
M A N N I N G

Michael Wittig
Andreas Wittig
Foreword by Ben Whaley

SECOND EDITION

www.allitebooks.com

http://www.allitebooks.org

Compute & Networking

Abbr. Name Description Where

EC2 Amazon Elastic Compute Cloud Virtual machines with Linux and
Windows

3

AWS Lambda Run code without the need for virtual
machines

7

EIP Elastic IP Address Fixed public IP address for EC2
instances

3.6

ENI Amazon EC2 Elastic Network Interface Virtual network interface for EC2
instances

3.7

VPC Amazon Virtual Private Cloud Private network inside the cloud 6.5

Amazon EC2 Security Group Network firewall 6.4

Deployment & Management

Abbr. Name Description Where

AWS Elastic Beanstalk Deployment tool for simple applications 5.4

AWS OpsWorks Deployment tool for multilayer applica-
tions

5.5

AWS CloudFormation Infrastructure automation and deploy-
ment tool

5.3

IAM AWS Identity and Access Management Secure access to your cloud resources
(authentication and authorization)

6.3

CLI AWS command-line interface AWS in your terminal 4.2

SDK AWS software development kits AWS in your applications 4.3

 www.allitebooks.com

http://www.allitebooks.org

Praise for the First Edition

Fantastic introduction to cloud basics with excellent real-world examples.
—Rambabu Posa, GL Assessment

A very thorough and practical guide to everything AWS ... highly recommended.
—Scott M. King, Amazon

Cuts through the vast expanse of official documentation and gives you what you
need to make AWS work now!

—Carm Vecchio, Computer Science Corporation (CSC)

The right book to program AWS from scratch.
—Javier Muñoz Mellid, Senior Computer Engineer, Igalia

 www.allitebooks.com

http://www.allitebooks.org

 www.allitebooks.com

http://www.allitebooks.org

Amazon Web Services in
Action, Second Edition

MICHAEL WITTIG
ANDREAS WITTIG

FOREWORD BY BEN WHALEY

M A N N I N G
Shelter Island

 www.allitebooks.com

http://www.allitebooks.org

For online information and ordering of this and other Manning books, please visit
www.manning.com. The publisher offers discounts on this book when ordered in quantity.
For more information, please contact

Special Sales Department
Manning Publications Co.
20 Baldwin Road
PO Box 761
Shelter Island, NY 11964
Email: orders@manning.com

©2019 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by means electronic, mechanical, photocopying, or otherwise, without prior written
permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in the book, and Manning Publications
was aware of a trademark claim, the designations have been printed in initial caps or all caps.
The following are trademarks of Amazon.com, Inc. or its affiliates in the United States and/or
other countries: Amazon Web Services, AWS, Amazon EC2, EC2, Amazon Elastic Compute
Cloud, Amazon Virtual Private Cloud, Amazon VPC, Amazon S3, Amazon Simple Storage
Service, Amazon CloudFront, CloudFront, Amazon SQS, SQS, Amazon Simple Queue Service,
Amazon Simple Email Service, Amazon Elastic Beanstalk, Amazon Simple Notification Service,
Amazon Route 53, Amazon RDS, Amazon Relational Database, Amazon CloudWatch, AWS
Premium Support, Elasticache, Amazon Glacier, AWS Marketplace, AWS CloudFormation,
Amazon CloudSearch, Amazon DynamoDB, DynamoDB, Amazon Redshift, and Amazon Kinesis.

The icons in this book are reproduced with permission from Amazon.com or under a Creative
Commons license as follows:

■ AWS Simple Icons by Amazon.com (https://aws.amazon.com/architecture/icons/)
■ File icons by Freepik (http://www.flaticon.com/authors/freepik) License: CC BY 3.0
■ Basic application icons by Freepik (http://www.flaticon.com/authors/freepik) License: CC BY 3.0

All views expressed in this book are of the authors and not of AWS or Amazon.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have the books
we publish printed on acid-free paper, and we exert our best efforts to that end. Recognizing also our
responsibility to conserve the resources of our planet, Manning books are printed on paper that is at
least 15 percent recycled and processed without the use of elemental chlorine.

Manning Publications Co. Development editor: Frances Lefkowitz
20 Baldwin Road Technical development editor John Hyaduck
PO Box 761 Review editor: Aleksandar Dragosavljević
Shelter Island, NY 11964 Project editor: Deirdre Hiam

Copy editor: Benjamin Berg
Proofreader: Elizabeth Martin

Technical proofreader: David Fombella Pombal
Typesetter: Gordan Salinovic

Cover designer: Marija Tudor

ISBN 9781617295119
Printed in the United States of America
1 2 3 4 5 6 7 8 9 10 – DP – 23 22 21 20 19 18

www.manning.com
https://aws.amazon.com/architecture/icons/
http://www.flaticon.com/authors/freepik
http://www.flaticon.com/authors/freepik

v

brief contents
PART 1 GETTING STARTED ..1

1 ■ What is Amazon Web Services? 3

2 ■ A simple example: WordPress in five minutes 36

PART 2 BUILDING VIRTUAL INFRASTRUCTURE CONSISTING OF COMPUTERS

AND NETWORKING ..57

3 ■ Using virtual machines: EC2 59

4 ■ Programming your infrastructure: The command-line,
SDKs, and CloudFormation 102

5 ■ Automating deployment: CloudFormation,
Elastic Beanstalk, and OpsWorks 135

6 ■ Securing your system: IAM, security groups,
and VPC 165

7 ■ Automating operational tasks with Lambda 199

PART 3 STORING DATA IN THE CLOUD...233

8 ■ Storing your objects: S3 and Glacier 235

9 ■ Storing data on hard drives: EBS and instance store 258

BRIEF CONTENTSvi

10 ■ Sharing data volumes between machines: EFS 274

11 ■ Using a relational database service: RDS 294

12 ■ Caching data in memory: Amazon ElastiCache 321

13 ■ Programming for the NoSQL database service:
DynamoDB 349

PART 4 ARCHITECTING ON AWS..381

14 ■ Achieving high availability: availability zones, auto-scaling,
and CloudWatch 383

15 ■ Decoupling your infrastructure: Elastic Load Balancing
and Simple Queue Service 413

16 ■ Designing for fault tolerance 431

17 ■ Scaling up and down: auto-scaling and CloudWatch 463

vii

contents
foreword xvii
preface xix
acknowledgments xxi
about this book xxiii
about the author xxvii
about the cover illustration xxviii

PART 1 GETTING STARTED ..1

1 What is Amazon Web Services? 3
1.1 What is cloud computing? 4

1.2 What can you do with AWS? 5
Hosting a web shop 5 ■ Running a Java EE application in your
private network 7 ■ Implementing a highly available system 8
Profiting from low costs for batch processing infrastructure 9

1.3 How you can benefit from using AWS 10
Innovative and fast-growing platform 10 ■ Services solve common
problems 10 ■ Enabling automation 10 ■ Flexible capacity
(scalability) 11 ■ Built for failure (reliability) 11 ■ Reducing
time to market 11 ■ Benefiting from economies of scale 12
Global infrastructure 12 ■ Professional partner 12

CONTENTSviii

1.4 How much does it cost? 12
Free Tier 13 ■ Billing example 13 ■ Pay-per-use opportunities 15

1.5 Comparing alternatives 15

1.6 Exploring AWS services 16

1.7 Interacting with AWS 19
Management Console 19 ■ Command-line interface 20
SDKs 21 ■ Blueprints 22

1.8 Creating an AWS account 22
Signing up 23 ■ Signing In 28 ■ Creating a key pair 29

1.9 Create a billing alarm to keep track of your AWS bill 33

2 A simple example: WordPress in five minutes 36
2.1 Creating your infrastructure 37

2.2 Exploring your infrastructure 44
Resource groups 44 ■ Virtual machines 45 ■ Load
balancer 47 ■ MySQL database 49 ■ Network filesystem 50

2.3 How much does it cost? 52

2.4 Deleting your infrastructure 54

PART 2 BUILDING VIRTUAL INFRASTRUCTURE CONSISTING OF COM-
PUTERS AND NETWORKING57

3 Using virtual machines: EC2 59
3.1 Exploring a virtual machine 60

Launching a virtual machine 60 ■ Connecting to your virtual
machine 72 ■ Installing and running software manually 75

3.2 Monitoring and debugging a virtual machine 76
Showing logs from a virtual machine 76 ■ Monitoring the load of
a virtual machine 77

3.3 Shutting down a virtual machine 78

3.4 Changing the size of a virtual machine 79

3.5 Starting a virtual machine in another data center 82

3.6 Allocating a public IP address 86

3.7 Adding an additional network interface to a virtual machine 88

3.8 Optimizing costs for virtual machines 92
Reserve virtual machines 93 ■ Bidding on unused virtual machines 95

CONTENTS ix

4 Programming your infrastructure: The command-line, SDKs, and
CloudFormation 102

4.1 Infrastructure as Code 104
Automation and the DevOps movement 104 ■ Inventing an
infrastructure language: JIML 105

4.2 Using the command-line interface 108
Why should you automate? 108 ■ Installing the CLI 109
Configuring the CLI 110 ■ Using the CLI 113

4.3 Programming with the SDK 117
Controlling virtual machines with SDK: nodecc 118 ■ How
nodecc creates a virtual machine 119 ■ How nodecc lists virtual
machines and shows virtual machine details 120 ■ How nodecc
terminates a virtual machine 121

4.4 Using a blueprint to start a virtual machine 121
Anatomy of a CloudFormation template 122 ■ Creating your first
template 126

5 Automating deployment: CloudFormation, Elastic Beanstalk, and
OpsWorks 135

5.1 Deploying applications in a flexible cloud environment 136

5.2 Comparing deployment tools 137
Classifying the deployment tools 138 ■ Comparing the deployment
services 138

5.3 Creating a virtual machine and run a deployment script on
startup with AWS CloudFormation 139

Using user data to run a script on startup 140 ■ Deploying
OpenSwan: a VPN server to a virtual machine 140 ■ Starting
from scratch instead of updating 145

5.4 Deploying a simple web application with AWS Elastic
Beanstalk 145

Components of AWS Elastic Beanstalk 146 ■ Using AWS Elastic
Beanstalk to deploy Etherpad, a Node.js application 146

5.5 Deploying a multilayer application with AWS OpsWorks
Stacks 151

Components of AWS OpsWorks Stacks 152 ■ Using AWS
OpsWorks Stacks to deploy an IRC chat application 153

CONTENTSx

6 Securing your system: IAM, security groups, and VPC 165
6.1 Who’s responsible for security? 167

6.2 Keeping your software up to date 168
Checking for security updates 168 ■ Installing security updates on
startup 169 ■ Installing security updates on running virtual
machines 170

6.3 Securing your AWS account 171
Securing your AWS account’s root user 172 ■ AWS Identity and
Access Management (IAM) 173 ■ Defining permissions with an
IAM policy 174 ■ Users for authentication, and groups to organize
users 176 ■ Authenticating AWS resources with roles 177

6.4 Controlling network traffic to and from your virtual
machine 179

Controlling traffic to virtual machines with security groups 181
Allowing ICMP traffic 182 ■ Allowing SSH traffic 183
Allowing SSH traffic from a source IP address 184 ■ Allowing
SSH traffic from a source security group 185

6.5 Creating a private network in the cloud: Amazon Virtual Private
Cloud (VPC) 189

Creating the VPC and an internet gateway (IGW) 190 ■ Defining the
public bastion host subnet 192 ■ Adding the private Apache web server
subnet 194 ■ Launching virtual machines in the subnets 195
Accessing the internet from private subnets via a NAT gateway 196

7 Automating operational tasks with Lambda 199
7.1 Executing your code with AWS Lambda 200

What is serverless? 201 ■ Running your code on AWS Lambda 201
Comparing AWS Lambda with virtual machines (Amazon EC2) 202

7.2 Building a website health check with AWS Lambda 203
Creating a Lambda function 204 ■ Use CloudWatch to search
through your Lambda function’s logs 210 ■ Monitoring a
Lambda function with CloudWatch metrics and alarms 212
Accessing endpoints within a VPC 217

7.3 Adding a tag containing the owner of an EC2 instance
automatically 218

Event-driven: Subscribing to CloudWatch events 219 ■ Implementing
the Lambda function in Python 222 ■ Setting up a Lambda function
with the Serverless Application Model (SAM) 223 ■ Authorizing a
Lambda function to use other AWS services with an IAM role 224
Deploying a Lambda function with SAM 226

CONTENTS xi

7.4 What else can you do with AWS Lambda? 227
What are the limitations of AWS Lambda? 227 ■ Impacts of the
serverless pricing model 228 ■ Use case: Web application 229
Use case: Data processing 230 ■ Use case: IoT back end 231

PART 3 STORING DATA IN THE CLOUD233

8 Storing your objects: S3 and Glacier 235
8.1 What is an object store? 236

8.2 Amazon S3 237

8.3 Backing up your data on S3 with AWS CLI 238

8.4 Archiving objects to optimize costs 241
Creating an S3 bucket for the use with Glacier 241 ■ Adding a
lifecycle rule to a bucket 242 ■ Experimenting with Glacier and
your lifecycle rule 245

8.5 Storing objects programmatically 248
Setting up an S3 bucket 249 ■ Installing a web application that
uses S3 249 ■ Reviewing code access S3 with SDK 250

8.6 Using S3 for static web hosting 252
Creating a bucket and uploading a static website 253
Configuring a bucket for static web hosting 253 ■ Accessing a
website hosted on S3 254

8.7 Best practices for using S3 255
Ensuring data consistency 255 ■ Choosing the right keys 256

9 Storing data on hard drives: EBS and instance store 258
9.1 Elastic Block Store (EBS): Persistent block-level storage

attached over the network 259
Creating an EBS volume and attaching it to your EC2
instance 260 ■ Using EBS 261 ■ Tweaking performance 263
Backing up your data with EBS snapshots 266

9.2 Instance store: Temporary block-level storage 268
Using an instance store 271 ■ Testing performance 272
Backing up your data 272

10 Sharing data volumes between machines: EFS 274
10.1 Creating a filesystem 277

Using CloudFormation to describe a filesystem 277 ■ Pricing 277

10.2 Creating a mount target 278

CONTENTSxii

10.3 Mounting the EFS share on EC2 instances 280

10.4 Sharing files between EC2 instances 283

10.5 Tweaking performance 284
Performance mode 285 ■ Expected throughput 285

10.6 Monitoring a filesystem 286
Should you use Max I/O Performance mode? 286 ■ Monitoring
your permitted throughput 287 ■ Monitoring your usage 288

10.7 Backing up your data 289
Using CloudFormation to describe an EBS volume 290 ■ Using the
EBS volume 290

11 Using a relational database service: RDS 294
11.1 Starting a MySQL database 296

Launching a WordPress platform with an RDS database 297
Exploring an RDS database instance with a MySQL engine 299
Pricing for Amazon RDS 300

11.2 Importing data into a database 300

11.3 Backing up and restoring your database 303
Configuring automated snapshots 303 ■ Creating snapshots
manually 304 ■ Restoring a database 305 ■ Copying a
database to another region 307 ■ Calculating the cost of
snapshots 308

11.4 Controlling access to a database 308
Controlling access to the configuration of an RDS database 309
Controlling network access to an RDS database 310 ■ Controlling
data access 311

11.5 Relying on a highly available database 311
Enabling high-availability deployment for an RDS database 313

11.6 Tweaking database performance 314
Increasing database resources 314 ■ Using read replication to
increase read performance 316

11.7 Monitoring a database 318

12 Caching data in memory: Amazon ElastiCache 321
12.1 Creating a cache cluster 327

Minimal CloudFormation template 327 ■ Test the Redis
cluster 328

CONTENTS xiii

12.2 Cache deployment options 330
Memcached: cluster 330 ■ Redis: Single-node cluster 331
Redis: Cluster with cluster mode disabled 332 ■ Redis: Cluster with
cluster mode enabled 332

12.3 Controlling cache access 334
Controlling access to the configuration 334 ■ Controlling network
access 334 ■ Controlling cluster and data access 335

12.4 Installing the sample application Discourse with
CloudFormation 336

VPC: Network configuration 337 ■ Cache: Security group, subnet group,
cache cluster 338 ■ Database: Security group, subnet group, database
instance 339 ■ Virtual machine—security group, EC2 instance 340
Testing the CloudFormation template for Discourse 342

12.5 Monitoring a cache 344
Monitoring host-level metrics 344 ■ Is my memory
sufficient? 345 ■ Is my Redis replication up-to-date? 345

12.6 Tweaking cache performance 346
Selecting the right cache node type 347 ■ Selecting the right
deployment option 347 ■ Compressing your data 348

13 Programming for the NoSQL database service: DynamoDB 349
13.1 Operating DynamoDB 351

Administration 352 ■ Pricing 352 ■ Networking 353
RDS comparison 353 ■ NoSQL comparison 354

13.2 DynamoDB for developers 354
Tables, items, and attributes 354 ■ Primary key 355
DynamoDB Local 356

13.3 Programming a to-do application 356

13.4 Creating tables 358
Users are identified by a partition key 358 ■ Tasks are identified by
a partition key and sort key 360

13.5 Adding data 361
Adding a user 363 ■ Adding a task 363

13.6 Retrieving data 364
Getting an item by key 365 ■ Querying items by key and
filter 366 ■ Using global secondary indexes for more flexible
queries 368 ■ Scanning and filtering all of your table’s data 371
Eventually consistent data retrieval 372

CONTENTSxiv

13.7 Removing data 373

13.8 Modifying data 374

13.9 Scaling capacity 375
Capacity units 375 ■ Auto-scaling 377

PART 4 ARCHITECTING ON AWS......................................381

14 Achieving high availability: availability zones, auto-scaling, and
CloudWatch 383
14.1 Recovering from EC2 instance failure with CloudWatch 385

Creating a CloudWatch alarm to trigger recovery when status checks
fail 387 ■ Monitoring and recovering a virtual machine based on
a CloudWatch alarm 388

14.2 Recovering from a data center outage 392
Availability zones: groups of isolated data centers 392 ■ Using
auto-scaling to ensure that an EC2 instance is always running 396
Recovering a failed virtual machine to another availability zone with
the help of auto-scaling 399 ■ Pitfall: recovering network-attached
storage 402 ■ Pitfall: network interface recovery 407

14.3 Analyzing disaster-recovery requirements 411
RTO and RPO comparison for a single EC2 instance 411

15 Decoupling your infrastructure: Elastic Load Balancing and Sim-
ple Queue Service 413
15.1 Synchronous decoupling with load balancers 415

Setting up a load balancer with virtual machines 416

15.2 Asynchronous decoupling with message queues 420
Turning a synchronous process into an asynchronous one 421
Architecture of the URL2PNG application 422 ■ Setting up a
message queue 423 ■ Producing messages programmatically 423
Consuming messages programmatically 425 ■ Limitations of
messaging with SQS 428

16 Designing for fault tolerance 431
16.1 Using redundant EC2 instances to increase availability 434

Redundancy can remove a single point of failure 434
Redundancy requires decoupling 436

CONTENTS xv

16.2 Considerations for making your code fault-tolerant 437
Let it crash, but also retry 437 ■ Idempotent retry makes fault
tolerance possible 438

16.3 Building a fault-tolerant web application: Imagery 440
The idempotent state machine 443 ■ Implementing a fault-tolerant
web service 444 ■ Implementing a fault-tolerant worker to consume
SQS messages 452 ■ Deploying the application 455

17 Scaling up and down: auto-scaling and CloudWatch 463
17.1 Managing a dynamic EC2 instance pool 465

17.2 Using metrics or schedules to trigger scaling 469
Scaling based on a schedule 471 ■ Scaling based on CloudWatch
metrics 472

17.3 Decouple your dynamic EC2 instance pool 475
Scaling a dynamic EC2 instance pool synchronously decoupled by a
load balancer 476 ■ Scaling a dynamic EC2 instances pool
asynchronously decoupled by a queue 480

index 487

xvii

 foreword
Throughout the late 1990s and early 2000s I worked in the rank and file of system
administrators endeavoring to keep network services online, secure, and available to
users. At the time, administration was a tedious, onerous affair involving cable slinging,
server racking, installing from optical media, and configuring software manually. It was
thankless work, often an exercise in frustration, requiring patience, persistence, and
plenty of caffeine. To participate in the emerging online marketplace, businesses of the
era bore the burden of managing this physical infrastructure, accepting the associated
capital and operating costs and hoping for enough success to justify those expenses.

 When Amazon Web Services emerged in 2006, it signaled a shift in the industry.
Management of compute and storage resources was dramatically simplified, and the
cost of building and launching applications plummeted. Suddenly anyone with a
good idea and the ability to execute could build a global business on world-class infra-
structure at a starting cost of just a few cents an hour. The AWS value proposition was
immediately apparent, ushering in a wave of new startups, data center migrations, and
third-party service providers. In terms of cumulative disruption of an established mar-
ket, a few technologies stand above all others, and AWS is among them.

 Today, the march of progress continues unabated. In December 2017 at its annual
re:Invent conference in Las Vegas, Werner Vogels, CTO of Amazon, announced to more
than 40,000 attendees that the company had released 3,951 new features and services
since the first conference in 2012. AWS has an $18 billion annual run rate and 40% year-
over-year growth. Enterprises, startups, and governments alike have adopted the AWS
cloud en masse. The numbers are staggering, and AWS shows no signs of slowing down.

FOREWORDxviii

 Needless to say, this growth and innovation comes at the expense of considerable
complexity. The AWS cloud is composed of scores of services and thousands of fea-
tures, enabling powerful new applications and highly efficient designs. But it is accom-
panied by a brand-new lexicon with distinct architectural and technical best practices.
The platform can bewilder the neophyte. How does one know where to begin?

 Amazon Web Services in Action, Second Edition, slices through the complexity of AWS
using examples and visuals to cement knowledge in the minds of readers. Andreas
and Michael focus on the most prominent services and features that users are most
likely to need. Code snippets are sprinkled throughout each chapter, reinforcing the
programmable nature of the cloud. And because many readers will be footing the bill
from AWS personally, any examples that incur charges are called out explicitly
throughout the text.

 As a consultant, author, and at heart an engineer, I celebrate all efforts to intro-
duce the bewildering world of cloud computing to new users. Amazon Web Services in
Action, Second Edition is at the head of the pack as a confident, practical guide through
the maze of the industry’s leading cloud platform.

 With this book as your sidekick, what will you build on the AWS cloud?

 —BEN WHALEY, AWS COMMUNITY HERO AND AUTHOR

xix

preface
When we started our career as software developers in 2008, we didn’t care about oper-
ations. We wrote code, and someone else was responsible for deployment and opera-
tions. There was a huge gap between software development and IT operations. On top
of that, releasing new features was a huge risk because it was impossible to test all the
changes to software and infrastructure manually. Every six months, when new features
needed to be deployed, we experienced a nightmare.

 Time passed, and in 2012 we became responsible for a product: an online banking
platform. Our goal was to iterate quickly and to be able to release new features to the
product every week. Our software was responsible for managing money, so the quality
and security of the software and infrastructure was as important as the ability to inno-
vate. But the inflexible on-premises infrastructure and the outdated process of deploy-
ing software made that goal impossible to reach. We started to look for a better way.

 Our search led us to Amazon Web Services, which offered us a flexible and reliable
way to build and operate our applications. The possibility of automating every part of
our infrastructure was fascinating. Step by step, we dove into the different AWS services,
from virtual machines to distributed message queues. Being able to outsource tasks like
operating an SQL database or a load balancer saved us a lot of time. We invested this
time in automating testing and operations for our entire infrastructure.

 Technical aspects weren’t the only things that changed during this transformation
to the cloud. After a while the software architecture changed from a monolithic appli-
cation to microservices, and the separation between software development and opera-
tions disappeared. Instead we built our organization around the core principle of
DevOps: you build it, you run it.

PREFACExx

 We have worked as independent consultants since 2015, helping our clients get the
most out of AWS. We’ve accompanied startups, mid-sized companies, and enterprises
on their journey to the cloud. Besides designing and implementing cloud architec-
tures based on AWS services, we are focusing on infrastructure as code, continuous
deployment, Docker, serverless, security, and monitoring.

 We enjoyed writing the first edition of our book in 2015. The astonishing support
from Manning and our MEAP readers allowed us to finish the whole book in only
nine months. Above all, it was a pleasure to observe you—our readers—using our
book to get started with AWS or deepen your knowledge.

 AWS is innovating and constantly releases new features or whole new services.
Therefore, it was about time to update our book in 2017. We started to work on the
second edition of our book in June. Within six months we updated all chapters, added
three more chapters, and improved the book based on the feedback of our readers
and our editors.

 We hope you enjoy the second edition of Amazon Web Services in Action as much as
we do!

xxi

acknowledgments
Writing a book is time-consuming. We invested our time, and other people did as well.
We think that time is the most valuable resource on Earth, and we want to honor every
minute spent by the people who helped us with this book.

 To all the readers who bought the first edition of our book: thanks so much for
your trust and support. Watching you reading our book and working through the
examples boosted our motivation. Also, we learned quite a bit from your feedback.

 Next, we want to thank all the readers who bought the MEAP edition of this book.
Thanks for overlooking the rough edges and focusing on learning about AWS instead.
Your feedback helped us to polish the version of the book that you are now reading.

 Thank you to all the people who posted comments in the Book Forum and who
provided excellent feedback that improved the book.

 In addition, thanks to all the reviewers of the second and first edition who pro-
vided detailed comments from the first to the last page. The reviewers for this second
edition are Antonio Pessolano, Ariel Gamino, Christian Bridge-Harrington, Christof
Marte, Eric Hammond, Gary Hubbart, Hazem Farahat, Jean-Pol Landrain, Jim
Amrhein, John Guthrie, Jose San Leandro, Lynn Langit, Maciej Drozdzowski, Manoj
Agarwal, Peeyush Maharshi, Philip Patterson, Ryan Burrows, Shaun Hickson, Terry
Rickman, and Thorsten Höger. Your feedback helped shape this book—we hope you
like it as much as we do.

 Special thanks to Michael Labib for his input and feedback on chapter 12 covering
AWS ElastiCache.

ACKNOWLEDGMENTSxxii

 Furthermore, we want to thank John Hyaduck, our technical developmental edi-
tor. Your unbiased and technical view on Amazon Web Services and our book helped
to perfect the second edition. Thanks to Jonathan Thoms, the technical editor of the
first edition as well.

 David Fombella Pombal and Doug Warren made sure all the examples within our
book are working as expected. Thanks for proofing the technical parts of our book.

 We also want to thank Manning Publications for placing their trust in us. Espe-
cially, we want to thank the following staff at Manning for their excellent work:

■ Frances Lefkowitz, our development editor, who guided us through the process
of writing the second edition. Her writing and teaching expertise is noticeable
in every part of our book. Thanks for your support.

■ Dan Maharry, our development editor while writing the first edition. Thanks
for taking us by the hand from writing the first pages to finishing our first book.

■ Aleksandar Dragosavljević, who organized the reviews of our book. Thanks for
making sure we got valuable feedback from our readers.

■ Benjamin Berg and Tiffany Taylor, who perfected our English. We know you
had a hard time with us, but our mother tongue is German, and we thank you
for your efforts.

■ Candace Gillhoolley, Ana Romac, and Christopher Kaufmann, who helped us
to promote this book.

■ Janet Vail, Deirdre Hiam, Elizabeth Martin, Mary Piergies, Gordan Salinovnic,
David Novak, Barbara Mirecki, Marija Tudor, and all the others who worked
behind the scenes and who took our rough draft and turned it into a real book.

Many thanks to Ben Whaley for contributing the foreword to our book.
 Last but not least, we want to thank the significant people in our lives who sup-

ported us as we worked on the book. Andreas wants to thank his wife Simone, and
Michael wants to thank his partner Kathrin, for their patience and encouragement.

xxiii

about this book
Our book guides you from creating an AWS account to building fault-tolerant and
auto-scaling applications. You will learn about services offering compute, network,
and storage capacity. We get you started with everything you need to run web applica-
tions on AWS: load balancers, virtual machines, file storage, database systems, and in-
memory caches.

 The first part of the book introduces the principles of Amazon Web Services and gives
you a first impression of the possibilities in the cloud. Next, you will learn about funda-
mental compute and network services. Afterward, we demonstrate six different ways to
store your data. The last part of our book focuses on highly available or even fault-
tolerant architectures that allow you to scale your infrastructure dynamically as well.

 Amazon offers a wide variety of services. Unfortunately, the number of pages within
a book is limited. Therefore, we had to skip topics such as containers, big data, and
machine learning. We cover the basic or most important services, though.

 Automation sneaks in throughout the book, so by the end you’ll be comfortable
with using AWS CloudFormation, an infrastructure-as-code tool that allows you to
manage your cloud infrastructure in an automated way; this will be one of the most
important things you will learn from our book.

 Most of our examples use popular web applications to demonstrate important
points. We use tools offered by AWS instead of third-party tools whenever possible, as
we appreciate the quality and support offered by AWS. Our book focuses on the differ-
ent aspects of security in the cloud, for example by following the “least privilege” prin-
ciple when accessing cloud resources.

ABOUT THIS BOOKxxiv

 We focus on Linux as the operating system for virtual machines in the book. Our
examples are based on open source software.

 Amazon operates data centers in geographic regions around the world. To simplify
the examples we are using the region US East (N. Virginia) within our book. You will
also learn how to switch to another region to exemplarily make use of resources in
Asia Pacific (Sydney).

Roadmap
Chapter 1 introduces cloud computing and Amazon Web Services. You’ll learn about
key concepts and basics, and you’ll create and set up your AWS account.

 Chapter 2 brings Amazon Web Services into action. You’ll spin up and dive into a
complex cloud infrastructure with ease.

 Chapter 3 is about working with a virtual machine. You’ll learn about the key con-
cepts of the Elastic Compute Service (EC2) with the help of a handful of practical
examples.

 Chapter 4 presents different approaches for automating your infrastructure: the
AWS command-line interface (CLI) from your terminal, the AWS SDKs to program in
your favorite language, as well as AWS CloudFormation, an infrastructure-as-code tool.

 Chapter 5 introduces three different ways to deploy software to AWS. You’ll use
each of the tools to deploy an application to AWS in an automated fashion.

 Chapter 6 is about security. You’ll learn how to secure your networking infrastruc-
ture with private networks and firewalls. You’ll also learn how to protect your AWS
account and your cloud resources.

 Chapter 7 is about automating operational tasks with AWS Lambda. You will learn
how to execute small code snippets in the cloud without the need of launching a vir-
tual machine.

 Chapter 8 introduces Amazon Simple Storage Service (S3), a service offering
object storage, and Amazon Glacier, a service offering long-term storage. You’ll learn
how to integrate object storage into your applications to implement a stateless server
by creating an image gallery.

 Chapter 9 is about storing data from your virtual machines on hard drives with
Amazon Elastic Block Storage (EBS) and instance storage. In order to get an idea of
the different options available, you will take some performance measurements.

 Chapter 10 explains how to use a networking filesystem to share data between mul-
tiple machines. Therefore, we introduce the Amazon Elastic File System (EFS).

 Chapter 11 introduces Amazon Relational Database Service (RDS), which offers
managed relational database systems like MySQL, PostgreSQL, Oracle, and Microsoft
SQL Server. You will learn how to connect an application to an RDS database instance,
for example.

 Chapter 12 is about adding a cache to your infrastructure to speed up your applica-
tion and save costs due to minimizing load on the database layer. Specifically, you will
learn about Amazon ElastiCache, which provides Redis or memcached as a service.

ABOUT THIS BOOK xxv

 Chapter 13 introduces Amazon DynamoDB, a NoSQL database offered by AWS.
DynamoDB is typically not compatible with legacy applications. You need to rework
your applications to be able to make use of DynamoDB instead. You’ll implement a to-
do application in this chapter.

 Chapter 14 explains what is needed to make your infrastructure highly available.
You will learn how to recover from a failed virtual machine or even a whole datacenter
automatically.

 Chapter 15 introduces the concept of decoupling your system to increase reliabil-
ity. You’ll learn how to use synchronous decoupling with the help of Elastic Load Bal-
ancing (ELB). Asynchronous decoupling is also part of this chapter; we explain how
to use the Amazon Simple Queue Service (SQS), a distributed queuing service, to
build a fault-tolerant system.

 Chapter 16 dives into building fault-tolerant applications based on the concepts
explained in chapter 14 and 15. You will create a fault-tolerant image processing web
services within this chapter.

 Chapter 17 is all about flexibility. You’ll learn how to scale the capacity of your
infrastructure based on a schedule or based on the current load of your system.

Code conventions and downloads
You’ll find four types of code listings in this book: Bash, YAML, Python, and Node.js/
JavaScript. We use Bash to create tiny scripts to interact with AWS in an automated
way. YAML is used to describe infrastructure in a way that AWS CloudFormation can
understand. In addition, we use Python to manage our cloud infrastructure. Also, we
use the Node.js platform to create small applications in JavaScript to build cloud-
native applications.

 This book contains many examples of source code both in numbered listings and
in line with normal text. In both cases, source code is formatted in a fixed-width
font like this to separate it from ordinary text. Code annotations accompany many
of the listings, highlighting important concepts. Sometimes we needed to break a line
into two or more to fit on the page. In our Bash code we used the continuation backs-
lash. In our YAML, Python, and Node.js/JavaScript code, an artificial line break is
indicated by this symbol: ➥.

 The code for the examples in this book is available for download from the pub-
lisher’s website at https://www.manning.com/books/amazon-web-services-in-action-
second-edition and from GitHub at https://github.com/awsinAction/code2.

Book forum
Purchase of Amazon Web Services in Action, Second Edition includes free access to a pri-
vate web forum run by Manning Publications where you can make comments about
the book, ask technical questions, and receive help from the author and from other
users. To access the forum, go to https://forums.manning.com/forums/amazon-web-
services-in-action-second-edition. You can also learn more about Manning’s forums
and the rules of conduct at https://forums.manning.com/forums/about.

https://www.manning.com/books/amazon-web-services-in-action-second-edition
https://www.manning.com/books/amazon-web-services-in-action-second-edition
https://github.com/awsinAction/code2
https://forums.manning.com/forums/amazon-web-services-in-action-second-edition
https://forums.manning.com/forums/amazon-web-services-in-action-second-edition
https://forums.manning.com/forums/about

ABOUT THIS BOOKxxvi

 Manning’s commitment to our readers is to provide a venue where a meaningful
dialogue between individual readers and between readers and the authors can take
place. It is not a commitment to any specific amount of participation on the part of
the authors, whose contribution to the forum remains voluntary (and unpaid). We
suggest you try asking the authors some challenging questions lest their interest stray!
The forum and the archives of previous discussions will be accessible from the pub-
lisher’s website as long as the book is in print.

xxvii

about the authors
Andreas Wittig and Michael Wittig are software and DevOps engineers
focusing on Amazon Web Services. The brothers started building on AWS
in 2013 when migrating the IT infrastructure of a German bank to AWS—
the first bank in Germany to do so. Since 2015, Andreas and Michael have
worked as consultants helping their clients to migrate and run their work-
loads on AWS. They focus on infrastructure-as-code, continuous deploy-
ment, serverless, Docker, and security. Andreas and Michael build SaaS
products on top of the Amazon’s cloud as well. Both are certified as AWS
Certified Solutions Architect - Professional and AWS Certified DevOps
Engineer - Professional. In addition, Andreas and Michael love sharing

their knowledge and teaching how to use Amazon Web Services through this book,
their blog (cloudonaut.io), as well as online- and on-site trainings (such as AWS in
Motion [https://www.manning.com/livevideo/aws-in-motion]).

https://cloudonaut.io
https://www.manning.com/livevideo/aws-in-motion

xxviii

about the cover illustration
The figure on the cover of Amazon Web Services in Action, Second Edition is captioned “Pay-
san du Canton de Lucerne,” or a peasant from the canton of Lucerne in central Swit-
zerland. The illustration is taken from a collection of dress costumes from various
countries by Jacques Grasset de Saint-Sauveur (1757-1810), titled Costumes de Différent
Pays, published in France in 1797. Each illustration is finely drawn and colored by hand.

 The rich variety of Grasset de Saint--Sauveur’s collection reminds us vividly of how
culturally apart the world’s towns and regions were just 200 years ago. Isolated from
each other, people spoke different dialects and languages. In the streets or in the
countryside, it was easy to identify where they lived and what their trade or station in
life was just by their dress.

 The way we dress has changed since then and the diversity by region, so rich at the
time, has faded away. It is now hard to tell apart the inhabitants of different conti-
nents, let alone different towns, regions, or countries. Perhaps we have traded cultural
diversity for a more varied personal life—certainly for a more varied and fast-paced
technological life.

 At a time when it is hard to tell one computer book from another, Manning cele-
brates the inventiveness and initiative of the computer business with book covers
based on the rich diversity of regional life of two centuries ago, brought back to life by
Grasset de Saint-Sauveur’s pictures.

Part 1

Getting started

Have you watched a blockbuster on Netflix, bought a gadget on Ama-
zon.com, or booked a room on Airbnb today? If so, you have used Amazon Web
Services (AWS) in the background. Because Netflix, Amazon.com, and Airbnb
all use Amazon Web Services for their business.

 Amazon Web Services is the biggest player in the cloud computing markets.
According to analysts, AWS maintains a market share of more than 30%.1 Another
impressive number: AWS reported net sales of $4.1 billion USD for the quarter
ending in June 2017.2 AWS data centers are distributed worldwide in North Amer-
ica, South America, Europe, Asia, and Australia. But the cloud does not consist of
hardware and computing power alone. Software is part of every cloud platform
and makes the difference for you, as a customer who aims to provide a valuable
experience to your services’s users. The research firm Gartner has yet again clas-
sified AWS as a leader in their Magic Quadrant for Cloud Infrastructure as a Ser-
vice in 2017. Gartner’s Magic Quadrant groups vendors into four quadrants:
niche players, challengers, visionaries, and leaders, and provides a quick overview
of the cloud computing market.3 Being recognized as a leader attests AWS’s high
speed and high quality of innovation.

1 Synergy Research Group, “The Leading Cloud Providers Continue to Run Away with the Market,”
http://mng.bz/qDYo.

2 Amazon, 10-Q for Quarter Ended June 30 (2017), http://mng.bz/1LAX.
3 AWS Blog, “AWS Named as a Leader in Gartner’s Infrastructure as a Service (IaaS) Magic Quadrant for

7th Consecutive Year,” http://mng.bz/0W1W.

http://amazon.com
http://amazon.com
http://mng.bz/qDYo
http://mng.bz/1LAX
http://amazon.com
http://mng.bz/0W1W

 The first part of this book will guide you through your initial steps with AWS. You
will get an impression of how you can use AWS to improve your IT infrastructure.

 Chapter 1 introduces cloud computing and AWS. This will get you familiar with
the big-picture basics of how AWS is structured.

 Chapter 2 brings Amazon Web Service into action. Here, you will spin up and dive
into a complex cloud infrastructure with ease.

3

What is
 Amazon Web Services?

Amazon Web Services (AWS) is a platform of web services that offers solutions for
computing, storing, and networking, at different layers of abstraction. For exam-
ple, you can use block-level storage (a low level of abstraction) or a highly distrib-
uted object storage (a high level of abstraction) to store your data. You can use
these services to host websites, run enterprise applications, and mine tremendous
amounts of data. Web services are accessible via the internet by using typical web pro-
tocols (such as HTTP) and used by machines or by humans through a UI. The
most prominent services provided by AWS are EC2, which offers virtual machines,
and S3, which offers storage capacity. Services on AWS work well together: you can
use them to replicate your existing local network setup, or you can design a new
setup from scratch. The pricing model for services is pay-per-use.

This chapter covers
 Overview of Amazon Web Services

 The benefits of using Amazon Web Services

 What you can do with Amazon Web Services

 Creating and setting up an AWS account

4 CHAPTER 1 What is Amazon Web Services?

 As an AWS customer, you can choose among different data centers. AWS data cen-
ters are distributed worldwide. For example, you can start a virtual machine in Japan
in exactly the same way as you would start one in Ireland. This enables you to serve
customers worldwide with a global infrastructure.

 The map in figure 1.1 shows AWS’s data centers. Access is limited to some of them:
some data centers are accessible for U.S. government organizations only, and special
conditions apply for the data centers in China. Additional data centers have been
announced for Bahrain, Hong Kong, Sweden, and the U.S..

In more general terms, AWS is known as a cloud computing platform.

1.1 What is cloud computing?
Almost every IT solution is labeled with the term cloud computing or just cloud nowa-
days. Buzzwords like this may help sales, but they’re hard to work with in a book. So
for the sake of clarity, let’s define some terms.

 Cloud computing, or the cloud, is a metaphor for supply and consumption of IT
resources. The IT resources in the cloud aren’t directly visible to the user; there are
layers of abstraction in between. The level of abstraction offered by the cloud varies,
from offering virtual machines (VMs) to providing software as a service (SaaS) based
on complex distributed systems. Resources are available on demand in enormous
quantities, and you pay for what you use.

 The official definition from the National Institute of Standards and Technology:

Cloud computing is a model for enabling ubiquitous, convenient, on-demand network
access to a shared pool of configurable computing resources (networks, virtual machines,
storage, applications, and services) that can be rapidly provisioned and released with
minimal management effort or service provider interaction.

—National Institute of Standards and Technology, The NIST Definition of
Cloud Computing

France

GermanyIreland

UK
Canada

Japan

Brazil
Australia

Singapore

India

China*

* Limited access

SouthKorea
U.S.

*

Figure 1.1 AWS data center locations

5What can you do with AWS?

Clouds are often divided into three types:

 Public—A cloud managed by an organization and open to use by the general public.
 Private—A cloud that virtualizes and distributes the IT infrastructure for a sin-

gle organization.
 Hybrid—A mixture of a public and a private cloud.

AWS is a public cloud. Cloud computing services also have several classifications:

 Infrastructure as a service (IaaS)—Offers fundamental resources like computing,
storage, and networking capabilities, using virtual machines such as Amazon
EC2, Google Compute Engine, and Microsoft Azure.

 Platform as a service (PaaS)—Provides platforms to deploy custom applications to
the cloud, such as AWS Elastic Beanstalk, Google App Engine, and Heroku.

 Software as a service (SaaS)—Combines infrastructure and software running in
the cloud, including office applications like Amazon WorkSpaces, Google Apps
for Work, and Microsoft Office 365.

The AWS product portfolio contains IaaS, PaaS, and SaaS. Let’s take a more concrete
look at what you can do with AWS.

1.2 What can you do with AWS?
You can run all sorts of application on AWS by using one or a combination of services.
The examples in this section will give you an idea of what you can do.

1.2.1 Hosting a web shop

John is CIO of a medium-sized e-commerce business. He wants to develop a fast and
reliable web shop. He initially decided to host the web shop on-premises, and three
years ago he rented machines in a data center. A web server handles requests from
customers, and a database stores product information and orders. John is evaluating
how his company can take advantage of AWS by running the same setup on AWS, as
shown in figure 1.2.

DatabaseWeb server

Maintenance free

On-premises server

DatabaseWeb
server

Managed by you with updates,
monitoring, and so on

Internet

User

Figure 1.2 Running a web shop
on-premises vs. on AWS

6 CHAPTER 1 What is Amazon Web Services?

John not only wants to lift-and-shift his current on-premises infrastructure to AWS; he
wants to get the most out of the advantages the cloud is offering. Additional AWS ser-
vices allow John to improve his setup.

 The web shop consists of dynamic content (such as products and their prices)
and static content (such as the company logo). Splitting these up would reduce
the load on the web servers and improve performance by delivering the static
content over a content delivery network (CDN).

 Switching to maintenance-free services including a database, an object store,
and a DNS system would free John from having to manage these parts of the sys-
tem, decreasing operational costs and improving quality.

 The application running the web shop can be installed on virtual machines. Using
AWS, John can run the same amount of resources he was using on his on-premises
machine, but split into multiple smaller virtual machines at no extra cost. If one of
these virtual machines fails, the load balancer will send customer requests to the
other virtual machines. This setup improves the web shop’s reliability.

Figure 1.3 shows how John enhanced the web shop setup with AWS.

Database

Internet
User

Load balancer DNS CDN

Object store

Dynamic

Web server

Static

Maintenance free Managed by you with updates,
monitoring, and so on

Improve
reliability.

Improve
performance.

Decrease
maintenance
costs.

Figure 1.3 Running a web shop on AWS with CDN for better performance, a load balancer for high
availability, and a managed database to decrease maintenance costs

7What can you do with AWS?

John is happy with running his web shop on AWS. By migrating his company’s infra-
structure to the cloud, he was able to increase the reliability and performance of the
web shop.

1.2.2 Running a Java EE application in your private network

Maureen is a senior system architect in a global corporation. She wants to move parts
of her company’s business applications to AWS when the data-center contract expires
in a few months, to reduce costs and gain flexibility. She wants to run enterprise appli-
cations (such as Java EE applications) consisting of an application server and an SQL
database on AWS. To do so, she defines a virtual network in the cloud and connects it
to the corporate network through a Virtual Private Network (VPN) connection. She
installs application servers on virtual machines to run the Java EE application. Mau-
reen also wants to store data in an SQL database service (such as Oracle Database
Enterprise Edition or Microsoft SQL Server EE).

 For security, Maureen uses subnets to separate systems with different security levels
from each other. By using access-control lists, she can control ingoing and outgoing
traffic for each subnet. For example, the database is only accessible from the JEE
server’s subnet which helps to protect mission-critical data. Maureen controls traffic to
the internet by using Network Address Translation (NAT) and firewall rules as well.
Figure 1.4 illustrates Maureen’s architecture.

SQL database

Private subnet
10.10.2.0/24

Internet

Private subnet
10.10.1.0/24

Private subnet
10.10.0.0/24

Virtual network
10.10.0.0/16

Java EE server

NAT
Internet
gateway

VPN
gatewayCorporate network

10.20.0.0/16

VPN

Figure 1.4 Running a Java EE application with enterprise networking on AWS
improves flexibility and lowers costs.

8 CHAPTER 1 What is Amazon Web Services?

Maureen has managed to connect the local data center with a private network run-
ning remotely on AWS to enable clients to access the JEE server. To get started, Mau-
reen uses a VPN connection between the local data center and AWS, but she is already
thinking about setting up a dedicated network connection to reduce network costs
and increase network throughput in the future.

 The project was a great success for Maureen. She was able to reduce the time
needed to set up an enterprise application from months to hours, as AWS can take
care of the virtual machines, databases, and even the networking infrastructure on
demand within a few minutes. Maureen’s project also benefits from lower infrastruc-
ture costs on AWS, compared to using their own infrastructure on-premises.

1.2.3 Implementing a highly available system

Alexa is a software engineer working for a fast-growing startup. She knows that Mur-
phy’s Law applies to IT infrastructure: anything that can go wrong will go wrong. Alexa
is working hard to build a highly available system to prevent outages from ruining the
business. All services on AWS are either highly available or can be used in a highly avail-
able way. So, Alexa builds a system like the one shown in figure 1.5 with a high availabil-
ity architecture. The database service is offered with replication and fail-over handling.
In case the master database instance fails, the standby database is promoted as the new
master database automatically. Alexa uses virtual machines acting as web servers. These
virtual machines aren’t highly available by default, but Alexa launches multiple virtual
machines in different data centers to achieve high availability. A load balancer checks
the health of the web servers and forwards requests to healthy machines.

Data center A

Web server

Database
(master)

Load
balancer

Internet
User Data center B

Web server

Database
(standby)

Fault tolerant by default Fault tolerant usage possible

Figure 1.5 Building a highly available system on AWS by using a load balancer, multiple virtual
machines, and a database with master-standby replication

9What can you do with AWS?

So far, Alexa has protected the startup from major outages. Nevertheless, she and her
team are always planning for failure and are constantly improving the resilience of
their systems.

1.2.4 Profiting from low costs for batch processing infrastructure

Nick is a data scientist who needs to process massive amounts of measurement data
collected from gas turbines. He needs to generate a report containing the mainte-
nance condition of hundreds of turbines daily. Therefore, his team needs a comput-
ing infrastructure to analyze the newly arrived data once a day. Batch jobs are run on a
schedule and store aggregated results in a database. A business intelligence (BI) tool
is used to generate reports based on the data stored in the database.

 As the budget for computing infrastructure is very small, Nick and his team have
been looking for a cost effective solution to analyze their data. He finds a way to make
clever use of AWS’s price model:

 AWS bills virtual machines per minute. So Nick launches a virtual machine when
starting a batch job, and terminates it immediately after the job finished. Doing
so allows him to pay for computing infrastructure only when actually using it.
This is a big game changer compared to the traditional data center where Nick
had to pay a monthly fee for each machine, no matter how much it was used.

 AWS offers spare capacity in their data centers at substantial discount. It is not import-
ant for Nick to run a batch job at a specific time. He can wait to execute a batch
job until there is enough spare capacity available, so AWS offers him a virtual
machine with a discount of 50%.

Figure 1.6 illustrates how Nick benefits from the pay-per-use price model for virtual
machines.

You’re paying for
the machines.

You’re only paying for machines
that are in use.

Machines
are used.

Machines
are idling.

On-premises

Using virtual machines

Pay for virtual machines

Using virtual machines

Pay for virtual machines

Figure 1.6 Making use of the pay-per-use price model of virtual machines

10 CHAPTER 1 What is Amazon Web Services?

Nick is happy to have access to a computing infrastructure that allows his team to ana-
lyze data at low costs. You now have a broad idea of what you can do with AWS. Gener-
ally speaking, you can host any application on AWS. The next section explains the
nine most important benefits AWS has to offer.

1.3 How you can benefit from using AWS
What’s the most important advantage of using AWS? Cost savings, you might say. But
saving money isn’t the only advantage. Let’s look at how else you can benefit from
using AWS.

1.3.1 Innovative and fast-growing platform

AWS is announcing new services, features, and improvements constantly. Go to
https://aws.amazon.com/about-aws/whats-new/ to get an impression of the speed of
innovation. We have counted 719 announcements from Jan. 1 to Oct. 21 in 2017, and
641 announcements in 2016. Making use of the innovative technologies provided by
AWS helps you to generate valuable solutions for your customers and thus achieve a
competitive advantage.

 AWS reported net sales of $4.1 billion USD for the quarter ending in June 2017.
That’s a year-over-year growth rate of 42% (Q3 2016 versus Q3 2017). We expect AWS
to expand the size and extend of its platform in the upcoming years, for example, by
adding additional services and data centers.4

1.3.2 Services solve common problems

As you’ve learned, AWS is a platform of services. Common problems such as load bal-
ancing, queuing, sending email, and storing files are solved for you by services. You
don’t need to reinvent the wheel. It’s your job to pick the right services to build com-
plex systems. So let AWS manage those services while you focus on your customers.

1.3.3 Enabling automation

Because AWS has an API, you can automate everything: you can write code to create
networks, start virtual machine clusters, or deploy a relational database. Automation
increases reliability and improves efficiency.

 The more dependencies your system has, the more complex it gets. A human can
quickly lose perspective, whereas a computer can cope with graphs of any size. You
should concentrate on tasks humans are good at—such as describing a system—while
the computer figures out how to resolve all those dependencies to create the system.
Setting up an environment in the cloud based on your blueprints can be automated
with the help of infrastructure as code, covered in chapter 4.

4 Amazon, 10-Q for Quarter Ended June 30 (2017), http://mng.bz/1LAX.

http://mng.bz/1LAX
https://aws.amazon.com/about-aws/whats-new/

11How you can benefit from using AWS

1.3.4 Flexible capacity (scalability)

Flexible capacity frees you from planning. You can scale from one virtual machine to
thousands of virtual machines. Your storage can grow from gigabytes to petabytes. You
no longer need to predict your future capacity needs for the coming months and
years.

 If you run a web shop, you have seasonal traffic patterns, as shown in figure 1.7.
Think about day versus night, and weekday versus weekend or holiday. Wouldn’t it be
nice if you could add capacity when traffic grows and remove capacity when traffic
shrinks? That’s exactly what flexible capacity is about. You can start new virtual
machines within minutes and throw them away a few hours after that.

The cloud has almost no capacity constraints. You no longer need to think about rack
space, switches, and power supplies—you can add as many virtual machines as you
like. If your data volume grows, you can always add new storage capacity.

 Flexible capacity also means you can shut down unused systems. In one of our last
projects, the test environment only ran from 7 a.m. to 8 p.m. on weekdays, allowing us
to save 60%.

1.3.5 Built for failure (reliability)

Most AWS services are highly available or fault tolerant by default. If you use those
services, you get reliability for free. AWS supports you as you build systems in a reliable
way. It provides everything you need to create your own highly available or fault-
tolerant systems.

1.3.6 Reducing time to market

In AWS, you request a new virtual machine, and a few minutes later that virtual
machine is booted and ready to use. The same is true with any other AWS service avail-
able. You can use them all on demand.

 Your development process will be faster because of the shorter feedback loops. You
can eliminate constraints such as the number of test environments available; if you
need another test environment, you can create it for a few hours.

12 noon 6 pm6 am

Sy
st

em
 lo

ad

Sy
st

em
 lo

ad

Thursday SundayMonday

Sy
st

em
 lo

ad

DecemberJanuary

Figure 1.7 Seasonal traffic patterns for a web shop

12 CHAPTER 1 What is Amazon Web Services?

1.3.7 Benefiting from economies of scale

AWS is increasing its global infrastructure constantly. Thus AWS benefits from an
economy of scale. As a customer, you will benefit partially from these effects.

 AWS reduces prices for their cloud services every now and then. A few examples:

 In November 2016, charges for storing data on the object storage S3 were
reduced by 16% to 28%.

 In May 2017, prices were reduced by 10% to 17% for virtual machines with a
one- or three-year commitment (reserved instances).

 In July 2017, AWS reduced prices for virtual machines running a Microsoft SQL
Server (Standard Edition) by up to 52%.

1.3.8 Global infrastructure

Are you serving customers worldwide? Making use of AWS’s global infrastructure has
the following advantages: low network latencies between your customers and your
infrastructure, being able to comply with regional data protection requirements, and
benefiting from different infrastructure prices in different regions. AWS offers data
centers in North America, South America, Europe, Asia, and Australia, so you can
deploy your applications worldwide with little extra effort.

1.3.9 Professional partner

When you use AWS services, you can be sure that their quality and security follow the
latest standards and certifications. For example:

 ISO 27001—A worldwide information security standard certified by an indepen-
dent and accredited certification body.

 ISO 9001—A standardized quality management approach used worldwide and
certified by an independent and accredited certification body.

 PCI DSS Level 1—A data security standard (DSS) for the payment card industry
(PCI) to protect cardholders data.

Go to https://aws.amazon.com/compliance/ if you want to dive into the details. If
you’re still not convinced that AWS is a professional partner, you should know that
Expedia, Vodafone, FDA, FINRA, Airbnb, Slack, and many more are running serious
workloads on AWS.5

 We have discussed a lot of reasons to run your workloads on AWS. But what does
AWS cost? You will learn more about the pricing models in the next section.

1.4 How much does it cost?
A bill from AWS is similar to an electric bill. Services are billed based on use. You pay for
the time a virtual machine was running, the used storage from the object store, or the
number of running load balancers. Services are invoiced on a monthly basis. The

5 AWS Customer Success, https://aws.amazon.com/solutions/case-studies/.

https://aws.amazon.com/solutions/case-studies/
https://aws.amazon.com/compliance/

13How much does it cost?

pricing for each service is publicly available; if you want to calculate the monthly cost of
a planned setup, you can use the AWS Simple Monthly Calculator (http://aws.amazon
.com/calculator).

1.4.1 Free Tier

You can use some AWS services for free within the first 12 months of your signing up.
The idea behind the Free Tier is to enable you to experiment with AWS and get some
experience using its services. Here is a taste of what’s included in the Free Tier:

 750 hours (roughly a month) of a small virtual machine running Linux or Win-
dows. This means you can run one virtual machine for a whole month or you
can run 750 virtual machines for one hour.

 750 hours (or roughly a month) of a classic or application load balancer.
 Object store with 5 GB of storage.
 Small database with 20 GB of storage, including backup.

If you exceed the limits of the Free Tier, you start paying for the resources you con-
sume without further notice. You’ll receive a bill at the end of the month. We’ll show
you how to monitor your costs before you begin using AWS.

 After your one-year trial period ends, you pay for all resources you use. But some
resources are free forever. For example, the first 25 GB of the NoSQL database are
free forever.

 You get additional benefits, as detailed at http://aws.amazon.com/free. This book
will use the Free Tier as much as possible and will clearly state when additional
resources are required that aren’t covered by the Free Tier.

1.4.2 Billing example

As mentioned earlier, you can be billed in several ways:

 Based on minutes or hours of usage—A virtual machine is billed per minute. A load
balancer is billed per hour.

 Based on traffic—Traffic is measured in gigabytes or in number of requests, for
example.

 Based on storage usage—Usage can be measured by capacity (for example, 50 GB
volume no matter how much you use) or real usage (such as 2.3 GB used).

Remember the web shop example from section 1.2? Figure 1.8 shows the web shop
and adds information about how each part is billed.

 Let’s assume your web shop started successfully in January, and you ran a market-
ing campaign to increase sales for the next month. Lucky you: you were able to
increase the number of visitors to your web shop fivefold in February. As you already
know, you have to pay for AWS based on usage. Table 1.1 shows your bill for February.
The number of visitors increased from 100,000 to 500,000, and your monthly bill
increased from $127 USD to $495 USD, which is a 3.9-fold increase. Because your web
shop had to handle more traffic, you had to pay more for services, such as the CDN,

http://aws.amazon.com/calculator
http://aws.amazon.com/calculator
http://aws.amazon.com/calculator
http://aws.amazon.com/free

14 CHAPTER 1 What is Amazon Web Services?

the web servers, and the database. Other services, like the amount of storage needed
for static files, didn’t change, so the price stayed the same.

Table 1.1 How an AWS bill changes if the number of web shop visitors increases

Service January usage February usage February charge Increase

Visits to website 100,000 500,000

CDN 25 M requests + 25 GB
traffic

125 M requests + 125 GB
traffic

$135.63 USD $107.50 USD

Static files 50 GB used storage 50 GB used storage $1.15 USD $0.00 USD

Load balancer 748 hours + 50 GB traffic 748 hours + 250 GB traffic $20.70 USD $1.60 USD

Web servers 1 virtual machine = 748
hours

4 virtual machines = 2,992
hours

$200.46 USD $150.35 USD

Database (748
hours)

Small virtual machine + 20
GB storage

Large virtual machine + 20
GB storage

$133.20 USD $105.47 USD

DNS 2 M requests 10 M requests $4.00 USD $3.20 USD

Total cost $495.14 USD $368.12 USD

Database

Internet
User

Load balancer DNS CDN

Object
storage

Virtual machines

Billed by storage usageBilled by hours of usage Billed by traffic

Dynamic Static

Figure 1.8 AWS bills services on minutes or hours of usage, by traffic, or by used storage.

15Comparing alternatives

With AWS, you can achieve a linear relationship between traffic and costs. And other
opportunities await you with this pricing model.

1.4.3 Pay-per-use opportunities

The AWS pay-per-use pricing model creates new opportunities. For example, the bar-
rier for starting a new project is lowered, as you no longer need to invest in infrastruc-
ture up front. You can start virtual machines on demand and only pay per second of
usage, and you can stop using those virtual machines whenever you like and no longer
have to pay for them. You don’t need to make an upfront commitment regarding how
much storage you’ll use.

 Another example: a big server costs exactly as much as two smaller ones with the
same capacity. Thus you can divide your systems into smaller parts, because the cost is
the same. This makes fault tolerance affordable not only for big companies but also
for smaller budgets.

1.5 Comparing alternatives
AWS isn’t the only cloud computing provider. Microsoft Azure and Google Cloud Plat-
form (GCP) are major players as well.

 The three major cloud providers share a lot in common. They all have:

 A worldwide infrastructure that provides computing, networking, and storage
capabilities.

 An IaaS offering that provides virtual machines on-demand: Amazon EC2,
Azure Virtual Machines, Google Compute Engine.

 Highly distributed storage systems able to scale storage and I/O capacity with-
out limits: Amazon S3, Azure Blob storage, Google Cloud Storage.

 A pay-as-you-go pricing model.

But what are the differences between the cloud providers?
 AWS is the market leader in cloud computing, offering an extensive product port-

folio. Even if AWS has expanded into the enterprise sector during recent years, it is still
obvious that AWS started with services to solve internet-scale problems. Overall, AWS is
building great services based on innovative, mostly open source, technologies. AWS
offers complicated but rock-solid ways to restrict access to your cloud infrastructure.

 Microsoft Azure provides Microsoft’s technology stack in the cloud, recently
expanding into web-centric and open source technologies as well. It seems like Micro-
soft is putting a lot of effort into catching up with Amazon’s market share in cloud
computing.

 GCP is focused on developers looking to build sophisticated distributed systems.
Google combines their worldwide infrastructure to offer scalable and fault-tolerant
services (such as Google Cloud Load Balancing). The GCP seems more focused on
cloud-native applications than on migrating your locally hosted applications to the
cloud, in our opinion.

16 CHAPTER 1 What is Amazon Web Services?

 There are no shortcuts to making an informed decision about which cloud pro-
vider to choose. Each use case and project is different. The devil is in the details. Also
don’t forget where you are coming from. (Are you using Microsoft technology heav-
ily? Do you have a big team consisting of system administrators or are you a developer-
centric company?) Overall, in our opinion, AWS is the most mature and powerful
cloud platform available at the moment.

1.6 Exploring AWS services
Hardware for computing, storing, and networking is the foundation of the AWS
cloud. AWS runs services on this hardware, as shown in figure 1.9. The API acts as an
interface between AWS services and your applications.

You can manage services by sending requests to the API manually via a web-based UI
like the Management Console, a command-line interface (CLI), or programmatically
via an SDK. Virtual machines have a special feature: you can connect to virtual
machines through SSH, for example, and gain administrator access. This means you
can install any software you like on a virtual machine. Other services, like the NoSQL
database service, offer their features through an API and hide everything that’s going
on behind the scenes. Figure 1.10 shows an administrator installing a custom PHP
web application on a virtual machine and managing dependent services such as a
NoSQL database used by the application.

 Users send HTTP requests to a virtual machine. This virtual machine is running a
web server along with a custom PHP web application. The web application needs to
talk to AWS services in order to answer HTTP requests from users. For example, the

Administrator

Manage
services

Compute:
App:

Enterprise:
Deployment:

Storage:
Database:

Networking:

Virtual machines
Queues, search
Directory service, mail
Access rights, monitoring
Object store, archiving
Relational, NoSQL
DNS, virtual network

Services

Compute

Software
Hardware

Storage
Network

API

Figure 1.9 The AWS cloud is composed of hardware and software services accessible via an API.

17Exploring AWS services

application might need to query data from a NoSQL database, store static files, and
send email. Communication between the web application and AWS services is han-
dled by the API, as figure 1.11 shows.

Administrator

Manage
services

Install and configure
software remotely.

API Services

Static file
storage

NoSQL
database

Sending
email

Virtual
machine

Figure 1.10 Managing a custom application running on a virtual machine and dependent services

Users

HTTP request

Virtual
machine

API

Static file
storage

NoSQL
database

Sending
email

Services

Figure 1.11 Handling an HTTP request with a custom web application using additional AWS services

18 CHAPTER 1 What is Amazon Web Services?

The number of services available can be scary at the outset. When logging into AWS’s
web interface you are presented with an overview listing 98 services. On top of that,
new services are announced constantly during the year and at the big conference in
Las Vegas, AWS re:Invent.

 AWS offers services in the following categories:

Unfortunately, it is not possible to cover all services offered by AWS in our book.
Therefore, we are focusing on the services that will best help you get started quickly, as
well as the most widely used services. The following services are covered in detail in
our book:

 EC2—Virtual machines
 ELB—Load balancers
 Lambda—Executing functions
 Elastic Beanstalk—Deploying web applications
 S3—Object store
 EFS—Network filesystem
 Glacier—Archiving data
 RDS—SQL databases
 DynamoDB—NoSQL database
 ElastiCache—In-memory key-value store
 VPC—Private network
 CloudWatch—Monitoring and logging
 CloudFormation—Automating your infrastructure
 OpsWorks—Deploying web applications
 IAM—Restricting access to your cloud resources
 Simple Queue Service—Distributed queues

We are missing at least three important topics that would fill their own books: contin-
uous delivery, Docker/containers, and Big Data. Let us know when you are interested
in reading one of these unwritten books.

 But how do you interact with an AWS service? The next section explains how to use
the web interface, the CLI, and SDKs to manage and access AWS resources.

 Analytics Desktop and App Streaming Media Services

 Application Integration Developer Tools Migration

 AR and VR Game Development Mobile Services

 Business Productivity Internet Of Things Networking and Content Delivery

 Compute Machine Learning Security, Identity, and Compliance

 Customer Engagement Management Tools Storage

 Database

19Interacting with AWS

1.7 Interacting with AWS
When you interact with AWS to configure or use services, you make calls to the API.
The API is the entry point to AWS, as figure 1.12 demonstrates.

Next, we’ll give you an overview of the tools available for communicating with API: the
Management Console, the command-line interface, the SDKs, and infrastructure
blueprints. We will compare the different tools, and you will learn how to use all of
them while working your way through the book.

1.7.1 Management Console

The AWS Management Console allows you to manage and access AWS services
through a graphical user interface (GUI), which runs in every modern web browser
(the latest three versions of Google Chrome and Mozilla Firefox; Apple Safari: 9, 8,
and 7; Microsoft Internet Explorer: 11; Microsoft Edge: 12). See figure 1.13.

 When getting started or experimenting with AWS, the Management Console is the
best place to start. It helps you to gain an overview of the different services quickly.
The Management Console is also a good way to set up a cloud infrastructure for devel-
opment and testing.

API

Manual

Automation

Services

Web-based
management

console

Blueprints

SDKs for Java,
Python, JavaScript,

and so on

Command-line
interface

Figure 1.12 Different ways to access the AWS API, allowing you to manage and access AWS services

20 CHAPTER 1 What is Amazon Web Services?

1.7.2 Command-line interface

The command-line interface (CLI) allows you to manage and access AWS services
within your terminal. Because you can use your terminal to automate or semi-auto-
mate recurring tasks, CLI is a valuable tool. You can use the terminal to create new
cloud infrastructures based on blueprints, upload files to the object store, or get the
details of your infrastructure’s networking configuration regularly. Figure 1.14 shows
the CLI in action.

 If you want to automate parts of your infrastructure with the help of a continuous
integration server, like Jenkins, the CLI is the right tool for the job. The CLI offers a
convenient way to access the API and combine multiple calls into a script.

 You can even begin to automate your infrastructure with scripts by chaining multi-
ple CLI calls together. The CLI is available for Windows, Mac, and Linux, and there is
also a PowerShell version available.

Figure 1.13 The AWS Management Console offers a GUI to manage and access AWS services.

21Interacting with AWS

1.7.3 SDKs

Use your favorite programming language to interact with the AWS API. AWS offers
SDKs for the following platforms and languages:

SDKs are typically used to integrate AWS services into applications. If you’re doing
software development and want to integrate an AWS service like a NoSQL database or
a push-notification service, an SDK is the right choice for the job. Some services, such
as queues and topics, must be used with an SDK.

 Android .NET Ruby

 Browsers (JavaScript) Node.js (JavaScript) Go

 iOS PHP C++

 Java Python

Figure 1.14 The CLI allows you to manage and access AWS services from your terminal.

22 CHAPTER 1 What is Amazon Web Services?

1.7.4 Blueprints

A blueprint is a description of your system containing all resources and their depen-
dencies. An Infrastructure as Code tool compares your blueprint with the current sys-
tem, and calculates the steps to create, update, or delete your cloud infrastructure.
Figure 1.15 shows how a blueprint is transferred into a running system.

Consider using blueprints if you have to control many or complex environments. Blue-
prints will help you to automate the configuration of your infrastructure in the cloud.
You can use them to set up a network and launch virtual machines, for example.

 Automating your infrastructure is also possible by writing your own source code
with the help of the CLI or the SDKs. But doing so requires you to resolve dependen-
cies, make sure you are able to update different versions of your infrastructure, and
handle errors yourself. As you will see in chapter 4, using a blueprint and an Infra-
structure-as-Code tool solves these challenges for you. It’s time to get started creating
your AWS account and exploring AWS practice after all that theory.

1.8 Creating an AWS account
Before you can start using AWS, you need to create an account. Your account is a bas-
ket for all your cloud resources. You can attach multiple users to an account if multi-
ple humans need access to it; by default, your account will have one root user. To
create an account, you need the following:

 A telephone number to validate your identity
 A credit card to pay your bills

Database

Load balancer

Infrastructure as Code
tool converts blueprint

into running infrastructure

CDN

Static files

Virtual machines

DNS
{
 infrastructure: {
 loadbalacher: {
 vm: { ... }
 },
 cdn: { ... },
 database: { ... },
 dns: { ... },
 static: { ... }
 }
}

Figure 1.15 Infrastructure automation with blueprints

23Creating an AWS account

USING AN OLD ACCOUNT? It is possible to use your existing AWS account while
working through this book. In this case, your usage might not be covered by
the Free Tier. So you might have to pay for the use.

If you created your existing AWS account before Dec. 4, 2013, please create a
new one, as there are some legacy issues that might cause trouble during our
examples.

1.8.1 Signing up

The sign-up process consists of five steps:

1 Provide your login credentials.
2 Provide your contact information.
3 Provide your payment details.
4 Verify your identity.
5 Choose your support plan.

Point your favorite web browser to https://aws.amazon.com, and click the Create a Free
Account button.

1. PROVIDING YOUR LOGIN CREDENTIALS

Creating an AWS account starts with defining a unique AWS account name, as shown
in figure 1.16. The AWS account name has to be globally unique among all AWS cus-
tomers. Try aws-in-action-$yourname and replace $yourname with your name.
Beside the account name, you have to specify an email address and a password used to
authenticate the root user of your AWS account.

 We advise you to choose a strong password to prevent misuse of your account. Use a pass-
word consisting of at least 20 characters. Protecting your AWS account from unwanted access
is crucial to avoid data breaches, data loss, or unwanted resource usage on your behalf.

Define a name for your AWS account
(for example, aws-in-action-<YOUR-NAME>).

Enter your email address
which acts as the username
for the root user.

Specify a secure password
consisting of at least
20 characters.

Figure 1.16 Creating
an AWS account: sign-
up page

https://aws.amazon.com

24 CHAPTER 1 What is Amazon Web Services?

2. PROVIDING YOUR CONTACT INFORMATION

The next step, as shown in figure 1.17, is adding your contact information. Fill in all
the required fields, and continue.

3. PROVIDING YOUR PAYMENT DETAILS

Next the screen shown in figure 1.18 asks for your payment information. Provide your
credit card information. There’s an option to change the currency setting from USD
to AUD, CAD, CHF, DKK, EUR, GBP, HKD, JPY, NOK, NZD, SEK, or ZAR later on if
that’s more convenient for you. If you choose this option, the amount in USD is con-
verted into your local currency at the end of the month.

Figure 1.17 Creating an AWS account: providing your contact information

25Creating an AWS account

4. VERIFYING YOUR IDENTITY

The next step is to verify your identity. Figure 1.19 shows the first step of the process.
After you complete the first part of the form, you’ll receive a call from AWS. A robot
voice will ask for your PIN. The four-digit PIN is displayed on the website and you have
to enter it using your telephone. After your identity has been verified, you are ready to
continue with the last step.

Figure 1.18 Creating an AWS account: providing your payment details

26 CHAPTER 1 What is Amazon Web Services?

5. CHOOSING YOUR SUPPORT PLAN

The last step is to choose a support plan; see figure 1.20. In this case, select the Basic
plan, which is free. If you later create an AWS account for your business, we recom-
mend the Business support plan. You can even switch support plans later.

 High five! You’re done. Click Launch Management Console as shown in figure 1.21
to sign into your AWS account for the first time.

Figure 1.19 Creating an AWS account: verifying your identity

27Creating an AWS account

Figure 1.20 Creating an AWS account: choosing your support plan

Figure 1.21 You have successfully created an AWS account.

28 CHAPTER 1 What is Amazon Web Services?

1.8.2 Signing In

You now have an AWS account and are ready to sign in to the AWS Management Con-
sole. As mentioned earlier, the Management Console is a web-based tool you can use
to control AWS resources; it makes most of the functionality of the AWS API available
to you. Figure 1.22 shows the sign-in form at https://console.aws.amazon.com. Enter
your email address, click Next, and then enter your password to sign in.

After you have signed in successfully, you are forwarded to the start page of the Man-
agement Console, as shown in figure 1.23.

Figure 1.22 Sign in to the Management Console.

Figure 1.23 AWS Management Console

https://console.aws.amazon.com

29Creating an AWS account

The most important part is the navigation bar at the top, shown in figure 1.24. It con-
sists of seven sections:

 AWS—Start page of the Management Console, including an overview of all services.
 Services—Provides quick access to all AWS services.
 Resource Groups—Allows you to get an overview of all your AWS resources.
 Custom section (Edit)—Click the edit icon and drag-and-drop important services

here to personalize the navigation bar.
 Your name—Lets you access billing information and your account, and also lets

you sign out.
 Your region—Lets you choose your region. You will get to know about regions in

section 3.5. You don’t need to change anything here right now.
 Support—Gives you access to forums, documentation, and a ticket system.

Next, you’ll create a key pair so you can connect to your virtual machines.

1.8.3 Creating a key pair

A key pair consists of a private key and a public key. The public key will be uploaded to
AWS and injected into the virtual machine. The private key is yours; it’s like your pass-
word, but much more secure. Protect your private key as if it were a password. It’s your
secret, so don’t lose it—you can’t retrieve it.

 To access a Linux machine, you use the SSH protocol; you’ll use a key pair for
authentication instead of a password during login. When accessing a Windows
machine via Remote Desktop Protocol (RDP), you’ll need a key pair to decrypt the
administrator password before you can log in.

Start
page

Help
section

Jump to
a service.

Overview of
your resources

Quick access
to services (customizable)

Account
and Billing

Region
selector

Figure 1.24 AWS Management Console navigation bar

Region US East (N. Virginia)
Amazon operates data centers in various geographic regions around the world. To
simplify the examples, we’re using the region US East (N. Virginia) within our book.
You will also learn how to switch to another region to use resources in Asia Pacific
(Sydney).

Make sure you have selected the region US East (N. Virginia) before creating your key
pair. Use the region selector in the navigation bar of the Management Console to
change the region if needed.

30 CHAPTER 1 What is Amazon Web Services?

The following steps will guide you to the dashboard of the EC2 service, which offers
virtual machines, and where you can obtain a key pair:

1 Open the AWS Management Console at https://console.aws.amazon.com.
2 Click Services in the navigation bar and select EC2.
3 Your browser should now show the EC2 Dashboard.

The EC2 Dashboard, shown in figure 1.25, is split into three columns. The first column
is the EC2 navigation bar; because EC2 is one of the oldest services, it has many features
that you can access via the navigation bar. The second column gives you a brief overview
of all your EC2 resources. The third column provides additional information.

Follow the steps in figure 1.26 to create a new key pair:

1 Click Key Pairs in the navigation bar under Network & Security.
2 Click the Create Key Pair button.
3 Name the Key Pair mykey. If you choose another name, you must replace the

name in all the following examples during the whole book!

During the key-pair creation process, you download a file called mykey.pem. You must
now prepare that key for future use. Depending on your operating system, you need
to do things differently, so please read the section that fits your OS.

Figure 1.25 EC2 Management Console

Figures with cueballs
In some figures, as in figure 1.26, you’ll see numbered cueballs. They mark the order
in which you need to click to follow the process being discussed in the text.

https://console.aws.amazon.com

31Creating an AWS account

LINUX AND MACOS
The only thing you need to do is change the access rights of mykey.pem so that only
you can read the file. To do so, run chmod 400 mykey.pem in the terminal. You’ll learn
about how to use your key when you need to log in to a virtual machine for the first
time in this book.

Figure 1.26 EC2 Management Console Key Pairs

B

C

Using your own key pair
It’s also possible to upload the public key part from an existing key pair to AWS. Doing
so has two advantages:

 You can reuse an existing key pair.
 You can be sure only you know the private key part of the key pair. If you use

the Create Key Pair button, AWS knows (at least briefly) your private key.

We decided against that approach in this case because it’s less convenient to imple-
ment in a book.

32 CHAPTER 1 What is Amazon Web Services?

WINDOWS

Windows doesn’t ship an SSH client, so you need to download the PuTTY installer for
Windows from http://mng.bz/A1bY and install PuTTY. PuTTY comes with a tool called
PuTTYgen that can convert the mykey.pem file into a mykey.ppk file, which you’ll need:

1 Run the PuTTYgen application. The screen shown in figure 1.27 opens. The
most important steps are highlighted on the screen.

2 Select RSA (or SSH-2 RSA) under Type of Key to Generate.
3 Click Load.
4 Because PuTTYgen displays only *.ppk files, you need to switch the file exten-

sion of the File Name field to All Files.
5 Select the mykey.pem file, and click Open.
6 Confirm the dialog box.
7 Change Key Comment to mykey.
8 Click Save Private Key. Ignore the warning about saving the key without a

passphrase.

Your .pem file has now been converted to the .ppk format needed by PuTTY. You’ll
learn about how to use your key when you need to log in to a virtual machine for the
first time in this book.

Change comment to mykey.

Figure 1.27 PuTTYgen
allows you to convert
the downloaded .pem
file into the .ppk file
format needed by
PuTTY.

http://mng.bz/A1bY

33Create a billing alarm to keep track of your AWS bill

1.9 Create a billing alarm to keep track of your AWS bill
At first, the pay-per-use pricing model of AWS might feel unfamiliar to you, as it is
not 100% foreseeable what your bill will look like at the end of the month. Most of
the examples in this book are covered by the Free Tier, so AWS won’t charge you
anything. Exceptions are clearly marked. To provide you with the peace of mind
needed to learn about AWS in a comfortable environment, you will create a billing
alarm next. The billing alarm will notify you via email if your monthly AWS bill
exceeds $5 USD so that you can react quickly.

 First, you need to enable billing alarms within your AWS account. The step are
illustrated in figure 1.28. The first step, of course, is to open the AWS Management
Console at https://console.aws.amazon.com.

1 Click your Name in the main navigation bar on the top.
2 Select My Billing Dashboard from the pop-up menu.
3 Go to Preferences by using the sub navigation on the left side.
4 Select the Receive Billing Alerts check box.
5 Click Save preferences.

Open the
Billing Dashboard.Select Preferences.

Enable Receive
Billing Alerts.

Figure 1.28 Creating a billing alarm (step 1 of 4)

https://console.aws.amazon.com

34 CHAPTER 1 What is Amazon Web Services?

You are now able to create a billing alarm. Here are the steps to do so:

1 Open the AWS Management Console at https://console.aws.amazon.com.
2 Open Services in the navigation bar and select CloudWatch.
3 Click the Create a billing alarm link as shown in figure 1.29.

Figure 1.30 shows the wizard that guides you through creating a billing alarm. Enter
the threshold of total monthly charges for the billing alarm. We suggest $5 UDS, the
equivalent of the price for a cup of coffee, as the threshold. Type in the email address
where you want to receive notifications from your billing alarm in case your AWS bill
exceeds the threshold. Click Create Alarm to create your billing alarm.

Billing alarms are available
in N. Virginia only.

Click here to create
a billing alarm. Figure 1.29 Creating a billing alarm (step 2 of 4)

Alarm when AWS
bill exceeds $5 USD.

Enter your
email address.

Click here to
create your
alarm.

Figure 1.30 Creating a
billing alarm (step 3 of 4)

https://console.aws.amazon.com

35Summary

Open your inbox. An email from AWS containing a confirmation link appears. Click
the confirmation link to complete the setup of your billing alarm. The dialog shown
in figure 1.31 shows the status.

 That’s all. If your monthly AWS bill exceeds $5 USD for any reason, you will be
notified immediately, allowing you to react before unwanted costs occur.

Summary
 Amazon Web Services (AWS) is a platform of web services for computing, stor-

ing, and networking that work well together.
 Cost savings aren’t the only benefit of using AWS. You’ll also profit from an

innovative and fast-growing platform with flexible capacity, fault-tolerant ser-
vices, and a worldwide infrastructure.

 Any use case can be implemented on AWS, whether it’s a widely used web appli-
cation or a specialized enterprise application with an advanced networking
setup.

 You can interact with AWS in many different ways. You can control the different
services by using the web-based GUI, use code to manage AWS programmati-
cally from the command line or SDKs, or use blueprints to set up, modify, or
delete your infrastructure on AWS.

 Pay-per-use is the pricing model for AWS services. Computing power, storage,
and networking services are billed similarly to electricity.

 Creating an AWS account is easy. Now you know how to set up a key pair so you
can log in to virtual machines for later use.

 Creating a billing alarm allows you to keep track of your AWS bill and get noti-
fied whenever you exceed the Free Tier.

Check your inbox and click
the confirmation link in the
email you received.

Figure 1.31 Creating a
billing alarm (step 4 of 4)

36

A simple example:
 WordPress in five minutes

Having looked at why AWS is such a great choice to run web applications in the
cloud, in this chapter, you’ll evaluate migrating a simple web application to AWS by
setting up a sample cloud infrastructure within five minutes.

NOTE The example in this chapter is totally covered by the Free Tier (see
section 1.4.1 for details). As long as you don’t run this example longer than
a few days, you won’t pay anything for it. Keep in mind that this applies only
if you created a fresh AWS account for this book and there is nothing else
going on in your AWS account. Try to complete the chapter within a few days,
because you’ll clean up your account at the end of the chapter.

Imagine you work for a mid-sized company that runs a blog to attract new software
and operations engineers. WordPress is used as the content management system.

This chapter covers
 Creating a blogging infrastructure

 Analyzing costs of a blogging infrastructure

 Exploring a blogging infrastructure

 Shutting down a blogging infrastructure

37Creating your infrastructure

Around 1,000 people visit the blog daily. You are paying $150 USD per month for the
on-premises infrastructure. This seems expensive to you, particularly because at the
moment the blog is suffering from several outages per month.

 To leave a good impression on potential candidates, the infrastructure should be
highly available, which is defined as an uptime of 99.99%. Therefore, you are evaluat-
ing new options to operate WordPress reliably. AWS seems to be a good fit. As a proof-
of-concept, you want to evaluate whether a migration is possible. To do so, you need to
do the following:

 Set up a highly available infrastructure for WordPress.
 Estimate monthly costs of the infrastructure.
 Come to a decision and delete the infrastructure afterward.

WordPress is written in PHP and uses a MySQL database to store data. Apache is used
as the web server to serve the pages. With this information in mind, it’s time to map
your requirements to AWS services.

2.1 Creating your infrastructure
You’ll use five different AWS services to copy the old infrastructure to AWS:

 Elastic Load Balancing (ELB)—AWS offers a load balancer as a service. The load
balancer distributes traffic to a bunch of virtual machines, and is highly avail-
able by default. Requests are routed to virtual machines as long as their health
check succeeds. You’ll use the Application Load Balancer (ALB) which oper-
ates on Layer 7 (HTTP and HTTPS).

 Elastic Compute Cloud (EC2)—The EC2 service provides virtual machines. You’ll
use a Linux machine with an optimized distribution called Amazon Linux to
install Apache, PHP, and WordPress. You aren’t limited to Amazon Linux; you
could also choose Ubuntu, Debian, Red Hat, or Windows. Virtual machines can
fail, so you need at least two of them. The load balancer will distribute the traf-
fic between them. In case a virtual machine fails, the load balancer will stop
sending traffic to the failed VM, and the remaining VM will need to handle all
requests until the failed VM is replaced.

 Relational Database Service (RDS) for MySQL—WordPress relies on the popular
MySQL database. AWS provides MySQL with its RDS. You choose the database
size (storage, CPU, RAM), and RDS takes over operating tasks like creating
backups and installing patches and updates. RDS can also provide a highly avail-
able MySQL database by replication.

 Elastic File System (EFS)—WordPress itself consists of PHP and other application
files. User uploads, for example images added to an article, are stored as files as
well. By using a network file system, your virtual machines can access these files.
EFS provides a scalable, highly available, and durable network filesystem using
the NFSv4.1 protocol.

38 CHAPTER 2 A simple example: WordPress in five minutes

 Security groups— Control incoming and outgoing traffic to your virtual machine,
your database, or your load balancer with a firewall. For example, use a security
group allowing incoming HTTP traffic from the internet to port 80 of the load
balancer. Or restrict network access to your database on port 3306 to the virtual
machines running your web servers.

Figure 2.1 shows all the parts of the infrastructure in action. Sounds like a lot of stuff
to set up, so let’s get started!

If you expect pages of instructions, you’ll be happy to know that you can create all that
with just a few clicks. Doing so is possible by using a service called AWS CloudForma-
tion that you will learn about in detail in chapter 4. AWS CloudFormation will do all of
the following automatically in the background:

1 Create a load balancer (ELB).
2 Create a MySQL database (RDS).

Security Groups act as virtual firewalls for
your resources. You need to define specific
rules to control incoming and outgoing
traffic for each resource type.

Store and access files from multiple
virtual machines with the Elastic File
System (EFS) by using the NFSv4.1
protocol.

Incoming
requests

Distribute
traffic to web

servers

Elastic Load Balancing
(ELB) service is providing
a managed load balancer.
The service is fault tolerant.

Users

Load balancer

Firewall

Database

Firewall

Network filesystem

Firewall

Virtual machines

Firewall

Firewall

Relational Database Service
(RDS) is providing a managed
MySQL database. AWS takes
care of backups, updates, and
replication.

Elastic Compute Cloud
(EC2) service is an IaaS
providing virtual machines
(Linux and Windows). You
can install any software
you like on them.

Figure 2.1 The company’s blogging infrastructure consists of two load-balanced web servers running
WordPress, a network filesystem, and a MySQL database server.

39Creating your infrastructure

3 Create a network filesystem (EFS).
4 Create and attach firewall rules (security groups).
5 Create two virtual machines running web servers:

a Create two virtual machines (EC2).
b Mount the network filesystem.
c Install Apache and PHP.
d Download and extract the 4.8 release of WordPress.
e Configure WordPress to use the created MySQL database (RDS).
f Start the Apache web server.

To create the infrastructure for your proof-of-concept, open the AWS Management
Console at https://console.aws.amazon.com. Click Services in the navigation bar, and
select the CloudFormation service. You can use the search function to find CloudFor-
mation more easily. You’ll see a page like the one shown in figure 2.2.

DEFAULT REGION FOR EXAMPLES All examples in this book use N. Virginia
(also called us-east-1) as the default region. Exceptions are indicated. Please
make sure you switch to the region N. Virginia before starting to work on an
example. When using the AWS Management Console, you can check and
switch the region on the right side of the main navigation bar at the top.

Click Create Stack to start the four-step wizard, as shown in figure 2.3.

Click to create
an infrastructure
from a blueprint. Reload the page.

You haven’t created
an infrastructure from a
blueprint at the moment.

Figure 2.2 Overview of CloudFormation

https://console.aws.amazon.com

40 CHAPTER 2 A simple example: WordPress in five minutes

Choose Specify an Amazon S3 template URL and enter https://s3.amazonaws.com/
awsinaction-code2/chapter02/template.yaml to use the template prepared for this
chapter. Proceed with the next step of the wizard.

 Specify wordpress as the Stack name and set the KeyName to mykey in the Parame-
ters section as shown in figure 2.4.

 The next step is to specify tags for your infrastructure, as illustrated by figure 2.5. A
tag consists of a key and a value, and can be used to add metadata to all parts of your
infrastructure. You can use tags to differentiate between testing and production
resources, add a cost center to easily track costs in your organization, or mark
resources that belong to a certain application if you host multiple applications in the
same AWS account.

 Figure 2.5 shows how to configure the tag. In this example, you’ll use a tag to
mark all resources that belong to the wordpress system. This will help you to easily
find all the parts of your infrastructure later. Use a custom tag consisting of the key
system and the value wordpress. Afterward, press the Next button to proceed to the
next step. You can define your own tags as long as the key name is shorter than 128
characters and the value has fewer than 256 characters.

Figure 2.3 Creating the stack for the proof-of-concept: step 1 of 4

Step � of 4

Here you select the blueprint
for the infrastructure. You can
select a sample, upload, or
provide a URL. You can find
a URL for the WordPress
infrastructure in the book.

https://s3.amazonaws.com/awsinaction-code2/chapter02/template.yaml

41Creating your infrastructure

Step 2 of 4

Name your stack.

Specify the Key
Pair you created
in chapter 1.

Figure 2.4 Creating the stack for the proof-of-concept: step 2 of 4

Figure 2.5 Creating the stack for the proof-of-concept: step 3 of 4

Step 3 of 4

A tag consists of
a key-value pair.

Use tags to identify your infrastructure.

42 CHAPTER 2 A simple example: WordPress in five minutes

Figure 2.6 shows the confirmation page. Please click on the Estimate cost link to open
a cost estimation of your cloud infrastructure in a new browser tab. Don’t worry, the
example is covered by the Free Tier and you’ll learn about all the details of the cost
estimation in section 2.3. Switch back to the original browser tab, and click Create.

Additional CloudFormation Stack options
It is possible to define specific permissions used to manage resources, as well as
to set up notifications and other advanced options. You won’t need these options
for 99% of the use cases, so we don’t cover them in our book. Have a look at the
CloudFormation User Guide (http://mng.bz/njoZ) if you’re interested in the details.

Figure 2.6 Creating the stack for the proof-of-concept: step 4 of 4

Step 4 of 4
URL for the WordPress
blueprint from the book

Opens a new browser
tab to estimate costs
with the Simple
Monthly Calculator

Name of your
infrastructure

Specified Key Pair you
created in chapter 1

Used tags to
identify your
infrastructure

http://mng.bz/njoZ

43Creating your infrastructure

Your infrastructure will now be created. Figure 2.7 shows that wordpress is in state
CREATE_IN_PROGRESS. It’s a good time to take a break; come back in five minutes, and
you’ll be surprised.

 After all the needed resources have been created, the status will change to CREATE
_COMPLETE. Be patient and hit the refresh icon from time to time if your status still
shows as CREATE_IN_PROGRESS.

 Select the check box at the beginning of the row containing your wordpress stack.
Switch to the Outputs tab, as shown in figure 2.8. There you’ll find the URL to your
WordPress installation; click the link to open it in your browser.

Infrastructure
is creating.

Reload the page.

You have created
one infrastructure
from a blueprint
at the moment.

Figure 2.7 CloudFormation is creating the resources needed for WordPress.

Select Outputs tab. URL to your newly
created WordPress

Infrastructure
is created.

Figure 2.8 Blogging infrastructure has been created successfully.

44 CHAPTER 2 A simple example: WordPress in five minutes

You may ask yourself, how does this work? The answer is automation.

You’ll explore the blogging infrastructure in the next section to get a better under-
standing of the services you’re using.

2.2 Exploring your infrastructure
Now that you’ve created your blogging infrastructure, let’s take a closer look at it. Your
infrastructure consists of the following:

 Web servers running on virtual machines
 Load balancer
 MySQL database
 Network filesystem

You’ll use the Management Console’s resource groups feature to get an overview.

