>
 <![CDATA[
 import flash.filesystem.File;

 private var _file:File;

 private function creationCompleteHandler():void {
 _file = new File();
 _file.addEventListener(Event.SELECT, selectHandler);
 }

 private function browse():void {
 _file.browseForOpen("Select a File");
 }

 private function selectHandler(event:Event):void {
 output.text = _file.nativePath;
 _file.canonicalize();
 output.text += "\n" + _file.nativePath;
 }

]]>
 </mx:Script>
 <mx:Button label="Browse" click="browse();" />
 <mx:TextArea id="output" width="100%" height="100%" />
</mx:WindowedApplication>

This code allows the user to browse for a file B. The key to testing this example prop-
erly is to enter the name of a file in the browse dialog rather than select it, and enter
the name of the file using a different case than how it appears in the dialog. For exam-
ple, if you want to select a file called sample.txt, type the value SaMpLe.TxT in the file
name input field. Clicking the Open button invokes the selectHandler() method,
which displays the uncorrected path C, canonicalizes the path D, then displays the
corrected path E. The corrected path will show the file name as it appears on the file
system (sample.txt instead of SaMpLe.TxT).

 The preceding example shows a subtle version of the change that canonicalize()
can make. Next we’ll look at a more drastic example. We’ll consider an example in
which we set the path to the Flex Builder 3 application folder on Mac OS X (/Applica-
tions/Adobe Flex Builder 3). Imagine that you’re running this example on a Mac OS
X computer and that the path exists on your computer. If you reference this path
directly with different capitalization, you’ll still get a valid File object:

var flex:File = new File("/APPlicaTIONs/adoBE flex bUilDER 3");
trace(flex.nativePath);

This example outputs /APPlicaTIONs/adoBE flex bUilDER 3 instead of /Applica-
tions/Adobe Flex Builder 3. To have the path match the case of the actual files and
directories, use the canonicalize() method after referencing the path:

Listing 3.9 Using canonicalize() to correct the case of a path

B Browse
for file

C Display
path

D Canonicalize path

Display path again E

Outputs “/APPlicaTIONs/adoBE flex bUilDER 3”

http://www.adobe.com/2006/mxml

111Getting references to files and directories
var flex:File = new File("/APPlicaTIONs/adoBE flex bUilDER 3");
trace(flex.nativePath);
flex.canonicalize();
trace(flex.nativePath);

After calling canonicalize(), the path case is changed to the case used in the file sys-
tem. As we’ll see later in this chapter, it’s possible to create File objects that reference
files and directories that don’t yet exist (for the purpose of creating them). Therefore,
if part of the path the File object points to doesn’t exist in the file system, canonical-
ize()will only adjust the case for the part that does exist. Consider the following
example, which references a directory called ADoBe quantum FLEX 8 that doesn’t
exist on the system. Because the Applications directory does exist, the canonical-
ize() method will correct the case for the Applications portion of the path, but not
for the remainder:

var quantumFlex:File = new File("/APPlicaTIONs/ADoBe quantum FLEX 8");
quantumFlex.canonicalize();
trace(quantumFlex.nativePath);

As we’ve already mentioned, not only does canonicalize() adjust the case, it also
converts short names in Windows to their corresponding long names (assuming the
path segments exist). For programmatic reasons, Windows requires that all files and
directories can be referenced using 8.3 notation, meaning that the names of files and
directories must be reducible to 8 characters (plus a three-character file extension for
files). The long name is the name you’d usually see within Windows Explorer, and
because the long name allows for more characters, it’s more user-friendly. Consider
the example of the standard path to where Flex Builder is installed on Windows com-
puters, which is C:\Program Files\Adobe\Flex Builder 3. The short name form of that
path is C:\Progra~1\Adobe\FlexBu~1. The following code snippet shows how canoni-
calize() converts from the short form to the long form of the name:

var flex:File = new File("C:/Progra~1/Adobe/FlexBu~1");
trace(flex.nativePath);
flex.canonicalize();
trace(flex.nativePath);

There’s one more use for canonicalize(), which is that it resolves symbolic links
(OS X) or junctions (Windows). A symbolic link is almost indistinguishable from the
directory to which it points. But, using the isSymbolicLink property of a File object,
you can determine whether a File object points to a symbolic link. If it does, you can
resolve the path to the directory to which the symbolic link points using the canoni-
calize() method.

 Using canonicalize()is great when your application doesn’t know the exact case
of file and directory names and you’re displaying the paths to the users. Showing accu-
rate cases in the path not only adds a professional touch, it also prevents any confu-
sion for the user.

 We’ve completed our discussion of file and directory listing. Now that you know
how to get a reference to a file or directory, you next need to know what more you can

Outputs “/APPlicaTIONs/adoBE flex bUilDER 3”

Outputs “/Applications/Adobe Flex Builder 3”

Outputs “/Applications/ADoBE quantum FLEX 8”

Outputs “C:\Progra~1\Adobe\FlexBu~1”

Outputs “C:\Program Files\Adobe\Flex Builder 3”

112 CHAPTER 3 File system integration
do with that reference. That’s what we’ll discuss throughout the rest of the chapter,
starting with retrieving a listing of the contents of a directory, which is covered in the
next section.

3.3 Listing directory contents
Let’s say we’re building an application that helps users clean up their cluttered desk-
tops. Clearly the first thing we’d need to do is get a listing of the files and directories
on the desktop. Only then can we begin to help the user sort and organize them.

 We already know how to retrieve a reference to a user’s desktop directory using the
File.desktopDirectory property. What we need now is a way to get a listing of the
contents of that directory. The File class provides two convenient ways to accomplish
that, one synchronous and one asynchronous. The synchronous method is called
getDirectoryListing(), and the asynchronous method is called getDirectory-
ListingAsync(). Both methods retrieve an array of File objects, each one a refer-
ence to a file or directory that’s contained within the directory. But the way the array
of File objects is returned is different depending on which method you use. We’ll
look at each of these methods, starting with the synchronous version.

3.3.1 Getting directory listings synchronously

The getDirectoryListing() method runs synchronously and returns an array of
File objects immediately. This is the simplest way to retrieve a directory listing. The
following example illustrates how to retrieve the contents of a user’s desktop direc-
tory. Because the directory listing is available immediately, the following code loops
through all the items and displays them in a text area called textArea:

var desktopContents:Array = File.desktopDirectory.getDirectoryListing();
for(var i:Number = 0; i < desktopContents.length; i++) {
 textArea.text += dektopContents[i].nativePath + "\n";
}

Of course, as we’ve already discussed, synchronous operations have disadvantages. If
the user’s desktop had an extraordinarily large number of files, for example, the pre-
ceding code would cause the application to freeze up while it executed. For that rea-
son, an asynchronous version of the operation might be better. We’ll look at retrieving
a directory listing asynchronously next.

3.3.2 Getting directory listings asynchronously

You can use the getDirectoryListingAsync() method to retrieve a directory listing
asynchronously. As with most asynchronous operations, it requires more code and
sophistication than the synchronous counterpart. In this case, the directory listing
isn’t returned immediately. Instead, the File object dispatches a directoryListing
event when the operation executes. The directoryListing event is of type
File_ListEvent, and the event object itself has a files property that’s an array of the
File objects for the directory.

113Creating directories
 Listing 3.10 shows a complete example of an ActionScript class that retrieves a
directory listing asynchronously.

package com.manning.books.airinaction {

 import flash.display.Sprite;
 import flash.events.FileListEvent;
 import flash.filesystem.File;
 import flash.text.TextField;

 public class Example extends Sprite {

 private var _textField:TextField;

 public function Example() {
 _textField = new TextField();
 _textField.width = stage.stageWidth;
 _textField.height = stage.stageHeight;
 addChild(_textField);
 var desktop:File = File.desktopDirectory;
 desktop.addEventListener(FileListEvent.DIRECTORY_LISTING,
 desktopListingHandler);
 desktop.getDirectoryListingAsync();
 }

 private function desktopListingHandler(event:FileListEvent):void {
 var files:Array = event.files;
 var file:File;
 for (var i:Number = 0; i < files.length; i++) {
 file = files[i] as File;
 _textField.appendText(">" + file.nativePath + "\n");
 }
 }

 }
}

The preceding example starts by creating a text field B in order to display the direc-
tory listing. We’re retrieving the directory listing for the desktop, therefore we next
retrieve a reference to the desktop C. Because the directory listing operation in this
case is asynchronous, we need to register an event listener for the directoryListing
event D. Then we can call the getDirectoryListingAsync() method. Once the
directoryListing event occurs and the event handler is invoked, we retrieve the
array of directory contents from the files property of the event object E. Then we
can loop through all the objects in the array and display the native path of each F.

 Everything that we’ve seen up to this point involves existing file system content.
Next we’ll look at creating file system content by creating directories.

3.4 Creating directories
Creating directories may seem like a foreign concept from a web developer’s stand-
point. But when building desktop applications, it’s important that your application

Listing 3.10 Asynchronous directory listing example

Create
text field

B

Retrieve
desktop
reference

C

Listen for
directoryListing DMake asynchronous request

Retrieve directory
listingE

Display path
to item F

114 CHAPTER 3 File system integration
can create directories. Consider the following scenario: you’ve just built an applica-
tion that allows the user to organize all her Word documents on her computer. You
want to allow the user to move existing files into new, better-organized directories. To
do this, you first need the AIR application to create the necessary directories.

 Creating a new directory with AIR is as simple as the following two steps:

1 Create a File object that references the new, nonexistent directory.
2 Call the createDirectory() method on the File object.

The following example illustrates how this works.

var recentDocuments:File = File.documentsDirectory("wordFiles/recent");
recentDocuments.createDirectory();

In the listing, the first thing we do is create a File object that references a subdirectory
of the user’s documents directory B. We’re assuming that wordFiles doesn’t exist as a
subdirectory of the documents directory, and therefore recent doesn’t exist as a subdi-
rectory of the wordFiles directory either. This points out two important things:

■ File objects can reference nonexistent directories (and files). Certain opera-
tions may not work if a directory or file doesn’t exist (for example, you can’t
move a nonexistent directory), but other operations such as creating a new
directory require that you reference a nonexistent directory or file.

■ When you create a new directory using createDirectory(), all necessary direc-
tories and subdirectories within the path are created. In this example, both the
wordFiles directory and its recent subdirectory are created.

In the example, we created a File object that references the directory we’d like to cre-
ate. Once we’ve done that, all we need to do is call createDirectory() C and the sys-
tem creates the directory on the file system.

 If a directory already exists, createDirectory() simply won’t do anything. That
makes createDirectory() a relatively safe operation. You needn’t be concerned that
you might accidentally erase an existing directory by creating a new one with the same
name. However, there are cases when you want to determine whether or not a direc-
tory already exists. For example, in our previous example, it’s possible that the user
will already have a directory called wordFiles in her documents directory that she uses
for her own purposes independent of the AIR application. Rather than muddying up
her wordFiles directory, it would be more polite if the AIR application instead created
a new directory with a unique name. To verify whether a directory exists, all you need
to do is read the value of the exists property of the File object that references the
directory. The following example illustrates how this might work:

var count:int = 0;
var recentDocuments:File = File.documentsDirectory("wordFiles");
while(recentDocuments.exists) {
 recentDocuments = File.documentsDirectory("wordFiles" + count);
 count++;
}

Reference
nonexistent

directory

B

Create directoryC

Create initial reference B

Test if directory existsC

Increment
counter

Create new
directory name DE

115Creating directories
recentDocuments = File.documentsDirectory("wordFiles" + count + "/recent");
recentDocuments.createDirectory();

In the listing, you can see that we first create a File object that references a directory
called wordFiles B. Then we use a while statement to test whether the directory
already exists C. As long as the directory exists, we keep updating the directory name

D with a numeric value that keeps incrementing E. Once we’ve determined a
unique name for the directory, we just append the recent subdirectory F and create
them both.

 Next we’ll look at a slightly more comprehensive working example that orga-
nizes a user’s desktop by placing all the files in subdirectories based on file exten-
sion. The code in listing 3.11 can be used as the document class for a Flash-based
AIR application.

package {

 import flash.display.MovieClip;
 import flash.events.MouseEvent;
 import flash.display.Stage;
 import flash.filesystem.File;
 import flash.events.FileListEvent;
 import fl.controls.Button;
 import fl.controls.TextArea;

 public class DesktopOrganizer extends MovieClip {

 public function DesktopOrganizer() {
 _button.addEventListener(MouseEvent.CLICK, startOrganize);
 }

 private function startOrganize(event:MouseEvent):void {
 var organized:File = File.desktopDirectory.resolvePath(

 ➥"Files Organized By Type");
 if(!organized.exists) {
 organized.createDirectory();
 print("created directory: " + organized.nativePath);
 }
 var desktop:File = File.desktopDirectory
 desktop.addEventListener(FileListEvent.DIRECTORY_LISTING,

 ➥directoryListingHandler);
 desktop.getDirectoryListingAsync();
 }

 private function directoryListingHandler(event:FileListEvent):

 ➥void {
 var files:Array = event.files;
 var file:File;
 var organized:File = File.desktopDirectory.resolvePath(

 ➥"Files Organized By Type");
 var extension:File;
 for(var i:Number = 0; i < files.length; i++) {

Listing 3.11 Document class for a Flash-based desktop organizer application

Append recent subdirectory F

Button click
starts organizing

B

Get reference to target directory C

Test if directory existsD Create
directory

E

Get reference
to desktop

F

Retrieve
directory listingG

Loop through filesH

116 CHAPTER 3 File system integration
 file = files[i] as File;
 if(!file.isDirectory) {
 extension = organized.resolvePath(file.extension);
 if(!extension.exists) {
 extension.createDirectory();
 print("created directory: " +

 ➥extension.nativePath);
 }
 }
 }
 }

 private function print(message:String):void {
 _textArea.text += message + "\n";
 }

 }

}

This example assumes that there are two UI components placed on the stage of the
Flash file: a button named _button and a text area named _textArea. We use the but-
ton to allow the user to initiate the organization of the desktop B. When the user
clicks the button, the first thing we do is get a reference to the directory to which we’ll
eventually move all the organized files C. We’re naming that directory Files Orga-
nized By Type, and we’re placing it on the desktop. If the directory doesn’t yet exist

D, we need to create it E. Then we need to get a reference to the user’s desktop F
and retrieve a listing of all the contents of the desktop G. Once the directory listing is
returned, we loop through all the contents H and test each to check whether it’s a file
or a directory I. Assuming it’s a directory, we next want to determine the path to a
subdirectory that has the same name as the file extension J. For example, if the file
extension is .jpg, we want to eventually move the file to the Files Organized By Type/
jpg directory. If that directory doesn’t yet exist 1), we create it 1). At this point, we
haven’t learned how to move files. We’ll have to wait just a bit, and then we can revisit
this example and complete it.

NOTE In the preceding example, the Files Organized By Type directory would
be automatically created when we create subdirectories. Therefore it’s
not strictly necessary to explicitly create Files Organized By Type in the
startOrganize() method. However, we made the decision to create the
directory there for the sake of clarity.

There are times when you need to create a directory only temporarily. For example,
sometimes you need a directory in which to write files while the application is run-
ning, but after the application runs you no longer need the directory. A polite way to
do that is to create the directory in the system’s temporary directory path. AIR facili-
tates this with the static File.createTempDirectory() method. The method returns a
new File object that references the directory. Every time you run the method, the AIR
application will create a new, unique directory in the system’s temporary directory
path. The following code snippet shows how to use the method:

Test if fileI

Create
directory

Get
reference

to type
directory

1)
J

117Removing directories and files
var temporary:File = File.createTempDirectory();
trace(temporary.nativePath);

On a Windows machine, the output of the preceding code B would be something
like C:\Documents and Settings\username\Local Settings\Temp\fla1A.tmp. On a Mac
OS X machine, the output B would be something like /private/var/tmp/fold-
ers.2119876841/TemporaryItems/FlashTmp0.

 You can access to the temporary directory as long as the File object exists.
Because createTempDirectory() always creates a new directory, you won’t be able to
access the same directory again by calling the method a second time. As long as you
need to reference the directory, you’ll need a reference to the File object the
method returns. When you’re done with the temporary directory, it’s good practice
for your application to clean up after itself and delete it. If you don’t, it’ll be up to
the system or the user to remove it. We’ll see how to delete directories (and files) in
the next section.

3.5 Removing directories and files
There are two ways to remove directories and files. You can permanently delete them
or you can move them to the trash. We’ll take a look at each of these approaches in
this section.

 Deleting a directory is as simple as calling the deleteDirectory() or delete-
DirectoryAsync() method. Deleting a file is just as simple, though the methods are
different—deleteFile() or deleteFileAsync(). Of course, these are methods to be
used cautiously. You can’t undo these actions. It’s best to use these methods only
under the following circumstances:

■ You want to permanently delete a directory or file that the AIR application cre-
ated and the user doesn’t know about or need.

■ You’ve requested the user’s permission to permanently delete the directory or
file.

The deleteFile() and deleteFileAsync() methods are identical except that the for-
mer is synchronous and the latter is asynchronous. The normal advice applies as far as
when to use one over the other: the asynchronous method allows the rest of the code
to run without the application freezing even if the file that the system is deleting is
large. Neither of these methods requires any parameters.

 The deleteDirectory() and deleteDirectoryAsync() methods are identical
except that the first is synchronous and the second is asynchronous. If you know that
a directory is large, it’s always best to delete the directory asynchronously. By default,
both methods only delete empty directories. If the directory has any contents, the
methods will throw errors. However, you can optionally pass the methods a Boolean
value of true to indicate that you’d like to delete the directory as well as all of its
contents.

 The following example creates a directory and then deletes it:

Output directory pathB

118 CHAPTER 3 File system integration
var directory:File = File.createTempDirectory();
directory.deleteDirectory();

Moving a directory or file to the trash is a much more polite and appropriate action if
you want to remove a directory or file under any circumstances other than those men-
tioned previously. For example, even if a user decides to delete a directory through
the AIR application, it’s generally best to merely move it to the trash unless you explic-
itly ask the user for permission to permanently delete the directory. The methods for
moving a file or a directory to the trash are the same. To move a directory or file to the
trash, you have two options: moveToTrash() and moveToTrashAsync(). Neither
method requires any parameters. They both simply move the directory to the trash,
one synchronously and the other asynchronously. If the directory is large, it’s gener-
ally best to move it to the trash asynchronously.

3.6 Copying and moving files and directories
Copying and moving files and directories are common and simple operations. The
File class defines methods for each of these operations: copyTo(), copyToAsync(),
moveTo(), and moveToAsync(). None of these methods distinguish between directo-
ries or files.

 Copying and moving are extremely similar. If you think about it, both move a file
or directory to a new location in a file structure hierarchy. The difference between
them is that the copying operation keeps a copy of the file or directory in the original
location as well. Because the two operations are similar, the methods are similar as
well. In all cases, the methods require one parameter: a FileReference object point-
ing to the new location. And all the methods also allow for a second Boolean parame-
ter indicating whether to overwrite any existing content at the new location should it
already be there.

NOTE The File class that we’ve talked about extensively in this chapter is a sub-
class of FileReference. That means that you can use a File object any
time a FileReference object is required. The copying and moving meth-
ods require a FileReference parameter. For all practical purposes, in
this chapter you’ll always use a File object for this parameter.

As with other synchronous and asynchronous operations, you’ll generally find that
it’s best to have a bias toward the asynchronous copying and moving methods. If
you move or copy a large file or directory, the asynchronous methods work better in
that they prevent the AIR application from freezing while the file or directory is
moved or copied.

 In the following example, we’re copying a zipFiles directory in the user documents
directory to the desktop directory:

var source:File = File.documentsDirectory.resolvePath("zipFiles");
var destination:File = File.desktopDirectory.resolvePath("zipFiles");
source.copyToAsync(destination);

Reference source directory B

Reference
destination

directory C
Copy directory D

119Copying and moving files and directories
In this case, we’re assuming a directory named zipFiles exists in the documents direc-
tory B and that a directory named zipFiles does not exist in the desktop directory C.
This is an important point. As we’ll see in a minute, the destination directory must not
yet exist for this code to work. Once we’ve created the references to the source and
destination directories, we can copy the source using the copyToAsync() method D.

 If you run this code twice, it will throw an I/O error the second time because the
destination File object would point to an existing directory. As written, the code
assumes that the destination must not yet exist. But if we know that the destination
directory could possibly exist, we have a choice: do we want to overwrite the destina-
tion with whatever we copy to it? If we do, we need only to pass true for the second
parameter in the copyToAsync() method:

source.copyToAsync(destination, true)

This optional parameter is false by default, but if true, copyToAsync() will first
delete the destination file or folder before copying. Note that this is different from
your normal overwrite in that it deletes all files and directories in the destination
regardless of whether they’re found in the source.

NOTE Everything we’ve discussed using the specific example of copyToAsync()
is applicable to the other copy and move methods as well.

All of the copying and moving operations will also throw an I/O error if the source
doesn’t exist or if the OS is preventing an action due to file locking. The synchronous
methods will throw the error directly, and you should wrap them in try/catch state-
ments as in the following example:

try {
 file.moveTo(destination);
}
catch (error:IOError) {
 trace("an error occurred");
}

The asynchronous methods throw errors using error events. You should register lis-
teners for those events if there’s a possibility of such an error occurring.

 Next we’ll revisit the earlier example from listing 3.11. In listing 3.12, you can see
how we’ve now updated the code to actually move the files to the directories based on
file extension. The changes are shown in bold.

package {

 import flash.display.MovieClip;
 import flash.events.MouseEvent;
 import flash.display.Stage;
 import flash.filesystem.File;
 import flash.events.FileListEvent;
 import flash.events.Event;

Listing 3.12 Moving files to new directories based on file extension

120 CHAPTER 3 File system integration
 import fl.controls.Button;
 import fl.controls.TextArea;

 public class DesktopOrganizer extends MovieClip {

 public function DesktopOrganizer() {
 _button.addEventListener(MouseEvent.CLICK, startOrganize);
 }

 private function startOrganize(event:MouseEvent):void {
 var organized:File = File.desktopDirectory.resolvePath(

 ➥"Files Organized By Type");
 if(!organized.exists) {
 organized.createDirectory();
 print("created directory: " + organized.nativePath);
 }
 var desktop:File = File.desktopDirectory.resolvePath(

 ➥"To Organize");
 desktop.addEventListener(FileListEvent.DIRECTORY_LISTING,
 directoryListingHandler);
 desktop.getDirectoryListingAsync();
 }

 private function directoryListingHandler(event:FileListEvent):

 ➥void {
 var files:Array = event.files;
 var file:File;
 var organized:File = File.desktopDirectory.resolvePath(

 ➥"Files Organized By Type");
 var extension:File;
 for(var i:Number = 0; i < files.length; i++) {
 file = files[i] as File;
 if(!file.isDirectory) {
 extension = organized.resolvePath(file.extension);
 if(!extension.exists) {
 extension.createDirectory();
 print("created directory: " +

 ➥extension.nativePath);
 }
 file.addEventListener(Event.COMPLETE, completeHandler);
 file.moveToAsync(extension.resolvePath(file.name));
 print("moving file: " + file.name);
 }
 }
 }

 private function completeHandler(event:Event):void {
 print("moved file: " + event.target.name);
 }

 private function print(message:String):void {
 _textArea.text += message + "\n";
 }

 }

}

Listen for
complete event

B

Move file C

Notify
user when
completeD

121Reading from and writing to files
You can see that in this example we’ve opted to move files asynchronously using the
moveToAsync() method C. To be polite, we’re listening for the complete event B
and then notifying the user when the file has actually moved D.

 You’ve learned how to work with directories extensively, and you’ve also seen how
to copy and move directories and files. Now we’re ready to look at some file-specific
operations. In the next section, you’ll learn how to work with files to do things like
read and write and delete files.

3.7 Reading from and writing to files
We’ve seen how to read information about the file system and restructure it by creat-
ing new directories as well as moving, copying, and deleting files and directories. But
some of the most powerful things you can do with the file system from AIR involve
manipulating files and their contents. Using AIR, you can do all sorts of things with
files, including reading from a text file, writing a new .png image, downloading a
video file from the Web, and much more. All of these tasks involve reading from and/
or writing to files. In the next few sections, we’ll look at these topics in more detail.

3.7.1 Reading from files

Reading from a file isn’t a new concept for most Flash and Flex developers. It is stan-
dard or fairly trivial to read from text files or resources using ActionScript or MXML.
Furthermore, even for web-based Flash and Flex applications, it’s possible to use the
ActionScript 3 flash.net.URLStream or flash.net.URLLoader classes to load files
and read and manipulate the binary data. Then what makes AIR any different? The
answer is three-part:

■ AIR allows an application to access both local and internet files.
■ AIR allows an application to read from a File object.
■ AIR allows the application to write data to a file, completing a cycle that’s

unavailable normally to Flash and Flex applications on the Web.

As we’ve mentioned, there are essentially two ways to read from files using AIR:

■ Reading from an internet resource
■ Reading from a local resource

We’ll look at each of these ways of reading from files in the next two sections.
READING FROM INTERNET RESOURCES

Reading from an internet resource is exactly the same from an AIR application as it
would be from a web-based application. In the context of our discussions in this chap-
ter, we’re only interested in reading the bytes from a file or resource. That means
there are two ways to load a resource and read the data: using URLStream and using
URLLoader, two classes that should be familiar to you from your web-based Flash or
Flex work. We won’t be going into a detailed discussion of how to use these classes, but
even if you’re not familiar with them, you’ll likely be able to pick up the necessary
information as you read these sections.

122 CHAPTER 3 File system integration
 The URLLoader class loads a file or resource in its entirety before making it avail-
able for reading. For example, if you use a URLLoader object to download a .jpg file
from the internet, the entire file must download to the AIR application before you can
read even the first byte from the image. When the resource has been downloaded, the
URLLoader object dispatches a complete event, and, as the content is loading, the URL-
Loader object dispatches progress events, allowing your AIR application to monitor
the download progress.

 The URLStream class loads a file or resource and makes the bytes available for read-
ing as the data downloads. For example, if you use a URLStream object to load an .mp3
file from the internet, you can read bytes from the file as soon as they download. URL-
Stream objects dispatch progress events as bytes are available.

 In certain contexts, the difference between URLLoader and URLStream is similar to
the difference between synchronous and asynchronous operations. One such context
is when you want to use a URLLoader or URLStream object in the context of reading
and manipulating bytes. Because URLLoader doesn’t make data available until the
entire resource has downloaded, it means you must wait for all the bytes to be avail-
able. If you simply want to write those bytes to a local file, it could mean that the appli-
cation would have to stand by while the entire file downloads and then be presented
with a whole bunch of bytes at once, causing the application to momentarily freeze as
it tries to write all those bytes to a file. On the other hand, a URLStream object would
make the bytes available as the file downloads, meaning the application could write
smaller batches of bytes to disk over a period of time, thus minimizing the likelihood
of the application freezing.

 Listing 3.13 shows a class that downloads an internet resource and outputs the
bytes one at a time to an output console using a trace() statement.

package {
 import flash.events.ProgressEvent;
 import flash.net.URLRequest;
 import flash.net.URLStream;

 public class FileDownloader {

 public function FileDownloader(url:String) {
 var stream:URLStream = new URLStream();
 stream.addEventListener(ProgressEvent.PROGRESS,

 ➥progressHandler);
 stream.load(new URLRequest(url));
 }

 public function progressHandler(event:ProgressEvent):void {
 var stream:URLStream = event.target as URLStream;
 while(stream.bytesAvailable) {
 trace(stream.readByte());
 }
 }

 }
}

Listing 3.13 Downloading a file and reading the bytes

Create
URLStream

B
Listen for
progress

C

Make
request

D

Handle progress event E

Get stream
referenceLoop through

all available
bytes F

Display bytes G

123Reading from and writing to files
This example isn’t particularly practical as it is, because it merely downloads the file
and displays the bytes. But it illustrates the basics of how to request an internet
resource and read the bytes as they’re available. First you need a URLStream object B.
Then you need to listen for the progress events C and make the request to load the
resource D. When the progress events occur E, you need to read the available bytes

F G. There are a variety of ways to read the data from a file. We’ll talk about reading
binary data in more detail momentarily. First we’ll look at how to read from a local
resource.

NOTE You can also use a flash.net.Socket object to read binary data from a
socket connection. We don’t go into detail on using the Socket class in
conjunction with files in this book. But you can apply exactly the same
principles you learn regarding reading from a URLStream or FileStream
object and apply them to working with a Socket object.

READING FROM LOCAL RESOURCES

Reading from a local resource requires using a File object, something you’re already
familiar with. It also requires using a flash.filesystem.FileStream object, some-
thing we haven’t yet discussed.

 A FileStream object allows you to read (and write) from a file. You must have a
File object that points to a file. Then you can use a FileStream object to open that
file for reading or writing, using the open() or openAsync() method. Here are the
basic preliminary steps for reading from a file:

1 Create a File object that references a file such as the following example:
var file:File = File.desktopDirectory.resolvePath("example.jpg");

2 Construct a new FileStream object using the constructor as in the following
example:
var fileStream:FileStream = new FileStream();

3 Use the open() or openAsync() method of the FileStream object to open the
file for reading. First let’s look at how to use the open() method. To do this, you
need to pass it two parameters: the reference to the File object you want to
open and the value of the flash.filesystem.FileMode.READ constant, as in
the following example:
fileStream.open(file, FileMode.READ);

The open() method makes the file available for reading immediately, because
it’s a synchronous operation. On the other hand, you can use the openAsync()
method to open a file for reading asynchronously. If you open a file for reading
asynchronously, you can’t read bytes from it until the stream notifies the appli-
cation that bytes are ready by dispatching a progress event. As bytes are avail-
able to be read, the FileStream object will dispatch progress events, just as a
URLStream object will dispatch progress events as bytes are available. The follow-
ing code snippet shows how you can open a file for reading asynchronously and
then handle the progress events:

124 CHAPTER 3 File system integration
private function startReading(fileStream:FileStream, file:File):void {
 fileStream.addEventListener(ProgressEvent.PROGRESS, progressHandler);
 fileStream.openAsync(file, FileMode.READ);
}

private function progressHandler(event:ProgressHandler):void {
 // code for reading bytes
}

Once you’ve opened a file for reading (and bytes are available) by following these
steps, you can use all of the FileStream object’s read methods to read the bytes of the
file. For example, the following code reads all the available bytes from a file and writes
them to the console or output window using a trace() statement:

while(fileStream.bytesAvailable) {
 trace(fileStream.readByte());
}

Regardless of how you’ve opened a file or what you read from a file, once you’re done
reading the data, you should always close the reading access to the file by calling the
close() method on the same FileStream object.

 Now that we’ve seen the general overview for reading both from internet and local
resources, we’ll next look at how to work with binary data.
UNDERSTANDING BINARY DATA

Humans don’t tend to think in terms of binary data. As far as machines do think, they
think in terms of binary data. Binary is the format preferred by computers. All files are
stored in binary format, and it’s only through computer programs that translate that
binary data into human-readable form that people can make sense of all that data. In
order to work with lower-level file access, humans must pay a price: they must learn to
think in binary a little. When we read data from a URLStream or FileStream object, it’s
our responsibility to figure out what to do with the binary data that the AIR applica-
tion can provide.

 As we’ve already stated, all files are binary data. Each file is just a sequence of bits,
each having two possible values of either 0 or 1. Bits are further grouped into bytes,
which are generally the most atomic data structure we work with in the context of AIR
applications and file manipulation. When you string together bytes, you can represent
all sorts of data, ranging from plain text to video files. What differentiates these differ-
ent types of files is not the way in which the data is stored (because they’re all just
sequences of bytes), but the values of the bytes themselves. Because the type of data is
always the same (bytes), an AIR application can read (or write) any file. Theoretically,
assuming you know the specification for how to construct a sequence of bytes for a
Flash video file, you could build one from scratch using only an AIR application.

 Both the URLStream and the FileStream classes implement an ActionScript inter-
face called flash.utils.IDataInput. The IDataInput interface requires a set of
methods for reading binary data in a variety of ways. These methods are shown in
table 3.3.

125Reading from and writing to files
 The IDataInput interface also requires a property called bytesAvailable. The
bytesAvailable property returns the number of bytes that are in the object’s buffer
(see the next section for more information on reading buffers) and allows you to
ensure you never try to read more bytes than are currently available.

 It would be downright cruel of us to throw all of this information at you without
giving a better description of how to work with these methods in a practical way. In the
next few sections, we’ll see practical examples of how to use these methods in some of
the most common ways. We won’t go into great detail on the uncommon uses, though
you’ll likely be able to extrapolate that information.
READING STRINGS

In table 3.3, you can see that there are three methods for reading strings from binary
data: readUTF(), readUTFBytes(), and readMultiByte(). For most practical pur-
poses, the readUTF() method is not nearly as useful as the other two, so we’ll omit that
from our discussion and focus on the most useful methods.

Table 3.3 Data formats available for reading from an object that implements IDataInput

Format type Format Description Related methods
Related ActionScript

object types

Raw bytes Byte Single or multiple raw
byte

readByte()
readBytes()
readUnsignedBytes()

int
ByteArray

Boolean Boolean 0 for false, otherwise
true

readBoolean() Boolean

Numbers Short 16-bit integer readShort()
readUnsignedShort()

int
uint

Integer 32-bit integer readInt()
readUnsignedInt()

int
uint

Float Single-precision float-
ing point number

readFloat() Number

Double Double-precision
floating point number

readDouble() Number

Strings Multibyte String using a speci-
fied character set

readMultiByte() String

UTF-8 String using the UTF-
8 character encoding

readUTF()
readUTFBytes()

String

Objects Object Objects serialized
and deserialized
using the Action-
Script Message For-
mat (AMF)

readObject() Any object that can
be serialized with
AMF (see “Reading
objects” section for
more details)

126 CHAPTER 3 File system integration
 The readUTFBytes() method returns a string containing all the text stored in a
sequence of bytes. You must specify one parameter, indicating how many bytes you
want. Although not always the case, most frequently you’ll want to read the characters
for all the available bytes, and therefore you can use the bytesAvailable property to
retrieve the value to pass to the readUTFBytes() method.

 To illustrate how you might use readUTFBytes(), we’ll look at a simple example.
This example is a text file reader that reads the data from a file using a FileStream
object and the readUTFBytes() method. Listing 3.14 shows the code. This example
assumes that the class is being used as the document class for a Flash-based AIR proj-
ect with a button component called _button and a text area component called
_textArea.

package {

 import flash.display.MovieClip;
 import flash.filesystem.File;
 import flash.filesystem.FileStream;
 import flash.filesystem.FileMode;
 import flash.events.Event;
 import flash.events.MouseEvent;
 import flash.events.ProgressEvent;

 public class TextFileReader extends MovieClip {

 public function TextFileReader() {
 _button.addEventListener(MouseEvent.CLICK, browseForFile);
 }

 private function browseForFile(event:MouseEvent):void {
 var desktop:File = File.desktopDirectory;
 desktop.addEventListener(Event.SELECT, selectHandler);
 desktop.browseForOpen("Select a text file");
 }

 private function selectHandler(event:Event):void {
 var file:File = event.target as File;
 _textArea.text = "";
 var stream:FileStream = new FileStream();
 stream.addEventListener(ProgressEvent.PROGRESS,
 progressHandler);
 stream.addEventListener(Event.COMPLETE, completeHandler);
 stream.openAsync(file, FileMode.READ);
 }

 private function progressHandler(event:ProgressEvent):void {
 var stream:FileStream = event.target as FileStream;
 if(stream.bytesAvailable) {
 _textArea.text += stream.readUTFBytes(

 ➥stream.bytesAvailable);
 }
 }

 private function completeHandler(event:Event):void {

Listing 3.14 Using the readUTFBytes() method of a FileStream object

Browse for file

Clear text area
Listen for

read events

Open file for
reading

Verify bytes
available

Display bytes
as string

127Reading from and writing to files
 event.target.close();
 }

 }

}

You might notice that, using this example, you can read any type of file, not just a text
file. But because the code uses readUTFBytes() to explicitly interpret the data as a
string, the output will only make sense if the file is a text file.

 The readMultiByte() method is useful for reading text using a specific code page.
If you’re not familiar with code pages, they’re the way most systems know which char-
acters correspond to which byte values. Different code pages result in the same data
having a different appearance. For example, if you view a text file on a system that
uses a Japanese code page, it may not appear the same as it would on a system with a
Latin character–based code page. When you use a method such as readUTFBytes(),
you are using the default system code page. If you want to use a nondefault code page,
you need to use readMultiBytes(). The readMultiBytes() method requires the
same parameter as readUTFBytes(), but it also requires a second parameter specify-
ing the code page or character set to use. The supported character sets are listed at
livedocs.adobe.com/flex/3/langref/charset-codes.html. For example, the following
reads from a file stream using the extended Unix Japanese character set:

var text:String = stream.readMultiByte(stream.bytesAvailable, "euc-jp");

Just because the code says to use a particular character set doesn’t mean that the
application will necessarily succeed in that effort. For example, if a computer system
doesn’t have a particular code page, there’s no way for the application to interpret the
bytes using that code page. In such cases, the AIR application will instead use the
default system code page.
READING OBJECTS

Another common way to read data from a file is to read it as objects. This is generally
applicable when the file was written from an AIR application to begin with. That’s
because AIR applications can serialize most objects to a format called AMF, write that
data to a file, and read the data at a later point and deserialize it back into objects.
We’ll see several examples of this later in the chapter.

NOTE AMF is used extensively by Flash Player. ByteArray, LocalConnec-
tion, NetConnection, and URLLoader are just a few of the classes that
rely on AMF.

Here’s how AMF serialization and deserialization work: Flash Player has native sup-
port for AMF data. Whenever data might be externalized, it can be serialized to AMF.
In most cases, the serialization occurs automatically. For example, if you use a Net-
Connection object to make a Flash Remoting call, the data is automatically serialized
and deserialized to and from AMF. Likewise, if you write data to a shared object, it’s
automatically serialized to AMF. When you read it from the shared object, the data is
deserialized back to ActionScript objects.

Close the
file stream

128 CHAPTER 3 File system integration
 There are two types of AMF serialization: AMF0 and AMF3. AMF0 is backward-com-
patible with ActionScript 2, and it isn’t generally applicable to AIR applications. AMF3
supports all the core ActionScript 3 data types, and is what you’ll usually use for AIR
applications. AMF3 is the default AMF encoding. With AMF3 encoding, all the stan-
dard, core ActionScript data types are automatically serialized and deserialized. Those
data types include String, Boolean, Number, int, uint, Date, Array, and Object. Ini-
tially we’ll assume you’re only working with these core data types.

 When you have a resource that contains AMF data, you can read that data using the
readObject() method. The readObject() method returns one object in the
sequence of bytes from the resource. The readObject() method’s return type is *,
therefore if you want to assign the value to a variable, you must cast it. Generally
speaking, if you’re reading an object from a file or other resource, the format of the
data and the type of object is already known to you. The following example illustrates
reading objects from a file. In this example, we’re assuming that the file contains
Array objects that have been appended one after another in the file:

var array:Array;
while(fileStream.bytesAvailable) {
 array = fileStream.readObject() as Array;
 trace(array.length);
}

If you could only read standard data types from files, the usefulness would be limited.
However, you aren’t limited to working with standard data types. In fact, you can read
any custom data type you want from a file, as long as the corresponding ActionScript
class is known and available to the AIR application. This requires two basic steps:

■ Write and compile the ActionScript class for the data type into the application.
■ Register the class with an alias.

The first step is one that should be familiar to you. But there are a few things about
AMF deserialization that you should know in order to ensure that your class will allow
the data to deserialize properly:

■ By default, AMF only serializes and deserializes public properties, including get-
ters/setters. That means you must define public properties or getters/setters
for every property you want to be able to use with AMF.

■ During AMF deserialization, the public properties are set before the constructor
gets called. That means you should be careful that you don’t have an initializa-
tion code in your constructor that’ll overwrite the values of the properties if
they’ve already been set.

The next step, registering the class with an alias, is one that might be unfamiliar to
you. The basic idea is this: when an object is serialized into AMF, it isn’t always read by
the same program or language that created the data. Therefore, it needs a name that
it can use to identify the type. Then any program or language that knows about that

129Reading from and writing to files
name, or alias, will know how to deserialize the data properly. When we talk about
writing data, we’ll talk more about creating an alias. For the purposes of reading data,
all that’s necessary is that you know the alias used by the data that’s encoded in the file
or resource. If you don’t know that, you’ll need to consult with whoever wrote the data
to the resource.

 There are two ways you can register a class with an alias. In ActionScript, you can
use the flash.net.registerClassAlias() method, and for Flex applications you can
use the [RemoteClass] metadata tag. The two ways accomplish the same thing. If
you’re using Flex, the [RemoteClass] tag is generally the easiest and clearest way to
register a class with an alias. To use [RemoteClass], you need only to place the tag just
before the class definition and include an alias argument that specifies the alias of
the data that you want to deserialize. The following example illustrates this:

package {
 [RemoteClass(alias="CustomTypeAlias")]
 public class CustomType {
 // Class code goes here
 }
}

If you’re not using Flex, you’ll need to use registerClassAlias(). You can call the
method from anywhere in the application, but you need to make sure it gets called
before you try to read the data from the file. Generally, you’ll place registerClass-
Alias() calls somewhere in the startup sequence for the application. The first param-
eter is the alias as a string, and the second parameter is a reference to the class. The
following example registers the CustomType class with the alias CustomTypeAlias:

registerClassAlias("CustomTypeAlias", CustomType);

Once you’ve registered a class with an alias, you can use readObject() to read an
object of that type from a resource, and the AIR application will be able to properly
deserialize it. If a custom type has properties of another custom type, you’ll need to
make sure that other custom type is also registered.

 We’ll see some examples of reading custom types from files a bit later in the chap-
ter when we talk about how to write to files. Before we move on to writing to files, we’ll
take a bit of time to better understand how reading from files works at a more funda-
mental level.
UNDERSTANDING THE READ BUFFER

FileStream objects use what are known as read buffers. You can think of a read buffer
as a container with a bunch of slots of bytes. As data is available to be read, it gets
placed in the read buffer.

 When you use one of the read methods of a FileStream object, you’re actually
reading from the read buffer, which is a copy of bytes from the file, not the file itself.

 Generally speaking, there are two broad scenarios for reading from files: reading
synchronously and reading asynchronously. You’ve already seen how to use the open()
and openAsync() methods to start the synchronous and asynchronous versions of the

130 CHAPTER 3 File system integration
read operation. What we haven’t yet discussed is how synchronous and asynchronous
reading of files work differently with respect to the read buffer.

 When you open a file synchronously for reading, the read buffer is filled entirely.
In other words, all the bytes from the file are copied to the read buffer and available
for reading. Because all the bytes of a file are available for reading right away in a syn-
chronous operation, the danger of overrunning the buffer is minor, but it’s still possi-
ble. The bytesAvailable property serves as a guide to help make sure you don’t
request bytes that are outside of the scope of the read buffer. For example, if a file
contains 200 bytes (and the read buffer consequently also contains 200 bytes), you
wouldn’t want to try to read the 202nd byte because it wouldn’t exist. That’s why
you’ve seen a few examples with the following construct:

while(fileStream.bytesAvailable) {
 // Read from the read buffer
}

For a synchronous read operation, bytesAvailable always tells you the number of
bytes from the current read position in the buffer. Reading from a read buffer uses a
different technique than reading from an array or other similar operations that you
may be more familiar with. Instead of reading from a specific index, the read methods
of FileStream (and other IDataInput types) always reads the next byte or bytes from
the current read position. For example, figure 3.5 shows a conceptual diagram of a
read buffer. Each of the “slots” for bytes has an index starting with 0. (There are 16
slots in the diagram with indices 0 through 15.) The bytes are placed into those slots,
and then they’re available for reading. Figure 3.5 shows the read position at the start
of the buffer at index 0. At that time, the bytesAvailable property returns 16
because there are 16 bytes ahead of the current read position.

If we were to read four bytes from the read buffer (by calling readByte() four times,
for example), the read position would be moved to 4, as shown in figure 3.6. The
bytesAvailable would no longer be 16. Instead, the bytesAvailable would be 12,
because there would only be 12 bytes ahead of the read position.

 When you read a file synchronously, you can move the read position to any avail-
able index using the position property. For example, if you’ve already read some or
all of the bytes from a FileStream object and you want to reread the bytes from the
start of the file, you must set the position property to 0:

Figure 3.5 A read buffer with the read position at 0

131Reading from and writing to files
fileStream.position = 0;

Thus far, we’ve talked only about read buffers for synchronous reading operations.
Asynchronous operations interact with read buffers differently. When you open a file
to read asynchronously, the read buffer isn’t filled right away. Instead, the read buffer
gets filled progressively. Each time bytes are added to the buffer, the FileStream dis-
patches a progress event. Figure 3.7 shows what it might look like when an asynchro-
nous read operation has just started and no bytes have been read into the buffer yet.

Figure 3.8 shows what the read buffer might look like after the first progress event
occurs. In this case, we’re assuming that the first progress event occurs after reading
just 4 bytes each. This is for the sake of convenience in illustrating the point. In actual-
ity, progress events indicate much larger batches of bytes.

In this example, bytesAvailable will be 4 after the first progress event because there
are only four bytes available for reading after the read position. Figure 3.9 shows what
the read buffer might look like after the second progress event, assuming another 4
bytes are read in.

Figure 3.6 When you read from a FileStream, the position in the read buffer moves.

Figure 3.7 The white squares indicate that no bytes have been read into the buffer yet
because the read operation is asynchronous.

Figure 3.8 The read buffer is partially filled after the first progress event.

132 CHAPTER 3 File system integration
In the example, the bytesAvailable will be 8 after the second progress event.
 You’ll notice that, in both figure 3.8 and figure 3.9, the position remains at 0.

That’s because we’re assuming that in each case we’re not reading from the buffer yet.
But remember that you can read all the available bytes after each progress event. If we
did read the bytes from the read buffer after the progress events, the pictures would
be different. Figure 3.10 shows what the read buffer would look like after the first
progress event if we were to read the available bytes.

If we were to read the bytes as soon as they became available, that would change the
value of bytesAvailable. Just prior to reading the bytes, bytesAvailable would have
a value of 4 in the example illustrated by figure 3.10, but, right after reading the bytes,
the bytesAvailable value would be 0 because there would be no bytes following the
read position.

 There’s another important difference in how the read buffer works when reading
from a file synchronously versus asynchronously. As we mentioned earlier, when you
read from a file synchronously, you can reread bytes from the read buffer by resetting
the position property. With an asynchronous read, data is removed from the buffer
as it’s read and is no longer available unless you save it elsewhere.

 That wraps up our discussion of reading from files. Next we’ll round out the dis-
cussion by talking about how to write to files.

3.7.2 Writing to files

In many ways, writing to files is the opposite of reading from files. When you read
from files, you’re retrieving data from them; when you write to files, you are adding
data to them. Because the operations are so similar, you’ll see a lot of parity between
the reading and writing of files. In the previous section, you learned some of the more

Figure 3.9 The read buffer has yet more bytes available after the second progress event.

Figure 3.10 Reading the available bytes moves the read position.

133Reading from and writing to files
challenging concepts involving working with files, including reading binary data.
Much of what you learned in that section will be applicable to writing as well, and
you’ll likely find that, once the reading concepts click for you, the writing concepts
will too.

 Over the next few sections, we’ll talk about all the important concepts you must
know to write to files. You’ll also see lots of examples that help you to integrate both
reading and writing.
SELECTING A WRITING MODE

You’ll be glad to know that opening a file for writing is almost exactly the same as open-
ing a file for reading. In both cases, you use a FileStream object and call the open() or
openAsync() method. In both cases, you pass the open() or openAsync() method a
reference to the File object you want to use. There are three things that differ:

■ When you open a file to write, you must specify a file mode parameter of File-
Mode.WRITE, FileMode.APPEND, or FileMode.UPDATE.

■ When you open a file for writing asynchronously, you must listen for the open
event before attempting to write to the file.

■ Whereas a file must already exist on the file system before you can read it, that
isn’t true for writing to a file. If you attempt to open a file that doesn’t yet exist
on the file system, AIR will create the file and any necessary directories.

The second and third points need little explanation, but we’d be leaving you stranded
if we didn’t discuss the first point in more detail. When you write to a file, you have
three options, as indicated by the three FileMode writing constants: WRITE, APPEND,
and UPDATE. You need to make sure that you select the correct mode in order to write
to the file correctly:

■ WRITE—Select the WRITE mode when you want to create an entirely new file or
overwrite an existing file. This mode will truncate an existing file and start writ-
ing data from the beginning of the file.

■ APPEND—Select this mode when you want to append data to the end of an exist-
ing file. If the file doesn’t already exist, this mode will still create it.

■ UPDATE—Select this mode if you want to be able to both write to and read from
the file at the same time. This mode is similar to the APPEND mode in that it
doesn’t truncate existing content. However, while the APPEND mode automati-
cally moves the write position to the end of the file, the UPDATE mode keeps the
write position at the beginning of the file initially.

The following example opens a file called log.txt in the application storage directory.
This code opens the file in APPEND mode, meaning any write operations will add to the
end of the file:

var logFile:File = File.applicationStorageDirectory.resolvePath("log.txt");
var stream:FileStream = new FileStream();
stream.addEventListener(Event.OPEN, openHandler);
stream.openAsync(logFile, FileMode.APPEND);

134 CHAPTER 3 File system integration
It’s important to choose correctly between synchronous and asynchronous operations
when opening a file for writing. When reading from a file, the primary determining
factor is the size of the file that you intend to read. A large file should generally be
opened asynchronously. That same guideline applies to writing as well: if you intend
to write a lot of data to a file, you should open it asynchronously.

 As with reading from files, once you’ve written to a file, you should close access to
it by using the close() method:

fileStream.close();

Now that you know how to open a file for writing, we’ll look at how to actually write
data to it.
WRITING DATA

In table 3.3, you learned all the IDataInput methods for reading from objects such as
FileStream objects. You’ll be glad to know that the methods for writing maintain par-
ity with the methods for reading. Table 3.4 shows all the methods for writing for a
FileStream object.

Table 3.4 IDataOutput methods for writing data

Format type Format Description Related methods
Related

ActionScript
object types

Raw bytes Byte Single or multiple raw
byte

writeByte()
writeBytes()
writeUnsignedBytes()

Int
ByteArray

Boolean Boolean 0 for false, otherwise
true

writeBoolean() Boolean

Numbers Short 16-bit integer writeShort()
writeUnsignedShort()

Int
uint

Integer 32-bit integer writeInt()
writeUnsignedInt()

int
uint

Float Single-precision float-
ing point number

writeFloat() Number

Double Double-precision float-
ing point number

writeDouble() Number

Strings Multibyte String using a specified
character set

writeMultiByte() String

UTF-8 String using the UTF-8
character encoding

writeUTF()
writeUTFBytes()

String

Objects Object Objects serialized and
deserialized using the
ActionScript Message
Format (AMF)

writeObject() Any object that
can be serial-
ized with AMF

135Reading from and writing to files
NOTE The methods shown in table 3.4 are required by the IDataOutput inter-
face. FileStream implements the IDataOutput interface, as do many
other classes such as ByteArray and Socket.

Most of the write methods work similarly. We’re not going to go into detail on each
and every method. However, as we did earlier with reading, we’ll talk about a couple
of the most common ways to write data to a file: text and serialized objects.

 Writing text to files mirrors reading text from files: use the writeUTFBytes() and
writeMultiByte() methods. The writeUTFBytes() method allows you to specify a
string parameter, which it writes to the file. The writeMultiByte() method works sim-
ilarly except that you must specify a character set to use as well. Listing 3.15 shows an
example that writes to a log file using writeUTFBytes(). This example assumes that
you’re using the class as a document class for a Flash-based AIR project and that
there’s a button component instance called _button on the stage.

package {

 import flash.display.MovieClip;
 import flash.filesystem.File;
 import flash.filesystem.FileStream;
 import flash.filesystem.FileMode;
 import flash.events.Event;
 import flash.events.MouseEvent;
 import flash.events.ProgressEvent;

 public class LogFileWriter extends MovieClip {

 public function LogFileWriter() {
 _button.addEventListener(MouseEvent.CLICK, addLogEntry);
 }

 private function addLogEntry(event:MouseEvent):void {
 var file:File = File.desktopDirectory.resolvePath("log.txt");
 var stream:FileStream = new FileStream();
 stream.open(file, FileMode.APPEND);
 stream.writeUTFBytes("Log entry " + new Date() + "\n");
 stream.close();
 }

 }

}

Writing data as serialized objects shares some similarities with reading serialized
objects. Any data that can be serialized using AMF can be written to a file using the
writeObject() method. For example, the following writes an array to a file:

var array:Array = new Array(1, 2, 3, 4);
fileStream.writeObject(array);

In this example, there are no extra steps required to write the array to the file because
Array is one of the data types that’s inherently supported by AMF serialization. If you

Listing 3.15 Writing to a log file using writeUTFBytes()

136 CHAPTER 3 File system integration
want to write a custom data type to a file, you must make sure that you have registered
the class with an alias. The process for registering a class with an alias was discussed
previously in the section, “Reading objects.”