2.2.1 Resource groups

A resource group is a collection of AWS resources. Resource in AWS is an abstract term for
something like an virtual machine, a security group, or a database. Resources can be
tagged with key-value pairs, and resource groups specify which tags are needed for a
resource to belong to the group. Furthermore, a resource group specifies the
region(s) the resource must reside in. You can use resource groups for grouping
resources if you run multiple systems in the same AWS account.

 Remember that you tagged the blogging infrastructure with the key system and
the value wordpress. From now on, we’ll use this notation for key-value pairs: (sys-
tem:wordpress). You’ll use that tag to create a resource group for your WordPress
infrastructure. Click Create a Resource Group as shown in figure 2.9.

Automation references
One of the key concepts of AWS is automation. You can automate everything. In the
background, your blogging infrastructure was created based on a blueprint. You’ll
learn more about blueprints and the concept of programming your infrastructure in
chapter 4. You’ll learn to automate the installation of software in chapter 5.

Figure 2.9 Open resource groups

45Exploring your infrastructure

You’ll now create a resource group as illustrated in 2.10:

1 Set Group Name to wordpress or whatever you like.
2 Add the tag system with the value wordpress.
3 Select the region you’re in, which is probably N. Virginia. If you don’t know the

region you’re in, select All Regions.
4 Click Save.

2.2.2 Virtual machines

Now you’ll see the screen shown in figure 2.11. Select Instances under EC2 on the left
to see your virtual machines. By clicking the arrow icon in the Go column, you can
easily jump to the details of a single virtual machine.

Figure 2.10 Creating a resource group for your blogging infrastructure

Use the system:wordpress tag to
identify your infrastructure.

Choose the region you used for CloudFormation.
If in doubt, select all regions.

Choose whatever you like
to name your group.

Global means that Resource Groups
are not bound to a specific region.

Figure 2.11 Blogging infrastructure virtual machines via resource groups

A virtual server is also called instance.

46 CHAPTER 2 A simple example: WordPress in five minutes

You’re now looking at the details of your virtual machine, also called an EC2 instance.
Figure 2.12 shows an extract of what you see. The interesting details are as follows:

 Instance type—Tells you about how powerful your EC2 instance is. You’ll learn
more about instance types in chapter 3.

 IPv4 Public IP—The IP address that is reachable over the internet. You can use
that IP address to connect to the virtual machine via SSH.

 Security groups—If you click View Rules, you’ll see the active firewall rules, like
the one that enables port 22 from all sources (0.0.0.0/0)

 AMI ID—Remember that you used the Amazon Linux OS. If you click the AMI
ID, you’ll see the version number of the OS, among other things.

The Public IP
address of the
virtual machine

You launched the
machine based on
the Amazon Linux
image.

Select the tab to see
some monitoring charts.

Click here to
view inbound
rules of the
firewall
configuration.

You are using a
machine with little
CPU and memory
capacities.

Figure 2.12 Details of web servers running the blogging infrastructure

47Exploring your infrastructure

Select the Monitoring tab to see how your virtual machine is utilized. This tab is essen-
tial if you really want to know how your infrastructure is doing. AWS collects some
metrics and shows them here. For example, if the CPU is utilized more than 80%, it
might be a good time to add another virtual machine to prevent increasing response
times. You will learn more about monitoring virtual machines in section 3.2.

2.2.3 Load balancer

AWS released a new load balancer type, called Application Load Balancer, in August
2016. Unfortunately, our resource group does not list Application Load Balancers yet.
Therefore, click Load Balancers in the sub navigation of the EC2 service as shown in
figure 2.13.

 Select your load balancer from the list to show more details. Your internet-facing
load balancer is accessible from the internet via an automatically generated DNS
name.

Use the DNS name to connect
to your Load Balancer.

The Load Balancer is reachable
from the internet.

Name of the load balancer has
been generated automatically.

Select load
balancers

Figure 2.13 Get details about your load balancer.

48 CHAPTER 2 A simple example: WordPress in five minutes

The load balancer forwards incoming requests to one of your virtual machines. A tar-
get group is used to define the targets for a load balancer. You’ll find your target
group after switching to Target Groups through the sub navigation of the EC2 service
as shown in figure 2.14.

 The load balancer performs health checks to ensure requests are routed to healthy
targets only. Two virtual machines are listed as targets for the target group. As you can
see in the figure, the status of both virtual machines is healthy.

 As before, there is a Monitoring tab where you can find interesting metrics that
you should watch in production. If the traffic pattern changes suddenly, this indicates
a potential problem with your system. You’ll also find metrics indicating the number
of HTTP errors, which will help you to monitor and debug your system.

Virtual machines registered
as targets for load balancer

Target Group belongs
to the Load Balancer.

Open the Target
Groups section.

Figure 2.14 Details of target group belonging to the load balancer

49Exploring your infrastructure

2.2.4 MySQL database

The MySQL database is an important part of your infrastucture; you’ll look at it next.
Go back to the resource group named wordpress. Select DB Instances under RDS on
the left. By clicking the arrow icon in the Go column, as shown in figure 2.15, you can
easily jump to the details of the database.

The details of your MySQL database are shown in figure 2.16. The RDS offers SQL
databases as managed services, complete with backups, patch management, and high
availability. As shown in figure 2.16 automated backups are disabled, as they are not
needed for our proof-of-concept without any critical data. You can also find the main-
tenance window used by AWS to apply patches automatically in the Details section.

 WordPress requires a MySQL database, so you have launched a database instance
with the MySQL engine as noted in figure 2.16. Your blog receives a low amount of
traffic, so the database doesn’t need to be very powerful. A small instance class with a
single virtual CPU and 1 GB memory is sufficient. Instead of using SSD storage, you
are using magnetic disks, which is cheaper and sufficient for a web application with
around 1,000 visitors per day.

 As you’ll see in chapter 9, other database engines, such as PostgreSQL or Oracle
Database, are available as well as more powerful instance classes, offering up to 32 cores
with 244 GB memory.

 Common web applications use a database to store and query data. That is true for
WordPress as well. The Content Management System (CMS) stores blog posts, com-
ments, and more within a MySQL database.

The storage of your MySQL
database can be increased
at any time.

Figure 2.15 Blogging infrastructure MySQL via resource groups

50 CHAPTER 2 A simple example: WordPress in five minutes

But WordPress also stores data outside the database on disk. For example, if an author
uploads an image for their blog post, the file is stored on disk. The same is true when
you are installing plug-ins and themes as an administrator.

2.2.5 Network filesystem

The EFS is used to store files and access them from multiple virtual machines. EFS is a
storage service accessible through the NFS protocol. To keep things simple, all files
that belong to WordPress are stored on EFS so they can be accessed from all virtual
machines. This includes PHP, HTML, CSS, and PNG.

You have created
a MySQL database
with RDS.

Your MySQL database uses
normal disks at the moment.
You could also use SSD disks
to improve performance.

You can specify a window
when AWS can apply updates
to your database.

Enable automated backups
to be able to restore your
database to a specific time.

Figure 2.16 Details of the MySQL database storing data for the blogging infrastructure

51Exploring your infrastructure

 EFS is not available from your resource group, unfortunately. Select EFS from the
service menu to get more information about your NFS, as shown in figure 2.17. You
can find the name, DNS name, and the mount targets of the filesystem in the Details
section.

 To mount the Elastic File System from a virtual machine, mount targets are
needed. You should use two mount targets for fault tolerance. The network filesystem
is accessible using a DNS name for the virtual machines.

 Now it’s time to evaluate costs. You’ll analyze the costs of your blogging infrastruc-
ture in the next section.

The name of your
file system

Mount Targets are used to
mount the EFS on your
virtual machines.

The DNS name to
connect to your EFS

Figure 2.17 NFS used to store the WordPress application and user uploads

52 CHAPTER 2 A simple example: WordPress in five minutes

2.3 How much does it cost?
Part of evaluating AWS is estimating costs. To analyze the cost of your blogging infra-
structure, you’ll use the AWS Simple Monthly Calculator. Remember that you clicked
the Cost link in the previous section to open a new browser tab. Switch to that tab, and
you’ll see a screen like that in figure 2.18. If you closed the tab, go to http://mng.bz/
x6A0 instead. Click Estimate of your Monthly Bill, and expand the rows marked Ama-
zon EC2 Service and Amazon RDS Service.

 In this example, your infrastructure will cost around $35 USD per month. Prices
for some services vary per region. That’s why the estimation of your monthly bill may
be different if you choose another region than N. Virginia (us-east-1).

Estimated costs for
virtual machines

Estimated costs for
database service

Estimated total
monthly costs

Figure 2.18 Blogging infrastructure cost calculation

http://mng.bz/x6A0
http://mng.bz/x6A0
http://mng.bz/x6A0

53How much does it cost?

Unfortunately the somewhat-new Application Load Balancer is not included in the
estimation yet. The estimation is also missing some other details. Table 2.1 shows a
more accurate cost calculation.

Keep in mind that this is only an estimate. You’re billed based on actual use at the end
of the month. Everything is on-demand and usually billed by seconds or gigabyte of
usage. But what factors might influence how much you actually use this infrastructure?

 Traffic processed by the load balancer—Expect costs to go down in December and in
the summer when people are on vacation and not looking at your blog.

 Storage needed for the database—If your company increases the amount of content
in your blog, the database will grow, so the cost of storage will increase.

 Storage needed on the NFS—User uploads, plug-ins, and themes increase the
amount of storage needed on the NFS, which will also increase costs.

 Number of virtual machines needed—Virtual machines are billed by seconds of
usage. If two virtual machines aren’t enough to handle all the traffic during the
day, you may need a third machine. In that case, you’ll consume more seconds
of virtual machines.

Estimating the cost of your infrastructure is a complicated task, but that is also true if
your infrastructure doesn’t run in AWS. The benefit of using AWS is that it’s flexible. If
your estimated number of virtual machines is too high, you can get rid of a machine
and stop paying for it. You will learn more about the pricing model of the different
AWS services during the course of this book.

 You have completed the proof-of-concept for migrating your company’s blog to AWS.
It’s time to shut down the infrastructure and complete your migration evaluation.

Table 2.1 More detailed cost calculation for blogging infrastructure

AWS service Infrastructure Pricing Monthly cost

EC2 Virtual machines 2 * 732.5 hours * $0.012 (t2.micro)
2 * $2.10 (detailed monitoring)

$21.78

EC2 Storage 2 * 8 GB * $0.10 per month $1.60

Application
Load Balancer

Load balancer 732.5 hours * $0.0225 (load balancer hour)
732.5 hours * $0.008 (load balancer capacity unit)

$22.34

Application
Load Balancer

Outgoing traffic 1 GB * $0.00 (first GB)
99 GB * $0.09 (up to 10 TB)

$8.91

RDS MySQL database instance 732.5 hours * $0.017 $12.45

RDS Storage 5 GB * $0.115 $0.58

EFS Storage 5 GB * $0.3 $1.50

$69.16

54 CHAPTER 2 A simple example: WordPress in five minutes

2.4 Deleting your infrastructure
Your evaluation has confirmed that you can migrate the infrastructure needed for the
company’s blog to AWS from a technical standpoint. You have estimated that a load
balancer, virtual machines, MySQL database, as well as a NFS capable of serving 1,000
people visiting the blog per day will cost you around $70 USD per month on AWS.
That is all you need to come to a decision.

 Because the infrastructure does not contain any important data and you have fin-
ished your evaluation, you can delete all the resources and stop paying for them.

 Go to the CloudFormation service in the Management Console, and take the following
steps in figure 2.19:

1 Select the check box at the beginning of the row containing your wordpress
stack.

2 Open the Actions menu by clicking Actions.
3 Click Delete Stack.

After you confirm the deletion of the infrastructure, as shown in figure 2.20, it takes a
few minutes for AWS to delete all of the infrastructure’s dependencies.

 This is an efficient way to manage your infrastructure. Just as the infrastructure’s cre-
ation was automated, its deletion is also. You can create and delete infrastructure on-
demand whenever you like. You only pay for infrastructure when you create and run it.

D

Figure 2.19 Delete your blogging infrastructure.

Figure 2.20 Confirming
deletion of your blogging
infrastructure

55Summary

Summary
 Creating a blogging infrastructure can be fully automated.
 Infrastructure can be created at any time on-demand, without any up-front

commitment for how long you’ll use it.
 You pay for your infrastructure based on usage. For example, you are paying for

a virtual machine per second of usage.
 Infrastructure consists of several parts, such as virtual machines, load balancers,

and databases.
 Infrastructure can be deleted with one click. The process is powered by automation.

Part 2

Building virtual
 infrastructure consisting

 of computers and networking

Computing power and network connectivity has become a basic need for
private households, medium-sized enterprises, and big corporations. Operating
hardware in data centers that are in-house or outsourced has covered these
needs in the past. Now the cloud is revolutionizing the way you can access com-
puting power.

 Virtual machines can be started and stopped on-demand to fulfill your com-
puting needs within minutes. Being able to install software on virtual machines
enables you to execute your computing tasks without needing to buy or rent
hardware.

 If you want to understand AWS, you have to dive into the possibilities of the
API working behind the scenes. You can control every single service on AWS by
sending requests to a REST API. Based on this, there is a variety of solutions that
help you to automate your overall infrastructure. Infrastructure automation is
a big advantage of the cloud compared to hosting on-premises. This chapter
will guide you into infrastructure orchestration and the automated deployment
of applications.

 Creating virtual networks allows you to build closed and secure network envi-
ronments on AWS and to connect these networks with your home or corporate
network.

 Chapter 3 covers working with virtual machines. You will learn about the key con-
cepts of the EC2 service.

 Chapter 4 contains different approaches to automate your infrastructure. You will
learn how to make use of Infrastructure-as-Code.

 Chapter 5 shows three ways of deploying your software to AWS.
 Chapter 6 is about networking. You will learn how to secure your system with a vir-

tual private network and firewalls.
 Chapter 7 is about a new way of computing: functions. You will learn how to auto-

mate operational tasks with AWS Lambda.

59

Using virtual
 machines: EC2

It’s impressive what you can achieve with the computing power of the smartphone
in your pocket or the laptop in your bag. But if your task requires massive comput-
ing power or high network traffic, or needs to run reliably 24/7, a virtual machine
is a better fit. With a virtual machine, you get access to a slice of a physical machine
located in a data center. On AWS, virtual machines are offered by the service called
Elastic Compute Cloud (EC2).

This chapter covers
 Launching a virtual machine with Linux

 Controlling a virtual machine remotely via SSH

 Monitoring and debugging a virtual machine

 Saving costs for virtual machines

Not all examples are covered by Free Tier
The examples in this chapter are not all covered by the Free Tier. A special warning
message appears when an example incurs costs. As for the other examples, as
long as you don’t run them longer than a few days, you won’t pay anything for
them. Keep in mind that this applies only if you created a fresh AWS account for
this book and nothing else is going on in your AWS account. Try to complete the
chapter within a few days; you’ll clean up your account at the end.

60 CHAPTER 3 Using virtual machines: EC2

3.1 Exploring a virtual machine
A virtual machine (VM) is a part of a physical machine that’s isolated by software from
other VMs on the same physical machine; it consists of CPUs, memory, networking
interfaces, and storage. The physical machine is called the host machine, and the VMs
running on it are called guests. A hypervisor is responsible for isolating the guests from
each other and for scheduling requests to the hardware, by providing a virtual hard-
ware platform to the guest system. Figure 3.1 shows these layers of virtualization.

Typical use cases for a virtual machine are as follows:

 Hosting a web application such as WordPress
 Operating an enterprise application, such as an ERP application
 Transforming or analyzing data, such as encoding video files

3.1.1 Launching a virtual machine

It takes only a few clicks to launch a virtual machine:

1 Open the AWS Management Console at https://console.aws.amazon.com.
2 Make sure you’re in the N. Virgina (US East) region (see figure 3.2), because

we optimized our examples for this region.
3 Find the EC2 service in the navigation bar under Services, and click it. You’ll

see a page like the one in figure 3.3.
4 Click Launch Instance to start the wizard for launching a virtual machine.

Your virtual machine

Schedules and isolates
requests to hardware

Bare metal hardware

Guest 1 Guest 3Guest 2

Hypervisor

Host machine

Figure 3.1 Layers of virtualization

https://console.aws.amazon.com

61Exploring a virtual machine

The wizard in figure 3.3 will guide you through the following steps:

1 Selecting an OS
2 Choosing the size of your virtual machine
3 Configuring details
4 Adding storage
5 Tagging your virtual machine
6 Configuring a firewall
7 Reviewing your input and selecting a key pair used for SSH authentication

Resource
overview

Jump to
a service.

Quick access to services
(customizable)

Region
selector

Help
section

Make sure you’re in
the N. Virgina region.

Figure 3.2 Examples are optimized for the N. Virginia region

Creating a virtual machine

Figure 3.3 The EC2 Dashboard gives you an overview of all parts of the service.

62 CHAPTER 3 Using virtual machines: EC2

SELECTING THE OPERATING SYSTEM

The first step is to choose an OS. In AWS, the OS comes bundled with preinstalled
software for your virtual machine; this bundle is called an Amazon Machine Image
(AMI). Select Ubuntu Server 16.04 LTS (HVM), as shown in figure 3.4. Why Ubuntu?
Because Ubuntu offers a ready-to-install package named linkchecker that you’ll use later
to check a website for broken links.

The AMI is the basis your virtual machine starts from. AMIs are offered by AWS, third-
party providers, and by the community. AWS offers the Amazon Linux AMI, which is
based on Red Hat Enterprise Linux and optimized for use with EC2. You’ll also find
popular Linux distributions and AMIs with Microsoft Windows Server, and you can
find more AMIs with preinstalled third-party software in the AWS Marketplace.

Common AMIs
including Linux
and Windows

Third party AMIs
with preinstalled
software

Hardware Virtual Machine (HVM) indicates the
latest virtualization technology using hardware
extensions for faster access of resources.

Select this AMI
for Ubuntu OS.

Free AMIs
available to
everybody

Figure 3.4 Choose the OS for your virtual machine.

63Exploring a virtual machine

When choosing an AMI, start by thinking about the requirements of the application
you want to run on the VM. Your knowledge and experience with a specific operating
system is another important factor when deciding which AMI to start with. It’s also
important that you trust the AMI’s publisher. We prefer working with Amazon Linux,
as it is maintained and optimized by AWS.

Amazon Linux 2 is coming
Amazon Linux 2 is the next generation Amazon Linux OS. At the time of writing, no
LTS release of Amazon Linux 2 was available. But now, as you read this book, that
might have changed. Check out the Amazon Linux 2 FAQs: https://aws.amazon.com/
amazon-linux-2/faqs/.

Amazon Linux 2 adds long-term support for five years. You can now run Amazon Linux 2
locally and on-premises as well. Besides that, systemd is now used and a new mech-
anism called the extras library provides up-to-date versions of software bundles such
as NGINX.

Virtual appliances on AWS
A virtual appliance is an image of a virtual machine containing an OS and preconfig-
ured software. Virtual appliances are used when the hypervisor starts a new VM.
Because a virtual appliance contains a fixed state, every time you start a VM based
on a virtual appliance, you’ll get exactly the same result. You can reproduce virtual
appliances as often as needed, so you can use them to eliminate the cost of install-
ing and configuring complex stacks of software. Virtual appliances are used by virtu-
alization tools from VMware, Microsoft, and Oracle, and for infrastructure-as-a-service
(IaaS) offerings in the cloud.

The AMI is a special type of virtual appliance for use with the EC2 service. An AMI
technically consists of a read-only filesystem including the OS, additional software,
and configuration; it doesn’t include the kernel of the OS. The kernel is loaded from
an Amazon Kernel Image (AKI). You can also use AMIs for deploying software on AWS.

Libraries,...

Application

Virtual appliance

Starting a virtual machine

Template for
virtual machines

Operating system

Libraries,...

Application

Virtual machine

Running VM based
on virtual appliance

Operating system

A virtual appliance contains a template for a virtual machine

https://aws.amazon.com/amazon-linux-2/faqs/
https://aws.amazon.com/amazon-linux-2/faqs/
https://aws.amazon.com/amazon-linux-2/faqs/

64 CHAPTER 3 Using virtual machines: EC2

CHOOSING THE SIZE OF YOUR VIRTUAL MACHINE

It’s now time to choose the computing power needed for your virtual machine. Fig-
ure 3.5 shows the next step of the wizard. On AWS, computing power is classified
into instance types. An instance type primarily describes the number of virtual CPUs
and the amount of memory.

 Table 3.1 shows examples of instance types for different use cases. The prices rep-
resent the actual prices in USD for a Linux VM in the US East (N. Virginia) region, as
recorded Aug. 31, 2017.

There are instance families optimized for different kinds of use cases.

 T family—Cheap, moderate baseline performance with the ability to burst to
higher performance for short periods of time

 M family—General purpose, with a balanced ration of CPU and memory

Table 3.1 Examples of instance families and instance types

Instance
type

Virtual
CPUs

Memory Description Typical use case
Hourly cost

(USD)

t2.nano 1 0.5 GB Smallest and cheapest instance
type, with moderate baseline perfor-
mance and the ability to burst CPU
performance above the baseline

Testing and development
environments, and applica-
tions with very low traffic

0.0059

m4.large 2 8 GB Has a balanced ratio of CPU, mem-
ory, and networking performance

All kinds of applications,
such as medium data-
bases, web servers, and
enterprise applications

0.1

r4.large 2 15.25 GB Optimized for memory-intensive
applications with extra memory

In-memory caches and enter-
prise application servers

0.133

(continued)
AWS uses Xen, an open source hypervisor. The current generations of VMs on AWS
use hardware-assisted virtualization. The technology is called Hardware Virtual
Machine (HVM). A virtual machine run by an AMI based on HVM uses a fully virtualized
set of hardware, and can take advantage of extensions that provide fast access to
the underlying hardware.

Using a version 3.8+ kernel for your Linux-based VMs will provide the best perfor-
mance. To do so, you should use at least Amazon Linux 13.09, Ubuntu 14.04, or
RHEL7. If you’re starting new VMs, make sure you’re using HVM images.

In November 2017 AWS announced a new generation of virtualization called Nitro.
Nitro combines a KVM-based hypervisor with customized hardware (ASICs) aiming to
provide a performance that is indistinguishable from bare metal machines. Currently,
the c5 and m5 instance types make use of Nitro, and it’s likely that more instance
families using Nitro will follow.

65Exploring a virtual machine

 C family—Computing optimized, high CPU performance
 R family—Memory optimized, with more memory than CPU power compared

to M family
 D family—Storage optimized, offering huge HDD capacity
 I family—Storage optimized, offering huge SSD capacity
 X family—Extensive capacity with a focus on memory, up to 1952 GB memory

and 128 virtual cores
 F family—Accelerated computing based on FPGAs (field programmable gate

arrays)
 P, G, and CG family—Accelerated computing based on GPUs (graphics process-

ing units)

Our experience indicates that you’ll overestimate the resource requirements for your
applications. So, we recommend that you try to start your application with a smaller
instance type than you think you need at first. You can change the instance family and
type later if needed.

Computer hardware is getting faster and more specialized, so AWS is constantly intro-
ducing new instance types and families. Some of them are improvements of existing
instance families, and others are focused on specific workloads. For example, the
instance family R4 was introduced in November 2016. It provides instances for memory-
intensive workloads and improves the R3 instance types.

 One of the smallest and cheapest VMs will be enough for your first experiments. In
the wizard screen shown in figure 3.5, choose the instance type t2.micro, which is eli-
gible for the Free Tier. Then click Next: Configure Instance Details to proceed.

Instance types and families
The names for different instance types are all structured in the same way. The instance
family groups instance types with similar characteristics. AWS releases new instance
types and families from time to time; the different versions are called generations.
The instance size defines the capacity of CPU, memory, stor-
age, and networking.

The instance type t2.micro tells you the following:

 The instance family is called t. It groups small,
cheap virtual machines with low baseline CPU per-
formance but the ability to burst significantly over
baseline CPU performance for a short time.

 You’re using generation 2 of this instance family.
 The size is micro, indicating that the EC2 instance

is very small.

Generation

Family Size

t2.micro

Disassembling the t2.micro
instance type

66 CHAPTER 3 Using virtual machines: EC2

CONFIGURING DETAILS, STORAGE, FIREWALL, AND TAGS

The next four steps of the wizard (shown in figure 3.6–figure 3.9) are easy, because
you don’t need to change the defaults. You’ll learn about these settings in detail later
in the book.

 Figure 3.6 shows where you can change the details for your VM, such as the net-
work configuration or the number of VMs to launch. For now, keep the defaults, and
click Next: Add Storage to proceed.

Filter by special
operation purpose.

Filter outdated
instance types.

Storage options of
the virtual machine

Only network attached
storage available

Select t2.micro
for your server.

Click here
to proceed.

Figure 3.5 Choosing the size of your virtual machine

67Exploring a virtual machine

There are different options for storing data on AWS, which we’ll cover in detail in the
following chapters. Figure 3.7 shows the screen where you can add network-attached
storage to your virtual machine. Keep the defaults, and click Next: Add Tags.

 A tidy house indicates a tidy mind. Tags help you organize resources on AWS. Fig-
ure 3.8 shows the Add Tags screen. Each tag is nothing more than a key-value pair. For
this example, add at least a Name tag to help you find your stuff later. Use Name as the
key and mymachine as the value, as shown in the figure. Then click Next: Configure
Security Group.

Start one or multiple
virtual machines at once.

Network settings
for virtual machine

By default your virtual
machine is placed on
hardware shared between
multiple AWS customers.

Access control
for machine accessing
other AWS services.

Setting for shutdown
and monitoring

Click here
to proceed.

Figure 3.6 Details for the virtual machine

68 CHAPTER 3 Using virtual machines: EC2

Use network attached
storage for virtual machine.

Size of network
attached disk

Click here
to proceed.

Use SSD or
magnetic HDDs.

Delete disk after terminating
the virtual machine.

Enable encryption when
dealing with sensitive data.

Figure 3.7 Adding network-attached storage to your virtual machine

Click here
to proceed.

Create additional
tags to query and
organize machines.

Use Key ‘Name’
for naming your
machine.

Naming helps
you to find your
machine later.

Figure 3.8 Tagging your virtual machine with a Name tag

69Exploring a virtual machine

A firewall helps to secure your virtual machine. Figure 3.9 shows the settings for a
default firewall allowing access via SSH from anywhere.

1 Select Create a new security group.
2 Type in ssh-only for the name and description of the security group.
3 Keep the default rule allowing SSH from anywhere.
4 Click Review and Launch to proceed with the next step.

Organizing AWS resources with tags
Most AWS resources can be tagged. For example, you can add tags to an EC2
instance. There are three major use cases for resource tagging:

1 Use tags to filter and search for resources.
2 Analyze your AWS bill based on resource tags.
3 Restrict access to resources based on tags.

Typical tags include environment type (such as test or production), responsible team,
department, and cost center.

Figure 3.9 Configuring the firewall for your virtual machine

Add rule to allow HTTP
requests from anywhere.

Click here
to proceed.

Change name
and description.

Create a new
security group.

70 CHAPTER 3 Using virtual machines: EC2

REVIEWING YOUR INPUT AND SELECTING A KEY PAIR FOR SSH
You’re almost finished. The wizard should show a review of your new virtual machine
(see figure 3.10). Make sure you chose Ubuntu Server 16.04 LTS (HVM) as the OS
and t2.micro as the instance type. If everything is fine, click the Launch button. If not,
go back and make changes to your VM where needed.

Last but not least, the wizard asks for your new virtual machine’s key. Choose the
option Choose an Existing Key Pair, select the key pair mykey, and click Launch
Instances (see figure 3.11).

Warning because you are allowing access to SSH
from anywhere, which is necessary in your case

Click here to launch
your virtual machine.

The size, also called instance
type of your virtual machine

AMI with Ubuntu
operating system

Figure 3.10 Review launch for the virtual machine

71Exploring a virtual machine

Click here to launch your virtual machine.

Select Choose an
existing key pair.

Select key pair mykey.

Figure 3.11 Choosing a key pair for your virtual machine

Missing your key?
Logging in to your virtual machine requires a key. You use a key instead of a password
to authenticate yourself. Keys are much more secure than passwords, and using keys
for SSH is enforced for VMs running Linux on AWS. If you skipped the creation of a
key in section 1.8.3, follow these steps to create a personal key:

1 Open the AWS Management Console at https://console.aws.amazon.com.
Find the EC2 service in the navigation bar under Services, and click it.

2 Switch to Key Pairs via the submenu.
3 Click Create Key Pair.
4 Enter mykey for Key Pair Name, and click Create. Your browser downloads the

key automatically.
5 Open your terminal, and switch to your download folder.
6a Linux and macOS only: change the access rights of the file mykey.pem by run-

ning chmod 400 mykey.pem in your terminal.
6b Windows only: Windows doesn’t ship an SSH client yet, so you need to install

PuTTY. PuTTY comes with a tool called PuTTYgen that can convert the
mykey.pem file into a mykey.ppk file, which you’ll need. Open PuTTYgen, and
select SSH-2 RSA under Type of Key to Generate. Click Load. Because PuTTY-
gen displays only *.ppk files, you need to switch the file extension of the File
Name Input to All Files. Now you can select the mykey.pem file and click Open.
Click OK in the confirmation dialog box. Change Key Comment to mykey. Click
Save Private Key. Ignore the warning about saving the key without a pass-
phrase. Your .pem file is now converted to the .ppk format needed by PuTTY.

You’ll find a more detailed explanation about how to create a key in chapter 1.

https://console.aws.amazon.com

72 CHAPTER 3 Using virtual machines: EC2

Your virtual machine should now launch. Open an overview by clicking View
Instances, and wait until the machine reaches the Running state. To take full control
over your virtual machine, you need to log in remotely.

3.1.2 Connecting to your virtual machine

Installing additional software and running commands on your virtual machine can be
done remotely. To log in to the virtual machine, you have to figure out its public
domain name:

1 Click the EC2 service in the navigation bar under Services, and click Instances
in the submenu at left to jump to an overview of your virtual machine.

Select the virtual machine from the table by clicking it. Figure 3.12 shows the
overview of your virtual machines and the available actions.

2 Click Connect to open the instructions for connecting to the virtual machine.
Figure 3.13 shows the dialog with instructions for connecting to the virtual

machine. Find the public DNS of your virtual machine, such as ec2-34-204-15-
248.compute-1.amazonaws.com in our example.

Helps to connect
to your machine

Control and change
your virtual machine.

Select your virtual machine
from the list to show details
and execute actions.

Shows details of
your virtual machine

Figure 3.12 Overview of your virtual machines with actions to control them

73Exploring a virtual machine

With the public DNS and your key, you can connect to your virtual machine. Continue
to the next section, depending on your OS.

LINUX AND MACOS
Open your terminal, and type ssh -i $PathToKey/mykey.pem ubuntu@$PublicDns,
replacing $PathToKey with the path to the key file you downloaded in section 1.8.3
and $PublicDns with the public DNS shown in the Connect dialog in the AWS Man-
agement Console. You’ll see a security alert regarding the authenticity of the new
host. Answer yes to connect.

WINDOWS

For Windows, follow these steps:

1 Find the mykey.ppk file you created in section 1.8.3, and double-click to open it.
2 PuTTY Pageant should appear in the Windows taskbar as an icon. If not, you

may need to install or reinstall PuTTY as described in section 1.8.3.
3 Start PuTTY. Fill in the public DNS shown in the Connect dialog in the AWS

Management Console, and click Open (see figure 3.14).
4 You’ll see a security alert regarding the authenticity of the new host. Answer yes

and type ubuntu as the login name. Click Enter.

Figure 3.13 Instructions for connecting to the virtual machine with SSH

74 CHAPTER 3 Using virtual machines: EC2

LOGIN MESSAGE

Whether you’re using Linux, Mac OS, or Windows, after a successful login you should
see a message like the following:

Welcome to Ubuntu 16.04.2 LTS (GNU/Linux 4.4.0-1022-aws x86_64)

* Documentation: https://help.ubuntu.com
* Management: https://landscape.canonical.com
* Support: https://ubuntu.com/advantage

Get cloud support with Ubuntu Advantage Cloud Guest:
http://www.ubuntu.com/business/services/cloud

0 packages can be updated.
0 updates are security updates.

The programs included with the Ubuntu system are free software;
the exact distribution terms for each program are described in the
individual files in /usr/share/doc/*/copyright.

Ubuntu comes with ABSOLUTELY NO WARRANTY, to the extent permitted by
applicable law.

To run a command as administrator (user "root"), use "sudo <command>".
See "man sudo_root" for details.

ubuntu@ip-172-31-0-178:~$

Public DNS of the
virtual machine

Figure 3.14 Connecting to the
virtual machine with PuTTY on
Windows

75Exploring a virtual machine

You’re now connected to your virtual machine and are ready to run a few commands.

3.1.3 Installing and running software manually

You’ve now started a virtual machine with an Ubuntu OS. It’s easy to install additional
software with the help of the package manager apt. First we need to make sure the
package manager is up-to-date. Please run the following command to update the list
of available packages:

$ sudo apt-get update

To begin, you’ll install a tiny tool called linkchecker that allows you to find broken
links on a website:

$ sudo apt-get install linkchecker -y

Now you’re ready to check for links pointing to websites that no longer exist. To do so,
choose a website and run the following command:

$ linkchecker https://...

The output of checking the links looks something like this:

[...]
URL `http://www.linux-mag.com/blogs/fableson'
Name `Frank Ableson's Blog'
Parent URL http://manning.com/about/blogs.html, line 92, col 27
Real URL http://www.linux-mag.com/blogs/fableson
Check time 1.327 seconds
Modified 2015-07-22 09:49:39.000000Z
Result Error: 404 Not Found

URL `/catalog/dotnet'
Name `Microsoft & .NET'
Parent URL http://manning.com/wittig/, line 29, col 2
Real URL http://manning.com/catalog/dotnet/
Check time 0.163 seconds
D/L time 0.146 seconds
Size 37.55KB
Info Redirected to `http://manning.com/catalog/dotnet/'.

235 URLs parsed.
Modified 2015-07-22 01:16:35.000000Z
Warning [http-moved-permanent] HTTP 301 (moved permanent)

encountered: you should update this link.
Result Valid: 200 OK
[...]

Depending on the number of web pages, the crawler may need some time to check all
of them for broken links. At the end, it lists the broken links and gives you the chance
to find and fix them.

76 CHAPTER 3 Using virtual machines: EC2

3.2 Monitoring and debugging a virtual machine
If you need to find the reason for an error or why your application isn’t behaving as
you expect, it’s important to have access to tools that can help with monitoring and
debugging. AWS provides tools that let you monitor and debug your virtual machines.
One approach is to examine the virtual machine’s logs.

3.2.1 Showing logs from a virtual machine

If you need to find out what your virtual machine was doing during and after startup,
there is a simple solution. AWS allows you to see the EC2 instance’s logs with the help
of the Management Console (the web interface you use to start and stop virtual
machines). Follow these steps to open your VM’s logs:

1 Open the EC2 service from the main navigation, and select Instances from the
submenu.

2 Select the running virtual machine by clicking the row in the table.
3 In the Actions menu, choose Instance Settings > Get System Log.

A window opens and shows you the system logs from your VM that would normally be
displayed on a physical monitor during startup (see figure 3.15).

Figure 3.15 Debugging a virtual machine with the help of logs

77Monitoring and debugging a virtual machine

The log contains all log messages that would be displayed on the monitor of your
machine if you were running it on-premises. Watch out for any log messages stating
that an error occurred during startup. If the error message is not obvious, you should
contact the vendor of the AMI, AWS Support, or post your question in the AWS Devel-
oper Forums at https://forums.aws.amazon.com.

 This is a simple and efficient way to access your system logs without needing an
SSH connection. Note that it will take several minutes for a log message to appear in
the log viewer.

3.2.2 Monitoring the load of a virtual machine

AWS can help you answer another question: is your virtual machine close to its maxi-
mum capacity? Follow these steps to open the EC2 instance’s metrics:

1 Open the EC2 service from the main navigation, and select Instances from the
submenu.

2 Select the running virtual machine by clicking the appropriate row in the table.
3 Select the Monitoring tab at lower right.
4 Click the Network In chart to dive into the details.

You’ll see a graph that shows the virtual machine’s utilization of incoming networking
traffic, similar to figure 3.16. There are metrics for CPU, network, and disk usage. As
AWS is looking at your VM from the outside, there is no metric indicating the memory
usage. You can publish a memory metric yourself, if needed. The metrics are updated
every 5 minutes if you use basic monitoring, or every minute if you enable detailed
monitoring of your virtual machine, which costs extra.

Figure 3.16 Gaining insight into a virtual machine’s incoming network traffic with the CloudWatch metric

https://forums.aws.amazon.com

78 CHAPTER 3 Using virtual machines: EC2

Checking the metrics of your EC2 instance is helpful when debugging performance
issues. You will also learn how to increase or decrease your infrastructure based on
these metrics in chapter 17.

 Metrics and logs help you monitor and debug your virtual machines. Both tools can
help ensure that you’re providing high-quality services in a cost-efficient manner. Look
at Monitoring Amazon EC2 in the AWS documentation at http://mng.bz/0q40 if you
are looking for more detailed information about monitoring your virtual machines.

3.3 Shutting down a virtual machine
To avoid incurring charges, you should always turn off virtual machines you’re not
using them. You can use the following four actions to control a virtual machine’s state:

 Start—You can always start a stopped virtual machine. If you want to create a
completely new machine, you’ll need to launch a virtual machine.

 Stop—You can always stop a running virtual machine. A stopped virtual
machine doesn’t incur charges, expect for attached resources like network-
attached storage. A stopped virtual machine can be started again but likely on a
different host. If you’re using network-attached storage, your data persists.

 Reboot—Have you tried turning it off and on again? If you need to reboot your
virtual machine, this action is what you want. You won’t lose any persistent data
when rebooting a virtual machine because it stays on the same host.

 Terminate—Terminating a virtual machine means deleting it. You can’t start a
virtual machine that you’ve already terminated. The virtual machine is deleted,
usually together with dependencies like network-attached storage and public
and private IP addresses. A terminated virtual machine doesn’t incur charges.

WARNING The difference between stopping and terminating a virtual machine is
important. You can start a stopped virtual machine. This isn’t possible with a ter-
minated virtual machine. If you terminate a virtual machine, you delete it.

Figure 3.17 illustrates the difference between stopping and terminating an EC2
instance, with the help of a flowchart.

Running Stopped

It’s always possible to stop a running machine and to start a stopped machine.

Running

Terminated

But terminating is deleting your virtual machine.

It’s not possible to start a
terminated virtual machine again.

Stop Start

Running Terminate Start
Figure 3.17 Difference
between stopping and
terminating a virtual
machine

http://mng.bz/0q40

79Changing the size of a virtual machine

Stopping or terminating unused virtual machines saves costs and prevents you from
being surprised by an unexpected bill from AWS. You may want to stop or terminate
unused virtual machines when:

 You have launched virtual machines to implement a proof-of-concept. After finishing
the project, the virtual machines are no longer needed. Therefore, you can ter-
minate them.

 You are using a virtual machine to test a web application. As no one else uses the vir-
tual machine, you can stop it before you knock off work, and start it back up
again the following day.

 One of your customers canceled their contract. After backing up relevant data, you
can terminate the virtual machines that had been used for your former
customer.

After you terminate a virtual machine, it’s no longer available and eventually disap-
pears from the list of virtual machines.

3.4 Changing the size of a virtual machine
It is always possible to change the size of a virtual machine. This is one of the advan-
tages of using the cloud, and it gives you the ability to scale vertically. If you need more
computing power, increase the size of the EC2 instance.

 In this section, you’ll learn how to change the size of a running virtual machine. To
begin, follow these steps to start a small virtual machine:

1 Open the AWS Management Console, and choose the EC2 service.
2 Start the wizard to launch a new virtual machine by clicking Launch Instance.
3 Select Ubuntu Server 16.04 LTS (HVM) as the AMI for your virtual machine.
4 Choose the instance type t2.micro.
5 Click Review and Launch to start the virtual machine.
6 Click Edit Security Groups to configure the firewall. Choose Select an Existing

Security Group and select the security group named ssh-only.
7 Click Review and Launch to start the virtual machine.
8 Check the summary for the new virtual machine, and click Launch.

Cleaning up
Terminate the virtual machine named mymachine that you started at the beginning of
this chapter:

1 Open the EC2 service from the main navigation, and select Instances from
the submenu.

2 Select the running virtual machine by clicking the row in the table.
3 In the Actions menu, choose Instance State > Terminate.

80 CHAPTER 3 Using virtual machines: EC2

9 Choose the option Choose an Existing Key Pair, select the key pair mykey, and
click Launch Instances.

10 Switch to the overview of EC2 instances, and wait for the new virtual machine’s
state to switch to Running.

You’ve now started an EC2 instance of type t2.micro. This is one of the smallest virtual
machines available on AWS.

 Use SSH to connect to your virtual machine, as shown in the previous section, and
execute cat /proc/cpuinfo and free -m to see information about the machine’s
capabilities. The output should look similar to this:

$ cat /proc/cpuinfo
processor : 0
vendor_id : GenuineIntel
cpu family : 6
model : 63
model name : Intel(R) Xeon(R) CPU E5-2676 v3 @ 2.40GHz
stepping : 2
microcode : 0x36
cpu MHz : 2400.054
cache size : 30720 KB
[...]

$ free -m
total used free shared buff/cache available

Mem: 990 42 632 3 315 794
Swap: 0 0 0

Your virtual machine provides a single CPU core and 990 MB of memory. If your
application is having performance issues, increasing the instance size can solve the
problem. Use your machine’s metrics as described in section 3.2 to find out if you are
running out of CPU or networking capacity. Would your application benefit from
additional memory? If so, increasing the instance size will improve the application’s
performance as well.

 If you need more CPUs, more memory, or more networking capacity, there are
many other sizes to choose from. You can even change the virtual machine’s instance
family and generation. To increase the size of your VM, you first need to stop it:

1 Open the AWS Management Console, and choose the EC2 service.
2 Click Instances in the submenu to jump to an overview of your virtual

machines.
3 Select your running VM from the list by clicking it.
4 Choose Stop from the Actions menu.

WARNING Starting a virtual machine with instance type m4.large incurs
charges. Go to http://aws.amazon.com/ec2/pricing if you want to see the
current on-demand hourly price for an m4.large virtual machine.

http://aws.amazon.com/ec2/pricing

81Changing the size of a virtual machine

After waiting for the virtual machine to stop, you can change the instance type:

1 Choose Change Instance Type from the
Actions menu under Instance Settings.
As shown in figure 3.18, a dialog opens
in which you can choose the new
instance type for your VM.

2 Select m4.large for Instance Type.
3 Save your changes by clicking Apply.

You’ve now changed the size of your virtual
machine and are ready to start it again. To do
so, select your virtual machine and choose
Start from the Actions menu under Instance
State. Your VM will start with more CPUs, more memory, and more networking capa-
bilities. The public and private IP addresses have also changed. Grab the new public
DNS to reconnect via SSH; you’ll find it in the VM’s Details view.

 Use SSH to connect to your EC2 instance, and execute cat /proc/cpuinfo and
free -m to see information about its CPU and memory. The output should look simi-
lar to this:

$ cat /proc/cpuinfo
processor : 0
vendor_id : GenuineIntel
cpu family : 6
model : 79
model name : Intel(R) Xeon(R) CPU E5-2686 v4 @ 2.30GHz
stepping : 1
microcode : 0xb00001d
cpu MHz : 2300.044
cache size : 46080 KB
[...]

processor : 1
vendor_id : GenuineIntel
cpu family : 6
model : 79
model name : Intel(R) Xeon(R) CPU E5-2686 v4 @ 2.30GHz
stepping : 1
microcode : 0xb00001d
cpu MHz : 2300.044
cache size : 46080 KB
[...]

$ free -m
total used free shared buff/cache available

Mem: 7982 62 7770 8 149 7701
Swap: 0 0 0

Figure 3.18 Increasing the size of your
virtual machine by selecting m4.large as
Instance Type

82 CHAPTER 3 Using virtual machines: EC2

Your virtual machine can use two CPU cores and offers 7,982 MB of memory, com-
pared to a single CPU core and 990 MB of memory before you increased the VM’s
size.

3.5 Starting a virtual machine in another data center
AWS offers data centers all over the world. Take the following criteria into account
when deciding which region to choose for your cloud infrastructure:

 Latency—Which region offers the shortest distance between your users and your
infrastructure?

 Compliance—Are you allowed to store and process data in that country?
 Service availability—AWS does not offer all services in all regions. Are the services

you are planning to use available in the region? Check out the service availability
region table at http://mng.bz/0q40.

 Costs—Service costs vary by region. Which region is the most cost-effective
region for your infrastructure?

Let’s assume you have customers not just in the United States but in Australia as well.
At the moment you are only operating EC2 instances in N. Virginia (US). Customers
from Australia complain about long loading times when accessing your website. To
make your Australian customers happy, you decide to launch an additional VM
in Australia.

 Changing a data center is simple. The Management Console always shows the cur-
rent data center you’re working in, on the right side of the main navigation menu. So
far, you’ve worked in the data center N. Virginia (US), called us-east-1. To change the
data center, click N. Virginia and select Sydney from the menu. Figure 3.19 shows how
to jump to the data center in Sydney called ap-southeast-2.

Cleaning up
Terminate the m4.large VM to stop paying for it:

1 Open the EC2 service from the main navigation, and select Instances from
the submenu.

2 Select the running virtual machine by clicking the row in the table.
3 In the Actions menu, choose Instance State > Terminate.

http://mng.bz/0q40

83Starting a virtual machine in another data center

AWS groups its data centers into these regions:

You can specify the region for most AWS services. The regions are independent of
each other; data isn’t transferred between regions. Typically, a region is a collection of
three or more data centers located in the same area. Those data centers are well con-
nected to each other and offer the ability to build a highly available infrastructure, as
you’ll discover later in this book. Some AWS services, like CDN and the Domain Name
System (DNS) service, act globally on top of these regions and even on top of some
additional data centers.

 US East, N. Virginia (us-east-1) US East, Ohio (us-east-2)

 US West, N. California (us-west-1) US West, Oregon (us-west-2)

 Canada, Central (ca-central-1) EU, Ireland (eu-west-1)

 EU, Frankfurt (eu-central-1) EU, London (eu-west-2)

 EU, Paris (eu-west-3) Asia Pacific, Tokyo (ap-northeast-1)

 Asia Pacific, Seoul (ap-northeast-2) Asia Pacific, Singapore (ap-southeast-1)

 Asia Pacific, Sydney (ap-southeast-2) Asia Pacific, Mumbai (ap-south-1)

 South America, São Paulo (sa-east-1)

The region you
are working in

Select Asia Pacific (Sydney)
as the region to work in.

Figure 3.19 Changing the data center in
the Management Console from N. Virginia
to Sydney

84 CHAPTER 3 Using virtual machines: EC2

 After you change to the EC2 service in the Management Console, you may wonder
why no key pair is listed in the EC2 overview. You created a key pair for SSH logins in
the region N. Virginia (US). But the regions are independent, so you have to create a
new key pair for the Sydney region. Follow these steps (see section 1.2 if you need
more details):

1 Open the EC2 service from the main navigation, and select Key Pairs from the
submenu.

2 Click Create Key Pair, and type in sydney as the key pair name.
3 Download and save the key pair.
4 Windows only: Open PuTTYgen, and select SSH-2 RSA under Type of Key to

Generate. Click Load. Select the sydney.pem file, and click Open. Confirm the
dialog box. Click Save Private Key.

5 Linux and macOS only: Change the access rights of the file sydney.pem by run-
ning chmod 400 sydney.pem in the terminal.

You’re ready to start a virtual machine in the data center in Sydney. Follow these steps
to do so:

1 Open the EC2 service from the main navigation menu, and select Instances
from the submenu.

2 Click Launch Instance to start a wizard that will guide you through starting a
new virtual machine.

3 Select the Amazon Linux AMI (HVM) machine image.
4 Choose t2.micro as the instance type, and click Review and Launch to go to the

next screen.
5 Click Edit Security Groups to configure the firewall. Change the Security Group

Name to webserver and the Description to HTTP and SSH. Add two rules: one
of type SSH and another of type HTTP. Allow access to SSH and HTTP from
anywhere by defining 0.0.0.0/0 as the source for both rules. Your firewall con-
figuration should look like figure 3.20. Click Review and Launch.

6 Click Launch, and select sydney as the existing key pair to use for launching
your VM.

7 Click View Instances to see the overview of virtual machines, and wait for your
new VM to start.

You’re finished! A virtual machine is running in a data center in Sydney. Let’s proceed
with installing a web server on it. To do so, you have to connect to your virtual
machine via SSH. Grab the current public IP address of your virtual machine from its
Details page.

 Open a terminal, and type ssh -i $PathToKey/sydney.pem ec2-user@$PublicIp,
replacing $PathToKey with the path to the key file sydney.pem that you downloaded,
and $PublicIp with the public IP address from the details of your virtual machine.
Answer Yes to the security alert about the authenticity of the new host.

85Starting a virtual machine in another data center

To serve your website to your Australian customers, connect to the EC2 instance via
SSH and install a web server by executing sudo yum install httpd -y. To start the
web server, type sudo service httpd start and press Return to execute the com-
mand. Your web browser should show a placeholder site if you open http://$PublicIp,
with $PublicIp replaced by the public IP address of your virtual machine.

Create a new set
of firewall rules for
your virtual machine.

Allow access to SSH from anywhere.

Warning because your
virtual machine will be
reachable from anywhere.

Use a meaningful name
and description to be able
to find the security group later.

Click here
to proceed.

Figure 3.20 Configuring the firewall for a web server in Sydney

Windows
Find the sydney.ppk file you created after downloading the new key pair, and open it
by double-clicking. The PuTTY Pageant should appear in the taskbar as an icon. Next,
start PuTTY and connect to the public IP address you got from the Details page of
your virtual machine. Answer Yes to the security alert regarding the authenticity of the
new host, and type in ec2-user as login name. Press Enter.

86 CHAPTER 3 Using virtual machines: EC2

NOTE You’re using two different operating systems in this chapter. You started
with a VM based on Ubuntu at the beginning of the chapter. Now you’re using
Amazon Linux, a distribution based on Red Hat Enterprise Linux. That’s why
you have to execute different commands to install software. Ubuntu uses apt-
get and Amazon Linux is using yum.

Next, you’ll attach a fixed public IP address to the virtual machine.

3.6 Allocating a public IP address
You’ve already launched some virtual machines while reading this book. Each VM was
connected to a public IP address automatically. But every time you launched or
stopped a VM, the public IP address changed. If you want to host an application
under a fixed IP address, this won’t work. AWS offers a service called Elastic IPs for
allocating fixed public IP addresses. You can allocate a public IP address and associate
it with an EC2 instance by following these steps in figure 3.21:

1 Open the Management Console, and go to the EC2 service.
2 Choose Elastic IPs from the submenu. You’ll see an overview of public IP

addresses.
3 Allocate a public IP address by clicking Allocate New Address.
4 Confirm by clicking on Allocate.
5 Your fixed public IP address is shown. Click Close to go back to the overview.

Figure 3.21 Overview of public IP addresses connected to your account in the current region

Click Elastic IPs to manage
your fixed static IPs.

List of fixed public IP addresses
connected with your account

Click to allocate a new
public IP for your account.

87Allocating a public IP address

Now you can associate the public IP address with a virtual machine of your choice:

1 Select your public IP address, and choose Associate Address from the Actions
menu. A dialog similar to figure 3.22 appears.

2 Select Instance as the Resource Type.
3 Enter your EC2 instance’s ID in the Instance field. There is only a single virtual

machine running at the moment, so only one option is available.
4 Only one Private IP is available for your virtual machine. Select it.
5 Click Associate to finish the process.

Your virtual machine is now accessible through the public IP address you allocated at
the beginning of this section. Point your browser to this IP address, and you should
see the placeholder page as you did in section 3.5.

Select the one and
only Private IP.

Select Instance to be able
to associate the address
with your virtual machine.

Select the ID of
your virtual machine.

Figure 3.22 Associating a public IP address with your EC2 instance

88 CHAPTER 3 Using virtual machines: EC2

Allocating a public IP address can be useful if you want to make sure the endpoint to
your application doesn’t change, even if you have to replace the virtual machine
behind the scenes. For example, assume that virtual machine A is running and has an
associated Elastic IP. The following steps let you replace the virtual machine with a
new one without changing the public IP address:

1 Start a new virtual machine B to replace running virtual machine A.
2 Install and start applications as well as all dependencies on virtual machine B.
3 Disassociate the Elastic IP from virtual machine A, and associate it with virtual

machine B.

Requests using the Elastic IP address will now be routed to virtual machine B, with a
short interruption while moving the Elastic IP. You can also connect multiple public
IP addresses with a virtual machine by using multiple network interfaces, as described
in the next section. This can be useful if you need to host different applications run-
ning on the same port, or if you want to use a unique fixed public IP address for dif-
ferent websites.

WARNING IPv4 addresses are scarce. To prevent stockpiling Elastic IP
addresses, AWS will charge you for Elastic IP addresses that aren’t associated
with a virtual machine. You’ll clean up the allocated IP address at the end of the
next section.

3.7 Adding an additional network interface to a virtual machine
In addition to managing public IP addresses, you can control your virtual machine’s
network interfaces. It is possible to add multiple network interfaces to a VM and con-
trol the private and public IP addresses associated with those network interfaces.

 Here are some typical use cases for EC2 instances with multiple network interfaces:

 Your web server needs to answer requests by using multiple TLS/SSL certifi-
cates, and you can’t use the Server Name Indication (SNI) extension due to leg-
acy clients.

 You want to create a management network separated from the application net-
work, and therefore your EC2 instance needs to be accessible from two net-
works. Figure 3.23 illustrates an example.

 Your application requires or recommends the use of multiple network inter-
faces (for example, network and security appliances).

Subnet 1

Virtual machineNetwork interface

Subnet 2

Network interface Figure 3.23 A virtual machine
with two network interfaces in
two different subnets

89Adding an additional network interface to a virtual machine

You use an additional network interface to connect a second public IP address to your
EC2 instance. Follow these steps to create an additional networking interface for your
virtual machine:

1 Open the Management Console, and go to the EC2 service.
2 Select Network Interfaces from the submenu.
3 The default network interface of your virtual machine is shown in the list. Note

the subnet ID of the network interface.
4 Click Create Network Interface. A dialog like the one shown in figure 3.24

appears.
5 Enter 2nd interface as the description.
6 Choose the subnet you noted down in step 3.
7 Leave Private IP Address empty. A private IP will be assigned to the network

interface automatically.
8 Select the Security Groups that have webserver in their description.
9 Click Yes, Create.

After the new network interface’s state changes to Available, you can attach it to your
virtual machine. Select the new 2nd interface network interface, and choose Attach
from the menu. A dialog opens like shown in figure 3.25. Choose the only available
Instance ID, and click Attach.

 You’ve attached an additional network-
ing interface to your virtual machine. Next,
you’ll connect an additional public IP
address to the additional networking inter-
face. To do so, note down the network
interface ID of the 2nd interface shown in
the overview—eni-b847f4c5 in our exam-
ple—and follow these steps:

Figure 3.24 Creating an additional networking interface for your virtual machine

Figure 3.25 Attaching an additional
networking interface to your virtual machine

90 CHAPTER 3 Using virtual machines: EC2

1 Open the AWS Management Console, and go to the EC2 service.
2 Choose Elastic IPs from the submenu.
3 Click Allocate New Address to allocate a new public IP address, as you did in

section 3.6.
4 Select your public IP address, and choose Associate Address from the Actions

menu. A dialog similar to figure 3.26 appears.
5 Select Network interface as the Resource Type.
6 Enter your 2nd interface’s ID in the Network Interface field.
7 Select the only available Private IP for your network interface.
8 Click Associate to finish the process.

Select the one and
only Private IP.

Select Network interface to be
able to attach the Public IP
to the second interface.

Select the network
interface you just
created.

Figure 3.26 Associating a public IP address with the additional networking interface

91Adding an additional network interface to a virtual machine

Your virtual machine is now reachable under two different public IP addresses. This
enables you to serve two different websites, depending on the public IP address. You
need to configure the web server to answer requests depending on the public IP address.

 If you connect to your virtual machine via SSH and insert ifconfig into the termi-
nal, you can see your new networking interface attached to the virtual machine, as
shown in the following output after running the ifconfig command:

$ ifconfig
eth0 Link encap:Ethernet HWaddr 02:06:EE:59:F7:65

inet addr:172.31.17.165 Bcast:172.31.31.255 Mask:255.255.240.0
inet6 addr: fe80::6:eeff:fe59:f765/64 Scope:Link
UP BROADCAST RUNNING MULTICAST MTU:9001 Metric:1
RX packets:3973 errors:0 dropped:0 overruns:0 frame:0
TX packets:2648 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:1000
RX bytes:5104781 (4.8 MiB) TX bytes:167733 (163.8 KiB)

eth1 Link encap:Ethernet HWaddr 02:03:FA:95:9B:BB
inet addr:172.31.20.44 Bcast:172.31.31.255 Mask:255.255.240.0
inet6 addr: fe80::3:faff:fe95:9bbb/64 Scope:Link
UP BROADCAST RUNNING MULTICAST MTU:9001 Metric:1
RX packets:84 errors:0 dropped:0 overruns:0 frame:0
TX packets:87 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:1000
RX bytes:9997 (9.7 KiB) TX bytes:11957 (11.6 KiB)

[...]

Each network interface is connected to a private and a public IP address. You’ll need
to configure the web server to deliver different websites depending on the IP address.
Your virtual machine doesn’t know anything about its public IP address, but you can
distinguish the requests based on the private IP address.

 First you need two websites. Run the following commands via SSH on your virtual
machine in Sydney to download two simple placeholder websites:

$ sudo -s
$ mkdir /var/www/html/a
$ wget -P /var/www/html/a https://raw.githubusercontent.com/AWSinAction/\

➥ code2/master/chapter03/a/index.html
$ mkdir /var/www/html/b
$ wget -P /var/www/html/b https://raw.githubusercontent.com/AWSinAction/\

➥ code2/master/chapter03/b/index.html

Next you need to configure the web server to deliver the websites depending on which
IP address is called. To do so, add a file named a.conf under /etc/httpd/conf.d with
the following content. Change the IP address from 172.31.x.x to the IP address from
the ifconfig output for the networking interface eth0:

<VirtualHost 172.31.x.x:80>
DocumentRoot /var/www/html/a

</VirtualHost>

92 CHAPTER 3 Using virtual machines: EC2

Repeat the same process for a configuration file named b.conf under /etc/httpd/
conf.d with the following content. Change the IP address from 172.31.y.y to the IP
address from the ifconfig output for the networking interface eth1:

<VirtualHost 172.31.y.y:80>
DocumentRoot /var/www/html/b

</VirtualHost>

To activate the new web server configuration, execute sudo service httpd restart
via SSH. Change to the Elastic IP overview in the Management Console. Copy both
public IP addresses, and open them with your web browser. You should get the answer
“Hello A!” or “Hello B!” depending on the public IP address you’re calling. Thus you
can deliver two different websites, depending on which public IP address the user is
calling. Congrats—you’re finished!

NOTE You switched to the AWS region in Sydney earlier. Now you need to
switch back to the region US East (N. Virginia). You can do so by selecting US
East (N. Virginia) from the region chooser in the main navigation menu of
the Management Console.

3.8 Optimizing costs for virtual machines
Usually you launch virtual machines on demand in the cloud to gain maximum flexibil-
ity. AWS calls them on-demand instances, because you can start and stop VMs on-
demand, whenever you like, and you’re billed for every second or hour the machine is
running.

 There are two options to reduce EC2 costs: spot instances or reserved instances. Both
help to reduce costs but decrease your flexibility. With a spot instance, you bid for
unused capacity in an AWS data center; the price is based on supply and demand. You
can use reserved instances if you need a virtual machine for a year or longer; you
agree to pay for the given time frame and receive a discount in advance. Table 3.2
shows the differences between these options.

Cleaning up
It’s time to clean up your setup:

1 Terminate the virtual machine.
2 Go to Networking Interfaces, and select and delete the networking interface.
3 Change to Elastic IPs, and select and release the two public IP addresses by

clicking Release Addresses from the Actions menu.
4 Go to Key Pairs, and delete the sydney key pair you created.
5 Go to Security Groups, and delete the webserver security group you created.

That’s it. Everything is cleaned up, and you’re ready for the next section.

93Optimizing costs for virtual machines

3.8.1 Reserve virtual machines

Reserving a virtual machine means committing to using a specific VM in a specific data
center. You have to pay for a reserved VM whether or not it’s running. In return, you
benefit from a price reduction of up to 60%. On AWS, you can choose one of the fol-
lowing options if you want to reserve a virtual machine:

 No Upfront, 1-year term
 Partial Upfront, 1- or 3-year term
 All Upfront, 1- or 3-year term

Table 3.3 shows what this means for an m4.large virtual machine with two virtual CPUs
and 8 GB of memory.

WARNING Buying a reservation will incur costs for 1 or 3 years. That’s why we
did not add an example for this section.

Table 3.2 Differences between on-demand, reserved, and spot virtual machines

On-demand Reserved Spot

Price High Medium Low

Flexibility High Low Medium

Reliability Medium High Low

Dynamic workloads (for
example, for a news site) or
proof-of-concept

Predictable and static work-
loads (for example, for a
business application)

Batch workloads (for exam-
ple, for data analytics,
media encoding, ...)

Table 3.3 Potential cost savings for a virtual machine with instance type m4.large

Monthly cost Upfront cost
Effective

monthly cost
Savings vs.
on-demand

On-demand $73.20 USD $0.00 USD $73.20 USD N/A

No Upfront, 1-year term, standard $45.38 USD $0.00 USD $45.38 USD 38%

Billing unit: Seconds
Most EC2 instances running Linux (such as Amazon Linux or Ubuntu) are billed per
second. The minimum charge per instance is 60 seconds. For example, if you termi-
nate a newly launched instance after 30 seconds, you have to pay for 60 seconds.
But if you terminate an instance after 61 seconds, you pay exactly for 61 seconds.

An EC2 instance running Microsoft Windows or a Linux distribution with an extra hourly
charge (such as Red Hat Enterprise Linux or SUSE Linux Enterprise Server) is not billed
per second, but per hour. A minimum charge of one hour applies. The same is true
for EC2 instances with an extra hourly charge launched from the AWS Marketplace.

94 CHAPTER 3 Using virtual machines: EC2

You can trade cost reductions against flexibility by reserving virtual machines on AWS.
There are different options offering different levels of flexibility when buying a
reserved instance:

 Reserved instances, either with or without capacity reservation
 Standard or convertible reserved instances

We’ll explain these in more detail in the following sections. It is possible to buy reser-
vations for specific time frames, called Scheduled Reserved Instances. For example,
you can make a reservation for every workday from 9 a.m. to 5 p.m.

RESERVED INSTANCES WITH CAPACITY RESERVATION

If you own a reservation for a virtual machine (a reserved instance) in a specific availabil-
ity zone, the capacity for this virtual machine is reserved for you in the public cloud.
Why is this important? Suppose demand increases for VMs in a particular data center,
perhaps because another data center broke down and many AWS customers have to
launch new virtual machines to replace their broken ones. In this rare case, the orders
for on-demand VMs will pile up, and it may become nearly impossible to start a new
VM in that data center. If you plan to build a highly available setup across multiple
data centers, you should also think about reserving the minimum capacity you’ll need
to keep your applications running. The downside of a capacity reservation is low flexi-
bility. You commit to pay for a VM of a specific type within a specific data center for
one or three years.

RESERVED INSTANCES WITHOUT CAPACITY RESERVATION

If you choose not to reserve capacity for your virtual machine, you can profit from
reduced hourly prices and more flexibility. A reserved instance without capacity reser-
vation is valid for VMs in a whole region, no matter which specific data center is used.
The reservation is applicable to all instance sizes of an instance family as well. For
example, if you buy a reservation for a m4.xlarge machine, you can also run two
m4.large machines making use of the reservation as well.

Partial Upfront, 1-year term, standard $21.96 USD $258.00 USD $43.46 USD 40%

All Upfront, 1-year term, standard $0.00 USD $507.00 USD $42.25 USD 42%

No Upfront, 3-year term, standard $31.47 USD $0.00 USD $31.47 USD 57%

Partial Upfront, 3-year term, standard $14.64 USD $526.00 USD $29.25 USD 60%

All Upfront, 3-year term, standard $0.00 USD $988.00 USD $27.44 USD 63%

Table 3.3 Potential cost savings for a virtual machine with instance type m4.large (continued)

Monthly cost Upfront cost
Effective

monthly cost
Savings vs.
on-demand

95Optimizing costs for virtual machines

STANDARD OR CONVERTIBLE?
When buying a reservation for three years, you have the option to chose between stan-
dard or convertible offerings. A standard reservation limits you to a specific instance
family (such as m4). A convertible reservation can be exchanged for another reservation,
for example to change to a different instance family. Convertible reservations are
more expensive than standard reservations but offer higher flexibility.

 Being able to switch to another instance family might be valuable because AWS might
introduce a new instance family with lower prices and higher resources in the future. Or
perhaps your workload pattern changes and you want to switch the instance family, for
example from a general-purpose family to a one that’s optimized for computing.

 We recommend that you start with on-demand machines and switch to a mix of on-
demand and reserved instances later. Depending on your high availability require-
ments, you can choose between reservations with and without capacity reservation.

3.8.2 Bidding on unused virtual machines

In addition to reserved virtual machines, there is another option for reducing costs:
spot instances. With a spot instance, you bid for unused capacity in the AWS cloud. A
spot market is a market where standardized products are traded for immediate delivery.
The price of the products on the market depends on supply and demand. On the
AWS spot market, the products being traded are VMs, and they’re delivered by start-
ing a virtual machine.

 Figure 3.27 shows the price chart for a specific instance type for a virtual machine.
If the current spot price is lower than your maximum bid for a specific virtual
machine VM in a specific data center, your spot request will be fulfilled, and a virtual
machine will start, billed at the spot price. If the current spot price exceeds your bid,
your VM will be terminated (not stopped) by AWS after two minutes.

 The spot price can be more or less flexible depending on the size of the VMs and
the data center. We’ve seen everything from a spot price that was only 10% of the on-
demand price to a spot price that was greater than the on-demand price. As soon as
the spot price exceeds your bid, your EC2 instance will be terminated within two min-
utes. You shouldn’t use spot instances for tasks like web or mail servers, but you can
use them to run asynchronous tasks like analyzing data or encoding media assets. You

Modifying reservations
It is possible to modify a reservation without additional charges. Doing so allows you
to adapt your reservations to changes in your workload over time. You can:

 Toggle capacity reservation.
 Modify which data center your reservation is in.
 Split or merge a reservation. For example, you can merge two t2.small reser-

vations into a t2.medium reservation.

96 CHAPTER 3 Using virtual machines: EC2

can even use a spot instance to check for broken links on your website, as you did in
section 3.1, because this isn’t a time-critical task.

 Let’s start a new virtual machine that uses the price reductions of the spot market.
First you have to place your order on the spot market; figure 3.28 shows the starting
point for requesting a spot instance. You get there by choosing the EC2 service from
the main navigation menu and selecting Spot Requests from the submenu. Click on
Pricing History. A dialog appears showing the spot prices for virtual machines; histori-
cal prices are available for the different server sizes and different data centers.

Terminating
virtual machine

Time

Your maximum price

Virtual machine terminated

Starting
virtual machine

Pr
ic

e

Virtual machine running

+

Figure 3.27 Functionality of the spot market for virtual machines

Select Overview
of Spot Requests.

Create a Spot Request
for a virtual machine.

Show Pricing History
of spot market.

Figure 3.28 Requesting a spot instance

97Optimizing costs for virtual machines

Click Request Spot Instances to start the wizard that guides you through the process of
requesting a spot instance.

WARNING Starting a virtual machine with instance type m3.medium via spot
request incurs charges. The maximum price (bid) is $0.093 in the following
example.

The steps in figure 3.29 are necessary to start the smallest available virtual machine
available on the spot market:

1 You can choose between three request types. Request will request a one-time vir-
tual machine. Request and Maintain will create a fleet of VMs and keep them
running at the lowest possible price. Or Reserve for Duration will request a virtual
machine with a guaranteed lifetime of 1 to 6 hours. Choose Request to request a
single virtual machine.

2 Request a target capacity of one EC2 instance.
3 Select the Ubuntu 16.04 LTS AMI.
4 Choose m3.medium, the smallest available instance type for spot instances.
5 Keep the defaults for allocation strategy and network.
6 Set your own maximum price. In this example, we’re using the on-demand

price of $0.093 USD as a maximum. Prices are subject to change. Get the latest
prices from https://aws.amazon.com/ec2/pricing/on-demand/, the Amazon
EC2 pricing page.

7 Click the Next button to proceed with the next step.

The next step, as shown in figure 3.30, is to configure the details of your virtual
machine and the spot request. Set the following parameters:

1 Keep the default storage settings. A network-attached volume with 8 GB will be
enough to run the link checker.

2 Keep the defaults for the EC2 instance as well, expect for the Instance tags. Add
a tag with key Name and value spotinstance so that you can identify your virtual
machine later.

3 Select your Key Pair named mykey and keep the default for IAM instance profile
and IAM fleet role.

4 Select the ssh-only security group, which you created at the beginning of the
chapter to allow incoming SSH traffic to your virtual machine.

5 Keep the default for the Public IP as well as the request validity.
6 Click the Review button to proceed to the next step.

The last step of the wizard shows a summary of your spot request. Click the Launch
button to create the request.

https://aws.amazon.com/ec2/pricing/on-demand/
https://aws.amazon.com/ec2/pricing/on-demand/
https://aws.amazon.com/ec2/pricing/on-demand/

98 CHAPTER 3 Using virtual machines: EC2

Select type Request
to launch a virtual
machine once.

Select the image
to start the virtual
machine.

Select the type
to define the size of
the virtual machine.

Proceed with
the next step.

Choose the on-demand
price as the maximum
price.

Select the private network
for the virtual machine.

Launch a single
virtual machine.

Figure 3.29 Requesting a spot instance (step 1)

99Optimizing costs for virtual machines

Detailed storage
settings

Configure details
for the virtual
machine.

Specify details for
the spot request.

Proceed with
the next step.

Select your key
pair to be able
to log in via SSH.

Select your
ssh-only firewall
configuration.

Figure 3.30 Requesting a spot instance (step 2)

100 CHAPTER 3 Using virtual machines: EC2

After you finish the wizard, your request for a virtual machine is placed on the market.
Your spot request appears within the overview shown in figure 3.31. It may take several
minutes for your request to be fulfilled. Look at the Status field for your request:
because the spot market is unpredictable, it’s possible that your request could fail. If
this happens, repeat the process to create another request, and choose another
instance type.

When the state of your requests flips to fulfilled, a virtual machine is started. You can
look at it after switching to Instances via the submenu; you’ll find a running or start-
ing instance listed in the overview of virtual machines. You’ve successfully started a vir-
tual machine that is billed as spot instance! You can now use SSH to connect to the
VM and run the link checker as described in section 3.1.3.

Summary
 You can choose an OS when starting a virtual machine.
 Using logs and metrics can help you to monitor and debug your VM.
 If you want to change the size of your VM, you can change the number of CPUs,

as well as the amount of memory and storage.

Wait until state
changes to fulfilled.

Figure 3.31 Waiting for the spot request to be fulfilled and the virtual machine to start

Cleaning up
Terminate the m3.medium VM to stop paying for it:

1 Open the EC2 service from the main navigation menu, and select Spot
Requests from the submenu.

2 Select your spot request by clicking the first row in the table.
3 In the Actions menu, choose Cancel Spot request.
4 Make sure the option Terminate Instances is selected, click OK to confirm.

101Summary

 You can start VMs in different regions all over the world to provide low latency
for your users.

 Allocating and associating a public IP address to your virtual machine gives you
the flexibility to replace a VM without changing the public IP address.

 You can save on costs by reserving virtual machines or bidding for unused
capacity on the virtual machine spot market.

102

Programming
 your infrastructure:

 The command-line, SDKs,
 and CloudFormation

Imagine that you want to provide room lighting as a service. To switch off the lights
in a room using software, you need a hardware device like a relay connected to the
light circuit. This hardware device must have some kind of interface that lets you
send commands via software. With a relay and an interface, you can offer room
lighting as a service.

 This also applies to providing VMs as a service. VMs are software, but if you want
to be able to start them remotely, you still need hardware that can handle and fulfill

This chapter covers
 Understanding the idea of infrastructure as code

 Using the CLI to start a virtual machine

 Using the JavaScript SDK for Node.js to start a virtual
machine

 Using CloudFormation to start a virtual machine

103

your request. AWS provides an application programming interface (API) that can control
every part of AWS over HTTP. Calling the HTTP API is very low-level and requires a
lot of repetitive work, like authentication, data (de)serialization, and so on. That’s why
AWS offers tools on top of the HTTP API that are easier to use. Those tools are:

 Command-line interface (CLI)—With one of the CLIs, you can make calls to the
AWS API from your terminal.

 Software development kit (SDK)—SDKs, available for most programming languages,
make it easy to call the AWS API from your programming language of choice.

 AWS CloudFormation—Templates are used to describe the state of the infrastruc-
ture. AWS CloudFormation translates these templates into API calls.

On AWS, everything can be controlled via an API. You interact with AWS by making calls
to the REST API using the HTTPS protocol, as figure 4.1 illustrates. Everything is avail-
able through the API. You can start a virtual machine with a single API call, create 1 TB
of storage, or start a Hadoop cluster over the API. By everything, we really mean every-
thing. You’ll need some time to understand the consequences. By the time you finish this
book, you’ll ask why the world wasn’t always this easy.

Not all examples are covered by the Free Tier
The examples in this chapter are not all covered by the Free Tier. A special warning
message appears when an example incurs costs. As for the other examples, as long
as you don’t run them longer than a few days, you won’t pay anything for them. Keep
in mind that this applies only if you created a fresh AWS account for this book and
nothing else is going on in your AWS account. Try to complete the chapter within a
few days; you’ll clean up your account at the end.

Administrator

Manages
services

Compute:
App:

Enterprise:
Deployment:

Storage:
Database:

Networking:

Virtual machines
Queues, search
Directory service, mail
Access rights, monitoring
Object store, archiving
Relational, NoSQL
DNS, virtual network

Services

Compute

Software
Hardware

Storage
Network

API

Figure 4.1 Interacting with AWS by making calls to the REST API

104 CHAPTER 4 Programming your infrastructure: The command-line, SDKs, and CloudFormation

Let’s look at how the API works. Imagine you uploaded a few files to the object store
S3 (you will learn about S3 in chapter 8). Now you want to list all the files in the S3
object store to check if the upload was successful. Using the raw HTTP API, you send
a GET request to the API endpoint using the HTTP protocol:

GET / HTTP/1.1
Host: BucketName.s3.amazonaws.com
Authorization: [...]

The HTTP response will look like this:

HTTP/1.1 200 OK
x-amz-id-2: [...]
x-amz-request-id: [...]
Date: Mon, 09 Feb 2015 10:32:16 GMT
Content-Type: application/xml

<?xml version="1.0" encoding="UTF-8"?>
<ListBucketResult xmlns="http://s3.amazonaws.com/doc/2006-03-01/">
[...]
</ListBucketResult>

Calling the API directly using plain HTTPS requests is inconvenient. The easy way to
talk to AWS is by using the CLI or SDKs, as you learn in this chapter. But the API is the
foundation of all those tools.

4.1 Infrastructure as Code
Infrastructure as Code is the idea of using a high-level programming language to control
infrastructures. Infrastructure can be any AWS resource, like a network topology, a
load balancer, a DNS entry, and so on. In software development, tools like automated
tests, code repositories, and build servers increase the quality of software engineering.
If your infrastructure is code, you can apply these tools to your infrastructure and
improve its quality.

WARNING Don’t mix up the terms Infrastructure as Code and Infrastructure as a
Service (IaaS)! IaaS means renting virtual machines, storage, and network with
a pay-per-use pricing model.

4.1.1 Automation and the DevOps movement

The DevOps movement aims to bring software development and operations together.
This usually is accomplished in one of two ways:

HTTP method GET, HTTP
resource /, using HTTP
protocol version 1.1

Specifies the host name; keep
in mind that TCP/IP only knows
about IP addresses and ports.

Authentication information
(details omitted)

Using HTTP protocol
version 1.1; status code
200 signals a success.

An HTTP header shows
when the response was
generated.

The response
body is an XML

document.

The response
body starts

here.

105Infrastructure as Code

 Using mixed teams with members from both operations and development. Developers
become responsible for operational tasks like being on-call. Operators are
involved from the beginning of the software development cycle, which helps
make the software easier to operate.

 Introducing a new role that closes the gap between developers and operators. This role
communicates a lot with both developers and operators, and cares about all
topics that touch both worlds.

The goal is to develop and deliver software to the customer rapidly without a negative
impact on quality. Communication and collaboration between development and oper-
ations are therefore necessary.

 The trend toward automation has helped DevOps culture bloom, as it codifies the
cooperation between development and operations. You can only do multiple deploy-
ments per day if you automate the whole process. If you commit changes to the repos-
itory, the source code is automatically built and tested against your automated tests. If
the build passes the tests, it’s automatically installed in your testing environment. This
triggers some acceptance tests. After those tests have been passed, the change is prop-
agated into production. But this isn’t the end of the process; now you need to care-
fully monitor your system and analyze the logs in real time to ensure that the change
was successful.

 If your infrastructure is automated, you can spawn a new system for every change
introduced to the code repository and run the acceptance tests isolated from other
changes that were pushed to the repository at the same time. Whenever a change is
made to the code, a new system is created (virtual machine, databases, networks, and
so on) to run the change in isolation.

4.1.2 Inventing an infrastructure language: JIML

For the purposes of learning infrastructure as code in detail, let’s invent a new lan-
guage to describe infrastructure: JSON Infrastructure Markup Language (JIML). Fig-
ure 4.2 shows the infrastructure that will be created in the end.

Figure 4.2 From
JIML blueprint to
infrastructure:
infrastructure
automationDatabase

Load balancer

Infrastructure as Code
tool converts blueprint

into running infrastructure

CDN

Static files

Virtual machines

DNS
{
 infrastructure: {
 loadbalancer: {
 vm: { ... }
 },
 cdn: { ... },
 database: { ... },
 dns: { ... },
 static: { ... }
 }
}

106 CHAPTER 4 Programming your infrastructure: The command-line, SDKs, and CloudFormation

The infrastructure consists of the following:

 Load balancer (LB)
 Virtual machines (VMs)
 Database (DB)
 DNS entry
 Content delivery network (CDN)
 Bucket for static files

To reduce issues with syntax, let’s say JIML is based on JSON. The following JIML code
creates the infrastructure shown in figure 4.2. The $ indicates a reference to an ID.

{
"region": "us-east-1",
"resources": [{

"type": "loadbalancer",
"id": "LB",
"config": {

"virtualmachines": 2,
"virtualmachine": {

"cpu": 2,
"ram": 4,
"os": "ubuntu"

}
},
"waitFor": "$DB"

}, {
"type": "cdn",
"id": "CDN",
"config": {

"defaultSource": "$LB",
"sources": [{

"path": "/static/*",
"source": "$BUCKET"

}]
}

}, {
"type": "database",
"id": "DB",
"config": {

"password": "***",
"engine": "MySQL"

}
}, {

"type": "dns",
"config": {

"from": "www.mydomain.com",
"to": "$CDN"

}
}, {

"type": "bucket",
"id": "BUCKET"

}]
}

Listing 4.1 Infrastructure description in JIML

A load balancer
is needed.

Need two VMs.

VMs are Ubuntu Linux (4 GB
memory, 2 cores).

LB can only be created if
the database is ready.

A CDN is used that caches requests
to the LB or fetches static assets
(images, CSS files, ...) from a bucket.

Data is stored within
a MySQL database.

A DNS entry
points to the CDN.

A bucket is used to store static
assets (images, CSS files, ...).

107Infrastructure as Code

How can we turn this JSON into AWS API calls?

1 Parse the JSON input.
2 The JIML tool creates a dependency graph by connecting the resources with

their dependencies.
3 The JIML tool traverses the dependency graph from the bottom (leaves) to the

top (root) and a linear flow of commands. The commands are expressed in a
pseudo language.

4 The commands in pseudo language are translated into AWS API calls by the
JIML runtime.

The AWS API calls have to be made based on the resources defined in the blueprint.
In particular, it is necessary to send the AWS API calls in the correct order. Let’s look
at the dependency graph created by the JIML tool, shown in figure 4.3.

Figure 4.3 The JIML tool figures out the order in which resources need to be created.

ReferencesReferences

ReferencesReferences

ReferencesReferences

ReferencesReferences

Wait forWait for ReferencesReferences

JIML dependency graphJIML dependency graphJIML codeJIML code

JIML toolJIML tool

VMVMVMVM BucketBucketDBDB

LBLB

CDNCDN

DNSDNS
{
 "region": "us-east-1",
 "resources": [{
 "type": "loadbalancer",
 "id": "LB",
 "config": {
 "virtualmachine": {
 "cpu": 2, "ram": 4, "os": "ubuntu"
 },
 "virtualmachines": 2
 },
 "waitFor": "$DB"
 }, {
 "type": "cdn",
 "id": "CDN",
 "config": {
 "defaultSource": "$LB",
 "sources": [{
 "path": "/static/*", "source": "$BUCKET"
 }]
 }
 }, {
 "type": "database",
 "id": "DB",
 "config": {
 "password": ***", "engine": "MySQL"
 }
 }, {
 "type": "dns",
 "config": {
 "from": "www.mydomain.com", "to": "$CDN"
 }
 }, {
 "type": "bucket",
 "id": "BUCKET"
 }]
}

108 CHAPTER 4 Programming your infrastructure: The command-line, SDKs, and CloudFormation

You traverse the dependency graph in figure 4.3 from bottom to top and from left to
right. The nodes at the bottom have no children: DB B, virtualmachine C, and
bucket D. Nodes without children have no dependencies. The LB E node depends
on the DB node and the two virtualmachine nodes. The CDN F node depends on the
LB node and the bucket D node. Finally, the DNS G node depends on the CDN node.

 The JIML tool turns the dependency graph into a linear flow of commands using
pseudo language. The pseudo language represents the steps needed to create all the
resources in the correct order. The nodes are easy to create because they have no
dependencies, so they’re created first.

$DB = database create {"password": "***", "engine": "MySQL"}
$VM1 = virtualmachine create {"cpu": 2, "ram": 4, "os": "ubuntu"}
$VM2 = virtualmachine create {"cpu": 2, "ram": 4, "os": "ubuntu"}
$BUCKET = bucket create {}

await [$DB, $VM1, $VM2]
$LB = loadbalancer create {"virtualmachines": [$VM1, $VM2]}

await [$LB, $BUCKET]
$CDN = cdn create {...}

await $CDN
$DNS = dns create {...}

await $DNS

We’ll skip the last step—translating the commands from the pseudo language into
AWS API calls. You’ve already learned everything you need to know about infrastruc-
ture as code: it’s all about dependencies.

 Now that you know how important dependencies are to infrastructure as code,
let’s see how you can use the terminal to create infrastructure. The CLI is one tool for
implementing infrastructure as code.

4.2 Using the command-line interface
The AWS CLI is a convenient way to use AWS from your terminal. It runs on Linux,
macOS, and Windows and is written in Python. It provides a unified interface for all
AWS services. Unless otherwise specified, the output is by default in JSON format.

4.2.1 Why should you automate?

Why should you automate instead of using the graphical AWS Management Console? A
script or a blueprint can be reused, and will save you time in the long run. You can build
new infrastructures quickly with ready-to-use modules from your former projects, or

Listing 4.2 Linear flow of commands in pseudo language, derived from the dependency graph

Create the database. Create the
virtual
machine.

Create the bucket.

Wait for the dependencies. Create
the load
balancer.

Create the CDN.

Create the DNS entry.

109Using the command-line interface

automate tasks that you will have to do regularly. Automating your infrastructure cre-
ation also enhances the automation of your deployment pipeline.

 Another benefit is that a script or blueprint is the most accurate documentation
you can imagine (even a computer understands it). If you want to reproduce on Mon-
day what you did last Friday, a script is worth its weight in gold. If you’re sick and a
coworker needs to take care of your tasks, they will appreciate your blueprints.

 You’re now going to install and configure the CLI. After that, you can get your
hands dirty and start scripting.

4.2.2 Installing the CLI

How you proceed depends on your OS. If you’re having difficulty installing the CLI,
consult http://mng.bz/N8L6 for a detailed description of many installation options.

LINUX AND MACOS
The CLI requires Python (Python 2.6.5+ or Python 3.3+) and pip. pip is the recom-
mended tool for installing Python packages. To check your Python version, run python
--version in your terminal. If you don’t have Python installed or your version is too
old, you’ll need to install or update Python before continuing with the next step. To
find out if you have already installed pip, run pip --version in your terminal. If a ver-
sion appears, you’re fine; otherwise, execute the following to install pip:

$ curl "https://bootstrap.pypa.io/get-pip.py" -o "get-pip.py"
$ sudo python get-pip.py

Verify your pip installation by running pip --version in your terminal again. Now it’s
time to install the AWS CLI:

$ sudo pip install awscli

Verify your AWS CLI installation by running aws --version in your terminal. The ver-
sion should be at least 1.11.136.

WINDOWS

The following steps guide you through installing the AWS CLI on Windows using the
MSI Installer:

1 Download the AWS CLI (32-bit or 64-bit) MSI installer from http://aws.amazon
.com/cli/.

2 Run the downloaded installer, and install the CLI by going through the installa-
tion wizard.

3 Run PowerShell as administrator by searching for “PowerShell” in the Start
menu and choosing Run as Administrator from its context menu.

4 Type Set-ExecutionPolicy Unrestricted into PowerShell, and press Enter to
execute the command. This allows you to execute the unsigned PowerShell
scripts from our examples.

http://mng.bz/N8L6
http://aws.amazon.com/cli/
http://aws.amazon.com/cli/
http://aws.amazon.com/cli/

110 CHAPTER 4 Programming your infrastructure: The command-line, SDKs, and CloudFormation

5 Close the PowerShell window; you no longer need to work as administrator.
6 Run PowerShell by choosing PowerShell from the Start menu.
7 Verify whether the CLI is working by executing aws --version in PowerShell.

The version should be at least 1.11.136.

4.2.3 Configuring the CLI

To use the CLI, you need to authenticate. Until now, you’ve been using the root AWS
account. This account can do everything, good and bad. It’s strongly recommended
that you not use the AWS root account (you’ll learn more about security in chapter 6),
so let’s create a new user.

 To create a new user, go to at https://console.aws.amazon.com. Click Services in
the navigation bar, and click the IAM (AWS Identity and Access Management) service.
A page opens as shown in figure 4.4; select Users at left.

Follow these steps to create a user:

1 Click Add User to open the page shown in figure 4.5.
2 Enter mycli as the user name.
3 Under Access Type, select Programmatic Access.
4 Click the Next: Permissions button.

In the next step, you have to define the permissions for the new user, as shown in fig-
ure 4.6.

1 Click Attach Existing Policies Directly.
2 Select the AdministratorAccess policy.
3 Click the Next: Review button.

Click to create
a new user.

You haven’t created a
user at the moment.

Figure 4.4 IAM users (empty)

https://console.aws.amazon.com

111Using the command-line interface

User name of the
new user is mycli.

Check Programmatic access
to generate access keys.

Figure 4.5 Creating an IAM user

Figure 4.6 Setting permissions for an IAM user

Select Administrator Access
policy to grant full permissions.

112 CHAPTER 4 Programming your infrastructure: The command-line, SDKs, and CloudFormation

The review page sums up what you have configured. Click the Create User button to
save. Finally, you will see the page shown in figure 4.7. Click the Show link to display
the secret value. You now need to copy the credentials to your CLI configuration.
Read on to learn how this works.

 Open the terminal on your computer (PowerShell on Windows or a shell on Linux
and macOS, not the AWS Management Console), and run aws configure. You’re
asked for four pieces of information:

1 AWS access key ID—Copy and paste this value from the Access key ID column
(your browser window).

2 AWS secret access key—Copy and paste this value from the Secret access key col-
umn (your browser window).

3 Default region name—Enter us-east-1.
4 Default output format—Enter json.

In the end, the terminal should look similar to this:

$ aws configure
AWS Access Key ID [None]: AKIAIRUR3YLPOSVD7ZCA
AWS Secret Access Key [None]: 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
Default region name [None]: us-east-1
Default output format [None]: json

The CLI is now configured to authenticate as the user mycli. Switch back to the
browser window, and click Close to finish the user-creation wizard.

 It’s time to test whether the CLI works. Switch to the terminal window, and enter
aws ec2 describe-regions to get a list of all available regions:

$ aws ec2 describe-regions
{

"Regions": [
{

"Endpoint": "ec2.eu-central-1.amazonaws.com",

Figure 4.7 Showing access key of an IAM user

Your value will be
different! Copy it from
your browser window.

113Using the command-line interface

"RegionName": "eu-central-1"
},
{

"Endpoint": "ec2.sa-east-1.amazonaws.com",
"RegionName": "sa-east-1"

},
[...]
{

"Endpoint": "ec2.ap-southeast-2.amazonaws.com",
"RegionName": "ap-southeast-2"

},
{

"Endpoint": "ec2.ap-southeast-1.amazonaws.com",
"RegionName": "ap-southeast-1"

}
]

}

It works! You can now begin to use the CLI.

4.2.4 Using the CLI

Suppose you want to get a list of all running EC2 instances of type t2.micro so you can
see what is running in your AWS account. Execute the following command in your ter-
minal:

$ aws ec2 describe-instances --filters "Name=instance-type,Values=t2.micro"
{

"Reservations": []
}

To use the AWS CLI, you need to specify a service and an action. In the previous exam-
ple, the service is ec2 and the action is describe-instances. You can add options
with --key value:

$ aws <service> <action> [--key value ...]

One important feature of the CLI is the help keyword. You can get help at three levels
of detail:

 aws help—Shows all available services.
 aws <service> help—Shows all actions available for a certain service.
 aws <service> <action> help—Shows all options available for the particular

service action.

Sometimes you need temporary computing power, like a Linux machine to test some-
thing via SSH. To do this, you can write a script that creates a virtual machine for you.
The script will run on your local computer and connect to the virtual machine via
SSH. After you complete your tests, the script should be able to terminate the virtual
machine. The script is used like this:

Empty list because you haven’t
created an EC2 instance

114 CHAPTER 4 Programming your infrastructure: The command-line, SDKs, and CloudFormation

$./virtualmachine.sh
waiting for i-c033f117 ...
accepting SSH connections under ec2-54-164-72-62.compute-1.amazonaws.com
ssh -i mykey.pem ec2-user@ec2-54-[...]aws.com
Press [Enter] key to terminate i-c033f117 ...
[...]
terminating i-c033f117 ...
done.