 Now that you’ve learned how to write to files, we’ll next look at a more substantial
example that uses all this information.

3.8 Reading and writing music playlists
In this section, we’ll take all the information that we’ve learned throughout the chap-
ter and create a simple application that allows the user to create playlists of mp3 files
on her system. Note that the application doesn’t actually play the mp3 files (although
that would be possible), but rather we’ve chosen to keep it focused on the file system
operations. You’re welcome to add the mp3 playback functionality to the application
as a challenge for yourself.

 The playlist maker application is fairly rudimentary. It consists of just four classes/
MXML documents:

■ PlaylistMaker.mxml
■ ApplicationData.as
■ Playlist.as
■ PlaylistService.as

Over the next few sections, we’ll build each of these. The result will look like what you
see in figure 3.11.

 The PlaylistMaker application has the following features:

Figure 3.11 The PlaylistMaker application allows users to create playlists from the mp3 files on
their computer.

137Reading and writing music playlists
■ It searches all the mp3 files on the user’s system (given a parent directory) and
displays them in a list.

■ The user can add and remove tracks to playlists.
■ The user can save playlists.
■ The user can load saved playlists.

Now that we’ve had a chance to see how the application is structured, what it looks
like, and what it does, we can get to building it.

 The first thing we need to do to get started with the PlaylistMaker application is
configure the project. If you’re using Flex Builder, simply create a new AIR project
called PlaylistMaker, and that automatically creates the necessary file system structure
as well as the PlaylistMaker.mxml application file. If you’re not using Flex Builder, pro-
ceed with configuring a project as you normally would, and name the main applica-
tion file PlaylistMaker.mxml.

 Now that you’ve configured the project, we’re ready to create the data model and
model locator for the application. We’ll do that in the next section.

3.8.1 Building the data model

Our application is quite simple; therefore the data model is simple as well. In fact, we
only need one data model class: Playlist. Playlist objects essentially need only two
pieces of information: a name and a collection of the tracks contained within the play-
list. The Playlist class reflects this simplicity, as you can see in listing 3.16.

 In addition to the Playlist class, we also need to create something to serve as a
model locator, which allows us to store the data for the application in a centralized
place. For this purpose, we’ll use a class we’re calling ApplicationData. The Applica-
tionData class contains the data used by the three parts of the application: all the
mp3s, the current playlist, and all the saved playlists.

 To build the data model and the model locator, complete the following steps:

1 Create a new ActionScript class document and save it as com/manning/playlist-
maker/data/Playlist.as relative to the source directory for the project.

2 Add the code from listing 3.16 to the Playlist class.

package com.manning.playlistmaker.data {
 import flash.events.Event;
 import flash.events.EventDispatcher;
 import flash.filesystem.File;

 [RemoteClass(alias="com.manning.playlistmaker.data.Playlist")]
 public class Playlist extends EventDispatcher {

 private var _list:Array;
 private var _name:String;

 [Bindable(event="listChanged")]
 public function get list():Array {

Listing 3.16 The Playlist class

Make class
serializable

B

Store playlist tracks

Name of playlist Make properties
bindable

C

138 CHAPTER 3 File system integration
 return _list;
 }

 public function set list(value:Array):void {
 _list = value;
 }

 [Bindable(event="nameChanged")]
 public function set name(value:String):void {
 _name = value;
 }

 public function get name():String {
 return _name;
 }

 public function Playlist() {
 if(_list == null) {
 _list = new Array();
 }
 }

 public function addTrack(value:File):void {
 _list.push(value);
 dispatchEvent(new Event("listChanged"));
 }

 public function addTracks(value:Array):void {
 _list = _list.concat(value);
 dispatchEvent(new Event("listChanged"));
 }

 public function removeTrack(value:File):void {
 for(var i:Number = 0; i < _list.length; i++) {
 if(_list[i].nativePath == value.nativePath) {
 _list.splice(i, 1);
 break;
 }
 }
 dispatchEvent(new Event("listChanged"));
 }

 }
}

Although the Playlist class is simple, it has some subtleties that require further dis-
cussion. First, note that the class starts with a [RemoteClass] metadata tag B . This is
necessary because later on we’re going to write Playlist objects to disk, and we need
to be able to properly serialize and deserialize the objects. As you’ll recall, the
[RemoteClass] metadata tag tells the application how to map the serialized data back
to a class. Note also that both the name and list properties are bindable C. That’s
because we want to wire up UI components later on to display the contents of a play-
list. Because we want the list, an array, to be data bindable, we need to provide acces-
sor methods to adding and removing tracks D F G. You’ll notice that these methods
all dispatch listChanged events E, which triggers data binding changes.

Only create
array if null

Add track
to playlist

D

Add only
name

Notify bound
propertiesE

Add
multiple
tracksF

Remove
a trackG

139Reading and writing music playlists
3 Create a new ActionScript class document and save it as com/manning/playlist-
maker/data/ApplicationData.as relative to the source directory for the project.

4 Add the code from listing 3.17 to the ApplicationData class.

package com.manning.playlistmaker.data {

 import flash.events.Event;
 import flash.events.EventDispatcher;
 import flash.filesystem.File;

 public class ApplicationData extends EventDispatcher {

 static private var _instance:ApplicationData;

 private var _mp3s:Playlist;
 private var _playlist:Playlist;
 private var _savedPlaylists:Array;

 [Bindable(event="mp3sChanged")]
 public function get mp3s():Playlist {
 return _mp3s;
 }

 [Bindable(event="playlistChanged")]
 public function set playlist(value:Playlist):void {
 _playlist = value;
 dispatchEvent(new Event("playlistChanged"));
 }

 public function get playlist():Playlist {
 return _playlist;
 }

 [Bindable(event="savedPlaylistsChanged")]
 public function set savedPlaylists(value:Array):void {
 _savedPlaylists = value;
 dispatchEvent(new Event("savedPlaylistsChanged"));
 }

 public function get savedPlaylists():Array {
 return _savedPlaylists;
 }

 public function ApplicationData() {
 _mp3s = new Playlist();
 _playlist = new Playlist();
 _savedPlaylists = new Array();
 }

 static public function getInstance():ApplicationData {
 if(_instance == null) {
 _instance = new ApplicationData();
 }
 return _instance;
 }

 public function addPlaylist(playlist:Playlist):void {

Listing 3.17 The ApplicationData class

Singleton
instance

B

All system mp3sC
Current
playlistDSaved

playlistsE

Singleton accessor F

Add a playlist to
saved playlists

G

140 CHAPTER 3 File system integration
 if(_savedPlaylists.indexOf(playlist) == -1) {
 _savedPlaylists.push(playlist);
 dispatchEvent(new Event("savedPlaylistsChanged"));
 }
 }

 }
}

The ApplicationData class is simple. You can see that it implements the Single-
ton design pattern B F. The class allows access to three pieces of information:
an array of all the system mp3s C, the current playlist D, and an array of saved
playlists E. Additionally, the class defines a method for adding a playlist to the
saved playlists G. This method first verifies that the playlist isn’t already in the
saved playlists before adding it.

That’s all there is to the data model and locator for this application. Next we’ll build
out the service/controller for the application.

3.8.2 Building the controller

The controller for this PlaylistMaker application is a class we’ll call PlaylistSer-
vice. This class is responsible for two primary functions: retrieving a list of the mp3s
on the system and saving and retrieving playlists to and from disk. To build the con-
troller, complete the following steps:

1 Create a new ActionScript class file and save it as com/manning/playlistmaker/
services/PlaylistService.as relative to the project source directory.

2 Add the following code to the PlaylistService class. This code creates the
structure of the class. We’ll fill in the methods in subsequent steps:
package com.manning.playlistmaker.services {
 import flash.filesystem.File;

 public class PlaylistService {

 public function PlaylistService() {
 }

 public function getMp3s(parentDirectory:File):void {
 }

 private function locateMp3sInDirectory(parentDirectory:File):void {
 }

 private function directoryListingHandler(event:FileListEvent):

 ➥void {
 }

 public function savePlaylists():void {
 }

 public function loadSavedPlaylists():void {
 }

 }
}

141Reading and writing music playlists
3 Fill in the getMp3s(), locateMp3sInDirectory(), and directoryListingHand-
ler() methods. These methods work together to allow the user to retrieve all
the mp3 files within a parent directory.

package com.manning.playlistmaker.services {
 import flash.filesystem.File;
 import flash.events.FileListEvent;
 import com.manning.playlistmaker.data.ApplicationData;

 public class PlaylistService {

 public function PlaylistService() {
 }

 public function getMp3s(parentDirectory:File):void {

 locateMp3sInDirectory(parentDirectory);
 }

 private function locateMp3sInDirectory(parentDirectory:File):void {
 parentDirectory.addEventListener(

 ➥FileListEvent.DIRECTORY_LISTING, directoryListingHandler);
 parentDirectory.getDirectoryListingAsync();
 }

 private function directoryListingHandler(event:FileListEvent):

 ➥void {
 var files:Array = event.files;
 var mp3s:Array = new Array();
 var file:File;
 for(var i:Number = 0; i < files.length; i++) {
 file = files[i] as File;
 if(file.isDirectory) {
 locateMp3sInDirectory(file);
 }
 else if(file.extension == "mp3") {
 mp3s.push(file);
 }
 }
 if(mp3s.length > 0) {
 ApplicationData.getInstance().mp3s.addTracks(mp3s);
 }
 }

 public function savePlaylists():void {
 }

 public function loadSavedPlaylists():void {
 }

 }
}

The getMp3s() method merely calls the private method locateMp3s-

InDirectory() B, which asynchronously retrieves a directory listing C. When
the directory listing is returned, the handler method loops through the con-
tents D and determines the appropriate action for each E. If the item is a

Retrieve
.mp3 files

B

Get directory
listingC

Loop through
contents

D

Take
appropriate
action

E

Add to
data model F

142 CHAPTER 3 File system integration
directory, we call locateMp3sInDirectory() recursively. Otherwise, if the file
has an extension of .mp3, we add it to an array, which we later add to the data
model F.

4 Fill in the savePlaylists() method as shown in the following code:

package com.manning.playlistmaker.services {
 import flash.filesystem.File;
 import flash.events.FileListEvent;
 import com.manning.playlistmaker.data.ApplicationData;
 import flash.filesystem.FileMode;
 import flash.filesystem.FileStream;
 import com.manning.playlistmaker.data.Playlist;

 public class PlaylistService {

 public function PlaylistService() {
 }

 public function getMp3s(parentDirectory:File):void {
 locateMp3sInDirectory(parentDirectory);

 }

 private function locateMp3sInDirectory(parentDirectory:File):void {
 parentDirectory.addEventListener(
 ➥FileListEvent.DIRECTORY_LISTING, directoryListingHandler);
 parentDirectory.getDirectoryListingAsync();
 }

 private function directoryListingHandler(event:FileListEvent):

 ➥void {
 var files:Array = event.files;
 var mp3s:Array = new Array();
 var file:File;
 for(var i:Number = 0; i < files.length; i++) {
 file = files[i] as File;
 if(file.isDirectory) {
 locateMp3sInDirectory(file);
 }
 else if(file.extension == "mp3") {
 mp3s.push(file);
 }
 }
 if(mp3s.length > 0) {
 ApplicationData.getInstance().mp3s.addTracks(mp3s);

 }
 }

 public function savePlaylists():void {
 var file:File =

 ➥File.applicationStorageDirectory.resolvePath(

 ➥"savedPlaylists.data");
 var stream:FileStream = new FileStream();
 stream.open(file, FileMode.WRITE);
 var applicationData:ApplicationData =

 ➥ApplicationData.getInstance();
 applicationData.addPlaylist(applicationData.playlist);

Create file
reference

B

Open in write modeC

Add current playlist D

143Reading and writing music playlists
 stream.writeObject(applicationData.savedPlaylists);
 stream.close();
 }

 public function loadSavedPlaylists():void {
 }

 }
}

When saving the data, we create a reference to the file B, open it in write mode

C, and write the data to the file E. In this case, we’re writing all the playlists to
the file. We also need to make sure the current playlist is added to the saved
playlists array in the data model D before writing to disk.

5 Fill in the method that loads the saved playlists. Listing 3.18 shows the com-
pleted class with this method filled in.

package com.manning.playlistmaker.services {
 import flash.filesystem.File;
 import flash.events.FileListEvent;
 import com.manning.playlistmaker.data.ApplicationData;
 import flash.filesystem.FileMode;
 import flash.filesystem.FileStream;
 import com.manning.playlistmaker.data.Playlist;

 public class PlaylistService {

 public function PlaylistService() {
 }

 public function getMp3s(parentDirectory:File):void {
 locateMp3sInDirectory(parentDirectory);
 }

 private function locateMp3sInDirectory(parentDirectory:File):void {
 parentDirectory.addEventListener(

 ➥FileListEvent.DIRECTORY_LISTING, directoryListingHandler);
 parentDirectory.getDirectoryListingAsync();
 }

 private function directoryListingHandler(event:FileListEvent):

 ➥void {
 var files:Array = event.files;
 var mp3s:Array = new Array();
 var file:File;
 for(var i:Number = 0; i < files.length; i++) {
 file = files[i] as File;
 if(file.isDirectory) {
 locateMp3sInDirectory(file);
 }
 else if(file.extension == "mp3") {
 mp3s.push(file);
 }

Listing 3.18 The PlaylistService class

Write all
playlists E

144 CHAPTER 3 File system integration
 }
 if(mp3s.length > 0) {
 ApplicationData.getInstance().mp3s.addTracks(mp3s);
 }
 }

 public function savePlaylists():void {
 var file:File =

➥File.applicationStorageDirectory.resolvePath("savedPlaylists.data");
 var stream:FileStream = new FileStream();
 stream.open(file, FileMode.WRITE);
 var applicationData:ApplicationData =

 ➥ApplicationData.getInstance();
 applicationData.addPlaylist(applicationData.playlist);
 stream.writeObject(applicationData.savedPlaylists);
 stream.close();
 }

 public function loadSavedPlaylists():void {
 var file:File =

 ➥File.applicationStorageDirectory.resolvePath(

 ➥"savedPlaylists.data");
 if(file.exists) {
 var stream:FileStream = new FileStream();
 stream.open(file, FileMode.READ);
 var playlists:Array = new Array();
 while(stream.bytesAvailable) {
 playlists = stream.readObject() as Array;
 }
 stream.close();

 ApplicationData.getInstance().savedPlaylists = playlists;
 }
 }

 }
}

When reading the saved playlists, we read from the same file to which we wrote
the data B. Before we try to read from the file, we verify that it actually exists C
or else we might get an error. Then we open the file in read mode D, read the
data E, and write the data to the data model F.

That wraps up the controller. Next we need only to build the user interface to the
application.

3.8.3 Building the user interface

The user interface for the PlaylistMaker application is PlaylistMaker.mxml, which you
already created when configuring the project. Now we need only to add the necessary
code to that document in order to make it look like figure 3.11. To do this, open Play-
listMaker.mxml and add the code in listing 3.19.

Reference
storage fileB

If file existsC

Open for
readingD

E
Read data
from file

Assign array to
savedPlaylists F

145Reading and writing music playlists
<?xml version="1.0" encoding="utf-8"?>
<mx:WindowedApplication xmlns:mx="http://www.adobe.com/2006/mxml"
 creationComplete="creationCompleteHandler();" width="800">
 <mx:Script>
 <![CDATA[
 import com.manning.playlistmaker.data.Playlist;
 import com.manning.playlistmaker.services.PlaylistService;
 import com.manning.playlistmaker.data.ApplicationData;
 import flash.filesystem.File;

 [Bindable]
 private var _applicationData:ApplicationData;
 private var _service:PlaylistService;

 private function creationCompleteHandler():void {
 _applicationData = ApplicationData.getInstance();
 _service = new PlaylistService();
 _service.getMp3s(File.documentsDirectory);
 _service.loadSavedPlaylists();
 }

 private function addToPlaylist():void {
 _applicationData.playlist.addTrack(

 ➥mp3list.selectedItem as File);
 }

 private function removeFromPlaylist():void {
 _applicationData.playlist.removeTrack(

 ➥playlist.selectedItem as File);
 }

 private function newPlaylist():void {
 _applicationData.playlist = new Playlist();
 }

 private function loadPlaylist():void {
 _applicationData.playlist =

 ➥savedPlaylists.selectedItem as Playlist;
 }

 private function savePlaylist():void {
 var playlist:Playlist = _applicationData.playlist;
 playlist.name = playlistName.text;
 _service.savePlaylists();
 }

]]>
 </mx:Script>
 <mx:HBox width="100%">
 <mx:VBox width="33%">
 <mx:Label text="All MP3s" />
 <mx:List id="mp3list"
 dataProvider="{_applicationData.mp3s.list}"
 labelField="name" width="100%" height="100%" />
 </mx:VBox>
 <mx:VBox>

Listing 3.19 The PlaylistMaker document

Register
creationComplete

Handler

Get reference to
ApplicationData

Create
service

instance

Request
system mp3sBLoad the

saved playlistsC

Set playlist
nameSave the

playlists

http://www.adobe.com/2006/mxml

146 CHAPTER 3 File system integration
 <mx:Spacer height="50" />
 <mx:Button label=">>" click="addToPlaylist();"
 enabled="{mp3list.selectedItem != null}" />
 <mx:Button label="<<" click="removeFromPlaylist();"
 enabled="{playlist.selectedItem != null}" />
 </mx:VBox>
 <mx:VBox width="33%">
 <mx:Label text="Playlist" />
 <mx:List id="playlist"
 dataProvider="{_applicationData.playlist.list}"
 labelField="name"
 width="100%" height="100%" />
 <mx:TextInput id="playlistName"

text="{_applicationData.playlist.name}" />
 <mx:Button label="Save" click="savePlaylist();" />
 <mx:Button label="New" click="newPlaylist();" />
 </mx:VBox>
 <mx:VBox width="33%">
 <mx:Label text="Saved Playlists" />
 <mx:List id="savedPlaylists"
 dataProvider="{_applicationData.savedPlaylists}"
 labelField="name" width="100%" height="100%" />
 <mx:Button label="Load" click="loadPlaylist();" />
 </mx:VBox>

 </mx:HBox>
</mx:WindowedApplication>

The PlaylistMaker.mxml document isn’t too fancy. Primarily it consists of a bunch of
UI components wired up (via data binding) to properties in ApplicationData. Other-
wise it simply makes a few requests to the service on startup B C and responds to
user actions by updating values in ApplicationData. Note that, when requesting the
system mp3s, we give the service a parent directory of the user’s documents directory

B. That means we’ll only be retrieving the mp3 files from the documents directory. If
you wanted to retrieve the files from other locations on the computer, you’d simply
need to specify a different starting directory.

 That’s all there is to PlaylistMaker. You can go ahead and run it and see for yourself
how it works.

 At this point, you probably think there’s not much more we could discuss related
to files and storing data locally. After all, we’ve already covered a great deal of infor-
mation. Don’t worry. We don’t have much more to talk about on this topic, but we do
have one more important subject to cover: storing data securely. Read on to learn how
this works.

3.9 Storing data securely
We’ve seen how to read and write data using files. Much of that data isn’t only easily
accessible, it’s also human-readable. For most data, that’s not a problem. In the previ-
ous section, we wrote playlist data to files, and there’s no problem with storing that
data in files that are easily accessible, meaning any user can open them and read

147Storing data securely
them. You probably wouldn’t care if your sister, your child, or even a stranger read a
playlist you made up. But that’s not true of all data. Consider the following example:
you build an AIR application that allows users to shop several of their favorite online
stores all from one application. As a convenience for the user, you want the applica-
tion to store billing information. That way the user doesn’t have to enter that informa-
tion every time he wants to make a purchase. Storing that data in a file might seem
like a good idea initially, but, unlike a playlist of mp3 tracks, a user’s billing informa-
tion is probably something he doesn’t want others to see. Storing that sort of data in a
standard file is a bad idea. Not only does it make the data available to other users of
the computer, but it also makes the information available to other software running
on the computer.

 Although writing to a regular file isn’t a good idea in cases such as the one just
mentioned, AIR does have a solution. The flash.data.EncryptedLocalStore class
provides access to a secure data storage area on the computer. Each system user of
each AIR application gets his own secure data storage area. That means that if you use
your shopping application you’ll have your own secure data storage area, but if your
sister uses the application on the same computer she’ll also have her own unique
secure data storage area. The EncryptedLocalStore class takes care of all the logic
behind the scenes, determining which storage area to use. All you have to do is write
the code that adds data to the data store, reads from the data store, or removes data
from the data store.

 All data written to a secure data storage area using EncryptedLocalStore is
encrypted using AES-CBC 128-bit encryption. Again, EncryptedLocalStore takes care
of the encryption and decryption. All you need to do is call the correct methods and
pass them the correct parameters. We’ll look at these methods in a moment. First we
need to look at how the data is stored.

 Each piece of data in the encrypted data storage area is identified by a unique key.
The key is a string that we can use to retrieve the data. For example, if you want to
store an email server password, it might make sense to use a key such as emailServer-
Password. The keys you use are arbitrary, but it’s usually a good idea to use names that
clearly indicate what the value is. Each key points to a piece of data that you store
using EncryptedLocalStore, and that piece of data is stored as a flash.utils.Byte-
Array object. If you’re not familiar with the ByteArray class, there’s no reason to
panic. It implements the IDataInput and IDataOutput interfaces—the same inter-
faces implemented by FileStream. That means you can write and read data to and
from a ByteArray object just as you would a FileStream object. For example, the fol-
lowing code constructs a ByteArray object and then writes an array of strings to it
using the writeObject() method:

var array:Array = new Array("a", "b", "c", "d");
var byteArray:ByteArray = new ByteArray();
byteArray.writeObject(array);

148 CHAPTER 3 File system integration
When you want to write data to the data store, all you need to do is call the static
EncryptedLocalStore.setItem() method. The staticItem() method requires that
you give it two pieces of information: the key and the data (in the form of a ByteArray
object). The following example writes a password value using setItem():

var byteArray:ByteArray = new ByteArray();
byteArray.writeUTFBytes("j8ml08*1");
EncryptedLocalStore.setItem("emailServerPassword", byteArray);

Once you’ve written data to the data store, it’s likely that at another time you’ll want
to retrieve that data. You can do that using the getItem() method. The getItem()
method requires that you tell it the key of the data you want to retrieve. It then
returns a ByteArray object with the data. The following example retrieves the email
server password:

var byteArray:ByteArray =

➥EncryptedLocalStore.getItem("emailServerPassword");
var password:String= byteArray.readUTFBytes(byteArray.length);

What if you want to remove data from the data store? Not a problem. Encrypted-
LocalStore provides two static methods for accomplishing that: removeItem() and
reset(). The removeItem() method removes an item given the key. For example, the
following will remove the email server password from the data store:

EncryptedLocalStore.removeItem("emailServerPassword");

The reset() method removes all data from the data store:

EncryptedLocalStore.reset();

We’ve wrapped up all the core theoretical information, so we have just one more
thing to do in this chapter, which is to add to our AirTube application by integrating
some of the file system knowledge we just learned.

3.10 Writing to files with AirTube
As you probably recall, in chapter 2 we started building the AirTube application,
which allows users to search YouTube and play back videos. We made tremendous
progress with the application in that chapter. But we’ve yet to implement one of the
key features of the application: allowing the user to download videos for offline play-
back. We didn’t build that functionality in chapter 2 for good reason: we didn’t yet
know how to do it. But with the knowledge we’ve gained in this chapter, we’re ready to
tackle the job.

 Although we’ve seen the theory behind what we’re about to do, we haven’t yet seen
a practical example of it. Thus far in the chapter, we’ve seen practical examples of
how to read from and write to local files, but not how to read from an internet
resource and write that to a local file. That’s what we’re going to do here. We need to
download an .flv file from the internet and save it to a file locally on the user’s com-
puter. We’ll also use the same process to download the thumbnail image for the video.

149Writing to files with AirTube
 To implement this new feature in the AirTube application, complete the following
steps:

1 Open the ApplicationData class for the AirTube project and update the code
to add a downloadProgress property as shown in listing 3.20. (Changes are
shown in bold.) We’ll use this property to monitor download progress for the
video. On its own it doesn’t do much. But we’ll update the value from the ser-
vice class, as you’ll see in just a minute.

package com.manning.airtube.data {

 import flash.events.Event;
 import flash.events.EventDispatcher;

 public class ApplicationData extends EventDispatcher {

 static private var _instance:ApplicationData;

 private var _videos:Array;
 private var _currentVideo:AirTubeVideo;
 private var _downloadProgress:Number;

 [Bindable(event="videosChanged")]
 public function set videos(value:Array):void {
 _videos = value;
 dispatchEvent(new Event("videosChanged"));
 }

 public function get videos():Array {
 return _videos;
 }

 [Bindable(event="currentVideoChanged")]
 public function set currentVideo(value:AirTubeVideo):void {
 _currentVideo = value;
 dispatchEvent(new Event("currentVideoChanged"));
 }

 public function get currentVideo():AirTubeVideo {
 return _currentVideo;
 }

 [Bindable(event="downloadProgressChanged")]
 public function set downloadProgress(value:Number):void {
 _downloadProgress = value;
 dispatchEvent(new Event("downloadProgressChanged"));
 }

 public function get downloadProgress():Number {
 return _downloadProgress;
 }

 public function ApplicationData() {

 }

 static public function getInstance():ApplicationData {

Listing 3.20 Adding the downloadProgress to the ApplicationData class

150 CHAPTER 3 File system integration
 if(_instance == null) {
 _instance = new ApplicationData();
 }
 return _instance;
 }

 }
}

2 Open the AirTubeService class, and add the code shown in listing 3.21. The
changes are shown in bold. We’re adding one public method called saveToOff-
line(), which initiates the download of the thumbnail and video files, and then
we’re adding the necessary handler methods.

package com.manning.airtube.services {

 import com.adobe.webapis.youtube.YouTubeService;
 import com.adobe.webapis.youtube.events.YouTubeServiceEvent;
 import com.manning.airtube.data.AirTubeVideo;
 import com.manning.airtube.data.ApplicationData;
 import com.manning.airtube.utilities.YouTubeFlvUrlRetriever;

 import flash.events.Event;
 import flash.events.ProgressEvent;
 import flash.filesystem.File;
 import flash.filesystem.FileMode;
 import flash.filesystem.FileStream;
 import flash.net.URLRequest;
 import flash.net.URLStream;
 import flash.utils.ByteArray;

 public class AirTubeService {

 static private var _instance:AirTubeService;

 private var _proxied:YouTubeService;
 private var _flvFile:File;
 private var _imageFile:File;
 private var _downloadingVideo:AirTubeVideo;

 public function set key(value:String):void {
 _proxied.apiKey = value;
 }

 public function AirTubeService() {
 _proxied = new YouTubeService();
 _proxied.addEventListener(

 ➥YouTubeServiceEvent.VIDEOS_LIST_BY_TAG,

 ➥getVideosByTagsResultHandler);
 }

 static public function getInstance():AirTubeService {
 if(_instance == null) {
 _instance = new AirTubeService();
 }
 return _instance;

Listing 3.21 Adding the saveToOffline() to the AirTubeService class

151Writing to files with AirTube
 }

 public function getVideosByTags(tags:String):void {
 if(_proxied.apiKey.length == 0) {
 throw Error("YouTube API key not set");
 }
 _proxied.videos.listByTag(tags);
 }

 private function getVideosByTagsResultHandler(

 ➥event:YouTubeServiceEvent):void {
 var videos:Array = event.data.videoList as Array;
 for(var i:Number = 0; i < videos.length; i++) {
 videos[i] = new AirTubeVideo(videos[i]);
 }
 ApplicationData.getInstance().videos = videos;

 }

 public function configureVideoForPlayback(video:AirTubeVideo):

 ➥void {
 ApplicationData.getInstance().currentVideo = video;
 if(video.flvUrl == null) {
 new YouTubeFlvUrlRetriever().getUrl(video);
 }
 }

 public function saveToOffline(video:AirTubeVideo):void {
 _downloadingVideo = video;

 _flvFile = File.applicationStorageDirectory.resolvePath(

 ➥"videos/" + video.video.id + ".flv");
 var videoLoader:URLStream = new URLStream();
 videoLoader.load(new URLRequest(video.flvUrl));
 videoLoader.addEventListener(Event.COMPLETE,
 videoDownloadCompleteHandler);
 videoLoader.addEventListener(ProgressEvent.PROGRESS,

 ➥videoDownloadProgressHandler);

 _imageFile = File.applicationStorageDirectory.resolvePath(

 ➥"thumbnails/" + video.video.id + ".jpg");
 var imageLoader:URLStream = new URLStream();
 imageLoader.load(new URLRequest(video.video.thumbnailUrl));
 imageLoader.addEventListener(ProgressEvent.PROGRESS,

 ➥imageDownloadProgressHandler);
 }

 private function videoDownloadProgressHandler(event:

 ➥ProgressEvent):void {
 var loader:URLStream = event.target as URLStream;
 var bytes:ByteArray = new ByteArray();
 loader.readBytes(bytes);
 var writer:FileStream = new FileStream();
 writer.open(_flvFile, FileMode.APPEND);
 writer.writeBytes(bytes);
 writer.close();
 var ratio:Number = event.bytesLoaded / event.bytesTotal;
 ApplicationData.getInstance().downloadProgress = ratio;

Pass in video to save B

Create
destination
video pathC

Create destination
image path D

Read
available
bytes

E

Write to
video file

F

152 CHAPTER 3 File system integration
 }

 private function videoDownloadCompleteHandler(event:Event):void {
 _downloadingVideo.offline = true;
 ApplicationData.getInstance().downloadProgress = 0;
 }

 private function imageDownloadProgressHandler(event:

 ➥ProgressEvent):void {
 var loader:URLStream = event.target as URLStream;
 var bytes:ByteArray = new ByteArray();
 loader.readBytes(bytes);
 var writer:FileStream = new FileStream();
 writer.open(_imageFile, FileMode.APPEND);
 writer.writeBytes(bytes);
 writer.close();
 }
 }
}

The saveToOffline() method B uses URLStream objects to start downloading
the video file and the thumbnail, and creates the paths to the destination files

C D using the video’s ID to create unique file names. As the video and thumb-
nail download, the progress events get handled by the videoDownloadPro-
gressHandler() and imageDownloadProgressHandler() methods, respectively.
Each of these methods does the same basic thing: uses the readBytes() method
of the URLStream object to read all the available bytes E G and then writes
those bytes to the end of the destination file F H.

3 Update the video window with a few minor changes. You can do this by opening
VideoWindow.mxml and adding the code shown in bold from listing 3.22.

<?xml version="1.0" encoding="utf-8"?>
<mx:Window xmlns:mx="http://www.adobe.com/2006/mxml" width="400"
 height="400" type="utility" closing="closingHandler(event);"
 creationComplete="creationCompleteHandler();">
 <mx:Script>
 <![CDATA[
 import com.manning.airtube.services.AirTubeService;
 import com.manning.airtube.data.ApplicationData;

 [Bindable]
 private var _applicationData:ApplicationData;

 private function creationCompleteHandler():void {
 _applicationData = ApplicationData.getInstance();
 }

 private function closingHandler(event:Event):void {
 event.preventDefault();
 visible = false;
 }

 private function saveOffline():void {

Listing 3.22 Updating VideoWindow.mxml to support downloading videos

Read the
available G

Write to
image fileH

http://www.adobe.com/2006/mxml

153Summary
 AirTubeService.getInstance().saveToOffline(

 ➥_applicationData.currentVideo);
 }

]]>
 </mx:Script>
 <mx:VBox>
 <mx:Label text="{_applicationData.currentVideo.video.title}" />
 <mx:VideoDisplay id="videoDisplay"
 source="{_applicationData.currentVideo.flvUrl}"
 width="400" height="300" />
 <mx:HBox id="progressContainer" width="100%"
 visible="{_applicationData.downloadProgress > 0}"
 includeInLayout="{progressContainer.visible}">#1
 <mx:Label text="download progress" />
 <mx:HSlider id="progressIndicator" enabled="false" width="100%"
 minimum="0" maximum="1"
 value="{_applicationData.downloadProgress}" />
 </mx:HBox>
 <mx:HBox>
 <mx:Button id="playPauseButton" label="Pause"
 click="togglePlayback();" />
 <mx:Button id="saveOfflineButton" label="Save Offline"
 visible="{!_applicationData.currentVideo.offline}"
 enabled="{!(_applicationData.downloadProgress > 0)}"
 click="saveOffline();" />
 </mx:HBox>
 </mx:VBox>
</mx:Window>

The changes to the code in VideoWindow.mxml are fairly modest. All we’ve
done is add a slider to show download progress B and a button to save the
video C. The components are data bound to properties in ApplicationData,
and when the user clicks to save the video, we just call the service method to
save the video.

And that wraps up this stage of the AirTube application. Of course, we haven’t yet cre-
ated a way to view videos the user has saved offline. For that, we’ll be using a local data-
base, which is covered in chapter 5. If you run the AirTube application now, you can
see the button to save a video for offline playback; if you click it, you'll see the down-
load progress indicator update in the window. Also, if you look in the application stor-
age directory for the AirTube application, you’ll see the saved .flv and .jpg files.

3.11 Summary
In this chapter you’ve acquired a great deal of information related to working with the
file system via AIR applications. One of the most fundamental skills when working with
the file system is being able to reference files and directories, and that was our starting
point in this chapter. From that point, we looked at basic directory skills, such as read-
ing a directory listing and creating new directories. Next we looked at copying, mov-
ing, and deleting both directories and files. Then we moved into the most complex
topic of the chapter: reading from and writing to files. This topic took us into what

Hide unless
downloading

Show download progress B
Hide if video

already offline

Disable while
downloading

Click to saveC

154 CHAPTER 3 File system integration
might have been new territories when we explored the interfaces for reading and writ-
ing binary data.

 We’ve covered a lot of ground in this chapter, and now it’s time to move on to the
next. In chapter 4, you'll learn all about drag-and-drop operations as well as copy and-
paste operations.

Copy-and-paste
and drag-and-drop
Copy-and-paste and drag-and-drop operations are a standardized way for users to
interact with an application, so it’s a good idea to build these behaviors into AIR
applications. For example, if you build an application that displays images from a
network source, many users would expect and appreciate the ability to save copies of
the images locally by dragging the image from the AIR application to the desktop.

 An important thing to understand about drag-and-drop and copy-and-paste in
AIR is that they run at the system level. You may be used to enabling these sorts of
operations within Flex or Flash applications, but there’s a big distinction to be
made here. When you build Flex or Flash applications for the Web, all your drag-

This chapter covers
■ Copying data from AIR applications
■ Pasting data into AIR applications
■ Dragging data from AIR applications
■ Dropping data on AIR applications
155

156 CHAPTER 4 Copy-and-paste and drag-and-drop
and-drop and most of your copy-and-paste operations are limited to the one instance
of Flash player. For example, you can’t drag an image from a Flash application run-
ning in a browser and save it to the desktop. AIR enables these operations to be
extended beyond the confines of Flash player. You can allow users to transfer data
within, as well as to and from, an AIR application using these operations.

 Drag-and-drop and copy-and-paste are simple in many respects. But don’t let their
simplicity hide their importance. Implementing these simple operations well in AIR
applications allows users to interact with them in more intuitive ways, improving their
user experience.

 Although copy-and-paste and drag-and-drop are different operations, they share a
lot of commonality, both in an abstract sense and in practice. That’s why we’ve put
these two topics together in this chapter. We’ll start by looking at what these opera-
tions have in common. Then we’ll look at each of the operations in more detail.

4.1 Using a clipboard to transfer data
Drag-and-drop and copy-and-paste are similar in nature. Both operations involve mov-
ing or copying data from one location to another. The only thing that differs is how
the user interacts with the data in order to move or copy it.

 In the case of drag-and-drop, the user clicks on a UI element (an image or text file,
for example), drags it to a new location, and then releases the mouse button to com-
plete the transaction, thereby moving or copying the data (the image or text file).

 Copy-and-paste requires that the user select a UI element by way of a menu option,
keyboard shortcut, or button, and then the user can move or copy to a new location
using a menu option, keyboard shortcut, or button in the new location. In both oper-
ations, there must be a transfer medium—a place where the data is placed temporar-
ily while it’s being moved or copied. In AIR, this transfer medium is called a clipboard,
and in the next few sections we’ll learn more about what a clipboard is and how you
can work with it.

4.1.1 What’s a clipboard?

The clipboard is the metaphor that computers use for moving or copying data. You’re
likely already familiar with the system clipboard used by your operating system, which
allows you to copy-and-paste. For example, if you want to copy text from your email
program and paste it into a Word document, you’re using the system clipboard
behind the scenes.

 In this chapter, we’ll be working with two different sorts of clipboards. One type of
clipboard is the system clipboard that we just mentioned. You’ll see how you can write
data to the system clipboard for use in other applications. We’ll also work with AIR-
specific clipboards. Regardless, AIR treats both of these clipboards in the same way,
and you can access them via instances of the flash.desktop.Clipboard class.

 What can you do with Clipboard objects? Clipboard objects are relatively simple.
You can do just three things with clipboards: add data to them, read data from them,

157Using a clipboard to transfer data
and clear data off of them. Throughout the chapter, we’ll elaborate on different ways
to accomplish these tasks, but, generally speaking, that’s what you can do with Clip-
board objects.

 If you want to work with a Clipboard object, the first thing you need to do is create
a reference to one. We’ll be working with both AIR-specific clipboards and the system
clipboard. Therefore, you’ll need to know how to reference both types. Getting a ref-
erence to the system clipboard is as simple as accessing the static Clipboard.general-
Clipboard property.

var systemClipboard:Clipboard = Clipboard.generalClipboard;

We’ll also use lots of AIR-specific clipboards. In these cases, you’ll need to use the
Clipboard constructor, which requires no parameters. The following creates a new
Clipboard object:

var clipboard:Clipboard = new Clipboard();

The next step would be to add or retrieve data. However, before we can do that, we
need to understand the formats that we can use with a clipboard.

4.1.2 Understanding data formats

You may store and retrieve data to and from a clipboard in a variety of formats. You’re
probably familiar with this concept even if you’ve never thought about it before.
When you use the system clipboard on your computer, you sometimes copy-and-paste
text, and you sometimes copy-and-paste files. Text and files are different formats, but
you can store both on the system clipboard. When you’re working with AIR, the same
is true. As a result, you need to be able to specify what format you want to use to store
or retrieve data. Many of the Clipboard methods require that you specify a format,
including the methods for writing data to and reading data from the clipboard. For
example, in the next section we’ll look at the setData() method used to write data to
the clipboard. This method always requires that you give it a format as well as the data
you want to write to the clipboard. For example, the following code writes text to the
clipboard, specifying the text format:

clipboard.setData(ClipboardFormats.TEXT_FORMAT, "example text");

As we just saw in this example, you can use the flash.desktop.ClipboardFormats
constants to refer to the most common formats. These constants and their Action-
Script equivalents are shown in table 4.1. These are the formats that are most univer-
sally understood by other applications. That means that you can add bitmap-
formatted or text-formatted data to the clipboard from an AIR application and know
it’s likely that the user will be able to copy that to another application on her com-
puter (such as Word). The inverse is also true: these are the formats that most appli-
cations will write to a clipboard, and therefore they’re available for reading into an
AIR application.

158 CHAPTER 4 Copy-and-paste and drag-and-drop
In addition to the standard formats listed in table 4.1, you can transfer objects by ref-
erence for use in the same application or in a serialized format that might be valid in
other applications that know how to interpret the data. For example, suppose you
have several pieces of information such as name, street address, city, state/province,
and postal code that you want to bundle together into one unit in an instance of a cus-
tom Address class. Using the standard formats, it would be possible to write any one of
these pieces of data to the clipboard, but not all grouped together. You can use your
own custom format name instead. In this example, the format name address might
be appropriate. All that’s necessary then is that the application that reads from the
clipboard knows both the data format name (address) and how to deserialize the
data. When we talk about serializing data, that could refer to custom serialization
(such as an XML string) or the use of AIR’s native support of AMF. (See chapter 3 for
more information about AMF.) The following example assumes that userAddress is
an Address object (remember that in our scenario Address is a custom class), and it
serializes the object automatically using AMF:

clipboard.setData("address", userAddress);

Now we know what clipboards are and what formats we can store or retrieve from
clipboards. The next logical step is to start reading and writing data from and to a
clipboard.

4.1.3 Reading and writing data

Clipboards are fairly passive objects. They don’t do much. Rather, they’re storage areas
where you can write data and read data. For example, if you want to take a snapshot of
an AIR window’s contents and make that available to paste into a Word document,
you’ll want to write that image data to the clipboard. On the flip side, if you’ve copied
a file from your desktop and you want to paste that into an AIR application to add it to
a list of files, you’ll need to read that file information from the clipboard.

 You can write data to a clipboard using the setData() method as we’ve already
seen in the previous section. The setData() method always requires that you specify
two parameters: the format and the data to write to the clipboard. The following exam-
ple writes the current value of a text input control to a clipboard using text format:

Constant ActionScript equivalent

BITMAP_FORMAT BitmapData

FILE_LIST_FORMAT Array of File objects

HTML_FORMAT HTML-formatted String

TEXT_FORMAT String

URL_FORMAT String

Table 4.1 ClipboardFormats
constants and their ActionScript
equivalents

159Using a clipboard to transfer data
clipboard.setData(ClipboardFormats.TEXT_FORMAT, textInput.text);

You can add more than one format to a clipboard at a time. For example, if a user cop-
ies an image from your AIR application, you may want to allow him to paste it into an
image-editing program or onto the desktop as an image file. In this case, you’d need
to add the data in two formats: BITMAP_FORMAT and FILE_LIST_FORMAT. Each format
requires a different type of data for it to make sense to the recipient of the data. The
BITMAP_FORMAT data would need to be a BitmapData object, while the FILE_LIST_
FORMAT would need to be an array of one or more File objects. We’ll see examples
illustrating these sorts of scenarios later in the chapter.

 You can read data from a clipboard using the getData() method. The getData()
method requires just one parameter: the format of the data to retrieve. The following
example retrieves the data from a clipboard in text format:

var text:String = clipboard.getData(ClipboardFormats.TEXT_FORMAT)

➥as String;

You’ll notice that, in this example, the return value of getData() is cast as a String.
That’s because getData() necessarily has a generic return type. If you try to use the
value in a way that requires a more specific type (as in assigning the value to a typed
variable), you’ll need to cast appropriately. Of course, it’s up to you to know what the
correct type should be for casting. In the case of text format, URL format, and HTML
format, you should cast as a String. For bitmap format, you should cast as Bitmap-
Data. And for file list format, you should cast as an Array (knowing that each element
of the array is a File object). For custom formats, you’ll need to know the original for-
mat of the data before it was written to the clipboard.

 If you’re uncertain whether a clipboard has data in a particular format, you can
use the hasFormat() method to query for that information. The method requires that
you specify a format, and it returns a Boolean value: true if the clipboard has data for
that format, and false otherwise.

4.1.4 Removing data from a clipboard

Not only might you want to set and get data on a clipboard, but you might also want to
remove data from a clipboard. For example, if you write data to the system clipboard
in a particular format, you aren’t guaranteed that there aren’t already other pieces of
data written to that clipboard in other formats. When the user goes to request the data
from the clipboard, the results could be unpredictable because different applications
might have differing format precedents. For example, Word always pastes text from
the clipboard if it’s available, ignoring other formats that might be on the clipboard.
It’s possible that you could write bitmap-formatted data to the system clipboard from
an AIR application, and if the user pastes it into a Word document, she might see only
other text that she had previously copied from a different program. Therefore, you
need methods to remove data from a clipboard.

160 CHAPTER 4 Copy-and-paste and drag-and-drop
NOTE For exactly the reason described in this scenario, you should always clear
the system clipboard before writing data to it.

The clearData() method allows you to clear the data from a clipboard for a particu-
lar format. For example, if you want to remove URL format data from a clipboard, you
could use the following code:

clipboard.clearData(ClipboardFormats.URL_FORMAT);

On the other hand, there are times when you simply want to remove all data of all for-
mats from a clipboard. In those cases, you can use the clear() method:

clipboard.clear();

As you can see, the clear() method doesn’t require any parameters. It just deletes all
the data.

 You’ve now seen how to write, read, and delete data. What we haven’t yet talked
about is how the data gets stored to a clipboard and how that can impact the way in
which the data is available, both within an AIR application and outside of AIR. In the
following section, we’ll talk about how you can use transfer modes to affect the way
data is stored.

4.1.5 Understanding transfer modes

There are a variety of scenarios in which you might use a clipboard. The basic three
are as follows:

■ Transferring data within a single AIR application
■ Transferring data between AIR applications
■ Transferring data between an AIR application and the operating system or

another, non-AIR application

The second and third scenarios require that a copy of the data be made. For example,
if you want to copy text from an AIR application to a Word document, you must be
aware that Word is incapable of reading the text directly from the AIR application.
Instead, a copy of the text must be made. This is true between AIR applications as well.
If you have a custom Address type that’s available in two AIR applications and you
want to transfer an Address object from one AIR application to another, you must
make a copy of the Address object. The second AIR application can’t access the origi-
nal Address object in order to read from it. However, the first scenario is different.
When you want to transfer data within a single AIR application, it’s possible to access
data by reference, not just by value. By default, when you write data to a clipboard, it’s
always serializable, meaning that both a copy and a reference are written to the clip-
board. If you want to explicitly control whether or not the data you write is serializ-
able, you can specify a third Boolean parameter for the setData() method. A value of
true (the default) means a copy and a reference are written, and false means that
only a reference is written. You only need to use this parameter if you want to make
sure that data isn’t serialized and copied.

161Using a clipboard to transfer data
NOTE Even if you set the third parameter of setData() to false, all standard for-
mats are still available to non-AIR applications. Using a value of false
only affects data in custom formats for use within AIR applications.

On the flip side, you can also specify how you want to retrieve data when calling get-
Data(). You can do this by way of a second, optional parameter that indicates a trans-
fer mode. There are four transfer modes, each with a constant in the
flash.desktop.ClipboardTransferMode class. The constants are as follows:

■ ORIGINAL_PREFERRED—In this mode, a reference to the original is returned if
it’s available. If no reference is available, a copy is returned. Remember that ref-
erences are only available within the same AIR application from which the data
originated. If you specify this transfer mode and the data originated from
another application, it’ll always return the copy of the data. This transfer mode
is the default.

■ ORIGINAL_ONLY—In this mode, the reference to the original data is returned if
it’s available. Otherwise, if the original is unavailable, null is returned.

■ CLONE_PREFERRED—In this mode, a copy of the data is returned if available.
Otherwise, a reference is returned.

■ CLONE_ONLY—In this mode, only a copy is returned if available. Otherwise, null
is returned.

We have just one more topic to cover before we can jump to actually using clip-
boards. Next we’ll discuss how you can be clever with how and when you write data to
a clipboard.

4.1.6 Deferred rendering

Generally we write data to a clipboard as soon as the request is made. For example, if a
user selects a menu option to copy text from a text area, we probably expect that the
application immediately writes the text to the clipboard. However, there are some
cases in which it’s better to defer the writing of the actual data to the clipboard.
Instead, we just want to set a note about where to find the necessary data when the user
tries to retrieve it from the clipboard. There are two basic scenarios for this deferral:

■ The data is large or it would be computationally intensive to write the data to
the clipboard.

■ The data might update between the time it’s selected and the time it’s
requested, and you want to always get the most up-to-date data.

Admittedly, both of these are edge cases, but it’s good to know that, should you
need it, AIR supports deferred rendering. If you want to enable deferred render-
ing, you shouldn’t use setData(). Instead, you should use setDataHandler(). The
setDataHandler() method also requires that you specify the format. However,
instead of specifying the data, you pass the method a reference to a handler
method. When the user requests the data of that format from the clipboard, AIR

162 CHAPTER 4 Copy-and-paste and drag-and-drop
calls the handler method and uses the value returned by the handler method. That
means you must make sure the return value of the handler method is the expected
type for the format. Consider the following example:

clipboard.setDataHandler(ClipboardFormats.TEXT_FORMAT, getText);

In this example, the format is set to text, which means that the handler method (get-
Text()) must return a String as in the following:

private function getText():String {
 return textArea.text;
}

If you want to defer rendering by using setDataHandler(),you must make sure you
haven’t set data using setData(), because setData() will always take precedence over
setDataHandler(). If you’ve already written data to a clipboard using setData() and
you want to use deferred rendering for the same format, just call clearData() for that
format before calling setDataFormat().

 The handler method specified by setDataHandler() doesn’t get called until the
user requests the data (for example, when she pastes into a Word document). But AIR
will only call the handler method that once. Subsequent requests for the data will
retrieve the same data from the clipboard that was returned when the method was
first called.

 Now we’ve covered all the necessary preliminary topics related to clipboards, and
we’re ready to start writing code that uses clipboards. Next we’ll continue with a dis-
cussion of copy-and-paste operations, and later we’ll cover drag-and-drop operations.

4.2 Copy-and-paste
Copy-and-paste is undoubtedly a familiar concept to you, because it’s such an integral
part of basic computer usage. For example, when you want to create a copy of a file on
your computer, you frequently will select the file, use the system keyboard shortcut or
context menu option to copy the file, and then use a keyboard shortcut or context
menu option to paste the copy in a new location on the file system. You likewise use a
similar procedure to copy-and-paste text from an email program to a text editor or
from a web page to an email program. Because copy-and-paste operations are funda-
mental to computer usage, you’ll want to support this sort of behavior in AIR applica-
tions that you build. Over the next few sections, we’ll take a look at how you can
enable copy-and-paste in your AIR applications.

4.2.1 Selecting a clipboard

When you want to enable copy-and-paste, you almost always want to use the system
clipboard. Remember that there are two sorts of clipboards you can work with in AIR
applications: the system clipboard and AIR-specific clipboards. Although each works
the same way, only the system clipboard enables copying and pasting from and to
other, non-AIR applications. Generally users expect that if they copy something they’ll

163Copy-and-paste
be able to paste it anywhere on the same system, within the same application or in a
different application. For that reason, you’ll want to use the system clipboard.

 Recall from our earlier discussion that you can retrieve a reference to the system
clipboard using the Clipboard.generalClipboard property:

var clipboard:Clipboard = Clipboard.generalClipboard;

Also, when you copy data to the system clipboard, you should clear all the existing
data from the clipboard first. As we mentioned in an earlier section, you can use the
clear() method to delete all the data on a clipboard:

clipboard.clear();

Once you’ve done these things, you’re ready to copy content to the clipboard.

4.2.2 Copying content

Copying content requires nothing more than writing data to the clipboard using the
techniques you’ve already learned. Let’s look at an example. In this example we create
two text areas, one with initial text, and allow the user to copy-and-paste selected text
between the two using a window or application menu. (See chapter 2 for more infor-
mation about menus.) Figure 4.1 shows what the completed application looks like.

First of all we need to create the basic structure for this application. Listing 4.1 shows
this code.

<?xml version="1.0" encoding="utf-8"?>
<mx:WindowedApplication xmlns:mx="http://www.adobe.com/2006/mxml"
 layout="absolute" creationComplete="creationCompleteHandler();">
 <mx:Script>
 <![CDATA[

 private var _focused:TextArea;
 private var _clipboard:Clipboard;

 private function creationCompleteHandler():void {

Listing 4.1 Setting up the basic structure for a copy-and-paste application

Figure 4.1 In this
application, a user can copy-
and-paste between two text
areas using a menu.