Your virtual machine runs until you press the Enter key. When you press Enter, the vir-
tual machine is terminated.

 The limitations of this solution are as follows:

 It can handle only one virtual machine at a time.
 There is a different version for Windows than for Linux and macOS.
 It’s a command-line application, not graphical.

Nonetheless, the CLI solution solves the following use cases:

 Creating a virtual machine.
 Getting the public name of a virtual machine to connect via SSH.
 Terminating a virtual machine if it’s no longer needed.

Depending on your OS, you’ll use either Bash (Linux and macOS) or PowerShell
(Windows) to script.

 One important feature of the CLI needs explanation before you can begin. The
--query option uses JMESPath, which is a query language for JSON, to extract data
from the result. This can be useful because usually you only need a specific field from
the result. The following CLI command gets a list of all AMIs in JSON format.

$ aws ec2 describe-images
{

"Images": [
{

"ImageId": "ami-146e2a7c",
"State": "available"

},
[...]
{

"ImageId": "ami-b66ed3de",
"State": "available"

}
]

}

But to start an EC2 instance, you need the ImageId without all the other information.
With JMESPath, you can extract just that information. To extract the first ImageId
property, the path is Images[0].ImageId; the result of this query is "ami-146e2a7c".

Waits until started

SSH connection string

Waits until terminated

115Using the command-line interface

To extract all State properties, the path is Images[*].State; the result of this query is
["available", "available"].

$ aws ec2 describe-images --query "Images[0].ImageId"
"ami-146e2a7c"

$ aws ec2 describe-images --query "Images[0].ImageId" --output text
ami-146e2a7c

$ aws ec2 describe-images --query "Images[*].State"
["available", "available"]

With this short introduction to JMESPath, you’re well equipped to extract the data
you need.

Linux and macOS can interpret Bash scripts, whereas Windows prefers PowerShell
scripts. So, we’ve created two versions of the same script.

LINUX AND MACOS
You can find the following listing in /chapter04/virtualmachine.sh in the book’s
code folder. You can run it either by copying and pasting each line into your terminal
or by executing the entire script via chmod +x virtualmachine.sh && ./virtualma-
chine.sh.

#!/bin/bash -e
AMIID="$(aws ec2 describe-images --filters \

➥ "Name=name,Values=amzn-ami-hvm-2017.09.1.*-x86_64-gp2" \

➥ --query "Images[0].ImageId" --output text)"
VPCID="$(aws ec2 describe-vpcs --filter "Name=isDefault, Values=true" \

➥ --query "Vpcs[0].VpcId" --output text)"
SUBNETID="$(aws ec2 describe-subnets --filters "Name=vpc-id, Values=$VPCID" \

➥ --query "Subnets[0].SubnetId" --output text)"
SGID="$(aws ec2 create-security-group --group-name mysecuritygroup \

➥ --description "My security group" --vpc-id "$VPCID" --output text)"
aws ec2 authorize-security-group-ingress --group-id "$SGID" \

➥ --protocol tcp --port 22 --cidr 0.0.0.0/0
INSTANCEID="$(aws ec2 run-instances --image-id "$AMIID" --key-name mykey \

Listing 4.3 Creating and terminating a virtual machine from the CLI (Bash)

Where is the code located?
All code can be found in the book’s code repository on GitHub: https://github.com/
AWSinAction/code2. You can download a snapshot of the repository at https://
github.com/AWSinAction/code2/archive/master.zip.

-e makes Bash abort
if a command fails. Get the ID of

Amazon Linux AMI.

Get the default
VPC ID.

Get the default subnet ID.

Create a
Security Group.

Allow inbound SSH connections. Create and start the
virtual machine.

https://github.com/AWSinAction/code2
https://github.com/AWSinAction/code2
https://github.com/AWSinAction/code2
https://github.com/AWSinAction/code2/archive/master.zip
https://github.com/AWSinAction/code2/archive/master.zip
https://github.com/AWSinAction/code2/archive/master.zip

116 CHAPTER 4 Programming your infrastructure: The command-line, SDKs, and CloudFormation

➥ --instance-type t2.micro --security-group-ids "$SGID" \

➥ --subnet-id "$SUBNETID" --query "Instances[0].InstanceId" --output text)"
echo "waiting for $INSTANCEID ..."
aws ec2 wait instance-running --instance-ids "$INSTANCEID"
PUBLICNAME="$(aws ec2 describe-instances --instance-ids "$INSTANCEID" \

➥ --query "Reservations[0].Instances[0].PublicDnsName" --output text)"
echo "$INSTANCEID is accepting SSH connections under $PUBLICNAME"
echo "ssh -i mykey.pem ec2-user@$PUBLICNAME"
read -r -p "Press [Enter] key to terminate $INSTANCEID ..."
aws ec2 terminate-instances --instance-ids "$INSTANCEID"
echo "terminating $INSTANCEID ..."
aws ec2 wait instance-terminated --instance-ids "$INSTANCEID"
aws ec2 delete-security-group --group-id "$SGID"

WINDOWS

You can find the following listing in /chapter04/virtualmachine.ps1 in the book’s
code folder. Right-click the virtualmachine.ps1 file, and select Run with PowerShell to
execute the script.

$ErrorActionPreference = "Stop"
$AMIID=aws ec2 describe-images --filters \

➥ "Name=name,Values=amzn-ami-hvm-2017.09.1.*-x86_64-gp2" \

➥ --query "Images[0].ImageId" --output text
$VPCID=aws ec2 describe-vpcs --filter "Name=isDefault, Values=true" \

➥ --query "Vpcs[0].VpcId" --output text
$SUBNETID=aws ec2 describe-subnets --filters "Name=vpc-id, Values=$VPCID" \

➥ --query "Subnets[0].SubnetId" --output text
$SGID=aws ec2 create-security-group --group-name mysecuritygroup \

➥ --description "My security group" --vpc-id $VPCID \

➥ --output text
aws ec2 authorize-security-group-ingress --group-id $SGID \

➥ --protocol tcp --port 22 --cidr 0.0.0.0/0
$INSTANCEID=aws ec2 run-instances --image-id $AMIID --key-name mykey \

➥ --instance-type t2.micro --security-group-ids $SGID \

➥ --subnet-id $SUBNETID \

➥ --query "Instances[0].InstanceId" --output text

Listing 4.4 Creating and terminating a virtual machine from the CLI (PowerShell)

Wait until the virtual
machine is started. Get the public name

of virtual machine.

Terminate the
virtual machine.

Wait until the
virtual machine
is terminated.Delete the Security Group.

Cleaning up
Make sure you terminate the virtual machine before you go on!

Abort if the
command fails. Get the ID of

Amazon Linux
AMI. Get the

default
VPC ID.

Get the default
subnet ID.

Create the
Security
Group.

Allow
inbound SSH
connections.

Create and start the virtual machine.

117Programming with the SDK

Write-Host "waiting for $INSTANCEID ..."
aws ec2 wait instance-running --instance-ids $INSTANCEID
$PUBLICNAME=aws ec2 describe-instances --instance-ids $INSTANCEID \

➥ --query "Reservations[0].Instances[0].PublicDnsName" --output text
Write-Host "$INSTANCEID is accepting SSH under $PUBLICNAME"
Write-Host "connect to $PUBLICNAME via SSH as user ec2-user"
Write-Host "Press [Enter] key to terminate $INSTANCEID ..."
Read-Host
aws ec2 terminate-instances --instance-ids $INSTANCEID
Write-Host "terminating $INSTANCEID ..."
aws ec2 wait instance-terminated --instance-ids $INSTANCEID
aws ec2 delete-security-group --group-id $SGID

4.3 Programming with the SDK
AWS offers SDKs for a number of programming languages and platforms:

An AWS SDK is a convenient way to make calls to the AWS API from your favorite pro-
gramming language. The SDK takes care of things like authentication, retry on error,
HTTPS communication, and XML or JSON (de)serialization. You’re free to choose
the SDK for your favorite language, but in this book most examples are written in
JavaScript and run in the Node.js runtime environment.

 Android Browsers (JavaScript) iOS

 Java .NET Node.js (JavaScript)

 PHP Python Ruby

 Go C++

Wait until the virtual
machine is started.

Get the public
name of virtual

machine.

Terminate the
virtual machine.

Wait until the
virtual machine
is terminatedDelete the Security Group.

Cleaning up
Make sure you terminate the virtual machine before you go on!

Installing and getting started with Node.js
Node.js is a platform for executing JavaScript in an event-driven environment so you
can easily build network applications. To install Node.js, visit https://nodejs.org and
download the package that fits your OS. All examples in this book are tested with
Node.js 8.

After Node.js is installed, you can verify if everything works by typing node --version
into your terminal. Your terminal should response with something similar to v8.*.
Now you’re ready to run JavaScript examples, like the Node Control Center for AWS.

https://nodejs.org

118 CHAPTER 4 Programming your infrastructure: The command-line, SDKs, and CloudFormation

To understand how the AWS SDK for Node.js (JavaScript) works, let’s create a Node.js
(JavaScript) application that controls EC2 instances via the AWS SDK.

4.3.1 Controlling virtual machines with SDK: nodecc

The Node Control Center for AWS (nodecc) is for managing multiple temporary EC2
instances using a text UI written in JavaScript. nodecc has the following features:

 It can handle multiple virtual machines.
 It’s written in JavaScript and runs in Node.js, so it’s portable across platforms.
 It uses a textual UI.

Figure 4.8 shows what nodecc looks like. You can find the nodecc application at
/chapter04/nodecc/ in the book’s code folder. Switch to that directory, and run npm
install in your terminal to install all needed dependencies. To start nodecc, run

(continued)
Your Node.js installation comes with a important tool called npm, which is the pack-
age manager for Node.js. Verify the installation by running npm --version in your
terminal.

To run a JavaScript script in Node.js, enter node script.js in your terminal, where
script.js is the name of the script file. We use Node.js in this book because it’s easy
to install, it requires no IDE, and the syntax is familiar to most programmers.

Don’t be confused by the terms JavaScript and Node.js. If you want to be precise,
JavaScript is the language and Node.js is the runtime environment. But don’t expect
anybody to make that distinction. Node.js is also called node.

Do you want to get started with Node.js? We recommend Node.js in Action (2nd Edition)
from Alex Young, et al. (Manning, 2017), or the video course Node.js in Motion from
PJ Evans, (Manning, 2018).

Choose the action you want to use
and click enter. Press the left arrow
key to return to the action menu.

Figure 4.8 nodecc: start screen

119Programming with the SDK

node index.js. You can always go back by pressing the left arrow key. You can quit the
application by pressing Esc or q. The SDK uses the same settings you created for the
CLI, so you’re using the mycli user when running nodecc.

4.3.2 How nodecc creates a virtual machine

Before you can do anything with nodecc, you need at least one virtual machine. To
start a virtual machine, choose the AMI you want, as figure 4.9 shows.

The code that fetches the list of the available AMIs is located at lib/listAMIs.js.

const jmespath = require('jmespath');
const AWS = require('aws-sdk');
const ec2 = new AWS.EC2({region: 'us-east-1'});

module.exports = (cb) => {
ec2.describeImages({

Filters: [{
Name: 'name',
Values: ['amzn-ami-hvm-2017.09.1.*-x86_64-gp2']

}]
}, (err, data) => {

if (err) {
cb(err);

} else {
const amiIds = jmespath.search(data, 'Images[*].ImageId');
const descriptions = jmespath.search(data, 'Images[*].Description');
cb(null, {amiIds: amiIds, descriptions: descriptions});

}
});

};

Listing 4.5 Fetching the list of available AMIs /lib/listAMIs.js

Choose the AMI you want
to use for the new VM.

Figure 4.9 nodecc: creating a virtual machine (step 1 of 2)

Require is used to
load modules.

Configure an EC2 endpoint.

module.exports makes this
function available to users
of the listAMIs module.

Action

In case of failure, err is set.

Otherwise, data contains all AMIs.

120 CHAPTER 4 Programming your infrastructure: The command-line, SDKs, and CloudFormation

The code is structured in such a way that each action is implemented in the lib folder.
The next step to create a virtual machine is to choose which subnet the virtual machine
should be started in. You haven’t learned about subnets yet, so for now select one ran-
domly; see figure 4.10. The corresponding script is located at lib/listSubnets.js.

 After you select the subnet, the virtual machine is created by lib/createVM.js,
and you see a starting screen. Now it’s time to find out the public name of the newly
created virtual machine. Use the left arrow key to switch to the navigation section.

4.3.3 How nodecc lists virtual machines and shows virtual machine details

One important use case that nodecc must support is showing the public name of a VM
that you can use to connect via SSH. Because nodecc handles multiple virtual machines,
the first step is to select a VM, as shown in figure 4.11.

 Look at lib/listVMs.js to see how a list of virtual machines can be retrieved with
the AWS SDK. After you select the VM, you can display its details; see figure 4.12. You
could use the PublicDnsName to connect to the EC2 instance via SSH. Press the left
arrow key to switch back to the navigation section.

Choose the subnet you want to
use for the new virtual machine.

Figure 4.10 nodecc: creating a virtual machine (step 2 of 2)

All running servers are
listed by their instance ID.

Figure 4.11 nodecc: listing virtual machines

121Using a blueprint to start a virtual machine

4.3.4 How nodecc terminates a virtual machine

To terminate a virtual machine, you first have to select it. To list the virtual machines,
use lib/listVMs.js again. After the VM is selected, lib/terminateVM.js takes care
of termination.

 That’s nodecc: a text UI program for controlling temporary EC2 instances. Take
some time to think about what you could create by using your favorite language and
the AWS SDK. Chances are high that you might come up with a new business idea!

4.4 Using a blueprint to start a virtual machine
Earlier, we talked about JIML to introduce the concept of infrastructure as code.
Luckily, AWS already offers a tool that does much better than JIML: AWS CloudForma-
tion. CloudFormation is based on templates, which up to now we’ve called blueprints.

NOTE We use the term blueprint when discussing infrastructure automation in
general. Blueprints used for AWS CloudFormation, a configuration manage-
ment service, are called templates.

A template is a description of your infrastructure, written in JSON or YAML, that can be
interpreted by CloudFormation. The idea of describing something rather than listing
the necessary actions is called a declarative approach. Declarative means you tell Cloud-
Formation how your infrastructure should look. You aren’t telling CloudFormation
what actions are needed to create that infrastructure, and you don’t specify the
sequence in which the actions need to be executed.

 The benefits of CloudFormation are as follows:

The public name of the
machine. Can be used for SSH.

Figure 4.12 nodecc: showing virtual machine details

Cleaning up
Make sure you terminate all started virtual machines before you go on!

122 CHAPTER 4 Programming your infrastructure: The command-line, SDKs, and CloudFormation

 It’s a consistent way to describe infrastructure on AWS. If you use scripts to create your
infrastructure, everyone will solve the same problem differently. This is a hurdle
for new developers and operators trying to understand what the code is doing.
CloudFormation templates are a clear language for defining infrastructure.

 It can handle dependencies. Ever tried to register a web server with a load balancer
that wasn’t yet available? At first glance, you’ll miss a lot of dependencies. Trust
us: never try to set up complex infrastructure using scripts. You’ll end up in
dependency hell!

 It’s replicable. Is your test environment an exact copy of your production environ-
ment? Using CloudFormation, you can create two identical infrastructures and
keep them in sync.

 It’s customizable. You can insert custom parameters into CloudFormation to cus-
tomize your templates as you wish.

 It’s testable. If you can create your architecture from a template, it’s testable. Just
start a new infrastructure, run your tests, and shut it down again.

 It’s updatable. CloudFormation supports updates to your infrastructure. It will
figure out the parts of the template that have changed and apply those changes
as smoothly as possible to your infrastructure.

 It minimizes human failure. CloudFormation doesn’t get tired—even at 3 a.m.
 It’s the documentation for your infrastructure. A CloudFormation template is a JSON

or YAML document. You can treat it as code and use a version control system
like Git to keep track of the changes.

 It’s free. Using CloudFormation comes at no additional charge. If you subscribe
to an AWS support plan, you also get support for CloudFormation.

We think CloudFormation is one of the most powerful tools available for managing
infrastructure on AWS.

4.4.1 Anatomy of a CloudFormation template

A basic CloudFormation template is structured into five parts:

1 Format version—The latest template format version is 2010-09-09, and this is cur-
rently the only valid value. Specify this version; the default is to use the latest
version, which will cause problems if new versions are introduced in the future.

2 Description—What is this template about?
3 Parameters—Parameters are used to customize a template with values: for exam-

ple, domain name, customer ID, and database password.
4 Resources—A resource is the smallest block you can describe. Examples are a vir-

tual machine, a load balancer, or an Elastic IP address.
5 Outputs—An output is comparable to a parameter, but the other way around.

An output returns something from your template, such as the public name of
an EC2 instance.

123Using a blueprint to start a virtual machine

A basic template looks like the following listing.

AWSTemplateFormatVersion: '2010-09-09'
Description: 'CloudFormation template structure'
Parameters:
 # [...]
Resources
 # [...]
Outputs:
 # [...]

Let’s take a closer look at parameters, resources, and outputs.

FORMAT VERSION AND DESCRIPTION

The only valid AWSTemplateFormatVersion value at the moment is 2010-09-09.
Always specify the format version. If you don’t, CloudFormation will use whatever ver-
sion is the latest one. As mentioned earlier, this means that if a new format version is
introduced in the future, you’ll end up using the wrong format and get into serious
trouble.

 Description isn’t mandatory, but we encourage you to take some time to docu-
ment what the template is about. A meaningful description will help you in the future
to remember what the template is for. It will also help your coworkers.

PARAMETERS

A parameter has at least a name and a type. We encourage you to add a description as well.

Parameters:
Demo:
 Type: Number
 Description: 'This parameter is for demonstration'

Valid types are listed in table 4.1.

Listing 4.6 CloudFormation template structure

Listing 4.7 CloudFormation parameter structure

Table 4.1 CloudFormation parameter types

Type Description

String
CommaDelimitedList

A string or a list of strings separated by commas

Number
List<Number>

An integer or float, or a list of integers or floats

Start of a document

The only valid version

What is this
template about?Defines parameters

Defines resources

Defines outputs

You can choose the
name of the parameter.

This parameter
represents a

number.

Description of
the parameter

124 CHAPTER 4 Programming your infrastructure: The command-line, SDKs, and CloudFormation

In addition to using the Type and Description properties, you can enhance a param-
eter with the properties listed in table 4.2.

AWS::EC2::AvailabilityZone::Name
List<AWS::EC2::AvailabilityZone::Name>

An Availability Zone, such as us-west-2a, or a list
of Availability Zones

AWS::EC2::Image::Id
List<AWS::EC2::Image::Id>

An AMI ID or a list of AMIs

AWS::EC2::Instance::Id
List<AWS::EC2::Instance::Id>

An EC2 instance ID or a list of EC2 instance IDs

AWS::EC2::KeyPair::KeyName An Amazon EC2 key-pair name

AWS::EC2::SecurityGroup::Id
List<AWS::EC2::SecurityGroup::Id>

A security group ID or a list of security group IDs

AWS::EC2::Subnet::Id
List<AWS::EC2::Subnet::Id>

A subnet ID or a list of subnet IDs

AWS::EC2::Volume::Id
List<AWS::EC2::Volume::Id>

An EBS volume ID (network attached storage) or
a list of EBS volume IDs

AWS::EC2::VPC::Id
List<AWS::EC2::VPC::Id>

A VPC ID (virtual private cloud) or a list of VPC
IDs

AWS::Route53::HostedZone::Id
List<AWS::Route53::HostedZone::Id>

A DNS zone ID or a list of DNS zone IDs

Table 4.2 CloudFormation parameter properties

Property Description Example

Default A default value for the parameter Default: 'm5.large'

NoEcho Hides the parameter value in all graph-
ical tools (useful for passwords)

NoEcho: true

AllowedValues Specifies possible values for the
parameter

AllowedValues: [1, 2, 3]

AllowedPattern More generic than AllowedValues
because it uses a regular expression

AllowedPattern: '[a-zA-Z0-9]*'
allows only a–z, A–Z, and 0–9 with any
length

MinLength, MaxLength Defines how long a parameter can be MinLength: 12

MinValue, MaxValue Used in combination with the Number
type to define lower and upper bounds

MaxValue: 10

ConstraintDescription A string that explains the constraint
when the constraint is violated.

ConstraintDescription:
'Maximum value is 10.'

Table 4.1 CloudFormation parameter types (continued)

Type Description

125Using a blueprint to start a virtual machine

A parameter section of a CloudFormation template could look like this:

Parameters:
KeyName:

Description: 'Key Pair name'
Type: 'AWS::EC2::KeyPair::KeyName'

NumberOfVirtualMachines:
Description: 'How many virtual machine do you like?'
Type: Number
Default: 1
MinValue: 1
MaxValue: 5

WordPressVersion:
Description: 'Which version of WordPress do you want?'
Type: String
AllowedValues: ['4.1.1', '4.0.1']

Now you should have a better feel for parameters. If you want to know everything
about them, see the documentation at http://mng.bz/jg7B or follow along in the
book and learn by doing.

RESOURCES

A resource has at least a name, a type, and some properties.

Resources:
VM:

 Type: 'AWS::EC2::Instance'
 Properties:
 # [...]

When defining resources, you need to know about the type and that type’s properties.
In this book, you’ll get to know a lot of resource types and their respective properties.
An example of a single EC2 instance follows. If you see !Ref NameOfSomething, think
of it as a placeholder for what is referenced by the name. You can reference parame-
ters and resources to create dependencies.

Resources:
VM:

 Type: 'AWS::EC2::Instance'
 Properties:
 ImageId: 'ami-6057e21a'
 InstanceType: 't2.micro'
 KeyName: mykey
 NetworkInterfaces:
 - AssociatePublicIpAddress: true

Listing 4.8 CloudFormation resources structure

Listing 4.9 CloudFormation EC2 instance resource

Only key pair names are allowed.

The default is one virtual machine.

Prevent massive costs with an upper bound.

Restricted to certain versions

Name or logical ID of the
resource that you can choose

Defines an EC2 instance

Properties needed for the type of resource

Name or logical ID of the
resource that you can choose

Defines an EC2 instance

Some hard-coded settings

http://mng.bz/jg7B

126 CHAPTER 4 Programming your infrastructure: The command-line, SDKs, and CloudFormation

 DeleteOnTermination: true
 DeviceIndex: 0
 GroupSet:
 - 'sg-123456'
 SubnetId: 'subnet-123456'

Now you’ve described the virtual machine, but how can you output its public name?

OUTPUTS

A CloudFormation template’s output includes at least a name (like parameters and
resources) and a value, but we encourage you to add a description as well. You can use
outputs to pass data from within your template to the outside.

Outputs:
NameOfOutput:
 Value: '1'
 Description: 'This output is always 1'

Static outputs like this one aren’t very useful. You’ll mostly use values that reference
the name of a resource or an attribute of a resource, like its public name.

Outputs:
ID:

Value: !Ref Server
Description: 'ID of the EC2 instance'

PublicName:
Value: !GetAtt 'Server.PublicDnsName'
Description: 'Public name of the EC2 instance'

You’ll get to know the most important attributes of !GetAtt later in the book. If you
want to know about all of them, see http://mng.bz/q5I4.

 Now that we’ve taken a brief look at the core parts of a CloudFormation template,
it’s time to make one of your own.

4.4.2 Creating your first template

How do you create a CloudFormation template? Different options are available:

 Use a text editor or IDE to write a template from scratch.
 Use the CloudFormation Designer, a graphical user interface offered by AWS.
 Start with a template from a public library that offers a default implementation

and adapt it to your needs.
 Use CloudFormer, a tool for creating a template based on an existing infra-

structure provided by AWS.
 Use a template provided by your vendor.

Listing 4.10 CloudFormation outputs structure

Listing 4.11 CloudFormation outputs example

Name of the output
that you can chooseValue of

the output

References the EC2 instance

Get the attribute PublicDnsName
of the EC2 instance.

http://mng.bz/q5I4

127Using a blueprint to start a virtual machine

AWS and their partners offer CloudFormation templates for deploying popular solu-
tions: AWS Quick Starts at https://aws.amazon.com/quickstart/. Furthermore, we
have open sourced the templates we are using in our day-to-day work on GitHub:
https://github.com/widdix/aws-cf-templates.

 Suppose you’ve been asked to provide a VM for a developer team. After a few
months, the team realizes the VM needs more CPU power, because the usage pattern
has changed. You can handle that request with the CLI and the SDK, but as you
learned in section 3.4, before the instance type can be changed, you must stop the
EC2 instance. The process will be as follows:

1 Stop the instance.
2 Wait for the instance to stop.
3 Change the instance type.
4 Start the instance.
5 Wait for the instance to start.

A declarative approach like that used by CloudFormation is simpler: just change the
InstanceType property and update the template. InstanceType can be passed to the
template via a parameter. That’s it! You can begin creating the template.

AWSTemplateFormatVersion: '2010-09-09'
Description: 'AWS in Action: chapter 4'
Parameters:

KeyName:
Description: 'Key Pair name'
Type: 'AWS::EC2::KeyPair::KeyName'
Default: mykey

VPC:
[...]

Subnet:
[...]

InstanceType:
Description: 'Select one of the possible instance types'
Type: String
Default: 't2.micro'
AllowedValues": ['t2.micro', 't2.small', 't2.medium']

Resources:
SecurityGroup:

Type: 'AWS::EC2::SecurityGroup'
Properties:

[...]
VM:

Type: 'AWS::EC2::Instance'
Properties:

ImageId: 'ami-6057e21a'
InstanceType: !Ref InstanceType
KeyName: !Ref KeyName
NetworkInterfaces:

Listing 4.12 Template to create an EC2 instance with CloudFormation

The user
defines which

key to use.

You’ll learn
about this in
section 6.5.

You’ll learn about
this in section 6.5.

The user
defines the

instance
type.

You’ll learn
about this in
section 6.4. Defines a minimal

EC2 instance

https://aws.amazon.com/quickstart/
https://github.com/widdix/aws-cf-templates

128 CHAPTER 4 Programming your infrastructure: The command-line, SDKs, and CloudFormation

- AssociatePublicIpAddress: true
DeleteOnTermination: true
DeviceIndex: 0
GroupSet:
- !Ref SecurityGroup
SubnetId: !Ref Subnet

Outputs:
PublicName:

Value: !GetAtt 'Server.PublicDnsName'
Description: 'Public name (connect via SSH as user ec2-user)'

You can find the full code for the template at /chapter04/virtualmachine.yaml in
the book’s code folder. Please don’t worry about VPC, subnets, and security groups at
the moment; you’ll get to know them in chapter 6.

If you create an infrastructure from a template, CloudFormation calls it a stack. You
can think of template versus stack much like class versus object. The template exists only
once, whereas many stacks can be created from the same template.

 Open the AWS Management Console at https://console.aws.amazon.com. Click
Services in the navigation bar, and then click the CloudFormation service. Figure 4.13
shows the initial CloudFormation screen with an overview of all the stacks.

Returns the public name
of the EC2 instance

Where is the template located?
You can find the template on GitHub. You can download a snapshot of the repository
at https://github.com/AWSinAction/code2/archive/master.zip. The file we’re talking
about is located at chapter04/virtualmachine.yaml. On S3, the same file is located
at http://mng.bz/B5UM.

Figure 4.13 Overview of CloudFormation stacks

Click to create a new
infrastructure from a blueprint.

Reload the page.

You haven’t created an infrastructure
from a blueprint at the moment.

https://console.aws.amazon.com
https://github.com/AWSinAction/code2/archive/master.zip
http://mng.bz/B5UM

129Using a blueprint to start a virtual machine

The following steps will guide you through creating your stack:

1 Click Create Stack to start a four-step wizard.
2 Select Specify an Amazon S3 Template URL, and enter https://s3.ama-

zonaws.com/awsinaction-code2/chapter04/virtualmachine.yaml as shown
in figure 4.14.

In the second step, you define the stack name and parameters. Give the stack a name
like server and fill out the parameter values:

1 InstanceType—Select t2.micro.
2 KeyName—Select mykey.
3 Subnet—Select the first value in the drop-down list. You’ll learn about subnets

later.
4 VPC—Select the first value in the drop-down list. You’ll learn about VPCs later.

Proceed with
the next step.
Proceed with
the next step.

Specify the URL of the
CloudFormation template.
Specify the URL of the
CloudFormation template.

Figure 4.14 Creating a CloudFormation stack: selecting a template (step 1 of 4)

130 CHAPTER 4 Programming your infrastructure: The command-line, SDKs, and CloudFormation

Figure 4.15 shows the parameters step. Click Next after you’ve chosen a value for
every parameter, to proceed with the next step.

In the third step, you can define optional tags for the stack and advanced configura-
tion. You can skip this step at this point in the book, because you will not use any
advances features for now. All resources created by the stack will be tagged by Cloud-
Formation by default. Click Next to go to the last step.

 Step four displays a summary of the stack, as shown in figure 4.16.

Define a name for your
CloudFormation stack.

Select instance
type t2.micro.

Select your
key pair mykey.

Select the first subnet
from the drop-down list.

Select the only VPC from
the drop-down list.

Figure 4.15 Creating a CloudFormation stack: defining parameters (step 2 of 4)

131Using a blueprint to start a virtual machine

Click Create. CloudFormation now starts to create the stack. If the process is success-
ful, you’ll see the screen shown in figure 4.17. As long as Status is CREATE_IN_PROG-
RESS, you need to be patient. When Status is CREATE_COMPLETE, select the stack and
click the Outputs tab to see the public name of the EC2 instance.

Create the CloudFormation stack.

Figure 4.16 Creating a CloudFormation stack: summary (step 4 of 4)

132 CHAPTER 4 Programming your infrastructure: The command-line, SDKs, and CloudFormation

It’s time to test modifying the instance type. Select the stack, and click the Update
Stack button. The wizard that starts is similar to the one you used during stack cre-
ation. Figure 4.18 shows the first step of the wizard. Select Use Current Template and
proceed with the next step.

Stack has been
created successfully.

Figure 4.17 The CloudFormation stack has been created.

Use current template. Proceed with the next step.

Figure 4.18 Updating the CloudFormation stack: summary (step 1 of 4)

133Summary

In step 2, you need to change the InstanceType parameter value: choose t2.small to
double or t2.medium to quadruple the computing power of your EC2 instance.

WARNING Starting a virtual machine with instance type t2.small or t2.medium
will incur charges. See http://aws.amazon.com/ec2/pricing to find out the
current hourly price.

Step 3 is about sophisticated options during the update of the stack. You don’t need
any of these features now, so skip the step by clicking Next. Step 4 is a summary;
click Update. The stack now has Status UPDATE_IN_PROGRESS. After a few minutes,
Status should change to UPDATE_COMPLETE. You can select the stack and get the pub-
lic name of a new EC2 instance with the increased instance type by looking at the
Outputs tab.

When you changed the parameter, CloudFormation figured out what needed to be
done to achieve the end result. That’s the power of a declarative approach: you say
what the end result should look like, not how the end result should be achieved.

Summary
 Use the CLI, one of the SDKs, or CloudFormation to automate your infrastruc-

ture on AWS.
 Infrastructure as code describes the approach of programming the creation

and modification of your infrastructure, including virtual machines, network-
ing, storage, and more.

 You can use the CLI to automate complex processes in AWS with scripts (Bash
and PowerShell).

Alternatives to CloudFormation
If you don’t want to write plain JSON or YAML to create templates for your infrastruc-
ture, there are a few alternatives to CloudFormation. Tools like Troposphere, a library
written in Python, help you to create CloudFormation templates without having to
write JSON or YAML. They add another abstraction level on top of CloudFormation to
do so.

There are also tools that allow you to use infrastructure as code without needing
CloudFormation. Terraform (https://www.terraform.io/) let you describe your infra-
structure as code, for example.

Cleaning up
Delete the stack by selecting it and clicking the Delete Stack button.

http://aws.amazon.com/ec2/pricing
https://www.terraform.io/

134 CHAPTER 4 Programming your infrastructure: The command-line, SDKs, and CloudFormation

 You can use SDKs for nine programming languages and platforms to embed
AWS into your applications and create applications like nodecc.

 CloudFormation uses a declarative approach in JSON or YAML: you only define
the end state of your infrastructure, and CloudFormation figures out how this
state can be achieved. The major parts of a CloudFormation template are
parameters, resources, and outputs.

135

Automating deployment:
CloudFormation, Elastic

Beanstalk, and OpsWorks

Whether you want to use software from in-house development, open source proj-
ects, or commercial vendors, you need to install, update, and configure the applica-
tion and its dependencies. This process is called deployment. In this chapter, you’ll
learn about three tools for deploying applications to virtual machines on AWS:

1 Deploying a VPN solution with the help of AWS CloudFormation and a script
that starts at the end of the boot process.

This chapter covers
 Creating VMs and running scripts on startup with

AWS CloudFormation

 Deploying common web apps with AWS Elastic
Beanstalk

 Deploying multilayer apps with AWS OpsWorks

 Comparing the different deployment services on AWS

136 CHAPTER 5 Automating deployment: CloudFormation, Elastic Beanstalk, and OpsWorks

2 Deploying a collaborative text editor with AWS Elastic Beanstalk. The text edi-
tor Etherpad is a simple web application and a perfect fit for AWS Elastic Bean-
stalk, because it supports Node.js by default.

3 Deploying an IRC web client and IRC server with AWS OpsWorks. The setup
consists of two parts: the IRC web client and the IRC server itself. Our example
consists of multiple layers and is perfect for AWS OpsWorks.

We’ve chosen examples that don’t need a storage solution for this chapter, but all
three deployment solutions would support delivering an application together with a
storage solution. You’ll find examples using storage in part 3 of the book.

What steps are required to deploy a typical web application like WordPress—a widely
used blogging platform—to a virtual machine?

1 Install an Apache HTTP server, a MySQL database, a PHP runtime environ-
ment, a MySQL library for PHP, and an SMTP mail server.

2 Download the WordPress application, and unpack the archive on your server.
3 Configure the Apache web server to serve the PHP application.
4 Configure the PHP runtime environment to tweak performance and increase

security.
5 Edit the wp-config.php file to configure the WordPress application.
6 Edit the configuration of the SMTP server, and make sure mail can only be sent

from the virtual machine, to avoid misuse from spammers.
7 Start the MySQL, SMTP, and HTTP services.

Steps 1–2 handle installing and updating the executables. These executables are con-
figured in steps 3–6. Step 7 starts the services.

 System administrators working with a traditional infrastructure often perform
these steps manually by following how-to guides. Deploying applications manually is
no longer recommended in a flexible cloud environment. Instead your goal will be to
automate these steps with the help of the tools you’ll discover next.

5.1 Deploying applications in a flexible cloud environment
If you want to take advantage of cloud features like scaling the number of machines
depending on the current load or building a highly available infrastructure, you’ll
need to start new virtual machines several times a day. On top of that, the number of

Examples are 100% covered by the Free Tier
The examples in this chapter are completely covered by the Free Tier. As long as you
don’t run the examples longer than a few days, you won’t pay anything. Keep in mind
that this only applies if you created a fresh AWS account for this book and nothing
else is going on in your AWS account. Try to complete the chapter within a few days;
you’ll clean up your account at the end.

137Comparing deployment tools

VMs you’ll have to keep updated will grow. The steps required to deploy an applica-
tion don’t change, but as figure 5.1 shows, you need to perform them on multiple
VMs. Deploying software manually to a growing number of VMs becomes impossible
over time and has a high risk of human failure. This is why we recommend that you
automate the deployment of applications.

 The investment in an automated deployment process will pay off in the future by
increasing efficiency and decreasing human error. In the next section, you will learn
about options for automation that you will examine in more detail throughout the
rest of the chapter.

5.2 Comparing deployment tools
You will learn about three ways to deploy an application in this chapter:

1 Creating a virtual machine and running a deployment script on startup with
AWS CloudFormation.

2 Using AWS Elastic Beanstalk to deploy a common web application.
3 Using AWS OpsWorks to deploy a multilayer application.

In this section, we’ll discuss the differences between these solutions. After that, you
will take a dive deep into each.

Open
SSH/RDP
session
and type
commands.

User data
executes
script.

Automated
deployment

Manual
deployment

Deployment unit

Download
to laptop

Download
in script

Doesn’t scale Does scale

Virtual machines starting
dynamically several times a day

Executable

Library and runtime

Configuration

#!/bin/bash

Figure 5.1 Deployment must be automated in a flexible and scalable cloud environment.

138 CHAPTER 5 Automating deployment: CloudFormation, Elastic Beanstalk, and OpsWorks

5.2.1 Classifying the deployment tools

Figure 5.2 depicts the three AWS deployment options. The effort required to deploy
an application using AWS Elastic Beanstalk is low. To benefit from this, your applica-
tion has to fit into the conventions of AWS Elastic Beanstalk. For example, the applica-
tion must run in one of the standardized runtime environments. If you’re using
OpsWorks Stacks, you’ll have more freedom to adapt the service to your application’s
needs. For example, you can deploy different layers that depend on each other, or you
can use a custom layer to deploy any application with the help of a Chef recipe; this
takes extra effort but gives you additional freedom. On the other end of the spectrum
you’ll find CloudFormation and deploying applications with the help of a script that
runs at the end of the boot process. You can deploy any application with the help of
CloudFormation. The disadvantage is that you have to do more work, because you
don’t use standard tooling.

5.2.2 Comparing the deployment services

The classification in the previous section can help you decide the best fit to deploy an
application. The comparison in table 5.1 highlights other important considerations.

Table 5.1 Differences between using CloudFormation with a script on virtual machine startup, Elastic Beanstalk,
and OpsWorks Stacks

CloudFormation with a script
on VM startup

Elastic Beanstalk OpsWorks

Configuration
management tool

All available tools Proprietary Chef

Supported platforms Any PHP
 Node.js
 .NET on Windows Server with IIS
 Java (SE or Tomcat)
 Python
 Ruby
 Go
 Docker

 PHP
 Node.js
 Java (Tomcat)
 Ruby on Rails
 Custom / Any

Figure 5.2 Comparing
different ways to deploy
applications on AWS

Elastic Beanstalk OpsWorks CloudFormation
with custom scripts

ControlConventions

139Creating a virtual machine and run a deployment script on startup with AWS CloudFormation

Many other options are available for deploying applications on AWS, from open
source software to third-party services. Our advice is to use one of the AWS deploy-
ment services because they’re well integrated into many other AWS services. We rec-
ommend that you use AWS CloudFormation with user data to deploy applications,
because it’s a flexible approach.

 An automated deployment process will help you to iterate and innovate more
quickly. You’ll deploy new versions of your applications more often. To avoid service
interruptions, you need to think about testing changes to software and infrastructure in
an automated way, and being able to roll back to a previous version quickly if necessary.

 In the next section you will use a Bash script and CloudFormation to deploy an
application.

5.3 Creating a virtual machine and run a deployment
script on startup with AWS CloudFormation
A simple but powerful and flexible way to automate application deployment is to
launch a virtual machine and then launch a script at startup. To go from a plain OS to
a fully installed and configured VM, follow these steps:

1 Start a plain virtual machine containing just an OS.
2 Execute a script the end of the boot process.
3 Install and configure your applications with the help of the script.

First you need to choose an AMI from which to start your virtual machine. An AMI
bundles the OS for your VM with preinstalled software. When you start your VM from
an AMI containing a plain OS without any additional software installed, you need to
provision the VM at the end of the boot process. Otherwise all your virtual machines
will look the same and will run a plain OS, which is not very helpful. You want to
install custom applications, not a plain OS. Translating the necessary steps to install
and configure your application into a script allows you to automate this task. But how
do you execute this script automatically after booting your virtual machine?

Supported deploy-
ment artifacts

Anything Zip archive on Amazon S3 Git, SVN, archive
(such as Zip)

Common scenario Medium- to enterprise-sized
companies

Small companies Companies with prior
experience using Chef

Update without
downtime

Not by default, but possible Yes Yes

Vendor lock-in effect Medium High Medium

Table 5.1 Differences between using CloudFormation with a script on virtual machine startup, Elastic Beanstalk,
and OpsWorks Stacks (continued)

CloudFormation with a script
on VM startup

Elastic Beanstalk OpsWorks

140 CHAPTER 5 Automating deployment: CloudFormation, Elastic Beanstalk, and OpsWorks

5.3.1 Using user data to run a script on startup

You can inject a small amount of data called user data—no more than 16 KB— into every
VM to customize them besides what comes in the AMI. You specify this user data during
the creation of a new VM and can query it later from the machine itself. A typical way
of using this feature is built into most AMIs, such as the Amazon Linux Image and the
Ubuntu AMI. Whenever you boot a VM based on these AMIs, user data is executed as
a shell script at the end of the boot process. The script is executed as the root user.

 The user data is always accessible from the VM with a HTTP GET request to
http://169.254.169.254/latest/user-data. The user data behind this URL is only acces-
sible from the VM itself. As you’ll see in the following example, you can deploy appli-
cations of any kind with the help of user data executed as a script.

5.3.2 Deploying OpenSwan: a VPN server to a virtual machine

If you’re working over public Wi-Fi, for example using a laptop at a coffee house, you
may want to tunnel your traffic through a VPN because unencrypted communication
(such as HTTP instead of HTTPS) can be intercepted by an attacker. You’ll learn how
to deploy a VPN server to a virtual machine with the help of user data and a shell
script next. The VPN solution, called OpenSwan, offers an IPSec-based tunnel that’s
easy to use with Windows, macOS, and Linux. Figure 5.3 shows the example setup.

Open your terminal, and execute the commands shown in listing 5.1 step by step to
start a virtual machine and deploy a VPN server on it. We’ve prepared a CloudForma-
tion template that starts the virtual machine and its dependencies.

VPN encrypted
communication

Unencrypted
communication

Virtual machine
with OpenSwan

Insecure network
(e.g, coffee house)

Internet

Figure 5.3 Using OpenSwan on a virtual machine to tunnel traffic from a personal computer

Shortcut for Linux and macOS
You can avoid typing these commands manually at your terminal by using the follow-
ing command to download a Bash script and execute it directly on your local machine.
The Bash script contains the same steps as shown in listing 5.1.

$ curl -s https://raw.githubusercontent.com/AWSinAction/\

➥ code2/master/chapter05/\
➥ vpn-create-cloudformation-stack.sh | bash -ex

141Creating a virtual machine and run a deployment script on startup with AWS CloudFormation

$ VpcId="$(aws ec2 describe-vpcs --query "Vpcs[0].VpcId" --output text)"

$ SubnetId="$(aws ec2 describe-subnets --filters "Name=vpc-id,Values=$VpcId" \

➥ --query "Subnets[0].SubnetId" --output text)"

$ SharedSecret="$(openssl rand -base64 30)"

$ Password="$(openssl rand -base64 30)"

$ aws cloudformation create-stack --stack-name vpn --template-url \

➥ https://s3.amazonaws.com/awsinaction-code2/chapter05/\
➥ vpn-cloudformation.yaml \

➥ --parameters ParameterKey=KeyName,ParameterValue=mykey \

➥ "ParameterKey=VPC,ParameterValue=$VpcId" \

➥ "ParameterKey=Subnet,ParameterValue=$SubnetId" \

➥ "ParameterKey=IPSecSharedSecret,ParameterValue=$SharedSecret" \

➥ ParameterKey=VPNUser,ParameterValue=vpn \

➥ "ParameterKey=VPNPassword,ParameterValue=$Password"

aws cloudformation wait stack-create-complete --stack-name vpn

$ aws cloudformation describe-stacks --stack-name vpn \

➥ --query "Stacks[0].Outputs"

The output of the last command should print out the public IP address of the VPN
server, a shared secret, the VPN username, and the VPN password. You can use this
information to establish a VPN connection from your computer, if you like:

[{
"Description": "The username for the vpn connection",
"OutputKey": "VPNUser",
"OutputValue": "vpn"

}, {
"Description": "The shared key for the VPN connection (IPSec)",
"OutputKey": "IPSecSharedSecret",
"OutputValue": "EtAYOHXaLjcJ9nLCLEBfkZ+qV3H4Jy3MMc03Ehfy"

}, {
"Description": "Public IP address of the virtual machine",
"OutputKey": "ServerIP",
"OutputValue": "34.202.233.247"

}, {
"Description": "The password for the vpn connection",
"OutputKey": "VPNPassword",
"OutputValue": "MXBOtTlx3boJV+2r3tlOs6MCQisMhcj8oLVLilO2"

}]

Let’s take a deeper look at the deployment process of the VPN server. We’ll examine
the following tasks, which you’ve already used:

Listing 5.1 Deploying a VPN server to a virtual machine: CloudFormation and a shell script

Gets the default VPCGets the default subnet

Creates a random shared secret. (If
openssl is not working, create your
own secret.)

Creates a random
password (if openssl is

not working, create your
own random sequence).

Creates a
Cloud-

Formation
stack

Wait until stack is
CREATE_COMPLETE.

Get stack outputs.

142 CHAPTER 5 Automating deployment: CloudFormation, Elastic Beanstalk, and OpsWorks

 Starting a virtual machine with custom user data and configuring a firewall for
the VM with AWS CloudFormation.

 Executing a shell script at the end of the boot process to install an application
and its dependencies with the help of a package manager, as well as to edit con-
figuration files

USING CLOUDFORMATION TO START A VIRTUAL MACHINE WITH USER DATA

You can use CloudFormation to start a virtual machine and configure a firewall. The
template for the VPN server includes a shell script packed into user data, as shown in
listing 5.2.

AWSTemplateFormatVersion: '2010-09-09'
Description: 'AWS in Action: chapter 5 (OpenSwan acting as VPN IPSec endpoint)'
Parameters:
 KeyName:

Description: 'Key pair name for SSH access'
Type: 'AWS::EC2::KeyPair::KeyName'

VPC:
Description: 'Just select the one and only default VPC.'
Type: 'AWS::EC2::VPC::Id'

Subnet:
Description: 'Just select one of the available subnets.'
Type: 'AWS::EC2::Subnet::Id'

IPSecSharedSecret:
Description: 'The shared secret key for IPSec.'
Type: String

VPNUser:
Description: 'The VPN user.'
Type: String

Listing 5.2 Parts of a CloudFormation template to start a virtual machine with user data

!Sub and !Base64
The CloudFormation template includes two new functions !Sub and !Base64. With
!Sub, all references within ${} are substituted with their real value. The real value
will be the value returned by !Ref, unless the reference contains a dot, in which case
it will be the value returned by !GetAtt:

!Sub 'Your VPC ID: ${VPC}' # becomes 'Your VPC ID: vpc-123456'
!Sub '${VPC}' # is the same as !Ref VPC
!Sub '${VPC.CidrBlock}' # is the same as !GetAtt 'VPC.CidrBlock'
!Sub '${!VPC}' # is the same as '${VPC}'

The function !Base64 encodes the input with Base64. You’ll need this function
because the user data must be encoded in Base64:

!Base64 'value' # becomes 'dmFsdWU='

Parameters to make it possible
to reuse the template

143Creating a virtual machine and run a deployment script on startup with AWS CloudFormation

VPNPassword:
Description: 'The VPN password.'
Type: String

Resources:
EC2Instance:

Type: 'AWS::EC2::Instance'
Properties:

ImageId: 'ami-6057e21a'
InstanceType: 't2.micro'
KeyName: !Ref KeyName
NetworkInterfaces:
- AssociatePublicIpAddress: true

DeleteOnTermination: true
DeviceIndex: 0
GroupSet:
- !Ref InstanceSecurityGroup
SubnetId: !Ref Subnet

UserData:
'Fn::Base64': !Sub |
#!/bin/bash -x
export IPSEC_PSK="${IPSecSharedSecret}"
export VPN_USER="${VPNUser}"
export VPN_PASSWORD="${VPNPassword}"
curl -s https://raw.githubusercontent.com/AWSinAction/code2/\

➥ master/chapter05/vpn-setup.sh | bash -ex
/opt/aws/bin/cfn-signal -e $? --stack ${AWS::StackName} \

➥ --resource EC2Instance --region ${AWS::Region}
CreationPolicy:

ResourceSignal:
 Timeout: PT10M

InstanceSecurityGroup:
Type: 'AWS::EC2::SecurityGroup'
Properties:

GroupDescription: 'Enable access to VPN server'
VpcId: !Ref VPC
SecurityGroupIngress:
- IpProtocol: tcp

FromPort: 22
ToPort: 22
CidrIp: '0.0.0.0/0'

- IpProtocol: udp
FromPort: 500
ToPort: 500
CidrIp: '0.0.0.0/0'

- IpProtocol: udp
FromPort: 1701
ToPort: 1701
CidrIp: '0.0.0.0/0'

- IpProtocol: udp
FromPort: 4500
ToPort: 4500
CidrIp: '0.0.0.0/0'

Outputs:
[...]

Describes the
virtual machine

Defines a shell script
as user data for the
virtual machine

Substitutes
and encodes
a multi-line
string value Exports parameters to

environment variables to make
them available in an external
shell script called nextFetches the shell

script via HTTP
and executes it

Signals end of
script back to
Cloud-
Formation

CloudFormation will wait up
to 10 minutes to receive a
signal via the cfn-signal tool
that runs in user data.

144 CHAPTER 5 Automating deployment: CloudFormation, Elastic Beanstalk, and OpsWorks

The user data contains a small script to fetch and execute the real script, vpn-setup.sh,
which contains all the commands for installing the executables and configuring the
services. Doing so frees you from inserting complicated scripts in the CloudFormation
template.

INSTALLING AND CONFIGURING A VPN SERVER WITH A SCRIPT

The vpn-setup.sh script shown in the following listing installs packages with the help
of the package manager yum and writes some configuration files. You don’t have to
understand the details of the VPN server configuration; you only need to know that
this shell script is executed during the boot process to install and configure a VPN
server.

#!/bin/bash -ex

[...]

PRIVATE_IP="$(curl -s http://169.254.169.254/latest/meta-data/local-ipv4)"

PUBLIC_IP="$(curl -s http://169.254.169.254/latest/meta-data/public-ipv4)"

yum-config-manager --enable epel
yum clean all

yum install -y openswan xl2tpd

cat > /etc/ipsec.conf <<EOF
[...]
EOF

cat > /etc/ipsec.secrets <<EOF
$PUBLIC_IP %any : PSK "${IPSEC_PSK}"
EOF

cat > /etc/xl2tpd/xl2tpd.conf <<EOF
[...]
EOF

cat > /etc/ppp/options.xl2tpd <<EOF
[...]
EOF

service ipsec start
service xl2tpd start

chkconfig ipsec on
chkconfig xl2tpd on

That’s it. You’ve now deployed a VPN server to a virtual machine with the help of EC2
user data and a shell script. If you want to test the VPN server, select the VPN type L2TP

Listing 5.3 Installing packages and writing configuration files on virtual machine startup

Fetches the private IP address
of the virtual machine

Fetches the public
IP address of the

virtual machine
Adds extra packages
to the package
manager yum

Installs software packages

Writes a configuration
file for IPSec (OpenSwan)

Writes a file containing the
shared secret for IPSec

Writes a configuration file
for the L2TP tunnel

Writes a configuration file
for the PPP service

Starts the services needed
for the VPN server

Configures the run level
for the VPN services

145Deploying a simple web application with AWS Elastic Beanstalk

over IPSec in your VPN client. After you terminate your virtual machine, you’ll be ready
to learn how to deploy a common web application without writing a custom script.

WARNING You’ve reached the end of the VPN server example. Don’t forget to
terminate your virtual machine and clean up your environment. To do so, enter
aws cloudformation delete-stack --stack-name vpn at your terminal.

5.3.3 Starting from scratch instead of updating

You learned how to deploy an application with the help of user data in this section.
The script from the user data is executed at the end of the boot process. But how do
you update your application using this approach?

 You’ve automated the installation and configuration of software during your VM’s
boot process, and can start a new VM without any extra effort. So if you have to update
your application or its dependencies, it is easier to create a new up-to-date VM by fol-
lowing these steps:

1 Make sure an up-to-date version of your application or software is available
through the package repository of your OS, or edit the user data script.

2 Start a new virtual machine based on your CloudFormation template and user
data script.

3 Test the application deployed to the new virtual machine. Proceed with the
next step if everything works as it should.

4 Switch your workload to the new virtual machine (for example, by updating a
DNS record).

5 Terminate the old virtual machine, and throw away its unused dependencies.

5.4 Deploying a simple web application with AWS Elastic Beanstalk
If you have to deploy a common web application, you don’t have to reinvent the
wheel. AWS offers a service called AWS Elastic Beanstalk that can help you deploy web
applications based on Go, Java (SE or Tomcat), .NET on Windows Server with IIS,
Node.js, PHP, Python, Ruby, and Docker. With AWS Elastic Beanstalk, you don’t have
to worry about your OS or virtual machines. AWS will manage them for you (if you
enable automatic updates). With Elastic Beanstalk, you only deal with your applica-
tion. The OS and the runtime (such as Apache + Tomcat) are managed by AWS.

 AWS Elastic Beanstalk lets you handle the following recurring problems:

 Providing a runtime environment for a web application (PHP, Java, and so on)
 Updating the runtime environment for a web application
 Installing and updating a web application automatically
 Configuring a web application and its environment
 Scaling a web application to balance load
 Monitoring and debugging a web application

146 CHAPTER 5 Automating deployment: CloudFormation, Elastic Beanstalk, and OpsWorks

5.4.1 Components of AWS Elastic Beanstalk

Getting to know the different components of AWS Elastic Beanstalk will help you to
understand its functionality. Figure 5.4 shows these elements:

 An application is a logical container. It contains versions, environments, and con-
figurations. If you start to use AWS Elastic Beanstalk in a region, you have to cre-
ate an application first.

 A version contains a specific release of your application. To create a new version, you
have to upload your executables (packed into an archive) to Amazon S3, which
stores static files. A version is basically a pointer to this archive of executables.

 A configuration template contains your default configuration. You can manage
your application’s configuration (such as the port your application listens on)
as well as the environment’s configuration (such as the size of the virtual
machine) with your custom configuration template.

 An environment is where AWS Elastic Beanstalk executes your application. It con-
sists of a version and the configuration. You can run multiple environments for
one application by using different combinations of versions and configurations.

Enough theory for the moment. Let’s proceed with deploying a simple web application.

5.4.2 Using AWS Elastic Beanstalk to deploy Etherpad, a Node.js application

Editing a document collaboratively can be painful if you’re using the wrong tools. Eth-
erpad is an open source online editor that lets you edit a document with many people
in real time. You’ll deploy this Node.js-based application with the help of AWS Elastic
Beanstalk in three steps:

Application

Environment:
Version 0.3, config A

Environment:
Version 0.3, config B

Version 0.3

Version 0.2

Configuration:
Template A

Configuration:
Template B

Environment:
Version 0.2, config A

Logical
container

Specific version
of application

Runtime environment
for your application

Configure application
and environment

Figure 5.4 An AWS Elastic Beanstalk application consists of versions, environments, and
configurations.

147Deploying a simple web application with AWS Elastic Beanstalk

1 Create an application: the logical container.
2 Create a version: a pointer to a specific version of Etherpad.
3 Create an environment: the place where Etherpad will run.

CREATING AN APPLICATION FOR AWS ELASTIC BEANSTALK

Open your terminal, and execute the following command to create an application for
the AWS Elastic Beanstalk service:

$ aws elasticbeanstalk create-application --application-name etherpad

You’ve now created a container for all the other components that are necessary to
deploy Etherpad with the help of AWS Elastic Beanstalk.

CREATING A VERSION FOR AWS ELASTIC BEANSTALK

You can create a new version of your Etherpad application with the following command:

$ aws elasticbeanstalk create-application-version --application-name etherpad \

➥ --version-label 1 \

➥ --source-bundle "S3Bucket=awsinaction-code2,S3Key=chapter05/etherpad.zip"

By executing this command, you created a version labeled 1. For this example, we
uploaded a zip archive containing Etherpad that you can use for convenience.

CREATING AN ENVIRONMENT TO EXECUTE ETHERPAD WITH AWS ELASTIC BEANSTALK

To deploy Etherpad with the help of AWS Elastic Beanstalk, you have to create an envi-
ronment for Node.js based on Amazon Linux and the version of Etherpad you just
created. To get the latest Node.js environment version, called a solution stack name, run
this command:

$ aws elasticbeanstalk list-available-solution-stacks --output text \

➥ --query "SolutionStacks[?contains(@, 'running Node.js')] | [0]"
64bit Amazon Linux 2017.03 v4.2.1 running Node.js

Execute the following command to launch an environment, replacing $Solution-
StackName with the output from the previous command.

$ aws elasticbeanstalk create-environment --environment-name etherpad \

➥ --application-name etherpad \

➥ --option-settings Namespace=aws:elasticbeanstalk:environment,\

➥ OptionName=EnvironmentType,Value=SingleInstance \

➥ --solution-stack-name "$SolutionStackName" \

➥ --version-label 1

HAVING FUN WITH ETHERPAD

You’ve now created an environment for Etherpad. It will take several minutes before
you can point your browser to your Etherpad installation. The following command
will help you track the state of your Etherpad environment:

$ aws elasticbeanstalk describe-environments --environment-names etherpad

When AWS releases a new solution
stack, this output may look different.

Launches a single virtual machine
without the ability to scale and

load-balance automatically

148 CHAPTER 5 Automating deployment: CloudFormation, Elastic Beanstalk, and OpsWorks

When Status turns to Ready and Health turns to Green, you’re ready to create your
first Etherpad document. The output of the describe command should look similar
to the following example.

{
"Environments": [{

"ApplicationName": "etherpad",
"EnvironmentName": "etherpad",
"VersionLabel": "1",
"Status": "Ready",
"EnvironmentLinks": [],
"PlatformArn": "arn:aws:elasticbeanstalk:us-east-1::platform/Node.js

➥ running on 64bit Amazon Linux/4.2.1",
"EndpointURL": "54.157.76.149",
"SolutionStackName": "64bit Amazon Linux 2017.03 v4.2.1 running Node.js",
"EnvironmentId": "e-8d532q3vkk",
"CNAME": "etherpad.d2nhjs7myw.us-east-1.elasticbeanstalk.com",
"AbortableOperationInProgress": false,
"Tier": {

"Version": " ",
"Type": "Standard",
"Name": "WebServer"

},
"Health": "Green",
"DateUpdated": "2017-08-15T09:18:47.750Z",
"DateCreated": "2017-08-15T09:14:32.137Z"

}]
}

You’ve now deployed a Node.js web application to AWS in three simple steps. Point
your browser to the URL shown in CNAME, and open a new document by typing in a
name for it and clicking OK. If the page does not load, try the EndpointURL, which is a
public IP address. The CNAME should work within the next few minutes as well. Fig-
ure 5.5 shows an Etherpad document in action.

Listing 5.4 Describing the status of the Elastic Beanstalk environment

Wait until Status
turns to Ready.

DNS record for the
environment (for example,

to open with a browser)

Wait until Health
turns to Green.

Figure 5.5 Online text editor Etherpad in action

149Deploying a simple web application with AWS Elastic Beanstalk

If you want to deploy any other Node.js application, the only thing that changes is the
zip file that you upload to Elastic Beanstalk. If you want to run something other than a
Node.js application, you have to use the appropriate solution stack name with aws
elasticbeanstalk list-available-solution-stacks.

EXPLORING AWS ELASTIC BEANSTALK WITH THE MANAGEMENT CONSOLE

You’ve deployed Etherpad using AWS Elastic Beanstalk and the AWS CLI by creating an
application, a version, and an environment. You can also control AWS Elastic Beanstalk
using the web-based Management Console. In our experience, the Management Con-
sole is the best way to manage AWS Elastic Beanstalk.

1 Open the AWS Management Console at https://console.aws.amazon.com.
2 Click Services in the navigation bar, and click the Elastic Beanstalk service.
3 Click the etherpad environment, represented by a green box. An overview of

the Etherpad application is shown, as in figure 5.6.

Figure 5.6 Overview of AWS Elastic Beanstalk environment running Etherpad

URL pointing to
Etherpad application
URL pointing to
Etherpad application

Information
about environment
configuration

Information
about environment
configuration

Events triggerd by
Elastic Beanstalk
service

Events triggerd by
Elastic Beanstalk
service

Health state of
your Etherpad
application

Health state of
your Etherpad
application

Version of Etherpad
running in environment
Version of Etherpad
running in environment

https://console.aws.amazon.com

150 CHAPTER 5 Automating deployment: CloudFormation, Elastic Beanstalk, and OpsWorks

What if something goes wrong with your application? How can you debug an issue?
Usually you connect to the virtual machine and look at the log messages. You can
fetch the log messages from your application (and other components) using AWS
Elastic Beanstalk. Follow these steps:

1 Choose Logs from the submenu. You’ll see a screen like that shown in figure 5.7.
2 Click Request Logs, and choose Last 100 Lines.
3 After a few seconds, a new entry will appear in the table. Click Download to

download the log file to your computer.

Download latest
log messages.

Select Logs
from submenu.

Request last 100
lines of logs.

Figure 5.7 Downloading logs from a Node.js application via AWS Elastic Beanstalk

Cleaning up AWS Elastic Beanstalk
Now that you’ve successfully deployed Etherpad using AWS Elastic Beanstalk and
learned about the service’s different components, it’s time to clean up. Run the fol-
lowing command to terminate the Etherpad environment:

$ aws elasticbeanstalk terminate-environment --environment-name etherpad

You can check the state of the environment by executing the following command:

$ aws elasticbeanstalk describe-environments --environment-names etherpad \

➥ --output text --query "Environments[].Status"

151Deploying a multilayer application with AWS OpsWorks Stacks

That’s it. You’ve terminated the virtual machine providing the environment for Ether-
pad and deleted all components of AWS Elastic Beanstalk.

5.5 Deploying a multilayer application with AWS OpsWorks Stacks
Deploying a basic web application using AWS Elastic Beanstalk is convenient. But if
you have to deploy a more complex application consisting of different services—also
called layers—you’ll reach the limits of AWS Elastic Beanstalk. In this section, you’ll
learn about AWS OpsWorks Stacks, a free service offered by AWS that can help you to
deploy a multilayer application.

AWS OpsWorks Stacks helps you control AWS resources like virtual machines, load
balancers, container clusters, and databases, and lets you deploy applications. The ser-
vice offers some standard layers with the following runtimes:

 HAProxy (load balancer)
 Static web server
 Rails app server (Ruby on Rails)
 PHP app server
 Node.js app server
 Java app server (Tomcat server)
 AWS Flow (Ruby)
 MySQL (database)
 Memcached (in-memory cache)
 Ganglia (monitoring)

Wait until Status has changed to Terminated, and then proceed with the following
command:

$ aws elasticbeanstalk delete-application --application-name etherpad

AWS OpsWorks flavors
AWS OpsWorks comes in different two flavors:

 AWS OpsWorks Stacks comes with Chef versions 11 and 12. In Chef 11,
OpsWorks comes with a bunch of built-in layers, which is best for beginners.
If you have Chef knowledge, this may limit you. We recommend to use
OpsWorks Stacks with Chef 12 if you have Chef knowledge, because there
are no limiting built-in layers.

 AWS OpsWorks for Chef Automate provides a Chef Automate server and takes
care about backups, restorations, and software upgrades. You should use
OpsWorks for Chef Automate if you have an existing infrastructure managed
by Chef that you want to migrate to AWS.

152 CHAPTER 5 Automating deployment: CloudFormation, Elastic Beanstalk, and OpsWorks

You can also add a custom layer to deploy anything you want. The deployment is con-
trolled with the help of Chef, a configuration management tool. Chef uses recipes orga-
nized into cookbooks to deploy applications to any kind of system. You can adopt the
standard recipes or create your own.

Besides deploying your application, AWS OpsWorks Stacks can help you to scale, mon-
itor, and update your VMs running beneath the different layers.

5.5.1 Components of AWS OpsWorks Stacks

Getting to know the different components of AWS OpsWorks Stacks will help you
understand its functionality. Figure 5.8 shows these elements:

 A stack is a container for all other components of AWS OpsWorks Stacks. You
can create one or more stacks and add one or more layers to each stack. You
could use different stacks to separate the production environment from the
testing environment, for example. Or you could use different stacks to separate
different applications.

 A layer belongs to a stack. A layer represents an application; you could also call it
a service. AWS OpsWorks Stacks offers predefined layers for standard web appli-
cations like PHP and Java, but you’re free to use a custom stack for any applica-
tion you can think of. Layers are responsible for configuring and deploying
software to virtual machines. You can add one or multiple VMs to a layer; in this
context the VMs are called instances.

 An instance is the representation for a virtual machine. You can launch one or
multiple instances for each layer, using different versions of Amazon Linux and

About Chef
Chef is a configuration management tool similar to Puppet, SaltStack, CFEngine, and
Ansible. Chef lets you configure and deploy applications by transforming templates
(recipes) written in a domain-specific language (DSL) into actions. A recipe can include
packages to install, services to run, or configuration files to write, for example. Related
recipes can be combined into cookbooks. Chef analyzes the status quo and changes
resources where necessary to reach the described state from the recipe.

You can reuse cookbooks and use recipes you get from others. The community pub-
lishes a variety of cookbooks and recipes at https://supermarket.chef.io under open
source licenses.

Chef can be run in solo or client/server mode. It acts as a fleet-management tool in
client/server mode. This can help if you have to manage a distributed system con-
sisting of many VMs. In solo mode, you can execute recipes on a single VM. AWS
OpsWorks uses solo mode integrated into its own fleet management, without requir-
ing you to configure and operate a setup in client/server mode.

https://supermarket.chef.io

153Deploying a multilayer application with AWS OpsWorks Stacks

Ubuntu or a custom AMI as a basis for the instances. You can specify rules for
launching and terminating instances based on load or timeframes for scaling.

 An app is the software you want to deploy. AWS OpsWorks Stacks deploys your
app to a suitable layer automatically. You can fetch apps from a Git or Subver-
sion repository, or as archives via HTTP. AWS OpsWorks Stacks helps you to
install and update your apps onto one or multiple instances.

Let’s look at how to deploy a multilayer application with the help of AWS OpsWorks
Stacks.

5.5.2 Using AWS OpsWorks Stacks to deploy an IRC chat application

Internet Relay Chat (IRC) is still a popular means of communication in some circles.
In this section, you’ll deploy kiwiIRC, a web-based IRC client, and your own IRC server.
Figure 5.9 shows the setup of a distributed system consisting of a web application deliv-
ering the IRC client, as well as an IRC server.

Stack

Web server layer:
PHP web application Instance

App

Database layer:
MySQL database Instance

DB

Instance

App

Instance

App

Instance

App

API server layer:
Java application
with REST API

Virtual machine

Logical
container

Represents an
application/service

Software to deploy

Internet

Figure 5.8 Stacks, layers, instances, and apps are the main components of AWS
OpsWorks Stacks.

154 CHAPTER 5 Automating deployment: CloudFormation, Elastic Beanstalk, and OpsWorks

kiwiIRC is an open source web application written in JavaScript for Node.js. To deploy
it as a two-layer application using AWS OpsWorks Stacks, you need scripts that do the
following:

1 Create a stack, the container for all other components.
2 Create a Node.js layer for kiwiIRC.
3 Create a custom layer for the IRC server.
4 Create an app to deploy kiwiIRC to the Node.js layer.
5 Add an instance for each layer.

You’ll learn how to handle these steps with the Management Console. You can also
control AWS OpsWorks Stacks with the CLI, just like AWS Elastic Beanstalk or AWS
CloudFormation.

CREATING A NEW OPSWORKS STACK

Open the Management Console at https://console.aws.amazon.com/opsworks, and
click the Go to OpsWorks Stacks button. There you can start fresh by adding a new
stack. Figure 5.10 illustrates the necessary steps with the most important highlighted:

1 Click Add stack under Select Stack or Add Your First Stack.
2 Select Chef 11 stack.
3 For Name, type in irc.
4 For Region, choose US East (N. Virginia).
5 The default VPC is the only one available. Select it.
6 For Default subnet, select us-east-1a.
7 For Default operating system, choose Ubuntu 14.04 LTS.
8 Select your SSH key, mykey, for Default SSH key.
9 Click Add stack to create the stack.

You’re now redirected to an overview of your IRC AWS OpsWorks stack. Everything is
ready for you to create the first layer.

Web based chat
client via HTTP

kiwiIRC establishes
connection with IRC

server via IRC protocol

Virtual machine
kiwiIRC application

Virtual machine
IRC server

Figure 5.9 Building your own IRC infrastructure consisting of a web application and an IRC server

https://console.aws.amazon.com/opsworks

155Deploying a multilayer application with AWS OpsWorks Stacks

CREATING A NODE.JS LAYER FOR AN OPSWORKS STACK

kiwiIRC is a Node.js application, so you need to create a Node.js layer for the IRC
stack. Follow these steps in figure 5.11 to do so:

1 Select Layers from the submenu on the left.
2 Click the Add layer button.
3 For Layer type, select Node.js App Server.
4 Select the latest 0.12.x version of Node.js.
5 Click Add layer.

Figure 5.10 Creating a stack with AWS OpsWorks Stacks

Give the
stack a name.

IRC server packages
are available on Ubuntu
by default.

Debugging your server
over a SSH connection
requires a SSH key.

156 CHAPTER 5 Automating deployment: CloudFormation, Elastic Beanstalk, and OpsWorks

You’ve created a Node.js layer. Now you need to repeat these steps to add another
layer and deploy your own IRC server.

CREATING A CUSTOM LAYER FOR AN OPSWORKS STACK

An IRC server isn’t a typical web application, so the default layer types are out of the
question. You’ll use a custom layer for deploying an IRC server. The Ubuntu package
repository includes various IRC server implementations; you’ll use the ircd-ircu
package. Follow these steps in figure 5.12 to create a custom stack for the IRC server:

1 Select Layers from the submenu on the left.
2 Click Add layer.
3 For Layer type, select Custom.
4 For Name and for Short name, type in irc-server.
5 Click Add layer.

You’ve now created a custom layer. If you want to deploy any other application, go
with one of the pre-built layers first. If that is not possible, use a custom layer. This way,
you benefit best from OpsWorks.

Runtime for kiwiIRC
running on Node.js

Choose the latest
Node.js 0.12.x version.

Figure 5.11 Creating a layer with Node.js for kiwiIRC

157Deploying a multilayer application with AWS OpsWorks Stacks

The IRC server needs to be reachable through port 6667. To allow access to this port,
you need to define a custom firewall. Execute the commands shown in listing 5.5 to
create a custom firewall for your IRC server.

$ VpcId="$(aws ec2 describe-vpcs --query "Vpcs[0].VpcId" --output text)"

$ aws cloudformation create-stack --stack-name irc \

➥ --template-url https://s3.amazonaws.com/awsinaction-code2/\

➥ chapter05/irc-cloudformation.yaml \

Listing 5.5 Creating a custom firewall with the help of CloudFormation

Select Custom
as type for layer.

Insert name and
short name.

Figure 5.12 Creating a custom layer to deploy an IRC server

Shortcut for Linux and macOS
You can avoid typing these commands manually into your terminal by using the fol-
lowing command to download a Bash script and execute it directly on your local
machine. The Bash script contains the same steps as shown in listing 5.5:

$ curl -s https://raw.githubusercontent.com/AWSinAction/\

➥ code2/master/chapter05/irc-create-cloudformation-stack.sh \

➥ | bash -ex

Gets the default VPC

Creates a
CloudFormation
stack

158 CHAPTER 5 Automating deployment: CloudFormation, Elastic Beanstalk, and OpsWorks

➥ --parameters "ParameterKey=VPC,ParameterValue=$VpcId"

$ aws cloudformation wait stack-create-complete --stack-name irc

Next you need to attach this custom firewall configuration to the custom OpsWorks
layer. Follow these steps in figure 5.13:

1 Select Layers from the submenu on the left.
2 Open the irc-server layer by clicking it.
3 Change to the Security tab, and click Edit.
4 For custom Security groups, select the security group that starts with irc.
5 Click Save.

You need to configure one last thing for the IRC server layer: the layer recipes for
deploying an IRC server. Follow these steps in figure 5.14 to do so:

1 Select Layers from the submenu on the left.
2 Open the irc-server layer by clicking it.
3 Change to the Recipes tab, and click Edit.

Wait until stack is CREATE_COMPLETE.

Change to
tab Security.

Save your
changes.

Add security group
starting with irc- to
custom security groups.

D

F

E

Figure 5.13 Adding a custom firewall configuration to the IRC server layer

159Deploying a multilayer application with AWS OpsWorks Stacks

4 For OS Packages, add the package ircd-ircu. Don’t forget to click the + button
to add the package.

5 Click save.

You’ve successfully created and configured a custom layer to deploy the IRC server.
Next you’ll add the kiwiIRC web application as an app to OpsWorks.

Click the
+ button.

Type in
ircd-ircu.

F

C

Figure 5.14 Adding an IRC package to a custom layer

160 CHAPTER 5 Automating deployment: CloudFormation, Elastic Beanstalk, and OpsWorks

ADDING AN APP TO THE NODE.JS LAYER

Now you’re ready to deploy an app to the Node.js layer you just created. Follow these
steps in figure 5.15:

1 Select Apps from the submenu.
2 Click the Add app button.
3 For Name, type in kiwiIRC.
4 For Type, select Node.js.
5 For Repository type, select Git, and type in https://github.com/AWSinAc-

tion/KiwiIRC.git for Repository URL.
6 Click the Add App button.

Choose a name
for the App.
Choose a name
for the App.

Select Node.js
as environment.
Select Node.js
as environment.

Access public
GitHub repository.
Access public
GitHub repository.

Figure 5.15 Adding kiwiIRC, a Node.js app, to OpsWorks

161Deploying a multilayer application with AWS OpsWorks Stacks

Your first OpsWorks stack is now fully configured. Only one thing is missing: you need
to start some instances.

ADDING INSTANCES TO RUN THE IRC CLIENT AND SERVER

Adding two instances will bring the kiwiIRC client and the IRC server into being. Add-
ing a new instance to a layer is easy—follow these steps shown in figure 5.16:

1 Select Instances from the submenu on the left.
2 Click the Add instance button on the Node.js App Server layer.
3 For Size, select t2.micro, the instance type covered by the Free Tier.
4 Click Add instance.

You’ve added an instance to the Node.js App Server layer. Repeat these steps for the
irc-server layer as well.

 The overview of instances should be similar to figure 5.17. To start them, click Start
for both instances. It will take some time for the virtual machines to boot and the
deployment to run, so this is a good time to get some coffee or tea.

Click to add a
new instance to
the Node.js layer.

Select t2.micro the
smallest available
virtual machine type.

B

C D

E

Figure 5.16 Adding a new instance to the Node.js layer

162 CHAPTER 5 Automating deployment: CloudFormation, Elastic Beanstalk, and OpsWorks

HAVING FUN WITH KIWIIRC
Be patient and wait until the status of both instances changes to Online, as shown in
figure 5.18. You can now open kiwiIRC in your browser by following these steps:

1 Remember (or write down) the public IP address of the instance irc-server1.
You’ll need it to connect to your IRC server later.

2 Click the public IP address of the nodejs-app1 instance to open kiwiIRC in a
new browser tab.

Figure 5.17 Starting the instances for the IRC web client and server

Start instance.Start instance.

Instance will be
running 24/7.
Instance will be
running 24/7.

Check for
size t2.micro.
Check for
size t2.micro.

Start instance.

Figure 5.18 Waiting for deployment to open kiwiIRC in the browser

Wait for
Status online.

Click to open in
new browser tab.

Keep this IP
address in mind.

163Deploying a multilayer application with AWS OpsWorks Stacks

The kiwiIRC application should load in your browser, and you should see a login
screen like the one in figure 5.19. Follow these steps to log in to your IRC server with
the kiwiIRC web client:

1 Type in a nickname.
2 For Channel, type in #awsinaction.
3 Open the details of the connection by clicking Server and network.
4 Type the IP address of irc-server1 into the Server field.
5 For Port, type in 6667.
6 Disable SSL.
7 Click Start, and wait a few seconds.

Congratulations! You’ve deployed a web-based IRC client and an IRC server with the
help of AWS OpsWorks.

Choose your
nickname
for the chat.

Type in the
IP address
of irc-server1.

Type in
port 6667.

Disable SSL.

Select
#awsinaction
as channel to
chat in.

Figure 5.19 Using kiwiIRC to log in to your IRC server on channel #awsinaction

Cleaning up AWS OpsWorks
It’s time to clean up. Follow these steps to avoid being charged unintentionally:

1 Open the AWS OpsWorks Stacks service with the Management Console.
2 Select the irc stack by clicking it.
3 Select Instances from the submenu..

164 CHAPTER 5 Automating deployment: CloudFormation, Elastic Beanstalk, and OpsWorks

Summary
 Automating the deployment of your applications onto virtual machines allows

you to take full advantage of the cloud: scalability and high availability.
 AWS offers different tools for deploying applications onto virtual machines.

Using one of these tools prevents you from reinventing the wheel.
 You can update an application by throwing away old VMs and starting new, up-

to-date ones if you’ve automated your deployment process.
 Injecting Bash or PowerShell scripts into a virtual machine during startup

allows you to initialize virtual machines individually—for example for installing
software or configuring services.

 AWS OpsWorks is good for deploying multilayer applications with the help of
Chef.

 AWS Elastic Beanstalk is best suited for deploying common web applications.
 AWS CloudFormation gives you the most control when you’re deploying more

complex applications.

(continued)
4 Delete both instances, and wait until they disappear from the overview.
5 Select Apps from the submenu.
6 Delete the kiwiIRC app.
7 Select Stack from the submenu.
8 Click the Delete Stack button, and confirm the deletion.
9 Execute aws cloudformation delete-stack --stack-name irc from your

terminal.

165

Securing your system:
 IAM, security groups,

 and VPC

If security is a wall, you’ll need a lot of bricks to build that wall as shown in figure 6.1.
This chapter focuses on the four most important bricks to secure your systems on
AWS:

1 Installing software updates—New security vulnerabilities are found in software
every day. Software vendors release updates to fix those vulnerabilities and
it’s your job to install those updates as quickly as possible after they’re
released. Otherwise your system will be an easy victim for hackers.

This chapter covers
 Who is responsible for security?

 Keeping your software up to date

 Controlling access to your AWS account with users
and roles

 Keeping your traffic under control with security groups

 Using CloudFormation to create a private network

166 CHAPTER 6 Securing your system: IAM, security groups, and VPC

2 Restricting access to your AWS account—This becomes even more important if you
aren’t the only one accessing your AWS account (if coworkers and scripts are also
accessing it). A buggy script could easily terminate all your EC2 instances instead
of only the one you intended. Granting only the permissions you need is key to
securing your AWS resources from accidental or intended disastrous actions.

3 Controlling network traffic to and from your EC2 instances—You only want ports to
be accessible if they must be. If you run a web server, the only ports you need to
open to the outside world are port 80 for HTTP traffic and 443 for HTTPS traf-
fic. Close down all the other ports!

4 Creating a private network in AWS—You can create subnets that aren’t reachable
from the internet. And if they’re not reachable, nobody can access them. Really,
nobody? You’ll learn how you can get access to them while preventing others
from doing so.

One important brick is missing: securing your applications. We do not cover application
security in our book. When buying or developing applications, you should follow secu-
rity standards. For example, you need to check user input and allow only the necessary
characters, don’t save passwords in plain text, and use TLS/SSL to encrypt traffic
between your virtual machines and your users. If you are installing applications with a
package manager for your operating system, using Amazon Inspector (https://aws
.amazon.com/inspector/) allows you to run automated security assessments.

Installing software updates Restricting access to
your AWS account

Creating a private
network in AWS

Controlling network traffic to
and from your EC2 instances

Securing your applications

......

Figure 6.1 To achieve
security of your cloud
infrastructure and application,
all security building blocks
have to be in place.

Not all examples are covered by Free Tier
The examples in this chapter are not all covered by the Free Tier. A special warning
message appears when an example incurs costs. As for the other examples, as long
as you don’t run them longer than a few days, you won’t pay anything for them. Keep
in mind that this applies only if you created a fresh AWS account for this book and
nothing else is going on in your AWS account. Try to complete the chapter within a
few days; you’ll clean up your account at the end.

https://aws.amazon.com/inspector/
https://aws.amazon.com/inspector/
https://aws.amazon.com/inspector/

167Who’s responsible for security?

Before we look at the four bricks, let’s talk about how responsibility is divided between
you and AWS.

6.1 Who’s responsible for security?
The cloud is a shared-responsibility environment, meaning responsibility is shared
between you and AWS. AWS is responsible for the following:

 Protecting the network through automated monitoring systems and robust
internet access, to prevent Distributed Denial of Service (DDoS) attacks.

 Performing background checks on employees who have access to sensitive areas.
 Decommissioning storage devices by physically destroying them after end of life.
 Ensuring the physical and environmental security of data centers, including fire

protection and security staff.

The security standards are reviewed by third parties; you can find an up-to-date over-
view at http://aws.amazon.com/compliance/.

 What are your responsibilities?

 Implementing access management that restricts access to AWS resources like S3
and EC2 to a minimum, using AWS IAM.

 Encrypting network traffic to prevent attackers from reading or manipulating
data (for example, using HTTPS).

 Configuring a firewall for your virtual network that controls incoming and out-
going traffic with security groups and ACLs.

 Encrypting data at rest. For example, enable data encryption for your database
or other storage systems.

 Managing patches for the OS and additional software on virtual machines.

Security involves an interaction between AWS and you, the customer. If you play by the
rules, you can achieve high security standards in the cloud.

Chapter requirements
To fully understand this chapter, you should be familiar with the following concepts:

 Subnet
 Route tables
 Access control lists (ACLs)
 Gateway
 Firewall
 Port
 Access management
 Basics of the Internet Protocol (IP), including IP addresses

http://aws.amazon.com/compliance/

168 CHAPTER 6 Securing your system: IAM, security groups, and VPC

6.2 Keeping your software up to date
Not a week goes by without the release of an important update to fix security vulnera-
bilities in some piece of software or another. Sometimes your OS is affected, or soft-
ware libraries like OpenSSL. Other times it’s an environments like Java, Apache, and
PHP; or an application like WordPress. If a security update is released, you must install
it quickly, because the exploit may have already been released, or because unscrupu-
lous people could look at the source code to reconstruct the vulnerability. You should
have a working plan for how to apply updates to all running virtual machines as
quickly as possible.

6.2.1 Checking for security updates

If you log in to an Amazon Linux EC2 instance via SSH, you’ll see message like the
following:

$ ssh ec2-user@ec2-34-230-84-110.compute-1.amazonaws.com

__| __|_)
_| (/ Amazon Linux AMI

___|___|___|

https://aws.amazon.com/amazon-linux-ami/2017.03-release-notes/
8 package(s) needed for security, out of 8 available
Run "sudo yum update" to apply all updates.

This example shows that eight security updates are available; this number will vary
when you look for updates. AWS won’t apply updates for you on your EC2 instances—
you’re responsible for doing so.

 You can use the yum package manager to handle updates on Amazon Linux. Run
yum --security check-update to see which packages require a security update:

$ yum --security check-update
Loaded plugins: priorities, update-motd, upgrade-helper
8 package(s) needed for security, out of 8 available

authconfig.x86_64 6.2.8-30.31.amzn1 amzn-updates
bash.x86_64 4.2.46-28.37.amzn1 amzn-updates
curl.x86_64 7.51.0-9.75.amzn1 amzn-updates
glibc.x86_64 2.17-196.172.amzn1 amzn-updates
glibc-common.x86_64 2.17-196.172.amzn1 amzn-updates
kernel.x86_64 4.9.43-17.38.amzn1 amzn-updates
libcurl.x86_64 7.51.0-9.75.amzn1 amzn-updates
wget.x86_64 1.18-3.27.amzn1 amzn-updates

We encourage you to subscribe to the feed at the Amazon Linux AMI Security Center
at https://alas.aws.amazon.com to receive security bulletins affecting Amazon Linux.
Whenever a new security update is released, you should check whether you’re affected

Eight security
updates are
available.

The output will be
different when you
run the command.

These packages are
installed by default.
Updates are available
fixing security issues.

https://alas.aws.amazon.com

169Keeping your software up to date

and act accordingly. If you are using another Linux distribution or operating system,
you should follow the relevant security bulletins.

 When dealing with security updates, you may face either of these situations:

 When the virtual machine starts the first time, many security updates may need
to be installed in order for the machine to be up to date.

 New security updates are released when your virtual machine is running, and
you need to install these updates while the machine is running.

Let’s look how to handle these situations.

6.2.2 Installing security updates on startup

If you create your EC2 instances with CloudFormation templates, you have three
options to install security updates on startup:

1 Install all updates at the end of the boot process by including yum -y update in your
user-data script.

2 Install security updates at the end of the boot process only by including yum -y --security
update in your user-data script.

3 Define the package versions explicitly. Install updates identified by a version number.

The first two options can be easily included in the user data of your EC2 instance. You
can find the code in /chapter06/ec2-yum-update.yaml in the book’s code folder.
You install all updates as follows:

Instance:
 Type: 'AWS::EC2::Instance'
 Properties:
 # [...]
 UserData:
 'Fn::Base64': |
 #!/bin/bash -x
 yum -y update

To install only security updates, do the following:

Instance:
 Type: 'AWS::EC2::Instance'
 Properties:
 # [...]
 UserData:
 'Fn::Base64': |
 #!/bin/bash -x
 yum -y --security update

The problem with installing all updates is that your system becomes unpredictable. If
your virtual machine was started last week, all updates that were available last week
have been applied. But in the meantime, new updates have likely been released. If you
start a new VM today and install all updates, you’ll end up with a different machine

Installs all updates

Installs only security updates

170 CHAPTER 6 Securing your system: IAM, security groups, and VPC

than the machine from last week. Different can mean that for some reason it’s no lon-
ger working. That’s why we encourage you to explicitly define and test the updates
you want to install. To install security updates with an explicit version, you can use the
yum update-to command. yum update-to updates a package to an explicit version
instead of the latest:

yum update-to bash-4.2.46-28.37.amzn1

Using a CloudFormation template to describe an EC2 instance with explicitly defined
updates looks like this:

Instance:
 Type: 'AWS::EC2::Instance'
 Properties:
 # [...]
 UserData:
 'Fn::Base64': |
 #!/bin/bash -x
 yum update-to bash-4.2.46-28.37.amzn1

The same approach works for non-security-related package updates. Whenever a new
security update is released, you should check whether you’re affected and modify the
user data to keep new systems secure.

6.2.3 Installing security updates on running virtual machines

What do you do if you have to install a security update of a core component on tens or
even hundreds of virtual machines? You could manually log in to all your VMs using
SSH and run yum -y --security update or yum update-to [...], but if you have
many machines or the number of machines grows, this can be annoying. One way to
automate this task is to use a small script that gets a list of your VMs and executes yum
in all of them. The following listing shows how this can be done in with the help of a
Bash script. You can find the code in /chapter06/update.sh in the book’s code folder.

PUBLICIPADDRESSES="$(aws ec2 describe-instances \

➥ --filters "Name=instance-state-name,Values=running" \

➥ --query "Reservations[].Instances[].PublicIpAddress" \

➥ --output text)"

for PUBLICIPADDRESS in $PUBLICIPADDRESSES; do
ssh -t "ec2-user@$PUBLICIPADDRESS" \

➥ "sudo yum -y --security update"
done

Now you can quickly apply updates to all of your running machines.

Listing 6.1 Installing security updates on all running EC2 instances

Updates Bash to version
4.2.46-28.37.amzn1

Gets all public names of
running EC2 instances

Connects via SSH

Executes the yum
update command

171Securing your AWS account

Some security updates require you to reboot the VM—for example, if you need to patch
the kernel of your VMs running on Linux. You can automate the reboot of the machines
or switch to an updated AMI and start new virtual machines instead. For example, new
AMIs of Amazon Linux including the latest packages are released frequently.

6.3 Securing your AWS account
Securing your AWS account is critical. If someone gets access to your AWS account, they
can steal your data, use resources at your expense, or delete all your data. As figure 6.2
shows, an AWS account is a basket for all the resources you own: EC2 instances, Cloud-
Formation stacks, IAM users, and so on. Each AWS account comes with a root user
granted unrestricted access to all resources. So far, you’ve used the root user to log into
the Management Console and the user mycli—created in section 4.2—when using the
CLI. In this section you will create an additional user to log into the Management Con-
sole, to avoid using the root user at all. Doing so allows you to manage multiple users,
each restricted to the resources that are necessary for their roles.

AWS Systems Manager: apply patches in an automated way
Using SSH to install security updates on all your virtual machines is challenging. You
need to have a network connection as well as a key for each virtual machine. Han-
dling errors during applying patches is another challenge.

The AWS Systems Manager service is a powerful tool when managing virtual machines.
First you install an agent on each virtual machine. You then control your EC2 instances
with the help of AWS SSM, for example by creating a job to patch all your EC2 instances
with the latest patch level from the AWS Management Console.

Figure 6.2 An AWS account contains all the AWS resources and comes with a root user by default.

Management
console

CloudFormation
stack

$ cli
>

Terminal

Root user

IAM user
mycli

EC2
instance

AWS account

Resources

172 CHAPTER 6 Securing your system: IAM, security groups, and VPC

To access your AWS account, an attacker must be able to authenticate to your account.
There are three ways to do so: using the root user, using a normal user, or authenticat-
ing as an AWS resource like an EC2 instance. To authenticate as a root user or normal
user, the attacker needs the username and password or the access keys. To authenti-
cate as an AWS resource like an EC2 instance, the attacker needs to send API/CLI
requests from that machine.

 To protect yourself from an attacker stealing or cracking your passwords or access
keys, you will enable multi-factor authentication (MFA) for your root user, to add an
additional layer of security to the authentication process, in the following section.

6.3.1 Securing your AWS account’s root user

We advise you to enable MFA for the root user of your AWS account. After MFA is acti-
vated, a password and a temporary token are needed to log in as the root user.

 Follow these steps to enable MFA, as shown in figure 6.3:

1 Click your name in the navigation bar at the top of the Management Console.
2 Select My Security Credentials.
3 A pop-up should appear. Click Continue to Security Credentials.
4 Install an MFA app on your smartphone, one that supports the TOTP standard

(such as Google Authenticator).
5 Expand the Multi-factor authentication (MFA) section.
6 Click Activate MFA.
7 Select a virtual MFA device and proceed with the next step.
8 Follow the instructions in the wizard. Use the MFA app on your smartphone to

scan the QR code that is displayed.

Figure 6.3 Protect your root user with multi-factor authentication (MFA).

F

G

B

C

173Securing your AWS account

If you’re using your smartphone as a virtual MFA device, it’s a good idea not to log in
to the Management Console from your smartphone or to store the root user’s pass-
word on the phone. Keep the MFA token separate from your password.

6.3.2 AWS Identity and Access Management (IAM)

Figure 6.4 shows an overview of all the core concepts of the Identity and Access Man-
agement (IAM) service. This service provides authentication and authorization for
the AWS API. When you send a request to the AWS API, IAM verifies your identity and
checks if you are allowed to perform the action. IAM controls who (authentication)
can do what (authorization) in your AWS account. For example, is the user allowed to
launch a new virtual machine?

 An IAM user is used to authenticate people accessing your AWS account.
 An IAM group is a collection of IAM users.
 An IAM role is used to authenticate AWS resources, for example an EC2

instance.
 An IAM policy is used to define the permissions for a user, group, or role.

Table 6.1 shows the differences between users and roles. Roles authenticate AWS entities
such as EC2 instances. IAM users authenticate the people who manage AWS resources,
for example system administrators, DevOps engineers, or software developers.

User RoleGroup

User is member
of group

Policy PolicyPolicy

Role attached
to EC2 Instance

AWS API

Contains permissions
for specific actions
and resources

EC2 Instance

Figure 6.4 IAM concepts

174 CHAPTER 6 Securing your system: IAM, security groups, and VPC

By default, users and roles can’t do anything. You have to create a policy stating what
actions they’re allowed to perform. IAM users and IAM roles use policies for authori-
zation. Let’s look at policies first.

6.3.3 Defining permissions with an IAM policy

By attaching one or multiple IAM policies to an IAM user or role, you are granting
permissions to manage AWS resources. Policies are defined in JSON and contain one
or more statements. A statement can either allow or deny specific actions on specific
resources. The wildcard character * can be used to create more generic statements.

 The following policy has one statement that allows every action for the EC2 ser-
vice, for all resources:

{
"Version": "2012-10-17",
"Statement": [{

"Sid": "1",
"Effect": "Allow",
"Action": "ec2:*",
"Resource": "*"

}]
}

If you have multiple statements that apply to the same action, Deny overrides Allow.
The following policy allows all EC2 actions except terminating EC2 instances:

{
"Version": "2012-10-17",
"Statement": [{

"Sid": "1",
"Effect": "Allow",
"Action": "ec2:*",
"Resource": "*"

}, {
"Sid": "2",
"Effect": "Deny",
"Action": "ec2:TerminateInstances",
"Resource": "*"

}]
}

Table 6.1 Differences between root user, IAM user, and IAM role

Root user IAM user IAM role

Can have a password (needed to log into the AWS
Management Console)

Always Yes No

Can have access keys (needed to send requests
to the AWS API (for example, for CLI or SDK)

Yes (not recommended) Yes No

Can belong to a group No Yes No

Can be associated with an EC2 instance No No Yes

Specifies 2012-10-17 to
lock down the version

Allow
Any EC2

action
(wildcard *)

On any resource

Deny
Terminating EC2
instances

175Securing your AWS account

The following policy denies all EC2 actions. The ec2:TerminateInstances statement
isn’t crucial, because Deny overrides Allow. When you deny an action, you can’t allow
that action with another statement:

{
"Version": "2012-10-17",
"Statement": [{

"Sid": "1",
"Effect": "Deny",
"Action": "ec2:*",
"Resource": "*"

}, {
"Sid": "2",
"Effect": "Allow",
"Action": "ec2:TerminateInstances",
"Resource": "*"

}]
}

So far, the Resource part has been ["*"] for every resource. Resources in AWS have
an Amazon Resource Name (ARN); figure 6.5 shows the ARN of an EC2 instance.

To find out the account ID, you can use the CLI:

$ aws iam get-user --query "User.Arn" --output text
arn:aws:iam::111111111111:user/mycli

If you know your account ID, you can use ARNs to allow access to specific resources of
a service:

{
"Version": "2012-10-17",
"Statement": [{

"Sid": "2",
"Effect": "Allow",
"Action": "ec2:TerminateInstances",
"Resource":

➥ "arn:aws:ec2:us-east-1:111111111111:instance/i-0b5c991e026104db9"
}]

}

Denies every
EC2 action

Allow isn’t crucial;
Deny overrides Allow.

Resource type (only if service
offers multiple resources)

arn:aws:ec2:us-east-1:878533158213:instance/i-3dd4f812

Service

Region Account ID Resource

Figure 6.5 Components of an Amazon Resource Name (ARN) identifying an EC2 instance

Account ID has 12 digits.
111111111111 in our
example.

176 CHAPTER 6 Securing your system: IAM, security groups, and VPC

There are two types of policies:

1 Managed policy—If you want to create policies that can be reused in your
account, a managed policy is what you’re looking for. There are two types of
managed policies:
– AWS managed policy—A policy maintained by AWS. There are policies that

grant admin rights, read-only rights, and so on.
– Customer managed—A policy maintained by you. It could be a policy that rep-

resents the roles in your organization, for example.
2 Inline policy—A policy that belongs to a certain IAM role, user, or group. An

inline policy can’t exist without the IAM role, user, or group that it belongs to.

With CloudFormation, it’s easy to maintain inline policies; that’s why we use inline
policies most of the time in this book. One exception is the mycli user: this user has
the AWS managed policy AdministratorAccess attached. We maintain an open-
source list of all possible IAM permissions available at https://iam.cloudonaut.io/.

6.3.4 Users for authentication, and groups to organize users

A user can authenticate using either a user name and password, or access keys. When
you log in to the Management Console, you’re authenticating with your user name
and password. When you use the CLI from your computer, you use access keys to
authenticate as the mycli user.

 You’re using the root user at the moment to log in to the Management Console.
You should create an IAM user instead, for two reasons.

 Creating IAM users allows you to set up a unique user for every person who
needs to access your AWS account.

 You can grant access only to the resources each user needs, allowing you to fol-
low the least privilege principle.

To make things easier if you want to add users in the future, you’ll first create a group
for all users with administrator access. Groups can’t be used to authenticate, but they
centralize authorization. So, if you want to stop your admin users from terminating
EC2 instances, you only need to change the policy for the group instead of changing it
for all admin users. A user can be a member of zero, one, or multiple groups.

 It’s easy to create groups and users with the CLI. Replace $Password in the follow-
ing with a secure password:

$ aws iam create-group --group-name "admin"
$ aws iam attach-group-policy --group-name "admin" \

➥ --policy-arn "arn:aws:iam::aws:policy/AdministratorAccess"
$ aws iam create-user --user-name "myuser"
$ aws iam add-user-to-group --group-name "admin" --user-name "myuser"
$ aws iam create-login-profile --user-name "myuser" --password "$Password"

https://iam.cloudonaut.io/

177Securing your AWS account

The user myuser is ready to be used. But you must use a different URL to access the
Management Console if you aren’t using the root user: https://$accountId.sig-
nin.aws.amazon.com/console. Replace $accountId with the account ID that you
extracted earlier with the aws iam get-user command.

WARNING Stop using the root user from now on. Always use myuser and the
new link to the Management Console.

WARNING You should never copy a user’s access keys to an EC2 instance; use
IAM roles instead! Don’t store security credentials in your source code. And
never ever check them into your Git or SVN repository. Try to use IAM roles
instead whenever possible.

6.3.5 Authenticating AWS resources with roles

There are various use cases where an EC2 instance needs to access or manage AWS
resources. For example, an EC2 instance might need to :

 Back up data to the object store S3.
 Terminate itself after a job has been completed.
 Change the configuration of the private network environment in the cloud.

To be able to access the AWS API, an EC2 instance needs to authenticate itself. You
could create an IAM user with access keys and store the access keys on an EC2
instance for authentication. But doing so is a hassle, especially if you want to rotate the
access keys regularly.

 Instead of using an IAM user for authentication, you should use an IAM role when-
ever you need to authenticate AWS resources like EC2 instances. When using an IAM
role, your access keys are injected into your EC2 instance automatically.

Enabling MFA for IAM users
We encourage you to enable MFA for all users. If possible, don’t use the same MFA
device for your root user that you use for everyday users. You can buy hardware MFA
devices for $13 from AWS partners like Gemalto. To enable MFA for your users, follow
these steps:

 Open the IAM service in the Management Console.
 Choose Users at left.
 Select the myuser user.
 Select the Security credentials tab.
 Click the pencil near to Assigned MFA device. The wizard to enable MFA for

the IAM user is the same one you used for the root user.

We do recommend enabling MFA for all users, especially for users granted adminis-
trator access to all or some services.

178 CHAPTER 6 Securing your system: IAM, security groups, and VPC

 If an IAM role is attached to an EC2 instance, all policies attached to those roles
are evaluated to determine whether the request is allowed. By default, no role is
attached to an EC2 instance and therefore the EC2 instance is not allowed to make
any calls to the AWS API.

 The following example will show you how to use an IAM role for an EC2 instance.
Do you remember the temporary EC2 instances from chapter 4? What if we forgot to
terminate those VMs? A lot of money was wasted because of that. You’ll now create an
EC2 instance that stops itself automatically. The following snippet shows a one-liner
terminating an EC2 instance after 5 minutes. The command at is used to execute the
aws ec2 stop-instances with a 5 minute delay:

echo "aws ec2 stop-instances --instance-ids i-0b5c991e026104db9" \

➥ | at now + 5 minutes

The EC2 instance needs permission to stop itself. Therefore, you need to attach an
IAM role to the EC2 instance. The role contains an inline policy granting access to the
ec2:StopInstances action. The following code shows how you define an IAM role
with the help of CloudFormation:

Role:
Type: 'AWS::IAM::Role'
Properties:

AssumeRolePolicyDocument:
Version: '2012-10-17'
Statement:
- Effect: Allow

Principal:
Service: 'ec2.amazonaws.com'

Action:
- 'sts:AssumeRole'

Policies:
- PolicyName: ec2

PolicyDocument:
Version: '2012-10-17'
Statement:
- Sid: Stmt1425388787000
Effect: Allow
Action: 'ec2:StopInstances'
Resource: '*'
Condition:

StringEquals:
'ec2:ResourceTag/aws:cloudformation:stack-id':

➥ !Ref 'AWS::StackId'

To attach an inline role to an instance, you must first create an instance profile:

InstanceProfile:
Type: 'AWS::IAM::InstanceProfile'
Properties:

Roles:
- !Ref Role

Allow the EC2 service
to assume this role.

Policies begin

Policy definition

Condition can solve the
problem: only allow if
tagged with the stack ID.

179Controlling network traffic to and from your virtual machine

The following listing shows how to attach the IAM role to the virtual machine:

Instance:
Type: 'AWS::EC2::Instance'
Properties:

[...]
IamInstanceProfile: !Ref InstanceProfile
UserData:

'Fn::Base64': !Sub |
#!/bin/bash -x
INSTANCEID="$(curl -s http://169.254.169.254/\

➥ latest/meta-data/instance-id)"
echo "aws ec2 stop-instances --instance-ids $INSTANCEID \

➥ --region ${AWS::Region}" | at now + ${Lifetime} minutes

Create the CloudFormation stack with the template located at http://mng.bz/Z35X
by clicking on the CloudFormation Quick-Create link: http://mng.bz/833J. Specify
the lifetime of the EC2 instance via the parameter, and pick the default VPC and sub-
net as well. Wait until the amount of time specified as the lifetime has passed, and see
if your EC2 instance is stopped in the EC2 Management Console. The lifetime begins
when the server is fully started and booted.

You have learned how to use IAM users to authenticate people and IAM roles to
authenticate EC2 instances or other AWS resources. You’ve also seen how to grant
access to specific actions and resources by using an IAM policy. The next section will
cover controlling network traffic to and from your virtual machine.

6.4 Controlling network traffic to and from your virtual machine
You only want traffic to enter or leave your EC2 instance if it has to do so. With a firewall,
you control ingoing (also called inbound or ingress) and outgoing (also called outbound
or egress) traffic. If you run a web server, the only ports you need to open to the outside
world are port 80 for HTTP traffic and 443 for HTTPS traffic. All other ports should be
closed down. You should only open ports that must be accessible, just as you grant only
the permissions you need with IAM. If you are using a firewall that allows only legitimate
traffic, you close a lot of possible security holes. You can also prevent yourself from
human failure, for example you prevent accidentally sending email to customers from
a test system by not opening outgoing SMTP connections for test systems.

Cleaning up
Don’t forget to delete your stack ec2-iamrole after you finish this section, to clean
up all used resources. Otherwise you’ll likely be charged for the resources you use
(even when your EC2 instance is stopped, you pay for the network attached storage).

http://mng.bz/833J
http://mng.bz/Z35X

180 CHAPTER 6 Securing your system: IAM, security groups, and VPC

 Before network traffic can enter or leave your EC2 instance, it goes through a fire-
wall provided by AWS. The firewall inspects the network traffic and uses rules to
decide whether the traffic is allowed or denied.

Figure 6.6 shows how an SSH request from a source IP address 10.0.0.10 is inspected
by the firewall and received by the destination IP address 10.10.0.20. In this case, the
firewall allows the request because there is a rule that allows TCP traffic on port 22
between the source and the destination.

IP vs. IP address
The abbreviation IP is used for Internet Protocol, whereas an IP address describes a
specific address like 84.186.116.47.

Source versus destination
Inbound security-group rules filter traffic based on its source. The source is either an
IP address or a security group. Thus you can allow inbound traffic only from specific
source IP address ranges.

Outbound security-group rules filter traffic based on its destination. The destination
is either an IP address or a security group. You can allow outbound traffic to only spe-
cific destination IP address ranges.

Figure 6.6 How an SSH request travels from source to destination, controlled by a firewall

Source
(10.0.0.10)

Destination
(10.10.0.20)

Inbound

Outbound

Source IP address: 10.0.0.10
Destination IP address: 10.0.0.20
Protocol: TCP
Destination port: 22

IP

TCP

Firewall

Inspect traffic
to filter based
on rules.

Request is received.
A response is sent
back to the Source.

Allow

Deny
Rules

Network package (simplified)

Client (Source) sends
a SSH (port 22) request
to IP address 10.10.0.20.

Firewall checks based
on rules if a TCP request
on port 22 is allowed
from 10.0.0.10 to 10.10.0.20

3.

1.
2.

181Controlling network traffic to and from your virtual machine

AWS is responsible for the firewall, but you’re responsible for the rules. By default, a
security group does not allow any inbound traffic. You must add your own rules to
allow specific incoming traffic. A security group contains a rule allowing all outbound
traffic by default. If your use case requires a high level of networking security, you
should remove the rule and add your own rules to control outgoing traffic.

6.4.1 Controlling traffic to virtual machines with security groups

Associate a security group with AWS resources such as EC2 instances to control traffic.
It’s common for EC2 instances to have more than one security group associated with
them, and for the same security group to be associated with multiple EC2 instances.

 A security group consists of a set of rules. Each rule allows network traffic based on
the following:

 Direction (inbound or outbound)
 IP protocol (TCP, UDP, ICMP)
 Port
 Source/destination based on IP address, IP address range, or security group

(works only within AWS)

In theory, you could define rules that allow all traffic to enter and leave your virtual
machine; AWS won’t prevent you from doing so. But it’s best practice to define your
rules so they are as restrictive as possible.

 Security group resources in CloudFormation are of type AWS::EC2::SecurityGroup.
The following listing is in /chapter06/firewall1.yaml in the book’s code folder: the tem-
plate describes an empty security group associated with a single EC2 instance.

[..]
Parameters:

KeyName:
Description: 'Key Pair name'
Type: 'AWS::EC2::KeyPair::KeyName'
Default: mykey

VPC:

Listing 6.2 CloudFormation template: security group

Debugging or monitoring network traffic
Imagine the following problem: Your EC2 instance does not accept SSH traffic as you
want it to, but you can’t spot any misconfiguration in your firewall rules. In this case,
you should enable VPC Flow Logs to get access to aggregated log messages contain-
ing rejected connections. Go to the VPC Flow Logs (AWS Documentation) at http://
mng.bz/ltgm to learn more.

VPC Flow Logs give you insight into both granted connections and rejected connections.

You’ll learn about
this in section 6.5.

http://mng.bz/ltgm
http://mng.bz/ltgm
http://mng.bz/ltgm

182 CHAPTER 6 Securing your system: IAM, security groups, and VPC

[..]
Subnet:

[..]
Resources:

SecurityGroup:
Type: 'AWS::EC2::SecurityGroup'
Properties:

GroupDescription: 'Learn how to protect your EC2 Instance.'
VpcId: !Ref VPC
Tags:
- Key: Name

Value: 'AWS in Action: chapter 6 (firewall)'
Instance:

Type: 'AWS::EC2::Instance'
Properties:

ImageId: 'ami-6057e21a'
InstanceType: 't2.micro'
KeyName: !Ref KeyName
NetworkInterfaces:
- AssociatePublicIpAddress: true

DeleteOnTermination: true
DeviceIndex: 0
GroupSet:
- !Ref SecurityGroup
SubnetId: !Ref Subnet

Tags:
- Key: Name

Value: 'AWS in Action: chapter 6 (firewall)'

To explore security groups, you can try the CloudFormation template located at
http://mng.bz/fVu5. Create a stack based on that template by clicking on the Cloud-
Formation Quick-Create link (http://mng.bz/Qk5e), and then copy the PublicName
from the stack output.

6.4.2 Allowing ICMP traffic

If you want to ping an EC2 instance from your computer, you must allow inbound
Internet Control Message Protocol (ICMP) traffic. By default, all inbound traffic is
blocked. Try ping $PublicName to make sure ping isn’t working:

$ ping ec2-52-5-109-147.compute-1.amazonaws.com
PING ec2-52-5-109-147.compute-1.amazonaws.com (52.5.109.147): 56 data bytes
Request timeout for icmp_seq 0
Request timeout for icmp_seq 1
[...]

You need to add a rule to the security group that allows inbound traffic, where the
protocol equals ICMP. Listing 6.3 is in /chapter06/firewall2.yaml in the book’s code
folder.

You’ll learn about
this in section 6.5. Defines the security group without any

rules (by default, inbound traffic is denied
and outbound traffic is allowed.) Rules will
be added in the following sections.

Defines the EC2 instance

Associates the security group
with the EC2 instance

http://mng.bz/fVu5
http://mng.bz/Qk5e

183Controlling network traffic to and from your virtual machine

SecurityGroup:
Type: 'AWS::EC2::SecurityGroup'
Properties:

GroupDescription: 'Learn how to protect your EC2 Instance.'
VpcId: !Ref VPC
Tags:
- Key: Name

Value: 'AWS in Action: chapter 6 (firewall)'
allowing inbound ICMP traffic
SecurityGroupIngress:
- IpProtocol: icmp

FromPort: '-1'
ToPort: '-1'
CidrIp: '0.0.0.0/0'

Update the CloudFormation stack with the template located at http://mng.bz/0caa
and retry the ping command. It should work now:

$ ping ec2-52-5-109-147.compute-1.amazonaws.com
PING ec2-52-5-109-147.compute-1.amazonaws.com (52.5.109.147): 56 data bytes
64 bytes from 52.5.109.147: icmp_seq=0 ttl=49 time=112.222 ms
64 bytes from 52.5.109.147: icmp_seq=1 ttl=49 time=121.893 ms
[...]
round-trip min/avg/max/stddev = 112.222/117.058/121.893/4.835 ms

Everyone’s inbound ICMP traffic (every source IP address) is now allowed to reach
your EC2 instance.

6.4.3 Allowing SSH traffic

Once you can ping your EC2 instance, you want to log in to your virtual machine via
SSH. To do so, you must create a rule to allow inbound TCP requests on port 22.

SecurityGroup:
Type: 'AWS::EC2::SecurityGroup'
Properties:

GroupDescription: 'Learn how to protect your EC2 Instance.'
VpcId: !Ref VPC
Tags:
- Key: Name

Value: 'AWS in Action: chapter 6 (firewall)'
allowing inbound ICMP traffic
SecurityGroupIngress:
- IpProtocol: icmp

FromPort: '-1'
ToPort: '-1'

Listing 6.3 CloudFormation template: security group that allows ICMP

Listing 6.4 CloudFormation template: security group that allows SSH

Rules
allowing

incoming
traffic Specifies ICMP

as the protocol

ICMP does not
use ports. -1
means every

port.
Allow traffic from any
source IP address.

http://mng.bz/0caa

184 CHAPTER 6 Securing your system: IAM, security groups, and VPC

CidrIp: '0.0.0.0/0'
allowing inbound SSH traffic
- IpProtocol: tcp

FromPort: '22'
ToPort: '22'
CidrIp: '0.0.0.0/0'

Update the CloudFormation stack with the template located at http://mng.bz/P8cm.
You can now log in to your EC2 instance using SSH. Keep in mind that you still need
the correct private key. The firewall only controls the network layer; it doesn’t replace
key-based or password-based authentication.

6.4.4 Allowing SSH traffic from a source IP address

So far, you’re allowing inbound traffic on port 22 (SSH) from every source IP address.
It is possible to restrict access to only your own IP address for additional security as well.

Hard-coding the public IP address into the template isn’t a good solution because
your public IP address changes from time to time. But you already know the solution:
parameters. You need to add a parameter that holds your current public IP address,
and you need to modify the Security Group. You can find the following listing in
/chapter06/firewall4.yaml in the book’s code folder.

Parameters:
[...]
IpForSSH:

Description: 'Your public IP address to allow SSH access'
Type: String

Listing 6.5 Security group allows traffic from source IP

Adds a rule to allow incoming
SSH connections

SSH is based
on the TCP

protocol.

The default SSH port is 22.

You can allow a range
of ports or set

FromPort = ToPort.
Allows traffic from any
source IP address

What’s the difference between public and private IP addresses?
On my local network, I’m using private IP addresses that start with 192.168.0.*. My
laptop uses 192.168.0.10, and my iPad uses 192.168.0.20. But if I access the
internet, I have the same public IP address (such as 79.241.98.155) for my laptop
and iPad. That’s because only my internet gateway (the box that connects to the inter-
net) has a public IP address, and all requests are redirected by the gateway. (If you
want to know more about this, search for network address translation.) Your local net-
work doesn’t know about this public IP address. My laptop and iPad only know that
the internet gateway is reachable under 192.168.0.1 on the private network.

To find your public IP address, visit http://api.ipify.org. For most of us, our public IP
address changes from time to time, usually when you reconnect to the internet (which
happens every 24 hours in my case).

Public IP address
parameter

http://api.ipify.org
http://mng.bz/P8cm

185Controlling network traffic to and from your virtual machine

Resources:
SecurityGroup:

Type: 'AWS::EC2::SecurityGroup'
Properties:

GroupDescription: 'Learn how to protect your EC2 Instance.'
VpcId: !Ref VPC
Tags:
- Key: Name

Value: 'AWS in Action: chapter 6 (firewall)'
allowing inbound ICMP traffic
SecurityGroupIngress:
- IpProtocol: icmp

FromPort: '-1'
ToPort: '-1'
CidrIp: '0.0.0.0/0'

allowing inbound SSH traffic
- IpProtocol: tcp

FromPort: '22'
ToPort: '22'
CidrIp: !Sub '${IpForSSH}/32'

Update the CloudFormation stack with the template located at http://mng.bz/S2f9.
When asked for parameters, type in your public IP address for $IPForSSH. Now only
your IP address can open SSH connections to your EC2 instance.

Now you can control network traffic that comes from outside a virtual machine or goes
outside a virtual machine by filtering based on protocol, port, and source IP address.

6.4.5 Allowing SSH traffic from a source security group

It is possible to control network traffic based on whether the source or destination
belongs to a specific security group. For example, you can say that a MySQL database
can only be accessed if the traffic comes from your web servers, or that only your
proxy servers are allowed to access the web servers. Because of the elastic nature of the
cloud, you’ll likely deal with a dynamic number of virtual machines, so rules based on

Uses $IpForSSH/32
as a value

Classless Inter-Domain Routing (CIDR)
You may wonder what /32 means in listing 6.5. To understand what’s going on, you need
to switch your brain into binary mode. An IP address is 4 bytes or 32 bits long. The /32
defines how many bits (32, in this case) should be used to form a range of addresses.
If you want to define the exact IP address that is allowed, you must use all 32 bits.

But sometimes it makes sense to define a range of allowed IP addresses. For example,
you can use 10.0.0.0/8 to create a range between 10.0.0.0 and 10.255.255.255,
10.0.0.0/16 to create a range between 10.0.0.0 and 10.0.255.255, or 10.0.0.0/24
to create a range between 10.0.0.0 and 10.0.0.255. You aren’t required to use the
binary boundaries (8, 16, 24, 32), but they’re easier for most people to understand.
You already used 0.0.0.0/0 to create a range that contains every possible IP address.

http://mng.bz/S2f9

186 CHAPTER 6 Securing your system: IAM, security groups, and VPC

source IP addresses are difficult to maintain. This becomes easy if your rules are based
on source security groups.

 To explore the power of rules based on a source security group, let’s look at the con-
cept of a bastion host for SSH access (some people call it a jump box). The trick is that only
one virtual machine, the bastion host, can be accessed via SSH from the internet (it
should be restricted to a specific source IP address). All other virtual machines can only
be reached via SSH from the bastion host. This approach has two advantages:

 You have only one entry point into your system, and that entry point does noth-
ing but SSH. The chances of this box being hacked are small.

 If one of your virtual machines that’s running a web server, mail server, FTP
server, and so on is hacked, the attacker can’t jump from that machine to all the
other machines.

To implement the concept of a bastion host, you must follow these two rules:

 Allow SSH access to the bastion host from 0.0.0.0/0 or a specific source address.
 Allow SSH access to all other virtual machines only if the traffic source is the

bastion host.

Figure 6.7 shows a bastion host with two EC2 instances that are only reachable via SSH
from the bastion host.

Bastion host

Virtual
Machine

Virtual
Machine

Your
IP address

SSH
allowed

SSH
allowed

SSH
allowed

SSH
denied

SSH
denied

SSH
denied X

X

X

You’re allowed to connect
to the bastion host from
your IP address.

SSH traffic to all virtual
machines is allowed from
the bastion host.

Figure 6.7 The bastion host is the only SSH
access point to the system from which you
can reach all the other machines via SSH
(realized with security groups).

187Controlling network traffic to and from your virtual machine

A security group allowing incoming SSH traffic from anywhere needs to be attached
to the bastion host. All other VMs are attached to a security group allowing SSH traffic
only if the source is the bastion host’s security group. The following listing shows the
security groups defined in a CloudFormation template:

SecurityGroupBastionHost:
Type: 'AWS::EC2::SecurityGroup'
Properties:

GroupDescription: 'Allowing incoming SSH and ICPM from anywhere.'
VpcId: !Ref VPC
SecurityGroupIngress:
- IpProtocol: icmp

FromPort: "-1"
ToPort: "-1"
CidrIp: '0.0.0.0/0'

- IpProtocol: tcp
FromPort: '22'
ToPort: '22'
CidrIp: !Sub '${IpForSSH}/32'

SecurityGroupInstance:
Type: 'AWS::EC2::SecurityGroup'
Properties:

GroupDescription: 'Allowing incoming SSH from the Bastion Host.'
VpcId: !Ref VPC
SecurityGroupIngress:
- IpProtocol: tcp

FromPort: '22'
ToPort: '22'
SourceSecurityGroupId: !Ref SecurityGroupBastionHost

Update the CloudFormation stack with the template located at http://mng.bz/VrWk.
If the update is completed, the stack will show three outputs:

1 BastionHostPublicName—Use the bastion host to connect via SSH from your
computer.

2 Instance1PublicName—You can connect to this EC2 instance only from the
bastion host.

3 Instance2PublicName—You can connect to this EC2 instance only from the
bastion host.

Execute the following command to add your key to the SSH agent. Replace $Path-
ToKey with the path to the SSH key:

ssh-add $PathToKey/mykey.pem

Now connect to BastionHostPublicName via SSH. Replace $BastionHostPublicName
with the public name of the bastion host.

ssh -A ec2-user@$BastionHostPublicName

Listing 6.6 CloudFormation template: SSH from bastion host

Security group attached
to the bastion host

Security group
attached to another
virtual machine

Allowing incoming
SSH traffic only
from bastion host

http://mng.bz/VrWk

188 CHAPTER 6 Securing your system: IAM, security groups, and VPC

The -A option is important for enabling AgentForwarding; agent forwarding lets you
authenticate with the same key you used to log in to the bastion host for further SSH
logins initiated from the bastion host.

 Log in to $Instance1PublicName or $Instance2PublicName from the bastion host
next.

[computer]$ ssh -A ec2-user@ec2-52-4-234-102.[...].com
Last login: Sat Apr 11 11:28:31 2015 from [...]
[...]
[bastionh]$ ssh ec2-52-4-125-194.compute-1.amazonaws.com)
Last login: Sat Apr 11 11:28:43 2015 from [...]
[...]

The bastion host can be used to add a layer of security to your system. If one of your vir-
tual machines is compromised, the attacker can’t jump to other machines in your sys-
tem. This reduces the potential damage the attacker can inflict. It’s important that the
bastion host does nothing but SSH, to reduce the chance of it becoming a security prob-
lem. We use the bastion-host pattern frequently to protect our clients’ infrastructure.

Agent forwarding with PuTTY
To make agent forwarding work with PuTTY, you need to make sure your key is loaded
into PuTTY Pageant by double-clicking the private key file. You must also enable Con-
nection > SSH > Auth > Allow Agent Forwarding.

Enable agent forwarding.

1.

3.

2.

Allow agent forwarding
with PuTTY.

Log in to the
bastion host.

Log in to
$Instance1PublicName
from the bastion host.

189Creating a private network in the cloud: Amazon Virtual Private Cloud (VPC)

6.5 Creating a private network in the cloud: Amazon
Virtual Private Cloud (VPC)
When you create a VPC, you get your own private network on AWS. Private means you
can use the address ranges 10.0.0.0/8, 172.16.0.0/12, or 192.168.0.0/16 to design a
network that isn’t necessarily connected to the public internet. You can create sub-
nets, route tables, ACLs, and gateways to the internet or a VPN endpoint .

 Subnets allow you to separate concerns. Create a separate subnet for your data-
bases, web servers, proxy servers, or application servers, or whenever you can separate
two systems. Another rule of thumb is that you should have at least two subnets: public
and private. A public subnet has a route to the internet; a private subnet doesn’t. Your
load balancer or web servers should be in the public subnet, and your database should
reside in the private subnet.

 For the purpose of understanding how a VPC works, you’ll create a VPC to host an
enterprise web application. You’ll re-implement the bastion host concept from the
previous section by creating a public subnet that contains only the bastion host server.
You’ll also create a private subnet for your web servers and one public subnet for your
proxy servers. The proxy servers absorb most of the traffic by responding with the lat-
est version of the page they have in their cache, and they forward traffic to the private
web servers. You can’t access a web server directly over the internet—only through the
web caches.

Using agent forwarding is a security risk
We are using agent forwarding in our examples when establishing a SSH connection
from the bastion host to one of the other two instances. Agent forwarding is a potential
security risk, because the bastion host is able to read the private key from your com-
puter. Therefore, you need to fully trust the bastion host when using agent forwarding.

A more secure alternative is using the bastion host as a proxy. The following com-
mand establishes an SSH connection to instance 1 by using the bastion host as a
proxy.

ssh -J ec2-user@BastionHostPublicName ec2-user@Instance1PublicName

In this case the bastion host does not need to access the private key and you can
disable agent forwarding.

Cleaning up
Don’t forget to delete your stack after you finish this section, to clean up all used
resources. Otherwise you’ll likely be charged for the resources you use.

190 CHAPTER 6 Securing your system: IAM, security groups, and VPC

 The VPC uses the address space 10.0.0.0/16. To separate concerns, you’ll create
two public subnets and one private subnet in the VPC:

 10.0.1.0/24 public SSH bastion host subnet
 10.0.2.0/24 public Varnish proxy subnet
 10.0.3.0/24 private Apache web server subnet

Network ACLs restrict traffic that goes from one subnet to another, acting as a fire-
wall. That’s an additional layer of security on top of security groups, which control
traffic to and from a virtual machine. The SSH bastion host from section 6.4 can be
implemented with these ACLs:

 SSH from 0.0.0.0/0 to 10.0.1.0/24 is allowed.
 SSH from 10.0.1.0/24 to 10.0.2.0/24 is allowed.
 SSH from 10.0.1.0/24 to 10.0.3.0/24 is allowed.

To allow traffic to the Varnish proxy and the Apache web servers, you’ll need these
additional ACLs:

 HTTP from 0.0.0.0/0 to 10.0.2.0/24 is allowed.
 HTTP from 10.0.2.0/24 to 10.0.3.0/24 is allowed.

Figure 6.8 shows the architecture of the VPC.
 You’ll use CloudFormation to describe the VPC with its subnets. The template is split

into smaller parts to make it easier to read in the book. As usual, you’ll find the code in
the book’s code repository on GitHub: https://github.com/AWSinAction/code2. The
template is located at /chapter06/vpc.yaml.

6.5.1 Creating the VPC and an internet gateway (IGW)

The first resources listed in the template are the VPC and the internet gateway (IGW).
The IGW will translate the public IP addresses of your virtual machines to their private
IP addresses using network address translation (NAT). All public IP addresses used in
the VPC are controlled by this IGW:

VPC:
Type: 'AWS::EC2::VPC'
Properties:

CidrBlock: '10.0.0.0/16'
EnableDnsHostnames: 'true'
Tags:
- Key: Name

Value: 'AWS in Action: chapter 6 (VPC)'

What does 10.0.0.0/16 mean?
10.0.0.0/16 represents all IP addresses in 10.0.0.0 and 10.0.255.255. It’s using
CIDR notation (explained earlier in the chapter).

The IP address space used
for the private network

Adds a Name tag to the VPC

https://github.com/AWSinAction/code2

191Creating a private network in the cloud: Amazon Virtual Private Cloud (VPC)

InternetGateway:
Type: 'AWS::EC2::InternetGateway'
Properties: {}

VPCGatewayAttachment:
Type: 'AWS::EC2::VPCGatewayAttachment'
Properties:

VpcId: !Ref VPC
InternetGatewayId: !Ref InternetGateway

Next you’ll define the subnet for the bastion host.

Private network within
the AWS cloud

A subnet uses a
subset of the VPC’s
address space.

Routes packages entering
or leaving a subnet based
on the rules defined in
the route tables

Defines routes for
packets to enter or
leave the subnet.

Controls traffic
entering or leaving
the subnet

10.0.0.0/16

SSH

SSH

SSH

HTTP

HTTP

HTTP

HTTP

SSH

SSH

10.0.1.0/24

SSH bastion

Route tableACL

10.0.2.0/24

Varnish

Route tableACL

10.0.3.0/24

Apache

Route tableACL

Internet
gateway
(IGW)

Router

Internet

Figure 6.8 VPC with three subnets to secure a web application

An IGW is needed to enable
traffic to and from the internet.

Attaches the internet
gateway to the VPC

192 CHAPTER 6 Securing your system: IAM, security groups, and VPC

6.5.2 Defining the public bastion host subnet
The bastion host subnet will only run a single machine to secure SSH access:

SubnetPublicBastionHost:
Type: 'AWS::EC2::Subnet'
Properties:

AvailabilityZone: 'us-east-1a'
CidrBlock: '10.0.1.0/24'
VpcId: !Ref VPC
Tags:
- Key: Name

Value: 'Public Bastion Host'
RouteTablePublicBastionHost:

Type: 'AWS::EC2::RouteTable'
Properties:

VpcId: !Ref VPC
RouteTableAssociationPublicBastionHost:

Type: 'AWS::EC2::SubnetRouteTableAssociation'
Properties:

SubnetId: !Ref SubnetPublicBastionHost
RouteTableId: !Ref RouteTablePublicBastionHost

RoutePublicBastionHostToInternet:
Type: 'AWS::EC2::Route'
Properties:

RouteTableId: !Ref RouteTablePublicBastionHost
DestinationCidrBlock: '0.0.0.0/0'
GatewayId: !Ref InternetGateway

DependsOn: VPCGatewayAttachment
NetworkAclPublicBastionHost:

Type: 'AWS::EC2::NetworkAcl'
Properties:

VpcId: !Ref VPC
SubnetNetworkAclAssociationPublicBastionHost:

Type: 'AWS::EC2::SubnetNetworkAclAssociation'
Properties:

SubnetId: !Ref SubnetPublicBastionHost
NetworkAclId: !Ref NetworkAclPublicBastionHost

The definition of the ACL follows:

NetworkAclEntryInPublicBastionHostSSH:
Type: 'AWS::EC2::NetworkAclEntry'
Properties:

NetworkAclId: !Ref NetworkAclPublicBastionHost
RuleNumber: '100'
Protocol: '6'
PortRange:

From: '22'
To: '22'

RuleAction: 'allow'
Egress: 'false'
CidrBlock: '0.0.0.0/0'

NetworkAclEntryInPublicBastionHostEphemeralPorts:
Type: 'AWS::EC2::NetworkAclEntry'
Properties:

NetworkAclId: !Ref NetworkAclPublicBastionHost

You’ll learn about
this in chapter 11.

IP address space

Route table

Associates the route
table with the subnet

Routes everything
(0.0.0.0/0) to the IGW

Network ACL

Associates the NACL
with the subnet

Allows inbound SSH
from everywhere

Use the rule number to
define the order of rules.

Inbound Ephemeral ports used
for short-lived TCP/IP
connections

193Creating a private network in the cloud: Amazon Virtual Private Cloud (VPC)

RuleNumber: '200'
Protocol: '6'
PortRange:

From: '1024'
To: '65535'

RuleAction: 'allow'
Egress: 'false'
CidrBlock: '10.0.0.0/16'

NetworkAclEntryOutPublicBastionHostSSH:
Type: 'AWS::EC2::NetworkAclEntry'
Properties:

NetworkAclId: !Ref NetworkAclPublicBastionHost
RuleNumber: '100'
Protocol: '6'
PortRange:

From: '22'
To: '22'

RuleAction: 'allow'
Egress: 'true'
CidrBlock: '10.0.0.0/16'

NetworkAclEntryOutPublicBastionHostEphemeralPorts:
Type: 'AWS::EC2::NetworkAclEntry'
Properties:

NetworkAclId: !Ref NetworkAclPublicBastionHost
RuleNumber: '200'
Protocol: '6'
PortRange:

From: '1024'
To: '65535'

RuleAction: 'allow'
Egress: 'true'
CidrBlock: '0.0.0.0/0'

There’s an important difference between security groups and ACLs: security groups
are stateful, but ACLs aren’t. If you allow an inbound port on a security group, the
corresponding response to requests on that port are allowed as well. A security group
rule will work as you expect it to. If you open inbound port 22 on a security group, you
can connect via SSH.

 That’s not true for ACLs. If you open inbound port 22 on an ACL for your subnet,
you still may not be able to connect via SSH. In addition, you need to allow outbound
ephemeral ports, because sshd (SSH daemon) accepts connections on port 22 but
uses an ephemeral port for communication with the client. Ephemeral ports are
selected from the range starting at 1024 and ending at 65535.

 If you want to make a SSH connection from within your subnet, you have to open
outbound port 22 and inbound ephemeral ports as well.

 There is another difference between security group rules and ACL rules: you have
to define the priority for ACL rules. A smaller rule number indicates a higher priority.
When evaluating an ACL the first rule that matches a package is applied; all other
rules are skipped.

 We do recommend to start with using security groups to control traffic. If you want
to add an extra layer of security, you should use ACL on top.

Allows outbound SSH to VPC

Outbound

Ephemeral ports

194 CHAPTER 6 Securing your system: IAM, security groups, and VPC

6.5.3 Adding the private Apache web server subnet
The subnet for the Varnish web cache is similar to the bastion host subnet because it’s
also a public subnet; that’s why we’ll skip it. You’ll continue with the private subnet for
the Apache web server:

SubnetPrivateApacheWebserver:
Type: 'AWS::EC2::Subnet'
Properties:

AvailabilityZone: 'us-east-1a'
CidrBlock: '10.0.3.0/24'
VpcId: !Ref VPC
Tags:
- Key: Name

Value: 'Private Apache Webserver'
RouteTablePrivateApacheWebserver:

Type: 'AWS::EC2::RouteTable'
Properties:

VpcId: !Ref VPC
RouteTableAssociationPrivateApacheWebserver:

Type: 'AWS::EC2::SubnetRouteTableAssociation'
Properties:

SubnetId: !Ref SubnetPrivateApacheWebserver
RouteTableId: !Ref RouteTablePrivateApacheWebserver

As shown in figure 6.9, the only difference between a public and a private subnet is
that a private subnet doesn’t have a route to the IGW.

Address space

No route to the IGW

Figure 6.9 Private
and public subnets

Reachable from the
internet. Able to
access the internet.

Not reachable from the internet.
Can’t access the internet.

10.0.0.0/16

Public subnet

SSH bastion

Route table

Public subnet

Varnish

Route table

Private subnet

Apache

Route table

Internet
gateway
(IGW)

Internet

Does’t contain a route
to the internet gateway.

Contains a route to
the internet gateway.

195Creating a private network in the cloud: Amazon Virtual Private Cloud (VPC)

Traffic between subnets of a VPC is always routed by default. You can’t remove the
routes between the subnets. If you want to prevent traffic between subnets in a VPC,
you need to use ACLs attached to the subnets.

6.5.4 Launching virtual machines in the subnets

Your subnets are ready, and you can continue with the EC2 instances. First you
describe the bastion host:

BastionHost:
Type: AWS::EC2::Instance
Properties:

ImageId: 'ami-6057e21a'
InstanceType: 't2.micro'
KeyName: mykey
NetworkInterfaces:
- AssociatePublicIpAddress: true

DeleteOnTermination: true
DeviceIndex: '0'
GroupSet:
- !Ref SecurityGroup
SubnetId: !Ref SubnetPublicBastionHost

Tags:
- Key: Name

Value: 'Bastion Host'
DependsOn: VPCGatewayAttachment

The Varnish proxy server looks similar. But again, the private Apache web server has a
different configuration:

ApacheWebserver:
Type: 'AWS::EC2::Instance'
Properties:

ImageId: 'ami-6057e21a'
InstanceType: 't2.micro'
KeyName: mykey
NetworkInterfaces:
- AssociatePublicIpAddress: false

DeleteOnTermination: true
DeviceIndex: '0'
GroupSet:
- !Ref SecurityGroup
SubnetId: !Ref SubnetPrivateApacheWebserver

UserData:
'Fn::Base64': !Sub |

#!/bin/bash -x
bash -ex << "TRY"
yum -y install httpd
service httpd start

TRY
/opt/aws/bin/cfn-signal -e $? --stack ${AWS::StackName} \

➥ --resource ApacheWebserver --region ${AWS::Region}
Tags:

Assigns a public
IP address

This security group
allows everything.

Launches in the
bastion host subnet

No public IP
address: private

Launches in the Apache
web server subnet

If one of the following two commands
fails, the sub-bash stops at this command
and returns a non zero exit code.

Installs Apache from the internet
Starts Apache

web server

196 CHAPTER 6 Securing your system: IAM, security groups, and VPC

- Key: Name
Value: 'Apache Webserver'

CreationPolicy:
ResourceSignal:

Timeout: PT10M
DependsOn: RoutePrivateApacheWebserverToInternet

You’re now in serious trouble: installing Apache won’t work because your private sub-
net has no route to the internet.

6.5.5 Accessing the internet from private subnets via a NAT gateway

Public subnets have a route to the internet gateway. You can use a similar mechanism
to provide internet access for private subnets without having a direct route to the
internet: use a NAT gateway in a public subnet, and create a route from your private
subnet to the NAT gateway. This way, you can reach the internet from private subnets,
but the internet can’t reach your private subnets. A NAT gateway is a managed service
provided by AWS that handles network address translation. Internet traffic from your
private subnet will access the internet from the public IP address of the NAT gateway.

To keep concerns separated, you’ll create a subnet for the NAT gateway.

SubnetPublicNAT:
Type: 'AWS::EC2::Subnet'
Properties:

AvailabilityZone: 'us-east-1a'
CidrBlock: '10.0.0.0/24'
VpcId: !Ref VPC
Tags:
- Key: Name

Value: 'Public NAT'

Reducing costs for NAT gateway
You have to pay for the traffic processed by a NAT gateway (see VPC Pricing at
https://aws.amazon.com/vpc/pricing/ for more details). If your EC2 instances in pri-
vate subnets will have to transfer huge amounts of data to the Internet, there are two
options to decrease costs.

 Moving your EC2 instances from the private subnet to a public subnet allows
them to transfer data to the internet without utilizing the NAT gateway. Use
firewalls to strictly restrict incoming traffic from the internet.

 If data is transferred over the internet to reach AWS services (such as Amazon
S3 and Amazon DynamoDB), use so-called VPC endpoints. These endpoints
allow your EC2 instances to communicate with S3 and DynamoDB directly with-
out using the NAT gateway. Furthermore, some services are accessible from
private subnets via AWS PrivateLink (such as Amazon Kinesis, AWS SSM, and
more). Note: AWS PrivateLink is not yet available in all regions.

10.0.0.0/24 is the
NAT subnet.

https://aws.amazon.com/vpc/pricing/

197Creating a private network in the cloud: Amazon Virtual Private Cloud (VPC)

RouteTablePublicNAT:
Type: 'AWS::EC2::RouteTable'
Properties:

VpcId: !Ref VPC
[...]
RoutePublicNATToInternet:

Type: 'AWS::EC2::Route'
Properties:

RouteTableId: !Ref RouteTablePublicNAT
DestinationCidrBlock: '0.0.0.0/0'
GatewayId: !Ref InternetGateway

DependsOn: VPCGatewayAttachment
[...]
EIPNatGateway:

Type: 'AWS::EC2::EIP'
Properties:

Domain: 'vpc'
NatGateway:

Type: 'AWS::EC2::NatGateway'
Properties:

AllocationId: !GetAtt 'EIPNatGateway.AllocationId'
SubnetId: !Ref SubnetPublicNAT

[...]
RoutePrivateApacheWebserverToInternet:

Type: 'AWS::EC2::Route'
Properties:

RouteTableId: !Ref RouteTablePrivateApacheWebserver
DestinationCidrBlock: '0.0.0.0/0'
NatGatewayId: !Ref NatGateway

WARNING The NAT gateway included in the example is not covered by the
Free Tier. The NAT gateway will cost you $0.045 USD per hour and $0.045
per GB of data processed when creating the stack in the US East (N. Virginia)
region. Go to https://aws.amazon.com/vpc/pricing/ to have a look at the
current prices.

Now you’re ready to create the CloudFormation stack with the template located at
http://mng.bz/NRLj by clicking on the CloudFormation Quick-Create Link: http://
mng.bz/71o2. Once you’ve done so, copy the VarnishProxyPublicName output and
open it in your browser. You’ll see an Apache test page that was cached by Varnish.

The NAT subnet is public
with a route to the internet.

A static public IP address is
used for the NAT gateway.

The NAT gateway is placed into the
private subnet and associated with
the static public IP address.

Route from the
Apache subnet to
the NAT gateway

Cleaning up
Don’t forget to delete your stack after finishing this section, to clean up all used
resources. Otherwise you’ll likely be charged for the resources you use.

http://mng.bz/NRLj
http://mng.bz/71o2
http://mng.bz/71o2
http://mng.bz/71o2
https://aws.amazon.com/vpc/pricing/

198 CHAPTER 6 Securing your system: IAM, security groups, and VPC

Summary
 AWS is a shared-responsibility environment in which security can be achieved

only if you and AWS work together. You’re responsible for securely configuring
your AWS resources and your software running on EC2 instances, while AWS
protects buildings and host systems.

 Keeping your software up-to-date is key, and can be automated.
 The Identity and Access Management (IAM) service provides everything

needed for authentication and authorization with the AWS API. Every request
you make to the AWS API goes through IAM to check whether the request is
allowed. IAM controls who can do what in your AWS account. To protect your
AWS account, grant only those permissions that your users and roles need.

 Traffic to or from AWS resources like EC2 instances can be filtered based on
protocol, port, and source or destination.

 A bastion host is a well-defined single point of access to your system. It can be
used to secure SSH access to your virtual machines. Implementation can be
done with security groups or ACLs.

 A VPC is a private network in AWS where you have full control. With VPCs, you
can control routing, subnets, ACLs, and gateways to the internet or your com-
pany network via VPN. A NAT gateway enables access to the internet from pri-
vate subnets.

 You should separate concerns in your network to reduce potential damage if,
for example, one of your subnets is hacked. Keep every system in a private sub-
net that doesn’t need to be accessed from the public internet, to reduce your
attackable surface.

199

Automating operational
 tasks with Lambda

This chapter is about adding a new tool to your toolbox. The tool we’re talking
about, AWS Lambda, is as flexible as a Swiss Army Knife. You don’t need a virtual
machine to run your own code anymore, as AWS Lambda offers execution environ-
ments for Java, Node.js, C#, Python, and Go. All you have to do is to implement a

This chapter covers
 Creating a Lambda function to perform periodic

health checks

 Triggering a Lambda function with CloudWatch events

 Searching through your Lambda function’s logs with
CloudWatch

 Monitoring Lambda functions with CloudWatch alarms

 Configuring IAM roles so Lambda functions can
access other services

 Web application, data processing, and IoT with AWS
Lambda

 Limitations of AWS Lambda

200 CHAPTER 7 Automating operational tasks with Lambda

function, upload your code, and configure the execution environment. Afterward,
your code is executed within a fully managed computing environment. AWS Lambda
is well-integrated with all parts of AWS, enabling you to easily automate operations
tasks within your infrastructure. We use AWS to automate our infrastructure regularly.
For example, we use it to add and remove instances to a container cluster based on a
custom algorithm, and to process and analyze log files.

 AWS Lambda offers a maintenance-free and highly available computing environ-
ment. You no longer need to install security updates, replace failed virtual machines,
or manage remote access (such as SSH or RDP) for administrators. On top of that,
AWS Lambda is billed by invocation. Therefore, you don’t have to pay for idling
resources that are waiting for work (for example, for a task triggered once a day).

 In our first example, you will create a Lambda function that performs periodic
health checks for your website. This will teach you how to use the Management Con-
sole and offer a blueprint for getting started with AWS Lambda quickly. In our second
example, you will learn how to write your own Python code and deploy a Lambda
function in an automated way using CloudFormation. Your Lambda function will
automatically add a tag to newly launched EC2 instances. At the end of the chapter,
we’ll show you additional use cases like building web applications, Internet of Things
(IoT) back ends, or processing data with AWS Lambda.

But what is AWS Lambda? Before diving into our first real-world example, we will start
with a short introduction.

7.1 Executing your code with AWS Lambda
Computing capacity is available at different layers of abstraction on AWS: virtual
machines, containers, and functions. You learned about the virtual machines offered
by Amazon’s EC2 service in chapter 3. Containers offer another layer of abstraction
on top of virtual machines. We don’t cover containers as it would go beyond the scope
of our book. AWS Lambda provides computing power as well but in a fine-grained
manner: an execution environment for small functions, rather than a full-blown oper-
ating system or container.

Examples are 100% covered by the Free Tier
The examples in this chapter are completely covered by the Free Tier. As long as you
don’t run the examples longer than a few days, you won’t pay anything. Keep in mind
that this only applies if you created a fresh AWS account for this book and nothing
else is going on in your AWS account. Try to complete the chapter within a few days;
you’ll clean up your account at the end.

201Executing your code with AWS Lambda

7.1.1 What is serverless?

When reading about AWS Lambda, you might have stumbled upon the term serverless
The following quote summarizes the confusion created by a catchy and provocative
phrase:

[...] the word serverless is a bit of a misnomer. Whether you use a compute service such as
AWS Lambda to execute your code, or interact with an API, there are still servers running
in the background. The difference is that these servers are hidden from you. There’s no
infrastructure for you to think about and no way to tweak the underlying operating
system. Someone else takes care of the nitty-gritty details of infrastructure management,
freeing your time for other things.

—Peter Sbarski, Serverless Architectures on AWS (Manning, 2017)

We define a serverless system as one that meets the following criteria:

 No need to manage and maintain virtual machines.
 Fully managed service offering scalability and high availability.
 Billed per request and by resource consumption.
 Invoke the function to execute your code in the cloud.

AWS is not the only provider offering a serverless platform. Google (Cloud Functions)
and Microsoft (Azure Functions) are other competitors in this area.

7.1.2 Running your code on AWS Lambda

As shown in figure 7.1, to execute your code with AWS Lambda, follow these steps:

1 Write the code.
2 Upload your code and its dependencies (such as libraries or modules).
3 Create a function determining the runtime environment and configuration.
4 Invoke the function to execute your code in the cloud.

Figure 7.1 Executing code with AWS Lambda

Implementing a function in
Java, Node.js, C#, or Python

Uploading source code and
and its dependencies (e.g.,
libraries or modules)

Creating a function
determining the runtime
environment

Executing source code in a
scalable and highly available
compute environment

202 CHAPTER 7 Automating operational tasks with Lambda

You don’t have to launch any virtual machines. AWS executes your code in a fully
managed computing environment.

 Currently, AWS Lambda offers runtime environments for the following languages:

 Java
 Node.js
 C#
 Python
 Go

Next, we will compare AWS Lambda with EC2 virtual machines.

7.1.3 Comparing AWS Lambda with virtual machines (Amazon EC2)

What is the difference between using AWS Lambda and virtual machines? First, there
is the granularity of virtualization. Virtual machines provide a full operating system for
running one or multiple applications. In contrast, AWS Lambda offers an execution
environment for a single function, a small part of an application.

 Furthermore, Amazon EC2 offers VMs as a service, but you are responsible for
operating them in a secure, scalable and highly available way. Doing so requires you to
put a substantial amount of effort into maintenance. By contrast, AWS Lambda offers
a fully managed execution environment. AWS manages the underlying infrastructure
for you and provides a production-ready infrastructure.

 Beyond that, AWS Lambda is billed per execution, and not per second a virtual
machine is running. You don’t have to pay for unused resources that are waiting for
requests or tasks. For example, running a script to check the health of a website every 5
minutes on a virtual machine would cost you a minimum of $4 USD. Executing the same
health check with AWS Lambda is free: you don’t even exceed the monthly Free Tier of
AWS Lambda.

 Table 7.1 compares AWS Lambda and virtual machines in detail. You’ll find a dis-
cussion of AWS Lambda’s limitations at the end of the chapter.

Table 7.1 AWS Lambda compared to Amazon EC2

AWS Lambda Amazon EC2

Granularity of
virtualization

Small piece of code (a function) A whole operating system

Scalability Scales automatically. A throttling
limit prevents you from creating
unwanted charges accidentally and
can be increased by AWS support if
needed.

As discussed in chapter 17, using an Auto Scal-
ing Group allows you to scale the number of EC2
instances serving requests automatically. But
configuring and monitoring the scaling activities
is your responsibility.

High
availability

Fault tolerant by default. The com-
puting infrastructure spans multi-
ple machines and data centers.

VMs are not highly available by default. Neverthe-
less, as you will learn in chapter 14 it is possible
to set up a highly available infrastructure based
on EC2 instances as well.

203Building a website health check with AWS Lambda

Looking for limitations and pitfalls of AWS Lambda? Stay tuned: you will find a discus-
sion of Lambda’s limitations at the end of the chapter.

 That’s all you need to know about AWS Lambda to be able to go through the first
real-world example. Are you ready?

7.2 Building a website health check with AWS Lambda
Are you responsible for the uptime of a website or application? We do our best to
make sure our blog cloudonaut.io is accessible 24/7. An external health check acts as
a safety net making sure we, and not our readers, are the first to know when our blog
goes down. AWS Lambda is the perfect choice for building a website health check, as
you do not need computing resources constantly, but only every few minutes for a few
milliseconds. This section guides you through setting up a health check for your web-
site based on AWS Lambda.

 In addition to AWS Lambda, we are using the Amazon CloudWatch service for this
example. Lambda functions publish metrics to CloudWatch by default. Typically you
inspect metrics using charts, and create alarms by defining thresholds. For example, a
metric could count failures during the function’s execution. On top of that, Cloud-
Watch provides events that can be used to trigger Lambda functions as well. We are
using a schedule to publish an event every 5 minutes here.

 As shown in figure 7.2, your website health check will consist of three parts:

1 Lambda function—Executes a Python script that sends an HTTP request to your
website (for example GET https://cloudonaut.io) and verifies that the
response includes specific text (such as cloudonaut).

2 Scheduled event—Triggers the Lambda function every 5 minutes. This is compa-
rable to the cron service on Linux.

3 Alarm—Monitors the number of failed health checks and notifies you via email
whenever your website is unavailable.

You will use the Management Console to create and configure all the necessary parts
manually. In our opinion this is a simple way to get familiar with AWS Lambda. You
will learn how to deploy a Lambda function in an automated way in section 7.3.

Maintenance
effort

Almost zero. You need only to con-
figure your function.

You are responsible for maintaining all layers
between your virtual machine’s operating system
and your application’s runtime environment.

Deployment
effort

Almost zero due to a well-defined
API

Rolling out your application to a fleet of VMs is a
challenge that requires tools and know-how.

Pricing
model

Pay per request as well as execu-
tion time and memory

Pay for operating hours of the virtual machines,
billed per second.

Table 7.1 AWS Lambda compared to Amazon EC2 (continued)

AWS Lambda Amazon EC2

http://cloudonaut.io

204 CHAPTER 7 Automating operational tasks with Lambda

7.2.1 Creating a Lambda function

The following step-by-step instructions guide you through setting up a website health
check based on AWS Lambda. Open AWS Lambda in the Management Console:
https://console.aws.amazon.com/lambda/home. Click Create a function to start the
Lambda function wizard, as shown in figure 7.3.

CloudWatch events
triggering the Lambda
function every five minutes.

Each failed health
check is recorded at
a CloudWatch metric.

Lambda function sends
a HTTP request to check
the website’s health.

Website

Lambda
function

CloudWatch
metric and alarm

CloudWatch
scheduled event

Figure 7.2 The Lambda function performing the website health check is executed every
five minutes by a scheduled event. Errors are reported to CloudWatch.

Figure 7.3 Welcome screen: ready to create your first Lambda function

Click here to create your
first Lambda function.

https://console.aws.amazon.com/lambda/home

205Building a website health check with AWS Lambda

AWS provides blueprints for various use cases, including the code and the Lambda
function configuration. We will use one of these blueprints to create a website health
check. Select Blueprints and search for canary. Next, click the heading of the lambda-
canary-python3 blueprint. Figure 7.4 illustrates the details.

In the next step of the wizard, you need to specify a name for your Lambda function,
as shown in figure 7.5. The function name needs to be unique within your AWS
account as well as within the current region US East (N. Virginia), and is limited to 64
characters. To invoke a function via the API you need to provide the function name,
for example. Type in website-health-check as the name for your Lambda function.

 Select Create a custom role as shown in figure 7.5 to create an IAM role for your
Lambda function. You will learn how your Lambda function makes use of the IAM
role in section 7.3.

Select Blueprints.

Search for
blueprint including
keyword canary.

Click the blueprint named
lambda-canary-python3
provided by AWS.

Figure 7.4 Creating a Lambda function based on a blueprint provided by AWS

206 CHAPTER 7 Automating operational tasks with Lambda

Figure 7.6 illustrates the steps to create a basic IAM role granting your Lambda func-
tion write access to CloudWatch logs:

1 Select Create a new IAM role.
2 Keep the role name lambda_basic_execution.
3 Click the Allow button.
4 Select the role lambda_basic_execution from the drop-down list of existing roles.

You have now specified a name and an IAM role for your Lambda function. Next, you
will configure the scheduled event that will trigger your health check repeatedly. We will
use an interval of 5 minutes in this example. Figure 7.7 shows the settings you need.

1 Select Create a new rule to create a scheduled event rule.
2 Type in website-health-check as the name for the rule.
3 Enter a description that will help you to understand what is going on if you

come back later.
4 Select Schedule expression as the rule type. You will learn about the other

option, Event pattern, at the end of this chapter.
5 Use rate(5 minutes) as the schedule expression.
6 Don’t forget to enable the trigger by checking the box at the bottom.

Type in website-health-check to
name your Lambda function.

Select Create a custom role to
define permissions for your
Lambda function.

Figure 7.5 Creating a Lambda function: choose a name and define an IAM role

207Building a website health check with AWS Lambda

You define recurring tasks without the need for a specific time using a schedule expres-
sion in form of rate($value $unit). For example, you could trigger a task every 5 min-
utes, every hour, or once a day. $value needs to be a positive integer value. Use minute,
minutes, hour, hours, day, or days as the unit. For example, instead of triggering the
website health check every 5 minutes, you could use rate(1 hour) as the schedule
expression to execute the health check every hour. Note that frequencies of less than
one minute are not supported.

 It is also possible to use the crontab format when defining a schedule expression.

cron($minutes $hours $dayOfMonth $month $dayOfWeek $year)

Invoke a Lambda function at 08:00am (UTC) everyday
cron(0 8 * * ? *)

Invoke a Lambda function at 04:00pm (UTC) every monday to friday
cron(0 16 ? * MON-FRI *)

Create a new IAM role for the
use with your Lambda function.

Keep the default
name for the
IAM role.

The predefined IAM policy
grants your Lambda function
write access to CloudWatch logs.

Create the IAM role and
go back to the Lambda
function wizard.

Figure 7.6 Creating an IAM role allowing write access to CloudWatch logs for your Lambda function

208 CHAPTER 7 Automating operational tasks with Lambda

See “Schedule Expressions Using Rate or Cron” at http://mng.bz/o35b for more details.
 Your Lambda function is missing an integral part: the code. As you are using a

blueprint, AWS has inserted the Python code implementing the website health check
for you, as shown in figure 7.8.

 The Python code references two environment variables: site and expected. Envi-
ronment variables are commonly used to dynamically pass settings to your function.

 An environment variable consists of a key and a value. Specify the following envi-
ronment variables for your Lambda function:

1 site—Contains the URL of the website you want to monitor. Use
https://cloudonaut.io if you do not have a website to monitor yourself.

2 expected—Contains a text snippet that must be available on your website. If the
function doesn’t find this text, the health check fails. Use cloudonaut if you are
using https://cloudonaut.io as site.

A rule allows you
to trigger your
Lambda function
based on events.

Type in
website-health-check
as the rule’s name.

Add a description
for your rule, helping
you to understand
your setup later.

The scheduled
expression rate
(5 minutes) will
create an event
triggering your
Lambda function
every 5 minutes.

Don’t forget to
enable the trigger.

Figure 7.7 Configuring a scheduled event triggering your Lambda function every 5 minutes

http://mng.bz/o35b
https://cloudonaut.io
https://cloudonaut.io

209Building a website health check with AWS Lambda

The Lambda function is reading the environment variables during its execution:

SITE = os.environment['site']
EXPECTED = os.environment['expected']

After defining the environment variables for your Lambda function, click the Create
function button at the bottom of the screen.

Figure 7.8 The predefined code implementing the website health check and environment variables to
pass settings to the Lambda function

The blueprint uses the runtime
environment Python 3.6.

Environment variables site
and expected are required
by the function.

Insert the URL of the website
you want to check and a keyword
that is expected on that website.

Create your first
Lambda function.

The Python source code
provided by the blueprint

210 CHAPTER 7 Automating operational tasks with Lambda

Congratulations, you have successfully created a Lambda function. Every 5 minutes,
the function is invoked automatically and executes a health check for your website.
Next, you will learn how to monitor your Lambda function and get notified via email
whenever the health check fails.

7.2.2 Use CloudWatch to search through your Lambda function’s logs

How do you know whether your website health check is working correctly? How do you
even know if your Lambda function has been executed? It is time to look at how to mon-
itor a Lambda function. You will learn how to access your Lambda function’s log mes-
sages first. Afterward, you will create an alarm notifying you if your function fails.

 Open the Monitoring tab in the details view of your Lambda function. You will find
a chart illustrating the number of times your function has been invoked. Use the Reload
button of the chart after a few minutes, if the chart isn’t showing any invocations. To go
to your Lambda function’s logs, click View logs in CloudWatch as shown in figure 7.9.

Figure 7.9 Monitoring overview: get insights into your Lambda function’s invocations.

Select the Monitoring tab.

Shows the number
of times your Lambda
function has been
invoked

A chart showing the
duration of each of your
Lambda function’s
invocations

Shows log
messages in
CloudWatch
logs

211Building a website health check with AWS Lambda

By default, your Lambda function sends log messages to CloudWatch. Figure 7.10
shows the log group named /aws/lambda/website-health-check that was created
automatically and collects the logs from your function. Typically, a log group contains
multiple log streams, allowing the log group to scale. Click Search Log Group to view
the log messages from all streams in one view.

 All log messages are presented in the overview of log streams, as shown in figure 7.11.
You should be able to find a log message Check passed! indicating that the website
health check was executed and passed successfully, for example.

Click here to show the
log messages from all log
streams in one place.

A log group typically
contains multiple log
streams.

Log Group contains
all log messages received
from your Lambda function.

Figure 7.10 A log group collects log messages from a Lambda function stored in multiple log streams.

Figure 7.11 CloudWatch shows the log messages of your Lambda function.

Enter a search term to filter all log
messages from your Lambda function.

Website health
check passed

212 CHAPTER 7 Automating operational tasks with Lambda

The log messages show up after a delay of a few minutes. Reload the table if you are
missing any log messages.

 Being able to search through log messages in a centralized place is handy when
debugging Lambda functions, especially if you are writing your own code. When using
Python, you can use print statements or use the logging module to send log mes-
sages to CloudWatch out-of-the-box.

7.2.3 Monitoring a Lambda function with CloudWatch metrics and alarms

The Lambda function checks the health of your website every 5 minutes. A log mes-
sage with the result of each health check is written to CloudWatch. But how do you get
notified via email if the health check fails? Each Lambda function publishes the met-
rics listed in table 7.2 to CloudWatch by default:

Whenever the website health check fails, the Lambda function returns an error,
increasing the count of the Errors metric. You will create an alarm notifying you via
email whenever this metric counts more than 0 errors. In general, we recommend to
create an alarm on the following metrics to monitor your Lambda functions: Errors
and Throttles.

 The following steps guide you through creating a CloudWatch alarm to monitor
your website health checks. Your Management Console still shows the CloudWatch
service. Select Alarms from the sub-navigation menu. Did you create a billing alarm in
chapter 1? If so, the alarm will be listed here. Next, click Create Alarm as shown in fig-
ure 7.12.

 First of all, you need to select the Errors metric for your Lambda function. Click By
Function Name under Lambda. Figure 7.13 shows an overview.

Table 7.2 The CloudWatch metrics published by each Lambda function

Name Description

Invocations Counts the number of times a function is invoked. Includes successful and failed invocations.

Errors Counts the number of times a function failed due to errors inside the function. For exam-
ple, exceptions or timeouts.

Duration Measures how long the code takes to run, from the time when the code starts executing
to when it stops executing.

Throttles As discussed at the beginning of the chapter, there is a limit for how many copies of your
Lambda function are running at one time. This metric counts how many invocations have been
throttled due to reaching this limit. Contact AWS support to increase the limit if needed.

213Building a website health check with AWS Lambda

Create a CloudWatch alarm to
monitor your Lambda function.

Go to Alarms.

Figure 7.12 Starting the wizard to create a CloudWatch alarm to monitor a Lambda function

Select the CloudWatch metrics
reported by your Lambda function.

Figure 7.13 Selecting the Lambda metric to create an alarm

214 CHAPTER 7 Automating operational tasks with Lambda

The next step is to select and prepare the metric for the alarm. Figure 7.14 shows the
necessary steps:

1 Search for metrics belonging to your Lambda function website-health-check.
2 Select the Errors metric.
3 For the statistics, use Sum. This will set the alarm to trigger based on the total

number of errors.
4 Choose 5 minutes for how often the alarm is updated (the time bucket).
5 Select a timespan from 5 minutes ago to now.
6 Click the Next button to proceed with the next step.

Figure 7.14 Selecting and preparing the metric view for the alarm

Search for metrics belonging
to your Lambda function
website-health-check.

Select the Errors
metric of your
Lambda function.

Add up the error
count into 5 minute
time buckets.

Show data from
the last 5 minutes.

Proceed with
the next step of
creating an alarm.

Use statistic Sum to define
an alarm based on the total
number of errors.

215Building a website health check with AWS Lambda

To create the alarm you need to define a name, a threshold, and the actions to be per-
formed. Figure 7.15 shows the details.

1 Type in website-health-check-error as Name for the alarm.
2 Define a Description for the alarm.
3 Specify a threshold for the alarm. Use the drop-down boxes to set up the alarm

like this: Whenever Errors is > 0 for 1 out of 1 datapoints.
4 Keep the default State is ALARM for the action.
5 Create a new notification list by clicking New List and typing in website-

health-check as the name for the list.
6 Enter your email into the Email list.
7 Click the Create Alarm button.

Figure 7.15 Creating an alarm by defining a threshold and defining an alarm action to
send notifications via email

Type in a name
for the alarm.

Type in a
description
for the alarm.

Create a new
notification list.

Enter
your email.

Create
the alarm.

Alarm when metric
contains more than 0
errors for the first time.

216 CHAPTER 7 Automating operational tasks with Lambda

As shown in figure 7.16, you will be sent an email including a confirmation link.
Check your inbox and click the link to confirm your subscription to the notification
list. Afterward, click the View Alarm button.

 You will receive an alarm via email whenever your website health check fails. As you
probably do not want to take down your website just so you can check that the alarm,
you could change the function’s environment variables. For example, you could
change the expected value to a text snippet that your website does not include. A few
minutes after changing the environment variable, you will receive an alarm via email.

That’s it. View
your alarm.

You received an email. Click
the included link to confirm
the subscription to the
alarm topic.

Figure 7.16 Check your inbox and confirm your subscription to the notification list.

Cleaning up
Open your Management Console and follow these steps to delete all the resources
you have created during this section.

1 Go to the AWS Lambda service and delete the function named website-
health-check.

2 Open the AWS CloudWatch service, select Logs from the sub-navigation menu,
and delete the log group /aws/lambda/website-health-check.

3 Go to the AWS CloudWatch service, select Events from the sub-navigation
menu, and delete the rule website-health-check.

4 Select Alarms from the sub navigation, and delete the alarm website-
health-check-error.

5 Jump to the AWS IAM service, select Roles from the sub-navigation menu,
and delete the role lambda_basic_execution.

217Building a website health check with AWS Lambda

7.2.4 Accessing endpoints within a VPC

As illustrated in figure 7.17, Lambda functions run outside your networks defined
with VPC by default. However, Lambda functions are connected to the internet and
therefore able to access other services. That’s exactly what you have been doing when
creating a website health check: the Lambda function was sending HTTP requests
over the internet.

So what do you do when you have to reach a resource running in a private network
within your VPC? For example, if you want to run a health check for an internal web-
site? If you add network interfaces to your Lambda function, the function can access
resources within your VPCs as shown in figure 7.18.

 To do so you have to define the VPC, the subnets, as well as security groups for
your Lambda function. See “Configuring a Lambda Function to Access Resources in
an Amazon VPC” at http://docs.aws.amazon.com/lambda/latest/dg/vpc.html for
more details. We have been using the ability to access resources within a VPC to access
databases in various projects.

Accessing any kind of
resources is possible as
long as they are reachable
from the internet.

The internet is accessible
for each Lambda function
by default.

Some AWS services are
accessible via internet
(e.g., CloudWatch,
DynamoDB).

Lambda
function

Internet

Figure 7.17 By default a Lambda function is connected to the internet
and running outside your VPCs.

http://docs.aws.amazon.com/lambda/latest/dg/vpc.html

218 CHAPTER 7 Automating operational tasks with Lambda

AWS recommends placing a Lambda function in a VPC only when absolutely neces-
sary to reach a resource that is not accessible otherwise. Placing a Lambda function in
a VPC increases complexity, especially when scaling to a large number of concurrent
executions. For example, the number of available private IP addresses in a VPC is lim-
ited, but a Lambda function will need multiple private IP addresses to be able to scale
the number of concurrent invocations.

7.3 Adding a tag containing the owner of an EC2 instance
automatically
After using one of AWS’s predefined blueprints to create a Lambda function, you will
implement a Lambda function from scratch in this section. We are strongly focused
on setting up your cloud infrastructure in an automated way. That’s why you will learn
how to deploy a Lambda function and all its dependencies without needing the Man-
agement Console.

 Are you working in an AWS account together with your colleagues? Have you ever
wondered who launched a certain EC2 instance? Sometimes you need to find out the
owner of an EC2 instance for the following reasons:

A Lambda function deployed
into a private network (VPC)

The Lambda function is able
to access internal resources
like virtual machines or
databases.

Accessing resources over
the internet is still possible.

Lambda
function

Internet
gateway

DatabaseVirtual
machine

Figure 7.18 Deploying a Lambda function into your VPC allows you to access internal resources
(such as database, virtual machines, and so on).

219Adding a tag containing the owner of an EC2 instance automatically

 Double-checking if it is safe to terminate an unused instance without losing rel-
evant data.

 Reviewing changes to an instance’s configuration with its owner (such as mak-
ing changes to the firewall configuration).

 Attributing costs to individuals, projects, or departments.
 Restricting access to an instance (for example, so only the owner is allowed to

terminate an instance).

Adding a tag that states who owns an instance solves all these use cases. A tag can be added
to an EC2 instance or almost any other AWS resource, and consists of a key and a value.
Tags can be used to add information to a resource, filter resources, attribute costs to
resources, as well as to restrict access. See “Tagging Your Amazon EC2 Resources” at
http://mng.bz/pEJN for more details.

 It is possible to add tags specifying the owner of an EC2 instance manually. But
sooner or later, someone will forget to add the owner tag. There is a better solution
for that! You will implement and deploy a Lambda function that adds a tag containing
the name of the user who launched an EC2 instance automatically in the following
section. But how do you execute a Lambda function every time an EC2 instance is
launched, so that you can add the tag?

7.3.1 Event-driven: Subscribing to CloudWatch events

CloudWatch consists of multiple parts. You have already learned about metrics,
alarms, and logs during this chapter. Another feature built into CloudWatch is called
events. Whenever something changes in your infrastructure, an event is generated in
near real-time:

 CloudTrail emits an event for every call to the AWS API.
 EC2 emits events whenever the state of an EC2 instances changes (such as when

the state changes from pending to running).
 AWS emits an event to notify you of service degradations or downtimes.

Whenever you launch a new EC2 instance, you are sending a call to the AWS API. Sub-
sequently, CloudTrail generates a CloudWatch event. Our goal is to add a tag to every
new EC2 instance. Therefore, we are executing a function for every event that indi-
cates the launch of a new EC2 instance. To trigger a Lambda function whenever such
an event occurs, you need a rule. As illustrated in figure 7.19, the rule matches incom-
ing events and routes them to a target, a Lambda function in our case.

http://mng.bz/pEJN

220 CHAPTER 7 Automating operational tasks with Lambda

Listing 7.1 shows some of the event details generated by CloudTrail whenever someone
launches an EC2 instance. For our case, we’re interested in the following information:

 detail-type—The event has been created by CloudTrail.
 source—The EC2 service is the source of the event.
 eventName—The event name RunInstances indicates that the event was gener-

ated because of an AWS API call launching an EC2 instance.
 userIdentity—Who called the AWS API to launch an instance?
 responseElements—The response from the AWS API when launching an

instance. This includes the ID of the launched EC2 instance that we will need to
add a tag to the instance later.

{
"version": "0",
"id": "8a50bfef-33fd-2ea3-1056-02ad1eac7210",
"detail-type": "AWS API Call via CloudTrail",
"source": "aws.ec2",
"account": "XXXXXXXXXXX",
"time": "2017-11-30T09:51:25Z",
"region": "us-east-1",
"resources": [],
"detail": {

"eventVersion": "1.05",
"userIdentity": {

Listing 7.1 CloudWatch event generated by CloudTrail when launching an EC2 instance

A Lambda function
deployed into a private
network (VPC)

Triggers
the Lambda
function

Routes events to
a target based on
a set of rules

Generates an event for
every AWS API call (e.g.,
launch EC2 instance)

Target = Lambda functionRuleEvent

Cloud trail

Figure 7.19 CloudTrail generates an event for every AWS API call, a
rule routes the event to the Lambda function

CloudTrail generated
the event

Someone sent a call to the AWS
API affecting the EC2 service.

Information about the user who
launched the EC2 instance

221Adding a tag containing the owner of an EC2 instance automatically

"type": "IAMUser",
"principalId": "...",
"arn": "arn:aws:iam::XXXXXXXXXXXX:user/myuser",
"accountId": "XXXXXXXXXXXX",
"accessKeyId": "...",
"userName": "myuser",
"sessionContext": {

"attributes": {
"mfaAuthenticated": "false",
"creationDate": "2017-11-30T09:51:05Z"

}
},
"invokedBy": "signin.amazonaws.com"

},
"eventTime": "2017-11-30T09:51:25Z",
"eventSource": "ec2.amazonaws.com",
"eventName": "RunInstances",
"awsRegion": "us-east-1",
"sourceIPAddress": "XXX.XXX.XXX.XXX",
"userAgent": "signin.amazonaws.com",
"requestParameters": {

[...]
},
"responseElements": {

"requestId": "327f5231-c65a-468c-83a8-b00b7c949f78",
"reservationId": "r-0234df5d03e3ad6a5",
"ownerId": "XXXXXXXXXXXX",
"groupSet": {},
"instancesSet": {

"items": [
{

"instanceId": "i-06133867ab0f704e7",
"imageId": "ami-55ef662f",
[...]

}
]

}
},
"requestID": "327f5231-c65a-468c-83a8-b00b7c949f78",
"eventID": "134d35c6-6a76-49b9-9ff8-5a4130474b6f",
"eventType": "AwsApiCall"

}
}

A rule consists of an event pattern for selecting events, along with a definition of one
or multiple targets. The following pattern selects all events from CloudTrail generated
by an AWS API call affecting the EC2 service. The pattern matches three attributes
from the event described in listing 7.1: detail-type, source, and eventName.

{
"detail-type": [

"AWS API Call via CloudTrail"

Listing 7.2 Rule to filter events from CloudTrail

ID of the user who
launched the EC2 instance

Event was generated because
a RunInstances call (used to
launch an EC2 instance) was
processed by the AWS API.

Response of the AWS API when
launching the instance

ID of the launched
EC2 instance

Filter events from CloudTrail
caused by AWS API calls.

222 CHAPTER 7 Automating operational tasks with Lambda

],
"source": [

"aws.ec2"
],
"detail": {

"eventName": [
"RunInstances"

]
}

}

Defining filters on other event attributes is possible as well, in case you are planning to
write another rule in the future. The rule format stays the same.

 When specifying an event pattern, we typically use the following fields, which are
included in every event:

 source—The namespace of the service which generated the event. See “Amazon
Resource Names (ARNs) and AWS Service Namespaces” at http://mng.bz/
GFGm for details.

 detail-type—Categorizes the event in more detail.

See “Event Patterns in CloudWatch Events” at http://mng.bz/37Ux for more detailed
information.

 You have now defined the events that will trigger your Lambda function. Next, you
will implement the Lambda function.

7.3.2 Implementing the Lambda function in Python

Implementing the Lambda function to tag an EC2 instance with the owner’s user
name is simple. You will need to write no more than 10 lines of Python code. The pro-
gramming model for a Lambda function depends on the programming language you
choose. Although we are using Python in our example, you will be able to apply what
you’ve learned when implementing a Lambda function in Java, Node.js, C#, or Go. As
shown in the next listing, your function written in Python needs to implement a well-
defined structure.

def lambda_handler(event, context):
Insert your code
return

Listing 7.3 Lambda function written in Python

Filter events from the EC2 service.

Filter events with event name RunInstances, which
is the AWS API call to launch an EC2 instance.

The name of the Python function, which is referenced by the AWS
Lambda as the function handler. The event parameter is used to
pass the CloudWatch event and the context parameter includes

runtime information.It is your job
to implement
the function.

Use return to end the function execution. It is not useful to
hand over a value in this scenario, as the Lambda function is
invoked asynchronously by a CloudWatch event.

http://mng.bz/GFGm
http://mng.bz/GFGm
http://mng.bz/GFGm
http://mng.bz/37Ux

223Adding a tag containing the owner of an EC2 instance automatically

Time to write some Python code! The following listing for lambda_function.py shows
the function, which receives an event from CloudTrail indicating that an EC2 has
been launched recently, and adds a tag including the name of the instance’s owner.
The AWS SDK for Python 3.6, named boto3, is provided out-of-the-box in the Lambda
runtime environment for Python 3.6. In this example you are using the AWS SDK to
create a tag for the EC2 instance ec2.create_tags(...). See the Boto 3 Documenta-
tion at https://boto3.readthedocs.io/en/latest/index.html if you are interested in
the details of boto3.

import boto3
ec2 = boto3.client('ec2')

def lambda_handler(event, context):

userName = event['detail']['userIdentity']['arn'].split('/')[1]
instanceId = event['detail']['responseElements']

➥ ['instancesSet']['items'][0]['instanceId']
print("Adding owner tag " + userName + " to instance " + instanceId + ".")
ec2.create_tags(Resources=[instanceId,],

➥ Tags=[{'Key': 'Owner', 'Value': userName},])
return

After implementing your function in Python, the next step is to deploy the Lambda
function with all its dependencies.

7.3.3 Setting up a Lambda function with the Serverless Application Model (SAM)

You have probably noticed that we are huge fans of automating infrastructures with
CloudFormation. Using the Management Console is a perfect way to take the first step
when learning about a new service on AWS. But leveling up from manually clicking
through a web interface to fully automating the deployment of your infrastructure
should be your second step.

 AWS released the Serverless Application Model (SAM) in 2016. SAM provides a frame-
work for serverless applications, extending plain CloudFormation templates to make
it easier to deploy Lambda functions.

Listing 7.4 Lambda function adding a tag to EC2 instance

Where is the code located?
As usual, you’ll find the code in the book’s code repository on GitHub: https://github
.com/AWSinAction/code2. Switch to the chapter07 directory, which includes all files
needed for this example.

Creates an AWS SDK client to
manage the EC2 service The name of the

function used as
entry point for the

Lambda function

Extracts the
user’s name

from the
CloudTrail

event

Extracts the
instance’s DI from the

CloudTrail eventAdds a tag to the EC2 instance using the
key owner and the user’s name as value

https://boto3.readthedocs.io/en/latest/index.html
https://github.com/AWSinAction/code2
https://github.com/AWSinAction/code2
https://github.com/AWSinAction/code2

224 CHAPTER 7 Automating operational tasks with Lambda

 This listing shows how to define a Lambda function using SAM and a CloudForma-
tion template.

AWSTemplateFormatVersion: '2010-09-09'
Description: Adding an owner tag to EC2 instances automatically
Transform: AWS::Serverless-2016-10-31
Resources:

EC2OwnerTagFunction:
Type: AWS::Serverless::Function
Properties:

Handler: lambda_function.lambda_handler
Runtime: python3.6
CodeUri: '.'
Policies:
- Version: '2012-10-17'
 Statement:
 - Effect: Allow

 Action: 'ec2:CreateTags'
 Resource: '*'

Events:
CloudTrail:

Type: CloudWatchEvent
Properties:
 Pattern:

 detail-type:
 - 'AWS API Call via CloudTrail'
 source:
 - 'aws.ec2'
 detail:
 eventName:
 - 'RunInstances'

7.3.4 Authorizing a Lambda function to use other AWS services with an IAM role

Lambda functions typically interact with other AWS services. For instance, they might
write log messages to CloudWatch allowing you to monitor and debug your Lambda
function. Or they might create a tag for an EC2 instance, as in the current example.
Therefore, calls to the AWS APIs need to be authenticated and authorized. Figure 7.20
shows a Lambda function assuming an IAM role to be able to send authenticated and
authorized requests to other AWS services.

 Temporary credentials are generated based on the IAM role and injected into
each invocation via environment variables (such as AWS_ACCESS_KEY_ID, AWS_SECRET
_ACCESS_KEY, AWS_ACCESS_KEY_ID). Those environment variables are used by the AWS
SDK to sign requests automatically.

 You should follow the least-privilege principle: your function should only be
allowed to access services and actions that are needed to perform the function’s task.

Listing 7.5 Defining a Lambda function with SAM within a CloudFormation template

The CloudFormation
template version

Transforms are
used to process
your template.

We’re using the
SAM

transformation.
A SAM special resource allows us to
define a Lambda function in a simplified
way. CloudFormation will generate
multiple resources out of this declaration
during the transformation phase.

The handler is a
combination your

script’s filename and
Python function name.

Use the Python
3.6 runtime

environment.

The current directory shall be bundled,
uploaded, and deployed. You will learn
more about that soon.

Authorizes the Lambda function to call
other AWS services. More on that next.

The definition of the triggers

We are
subscribing to

CloudWatch
events.

Creates a rule with the pattern
we talked about before

225Adding a tag containing the owner of an EC2 instance automatically

You should specify a detailed IAM policy granting access to specific actions and
resources.

 Listing 7.6 shows an excerpt from the Lambda function’s CloudFormation tem-
plate based on SAM. When using SAM, an IAM role is created for each Lambda func-
tion by default. A managed policy that grants write access to CloudWatch logs is
attached to the IAM role by default as well. Doing so allows the Lambda function to
write to CloudWatch logs.

 So far the Lambda function is not allowed to create a tag for the EC2 instance. You
need a custom policy granting access to the ec2:CreateTags.

[...]
EC2OwnerTagFunction:

Type: AWS::Serverless::Function
Properties:

Handler: lambda_function.lambda_handler
Runtime: python3.6
CodeUri: '.'
Policies:
- Version: '2012-10-17'

Statement:
- Effect: Allow

Action: 'ec2:CreateTags'
Resource: '*'

[...]

Listing 7.6 A custom policy for adding tags to EC2 instances

The Lambda
function assumes
an IAM role.

Authenticated
and authorized
request

The Lambda function makes
use of other AWS services
as well. For example,
CloudWatch logs.

An IAM policy attached to the
role defines the services and
actions the Lambda function
is allowed to access.

Lambda
function

Other AWS services

IAM
role

Figure 7.20 A Lambda function assumes an IAM role to authenticate and authorize
requests to other AWS services.

Lets you define your own custom
IAM policy that will be attached to
the Lambda function’s IAM role

The
statement

allows ...
...creating tags

...for all
resources.

226 CHAPTER 7 Automating operational tasks with Lambda

In case you implement another Lambda function in the future, make sure you create
an IAM role granting access to all the services your function needs to access (such as
reading objects from S3, writing data to a DynamoDB database, and so on). Revisit
section 6.3 if you want to recap the details of IAM.

7.3.5 Deploying a Lambda function with SAM

To deploy a Lambda function, you need to upload the deployment package to S3. The
deployment package is a zip file including your code as well as additional modules.
Afterward, you need to create and configure the Lambda function as well as all the
dependencies (the IAM role, event rule, and so on). Using SAM in combination with
the AWS CLI allows you to accomplish both tasks.

 First of all you, need to create an S3 bucket to store your deployment packages.
Use the following command, replacing $yourname with your name to avoid name con-
flicts with other readers.

$ aws s3 mb s3://ec2-owner-tag-$yourname

The next step is to create the deployment package and upload the package to S3. Exe-
cute the following command in your terminal to do so. A copy of your template is
stored as output.yaml, with a reference to the deployment package uploaded to S3.

$ aws cloudformation package --template-file template.yaml \

➥ --s3-bucket ec2-owner-tag-$yourname --output-template-file output.yaml

By typing in the following command in your terminal, you are deploying the Lambda
function. This results in a CloudFormation stack named ec2-owner-tag. Make sure
your working directory is the code directory chapter07 containing the template.yaml
and lambda_function.py files.

$ aws cloudformation deploy --stack-name ec2-owner-tag \

➥ --template-file output.yaml --capabilities CAPABILITY_IAM

You are a genius! Your Lambda function is up and running. Launch an EC2 instance
and you will find a tag with your user name myuser attached after a few minutes.

Cleaning up
If you have launched an EC2 instance to test your Lambda function, don’t forget to
terminate the instance afterward.

Otherwise it is quite simple to delete the Lambda function and all its dependencies. Just
execute the following command in your terminal. Replace $yourname with your name.

$ aws cloudformation delete-stack --stack-name ec2-owner-tag

$ aws s3 rb s3://ec2-owner-tag-$yourname --force

227What else can you do with AWS Lambda?

7.4 What else can you do with AWS Lambda?
In the last part of the chapter, we would like to share what else is possible with AWS
Lambda, starting with Lambda’s limitations and insights into the serverless pricing
model. We will end with three use cases for serverless applications we have built for
our consulting clients.

7.4.1 What are the limitations of AWS Lambda?

Each invocation of your Lambda function needs to complete within a maximum of 300
seconds. This means the problem you are solving with your function needs to be small
enough to fit into the 300-second limit. It is probably not possible to download 10 GB
of data from S3, process the data, and insert parts of the data into a database within a
single invocation of a Lambda function. But even if your use case fits into the 300-
second constraint, make sure that it does under all circumstances. Here’s a short
anecdote from one of our first serverless projects: We built a serverless application that
pre-processed analytics data from news sites. The Lambda functions typically processed
the data within less than 180 seconds. But when the 2017 U.S. elections came, the
volume of the analytics data exploded in a way no one expected. Our Lambda
functions were no longer able to complete within 300 seconds. A show stopper for our
serverless approach.

 AWS Lambda provisions and manages the resources needed to run your function.
A new execution context is created in the background every time you deploy a new
version of your code, go a long time without any invocations, or when the number of
concurrent invocations increases. Starting a new execution context requires AWS
Lambda to download your code, initialize a runtime environment, and load your
code. This process is called a cold-start. Depending on the size of your deployment
package, the runtime environment, and your configuration, a cold-start could take
from a few milliseconds to a few seconds. Therefore, applications with very strict
requirements concerning response times are not good candidates for AWS Lambda.
Conversely, there are a lot of use cases where the additional latency caused by a cold-
start is acceptable. For example, the two examples in this chapter are not affected by a
cold-start at all. To minimize cold-start times, you should keep the size of your deploy-
ment package as small as possible, provision additional memory, and use a runtime
environment like Python, Node.js, or Go instead of C# or Java.

 Another limitation is the maximum amount of memory you can provision for a
Lambda function: 3008 MB. If your Lambda function uses more memory, its execu-
tion will be terminated.

 It is also important to know that CPU and networking capacity are allocated to a
Lambda function based on the provisioned memory as well. So if you are running
computing or network-intensive work within a Lambda function, increasing the provi-
sioned memory will probably improve performance.

228 CHAPTER 7 Automating operational tasks with Lambda

 At the same time, the default limit for the maximum size of the compressed
deployment package (zip file) is 50 MB. When executing your Lambda function, you
can use up to 500 MB non-persistent disk space mounted to /tmp.

 Look at “AWS Lambda Limits” at http://docs.aws.amazon.com/lambda/latest/
dg/limits.html if you want to learn more about Lambda’s limitations.

7.4.2 Impacts of the serverless pricing model

When launching a virtual machine, you have to pay AWS for every operating hour,
billed in second-intervals. You are paying for the machines no matter if you are using
the resource they provide. Even when nobody is accessing your website or using your
application, you are paying for the virtual machine.

 That’s totally different with AWS Lambda. Lambda is billed per request. Costs
occur only when someone accesses your website or uses your application. That’s a
game changer, especially for applications with uneven access patterns, or for applica-
tions that are used rarely. Table 7.3 explains the Lambda pricing model in detail.