Register event
listenerSelected

text area Reference to clipboard

http://www.adobe.com/2006/mxml

164 CHAPTER 4 Copy-and-paste and drag-and-drop
 _clipboard = Clipboard.generalClipboard;
 }

 private function copyText(event:Event):void {
 }

 private function pasteText(event:Event):void {
 }

]]>
 </mx:Script>
 <mx:HBox width="100%" height="100%">
 <mx:TextArea id="textAreaA" width="50%" height="100%"
 focusIn="_focused = textAreaA;">
 <mx:text>
 Lorem ipsum dolor sit amet, consectetuer adipiscing elit.
 </mx:text>
 </mx:TextArea>
 <mx:TextArea id="textAreaB" width="50%" height="100%"
 focusIn="_focused = textAreaB;" />
 </mx:HBox>
</mx:WindowedApplication>

Next, we can add the menu. Listing 4.2 shows the code that adds a window or appli-
cation menu with one submenu called Edit. The Edit menu has two options: Copy
and Paste.

<?xml version="1.0" encoding="utf-8"?>
<mx:WindowedApplication xmlns:mx="http://www.adobe.com/2006/mxml"
 layout="absolute" creationComplete="creationCompleteHandler();">
 <mx:Script>
 <![CDATA[

 private var _focused:TextArea;
 private var _clipboard:Clipboard;

 private function creationCompleteHandler():void {
 _clipboard = Clipboard.generalClipboard;
 var menu:NativeMenu = new NativeMenu();
 var editMenu:NativeMenu = new NativeMenu();
 var copyItem:NativeMenuItem = new NativeMenuItem("copy");
 copyItem.addEventListener(

 ➥Event.SELECT, copyText);
 var pasteItem:NativeMenuItem =

 ➥new NativeMenuItem("paste");
 pasteItem.addEventListener(Event.SELECT, pasteText);
 editMenu.addItem(copyItem);
 editMenu.addItem(pasteItem);
 menu.addSubmenu(editMenu, "edit");
 if(NativeApplication.supportsMenu) {
 nativeApplication.menu = menu;
 }
 else if(NativeWindow.supportsMenu) {
 nativeWindow.menu = menu;
 }

Listing 4.2 Adding a menu to the application

Assign system
clipboard

Empty method
to handle copy

Empty method
to handle paste

Set focused text area

Set focused
text area

Create
copy
item

Register copy
event handler

Create paste item

Register
paste
event

handler

Add the edit
submenu

Apply menu to
window or
application

http://www.adobe.com/2006/mxml

165Copy-and-paste
 }

 private function copyText(event:Event):void {
 }

 private function pasteText(event:Event):void {
 }

]]>
 </mx:Script>
 <mx:HBox width="100%" height="100%">
 <mx:TextArea id="textAreaA" width="50%" height="100%"
 focusIn="_focused = textAreaA;">
 <mx:text>
 Lorem ipsum dolor sit amet, consectetuer adipiscing elit.
 </mx:text>
 </mx:TextArea>
 <mx:TextArea id="textAreaB" width="50%" height="100%"
 focusIn="_focused = textAreaB;" />
 </mx:HBox>
</mx:WindowedApplication>

Next we need to add the definition for the copyText() method. This method should
determine the selected text from the selected text area, and it should write that text to
the clipboard. Listing 4.3 shows this code.

<?xml version="1.0" encoding="utf-8"?>
<mx:WindowedApplication xmlns:mx="http://www.adobe.com/2006/mxml"
 layout="absolute" creationComplete="creationCompleteHandler();">
 <mx:Script>
 <![CDATA[

 private var _focused:TextArea;
 private var _clipboard:Clipboard;

 private function creationCompleteHandler():void {
 _clipboard = Clipboard.generalClipboard;
 var menu:NativeMenu = new NativeMenu();
 var editMenu:NativeMenu = new NativeMenu();
 var copyItem:NativeMenuItem = new NativeMenuItem("copy");
 copyItem.addEventListener(Event.SELECT, copyText);
 var pasteItem:NativeMenuItem = new NativeMenuItem("paste");
 pasteItem.addEventListener(Event.SELECT, pasteText);
 editMenu.addItem(copyItem);
 editMenu.addItem(pasteItem);
 menu.addSubmenu(editMenu, "edit");
 if(NativeApplication.supportsMenu) {
 nativeApplication.menu = menu;
 }
 else if(NativeWindow.supportsMenu) {
 nativeWindow.menu = menu;
 }
 }

 private function copyText(event:Event):void {

Listing 4.3 Copying the selected text

http://www.adobe.com/2006/mxml

166 CHAPTER 4 Copy-and-paste and drag-and-drop
 var text:String = _focused.text.substring(

 ➥_focused.selectionBeginIndex, _focused.selectionEndIndex);
 _clipboard.clear();
 _clipboard.setData(ClipboardFormats.TEXT_FORMAT, text);
 }

 private function pasteText(event:Event):void {
 var text:String =

 _clipboard.getData(ClipboardFormats.TEXT_FORMAT) as String;
 var currentText1:String =
 ➥_focused.text.substr(0, _focused.selectionBeginIndex);
 var currentText2:String =

 ➥_focused.text.substr(_focused.selectionEndIndex);
 _focused.text = currentText1 + text + currentText2;
 }

]]>
 </mx:Script>
 <mx:HBox width="100%" height="100%">
 <mx:TextArea id="textAreaA" width="50%" height="100%"
 focusIn="_focused = textAreaA;">
 <mx:text>
 Lorem ipsum dolor sit amet, consectetuer adipiscing elit.
 </mx:text>
 </mx:TextArea>
 <mx:TextArea id="textAreaB" width="50%" height="100%"
 focusIn="_focused = textAreaB;" />
 </mx:HBox>
</mx:WindowedApplication>

We’ll wrap up this example in the next section, but you can test it as is right now, and
you’ll see that you can use the Edit > Copy menu item to copy selected text in a text
area of the AIR application and paste it into another application such as a text editor.
That should prove that you’ve successfully copied text to the system clipboard.

 In the first example, we used a menu to copy text. You aren’t limited to using
menus to initiate copying and you aren’t limited to copying text. Next we’ll look at a
simple example that allows you to take a snapshot of an AIR application as a bitmap
using a button and write that to the system clipboard. In figure 4.2, you can see what
the application looks like when it’s running.

Figure 4.2 Take a snapshot
of the application by clicking
a button, which allows the
user to then paste the
snapshot from the clipboard
to another application.

167Copy-and-paste
Once the user has taken a snapshot by clicking the button, she can paste the bitmap
into another application. Figure 4.3 shows an example of how the bitmap can be
pasted into a Word document.

 Listing 4.4 shows the code for this example, which you’ll notice is remarkably
simple.

<?xml version="1.0" encoding="utf-8"?>
<mx:WindowedApplication xmlns:mx="http://www.adobe.com/2006/mxml">
 <mx:Script>
 <![CDATA[

 private function takeSnapshot():void {
 var bitmapData:BitmapData = new BitmapData(stage.width,
 stage.height);
 bitmapData.draw(stage);
 var clipboard:Clipboard =
 ➥Clipboard.generalClipboard;

Listing 4.4 Taking a snapshot and writing it to the system clipboard

Figure 4.3 The snapshot can be pasted into another application such as a Word document.

Create a
BitmapData object

B

Take snapshotC
Get system
clipboard reference

http://www.adobe.com/2006/mxml

168 CHAPTER 4 Copy-and-paste and drag-and-drop
 clipboard.clear();
 clipboard.setData(ClipboardFormats.BITMAP_FORMAT,
 bitmapData);
 }

]]>
 </mx:Script>
 <mx:Button label="Snapshot" click="takeSnapshot();" />
</mx:WindowedApplication>

As you can see in this example, all that was required was that we create a BitmapData
object B, copy the stage content to the object C, and then write that to the clipboard

D. You can see that we’re using BITMAP_FORMAT for the format in this case.
 Now that we’ve thoroughly reviewed copying content, we next need to look at the

pasting operation.

4.2.3 Pasting content

Pasting content is the reading part of a copy-and-paste operation. Copying writes to
the clipboard, but pasting reads from the clipboard. When you paste content in an
AIR application, you’re reading from the system clipboard, meaning that the content
could have originated within the AIR application itself or in another application run-
ning on the computer. For example, a user could have copied a file from the system
and then might try to paste that into an AIR application.

 Pasting content into an AIR application is simply a matter of using the retrieval
technique you learned in section 4.1.3. In that section, you learned about the get-
Data() method. Using the getData() method, you can retrieve data from the system
clipboard in any format that’s currently available. To see an example of this, we con-
tinue with the earlier example from listing 4.3. In that example, the user was able to
copy text from a text area using the application or window menu. Now we add paste
capabilities such that the user can paste content into a text area using the menu as
well. Listing 4.5 shows the code that does this.

<?xml version="1.0" encoding="utf-8"?>
<mx:WindowedApplication xmlns:mx="http://www.adobe.com/2006/mxml"
 layout="absolute" creationComplete="creationCompleteHandler();">
 <mx:Script>
 <![CDATA[

 private var _focused:TextArea;
 private var _clipboard:Clipboard;

 private function creationCompleteHandler():void {
 _clipboard = Clipboard.generalClipboard;
 var menu:NativeMenu = new NativeMenu();
 var editMenu:NativeMenu = new NativeMenu();
 var copyItem:NativeMenuItem = new NativeMenuItem("copy");
 copyItem.addEventListener(Event.SELECT, copyText);
 var pasteItem:NativeMenuItem = new NativeMenuItem("paste");
 pasteItem.addEventListener(Event.SELECT, pasteText);

Listing 4.5 Pasting text into the current text area

Write bitmap to
clipboard D

Use button to
call method

http://www.adobe.com/2006/mxml

169Copy-and-paste
 editMenu.addItem(copyItem);
 editMenu.addItem(pasteItem);
 menu.addSubmenu(editMenu, "edit");
 if(NativeApplication.supportsMenu) {
 nativeApplication.menu = menu;
 }
 else if(NativeWindow.supportsMenu) {
 nativeWindow.menu = menu;
 }
 }

 private function copyText(event:Event):void {
 var text:String = _focused.text.substring(

 ➥_focused.selectionBeginIndex, _focused.selectionEndIndex);
 _clipboard.clear();
 _clipboard.setData(ClipboardFormats.TEXT_FORMAT, text);
 }

 private function pasteText(event:Event):void {
 if(_focused is TextArea) {
 var text:String = _clipboard.getData(

 ➥ClipboardFormats.TEXT_FORMAT) as String;
 var currentText1:String = _focused.text.substr(0,

 ➥_focused.selectionBeginIndex);
 var currentText2:String =

 ➥_focused.text.substr(

 ➥_focused.selectionEndIndex);
 _focused.text = currentText1 + text + currentText2;
 }
 }

]]>
 </mx:Script>
 <mx:HBox width="100%" height="100%">
 <mx:TextArea id="textAreaA" width="50%" height="100%"
 focusIn="_focused = textAreaA;">
 <mx:text>
 Lorem ipsum dolor sit amet, consectetuer adipiscing elit.
 </mx:text>
 </mx:TextArea>
 <mx:TextArea id="textAreaB" width="50%" height="100%"
 focusIn="_focused = textAreaB;" />
 </mx:HBox>
</mx:WindowedApplication>

In this code, we first verify that the user has selected a text area B to make sure we
don’t try to access properties of a null reference. Then we retrieve the text format data
from the clipboard C. The remainder of the new code just inserts the text from the
clipboard at the selection.

 It’s possible that the user might not have any text data copied to the system clip-
board. In such a case, the getData() method would return null, and that would be
inserted into the text field as the string value null. To correct that, we can add one
more test to the code. Listing 4.6 shows what the pasteText() method looks like
when we add a call to hasFormat() in the if statement.

Is text area
selected?B

C Get text
format data

Text
up to
selectionText after

selection

Assign new text

170 CHAPTER 4 Copy-and-paste and drag-and-drop

 private function pasteText(event:Event):void {
 if(_focused is TextArea &&

 ➥_clipboard.hasFormat(ClipboardFormats.TEXT_FORMAT)) {
 var text:String = _clipboard.getData(

 ➥ClipboardFormats.TEXT_FORMAT) as String;
 var currentText1:String = _focused.text.substr(0,

 ➥_focused.selectionBeginIndex);
 var currentText2:String =

 ➥_focused.text.substr(_focused.selectionEndIndex);
 _focused.text = currentText1 + text + currentText2;
 }
 }

By testing whether the clipboard has data in the specified format, we can avoid need-
less code execution if there’s no data written to the clipboard for the format.

4.2.4 Cutting content

Many applications extend on the copy-and-paste operation by allowing the user to cut
content. Cutting content is similar to copying it: both copy the content to a clipboard.
But cutting content removes the content from the original location as an additional
step. You can achieve this same behavior in an AIR application by writing a bit of extra
code. In this section, we’ll briefly look at how to add the cut feature to the simple
application we’ve worked with in the past two sections.

 Listing 4.7 shows what the example looks like when we add the cut feature into the
code from listings 4.5 and 4.6.

<?xml version="1.0" encoding="utf-8"?>
<mx:WindowedApplication xmlns:mx="http://www.adobe.com/2006/mxml"
 layout="absolute" creationComplete="creationCompleteHandler();">
 <mx:Script>
 <![CDATA[

 private var _focused:TextArea;
 private var _clipboard:Clipboard;

 private function creationCompleteHandler():void {
 var menu:NativeMenu = new NativeMenu();
 var editMenu:NativeMenu = new NativeMenu();
 var copyItem:NativeMenuItem = new NativeMenuItem("copy");
 copyItem.addEventListener(Event.SELECT, copyText);
 var cutItem:NativeMenuItem = new NativeMenuItem("cut");
 cutItem.addEventListener(Event.SELECT, cutText);
 var pasteItem:NativeMenuItem = new NativeMenuItem("paste");
 pasteItem.addEventListener(Event.SELECT, pasteText);
 editMenu.addItem(copyItem);
 editMenu.addItem(cutItem);
 editMenu.addItem(pasteItem);
 menu.addSubmenu(editMenu, "edit");

Listing 4.6 Testing whether data exists can save on computation

Listing 4.7 Adding a cut option to the menu

Create cut
menu item

Listen for
select eventAdd item

to menu

http://www.adobe.com/2006/mxml

171Copy-and-paste
 if(NativeApplication.supportsMenu) {
 nativeApplication.menu = menu;
 }
 else if(NativeWindow.supportsMenu) {
 nativeWindow.menu = menu;
 }
 _clipboard = Clipboard.generalClipboard;
 }

 private function copyText(event:Event):void {
 var text:String = _focused.text.substring(

 ➥_focused.selectionBeginIndex, _focused.selectionEndIndex);
 _clipboard.setData(ClipboardFormats.TEXT_FORMAT, text);
 }

 private function cutText(event:Event):void {
 copyText(event);
 var currentText1:String = _focused.text.substr(0,

 ➥_focused.selectionBeginIndex);#6
 var currentText2:String = _focused.text.substr(

 ➥_focused.selectionEndIndex);
 _focused.text = currentText1 + currentText2;
 _focused.setSelection(_focused.selectionBeginIndex,

 ➥_focused.selectionBeginIndex);
 }

 private function pasteText(event:Event):void {
 if(_focused is TextArea) {
 var text:String = _clipboard.getData(

 ➥ClipboardFormats.TEXT_FORMAT) as String;
 var currentText1:String = _focused.text.substr(0,

 ➥_focused.selectionBeginIndex);
 var currentText2:String =

 ➥_focused.text.substr(_focused.selectionEndIndex);
 _focused.text = currentText1 + text + currentText2;
 }
 }

]]>
 </mx:Script>
 <mx:HBox width="100%" height="100%">
 <mx:TextArea id="textAreaA" width="50%" height="100%"
 focusIn="_focused = textAreaA;">
 <mx:text>
 Lorem ipsum dolor sit amet, consectetuer adipiscing elit.
 </mx:text>
 </mx:TextArea>
 <mx:TextArea id="textAreaB" width="50%" height="100%"
 focusIn="_focused = textAreaB;" />
 </mx:HBox>
</mx:WindowedApplication>

This new code is similar to existing code. You can see that, in the cutText() method

B, the first thing we do is call the copyText() method to copy the text from the text
area. Then the next few lines of code C D are identical to lines of code from the
pasteText() method. These lines of code retrieve the text in the focused text area up

BHandle cut select event

Copy text
C Get text

up to
selection

Get text after
selection

D

E
Remove

selection

Set
selection

172 CHAPTER 4 Copy-and-paste and drag-and-drop
to and after the selection. Then we update the text in the text area to remove the
selected text E and set the selection (the highlighted text) to the index where the
previously selected text started.

 Whether you’re copying or cutting data, one important thing to consider is how
the data will be written to the clipboard. Normally custom data types aren’t recog-
nized by a clipboard, and the public properties of a custom data type are instead writ-
ten to a generic object. In the next section, we’ll see how you can instruct an
application to preserve a custom data type and write and read it using a clipboard.

4.2.5 Using custom formats

Earlier in the chapter, we talked about working with custom formats. One of the keys
to working with custom formats is making sure that you’re serializing data correctly. If
you want to copy-and-paste data from one AIR application to another or to another
application that understands AMF (see chapter 3 for more information), using AMF
serialization is generally the best option, because it’s supported natively by AIR and
runs nearly automatically. In this section, we’ll look at how you can create a custom
data format and copy-and-paste between two AIR applications.

 In an earlier section, we presented a scenario in which you bundled up a bunch of
related variables into an Address class. We then talked about the dilemma of making
instances of a custom class such as Address available to other applications via a clip-
board. We’ll now build an example that illustrates how to do just that. In this example,
we’ll create two simple AIR applications, one that allows the user to create a new
address and one that views addresses. We’ll start by building the address creator. Fig-
ure 4.4 shows what it looks like.

 The address creator application requires a custom data type that we’re calling
Address. We need to define the custom Address class. Listing 4.8 shows what this class
looks like. You’ll notice that we’re using [RemoteClass] to tell the application how to
map the class to an alias. If you were to build a Flash version of this application, you’d
need to instead register the class alias using the registerClassAlias() method you
learned about in chapter 3.

Figure 4.4 The address
creator application allows the
user to enter a new address and
copy it to the system clipboard.

173Copy-and-paste

package com.manning.airinaction {

 [RemoteClass(alias="com.manning.airinaction.Address")]
 public class Address {

 private var _address1:String;
 private var _address2:String;
 private var _city:String;
 private var _province:String;
 private var _postalCode:String;

 public function set address1(value:String):void {
 _address1 = value;
 }

 public function get address1():String {
 return _address1;
 }

 public function set address2(value:String):void {
 _address2 = value;
 }

 public function get address2():String {
 return _address2;
 }

 public function set city(value:String):void {
 _city = value;
 }

 public function get city():String {
 return _city;
 }

 public function set province(value:String):void {
 _province = value;
 }

 public function get province():String {
 return _province;
 }

 public function set postalCode(value:String):void {
 _postalCode = value;
 }

 public function get postalCode():String {
 return _postalCode;
 }

 public function Address() {
 }

 }
}

Listing 4.8 The Address class we use to store address data

174 CHAPTER 4 Copy-and-paste and drag-and-drop
There’s nothing remarkable about the Address class. It’s quite straightforward in that
it’s a simple value object that stores values for address lines 1 and 2, city, province, and
postal code.

 Next we’ll create the address creator application itself. Listing 4.9 shows what this
code looks like.

<?xml version="1.0" encoding="utf-8"?>
<mx:WindowedApplication xmlns:mx="http://www.adobe.com/2006/mxml"
 layout="absolute">
 <mx:Script>
 <![CDATA[
 import com.manning.airinaction.Address;

 private function copy():void {
 var address:Address = new Address();
 address.address1 = address1.text;
 address.address2 = address2.text;
 address.city = city.text;
 address.province = province.text;
 address.postalCode = postalCode.text;
 var clipboard:Clipboard = Clipboard.generalClipboard;
 clipboard.clear();
 clipboard.setData("address", address);
 }

]]>
 </mx:Script>
 <mx:Form>
 <mx:FormItem label="Address 1">
 <mx:TextInput id="address1" />
 </mx:FormItem>
 <mx:FormItem label="Address 2">
 <mx:TextInput id="address2" />
 </mx:FormItem>
 <mx:FormItem label="City">
 <mx:TextInput id="city" />
 </mx:FormItem>
 <mx:FormItem label="State/Province">
 <mx:TextInput id="province" />
 </mx:FormItem>
 <mx:FormItem label="Postal Code">
 <mx:TextInput id="postalCode" />
 </mx:FormItem>
 <mx:FormItem>
 <mx:Button label="Copy" click="copy();" />
 </mx:FormItem>
 </mx:Form>
</mx:WindowedApplication>

This code uses MXML components to create a simple form that allows the user to fill
out the address fields. When the user clicks the button, we construct an Address
object and assign the values from the fields to the corresponding properties of that

Listing 4.9 The address creator application

Called when user
clicks button

Create and
populate
address

B

Get
system
clipboard

Clear
clipboard

C
Add address
to clipboard

http://www.adobe.com/2006/mxml

175Copy-and-paste
Address object B. Then we add the object to the system clipboard using a custom for-
mat of address C.

 At this point, the user has the ability to copy a custom data type, but we next need
to create the address viewer application so he can paste the data. Figure 4.5 shows
what the address viewer application looks like.

 Listing 4.10 shows the code for the address viewer application.

<?xml version="1.0" encoding="utf-8"?>
<mx:WindowedApplication xmlns:mx="http://www.adobe.com/2006/mxml"
 layout="absolute">
 <mx:Script>
 <![CDATA[
 import com.manning.airinaction.Address;

 [Bindable]
 private var _address:Address;

 private function paste():void {
 var clipboard:Clipboard = Clipboard.generalClipboard;
 if(clipboard.hasFormat("address")) {
 _address = clipboard.getData("address") as Address;
 }
 }

]]>
 </mx:Script>
 <mx:Form>
 <mx:FormItem label="Address 1">
 <mx:Label text="{_address.address1}" />
 </mx:FormItem>
 <mx:FormItem label="Address 2">
 <mx:Label text="{_address.address2}" />
 </mx:FormItem>
 <mx:FormItem label="City">
 <mx:Label text="{_address.city}" />
 </mx:FormItem>

Listing 4.10 The address viewer application

Figure 4.5 The address viewer
application allows a user to paste
an Address object.

Declare bindable
Address property

B Get system
clipboard

C
Verify address

format data

Get the
Address object

http://www.adobe.com/2006/mxml

176 CHAPTER 4 Copy-and-paste and drag-and-drop
 <mx:FormItem label="State/Province">
 <mx:Label text="{_address.province}" />
 </mx:FormItem>
 <mx:FormItem label="Postal Code">
 <mx:Label text="{_address.postalCode}" />
 </mx:FormItem>
 <mx:FormItem>
 <mx:Button label="Paste" click="paste();" />
 </mx:FormItem>
 </mx:Form>
</mx:WindowedApplication>

The address viewer application uses a similar MXML form to the one used by the
address creator application. The main difference is that, instead of using text input
controls, the address viewer uses label controls that are data-bound to properties of an
Address object declared as a property of the document B. When the user clicks on
the Paste button, we verify that the system clipboard has data in the address format

C. If it does, we simply read that data and assign it to the Address property.
 We’ve just wrapped up our coverage of copy-and-paste functionality in AIR. As

you’ve seen, copy-and-paste is a useful and powerful, though subtle, feature of an
application. Next we’ll round out our conversation by talking about a related opera-
tion: drag-and-drop.

4.3 Drag-and-drop
Up to this point, you’ve seen the simpler of the two clipboard-related operations:
copy-and-paste. The drag-and-drop operation is more complex, and as such we’ve
deferred discussing it until now. But just because it’s more complex doesn’t mean it’s
terribly difficult. You’ll soon see that drag-and-drop uses much of the same logic as
copy-and-paste, albeit in a slightly more sophisticated fashion. Over the next few sec-
tions, we’ll break it down and look at each step of enabling various types of drag-and-
drop operations in AIR applications.

4.3.1 Understanding drag-and-drop

Drag-and-drop operations are fundamentally the same as copy-and-paste in many key
ways. Essentially a drag-and-drop operation consists of the following:

■ The user initiates the operation via a gesture (such as clicking on an item).
■ The transfer data is written to a clipboard.
■ The user begins dragging the item.
■ The user drops the item, and if the drop occurs over a valid target, the data is

retrieved from the clipboard.

As you can see, the underlying operation for drag-and-drop is one of writing to and
reading from a clipboard. What differs between copy-and-paste and drag-and-drop
operations is primarily the way in which the user interacts with the system.

 Drag-and-drop user interaction has the following basic stages:

177Drag-and-drop
1 The user clicks on an item, called the initiator.
2 The user moves the mouse while holding down the button, thus initiating the

dragging of the initiator.
3 The user moves the initiator over another user interface element that’s config-

ured to be receptive to dropping behavior. This interface element is called a
drop target.

4 The system determines whether the drop target can accept an initiator of the
type that’s moved over it.

5 The user drops the initiator by releasing the mouse button.
6 The system triggers the drop reception code if applicable. Otherwise, if the

drop isn’t over a suitable drop target, the operation is terminated.

As we’ll see in subsequent sections, it’s possible that an AIR application can be
responsible for the first part of these stages (dragging an item out of an AIR applica-
tion), the second part of the stages (dragging an item into an AIR application), or all
of the stages. Initially, we’ll look at the complete set of events that accompany each of
the stages.

4.3.2 Drag-and-drop events

Each of the stages of a drag-and-drop operation has an accompanying event. These
events, listed in table 4.2, are pivotal for successfully implementing a drag-and-drop
operation.

Table 4.2 The drag-and-drop events

Event NativeDragEvent constant Dispatcher Dispatch conditions

nativeDragStart NATIVE_DRAG_START Initiator The user begins the drag.

nativeDragUpdate NATIVE_DRAG_UPDATE Initiator The drag is in progress.

nativeDragComplete NATIVE_DRAG_COMPLETE Initiator The user releases the
dragged item.

nativeDragEnter NATIVE_DRAG_ENTER Drop target The drag gesture passes
within the target object
boundary.

nativeDragOver NATIVE_DRAG_OVER Drop target The drag gesture remains
within the target object
boundary.

nativeDragExit NATIVE_DRAG_EXIT Drop target The drag gesture leaves
the target object boundary.

nativeDragDrop NATIVE_DRAG_DROP Drop target The user releases the
dragged item over a drop
target that has previously
agreed to accept this spe-
cific drop.

http://livedocs.adobe.com/labs/flex/3/langref/flash/events/NativeDragEvent.html#NATIVE_DRAG_START

178 CHAPTER 4 Copy-and-paste and drag-and-drop
Of the events in table 4.2, two are most important: nativeDragEnter and native-
DragDrop. The nativeDragEnter event is important because it’s how you can deter-
mine when an initiator has moved over a drop target. This is crucial because by
default no interface item is configured to accept a drop. Instead, it must be config-
ured at the time of the nativeDragEnter event to accept a drop. (See the next section
for more information on how to accomplish this.) The nativeDragDrop event is
important because it’s when the system can run the code to determine what to do in
response to the drop. The nativeDragDrop event only occurs if the drop target was
configured to accept the drop during the most recent nativeDragEnter event. We’ll
see examples of how this all works in the next section.

 All the events in table 4.2 are of type flash.events.NativeDragEvent. The
NativeDragEvent class defines static constants for each of the event names that are
displayed in table 4.2.

NOTE All event objects of type NativeDragEvent have a clipboard property.
The clipboard property references the Clipboard object that contains
the data for the drag-and-drop operation. You should always reference a
clipboard through the clipboard property of the NativeDragEvent
object when an event occurs. Don’t try to reference the Clipboard object
in another way (except when creating it).

Another event that isn’t listed in table 4.2 (because it’s not specific to drag-and-drop)
is the mouseDown event (of type MouseEvent). The mouseDown event, as you likely know,
occurs when the user clicks on an interactive display object. This is one of the more
common Flash and Flex events, and it’s also utilized during drag-and-drop operations
because most often you’ll start drag-and-drop operations in response to a mouseDown
event. In fact, AIR only allows you to call the doDrag() method of the NativeDrag-
Manager (see next section) in response to a mouseDown event or a mouseMove event (if
the mouse button is pressed).

4.3.3 Using the drag manager

AIR has a special manager class just for managing native drag-and-drop operations:
flash.desktop.NativeDragManager. Even if you’re using Flex (with its DragManager
class), the NativeDragManager class always supersedes any other drag managers in
other libraries, because only NativeDragManager allows for system-level drag-and-
drop operations.

 The NativeDragManager class is what you’ll use to start drag operations as well as
notify the system when to allow a drop on a drop target. These are the two primary
functions of the NativeDragManager class, and they’re available via two static meth-
ods: doDrag() and acceptDragDrop(), which we’ll look at in this section.

 When a user initiates a drag operation (often via a mouseDown event), you need to
call the NativeDragManager.doDrag() method. The doDrag() method requires at
least two parameters: a reference to the drag initiator and a Clipboard object that con-
tains the transfer data. Listing 4.11 is a simple example that illustrates how to do this.

179Drag-and-drop

<?xml version="1.0" encoding="utf-8"?>
<mx:WindowedApplication xmlns:mx="http://www.adobe.com/2006/mxml"
 layout="absolute">
 <mx:Script>
 <![CDATA[

 private function startInitiatorDrag():void {
 initiatorLabel.text = String(Math.random());
 var clipboard:Clipboard = new Clipboard();
 clipboard.setData(ClipboardFormats.TEXT_FORMAT,
 initiatorLabel.text);
 NativeDragManager.doDrag(initiatorLabel, clipboard);
 }

]]>
 </mx:Script>
 <mx:HBox>
 <mx:Canvas width="200" height="50" backgroundColor="#00FF00">
 <mx:Label id="initiatorLabel" width="100%" height="100%"
 mouseDown="startInitiatorDrag();" />
 </mx:Canvas>
 <mx:VBox>
 <mx:Canvas width="200" height="100" backgroundColor="0xFFFF00">
 <mx:Text width="100%" height="100%" />
 </mx:Canvas>
 <mx:Canvas width="200" height="100" backgroundColor="0xFFFF00">
 <mx:Text width="100%" height="100%" />
 </mx:Canvas>
 </mx:VBox>
 </mx:HBox>
</mx:WindowedApplication>

This example consists of a label E that is the initiator and two text components F G
as the drop targets. Thus far we haven’t actually wired up the text components as drop
targets. We’ll do that shortly. All we’ve done up to this point is wire up the label com-
ponent to act as the initiator by calling startInitiatorDrag() when the user clicks
on it. At that point, we assign a random value to the label B to give us a visual indica-
tor that something has changed. We then copy that value to a clipboard C. All we
need to do after that is call the doDrag() method, passing it a reference to the initia-
tor and the clipboard D.

NOTE You should never use the system clipboard for drag-and-drop operations.
Although you can work with all Clipboard objects in the same way once
you’ve obtained a reference, the system clipboard should only be used
for copy-and-paste operations. When you want to work with a Clipboard
object for a drag-and-drop operation, you should always create a new
Clipboard object using the constructor.

To complete the example from listing 4.11, we need to enable the text components
as drop targets. As it is, you can tell that there are no properly configured drop

Listing 4.11 Initiating a native drag operation

BCreate random value

Create
clipboard

Write data to
clipboard

C

D
Start the drag

operation

InitiatorE

F Drop target 1

G Drop target 2

http://www.adobe.com/2006/mxml

180 CHAPTER 4 Copy-and-paste and drag-and-drop
targets when you run the example, because, no matter where you drag the mouse,
you see only an icon with a circle and a slash through it, as shown in figure 4.6. This
icon indicates that the mouse isn’t currently over a drop target that accepts the drop
from the initiator.

 We can configure any interactive object as a drop target by listening for native-
DragEnter events on that object. When the nativeDragEnter event occurs, we need
to call NativeDragManager.acceptDragDrop(), passing it a reference to the drop tar-
get object. This tells the system that it should allow drops from the current initiator
on the specified drop target. This also causes a change in the mouse icon, as seen in
figure 4.7.

Listing 4.12 shows how we can modify the example to allow for drops on the text
components.

<?xml version="1.0" encoding="utf-8"?>
<mx:WindowedApplication xmlns:mx="http://www.adobe.com/2006/mxml"
 layout="absolute">
 <mx:Script>

Listing 4.12 Allowing drops on targets

Figure 4.6 When no drop target has
been configured to accept a drop, you’ll
only see the invalid drop target icon (the
circle with the slash through it).

Figure 4.7 When a drop target is
configured to accept a drop, the
icon changes.

http://www.adobe.com/2006/mxml

181Drag-and-drop
 <![CDATA[

 private function startInitiatorDrag():void {
 initiatorLabel.text = String(Math.random());
 var clipboard:Clipboard = new Clipboard();
 clipboard.setData(ClipboardFormats.TEXT_FORMAT,
 initiatorLabel.text);
 NativeDragManager.doDrag(initiatorObject, clipboard);
 }

 private function nativeDragEnterHandler(event:NativeDragEvent):

 ➥void {
 NativeDragManager.acceptDragDrop(event.currentTarget

 ➥as Text);
 }

]]>
 </mx:Script>
 <mx:HBox>
 <mx:Canvas id="initiatorObject" width="200" height="50"
 backgroundColor="#00FF00" mouseDown="startInitiatorDrag();">
 <mx:Label id="initiatorLabel" />
 </mx:Canvas>
 <mx:VBox>
 <mx:Canvas width="200" height="100" backgroundColor="0xFFFF00">
 <mx:Text width="100%" height="100%"
 nativeDragEnter="nativeDragEnterHandler(event);" />
 </mx:Canvas>
 <mx:Canvas width="200" height="100" backgroundColor="0xFFFF00">
 <mx:Text width="100%" height="100%"
 nativeDragEnter="nativeDragEnterHandler(event);" />
 </mx:Canvas>
 </mx:VBox>
 </mx:HBox>
</mx:WindowedApplication>

The changes we made are minimal, but these few changes allow both of the text com-
ponents to be valid drop targets for the initiator. All we did was register a listener for
the nativeDragEnter event for both the text components C D, and then we defined
the handler method to call acceptDragDrop() B.

 There’s one more step in order to meaningfully complete the drag-and-drop oper-
ation: we need to listen for and handle the nativeDragDrop event for the drop targets.
This event occurs when the user drops the initiator on the target. Listing 4.13 shows
what this change looks like.

<?xml version="1.0" encoding="utf-8"?>
<mx:WindowedApplication xmlns:mx="http://www.adobe.com/2006/mxml"
 layout="absolute">
 <mx:Script>
 <![CDATA[

 private function startInitiatorDrag():void {

Listing 4.13 Handling the nativeDragDrop event

B
Make acceptable
drop target

CListen for
nativeDragEnter

D
Listen for

nativeDragEnter

http://www.adobe.com/2006/mxml

182 CHAPTER 4 Copy-and-paste and drag-and-drop
 initiatorLabel.text = String(Math.random());
 var clipboard:Clipboard = new Clipboard();
 clipboard.setData(ClipboardFormats.TEXT_FORMAT,
 initiatorLabel.text);
 NativeDragManager.doDrag(initiatorObject, clipboard);
 }

 private function nativeDragEnterHandler(event:NativeDragEvent):

 ➥void {
 NativeDragManager.acceptDragDrop(event.currentTarget

 ➥as Text);
 }

 private function nativeDragDropHandler(event:NativeDragEvent):

 ➥void {
 var text:Text = event.currentTarget as Text;
 var string:String = event.clipboard.getData(

 ➥ClipboardFormats.TEXT_FORMAT) as String;
 text.text = string;
 }

]]>
 </mx:Script>
 <mx:HBox>
 <mx:Canvas id="initiatorObject" width="200" height="50"
 backgroundColor="#00FF00" mouseDown="startInitiatorDrag();">
 <mx:Label id="initiatorLabel" />
 </mx:Canvas>
 <mx:VBox>
 <mx:Canvas width="200" height="100" backgroundColor="0xFFFF00">
 <mx:Text width="100%" height="100%"
 nativeDragEnter="nativeDragEnterHandler(event);"
 nativeDragDrop=

 ➥"nativeDragDropHandler(event);" />
 </mx:Canvas>
 <mx:Canvas width="200" height="100" backgroundColor="0xFFFF00">
 <mx:Text width="100%" height="100%"
 nativeDragEnter="nativeDragEnterHandler(event);"
 nativeDragDrop=

 ➥"nativeDragDropHandler(event);" />
 </mx:Canvas>
 </mx:VBox>
 </mx:HBox>
</mx:WindowedApplication>

This example just retrieves the text from the clipboard B and applies it to the text
component C, signifying that the drop was successful.

 You’ve seen the basics of drag-and-drop operations. But there’s still more we can
do to liven up and enhance the behavior.

4.3.4 Adding drag indicators

As you’ve likely noticed, the default behavior when dragging an initiator is that a sim-
ple icon follows the mouse: a circle with a slash through it when the mouse isn’t over
an acceptable drop target, and a plus sign when the mouse is over an acceptable drop

Retrieve
clipboard data

B

C
Apply value
to text

Listen for
nativeDragDrop

Listen for
nativeDragDrop

183Drag-and-drop
target. While that default behavior does give some indication as to what’s going on, it
doesn’t give the user the sort of indication she may be used to when dragging an initi-
ator. Most computer users are accustomed to seeing a semitransparent representation
of the initiator move along with the mouse as well. AIR allows us to include that sort of
behavior without much difficulty.

 When you call the doDrag() method, you must always pass it the first two parame-
ters indicating the initiator and the clipboard to use. You can also specify optional
parameters, some of which have to do with adding a semitransparent representation
of the initiator, or a drag indicator, that follows the mouse. To achieve this effect, you
must create a BitmapData object to pass to the doDrag() method as the third parame-
ter. Listing 4.14 shows a continuation of the earlier examples, this time adding a drag
indicator. Because the only changes are in the startInitiatorDrag() method, that’s
all we show in listing 4.14, but you can assume that the rest of the code is identical to
the code from listing 4.13.

 private function startInitiatorDrag():void {
 initiatorLabel.text = String(Math.random());
 var clipboard:Clipboard = new Clipboard();
 clipboard.setData(ClipboardFormats.TEXT_FORMAT,
 initiatorLabel.text);
 var initiatorImage:BitmapData =

 ➥new BitmapData(initiatorLabel.width, initiatorLabel.height);
 initiatorImage.draw(initiatorLabel.parent);
 NativeDragManager.doDrag(initiator, clipboard,

 ➥initiatorImage);
 }

All we needed to do in this example was create a BitmapData object that had the same
dimensions as the drag initiator B, draw a copy of the drag initiator (the containing
canvas in this case) in the BitmapData object C, and then specify that object as the
third parameter for the doDrag() method D. The BitmapData object is then automat-
ically applied as the drag indicator, and it follows the mouse wherever it goes, even
outside the AIR application.

 One thing you might notice is that by default the drag indicator always snaps the
upper-left corner of the image to the mouse pointer. Often the preferred behavior is
that the drag indicator moves relative to the point where the user clicked on the ini-
tiator. For example, if the user clicked in the middle of the drag initiator, usually it’s
preferable that the middle of the drag indicator always appear at the mouse pointer.
You can affect the placement of the drag indicator relative to the mouse using yet
another parameter with the doDrag() method. A fourth parameter specified as a
Point object will tell the system where to place the drag indicator relative to the
mouse pointer. Listing 4.15 shows how you can further modify the previous example
to align the drag indicator with the mouse according to where the user clicked on
the initiator.

Listing 4.14 Adding a drag indicator

Create
BitmapData

object

B

C

Copy
containing
canvas

D Specify drag indicator

184 CHAPTER 4 Copy-and-paste and drag-and-drop

 private function startInitiatorDrag():void {
 initiator.text = String(Math.random());
 var clipboard:Clipboard = new Clipboard();
 clipboard.setData(ClipboardFormats.TEXT_FORMAT,
 initiator.text);
 var initiatorImage:BitmapData =

 ➥new BitmapData(initiator.width, initiator.height);
 initiatorImage.draw(initiator.parent);
 var point:Point = new Point(-initiatorLabel.mouseX,
 -initiatorLabel.mouseY);
 NativeDragManager.doDrag(initiator, clipboard,
 initiatorImage, point);
 }

Now that we’ve seen the complete picture of drag-and-drop within an AIR application,
we can next look at the scenarios that utilize just one part or another of the complete
drag-and-drop picture to allow dragging in and out of an AIR application.

4.3.5 Dragging out of an AIR application

Sometimes you’ll want to enable a user to drag something from an AIR application
into another application. For example, you may want to allow a user to drag an image
from an AIR application and save it as a file to the desktop, or you may want to allow a
user to drag data from a data grid component and drop it into a spreadsheet applica-
tion. These sorts of behaviors are possible using AIR. In fact, they’re possible using just
what you’ve already learned. In this section, we’ll look at an example that shows how
this works.

 When you want to allow a user to drag something from an AIR application to
another application, you need only to implement the first part of the complete
sequence for a drag-and-drop operation. Basically, you need to listen for a mouse
event to trigger the operation, and then write the necessary data to a clipboard and
call doDrag(). The drop portion of the operation is handled automatically by the
other application, and you don’t need to concern yourself with drop targets or any-
thing of the sort. The following example in listing 4.16 allows the user to drag an
image from an AIR application into another application (such as a Word document)
that accepts bitmap data from a clipboard.

<?xml version="1.0" encoding="utf-8"?>
<mx:WindowedApplication xmlns:mx="http://www.adobe.com/2006/mxml"
 layout="absolute">
 <mx:Script>
 <![CDATA[

 private function startDragImage():void {
 var clipboard:Clipboard = new Clipboard();
 var bitmapData:BitmapData =

Listing 4.15 Aligning the drag indicator to the mouse

Listing 4.16 Dragging an image out of an AIR application

http://www.adobe.com/2006/mxml

185Drag-and-drop
 ➥(image.content as Bitmap).bitmapData;
 clipboard.setData(ClipboardFormats.BITMAP_FORMAT,
 bitmapData, false);
 var point:Point = new Point(-image.mouseX, -image.mouseY);
 NativeDragManager.doDrag(image, clipboard,
 bitmapData, point);
 }

]]>
 </mx:Script>
 <mx:Image id="image" source="image.jpg"
 mouseDown="startDragImage();" />
</mx:WindowedApplication>

In this example, we use an Image component C to display an image. (Note that, if
you run this yourself, you need to ensure that you have an image called image.jpg in
the same directory as the AIR application.) When the user clicks on the image, we
retrieve a BitmapData object from the component B, write that to a clipboard, and
call doDrag(). This simple code allows the user to drag the image from the AIR appli-
cation into another application.

4.3.6 Dragging into an AIR application

AIR applications not only support dragging content from an AIR application to other
applications, but they also allow a user to drag content from another application into
an AIR application. As with dragging out of an AIR application, dragging into an AIR
application uses knowledge you already have. Dragging into an AIR application is
merely part of the drag-and-drop operation. Basically, you need only to configure
drop targets and handle the drop event. Listing 4.17 shows an example of dragging
into an AIR application. This simple example allows you to create a rudimentary
image gallery by dragging images from other applications (such as web browsers) to
the AIR application.

<?xml version="1.0" encoding="utf-8"?>
<mx:WindowedApplication xmlns:mx="http://www.adobe.com/2006/mxml"
 layout="absolute" creationComplete="creationCompleteHandler();">
 <mx:Script>
 <![CDATA[
 import mx.controls.Image;

 private function creationCompleteHandler():void {
 addEventListener(

 ➥NativeDragEvent.NATIVE_DRAG_ENTER,

 ➥nativeDragEnterHandler);
 addEventListener(

 ➥NativeDragEvent.NATIVE_DRAG_DROP,

 ➥nativeDragDropHandler);
 var directory:File =

 ➥File.applicationStorageDirectory.resolvePath("images");

Listing 4.17 Creating an image gallery that supports dragging images

B Get bitmap
data

Write data
to clipboardCall

doDrag()

C Display
image

Listen for
creationComplete

B Listen for
nativeDragEnter

C Listen for
nativeDragDrop

Get local
images directory

http://www.adobe.com/2006/mxml

186 CHAPTER 4 Copy-and-paste and drag-and-drop
 if(!directory.exists) {
 directory.createDirectory();
 }
 var images:Array = directory.getDirectoryListing();
 for(var i:Number = 0; i < images.length; i++) {
 displayImage(images[i]);
 }
 }

 private function displayImage(file:File):void {
 var image:Image = new Image();
 image.source = file.nativePath;
 image.scaleContent = true;
 image.maintainAspectRatio = true;
 image.width = 100;
 tile.addChild(image);
 }

 private function nativeDragEnterHandler(event:NativeDragEvent):

 ➥void {
 if(event.clipboard.hasFormat(

 ➥ClipboardFormats.FILE_LIST_FORMAT)) {
 NativeDragManager.acceptDragDrop(this);
 }
 }

 private function nativeDragDropHandler(event:NativeDragEvent):

 ➥void {
 var files:Array = event.clipboard.getData(

 ➥ClipboardFormats.FILE_LIST_FORMAT) as Array;
 var file:File;
 var newLocation:File;
 for(var i:Number = 0; i < files.length; i++) {
 file = files[i] as File;
 newLocation = File.applicationStorageDirectory.

 ➥resolvePath("images/image" +

 ➥(new Date()).getTime() + i + ".jpg");
 file.moveTo(newLocation);
 displayImage(newLocation);
 }
 }

]]>
 </mx:Script>

 <mx:Tile id="tile" width="100%" height="100%" />
</mx:WindowedApplication>

In this example, the first thing we do is register to listen for the nativeDragEnter and
nativeDragDrop events B C for the entire application. That way the entire applica-
tion is a drop target. When the user drags something over the application, we only
want to accept the drop if the clipboard contains file-formatted data D. Then, when
the user drops the content on the application, we loop through all the files and save
them with unique names E and display them F.

Create directory
if necessary

Get a
directory

listing

Display all
images

Accept
drop for filesD

Retrieve
files

E Save file
locally

F Display the image

187Adding drag-and-drop to AirTube
 We’ve now seen all sorts of things we can do with drag-and-drop operations, and
we’ve even put them into practice building simple applications such as the image gal-
lery we just built in this section. Next we’ll add drag-and-drop behavior into our Air-
Tube application.

4.4 Adding drag-and-drop to AirTube
In this section, we’ll add a bit of new functionality to the AirTube application, build-
ing on what we learned in this chapter. We’ll allow the user to write a file to his sys-
tem by dragging an item from the search results to the file system. We’re going to use
a custom file extension of .atv (for AirTube video). In later chapters, we’ll utilize the
file by allowing users to double-click on .atv files to launch the corresponding video
in AirTube.

 To add the drag-and-drop functionality to AirTube, all you need to do is open the
com.manning.airtube.ui.VideoTileRenderer.mxml file and modify the code as shown
in listing 4.18.

<?xml version="1.0" encoding="utf-8"?>
<mx:HBox xmlns:mx="http://www.adobe.com/2006/mxml" width="200" height="100"
 verticalScrollPolicy="off" horizontalScrollPolicy="off"
 mouseDown="mouseDownHandler();">
 <mx:Script>
 <![CDATA[

 private function mouseDownHandler():void {
 var file:File = File.applicationStorageDirectory.

 ➥resolvePath("temporary/" + data.video.title + ".atv");
 var writer:FileStream = new FileStream();
 writer.open(file, FileMode.WRITE);
 writer.writeUTF(data.video.id);
 var clipboard:Clipboard = new Clipboard();
 clipboard.setData(ClipboardFormats.FILE_LIST_FORMAT,

 ➥[file]);
 var indicator:BitmapData = new BitmapData(width, height);
 indicator.draw(this);
 var point:Point = new Point(-mouseX, -mouseY);
 NativeDragManager.doDrag(this, clipboard, indicator,
 point);
 }

]]>
 </mx:Script>
 <mx:Image source="{data.video.thumbnailUrl}" />
 <mx:VBox>
 <mx:Label text="{data.video.title}" />
 </mx:VBox>
</mx:HBox>

When the user clicks on the video render item, we first create a new file based on the
video title B. Then we write the video ID to the file C. We need to create this

Listing 4.18 Adding drag-and-drop behavior to AirTube

Handle
mouseDown

BCreate file

C Write
video ID

D
Write
file to

clipboard

Start drag
operation

http://www.adobe.com/2006/mxml

188 CHAPTER 4 Copy-and-paste and drag-and-drop
temporary file because this is what we add to the clipboard D using the file list for-
mat. Then all we need to do is call doDrag(). The system takes care of the rest. When
the user drags an item to the desktop, for example, the system will create a copy of the
.atv file on the desktop. Although we’re not going to do anything with the .atv files just
yet, we will later on.

4.5 Summary
In this chapter, you learned about two related operations: copy-and-paste and drag-
and-drop. Each of these operations allows users to interact with your AIR applications
in intuitive ways. Because these operations are at the system level, you can use them to
transfer data to and from AIR applications, interacting with other applications. For
instance, you saw an example that allows a user to drag an image from a web page and
drop it into an AIR application.

 You learned that both copy-and-paste and drag-and-drop use the common transfer
medium of a clipboard. Clipboards are represented as Clipboard objects in AIR appli-
cations. You can write data to and read data from clipboards in a variety of formats,
allowing you to transfer lots of different types of data. Clipboards are at the center of
both types of operations, but the actual code necessary for copy-and-paste and drag-
and-drop operations is slightly different. As such, we continued on from our conversa-
tion about clipboards to a more detailed look at how to transfer data using both of
these types of operations.

 Now that we’ve wrapped up our conversation of copy-and-paste and drag-and-
drop, we can go ahead to the next chapter. In chapter 5, we’ll learn all about working
with local databases.

Using local databases
In chapter 3, you learned how to work with the file system. Using a file system
allows you to store data in a persistent fashion and organize that data in a variety of
ways. Writing data to files is a great solution in some cases. For example, files are
ideal for writing binary data such as images or videos that your application will
need to load at runtime. Files are also great for portability. If you want to output
text to a format that a user can easily send to a friend, a file is good for that. But as
useful as files may be, they’re not a panacea for all things data. In this chapter, we’ll
look at a more efficient way to work with some types of data: local databases. A data-
base allows you to store data persistently. Most databases also have a language that
allows you to store and retrieve data in an efficient way. AIR uses a type of database

This chapter covers
■ Using basic SQL
■ Creating databases
■ Running SQL statements
■ Adding parameters
■ Retrieving record sets
189

190 CHAPTER 5 Using local databases
called SQLite, and SQLite databases use a language called Structured Query Language,
which is usually written as SQL.

NOTE SQL is pronounced differently by different people. Some prefer to spell
out the letters, as in Ess-Cue-El. Others prefer to pronounce SQL just like
the word sequel. In this book we've chosen the latter option. That means
you'll see us refer to a SQL statement instead of an SQL statement.

Using SQL, you can work with sets of data in a much more efficient way than if you had
to write custom code to parse through it. Throughout this chapter, we’ll look at all you
need to know to work with local databases from AIR applications. We’ll talk about cre-
ating new databases, writing data to databases, reading data from databases, updating
existing data, and more. We’ll also build a few example applications, including updat-
ing the AirTube application to support offline mode using a local database.

NOTE AIR allows you to create nonpersistent databases that are stored in mem-
ory while an application is running. These databases are deleted from
memory when the application exits. Although these sorts of databases
are possible using AIR, our focus in this chapter is strictly on persistent
databases that are written to disk. Persistent databases are generally far
more useful simply because the data lives for much longer (until it’s
explicitly deleted).

A basic knowledge of SQL is critical to understanding much of how to work with data-
bases in AIR. We recognize that you might not have much knowledge of SQL. There-
fore, where appropriate, we’ll give you tips on basic SQL statements for all the
behaviors we mention. If you’re already a SQL expert, you can feel free to skip over
these sections.

NOTE While we do provide some basic SQL information throughout the chap-
ter, it isn’t intended to be a comprehensive SQL tutorial. For that, we rec-
ommend you read a book dedicated to the topic. You might also find
some tutorials on the Web that are helpful in that regard. One such
excellent resource can be found at www.w3schools.com/sql.

Before we start talking about all the implementation details, we first need to talk
about what a database is and why you’d want to use one. You’ll find all that informa-
tion in the next section.