Sounds complicated? Figure 7.21 shows an excerpt of an AWS bill. The bill is from
November 2017, and belongs to an AWS account we are using to run a chatbot (see
marbot.io). Our chatbot implementation is 100% serverless. The Lambda functions
were executed 1.2 million times in November 2017, which results in a charge of
$0.04 USD. All our Lambda functions are configured to provision 1536 MB mem-
ory. In total, all our Lambda functions have been running for 216,000 seconds,
roundabout 60 hours in November 2017. That’s still within the Free Tier of 400,000
seconds with 1 GB provisioned memory every month. So in total we had to pay $0.04
for using AWS Lambda in November 2017, which allowed us to serve around 400
customers with our chatbot.

Table 7.3 AWS Lambda pricing model

Free Tier Occurring costs

Number of Lambda function
invocations

First 1 million requests every month $0.0000002 USD per
request

Duration billed in 100 ms incre-
ments based on the amount of
memory you provisioned for your
Lambda function

Using the equivalent of 400,000
seconds of a Lambda function with
1 GB provisioned memory every
month

$0.00001667 USD for using
1 GB for one second

Free Tier for AWS Lambda
The Free Tier for AWS Lambda does not expire after 12 months. That’s a huge differ-
ence compared to the Free Tier of other AWS services (such as EC2) where you are
only eligible for the Free Tier within the first 12 month after creating an AWS account.

http://docs.aws.amazon.com/lambda/latest/dg/limits.html
http://docs.aws.amazon.com/lambda/latest/dg/limits.html
http://docs.aws.amazon.com/lambda/latest/dg/limits.html
https://marbot.io

229What else can you do with AWS Lambda?

This is only a small piece of our AWS bill, as other services used together with AWS
Lambda, for example to store data, add more significant costs to our bill.

 Don’t forget to compare costs between AWS Lambda and EC2. Especially in a high-
load scenario with more than 10 million requests per day, using AWS Lambda will
probably result in higher costs compared to using EC2. But comparing infrastructure
costs is only one part of what you should be looking at. Consider the total cost of own-
ership (TOC), including costs for managing your virtual machines, performing load
and resilience tests, and automating deployments as well.

 Our experience has shown that the total cost of ownership is typically lower when
running an application on AWS Lambda compared to Amazon EC2.

 The last part of the chapter focuses on additional use cases for AWS Lambda
besides automating operational tasks, as you have done thus far.

7.4.3 Use case: Web application

A common use case for AWS Lambda is building a back end for a web or mobile appli-
cation. As illustrated in figure 7.22, an architecture for a serverless web application
typically consists of the following building blocks:

 Amazon API Gateway—Offers a scalable and secure REST API that accepts
HTTPS requests from your web application’s front end or mobile application.

 AWS Lambda—Lambda functions are triggered by the API gateway. Your
Lambda function receives data from the request and returns the data for the
response.

 Object store and NoSQL database—For storing and querying data, your Lambda
functions typically use additional services offering object storage or NoSQL
databases, for example.

Do you want to get started building web applications based on AWS Lambda? We rec-
ommend AWS Lambda in Action from Danilo Poccia, (Manning, 2016).

Figure 7.21 Excerpt from our AWS bill from November 2017 showing costs for AWS Lambda

230 CHAPTER 7 Automating operational tasks with Lambda

7.4.4 Use case: Data processing

Another popular use case for AWS Lambda is event-driven data processing. Whenever
new data is available, an event is generated. The event triggers the data processing
needed to extract or transform the data. Figure 7.23 shows an example.

1 The load balancer collects access logs and uploads them to an object store
periodically.

2 Whenever an object is created or modified, the object store triggers a Lambda
function automatically.

3 The Lambda function downloads the file including the access logs from the object
store, and sends the data to an Elasticsearch database to be available for analytics.

We have successfully implemented this scenario in various projects. Keep in mind the
maximum execution limit of 300 seconds when implementing data processing jobs
with AWS Lambda.

Implementing the
functionality of your
web application in
Lambda functions

Offering a scalable
and secure REST API
accepting HTTPS
requests

Sends an HTTPS request
to the API Gateway

Invokes a Lambda
function

Lambda
function

API
Gateway

Object
store

NoSQL
database

Figure 7.22 A web application build with API Gateway and Lambda

Triggers the Lambda function
whenever a file including access
logs is created or modified

Publishes access logs to
the object store periodically

Sends data to Elasticsearch
to be available for analytics

Lambda
function

ElasticsearchObject
store

Load
balancer

Figure 7.23 Processing access logs from a load balancer with AWS Lambda

231Summary

7.4.5 Use case: IoT back end

The AWS IoT service provides building blocks needed to communicate with various
devices (things) and build event-driven applications. Figure 7.24 shows an example.
Each thing publishes sensor data to a message broker. A rule filters the relevant mes-
sages and triggers a Lambda function. The Lambda function processes the event and
decides what steps are needed based on business logic you provide.

We built a proof-of-concept for collecting sensor data and publishing metrics to a
dashboard with AWS IoT and AWS Lambda, for example.

 We have gone through three possible use cases for AWS Lambda, but we haven’t
covered all of them. AWS Lambda is integrated with many other services as well. If you
want to learn much more about AWS Lambda, we recommend the following books:

 AWS Lambda in Action by Danilo Poccia (Manning, 2016) is an example-driven
tutorial that teaches how to build applications using an event-based approach
on the back end.

 Serverless Architectures on AWS by Peter Sbarski (Manning, 2017) teaches how to
build, secure, and manage serverless architectures that can power the most
demanding web and mobile apps.

Summary
 AWS Lambda allows you to run your Java, Node.js, C#, Python, and Go code

within a fully managed, highly available, and scalable environment.
 The Management Console and blueprints offered by AWS help you to get

started quickly.
 By using a schedule expression, you can trigger a Lambda function periodically.

This is comparable to triggering a script with the help of a cron job.

The rule filters relevant
messages and triggers the
Lambda function.

The thing publishes sensor
data to the message broker
via MQTT.

Your Lambda function is
invoked and the message
including the sensor data
is handed over.

Lambda
function

RuleMessage
broker

Thing

Figure 7.24 Processing access logs from a load balancer with AWS Lambda

232 CHAPTER 7 Automating operational tasks with Lambda

 The Serverless Application Model (SAM) enables you to deploy a Lambda func-
tion in an automated way with AWS CloudFormation.

 There are many event sources for using Lambda functions in an event-driven
way. For example, you can subscribe to events triggered by CloudTrail for every
request you send to the AWS API.

 The most important limitation of a Lambda function is the maximum duration
of 300 seconds per invocation.

Part 3

Storing data in the cloud

There is one guy called Singleton in your office who knows all about your
file server. If Singleton is out of office, no one else can maintain the file server.
As you can imagine, while Singleton is on holiday, the file server crashes. No one
else knows where the backup is located, but the boss needs the document now or
the company will lose a lot of money. If Singleton had stored his knowledge in a
database, coworkers could look up the information. But because the knowledge
and Singleton are tidily coupled, the information is unavailable.

 Imagine a virtual machine where important files are located on hard disk. As
long as the virtual machine is up and running, everything is fine. But everything
fails all the time, including virtual machines. If a user uploads a document on
your website, where is it stored? Chances are high that the document is persisted
to hard disk on the virtual machine. Let’s imagine that the document was
uploaded to your website but persisted as an object in an independent object
store. If the virtual machine fails, the document will still be available. If you need
two virtual machines to handle the load on your website, they both have access
to that document because it is not tightly coupled with a single virtual machine.
If you separate your state from your virtual machine, you will be able to become
fault-tolerant and elastic. Let highly specialized solutions like object stores and
databases persist your state.

 AWS offers many ways to store your data. The following table helps to decide
which service to use for your data on a high level. The comparison is only a
rough overview. We recommend that you choose 2–3 services that best fit your
use case and then jump into the details by reading the chapters to make your
decision.

Chapter 8 will introduce S3, a service offering object storage. You will learn how to
integrate the object storage into your applications to implement a stateless server.

 Chapter 9 is about block-level storage for virtual machines offered by AWS. You will
learn how to operate legacy software on block-level storage.

 Chapter 10 covers highly available block-level storage that can be shared across
multiple virtual machines offered by AWS.

 Chapter 11 introduces RDS, a service that offers managed relational database sys-
tems like PostgreSQL, MySQL, Oracle, or Microsoft SQL server. If your applications
use such a relational database system, this is an easy way to implement a stateless
server architecture.

 Chapter 12 introduces ElastiCache, a service that offers managed in-memory data-
base systems like Redis or Memcached. If your applications need to cache data, you
can use an in-memory database to externalize ephemeral state.

 Chapter 13 will introduce DynamoDB, a service that offers a NoSQL database. You
can integrate this NoSQL database into your applications to implement a stateless
server.

Overview of data storage services

Service Access
Maximum

storage volume
Latency Storage cost

S3 AWS API (SDKs, CLI), third
party tools

unlimited high very low

Glacier S3, AWS API (SDKs, CLI),
third party tools

unlimited extreme high extreme low

EBS (SSD) Attached to an EC2 instance
via network

16 TB low low

EC2 Instance
Store (SSD)

Attached to an EC2 instance
directly

15 TB very low very low

EFS NFSv4.1, for example from
EC2 instance or on-premises

unlimited medium medium

RDS (MySQL, SSD) SQL 6 TB medium low

ElastiCache Redis / memcached protocol 6.5 TB low high

DynamoDB AWS API (SDKs, CLI) unlimited medium medium

235

Storing your objects:
 S3 and Glacier

Storing data comes with two challenges: ever-increasing volumes of data and ensur-
ing durability. Solving the challenges is hard or even impossible if using disks
connected to a single machine. For this reason, this chapter covers a revolutionary
approach: a distributed data store consisting of a large number of machines
connected over a network. This way, you can store near-unlimited amounts of data
by adding additional machines to the distributed data store. And since your data
is always stored on more than one machine, you reduce the risk of losing that
data dramatically.

 You will learn about how to store images, videos, documents, executables, or any
other kind of data on Amazon S3 in this chapter. Amazon S3 is a simple-to-use, fully
managed distributed data store provided by AWS. Data is managed as objects, so

This chapter covers
 Transferring files to S3 using the terminal

 Integrating S3 into your applications with SDKs

 Hosting a static website with S3

 Diving into the internals of the S3 object store

236 CHAPTER 8 Storing your objects: S3 and Glacier

the storage system is called an object store. We will show you how to use S3 to back up
your data, how to integrate S3 into your own application for storing user-generated
content, as well as how to host static websites on S3.

 On top of that, we will introduce Amazon Glacier, a backup and archiving store.
On one hand, storing data on Amazon Glacier costs less than storing data on Amazon
S3. Conversely, retrieving data from Amazon Glacier takes up to 5 hours, compared to
immediate access from Amazon S3.

8.1 What is an object store?
Back in the old days, data was managed in a hierarchy consisting of folders and files.
The file was the representation of the data. In an object store, data is stored as objects.
Each object consists of a globally unique identifier, some metadata, and the data itself,
as figure 8.1 illustrates. An object’s globally unique identifier (GUID) is also known as its
key; you can address the object from different devices and machines in a distributed
system using the GUID.

You can use metadata to enrich an object with additional information. Typical exam-
ples for object metadata are:

Examples are 100% covered by Free Tier
The examples in this chapter are completely covered by the Free Tier. As long as you
don’t run the examples longer than a few days, you won’t pay anything. Keep in mind
that this only applies if you created a fresh AWS account for this book and nothing
else is going on in your AWS account. Try to complete the chapter within a few days;
you’ll clean up your account at the end.

Object

Globally unique key

Metadata
Access control

File type
Tags
Size

Creation date

Data
HTML and CSS
Image and video

JSON
Executable

BLOB

Object

/awsinaction/img/cloud.png

Metadata
Public read
Image/png

Cloud,nature
20 KB

2015-01-01

Data

Figure 8.1 Objects stored in an object store have three parts: a unique ID, metadata
describing the content, and the content itself (such as an image).

237Amazon S3

 Date of last modification
 Object size
 Object’s owner
 Object’s content type

It is possible to request only an object’s metadata without requesting the data itself.
This is useful if you want to list objects and their metadata before accessing a specific
object’s data.

8.2 Amazon S3
Amazon S3 is a distributed data store, and one of the oldest services provided by AWS.
Amazon S3 is an acronym for Amazon Simple Storage Service. It’s a typical web service that
lets you store and retrieve data organized as objects via an API reachable over HTTPS.

 Here are some typical use cases:

 Storing and delivering static website content. For example, our blog cloud-
onaut.io is hosted on S3.

 Backing up data. For example, Andreas backs up his photo library from his
computer to S3 using the AWS CLI.

 Storing structured data for analytics, also called a data lake. For example, I use
S3 to store JSON files containing the results of performance benchmarks.

 Storing and delivering user-generated content. For example, I built a web appli-
cation—with the help of the AWS SDK—that stores user uploads on S3.

Amazon S3 offers unlimited storage space, and stores your data in a highly available
and durable way. You can store any kind of data, such as images, documents, and
binaries, as long as the size of a single object doesn’t exceed 5 TB. You have to pay for
every GB you store in S3, and you also incur costs for every request and for all
transferred data. As figure 8.2 shows, you can access S3 via the internet using HTTPS
to upload and download objects. To access S3 you can use the Management Console,
the CLI, SDKs, or third-party tools.

S3 uses buckets to group objects. A bucket is a container for objects. You can create
multiple buckets, each of which has a globally unique name, to separate data for
different scenarios. By unique we really mean unique—you have to choose a bucket
name that isn’t used by any other AWS customer in any other region. Figure 8.3 shows
the concept.

 You will learn how to upload and download data to S3 using the AWS CLI next.

Upload/download
an object

User Amazon S3

Internet
Figure 8.2 Uploading and
downloading an object to S3
via HTTPS

https://cloudonaut.io
https://cloudonaut.io

238 CHAPTER 8 Storing your objects: S3 and Glacier

8.3 Backing up your data on S3 with AWS CLI
Critical data needs to be backed up to avoid loss. Backing up data at an off-site loca-
tion decreases the risk of losing data even during extreme conditions like natural
disaster. But where should you store your backups? S3 allows you to store any data in
the form of objects. The AWS object store is a perfect fit for your backup, allowing you
to choose a location for your data as well as storing any amount of data with a pay-per-
use pricing model.

 In this section, you’ll learn how to use the AWS CLI to upload data to and down-
load data from S3. This approach isn’t limited to off-site backups; you can use it in
many other scenarios as well:

 Sharing files with your coworkers or partners, especially when working from dif-
ferent locations.

 Storing and retrieving artifacts needed to provision your virtual machines (such
as application binaries, libraries, configuration files, and so on).

 Outsourcing storage capacity to lighten the burden on local storage systems—
in particular, for data that is accessed infrequently.

First you need to create a bucket for your data on S3. As we mentioned earlier, the
name of the bucket must be unique among all other S3 buckets, even those in other
regions and those of other AWS customers. To find a unique bucket name, it’s useful
to use a prefix or suffix that includes your company’s name or your own name. Run
the following command in the terminal, replacing $yourname with your name:

$ aws s3 mb s3://awsinaction-$yourname

Object

/awsinaction/img/cloud.png

Metadata
Public read
Image/png

Cloud,nature
20 KB

2015-01-01

Data

Object

/awsinaction/img/cloud.png

Metadata
Public read
Image/png

Cloud,nature
20 KB

2015-01-01

Data

Bucket

Name: awsinaction

Object

/awsinaction/img/cloud.png

Metadata
Public read
Image/png

Cloud,nature
20 KB

2015-01-01

Data

Figure 8.3 S3 uses buckets
with a globally unique name to
group objects.

239Backing up your data on S3 with AWS CLI

Your command should look similar to this one.

$ aws s3 mb s3://awsinaction-awittig

If your bucket name conflicts with an existing bucket, you’ll get an error like this one:

[...] An error occurred (BucketAlreadyExists) [...]

In this case, you’ll need to use a different value for $yourname.
 Everything is ready to upload your data. Choose a folder you’d like to back up,

such as your Desktop folder. Try to choose a folder with a total size less than 1 GB, to
avoid long waiting times and exceeding the Free Tier. The following command
uploads the data from your local folder to your S3 bucket. Replace $Path with the
path to your folder and $yourname with your name. sync compares your folder with
the /backup folder in your S3 bucket and uploads only new or changed files:

$ aws s3 sync $Path s3://awsinaction-$yourname/backup

Your command should look similar to this one.

$ aws s3 sync /Users/andreas/Desktop s3://awsinaction-awittig/backup

Depending on the size of your folder and the speed of your internet connection, the
upload can take some time.

 After uploading your folder to your S3 bucket to back it up, you can test the
restore process. Execute the following command in your terminal, replacing $Path
with a folder you’d like to use for the restore (don’t use the folder you backed up) and
$yourname with your name. Your Downloads folder would be a good place to test the
restore process:

$ aws s3 cp --recursive s3://awsinaction-$yourname/backup $Path

Your command should look similar to this one:

$ aws s3 cp --recursive s3://awsinaction-awittig/backup/ \

➥ /Users/andreas/Downloads/restore

Again, depending on the size of your folder and the speed of your internet connec-
tion, the download may take a while.

Versioning for objects
By default, S3 versioning is disabled for every bucket. Suppose you use the following
steps to upload two objects:

1 Add an object with key A and data 1.
2 Add an object with key A and data 2.

240 CHAPTER 8 Storing your objects: S3 and Glacier

You no longer need to worry about losing data. S3 is designed for 99.999999999%
durability of objects over a year. For instance, when storing 100,000,000,000 objects on
S3, you will lose only a single object per year on average.

 After you’ve successfully restored your data from the S3 bucket, it’s time to clean
up. Execute the following command to remove the S3 bucket containing all the
objects from your backup. You’ll have to replace $yourname with your name to select
the right bucket. rb removes the bucket; the force option deletes every object in the
bucket before the bucket itself is deleted:

$ aws s3 rb --force s3://awsinaction-$yourname

Your command should look similar to this one:

$ aws s3 rb --force s3://awsinaction-awittig

You’re finished—you’ve uploaded and downloaded files to S3 with the help of the CLI.

(continued)
If you download (or get) the object with key A, you’ll download data 2. The old data 1
doesn’t exist any more.

You can change this behavior by turning on versioning for a bucket. The following com-
mand activates versioning for your bucket. Don’t forget to replace $yourname:

$ aws s3api put-bucket-versioning --bucket awsinaction-$yourname \

➥ --versioning-configuration Status=Enabled

If you repeat the previous steps, the first version of object A consisting of data 1 will
be accessible even after you add an object with key A and data 2. The following com-
mand retrieves all objects and versions:

$ aws s3api list-object-versions --bucket awsinaction-$yourname

You can now download all versions of an object.

Versioning can be useful for backup and archiving scenarios. Keep in mind that the
size of the bucket you’ll have to pay for will grow with every new version.

Removing bucket causes BucketNotEmpty error
If you turn on versioning for your bucket, removing the bucket will cause a Bucket-
NotEmpty error. Use the Management Console to delete the bucket in this case:

1 Open the Management Console with your browser.
2 Go to the S3 service using the main navigation menu.
3 Select your bucket.
4 Press the Delete bucket button and confirm your action in the dialog that opens.

241Archiving objects to optimize costs

8.4 Archiving objects to optimize costs
You used S3 to back up your data in the previous section. If you want to reduce the cost
of backup storage, you should consider another AWS service: Amazon Glacier. The price
of storing data with Glacier is about a fifth of what you pay to store data with S3. So
what’s the catch? S3 offers instant retrieval of your data. In contrast, you have to request
your data and wait between one minute and twelve hours before your data is available
when working with Glacier. Table 8.1 shows the differences between S3 and Glacier.

Amazon Glacier is designed for archiving large files that you upload once and down-
load seldom. It is expensive to upload and retrieve a lot of small files, so you should
bundle small files into large archives before storing them on Amazon Glacier. You can
use Glacier as a standalone service accessible via HTTPS, integrated into your backup
solution, or use S3 integration as in the following example.

8.4.1 Creating an S3 bucket for the use with Glacier

In this section, you’ll learn how to use Glacier to archive objects that have been stored
on S3 to reduce storage costs. As a rule, only move data to Glacier if the chance you’ll
need to access the data later is low.

 For example, suppose you are storing measurement data from temperature sen-
sors on S3. The raw data is uploaded to S3 constantly and processed once a day. After
the raw data has been analyzed, results are stored within a database. The raw data on
S3 is no longer needed, but should be archived in case you need to re-run the data
processing again in the future. Therefore, you move the raw measurement data to
Glacier after one day to minimize storage costs.

 The following example guides you through storing objects on S3, moving objects
to Glacier, and restoring objects from Glacier. As illustrated in figure 8.4, you need to
create a new S3 bucket:

1 Open the Management Console at https://console.aws.amazon.com.
2 Move to the S3 service using the main menu.

Table 8.1 Differences between storing data with S3 and Glacier

S3 Glacier

Storage costs for 1 GB per
month in US East (N. Virginia)

0.023 USD 0.004 USD

Costs for inserting data Low High

Costs for retrieving data Low High

Accessibility Immediate upon request One minute to twelve hours after request.
Faster retrieval is more expensive.

Durability Designed for annual dura-
bility of 99.999999999%

Designed for annual durability of
99.999999999%

https://console.aws.amazon.com

242 CHAPTER 8 Storing your objects: S3 and Glacier

3 Click the Create button.
4 Type in a unique name for your bucket (such as awsincation-glacier-$yourname).
5 Choose US East (N. Virginia) as the region for the bucket.
6 Click the Next button.
7 Click the Create button on the last page of the wizard.

8.4.2 Adding a lifecycle rule to a bucket

Back to our example: you are storing raw measurement data in an S3 bucket. The raw
data has been analyzed. Next, the raw data should be archived on Glacier. To do so,

Type in an unique
name for your bucket.

Select US East
(N. Virginia).

Proceed with
next step.

Figure 8.4 Creating an S3 bucket via the Management Console

243Archiving objects to optimize costs

add a lifecycle rule to your bucket. A lifecycle rule can be used to archive or delete objects
after a given number of days. To add a lifecycle rule that moves objects to Glacier, fol-
low these steps, also illustrated in figure 8.5:

1 Select your bucket named awsincation-glacier-$yourname from the bucket over-
view.

2 Switch to the Management tab.
3 Click the Add Lifecycle Rule button.

A wizard starts that will guide you through the process of creating a new lifecycle rule,
as shown in figure 8.6. In the first step of the wizard, you are asked to provide a name
and the scope for the lifecycle rule. Type in glacier as the rule name, and keep the
filter that limits the scope of the rule empty: this applies the rule to all objects within
your bucket.

Add a new
lifecycle rule.

Your bucket
Select the
Management tab.

Figure 8.5 Adding a lifecycle rule to move objects to Glacier automatically

244 CHAPTER 8 Storing your objects: S3 and Glacier

In the next step of the wizard, you will configure the lifecycle rule to archive objects to
Glacier. Figure 8.7 shows the details of configuring the transition.

1 Enable transitions for the current version of your objects. As you haven’t enabled
versioning for your bucket, previous versions of your objects are not available.

2 Select Transition to Amazon Glacier after as the transition type.
3 In the Days After Object Creation field, type in 0 to move your objects to Gla-

cier as quickly as possible.
4 Click Next to proceed to the next step.

Skip the next step of the wizard, which allows you to configure a lifecycle rule to
delete objects after a specified period of time. The last step of the wizard shows a sum-
mary of your lifecycle rule. Click Save to create your lifecycle rule.

Type in glacier to name
the lifecycle rule.

Leave empty to apply rule to all
objects within the bucket. You might
want to filter objects based on a prefix
or tags in other scenarios.

Proceed to
next step.

Figure 8.6 Choosing the name and scope of your lifecycle rule

245Archiving objects to optimize costs

8.4.3 Experimenting with Glacier and your lifecycle rule

You’ve successfully created a lifecycle rule that will automatically move all objects from
the bucket to Glacier.

NOTE The following example will take more time than usual. It will take up
to 24 hours for the lifecycle rule to move your objects to Glacier. The restore
process from Glacier to S3 will take 3 to 5 hours.

It’s now time to test the process of archiving your raw measurement data. Go back to
the overview of your bucket named awsincation-glacier-$yourname. Upload a bunch of
files by clicking the Upload button. As you probably don’t have any files that include
measurement data from temperature sensors at hand, feel free to use any kind of
data. Your bucket will look similar to what is shown in figure 8.8. By default, all files
are stored with storage class Standard, which means they’re stored on S3.

Enable transitions for
current version only.

Move object from
S3 to Glacier ...

... zero days after you
uploaded the object.

Proceed to
next step.

Figure 8.7 Enable transition to Amazon Glacier after 0 days

246 CHAPTER 8 Storing your objects: S3 and Glacier

The lifecycle rule will move the created objects to Glacier. But even though the cho-
sen time gap is 0 days, the move will take up to 24 hours. After your objects have
moved to Glacier, the storage class will switch to Glacier, as shown in figure 8.9.

Figure 8.8 Objects with storage class Standard immediately after upload

Uploaded objects with
standard storage class

Figure 8.9 Objects have been moved to Glacier after 24 hours.

Lifecycle rule moved
objects to Glacier.

247Archiving objects to optimize costs

Let’s assume you have found a bug in the processing of measurement data. Incorrect
data has been extracted from the raw data and stored in your database. In order to re-
run the data analytics, you have to restore the raw data from Glacier.

 It is not possible to download files stored in Glacier directly, but you can restore an
object from Glacier to S3. Follow the steps illustrated in figure 8.10 to trigger a restore
using the Management Console:

1 Open the S3 bucket named awsincation-glacier-$yourname.
2 Select the object you want to restore from Glacier to S3.
3 Choose the Initiate Restore action, which is hidden under More.
4 A dialog appears in which you choose how many days the object will be available

via S3 after the restore from Glacier, as well as the retrieval option.
5 Click OK to initiate the restore.

Figure 8.10 Restoring an object from Glacier to S3

Specify the number of days your object
shall be accessible via S3 after restore.

Choose standard retrieval to get
access to your object in 3 to 5 hours.

Restore your object.

248 CHAPTER 8 Storing your objects: S3 and Glacier

Restoring an object with the Standard retrieval option usually takes 3 to 5 hours. After
the restore is complete, you can download the object. You could re-run your data pro-
cessing on the raw data now.

You’ve learned how to use S3 with the help of the CLI and the Management Console.
We’ll show you how to integrate S3 into your applications with the help of SDKs in the
next section.

8.5 Storing objects programmatically
S3 is accessible using an API via HTTPS. This enables you to integrate S3 into your
applications by making requests to the API programmatically. Doing so allows your
applications to benefit from a scalable and highly available data store. AWS offers free
SDKs for common programming languages like Go, Java, JavaScript, PHP, Python,
Ruby, and .NET. You can execute the following operations using an SDK directly from
your application:

 Listing buckets and their objects.
 Creating, removing, updating, and deleting (CRUD) objects and buckets.
 Managing access to objects.

Here are examples of how you can integrate S3 into your application:

 Allow a user to upload a profile picture. Store the image in S3, and make it publicly
accessible. Integrate the image into your website via HTTPS.

 Generate monthly reports (such as PDFs), and make them accessible to users. Create the
documents and upload them to S3. If users want to download documents, fetch
them from S3.

Retrieval options
Amazon Glacier offers three retrieval options:

 Expedited. Data is available within 1–5 minutes; this is the most expensive
restore option.

 Standard. Data is available within 3–5 hours, for a modest charge.
 Bulk. Data is available within 5–12 hours; this is the least expensive restore option.

Cleaning up
Delete your bucket after you finish the Glacier example. You can do this with the help
of the Management Console by following theses steps:

1 Go to the overview of S3 buckets.
2 Select the bucket named awsincation-glacier-$yourname.
3 Click the Delete bucket button and confirm the action within the shown dialog.

249Storing objects programmatically

 Share data between applications. You can access documents from different applica-
tions. For example, application A can write an object with the latest information
about sales, and application B can download the document and analyze the data.

Integrating S3 into an application is one way to implement the concept of a stateless server.
We’ll show you how to integrate S3 into your application by diving into a simple web appli-
cation called Simple S3 Gallery next. This web application is built on top of Node.js and
uses the AWS SDK for JavaScript and Node.js. You can easily transfer what you learn from
this example to SDKs for other programming languages; the concepts are the same.

Simple S3 Gallery allows you to upload images to S3 and displays all the images you’ve
already uploaded. Figure 8.11 shows Simple S3 Gallery in action. Let’s set up S3 to
start your own gallery.

8.5.1 Setting up an S3 bucket

To begin, you need to set up an empty bucket.
Execute the following command, replacing
$yourname with your name or nickname:

$ aws s3 mb s3://awsinaction-sdk-$yourname

Your bucket is now ready to go. Installing the
web application is the next step.

8.5.2 Installing a web application that uses S3

You can find the Simple S3 Gallery application
in /chapter08/gallery/ in the book’s code
folder. Switch to that directory, and run npm
install in your terminal to install all needed
dependencies.

Installing and getting started with Node.js
Node.js is a platform for executing JavaScript in an event-driven environment so you
can easily build network applications. To install Node.js, visit https://nodejs.org and
download the package that fits your OS. All examples in this book are tested with
Node.js 8.

After Node.js is installed, you can verify that everything works by typing node --version
into your terminal. Your terminal should respond with something similar to v8.*. Now
you’re ready to run JavaScript examples like the Simple S3 Gallery.

Do you want to get started with Node.js? We recommend Node.js in Action (2nd edi-
tion) from Alex Young, et al. (Manning, 2017), or the video course Node.js in Motion
from P.J. Evans, (Manning, 2018).

Figure 8.11 The Simple S3 Gallery app lets
you upload images to an S3 bucket and then
download them from the bucket for display.

https://nodejs.org

250 CHAPTER 8 Storing your objects: S3 and Glacier

 To start the web application, run the following command. Replace $yourname with
your name; the name of the S3 bucket is then passed to the web application:

$ node server.js awsinaction-sdk-$yourname

After you start the server, you can open the gallery application. To do so, open
http://localhost:8080 with your browser. Try uploading a few images.

8.5.3 Reviewing code access S3 with SDK

You’ve uploaded images to Simple S3 Gallery and displayed images from S3. Inspect-
ing parts of the code will help you to understand how you can integrate S3 into your
own applications. It’s not a problem if you don’t follow all the details of the program-
ming language (JavaScript) and the Node.js platform; we just want you to get an idea
of how to use S3 via SDKs.

UPLOADING AN IMAGE TO S3
You can upload an image to S3 with the SDK’s putObject() function. Your application
will connect to the S3 service and transfer the image via HTTPS. The following listing
shows how to do so.

var AWS = require('aws-sdk');
var uuid = require('uuid');

var s3 = new AWS.S3({'region': 'us-east-1'});

var bucket = [...];

function uploadImage(image, response) {
 var params = {

Body: image,
Bucket: bucket,
Key: uuid.v4(),
ACL: 'public-read',
ContentLength: image.byteCount,
ContentType: image.headers['content-type']

};
s3.putObject(params, function(err, data) {

if (err) {
console.error(err);
response.status(500);

Listing 8.1 Uploading an image with the AWS SDK for S3

Where is the code located?
You can find all the code in the book’s code repository on GitHub: https://github.com/
AWSinAction/code2. You can download a snapshot of the repository at https://github
.com/AWSinAction/code2/archive/master.zip.

Require the AWS SDK.

Instantiate s3 client
with additional config.

Parameters
for uploading

an image
Image content

Name of
the bucket Generates a unique key for the object

Allows everybody
to read the image

from bucket

Size of image in bytes

Content type of the
object (image/png)

Uploads the
image to S3

Handles errors
(such as networking

problems)

https://github.com/AWSinAction/code2
https://github.com/AWSinAction/code2
https://github.com/AWSinAction/code2
https://github.com/AWSinAction/code2/archive/master.zip
https://github.com/AWSinAction/code2/archive/master.zip
https://github.com/AWSinAction/code2/archive/master.zip

251Storing objects programmatically

response.send('Internal server error.');
} else {

response.redirect('/');
}

});
}

The AWS SDK takes care of sending all the necessary HTTPS requests to the S3 API in
the background.

LISTING ALL THE IMAGES IN THE S3 BUCKET

To display a list of images, the application needs to list all the objects in your bucket.
This can be done with the S3 service’s listObjects() function. The next listing shows
the implementation of the corresponding function in the server.js JavaScript file, act-
ing as a web server.

var bucket = [...];

function listImages(response) {
var params = {

Bucket: bucket
};
s3.listObjects(params, function(err, data) {

if (err) {
console.error(err);
response.status(500);
response.send('Internal server error.');

} else {
var stream = mu.compileAndRender(

'index.html',
{
Objects: data.Contents,
Bucket: bucket

}
);
stream.pipe(response);

}
});

}

Listing the objects returns the names of all the images from the bucket, but the list
doesn’t include the image content. During the uploading process, the access rights to
the images are set to public read. This means anyone can download the images with
the bucket name and a random key. The following listing shows an excerpt of the
index.html template, which is rendered on request. The Objects variable contains all
the objects from the bucket.

Listing 8.2 Retrieving all the image locations from the S3 bucket

Handles
success

Defines parameters for the
list-objects operation

Calls the list-objects
operation

The resulting data contains the
objects from the bucket list.

252 CHAPTER 8 Storing your objects: S3 and Glacier

[...]
<h2>Images</h2>
{{#Objects}}

<p><img src=

➥ "https://s3.amazonaws.com/{{Bucket}}/{{Key}}"
➥ width="400px" ></p>
{{/Objects}}
[...]

You’ve now seen the three important parts of the Simple S3 Gallery integration with
S3: uploading an image, listing all images, and downloading an image.

You’ve learned how to use S3 using the AWS SDK for JavaScript and Node.js. Using
the AWS SDK for other programming languages is similar.

8.6 Using S3 for static web hosting
We have started our blog cloudonaut.io in May 2015. The most popular blog posts like
“5 AWS mistakes you should avoid” (https://cloudonaut.io/5-aws-mistakes-you-
should-avoid/), “Integrate SQS and Lambda: serverless architecture for asynchronous
workloads” (http://mng.bz/8m5n), and “AWS Security Primer” (https://cloud-
onaut.io/aws-security-primer/) have been read more than 165,000 times. But we
didn’t need to operate any VMs to publish our blog posts. Instead we used S3 to host
our static website built with a static site generator https://hexo.io. This approach pro-
vides a cost effective, scalable, and maintenance-free infrastructure for our blog.

 You can host a static website with S3 and deliver static content like HTML, Java-
Script, CSS, images (such as PNG and JPG), audio, and videos as well. But keep in
mind that you can’t execute server-side scripts like PHP or JSP. For example, it’s not
possible to host WordPress, a CMS based on PHP, on S3.

Listing 8.3 Template to render the data as HTML

Iterates
over all
objects

Puts together the URL to fetch
an image from the bucket

Cleaning up
Don’t forget to clean up and delete the S3 bucket used in the example. Use the fol-
lowing command, replacing $yourname with your name:

$ aws s3 rb --force s3://awsinaction-sdk-$yourname

Increasing speed by using a CDN
Using a content-delivery network (CDN) helps reduce the load time for static web con-
tent. A CDN distributes static content like HTML, CSS, and images to nodes all
around the world. If a user sends out a request for some static content, the request
is answered from the nearest available node with the lowest latency.

https://cloudonaut.io
https://hexo.io
https://cloudonaut.io/5-aws-mistakes-you-should-avoid/
https://cloudonaut.io/5-aws-mistakes-you-should-avoid/
http://mng.bz/8m5n
https://cloudonaut.io/aws-security-primer/
https://cloudonaut.io/aws-security-primer/

253Using S3 for static web hosting

In addition, S3 offers the following features for hosting a static website:

 Defining a custom index document and error documents. For example, you can define
index.html as the default index document.

 Defining redirects for all or specific requests. For example, you can forward all
requests from /img/old.png to /img/new.png.

 Setting up a custom domain for S3 bucket. For example, Andreas might want to set
up a domain like mybucket.andreaswittig.info for my bucket.

8.6.1 Creating a bucket and uploading a static website

First you need to create a new S3 bucket. To do so, open your terminal and execute the
following command, replacing $BucketName with your own bucket name. (As we’ve
mentioned, the bucket name has to be globally unique. If you want to redirect your
domain name to S3, you must use your entire domain name as the bucket name.)

$ aws s3 mb s3://$BucketName

The bucket is empty; you’ll place an HTML document in it next. We’ve prepared a place-
holder HTML file. Download it to your local machine from the following URL:
http://mng.bz/8ZPS. You can now upload the file to S3. Execute the following command
to do so, replacing $PathToPlacerholder with the path to the HTML file you down-
loaded in the previous step and $BucketName with the name of your bucket:

$ aws s3 cp $PathToPlaceholder/helloworld.html \

➥ s3://$BucketName/helloworld.html

You’ve now created a bucket and uploaded an HTML document called helloworld
.html. You need to configure the bucket next.

8.6.2 Configuring a bucket for static web hosting

By default, only you, the owner, can access files from your S3 bucket. You want to use
S3 to deliver your static website, so you’ll need to allow everyone to view or download
the documents included in your bucket. A bucket policy helps you control access to
bucket objects globally. You already know from chapter 6 that policies are defined in
JSON and contain one or more statements that either allow or deny specific actions
on specific resources. Bucket policies are similar to IAM policies.

Various providers offer CDNs. Amazon CloudFront is the CDN offered by AWS. When
using CloudFront, users connect to CloudFront to access your content, which is which
is fetched from S3 or other sources. See the CloudFront documentation at
http://mng.bz/Kctu if you want to set this up; we won’t cover it in this book.

http://mng.bz/8ZPS
http://mng.bz/Kctu

254 CHAPTER 8 Storing your objects: S3 and Glacier

 Download our bucket policy from the following URL: http://mng.bz/HhgR. You
need to edit the bucketpolicy.json file next, as shown in the following listing. Open the file
with the editor of your choice, and replace $BucketName with the name of your bucket.

{
"Version":"2012-10-17",
"Statement":[

{
"Sid":"AddPerm",
"Effect":"Allow",
"Principal": "*",
"Action":["s3:GetObject"],
"Resource":["arn:aws:s3:::$BucketName/*"]

}
]

}

You can add a bucket policy to your bucket with the following command. Replace
$BucketName with the name of your bucket and $PathToPolicy with the path to the
bucketpolicy.json file:

$ aws s3api put-bucket-policy --bucket $BucketName \

➥ --policy file://$PathToPolicy/bucketpolicy.json

Every object in the bucket can now be downloaded by anyone. You need to enable and
configure the static web-hosting feature of S3 next. To do so, execute the following
command, replacing $BucketName with the name of your bucket:

$ aws s3 website s3://$BucketName --index-document helloworld.html

Your bucket is now configured to deliver a static website. The HTML document hel-
loworld.html is used as index page. You’ll learn how to access your website next.

8.6.3 Accessing a website hosted on S3

You can now access your static website with a browser. To do so, you need to choose
the right endpoint. The endpoints for S3 static web hosting depend on your bucket’s
region:

http://$BucketName.s3-website-$Region.amazonaws.com

Replace $BucketName with your bucket name and $Region with your region. So if your
bucket is called AwesomeBucket and was created in the default region us-east-1, your
bucket name would be:

http://AwesomeBucket.s3-website-us-east-1.amazonaws.com

Listing 8.4 Bucket policy allowing read-only access to every object in a bucket

Allows accessFor
anyone

Read objects

Your
bucket

http://mng.bz/HhgR
https://raw.githubusercontent.com/AWSinAction/code2/master/chapter08/bucketpolicy.json

255Best practices for using S3

Open this URL with your browser, and you should be welcomed by a Hello World website.

8.7 Best practices for using S3
If you’re using S3 via the CLI or integrating it into your applications, it’s valuable to
know about how the object store works. One big difference between S3 and many stor-
age solutions is the fact that S3 is eventually consistent, which means you might read
stale data after changing an object for a short period of time. Usually you will read the
latest version of an object within less than a second after a write, but in rare cases, you
might read stale data for much longer. If you don’t consider this, you may be surprised
if you try to read objects immediately after changing them. Another challenge is
designing object keys that offer maximum I/O performance on S3. You’ll learn more
about both topics next.

8.7.1 Ensuring data consistency

If you’re creating, updating, or deleting an object on S3, this operation is atomic. This
means that if you’re reading an object after a create, an update, or a delete, you’ll
never get corrupted or partial data. But it’s possible that a read could return the old
data for a while.

Linking a custom domain to an S3 bucket
If you want to avoid hosting static content under a domain like awsinaction.s3-web-
site-us-east-1.amazonaws.com, you can link a custom domain to an S3 bucket, such
as awsinaction.example.com. All you have to do is to add a CNAME record for your
domain, pointing to the bucket’s S3 endpoint.

The CNAME record will only work if you comply with the following rules:

 Your bucket name must match the CNAME record name. For example, if you
want to create a CNAME for awsinaction.example.com, your bucket name
must be awsinaction.example.com as well.

 CNAME records won’t work for the primary domain name (such as exam-
ple.com). You need to use a subdomain for CNAMEs like awsinaction or www,
for example. If you want to link a primary domain name to an S3 bucket, you
need to use the Route 53 DNS service from AWS.

Linking a custom domain to your S3 bucket only works for HTTP. If you want to use
HTTPS (and you probably should), use AWS CloudFront together with S3. AWS Cloud-
Front accepts HTTPS from the client and forwards the request to S3.

Cleaning up
Don’t forget to clean up your bucket after you finish the example. To do so, execute
the following command, replacing $BucketName with the name of your bucket:

$ aws s3 rb --force s3://$BucketName

256 CHAPTER 8 Storing your objects: S3 and Glacier

 If you create, update or delete an object and your request is successful, your
change is safely stored. But accessing the changed object immediately might return
the old version, as shown in figure 8.12. If you retry accessing the object, after a while
the new version will be available.

If you don’t send a GET or HEAD request to the key of an object before creating the
object with a PUT request, S3 offers read-after-write consistency in all regions.

8.7.2 Choosing the right keys

Naming variables and files is difficult. This is especially true for choosing the right
keys for objects you want to store in S3. In S3, keys are stored in alphabetical order in
an index. The key name determines which partition the key is stored in. If your keys
all begin with the same characters, this will limit the I/O performance of your S3
bucket. If your workload will require more than 100 requests per second, you should
choose keys for your objects that begin with different characters. As figure 8.13 shows,
this will give you maximum I/O performance.

Upload new version
of existing object

Still downloading
old version

Wait and
try again.

DownloadDownload

Figure 8.12 Eventual
consistency: if you update an
object and try to read it, the
object may contain the old
version. After some time
passes, the latest version
will be available.

Figure 8.13 To improve I/O performance with S3, don't use keys that start with the same characters.

image1.png

Limited I/O performance

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

image2.png

image3.png

image4.png

Keys starting with
the same characters

Keys starting with
the different characters

a17c3-image1.png

Maximum I/O performance

ff211-image2.png

l10e2-image3.png

rd717-image4.png

257Summary

Using a slash (/) in the key name acts like creating a folder for your object. If you cre-
ate an object with the key folder/object.png, the folder will become visible as folder if
you’re browsing your bucket with a GUI like the Management Console, for example.
But technically, the key of the object still is folder/object.png.

 Suppose you need to store images that were uploaded by different users. You
might come up with the following naming schema for your object keys:

upload/images/$ImageId.png

$ImageId is a numerical ID that is increased with each new image. A list of your objects
might look like this.

image1.png
image2.png
image3.png
image4.png

The object keys are in alphabetical order, and your maximum throughput with S3
won’t be optimal. You can fix this by adding a hash prefix to each object. For example,
you can use the MD5 hash of the original key name and prepend it to the key:

a17c3-image1.png
ff211-image2.png
l10e2-image3.png
rd717-image4.png

This will help distribute your keys across partitions and increase the I/O performance
of S3. Knowing about the internals of S3 helps you to optimize your usage.

Summary
 An object consists of a unique identifier, metadata to describe and manage the

object, and the content itself. You can save images, documents, executables, or
any other content as an object in an object store.

 Amazon S3 is an object store accessible only via HTTP(S). You can upload, man-
age, and download objects with the CLI, SDKs, or the Management Console.

 Integrating S3 into your applications will help you implement the concept of a
stateless server, because you don’t have to store objects locally on the server.

 You can define a lifecycle for your objects that will move them from Amazon S3
to Amazon Glacier, a special service for archiving data that you don’t need to
access frequently. Doing so reduces your cost dramatically.

 S3 is an eventually consistent object store. You have to consider this if you
integrate it into your applications and processes, to avoid unpleasant surprises.

258

Storing data on hard drives:
 EBS and instance store

Imagine your task is to migrate an enterprise application from being hosted on-
premises to AWS. Typically, legacy applications read and write files from a file system.
Switching to object storage, as described in the previous chapter, is therefore not
possible. Fortunately, AWS offers good old block-level storage as well, allowing you to
migrate your legacy application without the need for expensive modifications.

 Block-level storage with a disk file system (FAT32, NTFS, ext3, ext4, XFS, and so
on) can be used to store files as you would on a personal computer. A block is a
sequence of bytes, and the smallest addressable unit. The OS is the intermediary
between the application that wants to access files and the underlying file system

This chapter covers
 Attaching persistent storage volumes to EC2 instance

 Using temporary storage attached to the host system

 Backing up volumes

 Testing and tweaking volume performance

 Differences between persistent (EBS) and temporary
volumes (instance store)

259Elastic Block Store (EBS): Persistent block-level storage attached over the network

and block-level storage. The disk file system manages where (at what block address)
your files are stored. You can use block-level storage only in combination with an EC2
instance where the OS is running.

 The OS provides access to block-level storage via open, write, and read system calls.
The simplified flow of a read request goes like this:

1 An application wants to read the file /path/to/file.txt and makes a read system
call.

2 The OS forwards the read request to the file system.
3 The file system translates /path/to/file.txt to the block on the disk where the

data is stored.

Applications like databases that read or write files by using system calls must have
access to block-level storage for persistence. You can’t tell a MySQL database to store
its files in an object store because MySQL uses system calls to access files.

AWS provides two kinds of block-level storage:

 A persistent block-level storage volume connected via network—This is the best
choice for most problems, because it is independent from your virtual
machine’s life cycle and replicates data among multiple disks automatically to
increase durability and availability.

 A temporary block-level storage volume physically attached to the host system of the
virtual machine—This is interesting if you’re optimizing for performance, as it
is directly attached to the host system and therefore offers low latency and high
throughput when accessing your data.

The next three sections will introduce and compare these two solutions by connecting
storage with an EC2 instance, doing performance tests, and exploring how to back up
the data.

9.1 Elastic Block Store (EBS): Persistent block-level
storage attached over the network
Elastic Block Store (EBS) provides persistent block-level storage with built-in data replica-
tion. Typically EBS is used in the following scenarios:

Not all examples are covered by the Free Tier
The examples in this chapter are not all covered by the Free Tier. A special warning
message appears when an example incurs costs. Nevertheless, as long as you don’t
run all other examples longer than a few days, you won’t pay anything for them. Keep
in mind that this applies only if you created a fresh AWS account for this book and
nothing else is going on in your AWS account. Try to complete the chapter within a
few days; you’ll clean up your account at the end.

260 CHAPTER 9 Storing data on hard drives: EBS and instance store

 Operating a relational database system on a virtual machine.
 Running a (legacy) application that requires a filesystem to store data on EC2.
 Storing and booting the operating system of a virtual machine.

An EBS volume is separate from an EC2 instance and connected over the network, as
shown in figure 9.1. EBS volumes:

 Aren’t part of your EC2 instances; they’re
attached to your EC2 instance via a network
connection. If you terminate your EC2
instance, the EBS volumes remain.

 Are either not attached to an EC2 instance or
attached to exactly one EC2 instance at a time.

 Can be used like typical hard disks.
 Replicate your data on multiple disks to

prevent data loss due to hardware failures.

EBS volumes have one big advantage: they are not part of the EC2 instance; they are
an independent resource. No matter if you stop your virtual machine or your virtual
machine fails because of a hardware defect, your volume and your data will remain.

WARNING You can’t attach the same EBS volume to multiple virtual machines!
See chapter 10 if you are looking for a network filesystem.

9.1.1 Creating an EBS volume and attaching it to your EC2 instance

Let’s return to the example from the beginning of the chapter. You are migrating a
legacy application to AWS. The application needs to access a filesystem to store data.
As the data contains business-critical information, durability and availability are
important. Therefore, you create an EBS volume for persistent block storage. The leg-
acy application runs on a virtual machine, and the volume is attached to the VM to
enable access to the block-level storage.

 The following bit of code demonstrates how to create an EBS volume and attach it
to an EC2 instance with the help of CloudFormation:

EC2Instance:
Type: 'AWS::EC2::Instance'
Properties:

[...]

Volume:
Type: 'AWS::EC2::Volume'
Properties:

AvailabilityZone: !Sub ${EC2Instance.AvailabilityZone}
Size: 5
VolumeType: gp2
Tags:

 - Key: Name

Defines the EC2 instance

We are skipping the properties of
the EC2 instance in this example.

Defines the EBS volume
Creates a

volume
with 5 GB

capacity

Default volume
type based on SSD

Figure 9.1 EBS volumes are
independent resources but can only be
used when attached to an EC2 instance.

EBS volumeEC2 instance

To use an EBS volume it must
be attached to an EC2 instance
over the network.

261Elastic Block Store (EBS): Persistent block-level storage attached over the network

 Value: 'AWS in Action: chapter 9 (EBS)
VolumeAttachment:

Type: 'AWS::EC2::VolumeAttachment'
Condition: Attached
Properties:

Device: '/dev/xvdf'
InstanceId: !Ref EC2Instance
VolumeId: !Ref Volume

An EBS volume is a standalone resource. This means your EBS volume can exist with-
out an EC2 instance, but you need an EC2 instance to access the EBS volume.

9.1.2 Using EBS

To help you explore EBS, we’ve prepared a CloudFormation template located at
http://mng.bz/6q51. Create a stack based on that template by clicking the Cloud-
Formation Quick-Create link at http://mng.bz/5o2D, select the default VPC and a
random subnet, and set the AttachVolume parameter to yes. Don’t forget to check
the box marked I acknowledge that AWS CloudFormation might create IAM
resources. After creating the stack, copy the PublicName output and connect via
SSH: ssh -i $PathToKey/ mykey.pem ec2-user@$PublicName.

 You can see the attached EBS volumes using fdisk. Usually, EBS volumes can be
found somewhere in the range of /dev/xvdf to /dev/xvdp. The root volume
(/dev/xvda) is an exception—it’s based on the AMI you choose when you launch
the EC2 instance, and contains everything needed to boot the instance (your
OS files):

$ sudo fdisk -l
Disk /dev/xvda: 8589 MB [...]
Units = sectors of 1 * 512 = 512 bytes
Sector size (logical/physical): 512 bytes / 512 bytes
I/O size (minimum/optimal): 512 bytes / 512 bytes
Disk label type: gpt

 # Start End Size Type Name
 1 4096 16777182 8G Linux filesyste Linux
128 2048 4095 1M BIOS boot parti BIOS Boot Partition

Disk /dev/xvdf: 5368 MB [...]
Units = sectors of 1 * 512 = 512 bytes
Sector size (logical/physical): 512 bytes / 512 bytes
I/O size (minimum/optimal): 512 bytes / 512 bytes

The first time you use a newly created EBS volume, you must create a filesystem. You
could also create partitions, but in this case the volume size is only 5 GB, so you prob-
ably don’t want to split it up further. As you can create EBS volumes in any size and
attach multiple volumes to your VM, partitioning a single EBS volume is uncommon.

Attaches EBS volume
to EC2 instance

Name of the device used
by the EC2 instance

References
the EC2

instance

References the EBS volume

The root volume,
an EBS volume with
a size of 8 GiB.

An additional volume, an
EBS volume with a size of
5 GiB.

http://mng.bz/6q51
http://mng.bz/5o2D

262 CHAPTER 9 Storing data on hard drives: EBS and instance store

Instead, you should create volumes at the size you need; if you need two separate
scopes, create two volumes. In Linux, you can create a filesystem on the additional vol-
ume with the help of mkfs. The following example creates an ext4 file system:

$ sudo mkfs -t ext4 /dev/xvdf
mke2fs 1.42.12 (29-Aug-2014)
Creating filesystem with 1310720 4k blocks and 327680 inodes
Filesystem UUID: e9c74e8b-6e10-4243-9756-047ceaf22abc
Superblock backups stored on blocks:

32768, 98304, 163840, 229376, 294912, 819200, 884736

Allocating group tables: done
Writing inode tables: done
Creating journal (32768 blocks): done
Writing superblocks and filesystem accounting information: done

After the filesystem has been created, you can mount the device:

$ sudo mkdir /mnt/volume/
$ sudo mount /dev/xvdf /mnt/volume/

To see mounted volumes, use df -h:

$ df -h
Filesystem Size Used Avail Use% Mounted on
devtmpfs 489M 60K 488M 1% /dev
tmpfs 497M 0 497M 0% /dev/shm
/dev/xvda1 7.8G 980M 6.7G 13% /
/dev/xvdf 4.8G 10M 4.6G 1% /mnt/volume

EBS volumes are independent from your virtual machine. To see this in action, you
will save a file to a volume, unmount, and detach the volume. Afterward, you will
attach and mount the volume again. The data will still be available!

$ sudo touch /mnt/volume/testfile
$ sudo umount /mnt/volume/

Update the CloudFormation stack, and change the AttachVolume parameter to no.
This will detach the EBS volume from the EC2 instance. After the update is com-
pleted, only your root device is left:

$ sudo fdisk -l
Disk /dev/xvda: 8589 MB, 8589934592 bytes, 16777216 sectors
Units = sectors of 1 * 512 = 512 bytes
Sector size (logical/physical): 512 bytes / 512 bytes
I/O size (minimum/optimal): 512 bytes / 512 bytes

Root volume

Additional volume

Creates testfile in
/mnt/volume/

Unmounts the volume

263Elastic Block Store (EBS): Persistent block-level storage attached over the network

Disk label type: gpt

 # Start End Size Type Name
 1 4096 16777182 8G Linux filesyste Linux
128 2048 4095 1M BIOS boot parti BIOS Boot Partition

The testfile in /mnt/volume/ is also gone:

$ ls /mnt/volume/testfile
ls: cannot access /mnt/volume/testfile: No such file or directory

Now you’ll attach the EBS volume again. Update the CloudFormation stack, and
change the AttachVolume parameter to yes. After the update is completed, /dev/xvdf
is available again:

$ sudo mount /dev/xvdf /mnt/volume/
$ ls /mnt/volume/testfile
/mnt/volume/testfile

Voilà: the file test file that you created in /mnt/volume/ is still there.

9.1.3 Tweaking performance

Performance testing of hard disks is divided into read and write tests. To test the per-
formance of your volumes, you will use a simple tool named dd, which can perform
block-level reads and writes between a source if=/path/to/source and a destination
of=/path/to/destination:

$ sudo dd if=/dev/zero of=/mnt/volume/tempfile bs=1M count=1024 \

➥ conv=fdatasync,notrunc
1024+0 records in
1024+0 records out
1073741824 bytes (1.1 GB) copied, 16.9858 s, 63.2 MB/s

$ echo 3 | sudo tee /proc/sys/vm/drop_caches
3

$ sudo dd if=/mnt/volume/tempfile of=/dev/null bs=1M count=1024
1024+0 records in
1024+0 records out
1073741824 bytes (1.1 GB) copied, 16.3157 s, 65.8 MB/s

Keep in mind that performance can be different depending on your actual workload.
This example assumes that the file size is 1 MB. If you’re hosting websites, you’ll most
likely deal with lots of small files instead.

Mounts the attached
volume againChecks whether testfile

is still in /mnt/volume/

Writes 1 MB 1,024 times

63.2 MB/s write
performance

Flushes caches

Reads 1 MB 1,024 times

65.8 MB/s read
performance

264 CHAPTER 9 Storing data on hard drives: EBS and instance store

 But EBS performance is more complicated. Performance depends on the type of
EC2 instance as well as the EBS volume type. Table 9.1 gives an overview of EC2
instance types that are EBS-optimized by default as well as types that can be optimized
for an additional hourly charge. EC2 instances with EBS optimization benefit by hav-
ing dedicated bandwidth to their EBS volumes. Input/output operations per second
(IOPS) are measured using a standard 16 KB I/O operation size. Performance
depends heavily on your workload: read versus write, as well as the size of your I/O
operations (a bigger operation size equates to more throughput). These numbers are
illustrations, and your mileage may vary.

Depending on your storage workload, you must choose an EC2 instance that can
deliver the bandwidth you require. Additionally, your EBS volume must be balanced
with the amount of bandwidth. Table 9.2 shows the different EBS volume types and
how they perform.

Table 9.1 What performance can be expected from EBS optimized instance types?

Use case Instance type
Max bandwidth

(MiB/s)
Max IOPS

EBS optimized
by default?

General purpose
(3rd generation)

m3.xlarge–m3.2xlarge 60-119 4,000-8,000 No

General purpose
(4th generation)

m4.large–m4.16xlarge 54–1192 3,600–65,000 Yes

General purpose
(5th generation)

m5.large–m5.24xlarge 57–1192 3,600–65,000 Yes

Compute optimized
(3rd generation)

c3.xlarge–c3.4xlarge 60–238 4,000–16,000 No

Compute optimized
(4th generation)

c4.large–c4.8xlarge 60–477 4,000–32,000 Yes

Compute optimized
(5th generation)

c5.large–c5.18xlarge 63–1073 4,000–64,000 Yes

Memory optimized r4.large–r4.16xlarge 51–1,669 3,000–75,000 Yes

Storage optimized i3.large–i3.16xlarge 51–1,669 3,000–65,000 Yes

Storage optimized d2.xlarge–d2.8xlarge 89–477 6,000–32,000 Yes

Table 9.2 How EBS volume types differ

Volume type Volume size MiB/s IOPS Performance burst Price

General Purpose
SSD (gp2)

1 GiB–16 TiB 160 3 per GiB (up to 10,000) 3,000 IOPS $ $ $

Provisioned IOPS
SSD (io1)

4 GiB–16 TiB 500 As much as you provi-
sion (up to 50 IOPS per
GiB or 32,000 IOPS)

n/a $ $ $ $

265Elastic Block Store (EBS): Persistent block-level storage attached over the network

Here are typical scenarios for the different volume types:

 Use General Purpose SSD (gp2) as the default for most workloads with medium
load and a random access pattern. For example, use this as the boot volume or
for all kinds of applications with low-to-medium I/O load.

 I/O-intensive workloads access small amounts of data randomly. Provisioned IOPS
SSD (io1) offers throughput guarantees, for example, for large and business-
critical database workloads.

 Use Throughput Optimized HDD (st1) for workloads with sequential I/O and huge
amounts of data, such as Big Data workloads. Don’t use this volume type for
workloads in need of small and random I/O.

 Cold HDD (sc1) is a good fit when you are looking for a low-cost storage option
for data you need to access infrequently and sequentially. Don’t use this volume
type for workloads in need of small and random I/O.

 EBS Magnetic HDD (standard) is an older volume type from a previous genera-
tion. It might be a good option when you need to access your data infrequently.

EBS volumes are charged based on the size of the volume, no matter how much data
you store in the volume. If you provision a 100 GiB volume, you pay for 100 GiB even
if you have no data on the volume. If you use EBS Magnetic HDD (standard) volumes,
you must also pay for every I/O operation you perform. Provisioned IOPS SSD (io1)

Throughput Opti-
mized HDD (st1)

500 GiB-16 TiB 40 per TiB
(up to 500)

500 250 MiB/s per TiB
(up to 500 MiB/s)

$ $

Cold HDD (sc1) 500 GiB-16 TiB 12 per TiB
(up to 250)

250 80 MiB/s per TiB
(up to 250 MiB/s)

$

EBS Magnetic HDD
(standard)

1 GiB–1 TiB 40–90 40-200
(100 on average)

Hundreds $ $

Table 9.2 How EBS volume types differ (continued)

Volume type Volume size MiB/s IOPS Performance burst Price

Gibibyte (GiB) and Tebibyte (TiB)
The terms gibibyte (GiB) and tebibyte (TiB) aren’t used often; you’re probably more
familiar with gigabyte and terabyte. But AWS uses them in some places. Here’s what
they mean:

 1 TiB = 240 bytes = 1,099,511,627,776 bytes

 1 TiB is ~ 1.0995 TB

 1 TB = 1012 bytes = 1,000,000,000,000 bytes

 1 GiB = 230 bytes = 1,073,741,824 bytes

 1 GiB is ~ 1.074 GB

 1 GB = 109 bytes = 1,000,000,000 bytes

266 CHAPTER 9 Storing data on hard drives: EBS and instance store

volumes are additionally charged based on the provisioned IOPS. Use the AWS Sim-
ple Monthly Calculator at http://aws.amazon.com/calculator to determine how
much your storage setup will cost.

 We advise you to use general-purpose (SSD) volumes as the default. If your work-
load requires more IOPS, then go with provisioned IOPS (SSD). You can attach multi-
ple EBS volumes to a single EC2 instance to increase overall capacity or for additional
performance.

9.1.4 Backing up your data with EBS snapshots

EBS volumes replicate data on multiple disks automatically and are designed for an
annual failure rate (AFR) of 0.1% and 0.2%. This means on average you should
expect to lose 0.5–1 of 500 volumes per year. To plan for an unlikely (but possible)
failure of an EBS volume, or more likely a human failure, you should create backups
of your volumes regularly. Fortunately, EBS offers an optimized, easy-to-use way to
back up EBS volumes with EBS snapshots. A snapshot is a block-level incremental
backup that is stored in S3. If your volume is 5 GiB in size and you use 1 GiB of data,
your first snapshot will be around 1 GiB in size. After the first snapshot is created, only
the changes will be saved to S3, to reduce the size of the backup. EBS snapshots are
charged based on how many gigabytes you use.

 You’ll now create a snapshot using the CLI. Before you can do so, you need to know
the EBS volume ID. You can find it as the VolumeId output of the CloudFormation stack,
or by running the following:

$ aws ec2 describe-volumes --region us-east-1 \

➥ --filters "Name=size,Values=5" --query "Volumes[].VolumeId" \

➥ --output text
vol-0317799d61736fc5f

With the volume ID, you can go on to create a snapshot:

$ aws ec2 create-snapshot --region us-east-1 --volume-id $VolumeId
{

"Description": "",
"Encrypted": false,
"VolumeId": "vol-0317799d61736fc5f",
"State": "pending",
"VolumeSize": 5,
"StartTime": "2017-09-28T09:00:14.000Z",
"Progress": "",
"OwnerId": "486555357186",
"SnapshotId": "snap-0070dc0a3ac47e21f"

}

Creating a snapshot can take some time, depending on how big your volume is and
how many blocks have changed since the last backup. You can see the status of the
snapshot by running the following:

The output shows the $VolumeId.

Replace with your $VolumeId.

Status of your snapshot

Your $SnapshotId

http://aws.amazon.com/calculator

267Elastic Block Store (EBS): Persistent block-level storage attached over the network

$ aws ec2 describe-snapshots --region us-east-1 --snapshot-ids $SnapshotId
{

"Snapshots": [
{

"Description": "",
"Encrypted": false,
"VolumeId": "vol-0317799d61736fc5f",
"State": "completed",
"VolumeSize": 5,
"StartTime": "2017-09-28T09:00:14.000Z",
"Progress": "100%",
"OwnerId": "486555357186",
"SnapshotId": "snap-0070dc0a3ac47e21f"

}
]

}

Creating a snapshot of an attached, mounted volume is possible, but can cause prob-
lems with writes that aren’t flushed to disk. You should either detach the volume from
your instance or stop the instance first. If you absolutely must create a snapshot while
the volume is in use, you can do so safely as follows:

1 Freeze all writes by running fsfreeze -f /mnt/volume/ on the virtual machine.
2 Create a snapshot and wait until it reaches the pending state.
3 Unfreeze to resume writes by running fsfreeze -u /mnt/volume/ on the vir-

tual machine.
4 Wait until the snapshot is completed.

Unfreeze the volume as soon as the snapshot reaches the state pending. You don’t have
to wait until the snapshot has finished.

 With an EBS snapshot, you don’t have to worry about losing data due to a failed EBS
volume or human failure. You are able to restore your data from your EBS snapshot.

 To restore a snapshot, you must create a new EBS volume based on that snapshot.
Execute the following command in your terminal, replacing $SnapshotId with the ID
of your snapshot.

$ aws ec2 create-volume --region us-east-1 \

➥ --snapshot-id $SnapshotId \

➥ --availability-zone us-east-1a
{

"AvailabilityZone": "us-east-1a",
"Encrypted": false,
"VolumeType": "standard",
"VolumeId": "vol-0a1afe956678f5f36",
"State": "creating",
"SnapshotId": "snap-0dcadf095a785e0bc",
"CreateTime": "2017-12-07T12:46:13.000Z",
"Size": 5

}

Replace with your
$SnapshotId.

The snapshot has reached
the state completed.

Progress of your
snapshot

The ID of your snapshot
used to create the volume

Adds
regularization

parameters

The $RestoreVolumeId
of the volume restored
from your snapshot

268 CHAPTER 9 Storing data on hard drives: EBS and instance store

When you launch an EC2 instance from an AMI, AWS creates a new EBS volume (root
volume) based on a snapshot (an AMI includes an EBS snapshot).

9.2 Instance store: Temporary block-level storage
An instance store provides block-level storage directly attached to the machine hosting
your VM. Figure 9.2 shows that the instance store is part of an EC2 instance and avail-
able only if your instance is running; it won’t persist your data if you stop or terminate
the instance. You don’t pay separately for an instance store; instance store charges are
included in the EC2 instance price.

Cleaning up AWS OpsWorks
Don’t forget to delete the snapshot, the volume, and your stack. The following code
will delete the snapshot and volume:

$ aws ec2 delete-snapshot --region us-east-1 \

➥ --snapshot-id $SnapshotId
$ aws ec2 delete-volume --region us-east-1 \

➥ --volume-id $RestoreVolumeId

Also delete your stack after you finish this section, to clean up all used resources.
You created the stack using the UI, so use the UI to delete it. Otherwise, you’ll likely
be charged for the resources you use.

Virtual
machine 1

Hypervisor

Host machine

Virtual
machine 3

Depending on the instance type,
a virtual machine has access to
an instance store to persist data.

HDDs or SSDs are part
of the host machine.

Schedules and
isolates requests
to hardware

VM 2 with an
instance store

Figure 9.2 The instance store is part of your EC2 instance and uses the host machine’s HDDs or SSDs.

269Instance store: Temporary block-level storage

In comparison to an EBS volume, which is connected to your VM over the network,
the instance store depends upon the VM and can’t exist without it. So the instance
store will be deleted when you stop or terminate the VM.

 Don’t use an instance store for data that must not be lost; use it for caching, tem-
porary processing, or applications that replicate data to several servers, as some data-
bases do. If you want to set up your favorite NoSQL database, chances are high that
data replication is handled by the application and you can use an instance store.

WARNING If you stop or terminate your EC2 instance, the instance store is
lost. Lost means all data is destroyed and can’t be restored!

AWS offers SSD and HDD instance stores from 4 GB up to 48 TB. Table 9.3 shows a
few EC2 instance families providing instance stores.

WARNING Starting a virtual machine with instance type m3.medium will incur
charges. See https://aws.amazon.com/ec2/pricing/on-demand/ if you want
to find out the current hourly price.

To launch an EC2 instance with an instance store manually, open the Management
Console and start the Launch Instance wizard as you did in section 3.1. Choose AMI,
choose the instance type (m3.medium), and configure the instance details shown in
figure 9.3:

1 Click the Add New Volume button.
2 Select instance store 0.
3 Set the device name to dev/sdb.

Tag the instance, configure a security group, and review the stance launch. The
instance store can now be used by your EC2 instance.

 Listing 9.1 demonstrates how to use an instance store with CloudFormation. If you
launch an EC2 instance from an EBS-backed root volume (which is the default), you
must define a BlockDeviceMappings to map EBS and instance store volumes to device
names. Instance stores aren’t standalone resources like EBS volumes; the instance
store is part of your EC2 instance. Depending on the instance type, you’ll have zero,
one, or multiple instance store volumes for mapping.

Table 9.3 Instance families with instance stores

Use case Instance type Instance store type Instance store size in GB

General purpose m3.medium–m3.2xlarge SSD (1 × 4)–(2 × 80)

Compute optimized c3.large–c3.8xlarge SSD (2 × 16)–(2 × 320)

Memory optimized r3.large–r3.8xlarge SSD (1 × 32)–(2 × 320)

Storage optimized i3.large–i3.16xlarge SSD (1 × 950)–(8 × 1,900)

Storage optimized d2.xlarge–d2.8xlarge HDD (3 × 2,000)–(24 × 2,000)

https://aws.amazon.com/ec2/pricing/on-demand/

270 CHAPTER 9 Storing data on hard drives: EBS and instance store

EC2Instance:
Type: AWS::EC2::Instance
Properties:

[...]
InstanceType: 'm3.medium'
BlockDeviceMappings:
- DeviceName: '/dev/xvda'

Ebs:
VolumeSize: '8'
VolumeType: gp2

- DeviceName: '/dev/xvdb'
VirtualName: ephemeral0

Listing 9.1 Connecting an instance store with an EC2 instance with CloudFormation

Add a new
volume.

Select volume
type Instance
Store 0.

Set device
name to
/dev/sdb.

Figure 9.3 Adding an instance store volume manually

Choose an instance type
with an instance store.

EBS root volume
(your OS lives here)

The instance store device
will appear as /dev/xvdb.

The instance store is a virtual name
like ephemera10 or ephemeral1.

Windows-based EC2 instances
The same BlockDeviceMappings applies to Windows-based EC2 instances, so the
DeviceName isn’t the same as the drive letter (C:/, D:/, and so on). To go from
DeviceName to the drive letter, the volume must be mounted. When using Windows,
listing 9.1 will still work but the instance store will be available as drive letter Z:/.

271Instance store: Temporary block-level storage

Read on to see how mounting works on Linux.

9.2.1 Using an instance store

To help you explore instance stores, we created the CloudFormation template located
at http://mng.bz/Zu54. Create a CloudFormation stack based on the template by
clicking the CloudFormation Quick-Create link at http://mng.bz/V64s.

WARNING Starting a virtual machine with instance type m3.medium will incur
charges. See https://aws.amazon.com/ec2/pricing/on-demand/ if you want
to find out the current hourly price.

Create a stack based on that template, and select the default VPC and a random sub-
net. After creating the stack, copy the PublicName output to your clipboard and con-
nect via SSH. Usually, instance stores are found at /dev/xvdb to /dev/xvde as shown
in the following example:

$ sudo fdisk -l
Disk /dev/xvda: 8589 MB [...]
Units = Sektoren of 1 * 512 = 512 bytes
Sector size (logical/physical): 512 bytes / 512 bytes
I/O size (minimum/optimal): 512 bytes / 512 bytes
Disk label type: gpt

 # Start End Size Type Name
 1 4096 16777182 8G Linux filesyste Linux
128 2048 4095 1M BIOS boot parti BIOS Boot Partition

Disk /dev/xvdb: 4289 MB [...]
Units = Sektoren of 1 * 512 = 512 bytes
Sector size (logical/physical): 512 bytes / 512 bytes
I/O size (minimum/optimal): 512 bytes / 512 bytes

To see the mounted volumes, use this command:

$ df -h
Filesystem Size Used Avail Use% Mounted on
/dev/xvda1 7.8G 1.1G 6.6G 14% /
devtmpfs 1.9G 60K 1.9G 1% /dev
tmpfs 1.9G 0 1.9G 0% /dev/shm
/dev/xvdb 3.9G 1.1G 2.7G 28% /media/ephemeral0

Cleaning up
Don’t forget to delete your manually started EC2 instance after you finish this sec-
tion, to clean up all used resources. Otherwise you’ll likely be charged for the
resources you use.

EBS device used as root
volume containing the OS

The instance store device

The root volume
contains the OS.

The instance store volume
is mounted automatically.

http://mng.bz/Zu54
http://mng.bz/V64s
https://aws.amazon.com/ec2/pricing/on-demand/

272 CHAPTER 9 Storing data on hard drives: EBS and instance store

Your instance store volume is mounted automatically to /media/ephemeral0. If your
EC2 instance has more than one instance store volume, ephemeral1, ephemeral2,
and so on will be used. Now it’s time to run some performance tests to compare the
performance of an instance store volume to an EBS volume.

9.2.2 Testing performance

Let’s take the same performance measurements as we took in section 9.1.3 to see the
difference between the instance store and EBS volumes:

$ sudo dd if=/dev/zero of=/media/ephemeral0/tempfile bs=1M count=1024 \

➥ conv=fdatasync,notrunc
1024+0 records in
1024+0 records out
1073741824 bytes (1.1 GB) copied, 2.49478 s, 430 MB/s

$ echo 3 | sudo tee /proc/sys/vm/drop_caches
3

$ sudo dd if=/media/ephemeral0/tempfile of=/dev/null bs=1M count=1024
1024+0 records in
1024+0 records out
1073741824 bytes (1.1 GB) copied, 0.273889 s, 3.9 GB/s

Keep in mind that performance can vary, depending on your actual workload. This
example assumes a file size of 1 MB. If you’re hosting websites, you’ll most likely deal
with lots of small files instead. The performance characteristics shows that the instance
store is running on the same hardware the virtual machine is running on. The volumes
are not connected to the virtual machine over the network as with EBS volumes.

9.2.3 Backing up your data

There is no built-in backup mechanism for instance store volumes. Based on what you
learned in section 8.2, you can use a combination of scheduled jobs and S3 to back up
your data periodically:

$ aws s3 sync /path/to/data s3://$YourCompany-backup/instancestore-backup

But if you need to back up data, you should probably use more durable, block-level stor-
age like EBS. An instance store is better used for ephemeral persistence requirements.

 You will learn about another option to store your data in the next chapter: a net-
work file system.

6 × write performance
compared with EBS
from section 9.1.3

60 × read performance
compared with EBS from
section 9.1.3

Cleaning up
Don’t forget to delete your stacks after you finish this section, to clean up all used
resources. Otherwise you’ll likely be charged for the resources you use.

273Summary

Summary
 Block-level storage can only be used in combination with an EC2 instance

because the OS is needed to provide access to the block-level storage (including
partitions, file systems, and read/write system calls).

 EBS volumes are connected to a single EC2 instance via network. Depending
on your instance type, this network connection can use more or less bandwidth.

 EBS snapshots are a powerful way to back up your EBS volumes to S3 because
they use a block-level, incremental approach.

 An instance store is part of a single EC2 instance, and it’s fast and cheap. But all
your data will be lost if the EC2 instance is stopped or terminated.

274

Sharing data volumes
 between machines: EFS

Many legacy applications store state in files on disk. Therefore, using Amazon S3,
an object store, as described in chapter 8 is not possible by default. Using block
storage as discussed in the previous chapter might be an option, but does not allow
you to access files from multiple machines in parallel. Hence you need a way to
share the files between virtual machines. With Elastic File System (EFS), you can
share data between multiple EC2 instances and your data is replicated between
multiple availability zones (AZ).

This chapter covers
 Creating a highly available shared filesystem

 Mounting your shared filesystem on multiple EC2
instances

 Sharing files between EC2 instances

 Testing performance of your shared filesystem

 Backing up your shared filesystem

275

 EFS is based on the NFSv4.1 protocol, so you can mount it like any other filesys-
tem. In this chapter you learn how to set up EFS, tweak performance, and back your
data.

EFS ONLY WORKS WITH LINUX At this time, EFS is not supported by Windows
EC2 instances.

Let’s take a closer look at how EFS works compared to Elastic Block Store (EBS) and
the instance store, which were introduced in the previous chapter. An EBS volume is
tied to a data center (also called an AZ) and can only be attached over the network to
a single EC2 instance from the same data center. Typically EBS volumes are used as
the root volumes that contain the operating system, or for relational database systems
to store the state. An instance store consists of a hard drive directly attached to the
hardware the VM is running on. An instance store can be regarded as ephemeral
storage, and is therefore used for caching or for NoSQL databases with embedded
data replication only. In contrast, the EFS filesystem can be used by multiple EC2
instances from different data centers in parallel. Additionally, the data on the EFS
filesystem is replicated among multiple data centers and remains available even if a
whole data center suffers from an outage, which is not true for EBS and instance
stores. Figure 10.1 shows the differences.

 Now let’s take a closer look at EFS. There are two main components to know about:

1 Filesystem—Stores your data
2 Mount target—Makes your data accessible

The filesystem is the resource that stores your data in an AWS region, but you can’t
access it directly. To do so, you must create an EFS mount target in a subnet. The
mount target provides a network endpoint that you can use to mount the filesystem
on an EC2 instance via NFSv4.1. The EC2 instance must be in the same subnet as
the EFS mount target, but you can create mount targets in multiple subnets. Fig-
ure 10.2 demonstrates how to access the filesystem from EC2 instances running in
multiple subnets.

 Equipped with the EFS theory about filesystems and mount targets, you can now
apply your knowledge to solve a real problem.

 Linux is a multiuser operating system. Many users can store data and run programs
isolated from each other. Each user can have a home directory that usually is stored

Examples are 100% covered by the Free Tier
The examples in this chapter are completely covered by the Free Tier. As long as you
don’t run the examples longer than a few days, you won’t pay anything. Keep in mind
that this only applies if you created a fresh AWS account for this book and nothing
else is going on in your AWS account. Try to complete the chapter within a few days;
you’ll clean up your account at the end.

276 CHAPTER 10 Sharing data volumes between machines: EFS

EBS
volume

EC2
Instance

EC2
Instance

Subnet 2

AZ B

Instance
store

EBS
volume

NFSv4.1
via network

Network
attached storage

Directly attached
(lives in the hypervisor)

EC2
Instance

EC2
Instance

Subnet 1

AZ A

VPC / region us-east-1

Instance
store

EFS filesystem

Figure 10.1 Comparing EBS, instance stores, and EFS

EC2
Instance

EC2
Instance

EFS mount
target

AZ B / Subnet 2

EC2
Instance

EC2
Instance

EFS mount
target

AZ A / Subnet 1

VPC / region us-east-1

EFS filesystem

Figure 10.2 Mount targets provide an endpoint for EC2 instances to mount the filesystem in a subnet.

277Creating a filesystem

under /home/$username. If the user name is michael, the home directory would be
/home/ michael, and only that user would be allowed to read and write in /home/
michael. The ls -d -l /home/* command lists all home directories.

$ ls -d -l /home/*
drwx------ 2 andreas andreas 4096 Jul 24 06:25 /home/andreas
drwx------ 3 michael michael 4096 Jul 24 06:38 /home/michael

If you are using multiple EC2 instances, your users will have a separate home folder
on each EC2 instance. If a Linux user uploads a file on one EC2 instance, they can’t
access the file on another EC2 instance. To solve this problem, create a filesystem and
mount EFS on each EC2 instance under /home. The home directories are then
shared across all your EC2 instances, and users will feel at home no matter which VM
they log in to. In the following sections, you will build this solution step-by-step. First,
you will create the filesystem.

10.1 Creating a filesystem
The filesystem is the resource that stores your files, directories, and links. Like S3, EFS
grows with your storage needs. You don’t have to provision the storage up front. The
filesystem is located in an AWS region and replicates your data under the covers across
multiple availability zones. You will use CloudFormation to set up the filesystem now.

10.1.1 Using CloudFormation to describe a filesystem

The bare minimum to describe a filesystem resource is shown here.

Resources:
[...]
FileSystem:

Type: 'AWS::EFS::FileSystem'
Properties: {}

Optionally, you can add tags to track costs or add other useful meta data with the
FileSystemTags property.

10.1.2 Pricing

Calculating EFS costs is simple. You only need to know the amount of storage you use
in GB. EFS charges you per GB per month. If your EFS filesystem is 5 GB in size, you
will be charged 5 GB x 0.30 (USD/GB/month) in us-east-1, for a total of $1.50 USD a
month. Please check https://aws.amazon.com/efs/pricing to get the latest pricing

Listing 10.1 CloudFormation snippet of an EFS filesystem resource

List all home directories
with absolute paths. /home/andreas can only be accessed

by the user and group andreas.

/home/michael can only be accessed
by the user and group michael.

Specifies the stack resources
and their properties

Nothing needs to be configured.

https://aws.amazon.com/efs/pricing

278 CHAPTER 10 Sharing data volumes between machines: EFS

information for your region. The first 5 GB per month are free in the first year of your
AWS account (Free Tier).

 The filesystem is now described in CloudFormation. To use it, you need to create
at least one mount point. Creating a mount target is the subject of the next section.

10.2 Creating a mount target
An EFS mount target makes your data available to EC2 instances via the NFSv4.1 pro-
tocol in a single AZ. The EC2 instance communicates with the mount target via a
TCP/IP network connection. As you learned in section 6.4, security groups are how
you control network traffic on AWS. You can use a security group to allow inbound
traffic to an EC2 instance or an RDS database, and the same is true for a mount target.
Security groups control which traffic is allowed to enter the mount target. The NFS
protocol uses port 2049 for inbound communication. Figure 10.3 shows how mount
targets are protected.

In our example, to control traffic as tightly as possible, you won’t white list IP
addresses. Instead, you’ll create two security groups. The client security group will be
attached to all EC2 instances that want to mount the filesystem. The mount target
security group allows inbound traffic on port 2049 only for traffic that comes from the

EC2
Instance

EC2
Instance

EFS mount
target

AZ B / Subnet 2

Only allow inbound
traffic on port 2049 from
the client security group.

EC2
Instance

EC2
Instance

Client Security
Group

Mount target
security group

EFS mount
target

AZ A / Subnet 1

VPC / region us-east-1

EFS filesystem

Figure 10.3 EFS mount targets are protected by security groups.

279Creating a mount target

client security group. This way, you can have a dynamic fleet of clients who are allowed
to send traffic to the mount targets. You used the same approach for the SSH bastion
host in section 6.4.

 You can use CloudFormation to manage an EFS mount target. The mount target
references the filesystem, needs to be linked to a subnet, and is also protected by at
least one security group. You will first describe the security groups, followed by the
mount target, as shown in listing 10.2.

Resources:
[...]
EFSClientSecurityGroup:

Type: 'AWS::EC2::SecurityGroup'
Properties:

GroupDescription: 'EFS Mount target client'
VpcId: !Ref VPC

MountTargetSecurityGroup:
Type: 'AWS::EC2::SecurityGroup'
Properties:

GroupDescription: 'EFS Mount target'
SecurityGroupIngress:
- FromPort: 2049

IpProtocol: tcp
SourceSecurityGroupId: !Ref EFSClientSecurityGroup
ToPort: 2049

VpcId: !Ref VPC
MountTargetA:

Type: 'AWS::EFS::MountTarget'
Properties:

FileSystemId: !Ref FileSystem
SecurityGroups:
- !Ref MountTargetSecurityGroup
SubnetId: !Ref SubnetA

Copy the MountTargetA resource and also create a mount target for SubnetB.

Resources:
[...]
MountTargetB:

Type: 'AWS::EFS::MountTarget'
Properties:

FileSystemId: !Ref FileSystem
SecurityGroups:
- !Ref MountTargetSecurityGroup
SubnetId: !Ref SubnetB

The mount targets can now be used in the next section, where you finally mount the
/home directory.

Listing 10.2 CloudFormation snippet of an EFS mount target and security groups

The client security group
needs no rules. It’s just
used to mark traffic.

Allow traffic on port 2049.

Only allow traffic
from the client
security group.

Connect mount target
with the filesystem.

Assign the security group.

Connect with a subnet which
also determines the AZ.

The other subnet is used.

280 CHAPTER 10 Sharing data volumes between machines: EFS

10.3 Mounting the EFS share on EC2 instances
EFS creates a DNS name for each filesystem following the schema $FileSys-
temID.efs.$Region.amazonaws.com. Inside an EC2 instance, this name resolves to the
mount target of the instance’s AZ. AWS suggests the following mount options:

 nfsvers=4.1—Specifies which version of the NFS protocol to use.
 rsize=1048576—Read data block size, in bytes, to be transferred at one time.
 wsize=1048576—Write data block size, in bytes, to be transferred at one time.
 hard—If the EFS share is down, wait for the share to come back online.
 timeo=600—The time in deciseconds (tenths of a second) the NFS client waits

for a response before it retries an NFS request.
 retrans=2—The number of times the NFS client retries a request before it

attempts further recovery action.

This snippet shows the full mount command:

$ mount -t nfs4 -o nfsvers=4.1,rsize=1048576,wsize=1048576,hard,timeo=600,\

➥ retrans=2 $FileSystemID.efs.$Region.amazonaws.com:/ $EFSMountPoint

Replace $FileSystemID with the EFS filesystem, such as fs-123456. Replace $Region
with the region, such as us-east-1, and $EFSMountPoint with the local path where the
filesystem is mounted. You can also use the /ets/fstab file to automatically mount on
startup:

$FileSystemID.efs.$Region.amazonaws.com:/ $EFSMountPoint nfs4 nfsvers=4.1,

➥ rsize=1048576,wsize=1048576,hard,timeo=600,retrans=2,_netdev 0 0

To make sure that the DNS name can be resolved and the other side is listening to the
port, you can use the following Bash script to wait until the mount target is ready:

$ while ! nc -z $FileSystemID.efs.$Region.amazonaws.com 2049;

➥ do sleep 10; done
$ sleep 10

To use the filesystem, you have to mount it on EC2 instances using one of the mount
targets that you created. It’s now time to add two EC2 instances to the CloudForma-
tion template. Each EC2 instance should be placed in a different subnet and mount
the filesystem to /home. The /home directory will exist on both EC2 instances, and it
will also contain some data (such as the folder ec2-user). You have to ensure that
you’re copying the original data the first time before you mount the EFS filesystem,
which is empty by default. This listing describes the EC2 instance that copies the exist-
ing /home folder before the shared home folder is mounted.

281Mounting the EFS share on EC2 instances

Resources:
[...]
EC2SecurityGroup:

Type: 'AWS::EC2::SecurityGroup'
Properties:

GroupDescription: 'EC2 instance'
SecurityGroupIngress:
- CidrIp: '0.0.0.0/0'

FromPort: 22
IpProtocol: tcp
ToPort: 22

VpcId: !Ref VPC
EC2InstanceA:

Type: 'AWS::EC2::Instance'
Properties:

ImageId: 'ami-6057e21a'
InstanceType: 't2.micro'
KeyName: mykey
NetworkInterfaces:
- AssociatePublicIpAddress: true

DeleteOnTermination: true
DeviceIndex: 0
GroupSet:
- !Ref EC2SecurityGroup
- !Ref EFSClientSecurityGroup
SubnetId: !Ref SubnetA

UserData:
 'Fn::Base64': !Sub |

#!/bin/bash -x
bash -ex << "TRY"

while ! nc -z ${FileSystem}.efs.${AWS::Region}.amazonaws.com 2049;

➥ do sleep 10; done
sleep 10
mkdir /oldhome
cp -a /home/. /oldhome
echo "${FileSystem}.efs.${AWS::Region}.amazonaws.com:/ /home nfs4

➥ nfsvers=4.1,rsize=1048576,wsize=1048576,hard,timeo=600,
➥retrans=2,_netdev 0 0" >> /etc/fstab

mount -a
cp -a /oldhome/. /home

TRY
/opt/aws/bin/cfn-signal -e $? --stack ${AWS::StackName}

➥ --resource EC2InstanceA --region ${AWS::Region}
CreationPolicy:

ResourceSignal:
Timeout: PT10M

DependsOn:
- VPCGatewayAttachment
- MountTargetA

After the EC2 instance is launched, you will find the first data on the EFS share. The
second EC2 instance is similar but in a different subnet, and does not copy the existing

Listing 10.3 An EC2 instance in SubnetA and security group resources

Security Group to allow SSH
traffic from the internet

Ensure the EC2 instance
gets a public IP address
for SSH access.

Attach the security
group to allow SSH.

Attach the
client mount

target security
group.

Place instance into subnet A.

Wait until
filesystem
is available.

Create temporary
folder for /home

content.

Copy existing /home to
/oldhome and preserve
permissions (-a).

Mount
filesystem. Copy /oldhome to new /home.

Let CloudFormation
 know that the EC2 instance
resource is efs-with-backup.

Wait
 for the

internet
gateway.

Wait for the mount target.

282 CHAPTER 10 Sharing data volumes between machines: EFS

/home content because this was already done by the previous EC2 instance. Here are
the details.

Resources:
[...]
EC2InstanceB:

Type: 'AWS::EC2::Instance'
Properties:

ImageId: 'ami-6057e21a'
InstanceType: 't2.micro'
KeyName: mykey
NetworkInterfaces:
- AssociatePublicIpAddress: true

DeleteOnTermination: true
DeviceIndex: 0
GroupSet:
- !Ref EC2SecurityGroup
- !Ref EFSClientSecurityGroup

 SubnetId: !Ref SubnetB
UserData:

'Fn::Base64': !Sub |
#!/bin/bash -x
bash -ex << "TRY"

while ! nc -z ${FileSystem}.efs.${AWS::Region}.amazonaws.com 2049;

➥ do sleep 10; done
sleep 10
echo "${FileSystem}.efs.${AWS::Region}.amazonaws.com:/ /home nfs4

➥ nfsvers=4.1,rsize=1048576,wsize=1048576,hard,timeo=600,
➥ retrans=2,_netdev 0 0" >> /etc/fstab

mount -a
TRY
 /opt/aws/bin/cfn-signal -e $? --stack ${AWS::StackName}

➥ --resource EC2InstanceB --region ${AWS::Region}
CreationPolicy:

ResourceSignal:
Timeout: PT10M

DependsOn:
- VPCGatewayAttachment
- MountTargetB

To make things easier, you can also add outputs to the template to expose the public
IP addresses of your EC2 instances like this:

Outputs:
EC2InstanceAIPAddress:

Value: !GetAtt 'EC2InstanceA.PublicIp'
Description: 'EC2 Instance (AZ A) public IP address (connect via SSH)'

EC2InstanceBIPAddress:
Value: !GetAtt 'EC2InstanceB.PublicIp'
Description: 'EC2 Instance (AZ B) public IP address (connect via SSH)'

Listing 10.4 An EC2 instance in SubnetB and security group resources

Place into the other subnet.

The old /home is not copied here.
This is already done on the first EC2

instance in subnet A.

283Sharing files between EC2 instances

The CloudFormation template is now complete. It contains:

 Filesystem (EFS)
 Two EFS mount targets in SubnetA and SubnetB
 Security groups to control traffic to the mount targets
 EC2 instances in both subnets, including a UserData script to mount the filesystem

It’s now time to create a stack based on your template, to create all the resources in
your AWS account. You can find the full code for the template at /chapter10/tem-
plate.yaml in the book’s code folder. You can use the AWS CLI to create the stack:

$ aws cloudformation create-stack --stack-name efs \

➥ --template-url https://s3.amazonaws.com/awsinaction-code2/\

➥ chapter10/template.yaml

Once the stack is in the state CREATE_COMPLETE, you have two EC2 instances run-
ning. Both mounted the EFS share to /home. You also copied the old /home data to
the EFS share. It’s time to connect to the instances via SSH and do some tests (in the
next section), to see if users can really share files between the EC2 instances in their
home directory.