5.1 What is a database?
As with several sections in this chapter, if you’re already a database and SQL expert
and you want to get right to the implementation details, you can skip this section
entirely. For the rest of us who could use a brief introduction or refresher on some
basic database concepts, we’ll take just a few minutes to talk about what databases are
and what they can do for us.

http://www.w3schools.com/sql

191What is a database?
 Simply put, a database is a collection of information organized in some fashion,
usually into groups known as records. Each record has a uniform set of data. For exam-
ple, a record in a database that stores addresses might have the following pieces of
data: street address 1, street address 2, city, province, postal code, and country. Most
often it’s convenient to think of these records as rows, much like the rows in a spread-
sheet (which is a simple sort of database). Figure 5.1 shows a visual representation of a
record for an address.

There are a variety of ways in which databases can be modeled, including hierarchi-
cal, network, and object models. The SQLite engine used by AIR is a relational data-
base engine, meaning that it uses a relational model of tables—a popular database
model, and one that’s easy to grasp conceptually. A table is composed of columns
and rows. Columns in a table are sometimes called attributes, but more often they’re
simply called columns. For example, the attributes or columns shown in figure 5.1 are
StreetAddress1, StreetAddress2, City, Province, PostalCode, and Country. The rows
of a table are the records, and a record is the smallest unit that can be inserted or
deleted from a table. (You can’t insert an entry from one column without inserting
the entire row.)

NOTE You can learn much more about SQLite by going to the official web site at
www.sqlite.org.

Each database can have more than one table as well, and the data in the tables can have
relationships, hence the term relational database. These relationships are usually based
on keys. A key allows you to uniquely identify a record. For example, we could add an ID
column to the table from figure 5.1. Figure 5.2 shows what this would look like.

A key used as the unique identifier within a row in this way is called a primary key. Pri-
mary keys allow you to easily establish relationships between data in tables. We can
extend our example to illustrate how this might work. Figure 5.3 shows the address
table with a second record added to it.

Figure 5.1 Databases organize data in records such as the one shown in this image.

Figure 5.2 Use an ID column as a primary key.

http://www.sqlite.org

192 CHAPTER 5 Using local databases
We’ll next add a new table for employees that contains the employee ID, name, and
title. Figure 5.4 shows this table.

Next we can establish a relationship between the data in the
two tables by adding another table. This new table tells us
which employee works at which address. Figure 5.5 shows the
table. As you can see, some of the employees work at more
than one address. For example, Pan (the employee with
ID 2) works at both addresses.

 The SQLite database engine used by AIR writes all these
tables to a file or files on the system. All of the writing to and
reading from files is managed through the use of SQL. That
includes creating new tables, deleting existing tables, insert-
ing data, updating data, and deleting data. You can read
more about the SQL you’ll need for these operations in sec-
tion 5.2.

 Now that you’ve had a chance to see how databases are structured, you may next
be wondering how to determine when to use one. Although there are no fixed rules
for making this determination, here are a few guidelines you might find helpful:

■ If the AIR application uses data that’s relational in nature, it’s a good idea to use
a database.

■ When you want to be able to search data based on various criteria, a database
can be a good way to store the data because SQL supports lots of ways to filter,
group, and sort data sets.

■ A local database is a great way to cache data retrieved from an online source,
allowing an AIR application to continue to run from local data even when not
online. When the application reconnects to the internet, it can update the
local data.

Figure 5.3 We can add more than one record to a table.

Figure 5.4 The employees table shows the
employee ID, name, and title.

Figure 5.5 Create
relationships between
records using the primary
keys.

193Understanding SQL
■ For an AIR application that connects to internet resources for writing data, a
database allows an application to store data that a user inserts or updates even if
the application isn’t connected to the internet. When the user next connects to
the internet, the AIR application can read the data from the local database and
write it to the remote resources.

Next we’ll take a look at the language you can use to work with AIR databases: SQL.

5.2 Understanding SQL
As we mentioned earlier, the topic of SQL is far too broad for us to cover comprehen-
sively in this chapter. But we want to make sure that, even if you’re not already familiar
with SQL, you’ll still be able to get the most out of this chapter. Therefore, in this sec-
tion you can learn about many of the basic SQL commands you can use. If you’re
already familiar with these commands, jump ahead to the next section. Or you may
still find it useful to quickly read the following information to learn about the SQLite-
specific details.

 If you’re new to SQL or even if you just want to follow along, you may find it helpful
to use the SQLTutorial AIR application that you can download from this book’s official
web site at www.manning.com/lott. The SQLTutorial application looks like figure 5.6.

 The SQLTutorial application automatically creates a database to use and allows you
to run SQL statements on that database. The upper-left portion of the application dis-
plays all the tables available. When you first run the application, there are no tables,
just as in figure 5.6. In the following section, you’ll add a table to the database. Once
you have tables available, you can select one at a time, and the table’s contents are
shown in a data grid on the right. In the lower portion of the SQLTutorial application
window is a text area that allows you to input SQL commands, and you can click the
Run button to execute those commands.

Figure 5.6 The SQLTutorial application allows you to follow along with SQL examples in the
following sections.

http://www.manning.com/lott

194 CHAPTER 5 Using local databases
5.2.1 Creating and deleting tables

As we’ve already mentioned, one of the most basic units of a database is a table. In
fact, you can’t store data without at least one table. Therefore, creating tables is one of
the most primary of SQL commands. You can create a table using the CREATE TABLE
command. The command looks like the following:

CREATE TABLE tableName (column[, column, ...])

The following is a concrete example of a CREATE TABLE statement that creates a new
table called musicTracks with the following columns: id, title, artist, album, length,
and originalReleaseYear:

CREATE TABLE musicTracks (id, title, artist, album, length,

➥originalReleaseYear)

SQLite uses a concept of storage classes. A storage class allows the database to store data
in an efficient way because it only sets aside enough storage space for the type of data
it’s storing. SQLite supports the following storage classes:

■ NULL—Only for null values
■ INTEGER—Signed integer values
■ REAL—Floating-point numeric values
■ TEXT—Text stored in the database encoding such as UTF-8
■ BLOB—Data stored literally (that is, you can store binary data)

In order to help the database engine know which storage classes to use for which col-
umns, you can create columns with an affinity. Affinity means that the database engine
gives preference to a particular data type by trying to coerce data to that type before
inserting it. For example, if you specify a column affinity of type INTEGER and you try
to insert a string value, the database engine will try to first convert it to an integer. The
affinities you can use are as follows:

■ TEXT—The engine attempts to convert the data to text before inserting it. That
means numeric values are inserted as strings.

■ NUMERIC—If possible, the engine converts strings to integers or floating-point
numbers and stores them using the appropriate storage class. Null or blob val-
ues aren’t converted.

■ INTEGER—The primary difference between this and NUMERIC is that a string that
can be converted to a number with a nonsignificant decimal value (for exam-
ple, 5.0) will be converted into an integer.

■ REAL—All numeric values are converted to floating-point values, even if the
value after the decimal point is nonsignificant.

■ NONE—No conversion is attempted. This is the default affinity if no other value
is specified.

195Understanding SQL
You can declare affinities when creating a table by adding the affinity after the column
name. The following example creates the table with id, length, and originalRelease-
Year as INTEGER and the rest using TEXT:

CREATE TABLE musicTracks (id INTEGER, title TEXT, artist TEXT, album TEXT,

➥length INTEGER, originalReleaseYear INTEGER)

Clearly you can only create a table if it doesn’t already exist. If you attempt to create a
table with the same name as one that already exists, you’ll receive an error. However,
you can use the IF NOT EXISTS clause in the CREATE TABLE statement to avoid this
error. The following creates the musicTracks table only if it doesn’t already exist. If it
does exist, then nothing happens:

CREATE TABLE IF NOT EXISTS musicTracks (id INTEGER, title TEXT,

➥artist TEXT, album TEXT, length INTEGER, originalReleaseYear INTEGER)

You can also add column constraints by adding a constraint to each column definition
right after the affinity. SQLite supports a variety of constraints, but for the purposes of
this book we’ll only be interested in the PRIMARY KEY constraint. This constraint
requires that the value in the column be unique for each record. (You can only create
one primary key column per table.) You can also add the keyword AUTOINCREMENT fol-
lowing the PRIMARY KEY constraint if the affinity is INTEGER. When AUTOINCREMENT is
enabled, the value of the column is automatically inserted when adding a row, and it’s
1 greater than the previously inserted value. The following creates the table with id as
an autoincrementing primary key:

CREATE TABLE IF NOT EXISTS musicTracks (id INTEGER PRIMARY KEY

➥AUTOINCREMENT, title TEXT, artist TEXT, album TEXT,

➥length INTEGER, originalReleaseYear INTEGER)

If you’d like to test this out for yourself, enter the preceding command in the SQL-
Tutorial application text area and click the Run button. You should see the music-
Tracks table show up in the tables list. If you select the table from the list, you’ll see
the columns displayed in the data grid as shown in figure 5.7.

Figure 5.7 After creating a table and selecting it, you can see the columns in the data grid.

196 CHAPTER 5 Using local databases
 Creating tables is half the story as far as tables are concerned. The other half of the
story is deleting them. Deleting is considerably simpler than creating. To delete a
table, you use the DROP TABLE statement, specifying the table you want to delete. For
example, the following deletes the musicTracks table:

DROP TABLE musicTracks

You can also add an IF EXISTS clause (the analog to the IF NOT EXISTS clause for
CREATE TABLE) in order to avoid an error if the table doesn’t exist:

DROP TABLE IF EXISTS musicTracks

NOTE If you’re testing the DROP TABLE code in SQLTutorial, you should make
sure to re-create the table before moving on to the next section.

That covers the basics of creating and deleting tables. Next we’ll look at how to work
with tables by adding data to them.

5.2.2 Adding data to tables

Tables are merely containers for data. Once you have tables created, the next step is to
add data to them. In SQL, adding data is called inserting, and you insert data using the
INSERT command.

 The INSERT command looks like the following:

INSERT INTO tableName (column[, column, …]) VALUES (value[, value, …])

The number and order of columns and values must match. For example, the follow-
ing statement inserts a new record into the musicTracks table. Note that the column
list and the values list both have five items and the order of the items is the same:

INSERT INTO musicTracks(title, artist, album, length, originalReleaseYear)

➥VALUES("Just Another Day", "Oingo Boingo", "Dead Man's Party", 243, 1985)

One thing you might notice from this example is that we’ve omitted the id column in
the INSERT statement. That’s because we placed a PRIMARY KEY AUTOINCREMENT con-
straint on the id column. Therefore the database engine automatically assigns a value
to the id column when inserting a new record.

 Another thing you’ll notice from this example is that we’ve placed quotation
marks around the text values. If you don’t place quotation marks around text values,
the database engine tries to interpret the values as column names rather than as lit-
eral values. Therefore you must enclose text values in quotation marks. (Either single
or double quotation marks work.) You shouldn’t place quotation marks around
numeric values.

 If you’d like to test the code for yourself, go ahead and run the preceding SQL
command using SQLTutorial. If you run the code, you’ll see the new record show up
in the data grid as depicted in figure 5.8.

 Once you’ve inserted data, you can’t reinsert it to make changes to it. Instead you
need to update the data using the command discussed in the following section.

197Understanding SQL
5.2.3 Editing data in tables

Editing existing records in SQL is known as updating, and you use the UPDATE com-
mand. The UPDATE command syntax is as follows:

UPDATE tableName SET column = value[, column = value, …] WHERE expression

The SET clause consists of a list of columns and new value assignments. Typically you
follow that with a WHERE clause that indicates which rows to update. If you omit the
WHERE clause, all rows are updated, which isn’t typically the intended result. The fol-
lowing example updates the musicTracks table by setting the length column to 242
for the record with an id value of 1 (because id is a primary key, this will only update
one record):

UPDATE musicTracks SET length = 242 WHERE id = 1

If you want to create compound WHERE clause expressions, you can use the operators
AND and OR. For example, if we wanted to update the artist name for all tracks on the
Oingo Boingo album Dead Man’s Party, we can use the following command:

UPDATE musicTracks SET artist = "OINGO BOINGO"

➥WHERE artist = "Oingo Boingo" AND album = "Dead Man's Party"

You may have noticed that, in these examples, we surround text values with quotation
marks just as we did with text values in INSERT statements.

 Again, if you’re following along using SQLTutorial, run the preceding SQL state-
ment. When you do, you’ll see that the artist name updates from Oingo Boingo to
OINGO BOINGO. If you’d inserted other records with the artist name Oingo Boingo
but different album names, those records would remain unaffected.

 Now that you’ve seen how to insert and update data, the next step is deleting data,
which we’ll discuss in the next section.

Figure 5.8 Insert a record into a table and it shows up in the data grid.

198 CHAPTER 5 Using local databases
5.2.4 Deleting data from tables

You can delete data from tables using the DELETE command. The syntax for the
DELETE command is as follows:

DELETE FROM tableName WHERE expression

Although the WHERE clause isn’t strictly required in the DELETE statement (just like it’s
not required for an UPDATE statement), it’s almost always used. If you omit the WHERE
clause, the DELETE statement will delete all the records from the specified table. Gen-
erally, you only want to delete one or a few records. The WHERE clause allows you to
limit the deletion to only those records that meet the criteria in the expression. For
example, the following deletes only the record with the id of 1:

DELETE FROM musicTracks WHERE id = 1

You can also use compound expressions just as you would with an UPDATE statement.
For example, the following deletes all records where the artist is either Devo or Oingo
Boingo:

DELETE FROM musicTracks WHERE artist = "Devo" OR artist = "Oingo Boingo"

We’ve now covered all the basics of inserting, updating, and deleting data, but we
haven’t yet shown you how to retrieve data from the database. We’ll talk about that in
the next section.

5.2.5 Retrieving data from tables

Retrieving data from a database can be simple or complex depending on the require-
ments. For example, retrieving all the records from a table is simple, but retrieving the
sum of the values from one column for a particular group of records is more complex.
We’ll look at how to retrieve data, starting with the simplest examples and moving to
more complex examples. If you want to follow along with the examples in this section,
you can by using the SQLTutorial application. If you’d like to get exactly the same
results as we show in this section, you can run a special command in SQLTutorial that
will initialize the musicTracks table with the same values as our sample data set. All you
need to do is run the command INITIALIZE musicTracks in SQLTutorial, and you’ll
see that it creates (if necessary) the musicTracks table and adds data to it. Even if
you’ve already created musicTracks, you can start over by first running the DROP
musicTracks command before running INITIALIZE musicTracks.

NOTE INITIALIZE musicTracks is a special command just for SQLTutorial and
isn’t a part of standard SQL.

The data set that we’ll be working from for the examples in this section is shown in
table 5.1.

 We’ll use this data set for all the examples that follow in this section. Now we’re
ready to learn about all the basics for retrieving data.

199Understanding SQL
USING A SELECT STATEMENT

Regardless of how simple or complex the requirements are for how you want to
retrieve data, all data retrieval occurs by way of a SELECT command. In its simplest
form, the SELECT command syntax is as follows:

SELECT column[, column, …] FROM tableName

You can simplify things even further by using the * wildcard in place of the column
names. The * wildcard allows you to select all the columns from the specified table.
For example, the following command retrieves all the columns from all the records
from the musicTracks table:

SELECT * FROM musicTracks

It’s always more efficient from the database engine perspective if you list all the col-
umns rather than using the wildcard. Also, listing the columns allows you to control
which columns are returned as well as the order in which they’re returned. For exam-
ple, if you wanted to retrieve just the title and artist columns for all the records in the
musicTracks table, you could use the following command:

SELECT title, artist FROM musicTracks

The result would be what is shown in table 5.2.
 You can also add a WHERE clause to a SELECT statement. Adding a WHERE clause allows

you to filter the results based on an expression. For example, if we want to retrieve all
the track titles where the artist is Thomas Dolby, we can use the following command:

SELECT title FROM musicTracks WHERE artist = "Thomas Dolby"

Table 5.1 The data set for all the examples in this section

id title artist album length originalReleaseYear

1 Just Another Day Oingo Boingo Dead Man’s Party 243 1985

2 I Scare Myself Thomas Dolby The Flat Earth 299 1984

3 Senses Working
Overtime

XTC English Settlement 270 1984

4 She Blinded Me With
Science

Thomas Dolby The Golden Age of
Wireless

325 1982

5 Heaven The Psychedelic
Furs

Mirror Moves 250 1984

6 Dance Hall Days Wang Chung Points on the Curve 258 1984

7 Love My Way The Psychedelic
Furs

Forever Now 208 1982

8 Everybody Have Fun
Tonight

Wang Chung Mosaic 287 1986

200 CHAPTER 5 Using local databases
The result of this command is shown in table 5.3.
 You can use compound expressions as well. For example, the following command

retrieves all the tracks that were released in 1984 where the length is greater than 260:

SELECT title FROM musicTracks

➥WHERE originalReleaseYear = 1984 AND length > 260

The results of this command are shown in table 5.4.

That sums up the basics of working with SELECT statements. In the sections that follow,
we’ll look at other ways you can further modify a SELECT statement to create more
complex queries.
ELIMINATING DUPLICATES

As you’ve seen, by default all the results meeting the criteria are returned. But some-
times you want to exclude duplicate values. For example, if you were to request all
the artists from the musicTracks table using the following command, you’d get dupli-
cate values:

SELECT artist FROM musicTracks

Table 5.5 shows the results of this command.
 If you’d like to exclude duplicate values, you can use the DISTINCT keyword with

the SELECT statement as in the following command:

SELECT DISTINCT artist FROM musicTracks

Table 5.2 The title and artist
columns returned for all the records

title artist

Just Another Day Oingo Boingo

I Scare Myself Thomas Dolby

Senses Working Overtime XTC

She Blinded Me With Science Thomas Dolby

Heaven The Psychedelic Furs

Dance Hall Days Wang Chung

Love My Way The Psychedelic Furs

Everybody Have Fun Tonight Wang Chung

Table 5.3 The titles from musicTracks
where the artist is Thomas Dolby

title

I Scare Myself

She Blinded Me With Science

Table 5.4 You can select data
based on compound expressions

title

I Scare Myself

Senses Working Overtime

201Understanding SQL
The results of this command don’t contain any duplicate values, as you can see in
table 5.6.

Now that you know how to eliminate duplicate values, you’re probably wondering how
you can sort all the results. Good thing that’s what we’re going to talk about next.
ORDERING RESULTS

When you retrieve a data set from a database frequently, you may want to order that
data in a particular way. For example, when retrieving records from the musicTracks
table, you may want to order the results alphabetically by artist name or chronologi-
cally by release year. Whatever the case, you can achieve these sorts of results by using
an ORDER BY clause with a SELECT statement.

 The ORDER BY clause allows you to specify one or more columns by which to sort
the data, and you can specify the order: either ascending (default) or descending.
Here’s an example of a basic ORDER BY clause:

SELECT album, originalReleaseYear FROM musicTracks

➥ORDER BY originalReleaseYear

This statement orders the results in ascending order based on the release year. The
results are shown in table 5.7.

 You can explicitly instruct the database engine to sort the data in ascending order
using the ASC keyword, or you can specify DESC to indicate that the data should be
sorted in descending order. The following statement would sort the results starting
with the most recent year:

SELECT album, originalReleaseYear FROM musicTracks

➥ORDER BY originalReleaseYear DESC

You can add additional columns to the sort expression by using a comma-delimited
list. The first column in the list exerts the largest effect because it determines how

Table 5.5 Sometimes result
sets can include duplicate
values

artist

Oingo Boingo

Thomas Dolby

XTC

Thomas Dolby

The Psychedelic Furs

Wang Chung

The Psychedelic Furs

Wang Chung

Table 5.6 Using the
DISTINCT keyword
eliminates duplicate values

artist

Oingo Boingo

Thomas Dolby

XTC

The Psychedelic Furs

Wang Chung

202 CHAPTER 5 Using local databases
everything is first sorted. After the data is sorted by the first column, the next column
is used to determine how to sort the data more granularly. For example, you may
notice that in table 5.7 the data is sorted by release year, but there doesn’t seem to be
an obvious pattern to how the data is sorted within each release year. The result set
has four records with release years of 1984, but the records aren’t sorted in any obvi-
ous order at that level. We can tell the database engine to sort first by release year and
then by album name using the following command:

SELECT album, originalReleaseYear FROM musicTracks

➥ORDER BY originalReleaseYear, album

The results are shown in table 5.8.
 Not only can you order data, but you can also run functions to retrieve specific val-

ues from a database, as we’ll see in the next section.

album originalReleaseYear

Forever Now 1982

The Golden Age of Wireless 1982

Points on the Curve 1984

Mirror Moves 1984

English Settlement 1984

The Flat Earth 1984

Dead Man’s Party 1985

Mosaic 1986 Table 5.7 Use the ORDER BY
clause to sort the data

album originalReleaseYear

Forever Now 1982

The Golden Age of Wireless 1982

English Settlement 1984

Mirror Moves 1984

Points on the Curve 1984

The Flat Earth 1984

Dead Man’s Party 1985

Mosaic 1986 Table 5.8 Results are now
sorted by release year

203Understanding SQL
RUNNING FUNCTIONS

SQL allows you to run functions in queries. The full list of functions allowed by SQLite
is documented at www.sqlite.org/lang_expr.html. We’ll just show a few examples in
this section.

 Suppose you want to find out the average length of a song from the musicTracks
table. You could retrieve all the records and use ActionScript to calculate the average.
But using the SQL avg() function is a lot simpler. All you need to do is use the func-
tion in a SELECT statement as follows:

SELECT avg(length) FROM musicTracks

This statement will return a result set with one column called avg(length) that has a
value of 267.5. The column name avg(length) in the result set isn’t very friendly. If we
want the query to return a result set with a nicer column name, we can specify an alias
using the AS keyword. An alias allows us to refer to any element in the columns list
(whether a function or not) using the alias we specify. For example, we can use an
alias of averageLength as follows:

SELECT avg(length) AS averageLength FROM musicTracks

What if, instead of getting the average length of all the songs in the table, you wanted
to get the average length of a song by each artist? That sort of behavior is possible
using the GROUP BY clause. The GROUP BY clause allows you to specify a column to use
to filter how the aggregate function (such as avg()) is run:

SELECT artist, avg(length) as averageLength

➥FROM musicTracks GROUP BY artist

The results of this statement are shown in table 5.9.

If you’d like to further filter which results are returned, you can add a HAVING clause
as well. The HAVING clause allows you to specify an expression that determines which
results to return. For example, the following specifies that the command should only
return results where the average length is greater than 250:

SELECT artist, avg(length) as averageLength FROM musicTracks

➥GROUP BY artist HAVING averageLength > 250

The results are shown in table 5.10.

Artist averageLength

Oingo Boingo 243

The Psychedelic Furs 229

Thomas Dolby 312

Wang Chung 272.5

XTC 270

Table 5.9 Using a GROUP BY
clause we can affect how the
aggregate function is applied

http://www.sqlite.org/lang_expr.html

204 CHAPTER 5 Using local databases
That wraps up working with functions in your SQL statements.

NOTE Thus far we’ve only seen how to work with data in one table. Working
with data in more than one table is important for many applications of
moderate or greater complexity. While this information is beyond the
scope of this book, you can find many good resources on the subject,
including the free online resource we mentioned earlier,
www.w3schools.org/sql.

Now that we’ve covered all the basics of working with SQL, we can next look at the spe-
cific implementation details for working with SQL from your AIR applications.

5.3 Creating and opening databases
Consider for a moment that you want to rent a movie from a local video store. You
know that you’d like to rent a movie starring your favorite actor, Humphrey Bogart.
You want to know which movies the video store has in stock. What do you do? You
might pick up the phone and call the video store. Once the clerk answers, you can ask
if they have any movies starring Humphrey Bogart in stock. Upon getting your answer,
you can thank the clerk and hang up the phone. Believe it or not, this is analogous to
working with a database. When you work with a database, the first thing you must do is
make a connection. Once you’ve established a connection, you can execute state-
ments (such as making queries), and when you’re done, you can disconnect from the
database. In this section, we’re going to look at the first and last steps: opening and
closing connections to databases.

 SQLite databases are written to files. In chapter 3, you learned how to work with
files, and when you work with databases, you’ll be leveraging some of those skills. The
first thing you need to do when you work with a database is create a File object refer-
encing the database file to use. As we’ll see in a minute, we can ask AIR to automati-
cally create the file when trying to open the database connection. Therefore the File
object doesn’t need to reference a file that already exists. All you need to do is create a
File object that points to the file where data is stored or where you want to store data.
The following example creates a File object that points to a file named example.db in
the application storage directory:

var databaseFile:File = File.applicationStorageDirectory.resolvePath(

➥"example.db");

Once you’ve created a File object that points to the file in which to store the data,
you next must create a flash.data.SQLConnection object. You’ll use the SQL-
Connection object to create the connection to the database file, and all SQL

artist averageLength

Thomas Dolby 312

Wang Chung 272.5

XTC 270
Table 5.10 Results with average
length greater than 250

http://www.w3schools.org/sql

205Running SQL commands
statements must have a SQLConnection reference in order to run. The SQLConnection
constructor doesn’t require any parameters. The following shows how to construct a
new SQLConnection object:

var connection:SQLConnection = new SQLConnection();

The next step is to connect the object to the database file. You can open a SQLConnec-
tion object’s connection to the database file synchronously or asynchronously. You
can open a connection synchronously using the open() method. If you open a con-
nection synchronously, all SQL statements will execute on that connection in a syn-
chronous fashion. Generally this isn’t advisable for the same reasons that most
synchronous operations aren’t advisable if they could potentially take a long time to
run. (See the discussion in chapter 3 for more detail.) A far better alternative is to
open a connection asynchronously using the openAsync() method. Both methods
require the same parameter: a reference to the File object that points to the database
file. For example, the following code will open a connection to the database file that
we created earlier in this section:

connection.openAsync(databaseFile);

When you open a connection, you have the option to specify what mode the connec-
tion should use. There are three modes: read, update, and create. The read mode
specifies that the connection can only be used to read existing data from the database.
The update and create modes both allow for both reading and writing of data, but the
create mode will create the database file if it doesn’t already exist, while the update
mode will fail. The default mode is create. If you want to explicitly set the mode, you
can pass a second parameter to the open() or openAsync() method using one of the
three flash.data.SQLMode constants of READ, UPDATE, or CREATE. For example, the
following opens a connection in read mode:

connection.openAsync(databaseFile, SQLMode.READ);

When you open a connection asynchronously, you must listen for an open event before
executing any SQL commands. The open event is of type flash.events.SQLEvent.

 Once you’re done with a database connection, you should close it. Closing a con-
nection is as simple as calling the close() method.

5.4 Running SQL commands
In the previous section, we talked about the three basic steps in working with a data-
base: opening a connection, running commands, and closing the connection. We used
an analogy in which you wanted to find out which movies your local video store has in
stock. In that analogy, the step in which you ask the clerk which movies are in stock is
analogous to running SQL commands on a database. That is what we’re going to look
at next: how to run SQL commands once you’ve established a connection to a database.

 All SQL statements (CREATE TABLE, INSERT, DELETE, SELECT, and so on) should be
run using an instance of the flash.data.SQLStatement class. In the next few sec-
tions, we’ll look at working with SQLStatement objects.

206 CHAPTER 5 Using local databases
5.4.1 Creating SQL statements

When you want to run a SQL statement, the first thing you should do is create a new
SQLStatement object using the constructor. The constructor requires no parameters.
Therefore, the following shows how to construct a new SQLStatement object:

var statement:SQLStatement = new SQLStatement();

When you want to run a statement, you must tell the SQLStatement object what SQL-
Connection object to use. You do that by setting the sqlConnection property as in the
following code snippet:

statement.sqlConnection = connection;

Next you need to specify the SQL statement that you want to run. You can do that by
assigning the string value to the text property of the SQLStatement object. For
example, the following assigns a SELECT statement to the text property of a SQL-
Statement object:

statement.text = "SELECT DISTINCT album FROM musicTracks";

That’s all there is to setting up a basic SQL statement to run. Next we’ll look at how to
actually run it.

5.4.2 Running SQL statements

Running a SQL statement is as simple as calling the execute() method. When you call
the execute() method synchronously, either it runs successfully (and any results are
available immediately following) or it throws an error. If you run execute() when
using an asynchronous connection, the effect isn’t immediate. Instead it results in one
of two events: a result event or an error event. When you call the execute() method
with no parameters, you must register listeners for these events directly with the SQL-
Statement object. For example, the following registers a listener for a result event:

statement.addEventListener(SQLEvent.RESULT, statementResultHandler);

It’s also possible to use a flash.net.Responder object to handle the effect of running
a SQL statement. When you use a Responder object, you don’t listen for result or error
events on the SQLStatement object. Instead, you pass the Responder object to the
execute() method as a parameter. The execute() method allows for two parameters.
The first is a paging parameter that we’ll look at in section 5.4.5. For now, we’ll just
use the default value of -1 to always return all the results. The second parameter is the
Responder object. The following shows how to call the execute() method using a
Responder object:

statement.execute(-1, new Responder(statementResultHandler,

➥statementErrorHandler));

That is all there is to running a SQL statement. Next we’ll look at how to retrieve the
results of a SELECT statement.

207Running SQL commands
5.4.3 Handling SELECT results

You should listen for error and result events for most if not all statements. It’s gener-
ally important that an application be capable of knowing when a statement executes
successfully or throws an error. That way, the application can respond appropriately.
For example, if an error occurs, the application may need to alert the user or retry the
statement. However, SELECT statements are the type of SQL statements that always
require that you handle the result. After all, if you don’t handle the result of a SELECT
statement, how will you know when the data you just requested is available?

 When you handle the result of a SELECT statement, you’ll want to retrieve the resul-
tant data set, which you can do by calling the getResult() method of the SQLState-
ment that just executed. The getResult() method returns a flash.data.SQLResult
object, which contains a data property that’s an array of the data returned. By default,
the elements of the array are of type Object, and each element has properties with the
names of the columns returned in the data set. For example, the following code shows
a method that handles a result event and uses a trace() statement to write the
album names to the console or output window. You can assume this method handles
the result of the SQL statement SELECT DISTINCT album FROM musicTracks:

private function statementResultHandler(event:SQLEvent):void {
 var statement:SQLStatement = event.target as SQLStatement;
 var result:SQLResult statement.getResult();
 if(result != null && result.data != null) {
 var dataset:Array = result.data;
 for(var i:Number = 0; i < dataset.length; i++) {
 trace(dataset[i].album);
 }
 }
}

As we just said, by default all results are generic Object instances. However, in the next
section, we’ll see what other options might exist.

5.4.4 Typing results

Sometimes when you write data to a database, you are serializing custom ActionScript
types. For example, if you were writing data to a musicTracks database table, you might
be writing instances of a custom ActionScript class called MusicTrack that you’ve writ-
ten for your application. The MusicTrack class might have the following properties: id,
title, artist, album, length, and originalReleaseYear. You then write the objects
to the database by writing the properties to the columns with the same names. This is
a typical workflow. Therefore, when you retrieve the data by executing a SELECT state-
ment, it would be convenient if you could get AIR to automatically convert the results
to objects of type MusicTrack. And AIR allows you to do just that.

 In order to get AIR to automatically convert results to typed objects, all you need to
do is set the itemClass property of the SQLStatement object prior to calling the exe-
cute() method. You should assign the itemClass property a reference to the class of

208 CHAPTER 5 Using local databases
objects that you want AIR to use to automatically type all the results. For example, the
following tells AIR to type the results for the SQLStatement object to MusicTrack:

statement.itemClass = MusicTrack;

In order for this to work, the names of the columns in the result set and the names of
the properties of the class must be the same. That doesn’t mean the names of the col-
umns in the database table must be the same as the names of the properties of the
class, because you can use column aliases to map table column names to different
names in the result set.

5.4.5 Paging results

Thus far, we’ve seen how to retrieve all the results of a SELECT statement at once. How-
ever, for really large data sets, it may be more practical to retrieve only the records
needed at any point in time. For example, if a query could potentially return hun-
dreds of thousands of records but your application only uses 100 at a time (perhaps
displaying them to the user), there’s no sense in retrieving all the records until and
unless the user explicitly requests them. You can tell AIR to retrieve a maximum num-
ber of records when you call the execute() method by passing that number as the
first parameter. The default value of -1 tells AIR to retrieve all the records, but a posi-
tive number tells AIR to retrieve only up to that many records. For example, the fol-
lowing tells AIR to retrieve only up to 20 records:

statement.execute(20);

When you limit the number of possible results in this way, you need a way to page
through the rest of the results. You shouldn’t call execute() again in order to do that.
Instead, you should call the next() method for the same SQLStatement object. The
next() method accepts the same parameters as execute() and causes the same
events. The difference is that execute() always retrieves just the first set of records,
whereas next() retrieves the next set from that which was most recently retrieved. For
example, if you call execute() with a value of 20, then when you call next() with a
value of 20, AIR will retrieve records 21–40 (if there are that many). You retrieve the
result of a next() method call just as you would the result of an execute() method
call: once the result event occurs, you call getResult() on the SQLStatement object.
Each call to next() adds another SQLResult object to the queue, and getResult()
always returns the first SQLResult on the queue until there are no more in the queue,
at which point getResult() returns null.

5.4.6 Parameterizing SQL statements

When running SQL statements, frequently you’ll draw on variable values. For example,
you may want to insert a new music track into a table based on user input. As a Flash or
Flex developer, this probably seems like a remedial task to you: clearly all you need to
do is take the variables and put them together in a string, as in the following example.

209Running SQL commands
statement.text = "INSERT INTO musicTracks(album, artist) VALUES('" +

➥albumInput.text + "', '" + artistInput.text + "')";

However, this approach potentially opens up your application to malicious or acciden-
tal negative effects, because it allows the user to indirectly inject code into a SQL state-
ment. A better approach is to parameterize SQL statements using the built-in AIR SQL
statement parameterization technique.

 To parameterize a SQL statement, use @ or : as the initial character to denote a
parameter in a SQL statement that you want to assign to the text property of the SQL-
Statement object. For example, we can rewrite the preceding statement as follows:

statement.text = "INSERT INTO musicTracks(album, artist) VALUES(@album,

➥@artist)";

Then you can use the parameters property of the SQLStatement object to define the
parameter values. The parameters property is an associative array to which you can
add properties and values. The properties should be the names of the parameters
used in the SQL statement, and the values should be the values to use in place of the
parameters:

statement.parameters["@album"] = albumInput.text;
statement.parameters["@artist"] = artistInput.text;

AIR automatically makes sure that none of the values assigned to the parameters
property are going to cause unintended problems.

 What we’ve just looked at is how to use named parameters. If you prefer, you can
also use ordered parameters instead of named parameters. Ordered parameters are
denoted by the ? character in the SQL statement. For example:

statement.text = "INSERT INTO musicTracks(album, artist) VALUES(?, ?)";

Then you can specify an ordered array of values for the parameters property:

statement.parameters[0] = albumInput.text;
statement.parameters[1] = artistInput.text;

In addition to removing malicious characters and SQL code, this type of statement
parameterization (both named and ordered) helps to improve application perfor-
mance in some cases. The first time that a SQL statement is run, it must be compiled
by the AIR application, which takes a small amount of time. Subsequent calls to the
statement run faster. However, if you change the text property value, the statement
must be recompiled. If you parameterize a statement, you can change the values of
the parameters without causing AIR to recompile the statement.

5.4.7 Using transactions

Normally when you run a statement, it runs autonomously, and for many scenarios
that’s appropriate. But there are also cases when it’s advantageous to group state-
ments together to run as a batch. A common example is when you want to insert a
record into a table, retrieve the new record’s ID, and then use that ID to insert a

210 CHAPTER 5 Using local databases
record into another table. Although this requires at least two SQL statements, it’s one
logical group of statements, and it makes sense to run it all together if possible. That
way, if any error occurs at any point, it would be possible to undo any changes. Con-
sider what would happen if you ran all the statements as normal:

■ The first statement runs successfully, inserting a record.
■ The second statement fails.

In this scenario, the record for the first statement is still in the database even though
logically it shouldn’t be, because the entire batch of statements didn’t complete suc-
cessfully. You could write your own code to handle such exceptions by removing the
first record if the second statement fails. However, a much simpler and more efficient
way to deal with this sort of scenario is to use a feature built in to AIR: SQL statement
transactions.

 A transaction allows you to group together statements that run using the same
SQLConnection object. The way that you can create a transaction is as follows:

1 Call the begin() method of the SQLConnection object.
2 Handle the begin() method of the SQLConnection object, and execute SQL

statements using the SQLConnection. Execute these methods normally.
3 If an error occurs at any point, call the rollback() method of the SQLConnec-

tion object.
4 If all the statements execute successfully, call the commit() method of the SQL-

Connection object to write the results to disk.

As you can see in these steps, all SQLStatement objects that run using a particular SQL-
Connection object get grouped together from the point that begin() is called. All
those SQLStatement objects run in memory only. The transaction continues until one
of two things happens: either the rollback() method gets called or the commit()
method gets called. Either method stops the transaction. The rollback() method
cancels all the statements that had already run in the transaction, never writing the
results to disk. For example, if the first four statements in a transaction all are INSERT
statements, then none of those records will actually get written to the database file if a
rollback() method gets called. The commit() method, on the other hand, stops the
transaction and writes the results to disk.

 Another advantage to using transactions is that you can lock the database you want
to use over the course of the transaction. This ensures that no other process can mod-
ify the database and potentially affect the results of your operation. One example of
the usefulness of this would be a case where two pieces of code need to read and mod-
ify the same record in a table. If both processes read and then write to the record at
the same time, the edits of one process might be lost.

 You can lock the database by passing an optional parameter to the begin()
method. You have the option of making the database read-only for other connections
or making the database completely inaccessible for other connections. You can also

211Building a ToDo application
defer locking the database until your transaction needs to read or write from the
database. You can use constants of the flash.data.SQLTransactionLockType class for
these values: DEFERRED, EXCLUSIVE, and IMMEDIATE. Table 5.11 describes these values.
You would lock the database in a begin() method call as follows:

connection.begin(SQLTransactionLockType.IMMEDIATE);

Now that we’ve covered all the basics of running SQL statements, we’ll next put this all
to use by building a sample application.

5.5 Building a ToDo application
In this section, we’re going to build an application that puts all of the database knowl-
edge we just learned to use. The ToDo application allows users to add and edit to-do
items to a database, or delete those items if they want. The application also displays all
the current items. Figure 5.9 shows what the application looks like.

Table 5.11 Transaction lock types

Constant Description

SQLTransactionLockType.DEFERRED Lock the database on the first read or write
operation.

SQLTransactionLockType.EXCLUSIVE Lock the database as soon as possible. No other
connection can read or write to the database.

SQLTransactionLockType.IMMEDIATE Lock the database as soon as possible. No other
connection can write to the database, but reading
is still possible.

Figure 5.9 The ToDo
application lists to-do items, and
allows the user to add new items
and edit or delete existing items.

212 CHAPTER 5 Using local databases
To build this application, we’ll take the following steps:

1 Build a data model class for a to-do item.
2 Create a component to display each to-do item.
3 Create the database.
4 Create an input form.
5 Add the SQL statements.

In the next section, we’ll tackle the first step.

5.5.1 Building the to-do item data model class

We’ll create a simple ActionScript class to model each to-do item. For our application,
each to-do item has the following properties: an ID, name, description, priority, and a
date by which it must be complete. Listing 5.1 shows the ToDoItem class.

package com.manning.todolist.data {
 import flash.events.Event;
 import flash.events.EventDispatcher;

 public class ToDoItem extends EventDispatcher {

 private var _id:int;
 private var _name:String;
 private var _description:String;
 private var _priority:int;
 private var _mustBeDoneBy:Date;

 [Bindable(event="idChanged")]
 public function set id(value:int):void {
 _id = value;
 dispatchEvent(new Event("idChanged"));
 }

 public function get id():int {
 return _id;
 }

 [Bindable(event="nameChanged")]
 public function set name(value:String):void {
 _name = value;
 dispatchEvent(new Event("nameChanged"));
 }

 public function get name():String {
 return _name;
 }

 [Bindable(event="descriptionChanged")]
 public function set description(value:String):void {
 _description = value;
 dispatchEvent(new Event("descriptionChanged"));
 }

Listing 5.1 The ToDoItem class is the data model class for to-do items

213Building a ToDo application
 public function get description():String {
 return _description;
 }

 [Bindable(event="priorityChanged")]
 public function set priority(value:int):void {
 _priority = value;
 dispatchEvent(new Event("priorityChanged"));
 }

 public function get priority():int {
 return _priority;
 }

 [Bindable(event="mustBeDoneByChanged")]
 public function set mustBeDoneBy(value:Date):void {
 _mustBeDoneBy = value;
 dispatchEvent(new Event("mustBeDoneByChanged"));
 }

 public function get mustBeDoneBy():Date {
 return _mustBeDoneBy;
 }

 public function ToDoItem() {
 }

 }
}

The ToDoItem class doesn’t do anything unusual. It merely creates private properties
as well as accessors and mutators for each of the properties. We also add [Bindable]
metadata tags to enable data binding in Flex.

5.5.2 Creating a to-do item component

As you can see in figure 5.9, we display each to-do item in a list in the upper portion of
the application. We’ll next create the MXML component for that purpose. The ToDo-
ListRenderer component is this component, and we’ll save it in a directory called
com/manning/todolist/ui/ToDoListRenderer.mxml. The code is as follows in
listing 5.2.

<?xml version="1.0" encoding="utf-8"?>
<mx:VBox xmlns:mx="http://www.adobe.com/2006/mxml"
 borderStyle="solid" width="100%"
 toolTip="{'description: ' + data.description
 + '\nmust by done by: ' + data.mustBeDoneBy}">
 <mx:HBox>
 <mx:Label text="{data.name}" width="200" />
 <mx:Label text="priority {data.priority}" />
 <mx:Button label="Delete"

 ➥click="dispatchEvent(new Event('delete'));" />
 <mx:Button label="Edit"

 ➥click="dispatchEvent(new Event('edit'));" />

Listing 5.2 The ToDoListRenderer component displays a to-do item

Add a tool tip

http://www.adobe.com/2006/mxml

214 CHAPTER 5 Using local databases
 </mx:HBox>
</mx:VBox>

As you can see, all this code does is display the values from the data property. In this
case, we’re assuming that the data property is always going to be assigned a ToDoItem
object.

5.5.3 Creating the database

Now we need to create the database. The database in this case is simple. It has just one
table with the following columns: id, priority, name, description, and mustBeDoneBy.
Notice that the columns of the table are identical to the properties of the ToDoItem
class. This allows us to easily retrieve data from the table as typed objects later on.

 For this application, we simplify everything by placing all the SQL code in the
application MXML file. Therefore, we place the database creation code in the applica-
tion MXML file, which we’ll call ToDo.mxml. We start by adding the code shown in list-
ing 5.3 to ToDo.mxml.

<?xml version="1.0" encoding="utf-8"?>
<mx:WindowedApplication xmlns:mx="http://www.adobe.com/2006/mxml"
 layout="absolute" creationComplete="creationCompleteHandler();">
 <mx:Script>
 <![CDATA[

 private var _connection:SQLConnection;

 private function creationCompleteHandler():void {
 var file:File =
File.applicationStorageDirectory.resolvePath("database.db");
 _connection = new SQLConnection();
 _connection.addEventListener(SQLEvent.OPEN, openHandler);
 _connection.openAsync(file, SQLMode.CREATE);
 }

 private function openHandler(event:SQLEvent):void {
 var sql:SQLStatement = new SQLStatement();
 sql.sqlConnection = _connection;
 sql.text = "CREATE TABLE IF NOT EXISTS todo(" +
 "id INTEGER PRIMARY KEY AUTOINCREMENT, " +
 "priority INTEGER, " +
 "name TEXT, " +
 "description TEXT, " +
 "mustBeDoneBy DATE)";
 sql.execute();
 }

]]>
 </mx:Script>
</mx:WindowedApplication>

Note that in this code we use the CREATE TABLE IF NOT EXISTS statement to only cre-
ate the table if it doesn’t already exist. Now that we’ve created the table (if it doesn’t yet
exist), we can next add the code for inserting, updating, retrieving, and deleting items.

Listing 5.3 The ToDo.mxml file creates the database and its table

The
connection
object

Listen for
open event

Open connection
asynchronously

Create
the table

http://www.adobe.com/2006/mxml

215Building a ToDo application
5.5.4 Creating an input form

We’ll next create an input form, allowing the user to enter values for the to-do item.
Then we’ll add a view state that allows the user to use the same form to edit data. In
the edit state, the labels on the form change and the button calls a different method.
Listing 5.4 shows the updated code.

<?xml version="1.0" encoding="utf-8"?>
<mx:WindowedApplication xmlns:mx="http://www.adobe.com/2006/mxml"
 layout="absolute" creationComplete="creationCompleteHandler();">
 <mx:Script>
 <![CDATA[

 private var _connection:SQLConnection;

 private function creationCompleteHandler():void {
 var file:File =

 ➥File.applicationStorageDirectory.resolvePath("database.db");
 _connection = new SQLConnection();
 _connection.addEventListener(SQLEvent.OPEN, openHandler);
 _connection.openAsync(file, SQLMode.CREATE);
 }

 private function openHandler(event:SQLEvent):void {
 var sql:SQLStatement = new SQLStatement();
 sql.sqlConnection = _connection;
 sql.text = "CREATE TABLE IF NOT EXISTS todo(" +
 "id INTEGER PRIMARY KEY AUTOINCREMENT, " +
 "priority INTEGER, " +
 "name TEXT, " +
 "description TEXT, " +
 "mustBeDoneBy DATE)";
 sql.addEventListener(SQLEvent.RESULT, selectToDoItems);
 sql.execute();
 }

 private function addItem(event:MouseEvent):void {
 }

 private function updateItem(event:MouseEvent):void {
 }

]]>
 </mx:Script>
 <mx:VBox width="100%" height="100%">
 <mx:Form>
 <mx:FormHeading id="formHeading" label="New Item" />
 <mx:FormItem label="Name">
 <mx:TextInput id="itemName" text="{_selectedItem.name}" />
 </mx:FormItem>
 <mx:FormItem label="Description">
 <mx:TextInput id="itemDescription"
 text="{_selectedItem.description}" />
 </mx:FormItem>
 <mx:FormItem label="Priority">

Listing 5.4 Adding an input form to the application

Handle
adding
item

B

Handle
editing
itemC

Create formD

http://www.adobe.com/2006/mxml

216 CHAPTER 5 Using local databases
 <mx:ComboBox id="itemPriority"
 selectedItem="{_selectedItem.priority}">
 <mx:dataProvider>
 <mx:ArrayCollection>
 <mx:Number>1</mx:Number>
 <mx:Number>2</mx:Number>
 <mx:Number>3</mx:Number>
 <mx:Number>4</mx:Number>
 </mx:ArrayCollection>
 </mx:dataProvider>
 </mx:ComboBox>
 </mx:FormItem>
 <mx:FormItem label="Must Be Done By">
 <mx:DateField id="itemMustBeDoneBy"

 ➥selectedDate="{_selectedItem.mustBeDoneBy}" />
 </mx:FormItem>
 <mx:FormItem>
 <mx:Button id="formButton" label="Add"
 click="addItem(event);" />
 </mx:FormItem>
 </mx:Form>
 </mx:VBox>
 <mx:states>
 <mx:State name="Edit">
 <mx:SetProperty target="{formHeading}"
 name="label" value="Edit Item" />
 <mx:SetProperty target="{formButton}"
 name="label" value="Update" />
 <mx:SetEventHandler target="{formButton}"
 name="click" handlerFunction="updateItem" />
 </mx:State>
 </mx:states>
</mx:WindowedApplication>

In the code, we defined a form D that contains input elements for all the values of a
to-do item. The default state of the form is for a new to-do item. We also defined a
state for editing E an item. In this state, we need to change the form heading F and
button label G to reflect that the action is different. Then we set the button’s click
handler H to call a different method. In the code at this point, we’ve defined meth-
ods to handle when the user clicks the button to add an item B or edit the item C,
but we haven’t actually written the code that runs the necessary SQL statements yet.
We’ll do that next.

5.5.5 Adding SQL statements

Next we’ll write the code that adds new items to the database, as well as the code that
edits and retrieves existing data. Listing 5.5 shows the code that we’re adding to
ToDo.mxml.

Define edit
state

E
Change form
heading

F

G Change
button label

H

Change
button click
handler

217Building a ToDo application

 <mx:Script>
 <![CDATA[
 import com.manning.todolist.data.ToDoItem;
 import com.manning.todolist.ui.ToDoListRenderer;

 private var _connection:SQLConnection;

 [Bindable]
 private var _selectedItem:ToDoItem;

 private function creationCompleteHandler():void {
 var file:File =

 ➥File.applicationStorageDirectory.resolvePath("database.db");
 _connection = new SQLConnection();
 _connection.addEventListener(SQLEvent.OPEN, openHandler);
 _connection.openAsync(file, SQLMode.CREATE);
 }

 private function openHandler(event:SQLEvent):void {
 var sql:SQLStatement = new SQLStatement();
 sql.sqlConnection = _connection;
 sql.text = "CREATE TABLE IF NOT EXISTS todo(" +
 "id INTEGER PRIMARY KEY AUTOINCREMENT, " +
 "priority INTEGER, " +
 "name TEXT, " +
 "description TEXT, " +
 "mustBeDoneBy DATE)";
 sql.addEventListener(SQLEvent.RESULT, selectToDoItems);
 sql.execute();
 }

 private function addItem(event:MouseEvent):void {
 var sql:SQLStatement = new SQLStatement();
 sql.sqlConnection = _connection;
 sql.text = "INSERT INTO todo(priority, name, " +
 "description, mustBeDoneBy)" +
 "VALUES(@priority, @name, " +
 "@description, @mustBeDoneBy)";
 sql.parameters["@priority"] = itemPriority.value;
 sql.parameters["@name"] = itemName.text;
 sql.parameters["@description"] = itemDescription.text;
 sql.parameters["@mustBeDoneBy"] =

 ➥itemMustBeDoneBy.selectedDate;
 sql.addEventListener(SQLEvent.RESULT, selectToDoItems);
 sql.execute();
 }

 private function updateItem(event:MouseEvent):void {
 var sql:SQLStatement = new SQLStatement();
 sql.sqlConnection = _connection;
 sql.text = "UPDATE todo SET priority = @priority, " +
 "name = @name, description = @description, " +
 "mustBeDoneBy = @mustBeDoneBy WHERE id = @id";
 sql.parameters["@priority"] = itemPriority.value;
 sql.parameters["@name"] = itemName.text;

Listing 5.5 Code to add, edit, retrieve, and delete records

Reference
selected item

B
Retrieve items

after execution

C
Create

parameterized
SQL statement

C

218 CHAPTER 5 Using local databases
 sql.parameters["@description"] = itemDescription.text;
 sql.parameters["@mustBeDoneBy"] =

 ➥itemMustBeDoneBy.selectedDate;
 sql.parameters["@id"] = _selectedItem.id;
 sql.addEventListener(SQLEvent.RESULT, selectToDoItems);
 sql.execute();
 currentState = "";
 _selectedItem = null;
 }

 private function selectToDoItems(event:SQLEvent = null):void {
 var sql:SQLStatement = new SQLStatement();
 sql.sqlConnection = _connection;
 sql.text = "SELECT id, priority, name, " +
 "description, mustBeDoneBy " +
 "FROM todo ORDER BY mustBeDoneBy, priority";
 sql.itemClass = ToDoItem;
 sql.addEventListener(SQLEvent.RESULT, selectHandler);
 sql.execute();
 }

 private function selectHandler(event:SQLEvent):void {
 }

]]>
 </mx:Script>

In this code, we fill in the addItem() and updateItem() methods with parameterized
SQL statements C that draw on the data from the input form. We also add a method
that contains a SQL statement that retrieves all the items from the database. We added
an event listener on startup B that calls the selectoToDoItems() method once AIR
either creates the database table or verifies that it already exists. And we told AIR to
use ToDoItem as the type for all items returned by the SELECT statement D. At this
point, the selectHandler() method E is empty. When we retrieve the data, we want
to display it using the MXML component we created previously. Therefore, we’ll need
to add a container to the layout code, to which we can add the items. Listing 5.6 shows
what ToDo.mxml looks like with the addition of the container and the update to
selectHandler().