10.4 Sharing files between EC2 instances
Open an SSH connection to the virtual machine in subnet A. You can use the AWS
CLI to get the stack output, from which you can get the public IP address:

$ aws cloudformation describe-stacks --stack-name efs \

➥ --query "Stacks[0].Outputs"
[{

"Description": "[...]",
"OutputKey": "EC2InstanceAIPAddress",
"OutputValue": "54.158.102.196"

}, {
"Description": "[...]",
"OutputKey": "EC2InstanceBIPAddress",
"OutputValue": "34.205.4.174"

}]

Use the SSH key mykey to authenticate, and replace $PublicIpAddress with the IP
address of the EC2InstanceAIPAddress output from the stack:

$ ssh -i $PathToKey/mykey.pem ec2-user@$PublicIpAddress

Where is the template located?
You can find the template on GitHub. You can download a snapshot of the repository
at https://github.com/AWSinAction/code2/archive/master.zip. The file we’re talking
about is located at chapter10/template.yaml. On S3, the same file is located at
http://mng.bz/XIUE.

https://github.com/AWSinAction/code2/archive/master.zip
http://mng.bz/XIUE

284 CHAPTER 10 Sharing data volumes between machines: EFS

Open a second SSH connection to the virtual machine in subnet B. Use the same
command you just used, but this time, replace $PublicIpAddress with the IP address
of the EC2InstanceBIPAddress output from the stack.

 You now have two SSH connections open. In both SSH sessions you should be
located in the /home/ec2-user folder. Check if this is true on both machines:

$ pwd
/home/ec2-user

Also check if there are any files or folders in /home/ec2-user:

$ ls

Now, create a file on one of the machines:

$ touch i-was-here

On the other machine, confirm that you can see the new file:

$ ls
i-was-here

You now have access to the same home directory on both machines. You could add
hundreds of machines to this example. All would share the same home directory, and
your users would be able to access the same home directory on all EC2 instances. You
can apply the same mechanism to share files between a fleet of web servers (for exam-
ple, the /var/www/html folder), or to design a highly available Jenkins server (such as
/var/lib/jenkins).

 To operate the solution successfully, you also need to take care of backups, perfor-
mance tuning, and monitoring. You will learn about this in the following sections.

10.5 Tweaking performance
To compare EFS with other storage options, we’ll use the same simple performance
test that we used in section 9.1.3 to test the performance of an EBS volume. The tool
dd can perform block-level reads and writes.

$ sudo dd if=/dev/zero of=/home/ec2-user/tempfile bs=1M count=1024 \

➥ conv=fdatasync,notrunc
1024+0 records in
1024+0 records out
1073741824 bytes (1.1 GB) copied, 10.4138 s, 103 MB/s

$ echo 3 | sudo tee /proc/sys/vm/drop_caches
3

$ sudo dd if=/home/ec2-user/tempfile of=/dev/null bs=1M count=1024

The output confirms that your
current directory is /home/ec2-user.

If no data is returned, the folder
/home/ec2-user is empty.

touch creates an empty file.

You can see the file.

Writes 1 MB 1,024 times

103 MB/s write performance

Flushes caches

Reads 1 MB 1,024 times

285Tweaking performance

1024+0 records in
1024+0 records out
1073741824 bytes (1.1 GB) copied, 10.2916 s, 104 MB/s

Please keep in mind that this performance tests assumes files of 1 MB. Depending on
your workload, files can be smaller or bigger, which leads to different results. Usually,
throughput will degrade for smaller files. Comparing these numbers to the dd results
on EBS and instance store is only of limited informative value.

10.5.1 Performance mode

So far, you’ve used the General Purpose performance mode, which is fine for most work-
loads, especially latency-sensitive ones where small files are served most of the time. The
/home directory is a perfect example of such a workload. Users are not constantly open-
ing and saving files. Instead they list files from time to time and then open a specific file.
When the user opens a file, they expect low latency to get the file instantaneously.

 But sometimes, EFS is used to store massive amounts of data for analytics. For data
analytics, latency is not important. Throughput is the metric you want to optimize
instead. If you want to analyze gigabytes or terabytes of data, it doesn’t matter if your
time to first byte takes 1 ms or 100 ms. Even a small increase in throughput will
decrease the time it will take to analyze the data. For example, analyzing 1 TB of data
with 100 MB/sec throughput will take 174 minutes. That’s almost three hours, so the
first few milliseconds don’t really matter. Optimizing for throughput can be achieved
using the Max I/O performance mode. The performance mode being used by an EFS
filesystem cannot be changed—you set it when the filesystem is created. Therefore, to
change the performance mode, you have to create a new filesystem. We recommend
you start with the General Purpose performance mode if you are unsure which mode
fits best for your workload. You will learn how to check whether you made the right
decision by looking at monitoring data in the following section.

10.5.2 Expected throughput

The performance of EFS scales with the amount of storage you use. EFS also allows for
bursting, because many workloads require high performance for a short period of
time and are idle for most of the rest of the time.

 The baseline rate is 51.2 KB/s per 1.1 GB of storage (or 52.4 MB/s per 1100 GB).
You can burst 50% of the time if the filesystem is not accessed for the remaining time.
Table 10.1 shows how you can calculate your burst rate.

Table 10.1 EFS burst rate

filesystem size Burst rate

< 1100 GB 104.9 MB/s

>= 1100 GB 104.9 MB/s per 1100 GB of data stored

104MB/s read
performance

286 CHAPTER 10 Sharing data volumes between machines: EFS

The burst rate is exactly the rate we measured in the simple performance test at the
beginning of this section! To get the exact numbers for how long you can burst, you
can consult the official documentation: “Throughput Scaling in Amazon EFS” at
http://mng.bz/Y5Q9.

 The throughput rules are complicated. Luckily, you can use CloudWatch to
observe the numbers and send an alert if you run out of credits. That’s the topic of the
next section.

10.6 Monitoring a filesystem
CloudWatch is the AWS service that stores all kinds of metrics. EFS sends useful met-
rics, the most important of which to watch are:

 BurstCreditBalance—The current credit balance. You need credits to be able
to burst throughput to your EFS filesystem.

 PermittedThroughput—The throughput you have at this moment. Takes burst
credits and size into account.

 Read/Write/Metadata/TotalIOBytes—Information in bytes about reads,
writes, metadata, and total I/O usage.

 PercentIOLimit—How close you are to hitting the I/O limit. If this metric is
at 100%, the Max I/O performance mode would be a good choice.

Let’s look at those metrics in more detail now. You will also get some hints about use-
ful thresholds to define alarms on those metrics.

10.6.1 Should you use Max I/O Performance mode?

The PercentIOLimit metric shows how close a filesystem is to reaching the I/O limit
of the General Purpose performance mode (not used for other modes). If this metric
is at 100% for more than half of the time, you should consider creating a new filesys-
tem with Max I/O performance mode enabled. It makes sense to create an alarm on
this metric, as shown in figure 10.4. To create a CloudWatch Alarm in the Manage-
ment Console:

1 Open the CloudWatch Management Console: https://us-east-1.console.aws
.amazon.com/cloudwatch/home.

2 Click the Alarms link on the left.
3 Click the Create Alarm button.
4 Under EFS Metrics, click File System Metrics.
5 Select the PercentIOLimit metric.
6 Click the Next button.
7 Fill out the fields as shown in figure 10.4.

You might set an alarm to trigger if the 15-minute average of the metric is higher
than 95% for 4 out of 4 datapoints. The alarm action usually sends a message to an
SNS topic which you can subscribe to via email.

http://mng.bz/Y5Q9
https://us-east-1.console.aws.amazon.com/cloudwatch/home
https://us-east-1.console.aws.amazon.com/cloudwatch/home
https://us-east-1.console.aws.amazon.com/cloudwatch/home

287Monitoring a filesystem

10.6.2 Monitoring your permitted throughput

In the previous section, we promised that there is an easier way to get access to the
actual throughput of your filesystem besides doing the math. The PermittedThrough-
put metric provides this important information. It takes into account the size of your
filesystem and your credit balance to calculate the permitted throughput of your filesys-
tem. Since your credit balance changes all the time (you either consume credits or new
credits are added), the permitted throughput can be volatile. Figure 10.5 shows a line
chart of the PermittedThroughput and the BurstCreditBalance at the moment when
you run out of credits.

 If you rely on credits to get the expected performance, you should create an alarm
that monitors your BurstCreditBalance. You might set an alarm to trigger if the 10-
minute average of the BurstCreditBalance metric is lower than 192 GB for one con-
secutive period, which is the last hour where you can burst at 100 MB/sec. Don’t set
the threshold too low: you need some time to react! (You can add dummy files to
increase the EFS filesystem size, which increases throughput.)

Figure 10.4 Creating a CloudWatch Alarm on EFS’s PercentIOLimit metric

288 CHAPTER 10 Sharing data volumes between machines: EFS

Listing 10.5 shows a CloudFormation snippet for an alarm to monitor the BurstCred-
itBalance.

Resources:
[...]
FileSystemBurstCreditBalanceTooLowAlarm:

Type: 'AWS::CloudWatch::Alarm'
Properties:

AlarmDescription: 'EFS file system is running out of burst credits.'
Namespace: 'AWS/EFS'
MetricName: BurstCreditBalance
Statistic: Average
Period: 600
EvaluationPeriods: 1
ComparisonOperator: LessThanThreshold
Threshold: 192416666667
AlarmActions:
- 'arn:aws:sns:us-east-1:123456789012:SNSTopicName'
Dimensions:
- Name: FileSystemId

Value: !Ref FileSystem

10.6.3 Monitoring your usage

Access to EFS are either reads, writes, or metadata (metadata is not included in reads
or writes). Metadata could be the size and ownership information about a file, or it
could be locks to avoid concurrent access to a file. A stacked area chart in CloudWatch
can give you a good overview of all the activity. Figure 10.6 shows such a chart.

Listing 10.5 Alarm resource on the BurstCreditBalance metric

Figure 10.5 Creating a CloudWatch Alarm on EFS’s PermittedThroughout metric

Name of the metric

192 GB in bytes (last
hour when you can
burst at 100 MB/sec)

SNS topic ARN to send the alert to. You
can also define a SNS topic resource in

your template and reference it here.

289Backing up your data

Creating an alarm on the usage data makes sense if you know your workload very well.
Otherwise you should be safe enough with the alarms from the previous metrics.

10.7 Backing up your data
EFS stores all your files on multiple disks in multiple availability zones. Thus the
chances of losing data because of a hardware issue are low. But what about a human
error like rm -rf /, which removes all the files on Linux (including files in mounted
folders)? Or an application bug that corrupts data? Unfortunately, EFS does not pro-
vide a native way to back up your EFS filesystem at the time of writing. But there are
multiple options to create your own backup solution:

 Sync the files to S3 from time to time.
 Sync the files to an EBS volume from time to time, and create a snapshot of the

volume after each sync.
 Sync the files to another EFS filesystem.
 Use a third-party backup solution. EFS is just another volume on your operating

system.

If you need a cost effective way to back up the history of changes to EFS, we recommend
you use an EBS volume and snapshots. As you learned in section 9.1, EBS snapshots are
block-level incremental backups. This means only changes to the blocks are stored when
performing multiple snapshots. One disadvantage of this solution is that your data must
be small enough to fit on a single EBS volume. If it’s not, consider using a second EFS
filesystem for your backups.

 To implement the EBS backup strategy, you need to add an EBS volume, and attach
it to one of the EC2 instances. Finally, you have to implement the logic to synchronize

Figure 10.6 CloudWatch graph on EFS usage

290 CHAPTER 10 Sharing data volumes between machines: EFS

the mounted filesystem with EBS and trigger a snapshot. Let’s start by adding the EBS
volume.

10.7.1 Using CloudFormation to describe an EBS volume

The EBS volume needs to be defined in the CloudFormation template. You also need
to configure that the volume should be attached to the EC2 instance in subnet A. List-
ing 10.6 shows the CloudFormation snippet.

Resources:
[...]
EBSBackupVolumeA:

Type: 'AWS::EC2::Volume'
Properties:

AvailabilityZone: !Select [0, !GetAZs '']
Size: 5
VolumeType: gp2

EBSBackupVolumeAttachmentA:
Type: 'AWS::EC2::VolumeAttachment'
Properties:

Device: '/dev/xvdf'
InstanceId: !Ref EC2InstanceA
VolumeId: !Ref EBSBackupVolumeA

Now, the volume is connected to the EC2 instance in the CloudFormation template.

10.7.2 Using the EBS volume

It might take a moment before the operating system can see the EBS volume as a new
disk. A plain new EBS volume is not yet formatted, so you have to format the disk with
a filesystem at first use. After that, you can mount the disk. You will use a cron job that
runs every 15 minutes to:

1 Copy the files from /home (EFS) to /mnt/backup (EBS) using rsync.
2 Freeze the backup mount, to prevent any additional writes using the fsfreeze

command.
3 Start the snapshot creation using the AWS CLI.
4 Unfreeze the backup mount using the fsfreeze -u command.

The following listing extends the user data script executed by the EC2 instance on
startup.

[...]
/opt/aws/bin/cfn-signal -e $? --stack ${AWS::StackName}

➥ --resource EC2InstanceA --region ${AWS::Region}

while ! ["`fdisk -l | grep '/dev/xvdf' | wc -l`" -ge "1"]; do

Listing 10.6 EBS volume resource attached to an EC2 instance

Listing 10.7 Mount the EBS volume and back up the data from EFS periodically

The EBS volume
needs to be in
the same AZ as
the EC2 instance.

5 GB in size
(you can
increase

this)

Use the SSD backed general
purpose storage type.

The EC2 instance
as one side of

the volume
attachment The EBS volume as the other

side of the volume attachment.

Wait until
EBS volume
is attached.

291Backing up your data

sleep 10
done

if [["`file -s /dev/xvdf`" != *"ext4"*]]; then
mkfs -t ext4 /dev/xvdf

fi

mkdir /mnt/backup
echo "/dev/xvdf /mnt/backup ext4 defaults,nofail 0 2" >> /etc/fstab
mount -a

cat > /etc/cron.d/backup << EOF
SHELL=/bin/bash
PATH=/sbin:/bin:/usr/sbin:/usr/bin:/opt/aws/bin
MAILTO=root
HOME=/
*/15 * * * *

➥ root rsync -av --delete /home/ /mnt/backup/ ;

➥ fsfreeze -f /mnt/backup/ ;

➥ aws --region ${AWS::Region} ec2 create-snapshot

➥ --volume-id ${EBSBackupVolumeA} --description "EFS backup" ;

➥ fsfreeze -u /mnt/backup/
EOF

To allow the EC2 instance to create a snapshot of its own EBS volume, you have to add
an instance profile with a IAM role that allows the ec2:CreateSnapshot action. List-
ing 10.8 shows the CloudFormation snippet.

Resources:
[...]
InstanceProfile:

Type: 'AWS::IAM::InstanceProfile'
Properties:

Roles:
- !Ref Role

Role:
Type: 'AWS::IAM::Role'
Properties:

AssumeRolePolicyDocument:
Version: '2012-10-17'
Statement:
- Effect: Allow
Principal:

Service: 'ec2.amazonaws.com'
Action: 'sts:AssumeRole'

Policies:
- PolicyName: ec2

PolicyDocument:
Version: '2012-10-17'
Statement:
- Effect: Allow

Action: 'ec2:CreateSnapshot'
Resource: '*'

Listing 10.8 CloudFormation snippet of an EC2 Instance Profile resource

Format EBS
volume if needed.

Mount EBS volume.

Install backup cron job.

292 CHAPTER 10 Sharing data volumes between machines: EFS

Last but not least, you have to attach the instance profile to the EC2 instance by modi-
fying the existing EC2InstanceA resource.

Resources:
[...]
EC2InstanceA:

Type: 'AWS::EC2::Instance'
Properties:

IamInstanceProfile: !Ref InstanceProfile
[...]

It’s now time to test the new stack. Don’t forget to delete the old stack first. Then, cre-
ate a new stack based on the extended template. You can find the full code for the
template at /chapter10/template-with-backup.yaml in the book’s code folder.

$ aws cloudformation delete-stack --stack-name efs
$ aws cloudformation create-stack --stack-name efs-with-backup \

➥ --template-url https://s3.amazonaws.com/awsinaction-code2/\

➥ chapter10/template-with-backup.yaml \

➥ --capabilities CAPABILITY_IAM

When the stack is in the CREATE_COMPLETE state, you have two EC2 instances run-
ning. Every 15 minutes, a new EBS snapshot will be created. You need to be patient to
validate that the snapshots are working.

You now have your own backup solution implemented. Keep in mind that the EBS vol-
ume does not automatically grow with your EFS filesystem. You have to adjust the size
of the EBS volume manually.

Where is the template located?
You can find the template on GitHub. You can download a snapshot of the repository
at https://github.com/AWSinAction/code2/archive/master.zip. The file we’re talking
about is located at chapter10/template-with-backup.yaml. On S3, the same file is
located at http://mng.bz/K87P.

Cleaning up
It’s time to delete the running CloudFormation stack:

$ aws cloudformation delete-stack --stack-name efs-with-backup

Also use the Management Console to delete all EBS snapshots that have been cre-
ated as periodical backups.

https://github.com/AWSinAction/code2/archive/master.zip
http://mng.bz/K87P

293Summary

Summary
 EFS provides a NFSv4.1-compliant filesystem that can be shared between Linux

EC2 instances in different availability zones.
 EFS mount targets are bound to an availability zone and are protected by secu-

rity groups.
 You need at least two mount targets in different AZs for high availability.
 EFS does not provide snapshots for point-in-time recovery.
 Data that is stored in EFS is replicated across multiple AZs.

294

Using a relational
 database service: RDS

Relational databases are the de facto standard for storing and querying structured
data, and many applications are built on top of a relational database system such as
MySQL. Typically, relational databases focus on data consistency and guarantee
ACID database transactions (atomicity, consistency, isolation, and durability). A typ-
ical task is storing and querying structured data like the accounts and transactions
in an accounting application.

 If you want to use a relational database on AWS, you have two options:

 Use the managed relational database service Amazon RDS, which is offered
by AWS.

 Operate a relational database yourself on top of virtual machines.

This chapter covers
 Launching and initializing relational databases with RDS

 Creating and restoring database snapshots

 Setting up a highly available database

 Tweaking database performance

 Monitoring databases

295

The Amazon Relational Database Service (Amazon RDS) offers ready-to-use relational
databases such as PostgreSQL, MySQL, MariaDB, Oracle Database, and Microsoft
SQL Server. If your application supports one of these relational database systems, the
migration to Amazon RDS is easy.

 Beyond that, AWS offers its own engine called Amazon Aurora, which is MySQL-
and PostgreSQL-compatible. If your application supports MySQL or PostgreSQL, the
migration to Amazon Aurora is easy.

 RDS is a managed service. The managed service provider—in this case AWS—is
responsible for providing a defined set of services—in this case, operating a relational
database system. Table 11.1 compares using an RDS database and hosting a database
yourself on virtual machines.

You’d need considerable time and know-how to build a comparable relational data-
base environment based on virtual machines, so we recommend using Amazon RDS
for relational databases whenever possible to decrease operational costs and improve
quality. That’s why we won’t cover hosting your own relational database on VMs in this
book. Instead, we’ll introduce Amazon RDS in detail.

 In this chapter, you’ll launch a MySQL database with the help of Amazon RDS.
Chapter 2 introduced a WordPress setup like the one shown in figure 11.1; you’ll
reuse this example in this chapter, focusing on the database part. After the MySQL
database is up and running, you’ll learn how to import, back up, and restore data.
More advanced topics like setting up a highly available database and improving the
performance of the database will follow.

Table 11.1 Managed service RDS vs. a self-hosted database on virtual machines

Amazon RDS Self-hosted on virtual machines

Cost for AWS
services

Higher because RDS costs more than
virtual machines (EC2)

Lower because virtual machines (EC2) are
cheaper than RDS

Total cost of
ownership

Lower because operating costs are
split among many customers

Much higher because you need your own
manpower to manage your database

Quality AWS professionals are responsible for
the managed service.

You’ll need to build a team of professionals
and implement quality control yourself.

Flexibility High, because you can choose a rela-
tional database system and most of
the configuration parameters

Higher, because you can control every part of
the relational database system you installed
on virtual machines

Examples are 100% covered by the Free Tier
The examples in this chapter are totally covered by the Free Tier. As long as you don’t
run the examples longer than a few days, you won’t pay anything for it. Keep in mind
that this applies only if you created a fresh AWS account for this book and nothing
else is going on in your AWS account. Try to complete the chapter within a few days,
because you’ll clean up your account at the end of the chapter.

296 CHAPTER 11 Using a relational database service: RDS

Starting a MySQL database

All the examples in this chapter use a MySQL database used by a WordPress applica-
tion. You can easily transfer what you learn to other database engines such as Aurora,
PostgreSQL, MariaDB, Oracle Database, Microsoft SQL Server, and to applications
other than WordPress.

11.1 Starting a MySQL database
The popular blogging platform WordPress is built on top of a MySQL relational data-
base. If you want to host a WordPress blog on your VM, you’ll need to run the PHP
application—for example, with the help of an Apache web server—and you’ll need to
operate a MySQL database where WordPress stores the articles, comments, and
author accounts. Amazon RDS offers a MySQL database as a managed service, so you
no longer need to install, configure, and operate a MySQL database yourself.

Security groups act as virtual firewalls for
your resources. You need to define specific
rules to control incoming and outgoing
traffic for each resource type.

Store and access files from multiple
virtual machines with the EFS by
using the NFSv4.1 protocol.

Incoming
requests

Distribute
traffic to web

servers

ELB service is providing
a managed load balancer.
The service is fault tolerant.

Users

Load balancer

Firewall

Database

Firewall

Network file system

Firewall

Virtual machines

Firewall

Firewall

RDS is providing a managed
MySQL database. AWS takes
care of backups, updates, and
replication.

Elastic Compute Cloud
(EC2) service is an IaaS
providing virtual machines
(Linux and Windows). You
can install any software
you like on them.

Figure 11.1 The company’s blogging infrastructure consists of two load-balanced web servers
running WordPress and a MySQL database server.

297Starting a MySQL database

11.1.1 Launching a WordPress platform with an RDS database

Launching a database consists of two steps:

1 Launching a database instance
2 Connecting an application to the database endpoint

To set up a WordPress blogging platform with a MySQL database, you’ll use the same
CloudFormation template you used in chapter 2. You also used Amazon RDS there.
The template can be found on GitHub and on S3. You can download a snapshot of
the repository at https://github.com/AWSinAction/code2/archive/master.zip. The
file we’re talking about is located at chapter11/template.yaml. On S3, the same file is
located at http://mng.bz/a4C8.

 Execute the following command to create a CloudFormation stack containing an
RDS database instance with a MySQL engine and web servers serving the WordPress
application:

$ aws cloudformation create-stack --stack-name wordpress --template-url \

➥ https://s3.amazonaws.com/awsinaction-code2/chapter11/template.yaml \

➥ --parameters ParameterKey=KeyName,ParameterValue=mykey \

➥ ParameterKey=AdminPassword,ParameterValue=test1234 \

➥ ParameterKey=AdminEMail,ParameterValue=your@mail.com

You’ll wait several minutes while the CloudFormation stack is created in the back-
ground, which means you’ll have enough time to learn the details of the RDS data-
base instance while the template is launching. Listing 11.1 shows parts of the
CloudFormation template used to create the wordpress stack. Table 11.2 shows the
attributes you need when starting an RDS database using CloudFormation or the
Management Console.

It is possible to mark an RDS instance as publicly accessible. But we generally do not rec-
ommend you enable access from the internet to your database, to prevent unwanted

Table 11.2 Attributes needed to connect to an RDS database

Attribute Description

AllocatedStorage Storage size of your database in GB

DBInstanceClass Size (also known as instance type) of the underlying virtual machine

Engine Database engine (Aurora, PostgreSQL, MySQL, MariaDB,
Oracle Database, or Microsoft SQL Server) you want to use

DBName Identifier for the database

MasterUsername Name for the master user

MasterUserPassword Password for the master user

https://github.com/AWSinAction/code2/archive/master.zip
http://mng.bz/a4C8

298 CHAPTER 11 Using a relational database service: RDS

access. Instead, as shown in our example, an RDS instance should only be accessible
within the VPC.

 To connect to an RDS instance, you need an EC2 instance running in the same
VPC. First, connect to the EC2 instance. From there, you can then connect to the RDS
instance.

Resources:
[...]
DatabaseSecurityGroup:

Type: 'AWS::EC2::SecurityGroup'
Properties:

GroupDescription: 'awsinaction-db-sg'
VpcId: !Ref VPC
SecurityGroupIngress:
- IpProtocol: tcp

FromPort: 3306
ToPort: 3306
SourceSecurityGroupId: !Ref WebServerSecurityGroup

Database:
Type: 'AWS::RDS::DBInstance'
DeletionPolicy: Delete
Properties:

AllocatedStorage: 5
BackupRetentionPeriod: 0
DBInstanceClass: 'db.t2.micro'
DBName: wordpress
Engine: MySQL
MasterUsername: wordpress
MasterUserPassword: wordpress
VPCSecurityGroups:
- !Sub ${DatabaseSecurityGroup.GroupId}
DBSubnetGroupName: !Ref DBSubnetGroup

DependsOn: VPCGatewayAttachment
 DBSubnetGroup:

Type: 'AWS::RDS::DBSubnetGroup'
Properties:
 Description: DB subnet group
 SubnetIds:
 - Ref: SubnetA
 - Ref: SubnetB

See if the CloudFormation stack named wordpress has reached the state CREATE
_COMPLETE with the following command:

$ aws cloudformation describe-stacks --stack-name wordpress

Listing 11.1 Extract from the CloudFormation template setting up an RDS database

Security group for the database
instance, allowing incoming traffic on
the MySQL default port for web servers

The default
MySQL port
is 3306.

References the
security group of EC2

instances running a
web server

Creates a database
instance with
Amazon RDS

Disable backups (turn this to
Snapshot in production!).

The database provides
5 GB of storage. Disable backups (turn

this on in production!).

The size of the database
instance is t2.micro, the
smallest available size.

Creates a default database
named wordpress

Uses MySQL as the
database engine

The username for the
master user of the

MySQL database

The password for the master
user of the MySQL database

References the security
group for the database

instance

Defines the subnets the
RDS database instance
will launch into

Creates a subnet group
to define the subnets for
the database instance

Uses subnet A or B to
launch RDS database
instances

299Starting a MySQL database

Search for StackStatus in the output, and check whether the status is CREATE_COM-
PLETE. If not, you need to wait a few minutes longer (it can take up to 15 minutes to cre-
ate the stack) and rerun the command. If the status is CREATE_COMPLETE, you’ll find the
key OutputKey in the output section. The corresponding OutputValue contains the
URL for the WordPress blogging platform. The following listing shows the output in
detail. Open this URL in your browser; you’ll find a running WordPress setup.

$ aws cloudformation describe-stacks --stack-name wordpress
{

"Stacks": [{
"StackId": "[...]",
"Description": "AWS in Action: chapter 11",
"Parameters": [...],
"Tags": [],
"Outputs": [

 {
 "Description": "Wordpress URL",
 "OutputKey": "URL",
 "OutputValue": "http://[...].us-east-1.elb.amazonaws.com"

 }
],
"CreationTime": "2017-10-19T07:12:28.694Z",
"StackName": "wordpress",
"NotificationARNs": [],
"StackStatus": "CREATE_COMPLETE",
"DisableRollback": false

}]
}

Launching and operating a relational database like MySQL is that simple. Of course,
you can also use the Management Console (https://console.aws.amazon.com/rds/)
to launch an RDS database instance instead of using a CloudFormation template. RDS
is a managed service, and AWS handles most of the tasks necessary to operate your
database in a secure and reliable way. You only need to do two things:

 Monitor your database’s available storage and make sure you increase the allo-
cated storage as needed.

 Monitor your database’s performance and make sure you increase I/O and
computing performance as needed.

Both tasks can be handled with the help of CloudWatch monitoring, as you’ll learn
later in the chapter.

11.1.2 Exploring an RDS database instance with a MySQL engine

The CloudFormation stack created an RDS database instance with a MySQL engine.
Each instance offers an endpoint for SQL requests. Applications can send their SQL

Listing 11.2 Checking the state of the CloudFormation stack

Open this URL in your
browser to open the

WordPress application.

Wait for state
CREATE_COMPLETE for the
CloudFormation stack.

https://console.aws.amazon.com/rds/

300 CHAPTER 11 Using a relational database service: RDS

requests to this endpoint to query, insert, delete, or update data. For example, to
retrieve all rows from a table, the application sends the following SQL request: SELECT
* FROM table. You can request the endpoint and detailed information of an RDS
database instance with a describe command:

$ aws rds describe-db-instances --query "DBInstances[0].Endpoint"
{

"HostedZoneId": "Z2R2ITUGPM61AM",
"Port": 3306,
"Address": "wdwcoq2o8digyr.cqrxioeaavmf.us-east-1.rds.amazonaws.com"

}

The RDS database is now running, but what does it cost?

11.1.3 Pricing for Amazon RDS

Databases on Amazon RDS are priced according to the size of the underlying virtual
machine and the amount and type of allocated storage. Compared to a database run-
ning on a plain EC2 VM, the hourly price of an RDS instance is higher. In our opin-
ion, the Amazon RDS service is worth the extra charge because you don’t need to
perform typical DBA tasks like installation, patching, upgrades, migration, backups,
and recovery.

 Table 11.3 shows a pricing example for a medium-sized RDS database instance
without failover for high availability. All prices in USD are for US East (N. Virginia) as
of Nov. 8, 2017. Get the current prices at https://aws.amazon.com/rds/pricing/.

You’ve now launched an RDS database instance for use with a WordPress web applica-
tion. You’ll learn about importing data to the RDS database in the next section.

11.2 Importing data into a database
A database without data isn’t useful. In many cases, you’ll need to import data into a
new database, by importing a dump from the old database for example. If you move
your locally hosted systems to AWS, you’ll need to transfer the database as well. This
section will guide you through the process of importing a MySQL database dump to
an RDS database with a MySQL engine. The process is similar for all other database

Table 11.3 Monthly (30.5 days) cost for a medium-sized RDS instance

Description Monthly price

Database instance db.m3.medium $65.88 USD

50 GB of general purpose (SSD) $5.75 USD

Additional storage for database snapshots (100 GB) $9.50 USD

Total $81.13 USD

Port number of
database endpoint

Host name of database endpoint

https://aws.amazon.com/rds/pricing/

301Importing data into a database

engines (Aurora, PostgreSQL, MySQL, MariaDB, Oracle Database, and Microsoft
SQL Server).

 To import a database from your local environment to Amazon RDS, follow these
steps:

1 Export the local database.
2 Start a virtual machine in the same region and VPC as the RDS database.
3 Upload the database dump to the virtual machine.
4 Run an import of the database dump to the RDS database on the virtual server.

We’ll skip the first step of exporting a MySQL database, because the RDS instance we
created in our example is empty and you may not have access to an existing WordPress
database. This sidebar gives you hints if you do.

Theoretically, you could import a database to RDS from any machine in your on-
premises or local network. But the higher latency over the internet or VPN connec-
tion will slow down the import process dramatically. Because of this, we recommend
adding a second step: upload the database dump to a virtual machine running in the
same AWS region and VPC, and start to import the database to RDS from there.

Exporting a MySQL database
MySQL (and every other database system) offers a way to export and import data-
bases. We recommend the command-line tools from MySQL for exporting and import-
ing databases. You may need to install the MySQL client, which comes with the
mysqldump tool.

The following command exports all databases from localhost and dumps them into a
file called dump.sql. Replace $UserName with the MySQL admin or master user, and
enter the password when prompted:

$ mysqldump -u $UserName -p --all-databases > dump.sql

You can also specify only some databases for the export. To do so, replace $Data-
baseName with the name of the database you want to export:

$ mysqldump -u $UserName -p $DatabaseName > dump.sql

And of course you can export a database over a network connection. To connect to a
server to export a database, replace $Host with the host name or IP address of your
database:

$ mysqldump -u $UserName -p $DatabaseName --host $Host > dump.sql

See the MySQL documentation if you need more informations about the mysqldump
tool.

302 CHAPTER 11 Using a relational database service: RDS

To do so, we’ll guide you through the following steps:

1 Get the public IP address of the virtual machine you want to upload to. We’ll be
using the VM running WordPress that you created earlier.

2 Connect to the virtual machine via SSH.
3 Download a database dump from S3 to the VM (or if you have an existing data-

base dump that you’re migrating, upload it to the VM).
4 Run an import of the database dump to the RDS database from the virtual

machine.

Fortunately, you already started two virtual machines that you know can connect to
the MySQL database on RDS, because they’re running the WordPress application. To
find out the public IP address of one of these two virtual machines, run the following
command on your local machine:

$ aws ec2 describe-instances --filters "Name=tag-key,\

➥ Values=aws:cloudformation:stack-name Name=tag-value,\

➥ Values=wordpress" --output text \

➥ --query "Reservations[0].Instances[0].PublicIpAddress"

Open an SSH connection to the VM using the public IP address from the previous
command. Use the SSH key mykey to authenticate, and replace $PublicIpAddress
with the VM’s IP address:

$ ssh -i $PathToKey/mykey.pem ec2-user@$PublicIpAddress

We prepared a MySQL database dump of a WordPress blog as an example. The dump
contains a blog post and a few comments. Download this database dump from S3
using the following command on the virtual machine:

$ wget https://s3.amazonaws.com/awsinaction-code2/chapter11/wordpress-import.sql

Now you’re ready to import the MySQL database dump to the RDS database instance.
You’ll need the port and hostname, also called the endpoint, of the MySQL database
on RDS to do so. Don’t remember the endpoint? The following command will print it
out for you. Run this on your local machine:

$ aws rds describe-db-instances --query "DBInstances[0].Endpoint"

AWS Database Migration Service
When migrating a huge database to AWS with minimal downtime, the Database
Migration Service (DMS) can help. We do not cover DMS in this book, but you can
learn more on the AWS website: https://aws.amazon.com/dms/.

https://aws.amazon.com/dms/

303Backing up and restoring your database

Run the following command on the VM to import the data from the file wordpress-
import.sql into the RDS database instance; replace $DBHostName with the RDS end-
point you printed to the terminal with the previous command. Type in the password
wordpress when asked for a password:

$ mysql --host $DBHostName --user wordpress -p < wordpress-import.sql

Point your browser to the WordPress blog again, and you’ll now find many new posts
and comments there. If you don’t remember the URL, run the following command
on your local machine to fetch it again:

$ aws cloudformation describe-stacks --stack-name wordpress \

➥ --query "Stacks[0].Outputs[0].OutputValue" --output text

11.3 Backing up and restoring your database
Amazon RDS is a managed service, but you still need backups of your database in case
something or someone harms your data and you need to restore it, or you need to
duplicate a database in the same or another region. RDS offers manual and auto-
mated snapshots for recovering RDS database instances.

 In this section, you’ll learn how to use RDS snapshots:

 Configuring the retention period and time frame for automated snapshots
 Creating snapshots manually
 Restoring snapshots by starting new database instances based on a snapshot
 Copying a snapshot to another region for disaster recovery or relocation

11.3.1 Configuring automated snapshots

The RDS database you started in section 11.1 can automatically create snapshots if the
BackupRetentionPeriod is set to a value between 1 and 35. This value indicates how
many days the snapshot will be retained (default is 1). Automated snapshots are cre-
ated once a day during the specified time frame. If no time frame is specified, RDS
picks a random 30-minute time frame during the night. (A new random time frame
will be chosen each night.)

 Creating a snapshot requires all disk activity to be briefly frozen. Requests to the
database may be delayed or even fail because of a time out, so we recommend that you
choose a time frame for the snapshot that has the least impact on applications and
users (for example, late at night). Automated snapshots are your backup in case some-
thing unexpected happens to your database. This could be a query that deletes all
your data accidentally or a hardware failure that causes data loss.

 The following command changes the time frame for automated backups to 05:00–
06:00 UTC and the retention period to three days. Use the terminal on your local
machine to execute it:

304 CHAPTER 11 Using a relational database service: RDS

$ aws cloudformation update-stack --stack-name wordpress --template-url \

➥ https://s3.amazonaws.com/awsinaction-code2/chapter11/ \

➥ template-snapshot.yaml \

➥ --parameters ParameterKey=KeyName,UsePreviousValue=true \

➥ ParameterKey=AdminPassword,UsePreviousValue=true \

➥ ParameterKey=AdminEMail,UsePreviousValue=true

The RDS database will be modified based on a slightly modified CloudFormation tem-
plate, as shown next.

Database:
Type: 'AWS::RDS::DBInstance'
DeletionPolicy: Delete
Properties:

AllocatedStorage: 5
BackupRetentionPeriod: 3
PreferredBackupWindow: '05:00-06:00'
DBInstanceClass: 'db.t2.micro'
DBName: wordpress
Engine: MySQL
MasterUsername: wordpress
MasterUserPassword: wordpress
VPCSecurityGroups:
- !Sub ${DatabaseSecurityGroup.GroupId}
DBSubnetGroupName: !Ref DBSubnetGroup

DependsOn: VPCGatewayAttachment

If you want to disable automated snapshots, you need to set the retention period to 0. As
usual, you can configure automated backups using CloudFormation templates, the Man-
agement Console, or SDKs. Keep in mind that automated snapshots are deleted when the
RDS database instance is deleted. Manual snapshots stay. You’ll learn about them next.

11.3.2 Creating snapshots manually

You can trigger manual snapshots whenever you need, for example before you release
a new version of your software, migrate a schema, or perform some other activity that
could damage your database. To create a snapshot, you have to know the instance
identifier. The following command extracts the instance identifier from the first RDS
database instance:

$ aws rds describe-db-instances --output text \

➥ --query "DBInstances[0].DBInstanceIdentifier"

The following command creates a manual snapshot called wordpress-manual-snapshot.
Replace $DBInstanceIdentifier with the output of the previous command.

Listing 11.3 Modifying an RDS database’s snapshot time frame and retention time

Keep snapshots for 3 days.

Create snapshots
automatically between
05:00 and 06:00 UTC.

305Backing up and restoring your database

$ aws rds create-db-snapshot --db-snapshot-identifier \

➥ wordpress-manual-snapshot \

➥ --db-instance-identifier $DBInstanceIdentifier

It will take a few minutes for the snapshot to be created. You can check the current
state of the snapshot with this command:

$ aws rds describe-db-snapshots \

➥ --db-snapshot-identifier wordpress-manual-snapshot

RDS doesn’t delete manual snapshots automatically; you need to delete them yourself
if you don’t need them any longer. You’ll learn how to do this at the end of the section.

11.3.3 Restoring a database

If you restore a database from an automated or manual snapshot, a new database will
be created based on the snapshot. As figure 11.2 shows, you can’t restore a snapshot to
an existing database.

 A new database is created when you restore a database snapshot, as figure 11.3
illustrates.

Copying an automated snapshot as a manual snapshot
There is a difference between automated and manual snapshots. Automated snap-
shots are deleted automatically after the retention period is over, but manual snap-
shots aren’t. If you want to keep an automated snapshot even after the retention
period is over, you have to copy the automated snapshot to a new manual snapshot.

Get the snapshot identifier of an automated snapshot from the RDS database you
started in section 11.1 by running the following command at your local terminal. Replace
$DBInstanceIdentifier with the output of the describe-db-instances command.

$ aws rds describe-db-snapshots --snapshot-type automated \

➥ --db-instance-identifier $DBInstanceIdentifier \

➥ --query "DBSnapshots[0].DBSnapshotIdentifier" \

➥ --output text

The following command copies an automated snapshot to a manual snapshot named
wordpress-copy-snapshot. Replace $SnapshotId with the output from the previ-
ous command:

$ aws rds copy-db-snapshot \

➥ --source-db-snapshot-identifier $SnapshotId \

➥ --target-db-snapshot-identifier wordpress-copy-snapshot

The copy of the automated snapshot is named wordpress-copy-snapshot. It won’t
be removed automatically.

306 CHAPTER 11 Using a relational database service: RDS

To create a new database in the same VPC as the WordPress platform you started in
section 11.1, you need to find out the existing database’s subnet group. Execute this
command to do so:

$ aws cloudformation describe-stack-resource \

➥ --stack-name wordpress --logical-resource-id DBSubnetGroup \

➥ --query "StackResourceDetail.PhysicalResourceId" --output text

You’re now ready to create a new database based on the manual snapshot you created
at the beginning of this section. Execute the following command, replacing $Subnet-
Group with the output of the previous command:

$ aws rds restore-db-instance-from-db-snapshot \

➥ --db-instance-identifier awsinaction-db-restore \

➥ --db-snapshot-identifier wordpress-manual-snapshot \

➥ --db-subnet-group-name $SubnetGroup

A new database named awsinaction-db-restore is created based on the manual
snapshot. After the database is created, you can switch the WordPress application to
the new endpoint.

 If you’re using automated snapshots, you can also restore your database from a
specified moment, because RDS keeps the database’s change logs. This allows you to

Snapshot

Existing database

Create snapshot

Restoring a snapshot to an
existing database is not possible.

Figure 11.2 A snapshot can’t be restored into an existing database.

Snapshot

Existing database New database

Create snapshot Restore snapshot

Figure 11.3 A new database is created to restore a snapshot.

307Backing up and restoring your database

jump back to any point in time from the backup retention period to the last five
minutes.

 Execute the following command, replacing $DBInstanceIdentifier with the out-
put of the earlier describe-db-instances command, $SubnetGroup with the output of
the earlier describe-stack-resource command, and $Time with a UTC timestamp
from 5 minutes ago (for example, 2017-10-19T10:55:00Z):

$ aws rds restore-db-instance-to-point-in-time \

➥ --target-db-instance-identifier awsinaction-db-restore-time \

➥ --source-db-instance-identifier $DBInstanceIdentifier \

➥ --restore-time $Time --db-subnet-group-name $SubnetGroup

A new database named awsinaction-db-restore-time is created based on the source
database from 5 minutes ago. After the database is created, you can switch the Word-
Press application to the new endpoint.

11.3.4 Copying a database to another region

Copying a database to another region is easy with the help of snapshots. The main rea-
sons you might do so are:

 Disaster recovery—You can recover from an unlikely region-wide outage.
 Relocating—You can move your infrastructure to another region so you can

serve your customers with lower latency.

You can easily copy a snapshot to another region. The following command copies the
snapshot named wordpress-manual-snapshot from the region us-east-1 to the
region eu-west-1. You need to replace $AccountId with your account ID.

COMPLIANCE Moving data from one region to another may violate privacy
laws or compliance rules, especially if the data crosses frontiers. Make sure
you’re allowed to copy the data to another region if you’re working with real
data.

$ aws rds copy-db-snapshot --source-db-snapshot-identifier \

➥ arn:aws:rds:us-east-1:$AccountId:snapshot:\
➥ wordpress-manual-snapshot --target-db-snapshot-identifier \

➥ wordpress-manual-snapshot --region eu-west-1

If you can’t remember your account ID, you can look it up with the help of the CLI:

$ aws iam get-user --query "User.Arn" --output text
arn:aws:iam::878533158213:user/mycli

After the snapshot has been copied to the region eu-west-1, you can restore a data-
base from it as described in the previous section.

Account ID has 12 digits
(878533158213).

308 CHAPTER 11 Using a relational database service: RDS

11.3.5 Calculating the cost of snapshots

Snapshots are billed based on the storage they use. You can store snapshots up to
the size of your database instance for free. In our WordPress example, you can store
up to 5 GB of snapshots for free. On top of that, you pay per GB per month of used
storage. As we’re writing this book, the cost is $0.095 for each GB every month
(region us-east-1).

11.4 Controlling access to a database
The shared-responsibility model applies to the RDS service as well as to AWS services
in general. AWS is responsible for security of the cloud in this case—for example, for
the security of the underlying OS. You, the customer, need to specify the rules con-
trolling access to your data and RDS database.

Cleaning up
It’s time to clean up the snapshots and delete the restored database instances. Exe-
cute the following commands step-by-step, or jump to the shortcuts for Linux and
macOS after the listing:

$ aws rds delete-db-instance --db-instance-identifier \

➥ awsinaction-db-restore --skip-final-snapshot
$ aws rds delete-db-instance --db-instance-identifier \

➥ awsinaction-db-restore-time --skip-final-snapshot
$ aws rds delete-db-snapshot --db-snapshot-identifier \

➥ wordpress-manual-snapshot
$ aws rds delete-db-snapshot --db-snapshot-identifier \

➥ wordpress-copy-snapshot
$ aws --region eu-west-1 rds delete-db-snapshot --db-snapshot-identifier \

➥ wordpress-manual-snapshot

You can avoid typing these commands manually at your terminal by using the follow-
ing command to download a Bash script and execute it directly on your local machine.
The Bash script contains the same steps as shown in the previous snippet.

$ curl -s https://raw.githubusercontent.com/AWSinAction/\

➥ code2/master/chapter11/cleanup.sh | bash -ex

Keep the rest of the setup, because you’ll use it in the following sections.

Deletes the database with data
from the snapshot restore Deletes the

database with
data from the
point-in-time
restore

Deletes the
manual snapshot

Deletes the copied snapshot
Deletes the snapshot
copied to another region

309Controlling access to a database

 Figure 11.4 shows the three layers that control access to an RDS database:

1 Controlling access to the configuration of the RDS database
2 Controlling network access to the RDS database
3 Controlling data access with the database’s own user and access management

features

11.4.1 Controlling access to the configuration of an RDS database

Access to the RDS service is controlled using the IAM service. IAM is responsible for
controlling access to actions like creating, updating, and deleting an RDS database
instance. IAM doesn’t manage access inside the database; that’s the job of the data-
base engine. IAM policies define which configuration and management actions an
identity is allowed to execute on RDS. You attach these policies to IAM users, groups,
or roles to control what actions they can perform on the database.

 The following listing shows an IAM policy that allows access to all RDS configura-
tion and management actions. You could use this policy to limit access by only attach-
ing it to trusted IAM users and groups.\

Configuration
access management

IAM policies control access to the
configuration of network access management

and the configuration of the database.

Network
access management

Firewall rules control access to
database on network level: security groups

for database instance and ACLs on subnets.

Database
access management

User and access management
from database system itself

controls access to data.

Data
Sensitive data needs

to be protected
from unauthorized

access.

Figure 11.4 Your data is protected by the database itself, security groups, and IAM.

310 CHAPTER 11 Using a relational database service: RDS

{
"Version": "2012-10-17",
"Statement": [{

"Sid": "Stmt1433661637000",
"Effect": "Allow",
"Action": "rds:*",
"Resource": "*"

}]
}

Only people and machines that really need to make changes to RDS databases should
be allowed to do so. The following listing shows an IAM policy that denies all destruc-
tive actions in order to prevent data loss by human failure.

{
"Version": "2012-10-17",
"Statement": [{

"Sid": "Stmt1433661637000",
"Effect": "Deny",
"Action": ["rds:Delete*", "rds:Remove*"],
"Resource": "*"

}]
}

See chapter 6 if you’re interested in more details about the IAM service.

11.4.2 Controlling network access to an RDS database

An RDS database is linked to security groups. Each security group consists of rules for
a firewall controlling inbound and outbound database traffic. You already know about
using security groups in combination with virtual machines.

 The next listing shows the configuration of the security group attached to the RDS
database in our WordPress example. Inbound connections to port 3306 (the default
port for MySQL) are only allowed from virtual machines linked to the security group
called WebServerSecurityGroup.

DatabaseSecurityGroup:
Type: 'AWS::EC2::SecurityGroup'
Properties:

GroupDescription: 'awsinaction-db-sg'
VpcId: !Ref VPC
SecurityGroupIngress:
- IpProtocol: tcp

FromPort: 3306
ToPort: 3306
SourceSecurityGroupId: !Ref WebServerSecurityGroup

Listing 11.4 Allowing access to all RDS service configuration and management actions

Listing 11.5 IAM policy denying destructive actions

Listing 11.6 CloudFormation template extract: firewall rules for an RDS database

Allows the specified
actions on the

specified resources

All possible actions on RDS
service are specified (for
example, changes to the
database configuration).

All RDS databases are specified.

Denies the specified
actions on the

specified resources

All destructive actions
on the RDS service are
specified (e.g., delete
database instance).

All RDS databases are specified.

Security group for the
database instance, allowing
incoming traffic on the MySQL
default port for web servers

The default
MySQL port

is 3306.
References the security group for web servers

311Relying on a highly available database

Only machines that really need to connect to the RDS database should be allowed to do so
on the network level, such as EC2 instances running your web server or application server.
See chapter 6 if you’re interested in more details about security groups (firewall rules).

11.4.3 Controlling data access

A database engine also implements access control itself. User management of the
database engine has nothing to do with IAM users and access rights; it’s only responsi-
ble for controlling access to the database. For example, you typically define a user for
each application and grant rights to access and manipulate tables as needed. In the
WordPress example, a database user called wordpress is created. The WordPress appli-
cation authenticates itself to the database engine (MySQL in this case) with this data-
base user and a password.

Typical use cases are as follows:

 Limiting write access to a few database users (for example, only for an application)
 Limiting access to specific tables to a few users (for example, to one department

in the organization)
 Limiting access to tables to isolate different applications (for example, hosting

multiple applications for different customers on the same database)

User and access management varies between database systems. We don’t cover this
topic in this book; refer to your database system’s documentation for details.

11.5 Relying on a highly available database
The database is typically the most important part of a system. Applications won’t work
if they can’t connect to the database, and the data stored in the database is mission-
critical, so the database must be highly available and store data durably.

 Amazon RDS lets you launch highly available (HA) databases. Compared to a default
database consisting of a single database instance, an HA RDS database consists of two
database instances: a master and a standby database. You also pay for both instances. All
clients send requests to the master database. Data is replicated between the master and
the standby database synchronously, as shown in figure 11.5.

IAM Database Authentication
AWS has started integrating IAM and the native database authentication mechanism
for two engines: MySQL and Aurora. With IAM Database Authentication, you no longer
need to create users with a username and password in the database engine. Instead,
you create a database user that uses a plugin called AWSAuthenticationPlugin for
authentication. You then log in to the database with the username and a token that
is generated with your IAM identity. The token is valid for 15 minutes, so you have to
renew it from time to time. You can learn more about IAM Database Authentication
in the AWS documentation at http://mng.bz/5q65.

http://mng.bz/5q65

312 CHAPTER 11 Using a relational database service: RDS

We strongly recommend using high-availability deployment for all databases that han-
dle production workloads. If you want to save money, you can turn the HA feature off
for your test systems.

 If the master database becomes unavailable due to hardware or network failures,
RDS starts the failover process. The standby database then becomes the master data-
base. As figure 11.6 shows, the DNS name is updated and clients begin to use the for-
mer standby database for their requests.

Replicate
synchronously

Master
database

Standby
database

Application client

Resolve DNS name

awsinaction-db...rds.amazonaws.com

Figure 11.5 The master database is replicated
to the standby database when running in high-
availability mode.

Master
database

Standby
database

Application client

Resolve DNS name

awsinaction-db...rds.amazonaws.com

Figure 11.6 The client fails over to the
standby database if the master database
fails, using DNS resolution.

313Relying on a highly available database

RDS detects the need for a failover automatically and executes it without human
intervention.

11.5.1 Enabling high-availability deployment for an RDS database

Execute the following command at your local terminal to enable high-availability
deployment for the RDS database you started in section 11.1:

$ aws cloudformation update-stack --stack-name wordpress --template-url \

➥ https://s3.amazonaws.com/awsinaction-code2/chapter11/template-multiaz.yaml \

➥ --parameters ParameterKey=KeyName,UsePreviousValue=true \

➥ ParameterKey=AdminPassword,UsePreviousValue=true \

➥ ParameterKey=AdminEMail,UsePreviousValue=true

WARNING Starting a highly available RDS database will incur charges. See
https://aws.amazon.com/rds/pricing/ if you want to find out the current
hourly price.

The RDS database is updated based on a slightly modified CloudFormation template.

Database:
Type: 'AWS::RDS::DBInstance'
DeletionPolicy: Delete
Properties:

AllocatedStorage: 5
BackupRetentionPeriod: 3
PreferredBackupWindow: '05:00-06:00'
DBInstanceClass: 'db.t2.micro'
DBName: wordpress
Engine: MySQL
MasterUsername: wordpress
MasterUserPassword: wordpress
VPCSecurityGroups:
- !Sub ${DatabaseSecurityGroup.GroupId}
DBSubnetGroupName: !Ref DBSubnetGroup
MultiAZ: true

 DependsOn: VPCGatewayAttachment

Listing 11.7 Modifying the RDS database by enabling high availability

Aurora is different
Aurora is an exception. It does not store your data on a single EBS volume. Instead,
Aurora stores data on a cluster volume. A cluster volume consists of multiple disks,
with each disk having a copy of the cluster data. This implies that the storage layer
of Aurora is not a single point of failure. But still, only the primary Aurora database
instance accepts write requests. If the primary goes down, it is automatically re-
created, which typically takes less than 10 minutes. If you have replica instances in
your Aurora cluster, a replica is promoted to be the new primary instance, which
usually takes around 1 minute and is much faster than primary re-creation.

Enables high-availability
deployment for the RDS
database

https://aws.amazon.com/rds/pricing/

314 CHAPTER 11 Using a relational database service: RDS

It will take several minutes for the database to be deployed in HA mode. But there is
nothing more you need to do—the database is now highly available.

In addition to the fact that a high-availability deployment increases your database’s
reliability, there is another important advantage. Reconfiguring or maintaining a
single-mode database causes short downtimes. High-availability deployment of an RDS
database solves this problem because you can switch to the standby database during
maintenance.

11.6 Tweaking database performance
The easiest way to scale a RDS database, or a SQL database in general, is to scale
vertically . Scaling a database vertically means increasing the resources of your database
instance:

 Faster CPU
 More memory
 Faster storage

Keep in mind that you can’t scale vertically (which means increasing resources)
without limits. One of the largest RDS database instance types comes with 32 cores
and 244 GiB memory. In comparison, an object store like S3 or a NoSQL database like
DynamoDB can be scaled horizontally without limits, as they add more machines to
the cluster if additional resources are needed.

11.6.1 Increasing database resources

When you start an RDS database, you choose an instance type. The instance type
defines the computing power and memory of your virtual machine (as when you start
an EC2 instance). Choosing a bigger instance type increases computing power and
memory for RDS databases.

 You started an RDS database with instance type db.t2.micro, the smallest available
instance type. You can change the instance type using a CloudFormation template,
the CLI, the Management Console, or AWS SDKs. You may want to increase the
instance type if performance is not good enough for you. You will learn how to mea-
sure performance in section 11.7. Listing 11.8 shows how to change the CloudForma-
tion template to increase the instance type from db.t2.micro with 1 virtual core and
615 MB memory to db.m3.large with 2 faster virtual cores and 7.5 GB memory. You’ll

What is Multi-AZ ?
Each AWS region is split into multiple independent data centers, also called availabil-
ity zones. We introduced the concept of availability zones in chapters 9 and 10, but
skipped one aspect of HA deployment that is only used for RDS: the master and
standby databases are launched into two different availability zones. AWS calls the
high-availability deployment of RDS Multi-AZ deployment for this reason.

315Tweaking database performance

do this only in theory. Don’t do this to your running database because it is not covered
by the Free Tier and will incur charges.

Database:
Type: 'AWS::RDS::DBInstance'
DeletionPolicy: Delete
Properties:

AllocatedStorage: 5
BackupRetentionPeriod: 3
PreferredBackupWindow: '05:00-06:00'
DBInstanceClass: 'db.m3.large'
DBName: wordpress
Engine: MySQL
MasterUsername: wordpress
MasterUserPassword: wordpress
VPCSecurityGroups:
- !Sub ${DatabaseSecurityGroup.GroupId}
DBSubnetGroupName: !Ref DBSubnetGroup
MultiAZ: true

 DependsOn: VPCGatewayAttachment

Because a database has to read and write data to a disk, I/O performance is important
for the database’s overall performance. RDS offers three different types of storage, as
you already know from reading about the block storage service EBS:

1 General purpose (SSD)
2 Provisioned IOPS (SSD)
3 Magnetic

You should choose general purpose (SSD) or even provisioned IOPS (SSD) storage
for production workloads. The options are exactly the same as when using EBS for vir-
tual machines. If you need to guarantee a high level of read or write throughput, you
should use provisioned IOPS (SSD). The general purpose (SSD) option offers moder-
ate baseline performance with the ability to burst. The throughput for general pur-
pose (SSD) depends on the amount of initialized storage size. Magnetic storage is an
option if you need to store data at a low cost, or if you don’t need to access it in a pre-
dictable, performant way. The next listing shows how to enable general purpose
(SSD) storage using a CloudFormation template.

Database:
Type: 'AWS::RDS::DBInstance'
DeletionPolicy: Delete
Properties:

AllocatedStorage: 5
BackupRetentionPeriod: 3
PreferredBackupWindow: '05:00-06:00'

Listing 11.8 Modifying the instance type to improve performance of an RDS database

Listing 11.9 Modifying the storage type to improve performance of an RDS database

Increases the size of the
underlying virtual machine for
the database instance from
db.t2.micro to db.m3.large

316 CHAPTER 11 Using a relational database service: RDS

DBInstanceClass: 'db.m3.large'
DBName: wordpress
Engine: MySQL
MasterUsername: wordpress
MasterUserPassword: wordpress
VPCSecurityGroups:
- !Sub ${DatabaseSecurityGroup.GroupId}
DBSubnetGroupName: !Ref DBSubnetGroup
MultiAZ: true
StorageType: 'gp2'

DependsOn: VPCGatewayAttachment

11.6.2 Using read replication to increase read performance

A database suffering from too many read requests can be scaled horizontally by add-
ing additional database instances for read replication. As figure 11.7 shows, changes
to the database are asynchronously replicated to an additional read-only database
instance. The read requests can be distributed between the master database and its
read-replication databases to increase read throughput.

Tweaking read performance with replication makes sense only if the application gen-
erates many read requests and few write requests. Fortunately, most applications read
more than they write.

CREATING A READ-REPLICATION DATABASE

Amazon RDS supports read replication for MySQL, MariaDB, and PostgreSQL data-
bases. To use read replication, you need to enable automatic backups for your data-
base, as shown in section 11.3.

Uses general purpose (SSD) storage
to increase I/O performance

Replicate
asynchronously

Master
database

Read replica
database

Application client

Read
and write

Read
only

Figure 11.7 Read requests are distributed
between the master and read-replication
databases for higher read performance.

317Tweaking database performance

WARNING Starting an RDS read replica will incur charges. See https://
aws.amazon.com/rds/pricing/ if you want to find out the current hourly
price.

Execute the following command from your local machine to create a read-replication
database for the WordPress database you started in section 11.1. Replace the $DBIn-
stanceIdentifier with the value from aws rds describe-db-instances --query
"DBInstances[0].DBInstanceIdentifier" --output text.

$ aws rds create-db-instance-read-replica \

➥ --db-instance-identifier awsinaction-db-read \

➥ --source-db-instance-identifier $DBInstanceIdentifier

RDS automatically triggers the following steps in the background:

1 Creating a snapshot from the source database, also called the master database
2 Launching a new database based on that snapshot
3 Activating replication between the master and read-replication databases
4 Creating an endpoint for SQL read requests to the read-replication database

After the read-replication database is successfully created, it’s available to answer SQL
read requests. The application using the SQL database must support the use of read-rep-
lication databases. WordPress, for example, doesn’t support read replicas by default, but
you can use a plugin called HyperDB to do so; the configuration is tricky, so we’ll skip this
part. You can get more information here: https://wordpress.org/plugins/hyperdb/.
Creating or deleting a read replica doesn’t affect the availability of the master database.

PROMOTING A READ REPLICA TO A STANDALONE DATABASE

If you create a read-replication database to migrate a database from one region to
another, or if you have to perform heavy and load-intensive tasks on your database,
such as adding an index, it’s helpful to switch your workload from the master database

Using read replication to transfer data to another region
RDS supports read replication between regions for Aurora, MySQL, MariaDB, and
PostgreSQL databases. You can replicate your data from the data centers in North
Virginia to the data centers in Ireland, for example. There are three major use cases
for this feature:

1 Backing up data to another region for the unlikely event of an outage covering
a complete region

2 Transferring data to another region to be able to answer read requests with
lower latency

3 Migrating a database to another region

Creating read replication between two regions incurs an additional cost because you
have to pay for the transferred data.

https://wordpress.org/plugins/hyperdb/
https://aws.amazon.com/rds/pricing/
https://aws.amazon.com/rds/pricing/
https://aws.amazon.com/rds/pricing/

318 CHAPTER 11 Using a relational database service: RDS

to a read-replication database. The read replica must become the new master data-
base. Promoting read-replication databases to become master databases is possible for
Aurora, MySQL, MariaDB, and PostgreSQL databases with RDS.

 The following command promotes the read-replication database you created in
this section to a standalone master database. Note that the read-replication database
will perform a restart and be unavailable for a few minutes:

$ aws rds promote-read-replica --db-instance-identifier awsinaction-db-read

The RDS database instance named awsinaction-db-read will accept write requests
after the transformation is successful.

You’ve gained experience with the AWS relational database service in this chapter.
We’ll end the chapter by taking a closer look at the monitoring capabilities of RDS.

11.7 Monitoring a database
RDS is a managed service. Nevertheless, you need to monitor some metrics yourself to
make sure your database can respond to all requests from applications. RDS publishes
several metrics for free to AWS CloudWatch, a monitoring service for the AWS cloud.
You can watch these metrics through the Management Console, as shown in figure 11.8,
and define alarms for when a metric reaches a threshold.

 Table 11.4 shows the most important metrics; we recommend that you keep an eye
on them by creating alarms.

Table 11.4 Important metrics for RDS databases from CloudWatch

Name Description

FreeStorageSpace Available storage in bytes. Make sure you don’t run out of storage space. We
recommend setting the alarm threshold to < 2147483648 (2 GB)

CPUUtilization The usage of the CPU as a percentage. High utilization can be an indicator of a
bottleneck due to insufficient CPU performance. We recommend setting the
alarm threshold to > 80%.

FreeableMemory Free memory in bytes. Running out of memory can cause performance prob-
lems. We recommend setting the alarm threshold to < 67108864 (64 MB).

Cleaning up
It’s time to clean up, to avoid unwanted expense. Execute the following command:

$ aws rds delete-db-instance --db-instance-identifier \

➥ awsinaction-db-read --skip-final-snapshot

319Monitoring a database

DiskQueueDepth Number of outstanding requests to the disk. A long queue indicates that the
database has reached the storage’s maximum I/O performance. We recom-
mend setting the alarm threshold to > 64.

SwapUsage If the database has insufficient memory, the OS starts to use the disk as mem-
ory (this is called swapping). Using the disk as memory is slow and will cause
performance issues. We recommend setting the alarm threshold to >
268435456 (256 MB).

Table 11.4 Important metrics for RDS databases from CloudWatch (continued)

Name Description

Monitor I/O utilization
of database

Chart shows CPU
utilization of DB
instance.

Monitor free
storage for
database

Figure 11.8 Metrics to monitor an RDS database from the Management Console

320 CHAPTER 11 Using a relational database service: RDS

We recommend that you monitor these metrics in particular, to make sure your data-
base isn’t the cause of application performance problems.

In this chapter, you’ve learned how to use the RDS service to manage relational data-
bases for your applications. The next chapter will focus on a NoSQL database.

Summary
 RDS is a managed service that provides relational databases.
 You can choose between PostgreSQL, MySQL, MariaDB, Oracle Database, and

Microsoft SQL Server databases. Aurora is the database engine built by Amazon.
 The fastest way to import data into an RDS database is to copy it to a virtual

machine in the same region and pump it into the RDS database from there.
 You can control access to data with a combination of IAM policies and firewall

rules, and on the database level.
 You can restore an RDS database to any time in the retention period (a maxi-

mum of 35 days).
 RDS databases can be highly available. You should launch RDS databases in

Multi-AZ mode for production workloads.
 Read replication can improve the performance of read-intensive workloads on

a SQL database.

Cleaning up
It’s time to clean up, to avoid unwanted expense. Execute the following command to
delete all resources corresponding to the WordPress blogging platform based on an
RDS database:

$ aws cloudformation delete-stack --stack-name wordpress

321

Caching data in memory:
Amazon ElastiCache

Imagine a relational database being used for a popular mobile game where players’
scores and ranks are updated and read frequently. The read and write pressure to
the database will be extremely high, especially when ranking scores across millions
of players. Mitigating that pressure by scaling the database may help with load, but
not necessarily the latency or cost. Also, relational databases tend to be more
expensive than caching data stores.

 A proven solution used by many gaming companies is leveraging an in-memory
data store such as Redis for both caching and ranking player and game metadata.

This chapter covers
 Benefits of a caching layer between your application

and data store

 Terminology like cache cluster, node, shard,
replication group, and node group

 Using/Operating an in-memory key-value store

 Performance tweaking and monitoring ElastiCache
clusters

322 CHAPTER 12 Caching data in memory: Amazon ElastiCache

Instead of reading and sorting the leaderboard directly from the relational database,
they store an in-memory game leaderboard in Redis, commonly using a Redis Sorted
Set, which will sort the data automatically when it’s inserted based on the score param-
eter. The score value may consist of the actual player ranking or player score in the game.

 Because the data resides in memory and does not require heavy computation to
sort, retrieving the information is incredibly fast, leaving little reason to query from a
relational database. In addition, any other game and player metadata such as player
profile, game level information, and so on that requires heavy reads can also be
cached within this in-memory layer, freeing the database from heavy read traffic.

 In this solution, both the relational database and in-memory
layer will store updates to the leaderboard: one will serve as the
primary database and the other as the working and fast
processing layer. For caching data, they may employ a variety of
caching techniques to keep the data that’s cached fresh, which
we’ll review later. Figure 12.1 shows where the cache sits
between your application and the database.

 A cache comes with multiple benefits:

 The read traffic can be served from the caching layer,
which frees resources on your data store, for example
for write requests.

 It speeds up your application because the caching layer
responds more quickly than your data store.

 You can downsize your data store, which can be more
expensive than the caching layer.

Most caching layers reside in-memory and that’s why they are
so fast. The downside is that you can lose the cached data at
any time because of a hardware defect or a restart. Always keep a copy of your data in
a primary data store with disk durability, like the relational database in the mobile
game example. Alternatively, Redis has optional failover support. In the event of a
node failure, a replica node will be elected to be the new primary and will already
have a copy of the data.

 Depending on your caching strategy, you can either populate the cache in real-
time or on-demand. In the mobile game example, on-demand means that if the lead-
erboard is not in the cache, the application asks the relational database and puts the
result into the cache. Any subsequent request to the cache will result in a cache hit,
meaning the data is found. This will be true until the duration of the TTL (time to
live) value on the cached value expires. This strategy is called lazy-loading the data
from the primary data store. Additionally, we could have a cron job running in the
background that queries the leaderboard from the relational database every minute
and puts the result in the cache to populate the cache in advance.

Data store

Cache

Application

Figure 12.1 Cache sits
between the application
and the database

323

 The lazy-loading strategy (getting data on demand) is implemented like this:

1 The application writes data to the data store.
2 If the application wants to read the data, at a later time it makes a request to the

caching layer.
3 The caching layer does not contain the data. The application reads from the

data store directly and puts the read value into the cache, and also returns the
value to the client.

4 Later, if the application wants to read the data again, it makes a request to the
caching layer and finds the value.

This strategy comes with a problem. What if the data is changed while it is in the
cache? The cache will still contain the old value. That’s why setting an appropriate
TTL value is critical to ensure cache validity. Let’s say you apply a TTL of 5 minutes to
your cached data: this means you accept that the data could be up to 5 minutes out of
sync with your primary database. Understanding the frequency of change for the
underlying data and the effects out-of-sync data will have on the user experience is the
first step of identifying the appropriate TTL value to apply. A common mistake some
developers make is assuming that a few seconds of a cache TTL means that having a
cache is not worthwhile. Remember that within those few seconds, millions of
requests can be eliminated from your back end, speeding up your application and
reducing the back-end database pressure. Performance testing your application with
and without your cache, along with various caching approaches, will help fine-tune
your implementation. In summary, the shorter the TTL, the more load you have on
your underlying data store. The higher the TTL, the more out of sync the data gets.

 The write-through strategy (caching data up front) is implemented differently to
tackle the synchronization issue:

1 The application writes data to the data store and the cache (or the cache is
filled asynchronously, for example in a cron job, AWS Lambda function, or the
application).

2 If the application wants to read the data at a later time, it makes a request to the
caching layer, which contains the data.

3 The value is returned to the client.

This strategy also comes with a problem. What if the cache is not big enough to con-
tain all your data? Caches are in-memory and your data store’s disk capacity is usually
larger than your cache’s memory capacity. When your cache reaches the available
memory, it will evict data, or stop accepting new data. In both situations, the applica-
tion stops working. In the gaming app, the global leaderboard will always fit into the
cache. Imagine that a leaderboard is 4 KB in size and the cache has a capacity of 1 GB
(1,048,576 KB). But what about team leaderboards? You can only store 262,144
(1,048,576 / 4) leaderboards, so if you have more teams than that, you will run into an
capacity issue.

324 CHAPTER 12 Caching data in memory: Amazon ElastiCache

 Figure 12.2 compares the two caching strategies. When evicting data, the cache
needs to decide which data it should delete. One popular strategy is to evict the least
recently used (LRU) data. This means that cached data must contain meta informa-
tion about the time when it was last accessed. In case of an LRU eviction, the data with
the oldest timestamp is chosen for eviction.

Data store

Cache

Application

Lazy loading strategy

4. Application stores
 data read from data
 store in cache

2. Application reads
 from cache: data is
 not in the cache

3. Application reads
 from the data store:
 data is found

1. Application writes
 to the database

Data store

Cache

Application

Write through strategy

1. Application writes
 to the database and
 the cache

2. Application reads
 from the cache:
 data is found

If data is not in the
cache, read from the
data store (e.g. cache
was full or restarted).

Figure 12.2 Comparing the lazy-loading and write-through caching strategies

325

Caches are usually implemented using key-value stores. Key-value stores don’t support
sophisticated query languages such as SQL. They support retrieving data based on a key,
usually a string, or specialized commands, for example to extract sorted data efficiently.

 Imagine that in your relational database you have a player table for your mobile
game. One of the most common queries is SELECT id, nickname FROM player

ORDER BY score DESC LIMIT 10 to retrieve the top ten players. Luckily, the game is
very popular. But this comes with a technical challenge. If many players look at the
leaderboard, the database becomes very busy, which causes high latency or even time-
outs. You have to come up with a plan to reduce the load on the database. As you
already learned, caching can help. What technique should you employ for caching?
You have a few options.

 One approach you can take with Redis is to store the result of your SQL query as a
String value and the SQL statement as your key name. Instead of using the whole SQL
query as the key, you can hash the string with a hash function like md5 or sha256 to
optimize storage and bandwidth B as shown in figure 12.3. Before the application
sends the query to the database, it takes the SQL query as the key to ask the caching
layer for data C. If the cache does not contain data for the key D, the SQL query is
sent to the relational database E. The result F is then stored in the cache using the
SQL query as the key G. The next time the application wants to perform the query, it
asks the caching layer H, which now contains the cached table I.

 To implement caching, you only need to know the key of the cached item. This can
be an SQL query, a filename, a URL, or a user ID. You take the key and ask the cache
for a result. If no result is found, you make a second call to the underlying data store,
which knows the truth.

Figure 12.3 SQL caching layer implementation

Get key
666...336

Data store

Cache

Application md5(SELECT id, nick FROM player ORDER BY score DESC LIMIT 10)
=> 666...336

Query: SELECT id, nick
 FROM player
 ORDER BY score DESC
 LIMIT 10

Nothing
found

Get key
666...336

Return value
(table)

Return table

Add key
666...336
with table
as value

326 CHAPTER 12 Caching data in memory: Amazon ElastiCache

With Redis, you also have the option of storing the data in other data structures such
as a Redis SortedSet. If the data is stored in a Redis SortedSet, retrieving the ranked
data will be very efficient. You could simply store players and their scores and sort by
the score. An equivalent SQL command would be:

ZREVRANGE "player-scores" 0 9

This would return the ten players in a SortedSet named “player-scores” ordered from
highest to lowest.

The two most popular implementations of in-memory key-value stores are Mem-
cached and Redis. Amazon ElastiCache offers both options. Table 12.1 compares their
features.

Amazon ElastiCache offers Memcached and Redis clusters as a service. Therefore,
AWS covers the following aspects for you:

 Installation—AWS installs the software for you and has enhanced the underlying
engines.

 Administration—AWS administers Memcached/Redis for you and provides ways
to configure your cluster through parameter groups. AWS also detects and auto-
mates failovers (Redis only).

 Monitoring—AWS publishes metrics to CloudWatch for you.
 Patching—AWS performs security upgrades in a customizable time window.

Table 12.1 Comparing Memcached and Redis features

Memcached Redis

Data types simple complex

Data manipulation commands 12 125

Server-side scripting no yes (Lua)

Transactions no yes

Multi-threaded yes no

Examples are 100% covered by the Free Tier
The examples in this chapter are completely covered by the Free Tier. As long as you
don’t run the examples longer than a few days, you won’t pay anything. Keep in mind
that this only applies if you created a fresh AWS account for this book and nothing
else is going on in your AWS account. Try to complete the chapter within a few days;
you’ll clean up your account at the end.

327Creating a cache cluster

 Backups—AWS optionally backs up your data in a customizable time window
(Redis only).

 Replication—AWS optionally sets up replication (Redis only).

Next, you will learn how to create an in-memory cluster with ElastiCache that you will
later use as an in-memory cache for an application.

12.1 Creating a cache cluster
In this chapter, we focus on the Redis engine because it’s more flexible. You can
choose which engine to use based on the features that we compared in the previous
section. If there are significant differences to Memcached, we will highlight them.

12.1.1 Minimal CloudFormation template

You can create an ElastiCache cluster using the Management Console, the CLI, or
CloudFormation. You will use CloudFormation in this chapter to manage your cluster.
The resource type of an ElastiCache cluster is AWS::ElastiCache::CacheCluster.
The required properties are:

 Engine—Either redis or memcached
 CacheNodeType—Similar to the EC2 instance type, for example cache.t2

.micro

 NumCacheNodes—1 for a single-node cluster
 CacheSubnetGroupName—You reference subnets of a VPC using a dedicated

resource called a subnet group
 VpcSecurityGroupIds—The security groups you want to attach to the cluster

A minimal CloudFormation template is shown in listing 12.1.

AWSTemplateFormatVersion: '2010-09-09'
Description: 'AWS in Action: chapter 12 (minimal)'
Parameters:

VPC:
Type: 'AWS::EC2::VPC::Id'

SubnetA:
Type: 'AWS::EC2::Subnet::Id'

SubnetB:
Type: 'AWS::EC2::Subnet::Id'

KeyName:
Type: 'AWS::EC2::KeyPair::KeyName'
Default: mykey

Resources:
CacheSecurityGroup:

Type: 'AWS::EC2::SecurityGroup'
Properties:

GroupDescription: cache

Listing 12.1 Minimal CloudFormation template of an ElastiCache Redis single-node cluster

Defines VPC and subnets
as parameters

The security group to manage
which traffic is allowed to
enter/leave the cluster

328 CHAPTER 12 Caching data in memory: Amazon ElastiCache

VpcId: !Ref VPC
SecurityGroupIngress:
- IpProtocol: tcp

FromPort: 6379
ToPort: 6379
CidrIp: '0.0.0.0/0'

CacheSubnetGroup:
Type: 'AWS::ElastiCache::SubnetGroup'
Properties:

Description: cache
SubnetIds:
- Ref: SubnetA
- Ref: SubnetB

Cache:
Type: 'AWS::ElastiCache::CacheCluster'
Properties:

CacheNodeType: 'cache.t2.micro'
CacheSubnetGroupName: !Ref CacheSubnetGroup
Engine: redis
NumCacheNodes: 1
VpcSecurityGroupIds:

 - !Ref CacheSecurityGroup

As already mentioned, ElastiCache nodes in a cluster only have private IP addresses.
Therefore, you can’t connect to a node directly over the internet. The same is true for
other resources as EC2 instances or RDS instances. To test the Redis cluster, you can
create an EC2 instance in the same VPC as the cluster. From the EC2 instance, you can
then connect to the private IP address of the cluster.

12.1.2 Test the Redis cluster

To test Redis, add the following resources to the minimal CloudFormation template:

Resources:
[...]
VMSecurityGroup:

Type: 'AWS::EC2::SecurityGroup'
Properties:

GroupDescription: 'instance'
SecurityGroupIngress:
- IpProtocol: tcp

FromPort: 22
ToPort: 22
CidrIp: '0.0.0.0/0'

VpcId: !Ref VPC
VMInstance:

Type: 'AWS::EC2::Instance'
Properties:

ImageId: 'ami-6057e21a'
InstanceType: 't2.micro'
KeyName: !Ref KeyName
NetworkInterfaces:
- AssociatePublicIpAddress: true

Redis listens on port 6379. This allows access from
all IP addresses, but since the cluster only has
private IP addresses, access is only possible from
inside the VPC. You will improve this in section 12.3.

Subnets are defined within
a subnet group (same
approach is used in RDS).

List of subnets that can
be used by the cluster

The
resource
to define
the Redis

cluster.
cache.t2.micro comes with
0.555 GiB memory and is
part of the Free Tier.

redis or memcached

1 for a single-node cluster

Security group to
allow SSH access

Virtual machine used to
connect to your Redis cluster

329Creating a cache cluster

DeleteOnTermination: true
DeviceIndex: 0
GroupSet:
- !Ref VMSecurityGroup
SubnetId: !Ref SubnetA

Outputs:
VMInstanceIPAddress:

Value: !GetAtt 'VMInstance.PublicIp'
Description: 'EC2 Instance public IP address

➥ (connect via SSH as user ec2-user)'
CacheAddress:

Value: !GetAtt 'Cache.RedisEndpoint.Address'
Description: 'Redis DNS name (resolves to a private IP address)'

The minimal CloudFormation template is now complete. Create a stack based on the
template to create all the resources in your AWS account using the Management Con-
sole: http://mng.bz/Cp44. You have to fill in four parameters when creating the
stack:

 KeyName—If you’ve been following along with our book in order, you should
have created a key pair with the name mykey, which is selected by default.

 SubnetA—You should have at least two options here; select the first one.
 SubnetB—You should have at least two options here; select the second one.
 VPC—You should only have one possible VPC here—your default VPC. Select it.

You can find the full code for the template at /chapter12/minimal.yaml in the book’s
code folder.

Once the stack status changes to CREATE_COMPLETE in the CloudWatch Manage-
ment Console, select the stack and click on the Outputs tab. You can now start to test
the Redis cluster. Open an SSH connection to the EC2 instance, and then you can use
the Redis CLI to interact with the Redis cluster node.

$ ssh -i mykey.pem ec2-user@$VMInstanceIPAddress
$ sudo yum -y install --enablerepo=epel redis
$ redis-cli -h $CacheAddress
> SET key1 value1
OK

Public IP address
of virtual machine

DNS name of Redis cluster
node (resolves to a private
IP address)

Where is the template located?
You can find the template on GitHub. You can download a snapshot of the repository
at https://github.com/AWSinAction/code2/archive/master.zip. The file we’re talking
about is located at chapter12/minimal.yaml. On S3, the same file is located at
http://mng.bz/qJ8g.

Connect to the EC2 instance, replace
$VMInstanceIPAddress with the output

from the CloudFormation stack.
Install the
Redis CLI.

Connect to the Redis cluster node,
replace $CacheAddress with the output
from the CloudFormation stack.

Store the string
value under the

key key1.

http://mng.bz/Cp44
http://mng.bz/qJ8g
https://github.com/AWSinAction/code2/archive/master.zip

330 CHAPTER 12 Caching data in memory: Amazon ElastiCache

> GET key1
"value1"
> GET key2
(nil)
> SET key3 value3 EX 5
OK
> GET key3
"value3"
> GET key3
(nil)
> quit

You’ve successfully connected to a Redis cluster node, stored some keys, retrieved
some keys, and used Redis’s time-to-live functionality. With this knowledge, you could
start to implement a caching layer in your own application. But as always, there are
more options to discover. Delete the CloudFormation stack you created to avoid
unwanted costs. Then, continue with the next section to learn more about advanced
deployment options with more than one node to achieve high availability or sharding.

12.2 Cache deployment options
Which deployment option you should choose is influenced by four factors:

1 Engine—Memcached or Redis
2 Backup/Restore—Is it possible to back up or restore the data from the cache?
3 Replication—If a single node fails, is the data still available?
4 Sharding—If the data does not fit on a single node, can you add nodes to

increase capacity?

Table 12.2 compares the deployment options for the two available engines.

Let’s look at deployment options in more detail.

12.2.1 Memcached: cluster

An Amazon ElastiCache for a Memcached cluster consists of 1-20 nodes. Sharding is
implemented by the Memcached client, typically utilizing a consistent hashing algo-
rithm which arranges keys into partitions in a ring distributed across the nodes. The
client essentially decides which keys belong to which nodes and directs the requests to
those partitions. Each node stores a unique portion of the key-space in-memory. If a

Table 12.2 Comparing ElastiCache deployment options

Memcached Redis: single node
Redis: cluster
mode disabled

Redis: cluster
mode enabled

Backup/Restore no yes yes yes

Replication no no yes yes

Sharding yes no no yes

Retrieve the value for key key1.

If a key does not exist, you
get an empty response.

Store the string ttl under the key key3
and expire the key after 5 seconds.

Within 5
seconds, get

the key key3.

After 5 seconds, key3
no longer exists.

Quit the
Redis CLI.

331Cache deployment options

node fails, the node is replaced but the data is lost. You can not back up the data in
Memcached. Figure 12.4 shows a Memcached cluster deployment.

 You can use a Memcached cluster if your application requires a simple in-memory
store and can tolerate the loss of a node and its data. The SQL cache example in the
beginning of this chapter could be implemented using Memcached. Since the data is
always available in the relational database, you can tolerate a node loss, and you only
need simple commands (GET, SET) to implement the query cache.

12.2.2 Redis: Single-node cluster

An ElastiCache for a Redis single-node cluster always consists of one node. Sharding
and high availability are not possible with a single node. But Redis supports the cre-
ation of backups, and also allows you to restore those backups. Figure 12.5 shows a
Redis single-node cluster. Remember that a VPC is a way to define a private network
on AWS. A subnet is a way to separate concerns inside the VPC. Cluster nodes always
run in a single subnet. The client communicates with the Redis cluster node to get
data and write data to the cache.

Client

Writes
Cluster

Subnet 1 Subnet 2

VPC

Reads

Node 1 Node 2 Node 3

Figure 12.4 Memcached deployment option: cluster

Figure 12.5 Redis deployment
option: single-node cluster

Client

Writes Cluster

Subnet 1 Subnet 2

VPC

Reads

Node

332 CHAPTER 12 Caching data in memory: Amazon ElastiCache

A single node adds a single point of failure (SPOF) to your system. This is probably
something you want to avoid for business-critical production systems.

12.2.3 Redis: Cluster with cluster mode disabled

Things become more complicated now, because ElastiCache uses two terminologies.
We’ve been using the terms cluster/node/shard so far, and the graphical Manage-
ment Console also uses these terms. But the API, the CLI, and CloudFormation use a
different terminology: replication group/node/node group. We prefer the clus-
ter/node/shard terminology, but in figures 12.6 and 12.7 we’ve added the replication
group/node/node group terminology in parentheses.

 A Redis cluster with cluster mode disabled supports backups and data replication,
but no sharding. This means there is only one shard consisting of one primary and up
to five replica nodes.

You can use a Redis cluster with cluster mode disabled when you need data replication
and all your cached data fits into the memory of a single node. Imagine that your
cached data set is 4 GB in size. If your cache has at least 4 GB of memory, the data fits
into the cache and you don’t need sharding.

12.2.4 Redis: Cluster with cluster mode enabled

A Redis cluster with cluster mode enabled supports backups, data replication, and
sharding. You can have up to 15 shards per cluster. Each shard consists of one primary
and up to five replica nodes. The largest cluster size therefore is 90 nodes (15 prima-
ries + (15 * 5 replicas)).

 You can use a Redis cluster with cluster mode enabled when you need data replica-
tion and your data is too large to fit into the memory of a single node. Imagine that
your cached data is 22 GB in size. Each cache node has a capacity of 4 GB of memory.

Subnet 2

Client

Writes

Cluster (replication group)

Shard (node group)

Replication

Subnet 1

VPC

Reads

Replica
node

Primary
node

Figure 12.6 Redis deployment option: cluster with cluster mode disabled

333Cache deployment options

Therefore, you will need six shards to get a total capacity of 24 GB of memory. Elasti-
Cache provides up to 437 GB of memory per node, which totals to a maximum cluster
capacity of 6.5 TB (15 * 437 GB).

Subnet 2

Client

Writes

Cluster (replication group)

Shard 1 (node group 1)

Replication

Subnet 1

VPC

Reads

Replica
node

Primary
node

Writes

Shard 2 (node group 2)

Replication

Replica
node

Primary
node

Figure 12.7 Redis deployment option: cluster with cluster mode enabled

Additional benefits of enabling cluster mode
With cluster mode enabled, failover speed is much faster, as no DNS is involved. Cli-
ents are provided a single configuration endpoint to discover changes to the cluster
topology, including newly elected primaries. With cluster mode disabled, AWS pro-
vides a single primary endpoint and in the event of a failover, AWS does a DNS swap
on that endpoint to one of the available replicas. It may take ~1–1.5min before the
application is able to reach the cluster after a failure, whereas with cluster mode
enabled, the election takes less than 30s.

More shards enable more read/write performance. If you start with one shard and
add a second shard, each shard now only has to deal with 50% of the requests
(assuming an even distribution).

As you add nodes, your blast radius decreases. For example, if you have five shards
and experience a failover, only 20% of your data is affected. This means you can’t
write to this portion of the key space until the failover process completes (~15–30s),
but you can still read from the cluster, given you have a replica available. With cluster
mode disabled, 100% of your data is affected, as a single node consists of your
entire key space. You can read from the cluster but can’t write until the DNS swap
has completed.

334 CHAPTER 12 Caching data in memory: Amazon ElastiCache

You are now equipped to select the right engine and the deployment option for your
use case. In the next section, you will take a closer look at the security aspects of Elasti-
Cache to control access to your cache cluster.

12.3 Controlling cache access
Access control is very similar to the way it works with RDS (see section 11.4). The only
difference is, that cache engines come with very limited features to control access to
the data itself. The following paragraph summarizes the most important aspects of
access control.

 ElastiCache is protected by four layers:

 Identity and Access Management (IAM): Controls which IAM user/group/role is
allowed administer an ElastiCache cluster.

 Security Groups: Restricts incoming and outgoing traffic to ElastiCache nodes.
 Cache Engine: Redis has the AUTH command, Memcached does not handle

authentication. Neither engine supports authorization.
 Encryption: At rest and in transit.

SECURITY WARNING It’s important to understand that you don’t control
access to the cache nodes using IAM. Once the nodes are created, Security
Groups control the access.

12.3.1 Controlling access to the configuration

Access to the ElastiCache service is controlled with the help of the IAM service. The
IAM service is responsible for controlling access to actions like creating, updating,
and deleting a cache cluster. IAM doesn’t manage access inside the cache; that’s the
job of the cache engine. An IAM policy defines the configuration and management
actions a user, group, or role is allowed to execute on the ElastiCache service. Attach-
ing the IAM policy to IAM users, groups, or roles controls which entity can use the
policy to configure an ElastiCache cluster.

 You can get a complete list of IAM actions and resource-level permissions supported
at http://mng.bz/anNF.

12.3.2 Controlling network access

Network access is controlled with security groups. Remember the security group from
the minimal CloudFormation template in section 12.1 where access to port 6379
(Redis) was allowed for all IP addresses. But since cluster nodes only have private IP
addresses this restricts access to the VPC:

Resources:
[...]
CacheSecurityGroup:

Type: 'AWS::EC2::SecurityGroup'
Properties:

GroupDescription: cache

http://mng.bz/anNF

335Controlling cache access

VpcId: !Ref VPC
SecurityGroupIngress:
- IpProtocol: tcp

FromPort: 6379
ToPort: 6379
CidrIp: '0.0.0.0/0'

You should improve this setup by working with two security groups. To control traffic
as tight as possible, you will not white list IP addresses. Instead, you create two security
groups. The client security group will be attached to all EC2 instances communicating
with the cache cluster (your web servers). The cache cluster security group allows
inbound traffic on port 6379 only for traffic that comes from the client security group.
This way you can have a dynamic fleet of clients who is allowed to send traffic to the
cache cluster. You used the same approach for the SSH bastion host in section 6.4.

Resources:
[...]
ClientSecurityGroup:

Type: 'AWS::EC2::SecurityGroup'
Properties:

GroupDescription: 'cache-client'
VpcId: !Ref VPC

CacheSecurityGroup:
Type: 'AWS::EC2::SecurityGroup'
Properties:

GroupDescription: cache
VpcId: !Ref VPC
SecurityGroupIngress:
- IpProtocol: tcp

FromPort: 6379
ToPort: 6379
SourceSecurityGroupId: !Ref ClientSecurityGroup

Attach the ClientSecurityGroup to all EC2 instances that need access to the cache
cluster. This way, you only allow access to the EC2 instances that really need access.

 Keep in mind that ElastiCache nodes always have private IP addresses. This means
that you can’t accidentally expose a Redis or Memcached cluster to the internet. You
still want to use Security Groups to implement the principle of least privilege.

12.3.3 Controlling cluster and data access

Both Redis and Memcached support very basic authentication features. Amazon Elas-
tiCache does support Redis AUTH for customers who also want to enable token-based
authentication in additional to the security features Amazon ElastiCache provides.
Redis AUTH is the security mechanism that open source Redis utilizes. Since the com-
munication between the clients and the cluster is unencrypted, such an authentica-
tion would not improve security using open source engines. But, Amazon ElastiCache
does offer encryption in transit with Redis 3.2.6.

Only allow
access from the
ClientSecurityGroup.

336 CHAPTER 12 Caching data in memory: Amazon ElastiCache

 Neither engine implements data access management. When connected to a key-
value store, you get access to all data. This limitation relies on the underlying key-
value stores, not in ElastiCache itself. In the next section, you’ll learn how to use
ElastiCache for Redis in a real-world application called Discourse.

12.4 Installing the sample application Discourse with
CloudFormation
Small communities, like football clubs, reading circles, or dog schools benefit from
having a place where members can communicate with each other. Discourse is open-
source software for providing modern forums for your community. You can use it as
a mailing list, discussion forum, long-form chat room, and more. It is written in
Ruby using the Rails framework. Figure 12.8 gives you an impression of Discourse.
Wouldn’t that be a perfect place for your community to meet? In this section, you
will learn how to set up Discourse with CloudFormation. Discourse is also perfectly
suited for learning about ElastiCache because it requires a Redis cache. Discourse
requires PostgreSQL as main data store and uses Redis to cache data and process
transient data.

Figure 12.8 Discourse: a platform for community discussion

337Installing the sample application Discourse with CloudFormation

In this section, you’ll create a CloudFormation template with all the components nec-
essary to run Discourse. Finally, you’ll create a CloudFormation stack based on the
template to test your work. The necessary components are:

 VPC—Network configuration
 Cache—Security group, subnet group, cache cluster
 Database—Security group, subnet group, database instance
 Virtual machine—Security group, EC2 instance

Let’s get started. You’ll start with the first component and extend the template in the
rest of this section.

12.4.1 VPC: Network configuration

In section 6.5 you learned all about private networks on AWS. If you can’t follow listing
12.2, you could go back to section 6.5 or continue with the next step—understanding the
network is not key to get Discourse running.

AWSTemplateFormatVersion: '2010-09-09'
Description: 'AWS in Action: chapter 12'
Parameters:

KeyName:
 Description: 'Key Pair name'
 Type: 'AWS::EC2::KeyPair::KeyName'
 Default: mykey

AdminEmailAddress:
Description: 'Email address of admin user'
Type: 'String'

Resources:
VPC:

Type: 'AWS::EC2::VPC'
Properties:

CidrBlock: '172.31.0.0/16'
EnableDnsHostnames: true

InternetGateway:
Type: 'AWS::EC2::InternetGateway'
Properties: {}

VPCGatewayAttachment:
Type: 'AWS::EC2::VPCGatewayAttachment'
Properties:

VpcId: !Ref VPC
InternetGatewayId: !Ref InternetGateway

SubnetA:
Type: 'AWS::EC2::Subnet'
Properties:

AvailabilityZone: !Select [0, !GetAZs '']
CidrBlock: '172.31.38.0/24'
VpcId: !Ref VPC

SubnetB: # [...]

Listing 12.2 CloudFormation template for Discourse: VPC

The key pair name for SSH access and
also the email address of the Discourse
admin (must be valid!) are variable.

Creates a VPC in the address
range 172.31.0.0/16

We want to access Discourse from the
internet, so we need an internet gateway.

Attach the internet
gateway to the VPC.

Create a subnet in the address range
172.31.38.0/24 in the first availability
zone (array index 0).

Create a second subnet in the address
range 172.31.37.0/24 in the second
availability zone (properties omitted).

338 CHAPTER 12 Caching data in memory: Amazon ElastiCache

RouteTable:
Type: 'AWS::EC2::RouteTable'
Properties:

VpcId: !Ref VPC
SubnetRouteTableAssociationA:

Type: 'AWS::EC2::SubnetRouteTableAssociation'
Properties:

SubnetId: !Ref SubnetA
RouteTableId: !Ref RouteTable

RouteToInternet:
Type: 'AWS::EC2::Route'
Properties:

RouteTableId: !Ref RouteTable
DestinationCidrBlock: '0.0.0.0/0'
GatewayId: !Ref InternetGateway

DependsOn: VPCGatewayAttachment
SubnetRouteTableAssociationB: # [...]
NetworkAcl:

Type: AWS::EC2::NetworkAcl
Properties:

VpcId: !Ref VPC
SubnetNetworkAclAssociationA:

Type: 'AWS::EC2::SubnetNetworkAclAssociation'
Properties:

SubnetId: !Ref SubnetA
NetworkAclId: !Ref NetworkAcl

SubnetNetworkAclAssociationB: # [...]
NetworkAclEntryIngress:

Type: 'AWS::EC2::NetworkAclEntry'
Properties:

NetworkAclId: !Ref NetworkAcl
RuleNumber: 100
Protocol: -1
RuleAction: allow
Egress: false
CidrBlock: '0.0.0.0/0'

NetworkAclEntryEgress:
Type: 'AWS::EC2::NetworkAclEntry'
Properties:

NetworkAclId: !Ref NetworkAcl
RuleNumber: 100
Protocol: -1
RuleAction: allow
Egress: true
CidrBlock: '0.0.0.0/0'

The network is now properly configured using two public subnets. Let’s configure the
cache next.

12.4.2 Cache: Security group, subnet group, cache cluster

You will add the ElastiCache for Redis cluster now. You learned how to describe a min-
imal cache cluster earlier in this chapter. This time, you’ll add a few extra properties

Create a route table that contains
the default route, which routes all
subnets in a VPC.

Associate the first subnet
with the route table.

Add a route to the
internet via the
internet gateway.

Create an empty
network ACL.

Associate the first subnet
with the network ACL.

Allow all incoming traffic on the
Network ACL (you will use security
groups later as a firewall).

Allow all outgoing traffic
on the Network ACL.

339Installing the sample application Discourse with CloudFormation

to enhance the setup. This listing contains the CloudFormation resources related to
the cache.

Resources:
[...]
CacheSecurityGroup:

Type: 'AWS::EC2::SecurityGroup'
Properties:

GroupDescription: cache
VpcId: !Ref VPC

CacheSecurityGroupIngress:
Type: 'AWS::EC2::SecurityGroupIngress'
Properties:

GroupId: !Ref CacheSecurityGroup
IpProtocol: tcp
FromPort: 6379
ToPort: 6379
SourceSecurityGroupId: !Ref VMSecurityGroup

CacheSubnetGroup:
Type: 'AWS::ElastiCache::SubnetGroup'
Properties:

Description: cache
SubnetIds:
- Ref: SubnetA
- Ref: SubnetB

Cache:
Type: 'AWS::ElastiCache::CacheCluster'
Properties:

CacheNodeType: 'cache.t2.micro'
CacheSubnetGroupName: !Ref CacheSubnetGroup
Engine: redis
EngineVersion: '3.2.4'
NumCacheNodes: 1
VpcSecurityGroupIds:
- !Ref CacheSecurityGroup

The single-node Redis cache cluster is now defined. Discourse also requires a Postgre-
SQL database, which you’ll define next.

12.4.3 Database: Security group, subnet group, database instance

PostgreSQL is a powerful, open source, and relational database. If you are not familiar
with PostgreSQL, that’s not a problem at all. Luckily, the RDS service will provide a man-
aged PostgreSQL database for you. You learned about RDS in chapter 11. Listing 12.4
shows the section of the template that defines the RDS instance.

Listing 12.3 CloudFormation template for Discourse: Cache

The security group to control
incoming and outgoing traffic
to/from the cache

To avoid a cyclic dependency, the
ingress rule is split into a separate
CloudFormation resource.

Redis runs
on port

6379.
The VMSecurityGroup resource is
not yet specified; you will ad this
later when you define the EC2
instance that runs the web server.

The cache subnet group
references the VPC subnets.

Create a single-node
Redis cluster.

You can specify the exact version of Redis
that you want to run. Otherwise the latest
version is used, which may cause
incompatibility issues in the future. We
recommend always specifying the version.

340 CHAPTER 12 Caching data in memory: Amazon ElastiCache

Resources:
[...]
DatabaseSecurityGroup:

Type: 'AWS::EC2::SecurityGroup'
Properties:

GroupDescription: database
VpcId: !Ref VPC

DatabaseSecurityGroupIngress:
Type: 'AWS::EC2::SecurityGroupIngress'
Properties:

GroupId: !Ref DatabaseSecurityGroup
IpProtocol: tcp
FromPort: 5432
ToPort: 5432
SourceSecurityGroupId: !Ref VMSecurityGroup

DatabaseSubnetGroup:
Type: 'AWS::RDS::DBSubnetGroup'
Properties:

DBSubnetGroupDescription: database
SubnetIds:
- Ref: SubnetA
- Ref: SubnetB

Database:
Type: 'AWS::RDS::DBInstance'
Properties:

AllocatedStorage: 5
BackupRetentionPeriod: 0
DBInstanceClass: 'db.t2.micro'
DBName: discourse
Engine: postgres
EngineVersion: '9.5.6'
MasterUsername: discourse
MasterUserPassword: discourse
VPCSecurityGroups:
- !Sub ${DatabaseSecurityGroup.GroupId}
DBSubnetGroupName: !Ref DatabaseSubnetGroup

DependsOn: VPCGatewayAttachment

Have you noticed the similarity between RDS and ElastiCache? The concepts are simi-
lar, which makes it easier for you to work with both services. Only one component is
missing: the EC2 instance that runs the web server.

12.4.4 Virtual machine—security group, EC2 instance

Discourse is a Ruby on Rails application so you need an EC2 instance to host the appli-
cation. Listing 12.5 defines the virtual machine and the startup script to install and
configure Discourse.

Listing 12.4 CloudFormation template for Discourse: Database

Traffic to/from the RDS instance
is protected by a security group.

PostgreSQL
runs on port

5432 by default.

The VMSecurityGroup
resource is not yet specified;

you’ll add this later when
you define the EC2 instance

that runs the web server.

RDS also uses a subnet
group to reference the
VPC subnets.

The database
resource

Disable backups; you want
to turn this on (value > 0)
in production.RDS created a

database for you
in PostgreSQL. Discourse requires

PostgreSQL.

We recommend to
always specify the

version of the engine
to avoid future

incompatibility issues.

PostgreSQL
admin user name

PostgreSQL admin
password; you want to

change this in production.

341Installing the sample application Discourse with CloudFormation

Resources:
[...]
VMSecurityGroup:

Type: 'AWS::EC2::SecurityGroup'
Properties:

GroupDescription: 'vm'
SecurityGroupIngress:
- CidrIp: '0.0.0.0/0'

FromPort: 22
IpProtocol: tcp
ToPort: 22

- CidrIp: '0.0.0.0/0'
FromPort: 80
IpProtocol: tcp
ToPort: 80

VpcId: !Ref VPC
VMInstance:

Type: 'AWS::EC2::Instance'
Properties:

ImageId: 'ami-6057e21a'
InstanceType: 't2.micro'
KeyName: !Ref KeyName
NetworkInterfaces:
- AssociatePublicIpAddress: true

DeleteOnTermination: true
DeviceIndex: 0
GroupSet:
- !Ref VMSecurityGroup
SubnetId: !Ref SubnetA

UserData:
'Fn::Base64': !Sub |
#!/bin/bash -x
bash -ex << "TRY"

[...]

download Discourse
useradd discourse
mkdir /opt/discourse
git clone https://github.com/AWSinAction/discourse.git \

➥ /opt/discourse

configure Discourse
echo "db_host = \"${Database.Endpoint.Address}\"" >> \

➥ /opt/discourse/config/discourse.conf
echo "redis_host = \"${Cache.RedisEndpoint.Address}\"" >> \

➥ /opt/discourse/config/discourse.conf
[...]

TRY
/opt/aws/bin/cfn-signal -e $? --stack ${AWS::StackName} \

➥ --resource VMInstance --region ${AWS::Region}
CreationPolicy:

ResourceSignal:

Listing 12.5 CloudFormation template for Discourse: Virtual machine

Allow SSH traffic from
the public internet.

Allow HTTP traffic from
the public internet.

The virtual machine
that runs Discourse

Only contains an excerpt of the full script
necessary to install Discourse. You can find
the full code at /chapter12/template.yaml in
the book’s code folder.

Download
Discourse.

Configure the PostgreSQL database endpoint.

Configure the Redis cluster
node endpoint.

Signal the end of the installation
script back to CloudFormation.

342 CHAPTER 12 Caching data in memory: Amazon ElastiCache

Timeout: PT15M
DependsOn:
- VPCGatewayAttachment

Outputs:
VMInstanceIPAddress:

Value: !GetAtt 'VMInstance.PublicIp'
Description: 'EC2 Instance public IP address

➥ (connect via SSH as user ec2-user)'

You’ve reached the end of the template. All components are defined now. It’s time to
create a CloudFormation stack based on your template to see if it works.

12.4.5 Testing the CloudFormation template for Discourse

Let’s create a stack based on your template to create all the resources in your AWS
account. To find the full code for the template, go to /chapter12/template.yaml in
the book’s code folder. Use the AWS CLI to create the stack:

$ aws cloudformation create-stack --stack-name discourse \

➥ --template-url https://s3.amazonaws.com/awsinaction-code2/\

➥ chapter12/template.yaml \

➥ --parameters ParameterKey=KeyName,ParameterValue=mykey \

➥ "ParameterKey=AdminEmailAddress,ParameterValue=your@mail.com"

The creation of the stack can take up to 15 minutes. To check the status of the stack,
use the following command:

$ aws cloudformation describe-stacks --stack-name discourse \

➥ --query "Stacks[0].StackStatus"

If the stack status is CREATE_COMPLETE, the next step is to get the public IP
address of the EC2 instance from the stack’s outputs with the following command:

$ aws cloudformation describe-stacks --stack-name discourse \

➥ --query "Stacks[0].Outputs[0].OutputValue"

Open a web browser and insert the IP address in the address bar to open your Dis-
course website. Figure 12.9 shows the website. Click Register to create an admin
account.

 You will receive an email to activate your account. This email will likely be in your
spam folder! After activation, the 13-step setup wizard is started, which you have to

Wait up to 15 minutes for the signal
from the install script in UserData.

Output the public IP
address of the virtual
machine.

Where is the template located?
You can find the template on GitHub. You can download a snapshot of the repository
at https://github.com/AWSinAction/code2/archive/master.zip. The file we’re talking
about is located at chapter12/template.yaml. On S3, the same file is located at
http://mng.bz/jP32.

https://github.com/AWSinAction/code2/archive/master.zip
http://mng.bz/jP32

343Installing the sample application Discourse with CloudFormation

complete. After you complete the wizard and have successfully installed Discourse, the
screen shown in figure 12.10 should appear.

Figure 12.9
Discourse: first
screen after a
fresh install

Figure 12.10 Discourse: a platform for community discussion

344 CHAPTER 12 Caching data in memory: Amazon ElastiCache

Don’t delete the CloudFormation stack because you’ll use the setup in the next section.
 You learned how Discourse uses Redis to cache some data while using ElastiCache

to run Redis for you. If you use ElastiCache in production, you also have to set up
monitoring to ensure that the cache works as expected, and you have to know how to
improve performance. Those are the topics of the next two chapters.

12.5 Monitoring a cache
CloudWatch is the service on AWS that stores all kinds of metrics. ElastiCache nodes
send useful metrics. The most important metrics to watch are:

 CPUUtilization—The percentage of CPU utilization.
 SwapUsage—The amount of swap used on the host, in bytes. Swap is space on

disk that is used if the system runs out of physical memory.
 Evictions—The number of non-expired items the cache evicted due to the

memory limit.
 ReplicationLag—This metric is only applicable for a Redis node running as a

read replica. It represents how far behind, in seconds, the replica is in applying
changes from the primary node. Usually this number is very low.

In this section we’ll examine those metrics in more detail, and give you some hints
about useful thresholds for defining alarms on those metrics to set up production-
ready monitoring for your cache.

12.5.1 Monitoring host-level metrics

The virtual machines report CPU utilization and swap usage. CPU utilization usually
gets problematic when crossing 80–90%, because the wait time explodes. But things
are more tricky here. Redis is single-threaded. If you have many cores, the overall CPU
utilization can be low but one core can be at 100% utilization. Swap usage is a differ-
ent topic. You run an in-memory cache, so if the virtual machine starts to swap (move
memory to disk) the performance will suffer. By default, ElastiCache for Memcached
and Redis is configured to limit memory consumption to a value smaller than what’s
physical available (you can tune this) to have room for other resources (for example,
the kernel needs memory for each open socket). But other processes (such as kernel
processes) are also running, and they may start to consume more memory than what’s
available. You can solve this issue by increasing the memory of the cache, either by
increasing the node type or by adding more shards.

Queuing theory: why 80–90%?
Imagine you are the manager of a supermarket. What should be the goal for daily uti-
lization of your cashier? It’s tempting to go for a high number. Maybe 90%. But it turns
out that the wait time for your customers is very high when your cashiers are utilized
for 90% of the day, because customers don’t arrive at the same time at the queue.

345Monitoring a cache

You might set up an alarm to trigger if the 10-minute average of the CPUUtilization
metric is higher than 80% for 1 out of 1 data points, and if the 10-minute average of
the SwapUsage metric is higher than 67108864 (64 MB) for 1 out of 1 datapoints.
These numbers are just a rule of thumb. You should load-test your system to verify that
the thresholds are high/low enough to trigger the alarm before application perfor-
mance suffers.

12.5.2 Is my memory sufficient?

The Evictions metric is reported by Memcached and Redis. If the cache is full and
you put a new key-value pair into the cache, an old key-value pair needs to be deleted
first. This is called an eviction. Redis only evicts keys with a TTL by default (volatile-
lru). These additional eviction strategies are available: allkeys-lru (remove the least
recently used key among all keys), volatile-random (remove a random key among keys
with TTL), allkeys-random (remove a random key among all keys), volatile-ttl (remove
the key with the shortest TTL), and noeviction (do not evict any key). Usually, high
eviction rates are a sign that you either aren’t using a TTL to expire keys after some
time, or that your cache is too small. You can solve this issue by increasing the memory
of the cache, either by increasing the node type or by adding more shards.

 You might set an alarm to trigger if the 10-minute average of the Evictions metric
is higher than 1000 for 1 out of 1 data points.

12.5.3 Is my Redis replication up-to-date?

The ReplicationLag metric is only applicable for a node running as a read replica. It
represents how far behind, in seconds, the replica is in applying changes from the pri-
mary node. The higher this value, the more out-of-date the replica is. This can be a
problem because some users of your application will see very old data. In the gaming
application, imagine you have one primary node and one replica node. All reads are
performed by either the primary or the replica node. The ReplicationLag is 600,

The theory behind this is called queuing theory, and it turns out that wait time is expo-
nential to the utilization of a resource. This not only applies to cashiers, but also to
network cards, CPU, hard disks, and so on. Keep in mind that this sidebar simplifies
the theory and assumes an M/D/1 queuing system: Markovian arrivals (exponentially
distributed arrival times), deterministic service times (fixed), one service center. To
you want to learn more about queuing theory applied to computer systems, we rec-
ommend Systems Performance: Enterprise and the Cloud by Brendan Gregg (Prentice
Hall, 2013) to get started.

When you go from 0% utilization to 60%, wait time doubles. When you go to 80%, wait
time has tripled. When you to 90%, wait time is six times higher. And so on.

So if your wait time is 100 ms during 0% utilization, you already have 300 ms wait
time during 80% utilization, which is already slow for a e-commerce web site.

346 CHAPTER 12 Caching data in memory: Amazon ElastiCache

which means that the replication node looks like the primary node looked 10 minutes
before. Depending on which node the user hits when accessing the application, they
could see 10-minute old data.

 What are reasons for a high ReplicationLag? There could be a problem with the
sizing of your cluster; for example, your cache cluster might be at capacity. Typically
this will be a sign to increase the capacity by adding shards or replicas.

 You might set an alarm to trigger if the 10-minute average of the ReplicationLag
metric is higher than 30 for 1 consecutive period.

12.6 Tweaking cache performance
Your cache can become a bottleneck if it can no longer handle the requests with low
latency. In the previous section, you learned how to monitor your cache. In this section
you learn what you can do if your monitoring data shows that your cache is becoming
the bottleneck (for example if you see high CPU or network usage). Figure 12.11 con-
tains a decision tree that you can use to resolve performance issues with ElastiCache.
The strategies are described in more detail in the rest of this section.

Cleaning up
It’s time to delete the running CloudFormation stack:

$ aws cloudformation delete-stack --stack-name discourse

Figure 12.11 ElastiCache decision tree to resolve performance issues

Do
nothing

The
performance is

sufficient?

Yes No

Compression is
implemented?

A
larger node is

available?

More
reads than

writes?

Does
the data fit

into the memory
of a single

node?

Increase
node type

Yes

Read
replicas

Yes

Yes

Implement
compression

Yes No

Sharding

No

No

No

347Tweaking cache performance

There are three strategies for tweaking the performance of your ElastiCache cluster:

1 Selecting the right cache node type—A bigger instance type comes with more
resources (CPU, memory, network) so you can scale vertically.

2 Selecting the right deployment option—You can use sharding or read replicas to
scale horizontally.

3 Compressing your data—If you shrink the amount of data being transferred and
stored, you can also tweak performance.

12.6.1 Selecting the right cache node type

So far, you used the cache node type cache.t2.micro, which comes with one vCPU, ~0.6
GB memory, and low-to-moderate network performance. You used this node type
because it’s part of the Free Tier. But you can also use more powerful node types on AWS.
The upper end is the cache.r4.16xlarge with 64 vCPUs, ~488 GB memory, and 25 Gb
network. Keep in mind that Redis is single-threaded and will not use all cores.

 As a rule of thumb: for production traffic, select a cache node type with at least 2
vCPUs for real concurrency, enough memory to hold your data set with some space
to grow (say, 20%; this also avoids memory fragmentation), and at least high net-
work performance. The r4.large is an excellent choice for a small node size:
2 vCPUs, ~16 GB, and up to 10 Gb of network. This may be a good starting point
when considering how many shards you may want in a clustered topology, and if you
need more memory, move up a node type. You can find the available node types at
https:// aws.amazon.com/elasticache/pricing/.

12.6.2 Selecting the right deployment option

By replicating data, you can distribute read traffic to multiple nodes within the same
replica group. Since you have more nodes in your cluster, you can serve more
requests. By sharding data, you split the data into multiple buckets. Each bucket con-
tains a subset of the data. Since you have more nodes in your cluster, you can serve
more requests.

 You can also combine replication and sharding to increase the number of nodes in
your cluster.

 Both Memcached and Redis support the concept of sharding. With sharding, a sin-
gle cache cluster node is no longer responsible for all the keys. Instead the key space is
divided across multiple nodes. Both Redis and Memcached clients implement a hash-
ing algorithm to select the right node for a given key. By sharding, you can increase
the capacity of your cache cluster.

 Redis supports the concept of replication, where one node in a node group is the
primary node accepting read and write traffic, while the replica nodes only accept
read traffic. This allows you the scale the read capacity. The Redis client has to be
aware of the cluster topology to select the right node for a given command. Keep in
mind that the replicas are synchronized asynchronously. This means that the replica-
tion node eventually reaches the state of the primary node.

https://aws.amazon.com/elasticache/pricing/

348 CHAPTER 12 Caching data in memory: Amazon ElastiCache

 As a rule of thumb: when a single node can no longer handle the amount of data or
the requests, and if you are using Redis with mostly read traffic, then you should use rep-
lication. Replication also increases the availability at the same time (at no extra costs).

12.6.3 Compressing your data

This solution needs to be implemented in your application. Instead of sending large
values (and also keys) to your cache, you can compress the data before you store it in
the cache. When you retrieve data from the cache, you have to uncompress it on the
application before you can use the data. Depending on your data, compressing data
can have a significant effect. We saw memory reductions to 25% of the original size
and network transfer savings of the same size.

 As a rule of thumb: Compress your data using a compression algorithm that is best
suited for your data, most likely the zlib library. You have to experiment with a subset
of your data to select the best compression algorithm that is also supported by your
programming language.

Summary
 A caching layer can speed up your application significantly, while also lowering

the costs of your primary data store.
 To keep the cache in sync with the database, items usually expire after some

time, or a write-through strategy is used.
 When the cache is full, the least frequently used items are usually evicted.
 ElastiCache can run Memcached or Redis clusters for you. Depending on the

engine, different features are available. Memcached and Redis are open source,
but AWS added engine-level enhancements.

349

Programming for the
 NoSQL database service:

DynamoDB

Most applications depend on a database where data is stored. Imagine an application
that keeps track of a warehouse’s inventory. The more inventory moves through the
warehouse, the more requests the application serves, and the more queries the data-
base has to process. Sooner or later, the database becomes too busy and latency
increases to a level that limits the warehouse’s productivity. At this point, you have to
scale the database to help the business. This can be done in two ways:

This chapter covers
 Advantages and disadvantages of the NoSQL service

DynamoDB

 Creating tables and storing data

 Adding secondary indexes to optimize data retrieval

 Designing a data model optimized for a key-value
database

 Tuning performance

350 CHAPTER 13 Programming for the NoSQL database service: DynamoDB

 Vertically—You can add more hardware to your database machine; for example,
you can add memory or replace the CPU with a more powerful model.

 Horizontally—You can add a second database machine. Both machines then
form a database cluster.

Scaling a database vertically is the easier option, but it gets expensive. High-end hard-
ware is more expensive than commodity hardware. Besides that, at some point, you
can no longer add faster hardware because nothing faster is available.

 Scaling a traditional, relational database horizontally is difficult because transac-
tional guarantees (atomicity, consistency, isolation, and durability, also known as
ACID) require communication among all nodes of the database during a two-phase
commit. A simplified two-phase commit with two nodes works like this:

1 A query is sent to the database cluster that wants to change data (INSERT,
UPDATE, DELETE).

2 The database transaction coordinator sends a commit request to the two nodes.
3 Node 1 checks if the query could be executed. The decision is sent back to the

coordinator. If the nodes decides yes, it must fulfill this promise. There is no
way back.

4 Node 2 checks if the query could be executed. The decision is sent back to the
coordinator.

5 The coordinator receives all decisions. If all nodes decide that the query could
be executed, the coordinator instructs the nodes to finally commit.

6 Nodes 1 and 2 finally change the data. At this point, the nodes must fulfill the
request. This step must not fail.

The problem is that the more nodes you add, the slower your database becomes,
because more nodes must coordinate transactions between each other. The way to
tackle this has been to use databases that don’t adhere to these guarantees. They’re
called NoSQL databases.

 There are four types of NoSQL databases—document, graph, columnar, and key-
value store—each with its own uses and applications. Amazon provides a NoSQL data-
base service called DynamoDB, a key-value store with document support. Unlike RDS,
which effectively provides several common RDBMS engines like MySQL, MariaDB,
Oracle Database, Microsoft SQL Server, and PostgreSQL, DynamoDB is a fully man-
aged, proprietary, closed source key-value store with document support. Fully managed
means that you only use the service and AWS operates it for you. DynamoDB is highly
available and highly durable. You can scale from one item to billions and from one
request per second to tens of thousands of requests per second.

 If your data requires a different type of NoSQL database—a graph database like
Neo4j, for example—you’ll need to spin up an EC2 instance and install the database
directly on that. Use the instructions in chapters 3 and 4 to do so.

 This chapter looks in detail at how to use DynamoDB: both how to administer it like
any other service, and how to program your applications to use it. Administering

351Operating DynamoDB

DynamoDB is simple. You create tables and secondary indexes, and there is only one
option to tweak: its read and write capacity, which directly affects its cost and its
performance.

 We’ll look at the basics of DynamoDB and demonstrate them by walking through a
simple to-do application called nodetodo, the Hello World of modern applications.
Figure 13.1 shows nodetodo in action.

Before you get started with nodetodo, you need to learn the basics of DynamoDB.

13.1 Operating DynamoDB
DynamoDB doesn’t require administration like a traditional relational database,
because it’s a managed service and AWS takes care of that; instead, you have other
tasks to take care of. Pricing depends mostly on your storage use and performance
requirements. This section also compares DynamoDB to RDS.

Add user. Add task.

List all tasks
for user.

Mark task as
completed.

Figure 13.1 You can manage your tasks with the command-line to-do application nodetodo.

Examples are 100% covered by the Free Tier
The examples in this chapter are totally covered by the Free Tier. Keep in mind that
this applies only if there is nothing else going on in your AWS account. You’ll clean
up your account at the end of the chapter.

352 CHAPTER 13 Programming for the NoSQL database service: DynamoDB

13.1.1 Administration

With DynamoDB, you don’t need to worry about installation, updates, machines, stor-
age, or backups. Here’s why:

 DynamoDB isn’t software you can download. Instead, it’s a NoSQL database as a ser-
vice. Therefore you can’t install DynamoDB like you would MySQL or Mon-
goDB. This also means you don’t have to update your database; the software is
maintained by AWS.

 DynamoDB runs on a fleet of machines operated by AWS. AWS takes care of the OS
and all security-related questions. From a security perspective, it’s your job to
grant the right permissions through IAM to the users of your DynamoDB tables.

 DynamoDB replicates your data among multiple machines and across multiple data cen-
ters. There is no need for a backup from a durability point of view—the backup
is already built into the database.

Now you know some administrative tasks that are no longer necessary if you use Dyna-
moDB. But you still have things to consider when using DynamoDB in production:
creating tables (see section 13.4), creating secondary indexes (section 13.6), monitor-
ing capacity usage, provisioning read and write capacity (section 13.9), and creating
backups of your tables.

13.1.2 Pricing

If you use DynamoDB, you pay the following monthly:

 $ 0.25 USD per used GB of storage (secondary indexes consume storage as
well)

 $ 0.47 USD per provisioned write-capacity unit of throughput (throughput is
explained in section 13.9)

 $ 0.09 USD per provisioned read-capacity unit of throughput

These prices were valid for the North Virginia (us-east-1) region, at the time of this
writing. No additional traffic charges apply if you use AWS resources like EC2
instances to access DynamoDB in the same region.

Backups
DynamoDB provides very high durability. But what if the database administrator acci-
dentally deletes all the data or a new version of the application corrupts items? In
this case, you would need a backup to restore to a working table state from the past.
In December 2017, AWS announced a new feature for DynamoDB: on-demand
backup and restore.

We strongly recommend using on-demand backups to create snapshots of your Dyna-
moDB tables to be able to restore them later, if needed.

353Operating DynamoDB

13.1.3 Networking

DynamoDB does not run in your VPC. It is only accessible via the AWS API. You need
internet access to talk to the AWS API. This means you can’t access DynamoDB from a
private subnet, because a private subnet has no route to the internet via an internet
gateway. Instead, a NAT gateway is used (see section 6.5 for more details). Keep in
mind that an application using DynamoDB can create a lot of traffic, and your NAT
gateway is limited to 10 Gbps of bandwidth. A better approach is to set up a VPC end-
point for DynamoDB and use that to access DynamoDB from private subnets without
needing a NAT gateway at all. You can read more about VPC endpoints in the AWS
documentation at http://mng.bz/c4v6.

13.1.4 RDS comparison

Table 13.1 compares DynamoDB and RDS. Keep in mind that this is like comparing
apples and oranges; the only thing DynamoDB and RDS have in common is that both
are called databases. Use RDS (or to be more precise, the relational database engines
offered by RDS) if your application requires complex SQL queries. Otherwise, you
can consider migrating your application to DynamoDB.

Table 13.1 Differences between DynamoDB and RDS

Task DynamoDB RDS

Creating a table Management Console, SDK, or CLI
aws dynamodb create-table

SQL CREATE TABLE statement

Inserting, updating,
or deleting data

SDK SQL INSERT, UPDATE, or DELETE statement,
respectively

Querying data If you query the primary key: SDK.
Querying non-key attributes isn’t
possible, but you can add a second-
ary index or scan the entire table.

SQL SELECT statement

Increasing storage No action needed: DynamoDB
grows with your items.

Provision more storage.

Increasing
performance

Horizontal, by increasing capacity.
DynamoDB will add more machines
under the hood.

Vertical, by increasing instance size and disk
throughput; or horizontal, by adding read replicas.
There is an upper limit.

Installing the
database on your
machine

DynamoDB isn’t available for
download. You can only use it
as a service.

Download MySQL, MariaDB, Oracle Database, Micro-
soft SQL Server, or PostgreSQL, and install it on your
machine. Aurora is an exception.

Hiring an expert Search for special DynamoDB
skills.

Search for general SQL skills or special skills,
depending on the database engine.

http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/vpc-endpoints-dynamodb.html
http://mng.bz/c4v6

354 CHAPTER 13 Programming for the NoSQL database service: DynamoDB

13.1.5 NoSQL comparison

Table 13.2 compares DynamoDB to several NoSQL databases. Keep in mind that all of
these databases have pros and cons, and the table shows only a high-level comparison
of how they can be used on top of AWS.

13.2 DynamoDB for developers
DynamoDB is a key-value store that organizes your data into tables. For example, you
can have a table to store your users and another table to store tasks. The items con-
tained in the table are identified by a primary key. An item could be a user or a task;
think of an item as a row in a relational database. A table can also maintain secondary
indexes for data lookup in addition to the primary key, which is also similar to rela-
tional databases. In this section, you’ll look at these basic building blocks of Dyna-
moDB, ending with a brief comparison of NoSQL databases.

13.2.1 Tables, items, and attributes

Each DynamoDB table has a name and organizes a collection of items. An item is a col-
lection of attributes, and an attribute is a name-value pair. The attribute value can be
scalar (number, string, binary, Boolean), multivalued (number set, string set, binary
set), or a JSON document (object, array). Items in a table aren’t required to have the
same attributes; there is no enforced schema. Figure 13.2 demonstrates these terms.

 You can create a table with the Management Console, CloudFormation, SDKs, or
the CLI. The following example shows how you’d create a table with the CLI (don’t
try to run this command now—you’ll create a table later in the chapter). The table is
named app-entity and uses the id attribute as the primary key:

$ aws dynamodb create-table --table-name app-entity \

➥ --attribute-definitions AttributeName=id,AttributeType=S \

➥ --key-schema AttributeName=id,KeyType=HASH \

➥ --provisioned-throughput ReadCapacityUnits=5,WriteCapacityUnits=5

Table 13.2 Differences between DynamoDB and some NoSQL databases

Task
DynamoDB

Key-value store
MongoDB

Document store
Neo4j

Graph store
Cassandra

Columnar store
Riak KV

Key-value store

Run the data-
base on AWS in
production.

One click: it’s
a managed
service

Self-maintained
cluster of EC2
instances, or as
a service from a
third party

Self-maintained
cluster of EC2
instances, or as
a service from a
third party

Self-maintained
cluster of EC2
instances, or as
a service from a
third party

Self-maintained
cluster of EC2
instances, or as
a service from a
third party

Increase avail-
able storage
while running.

Not necessary.
The database
grows
automatically.

Add more EC2
instances.

Increase EBS
volumes while
running.

Add more EC2
instances.

Add more EC2
instances.

Choose a name for your table, like app-entity. The attribute
named id is of
type string.

The
primary
key is a

partition
key using

the id
attribute. You’ll learn about this in section 13.9.

355DynamoDB for developers

If you plan to run multiple applications that use DynamoDB, it’s good practice to pre-
fix your tables with the name of your application. You can also add tables via the Man-
agement Console. Keep in mind that you can’t change the name of a table or its key schema
later. But you can add attribute definitions and change the throughput at any time.

13.2.2 Primary key

A primary key is unique within a table and identifies an item. You can use a single attri-
bute as the primary key. DynamoDB calls this a partition key . You need an item’s partition
key to look up that item. You can also use two attributes as the primary key. In this case,
one of the attributes is the partition key, and the other is called the sort key .

PARTITION KEY

A partition key uses a single attribute of an item to create a hash-based index. If you
want to look up an item based on its partition key, you need to know the exact parti-
tion key. For example, a user table could use the user’s email as a partition key. The
user could then be retrieved if you know the partition key (email, in this case).

PARTITION KEY AND SORT KEY

When you use both a partition key and a sort key, you’re using two attributes of an
item to create a more powerful index. To look up an item, you need to know its exact
partition key, but you don’t need to know the sort key. You can even have multiple
items with the same partition key: they will be sorted according to their sort key.

 The partition key can only be queried using exact matches (=). The sort key can be
queried using =, >, <, >=, <=, and BETWEEN x AND y operators. For example, you can
query the sort key of a partition key from a certain starting point. You cannot query
only the sort key—you must always specify the partition key. A message table could use
a partition key and sort key as its primary key; the partition key could be the user’s
email, and the sort key could be a timestamp. You could then look up all of user’s

Items can have
different attributes.

Primary key Attribute Item

Table

Figure 13.2 DynamoDB tables store items consisting of attributes identified by a primary key

356 CHAPTER 13 Programming for the NoSQL database service: DynamoDB

messages that are newer or older than a specific timestamp, and the items would
sorted according to the timestamp.

13.2.3 DynamoDB Local

Imagine a team of developers working on a new app using DynamoDB. During devel-
opment, each developer needs an isolated database so as not to corrupt the other
team members’ data. They also want to write unit tests to make sure their app is work-
ing. You could create a unique set of DynamoDB tables with a CloudFormation stack
for each developer. Or you could use a local DynamoDB for offline development. AWS
provides an implementation of DynamoDB, which is available for download at
http://mng.bz/27h5. Don’t run it in production! It’s only made for development pur-
poses and provides the same functionality as DynamoDB, but it uses a different imple-
mentation: only the API is the same.

13.3 Programming a to-do application
To minimize the overhead of a programming language, you’ll use Node.js/JavaScript
to create a small to-do application that you can use via the terminal on your local
machine. Let’s call the application nodetodo. nodetodo will use DynamoDB as a data-
base. With nodetodo, you can do the following:

 Create and delete users
 Create and delete tasks
 Mark tasks as done
 Get a list of all tasks with various filters

nodetodo supports multiple users and can track tasks with or without a due date. To
help users deal with many tasks, tasks can be assigned to a category. nodetodo is
accessed via the terminal. Here’s how you would use nodetodo via the terminal to add
a user. Important note: don’t try to run the following commands now — they are not
yet implemented. You will implement them in the following section.

node index.js user-add <uid> <email> <phone>
$ node index.js user-add michael michael@widdix.de 0123456789
user added with uid michael

To add a new task, you would do the following:

node index.js task-add <uid> <description> \

➥ [<category>] [--dueat=<yyyymmdd>]
$ node index.js task-add michael "plan lunch" --dueat=20150522
task added with tid 1432187491647

Abstract description of
the CLI: parameters are
enclosed in < >.

Executes nodetodo in the terminal

nodetodo’s output is written to STDOUT.

Optional parameters
are enclosed in [].Named

parameters are
used with --

name=value.
tid is the task ID.

http://mng.bz/27h5

357Programming a to-do application

You would mark a task as finished as follows:

node index.js task-done <uid> <tid>
$ node index.js task-done michael 1432187491647
task completed with tid 1432187491647

You should also be able to list tasks. Here’s how you would use nodetodo to do that:

node index.js task-ls <uid> [<category>] [--overdue|--due|...]
$ node index.js task-ls michael
tasks [...]

To implement an intuitive CLI, nodetodo uses docopt, a command-line interface
description language, to describe the CLI interface. The supported commands are as
follows:

 user-add—Adds a new user to nodetodo
 user-rm—Removes a user
 user-ls—Lists users
 user—Shows the details of a single user
 task-add—Adds a new task to nodetodo
 task-rm—Removes a task
 task-ls—Lists user tasks with various filters
 task-la—Lists tasks by category with various filters
 task-done—Marks a task as finished

In the rest of the chapter, you’ll implement those commands to learn about Dyna-
moDB hands-on. This listing shows the full CLI description of all the commands,
including parameters.

nodetodo

Usage:
nodetodo user-add <uid> <email> <phone>
nodetodo user-rm <uid>
nodetodo user-ls [--limit=<limit>] [--next=<id>]
nodetodo user <uid>
nodetodo task-add <uid> <description> \

➥ [<category>] [--dueat=<yyyymmdd>]
nodetodo task-rm <uid> <tid>
nodetodo task-ls <uid> [<category>] \

➥ [--overdue|--due|--withoutdue|--futuredue]
nodetodo task-la <category> \

➥ [--overdue|--due|--withoutdue|--futuredue]
nodetodo task-done <uid> <tid>
nodetodo -h | --help
nodetodo --version

Listing 13.1 CLI description language docopt: using nodetodo (cli.txt)

The named parameters
limit and next are optional.

The category
parameter is optional.

Pipe indicates either/or.

help prints information about
how to use nodetodo.

Version information

358 CHAPTER 13 Programming for the NoSQL database service: DynamoDB

Options:
-h --help Show this screen.
--version Show version.

DynamoDB isn’t comparable to a traditional relational database in which you create,
read, update, or delete data with SQL. You’ll access DynamoDB with an SDK to call
the HTTPS REST API. You must integrate DynamoDB into your application; you can’t
take an existing application that uses an SQL database and run it on DynamoDB. To
use DynamoDB, you need to write code!

13.4 Creating tables
Tables in DynamoDB organize your data. You aren’t required to define all the attri-
butes that the table items will have. DynamoDB doesn’t need a static schema like a
relational database does, but you must define the attributes that are used as the pri-
mary key in your table. In other words, you must define the table’s primary key
schema. To do so, you’ll use the AWS CLI. The aws dynamodb create-table com-
mand has four mandatory options:

 table-name—Name of the table (can’t be changed).
 attribute-definitions—Name and type of attributes used as the primary key.

Multiple definitions can be given using the syntax AttributeName=attr1,
AttributeType=S, separated by a space character. Valid types are S (String), N
(Number), and B (Binary).

 key-schema—Name of attributes that are part of the primary key (can’t be
changed). Contains a single entry using the syntax AttributeName=attr1,Key-
Type=HASH for a partition key, or two entries separated by spaces for a partition
key and sort key. Valid types are HASH and RANGE.

 provisioned-throughput—Performance settings for this table defined as
ReadCapacityUnits=5,WriteCapacityUnits=5 (you’ll learn about this in sec-
tion 13.9).

You’ll now create a table for the users of the nodetodo application as well as a table
that will contain all the tasks.

13.4.1 Users are identified by a partition key

Before you create a table for nodetodo users, you must think carefully about the table’s
name and primary key. We suggest that you prefix all your tables with the name of your
application. In this case, the table name would be todo-user. To choose a primary key,
you have to think about the queries you’ll make in the future and whether there is
something unique about your data items. Users will have a unique ID, called uid, so it
makes sense to choose the uid attribute as the partition key. You must also be able to
look up users based on the uid to implement the user command. Use a single attribute
as primary key by marking the attribute as the partition key of your table. The following

359Creating tables

example shows a user table where the attribute uid is used as the partition key of the pri-
mary key:

"michael" => {
"uid": "michael",
"email": "michael@widdix.de",
"phone": "0123456789"

}
"andreas" => {

"uid": "andreas",
"email": "andreas@widdix.de",
"phone": "0123456789"

}

Because users will only be looked up based on the known uid, it’s fine to use a parti-
tion key to identify a user. Next you’ll create the user table, structured like the previ-
ous example, with the help of the AWS CLI:

$ aws dynamodb create-table --table-name todo-user \

➥ --attribute-definitions AttributeName=uid,AttributeType=S \

➥ --key-schema AttributeName=uid,KeyType=HASH \

➥ --provisioned-throughput ReadCapacityUnits=5,WriteCapacityUnits=5

Creating a table takes some time. Wait until the status changes to ACTIVE. You can
check the status of a table as follows:

$ aws dynamodb describe-table --table-name todo-user
{

"Table": {
"AttributeDefinitions": [

{
"AttributeName": "uid",
"AttributeType": "S"

}
],
"ProvisionedThroughput": {

"NumberOfDecreasesToday": 0,
"WriteCapacityUnits": 5,
"ReadCapacityUnits": 5

},
"TableSizeBytes": 0,
"TableName": "todo-user",
"TableStatus": "ACTIVE",
"KeySchema": [

{
"KeyType": "HASH",
"AttributeName": "uid"

}

uid (“michael”) is the partition
key; everything in { } is the item.

Partition keys have no order.

Prefixing tables with the
name of your application
will prevent name clashes
in the future.

Items must at least have one
attribute uid of type string.

The partition key (type HASH)
uses the uid attribute.

You’ll learn about this in section 13.9.

CLI command to check
the table status

Attributes defined
for that table

Status of the table

Attributes used as
the primary key

360 CHAPTER 13 Programming for the NoSQL database service: DynamoDB

],
"ItemCount": 0,
"CreationDateTime": 1432146267.678

}
}

13.4.2 Tasks are identified by a partition key and sort key

Tasks always belong to a user, and all commands that are related to tasks include the
user’s ID. To implement the task-ls command, you need a way to query the tasks
based on the user’s ID. In addition to the partition key, you can use the sort key. This
way, you can add multiple items to the same partition key. Because all interactions
with tasks require the user’s ID, you can choose uid as the partition key and a task ID
(tid), the timestamp of creation, as the sort key. Now you can make queries that
include the user’s ID and, if needed, the task’s ID.

NOTE This solution has one limitation: users can add only one task per time-
stamp. Because tasks are uniquely identified by uid and tid (the primary key)
there can’t be two tasks for the same user at the same time. Our timestamp
comes with millisecond resolution, so it should be fine.

Using a partition key and a sort key uses two of your table attributes. For the partition
key, an unordered hash index is maintained; the sort key is kept in a sorted index for
each partition key. The combination of the partition key and the sort key uniquely
identifies an item if they are used as the primary key. The following data set shows the
combination of unsorted partition keys and sorted sort keys:

["michael", 1] => {
"uid": "michael",
"tid": 1,
"description": "prepare lunch"

}
["michael", 2] => {

"uid": "michael",
"tid": 2,
"description": "buy nice flowers for mum"

}
["michael", 3] => {

"uid": "michael",
"tid": 3,
"description": "prepare talk for conference"

}
["andreas", 1] => {

"uid": "andreas",
"tid": 1,
"description": "prepare customer presentation"

}
["andreas", 2] => {

"uid": "andreas",
"tid": 2,
"description": "plan holidays"

}

uid (“michael”) is the partition
key and tid (1) is the sort key of
the primary key.

The sort keys are sorted
within a partition key.

There is no order in
the partition keys.

361Adding data

nodetodo offers the ability to get all tasks for a user. If the tasks have only a partition
key as the primary key, this will be difficult, because you need to know the partition
key to extract them from DynamoDB. Luckily, using the partition key and sort key as
the primary key makes things easier, because you only need to know the partition key
to extract the items. For the tasks, you’ll use uid as the known partition key. The sort
key is tid. The task ID is defined as the timestamp when the task was created. You’ll
now create the task table, using two attributes to create a partition key and sort key as
the primary key:

$ aws dynamodb create-table --table-name todo-task \

➥ --attribute-definitions AttributeName=uid,AttributeType=S \

➥ AttributeName=tid,AttributeType=N \

➥ --key-schema AttributeName=uid,KeyType=HASH \

➥ AttributeName=tid,KeyType=RANGE \

➥ --provisioned-throughput ReadCapacityUnits=5,WriteCapacityUnits=5

Wait until the table status changes to ACTIVE when you run aws dynamodb describe-
table --table-name todo-task. When both tables are ready, you’ll add data.

13.5 Adding data
You have two tables up and running to store users and their tasks. To use them, you
need to add data. You’ll access DynamoDB via the Node.js SDK, so it’s time to set up
the SDK and some boilerplate code before you implement adding users and tasks.

To get started with Node.js and docopt, you need some magic lines to load all the depen-
dencies and do some configuration work. Listing 13.2 shows how this can be done.

At least two attributes are needed
for a partition key and sort key.

The tid attribute is the sort key.

Installing and getting started with Node.js
Node.js is a platform for executing JavaScript in an event-driven environment so you
can easily build network applications. To install Node.js, visit https://nodejs.org and
download the package that fits your OS. All examples in this book are tested with
Node.js 8.

After Node.js is installed, you can verify if everything works by typing node --version
into your terminal. Your terminal should respond with something similar to v8.*. Now
you’re ready to run JavaScript examples like nodetodo for AWS.

Do you want to get started with Node.js? We recommend Node.js in Action (Second
Edition) by Alex Young, et al. (Manning, 2017), or the video course Node.js in Motion
by P.J. Evans, (Manning, 2018).

https://nodejs.org

362 CHAPTER 13 Programming for the NoSQL database service: DynamoDB

Docopt is responsible for reading all the arguments passed to the process. It returns a
JavaScript object, where the arguments are mapped to the parameters in the CLI
description.

const fs = require('fs');
const docopt = require('docopt');
const moment = require('moment');
const AWS = require('aws-sdk');
const db = new AWS.DynamoDB({

region: 'us-east-1'
});

const cli = fs.readFileSync('./cli.txt', {encoding: 'utf8'});
const input = docopt.docopt(cli, {
 version: '1.0',
 argv: process.argv.splice(2)
});

Next you’ll implement the features of nodetodo. You can use the putItem SDK opera-
tion to add data to DynamoDB like this:

const params = {
Item: {

attr1: {S: 'val1'},
attr2: {N: '2'}

},
 TableName: 'app-entity'

};
db.putItem(params, (err) => {

if (err) {
console.error('error', err);

} else {
console.log('success');

}
});

The first step is to add data to nodetodo.

Listing 13.2 nodetodo: using docopt in Node.js (index.js)

Where is the code located?
As usual, you’ll find the code in the book’s code repository on GitHub:
https://github.com/AWSinAction/code2. nodetodo is located in /chapter13/.
Switch to that directory, and run npm install in your terminal to install all needed
dependencies.

Loads the fs module to
access the filesystem

Loads the docopt module
to read input arguments

Loads the
moment

module to
simplify

temporal
types in

JavaScript
Loads the AWS
SDK module

Reads the CLI
description from

the file cli.txt Parses the arguments and saves
them to an input variable

All item attribute
name-value pairs

Strings are
indicated

by an S.

Numbers (floats and integers)
are indicated by an N.

Adds Item to
the app-entity

table Invokes the putItem
operation on DynamoDB

Handles
errors

https://github.com/AWSinAction/code2

363Adding data

13.5.1 Adding a user

You can add a user to nodetodo by calling nodetodo user-add <uid> <email> <phone>.
In Node.js, you do this using this code.

if (input['user-add'] === true) {
const params = {
 Item: {
 uid: {S: input['<uid>']},
 email: {S: input['<email>']},
 phone: {S: input['<phone>']}

 },
 TableName: 'todo-user',
 ConditionExpression: 'attribute_not_exists(uid)'

 };
 db.putItem(params, (err) => {

if (err) {
 console.error('error', err);

 } else {
 console.log('user added');
 }

 });
}

When you make a call to the AWS API, you always do the following:

1 Create a JavaScript object (map) filled with the needed parameters (the params
variable).

2 Invoke the function on the AWS SDK.
3 Check whether the response contains an error, and if not, process the returned

data.

Therefore you only need to change the content of params if you want to add a task
instead of a user.

13.5.2 Adding a task

You can add a task to nodetodo by calling nodetodo task-add <uid> <description>
[<category>] [--dueat=<yyyymmdd>]. For example, to create a task to remember
the milk, you could add a task like this: nodetodo task-add michael "buy milk". In
Node.js, you can implement this command with the code in listing 13.4.

Listing 13.3 nodetodo: adding a user (index.js)

Item contains all attributes. Keys are also attributes,
and that’s why you do not need to tell DynamoDB

which attributes are keys if you add data.

The uid attribute is of type
string and contains the uid
parameter value.

The email attribute
is of type string and

contains the email
parameter value.

The phone attribute is of type string and
contains the phone parameter value.

Specifies the
user table

If putItem is called twice on
the same key, data is

replaced. ConditionExpression
allows the putItem only if the

key isn’t yet present.

Invokes the
putItem

operation on
DynamoDB

364 CHAPTER 13 Programming for the NoSQL database service: DynamoDB

if (input['task-add'] === true) {
const tid = Date.now();
const params = {

Item: {
uid: {S: input['<uid>']},
tid: {N: tid.toString()},
description: {S: input['<description>']},
created: {N: moment(tid).format('YYYYMMDD')}

},
TableName: 'todo-task',
ConditionExpression: 'attribute_not_exists(uid)

➥ and attribute_not_exists(tid)'
};
if (input['--dueat'] !== null) {

params.Item.due = {N: input['--dueat']};
}
if (input['<category>'] !== null) {

params.Item.category = {S: input['<category>']};
}
db.putItem(params, (err) => {

if (err) {
console.error('error', err);

} else {
console.log('task added with tid ' + tid);

}
});

}

Now you can add users and tasks to nodetodo. Wouldn’t it be nice if you could retrieve
all this data?

13.6 Retrieving data
DynamoDB is a key-value store. The key is usually the only way to retrieve data from
such a store. When designing a data model for DynamoDB, you must be aware of that
limitation when you create tables (as you did in section 13.4). If you can use only one
key to look up data, you’ll sooner or later experience difficulties. Luckily, DynamoDB
provides two other ways to look up items: a secondary index key lookup, and the scan
operation. You’ll start by retrieving data with its primary key and continue with more
sophisticated methods of data retrieval.

Listing 13.4 nodetodo: adding a task (index.js)

Creates the task ID (tid) based
on the current timestamp

The tid attribute is of type number
and contains the tid value.The created

attribute is of type
number (format

20150525).

Specifies the task table

Ensures that an
existing item is
not overridden

If the optional
named parameter

dueat is set, add
this value to the

item.

If the optional
named parameter

category is set,
add this value to

the item.
Invokes the putItem
operation on DynamoDB

DynamoDB Streams
DynamoDB lets you retrieve changes to a table as soon as they’re made. A stream
provides all write (create, update, delete) operations to your table items. The order
is consistent within a partition key:

 If your application polls the database for changes, DynamoDB Streams
solves the problem in a more elegant way.

365Retrieving data

13.6.1 Getting an item by key

The simplest form of data retrieval is looking up a single item by its primary key, for
example a user by its ID. The getItem SDK operation to get a single item from Dyna-
moDB can be used like this:

const params = {
Key: {

attr1: {S: 'val1'}
},
TableName: 'app-entity'

};
db.getItem(params, (err, data) => {

if (err) {
console.error('error', err);

} else {
if (data.Item) {

console.log('item', data.Item);
} else {

console.error('no item found');
}

}
});

The command nodetodo user <uid> must retrieve a user by the user’s ID (uid).
Translated to the Node.js AWS SDK, this looks like the following listing.

const mapUserItem = (item) => {
return {

uid: item.uid.S,
email: item.email.S,
phone: item.phone.S

};
};

if (input['user'] === true) {
const params = {

Key: {
uid: {S: input['<uid>']}

},
TableName: 'todo-user'

 };

Listing 13.5 nodetodo: retrieving a user (index.js)

 If you want to populate a cache with the changes made to a table, DynamoDB
Streams can help.

 If you want to replicate a DynamoDB table to another region, DynamoDB
Streams can do it.

Specifies the attributes
of the primary key

Invokes the getItem
operation on DynamoDB

Checks whether an
item was found

Helper function to transform
DynamoDB result

Looks up a user
by primary key

Specifies the user table

366 CHAPTER 13 Programming for the NoSQL database service: DynamoDB

db.getItem(params, (err, data) => {
if (err) {

console.error('error', err);
} else {

if (data.Item) {
console.log('user', mapUserItem(data.Item));

} else {
console.error('user not found');

}
}

});
}

You can also use the getItem operation to retrieve data by partition key and sort key,
for example to look up a specific task. The only change is that the Key has two entries
instead of one. getItem returns one item or no items; if you want to get multiple
items, you need to query DynamoDB.

13.6.2 Querying items by key and filter

If you want to retrieve a collection of items rather than a single item, such as all tasks
for a user, you must query DynamoDB. Retrieving multiple items by primary key only
works if your table has a partition key and sort key. Otherwise, the partition key will
only identify a single item. The query SDK operation to get a collection of items from
DynamoDB can be used like this:

const params = {
KeyConditionExpression: 'attr1 = :attr1val AND attr2 = :attr2val',
ExpressionAttributeValues: {

':attr1val': {S: 'val1'},
':attr2val': {N: '2'}

},
TableName: 'app-entity'

};
db.query(params, (err, data) => {

if (err) {
 console.error('error', err);
} else {

console.log('items', data.Items);
}

});

The query operation also lets you specify an optional FilterExpression, to include
only items that match the filter and key condition. This is helpful to reduce the result
set, for example to show only tasks of a specific category. The syntax of FilterExpres-
sion works like KeyConditionExpression, but no index is used for filters. Filters are
applied to all matches that KeyConditionExpression returns.

Invokes the getItem
operation on DynamoDB

Checks whether data was
found for the primary key

Condition the key must match. Use AND if you’re querying both a partition and
sort key. Only the = operator is allowed for partition keys. Allowed operators
for sort keys: =, >, <, >=, <=, BETWEEN x AND y, and begins_with. Sort

key operators are blazing fast because the data is already sorted.

Dynamic values are referenced
in the expression.

Always specify the
correct type (S, N, B).

Invokes the query operation
on DynamoDB

367Retrieving data

 To list all tasks for a certain user, you must query DynamoDB. The primary key of a task
is the combination of the uid and the tid. To get all tasks for a user, KeyConditionEx-
pression only requires the partition key. The implementation of nodetodo task-ls
<uid> [<category>] [--overdue|--due|--withoutdue|--futuredue] is shown next.

const getValue = (attribute, type) => {
if (attribute === undefined) {

return null;
}
return attribute[type];

};

const mapTaskItem = (item) => {
return {

tid: item.tid.N,
description: item.description.S,
created: item.created.N,
due: getValue(item.due, 'N'),
category: getValue(item.category, 'S'),
completed: getValue(item.completed, 'N')

};
};

if (input['task-ls'] === true) {
const params = {

KeyConditionExpression: 'uid = :uid',
ExpressionAttributeValues: {

':uid': {S: input['<uid>']}
},
TableName: 'todo-task',
Limit: input['--limit']

};
if (input['--next'] !== null) {

params.KeyConditionExpression +=
' AND tid > :next';

params.ExpressionAttributeValues[':next'] = {N: input['--next']};
}
if (input['--overdue'] === true) {

params.FilterExpression = 'due < :yyyymmdd';
params.ExpressionAttributeValues[':yyyymmdd'] = {N: yyyymmdd};

} else if (input['--due'] === true) {
params.FilterExpression = 'due = :yyyymmdd';
params.ExpressionAttributeValues[':yyyymmdd'] = {N: yyyymmdd};

} else if (input['--withoutdue'] === true) {
params.FilterExpression = 'attribute_not_exists(due)';

} else if (input['--futuredue'] === true) {
params.FilterExpression = 'due > :yyyymmdd';
params.ExpressionAttributeValues[':yyyymmdd'] = {N: yyyymmdd};

} else if (input['--dueafter'] !== null) {
params.FilterExpression = 'due > :yyyymmdd';
params.ExpressionAttributeValues[':yyyymmdd'] =

Listing 13.6 nodetodo: retrieving tasks (index.js)

Helper function to access
optional attributes

Helper function to transform
the DynamoDB result

Primary key query. The task table
uses a partition and sort key. Only
the partition key is defined in the
query, so all tasks belonging to a
user are returned.Query

attributes
must be
passed

this way.

Filtering uses no index; it’s applied
over all elements returned from

the primary key query.

Filter
attributes

must be
passed

this way.

attribute_not_exists(due) is true
when the attribute is missing
(opposite of attribute_exists).

368 CHAPTER 13 Programming for the NoSQL database service: DynamoDB

{N: input['--dueafter']};
} else if (input['--duebefore'] !== null) {

params.FilterExpression = 'due < :yyyymmdd';
params.ExpressionAttributeValues[':yyyymmdd'] =

{N: input['--duebefore']};
}
if (input['<category>'] !== null) {

if (params.FilterExpression === undefined) {
params.FilterExpression = '';

} else {
params.FilterExpression += ' AND ';

}
params.FilterExpression += 'category = :category';
params.ExpressionAttributeValues[':category'] =

S: input['<category>']};
}
db.query(params, (err, data) => {

if (err) {
console.error('error', err);

} else {
console.log('tasks', data.Items.map(mapTaskItem));
if (data.LastEvaluatedKey !== undefined) {

console.log('more tasks available with --next=' +
data.LastEvaluatedKey.tid.N);

}
}

});
}

Two problems arise with the query approach:

1 Depending on the result size from the primary key query, filtering may be slow.
Filters work without an index: every item must be inspected. Imagine you have
stock prices in DynamoDB, with a partition key and sort key: the partition key is
a ticker like AAPL, and the sort key is a timestamp. You can make a query to
retrieve all stock prices of Apple (AAPL) between two timestamps (20100101
and 20150101). But if you only want to return prices on Mondays, you need to
filter over all prices to return only 20% (1 out of 5 trading days each week) of
them. That’s wasting a lot of resources!

2 You can only query the primary key. Returning a list of all tasks that belong to a
certain category for all users isn’t possible, because you can’t query the cate-
gory attribute.

You can solve those problems with secondary indexes. Let’s look at how they work.

13.6.3 Using global secondary indexes for more flexible queries

A global secondary index is a projection of your original table that is automatically main-
tained by DynamoDB. Items in an index don’t have a primary key, just a key. This key
is not necessarily unique within the index. Imagine a table of users where each user
has a country attribute. You then create a global secondary index where the country is

Multiple filters can be combined
with logical operators.

Invokes the query
operation on DynamoDB

369Retrieving data

the new partition key. As you can see, many users can live in the same country, so that
key is not unique in the index.

 You can query a global secondary index like you would query the table. You can
imagine a global secondary index as a read-only DynamoDB table that is automatically
maintained by DynamoDB: whenever you change the parent table, all indexes are
asynchronously (eventually consistent!) updated as well. Figure 13.3 shows how a
global secondary index works.

A global secondary index comes at a price: the index requires storage (the same cost
as for the original table). You must provision additional write-capacity units for the
index as well, because a write to your table will cause a write to the global secondary
index as well.

A huge benefit of DynamoDB is that you can provision capacity based on your work-
load. If one of your global secondary indexes gets tons of read traffic, you can increase
the read capacity of that index. You can fine-tune your database performance by provi-
sioning sufficient capacity for your tables and indexes. You’ll learn more about that in
section 13.9.

 Back to nodetodo. To implement the retrieval of tasks by category, you’ll add a sec-
ondary index to the todo-task table. This will allow you to make queries by category.

DynamoDB updates secondary index
asynchonously on table changes.

tid

1

4

2

1

2

4

uid

michael

michael

andreas

description,category

..., home

..., work

..., home

description, uid

..., michael

..., andreas

..., michael

Task table Secondary index

Read and write Read

category

home

home

work

tid

Figure 13.3 A global secondary index contains a copy (projection) of your table’s data to provide
fast lookup on another key.

Local secondary index
Besides global secondary indexes, DynamoDB also support local secondary indexes.
A local secondary index must use the same partition key as the table. You can only
vary on the attribute that is used as the sort key. A local secondary index uses the
read and write-capacity of the table.

370 CHAPTER 13 Programming for the NoSQL database service: DynamoDB

A partition key and sort key are used: the partition key is the category attribute, and
the sort key is the tid attribute. The index also needs a name: category-index. You
can find the following CLI command in the README.md file in nodetodo’s code
folder:

$ aws dynamodb update-table --table-name todo-task \

➥ --attribute-definitions AttributeName=uid,AttributeType=S \

➥ AttributeName=tid,AttributeType=N \

➥ AttributeName=category,AttributeType=S \

➥ --global-secondary-index-updates '[{\

➥ "Create": {\

➥ "IndexName": "category-index", \

➥ "KeySchema": [{"AttributeName": "category", "KeyType": "HASH"}, \

➥ {"AttributeName": "tid", "KeyType": "RANGE"}], \

➥ "Projection": {"ProjectionType": "ALL"}, \

➥ "ProvisionedThroughput": {"ReadCapacityUnits": 5, \

➥ "WriteCapacityUnits": 5}\

➥ }}]'

Creating a global secondary index takes some time. You can use the CLI to find out if
the index is ready:

$ aws dynamodb describe-table --table-name=todo-task \

➥ --query "Table.GlobalSecondaryIndexes"

The following listing shows how the implementation of nodetodo task-la <cate-
gory> [--overdue|...] uses the query operation.

if (input['task-la'] === true) {
const yyyymmdd = moment().format('YYYYMMDD');
const params = {

KeyConditionExpression: 'category = :category',
ExpressionAttributeValues: {

':category': {S: input['<category>']}
},
TableName: 'todo-task',
IndexName: 'category-index',
Limit: input['--limit']

};
if (input['--next'] !== null) {

params.KeyConditionExpression += ' AND tid > :next';
params.ExpressionAttributeValues[':next'] = {N: input['--next']};

}
if (input['--overdue'] === true) {

params.FilterExpression = 'due < :yyyymmdd';
params.ExpressionAttributeValues[':yyyymmdd'] = {N: yyyymmdd};

}
[...]
db.query(params, (err, data) => {

Listing 13.7 nodetodo: retrieving tasks from a category index (index.js)

You can add a global secondary
index after the table is created.

Adds a category
attribute,

because the
attribute will be

used in the index.

Creates a new
secondary

index

The category attribute is the
partition key, and the tid
attribute is the sort key.

All attributes
are projected

into the index.

A query against an index
works the same as a
query against a table…

…but you must specify the
index you want to use.

Filtering works the
same as with tables

371Retrieving data

if (err) {
console.error('error', err);

} else {
console.log('tasks', data.Items.map(mapTaskItem));
if (data.LastEvaluatedKey !== undefined) {

console.log('more tasks available with --next='
+ data.LastEvaluatedKey.tid.N);

}
}

});
}

But there are still situations where a query doesn’t work: you can’t retrieve all users.
Let’s look at what a table scan can do for you.

13.6.4 Scanning and filtering all of your table’s data

Sometime you can’t work with keys because you don’t know them up front; instead,
you need to go through all the items in the table. That’s not very efficient, but in rare
situations like daily batch jobs, it’s okay. DynamoDB provides the scan operation to
scan all items in a table:

const params = {
TableName: 'app-entity',
Limit: 50

};
db.scan(params, (err, data) => {

if (err) {
console.error('error', err);

} else {
console.log('items', data.Items);
if (data.LastEvaluatedKey !== undefined) {

console.log('more items available');
}

}
});

The next listing shows the implementation of nodetodo user-ls [--limit=<limit>]
[--next=<id>]. A paging mechanism is used to prevent too many items from being
returned.

if (input['user-ls'] === true) {
const params = {

TableName: 'todo-user',
Limit: input['--limit']

};
if (input['--next'] !== null) {

params.ExclusiveStartKey = {
uid: {S: input['--next']}

};

Listing 13.8 nodetodo: retrieving all users with paging (index.js)

Specifies the maximum
number of items to return

Invokes the scan operation
on DynamoDB

Checks whether there are more
items that can be scanned

Maximum number
of items returned

The named parameter next
contains the last evaluated key.

372 CHAPTER 13 Programming for the NoSQL database service: DynamoDB

}
db.scan(params, (err, data) => {

if (err) {
console.error('error', err);

} else {
console.log('users', data.Items.map(mapUserItem));
if (data.LastEvaluatedKey !== undefined) {

console.log('page with --next=' + data.LastEvaluatedKey.uid.S);
}

}
});

}

The scan operation reads all items in the table. This example didn’t filter any data,
but you can use FilterExpression as well. Note that you shouldn’t use the scan oper-
ation too often—it’s flexible but not efficient.

13.6.5 Eventually consistent data retrieval

DynamoDB doesn’t support transactions the same way a traditional database does. You
can’t modify (create, update, delete) multiple documents in a single transaction—the
atomic unit in DynamoDB is a single item (to be more precise, a partition key).

 In addition, DynamoDB is eventually consistent. That means it’s possible that if
you create an item (version 1), update that item to version 2, and then get that item,
you may see the old version 1; if you wait and get the item again, you’ll see version 2.
Figure 13.4 shows this process. The reason for this behavior is because the item is per-
sisted on multiple machines in the background. Depending on which machine
answers your request, the machine may not have the latest version of the item.

Invokes the scan
operation on DynamoDB

Checks whether
the last item has
been reached

Update item
(version 2)

Machine 2

Machine 1

Time

Eventually consistent

Item v1

Item v1

Item v2

Item v2

Read item
(version 2)

Read item
(version 1)

Write item
(version 1)

Figure 13.4 Eventually consistent reads can return old values after a write operation
until the change is propagated to all machines.

373Removing data

You can prevent eventually consistent reads by adding "ConsistentRead": true to
the DynamoDB request to get strongly consistent reads. Strongly consistent reads are sup-
ported by getItem, query, and scan operations. But a strongly consistent read takes
longer and consumes more read capacity than an eventually consistent read. Reads
from a global secondary index are always eventually consistent because the index itself
is eventually consistent.

13.7 Removing data
Like the getItem operation, the deleteItem operation requires that you specify the
primary key you want to delete. Depending on whether your table uses a partition key
or a partition key and sort key, you must specify one or two attributes.

 You can remove a user with nodetodo by calling nodetodo user-rm <uid>. In
Node.js, you do this as shown in the following listing.

if (input['user-rm'] === true) {
const params = {

Key: {
uid: {S: input['<uid>']}

},
TableName: 'todo-user'

};
db.deleteItem(params, (err) => {

if (err) {
console.error('error', err);

} else {
console.log('user removed');

}
});

}

Removing a task is similar: nodetodo task-rm <uid> <tid>. The only change is that
the item is identified by a partition key and sort key, and the table name has to be
changed.

if (input['task-rm'] === true) {
const params = {

Key: {
uid: {S: input['<uid>']},
tid: {N: input['<tid>']}

},
TableName: 'todo-task'

};
db.deleteItem(params, (err) => {

if (err) {
console.error('error', err);

Listing 13.9 nodetodo: removing a user (index.js)

Listing 13.10 nodetodo: removing a task (index.js)

Identifies an item
by partition key

Specifies the user table

Invokes the deleteItem
operation on DynamoDB

Identifies an item by
partition key and sort key

Specifies the task table

374 CHAPTER 13 Programming for the NoSQL database service: DynamoDB

} else {
console.log('task removed');

}
});

}

You’re now able to create, read, and delete items in DynamoDB. The only operation
you’re missing is updating.

13.8 Modifying data
You can update an item with the updateItem operation. You must identify the item
you want to update by its primary key; you can also provide an UpdateExpression to
specify the updates you want to perform. You can use one or a combination of the fol-
lowing update actions:

 Use SET to override or create a new attribute. Examples: SET attr1 =

:attr1val, SET attr1 = attr2 + :attr2val, SET attr1 = :attr1val, attr2
= :attr2val.

 Use REMOVE to remove an attribute. Examples: REMOVE attr1, REMOVE attr1,
attr2.

In nodetodo, you can mark a task as done by calling nodetodo task-done <uid>

<tid>. To implement this feature, you need to update the task item, as shown next in
Node.js.

if (input['task-done'] === true) {
const yyyymmdd = moment().format('YYYYMMDD');
const params = {

Key: {
uid: {S: input['<uid>']},
tid: {N: input['<tid>']}

},
UpdateExpression: 'SET completed = :yyyymmdd',
ExpressionAttributeValues: {

':yyyymmdd': {N: yyyymmdd}
},
TableName: 'todo-task'

};
db.updateItem(params, (err) => {

if (err) {
console.error('error', err);

} else {
console.log('task completed');

}
});

}

Listing 13.11 nodetodo: updating a task as done (index.js)

Identifies the item by a
partition and sort key

Defines which attributes
should be updated

Attribute values must
be passed this way.

Invokes the updateItem
operation on DynamoDB

375Scaling capacity

That’s it! You’ve implemented all of nodetodo’s features.

13.9 Scaling capacity
When you create a DynamoDB table or a global secondary index, you must provision
throughput. Throughput is divided into read and write capacity. DynamoDB uses
ReadCapacityUnits and WriteCapacityUnits to specify the throughput of a table or
global secondary index. But how is a capacity unit defined?

13.9.1 Capacity units

To understand capacity units, let’s start by experimenting with the CLI:

$ aws dynamodb get-item --table-name todo-user \

➥ --key '{"uid": {"S": "michael"}}' \

➥ --return-consumed-capacity TOTAL \

➥ --query "ConsumedCapacity"
{

"CapacityUnits": 0.5,
"TableName": "todo-user"

}

$ aws dynamodb get-item --table-name todo-user \

➥ --key '{"uid": {"S": "michael"}}' \

➥ --consistent-read --return-consumed-capacity TOTAL \

➥ --query "ConsumedCapacity"
{

"CapacityUnits": 1.0,
"TableName": "todo-user"

}

More abstract rules for throughput consumption are as follows:

 An eventually consistent read takes half the capacity of a strongly consistent
read.

 A strongly consistent getItem requires one read capacity unit if the item isn’t
larger than 4 KB. If the item is larger than 4 KB, you need additional read
capacity units. You can calculate the required read capacity units using
roundUP(itemSize / 4).

 A strongly consistent query requires one read capacity unit per 4 KB of item
size. This means if your query returns 10 items, and each item is 2 KB, the item
size is 20 KB and you need 5 read units. This is in contrast to 10 getItem opera-
tions, for which you would need 10 read capacity units.

Cleaning up
Don’t forget to delete your DynamoDB tables after you finish this section. Use the
Management Console to do so.

Tells DynamoDB to return
the used capacity units

getItem requires
0.5 capacity units.

A consistent read…

…needs twice as many
capacity units.

376 CHAPTER 13 Programming for the NoSQL database service: DynamoDB

 A write operation needs one write capacity unit per 1 KB of item size. If your
item is larger than 1 KB, you can calculate the required write capacity units
using roundUP(itemSize).

If capacity units aren’t your favorite unit, you can use the AWS Simple Monthly Calcu-
lator at http://aws.amazon.com/calculator to calculate your capacity needs by provid-
ing details of your read and write workload.

 The provision throughput of a table or a global secondary index is defined in sec-
onds. If you provision five read capacity units per second with ReadCapacityUnits=5,
you can make five strongly consistent getItem requests for that table if the item size
isn’t larger than 4 KB per second. If you make more requests than are provisioned,
DynamoDB will first throttle your request. If you make many more requests than are
provisioned, DynamoDB will reject your requests.

 It’s important to monitor how many read and write capacity units you require. For-
tunately, DynamoDB sends some useful metrics to CloudWatch every minute. To see
the metrics, open the AWS Management Console, navigate to the DynamoDB service,
and select one of the tables B and click the Metrics tab C. Figure 13.5 shows the
CloudFormation metrics for the todo-user table.

 Increasing the provisioned throughput is possible whenever you like, but you can
only decrease the throughput of a table four to nine times a day (a day in UTC time).
Therefore, you might need to overprovision the throughput of a table during some
times of the day.

More read units consumed
than provisioned.

Consumed read
capacity units

When you consume
too much, requests
are throttled.

Figure 13.5 Monitoring provisioned and consumed capacity units of the DynamoDB table

http://aws.amazon.com/calculator

377Scaling capacity

13.9.2 Auto-scaling

You can adjust the capacity of your DynamoDB tables and global secondary indexes
based on your database’s load. If your application tier scales automatically, it’s a good
idea to scale the database as well. Otherwise your database will become the bottleneck.
The service used to implement this is called Application Auto Scaling. The following
CloudFormation snippet shows how you can define auto-scaling rules:

[...]
RoleScaling:

Type: 'AWS::IAM::Role'
Properties:

AssumeRolePolicyDocument:
Version: 2012-10-17
Statement:
- Effect: Allow

Principal:
Service: 'application-autoscaling.amazonaws.com'

Action: 'sts:AssumeRole'
Policies:
- PolicyName: scaling

PolicyDocument:
Version: '2012-10-17'
Statement:
- Effect: Allow
Action:
- 'dynamodb:DescribeTable'
- 'dynamodb:UpdateTable'
- 'cloudwatch:PutMetricAlarm'
- 'cloudwatch:DescribeAlarms'
- 'cloudwatch:DeleteAlarms'
Resource: '*'

TableWriteScalableTarget:
Type: 'AWS::ApplicationAutoScaling::ScalableTarget'
Properties:

MaxCapacity: 20
MinCapacity: 5
ResourceId: 'table/todo-user'
RoleARN: !GetAtt 'RoleScaling.Arn'

Limits for decreasing the throughput capacity
Decreasing the throughput capacity of a table is generally only allowed four times a
day (day in UTC time). Additionally, decreasing the throughout capacity is possible
even if you have used up all four decreases in case the last decrease has happened
more than four hours ago.

Theoretically, you can decrease the throughput capacity of your table up to nine times
a day. When decreasing capacity four times in the first hour of the day, you get an
additional decrease in the 5th hour. Next, after a decrease in the 5th hour, an addi-
tional decrease in the 11th hour is possible, and so on.

The IAM role is needed to allow
AWS to adjust your tables.

Not more than 20
capacity units…

…not less
than 5

capacity
units…

…reference the DynamoDB table.

378 CHAPTER 13 Programming for the NoSQL database service: DynamoDB

ScalableDimension: 'dynamodb:table:WriteCapacityUnits'
ServiceNamespace: dynamodb

TableWriteScalingPolicy:
Type: 'AWS::ApplicationAutoScaling::ScalingPolicy'
Properties:

PolicyName: TableWriteScalingPolicy
PolicyType: TargetTrackingScaling
ScalingTargetId: !Ref TableWriteScalableTarget
TargetTrackingScalingPolicyConfiguration:

TargetValue: 50.0
ScaleInCooldown: 600
ScaleOutCooldown: 60
PredefinedMetricSpecification:

PredefinedMetricType: DynamoDBWriteCapacityUtilization

To help you explore DynamoDB auto-scaling, we created a CloudFormation template,
located at http://mng.bz/3S89. Create a stack based on that template by clicking on the
CloudFormation Quick-Create link at http://mng.bz/dsRI, and it will create the tables
needed for the nodetodo application, including auto-scaling.

 Figure 13.6 shows auto-scaling in action. At 18:10, the capacity is no longer suffi-
cient. Therefore the capacity is automatically increased at 18:30.

Scale is write capacity
 units; you can also choose

dynamodb:table:ReadCapacityUnits.

Adjust capacity to reach an
target utilization of 50%.

Wait at least
600 seconds
between two

scale ins
(decrease in

capacity).
Wait at least 60
seconds between
two scale outs
(increase in
capacity).

Figure 13.6 DynamoDB read capacity auto-scaling at work

http://mng.bz/3S89
http://mng.bz/dsRI

379Summary

Combine this knowledge of a database that scales with chapter 17, where you will
learn to scale a fleet of EC2 instances. DynamoDB is the only database on AWS that
grows and shrinks with your load.

Summary
 DynamoDB is a NoSQL database service that removes all the operational bur-

dens from you, scales well, and can be used in many ways as the storage back
end of your applications.

 Looking up data in DynamoDB is based on keys. You can only look up a parti-
tion key if you know the exact key. But DynamoDB also supports using a parti-
tion key and sort key, which combines the power of a partition key with another
key that is sorted and supports range queries.

 You can enforce strongly consistent reads to avoid running into eventual consis-
tency issues with stale data. But reads from a global secondary index are always
eventually consistent.

 DynamoDB doesn’t support SQL. Instead, you must use the SDK to communi-
cate with DynamoDB from your application. This also implies that you can’t use
an existing application to run with DynamoDB without touching the code.

 Monitoring consumed read and write capacity is important if you want to provi-
sion enough capacity for your tables and indices.

 DynamoDB is charged per gigabyte of storage and per provisioned read or write
capacity.

 You can use the query operation to query table or secondary indexes.
 The scan operation is flexible but not efficient and shouldn’t be used too often.

Cleaning up
Don’t forget to delete the CloudFormation stack nodetodo. Use the Management
Console to do so.

Part 4

Architecting on AWS

Werner Vogels, CTO of Amazon.com, is quoted as saying “Everything fails
all the time.” Instead of trying to reach the unreachable goal of an unbreakable
system, AWS plans for failure:

 Hard drives can fail, so S3 stores data on multiple hard drives to prevent
loss of data.

 Computing hardware can fail, so virtual machines can be automatically
restarted on another machine if necessary.

 Data centers can fail, so there are multiple data centers per region that
can be used in parallel or on demand.

Outages of IT infrastructure and applications can cause loss of trust and money,
and are a major risk for business. You will learn how to prevent an outage of your
AWS applications by using the right tools and architecture.

 Some AWS services handle failure by default in the background. For some
services, responding to failure scenarios is available on demand. And some ser-
vices don’t handle failure by themselves, but offer the possibility to plan and
react to failure. The following table shows an overview of the most important ser-
vices and their failure handling.

 Designing for failure is a fundamental principle on AWS. Another one is to
make use of the elasticity of the cloud. You will learn about how to increase the
number of your virtual machines based on the current workload. This will allow
you to architect reliable systems for AWS.

Chapter 14 lays the foundation for becoming independent of the risk of losing a sin-
gle server or a complete data center. You will learn how to recover a single EC2
instance either in the same data center or in another data center.

 Chapter 15 introduces the concept of decoupling your system to increase reliabil-
ity. You will learn how to use synchronous decoupling with the help of load balancers
on AWS. You’ll also see asynchronous decoupling by using Amazon SQS, a distributed
queuing service, to build a fault-tolerant system.

 Chapter 16 uses a lot of the services you’ve discovered so far to built a fault-tolerant
application. You’ll learn everything you need to design a fault-tolerant web applica-
tion based on EC2 instances (which aren’t fault-tolerant by default).

 Chapter 17 is all about elasticity. You will learn how to scale your capacity based on
a schedule, or based on the current load of your system.

Overview of services and their failure handling possibilities

Description Examples

Fault tolerant Services can recover from failure automatically
without any downtime.

S3 (object storage), DynamoDB
(NoSQL database), Route 53
(DNS)

Highly available Services can recover from some failures with a
small downtime automatically.

RDS (relational database), EBS
(network attached storage)

Manual failure
handling

Services do not recover from failure by default but
offer tools to build a highly available infrastructure
on top of them.

EC2 (virtual machine)

383

Achieving high
 availability: availability zones,
auto-scaling, and CloudWatch

Imagine you run a web shop. During the night, the hardware running your virtual
machine fails. Until the next morning when you go into work, your users can no
longer access your web shop. During the 8-hour downtime, your users search for an
alternative and stop buying from you. That’s a disaster for any business. Now imagine
a highly available web shop. Just a few minutes after the hardware failed, the system
recovers, restarts itself on new hardware, and your web shop is back online again—

This chapter covers
 Using a CloudWatch alarm to recover a failed virtual

machine

 Understanding availability zones in an AWS region

 Using auto-scaling to guarantee your VMs keep
running

 Analyzing disaster-recovery requirements

384 CHAPTER 14 Achieving high availability: availability zones, auto-scaling, and CloudWatch

without any human intervention. Your users can now continue to shop on your site. In
this chapter, we’ll teach you how to build a high-availability architecture based on
EC2 instances.

 Virtual machines aren’t highly available by default. The following scenarios could
cause an outage of your virtual machine:

 A software issue causes the virtual machine’s OS to fail.
 A software issue occurs on the host machine, causing the VM to crash (either

the OS of the host machine crashes or the virtualization layer does).
 The computing, storage, or networking hardware of the physical host fails.
 Parts of the data center that the virtual machine depends on fail: network con-

nectivity, the power supply, or the cooling system.

For example, if the computing hardware of a physical host fails, all EC2 instances run-
ning on this host will fail. If you’re running an application on an affected virtual
machine, this application will fail and experience downtime until somebody—proba-
bly you—intervenes by starting a new virtual machine on another physical host. To
avoid downtimes, you should enable auto recovery or use multiple virtual machines.

High availability describes a system that is operating with almost no downtime. Even if a
failure occurs, the system can provide its services most of the time (for example, 99.99%
over a year). Although a short interruption might be necessary to recover from a failure,
there is no need for human interaction. The Harvard Research Group (HRG) defines
high availability with the classification AEC-2, which requires an uptime of 99.99% over a
year, or not more than 52 minutes and 35.7 seconds of downtime per year. You can
achieve 99.99% uptime with EC2 instances if you follow the instructions in the rest of
this chapter.

Examples are 100% covered by the Free Tier
The examples in this chapter are totally covered by the Free Tier. As long as you don’t
run the examples longer than a few days, you won’t pay anything for it. Keep in mind
that this applies only if you created a fresh AWS account for this book and there is
nothing else going on in your AWS account. Try to complete the chapter within a few
days, because you’ll clean up your account at the end of the chapter.

High availability vs. fault tolerance
A highly available system can recover from a failure automatically with a short down-
time. A fault-tolerant system, in contrast, requires the system to provide its services
without interruption in case of a component failure. We’ll show you how to build a
fault-tolerant system in chapter 16.

385Recovering from EC2 instance failure with CloudWatch

AWS offers tools for building highly available systems based on EC2 instances:

 Monitoring the health of virtual machines with CloudWatch and triggering
recovery automatically if needed

 Building a highly available infrastructure by using groups of isolated data cen-
ters, called availability zones, within a region

 Using auto-scaling to guarantee a certain number of virtual machines will keep
running, and replace failed instances automatically

14.1 Recovering from EC2 instance failure with CloudWatch
The EC2 service checks the status of every virtual machine automatically. System status
checks are performed every minute and the results are available as CloudWatch metrics.

A system status check detects a loss of network connectivity or power, as well as software
or hardware issues on the physical host. AWS then needs to repair failures detected by
the system status check. One possible strategy to resolve such failures is to move the
virtual machine to another physical host.

 Figure 14.1 shows the process in the case of an outage affecting a virtual machine:

1 The physical hardware fails and causes the EC2 instance to fail as well.
2 The EC2 service detects the outage and reports the failure to a CloudWatch

metric.
3 A CloudWatch alarm triggers recovery of the virtual machine.
4 The EC2 instance is launched on another physical host.
5 The EBS volume and Elastic IP stay the same, and are linked to the new EC2

instance.

After the recovery, a new EC2 instance is running with the same ID and private IP
address. Data on network-attached EBS volumes is available as well. No data is lost
because the EBS volume stays the same. EC2 instances with local disks (instance stor-
age) aren’t supported for this process. If the old EC2 instance was connected to an
Elastic IP address, the new EC2 instance is connected to the same Elastic IP address.

AWS CloudWatch
AWS CloudWatch is a service offering metrics, events, logs, and alarms for AWS
resources. You used CloudWatch to monitor a Lambda function in chapter 7, and gained
some insight into the current load of a relational database instance in chapter 11.

386 CHAPTER 14 Achieving high availability: availability zones, auto-scaling, and CloudWatch

CloudWatch

5. The new virtual machine is assigned the same ID
 and public/private IP addresses as the old virtual
 machine and linked to the same EBS volume.

1. A hardware or
 software failure
 affects the virtual
 machine.

2. CloudWatch’s regular health
 check spots that the virtual
 machine has failed.

3. CloudWatch starts the recovery
 of the virtual machine.

Hardware hosting
virtual machines

Hardware hosting
virtual machines

Virtual machine

EBS volume

Elastic IP

4. A new virtual machine is launched
 on a different set of hardware.

Figure 14.1 In the case of a hardware failure, CloudWatch triggers the recovery of the
EC2 instance.

Requirements for recovering EC2 instances
An EC2 instance must meet the following requirements if you want to use the recov-
ery feature:

 It must be running in a VPC network.
 The instance family must be C3, C4, C5, M3, M4, M5, R3, R4, T2, or X1.

Other instance families aren’t supported.
 The EC2 instance must use EBS volumes exclusively, because data on

instance storage would be lost after the instance was recovered.

387Recovering from EC2 instance failure with CloudWatch

14.1.1 Creating a CloudWatch alarm to trigger recovery when status checks fail

A CloudWatch alarm consists of the following:

 A metric that monitors data (health check, CPU usage, and so on)
 A rule defining a threshold based on a statistical function over a period of time
 Actions to trigger if the state of the alarm changes (such as triggering a recovery

of an EC2 instance if the state changes to ALARM)

The following states are available for an alarm:

 OK—Everything is fine; the threshold hasn’t been reached.
 INSUFFICIENT_DATA—There isn’t enough data to evaluate the alarm.
 ALARM—Something is broken: the threshold has been overstepped.

To monitor a VM’s health and recover it in case the underlying host system fails, you
can use a CloudWatch alarm like the one shown in listing 14.1. This listing is an
excerpt from a CloudFormation template.

 Listing 14.1 creates a CloudWatch alarm based on a metric called StatusCheck-
Failed_System (linked by attribute MetricName). This metric contains the results of
the system status checks performed by the EC2 service every minute. If the check fails,
a measurement point with value 1 is added to the metric StatusCheckFailed_System.
Because the EC2 service publishes this metric, the Namespace is called AWS/EC2 and
the Dimension of the metric is the ID of a virtual machine.

 The CloudWatch alarm checks the metric every 60 seconds, as defined by the
Period attribute. As defined in EvaluationPeriods, the alarm will check the last five
periods, the last 5 minutes in this example. The check runs a statistical function speci-
fied in Statistic on the time periods. The result of the statistical function, a mini-
mum function in this case, is compared against Threshold using the chosen
ComparisonOperator. If the result is negative, the alarm actions defined in Alarm-
Actions are executed: in this case, the recovery of the virtual machine—a built-in
action for EC2 instances.

[...]
RecoveryAlarm:

Type: 'AWS::CloudWatch::Alarm'
Properties:

AlarmDescription: 'Recover EC2 instance ...'
Namespace: 'AWS/EC2'
MetricName: 'StatusCheckFailed_System'
Statistic: Maximum
Period: 60
EvaluationPeriods: 5

Listing 14.1 Creating a CloudWatch alarm to monitor the health of an EC2 instance

Creates a CloudWatch
alarm to monitor the
VM’s health

The metric to monitor
is provided by the EC2
service with
namespace AWS/EC2.

The name
of the

metric.
Statistical
function to apply
to the metric.

Duration the statistical function is applied,
in seconds. Must be a multiple of 60.

Number of time
periods over which

data is compared to
the threshold

388 CHAPTER 14 Achieving high availability: availability zones, auto-scaling, and CloudWatch

ComparisonOperator: GreaterThanThreshold
Threshold: 0
AlarmActions:
- !Sub 'arn:aws:automate:${AWS::Region}:ec2:recover'
Dimensions:
- Name: InstanceId

Value: !Ref VM

In summary, AWS checks the status of the virtual machine every minute. The result of
these checks is written to the StatusCheckFailed_System metric. The alarm checks
this metric. If there are five consecutive failed checks, the alarm trips.

14.1.2 Monitoring and recovering a virtual machine based on a CloudWatch alarm

Suppose that your team is using an agile development process. To accelerate the pro-
cess, your team decides to automate the testing, building, and deployment of the soft-
ware. You’ve been asked to set up a continuous integration (CI) server. You’ve chosen
to use Jenkins, an open source application written in Java that runs in a servlet con-
tainer such as Apache Tomcat. Because you’re using infrastructure as code, you’re
planning to deploy changes to your infrastructure with Jenkins as well.1

 A Jenkins server is a typical use case for a high-availability setup. It’s an important
part of your infrastructure, because your colleagues won’t be able to test and deploy
new software if Jenkins suffers from downtime. But a short downtime in the case of a
failure with automatic recovery won’t hurt your business too much, so you don’t need
a fault-tolerant system. Jenkins is only an example. You can apply the same principles
to any other applications where you can tolerate a short amount of downtime but still
want to recover from hardware failures automatically. For example, we used the same
approach for hosting FTP servers and VPN servers.

 In this example, you’ll do the following:

1 Create a virtual network in the cloud (VPC).
2 Launch a virtual machine in the VPC, and automatically install Jenkins during

bootstrap.
3 Create a CloudWatch alarm to monitor the health of the virtual machine.

We’ll guide you through these steps with the help of a CloudFormation template.
 You can find the CloudFormation template for this example on GitHub and on S3. You

can download a snapshot of the repository at http://mng.bz/x6RP. The file we’re talking
about is located at chapter14/recovery.yaml. On S3, the same file is located at
http://mng.bz/994D.

1 Learn more about Jenkins by reading its documentation at http://mng.bz/sVqd.

Operator for comparing the output of the
statistical function with the thresholdThreshold

triggering
an alarm

Action to perform in
case of an alarm.
Uses the predefined
recovery action for
EC2 instances.