<?xml version="1.0" encoding="utf-8"?>
<mx:WindowedApplication xmlns:mx="http://www.adobe.com/2006/mxml"
 layout="absolute" creationComplete="creationCompleteHandler();">
 <mx:Script>
 <![CDATA[
 import com.manning.todolist.data.ToDoItem;
 import com.manning.todolist.ui.ToDoListRenderer;

 private var _connection:SQLConnection;

 [Bindable]
 private var _selectedItem:ToDoItem;

Listing 5.6 Adding a display container and handling SELECT results

Create
parameterized
SQL statement C

D Set the
type for
results

E

Handle
SELECT
results

http://www.adobe.com/2006/mxml

219Building a ToDo application
 private function creationCompleteHandler():void {
 var file:File =

 ➥File.applicationStorageDirectory.resolvePath("database.db");
 _connection = new SQLConnection();
 _connection.addEventListener(SQLEvent.OPEN, openHandler);
 _connection.openAsync(file, SQLMode.CREATE);
 }

 private function openHandler(event:SQLEvent):void {
 var sql:SQLStatement = new SQLStatement();
 sql.sqlConnection = _connection;
 sql.text = "CREATE TABLE IF NOT EXISTS todo(" +
 "id INTEGER PRIMARY KEY AUTOINCREMENT, " +
 "priority INTEGER, " +
 "name TEXT, " +
 "description TEXT, " +
 "mustBeDoneBy DATE)";
 sql.addEventListener(SQLEvent.RESULT, selectToDoItems);
 sql.execute();
 }

 private function addItem(event:MouseEvent):void {
 var sql:SQLStatement = new SQLStatement();
 sql.sqlConnection = _connection;
 sql.text = "INSERT INTO todo(priority, name, ";
 "description, mustBeDoneBy)" +
 "VALUES(@priority, @name, " +
 "@description, @mustBeDoneBy)";
 sql.parameters["@priority"] = itemPriority.value;
 sql.parameters["@name"] = itemName.text;
 sql.parameters["@description"] = itemDescription.text;
 sql.parameters["@mustBeDoneBy"] =

 ➥itemMustBeDoneBy.selectedDate;
 sql.addEventListener(SQLEvent.RESULT, selectToDoItems);
 sql.execute();
 }

 private function updateItem(event:MouseEvent):void {
 var sql:SQLStatement = new SQLStatement();
 sql.sqlConnection = _connection;
 sql.text = "UPDATE todo SET priority = @priority, " +
 "name = @name, " +
 "description = @description, " +
 "mustBeDoneBy = @mustBeDoneBy " +
 "WHERE id = @id";
 sql.parameters["@priority"] = itemPriority.value;
 sql.parameters["@name"] = itemName.text;
 sql.parameters["@description"] = itemDescription.text;
 sql.parameters["@mustBeDoneBy"] =

 ➥itemMustBeDoneBy.selectedDate;
 sql.parameters["@id"] = _selectedItem.id;
 sql.addEventListener(SQLEvent.RESULT, selectToDoItems);
 sql.execute();
 currentState = "";
 _selectedItem = null;
 }

220 CHAPTER 5 Using local databases
 private function selectToDoItems(event:SQLEvent = null):void {
 var sql:SQLStatement = new SQLStatement();
 sql.sqlConnection = _connection;
 sql.text = "SELECT id, priority, name, description, " +
 "mustBeDoneBy FROM todo " +
 "ORDER BY mustBeDoneBy, priority";
 sql.itemClass = ToDoItem;
 sql.addEventListener(SQLEvent.RESULT, selectHandler);
 sql.execute();
 }

 private function selectHandler(event:SQLEvent):void {
 var result:SQLResult = event.target.getResult();
 items.removeAllChildren();
 var item:ToDoListRenderer;
 if(result != null && result.data != null) {
 for(var i:Number = 0; i < result.data.length; i++) {
 item = new ToDoListRenderer();
 item.data = result.data[i];
 item.addEventListener("delete",

 ➥deleteItem, false, 0, true);
 item.addEventListener("edit",

 ➥editItem, false, 0, true);
 items.addChild(item);
 }
 }
 }

 private function deleteItem(event:Event):void {
 }

 private function editItem(event:Event):void {
 }

]]>
 </mx:Script>
 <mx:VBox width="100%" height="100%">
 <mx:VBox id="items" width="100%" height="50%"
 backgroundColor="#FFFFFF" />
 <mx:Form>
 <mx:FormHeading id="formHeading" label="New Item" />
 <mx:FormItem label="Name">
 <mx:TextInput id="itemName" text="{_selectedItem.name}" />
 </mx:FormItem>
 <mx:FormItem label="Description">
 <mx:TextInput id="itemDescription"
 text="{_selectedItem.description}" />
 </mx:FormItem>
 <mx:FormItem label="Priority">
 <mx:ComboBox id="itemPriority"
 selectedItem="{_selectedItem.priority}">
 <mx:dataProvider>
 <mx:ArrayCollection>
 <mx:Number>1</mx:Number>
 <mx:Number>2</mx:Number>
 <mx:Number>3</mx:Number>
 <mx:Number>4</mx:Number>

Get resultB

Remove
existing items

CLoop
through

new items

Assign item
to data
property

Listen for
delete event

Listen for
edit event

221Building a ToDo application
 </mx:ArrayCollection>
 </mx:dataProvider>
 </mx:ComboBox>
 </mx:FormItem>
 <mx:FormItem label="Must Be Done By">
 <mx:DateField id="itemMustBeDoneBy"

 ➥selectedDate="{_selectedItem.mustBeDoneBy}" />
 </mx:FormItem>
 <mx:FormItem>
 <mx:Button id="formButton" label="Add"
 click="addItem(event);" />
 </mx:FormItem>
 </mx:Form>
 </mx:VBox>
 <mx:states>
 <mx:State name="Edit">
 <mx:SetProperty target="{formHeading}" name="label"
 value="Edit Item" />
 <mx:SetProperty target="{formButton}" name="label"
 value="Update" />
 <mx:SetEventHandler target="{formButton}" name="click"
 handlerFunction="updateItem" />
 </mx:State>
 </mx:states>
</mx:WindowedApplication>

This code uses getResult() B to get the data set. It then loops through the records

C, creates new ToDoListRenderer component instances, and assigns each record to
the data property of a component D. When the user clicks on the Edit or Delete but-
tons in the component, we handle those events. Thus far, we haven’t specified the
code for those methods. Next we’ll fill them in. Listing 5.7 shows what these methods
look like.

private function deleteItem(event:Event):void {
 var item:Object = event.currentTarget.data;
 var sql:SQLStatement = new SQLStatement();
 sql.sqlConnection = _connection;
 sql.text = "DELETE FROM todo WHERE id = @id";
 sql.parameters["@id"] = item.id;
 sql.addEventListener(SQLEvent.RESULT, selectToDoItems);
 sql.execute();
}

private function editItem(event:Event):void {
 var item:ToDoItem = event.currentTarget.data;
 _selectedItem = item;
 currentState = "Edit";
}

You can see that deleteItem() merely creates a parameterized statement to delete the
selected item. The editItem() method simply sets the _selectedItem property and
changes the current state.

Listing 5.7 Deleting and editing items

222 CHAPTER 5 Using local databases
 That wraps up the ToDo application. At this point, you can add new items and view
them in the list. You can then edit or delete those items.

5.6 Working with multiple databases
These days, most phone companies offer phone plans and options that allow for
three-way calling or conference calling, where lots of people can speak together in
one phone conversation. This feature isn’t appropriate for every phone call. Some-
times you want to have a conversation with just one person. But sometimes it’s use-
ful and appropriate to gather many people in one phone conversation. For example,
you may be working on a project with several people. While you could talk with each
of them individually, it might be more productive if you could all talk together at the
same time. Then you can share information and make decisions more quickly. The
same is true with databases. In many cases, you only need to connect to one data-
base. But there are other times when your application will need to connect to more
than one database. In this section, we’ll look at strategies for connecting to more
than one database.

 Using what you’ve already learned, you could open a connection to a second data-
base using a second SQLConnection object. However, there are at least two significant
drawbacks to that:

■ If you use two SQLConnection objects, you can’t use both databases in one SQL
statement. (For example, you can’t select values from across tables in both data-
bases at the same time.)

■ SQL connections are expensive from a processing perspective. Therefore, it’s
generally better to open multiple databases using the same SQLConnection
object. You always open the first connection in the way you’ve already learned:
using the open() or openAsync() method. For subsequent connections, you
can use the attach() method.

You always need to specify a name for the database when you attach it. The name isn’t
the name of the database file. Instead, it’s the name by which you’ll reference the
database in SQL statements. Although we haven’t mentioned it up to this point, the
main database has a name as well: main. You can reference the main database using its
name in SQL statements. For example, the following SQL statements are equivalent
where musicTracks is a table in the main database:

SELECT album FROM main.musicTracks
SELECT album FROM musicTracks

NOTE It’s actually more efficient to always reference the database name as well
as the table name in SQL statements. If you want your AIR applications to
run at top speed, be sure to include the database name, even if it’s other-
wise assumed.

When you attach a database, you reference its tables using the alias you specify as the
first parameter for the attach() method.

223Adding database support to AirTube
 Most commonly, when you use the attach() method, you’re opening a connec-
tion to a different database than the main database and therefore want to specify a
second parameter for the attach() method as well: a File object pointing to the data-
base file. You can’t specify a mode as you can with open() or openAsync() because any
databases attached using attach() automatically use the same mode as the main data-
base. That means that, if you use the create mode for the main database, all attached
databases also use the create mode. The following example attaches a database with
an alias of userCustomData:

connection.attach("userCustomData",

➥File.applicationStorageDirectory.resolvePath("userdata.db"));

Although you may not use the attach feature often, it’s useful when you need it.

5.7 Adding database support to AirTube
Now that we’ve learned all the basic skills for working with databases, and we’ve even
put them to work in a ToDo application, we can update our AirTube application with
a database-dependent feature. In chapter 3, we allowed the user to download a video
file locally. But at that time we didn’t know how to work with databases in AIR. There-
fore we didn’t add the functionality that would allow users to also store the data for
the video and search and play back offline videos within the application. That is what
we’ll do in the following sections. To accomplish this, we’ll need to do the following:

■ Add online property to ApplicationData.
■ Add UI button to toggle online/offline.
■ Add service methods to handle offline mode.

We’ll start with the first step: updating ApplicationData.

5.7.1 Updating ApplicationData to support online/offline modes

Up to now, the AirTube application has only had one mode: online. We’d like to allow
the user to select between online or offline mode. In order to support this, we need to
add a property to the ApplicationData class. This property, which we’ll call online, is
a Boolean value indicating whether the application should run in online or offline
mode. Listing 5.8 shows what ApplicationData looks like with this added property.

package com.manning.airtube.data {

 import flash.events.Event;
 import flash.events.EventDispatcher;

 public class ApplicationData extends EventDispatcher {

 static private var _instance:ApplicationData;

 private var _videos:Array;
 private var _currentVideo:AirTubeVideo;
 private var _downloadProgress:Number;

Listing 5.8 Adding an online property to ApplicationData

224 CHAPTER 5 Using local databases
 private var _online:Boolean;

 [Bindable(event="videosChanged")]
 public function set videos(value:Array):void {
 _videos = value;
 dispatchEvent(new Event("videosChanged"));
 }

 public function get videos():Array {
 return _videos;
 }

 [Bindable(event="currentVideoChanged")]
 public function set currentVideo(value:AirTubeVideo):void {
 _currentVideo = value;
 dispatchEvent(new Event("currentVideoChanged"));
 }

 public function get currentVideo():AirTubeVideo {
 return _currentVideo;
 }

 [Bindable(event="downloadProgressChanged")]
 public function set downloadProgress(value:Number):void {
 _downloadProgress = value;
 dispatchEvent(new Event("downloadProgressChanged"));
 }

 public function get downloadProgress():Number {
 return _downloadProgress;
 }

 [Bindable(event="onlineChanged")]
 public function set online(value:Boolean):void {
 _online = value;
 dispatchEvent(new Event("onlineChanged"));
 }

 public function get online():Boolean {
 return _online;
 }

 public function ApplicationData() {

 }

 static public function getInstance():ApplicationData {
 if(_instance == null) {
 _instance = new ApplicationData();
 }
 return _instance;
 }

 }
}

The online property is straightforward. We merely create a private Boolean property
and then create a standard accessor and mutator for it along with typical Flex data-
binding metadata. Now that we’ve added the property, we next need to create a way
for the user to toggle between modes, which we’ll do in the next section.

225Adding database support to AirTube
5.7.2 Adding a button to toggle online/offline modes

We can now edit AirTube.mxml, adding to it a button that allows the user to toggle the
mode between online and offline. Listing 5.9 shows this code.

<?xml version="1.0" encoding="utf-8"?>
<mx:WindowedApplication xmlns:mx="http://www.adobe.com/2006/mxml"
 layout="absolute" width="800" height="600"
 creationComplete="creationCompleteHandler();"
closing="closingHandler();">
 <mx:Script>
 <![CDATA[
 import com.manning.airtube.data.AirTubeVideo;
 import com.manning.airtube.windows.HTMLWindow;
 import com.manning.airtube.windows.VideoWindow;
 import com.manning.airtube.services.AirTubeService;
 import com.manning.airtube.data.ApplicationData;

 static private var _instance:AirTube;

 private var _service:AirTubeService;
 private var _videoWindow:VideoWindow;
 private var _htmlWindow:HTMLWindow;

 static public function getInstance():AirTube {
 return _instance;
 }

 private function creationCompleteHandler():void {
 _service = AirTubeService.getInstance();
 _service.key = "YourAPIKey";
 _instance = this;
 _videoWindow = new VideoWindow();
 _htmlWindow = new HTMLWindow();
 }

 private function getVideosByTags():void {
 _service.getVideosByTags(tags.text);
 }

 private function playVideo():void {
 var video:AirTubeVideo =

 ➥videoList.selectedItem as AirTubeVideo;
 _service.configureVideoForPlayback(video);
 if(_videoWindow.nativeWindow == null) {
 _videoWindow.open();
 }
 else {
 _videoWindow.activate();
 }
 }

 public function launchHTMLWindow(url:String):void {
 if(_htmlWindow.nativeWindow == null) {
 _htmlWindow.open();
 }

Listing 5.9 Updating AirTube.mxml with a button to toggle modes

http://www.adobe.com/2006/mxml

226 CHAPTER 5 Using local databases
 else {
 _htmlWindow.activate();
 }
 }

 private function closingHandler():void {
 for(var i:Number = 0; i <

 ➥nativeApplication.openedWindows.length; i++) {
 nativeApplication.openedWindows[i].close();
 }
 }

 private function changeOnlineStatus():void {
 ApplicationData.getInstance().online =

 ➥!ApplicationData.getInstance().online;
 }

]]>
 </mx:Script>
 <mx:VBox width="100%">
 <mx:Label text="AirTube: Adobe AIR and YouTube" />
 <mx:HBox>
 <mx:Label text="tags:" />
 <mx:TextInput id="tags" text="Adobe AIR" />
 <mx:Button label="Search For Videos"
 click="getVideosByTags();" />
 <mx:Button label="Online" toggle="true"
 selected="{ApplicationData.getInstance().online}"
 click="changeOnlineStatus();" />
 </mx:HBox>
 <mx:TileList id="videoList"
 dataProvider="{ApplicationData.getInstance().videos}"
 width="100%" height="400"
 columnCount="2" horizontalScrollPolicy="off" />
 <mx:Button label="Play Selected Video" click="playVideo();"
 enabled="{videoList.selectedItem != null}" />
 </mx:VBox>
</mx:WindowedApplication>

The preceding code adds just one button component and one method. The button is
a toggle button in which the selected state is bound to the online property of Appli-
cationData. When the user clicks the button, the event handler method merely tog-
gles the value of the ApplicationData instance’s online property.

 That’s all that we need to do as far as the user interface is concerned. Next we’ll
update the service code to support both online and offline modes.

5.7.3 Supporting offline saving and searching

The majority of the new code we need to write to support online and offline modes is
in the AirTubeService class. Listing 5.10 shows the code. Although there’s a fair
amount of new code, don’t be concerned. We’ll explain it all in just a minute. All
we’re adding is basic database code for creating a connection, creating a table, and
adding and retrieving data.

227Adding database support to AirTube

package com.manning.airtube.services {

 import com.adobe.webapis.youtube.YouTubeService;
 import com.adobe.webapis.youtube.events.YouTubeServiceEvent;
 import com.manning.airtube.data.AirTubeVideo;
 import com.manning.airtube.data.ApplicationData;
 import com.manning.airtube.utilities.YouTubeFlvUrlRetriever;
 import com.adobe.webapis.youtube.Video;

 import flash.events.Event;
 import flash.events.ProgressEvent;
 import flash.filesystem.File;
 import flash.filesystem.FileMode;
 import flash.filesystem.FileStream;
 import flash.net.URLRequest;
 import flash.net.URLStream;
 import flash.utils.ByteArray;
 import flash.events.SQLEvent;
 import flash.data.SQLConnection;
 import flash.data.SQLMode;
 import flash.data.SQLResult;
 import flash.data.SQLStatement;

 public class AirTubeService {

 static private var _instance:AirTubeService;

 private var _proxied:YouTubeService;
 private var _flvFile:File;
 private var _imageFile:File;
 private var _downloadingVideo:AirTubeVideo;
 private var _connection:SQLConnection;

 public function set key(value:String):void {
 _proxied.apiKey = value;
 }

 public function AirTubeService() {
 _proxied = new YouTubeService();
 _proxied.addEventListener(

➥YouTubeServiceEvent.VIDEOS_LIST_BY_TAG, getVideosByTagsResultHandler);
 var databaseFile:File =

 ➥File.applicationStorageDirectory.resolvePath("AirTube.db");
 _connection = new SQLConnection();
 _connection.addEventListener(SQLEvent.OPEN,
 databaseOpenHandler);
 _connection.openAsync(databaseFile, SQLMode.CREATE);
 }

 static public function getInstance():AirTubeService {
 if(_instance == null) {
 _instance = new AirTubeService();
 }
 return _instance;
 }

Listing 5.10 Updating AirTubeService to include offline support

Create database
connection

B

228 CHAPTER 5 Using local databases
 private function databaseOpenHandler(event:Event):void {
 var sql:SQLStatement = new SQLStatement();
 sql.sqlConnection = _connection;
 sql.text = "CREATE TABLE IF NOT EXISTS videos(" +
 "id TEXT PRIMARY KEY, title TEXT, " +
 "url TEXT, tags TEXT)";
 sql.execute();
 }

 public function getVideosByTags(tags:String):void {
 if(_proxied.apiKey.length == 0) {
 throw Error("YouTube API key not set");
 }
 if(ApplicationData.getInstance().online) {
 _proxied.videos.listByTag(tags);
 }
 else {
 var sql:SQLStatement = new SQLStatement();
 sql.addEventListener(SQLEvent.RESULT,
 getOfflineVideosResultHandler);
 sql.sqlConnection = _connection;
 var text:String = "SELECT * FROM videos WHERE 1 = 0";
 var tagsItems:Array = tags.split(" ");
 for(var i:Number = 0; i < tagsItems.length; i++) {
 text += " OR tags LIKE ?";
 sql.parameters[i] = "%" + tagsItems[i] + "%";
 }
 sql.text = text;
 sql.itemClass = Video;
 sql.execute();
 }
 }

 private function getVideosByTagsResultHandler(

 ➥event:YouTubeServiceEvent):void {
 var videos:Array = event.data.videoList as Array;
 for(var i:Number = 0; i < videos.length; i++) {
 videos[i] = new AirTubeVideo(videos[i]);
 }
 ApplicationData.getInstance().videos = videos;
 }

 private function getOfflineVideosResultHandler(event:SQLEvent):

 ➥void {
 var statement:SQLStatement = event.target as SQLStatement;
 var result:SQLResult = statement.getResult();
 var videos:Array = new Array();
 var video:AirTubeVideo;
 if(result != null && result.data != null) {
 for(var i:Number = 0; i < result.data.length; i++) {
 video = new AirTubeVideo(result.data[i]);
 video.offline = true;
 video.flvUrl =

 ➥File.applicationStorageDirectory.resolvePath("videos/" +

 ➥video.video.id + ".flv").nativePath;

Create tableC

Test for
mode

D

Compose
offline
SELECT

E

Wrap result in
AirTubeVideo

F

Retrieve file
references

229Adding database support to AirTube
 video.video.thumbnailUrl =

 ➥File.applicationStorageDirectory.resolvePath("thumbnails/" +

 ➥video.video.id + ".jpg").nativePath;
 videos.push(video);
 }
 }
 ApplicationData.getInstance().videos = videos;
 }

 public function configureVideoForPlayback(video:AirTubeVideo):

 ➥void {
 ApplicationData.getInstance().currentVideo = video;
 if(video.flvUrl == null) {
 new YouTubeFlvUrlRetriever().getUrl(video);
 }
 }

 public function saveToOffline(video:AirTubeVideo):void {
 _downloadingVideo = video;

 _flvFile =

 ➥File.applicationStorageDirectory.resolvePath("videos/" +

 ➥video.video.id + ".flv");
 var videoLoader:URLStream = new URLStream();
 videoLoader.load(new URLRequest(video.flvUrl));
 videoLoader.addEventListener(Event.COMPLETE,
 videoDownloadCompleteHandler);
 videoLoader.addEventListener(ProgressEvent.PROGRESS,

 ➥videoDownloadProgressHandler);

 _imageFile =

 ➥File.applicationStorageDirectory.resolvePath("thumbnails/" +

 ➥video.video.id + ".jpg");
 var imageLoader:URLStream = new URLStream();
 imageLoader.load(new URLRequest(video.video.thumbnailUrl));
 imageLoader.addEventListener(ProgressEvent.PROGRESS,

imageDownloadProgressHandler);
 }

 private function videoDownloadProgressHandler(event:ProgressEvent):

 ➥void {
 var loader:URLStream = event.target as URLStream;
 var bytes:ByteArray = new ByteArray();
 loader.readBytes(bytes);
 var writer:FileStream = new FileStream();
 writer.open(_flvFile, FileMode.APPEND);
 writer.writeBytes(bytes);
 writer.close();
 var ratio:Number = event.bytesLoaded / event.bytesTotal;
 ApplicationData.getInstance().downloadProgress = ratio;

 }

 private function videoDownloadCompleteHandler(event:Event):void {
 _downloadingVideo.offline = true;
 ApplicationData.getInstance().downloadProgress = 0;
 var sql:SQLStatement = new SQLStatement();
 sql.sqlConnection = _connection;

Retrieve file
references

230 CHAPTER 5 Using local databases
 sql.text = "INSERT INTO videos(" +
 "title, id, url, tags) VALUES(" +
 "@title, @id, @url, @tags)";
 sql.parameters["@title"] = _downloadingVideo.video.title;
 sql.parameters["@id"] = _downloadingVideo.video.id;
 sql.parameters["@url"] = _downloadingVideo.video.url;
 sql.parameters["@tags"] = _downloadingVideo.video.tags;
 sql.execute();
 }

 private function imageDownloadProgressHandler(event:ProgressEvent):

 ➥void {
 var loader:URLStream = event.target as URLStream;
 var bytes:ByteArray = new ByteArray();
 loader.readBytes(bytes);
 var writer:FileStream = new FileStream();
 writer.open(_imageFile, FileMode.APPEND);
 writer.writeBytes(bytes);
 writer.close();
 }
 }
}

Although we’ve added a lot of code, it should mostly be clear to you now that you’ve
worked with AIR databases throughout the chapter. Initially we need to create a con-
nection to the database B. Once we’ve connected to the database, we need to create
the table for the data if it doesn’t already exist C. In this case, we’re creating just one
table with id, title, url, and tags as the columns. Next, in the method that searches vid-
eos, we need to test for the current mode D. If the mode is online, then we can
search online videos as normal. Otherwise, we now want to search all the offline vid-
eos. We compose a SELECT statement E based on the keywords that the user has spec-
ified. Once the results are returned, we loop through each of the records (which
we’ve typed as com.adobe.webapis.youtube.Video objects) and wrap them in Air-
TubeVideo objects F. On the flip side, when the user saves a video to offline, we now
need to do more than just save the video file. We also need to save the data for the
video to the database G.

 And that’s all there is to this stage of the AirTube application. When you test the
application now, you should be able to save videos locally, and then toggle to offline
mode and search for those videos (and play them back).

5.8 Summary
In this chapter, you learned about using the local database feature of AIR. Using local
databases, you can store data persistently, and you can read and write it using SQL, a
standard language for working with data. You learned that AIR uses a database engine
called SQLite, and how to use this database engine to create databases and tables,
write data to the database, read the data, update the data, and delete the data. Not
only did you learn the theory of working with databases, but you had an opportunity

gCreate parameterized
statement

231Summary
to put it into practice when we built a ToDo application, as well as when we updated
the AirTube application to use a feature that uses local databases.

 As you read earlier in this chapter, one of the ways in which you can use local data-
bases is to store data for sometimes-connected applications so that they can run when
offline. You’ve now learned everything you need to know about local databases to
store and retrieve data for that purpose. But you don’t yet know how to detect network
connectivity. Proceed to chapter 6 to learn about this topic.

Network
communication
Suppose for a moment that you’re building an application that allows users to edit
text documents that live on a server connected to the internet. When the user starts
the application, it connects to the server and retrieves a list of available documents.
She can select a file, and the text is downloaded and made available for editing.
When she saves the file, the application sends the new text to the server, where it’s
saved. That application may work perfectly when the user is connected to the inter-
net. But when the user isn’t connected, there’s a problem: she has no way to edit or
save files, because those behaviors require an internet connection. Using AIR, you
can build a better application, one that knows when the user is connected to the
internet. By detecting whether the user is connected to the internet or whether a
particular internet resource is available, the AIR application can respond appropri-

This chapter covers
■ Monitoring HTTP connectivity
■ Monitoring socket connectivity
232

233Monitoring network connectivity
ately. You can build the application to take different actions depending on network
availability. For example, if a user of the text document–editing application starts the
application while connected to the internet, she can start to edit a file. But if she has
disconnected before trying to save the file (perhaps she has gotten on a plane), then it
saves the data to a local database until the network is available again.

 In this chapter, you’ll have a chance to learn how to use the different AIR-specific
networking features. These include monitors to detect network availability.

6.1 Monitoring network connectivity
The enhanced version of the application we described in the introduction to this
chapter is an example of a sometimes-connected application. That means that the applica-
tion is designed to work both in an online and an offline mode, and generally users
don’t have to change their workflow significantly between online and offline modes.
In fact, in some cases, users can be completely oblivious to whether they’re online or
offline at any given time because the application works seamlessly by adapting to the
current state. Although sometimes-connected applications can vary greatly in terms of
complexity, content, and functionality, they all have one thing in common: they must
monitor network connectivity. That is the topic that we’ll look at in this section.

 AIR allows you to build applications that monitor network connectivity through
service monitors. There are two types of service monitors available in AIR: URLMonitor
and SocketMonitor. Both of these classes do essentially the same thing, which is watch
a network connection to verify that it’s available. When the availability status changes
for the monitored connection, the monitor object dispatches an event. What differs
between URLMonitor and SocketMonitor is the type of connection each can monitor.
URLMonitor can watch HTTP connections, while SocketMonitor can watch lower-level
connections.

 The URLMonitor and SocketMonitor classes aren’t part of the standard AIR librar-
ies. That means that, if you try to compile an AIR application that uses these classes,
you must include the necessary library. These classes are stored in an .swc file called
servicemonitor.swc:

■ If you’re using Flex Builder, you don’t need to manually include the library
because Flex Builder does it automatically.

■ If you’re using the Flex SDK, you’ll find the .swc file in the frameworks/libs/air
directory.

■ If you’re using Flash CS3, you’ll find the .swc file in the AIK/frameworks/libs/
air directory of the Flash CS3 installation directory.

Next we’ll look at how to use URLMonitor.

6.1.1 Monitoring HTTP connectivity

When you want to monitor HTTP connectivity, you can use the air.net.URLMonitor
class. The first thing you should do is construct an instance of the class. The construc-
tor requires that you pass it a flash.net.URLRequest object specifying the HTTP

234 CHAPTER 6 Network communication
address that the object should monitor. The following creates a URLMonitor object to
monitor the Manning web site:

var monitor:URLMonitor =

➥new URLMonitor(new URLRequest("http://www.manning.com"));

As we mentioned earlier, all monitor objects dispatch events when the connectivity sta-
tus changes. The type of event is a status event, and you can use the Status-
Event.STATUS constant for the name when registering a listener. The following
example registers a listener for the status event:

monitor.addEventListener(StatusEvent.STATUS, statusHandler);

Once you’ve constructed a URLMonitor object and registered a listener for the status
event, you should next start the monitor. If you don’t, nothing will happen. You can
start the monitor by calling the start() method:

monitor.start();

Once a monitor object is running, you need to be able to query it to determine the
current availability of the connection monitored by the object. You can request this
information using the available property, which returns a Boolean value: true if the
connection is available and false otherwise. You can test for the value of the available
property at any time, though it most often makes sense to test the value when a status
event occurs.

 The code in listing 6.1 is a simple network availability tester. It monitors the avail-
ability of www.manning.com. If the availability status changes, the user is notified in a
text area component.

<?xml version="1.0" encoding="utf-8"?>
<mx:WindowedApplication xmlns:mx="http://www.adobe.com/2006/mxml"
 creationComplete="creationCompleteHandler();">
 <mx:Script>
 <![CDATA[
 import air.net.URLMonitor;

 private var _monitor:URLMonitor;

 private function creationCompleteHandler():void {
 _monitor =

 ➥new URLMonitor(new URLRequest("http://www.manning.com"));
 _monitor.addEventListener(StatusEvent.STATUS,
 statusHandler);
 _monitor.start();
 }

 private function statusHandler(event:StatusEvent):void {
 textArea.text += "www.manning.com available? " +

 ➥_monitor.available + "\n";
 }

]]>

Listing 6.1 Using a URLMonitor object to monitor HTTP resource availability

http://www.manning.com
http://www.manning.com
http://www.adobe.com/2006/mxml
http://www.manning.com
http://www.manning.com

235Monitoring network connectivity
 </mx:Script>
 <mx:TextArea id="textArea" width="100%" height="100%" />
</mx:WindowedApplication>

You can test this example for yourself. Run the application, then toggle network avail-
ability either by disconnecting and reconnecting a network cable or by disabling and
reenabling a network device.

 Normally, monitor objects don’t actually poll the network resource at an interval.
Instead, they only poll the resource once when the monitor starts and then each time
network status changes occur. That means that, by default, a monitor object is really
testing to see whether a user’s computer has network access, more than it‘s testing
whether the network resource is available in general. Consider the application from
listing 6.1. When the network status of the user’s computer changes, she is notified.
But as long as the user is connected to the internet, she wouldn’t receive a notification
if the server for www.manning.com suddenly became unavailable on the internet. If
you want to test for the availability of a specific resource in addition to a user’s net-
work status, you need to tell the monitor object to poll more frequently. You can do
that by setting the value of the pollInterval property. The default value is 0, which
means the object doesn’t poll on an interval. Any integer value larger than 0 causes
the object to poll that frequently in milliseconds. For example, the following code
causes the object to poll the resource every 10 seconds:

monitor.pollInterval = 10000;

By default, a URLMonitor object will interpret the following status codes as successful
responses, meaning the resource is available: 200, 202, 204, 205, and 206. If you want
to alter the list of acceptable status codes, you can do that in one of two ways: pass an
array of codes as a second parameter to the URLMonitor constructor or assign an array
of codes to the acceptableStatusCodes property of the object.

 Once you’ve started a monitor object, its running property will be true. You can
stop a monitor object by calling the stop() method.

6.1.2 Monitoring socket connectivity

You can use the air.net.SocketMonitor class to monitor connectivity to sockets
other than HTTP connections. For example, if your application connects to a server
for video streaming, you may want to use a SocketMonitor object to monitor the
server’s availability.

 When you work with a SocketMonitor object, the first thing you need to do is con-
struct it. The SocketMonitor constructor requires two parameters: the name of the
server and the port number. The following creates a SocketMonitor object to monitor
the availability of an FTP server:

var monitor:SocketMonitor = new SocketMonitor("ftp.exampleserver.com", 21);

SocketMonitor and URLMonitor both inherit from air.net.ServiceMonitor, and
therefore they behave similarly. Once you’ve constructed a SocketMonitor object, it
works almost identically to a URLMonitor object. You can listen for status events, you

http://www.manning.com

236 CHAPTER 6 Network communication
can start and stop the monitoring using the start() and stop() methods, you can
test the current status using the available property, and you can set the object to poll
at an interval using the pollInterval property.

 Listing 6.2 shows an example that uses a SocketMonitor object to determine what
to display to a user in an application that retrieves the current time from a National
Institutes of Standards and Times (NIST) server on port 13.

<?xml version="1.0" encoding="utf-8"?>
<mx:WindowedApplication xmlns:mx="http://www.adobe.com/2006/mxml"
 layout="absolute" creationComplete="creationCompleteHandler();">
 <mx:Script>
 <![CDATA[
 import air.net.SocketMonitor;

 private var _monitor:SocketMonitor;
 private var _socket:Socket;
 private var _timer:Timer;

 private const SERVER:String = "time-A.timefreq.bldrdoc.gov";
 private const PORT:int = 13;

 private function creationCompleteHandler():void {
 _monitor = new SocketMonitor(SERVER, PORT);
 _monitor.addEventListener(StatusEvent.STATUS,
 statusHandler);
 _monitor.start();

 _socket = new Socket();
 _socket.addEventListener(ProgressEvent.SOCKET_DATA,
 socketDataHandler);

 _timer = new Timer(10000);
 _timer.addEventListener(TimerEvent.TIMER, timerHandler);
 }

 private function statusHandler(event:StatusEvent):void {
 if(!_monitor.available) {
 timeText.text = "Server unavailable.

 ➥Will reconnect when the server is next available.";
 _timer.stop();
 }
 else {
 timerHandler();
 _timer.start();
 }
 }

 private function socketDataHandler(event:ProgressEvent):void {
 var fullTime:String =

 ➥_socket.readUTFBytes(_socket.bytesAvailable);
 var time:String = fullTime.split(" ")[2];
 timeText.text = "The current time (UTC) is: " + time;
 _socket.close();
 }

Listing 6.2 Getting the time using a Socket object

B Create
monitor

Start
monitor

C Create
timer

Test network status

D
Stop
timer

E
Restart
timer

Read time

Close
socket

http://www.adobe.com/2006/mxml

237Adding network monitoring to AirTube
 private function timerHandler(event:TimerEvent = null):void {
 if(_monitor.available && !_socket.connected) {
 _socket.connect(SERVER, PORT);
 }
 }

]]>
 </mx:Script>
 <mx:Text id="timeText" width="100%" height="100%" />
</mx:WindowedApplication>

In this example, we use a monitor B to watch a connection to a NIST server on port
13. We also use a timer C to make the requests for the current time from the server
every 10 seconds. When the network status changes, we want to take the appropriate
action. If the network connection is unavailable, we display a message to the user and
stop the timer D. If the connection has been reestablished, we restart the timer E.
When the server responds to requests, the format of the data for this server is some-
thing like the following: 54540 08-03-15 18:06:11 50 0 0 348.3 UTC(NIST) *. You can
see that the time of day is the third group of characters delimited by spaces. There-
fore, we retrieve the data from the socket using readUTFBytes() and then get just the
third group of characters to display to the user.

6.2 Adding network monitoring to AirTube
In this section, we’ll add network monitoring to the AirTube application. Using a URL-
Monitor object, we can monitor whether or not the system is currently connected to
the internet, and we can configure the application to run in online or offline mode
automatically.

 We first add a property to the ApplicationData class. The networkAvailable
property is a Boolean property that we can use to determine whether the application
has network availability. Listing 6.3 shows what ApplicationData looks like with this
added property.

package com.manning.airtube.data {

 import flash.events.Event;
 import flash.events.EventDispatcher;

 public class ApplicationData extends EventDispatcher {

 static private var _instance:ApplicationData;

 private var _videos:Array;
 private var _currentVideo:AirTubeVideo;
 private var _downloadProgress:Number;
 private var _online:Boolean;
 private var _networkAvailable:Boolean;

 [Bindable(event="videosChanged")]
 public function set videos(value:Array):void {
 _videos = value;

Listing 6.3 Adding a networkAvailable property to the ApplicationData class

Test for
network
connection

Connect to
socket

238 CHAPTER 6 Network communication
 dispatchEvent(new Event("videosChanged"));
 }

 public function get videos():Array {
 return _videos;
 }

 [Bindable(event="currentVideoChanged")]
 public function set currentVideo(value:AirTubeVideo):void {
 _currentVideo = value;
 dispatchEvent(new Event("currentVideoChanged"));
 }

 public function get currentVideo():AirTubeVideo {
 return _currentVideo;
 }

 [Bindable(event="downloadProgressChanged")]
 public function set downloadProgress(value:Number):void {
 _downloadProgress = value;
 dispatchEvent(new Event("downloadProgressChanged"));
 }

 public function get downloadProgress():Number {
 return _downloadProgress;
 }

 [Bindable(event="onlineChanged")]
 public function set online(value:Boolean):void {
 _online = value;
 dispatchEvent(new Event("onlineChanged"));
 }

 public function get online():Boolean {
 return _online;
 }

 [Bindable(event="networkAvailableChanged")]
 public function set networkAvailable(value:Boolean):void {
 if(value != _networkAvailable) {
 _networkAvailable = value;
 if(!_networkAvailable) {
 online = false;
 videos = null;
 }
 dispatchEvent(new Event("networkAvailableChanged"));
 }
 }

 public function get networkAvailable():Boolean {
 return _networkAvailable;
 }

 public function ApplicationData() {

 }

 static public function getInstance():ApplicationData {
 if(_instance == null) {
 _instance = new ApplicationData();

239Adding network monitoring to AirTube
 }
 return _instance;
 }

 }
}

You can see that the setter method does little more than simply assign the new value to
the private property. In this case, we want to set the application mode to offline if the
network is unavailable. Also in that event, we set the videos array to null to ensure the
user can’t try to view videos that are only available online if the system doesn’t have
network availability.

 The next step is to add a URLMonitor object to the service class. You can edit Air-
TubeService.as. First add a new private property called _monitor as shown in the fol-
lowing line of code:

private var _monitor:URLMonitor;

Then modify the constructor as follows:

public function AirTubeService() {
 _proxied = new YouTubeService();
 _proxied.addEventListener(YouTubeServiceEvent.VIDEOS_LIST_BY_TAG,
 getVideosByTagsResultHandler);
 var databaseFile:File =

 ➥File.applicationStorageDirectory.resolvePath("AirTube.db");
 _connection = new SQLConnection();
 _connection.addEventListener(SQLEvent.OPEN, databaseOpenHandler);
 _connection.openAsync(databaseFile, SQLMode.CREATE);
 _monitor = new URLMonitor(new URLRequest("http://www.youtube.com"));
 _monitor.addEventListener(StatusEvent.STATUS, networkStatusHandler);
 _monitor.start();
}

As you can see, we’re using a URLMonitor object to monitor connectivity to www.you-
tube.com. Next add a networkStatusHandler() method as follows:

private function networkStatusHandler(event:StatusEvent):void {
 ApplicationData.getInstance().networkAvailable = _monitor.available;
}

This method merely sets the networkAvailable property of ApplicationData when
network connectivity status changes occur. That triggers the changes to the online
and videos values as well, as we saw in listing 6.3.

 The only remaining step is to update AirTube.mxml to indicate the current net-
work status to the user. All we need to do is add a label component as shown in the
following code. The bolded label is the new code. The rest of the code is shown to give
you context:

<mx:VBox width="100%">
 <mx:Label text="AirTube: Adobe AIR and YouTube" />
 <mx:HBox>
 <mx:Label text="tags:" />

http://www.youtube.com
http://www.you-tube.com
http://www.you-tube.com
http://www.you-tube.com

240 CHAPTER 6 Network communication
 <mx:TextInput id="tags" text="Adobe AIR" />
 <mx:Button label="Search For Videos" click="getVideosByTags();" />
 <mx:Button label="Online" toggle="true"
 selected="{ApplicationData.getInstance().online}"
 click="changeOnlineStatus();" />
 <mx:Label text="{ApplicationData.getInstance().networkAvailable ?

 ➥'Network Available' : 'Network Unavailable'}" />
 </mx:HBox>
 <mx:TileList id="videoList"
 dataProvider="{ApplicationData.getInstance().videos}"
 width="100%" height="400" columnCount="2"
 horizontalScrollPolicy="off"
 itemRenderer="com.manning.airtube.ui.VideoTileRenderer" />
 <mx:Button label="Play Selected Video" click="playVideo();"
 enabled="{videoList.selectedItem != null}" />
</mx:VBox>

This new label uses data binding to display the network availability status to the user.
 That’s all we need to do to update the AirTube application to support basic net-

work status changes.

6.3 Summary
In this chapter, we learned about detecting network status changes using the URLMon-
itor and SocketMonitor classes. We learned that, using these classes, we can detect
when a computer has access to specific network resources such as a web page or a par-
ticular port on a server. Using these monitor classes, we can create sometimes-con-
nected applications.

 In chapter 7, we’ll continue with a new topic: working with HTML in AIR. You’ll
learn how to display HTML, and you’ll learn how to integrate with JavaScript function-
ality in HTML pages loaded into an AIR application.

HTML in AIR
Normally, we try to temper our enthusiasm for a particular AIR feature with calm
reason. But in the case of HTML in AIR, the feature is just too darn cool for us to
bottle up all our excitement. In this chapter, we’ll share with you what we know
about working with HTML in AIR, and once you’ve reviewed the facts for yourself,
we think you’ll share our enthusiasm.

 As a Flash or Flex developer, you’ve undoubtedly placed many an .swf file in an
HTML page. Wouldn’t it be neat if you could do the inverse: render HTML inside a
Flash or Flex application? Using AIR, you can do exactly that, because AIR includes
the WebKit (www.webkit.org) web browser engine, the same engine that drives the
popular cross-platform browser, Safari. The WebKit engine allows AIR applications
to render HTML and execute JavaScript almost exactly as it would in a standard web

This chapter covers
■ Loading and displaying HTML
■ Controlling the loading of HTML
■ Referencing JavaScript objects from

ActionScript
■ Referencing ActionScript from JavaScript
241

http://www.webkit.org

242 CHAPTER 7 HTML in AIR
browser. But what makes this feature even better is that, when the HTML is rendered
in the AIR application, it is not only interactive, as HTML in a browser would be, but is
also treated as a display object in the AIR application. That means you can do all the
things you can do with a display object, including scaling, rotating, blurring, masking,
and so forth.

 Throughout this chapter, we’ll look at important topics relevant to working with
HTML in AIR applications. Initially we’ll look at the basics, such as how to render and
display HTML content in an AIR application. We’ll also talk about how to work with the
HTML content to do things such as scroll, navigate history, and interact with
JavaScript.

7.1 Displaying HTML in AIR
The first thing you need to know when working with HTML is how to load it, render it,
and display it in an AIR application. AIR makes all of this remarkably simple. All you
have to do is create an instance of a native class called flash.html.HTMLLoader and
tell it where to find the HTML to render.

 If you’re creating an AIR application using Flash CS3, you’ll only ever work with
HTMLLoader instances, and you should read the next subsection (section 7.1.1) but
can skip section 7.1.3. If you’re creating AIR applications using Flex, you’ll find that
reading both of these subsections will be useful to you. Although Flex allows you to
use a component to work with HTML, that component still uses HTMLLoader behind
the scenes, and the more you understand about the lower-level HTMLLoader class,
the better.

7.1.1 Using native Flash HTML display objects

The flash.html.HTMLLoader class provides practically everything you need for work-
ing with HTML in an AIR application. This class is a display object type, meaning you
can add instances to the display list. The HTMLLoader class also defines functionality
that allows you to tell it where to load HTML content, and it then knows how to render
the content.

 There are two basic ways you can tell an HTMLLoader object what HTML to render:

■ Use the load() method to tell the HTMLLoader object to load HTML from a
resource such as a page from a server.

■ Use the loadString() method to pass the HTMLLoader object a string of HTML
to render.

As you might imagine, it’s much more common to load HTML from a resource, so
we’ll look at how to do that first. The load() method requires just one parameter: a
flash.net.URLRequest object specifying where the HTMLLoader object can find the
HTML to load. The following example illustrates how simple it is to load and display
HTML content. Listing 7.1 loads an HTML page from www.manning.com and renders
it in an HTMLLoader object.

http://www.manning.com

243Displaying HTML in AIR

package com.manning.airinaction.html {

 import flash.display.MovieClip;
 import flash.html.HTMLLoader;
 import flash.net.URLRequest;

 public class Main extends MovieClip {

 private var _htmlLoader:HTMLLoader;

 public function Main() {
 _htmlLoader = new HTMLLoader();
 _htmlLoader.width = stage.stageWidth;
 _htmlLoader.height = stage.stageHeight;
 addChild(_htmlLoader);
 _htmlLoader.load(new URLRequest(

 ➥"http://www.manning.com/lott"));
 }
 }

}

The results of the above code are shown in
figure 7.1.

 As you can see in this example, because
the HTMLLoader class is a display object type,
it has standard display object properties
such as width and height, and you can work
with those properties as you would any other
display object. In this example, we set the
width and height of the HTMLLoader object,
but we could also set things such as the rota-
tion, alpha, and filters (blur, drop shadow,
and so on).

 As we mentioned earlier, you can also
“load” HTML by programmatically assigning
strings to an HTMLLoader. You can do that
using the loadString() method, as shown
in listing 7.2.

package com.manning.airinaction.html {

 import flash.display.MovieClip;
 import flash.html.HTMLLoader;
 import flash.net.URLRequest;

 public class Main extends MovieClip {

 private var _htmlLoader:HTMLLoader;

Listing 7.1 Loading and rendering HTML pages using HTMLLoader

Listing 7.2 Rendering HTML strings as well

Figure 7.1 Loading an HTML page into
an HTMLLoader object using the load()
method

http://www.manning.com/lott

244 CHAPTER 7 HTML in AIR
 public function Main() {
 _htmlLoader = new HTMLLoader();
 _htmlLoader.width = stage.stageWidth;
 _htmlLoader.height = stage.stageHeight;
 addChild(_htmlLoader);
 _htmlLoader.loadString("<html><body><h1>HTML in AIR</h1>

 ➥</body></html>");
 }
 }

}

The result of this code is shown in figure 7.2.
 The loadString() method is useful when

you want to programmatically dictate the
HTML that you’d like the AIR application to
render. For example, you could create HTML
templates that you store in files in the AIR
application directory, and you can program-
matically load the HTML templates, parse
them, assign values to variables within the
templates, and then assign the HTML to an
HTMLLoader object using loadString().

7.1.2 Loading PDF content

AIR can use the Adobe Acrobat 8.1 or higher
plug-in to render PDF content. If Acrobat
Reader 8.1 or higher is installed on the system,
loading and rendering a PDF is identical to
loading and rendering HTML. All you need to do is specify the PDF URI when request-
ing the content to load into the HTMLLoader instance. However, if the system doesn’t
have Acrobat Reader 8.1 or higher, the operation won’t work. Therefore, AIR pro-
vides a way for you to test whether the system is capable of rendering PDF content via
the static HTMLLoader.pdfCapability property.

 The HTMLLoader.pdfCapability property returns one of four values. These values
map to four constants of the flash.html.HTMLPDFCapability class: STATUS_OK,
ERROR_INSTALLED_READER_NOT_FOUND, ERROR_INSTALLED_READER_TOO_OLD, ERROR_

PREFERRED_READER_TOO_OLD. If the value is STATUS_OK, then AIR will be able to ren-
der the PDF. Otherwise, AIR can’t render the PDF, for various reasons such as these: no
Acrobat Reader is found, an outdated version is found, or the user has set his prefer-
ences to use an older version even if he has 8.1 or higher.

7.1.3 Using the Flex component

When you’re building Flex-based AIR applications, you’ll usually want to use a Flex
component in place of a standard display object. For example, for Flex applications,
you use a Flex Text component to display text instead of using a lower-level TextField

Figure 7.2 Rendering HTML strings using
the loadString() method

245Displaying HTML in AIR
object directly. The same is true when working with HTML in a Flex application:
instead of using an HTMLLoader object directly, you’ll use a Flex component instead.
In this case, the Flex component is called HTML.

 Just as a Text component is a wrapper for a lower-level TextField object, the HTML
component is a wrapper for an HTMLLoader object. As such, the HTML component
enables exactly the same sorts of behavior as an HTMLLoader object. The difference is
twofold:

■ HTML components are Flex components and can be added to other Flex compo-
nents (nested in containers).

■ The HTML component has a slightly different API than HTMLLoader.

When you want to load content into an HTML component, you should use the loca-
tion property. Assigning a value to the location property causes the component to
automatically request, load, and render the content. For example, the code in
listing 7.3 loads and renders the same web page as from listing 7.1.

<?xml version="1.0" encoding="utf-8"?>
<mx:WindowedApplication xmlns:mx="http://www.adobe.com/2006/mxml"
 layout="absolute" width="350">
 <mx:HTML width="100%" height="100%"
 location="http://www.manning.com/lott" />
</mx:WindowedApplication>

The result of this code is shown in figure 7.3.
 If you’re paying careful attention, you

might detect a difference between the results
of listing 7.1 and 7.3. The difference is that,
when we use an HTML component, Flex auto-
matically adds scrollbars to the content for us.
Contrast that with using the lower-level HTML-
Loader class, where we don’t get free scroll-
bars. Don’t worry, though. In the next section,
we’ll talk about how to scroll HTML content.
First we have more to discuss about using the
HTML component.

 You might be asking yourself how you can
use the HTML component to render HTML
strings in a way that’s analogous to using the
loadString() method of an HTMLLoader

object. The answer is that the HTML component
doesn’t directly provide any such functionality.
However, the HTML component does provide
access to the HTMLLoader instance it wraps via

Listing 7.3 The location property specifies what HTML to display

Figure 7.3 Using an HTML component,
we can render HTML content in a Flex
application.

http://www.adobe.com/2006/mxml
http://www.manning.com/lott

246 CHAPTER 7 HTML in AIR
an htmlLoader property. That means you can use that property to gain a reference to
the HTMLLoader object, and you can then call the loadString() method on that
object as shown in listing 7.4.

<?xml version="1.0" encoding="utf-8"?>
<mx:WindowedApplication xmlns:mx="http://www.adobe.com/2006/mxml"
 layout="absolute" width="350"
 creationComplete="creationCompleteHandler();">
 <mx:Script>
 <![CDATA[

 private function creationCompleteHandler():void {
 html.htmlLoader.loadString("<html><body>

 ➥<h1>HTML in AIR</h1></body></html>");
 }

]]>
 </mx:Script>
 <mx:HTML id="html" width="100%" height="100%" />
</mx:WindowedApplication>

You can use the HTMLLoader object nested in an HTML component to do anything
you’d do with any other HTMLLoader object. That means pretty much anything you
learn in this chapter that relates to an HTMLLoader object is also applicable, albeit indi-
rectly, to an HTML component if you access its underlying HTMLLoader object.

 You’ve just had a chance to see how to load and render HTML in an AIR applica-
tion. You may be thinking to yourself that, while loading and rendering HTML is
remarkably simple, there must be a catch. Perhaps, for example, AIR shortchanges you
on the ability to control aspects of loading HTML. No, you’d be wrong if you thought
that. As we’ll see in the next section, AIR allows you to control various aspects of how
the AIR application actually loads HTML.

7.2 Controlling how AIR loads HTML
More often than not, you don’t need to concern yourself with the details of how an
AIR application loads HTML content. Generally, the default settings will work for most
HTML content that your application loads. But there are cases when you’ll want to
slightly alter the way in which the application requests and handles HTML content.
For example, you may want to ensure that the application always retrieves content
from a server rather than drawing from local cache, or you may want to automate user
authentication. In the following sections, we’ll look at how you can do these things
and more. All of the properties described in the following sections apply to HTML-
Loader objects, and you can apply them to HTML components via the internal HTML-
Loader object.

Listing 7.4 Accessing the HTMLLoader object using the htmlLoader property

http://www.adobe.com/2006/mxml

247Controlling how AIR loads HTML
7.2.1 Controlling content caching

By default, AIR caches content that applications request via an HTMLLoader object (or
HTML component). That means that, when the user views HTML content in an AIR
application, copies of the HTML, images, and more are stored locally; when the AIR
application requests any of those resources again, it uses the local cached versions
unless they’re out of date. Caching content is standard behavior for web browsers, and
it can help improve how quickly content loads for users on subsequent visits to the
same pages, because the necessary resources are stored locally instead of remotely.

 Even though content caching is useful, it’s not always the behavior that you want.
Sometimes you want to ensure that users are always viewing the content from a
server to guarantee they’re seeing the latest version. You can control content cach-
ing in two ways:

■ Tell AIR whether to cache content.
■ Tell AIR whether to use previously cached content.

If you’d like to instruct an HTMLLoader object not to cache content, you should set the
cacheResponse property to false before calling the load() method. The default
value of the property is true, which means the content for the object will be cached.

 If you’d like to instruct an HTMLLoader object not to use content that was previously
cached, then set the useCache property to false prior to calling the load() method.
The default value for the property is true, which means the object will read previously
cached content if it exists.

7.2.2 Controlling authentication

Sometimes a server requires authentication to grant access to certain content. For
example, on many servers, it’s possible to use an .htaccess file to challenge a user for
credentials when she tries to access a particular directory. In such situations, AIR appli-
cations default to displaying a dialog to the user that requests a username and pass-
word, allowing the user to authenticate herself. If you’d like to disable that behavior,
effectively not allowing the user to authenticate herself, then you can do that using
the authenticate property of an HTMLLoader object. Simply set the authenticate
property of an HTMLLoader object to false prior to calling load(), and if the server
issues a challenge, the AIR application won’t display a dialog to the user. Instead the
server will return an error.

7.2.3 Specifying a user agent type

An application that requests web content from a server is called a user agent. When a
user agent makes a request to a server for web content, it sends along information
identifying itself. A user agent identifies itself by providing a piece of information
called userAgent. Some scripts use userAgent to determine what content to provide
or how to display the content (or whether to display the content at all). For this rea-
son, user agent–spoofing is not uncommon. User agent–spoofing involves a user

248 CHAPTER 7 HTML in AIR
agent providing false identification in order to appear to be a different type of user
agent. For example, one web browser could appear to be another type simply by pro-
viding a different value for userAgent.

 When you make a request for HTML content using HTMLLoader, you can spoof the
user agent as well by setting the userAgent property of the HTMLLoader object. The
HTML component also allows you to set the userAgent property directly.

7.2.4 Managing persistent data

Some web pages store persistent data in local files managed by the web browser. These
files are called cookies. Some pages rely on the use of cookies in order to function. By
default, AIR stores cookies for pages that you view in an AIR application. But there are
various reasons why you might want to disable cookies for HTML content in AIR. One
basic reason is that you may want to give the user of your application the option to dis-
able cookies because he might not like the idea of web pages storing information
locally on his computer. Whatever the reason, you can explicitly control whether or
not AIR stores cookies using the manageCookies property of an HTMLLoader object.
The default value is true, and a value of false will disable cookies.

7.2.5 Setting defaults

Thus far in this section, we’ve looked at ways you can affect each individual HTML-
Loader object. In most cases, we made reference to the default values that an AIR
application uses if you don’t explicitly set a property. For example, we said that the
default value of the useCache property is true. While that’s mostly true, it’s not
entirely true. That’s because you can specify the default values that an AIR application
should use for the following properties: authenticate, useCache, cacheResponse,
userAgent, and manageCookies. To set the defaults, just assign values to the properties
of the same names of the flash.net.URLRequestDefaults class. (All the properties of
the class are static.) For example, you can disable caching by default with the follow-
ing code:

URLRequestDefaults.useCache = false;

All HTMLLoader objects get their default values from URLRequestDefaults. That
means that, if an HTMLLoader object’s useCache property is null, it will use the value
from URLRequestDefaults. However, you can always override the default values by set-
ting the values of the properties of an HTMLLoader object explicitly.

 Now that we’ve seen how you can control the way in which AIR loads HTML, we’ll
next look at what you can do with the content once it’s loaded. Namely, we’ll look at
how to control scrolling of content.

7.3 Scrolling HTML content
Sometimes HTML content is larger than the area in which you’re trying to display it.
For example, you may set the height of an HTMLLoader object to 500, but the content
might be 1000 pixels. In these cases, you’ll most likely want to allow the user to scroll

249Scrolling HTML content
the content. In this section, we’ll look at the various issues involving scrolling HTML
content in AIR applications.

7.3.1 Scrolling HTML in Flex

As we’ve seen earlier in this chapter, the Flex HTML component automatically adds
scrollbars to HTML content when necessary. Therefore, if you want scrollbars to appear
when the content is larger than the HTML component, you need do nothing more. If
you want to control the scrollbars more explicitly, you can use the horizontal-
ScrollPolicy and verticalScrollPolicy properties. These properties are standard
to many Flex components with built-in scrollbars, including TextArea and List. Possi-
ble values for these properties are auto (default), on, and off. When set to on, the
scrollbars are always visible, even when no scrolling is possible. When set to off, the
scrollbars are never visible.

NOTE HTMLLoader (which underlies the HTML component) automatically
allows for vertical scrolling using the scroll wheel on a mouse. Even if you
disable scrollbars on an HTML component, the user will still be able to
scroll using the scroll wheel.

Because scrolling is built in to the HTML component, there isn’t much else that you
need to know about scrolling if you’re working with Flex. If you’re interested in
understanding the lower-level scrolling mechanisms or if you’re building AIR applica-
tions using Flash, then continue with the next few sections.

7.3.2 Scrolling HTML content using ActionScript

When you use an HTMLLoader object, you don’t get built-in scrollbars. But with a small
amount of ActionScript, you can scroll content in an HTMLLoader object, as we’ll see in
this section.

 The width and height properties of an HTMLLoader object determine the size of
the container, but they don’t tell you anything about the content of the container.
Although the dimensions of the container are important for scrolling, they’re only
part of what you need to know. You also need to know the dimensions of the content.
How can you determine the width and height of the content of an HTMLLoader object?
AIR makes this nearly as simple as querying the dimensions of the container. All you
need to do is read the values of the contentWidth and contentHeight properties. But
there’s a catch: you must wait until the content has loaded before you can get an accu-
rate reading for the contentWidth and contentHeight properties. That raises the
question: how can you know when the content has loaded? The answer is that you
must wait until the HTMLLoader object dispatches a complete event. Once the com-
plete event is dispatched, you can read the values of contentWidth and content-
Height to determine the dimensions of the content loaded into the HTMLLoader
object. If the contentWidth is greater than the width property, you know that horizon-
tal scrolling is necessary. If the contentHeight is greater than the height property,
you know that vertical scrolling is necessary.

250 CHAPTER 7 HTML in AIR
 Once you’ve determined whether scrolling is necessary, the next thing you need to
do is actually enable the scrolling behavior. You can programmatically scroll content
in an HTMLLoader object using the scrollH and scrollV properties. The scrollH
property controls horizontal scrolling and the scrollV property controls vertical
scrolling. A value of 0 in either case means the content is aligned with the container.
Positive values cause the content to scroll down and to the right by as many pixels. For
example, if you set scrollH to 50, the content will scroll 50 pixels to the right. You
can determine the range of scrolling values by using the difference between the
dimensions of the content and the container. For example, if you find the difference
between contentWidth and width, that will tell you the maximum value for scrollH.

 Next we’ll look at an example. Listing 7.5. shows the code that adds scrollbars that
allow a user to scroll the content of an HTMLLoader object.

package com.manning.airinaction.html {

 import flash.display.MovieClip;
 import flash.html.HTMLLoader;
 import flash.net.URLRequest;
 import fl.controls.ScrollBar;
 import flash.events.Event;

 public class Main extends MovieClip {

 private var _htmlLoader:HTMLLoader;
 private var _scrollBarH:ScrollBar;
 private var _scrollBarV:ScrollBar;

 public function Main() {
 _scrollBarV = new ScrollBar();
 _scrollBarV.height = stage.stageHeight - 16;
 _scrollBarV.x = stage.stageWidth - 16;
 _scrollBarV.addEventListener(Event.SCROLL,
 scrollVerticalHandler);
 addChild(_scrollBarV);

 _scrollBarH = new ScrollBar();
 _scrollBarH.direction = "horizontal";
 _scrollBarH.width = stage.stageWidth - 16;
 _scrollBarH.x = 0;
 _scrollBarH.y = stage.stageHeight - 16;
 _scrollBarH.addEventListener(Event.SCROLL,
 scrollHorizontalHandler);
 addChild(_scrollBarH);

 _htmlLoader = new HTMLLoader();
 _htmlLoader.width = stage.stageWidth - 16;
 _htmlLoader.height = stage.stageHeight - 16;
 _htmlLoader.addEventListener(Event.COMPLETE, completeHandler);
 _htmlLoader.addEventListener(Event.SCROLL, scrollHandler);
 _htmlLoader.load(new URLRequest(

 ➥"http://www.manning.com/lott"));

Listing 7.5 Scrolling content using scrollH and scrollV

B Create
vertical
scrollbar

C Create
horizontal
scrollbar

DListen for
complete event

E
Listen for

scroll event

http://www.manning.com/lott

251Scrolling HTML content
 addChild(_htmlLoader);
 }

 private function completeHandler(event:Event):void {
 _htmlLoader.scrollH = 0;
 _htmlLoader.scrollV = 0;
 _scrollBarV.setScrollProperties(_htmlLoader.height, 0,

 ➥_htmlLoader.contentHeight - _htmlLoader.height);
 _scrollBarH.setScrollProperties(_htmlLoader.width, 0,

 ➥_htmlLoader.contentWidth - _htmlLoader.width);
 }

 private function scrollVerticalHandler(event:Event):void {
 _htmlLoader.scrollV = _scrollBarV.scrollPosition;
 }

 private function scrollHorizontalHandler(event:Event):void {
 _htmlLoader.scrollH = _scrollBarH.scrollPosition;
 }

 private function scrollHandler(event:Event):void {
 _scrollBarV.scrollPosition = _htmlLoader.scrollV;
 }

 }

}

In this example, we use two scrollbars B C to
allow the user to scroll vertically and horizon-
tally. As we learned earlier, we need to wait for
the complete event D before making scrolling
calculations. Once the complete event occurs,
we can set the scroll properties of the scrollbars

F based on the values of the content dimen-
sions. When the user moves the scrollbars, we
can update the scrollV and scrollH proper-
ties G H. In this example, we also introduce
one new item, which is the scroll event. As
you can see, we listen for the scroll event E
that the HTMLLoader object dispatches. We want
to do that because the user might also scroll
the content vertically using the mouse scroll
wheel. If that occurs, we want to keep the value
of the vertical scrollbar in sync I. The result of
this code is shown in figure 7.4.

 We’ve just seen how to programmatically control scrolling. Next we’ll see how you
can ask AIR to automatically add scrollbars in one specific scenario.

Set
scrollbar
properties

F

G
Scroll

vertically

H
Scroll

horizontally

I
Update
scrollbars

Figure 7.4 Adding scrollbars to control
the scrolling of HTML content

252 CHAPTER 7 HTML in AIR
7.3.3 Creating autoscrolling windows

There are some times when you want to launch HTML content in a new AIR window. In
those cases, it’s possible to have AIR launch a new window and add scrollbars automat-
ically all from one method. The HTMLLoader class has a static method called create-
RootWindow() that does just this.

 The createRootWindow() method creates a new HTMLLoader object and returns it.
It also launches a new AIR window and adds the HTMLLoader object to the window. All
you need to do then is call the load() method of the HTMLLoader object in order to
load content. The following is an example of how you can use the method:

var htmlLoader:HTMLLoader = HTMLLoader.createRootWindow();
htmlLoader.load(new URLRequest("http://www.manning.com/lott"));

That code opens www.manning.com/lott in a new AIR window, and it automatically
adds scrollbars as necessary.

 The createRootWindow() method allows you to pass it a few optional parameters
as well. The parameters are as follows:

■ visible—A Boolean value indicating whether the window is initially visible.
■ windowInitOptions—A NativeWindowInitOptions object. See chapter 2 for

more information on NativeWindowInitOptions objects.
■ scrollBarsVisible—A Boolean value indicating whether the scrollbars should

be visible.
■ bounds—A flash.geom.Rectangle object that allows you to set the x and y

coordinates as well as the width and height of the new window.

The following opens a new 250-by-250-pixel window in the upper-left corner of the
screen:

var htmlLoader:HTMLLoader = HTMLLoader.createRootWindow(true, null,

 ➥true, new Rectangle(0, 0, 250, 250));
htmlLoader.load(new URLRequest("http://www.manning.com/lott"));

Now that we’ve wrapped up scrolling HTML content, we’ll move on to navigating
HTML history.

7.4 Navigating HTML history
When you use a standard web browser, you’re probably used to navigating the history
using the Back and Forward buttons. For example, when you click through to a page
only to discover it wasn’t the page you thought it was, you probably click the browser’s
Back button to go back to the page you were looking at previously. Up to this point, we
haven’t seen this sort of functionality in AIR, but that’s not because it’s impossible.
With just a bit of code, you can allow users to navigate their browsing history. All the
properties and methods of this section apply equally to both HTMLLoader objects and
HTML components.

 HTMLLoader and HTML both keep track of the user’s browsing history using
flash.html.HTMLHistoryItem objects. HTMLHistoryItem objects contain the follow-
ing properties:

http://www.manning.com/lott
http://www.manning.com/lott
http://www.manning.com/lott

253Navigating HTML history
■ url—The URL of the page.
■ originalUrl—Sometimes pages are redirected, and the value of the url prop-

erty might be different from the URL to which AIR originally navigated. The
originalUrl property reports the value of the URL to which AIR navigated
before any redirects. If there were no redirects, originalUrl will have the same
value as url.

■ title—The title of the page.
■ isPost—A Boolean value indicating whether any POST data was submitted to

the page.

HTMLLoader and HTML objects have historyLength properties that report the length of
the history. That tells you how many HTMLHistoryItem objects they contain. You can
use the getHistoryAt() method to request an HTMLHistoryItem with a specific index.
Assuming there’s at least one history item, calling getHistoryAt() with an index of 0
returns the oldest history item, while calling getHistoryAt() with an index value
equal to one less than the value of historyLength returns the most recent history item.

 You can also navigate through the history relatively using the historyBack(),
historyForward(), and historyGo() methods. The historyBack() method goes to
the previous page in history, while the historyForward() method goes to the next
page in history. (This is possible only if AIR has already navigated back.) The histo-
ryGo() method allows you to navigate in steps other than one. For example, if you
want to navigate back two pages in history, you can call historyGo() with a value of
–2. Calling historyGo() with negative values
goes back, while calling historyGo() with posi-
tive values goes forward.

 Next we’ll build an example that allows a
user to navigate the browsing history. Figure 7.5
shows what this application looks like. Note that
we’re adding Previous and Next buttons as well
as an address bar.

 Listing 7.6 shows the code that we’re using
to create this application. Most of the code is
the same as listing 7.5, and the new code is
shown in bold. Note that, in this example, we’re
assuming that _next, _previous, and _go are
button component instances, that _htmlUrl is a
text input component instance, and that all of
the components have been added to the stage
in Flash.

package com.manning.airinaction.html {

 import flash.display.MovieClip;
 import flash.html.HTMLLoader;

Listing 7.6 Navigating history using historyBack() and historyForward()

Figure 7.5 Allowing a user to navigate
browsing history

254 CHAPTER 7 HTML in AIR
 import flash.net.URLRequest;
 import fl.controls.ScrollBar;
 import flash.events.Event;
 import flash.events.MouseEvent;

 public class Main extends MovieClip {

 private var _htmlLoader:HTMLLoader;
 private var _scrollBarH:ScrollBar;
 private var _scrollBarV:ScrollBar;

 public function Main() {
 _scrollBarV = new ScrollBar();
 _scrollBarV.height = stage.stageHeight - 16 - _previous.height;
 _scrollBarV.y = _previous.height;
 _scrollBarV.x = stage.stageWidth - 16;
 _scrollBarV.addEventListener(Event.SCROLL,
 scrollVerticalHandler);
 addChild(_scrollBarV);

 _scrollBarH = new ScrollBar();
 _scrollBarH.direction = "horizontal";
 _scrollBarH.width = stage.stageWidth - 16;
 _scrollBarH.x = 0;
 _scrollBarH.y = stage.stageHeight - 16;
 _scrollBarH.addEventListener(Event.SCROLL,
 scrollHorizontalHandler);
 addChild(_scrollBarH);

 _htmlLoader = new HTMLLoader();
 _htmlLoader.width = stage.stageWidth - 16;
 _htmlLoader.height = stage.stageHeight - 16 - _previous.height;
 _htmlLoader.y = _previous.height;
 _htmlLoader.addEventListener(Event.COMPLETE, completeHandler);
 _htmlLoader.addEventListener(Event.SCROLL, scrollHandler);
 addChild(_htmlLoader);

 _previous.addEventListener(MouseEvent.CLICK, previousHandler);
 _next.addEventListener(MouseEvent.CLICK, nextHandler);
 _go.addEventListener(MouseEvent.CLICK, goHandler);
 _htmlUrl.text = "http://www.manning.com/lott";
 goHandler();
 }

 private function completeHandler(event:Event):void {
 _htmlUrl.text = _htmlLoader.location;
 _htmlLoader.scrollH = 0;
 _htmlLoader.scrollV = 0;
 _scrollBarV.enabled = _htmlLoader.contentHeight >

 ➥_htmlLoader.height;
 _scrollBarH.enabled = _htmlLoader.contentWidth >

 ➥_htmlLoader.width;
 _scrollBarV.setScrollProperties(_htmlLoader.height, 0,

 ➥_htmlLoader.contentHeight - _htmlLoader.height);
 _scrollBarH.setScrollProperties(_htmlLoader.width, 0,

 ➥_htmlLoader.contentWidth - _htmlLoader.width);
 }

http://www.manning.com/lott

255Interacting with JavaScript
 private function scrollVerticalHandler(event:Event):void {
 _htmlLoader.scrollV = _scrollBarV.scrollPosition;
 }

 private function scrollHorizontalHandler(event:Event):void {
 _htmlLoader.scrollH = _scrollBarH.scrollPosition;
 }

 private function scrollHandler(event:Event):void {
 _scrollBarV.scrollPosition = _htmlLoader.scrollV;
 }

 private function goHandler(event:MouseEvent = null):void {
 _htmlLoader.load(new URLRequest(_htmlUrl.text));
 }

 private function previousHandler(event:MouseEvent):void {
 _htmlLoader.historyBack();
 }

 private function nextHandler(event:MouseEvent):void {
 _htmlLoader.historyForward();
 }

 }

}

All that this code does is call the historyBack() and historyForward() methods
when the user clicks on the corresponding buttons. This causes the HTMLLoader object
to navigate the browsing history.

 Now that you’re an expert on navigating browsing history, you’re probably wonder-
ing what new challenges are ahead. Up next, we’re going to look at how you can com-
municate between ActionScript and JavaScript when you load HTML content into an
AIR application.

7.5 Interacting with JavaScript
AIR isn’t content to merely load HTML and render it. Once the content has loaded
and rendered, you can still interact with it, and it can interact with the AIR applica-
tion. That’s because the HTMLLoader object that loads the HTML exposes the entire
HTML document object model (DOM). In the next few sections, we’ll look at a variety
of ways in which you can cause ActionScript and JavaScript interaction.

7.5.1 Controlling HTML/JavaScript elements from ActionScript

When you load HTML content into an HTMLLoader object, the entire DOM is available
via a window property. The window property of an HTMLLoader object maps directly to
the JavaScript window property inside an HTML page. That means you can address all
the elements of an HTML page using the HTMLLoader object’s window property, just as
you would from within an HTML page using the JavaScript window property. One
caveat when accessing the HTML DOM is that you must wait until the page has loaded
before you try to access it.

256 CHAPTER 7 HTML in AIR
 For the next few examples, we’ll use the HTML shown in listing 7.7. For the pur-
pose of our examples, this code is saved in a document called example.html.

<html>
 <script>

 var pageTitle = "Example";
 var description = "This is an example HTML page";

 function showAlert() {
 alert(description);
 }

 </script>
 <body>
 <p id="p1">
 HTML in AIR
 </p>
 <button onclick="showAlert()">Click</button>
 </body>
</html>

As you can see, this HTML code merely does the following:

■ Defines two JavaScript variables called pageTitle and description
■ Defines a function called showAlert() that displays an alert window with the

value of the description variable
■ Creates a p tag with an id of p1
■ Creates a button that calls showAlert() when clicked

First we’ll look at how to retrieve the value of a JavaScript variable from ActionScript.
Because the JavaScript variables are created as properties of the window object, all we
need to do is wait until the complete event occurs and then read the value of the cor-
responding property of the window object. In listing 7.8, we read the value of the
pageTitle property and display it in the window title bar.

package com.manning.airinaction.html {

 import flash.display.MovieClip;
 import flash.html.HTMLLoader;
 import flash.net.URLRequest;
 import flash.events.Event;
 import flash.desktop.NativeApplication;

 public class Main extends MovieClip {

 private var _htmlLoader:HTMLLoader;

 public function Main() {
 _htmlLoader = new HTMLLoader();
 _htmlLoader.width = stage.stageWidth;

Listing 7.7 HTML code saved in example.html

Listing 7.8 Reading a JavaScript variable

257Interacting with JavaScript
 _htmlLoader.height = stage.stageHeight;
 _htmlLoader.addEventListener(Event.COMPLETE, completeHandler);
 _htmlLoader.load(new URLRequest("example.html"));
 addChild(_htmlLoader);
 }

 private function completeHandler(event:Event):void {
 stage.nativeWindow.title = _htmlLoader.window.pageTitle;
 }

 }

}

You can see that, when the complete event
occurs, all we need to do is read the value from
_htmlLoader.window.pageTitle to get the
value of the pageTitle variable from the HTML
page. Figure 7.6 shows the results of this code.

 Not only can you read values of JavaScript
variables, but you can write them as well. If you
test the code in listing 7.8 and click on the but-
ton, you’ll see an alert window that displays the
value of the description variable as it’s set in
the HTML page. In listing 7.9, we’ll write a dif-
ferent value to the variable. Then, when the
user clicks on the button, the new value will
show up in the alert window.

package com.manning.airinaction.html {

 import flash.display.MovieClip;
 import flash.html.HTMLLoader;
 import flash.net.URLRequest;
 import flash.events.Event;
 import flash.desktop.NativeApplication;

 public class Main extends MovieClip {

 private var _htmlLoader:HTMLLoader;

 public function Main() {
 _htmlLoader = new HTMLLoader();
 _htmlLoader.width = stage.stageWidth;
 _htmlLoader.height = stage.stageHeight;
 _htmlLoader.addEventListener(Event.COMPLETE, completeHandler);
 _htmlLoader.load(new URLRequest("example.html"));
 addChild(_htmlLoader);
 }

 private function completeHandler(event:Event):void {
 _htmlLoader.window.description = "This is a new description

Listing 7.9 Writing the value of a JavaScript variable from ActionScript

Figure 7.6 Displaying the value of a
JavaScript variable in the window title

258 CHAPTER 7 HTML in AIR
 ➥from ActionScript";
 }

 }

}

As you can see, all we need to do is reference
the variable from the window object after the
complete event occurs and assign it a new
value. Figure 7.7 shows how the new value gets
displayed in the alert window.

 Not only can you assign simple data types
such as strings and Boolean values, but you can
also assign references to more complex data
types, including things like functions. In listing
7.10, we assign an ActionScript function to the
showAlert() function in the HTML page.
Therefore, when the user clicks on the button
in the HTML page, it calls the ActionScript
function instead of the function defined in the
HTML page.

package com.manning.airinaction.html {

 import flash.display.MovieClip;
 import flash.html.HTMLLoader;
 import flash.net.URLRequest;
 import flash.events.Event;

 public class Main extends MovieClip {

 private var _htmlLoader:HTMLLoader;

 public function Main() {
 _htmlLoader = new HTMLLoader();
 _htmlLoader.width = stage.stageWidth;
 _htmlLoader.height = stage.stageHeight;
 _htmlLoader.addEventListener(Event.COMPLETE, completeHandler);
 _htmlLoader.load(new URLRequest("example.html"));
 addChild(_htmlLoader);
 }

 private function completeHandler(event:Event):void {
 _htmlLoader.window.showAlert = function():void {
 trace("we've usurped control");
 };
 }

 }

}

Listing 7.10 Assigning reference data types to JavaScript variables

Figure 7.7 Displaying a value in an alert
that was set from ActionScript

259Interacting with JavaScript
You can also get references to objects within the document. For example, if you want
to reference the p tag in the HTML, you can use _htmlLoader.window.docu-
ment.getElementById("p1") to gain that reference. Listing 7.11 shows how you can
change the text in the p tag.

package com.manning.airinaction.html {

 import flash.display.MovieClip;
 import flash.html.HTMLLoader;
 import flash.net.URLRequest;
 import flash.events.Event;
 import flash.desktop.NativeApplication;

 public class Main extends MovieClip {

 private var _htmlLoader:HTMLLoader;

 public function Main() {
 _htmlLoader = new HTMLLoader();
 _htmlLoader.width = stage.stageWidth;
 _htmlLoader.height = stage.stageHeight;
 _htmlLoader.addEventListener(Event.COMPLETE, completeHandler);
 _htmlLoader.load(new URLRequest("example.html"));
 addChild(_htmlLoader);
 }

 private function completeHandler(event:Event):void {
 _htmlLoader.window.document.getElementById("p1").innerText =

 ➥"Hello from ActionScript";
 }

 }

}

When you run the code from listing 7.11, you’ll
see that the initial text shows at first, but once
the content has loaded, the text is replaced by
the text specified in ActionScript as shown in
figure 7.8.

 Now that we’ve seen how to reference ele-
ments of an HTML page from ActionScript, we
can take it one step further. In the next section,
we’ll show how you can handle events from
HTML elements in ActionScript.

Listing 7.11 Getting a reference to a document object

Figure 7.8 Replace text in an HTML
page at runtime from ActionScript.

260 CHAPTER 7 HTML in AIR
7.5.2 Handling JavaScript events from ActionScript

In the previous section, we saw that it’s possible to assign an ActionScript function ref-
erence to a variable in an HTML page, thus effectively usurping control. In this way, it’s
possible to call ActionScript functions from JavaScript. But there’s much more you
can do in regard to handling events than simply usurping existing event handlers. You
can also register new event handlers.

 There are two ways you can register event listeners: assign a function reference
(ActionScript or JavaScript) to the event handler attribute of the HTML object or use
the addEventListener() method.

 First we’ll look at how to assign a function reference to the event handler attribute.
If you’d like to call an ActionScript function when the user clicks on the p tag content,
you can use code such as listing 7.12.

package com.manning.airinaction.html {

 import flash.display.MovieClip;
 import flash.html.HTMLLoader;
 import flash.net.URLRequest;
 import flash.events.Event;

 public class Main extends MovieClip {

 private var _htmlLoader:HTMLLoader;

 public function Main() {
 _htmlLoader = new HTMLLoader();
 _htmlLoader.width = stage.stageWidth;
 _htmlLoader.height = stage.stageHeight;
 _htmlLoader.addEventListener(Event.COMPLETE, completeHandler);
 _htmlLoader.load(new URLRequest("example.html"));
 addChild(_htmlLoader);
 }

 private function completeHandler(event:Event):void {
 _htmlLoader.window.document.getElementById("p1").onclick =

 ➥clickHandler;
 }

 private function clickHandler(event:Object):void {
 trace("click");
 }

 }

}

While there’s nothing wrong with the preceding code, you also have the option of
using the standard ActionScript event-dispatching model by registering an event lis-
tener using addEventListener(), as shown in listing 7.13.

Listing 7.12 Assigning a function reference to the event handler attribute

261Interacting with JavaScript

package com.manning.airinaction.html {

 import flash.display.MovieClip;
 import flash.html.HTMLLoader;
 import flash.net.URLRequest;
 import flash.events.Event;
 import flash.desktop.NativeApplication;

 public class Main extends MovieClip {

 private var _htmlLoader:HTMLLoader;

 public function Main() {
 _htmlLoader = new HTMLLoader();
 _htmlLoader.width = stage.stageWidth;
 _htmlLoader.height = stage.stageHeight;
 _htmlLoader.addEventListener(Event.COMPLETE, completeHandler);
 _htmlLoader.load(new URLRequest("example.html"));
 addChild(_htmlLoader);
 }

 private function completeHandler(event:Event):void {
 _htmlLoader.window.document.getElementById("p1").

 ➥addEventListener("click", clickHandler);
 }

 private function clickHandler(event:Object):void {
 trace("click");
 }

 }

}

What you’ll notice in both listing 7.12 and 7.13 is that the method that handles the
event accepts a parameter of type Object rather than type Event. The parameter acts
much like an Event object, and it has target and currentTarget properties referenc-
ing the HTML element that dispatched the event, but the object isn’t of type Event.

 We’ve learned how to reference JavaScript and HTML elements from ActionScript.
Now we’ll look at a practical example that shows how to put it all together.

7.5.3 Building a hybrid application

You may find yourself wondering why you’d ever want to integrate HTML and
JavaScript into one AIR application using what you’ve learned in the preceding sec-
tions. Consider the following scenario: you’re building an AIR application that allows
the user to fill out questionnaires. Once the AIR application is built, the product
owner would like to be able to update the questionnaires using a Ruby on Rails appli-
cation that runs on a server and generates new questionnaires as HTML files. The AIR
application should always load these HTML files. In such a case, it makes a lot of sense
to integrate the ActionScript and HTML using the skills you’ve just learned. In this sec-
tion, we’ll build a simple questionnaire example to illustrate how this might work.

Listing 7.13 Using addEventListener() to register event listeners

262 CHAPTER 7 HTML in AIR
 Our simple application in this case will load an HTML page at runtime. The HTML
page contains a questionnaire that might contain any number of questions and
answers. The AIR application needs to be able to get the responses to the question-
naire when the user clicks on an HTML button. We’re going to impose a rule that says
that the questionnaire HTML file must name the Submit button with an ID of submit-
Button, and the page must have a function called getSurveyResponses() that returns
an array of the responses to the questionnaire.

 For our example, the HTML file is called questionnaire.html, and listing 7.14 shows
what this file looks like.

<html>
 <script>

 function getSurveyResponses() {
 var response;
 var options = document.questionnaire.skyColor;
 for(var i = 0; i < options.length; i++) {
 if(options[i].checked) {
 response = options[i].value;
 }
 }
 var response1 = {question: document.getElementById(

 ➥"question1").innerHTML, answer: response};

 options = document.questionnaire.skySize;
 for(i = 0; i < options.length; i++) {
 if(options[i].checked) {
 response = options[i].value;
 }
 }
 var response2 = {question: document.getElementById(

 ➥"question2").innerHTML, answer: response};

 return [response1, response2];
 }
 </script>
 <body>
 <h1>Questionnaire</h1>
 <form name="questionnaire">
 Please complete the following survey.
 <h2 id="question1">1. What is the color of the sky?</h2>
 <input type="radio" name="skyColor" value="grey">grey
 <input type="radio" name="skyColor" value="blue">blue
 <input type="radio" name="skyColor" value="no color">no color
 <input type="radio" name="skyColor" value="brown">brown

 <h2 id="question2">2. What is the size of the sky?</h2>
 <input type="radio" name="skySize" value="big">big
 <input type="radio" name="skySize" value="really big">

 ➥really big
 <input type="radio" name="skySize" value="not very big">

 ➥not very big

Listing 7.14 The questionnaire HTML file that displays a survey to the user

263Interacting with JavaScript
 <input type="radio" name="skySize" value="smaller than a cow">

 ➥smaller than a cow

 <h2>Click the button to finish
 <button id="submitButton">Submit Answers</button>

 </form>
 </body>
</html>

Next we create a document class for an ActionScript project that uses an HTMLLoader
object to load questionnaire.html. We listen for a click event on the Submit button,
and when the user clicks the button, we’ll retrieve the questionnaire responses using
the getSurveyResponses() function and display them using ActionScript.
Listing 7.15 shows the code.

package com.manning.airinaction.questionnaire {

 import flash.display.MovieClip;
 import flash.events.MouseEvent;
 import flash.html.HTMLLoader;
 import flash.net.URLRequest;
 import flash.events.Event;
 import fl.controls.TextArea;

 public class Main extends MovieClip {

 private var _htmlLoader:HTMLLoader;
 private var _textArea:TextArea;

 public function Main() {
 _htmlLoader = new HTMLLoader();
 _htmlLoader.width = stage.stageWidth;
 _htmlLoader.height = stage.stageHeight;
 _htmlLoader.addEventListener(Event.COMPLETE, completeHandler);
 _htmlLoader.load(new URLRequest("questionnaire.html"));
 addChild(_htmlLoader);

 _textArea = new TextArea();
 _textArea.width = stage.stageWidth;
 _textArea.height = stage.stageHeight;

 }

 private function completeHandler(event:Event):void {
 _htmlLoader.window.document.getElementById("submitButton").

 ➥addEventListener(MouseEvent.CLICK, clickHandler);
 }

 private function clickHandler(event:Object):void {
 removeChild(_htmlLoader);
 var responses:Array = _htmlLoader.window.getSurveyResponses();
 _textArea.text = "";
 var response:Object;
 for(var i:Number = 0; i < responses.length; i++) {
 response = responses[i] as Object;
 _textArea.text += response.question;

Listing 7.15 The document class for the questionnaire application

B
Load

questionnaire.html

Register for
click event C

DGet responses

264 CHAPTER 7 HTML in AIR
 _textArea.text += "\n\t" + response.answer + "\n\n";
 }
 addChild(_textArea);
 }
 }

}

This code is rather straightforward. It uses an HTMLLoader object to load an HTML file

B. When the content has loaded, the code gets a reference to the button inside the
HTML content and registers an event listener for the click event on that button C.
When the user clicks on the button, the code calls a JavaScript function D from the
HTML content to get the survey responses and display them in a textArea component.

 Now that we’ve seen how to control HTML and JavaScript elements from Action-
Script, we’ll look at how to gain access to ActionScript objects and classes from
JavaScript.

7.5.4 Handling standard JavaScript commands

Many standard JavaScript commands get issued to the host application, which is typi-
cally a web browser. In the case of an AIR application, the host is the AIR application
instead. You can configure an AIR application to handle these commands. For exam-
ple, in a web browser, when the window.status property is set, the browser status dis-
play changes. In an AIR application, there’s no default behavior in response to
changes to the window.status property from JavaScript.

 You can tell AIR to handle the method/property changes shown in table 7.1 by
using an object of type flash.html.HTMLHost. An HTMLHost object has methods and
properties that correspond to the JavaScript methods/properties, and those corre-
spondences are also shown in table 7.1.

JavaScript HTMLHost

Window.status updateStatus()

Window.location updateLocation()

Window.document.title updateTitle()

Window.open() createWindow()

Window.close() windowClose()

Window.blur() windowBlur()

Window.focus() windowFocus()

Window.moveBy() windowRect()

Window.moveTo() windowRect()

Window.resizeBy() windowRect()

Window.resizeTo() windowRect()

Table 7.1 Correspondences
between JavaScript and
HTMLHost

265Interacting with JavaScript
Here’s how it works:

1 Create a custom class that extends HTMLHost.
2 Override the methods as appropriate.
3 Assign an instance of the custom class to the htmlHost property of the HTML-

Loader object into which you’re loading the HTML content.

Next we’ll look at how you can create a subclass of HTMLHost. The HTMLHost construc-
tor allows for an optional Boolean parameter indicating whether the default behaviors
should be used. Normally we just implement the same thing for the subclass construc-
tor, as in the following code:

package com.manning.airinaction.html {
 import flash.html.HTMLHost;

 public class CustomHTMLHost extends HTMLHost {
 public function CustomHTMLHost(defaultBehavior:Boolean = true) {
 super(defaultBehavior);
 }

 }
}

Next we need to override any of the methods for which we want to define custom
behavior. The updateStatus(), updateLocation(), and updateTitle() methods all
accept one parameter: a string with the new value. We’ll implement updateTitle()
just to show one of them. There are many ways you could implement the methods of
an HTMLHost subclass. In this case, we’re just going to set the title of the main window:

package com.manning.airinaction.html {
 import flash.html.HTMLHost;
 import flash.desktop.NativeApplication;

 public class CustomHTMLHost extends HTMLHost {
 public function CustomHTMLHost(defaultBehavior:Boolean = true) {
 super(defaultBehavior);
 }

 override public function updateTitle(title:String):void {
 NativeApplication.nativeApplication.openedWindows[0].title =

 ➥title;
 }

 }
}

Next we’ll implement createWindow(). The createWindow() method gets passed a
parameter of type flash.html.HTMLWindowCreateOptions. This object corresponds
to the options passed to the window.open() method as the third parameter. Table 7.2
shows the attributes in the window.open() method parameter and the corresponding
properties in an HTMLWindowCreateOptions object.

 The createWindow() method must return an HTMLLoader object. The create-
Window() method doesn’t receive information about what data to load into the

266 CHAPTER 7 HTML in AIR
HTMLLoader object, nor does it need that information. The method merely needs to
create an HTMLLoader object and return it. AIR takes care of loading the specified con-
tent into the HTMLLoader instance.

 Next we’ll look at an example of how you might implement createWindow(). In
this case, we use the HTMLLoader.createRootWindow() method to create a new win-
dow using the dimensions specified in the parameter. Listing 7.16 shows the code.

package com.manning.airinaction.html {
 import flash.html.HTMLHost;
 import flash.desktop.NativeApplication;
 import flash.html.HTMLWindowCreateOptions;
 import flash.html.HTMLLoader;
 import flash.geom.Rectangle;

 public class CustomHTMLHost extends HTMLHost {
 public function CustomHTMLHost(defaultBehavior:Boolean = true) {
 super(defaultBehavior);
 }

 override public function updateTitle(title:String):void {
 NativeApplication.nativeApplication.openedWindows[0].title =

 ➥title;
 }

 override public function createWindow(

 ➥options:HTMLWindowCreateOptions):HTMLLoader {
 var bounds:Rectangle = new Rectangle(options.x, options.y,

 ➥options.width, options.height);

Listing 7.16 Creating a new scrollable window for HTML content

Window.open() attribute
HTMLWindowCreateOptions

property

Width width

Height height

screenX, left x

screenY, top y

location locationBarVisible

Menu menuBarVisible

scrollbars scrollBarsVisible

Status statusBarVisible

toolbar toolBarVisible

resizable resizable

fullscreen fullscreen

Table 7.2 Properties of
HTMLWindowCreateOptions

267Interacting with JavaScript
 var loader:HTMLLoader = HTMLLoader.createRootWindow(true,

 ➥null, true, bounds);
 return loader;
 }

 }
}

The windowClose(), windowFocus(), and windowBlur() methods all return no value
and accept no parameters. In listing 7.17, we’ll look at a simple implementation of
windowClose() that closes the main application window.

package com.manning.airinaction.html {
 import flash.html.HTMLHost;
 import flash.desktop.NativeApplication;
 import flash.html.HTMLWindowCreateOptions;
 import flash.html.HTMLLoader;
 import flash.geom.Rectangle;

 public class CustomHTMLHost extends HTMLHost {
 public function CustomHTMLHost(defaultBehavior:Boolean = true) {
 super(defaultBehavior);
 }

 override public function updateTitle(title:String):void {
 NativeApplication.nativeApplication.openedWindows[0].title =

 ➥title;
 }

 override public function

 ➥createWindow(options:HTMLWindowCreateOptions):HTMLLoader {
 var bounds:Rectangle = new Rectangle(options.x, options.y,

 ➥options.width, options.height);
 var loader:HTMLLoader = HTMLLoader.createRootWindow(true,

 ➥null, true, bounds);
 return loader;
 }

 override public function windowClose():void {
 NativeApplication.nativeApplication.openedWindows[0].close();
 }

 }
}

You can override the windowRect property by overriding a setter method by that
name. The windowRect property is of type Rectangle. Listing 7.18 illustrates how you
can use the windowRect property to move or resize the main application window.

package com.manning.airinaction.html {
 import flash.html.HTMLHost;
 import flash.desktop.NativeApplication;

Listing 7.17 Closing a window by implementing the windowClose() method

Listing 7.18 Resizing a window by implementing a windowRect setter

268 CHAPTER 7 HTML in AIR
 import flash.html.HTMLWindowCreateOptions;
 import flash.html.HTMLLoader;
 import flash.geom.Rectangle;

 public class CustomHTMLHost extends HTMLHost {

 override public function set windowRect(value:Rectangle):void {
 NativeApplication.nativeApplication.openedWindows[0].bounds =

 ➥value;
 }

 public function CustomHTMLHost(defaultBehavior:Boolean = true) {
 super(defaultBehavior);
 }

 override public function updateTitle(title:String):void {
 NativeApplication.nativeApplication.openedWindows[0].title =

 ➥title;
 }

 override public function

 ➥createWindow(options:HTMLWindowCreateOptions):HTMLLoader {
 var bounds:Rectangle = new Rectangle(options.x, options.y,

 ➥options.width, options.height);
 var loader:HTMLLoader = HTMLLoader.createRootWindow(true,

 ➥null, true, bounds);
 return loader;
 }

 override public function windowClose():void {
 NativeApplication.nativeApplication.openedWindows[0].close();
 }

 }
}

All of this code can be tested by simply loading an HTML page into an HTMLLoader
object that uses an instance of CustomHTMLHost. Listing 7.19 illustrates an example
document class that does this.

package com.manning.airinaction.html {

 import flash.display.MovieClip;
 import flash.html.HTMLLoader;
 import flash.net.URLRequest;
 import com.manning.airinaction.html.CustomHTMLHost;

 public class Main extends MovieClip {

 private var _htmlLoader:HTMLLoader;

 public function Main() {
 _htmlLoader = new HTMLLoader();
 _htmlLoader.width = stage.stageWidth;
 _htmlLoader.height = stage.stageHeight;
 _htmlLoader.htmlHost = new CustomHTMLHost();
 _htmlLoader.load(new URLRequest("example.html"));

Listing 7.19 Using CustomHTMLHost in a document class

269Interacting with JavaScript
 addChild(_htmlLoader);
 }

 }

}

You can use an HTML file such as is shown in listing 7.20.

<html>
 <body>
 <button onclick="window.document.title='New Title'">Title</button>
 <button onclick="window.open('http://www.manning.com/lott', null,

 ➥'screenX=0, screenY=10, width=500, height=400')">Window</button>
 <button onclick="window.close()">Close</button>
 <button onclick="window.moveTo(0, 0)" />Reset Location</button>
 </body>
</html>

Of course, you aren’t limited to implementing the HTMLHost methods as we’ve
shown in this example. You can implement them in many different ways to achieve
many different effects. But the general principles apply no matter how you imple-
ment the methods.

NOTE An HTMLHost object (or an instance of a subclass) automatically has a ref-
erence to the HTMLLoader object that it’s assigned to. This reference is
stored in a property called htmlLoader.

Using HTMLHost, you can indirectly call ActionScript methods from JavaScript. In the
next section, we’ll see how you can reference ActionScript elements more directly
from JavaScript.

7.5.5 Referencing ActionScript elements from JavaScript

Not only can you reference JavaScript and HTML elements from ActionScript, but you
can also reference ActionScript elements from JavaScript. In JavaScript, all of the AIR
APIs, including standard Flash Player APIs, are available when the HTML page has
been loaded into an AIR application. You can access classes and functions of the run-
time from window.runtime. For example, if you want to call the global trace()
method, you can do that using window.runtime.trace(). If classes are in packages,
you can reference them using the fully qualified class name following the win-
dow.runtime reference. For example, listing 7.21 shows how to create a new Shape
object and add it to the stage of the main window.

<html>
 <script>

 function loadHandler() {

Listing 7.20 Using a custom HTMLHost implementation

Listing 7.21 Creating a Shape object and adding it to the stage

http://www.manning.com/lott

270 CHAPTER 7 HTML in AIR
 var shape = new window.runtime.flash.display.Shape();
 shape.graphics.lineStyle(0, 0, 0);
 shape.graphics.beginFill(0, 1);
 shape.graphics.drawRect(0, 0, 100, 50);
 shape.graphics.endFill();
 var mainWindow = window.runtime.flash.desktop.

 ➥NativeApplication.nativeApplication.openedWindows[0];
 mainWindow.stage.addChild(shape);
 }

 </script>
 <body onload="loadHandler()">
 </body>
</html>

You’ll notice that, in the first line of the function, we create a new Shape object using
window.runtime.flash.display.Shape to reference the Shape class. Once we’ve cre-
ated an object, we can reference all the properties and methods of that instance as we
would in ActionScript. In this example, we reference the graphics property of the
Shape object and call the methods of that property. We can also get a reference to the
main window using window.runtime.flash.desktop.NativeApplication.native-
Application.openedWindows[0].

 Not only can you reference standard classes, but you can also reference custom
classes. In order to make custom classes available to JavaScript, you must load the
HTML page into the same ApplicationDomain in which the ActionScript classes are
defined. If you’re not familiar with the concept of an ApplicationDomain, don’t be
concerned. Most developers haven’t had reason to use ApplicationDomain before.
Basically, an ApplicationDomain is a partition within which code is stored. Normally
when you load an .swf or HTML content into an AIR application, it gets loaded into a
new ApplicationDomain, distinct from the ApplicationDomain used by the main AIR
application. That means that the loaded content doesn’t have access to the code con-
tained within the main ApplicationDomain. If you want to make the custom Action-
Script classes available to JavaScript, you can load the HTML content into the main
ApplicationDomain by setting the runtimeApplicationDomain property of the HTML-
Loader object to flash.system.ApplicationDomain.currentDomain.

 We next look at an example of referencing custom classes from JavaScript. We
build off the questionnaire example we produced in the previous section. This time
we create a custom Response type that we use to store the questionnaire response
items. Listing 7.22 shows what this class looks like.

package com.manning.airinaction.questionnaire {

 public class Response {

 private var _question:String;
 private var _answer:String;

 public function get question():String {

Listing 7.22 The custom Response class to model questionnaire response items

271Interacting with JavaScript
 return _question;
 }

 public function get answer():String {
 return _answer;
 }

 public function Response(question:String, answer:String) {
 _question = question;
 _answer = answer;
 }

 }

}

The Response class has two getter methods: question and answer. We next modify the
questionnaire.html file to use this custom type to store the responses that are
returned by the getSurveyResponses() function. Listing 7.23 shows what the get-
SurveyResponses() function looks like, with changes in bold.

function getSurveyResponses() {
 var response;
 var options = document.questionnaire.skyColor;
 for(var i = 0; i < options.length; i++) {
 if(options[i].checked) {
 response = options[i].value;
 }
 }
 var response1 = new window.runtime.com.manning.

 ➥airinaction.questionnaire.Response(document.

 ➥getElementById("question1").innerText, response);

 options = document.questionnaire.skySize;
 for(i = 0; i < options.length; i++) {
 if(options[i].checked) {
 response = options[i].value;
 }
 }
 var response2 = new window.runtime.com.manning.

 ➥airinaction.questionnaire.Response(document.

 ➥getElementById("question2").innerText, response);

 return [response1, response2];
}

At this point, if we try to run the application, we’ll get runtime JavaScript errors that
will cause the application to fail silently because the Response class isn’t defined at
runtime. We next need to modify the document class to add the Response class and
load the HTML page in the main ApplicationDomain. Listing 7.24 shows what this
class looks like, with changes in bold.

Listing 7.23 Using the Response class in JavaScript

272 CHAPTER 7 HTML in AIR

package com.manning.airinaction.questionnaire {

 import flash.display.MovieClip;
 import flash.events.MouseEvent;
 import flash.html.HTMLLoader;
 import flash.net.URLRequest;
 import flash.events.Event;
 import fl.controls.TextArea;
 import flash.system.ApplicationDomain;
 import com.manning.airinaction.questionnaire.Response;

 public class Main extends MovieClip {

 private var _htmlLoader:HTMLLoader;
 private var _textArea:TextArea;

 public function Main() {
 _htmlLoader = new HTMLLoader();
 _htmlLoader.width = stage.stageWidth;
 _htmlLoader.height = stage.stageHeight;
 _htmlLoader.addEventListener(Event.COMPLETE, completeHandler);
 _htmlLoader.runtimeApplicationDomain =

 ➥ApplicationDomain.currentDomain;
 _htmlLoader.load(new URLRequest("questionnaire.html"));
 addChild(_htmlLoader);

 _textArea = new TextArea();
 _textArea.width = stage.stageWidth;
 _textArea.height = stage.stageHeight;

 }

 private function completeHandler(event:Event):void {
 _htmlLoader.window.document.getElementById("submitButton").

 ➥addEventListener(MouseEvent.CLICK, clickHandler);
 }

 private function clickHandler(event):void {
 removeChild(_htmlLoader);
 var responses:Array = _htmlLoader.window.getSurveyResponses();
 _textArea.text = "";
 var response:Object;
 for(var i:Number = 0; i < responses.length; i++) {
 response = responses[i] as Response;
 _textArea.text += response.question;
 _textArea.text += "\n\t" + response.answer + "\n\n";
 }
 addChild(_textArea);
 }
 }

}

Now that the Response class is compiled into the AIR application, it’s available at run-
time. Because the HTML page is getting loaded into the main ApplicationDomain, it
can access the Response class, and everything in the application will work.

Listing 7.24 Including the new Response class

273Managing security issues
NOTE Because of security issues that you can read about in the next section, it
isn’t possible to allow access to custom classes to a file that’s loaded out-
side the application domain. For example, the preceding application
won’t work if questionnaire.html is loaded from a remote server, because
AIR won’t allow the remote file access to custom ActionScript classes.

One thing that we haven’t yet talked about is the effect of loading HTML from differ-
ent locations, something we’ll look at in the next section.

7.6 Managing security issues
Imagine for a moment that you’re an expert plumber. You just got hired by MegaCorp
to be their chief plumber, which is quite a prestigious job. However, on your first day
at work you discover that not only are you responsible for standard plumbing duties,
which are all within your realm of expertise, but you’re also responsible for security
for the entirety of MegaCorp, which has offices in every major city in the world. Sound
ridiculous? We think it does. But this scenario isn’t entirely dissimilar to the one we
find ourselves in first as web developers and then as AIR application developers. While
our primary expertise may be application development, we’ve discovered that we have
a second and very serious duty: a responsibility for the security of those applications
and their users. Although it may seem unfair (and we think it is), it looks as though it’s
impossible to completely separate the responsibilities of an application developer
from those of an application security engineer. Therefore, although security issues
may not currently be part of your expertise, we strongly encourage you to follow along
with us through the next few sections as we look at how these issues relate to AIR appli-
cation development.

 AIR opens up a lot of possibilities to HTML and JavaScript content that gets
loaded into an AIR application. As you’ve seen, AIR makes it possible for JavaScript
to reference the AIR runtime, accessing all sorts of behaviors that wouldn’t normally
be available to JavaScript. Therefore, imagine what might happen if you built an AIR
application that allowed a user to load any HTML from any location, and one of
those pages had malicious JavaScript designed to use the AIR runtime to install a
virus on the user’s computer. If all HTML pages could get that level of unrestricted
access to AIR, you could unwittingly open up the possibility of all sorts of problems
for users. For exactly that reason, AIR puts in place a security model to mitigate
those sorts of problems.

7.6.1 Sandboxes

All HTML content in AIR gets loaded into one of two security sandboxes, each of which
has its own rules dictating what the HTML/JavaScript content has access to. These two
sandboxes are called the application sandbox and the nonapplication sandbox. All content
loaded from the application directory (the same directory or a subdirectory of the
directory in which the application is installed) is automatically placed in the applica-
tion domain. All other content is placed in the nonapplication domain. That means
that all content loaded from a web server is placed in the nonapplication domain.

274 CHAPTER 7 HTML in AIR
 Each of these sandboxes has a different set of rules for what’s permissible. In the
application sandbox, restrictions are placed on what can be done dynamically at run-
time. The following aren’t permitted in the application sandbox:

■ The eval() statement can’t be used for anything other than object literals and
constants.

■ The setTimeout() and setInterval() functions can only be used to call func-
tion literals, and they won’t evaluate strings.

■ You can’t use innerHTML or outerHTML to parse script elements.
■ You can’t use the javascript URI scheme.
■ You can’t import JavaScript files from outside the application domain.

These restrictions are in place as a layer of insurance against loading and running
malicious JavaScript code. While these restrictions don’t necessarily ensure that no
malicious code will ever be loaded, they do create a reasonable level of insurance.
This is important because, within the application domain, JavaScript has access to the
full AIR API, meaning it can do things like read and write files on the local file system.

 On the other hand, files loaded from outside the application domain have none of
the restrictions applied to files loaded into the application domain. You may be think-
ing that it seems terribly unfair to restrict files in the application domain while allow-
ing all the same behaviors to files outside the domain. Before you get too upset about
this inequality, let us assure you that there’s a tradeoff. You see, files loaded from out-
side the application domain don’t have access to the AIR API. That means that, while a
file outside the application domain can run eval() statements unhindered, it can’t
access the local file system.

 We’re about to tell you how you can work around the limitations of the sandbox
restrictions. But before we disclose that information, we want to stress how important
it is that you use this technique only when absolutely necessary, and even then you
should exercise extreme caution. Err on the side of being too conservative in your use
of bridging the sandbox security model. Remember that the sandboxes are in place
for a reason, and you shouldn’t subvert them without good cause. With that said, in
cases when it’s absolutely necessary, you can bridge the sandboxes using a technique
called sandbox bridging.

7.6.2 Sandbox bridges

The principle of a sandbox bridge is that an HTML page loaded into an iframe of
another HTML page has the ability to communicate with the parent, and the parent
can communicate with the child. If the two pages are loaded into different sandboxes
(because one is remote and one is in the application directory, for example), they
can work together to get around their respective limitations. Typically, the way this
works is that you create an HTML file with an iframe that resides in the application
directory. This file will be loaded into the application sandbox. This local HTML file
loads a nonapplication HTML file (such as a file from a remote server) into the

275Managing security issues
iframe. The nonapplication HTML file is loaded into the nonapplication sandbox.
Once the two pages are loaded, they can communicate by defining interfaces that
they expose to each other.

 You can define interfaces that each page can share with the other using variables
called parentSandboxBridge and childSandboxBridge. You can create an object that
has properties containing values or references to functions and assign it to a variable
called parentSandboxBridge or childSandboxBridge within the HTML content
loaded into the iframe. The following example illustrates how this can work.
Listing 7.25 shows an HTML page containing an iframe. This HTML page can be saved
in the application directory. When it’s loaded, it’ll have access to the AIR API.

<html>
 <script>

 var bridge = new Object();
 bridge.writeMemo = writeMemo;

 function loadHandler() {
 window.document.getElementById("bridgeFrame").

 ➥contentWindow.parentSandboxBridge = bridge;
 }

 function writeMemo(subject, message) {
 var file = window.runtime.flash.filesystem.File.

 ➥documentsDirectory.resolvePath("memo.txt");
 var writer = new window.runtime.flash.filesystem.FileStream;
 writer.open(file, "write");
 writer.writeUTFBytes(subject + "\n" + message);
 writer.close();
 }

 </script>
 <body onload="loadHandler()">
 <iframe id="bridgeFrame"
 src="http://www.example.com/texteditor.html"
 width="100%" height="100%"></iframe>
 </body>
</html>

As you can see in this example, we create an object to serve as the bridge B and we
add a reference to a function. When the page loads, we assign the bridge to a variable
called parentSandboxBridge within the content window of the iframe C. Now the
content in the iframe will be able to call the writeMemo() function using the bridge.
Listing 7.26 shows what the code for the content looks like.

<html>
 <body>
 <button onclick="parentSandboxBridge.writeMemo(subject.value,

Listing 7.25 Using a local HTML file with an iframe to load remote content

Listing 7.26 Calling a function using the bridge

Create bridge
object

B

Assign bridge
to child

C

http://www.example.com/texteditor.html

276 CHAPTER 7 HTML in AIR
 ➥message.value)">Save Memo</button>
 <form>
 Subject <input type="text" id="subject" />

 Message <textarea id="message" />

 </form>
 </body>
</html>

In this case, we’re calling parentSandboxBridge.writeMemo() when the user clicks the
button. This uses the bridge to allow the frame content, which is loaded into a nonap-
plication sandbox, to call a function within the parent HTML page, which is in the
application sandbox. The result is that we can save a file locally even though the con-
tent for the file originates from an HTML page that’s outside the application domain.

 You can make values and functions accessible to the parent from the child page by
using a variable called childSandboxBridge. This works almost identically. From
within the content page, you can define an object with properties that contain values
or references to functions and then assign that object to a variable called childSand-
boxBridge. From within the parent page, you can reference the childSandboxBridge
from the content window of the iframe once it loads.

7.7 Adding HTML to AirTube
Now that we’ve learned more than we ever imagined about working with HTML in
AIR, we can add a new feature to our AirTube application. After what you’ve just
learned, this is going to seem remarkably easy. All we’re going to do is allow the user
to open the YouTube web page for a video in an AIR window. We’ll add a button to the
video window that allows the user to launch the HTML page in a window.

 The first thing we do is update the HTMLWindow component to display HTML con-
tent using an HTML component. To do this, simply open HTMLWindow.mxml and add
the code shown in bold in listing 7.27.

<?xml version="1.0" encoding="utf-8"?>
<mx:Window xmlns:mx="http://www.adobe.com/2006/mxml" layout="absolute"
 width="800" height="800" closing="closingHandler(event);">
 <mx:Script>
 <![CDATA[

 [Bindable]
 private var _url:String;

 public function set url(value:String):void {
 _url = value;
 }

 private function closingHandler(event:Event):void {
 event.preventDefault();
 visible = false;
 }

]]>

Listing 7.27 Showing HTML content in the HTMLWindow component

http://www.adobe.com/2006/mxml

277Adding HTML to AirTube
 </mx:Script>
 <mx:HTML id="html" location="{_url}" width="100%" height="100%" />
</mx:Window>

As you can see, the new code is short. We merely add an HTML component and bind its
location attribute to a _url property. We’ll next see how we set the URL for the HTML-
Window component.

 You’ll recall that way back in chapter 2 when we initially created the skeleton for
HTMLWindow, we also added a method to AirTube.mxml that opens the HTMLWindow
instance. That method is called launchHTMLWindow(), and it looks like the following:

public function launchHTMLWindow(url:String):void {
 if(_htmlWindow.nativeWindow == null) {
 _htmlWindow.open();
 }
 else {
 _htmlWindow.activate();
 }
}

We’re going to now update that method by adding one line to it. Listing 7.28 shows
the new line of code in bold.

public function launchHTMLWindow(url:String):void {
 _htmlWindow.url = url;
 if(_htmlWindow.nativeWindow == null) {
 _htmlWindow.open();
 }
 else {
 _htmlWindow.activate();
 }
}

Now the only remaining task is to call the launchHTMLWindow() method when the user
clicks a button in the VideoWindow. To do that, we need to make changes to the Video-
Window component. Listing 7.29 shows what the updated code looks like with changes
shown in bold.

<?xml version="1.0" encoding="utf-8"?>
<mx:Window xmlns:mx="http://www.adobe.com/2006/mxml" width="400"
 height="400" type="utility" closing="closingHandler(event);"

creationComplete="creationCompleteHandler();">
 <mx:Script>
 <![CDATA[
 import com.manning.airtube.services.AirTubeService;
 import com.manning.airtube.data.ApplicationData;

 [Bindable]
 private var _applicationData:ApplicationData;

Listing 7.28 Setting the url property of the HTMLWindow instance

Listing 7.29 Adding a button to launch HTML from the video window

http://www.adobe.com/2006/mxml

278 CHAPTER 7 HTML in AIR
 private function creationCompleteHandler():void {
 _applicationData = ApplicationData.getInstance();
 }

 private function closingHandler(event:Event):void {
 event.preventDefault();
 visible = false;
 }

 private function saveOffline():void {
 AirTubeService.getInstance().saveToOffline(

 ➥_applicationData.currentVideo);
 }

 private function togglePlayback():void {
 if(videoDisplay.playing) {
 videoDisplay.pause();
 playPauseButton.label = "Play";
 }
 else {
 videoDisplay.play();
 playPauseButton.label = "Pause";
 }
 }

 private function viewOnYouTube():void {
 AirTube.getInstance().launchHTMLWindow(

 ➥_applicationData.currentVideo.video.url);
 videoDisplay.pause();
 playPauseButton.label = "Play";
 }

]]>
 </mx:Script>
 <mx:VBox>
 <mx:Label text="{_applicationData.currentVideo.video.title}" />
 <mx:VideoDisplay id="videoDisplay"

source="{_applicationData.currentVideo.flvUrl}" width="400" height="300"
/>

 <mx:HBox id="progressContainer" width="100%"
 visible="{_applicationData.downloadProgress > 0}"
 includeInLayout="{progressContainer.visible}">
 <mx:Label text="download progress" />
 <mx:HSlider id="progressIndicator" enabled="false"
 width="100%" minimum="0" maximum="1"
 value="{_applicationData.downloadProgress}" />
 </mx:HBox>
 <mx:HBox>
 <mx:Button id="playPauseButton" label="Pause"
 click="togglePlayback();" />
 <mx:Button id="saveOfflineButton" label="Save Offline"
 visible="{!_applicationData.currentVideo.offline}"
 click="saveOffline();"
 enabled="{!(_applicationData.downloadProgress > 0)}" />
 <mx:Button label="View On YouTube"
 visible="{_applicationData.online}"
 click="viewOnYouTube();" />

Launch HTML
window

B

Pause videoC

Add buttonD

279Adding HTML to AirTube
 </mx:HBox>
 </mx:VBox>
</mx:Window>

This new code adds a button D that calls viewOnYouTube() when clicked. When the
user clicks the button, we first call the launchHTMLWindow() method of the application
instance B, passing it the URL to the YouTube page that’s stored in the AirTubeVideo
object for the current video. And for good measure, we also pause the video C.

 With the new changes, the application might look something like what you see in
figure 7.9.

 And with that, you now have a nearly complete AirTube application. All we have
left to do with the application is enable the user to double-click on .atv files to launch
them in AirTube, which we’ll see in the next chapter.

Figure 7.9 Use the new button in the video window to launch the corresponding HTML page.

280 CHAPTER 7 HTML in AIR
7.8 Summary
In this chapter, you’ve taken a whirlwind tour of all sorts of details for working with
HTML in AIR. We started out by looking at the basics: how can you load and render
HTML content within a Flash or Flex-based AIR application. We saw how to do that
using the HTMLLoader class or the HTML component. Next we learned how to control
how the AIR application loads and manages HTML content, including things such as
caching content and handling authentication challenges from a server. We also
looked at the broad topic of ActionScript-JavaScript cross-scripting, and you learned
not only how to control JavaScript and HTML elements from ActionScript, but how to
target ActionScript elements from JavaScript. Then, before closing the chapter with
the additions to the AirTube application, we also looked at security issues related to
HTML in AIR.

 This chapter marks a real milestone in this book. This is the last chapter dedicated
solely to adding new behavior to AIR applications. In the next chapter, we’ll focus on
tying together everything you’ve learned thus far and bundling it into a deployable
application. Then we’ll look at strategies for deploying the application and updating it
when necessary.

Distributing
and updating

AIR applications
You’ve now learned a tremendous amount about Adobe AIR. With what you have
learned in the preceding chapters, you’ve likely already built many applications
(such as AirTube), or at least you have ideas for a few great applications. Whatever
the current state of those applications, whether complete or still in the idea stages,
at some point you’re going to face the following questions:

This chapter covers
■ Understanding how to distribute applications
■ Creating AIR application badges
■ Updating applications
■ Handling various application invocation

methods
281

282 CHAPTER 8 Distributing and updating AIR applications
■ How can you best distribute the application to users?
■ What is the best way for users to install the application?
■ How can you make sure users are running the latest version of the application?
■ How can you deploy updates?
■ What are the various ways in which a user can run an AIR application?

In this chapter, we’re going to look at each of these questions in more detail. We’ll start
by looking at how you can best distribute applications and allow users to install them.

8.1 Distributing applications
All AIR applications must be installed by the user on her system. That means that all
users must download the .air file for the application and run it. There are two basic
ways in which this can happen. One way is the simple route of providing access for
users to directly download the .air file. You can provide instructions such that users
know to download the .air file and double-click on it to install it once it’s downloaded.
This system is absolutely appropriate for intermediate to advanced computer users,
because they’re not likely to be easily confused. But for users who aren’t necessarily
familiar with AIR, this simple route may not be the most appropriate. Consider that, in
order for this simpler approach to work, the user must already have the AIR runtime
installed on her computer. If she doesn’t, she may be confused as to why double-
clicking the .air file does nothing or has unexpected results.

 A second approach to distributing AIR applications requires a little more work on
your part but provides a better user experience. This second approach is called seam-
less install, because it automatically detects whether or not the user has the AIR run-
time installed and gives her an opportunity to install it if necessary before installing
the AIR application. Furthermore, with seamless install, the downloading and running
of the .air file is hidden from the user. In this section, we’ll take a look at how to use
the seamless install feature.

8.1.1 Using the default badge

All seamless installs take place from a web page. The
user initiates installation by clicking on what’s known
as a badge. A badge is simply an .swf file that contains
the necessary code to run the installation. As we’ll see
in the next section, you can create your own custom
badges. To start, we’ll look at how you can work with
the default badge that Adobe provides as part of AIR.
You can find the default badge files in the sam-
ples\badge directory within the AIR SDK (located in the
AIK directory within the Flash CS3 installation direc-
tory or in the Flex 3 SDK directory). Figure 8.1 shows
what the default badge looks like with the sample
image provided as part of the AIR SDK.

Figure 8.1 Use a badge such as
the default one shown here to
allow users to seamlessly install
AIR applications.

283Distributing applications
 The primary file you’ll need is badge.swf. This is the file that contains all the neces-
sary code for running a seamless install. You can use badge.swf to run an installation
of any AIR application because it’s designed to allow you to pass it values via FlashVars.
The variables that you can pass it in this way are as follows:

■ appname—The name of the AIR application this badge should allow users to
install. This is the name that the badge will display if the user needs to install
the AIR runtime.

■ appurl—The absolute URL to the .air file.
■ airversion—The version of the AIR runtime required by the application. For

AIR 1.0, this value should always be the string 1.0.
■ imageurl—The URL of an image file that the badge should load and display.
■ buttoncolor—The default color of the button is black, but you can specify a

color to use. You can specify the value using a hexadecimal string such as FF00FF.
■ messagecolor—The default color of the message that appears below the button

is black. You can specify a color to use if you prefer. Use a hexadecimal string
such as FF00FF.

Of all these variables, just two are mandatory: appurl and airversion. The rest have
default values.

 Although you can use the HTML and JavaScript samples provided by Adobe along-
side the default badge to embed the badge in an HTML page, we strongly recommend
you use SWFObject to embed the .swf in an HTML page and set the FlashVars variables.
If you’re not already familiar with SWFObject, you can learn more about it and down-
load everything you need from http://code.google.com/p/swfobject/. The following
HTML/JavaScript code shows how you can embed badge.swf in an HTML page using
SWFObject, specifying appurl, airversion, buttoncolor, and imageurl:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

➥"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en">
 <head>
 <title>AIR Application</title>
 <meta http-equiv="Content-Type" content="text/html;

 ➥charset=iso-8859-1" />

 <script type="text/javascript" src="swfobject.js"></script>

 <script type="text/javascript">
 var flashvars = new Object();
 flashvars.appurl =

 ➥"http://www.example.com/air/applications/example.air";
 flashvars.airversion = "1.0";
 flashvars.buttoncolor = "FF00FF";
 flashvars.imageurl = "image.jpg";
 swfobject.embedSWF("badge.swf", "badgeDiv", "217", "180",

 ➥"9.0.0", null, flashvars);
 </script>

 </head>

http://code.google.com/p/swfobject/
http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd
http://www.w3.org/1999/xhtml
http://www.example.com/air/applications/example.air

284 CHAPTER 8 Distributing and updating AIR applications
 <body>
 <div id="badgeDiv">
 <p>Alternative content</p>
 </div>
 </body>
</html>

The result of this code might look something like fig-
ure 8.2.

 That is all that’s necessary to enable seamless install
for an AIR application. You can deploy the web page
and badge.swf to a web site, and users will be able to
install your AIR application without any advanced
knowledge of AIR. The process is as follows:

1 The user visits the web site and clicks on the
badge.

2 The badge detects whether the user has the nec-
essary AIR runtime. If the correct runtime is
installed, the user is automatically taken to
step 4. Otherwise, he is notified that he needs to install the AIR runtime and is
given the opportunity to install the runtime by clicking a button, as shown in
figure 8.3.

3 If the user clicks the button to install the runtime, that occurs without the user
having to navigate away from the badge. Figure 8.4 shows what this looks like.
When the installation is complete, the user is taken automatically to step 4.

4 The .air file is downloaded and run automatically, without requiring interaction
from the user until the installer has successfully launched. At that point, the
user is taken through a wizard of steps requiring that he accept default values
(such as installation location) or specify custom values.

5 Once the user steps through the wizard, the application is successfully installed.

Figure 8.2 You can customize
the appearance of the default
badge.

Figure 8.3 The user is given the
opportunity to install the AIR
runtime if it’s not already
available on the system.

Figure 8.4 When the user
selects to install the runtime,
he will see a dialog showing
download and installation
progress.

285Distributing applications
We’ve just seen how to customize and use the default badge. Next we’ll look at how
you can create an entirely custom badge.

8.1.2 Creating a custom badge

The default badge will work for all AIR applications, and it allows for a degree of cus-
tomization in appearance, making it useful for many cases. But there will inevitably be
times when you want or need to completely customize a badge to the point where you
must build the badge from scratch. In this section, we’ll look at how badges work so
that you can build your own badge if necessary.

 All badges must load and rely upon an external .swf file that’s hosted by Adobe on
its web site. The URL to this .swf file is http://airdownload.adobe.com/air/browser-
api/air.swf. This file contains several ActionScript methods that a badge needs to do
its job. In order to call these methods, the loading .swf must load the external .swf
into the same ApplicationDomain. To do this, you must create a LoaderContext
object specifying the ApplicationDomain.currentDomain as the value of its applica-
tionDomain property, and you must pass that LoaderContext object to the load()
method of the Loader object used to load the external .swf. That may sound rather
confusing. It’s not confusing in practice though. All you need is something that looks
like the following:

_loader = new Loader();
var context:LoaderContext = new LoaderContext();
context.applicationDomain = ApplicationDomain.currentDomain;
_loader.contentLoaderInfo.addEventListener(Event.INIT, initHandler);
_loader.load(new URLRequest("http://airdownload.adobe.com/air/

➥browserapi/air.swf"), context);

Once the init event occurs, the methods of the external .swf become available, and
you can call them from the content property of the Loader object. Those methods are
as follows:

■ getStatus()—This method simply returns a string value of available,
unavailable, or installed. A value of available means the AIR runtime is
available for the operating system, though it’s not currently installed. A value of
unavailable means the AIR runtime isn’t available for the operating system. A
value of installed means the AIR runtime is currently installed.

■ getApplicationVersion()—This method returns the version of a specific AIR
application that’s currently installed on the system. The method requires three
parameters: the application ID and publisher ID for the AIR application you
want to test for, and a function reference to use as a callback. Because the
method works asynchronously, it requires the callback function. When the
result is returned, the callback gets called and passed one parameter indicating
the version of the application that’s currently installed. If no version is currently
installed, the version parameter will be null.

http://airdownload.adobe.com/air/browser-api/air.swf
http://airdownload.adobe.com/air/browser-api/air.swf
http://airdownload.adobe.com/air/browser-api/air.swf
http://airdownload.adobe.com/air/%E2%9E%A5browserapi/air.swf%00%00%00
http://airdownload.adobe.com/air/%E2%9E%A5browserapi/air.swf%00%00%00

286 CHAPTER 8 Distributing and updating AIR applications
NOTE You likely know how to determine the application ID for an AIR applica-
tion. As you’ll recall, you set the application ID in the descriptor file. But
you may be wondering how you can determine the publisher ID, because
you don’t set that in the descriptor file. The publisher ID is created when
you originate an .air file, as adt creates a unique publisher ID for a certif-
icate. Therefore, if you use the same certificate for more than one appli-
cation, each will have the same publisher ID. But how do you retrieve the
publisher ID? You can read it at runtime programmatically using the
NativeApplication.nativeApplication.publisherID property.

■ installApplication()—This method installs an AIR application from an .air
file. It requires two parameters: the URL to the .air file and the AIR runtime ver-
sion that is required. (It must be specified as a string.) AIR installers allow users
to launch the application directly from the installer once they’ve installed it. If
you’d like to pass any parameters to the application when it starts, you may pass
them along as a third parameter to the installApplication() method. This
third parameter can be an array of the values you want to pass to the application
when it starts.

■ launchApplication()—This method launches the AIR application (if it’s
installed). You must pass this method at least two parameters: the application ID
and the publisher ID. You can also specify a third parameter, which is an array of
values to pass to the application when it launches.

NOTE In order to launch the application from the browser, the AIR application
must specify a value of true for the allowBrowserInvocation element in
its descriptor file.

It’s not every day that we need to load an external .swf into the same Application-
Domain. Nor are we likely to easily remember the methods and their parameters from
the air.swf file. Therefore, one of the most convenient ways to work with these meth-
ods is to write a utility class that handles loading the .swf file into the same Applica-
tionDomain and provides an API that’s inspectable by IDEs such as Flex Builder,
providing the opportunity for code hinting. Listing 8.1 shows how you can write such
a utility class, which we’re calling AirBadgeService.

package com.manning.airinaction.utilities {
 import flash.display.Loader;
 import flash.system.LoaderContext;
 import flash.system.ApplicationDomain;
 import flash.events.Event;
 import flash.events.EventDispatcher;
 import flash.net.URLRequest;

 public class AirBadgeService extends EventDispatcher {

 private var _loader:Loader;

Listing 8.1 Using a class such as this simplifies working with air.swf

287Distributing applications
 private var _service:Object;

 public function AirBadgeService() {

 _loader = new Loader();
 var context:LoaderContext = new LoaderContext();
 context.applicationDomain = ApplicationDomain.currentDomain;

 _loader.contentLoaderInfo.addEventListener(Event.INIT,
 initHandler);
 _loader.load(new URLRequest(

 ➥"http://airdownload.adobe.com/air/browserapi/air.swf"),

 ➥context);
 }

 private function initHandler(event:Event):void {
 _service = _loader.content;
 dispatchEvent(new Event(Event.COMPLETE));
 }

 public function getStatus():String {
 return _service.getStatus();
 }

 public function getApplicationVersion(applicationId:String,

 ➥publisherId:String, callback:Function):void {
 _service.getApplicationVersion(applicationId,
 publisherId,
 callback);
 }

 public function installApplication(url:String,
 runtimeVersion:String,
 parameters:Array = null):void {
 _service.installApplication(url, runtimeVersion, parameters);
 }

 public function launchApplication(applicationId:String,
 publisherId:String,
 parameters:Array = null):void {
 _service.launchApplication(applicationId,
 publisherId,
 parameters);
 }

 }
}

Now all you need to do is create an instance of AirBadgeService, listen for the com-
plete event, and then call the methods, as in the following example:

<?xml version="1.0" encoding="utf-8"?>
<mx:Application xmlns:mx="http://www.adobe.com/2006/mxml" layout="vertical"
 creationComplete="creationCompleteHandler()">
 <mx:Script>
 <![CDATA[
 import com.manning.airinaction.utilities.AirBadgeService;

 private var _badgeService:AirBadgeService;

http://airdownload.adobe.com/air/browserapi/air.swf
http://www.adobe.com/2006/mxml

288 CHAPTER 8 Distributing and updating AIR applications
 private function creationCompleteHandler():void {
 _badgeService = new AirBadgeService();
 _badgeService.addEventListener(Event.COMPLETE,
 completeHandler);
 }

 private function completeHandler(event:Event):void {
 textArea.text = "Detecting AIR runtime: " +

 ➥_badgeService.getStatus();
 }

]]>
 </mx:Script>
 <mx:TextArea id="textArea" />
</mx:Application>

Now you’ve had a chance to see just how simple it can be to distribute AIR applica-
tions. Even though seamless install requires a little work on your part, it’s still easy and
fast. Next we’ll see what AIR provides you to help make sure users are always running
the most updated version of an AIR application.

8.2 Updating applications
There are two basic strategies for updating applications: passive and active. In the pas-
sive approach, an application doesn’t take responsibility for detecting newer versions,
notifying the user, or helping the user to install updates. In the active approach, the
application takes an active role in helping to ensure the user always has the latest ver-
sion. Taking the passive approach requires no extra work on your part as a developer.
If you simply make available new .air files that contain new versions of AIR applica-
tions, users can download them and install them on their own. However, the active
approach requires a little additional effort on your part, and that is what we’ll look at
in this section.

 In order to implement the active updating approach, your application must take
the following steps:

1 Call a service that reports the latest version of the application. This service
should be available on the Web in the form of an AMF, REST, SOAP, or similar
service that your AIR application can call using standard Flash Player network
features.

2 Compare the latest version with the installed version, and determine whether
the user needs to update.

3 If the user needs to update, prompt the user to do so.
4 If the user accepts, download the .air file using techniques described in chapter

3.
5 Use a flash.desktop.Updater object to run the .air file.

Steps 1 through 4 are all either outside the scope of this book (as they’re basic Flash
or Flex skills) or are mentioned elsewhere in this book. Only step 5 concerns us right

289Updating applications
now. We haven’t previously mentioned the Updater class, and we’ll now go into the
details of what it is and how you can use it.

 The Updater class has just one responsibility: updating an AIR application. To use
an Updater object, you need only create an instance and call the update() method,
passing it two parameters: the reference to the .air file (which must be saved locally on
the computer) and a string specifying the version of the AIR application. The follow-
ing is an example that creates a reference to an .air file that resides locally and tells
the Updater object to run the update:

var airFile:File = File.desktopDirectory.resolvePath(

➥"ExampleApplication_v2.air");
var updater:Updater = new Updater();
updater.update(airFile, "2.0");

This code assumes that ExampleApplication_v2.air already exists on the user’s desk-
top, and that in its descriptor file it specifies its version as 2.0. When the updater runs,
it takes the following steps:

1 It closes the current version of the AIR application that’s running.
2 It verifies that the application ID and the publisher ID of the .air file are the

same as the version that was just running.
3 It verifies that the version passed to the update() method is the same as the ver-

sion specified in the .air file.
4 It installs the updated version (unless any of the previous steps failed).
5 It launches the new version.

If any of the steps fail (for example, the version strings are different), the old version
is reopened instead of installing and running the new version.

 Next we’ll build an example application that is updatable. This application consists
of little more than a text area component, a button, and the code to test for whether
updating is necessary and to run the update if the user selects the option. Figure 8.5
shows what the application looks like.

Figure 8.5 The updatable
application displays a message to
the user and allows him to update
the application if a newer version
is available.

290 CHAPTER 8 Distributing and updating AIR applications
To build this application, complete the following steps:

1 Create a file called latestversion.txt, and save the following text to the file:

2.0,http://www.yourserver.com/UpdatableApplication_v2.air

You’ll use this file to determine the latest available version of the application. In
this case, we’re specifying that the latest version is 2.0 and the location of the
.air file is UpdatableApplication_v2.air, placed on your server. This assumes that
you’re replacing www.yourserver.com with a domain name to which you have
access. The reason for specifying version 2.0 is that it’s greater than the version
of the application we’ll first create, install, and run.

2 Upload the latestversion.txt file to a web server, and note the URL from which it
can be retrieved.

3 Create a new AIR project called UpdatableApplication.
4 Create a descriptor file for the application, as shown in listing 8.2. Note that the

version is 1.0.

<application xmlns="http://ns.adobe.com/air/application/1.0">
 <id>com.manning.airinaction.UpdatableApplication</id>
 <filename>UpdatableApplication</filename>
 <name>UpdatableApplication</name>
 <version>1.0</version>
 <initialWindow>
 <content>UpdatableApplication.swf</content>
 </initialWindow>
</application>

5 Create the application MXML file, name it UpdatableApplication.mxml, and
add the code shown in listing 8.3. This code merely sets up the basic structure
of the application with a text area component and a button. We’ll fill in the rest
of the code in subsequent steps.

<?xml version="1.0" encoding="utf-8"?>
<mx:WindowedApplication xmlns:mx="http://www.adobe.com/2006/mxml"
 layout="absolute" creationComplete="creationCompleteHandler()">
 <mx:Script>
 <![CDATA[

 private var _latestVersion:String;
 private var _airFileUrl:String;

 private function creationCompleteHandler():void {
 }

 private function updateApplication():void {
 }

]]>

Listing 8.2 The descriptor file for UpdatableApplication

Listing 8.3 The main application MXML file for the updatable application

http://www.yourserver.com/UpdatableApplication_v2.air
http://www.yourserver.com
http://ns.adobe.com/air/application/1.0
http://www.adobe.com/2006/mxml

291Updating applications
 </mx:Script>
 <mx:VBox width="100%" height="100%">
 <mx:TextArea id="textArea" width="100%" height="80%" />
 <mx:Button id="updateButton" label="Update"
 enabled="false" click="updateApplication();" />
 </mx:VBox>
</mx:WindowedApplication>

When the application starts, we want it to load the latestversion.txt file from the
server, parse the data, and determine whether the current version of the appli-
cation is the same as the latest version. Listing 8.4 shows the code that does this.

<?xml version="1.0" encoding="utf-8"?>
<mx:WindowedApplication xmlns:mx="http://www.adobe.com/2006/mxml"
 layout="absolute" creationComplete="creationCompleteHandler()">
 <mx:Script>
 <![CDATA[

 private var _latestVersion:String;
 private var _airFileUrl:String;

 private function creationCompleteHandler():void {
 var loader:URLLoader = new URLLoader();
 loader.addEventListener(Event.COMPLETE, completeHandler);
 loader.load(new URLRequest(

 ➥"http://www.yourserver.com/latestversion.txt"));
 }

 private function completeHandler(event:Event):void {
 var loader:URLLoader = event.target as URLLoader;
 _latestVersion = loader.data.split(",")[0];
 var descriptor:XML =

 ➥NativeApplication.nativeApplication.applicationDescriptor;
 var air:Namespace = descriptor.namespaceDeclarations()[0];
 var currentVersion:String = descriptor.air::version;
 if(_latestVersion != currentVersion) {
 _airFileUrl = loader.data.split(",")[1];
 textArea.text = "You are running version " +

 ➥currentVersion + ". However, version " +

 ➥_latestVersion +

 ➥" is available. Click the button to update.";
 updateButton.enabled = true;
 }
 else {
 textArea.text =

 ➥"You appear to be running the latest version";
 }
 }

 private function updateApplication():void {
 }

]]>
 </mx:Script>

Listing 8.4 Loading the data from the server and parsing it

Load
latestversion.txt

B

Parse
version
string

C

D

Test if
versions
are equal

E
Parse .air
file URL

http://www.adobe.com/2006/mxml
http://www.yourserver.com/latestversion.txt

292 CHAPTER 8 Distributing and updating AIR applications
 <mx:VBox width="100%" height="100%">
 <mx:TextArea id="textArea" width="100%" height="80%" />
 <mx:Button id="updateButton" label="Update" enabled="false"
 click="updateApplication();" />
 </mx:VBox>
</mx:WindowedApplication>

With this new code, we load the text from latestversion.txt B and parse the ver-
sion string from it C. We also use NativeApplication.nativeApplica-
tion.applicationDescriptor to retrieve the version from the descriptor for
the current application. If the two versions are different D, we parse the URL
for the .air file E and enable the Update button.

6 Add the code that allows the user to download the update to the application.
Listing 8.5 shows this new code.

<?xml version="1.0" encoding="utf-8"?>
<mx:WindowedApplication xmlns:mx="http://www.adobe.com/2006/mxml"
 layout="absolute" creationComplete="creationCompleteHandler()">
 <mx:Script>
 <![CDATA[

 private var _latestVersion:String;
 private var _airFileUrl:String;

 private function creationCompleteHandler():void {
 var loader:URLLoader = new URLLoader();
 loader.addEventListener(Event.COMPLETE, completeHandler);
 loader.load(new URLRequest("http://
www.rightactionscript.com/latestversion.txt"));
 }

 private function completeHandler(event:Event):void {
 var loader:URLLoader = event.target as URLLoader;
 _latestVersion = loader.data.split(",")[0];
 var descriptor:XML =
NativeApplication.nativeApplication.applicationDescriptor;
 var air:Namespace = descriptor.namespaceDeclarations()[0];
 var currentVersion:String = descriptor.air::version;
 if(_latestVersion != currentVersion) {
 _airFileUrl = loader.data.split(",")[1];
 textArea.text = "You are running version " +

 ➥currentVersion + ". However, version " + _latestVersion +

 ➥" is available. Click the button to update.";
 updateButton.enabled = true;
 }
 else {
 textArea.text =

 ➥"You appear to be running the latest version";
 }
 }

 private function updateApplication():void {
 var stream:URLStream = new URLStream();

Listing 8.5 Downloading the .air file using a URLStream object

http://www.adobe.com/2006/mxml
http://www.rightactionscript.com/latestversion.txt
http://www.rightactionscript.com/latestversion.txt

293Updating applications
 stream.addEventListener(ProgressEvent.PROGRESS,
 progressHandler);
 stream.addEventListener(Event.COMPLETE,
 downloadCompleteHandler);
 stream.load(new URLRequest(_airFileUrl));
 textArea.text = "Downloading update";
 }

 private function progressHandler(event:ProgressEvent):void {
 }

 private function downloadCompleteHandler(event:Event):void {
 }

]]>
 </mx:Script>
 <mx:VBox width="100%" height="100%">
 <mx:TextArea id="textArea" width="100%" height="80%" />
 <mx:Button id="updateButton" label="Update" enabled="false"
 click="updateApplication();" />
 </mx:VBox>
</mx:WindowedApplication>

This code uses a URLStream object to download the .air file. We also add event
listeners to handle the progress and complete events.

7 Add the code that handles the progress and complete events. Listing 8.6 shows
this code.

<?xml version="1.0" encoding="utf-8"?>
<mx:WindowedApplication xmlns:mx="http://www.adobe.com/2006/mxml"
 layout="absolute" creationComplete="creationCompleteHandler()">
 <mx:Script>
 <![CDATA[

 private var _latestVersion:String;
 private var _airFileUrl:String;

 private function creationCompleteHandler():void {
 var loader:URLLoader = new URLLoader();
 loader.addEventListener(Event.COMPLETE, completeHandler);
 loader.load(new URLRequest("http://
www.rightactionscript.com/latestversion.txt"));
 }

 private function completeHandler(event:Event):void {
 var loader:URLLoader = event.target as URLLoader;
 _latestVersion = loader.data.split(",")[0];
 var descriptor:XML =
NativeApplication.nativeApplication.applicationDescriptor;
 var air:Namespace = descriptor.namespaceDeclarations()[0];
 var currentVersion:String = descriptor.air::version;
 if(_latestVersion != currentVersion) {
 _airFileUrl = loader.data.split(",")[1];
 textArea.text = "You are running version " +

Listing 8.6 Displaying progress to the user and running the update when available

http://www.adobe.com/2006/mxml
http://www.rightactionscript.com/latestversion.txt
http://www.rightactionscript.com/latestversion.txt

294 CHAPTER 8 Distributing and updating AIR applications
 ➥currentVersion + ". However, version " + _latestVersion +

 ➥" is available. Click the button to update.";
 updateButton.enabled = true;
 }
 else {
 textArea.text =

 ➥"You appear to be running the latest version";
 }
 }

 private function updateApplication():void {
 var stream:URLStream = new URLStream();
 stream.addEventListener(ProgressEvent.PROGRESS,
 progressHandler);
 stream.addEventListener(Event.COMPLETE,
 downloadCompleteHandler);
 stream.load(new URLRequest(_airFileUrl));
 textArea.text = "Downloading update";
 }

 private function progressHandler(event:ProgressEvent):void {
 textArea.text = "Downloading update " +

 ➥event.bytesLoaded + " of " + event.bytesTotal + " bytes";
 }

 private function downloadCompleteHandler(event:Event):void {
 textArea.text = "Download complete";
 var urlStream:URLStream = event.target as URLStream;
 var file:File =

 ➥File.applicationStorageDirectory.resolvePath(

 ➥"newVersion.air");
 var fileStream:FileStream = new FileStream();
 fileStream.open(file, FileMode.WRITE);
 var bytes:ByteArray = new ByteArray();
 urlStream.readBytes(bytes);
 fileStream.writeBytes(bytes);
 fileStream.close();
 var updater:Updater = new Updater();
 updater.update(file, _latestVersion);
 }

]]>
 </mx:Script>
 <mx:VBox width="100%" height="100%">
 <mx:TextArea id="textArea" width="100%" height="80%" />
 <mx:Button id="updateButton" label="Update" enabled="false"
 click="updateApplication();" />
 </mx:VBox>
</mx:WindowedApplication>

This new code displays progress to the user, and when the file is available, we
use a File and a FileStream object to write it to disk. Then we use an Updater
object to update to the latest version.

8 Create the .air file for UpdatableApplication, and install the application on
your system. When you run the application, it should notify you that you’re

295Launching AIR applications
currently running version 1.0, but version 2.0 is available, and it should give you
the option to download and install the update. Don’t try to update, as we
haven’t yet created the updated version.

9 Create a new AIR project called UpdatableApplication_v2.
10 Create a descriptor file for this new application, as shown in listing 8.7. You’ll

notice that this descriptor file is exactly the same as the descriptor file for ver-
sion 1.0 except that the version string is different. It’s important that the ID of
the application be the same.

<application xmlns="http://ns.adobe.com/air/application/1.0">
 <id>com.manning.airinaction.UpdatableApplication</id>
 <filename>UpdatableApplication</filename>
 <name>UpdatableApplication</name>
 <version>2.0</version>
 <initialWindow>
 <content>UpdatableApplication.swf</content>
 </initialWindow>
</application>

11 Create UpdatableApplication_v2.mxml as the application file, and copy the
same code from UpdatableApplication.mxml. Although in most cases updates
to applications should be different in some way, in this case we’re only con-
cerned with verifying that the update actually works, not adding new features.

12 Create the .air file for UpdatableApplication_v2. Use the same certificate that
you used to create UpdatableApplication, because the publisher ID must be the
same in the new version.

13 Upload the .air file to your web server to the location specified in latestver-
sion.txt.

14 Run the version 1.0 of UpdatableApplication that’s already installed on your sys-
tem, and when prompted, click the Update button. You’ll see that the file is
downloading, and then you’ll see the update run and the new version start.

We’ve just seen how to build active updating into an AIR application. Even if a user
runs an update from outside the application itself (for example, running the update
from a badge on a web page), you can still handle the update from the current version
that’s installed on the system, as we’ll see in the next section.

8.3 Launching AIR applications
Launching an AIR application may seem a rather remedial topic. You’re probably
thinking that this surely couldn’t be a subject worthy of much mention in a book such
as this. After all, isn’t launching an AIR application little more than double-clicking on
an icon, selecting an option from a menu, or clicking a badge on a web page? Yes,
you’re correct; launching an AIR application is that simple. What we’re more inter-
ested in is how you can build an AIR application that can respond based on how it was

Listing 8.7 The descriptor file for UpdatableApplication_v2

http://ns.adobe.com/air/application/1.0

296 CHAPTER 8 Distributing and updating AIR applications
launched. For example, if a user launches an AIR application by double-clicking on a
file of an associated type, you may want the AIR application to automatically open that
file or otherwise read the contents of the file. In this section, we’ll look at how AIR
applications can know how they were launched.

8.3.1 Handling invoke events

When an AIR application launches, the NativeApplication (and WindowedApplica-
tion) dispatches an invoke event. When a user launches an application by double-
clicking on the application icon, the invoke event doesn’t contain much information.
But in other circumstances the invoke event contains additional information that the
AIR application can use. Notably, if the user launches an AIR application by double-
clicking on a file of an associated type, the invoke event contains information about
the file that the user clicked: a File object pointing to the file. You can use that infor-
mation as is appropriate. For example, if the user launches an application by double-
clicking on a file, it may be appropriate to read the contents of that file into the appli-
cation when it starts.

 The invoke event is of type flash.events.InvokeEvent, and the additional infor-
mation, when available, is stored in the object’s arguments property. The arguments
property is an array of values. If the user has launched the application by clicking on a
file, the file path will be stored in a File object as an element of the arguments prop-
erty of the associated invoke event. In the next section, we’ll see how to use an invoke
event to open a file in the AirTube application.

8.3.2 Launching AirTube with a file

As you’ll recall, way back in chapter 4 we enabled drag-and-drop behavior in AirTube
that allowed a user to drag a video into the file system (for example, onto the desktop)
and save an .atv file, which is a custom file format to which we save the ID of the video.
Now we’re going to allow the user to double-click on an .atv file to launch AirTube
and open the video file.

1 Open the descriptor file for AirTube and define it as shown in listing 8.8.
Notice that we’re creating a file type association with files that have the file
extension .flv.

<?xml version="1.0" encoding="UTF-8"?>
<application xmlns="http://ns.adobe.com/air/application/1.0">
 <id>AirTube</id>
 <filename>AirTube</filename>
 <name>AirTube</name>
 <version>1.0</version>
 <initialWindow>
 <content>AirTube.swf</content>
 </initialWindow>
 <fileTypes>

Listing 8.8 Setting the file type association for AirTube

http://ns.adobe.com/air/application/1.0

297Launching AIR applications
 <fileType>
 <name>AirTubeVideo</name>
 <extension>atv</extension>
 </fileType>
 </fileTypes>
</application>

2 Update AirTubeService.as by adding a public method called getVideoById().
This method searches offline videos by ID. Listing 8.9 shows this method, which
you should add to the AirTubeService class.

public function getVideoById(id:String):void {
 var sql:SQLStatement = new SQLStatement();
 sql.addEventListener(SQLEvent.RESULT, getOfflineVideosResultHandler);
 sql.sqlConnection = _connection;
 sql.itemClass = Video;
 sql.text = "SELECT * FROM videos WHERE id = @id";
 sql.parameters["@id"] = id;
 sql.execute();
}

3 Update the code in AirTube.mxml. First we’re going to modify the creation-
CompleteHandler() method by adding the code to set AirTube as the default
application for .atv files. Listing 8.10 shows this new code.

 private function creationCompleteHandler():void {
 _service = AirTubeService.getInstance();
 _service.key = "AhWz9YtBmWM";
 _videoWindow = new VideoWindow();
 _htmlWindow = new HTMLWindow();
 _instance = this;
 registerClassAlias("com.manning.airtube.data.AirTubeVideo",

 ➥AirTubeVideo);
 if(!NativeApplication.nativeApplication.

 ➥isSetAsDefaultApplication("atv")) {
 NativeApplication.nativeApplication.

 ➥setAsDefaultApplication("atv");
 }
 }

4 Add an invoke attribute to the WindowedApplication tag, telling the AIR appli-
cation to call a method named invokeHandler() when the invoke event
occurs:

<mx:WindowedApplication xmlns:mx="http://www.adobe.com/2006/mxml"
 layout="absolute"
 creationComplete="creationCompleteHandler();" width="800"
height="600"
 closing="closingHandler();" invoke="invokeHandler(event);">

Listing 8.9 Adding the getVideoById() method to AirTubeService

Listing 8.10 Registering AirTube as the default application for .atv files

http://www.adobe.com/2006/mxml

298 CHAPTER 8 Distributing and updating AIR applications
5 Define invokeHandler(). This method accepts an InvokeEvent parameter. We
determine whether the object’s arguments property has any elements. If it does,
we next determine whether the first element is the path to a file with a file
extension of .atv. If it is, we read from the file and call getVideoById() to
retrieve the video and display it in the results. Note that this assumes that the
file is saved locally. Listing 8.11 shows the new invokeHandler() method we’re
adding to the AirTube.mxml.

 private function invokeHandler(event:InvokeEvent):void {
 if(event.arguments.length > 0) {
 var file:File = new File(event.arguments[0]);
 var fileName:Array = file.name.split(".");
 if(fileName[1] != undefined) {
 if(fileName[1] == "atv") {
 var reader:FileStream = new FileStream();
 reader.open(file, FileMode.READ);
 reader.position = 0;
 var id:String = reader.readUTF();
 _service.getVideoById(id);
 }
 }
 }
 }

6 Export the .air file for AirTube, install it, and run it. Test the new functionality
for yourself.

We’ve now seen how to listen for invoke events, and we’ve even used this to add new
behavior to AirTube. Next we’ll look at how to handle similar invoke events from a
browser.

8.3.3 Listening for browser events

We just learned that, when an application starts or when the user triggers the applica-
tion by double-clicking on a file of an associated file type, an AIR application dis-
patches an invoke event. Similarly, when the user launches an application from the
browser, the application dispatches a browserInvoke event. Whereas the invoke event
is of type InvokeEvent, browserInvoke is of type flash.events.BrowserInvo-
keEvent. These events, like invoke events, contain an arguments property that’s an
array of parameters passed to the application. In the case of browserInvoke events,
the parameters are any values passed along via the third parameter of the launchAp-
plication() method.

 Unlike invoke events, you can’t register for browserInvoke events directly from a
WindowedApplication. You must register for events directly from the NativeApplica-
tion instance, regardless of whether you’re building a Flash- or Flex-based applica-
tion. The following shows how to register for the browserInvoke event:

Listing 8.11 The invokeHandler() method in AirTube.mxml

299Launching AIR applications
NativeApplication.nativeApplication.addEventListener(

➥BrowserInvokeEvent.BROWSER_INVOKE, browserInvokeHandler);

Perhaps the easiest way to understand the browserInvoke event is to see it working via
an example. We’ll next build a simple application that demonstrates how this event
works:

1 Create a new AIR project called BrowserInvoke.
2 Create a main application MXML file called BrowserInvoke.mxml, and add the

code from listing 8.12 to the file. This code displays the application ID and the
publisher ID when it starts. When it receives a browserInvoke event, it displays
all the parameters passed to it.

<?xml version="1.0" encoding="utf-8"?>
<mx:WindowedApplication xmlns:mx="http://www.adobe.com/2006/mxml"
 layout="absolute" creationComplete="creationCompleteHandler()">
 <mx:Script>
 <![CDATA[

 private function creationCompleteHandler():void {
 textArea.text = "application ID: " +

 ➥NativeApplication.nativeApplication.applicationID;
 textArea.text += "\npublisher ID: " +

 ➥NativeApplication.nativeApplication.publisherID;
 NativeApplication.nativeApplication.addEventListener(

 ➥BrowserInvokeEvent.BROWSER_INVOKE, browserInvokeHandler);
 }

 private function browserInvokeHandler(

 ➥event:BrowserInvokeEvent):void {
 textArea.text += "\n* arguments: " +

 ➥event.arguments.length;
 for(var i:Number = 0; i < event.arguments.length; i++) {
 textArea.text += "\n\t" + event.arguments[i];
 }
 }

]]>
 </mx:Script>
 <mx:TextArea width="100%" height="100%" id="textArea" />
</mx:WindowedApplication>

3 Create a descriptor file with the value shown in listing 8.13. Note that allow-
BrowserInvocation is set to true.

<?xml version="1.0" encoding="UTF-8"?>
<application xmlns="http://ns.adobe.com/air/application/1.0">
 <id>com.manning.airinaction.BrowserInvoke</id>
 <filename>BrowserInvoke</filename>
 <name>Initialize</name>

Listing 8.12 The main application file displays the parameters passed to it

Listing 8.13 Set allowBrowserInvocation to true in the descriptor file

http://www.adobe.com/2006/mxml
http://ns.adobe.com/air/application/1.0

300 CHAPTER 8 Distributing and updating AIR applications
 <version>1.0</version>
 <initialWindow>
 <content>BrowserInvoke.swf</content>
 </initialWindow>
 <allowBrowserInvocation>true</allowBrowserInvocation>
</application>

4 Export the .air file and install it.
5 Run the application and copy the publisher ID. You’ll need this in order to

launch the application from the browser.
6 Create a new web project called LaunchFromBrowser.
7 Create a main application MXML document called LaunchFromBrowser.mxml

and add the code from listing 8.14 to it. This code uses AirBadgeService from
listing 8.1.

<?xml version="1.0" encoding="utf-8"?>
<mx:Application xmlns:mx="http://www.adobe.com/2006/mxml"
layout="vertical"
 creationComplete="creationCompleteHandler()">
 <mx:Script>
 <![CDATA[
 import com.manning.airinaction.utilities.AirBadgeService;

 private var _badgeService:AirBadgeService;

 private function creationCompleteHandler():void {
 _badgeService = new AirBadgeService();
 _badgeService.addEventListener(Event.COMPLETE,
 completeHandler);
 }

 private function completeHandler(event:Event):void {
 if(_badgeService.getStatus() == "installed") {
 _badgeService.getApplicationVersion(

 ➥"com.manning.airinaction.BrowserInvoke",

 ➥" YourPublisherID ", versionHandler);
 launchButton.enabled = true;
 }
 }

 private function versionHandler(version:String):void {
 textArea.text = "version " + version + " installed";
 }

 private function launchApplication():void {
 _badgeService.launchApplication(

 ➥"com.manning.airinaction.BrowserInvoke",

 ➥"YourPublisherID", ["a", "b", "c", "d"]);
 }

]]>
 </mx:Script>
 <mx:TextArea id="textArea" />

Listing 8.14 Using a web application to launch the AIR application

BIf AIR is
installed

Get
application
version

C Launch
application

http://www.adobe.com/2006/mxml

301Summary
 <mx:Button id="launchButton" label="Launch"
 click="launchApplication();" enabled="false" />
</mx:Application>

In this code, we test whether AIR is installed B, and if it is, we enable the button
allowing the user to launch the application. (We also display the installed ver-
sion number for good measure.) When the user clicks the button, we call
launchApplication() C and we pass the application four parameters: a, b, c,
and d. Note that you must replace YourPublisherID in two places in the code.
Use the publisher ID you copied when you ran BrowserInvoke.

8 Close BrowserInvoke if it’s still running. Run LaunchFromBrowser in a browser
and click the Launch button. You’ll see BrowserInvoke launch, and it’ll display
the four parameters you passed it from the browser.

Now you know not only how to launch an application in the standard way by double-
clicking the application icon or selecting a menu item, but also two additional ways to
launch applications. You learned how to launch an application using an associated file
type, and you just learned how to launch an application from the browser, passing it
parameters. With that, you’re now an expert on how to launch AIR applications, and
we’re ready to wrap up the book.

8.4 Summary
In this chapter, we learned how to install, update, and launch AIR applications. You
learned that badges are web-based .swf files that allow users to install AIR applications
using seamless install, and you learned several ways to create badges. Then you
learned how to use the Updater class to handle updates to an application. And you
also learned how to handle invoke events triggered both by the user double-clicking
associated file types and by clicking on web-based triggers. You had a chance to apply
some of these concepts in a few examples, including the AirTube application.

 And with that we rounded out our study of AIR. Believe it or not, we’ve just
reached the end of this book. However, as you no doubt know from your own experi-
ence, every ending is really a new beginning. In this case, it may be the end of your
introduction to Adobe AIR, but it’s just the beginning of the possibilities of what you
can build. Please visit this book again whenever you need to review a particular topic,
but don’t be limited by the contents of this book. We’ve shown you only the tip of the
iceberg. As far as AIR is concerned, you’re limited only by your imagination. We wish
you all the best in your endeavors.

index
Symbols

_proxied property 81
.air files 3, 5, 282
.htaccess file 247
* wildcard 199

A

absolute referencing 102
compared to relative 101

acceptDragDrop() method 180
accessing full paths 103–104
Acrobat Reader 8.1 244
ActionScript 34

applications 35–43
creating applications with 35
creating windows with 35–37
handling JavaScript

events 260–261
objects 34
opening windows with 37
scrolling content 249–251
and windows 35–43

ActionScript classes 41
ActionScript elements, referenc-

ing from JavaScript 269–
273

activate() method 41, 55
addEventListener()

method 260
adding

content to windows 38
context menus 74
custom close mechanisms 57

elements to menus 68
HTML window 89–93
pop-up menus 74
search behavior 87
to tables 196
video window 89–93

addItem() method 72, 218
Address class 172
address creator application 172
Address data type 172
Address object 175
Address property 176
address viewer application 175
adjusting

alignment 67
scale mode 67

adl 25
adt 25
affinities 194

INTEGER 194
NONE 194
NUMERIC 194
REAL 194
TEXT 194

AIR applications
building with Flex SDK 24–28
distributing 282–288
dragging into 185–187
dragging out of 184
installing 282
launching 295–301
packaging with Flex SDK 25–

28
running 5–6
seamless install 282
security 273–276

testing with Flash 21
testing with Flex Builder 17
testing with Flex SDK 24
transferring data between 160
transferring data to non-AIR

applications 160
transferring data within 160
updating 288–295

AIR projects
creating in Flex Builder 17
creating with Flex SDK 24
new 16–17
new project in Flash 20
new project with Flex SDK 24

AIR, and HTML 241
AIR-specific APIs 4
AirTube

building data model 78–81
main window 86–89
saving offline 226–230
searching offline 226–240

AirTube application 75–93
adding drag-and-drop to 187–

188
adding HTML 276–279
ApplicationData class 237
data model 78–81
database support 223–230
getting started 77–78
HTML window 89–93
invoke events 296–298
main screen 76
network monitoring 237
offline mode 223
offline saving 226–230
offline searching 226–230
303

INDEX304
AirTube application(continued)
Online button 225–226
opening on double-click 296–

298
overview 76–77
starting 75–93
video screen 77
video window 89–93
writing to files with 148

AirTube.mxml 86
updating 91
with search behavior 87

AirTubeService class 81
saveToOffline() method 150
with proxied service

requests 82
AirTubeVideo class 78–79
airversion variable 283
alerting users 65
aliases 203
align property 40
alignment adjusting 67
alpha blending 12
alwaysInFront property 58
AMF 127, 158

AMF0 128
AMF3 128
deserialization 127
serialization 127, 172

amxmlc 25
AND operator 197
APIs, AIR-specific 4
app scheme 100
application descriptors 10–15
application element 11
application menus 69–73

creating 70
application sandbox 274

and application domain 274
restrictions 274

ApplicationData class 78, 80,
139, 237

downloadProgress
property 149

networkAvailable
property 237

networkStatusHandler()
method 239

offline mode 223
online property 223

ApplicationData object
networkAvailable

property 239
online property 223

applicationDirectory
property 100

ApplicationDomain 270, 285
applications

ActionScript 35–43
address creator 172
address viewer 175
AirTube 75–93, 148
building 9–10
building with Flash 20–24
building with Flex

Builder 15–20
centering 51
copy-and-paste 163
creating with ActionScript 35
creating with Flex 44
desktop 3–4
desktop organizer 115
distributing 282–288
hybrid 261–264
image gallery 185
installing 282
launching on startup 64
managing 63–67
offline mode 233
PlaylistMaker 136
quick-start example 28–31
running 5–6
sometimes-connected 233
SQLTutorial 193
ToDo 211–222
understanding 34–49
updating 288–295

applicationStorageDirectory
property 100

appname variable 283
app-storage scheme 100
appurl variable 283
arrays, openedWindows 56
AS keyword 203
ASC keyword 201
assigning

functions to variables 258
new values to variables 258

asynchronous code 96
canceling 98
directory listings 97, 112–113
when to use 97

asynchronous programming 95
when to use 97

attach() method 222
attributes. See columns
authenticate property 247
authenticity 6–9
AUTOINCREMENT

keyword 195
autoscrolling windows 252

available property 234
avg() function 203

B

Back button 252
back slash 102–103
badges 282–288

air.swf file 285
badge.swf file 283
custom 285–288
default 282–285
detecting runtime 284
required external file 285

begin() method 210
binary data 121, 123–125, 133,

154, 189, 194
BITMAP_FORMAT

constant 158
BitmapData object 168, 183
BitmapData type 159
BLOB storage class 194
blur() method 264
bounds property 52
browseForDirectory()

method 105
browseForOpen() method 105
browseForOpenMultiple()

method 105–106
browseForSave() method 105–

106
browser events 298–301
browserInvoke event 298

arguments property 298
registering from

NativeApplication 298
browsing

for directories 105
for files 105
to save a file 106

buffers, read 129–132
building

AirTube main window 86–89
AirTube service 81–83
applications with Flash 20–24
applications with Flex

SDK 24–28
controllers 140–144
data model class 137–140,

212
hybrid applications 261–264
ToDo application 211–222
user interfaces 144–146

building applications 9–10
with Flash 20–24

INDEX 305
building applications(continued)
with Flex Builder 15–20
with Flex SDK 24–28

buttoncolor variable 283
buttons

Back and Forward 252
close 54–55, 57
Previous and Next 253
Submit 263

ByteArray() class 147
bytesAvailable property 125, 130

C

cacheResponse property 247
canceling asynchronous

operations 98
canonicalize() method 109
case sensitivity 110
centering applications 51
certificates 7–9, 25–26

creating with Flex SDK 25
expiration 26
self-signed 7–9

checked property 69
childSandboxBridge

variable 275
classes

ActionScript 41
Address 172
AirTubeService 81, 150
AirTubeVideo 78–79
ApplicationData 78, 80, 139,

149, 237
basic window 41
ByteArray() 147
Clipboard 156
ClipboardTransferMode 161
custom 270
data model 212
DragManager 178
EncryptedLocalStore 147
ExampleWindow 41
File 97, 99
FileFilter 106
HTMLLoader 242
HTMLPDFCapability 244
NativeApplication 35
NativeDragEvent 178
NativeDragManager 178
NativeWindow 35
NativeWindowResize 61
NotificationType 65
Playlist 137
PlaylistService 140, 143

registering 129
Screen 52
SocketMonitor 233, 235
SQLStatement 205
SQLTransactionLockType

211
storage 194
ToDoItem 212
Updater 289
URLLoader 95, 122
URLMonitor 233
URLRequestDefaults 248
URLStream 122
YouTubeFlvRetriever 84

clear() method 160
clearData() method 160
clearing clipboards 159
click event 263
Clipboard class 156

clear() method 160
clearData() method 160
getData() method 159, 168
hasFormat() method 159
setData() method 157–158
setDataHandler()

method 161
Clipboard constructor 157
Clipboard object 156

generalClipboard
property 157

clipboard property 178
ClipboardFormats

constants 157
BITMAP_FORMAT 158
FILE_LIST_FORMAT 158
HTML_FORMAT 158
TEXT_FORMAT 158
URL_FORMAT 158

clipboards 156–162
AIR-specific 156
clearing 159
copying content 163–168
custom formats 172–176
cutting content to 170–172
data formats 157–158
deferred rendering 161
defining 156
pasting content 168–170
reading from 158
removing data from 159
selecting 162
serialization 160
system clipboard 156, 163
transfer modes 160
transferring data with

156–162

using 156–162
writing to 158

ClipboardTransferMode
class 161

CLONE_ONLY transfer
mode 161

CLONE_PREFERRED transfer
mode 161

close button 54
close() method 72, 264
closeAll() method 72
closing

on application exit 56–57
custom close mechanisms 57
windows 54–57

code
asynchronous 96
synchronous 95

columns 191
commands

CREATE TABLE 194
JavaScript 264–269

commit() method 210
common directories 100
compiler 24
complete event 96, 249
components

creating 213
HTML 244–246
SimpleTextWindow 47
Text 245
ToDoListRenderer 213, 221
window 46–47
WindowedApplication 44

configureVideoForPlayback()
method 85

constants
BITMAP_FORMAT 158
ClipboardFormats 157
CLONE_ONLY 161
CLONE_PREFERRED 161
CREATE 205
CRITICAL 65
DEFERRED 211
ERROR_INSTALLED_READER

_NOT_FOUND 244
ERROR_INSTALLED_READER

_TOO_OLD 244
ERROR_PREFERRED_

READER_TOO_OLD 244
EXCLUSIVE 211
FILE_LIST_FORMAT 158
HTML_FORMAT 158
IMMEDIATE 211
INFORMATIONAL 65

INDEX306
constants(continued)
NATIVE_DRAG_COMPLETE

177
NATIVE_DRAG_DROP 177
NATIVE_DRAG_ENTER 177
NATIVE_DRAG_EXIT 177
NATIVE_DRAG_OVER 177
NATIVE_DRAG_START 177
NATIVE_DRAG_UPDATE

177
ORIGINAL_ONLY 161
ORIGINAL_PREFERRED 161
READ 205
STATUS 234
STATUS_OK 244
TEXT_FORMAT 158
UPDATE 205
URL_FORMAT 158
USER_IDLE 63
USER_PRESENT 63

constructors
Clipboard 157
SQLConnection 205

content
adding to windows 38, 46
adjusting 39
copying to clipboard 163–168
cutting to clipboard 170–172
loading HTML 242
pasting from clipboard 168–

170
PDF 244
scrolling 248–252

contentHeight property 249
contentWidth property 249
context menus 73–74

adding 74
controllers, building 140–144
controlling

HTML caching 247
HTML elements 255–259
HTML loading 246–248
HTTP authentication 247
JavaScript elements 255–259

cookies 248
copy 162–176
copy-and-paste 162–176

running at system level 155
copying content to

clipboard 163–168
copyText() method 165, 171
copyTo() method 118
copyToAsync() method 118
CREATE constant 205
CREATE TABLE 194

createDirectory() method 114
createRootWindow()

method 252
bounds parameter 252
scrollBarsVisible

parameter 252
visible parameter 252
windowInitOptions

parameter 252
createTempDirectory()

method 116
createWindow() method 264–

265
creating

AIR projects in Flash 21
AIR projects in Flex

Builder 17
AIR projects in Flex SDK 24
application menus 70
applications with

ActionScript 35
applications with Flex 44
autoscrolling windows 252
certificates with Flex SDK 25
custom badges 285–288
databases 204–205, 214
directories 113–117
forms 215–216
installers 18–20
installers with Flash 21–24
installers with Flex SDK 25
irregularly shaped

windows 42, 47
menus 68
NativeWindow objects 37
special menu items 69
SQL commands 206
tables 194–196
window components 46
window menus 70
windows with

ActionScript 35–37
windows with Flex 44

creating installers
with Flash 21–24
with Flex Builder 18–20
with Flex SDK 25

currentTarget property 261
custom badges 285–288
custom classes, referencing 270
custom data formats 158
custom data types, reading 128
custom formats 172–176
custom item renderer 89
customUpdateUI element 15

cutText() method 171
cutting content to

clipboard 170–172

D

data
adding to tables 196
binary 124
formats 157–158
inserting into tables 196
managing 248
persistent 248
reading from clipboards 158
removing from

clipboards 159
retrieving from tables 198–

204
storing securely 146–148
transferring with

clipboards 156–162
writing 134–136
writing to clipboards 158

data formats 157–158
custom 158, 172–176

data model class 212
data model, building 78–81,

137–140
data property 207
data types

Address 172
custom 128

database storage affinities. See
affinities

database storage classes 194
BLOB 194
INTEGER 194
NULL 194
REAL 194
TEXT 194

databases 191
adding to tables 196
affinities 194
and AirTube application

223–230
attributes 191
columns 191
creating 204–205, 214
defining 190–193
deleting from tables 198
inserting data into tables 196
multiple 222–223
opening 204–205
records 191
relational 191

INDEX 307
databases(continued)
retrieving data from 198–204
tables 191, 194–196
transactions 209–211
when to use 192

defaults, setting 248
DEFERRED constant 211
deferred rendering 161
defining

clipboards 156
databases 190–193

DELETE commands 198
deleteDirectory() method 117
deleteDirectoryAsync()

method 117
deleteFile() method 117
deleteFileAsync() method 117
deleteItem() method 221
deleting

directories 117
from tables 198
tables 194–196

DESC keyword 201
description element 13
descriptor files

application element 11
customUpdateUI

element 15
description element 13
filename element 11
fileTypes element 15
icon element 14
id element 11
initialWindow element 12
installFolder element 14
name element 13
programMenuFolder

element 14
title element 13
version element 11

descriptors 10–15
deserialization, AMF 127
desktop applications 3–4

building 3–4
desktop icon 14
desktopDirectory property 99,

112
detecting

idleness 63
user selection 108

dialog boxes, methods for
opening 104

digital certificate 7
certification authority 7

digital signature 7, 18, 21, 25

directories
browsing for 105
common 99–100
creating 113–117
deleting 117
listing 100
listing asynchronously 112–

113
listing contents 112–113
listing synchronously 112
references to 99–112
removing 117
temporary 116
user selection 108

directory listing
asynchronous code 97
synchronous code 97

directoryListing event 98, 112
files property 112

directoryListingHandler()
method 141

display() method 74
displaying

files by type 107
HTML 242–246
paths 109–112

displayState property 66
distributing applications

282–288
documentDirectory

property 100
doDrag() method 178
double-clicking

AirTube application 296
invoke event 296

drag 176
drag indicators 182
drag manager 178–182
drag-and-drop 176–188

adding to AirTube 187–188
into AIR application 185–187
out of AIR application 184
drag indicators 182
drag manager 178–182
drop targets 177
initiators 177
running at system level 155
similarity to cut-and-paste 176

drag-and-drop events 177–178
dragging

into AIR application 185–187
out of AIR application 184
windows 60

DragManager class 178
drop 176

DROP TABLE command 196
drop targets 177, 180
duplicates, eliminating 200

E

Edit menu 164
Copy option 166
Cut option 170

editing data in tables 197
elements

adding to menus 68
application 11
customUpdateUI 15
description 13
filename 11
fileTypes 15
icon 14
id 11
initialWindow 12
installFolder 14
name 13
programMenuFolder 14
title 13
version 11

eliminating duplicates 200
EncryptedLocalStore class 147
error event 206
ERROR_INSTALLED_READER_

NOT_FOUND constant 244
ERROR_INSTALLED_READER_

TOO_OLD constant 244
ERROR_PREFERRED_READER_

TOO_OLD constant 244
event handlers, new 260
event listeners 50, 96
events

browser 298–301
browserInvoke 298
click 263
complete 96, 249
directoryListing 98, 112
drag-and-drop 177–178
error 206
file selection 108
handling with

ActionScript 260–261
init 285
invoke 296
listChanged 138
mouseDown 60, 178
mouseMove 178
mouseUp 60
nativeDragComplete 177
nativeDragDrop 177, 181

INDEX308
events(continued)
nativeDragEnter 177, 180
nativeDragExit 177
nativeDragOver 177
nativeDragStart 177
nativeDragUpdate 177
open 205
progress 123
result 206–207
selectMultiple 108
status 234
userIdle 63
userPresent 63
windowComplete 50

ExampleWindow
creating 41
opening 41

EXCLUSIVE constant 211
execute() method 206–207

parameters 208
setting number of

results 208
exists property 114

F

file associations
methods 64
setting 64–65

File class 97, 99
browseForDirectory()

method 105
browseForOpen()

method 105
browseForOpenMultiple()

method 105–106
browseForSave()

method 105–106
canonicalize() method 109
copyTo() method 118
copyToAsync() method 118
createTempDirectory()

method 116
getDirectoryListing()

method 112
getDirectoryListingAsync()

method 112
getRelativePath()

method 102
getRootDirectories()

method 103
moveTo() method 118
moveToAsync() method 118
resolvePath() method 101

file extensions 119

File objects 98, 204
applicationDirectory

property 100
applicationStorageDirectory

property 100
bytesAvailable property 130
createDirectory()

method 114
desktopDirectory

property 99, 112
documentDirectory

property 100
exists property 114
nativePath property 103
userDirectory property 100

file type 15
FILE_LIST_FORMAT

constant 158
FileFilter class 106
filename element 11
FileReference object 118
files

.air 282
air.swf 285
AirTube.mxml 86, 239
AirTubeService.as 239
associations 64–65
badge.swf 283
browsing for 105
browsing to save 106
copying 118–121
downloading 122
extensions 119
HTMLWindow.mxml 90
HTMLWindox.mxml 276
log 135
moving 118–121
music playlists 136–146
MXML documents 44
opening 123
PlaylistMaker.mxml 145
reading 123
reading from 121–132
references to 99–112
removing 117
select event listeners 108
ToDo.mxml 214, 218
ToDoListRendrer.mxml 213
user selection 108
VideoTileRenderer.mxml 89
VideoWindow.mxml 89, 152
writing to 132, 135–136
writing to with AirTube 148

files property 112
FileStream object 98

fileTypes element 15
filtering files by type 107
Flash

building applications
with 20–24, 29–31

creating AIR projects 21
creating installers with 21–24
and HTML 242–244
new AIR project 20
quick-start application 29–31
testing applications with 21

FlashVars
airversion 283
appname 283
appurl 283
buttoncolor 283
imageurl 283
messagecolor 283
See also variables

Flex
adding window content 46
creating applications with 44
creating irregularly shaped

windows 47
creating windows with 44
HTML component 244–246
opening windows with 45
scrolling 249
transparent windows 47
and windows 44–49

Flex Builder
building applications

with 15–20, 28
creating AIR projects 17
creating installers 18–20
new AIR project 16–17
quick-start application

28–29
testing applications 17

Flex Builder 3. See Flex Builder
Flex SDK

building applications
with 24–29

creating AIR projects with 24
creating certificates with 25
creating installers with 25
new AIR project 24
packaging applications

with 25–28
testing 24

focus() method 264
formats, custom 172–176
forms

creating 215–216
input 215–216

INDEX 309
Forward button 252
forward slash 102–103
full-screen mode 66
fullscreen property 266
functions

assigning to variables 258
avg() 203
getSurveyResponses() 262,

271
print() 103
running 203–204
showAlert() 256
writeMemo() 275

G

getApplicationVersion()
method 285

getData() method 159, 168
getDirectoryListing()

method 97, 112
getDirectoryListingAsync()

method 97, 112
getHistoryAt() method 253
getInstance() method 81
getMp3s() method 141
getRelativePath() method 102
getResult() method 207, 221
getRootDirectories()

method 103
getScreensForRectangle()

method 52
getStatus() method 285
getSurveyResponses()

function 262, 271
getVideosByTags() method 83
GROUP BY clause 203

H

handling JavaScript events with
ActionScript 260–261

handling SELECT results 207
hasFormat() method 159, 170
HAVING clause 203
height property 243, 266
hiding windows 55
historyBack() method 253
historyForward() method 253
historyGo() method 253

negative values 253
positive values 253

historyLength property 253
horizontalScrollPolicy

property 249

HTML
adding to AirTube

application 276–279
in AIR 241
assigning to HTMLLoader

object 244
back and forward 252–255
controlling caching 247
controlling elements 255–259
controlling loading 246–248
displaying 242–246
with Flash 242–244
history 252–255
integrating with

JavaScript 261
loading content 242
loading from resource 242
scrolling 248–252

HTML caching 247
HTML component 244–246

and HTMLLoader object 245
historyLength property 253
horizontalScrollPolicy

property 249
htmlLoader property 246
location property 245
scrollbars 245
verticalScrollPolicy

property 249
HTML history 252–255
HTML window 89–93
HTML_FORMAT constant 158
HTMLHistoryItem object 252

isPost property 253
originalURL property 253
title property 253
url property 253

HTMLHost object 264
HTMLLoader class 242

createRootWindow()
method 252

loadString() method 242
HTMLLoader object 242

assigning HTML to 244
authenticate property 247–

248
cacheResponse property 247–

248
height property 243
historyLength property 253
and HTML component 245
load() method 242
loadString() method 242
manageCookies property 248
pdfCapability property 244

scrollbars 249
scrollH property 250
scrolling 249
scrollV property 250
useCache property 247–248
userAgent property 248
width property 243
window property 255

htmlLoader property 246
HTMLPDFCapability class 244
HTMLWindow.mxml 90
HTMLWindowCreateOptions

object 265
fullscreen property 266
height property 266
locationBarVisible

property 266
menuBarVisible property 266
resizable property 266
scrollBarsVisible property 266
statusBarVisible property 266
toolBarVisible property 266
width property 266
x property 266
y property 266

HTTP authentication 247
HTTP connectivity

monitoring 233–235
http scheme 100
https scheme 100
hybrid applications 261–264

I

icon element 14
icon menus 73
id element 11
IDataInput interface 124

bytesAvailable property 125
IDataOutput methods 134
idleness, detecting 63
idleThreshold property 63
IF EXISTS clauses 196
IF NOT EXISTS clause 195
imageDownloadProgressHan-

dler() method 152
imageurl variable 283
IMMEDIATE constant 211
indicators, drag 182
init event 285
initial window 12
initialWindow element 12
initiators 177
INSERT command 196

quotation marks 196

INDEX310
inserting into tables 196
install AIR

manual install 5
seamless install 5

install directory 14
installApplication()

method 286
installation directory 13
installer 13
installer file. See .air files
installers

creating with Flash 21–24
creating with Flex

Builder 18–20
creating with Flex SDK 25

installFolder element 14
installing

AIR applications 282
badges 282–288
runtime 284
seamless install 282
updated version 295

INTEGER affinity 194
INTEGER storage class 194
integrating JavaScript with

HTML 261
interfaces, IDataInput 124
internet resources, reading

from 121–123
invoke event 296

arguments property 296
on double-click 296

irregularly shaped windows 42
creating with Flex 47

isPost property 253
isSeparator property 69
itemClass property 207

J

Java keystore 26
JavaScript 255–273

commands 264–269
controlling JavaScript

elements 255–259
integrating with HTML 261
referencing ActionScript

elements 269–273
security 273

JKS 26

K

keystore 26

L

labels 179
launchApplication()

method 286
launching

AIR applications 295–301
on startup 64

listByTag() method 83
listChanged event 138
listening

for browser events 298–301
for menu selections 68

listing directory contents 112–
113

load() method 96, 242, 285
Loader object

content property 285
load() method 285

loaderCompleteHandler()
method 96

LoaderContext objects 285
loading

controlling 246–248
HTML content 242
HTML from resources 242
PDF content 244

loadString() method 242
local resources, reading

from 123
locateMp3sInDirectory()

method 141
location property 245, 264
locationBarVisible property 266

M

mainScreen property 52
mainWindow property 49
manageCookies property 248
managing

applications 63–67
persistent data 248
windows 49–63

menu items, creating special 69
menu selections, listening

for 68
menuBarVisible property 266
menus 68–75

adding elements to 68
application menus 69–73
context 73–74
creating 68
creating special items 69
Edit 164

icon 73
listening for selections 68
pop-up 74–75
using 69–75
window 69–73

messagecolor variable 283
metadata tag 213, 224
metadata tags,

[RemoteClass] 129, 138,
172

methods
acceptDragDrop() 180
activate() 41, 55
addEventListener() 260
addItem() 72, 218
attach() 222
begin() 210
blur() 264
browseForDirectory() 105
browseForOpen() 105
browseForOpenMultiple() 10

5–106
browseForSave() 105–106
canonicalize() 109
clear() 160
clearData() 160
close() 72, 264
closeAll() 72
commit() 210
configureVideoForPlayback()

85
copyText() 165, 171
copyTo() 118
copyToAsync() 118
createDirectory() 114
createRootWindow() 252
createTempDirectory() 116
createWindow() 264–265
cutText() 171
deleteDirectory() 117
deleteDirectoryAsync() 117
deleteFile() 117
deleteFileAsync() 117
deleteItem() 221
directoryListingHandler()

141
display() 74
doDrag() 178
execute() 206–207
file association 64
focus() 264
getApplicationVersion() 285
getData() 159, 168
getDirectoryListing() 97, 112

INDEX 311
methods(continued)
getDirectoryListingAsync()

97, 112
getHistoryAt() 253
getInstance() 81
getMp3s() 141
getRelativePath() 102
getResult() 207, 221
getRootDirectories() 103
getScreensForRectangle() 52
getStatus() 285
getVideosByTags() 83
handler 161
hasFormat() 159, 170
historyBack() 253
historyForward() 253
historyGo() 253
imageDownloadProgress-

Handler() 152
installApplication() 286
launchApplication() 286
listByTag() 83
load() 96, 242, 285
loaderCompleteHandler() 96
loadString() 242
locateMp3sInDirectory() 141
moveBy() 264
moveTo() 118, 264
moveToAsync() 118
moveToTrash() 118
moveToTrashAsync() 118
networkStatusHandler() 239
next() 208
notifyUser() 65
open() 46, 205, 264
openAsync() 205
for opening dialog boxes 104
orderInBackOf() 58
orderInFrontOf() 58
orderToBack() 58
orderToFront() 58
pasteText() 170–171
preventDefault() 55
readBoolean() 125
readByte() 125
readBytes() 125
readDouble() 125
readFloat() 125
readInt() 125
readMultiByte() 125, 127
readObject() 125, 128
readShort() 125
readUnsignedBytes() 125
readUnsignedInt() 125
readUnsignedShort() 125

readUTF() 125
readUTFBytes() 125–126
registerClassAlias() 129, 173
resizeBy() 264
resizeTo() 264
resolvePath() 101
rollback() 210
savePlaylists() 142
saveToOffline() 150
selectHandler() 72, 110, 218
setAsDefaultApplication() 65
setData() 157–158
setDataHandler() 161
startInitiatorDrag() 179
startMove() 60
startResize() 60
update() 289
updateItem() 218
updateLocation() 264
updateStatus() 264
updateTitle() 264
UTFBytes() 237
videoDownloadProgress-

Handler() 152
windowBlur() 264, 267
windowClose() 264, 267
windowCompleteHandler()

51
windowFocus() 264, 267
windowRect() 264
writeBoolean() 134
writeByte() 134
writeBytes() 134
writeDouble() 134
writeFloat() 134
writeInt() 134
writeMultiByte() 134–135
writeObject() 134–135
writeShort() 134
writeUnsignedBytes() 134
writeUnsignedInt() 134
writeUnsignedShort() 134
writeUTF() 134
writeUTFBytes() 134–135
for writing data 134

modes
full-screen 66
scale 67
writing 133

monitoring
HTTP connectivity 233–235
network connectivity 233–237
polling 235
polling frequency 235
socket connectivity 235–237

monitors, multiple 52–54
mouseDown event 60
mouseUp event 60
moveBy() method 264
moveTo() method 118, 264
moveToAsync() method 118
moveToTrash() method 118
moveToTrashAsync()

method 118
moving

based on file extension 119
directories 118–121
files 118–121
to trash 118
windows 60–63

multiple monitors 52–54
music playlists

reading 136–146
writing 136–146

MXML 44, 174
building components 213

MXML documents 28
mxmlc 24

N

name element 13
named parameters 209
native paths 103
NATIVE_DRAG_COMPLETE

constant 177
NATIVE_DRAG_DROP

constant 177
NATIVE_DRAG_ENTER

constant 177
NATIVE_DRAG_EXIT

constant 177
NATIVE_DRAG_OVER

constant 177
NATIVE_DRAG_START

constant 177
NATIVE_DRAG_UPDATE

constant 177
NativeApplication class 35
NativeApplication component,

nativeWindow property 45
NativeApplication object

idleThreshold property 63
mainWindow property 49
openedWindows property 49
startAtLogin property 64

nativeApplication property 44
nativeDragComplete event 177
nativeDragDrop event 177, 181
nativeDragEnter event 177, 180

INDEX312
NativeDragEvent class 178
NativeDragEvent objects, clip-

board property 178
nativeDragExit event 177
NativeDragManager class 178

doDrag() method 178
nativeDragOver event 177
nativeDragStart event 177
nativeDragUpdate event 177
NativeInitOptionsWindow

object
maximizable property 37
minimizable property 37
resizable property 37

NativeMenu object, display()
method 74

nativePath property 103
NativeWindow class 35
NativeWindow objects

alwaysInFront property 58
creating 37
orderInBackOf() method 58
orderInFrontOf() method 58
orderToBack() method 58
orderToFront() method 58
positioning 49
stage property 38
startMove() method 60
startResize() method 60

nativeWindow property 45
NativeWindowInitOptions

object 35
systemChrome property 36
transparent property 36
type property 36

NativeWindowResize class 61
navigation, Back and Forward

buttons 252
network connectivity

HTTP 233–235
monitoring 233–237
socket connectivity 235–237

network monitoring, AirTube
application 237

networkAvailable property 237
networks

monitoring connectivity 233–
237

monitoring HTTP
connectivity 233–235

networkStatusHandler()
method 239

new AIR project
with Flash 20
with Flex Builder 16–17
with Flex SDK 24

Next button 253
next() method 208
NONE affinity 194
NotificationType class 65
notifyUser() method 65
NULL storage class 194
NUMERIC affinity 194

O

objects
Address 175
application 35
BitmapData 168, 183
Clipboard 156
File 98, 204
FileReference 118
FileStream 98
HTMLHistoryItem 252
HTMLHost 264
HTMLLoader 242, 245
HTMLWindowCreateOptions

265
LoaderContext 285
NativeWindow 37–38, 49
NativeWindowInitOptions 35
Playlist 137
reading 127–129
Responder 206
Screen 52
SocketMonitor 235
SQLConnection 204
SQLResult 207
Stage 38
SWFObject 283
Updater 289
URLLoader 96
URLRequest 234
window 35, 49–51

offline mode 233
open event 205
open() method 46, 205, 264
openAsync() method 205
openedWindows array 56
openedWindows property 49
opening

closed windows 54–56
databases 204–205
files 123
windows with ActionScript 37
windows with Flex 45

operations
copy-and-paste 162–176
drag-and-drop 176–188

operators
AND 197
OR 197

OR operator 197
ORDER BY 201
ORDER BY clause 201

ASC keyword 201
DESC keyword 201

ordered parameters 209
orderInBackOf() method 58
orderInFrontOf() method 58
ordering

moving to front 59
results 201–202
windows 58–59

orderToBack() method 58
orderToFront() method 58
ORIGINAL_ONLY transfer

mode 161
ORIGINAL_PREFERRED trans-

fer mode 161
originalUrl property 253

P

packaging, AIR applications with
Flex SDK 25–28

paging results 208
parameterizing SQL

commands 208
parameters

named 209
ordered 209

parameters property 209
parentSandboxBridge

variable 275
paste 162–176
pasteText() method 170–171
pasting content from

clipboard 168–170
paths

accessing 103–104
displaying nicely 109–112
native 103

PDF, loading 244
pdfCapability property 244
PKCS#12 26
Playlist class 137
Playlist object 137
PlaylistMaker application 136

ApplicationData class 139
directoryListingHandler()

method 141
downloadProgress

property 149

INDEX 313
PlaylistMaker application
(continued)

getMp3s() method 141
locateMp3sInDirectory()

method 141
Playlist class 137
PlaylistMaker.mxml 144
PlaylistService class 140, 143
savePlaylists() method 142
saveToOffline() method 150
VideoWindow.mxml 152

PlaylistService class 140, 143
polling frequency 235
pollInterval property 235
pop-up menus 74–75

adding 74
positioning

centering 51
from instantiating window 50
NativeWindow objects 49
virtual desktops 53
Window objects 49–51
windows 49–54
from within window 50

preventDefault() method 55
Previous button 253
PRIMARY KEY constraint 195
primary keys 191
print() function 103
programMenuFolder

element 14
programming

asynchronous 95
synchronous 95

properties
_proxied 81
Address 176
align 40
alwaysInFront 58
applicationDirectory 100
applicationStorageDirectory

100
authenticate 247
available 234
bounds 52
bytesAvailable 125, 130
cacheResponse 247
checked 69
clipboard 178
contentHeight 249
contentWidth 249
currentTarget 261
data 207
desktopDirectory 99, 112
displayState 66

documentDirectory 100
downloadProgress 149
exists 114
files 112
fullscreen 266
generalClipboard 157
height 243, 266
historyLength 253
horizontalScrollPolicy 249
htmlLoader 246
idleThreshold 63
isPost 253
isSeparator 69
itemClass 207
location 245, 264
locationBarVisible 266
mainScreen 52
mainWindow 49
manageCookies 248
maximizable 37
menuBarVisible 266
minimizable 37
nativeApplication 44
nativePath 103
nativeWindow 45
networkAvailable 237
openedWindows 49
originalUrl 253
parameters 209
pdfCapability 244
pollInterval 235
publisherID 286
resizable 37, 266
scaleMode 39–40
screens 52
scrollBarsVisible 266
scrollH 250
scrollV 250
showFlexChrome 48
sqlConnection 206
stage 38, 42
startAtLogin 64
status 264
statusBarVisible 266
supportsMenu 69
systemChrome 36, 43, 47
target 68, 261
text 209
title 253, 264
toolBarVisible 266
transparent 36, 43, 47
type 36
url 253
useCache 247
userAgent 248

userDirectory 100
verticalScrollPolicy 249
visibleBounds 52
width 243, 266
window 255
x 266
y 266

publisher ID, retrieving 286
publisherID property 286

Q

quick-start application
Flash 29–31
Flex Builder 28–29
MXML document 28

quotation marks in SQL 196

R

read buffers 129–132
asynchronous 131
synchronous 130

READ constant 205
readBoolean() method 125
readByte() method 125
readBytes() method 125
readDouble() method 125
readFloat() method 125
reading

bytes from file 122
from clipboards 158
custom data types 128
files 123
from files 121–132
from internet resources 121–

123
from local resources 123
music playlists 136–146
objects 127–129
read buffers 129
strings 125–127

readInt() method 125
readMultiByte() method 125,

127
readObject() method 125, 128
readShort() method 125
readUnsignedBytes()

method 125
readUnsignedInt() method 125
readUnsignedShort()

method 125
readUTF() method 125
readUTFBytes() method

125–126

INDEX314
REAL affinity 194
REAL storage class 194
records 191
references

to directories 99–112
to files 99–112
window 49

referencing
absolute 102
common directories 99–100
custom classes 270
relative 101–102
runtime 269
user 104–109

registerClassAlias()
method 129, 173

registering classes 129
relational databases 191
relative referencing 101–102

compared to absolute 101
removeAsDefaultApplication()

method 65
removing

data from clipboards 159
directories 117
files 117

renderers, custom item 89
rendering, deferred 161
resizable property 266
resizeBy() method 264
resizeTo() method 264
resizing windows 60–63
resolvePath() method 101
resources, loading HTML

from 242
Responder object 206
result event 206–207
results

handling 207
ordering 201–202
paging 208
sorting 201–202
typing 207

retrieving
publisher ID 286
from tables 198–204
URLs 83–85
videos from YouTube 75
window references 49

rollback() method 210
running

applications 5–6
functions 203–204
SQL commands 205–211

runtime

detecting with badges 284
installing 284
referencing 269

runtime environment 2

S

sandbox bridging 274–276
sandboxes 273

application sandbox 273
bridging 274–276
nonapplication

sandbox 273
savePlaylists() method 142
scale mode, adjusting 67
scale, adjusting 39
scaleMode property 39–40
scaling windows 39
schemes

app 100
app-storage 100
http 100
https 100

Screen class 52
Screen object

bounds property 52
mainScreen property 52
screens property 52
visibleBounds property 52

screens property 52
screenshots 166
scrollbars and HTML

component 245
scrollBarsVisible property 266
scrollH property 250
scrolling

with ActionScript 249–251
in Flex 249
HTML content 248–252

scrollV property 250
seamless install 282
search behavior, adding 87
security 6–9, 273–276

data storage 146–148
sandboxes 273
understanding 6

security sandboxes 273
SELECT 199
SELECT commands 199–200

* wildcard 199
DISTINCT keyword 200
eliminating duplicates 200
GROUP BY clause 203
handling results 207
HAVING clause 203

ORDER BY clause 201
ordering results 201–202
setting number of results 208
sorting results 201–202
trace() statement 207
WHERE clause 199

selectHandler() method 72,
110, 218

selecting
clipboards 162
writing mode 133

selectMultiple event 108
self-signed certificate 7–9
serialization 158, 160

AMF 127, 172
service monitors

SocketMonitor 233
URLMonitor 233

SET clause 197
setAsDefaultApplication()

method 65
setData() method 157–158
setDataHandler() method 161
setting

defaults 248
file associations 64–65

showAlert() function 256
showFlexChrome property 48

set to false 48
showing windows 55
SimpleTextWindow

component 47
slashes

back slash 103
forward slash 102–103

snapshots 166
socket connectivity,

monitoring 235–237
SocketMonitor class 235
SocketMonitor object 235

similarity to URLMonitor 235
SocketMonitor service

monitor 233
sockets, monitoring

connectivity 235–237
sometimes-connected

applications 233
specifying user agent type 247
SQL 190, 192–204

eliminating duplicates 200
ordering results 201–202
paging results 208
parameterizing 208
running commands 205–211
running functions 203–204

INDEX 315
SQL(continued)
security 209
sorting results 201–202
typing results 207

SQL clauses
IF EXISTS 196
IF NOT EXISTS 195

SQL commands
: character 209
? character 209
@ character 209
* wildcard 199
aliases 203
AS keyword 203
ASC keyword 201
avg() function 203
CREATE TABLE 194
creating 206
DELETE 198
DESC keyword 201
DISTINCT keyword 200
DROP TABLE 196
GROUP BY clause 203
grouping into a batch. See

transactions
HAVING clause 203
INSERT 196
ORDER BY clause 201
quotation marks 196
running 205–211
SELECT 199–200
SET clause 197
UPDATE 197
WHERE clause 197, 199

SQL constraints, PRIMARY
KEY 195

SQL keywords,
AUTOINCREMENT 195

SQL statements. See SQL com-
mands

SQLConnection
constructor 205

SQLConnection object 204
attach() method 222
begin() method 210
commit() method 210
multiple 222
multiple databases 222
open() method 205
openAsync() method 205
rollback() method 210
sqlConnection property 206

sqlConnection property 206
SQLite 190–192, 194

storage classes 194

SQLMode 205
SQLResult 207
SQLResult object 207

data property 207
SQLStatement class 205
SQLStatement object

execute() method 207
getResult() method 207
itemClass property 207
next() method 208
parameters property 209
text property 209

SQLTransactionLockType
class 211

SQLTutorial application 193
Stage object, displayState

property 66
stage property 38

nonrectangular
background 42

startAtLogin property 64
startInitiatorDrag() method 179
startMove() method 60
startResize() method 60
startup, launching

applications 64
statements

trace() 96, 207
while 115

STATUS constant 234
status event 234
status property 264
STATUS_OK constant 244
statusBarVisible property 266
storing data securely 146–148
String type 159
strings, reading 125–127
Structured Query Language. See

SQL
Submit button 263
supportsMenu property 69
SWFObject object 283
synchronicity 95–99
synchronous code 95

directory listings 97, 112
when to use 97

synchronous programming 95
when to use 97

system chrome 12
systemChrome properties 36

set to none 36, 43, 47
system-level operations

copy-and-paste 155
drag-and-drop 155

T

tables 191
adding to 196
creating 194–196
deleting 194–196
deleting from 198
editing 197
retrieving data from

198–204
updating 197

target property 68, 261
temporary directories 116
testing

with Flash 21
with Flex Builder 17
with Flex SDK 24

TEXT affinity 194
Text component 245
text property 209
TEXT storage class 194
TEXT_FORMAT constant 158
time stamp server 27
title bar 13
title element 13
title property 253, 264
ToDo application 211–222

SQL commands 216–222
ToDoItem class 212
ToDoListRenderer

component 213, 221
toolBarVisible property 266
trace() statements 96, 207
transactions databases 209–211
transfer medium 156
transfer modes 160

CLONE_ONLY 161
CLONE_PREFERRED 161
ORIGINAL_ONLY 161
ORIGINAL_PREFERRED 161

transferring
between an AIR application

and a non-AIR
application 160

between AIR applications 160
within an application 160
data with clipboards 156–162
by reference 158
transfer medium 156
transfer modes 160

transparency 43
transparent property 36, 43, 47
transparent windows 47
trash, moving to 118
type property 36

INDEX316
types
BitmapData 159
String 159

typing results 207

U

UPDATE commands 197
UPDATE constant 205
update() method 289
updateItem() method 218
updateLocation() method 264
Updater class 289
Updater object 289

update() method 289
updateStatus() method 264
updateTitle() method 264
updating

active approach 288
AIR applications 288–295
AirTube.mxml 91
data in tables 197
passive approach 288
version checking 290

url property 253
URL_FORMAT constant 158
URLLoader class 95, 122
URLLoader object, load()

method 96
URLMonitor class 233
URLMonitor object 234
URLMonitor service

monitor 233
URLRequest object 234
URLRequestDefaults class 248
URLs

.flv URLs from YouTube
83–85

retrieving 83–85
URLStream class 122
useCache property 247
user agent 247

specifying type 247
user interfaces, building

144–146
user referencing 104–109
user selections, detecting 108
userAgent property 248
userDirectory property 100
userIdle event 63
userPresent event 63
users, alerting 65
using

application menus 69–73
context menus 73–74

icon menus 73
menus 69–75
window menus 69–73

UTFBytes() method 237

V

variables
airversion 283
appname 283
appurl 283
assigning functions to 258
assigning new values 258
buttoncolor 283
childSandboxBridge 275
imageurl 283
messagecolor 283
parentSandboxBridge 275

version checking 290
version element 11
verticalScrollPolicy

property 249
video window 89–93
videoDownloadProgress-

Handler() method 152
VideoTileRenderer.mxml 89
VideoWindow.mxml 89
virtual desktops 52–54

positioning 53
visibleBounds property 52

W

web applications 3–4
WebKit engine 241
WHERE clause 197, 199
while statement 115
width property 243, 266
Window class

blur() method 264
close() method 264
focus() method 264
moveBy() method 264
moveTo() method 264
open() method 264
resizeBy() method 264
resizeTo() method 264

window component 46
creating instances of 47

Window components
alwaysInFront property 58
orderInBackOf() method 58
orderInFrontOf() method 58
orderToBack() method 58
orderToFront() method 58

window menus 69–73
creating 70

Window objects
blur() method 264
close() method 264
focus() method 264
location property 264
moveBy() method 264
moveTo() method 264
open() method 264
positioning 49–51
resizeBy() method 264
resizeTo() method 264
status property 264
title property 264

window property 255
window references,

retrieving 49
Window.open() method

fullscreen attribute 266
Height attribute 266
location attribute 266
Menu attribute 266
resizable attribute 266
screenX attribute 266
screenY attribute 266
scrollbars attribute 266
Status attribute 266
toolbar attribute 266
Width attribute 266

windowBlur() method
264, 267

windowClose() method 264,
267

windowComplete event 50
windowCompleteHandler()

method 51
WindowedApplication 17, 24,

28–29, 44–45
windowFocus() method 264,

267
windowRect() method 264
windows 34–49

ActionScript 35–43
adding content to 38, 46
adjusting content 39
adjusting scale 39
adjusting scale alignment 67
adjusting scale mode 67
AirTube main window 86–89
autoscrolling 252
close button 54
closed 54–56
closing 54–57
closing on exit 56–57

INDEX 317
windows(continued)
creating with

ActionScript 35–37
creating components 46
creating with Flex 44
custom close mechanisms 57
dragging 60
and Flex 44–49
full-screen mode 66
hiding 55
HTML window 89–93
inactive 66
irregularly shaped 42, 47
managing 49–63
moving 60–63
moving to front 59
opening with ActionScript 37
opening with Flex 45
ordering 58–59
positioning 49–54
reopening 54–56
resizing 60–63
scaling 39
showing hidden 55
transparent 47
understanding 34–49

utility windows 59
video window 89–93
window menus 69–73
window references 49

writeBoolean() method 134
writeByte() method 134
writeBytes() method 134
writeDouble() method 134
writeFloat() method 134
writeInt() method 134
writeMemo() function 275
writeMultiByte() method

134–135
writeObject() method 134–135
writeShort() method 134
writeUnsignedBytes()

method 134
writeUnsignedInt() method 134
writeUnsignedShort()

method 134
writeUTF() method 134
writeUTFBytes() method

134–135
writing

to clipboards 158
data 134–136

to files 132–136
to files with AirTube 148
music playlists 136–146
writing mode 133

writing modes
APPEND 133
UPDATE 133
WRITE 133

X

x property 266

Y

y property 266
YouTube 75

developer API key 77
retrieving videos from 75

YouTubeFlvRetriever class 84

Z

z-axis 58

	Adobe AIR in Action
	contents
	preface
	acknowledgments
	about this book
	Chapter 1 Introducing Adobe AIR
	1.1 Anatomy of Adobe AIR
	1.1.1 Developing for a runtime environment
	1.1.2 Why build desktop applications?
	1.1.3 Exploring AIR possibilities

	1.2 Running AIR applications
	1.3 AIR application security and authenticity
	1.3.1 Understanding AIR application security
	1.3.2 Ensuring application authenticity

	1.4 Building AIR applications
	1.5 Introducing AIR application descriptors
	1.5.1 The application element
	1.5.2 The id element
	1.5.3 The version element
	1.5.4 The filename element
	1.5.5 The initialWindow element
	1.5.6 The name element
	1.5.7 The title and description elements
	1.5.8 The installFolder element
	1.5.9 The programMenuFolder element
	1.5.10 The icon element
	1.5.11 The customUpdateUI element
	1.5.12 The fileTypes element

	1.6 Building AIR applications using Flex Builder
	1.6.1 Configuring a new AIR project
	1.6.2 Creating AIR project files
	1.6.3 Testing the AIR application
	1.6.4 Creating an installer

	1.7 Building AIR applications using Flash
	1.7.1 Configuring a new AIR project
	1.7.2 Creating AIR project files
	1.7.3 Testing the AIR application
	1.7.4 Creating an installer

	1.8 Building AIR applications using the Flex SDK
	1.8.1 Configuring a new AIR project
	1.8.2 Creating AIR project files
	1.8.3 Testing the AIR application
	1.8.4 Creating an installer
	Creating a certificate
	Packaging the AIR application

	1.9 Quick-start AIR application for Flex
	1.10 Quick-start AIR application for Flash
	1.11 Summary

	Chapter 2 Applications, windows, and menus
	2.1 Understanding applications and windows
	2.1.1 ActionScript application and windows
	Creating an application
	Creating windows
	Opening windows
	Adding content to windows
	Creating ActionScript class–based windows
	Creating irregularly shaped windows

	2.1.2 Flex application and windows
	Creating an application
	Creating windows
	Opening windows
	Adding content to windows
	Creating irregularly shaped windows

	2.2 Managing windows
	2.2.1 Retrieving window references
	2.2.2 Positioning windows
	Positioning NativeWindow objects
	Positioning Window objects
	Working with a virtual desktop

	2.2.3 Closing windows
	Reopening closed windows
	Closing all windows on application exit
	Adding custom close mechanisms for windows

	2.2.4 Ordering windows
	2.2.5 Moving and resizing windows

	2.3 Managing applications
	2.3.1 Detecting idleness
	2.3.2 Launching applications on startup
	2.3.3 Setting file associations
	2.3.4 Alerting the user
	2.3.5 Full-screen mode

	2.4 Menus
	2.4.1 Creating menus
	2.4.2 Adding elements to menus
	2.4.3 Listening for menu selections
	2.4.4 Creating special menu items
	2.4.5 Using menus
	Using application or window menus
	Using icon menus
	Using context menus
	Pop-up menus

	2.5 Starting the AirTube application
	2.5.1 Overview of AirTube
	2.5.2 Getting started
	2.5.3 Building the data model
	2.5.4 Building the AirTube service
	2.5.5 Retrieving .flv URLs
	2.5.6 Building the AirTube main window
	2.5.7 Adding the video and HTML windows

	2.6 Summary

	Chapter 3 File system integration
	3.1 Understanding synchronicity
	3.1.1 Canceling asynchronous file operations

	3.2 Getting references to files and directories
	3.2.1 Introducing the File class
	3.2.2 Referencing common directories
	3.2.3 Relative referencing
	3.2.4 Absolute referencing
	3.2.5 Accessing a full path
	3.2.6 User referencing
	Browsing for a directory
	Browsing to select a file or files
	Browsing to save a file
	Detecting when a user has selected a file or directory

	3.2.7 Making paths display nicely

	3.3 Listing directory contents
	3.3.1 Getting directory listings synchronously
	3.3.2 Getting directory listings asynchronously

	3.4 Creating directories
	3.5 Removing directories and files
	3.6 Copying and moving files and directories
	3.7 Reading from and writing to files
	3.7.1 Reading from files
	Reading from internet resources
	Reading from local resources
	Understanding binary data
	Reading strings
	Reading objects
	Understanding the read buffer

	3.7.2 Writing to files
	Selecting a writing mode
	Writing data

	3.8 Reading and writing music playlists
	3.8.1 Building the data model
	3.8.2 Building the controller
	3.8.3 Building the user interface

	3.9 Storing data securely
	3.10 Writing to files with AirTube
	3.11 Summary

	Chapter 4 Copy-and-paste and drag-and-drop
	4.1 Using a clipboard to transfer data
	4.1.1 What’s a clipboard?
	4.1.2 Understanding data formats
	4.1.3 Reading and writing data
	4.1.4 Removing data from a clipboard
	4.1.5 Understanding transfer modes
	4.1.6 Deferred rendering

	4.2 Copy-and-paste
	4.2.1 Selecting a clipboard
	4.2.2 Copying content
	4.2.3 Pasting content
	4.2.4 Cutting content
	4.2.5 Using custom formats

	4.3 Drag-and-drop
	4.3.1 Understanding drag-and-drop
	4.3.2 Drag-and-drop events
	4.3.3 Using the drag manager
	4.3.4 Adding drag indicators
	4.3.5 Dragging out of an AIR application
	4.3.6 Dragging into an AIR application

	4.4 Adding drag-and-drop to AirTube
	4.5 Summary

	Chapter 5 Using local databases
	5.1 What is a database?
	5.2 Understanding SQL
	5.2.1 Creating and deleting tables
	5.2.2 Adding data to tables
	5.2.3 Editing data in tables
	5.2.4 Deleting data from tables
	5.2.5 Retrieving data from tables
	Using a SELECT statement
	Eliminating duplicates
	Ordering results
	Running functions

	5.3 Creating and opening databases
	5.4 Running SQL commands
	5.4.1 Creating SQL statements
	5.4.2 Running SQL statements
	5.4.3 Handling SELECT results
	5.4.4 Typing results
	5.4.5 Paging results
	5.4.6 Parameterizing SQL statements
	5.4.7 Using transactions

	5.5 Building a ToDo application
	5.5.1 Building the to-do item data model class
	5.5.2 Creating a to-do item component
	5.5.3 Creating the database
	5.5.4 Creating an input form
	5.5.5 Adding SQL statements

	5.6 Working with multiple databases
	5.7 Adding database support to AirTube
	5.7.1 Updating ApplicationData to support online/offline modes
	5.7.2 Adding a button to toggle online/offline modes
	5.7.3 Supporting offline saving and searching

	5.8 Summary

	Chapter 6 Network communication
	6.1 Monitoring network connectivity
	6.1.1 Monitoring HTTP connectivity
	6.1.2 Monitoring socket connectivity

	6.2 Adding network monitoring to AirTube
	6.3 Summary

	Chapter 7 HTML in AIR
	7.1 Displaying HTML in AIR
	7.1.1 Using native Flash HTML display objects
	7.1.2 Loading PDF content
	7.1.3 Using the Flex component

	7.2 Controlling how AIR loads HTML
	7.2.1 Controlling content caching
	7.2.2 Controlling authentication
	7.2.3 Specifying a user agent type
	7.2.4 Managing persistent data
	7.2.5 Setting defaults

	7.3 Scrolling HTML content
	7.3.1 Scrolling HTML in Flex
	7.3.2 Scrolling HTML content using ActionScript
	7.3.3 Creating autoscrolling windows

	7.4 Navigating HTML history
	7.5 Interacting with JavaScript
	7.5.1 Controlling HTML/JavaScript elements from ActionScript
	7.5.2 Handling JavaScript events from ActionScript
	7.5.3 Building a hybrid application
	7.5.4 Handling standard JavaScript commands
	7.5.5 Referencing ActionScript elements from JavaScript

	7.6 Managing security issues
	7.6.1 Sandboxes
	7.6.2 Sandbox bridges

	7.7 Adding HTML to AirTube
	7.8 Summary

	Chapter 8 Distributing and updating AIR applications
	8.1 Distributing applications
	8.1.1 Using the default badge
	8.1.2 Creating a custom badge

	8.2 Updating applications
	8.3 Launching AIR applications
	8.3.1 Handling invoke events
	8.3.2 Launching AirTube with a file
	8.3.3 Listening for browser events

	8.4 Summary

	index