The virtual machine is a
dimension of the metric.

http://mng.bz/sVqd
http://mng.bz/x6RP
http://mng.bz/994D

389Recovering from EC2 instance failure with CloudWatch

 The following command creates a CloudFormation template which launches an
EC2 instance with a CloudWatch alarm that triggers a recovery if the virtual machine
fails. Replace $Password with a password consisting of 8–40 characters. The template
automatically installs a Jenkins server while starting the virtual machine:

$ aws cloudformation create-stack --stack-name jenkins-recovery \

➥ --template-url https://s3.amazonaws.com/\

➥ awsinaction-code2/chapter14/recovery.yaml \

➥ --parameters ParameterKey=JenkinsAdminPassword,ParameterValue=$Password

The CloudFormation template contains the definition of a private network and secu-
rity configuration. But the most important parts of the template are these:

 A virtual machine with user data containing a Bash script, which installs a Jen-
kins server during bootstrapping

 A public IP address assigned to the EC2 instance, so you can access the new
instance after a recovery using the same public IP address as before

 A CloudWatch alarm based on the system-status metric published by the EC2 service

The following listing shows the important parts of the template.

#[...]
ElasticIP:

Type: 'AWS::EC2::EIP'
Properties:

InstanceId: !Ref VM
Domain: vpc

DependsOn: GatewayToInternet
VM:

Type: 'AWS::EC2::Instance'
Properties:

ImageId: 'ami-6057e21a'
InstanceType: 't2.micro'
KeyName: mykey
NetworkInterfaces:
- AssociatePublicIpAddress: true

DeleteOnTermination: true
DeviceIndex: 0
GroupSet:
- !Ref SecurityGroup
SubnetId: !Ref Subnet

UserData:
'Fn::Base64': !Sub |

#!/bin/bash -x
bash -ex << "TRY"

wget -q -T 60 https://.../jenkins-1.616-1.1.noarch.rpm
rpm --install jenkins-1.616-1.1.noarch.rpm
configure Jenkins [...]
service jenkins start

TRY

Listing 14.2 Starting an EC2 instance running a Jenkins CI server with a recovery alarm

The public IP address stays the same
after recovery when using ElasticIP.

Launches a virtual machine
to run a Jenkins serverSelects the

AMI (in this
case Amazon

Linux) Recovery is supported
for t2 instance types.

User data containing a shell script
that is executed during bootstrapping
to install a Jenkins server

Downloads
and installs

Jenkins

Starts Jenkins

390 CHAPTER 14 Achieving high availability: availability zones, auto-scaling, and CloudWatch

/opt/aws/bin/cfn-signal -e $? --stack ${AWS::StackName} \

➥ --resource VM --region ${AWS::Region}
[...]

RecoveryAlarm:
Type: 'AWS::CloudWatch::Alarm'
Properties:

AlarmDescription: 'Recover EC2 instance ...'
Namespace: 'AWS/EC2'
MetricName: 'StatusCheckFailed_System'
Statistic: Maximum
Period: 60
EvaluationPeriods: 5
ComparisonOperator: GreaterThanThreshold
Threshold: 0
AlarmActions:
- !Sub 'arn:aws:automate:${AWS::Region}:ec2:recover'
Dimensions:
- Name: InstanceId

Value: !Ref VM

It will take a few minutes for the CloudFormation stack to be created and Jenkins to
be installed on the virtual machine. Run the following command to get the output of
the stack. If the output is null, retry after a few more minutes:

$ aws cloudformation describe-stacks --stack-name jenkins-recovery \

➥ --query "Stacks[0].Outputs"

If the query returns output like the following, containing a URL, a user, and a pass-
word, the stack has been created and the Jenkins server is ready to use. If you want
more information during stack creation, we recommend you use the CloudFormation
Management Console at https://console.aws.amazon.com/cloudformation/. Open
the URL in your browser, and log in to the Jenkins server with user admin and the
password you’ve chosen:

[
{

"Description": "URL to access web interface of Jenkins server.",
"OutputKey": "JenkinsURL",
"OutputValue": "http://54.152.240.91:8080"

},
{

"Description": "Administrator user for Jenkins.",
"OutputKey": "User",
"OutputValue": "admin"

},
{

"Description": "Password for Jenkins administrator user.",
"OutputKey": "Password",
"OutputValue": "********"

}
]

Creates a
CloudWatch alarm

to monitor the
health of the

virtual machine

The metric to monitor is
provided by the EC2 service
with namespace AWS/EC2.

The name of
the metric

Statistical function to apply to the metric. The
minimum is to notify you if a single status check failed.Duration the

statistical function
is applied, in

seconds. Must be
a multiple of 60.

Number of time periods
over which data is

compared to the
threshold

Operator for comparing the
output of the statistical
function with the threshold

Threshold triggering
an alarm

Action to perform in case
of an alarm. Uses the

predefined recovery action
for EC2 instances.

The virtual machine
is a dimension of
the metric.

Open this URL in your browser
to access the web interface of
the Jenkins server.

Use this user name to log
in to the Jenkins server.

Use this password to log in
to the Jenkins server.

https://console.aws.amazon.com/cloudformation/

391Recovering from EC2 instance failure with CloudWatch

You’re now ready to create your first build job on the Jenkins server. To do so, you
have to log in with the username and password from the previous output. Figure 14.2
shows the Jenkins server’s login form.

 Once you’re logged in, you can create your first job by following these steps:

1 Click New Item in the navigation bar on the left.
2 Type AWS in Action as the name for the new job.
3 Select Freestyle Project as the job type, and click OK to save the job.

The Jenkins server runs on a virtual machine with automated recovery. If the virtual
machine fails because of issues with the host system, it will be recovered with all data
and the same public IP address. The URL doesn’t change because you’re using an
Elastic IP for the virtual machine. All data is restored because the new virtual machine
uses the same EBS volume as the previous virtual machine, so you can find your AWS
in Action job again.

 Unfortunately, you can’t test the recovery process. The CloudWatch alarm moni-
tors the health of the host system, which can only be controlled by AWS.

Figure 14.2 Web interface of the Jenkins server

Cleaning up
Now that you’ve finished this example, it’s time to clean up to avoid unwanted
charges. Execute the following command to delete all resources corresponding to the
Jenkins setup:

$ aws cloudformation delete-stack --stack-name jenkins-recovery
$ aws cloudformation wait stack-delete-complete \

➥ --stack-name jenkins-recovery Waits until the stack
is deleted

392 CHAPTER 14 Achieving high availability: availability zones, auto-scaling, and CloudWatch

14.2 Recovering from a data center outage
Recovering an EC2 instance after underlying software or hardware fails is possible
using system status checks and CloudWatch, as described in the previous section. But
what happens if the entire data center fails because of a power outage, a fire, or some
other issue? Recovering a virtual machine as described in section 14.1 will fail because
it tries to launch an EC2 instance in the same data center.

 AWS is built for failure, even in the rare case that an entire data center fails. The AWS
regions consist of multiple data centers grouped into availability zones. Auto-scaling
helps you start virtual machines that can recover from a data center outage with only a
short amount of downtime. There are two pitfalls when building a highly available setup
over multiple availability zones:

1 Data stored on network-attached storage (EBS) won’t be available after failing
over to another availability zone by default. So you can end up having no access
to your data (stored on EBS volumes) until the availability zone is back online
(you won’t lose your data in this case).

2 You can’t start a new virtual machine in another availability zone with the same
private IP address. As you’ve learned, subnets are bound to availability zones,
and each subnet has a unique IP address range. By default, you can’t keep the
same public IP address automatically after a recovery, as was the case in the pre-
vious section with a CloudWatch alarm triggering a recovery.

In this section, you’ll improve the Jenkins setup from the previous section, add the
ability to recover from an outage of an entire availability zone, and work around the
pitfalls afterward.

14.2.1 Availability zones: groups of isolated data centers

As you’ve learned, AWS operates multiple locations worldwide, called regions. You’ve
used region US East (N. Virginia), also called us-east-1, if you’ve followed the exam-
ples so far. In total, there are 15 publicly available regions throughout North America,
South America, Europe, and Asia Pacific.

 Each region consists of multiple availability zones (AZs). You can think of an AZ as
an isolated group of data centers, and a region as an area where multiple availability
zones are located at a sufficient distance. The region us-east-1 consists of six availabil-
ity zones (us-east-1a to us-east-1f) for example. The availability zone us-east-1a could
be one data center, or many. We don’t know because AWS doesn’t make information
about their data centers publicly available. So from an AWS user’s perspective, you
only know about regions and AZs.

 The AZs are connected through low-latency links, so requests between different
availability zones aren’t as expensive as requests across the internet in terms of latency.
The latency within an availability zone (such as from an EC2 instance to another EC2
instance in the same subnet) is lower compared to latency across AZs. The number of
availability zones depends on the region. Most regions come with three or more

393Recovering from a data center outage

availability zones. When choosing a region, keep in mind that AWS also has regions with
only two availability zones. This could become an issue if you want to run a distributed
system that relies on consensus decisions. Figure 14.3 illustrates the concept of
availability zones within a region.

 Some AWS services are highly available or even fault-tolerant by default. Other ser-
vices provide building blocks to achieve a highly available architecture. You can use
multiple availability zones or even multiple regions to build a highly available architec-
ture, as figure 14.4 shows:

 Some services operate globally over multiple regions: Route 53 (DNS) and
CloudFront (CDN).

 Some services use multiple availability zones within a region so they can recover from
an availability zone outage: S3 (object store) and DynamoDB (NoSQL database).

 The Relational Database Service (RDS) offers the ability to deploy a master-
standby setup, called Multi-AZ deployment, so you can fail over into another avail-
ability zone with a short downtime if necessary.

 A virtual machine runs in a single availability zone. But AWS offers tools to build
an architecture based on EC2 instances that can fail over into another availabil-
ity zone.

Region

us-east-1a

us-east-1

Availability zone A

us-east-1c
Availability zone C

us-east-1b
Availability zone B

us-east-1e
Availability zone E

Availability zones are
connected through
low-latency links.

Number of availability zones
depends on the region.

An availability zone is an isolated
location within a region.

Figure 14.3 A region consists of multiple availability zones connected through low-latency links.

394 CHAPTER 14 Achieving high availability: availability zones, auto-scaling, and CloudWatch

The identifier for an availability zone consists of the identifier for the region (such as
us-east-1) and a character (a, b, c, ...). So us-east-1a is the identifier for an availability
zone in region us-east-1. To distribute resources across the different availability zones,
the AZ identifier is generated randomly for each AWS account. This means us-east-1a
points to a different availability zone in your AWS account than it does in our
AWS account.

 You can use the following commands to discover all regions available for your AWS
account:

$ aws ec2 describe-regions
{

"Regions": [
{

"Endpoint": "ec2.ap-south-1.amazonaws.com",
"RegionName": "ap-south-1"

Region

Global

CloudFront
CDN

Route 53
DNS

DynamoDB
NoSQL database

S3
object storage

Availability zone 1 Availability zone 2

Services are running region
wide and span over multiple
availability zones by default.

Running in a single
availability zone.

Running in a single availability
zone. Failover into another
availability zone.

EC2
virtual machine

RDS (Multi-AZ)
SQL database

Services are running globally
over multiple regions and
edge locations.

Figure 14.4 AWS services can operate in a single availability zone, over multiple availability
zones within a region, or even globally.

395Recovering from a data center outage

},
{

"Endpoint": "ec2.eu-west-2.amazonaws.com",
"RegionName": "eu-west-2"

},
{

"Endpoint": "ec2.eu-west-1.amazonaws.com",
"RegionName": "eu-west-1"

},
[...]
{

"Endpoint": "ec2.us-west-2.amazonaws.com",
"RegionName": "us-west-2"

}
]

}

To list all availability zones for a region, execute the following command and replace
$Region with RegionName from the previous command:

$ aws ec2 describe-availability-zones --region $Region
{

"AvailabilityZones": [
{

"State": "available",
"ZoneName": "us-east-1a",
"Messages": [],
"RegionName": "us-east-1"

},
{

"State": "available",
"ZoneName": "us-east-1b",
"Messages": [],
"RegionName": "us-east-1"

},
[...]
{

"State": "available",
"ZoneName": "us-east-1f",
"Messages": [],
"RegionName": "us-east-1"

}
]

}

Before you start to create a high-availability architecture based on EC2 instances with
failover to multiple availability zones, there is one more lesson to learn. If you define a
private network in AWS with the help of the VPC service, you need to know the following:

 A VPC is always bound to a region.
 A subnet within a VPC is linked to an availability zone.
 A virtual machine is launched into a single subnet.

396 CHAPTER 14 Achieving high availability: availability zones, auto-scaling, and CloudWatch

Figure 14.5 illustrates these dependencies. Next, you’ll learn how to launch a virtual
machine that will automatically restart in another availability zone if a failure occurs.

14.2.2 Using auto-scaling to ensure that an EC2 instance is always running

Auto-scaling is part of the EC2 service and helps you to ensure that a specified num-
ber of EC2 instances is running even when availability zones become unavailable. You
can use auto-scaling to launch a virtual machine and make sure a new instance is
started if the original instance fails. You can use it to start virtual machines in multiple
subnets. So in case of an outage of an entire availability zone, a new instance can be
launched in another subnet in another availability zone.

A subnet is linked to
an availability zone.

Region

VPC (Virtual Private Cloud)
10.0.0.0/16

10.0.0.0/24
public subnet

Availability zone 1

Subnet A

10.0.2.0/24
private subnet

Subnet B

10.0.1.0/24
public subnet

Availability zone 2

Subnet C

10.0.3.0/24
public subnet

Subnet D

Figure 14.5 A VPC is bound to a region, and a subnet is linked to an availability zone.

397Recovering from a data center outage

 To configure auto-scaling, you need to create two parts of the configuration:

 A launch configuration contains all information needed to launch an EC2
instance: instance type (size of virtual machine) and image (AMI) to start from.

 An auto-scaling group tells the EC2 service how many virtual machines should be
started with a specific launch configuration, how to monitor the instances, and
in which subnets EC2 instances should be started.

Figure 14.6 illustrates this process.

Listing 14.3 shows how to use auto-scaling to make sure a single EC2 instance is always
running. The parameters are explained in table 14.1.

Table 14.1 Required parameters for the launch configuration and auto-scaling group

Context Property Description Values

LaunchConfiguration ImageId The ID of the AMI the virtual
machine should be started
from.

Any AMI ID accessible from
your account.

LaunchConfiguration InstanceType The size of the virtual
machine.

All available instance sizes,
such as t2.micro,
m3.medium, and c3.large.

AutoScalingGroup DesiredCapacity The number of virtual
machines that should run in
the auto-scaling group at
the moment.

Any positive integer. Use 1
if you want a single virtual
machine to be started
based on the launch
configuration.

EC2
virtual machine

1. Monitoring health
 check of virtual
 machines

2. If there are not enough healthy
 virtual machines new ones are
 launched based on the launch
 configuration.

Auto-scaling group

• Min/max/desired
 number of virtual machines
• Health check for virtual
 machines
• Subnets to launch virtual
 machines in

Launch configuration

• Image (AMI) to start new
 virtual machine from
• Size of virtual machine

Figure 14.6 Auto-scaling
ensures that a specified
number of EC2 instances
are running.

398 CHAPTER 14 Achieving high availability: availability zones, auto-scaling, and CloudWatch

An auto-scaling group is also used if you need to scale the number of virtual machines
based on usage of your system. You’ll learn how to scale the number of EC2 instances
based on current load in chapter 17. In this chapter, you only need to make sure a sin-
gle virtual machine is always running. Because you need a single virtual machine, set
the following parameters for auto-scaling to 1:

 DesiredCapacity
 MinSize
 MaxSize

[...]
LaunchConfiguration:

Type: 'AWS::AutoScaling::LaunchConfiguration'
Properties:

ImageId: 'ami-6057e21a'
InstanceType: 't2.micro'
[...]

AutoScalingGroup:
Type: 'AWS::AutoScaling::AutoScalingGroup'

 Properties:
LaunchConfigurationName: !Ref LaunchConfiguration

AutoScalingGroup MinSize The minimum value for the
DesiredCapacity

Any positive integer. Use 1
if you want a single virtual
machine to be started
based on the launch
configuration.

AutoScalingGroup MaxSize The maximum value for the
DesiredCapacity

Any positive integer (greater
than or equal to the
MinSize value). Use 1 if
you want a single virtual
machine to be started
based on the launch
configuration.

AutoScalingGroup VPCZoneIdentifier The subnet IDs you want to
start virtual machines in

Any subnet ID from a VPC
from your account. Sub-
nets must belong to the
same VPC.

AutoScalingGroup HealthCheckType The health check used to
identify failed virtual
machines. If the health
check fails, the auto-scaling
group replaces the virtual
machine with a new one.

EC2 to use the status
checks of the virtual
machine, or ELB to use the
health check of the load
balancer (see chapter 16).

Listing 14.3 Configuring an auto-scaling group and a launch configuration

Table 14.1 Required parameters for the launch configuration and auto-scaling group (continued)

Context Property Description Values

Launch configuration
used for auto-scaling.Select the AMI

(in this case
Amazon Linux). Size of the

virtual machine

Auto-scaling group
responsible for launching
the virtual machine

Link to the
launch

configuration.

399Recovering from a data center outage

DesiredCapacity: 1
MinSize: 1
MaxSize: 1
VPCZoneIdentifier:
- !Ref SubnetA
- !Ref SubnetB
HealthCheckGracePeriod: 600
HealthCheckType: EC2

[...]

The next section will reuse the Jenkins example from the beginning of the chapter to
show you how high availability can be achieved with auto-scaling in practice.

14.2.3 Recovering a failed virtual machine to another availability zone
with the help of auto-scaling

In the first part of the chapter, you used a CloudWatch alarm to trigger the recovery of
a virtual machine that was running a Jenkins CI server, in case of a failure. This mech-
anism launches an identical copy of the original virtual machine if necessary. This is
only possible in the same availability zone, because the private IP address and the EBS
volume of a virtual machine are bound to a single subnet and a single availability
zone. But suppose your team isn’t happy about the fact that they won’t be able to use
the Jenkins server to test, build, and deploy new software in case of a unlikely availabil-
ity zone outage. You begin looking for a tool that will let you recover in another avail-
ability zone.

 Failing over into another availability zone is possible with the help of auto-scaling. You
can find the CloudFormation template for this example on GitHub and on S3. You can
download a snapshot of the repository at http://mng.bz/x6RP. The file we’re talking
about is located at chapter14/multiaz.yaml. On S3, the same file is located at
http://mng.bz/994D.

 Execute the following command to create a virtual machine that can recover in
another availability zone if necessary. Replace $Password with a password consisting
of 8–40 characters. The command uses the CloudFormation template shown in list-
ing 14.4 to set up the environment.

$ aws cloudformation create-stack --stack-name jenkins-multiaz \

➥ --template-url https://s3.amazonaws.com/\

➥ awsinaction-code2/chapter14/multiaz.yaml \

➥ --parameters ParameterKey=JenkinsAdminPassword,ParameterValue=$Password

You’ll find both a launch configuration and an auto-scaling group in the CloudForma-
tion template shown in listing 14.4. You already used the most important parameters
for the launch configuration when starting a single virtual machine with a Cloud-
Watch recovery alarm in the previous section:

Desired number
of EC2 instances Minimum number of EC2 instances

Maximum number of EC2 instances
Launches the virtual

machines in subnet A
(created in availability
zone A) and subnet B

(created in availability
zone B)

Uses the internal health
check of the EC2 service

http://mng.bz/x6RP
http://mng.bz/994D

400 CHAPTER 14 Achieving high availability: availability zones, auto-scaling, and CloudWatch

 ImageId—ID of the image (AMI) for virtual machine
 InstanceType—Size of the virtual machine
 KeyName—Name of the SSH key pair
 SecurityGroupIds—Link to the security groups
 UserData—Script executed during bootstrap to install the Jenkins CI server

There is one important difference between the definition of a single EC2 instance and
the launch configuration: the subnet for the virtual machine isn’t defined in the
launch configuration, but rather in the auto-scaling group.

[...]
LaunchConfiguration:

Type: 'AWS::AutoScaling::LaunchConfiguration'
Properties:

InstanceMonitoring: false
ImageId: 'ami-6057e21a'
KeyName: mykey
SecurityGroups:
- !Ref SecurityGroup
AssociatePublicIpAddress: true
InstanceType: 't2.micro'
UserData:

'Fn::Base64': !Sub |
#!/bin/bash -x
bash -ex << "TRY"

wget -q -T 60 https://.../jenkins-1.616-1.1.noarch.rpm
rpm --install jenkins-1.616-1.1.noarch.rpm
[...]
service jenkins start

TRY
/opt/aws/bin/cfn-signal -e $? --stack ${AWS::StackName} \

➥ --resource AutoScalingGroup --region ${AWS::Region}
AutoScalingGroup:

Type: 'AWS::AutoScaling::AutoScalingGroup'
Properties:

LaunchConfigurationName: !Ref LaunchConfiguration
Tags:
- Key: Name
 Value: 'jenkins-multiaz'
 PropagateAtLaunch: true
DesiredCapacity: 1
MinSize: 1
MaxSize: 1
VPCZoneIdentifier:
- !Ref SubnetA
- !Ref SubnetB
HealthCheckGracePeriod: 600
HealthCheckType: EC2

CreationPolicy:
ResourceSignal:

Timeout: PT10M

Listing 14.4 Launching a Jenkins VM with auto-scaling in two AZs

Launch configuration
used for auto-scaling.

By default, EC2 sends metrics to CloudWatch
every 5 minutes. But you can enable detailed
instance monitoring to get metrics every
minute for an additional cost.

Select the AMI
(in this case

Amazon
Linux).

Key for the SSH
connections to the

virtual machine

Security groups
attached to the
virtual machine

Enables the public IP address
for the virtual machine

Size of the virtual machine

User data containing a
script executed during

bootstrapping that
installs a Jenkins server
on the virtual machine

Installs Jenkins

Auto-scaling group
responsible for launching
the virtual machine

Link to the
launch

configuration

Tags for the auto-
scaling group

Attaches the same tags to the
virtual machine started by
this auto-scaling group

Desired number
of EC2 instances Minimum number of EC2 instances

Maximum number of EC2
Launches the virtual

machines in subnet A
(created in availability
zone A) and subnet B

(created in availability
zone B)

Uses the internal health check of
the EC2 service to discover issues
with the virtual machine

401Recovering from a data center outage

The creation of the CloudFormation stack will take a few minutes—time to grab some
coffee or tea and take a short break. Execute the following command to grab the pub-
lic IP address of the virtual machine. If no IP address appears, the virtual machine
isn’t started yet. Wait another minute, and try again:

$ aws ec2 describe-instances --filters "Name=tag:Name,\

➥ Values=jenkins-multiaz" "Name=instance-state-code,Values=16" \

➥ --query "Reservations[0].Instances[0].\

➥ [InstanceId, PublicIpAddress, PrivateIpAddress, SubnetId]"
[

"i-0cff527cda42afbcc",
"34.235.131.229",
"172.31.38.173",
"subnet-28933375"

]

Open http://$PublicIP:8080 in your browser, and replace $PublicIP with the public
IP address from the output of the previous describe-instances command. The web
interface for the Jenkins server appears.

 Execute the following command to terminate the virtual machine and test the
recovery process with auto-scaling. Replace $InstanceId with the instance ID from
the output of the previous describe command:

$ aws ec2 terminate-instances --instance-ids $InstanceId

After a few minutes, the auto-scaling group detects that the virtual machine was termi-
nated and starts a new virtual machine. Rerun the describe-instances command
until the output contains a new running virtual machine:

$ aws ec2 describe-instances --filters "Name=tag:Name,\

➥ Values=jenkins-multiaz" "Name=instance-state-code,Values=16" \

➥ --query "Reservations[0].Instances[0].\

➥ [InstanceId, PublicIpAddress, PrivateIpAddress, SubnetId]"
[

"i-0293522fad287bdd4",
"52.3.222.162",
"172.31.37.78",
"subnet-45b8c921"

]

The instance ID, the public IP address, the private IP address, and probably even the
subnet ID have changed for the new instance. Open http://$PublicIP:8080 in your
browser, and replace $PublicIP with the public IP address from the output of the pre-
vious describe-instances command. The web interface from the Jenkins server
appears.

Instance ID of the
virtual machine

Public IP address of
the virtual machine

Private IP address of
the virtual machine

Subnet ID of the
virtual machine

402 CHAPTER 14 Achieving high availability: availability zones, auto-scaling, and CloudWatch

 You’ve now built a highly available architecture consisting of an EC2 instance with
the help of auto-scaling. There are two issues with the current setup:

 The Jenkins server stores data on disk. When a new virtual machine is started to
recover from a failure, this data is lost because a new disk is created.

 The public and private IP addresses of the Jenkins server change after a new virtual
machine is started for recovery. The Jenkins server is no longer available under the
same endpoint.

You’ll learn how to solve these problems in the next part of the chapter.

14.2.4 Pitfall: recovering network-attached storage

The EBS service offers network-attached storage for virtual machines. Remember that
EC2 instances are linked to a subnet, and the subnet is linked to an availability zone.
EBS volumes are also located in a single availability zone only. If your virtual machine
is started in another availability zone because of an outage, the EBS volume cannot be
accessed from the other availability zone. Let’s say your Jenkins data is stored on an
EBS volume in availability zone us-east-1a. As long as you have an EC2 instance run-
ning in the same availability zone, you can attach the EBS volume. But if this availabil-
ity zone becomes unavailable, and you start a new EC2 instance in availability zone us-
east-1b, you can’t access that EBS volume in us-east-1a, which means that you can’t
recover Jenkins because you don’t have access to the data. See figure 14.7.

Cleaning up
It’s time to clean up to avoid unwanted costs. Execute the following command to
delete all resources corresponding to the Jenkins setup:

$ aws cloudformation delete-stack --stack-name jenkins-multiaz
$ aws cloudformation wait stack-delete-complete \

➥ --stack-name jenkins-multiaz Waits until the stack
is deleted

Don’t mix availability and durability guarantees
An EBS volume is guaranteed to be available for 99.999% of the time. So in case of
an availability zone outage, the volume is no longer available. This does not imply that
you lose any data. As soon as the availability zone is back online, you can access the
EBS volume again with all its data.

An EBS volume guarantees that you won’t lose any data in 99.9% of the time. This
guarantee is called the durability of the EBS volume. If you have 1,000 volumes in
use, you can expect that you will lose one of the volumes and its data a year.

403Recovering from a data center outage

 There are multiple solutions for this problem:

1 Outsource the state of your virtual machine to a managed service that uses mul-
tiple availability zones by default: RDS, DynamoDB (NoSQL database), EFS
(NFSv4.1 share), or S3 (object store).

2 Create snapshots of your EBS volumes regularly, and use these snapshots if an
EC2 instance needs to recover in another availability zone. EBS snapshots are
stored on S3, thus available in multiple availability zones. If the EBS volume is
the root volume of the ECS instance, create AMIs to back up the EBS volume
instead of a snapshot.

3 Use a distributed third-party storage solution to store your data in multiple
availability zones: GlusterFS, DRBD, MongoDB, and so on.

The Jenkins server stores data directly on disk. To outsource the state of the virtual
machine, you can’t use RDS, DynamoDB, or S3; you need a block-level storage solution
instead. As you’ve learned, an EBS volume is only available in a single availability zone,
so this isn’t the best fit for the problem. But do you remember EFS from chapter 10?
EFS provides block-level storage (over NFSv4.1) and replicates your data automatically
between availability zones in a region.

EBS volume is bound
to Availability zone A.

Launch new virtual server
in other availability zone.

Availability zone A

Virtual server

Availability zone B

Virtual server

EBS volume

New and empty
EBS volume

EBS volume

Figure 14.7 An EBS volume
is only available in a single
availability zone.

404 CHAPTER 14 Achieving high availability: availability zones, auto-scaling, and CloudWatch

To embed EFS into the Jenkins setup, shown in listing 14.5, you have to make three
modifications to the Multi-AZ template from the previous section:

1 Create an EFS filesystem.
2 Create EFS mount targets in each availability zone.
3 Adjust the user data to mount the EFS filesystem. Jenkins stores all its data

under /var/lib/jenkins.

[...]
FileSystem:

Type: 'AWS::EFS::FileSystem'
Properties: {}

MountTargetSecurityGroup:
Type: 'AWS::EC2::SecurityGroup'
Properties:

GroupDescription: 'EFS Mount target'
SecurityGroupIngress:
- FromPort: 2049

IpProtocol: tcp
SourceSecurityGroupId: !Ref SecurityGroup
ToPort: 2049

VpcId: !Ref VPC
MountTargetA:

Type: 'AWS::EFS::MountTarget'
Properties:

FileSystemId: !Ref FileSystem
SecurityGroups:
- !Ref MountTargetSecurityGroup
SubnetId: !Ref SubnetA

MountTargetB:
Type: 'AWS::EFS::MountTarget'
Properties:

FileSystemId: !Ref FileSystem
SecurityGroups:
- !Ref MountTargetSecurityGroup
SubnetId: !Ref SubnetB

[...]

Listing 14.5 Store Jenkins state on EFS

AWS is a fast-growing platform
When we wrote the first edition of this book, EFS was not available. There was basi-
cally no easy way to share a filesystem between multiple EC2 instances. As you can
imagine, many customers complained about this to AWS. Amazon is proud to be cus-
tomer obsessed, which means that they listen to their customers carefully. If enough
customers need a solution, AWS will deliver a solution. That’s why you should follow
the new features that are released daily. A problem that was hard to solve yesterday
might now be solved by AWS natively. The best place to get updates about AWS is
the AWS blog at https://aws.amazon.com/blogs/.

Create the EFS
filesystem.

The file system is protected
by a security group.

Allows traffic only from the
Jenkins EC2 Instances

A mount target is
created in subnet A.

Mount target in
subnet B

https://aws.amazon.com/blogs/

405Recovering from a data center outage

LaunchConfiguration:
Type: 'AWS::AutoScaling::LaunchConfiguration'
Properties:

[...]
UserData:

'Fn::Base64': !Sub |
#!/bin/bash -x
bash -ex << "TRY"

wget -q -T 60 https://.../jenkins-1.616-1.1.noarch.rpm
rpm --install jenkins-1.616-1.1.noarch.rpm
while ! nc -z \

➥ ${FileSystem}.efs.${AWS::Region}.amazonaws.com 2049; \

➥ do sleep 10; done
sleep 10
echo -n "${FileSystem}.efs.${AWS::Region}.amazonaws.com:/ \

➥ /var/lib/jenkins" >> /etc/fstab
echo " nfs4 nfsvers=4.1,rsize=1048576,wsize=1048576,hard, \

➥ timeo=600,retrans=2,_netdev 0 0" >> /etc/fstab
mount -a
chown jenkins:jenkins /var/lib/jenkins/
[...]
service jenkins start

TRY
/opt/aws/bin/cfn-signal -e $? --stack ${AWS::StackName} \

➥ --resource AutoScalingGroup --region ${AWS::Region}

Execute the following command to create the new Jenkins setup that stores state on
EFS. Replace $Password with a password consisting of 8–40 characters.

$ aws cloudformation create-stack --stack-name jenkins-multiaz-efs \

➥ --template-url https://s3.amazonaws.com/\

➥ awsinaction-code2/chapter14/multiaz-efs.yaml \

➥ --parameters ParameterKey=JenkinsAdminPassword,ParameterValue=$Password

The creation of the CloudFormation stack will take a few minutes. Run the following
command to get the public IP address of the virtual machine. If no IP address
appears, the virtual machine isn’t started yet. In this case, please wait another minute,
and try again:

$ aws ec2 describe-instances --filters "Name=tag:Name,\

➥ Values=jenkins-multiaz-efs" "Name=instance-state-code,Values=16" \

➥ --query "Reservations[0].Instances[0].\

➥ [InstanceId, PublicIpAddress, PrivateIpAddress, SubnetId]"
[

"i-0efcd2f01a3e3af1d",
"34.236.255.218",
"172.31.37.225",
"subnet-0997e66d"

]

Installs Jenkins

Waits until
EFS file
system is
available

Mounts EFS
file system

Instance ID of the
virtual machine

Public IP address of
the virtual machine Private IP address of

the virtual machine

Subnet ID of the virtual machine

406 CHAPTER 14 Achieving high availability: availability zones, auto-scaling, and CloudWatch

Open http://$PublicIP:8080 in your browser, and replace $PublicIP with the public IP
address from the output of the previous describe-instances command. The web
interface from the Jenkins server appears.

 Now, create a new Jenkins job by following these steps:

1 Open http://$PublicIP:8080/newJob in your browser, and replace $PublicIP
with the public IP address from the output of the previous describe command.

2 Log in with user admin and the password you chose when starting the CloudFor-
mation template.

3 Type in AWS in Action as the name for the new job.
4 Select Freestyle Project as the job type, and click OK to save the job.

You’ve made some changes to the state of Jenkins stored on EFS. Now, terminate the
EC2 instance with the following command and you will see that Jenkins recovers from
the failure without data loss. Replace $InstanceId with the instance ID from the out-
put of the previous describe command:

$ aws ec2 terminate-instances --instance-ids $InstanceId

After a few minutes, the auto-scaling group detects that the virtual machine was termi-
nated and starts a new virtual machine. Rerun the describe-instances command
until the output contains a new running virtual machine:

$ aws ec2 describe-instances --filters "Name=tag:Name,\

➥ Values=jenkins-multiaz-efs" "Name=instance-state-code,Values=16" \

➥ --query "Reservations[0].Instances[0].\

➥ [InstanceId, PublicIpAddress, PrivateIpAddress, SubnetId]"
[
 "i-07ce0865adf50cccf",
 "34.200.225.247",
 "172.31.37.199",
 "subnet-0997e66d"

]

The instance ID, the public IP address, the private IP address, and probably even the
subnet ID have changed for the new instance. Open http://$PublicIP:8080 in your
browser, and replace $PublicIP with the public IP address from the output of the previ-
ous describe-instances command. The web interface from the Jenkins server
appears and it still contains the AWS in Action job you created recently.

 You’ve now built a highly available architecture consisting of an EC2 instance with
the help of auto-scaling. State is now stored on EFS and is no longer lost when an EC2
instance is replaced. There is one issue left:

 The public and private IP addresses of the Jenkins server change after a new vir-
tual machine is started for recovery. The Jenkins server is no longer available
under the same endpoint.

407Recovering from a data center outage

You’ll learn how to solve the last issue next.

14.2.5 Pitfall: network interface recovery

Recovering a virtual machine using a CloudWatch alarm in the same availability zone,
as described at the beginning of this chapter, is easy because the private IP address
and the public IP address stay the same automatically. You can use these IP addresses
as an endpoint to access the EC2 instance even after a failover.

 You can’t do this when using auto-scaling to recover from a EC2 instance or avail-
ability zone outage. If a virtual machine has to be started in another availability zone,
it must be started in another subnet. So it’s not possible to use the same private IP
address for the new virtual machine, as figure 14.8 shows.

 By default, you also can’t use an Elastic IP as a public IP address for a virtual
machine launched by auto-scaling. But the requirement for a static endpoint to
receive requests is common. For the use case of a Jenkins server, developers want to
bookmark an IP address or a hostname to reach the web interface. There are different
possibilities for providing a static endpoint when using auto-scaling to build high avail-
ability for a single virtual machine:

 Allocate an Elastic IP, and associate this public IP address during the bootstrap
of the virtual machine.

 Create or update a DNS entry linking to the current public or private IP address
of the virtual machine.

 Use an Elastic Load Balancer (ELB) as a static endpoint that forwards requests
to the current virtual machine.

To use the second solution, you need to link a domain with the Route 53 (DNS) ser-
vice; we’ve chosen to skip this solution because you need a registered domain to
implement it. The ELB solution is covered in chapter 15, so we’ll skip it in this chapter
as well. We’ll focus on the first solution: allocating an Elastic IP and associating this
public IP address during the virtual machine’s bootstrap.

Cleaning up
It’s time to clean up to avoid unwanted costs. Execute the following command to
delete all resources corresponding to the Jenkins setup:

$ aws cloudformation delete-stack --stack-name jenkins-multiaz-efs
$ aws cloudformation wait stack-delete-complete \

➥ --stack-name jenkins-multiaz-efs Waits until the
stack is deleted

408 CHAPTER 14 Achieving high availability: availability zones, auto-scaling, and CloudWatch

Execute the following command to create the Jenkins setup based on auto-scaling
again, using an Elastic IP address as static endpoint:

$ aws cloudformation create-stack --stack-name jenkins-multiaz-efs-eip \

➥ --template-url https://s3.amazonaws.com/\

➥ awsinaction-code2/chapter14/multiaz-efs-eip.yaml \

➥ --parameters ParameterKey=JenkinsAdminPassword,ParameterValue=$Password \

➥ --capabilities CAPABILITY_IAM

Private IP address has to change
because virtual server is recovered
in another subnet.

Region

VPC (Virtual Private Cloud)
10.0.0.0/16

10.0.0.0/24
public subnet

Availability zone 1

Subnet A

10.0.2.0/24
private subnet

Subnet B

Virtual server
10.0.0.100

10.0.1.0/24
public subnet

Availability zone 2

Subnet C

10.0.3.0/24
public subnet

Subnet D

Virtual server
10.0.1.100

Figure 14.8 The virtual machine starts in another subnet in case of a failover and
changes the private IP address.

409Recovering from a data center outage

The command creates a stack based on the template shown in listing 14.6. The differ-
ences from the original template spinning up a Jenkins server with auto-scaling are as
follows:

 Allocating an Elastic IP
 Adding the association of an Elastic IP to the script in the user data
 Creating an IAM role and policy to allow the EC2 instance to associate an Elas-

tic IP

[...]
IamRole:

Type: 'AWS::IAM::Role'
Properties:

AssumeRolePolicyDocument:
Version: '2012-10-17'
Statement:
- Effect: Allow

Principal:
Service: 'ec2.amazonaws.com'

Action: 'sts:AssumeRole'
Policies:
- PolicyName: root

PolicyDocument:
Version: '2012-10-17'
Statement:
- Action: 'ec2:AssociateAddress'
Resource: '*'
Effect: Allow

IamInstanceProfile:
Type: 'AWS::IAM::InstanceProfile'
Properties:

Roles:
- !Ref IamRole

ElasticIP:
Type: 'AWS::EC2::EIP'
Properties:

Domain: vpc
LaunchConfiguration:

Type: 'AWS::AutoScaling::LaunchConfiguration'
Properties:

InstanceMonitoring: false
IamInstanceProfile: !Ref IamInstanceProfile
ImageId: 'ami-6057e21a'
KeyName: mykey
SecurityGroups:
- !Ref SecurityGroup
AssociatePublicIpAddress: true
InstanceType: 't2.micro'
UserData:

'Fn::Base64': !Sub |
#!/bin/bash -x

Listing 14.6 Using an EIP as a static endpoint for a VM launched by auto-scaling

Creates an IAM role used
by the EC2 instance

Associating an Elastic IP is
allowed for EC2 instances
using this IAM role.

Allocates an Elastic IP for
the virtual machine running
Jenkins

Creates an Elastic IP for VPC

410 CHAPTER 14 Achieving high availability: availability zones, auto-scaling, and CloudWatch

bash -ex << "TRY"
INSTANCE_ID="$(curl -s http://169.254.169.254/\

➥ latest/meta-data/instance-id)"
aws --region ${AWS::Region} ec2 associate-address \

➥ --instance-id $INSTANCE_ID \

➥ --allocation-id ${ElasticIP.AllocationId}
[...]
service jenkins start

 TRY
 /opt/aws/bin/cfn-signal -e $? --stack ${AWS::StackName} \

➥ --resource AutoScalingGroup --region ${AWS::Region}

If the query returns output as shown in the following listing, containing a URL, a user,
and a password, the stack has been created and the Jenkins server is ready to use.
Open the URL in your browser, and log in to the Jenkins server with user admin and
the password you’ve chosen. If the output is null, try again in a few minutes:

$ aws cloudformation describe-stacks --stack-name jenkins-multiaz-efs-eip \

➥ --query "Stacks[0].Outputs"

You can now test whether the recovery of the virtual machine works as expected. To
do so, you’ll need to know the instance ID of the running virtual machine. Run the
following command to get this information:

$ aws ec2 describe-instances --filters "Name=tag:Name,\

➥ Values=jenkins-multiaz-efs-eip" "Name=instance-state-code,Values=16" \

➥ --query "Reservations[0].Instances[0].InstanceId" --output text

Execute the following command to terminate the virtual machine and test the recov-
ery process triggered by auto-scaling. Replace $InstanceId with the instance from the
output of the previous command:

$ aws ec2 terminate-instances --instance-ids $InstanceId

Wait a few minutes for your virtual machine to recover. Because you’re using an Elas-
tic IP assigned to the new virtual machine on bootstrap, you can open the same URL
in your browser as you did before the termination of the old instance.

Gets the instance ID from
the instance metadata

Associates the Elastic IP
with the virtual machine

Cleaning up
It’s time to clean up to avoid unwanted costs. Execute the following command to
delete all resources corresponding to the Jenkins setup:

$ aws cloudformation delete-stack --stack-name jenkins-multiaz-efs-eip
$ aws cloudformation wait stack-delete-complete \

➥ --stack-name jenkins-multiaz-efs-eip Waits until the
stack is deleted

411Analyzing disaster-recovery requirements

Now the public IP address of your virtual machine running Jenkins won’t change,
even if the running virtual machine needs to be replaced by another virtual machine
in another availability zone.

14.3 Analyzing disaster-recovery requirements
Before you begin implementing highly available or even fault-tolerant architectures
on AWS, you should start by analyzing your disaster-recovery requirements. Disaster
recovery is easier and cheaper in the cloud than in a traditional data center, but build-
ing for high availability increases the complexity and therefore the initial costs as well
as the operating costs of your system. The recovery time objective (RTO) and recovery
point objective (RPO) are standards for defining the importance of disaster recovery
from a business point of view.

 Recovery time objective (RTO) is the time it takes for a system to recover from a fail-
ure; it’s the length of time until the system reaches a working state again, defined as
the system service level, after an outage. In the example with a Jenkins server, the RTO
would be the time until a new virtual machine is started and Jenkins is installed and
running after a virtual machine or an entire availability zone goes down.

 Recovery point objective (RPO) is the acceptable data-loss time caused by a failure. The
amount of data loss is measured in time. If an outage happens at 10:00 a.m. and the
system recovers with a data snapshot from 09:00 a.m., the time span of the data loss is
one hour. In the example of a Jenkins server using auto-scaling, the RPO would be
zero, because data is stored on EFS and is not lost during an AZ outage. Figure 14.9
illustrates the definitions of RTO and RPO.

14.3.1 RTO and RPO comparison for a single EC2 instance

You’ve learned about two possible solutions for making a single EC2 instance highly
available. When choosing the solution, you have to know the application’s business
requirements. Can you tolerate the risk of being unavailable if an availability zone
goes down? If so, EC2 instance recovery is the simplest solution where you don’t lose
any data. If your application needs to survive an unlikely availability zone outage, your
safest bet is auto-scaling with data stored on EFS. But this also has performance

Last backup Failure Recovery

Part of system
fails. Begin of
service outage.

Service is operating
again. Data from last
backup restored.

RPO RTO

Figure 14.9 Definitions of RTO and RPO

412 CHAPTER 14 Achieving high availability: availability zones, auto-scaling, and CloudWatch

impacts compared to storing data on EBS volumes. As you can see, there is no one-
size-fits-all solution. You have to pick the solution that fits your business problem best.
Table 14.2 compares the solutions.

If you want to be able to recover from an outage of an availability zone and need to
decrease the RPO, you should try to achieve a stateless server. Using storage services
like RDS, EFS, S3, and DynamoDB can help you to do so. See part 3 if you need help
with using these services.

Summary
 A virtual machine fails if the underlying hardware or software fails.
 You can recover a failed virtual machine with the help of a CloudWatch alarm:

By default, data stored on EBS, as well as the private and public IP addresses,
stays the same.

 An AWS region consists of multiple isolated groups of data centers called avail-
ability zones.

 Recovering from an availability zone outage is possible when using multiple
availability zones.

 Some AWS services use multiple availability zones by default, but virtual
machines run in a single availability zone.

 You can use auto-scaling to guarantee that a single virtual machine is always run-
ning even if an availability zone fails. The pitfalls are that you can no longer
blindly rely on EBS volumes and by default, IP addresses will change.

 Recovering data in another availability zone is tricky when stored on EBS vol-
umes instead of managed storage services like RDS, EFS, S3, and DynamoDB.

Table 14.2 Comparison of high availability for a single EC2 instance

RTO RPO Availability

EC2 instance, data stored
on EBS root volume: recov-
ery triggered by a Cloud-
Watch alarm

About 10
minutes

No data loss Recovers from a failure of a vir-
tual machine but not from an
outage of an entire availability
zone

EC2 instance, data stored
on EBS root volume: recov-
ery triggered by auto-scaling

About 10
minutes

All data is lost. Recovers from a failure of a vir-
tual machine and from an out-
age of an entire availability zone

EC2 instance, data stored
on EBS root volume with
regular snapshots: recov-
ery triggered by auto-scaling

About 10
minutes

Realistic time span
for snapshots is
between 30 min-
utes and 24 hours.

Recovers from a failure of a vir-
tual machine and from an out-
age of an entire availability zone

EC2 instance, data stored
on EFS filesystem: recovery
triggered by auto-scaling

About 10
minutes

No data loss. Recovers from a failure of a vir-
tual machine and from an out-
age of an entire availability zone

413

Decoupling your infrastructure:
Elastic Load Balancing and

Simple Queue Service

Imagine that you want some advice from us about using AWS, and therefore we
plan to meet in a cafe. To make this meeting successful, we must

 Be available at the same time
 Be at the same place
 Find each other at the cafe

This chapter covers
 The reasons for decoupling a system

 Synchronous decoupling with load balancers to
distribute requests

 Hiding your backend from users and message
producers

 Asynchronous decoupling with message queues to
buffer message peaks

414 CHAPTER 15 Decoupling your infrastructure: Elastic Load Balancing and Simple Queue Ser-

The problem with our meeting is that it’s tightly coupled to a location. We live in Ger-
many; you probably don’t. We can solve that issue by decoupling our meeting from
the location. So we change plans and schedule a Google Hangout session. Now we
must:

 Be available at the same time
 Find each other in Google Hangouts

Google Hangouts (and other video/voice chat services) does synchronous decou-
pling. It removes the need to be at the same place, while still requiring us to meet at
the same time.

 We can even decouple from time by using email. Now we must:

 Find each other via email

Email does asynchronous decoupling. You can send an email when the recipient is
asleep, and they can respond later when they’re awake.

NOTE To fully understand this chapter, you’ll need to have read and under-
stood the concept of auto-scaling covered in chapter 14.

So far you learned about two ways to decouple a meeting:

 No decoupling—We have to be at the same place (the cafe), at the same time (3 p.m.),
and find each other (I have black hair and I’m wearing a white shirt).

 Synchronous decoupling—We can now be at different places. But still, we have to
find a common time (3 p.m.), and find each other (exchange Skype IDs).

 Asynchronous decoupling—We can be at different places and now also don’t have
to find a common time. We only have to find each other (exchange email
addresses).

A meeting isn’t the only thing that can be decoupled. In software systems, you can
find a lot of tightly coupled components:

 A public IP address is like the location of our meeting: To make a request to a
web server, you must know its public IP address, and the virtual machine must
be connected to that address. If you want to change the public IP address, both
parties are involved in making the appropriate changes.

Examples are 100% covered by the Free Tier
The examples in this chapter are totally covered by the Free Tier. As long as you don’t
run the examples longer than a few days, you won’t pay anything for it. Keep in mind
that this applies only if you created a fresh AWS account for this book and there is
nothing else going on in your AWS account. Try to complete the chapter within a few
days, because you’ll clean up your account at the end of the chapter.

415Synchronous decoupling with load balancers

 If you want to make a request to a web server, the web server must be online at
the same time. Otherwise your request will be rejected. There are many reasons
why a web server can be offline: someone might be installing updates, a hard-
ware failure, and so on.

AWS offers a solution for synchronous and asynchronous decoupling. The Elastic Load
Balancing (ELB) service provides different types of load balancers that sit between your
EC2 instances and the client to decouple your requests synchronously. For asynchro-
nous decoupling, AWS offers a Simple Queue Service (SQS) that provides a message queue
infrastructure. You’ll learn about both services in this chapter. Let’s start with ELB.

15.1 Synchronous decoupling with load balancers
Exposing a single EC2 instance running a web server to the outside world introduces a
dependency: your users now depend on the public IP address of the EC2 instance. As
soon as you distribute the public IP address to your users, you can’t change it any-
more. You’re faced with the following issues:

 Changing the public IP address is no longer possible because many clients rely
on it.

 If you add an additional EC2 instance (and IP address) to handle the increasing
load, it’s ignored by all current clients: they’re still sending all requests to the
public IP address of the first server.

You can solve these issues with a DNS name that points to your server. But DNS isn’t
fully under your control. DNS resolvers cache responses. DNS servers cache entries,
and sometimes they don’t respect your time to live (TTL) settings. For example, you
might ask DNS servers to only cache the name-to-IP address mapping for one minute,
but some DNS servers might use a minimum cache of one day. A better solution is to
use a load balancer.

 A load balancer can help decouple a system where the requester awaits an immediate
response. Instead of exposing your EC2 instances (running web servers) to the outside
world, you only expose the load balancer to the outside world. The load balancer then
forwards requests to the EC2 instances behind it. Figure 15.1 shows how this works.

 The requester (such as a web browser) send an HTTP request to the load balancer.
The load balancer then selects one of the EC2 instances and copies the original HTTP
request to send to the EC2 instance that it selected. The EC2 instance then processes
the request and sends a response. The load balancer receives the response, and sends
the same response to the original requester.

 AWS offers different types of load balancers through the Elastic Load Balancing
(ELB) service. All load balancer types are fault-tolerant and scalable. They differ
mainly in the protocols they support:

 Application Load Balancer (ALB)—HTTP, HTTPS
 Network Load Balancer (NLB)—TCP
 Classic Load Balancer (CLB)—HTTP, HTTPS, TCP, TCP+TLS

416 CHAPTER 15 Decoupling your infrastructure: Elastic Load Balancing and Simple Queue Ser-

The Classic Load Balancer is the oldest of the load balancers. If you start a new proj-
ect, we recommend going with the ALB or NLB, because they are in most cases more
cost efficient and more feature-rich.

NOTE The ELB service doesn’t have an independent Management Console.
It’s integrated into the EC2 Management Console.

Load balancers can be used with more than web servers—you can use load balancers
in front of any systems that deal with request/response-style communication as long as
the protocol is based on TCP.

15.1.1 Setting up a load balancer with virtual machines

AWS shines when it comes to integrating services. In chapter 14, you learned about
auto-scaling groups. You’ll now put an ALB in front of an auto-scaling group to decou-
ple traffic to web servers, to remove a dependency between your users and the EC2
instance’s public IP address. The auto-scaling group will make sure you always have
two web servers running. As you learned in chapter 14, that’s the way to protect
against downtime caused by hardware failure. Servers that are started in the auto-scal-
ing group will automatically register with the ALB. Figure 15.2 shows what the setup
will look like. The interesting part is that the EC2 instances are no longer accessible
directly from the public internet, so your users don’t know about them. They don’t
know if there are 2 or 20 EC2 instances running behind the load balancer. Only the

Load balancer routes
incoming requests to
one of the two backends.

Load balancer is accessible from
the internet with a public name.

EC2 instance is only
accessible through
the load balancer.

10.0.0.0/16

10.0.1.0/24 Load balancer

EC2 instance 2
(running a web server)

EC2 instance 1
(running a web server)

Internet

Figure 15.1 A load balancer synchronously decouples your EC2 instances.

417Synchronous decoupling with load balancers

load balancer is accessible and forwards requests to the backend servers behind it.
The network traffic to load balancers and backend EC2 instances is controlled by
security groups, which you learned about in chapter 6. If the auto-scaling group adds
or removes EC2 instances, it will also register new EC2 instances with the load bal-
ancer and deregister EC2 instances that have been removed.

 An ALB consists of three required parts and one optional part:

 Load balancer—Defines some core configurations, like the subnets the load bal-
ancer runs in, whether the load balancer gets public IP addresses, whether it
uses IPv4 or both IPv4 and IPv6, and additional attributes.

 Listener—The listener defines the port and protocol that you can use to make
requests to the load balancer. If you like, the listener can also terminate TLS for
you. A listener links to a target group that is used as the default if no other lis-
tener rules match the request.

 Target group—A target group defines your group of backends. The target group
is responsible for checking the backends by sending periodic health checks.
Usually backends are EC2 instances, but could also be a Docker container run-
ning on EC2 Container Service or a machine in your data center paired with
your VPC.

The auto-scalling group observes two
EC2 instances. If a new EC2 instance is
started, the auto-scaling group registers
the EC2 instance with the ALB.

10.0.0.0/16

10.0.1.0/24 ALB

EC2 instance 2
(running a web server)

EC2 instance 1
(running a web server)

Internet

Figure 15.2 Auto-scaling groups work closely with ALB: they register a new web server with the
load balancer.

418 CHAPTER 15 Decoupling your infrastructure: Elastic Load Balancing and Simple Queue Ser-

 Listener rule—Optional. You can define a listener rule. The rule can choose a
different target group based on the HTTP path or host. Otherwise requests are
forwarded to the default target group defined in the listener.

Figure 15.3 shows the ALB parts.

The next listing shows a CloudFormation template snippet to create an ALB and con-
nect it with an auto-scaling group. The listing implements the example shown in fig-
ure 15.2.

[...]
LoadBalancerSecurityGroup:

Type: 'AWS::EC2::SecurityGroup'

Listing 15.1 Creating a load balancer and connecting it to an auto-scaling group

Target group 1

Request is sent
to a listener of
the ALB.

Otherwise, request
is forwarded to
target group 1.

A target group consists of EC2
instances, managed by an
auto-scaling group.

EC2 instance 1
(running a web server)

EC2 instance 2
(running a web server)

Load balancer

If path starts with /api/*
request is forwarded to
target group 2.

Internet

Listener: Port 80

Rules

path starts with /api/*

Default

Listener: Port 443

Rules

path starts with /api/*

Default

Target group 2

EC2 instance 1
(running a web server)

EC2 instance 2
(running a web server)

Figure 15.3 ALB consists of parts: load balancer, listener, target group, and optional listener rules.

419Synchronous decoupling with load balancers

Properties:
GroupDescription: 'alb-sg'
VpcId: !Ref VPC
SecurityGroupIngress:
- CidrIp: '0.0.0.0/0'

FromPort: 80
IpProtocol: tcp
ToPort: 80

LoadBalancer:
Type: 'AWS::ElasticLoadBalancingV2::LoadBalancer'
Properties:

SecurityGroups:
- !Ref LoadBalancerSecurityGroup
Scheme: 'internet-facing'
Subnets:
- !Ref SubnetA
- !Ref SubnetB
Type: application

DependsOn: 'VPCGatewayAttachment'
Listener:

Type: 'AWS::ElasticLoadBalancingV2::Listener'
Properties:

LoadBalancerArn: !Ref LoadBalancer
Port: 80
Protocol: HTTP
DefaultActions:
- TargetGroupArn: !Ref TargetGroup

Type: forward
TargetGroup:

Type: 'AWS::ElasticLoadBalancingV2::TargetGroup'
Properties:

HealthCheckIntervalSeconds: 10
HealthCheckProtocol: HTTP
HealthCheckPath: '/index.html'
HealthCheckTimeoutSeconds: 5
HealthyThresholdCount: 3
UnhealthyThresholdCount: 2
Matcher:

HttpCode: '200-299'
Port: 80
Protocol: HTTP
VpcId: !Ref VPC

LaunchConfiguration:
Type: 'AWS::AutoScaling::LaunchConfiguration'
Properties:

[...]
AutoScalingGroup:

Type: 'AWS::AutoScaling::AutoScalingGroup'
Properties:

LaunchConfigurationName: !Ref LaunchConfiguration
TargetGroupARNs:
- !Ref TargetGroup
MinSize: 2
MaxSize: 2
DesiredCapacity: 2

Only traffic on port 80 from
the internet will reach the
load balancer.

Assigns the
security group

to the load
balancer

The ALB is publicly accessible (use
internal instead of internet-facing
to define a load balancer reachable
from private network only).

Attaches the ALB
to the subnets

The load balancer listens on
port 80 for HTTP requests.

Forwards
requests to
the default

target group

Every 10 seconds...
…HTTP

requests
are made to
/index.html.

If HTTP status code is 2XX, the
backend is considered healthy.

The web server on
the EC2 instances

listens on port 80.

The auto-scaling
group registers

new EC2 instances
with the default

target group.

Keeps two EC2 instances running
(MinSize <= DesiredCapacity <=
MaxSize)

420 CHAPTER 15 Decoupling your infrastructure: Elastic Load Balancing and Simple Queue Ser-

VPCZoneIdentifier:
- !Ref SubnetA
- !Ref SubnetB

DependsOn: 'VPCGatewayAttachment'

The connection between the ALB and the auto-scaling group is made in the auto-scaling
group description by specifying TargetGroupARNs.

 The full CloudFormation template is located at http://mng.bz/S6Sj. Create a
stack based on that template by clicking on the Quick-Create link at
http://mng.bz/lbG4, and then visit the output of your stack with your browser. Every
time you reload the page, you should see one of the private IP addresses of a backend
web server.

 To get some detail about the load balancer in the graphical user interface, navigate
to the EC2 Management Console. The sub-navigation menu on the left has a Load Bal-
ancing section where you can find a link to your load balancers. Select the one and only
load balancer. You will see details at the bottom of the page. The details contain a Mon-
itoring tab, where you can find charts about latency, number of requests, and much
more. Keep in mind that those charts are one minute behind, so you may have to wait
until you see the requests you made to the load balancer.

15.2 Asynchronous decoupling with message queues
Synchronous decoupling with ELB is easy; you don’t need to change your code to do
it. But for asynchronous decoupling, you have to adapt your code to work with a mes-
sage queue.

 A message queue has a head and a tail. You can add new messages to the tail while
reading messages from the head. This allows you to decouple the production and
consumption of messages. Decoupling the producers/requesters from consumers/
receivers delivers with the following benefits:

 The queue acts as a buffer—Producers and consumers don’t have to run at the
same speed. For example, you can add a batch of 1,000 messages in one minute
while your consumers always process 10 messages per second. Sooner or later,
the consumers will catch up and the queue will be empty again.

 The queue hides your backend—Similar to the load balancer, messages producers
have no knowledge of the consumers. You can even stop all consumers and still
produce messages. This is handy while doing maintenance on your consumers.

The producers and consumers don’t know each other; they both only know about the
message queue. Figure 15.4 illustrates this principle.

Cleaning up
Delete the CloudFormation stack you created.

http://mng.bz/lbG4
http://mng.bz/S6Sj

421Asynchronous decoupling with message queues

You can put new messages into the queue while no one is reading messages, and the
message queue acts as a buffer. To prevent message queues from growing infinitely
large, messages are only saved for a certain amount of time. If you consume a message
from a message queue, you must acknowledge the successful processing of the mes-
sage to permanently delete it from the queue.

 The Simple Queue Service (SQS) is a fully managed AWS service. SQS offers message
queues that guarantee the delivery of messages at least once:

 Under rare circumstances, a single message will be available for consumption
twice. This may sound strange if you compare it to other message queues, but
you’ll see how to deal with this problem later in the chapter.

 SQS doesn’t guarantee the order of messages, so you may read messages in a
different order than they were produced.

This limitation of SQS is also beneficial:

 You can put as many messages into SQS as you like.
 The message queue scales with the number of messages you produce and consume.
 SQS is highly available by default.
 You pay per message.

The pricing model is also simple: you pay $0.00000040 USD per request to SQS or
$0.4 USD per million requests. Producing a message is one request, and consuming is
another request (if your payload is larger than 64 KB, every 64 KB chunk counts as
one request).

15.2.1 Turning a synchronous process into an asynchronous one

A typical synchronous process looks like this: a user makes a request to your web
server, something happens on the web server, and a result is returned to the user. To
make things more concrete, we’ll talk about the process of creating a preview image of
an URL in the following example:

1 The user submits a URL.
2 The web server downloads the content at the URL, takes a screenshot, and ren-

ders it as a PNG image.
3 The web server returns the PNG to the user.

With one small trick, this process can be made asynchronous, and benefit from the
elasticity of a message queue, for example during peak traffic:

Message
producers

Queue
tail

Queue
head

Message
consumers

Figure 15.4 Producers send messages to a message queue while consumers read messages.

422 CHAPTER 15 Decoupling your infrastructure: Elastic Load Balancing and Simple Queue Ser-

1 The user submits a URL.
2 The web server puts a message into a queue that contains a random ID and the URL.
3 The web server returns a link to the user where the PNG image will be found in

the future. The link contains the random ID (such as http://$Bucket.s3-web-
site-us-east-1.amazonaws.com/$RandomId.png).

4 In the background, a worker consumes the message from the queue, downloads
the content, converts the content into a PNG, and uploads the image to S3.

5 At some point, the user tries to download the PNG at the known location. If the
file is not found, the user should reload the page in a few seconds.

If you want to make a process asynchronous, you must manage the way the process initiator
tracks the process status. One way of doing that is to return an ID to the initiator that can
be used to look up the process. During the process, this ID is passed from step to step.

15.2.2 Architecture of the URL2PNG application

You’ll now create a simple but decoupled piece of software named URL2PNG that
renders a PNG from a given web URL. You’ll use Node.js to do the programming part,
and you’ll use SQS as the message queue implementation. Figure 15.5 shows how the
URL2PNG application works.

On the message producer side, a small Node.js scripts generates a unique ID, sends a
message to the queue with the URL and ID as the payload, and returns the ID to the
user. The user now starts checking if a file is available on the S3 bucket using the
returned ID as the filename.

 Simultaneously, on the message consumer side, a small Node.js script reads a mes-
sage from the queue, generates the screenshot of the URL from the payload, and
uploads the resulting image to an S3 bucket using the unique ID from the payload as
the filename.

{ "id": "1",
 "url": "..." }

User sends
URL and gets
an ID in return.

Node.js producer sends
message to queue. Payload
contains ID and URL.

User downloads the
image from S3 with
the known ID.

Node.js consumer receives message
and creates a PNG image from the URL.
The image is saved on S3. The ID is the
name of the image.

Figure 15.5 Node.js producer sends a message to the queue. The payload contains an ID and URL.

http://$Bucket.s3-website-us-east-1.amazonaws.com/$RandomId.png
http://$Bucket.s3-website-us-east-1.amazonaws.com/$RandomId.png

423Asynchronous decoupling with message queues

 To complete the example, you need to create an S3 bucket with web hosting
enabled. Execute the following commands, replacing $yourname with your name or
nickname to prevent name clashes with other readers (remember that S3 bucket
names have to be globally unique across all AWS accounts):

$ aws s3 mb s3://url2png-$yourname
$ aws s3 website s3://url2png-$yourname --index-document index.html \

➥ --error-document error.html

Web hosting is needed so users can later download the images from S3. Now it’s time
to create the message queue.

15.2.3 Setting up a message queue

Creating an SQS queue is simple: you only need to specify the name of the queue:

$ aws sqs create-queue --queue-name url2png
{

"QueueUrl": "https://queue.amazonaws.com/878533158213/url2png"
}

The returned QueueUrl is needed later in the example, so take a note.

15.2.4 Producing messages programmatically

You now have an SQS queue to send messages to. To produce a message, you need to
specify the queue and a payload. You’ll use Node.js in combination with the AWS SDK
to make requests to AWS.

Here’s how the message is produced with the help of the AWS SDK for Node.js; it will
later be consumed by the URL2PNG worker. The Node.js script can then be used like
this (don’t try to run this command now—you need to install and configure
URL2PNG first):

Installing and getting started with Node.js
Node.js is a platform for executing JavaScript in an event-driven environment so you
can easily build network applications. To install Node.js, visit https://nodejs.org and
download the package that fits your OS. All examples in this book are tested with
Node.js 8.

After Node.js is installed, you can verify if everything works by typing node --version
into your terminal. Your terminal should respond with something similar to v8.*. Now
you’re ready to run JavaScript examples like URL2PNG.

Do you want to get started with Node.js? We recommend Node.js in Action (2nd edi-
tion) from Alex Young, et al., (Manning, 2017) or the video course Node.js in Motion
from P.J. Evans, (Manning, 2018).

https://nodejs.org

424 CHAPTER 15 Decoupling your infrastructure: Elastic Load Balancing and Simple Queue Ser-

$ node index.js "http://aws.amazon.com"
PNG will be available soon at
http://url2png-$yourname.s3-website-us-east-1.amazonaws.com/XYZ.png

As usual, you’ll find the code in the book’s code repository on GitHub
https://github.com/AWSinAction/code2. The URL2PNG example is located at
/chapter15/url2png/. Here’s the implementation of index.js.

const AWS = require('aws-sdk');
const uuid = require('uuid/v4');
const sqs = new AWS.SQS({

region: 'us-east-1'
});

if (process.argv.length !== 3) {
console.log('URL missing');
process.exit(1);

}

const id = uuid();
const body = {

id: id,
url: process.argv[2]

};

sqs.sendMessage({
MessageBody: JSON.stringify(body),
QueueUrl: '$QueueUrl'

}, (err) => {
if (err) {

console.log('error', err);
} else {

console.log('PNG will be soon available at ...');
}

});

Before you can run the script, you need to install the Node.js modules. Run npm
install in your terminal to install the dependencies. You’ll find a config.json file that
needs to be modified. Make sure to change QueueUrl to the queue you created at the
beginning of this example, and change Bucket to url2png-$yourname.

 Now you can run the script with node index.js "http://aws.amazon.com". The
program should respond with something like “PNG will be available soon at
http://url2png-$yourname.s3-website-us-east-1.amazonaws.com/XYZ.png”. To verify
that the message is ready for consumption, you can ask the queue how many messages
are inside. Replace $QueueUrl with your queue’s URL.

$ aws sqs get-queue-attributes \

➥ --queue-url "$QueueUrl" \

➥ --attribute-names ApproximateNumberOfMessages

Listing 15.2 index.js: sending a message to the queue

Creates an SQS client

Checks whether a
URL was provided

Creates a random ID

The payload
contains the

random ID
and the URL.

Converts the
payload into a

JSON string

Queue to which the
message is sent (was
returned when creating
the queue).

Invokes the
sendMessage

operation on SQS

https://github.com/AWSinAction/code2

425Asynchronous decoupling with message queues

{
"Attributes": {

"ApproximateNumberOfMessages": "1"
}

}

SQS only returns an approximation of the number of messages. This is due to the dis-
tributed nature of SQS. If you don’t see your message in the approximation, run the
command again and eventually you will see your message.

 Next, it’s time to create the worker that consumes the message and does all the
work of generating a PNG.

15.2.5 Consuming messages programmatically

Processing a message with SQS takes three steps:

1 Receive a message.
2 Process the message.
3 Acknowledge that the message was successfully processed.

You’ll now implement each of these steps to change a URL into a PNG.
 To receive a message from an SQS queue, you must specify the following:

 QueueUrl—The unique queue identifier.
 MaxNumberOfMessages—The maximum number of messages you want to

receive (from 1 to 10). To get higher throughput, you can get messages in a
batch. We usually set this to 10 for best performance and lowest overhead.

 VisibilityTimeout—The number of seconds you want to remove this message
from the queue to process it. Within that time, you must delete the message, or
it will be delivered back to the queue. We usually set this to the average process-
ing time multiplied by four.

 WaitTimeSeconds—The maximum number of seconds you want to wait to
receive messages if they’re not immediately available. Receiving messages from
SQS is done by polling the queue. But AWS allows long polling, for a maximum
of 10 seconds. When using long polling, you will not get an immediate response
from the AWS API if no messages are available. If a new message arrives within 10
seconds, the HTTP response will be sent to you. After 10 seconds, you also get an
empty response.

Ths listing shows how this is done with the SDK.

const fs = require('fs');
const AWS = require('aws-sdk');
const webshot = require('webshot');
const sqs = new AWS.SQS({

region: 'us-east-1'

Listing 15.3 worker.js: receiving a message from the queue

426 CHAPTER 15 Decoupling your infrastructure: Elastic Load Balancing and Simple Queue Ser-

});
const s3 = new AWS.S3({

region: 'us-east-1'
});

const receive = (cb) => {
const params = {

QueueUrl: '$QueueUrl',
MaxNumberOfMessages: 1,
VisibilityTimeout: 120,
WaitTimeSeconds: 10

};
sqs.receiveMessage(params, (err, data) => {

if (err) {
cb(err);

} else {
 if (data.Messages === undefined) {

cb(null, null);
 } else {

 cb(null, data.Messages[0]);
}

}
});

};

The receive step has now been implemented. The next step is to process the message.
Thanks to the Node.js module webshot, it’s easy to create a screenshot of a website.

const process = (message, cb) => {
const body = JSON.parse(message.Body);
const file = body.id + '.png';
webshot(body.url, file, (err) => {

if (err) {
cb(err);

} else {
fs.readFile(file, (err, buf) => {

if (err) {
cb(err);

} else {
const params = {

Bucket: 'url2png-$yourname',
Key: file,
ACL: 'public-read',
ContentType: 'image/png',
Body: buf

};
s3.putObject(params, (err) => {

if (err) {
cb(err);

} else {
fs.unlink(file, cb);

}

Listing 15.4 worker.js: processing a message (take screenshot and upload to S3)

Consumes no more than
one message at once

Takes the message from the
queue for 120 seconds

Long poll for 10 seconds to wait for new messages

Invokes the receiveMessage
operation on SQS

Checks whether a
message is available

Gets the one and only message

The message body is a JSON string. You
convert it back into a JavaScript object.

Creates the screenshot with
the webshot module

Opens the screenshot that was saved
to local disk by the webshot module

Allows everyone to read
the screenshot on S3

Uploads the
screenshot to S3

Removes the screenshot
from local disk

427Asynchronous decoupling with message queues

});
}

});
}

});
};

The only step that’s missing is to acknowledge that the message was successfully con-
sumed. This is done by deleting the message from the queue after successfully com-
pleting the task. If you receive a message from SQS, you get a ReceiptHandle, which is
a unique ID that you need to specify when you delete a message from a queue.

const acknowledge = (message, cb) => {
const params = {

QueueUrl: '$QueueUrl',
ReceiptHandle: message.ReceiptHandle

};
sqs.deleteMessage(params, cb);

};

You have all the parts; now it’s time to connect them.

const run = () => {
receive((err, message) => {

if (err) {
 throw err;

} else {
if (message === null) {

console.log('nothing to do');
setTimeout(run, 1000);

} else {
console.log('process');
process(message, (err) => {
if (err) {
 throw err;

} else {
acknowledge(message, (err) => {

if (err) {
 throw err;

} else {
console.log('done');
setTimeout(run, 1000);

}
});

}
});

}
}

Listing 15.5 worker.js: acknowledging a message (deletes the message from the queue)

Listing 15.6 worker.js: connecting the parts

ReceiptHandle is unique for
each receipt of a message.

Invokes the deleteMessage
operation on SQS

Receives a message

Checks whether a message is available

Calls the run method again in one second

Processes the message

Acknowledges the message

Calls the run method again in one second to
poll for further messages (kind of a recursive
loop, but with a timer in between. When the
timer starts, a new call stack is allocated; this
will not lead to a stack overflow!).

428 CHAPTER 15 Decoupling your infrastructure: Elastic Load Balancing and Simple Queue Ser-

});
};

run();

Now you can start the worker to process the message that is already in the queue. Run
the script with node worker.js. You should see some output that says the worker is in
the process step and then switches to Done. After a few seconds, the screenshot
should be uploaded to S3. Your first asynchronous application is complete.

 Remember the output you got when you invoked node index.js "http://aws.
amazon.com" to send a message to the queue? It looked similar to this: http://
url2png-$yourname.s3-website-us-east-1.amazonaws.com/XYZ.png. Now put that URL
in your web browser and you will find a screenshot of the AWS website (or whatever
you used as an example).

 You’ve created an application that is asynchronously decoupled. If the URL2PNG
service becomes popular and millions of users start using it, the queue will become
longer and longer because your worker can’t produce that many PNGs from URLs.
The cool thing is that you can add as many workers as you like to consume those mes-
sages. Instead of only one worker, you can start 10 or 100. The other advantage is that
if a worker dies for some reason, the message that was in flight will become available
for consumption after two minutes and will be picked up by another worker. That’s
fault-tolerant! If you design your system to be asynchronously decoupled, it’s easy to
scale and a good foundation to be fault-tolerant. The next chapter will concentrate on
this topic.

15.2.6 Limitations of messaging with SQS

Earlier in the chapter, we mentioned a few limitations of SQS. This section covers
them in more detail. But before we start with the limitations, here are the benefits:

 You can put as many messages into SQS as you like. SQS scales the underlying
infrastructure for you.

 SQS is highly available by default.
 You pay per message.

Calls the run method to start

Cleaning up
Delete the message queue as follows:

$ aws sqs delete-queue --queue-url "$QueueUrl"

And don’t forget to clean up and delete the S3 bucket used in the example. Issue the
following command, replacing $yourname with your name:

$ aws s3 rb --force s3://url2png-$yourname

429Asynchronous decoupling with message queues

Those benefits come with some trade-offs. Let’s have a look of the limitations in more
detail now.

SQS DOESN’T GUARANTEE THAT A MESSAGE IS DELIVERED ONLY ONCE

There are two reasons why a message might be delivered more than once:

1 Common reason: If a received message isn’t deleted within VisibilityTime-
out, the message will be received again.

2 Rare reason: If a DeleteMessage operation doesn’t delete all copies of a mes-
sage because one of the servers in the SQS system isn’t available at the time of
deletion.

The problem of repeated delivery of a message can be solved by making the message
processing idempotent. Idempotent means that no matter how often the message is pro-
cessed, the result stays the same. In the URL2PNG example, this is true by design: If
you process the message multiple times, the same image will be uploaded to S3 multi-
ple times. If the image is already available on S3, it’s replaced. Idempotence solves
many problems in distributed systems that guarantee messages will be delivered at
least once.

 Not everything can be made idempotent. Sending an email is a good example: if
you process a message multiple times and it sends an email each time, you’ll annoy
the addressee.

 In many cases, processing at least once is a good trade-off. Check your require-
ments before using SQS if this trade-off fits your needs.

SQS DOESN’T GUARANTEE THE MESSAGE ORDER

Messages may be consumed in a different order than the order in which you pro-
duced them. If you need a strict order, you should search for something else. SQS is a
fault-tolerant and scalable message queue. If you need a stable message order, you’ll
have difficulty finding a solution that scales like SQS. Our advice is to change the
design of your system so you no longer need the stable order, or put the messages in
order on the client side.

SQS DOESN’T REPLACE A MESSAGE BROKER

SQS isn’t a message broker like ActiveMQ—SQS is only a message queue. Don’t expect
features like message routing or message priorities. Comparing SQS to ActiveMQ is like
comparing DynamoDB to MySQL.

SQS FIFO (first-in-first-out) queues
FIFO queues guarantee order of messages and have a mechanism to detect duplicate
messages. If you need a strict message order, they are worth a look. The disadvan-
tages are higher pricing and a limitation on 300 operations per second. Check out
the documentation at http://mng.bz/Y5KN for more information.

http://mng.bz/Y5KN

430 CHAPTER 15 Decoupling your infrastructure: Elastic Load Balancing and Simple Queue Ser-

Summary
 Decoupling makes things easier because it reduces dependencies.
 Synchronous decoupling requires two sides to be available at the same time, but

the sides don’t have to know each other.
 With asynchronous decoupling, you can communicate without both sides being

available.
 Most applications can be synchronously decoupled without touching the code,

by using a load balancer offered by the ELB service.
 A load balancer can make periodic health checks to your application to deter-

mine whether the backend is ready to serve traffic.
 Asynchronous decoupling is only possible with asynchronous processes. But you

can modify a synchronous process to be an asynchronous one most of the time.
 Asynchronous decoupling with SQS requires programming against SQS with

one of the SDKs.

Amazon MQ
AWS announced an alternative to Amazon SQS in November 2017: Amazon MQ pro-
vides Apache ActiveMQ as a service. Therefore, you can use Amazon MQ as a mes-
sage broker that speaks the JMS, NMS, AMQP, STOMP, MQTT, and WebSocket
protocols.

Go to the Amazon MQ Developer Guide at https://docs.aws.amazon.com/amazon-
mq/latest/developer-guide/ to learn more.

https://docs.aws.amazon.com/amazon-mq/latest/developer-guide/
https://docs.aws.amazon.com/amazon-mq/latest/developer-guide/

431

Designing
 for fault tolerance

Failure is inevitable: hard disks, networks, power, and so on all fail from time to
time. Fault tolerance deals with that problem. A fault-tolerant architecture is built
for failure. If a failure occurs, the system isn’t interrupted, and it continues to han-
dle requests. If there is single point of failure within your architecture, it is not
fault-tolerant. You can achieve fault-tolerance by introducing redundancy into your
system and by decoupling the parts of your architecture such that one side does not
rely on the uptime of the other.

This chapter covers
 What is fault-tolerance and why do you need it?

 Using redundancy to remove single points of failure

 Retrying on failure

 Using idempotent operations to achieve retry on
failure

 AWS service guarantees

432 CHAPTER 16 Designing for fault tolerance

 The services provided by AWS offer different types of failure resilience:

 No guarantees (single point of failure)—No requests are served in case of failure.
 High availability—In case of failure, it takes some time until requests are served

as before.
 Fault-tolerance—In case of failure, requests are served as before without any

availability issues.

The most convenient way to make your system fault-tolerant is to build the architecture
using fault-tolerant blocks. If all blocks are fault-tolerant, the whole system will be fault-
tolerant as well. Luckily, many AWS services are fault-tolerant by default. If possible, use
them. Otherwise you’ll need to deal with the consequences and handle failures yourself.

 Unfortunately, one important service isn’t fault-tolerant by default: EC2 instances.
Virtual machines aren’t fault-tolerant. This means an architecture that uses EC2 isn’t
fault-tolerant by default. But AWS provides the building blocks to deal with that issue.
The solution consists of auto-scaling groups, Elastic Load Balancing (ELB), and Sim-
ple Queue Service (SQS).

 The following services provided by AWS are neither highly available nor fault-
tolerant. When using one of these services in your architecture, you are adding a single
point of failure (SPOF) to your infrastructure. In this case, to achieve fault-tolerance, you
need to plan and build for failure as discussed during the rest of the chapter.

 Amazon Elastic Compute Cloud (EC2) instance—A single EC2 instance can fail for
many reasons: hardware failure, network problems, availability-zone outage,
and so on. To achieve high availability or fault-tolerance, use auto-scaling
groups to set up a fleet of EC2 instances that serve requests in a redundant way.

 Amazon Relational Database Service (RDS) single instance—A single RDS instance
could fail for the same reasons than an EC2 instance might fail. Use Multi-AZ
mode to achieve high availability.

All the following services are highly available (HA) by default. When a failure occurs,
the services will suffer from a short downtime but will recover automatically:

 Elastic Network Interface (ENI)—A network interface is bound to an AZ, so if this
AZ goes down, your network interface will be unavailable as well.

 Amazon Virtual Private Cloud (VPC) subnet—A VPC subnet is bound to an AZ, so
if this AZ suffers from an outage, your subnet will not be reachable as well. Use
multiple subnets in different AZs to remove the dependency on a single AZ.

 Amazon Elastic Block Store (EBS) volume—An EBS volume distributes data among
multiple machines within an AZ. But if the whole AZ fails, your volume will be
unavailable (you won’t lose your data though). You can create EBS snapshots
from time to time so you can re-create an EBS volume in another AZ.

 Amazon Relational Database Service (RDS) Multi-AZ instance—When running in Multi-
AZ mode, a short downtime (1 minute) is expected if an issue occurs with the mas-
ter instance while changing DNS records to switch to the standby instance.

433

The following services are fault-tolerant by default. As a consumer of the service, you
won’t notice any failures.

 Elastic Load Balancing (ELB), deployed to at least two AZs
 Amazon EC2 security groups
 Amazon Virtual Private Cloud (VPC) with an ACL and a route table
 Elastic IP addresses (EIP)
 Amazon Simple Storage Service (S3)
 Amazon Elastic Block Store (EBS) snapshots
 Amazon DynamoDB
 Amazon CloudWatch
 Auto-scaling groups
 Amazon Simple Queue Service (SQS)
 AWS Elastic Beanstalk—The management service itself, not necessarily your

application running within the environment
 AWS OpsWorks—The management service itself, not necessarily your applica-

tion running within the environment
 AWS CloudFormation
 AWS Identity and Access Management (IAM, not bound to a single region; if

you create an IAM user, that user is available in all regions)

Why should you care about fault tolerance? Because in the end, a fault-tolerant system
provides the highest quality to your end users. No matter what happens in your
system, the user is never affected and can continue to consume entertaining content,
buy goods and services, or have conversations with friends. A few years ago, achieving
fault tolerance was expensive and complicated, but in AWS, providing fault-tolerant
systems is becoming an affordable standard. Nevertheless, building fault-tolerant
systems is the supreme discipline of cloud computing, and might be challenging at
the beginning.

Chapter requirements
To fully understand this chapter, you need to have read and understood the following
concepts:

 EC2 (chapter 3)
 Auto-scaling (chapter 14)
 Elastic Load Balancing (chapter 15)
 Simple Queue Service (chapter 15)

On top of that, the example included in this chapter makes intensive use of the following:

 Elastic Beanstalk (chapter 5)
 DynamoDB (chapter 13)
 Express, a Node.js web application framework

434 CHAPTER 16 Designing for fault tolerance

In this chapter, you’ll learn everything you need to design a fault-tolerant web applica-
tion based on EC2 instances (which aren’t fault-tolerant by default).

16.1 Using redundant EC2 instances to increase availability
Here are just a few reasons why your virtual machine might fail:

 If the host hardware fails, it can no longer host the virtual machine on top of it.
 If the network connection to/from the host is interrupted, the virtual machine

will lose the ability to communicate over network.
 If the host system is disconnected from the power supply, the virtual machine

will fail as well.

Additionally the software running inside your virtual machine may also cause a crash:

 If your application contains a memory leak, you’ll run out of memory and fail.
It may take a day, a month, a year, or more, but eventually it will happen.

 If your application writes to disk and never deletes its data, you’ll run out of disk
space sooner or later, causing your application to fail.

 Your application may not handle edge cases properly and may instead crash
unexpectedly.

Regardless of whether the host system or your application is the cause of a failure, a
single EC2 instance is a single point of failure. If you rely on a single EC2 instance,
your system will blow up eventually. It’s merely a matter of time.

16.1.1 Redundancy can remove a single point of failure

Imagine a production line that makes fluffy cloud pies. Producing a fluffy cloud pie
requires several production steps (simplified!):

1 Produce a pie crust.
2 Cool the pie crust.
3 Put the fluffy cloud mass on top of the pie crust.
4 Cool the fluffy cloud pie.
5 Package the fluffy cloud pie.

The current setup is a single production line. The big problem with this setup is that
whenever one of the steps crashes, the entire production line must be stopped. Fig-
ure 16.1 illustrates the problem when the second step (cooling the pie crust)
crashes. The steps that follow no longer work either, because they no longer receive
cool pie crusts.

 Why not have multiple production lines? Instead of one line, suppose we have
three. If one of the lines fails, the other two can still produce fluffy cloud pies for all
the hungry customers in the world. Figure 16.2 shows the improvements; the only
downside is that we need three times as many machines.

435Using redundant EC2 instances to increase availability

X
Produce a
pie crust.

Put fluffy cloud mass
on top of the pie crust.Cool down.

Cool down
machine is
broken.

Complete
chain is
broken.

Cool down. Package the
fluffy cloud cake.

Production line 1

Figure 16.1 A single point of failure affects not only itself, but the entire system.

X

Produce a
pie crust.

Put fluffy cloud mass
on top of the pie crust.

Cool down. Cool down.

Cool down machine
is broken.

Complete chain
is broken.

Package the
fluffy cloud cake.

Production line 1

Production line 2

Production line 3

Figure 16.2 Redundancy eliminates single points of failure and makes the system more stable.

436 CHAPTER 16 Designing for fault tolerance

The example can be transferred to EC2 instances as well. Instead of having only one
EC2 instance running your application, you can have three. If one of those instances
fails, the other two will still be able to serve incoming requests. You can also minimize
the cost impact of one versus three instances: instead of one large EC2 instance, you
can choose three small ones. The problem that arises with a dynamic EC2 instance
pool is: how can you communicate with the instances? The answer is decoupling: put a
load balancer or message queue between your EC2 instances and the requester. Read
on to learn how this works.

16.1.2 Redundancy requires decoupling

Figure 16.3 shows how EC2 instances can be made fault-tolerant by using redundancy
and synchronous decoupling. If one of the EC2 instances crashes, the Elastic Load
Balancer (ELB) stops routing requests to the crashed instances. The auto-scaling
group replaces the crashed EC2 instance within minutes, and the ELB begins to route
requests to the new instance.

Take a second look at figure 16.3 and see what parts are redundant:

 Availability zones (AZs)—Two are used. If one AZ suffers from an outage, we still
have instances running in the other AZ.

 Subnets—A subnet is tightly coupled to an AZ. Therefore we need one subnet in
each AZ.

 EC2 instances—We have multi-redundancy for EC2 instances. We have multiple
instances in one subnet (AZ), and we have instances in two subnets (AZs).

10.0.0.0/16

10.0.1.0/24

Web servers in
availability zone A

10.0.2.0/24

Auto-scaling group

Web servers in
availability zone B

Load balancer

Internet

Figure 16.3 Fault-tolerant EC2 instances with an auto-scaling group and an Elastic Load Balancer

437Considerations for making your code fault-tolerant

Figure 16.4 shows a fault-tolerant system built with EC2 that uses the power of redun-
dancy and asynchronous decoupling to process messages from an SQS queue.

 In both figures, the load balancer and the SQS queue appear only once. This
doesn’t mean that ELB or SQS are single points of failure; on the contrary, ELB and
SQS are both fault-tolerant by default.

16.2 Considerations for making your code fault-tolerant
If you want to achieve fault tolerance, you have to build your application accordingly.
You can design fault tolerance into your application by following two suggestions pre-
sented in this section.

16.2.1 Let it crash, but also retry

The Erlang programming language is famous for the concept of “let it crash.” That
means whenever the program doesn’t know what to do, it crashes, and someone needs
to deal with the crash. Most often people overlook the fact that Erlang is also famous
for retrying. Letting it crash without retrying isn’t useful—if you can’t recover from a
crash, your system will be down, which is the opposite of what you want.

 You can apply the “let it crash” concept (some people call it “fail fast”) to synchro-
nous and asynchronous decoupled scenarios. In a synchronous decoupled scenario,
the sender of a request must implement the retry logic. If no response is returned
within a certain amount of time, or an error is returned, the sender retries by sending
the same request again. In an asynchronous decoupled scenario, things are easier. If a
message is consumed but not acknowledged within a certain amount of time, it goes

10.0.0.0/16

10.0.1.0/24

Queue

Workers in
availability zone A

10.0.2.0/24

Auto-scaling group

Workers in
availability zone B

Figure 16.4 Fault-tolerant EC2 instances with an auto-scaling group and SQS

438 CHAPTER 16 Designing for fault tolerance

Is
the UUID

already in the
database?

Yes

No

Create
database entry

Blog post with UUID
should be saved in

database.

Figure 16.5 Idempotent database
insert: creating a blog post entry in
the database only if it doesn’t
already exist

back to the queue. The next consumer then grabs the message and processes it again.
Retrying is built into asynchronous systems by default.

 “Let it crash” isn’t useful in all situations. If the program wants to respond to the
sender that the request contained invalid content, this isn’t a reason for letting the
server crash: the result will stay the same no matter how often you retry. But if the server
can’t reach the database, it makes a lot of sense to retry. Within a few seconds, the data-
base may be available again and able to successfully process the retried request.

 Retrying isn’t that easy. Imagine that you want to retry the creation of a blog post.
With every retry, a new entry in the database is created, containing the same data as
before. You end up with many duplicates in the database. Preventing this involves a
powerful concept that’s introduced next: idempotent retry.

16.2.2 Idempotent retry makes fault tolerance possible

How can you prevent a blog post from being added to the database multiple times
because of a retry? A naïve approach would be to use the title as primary key. If the
primary key is already used, you can assume that the post is already in the database
and skip the step of inserting it into the database. Now the insertion of blog posts is
idempotent, which means no matter how often a certain action is applied, the outcome
must be the same. In the current example, the outcome is a database entry.

 It continues with a more complicated example. Inserting a blog post is more com-
plicated in reality, as the process might look something like this:

1 Create a blog post entry in the database.
2 Invalidate the cache because data has changed.
3 Post the link to the blog’s Twitter feed.

Let’s take a close look at each step.

1. CREATING A BLOG POST ENTRY IN THE DATABASE

We covered this step earlier by using the title as a
primary key. But this time, we use a universally
unique identifier (UUID) instead of the title as
the primary key. A UUID like 550e8400-e29b-
11d4-a716-446655440000 is a random ID that’s
generated by the client. Because of the nature of a
UUID, it’s unlikely that two identical UUIDs will
be generated. If the client wants to create a blog
post, it must send a request to the ELB containing
the UUID, title, and text. The ELB routes the
request to one of the backend servers. The back-
end server checks whether the primary key
already exists. If not, a new record is added to the
database. If it exists, the insertion continues. Fig-
ure 16.5 shows the flow.

439Considerations for making your code fault-tolerant

 Creating a blog post is a good example of an idempotent operation that is guaran-
teed by code. You can also use your database to handle this problem. Just send an
insert to your database. Three things could happen:

1 Your database inserts the data. The operation is successfully completed.
2 Your database responds with an error because the primary key is already in use. The

operation is successfully completed.
3 Your database responds with a different error. The operation crashes.

Think twice about the best way to implement idempotence!

2. INVALIDATING THE CACHE

This step sends an invalidation message to a caching layer. You don’t need to worry
about idempotence too much here: it doesn’t hurt if the cache is invalidated more
often than needed. If the cache is invalidated, then the next time a request hits the
cache, the cache won’t contain data, and the original source (in this case, the data-
base) will be queried for the result. The result is then put in the cache for subsequent
requests. If you invalidate the cache multiple times because of a retry, the worst thing
that can happen is that you may need to make a few more calls to your database.
That’s easy.

3. POSTING TO THE BLOG’S TWITTER FEED

To make this step idempotent, you need to use some tricks, because you interact with
a third party that doesn’t support idempotent operations. Unfortunately, no solution
will guarantee that you post exactly one status update to Twitter. You can guarantee
the creation of at least one (one or more than one) status update, or at most one (one
or none) status update. An easy approach could be to ask the Twitter API for the latest
status updates; if one of them matches the status update that you want to post, you
skip the step because it’s already done.

 But Twitter is an eventually consistent system: there is no guarantee that you’ll see
a status update immediately after you post it. Therefore, you can end up having your
status update posted multiple times. Another approach would be to save in a database
whether you already posted the status update. But imagine saving to the database that
you posted to Twitter and then making the request to the Twitter API—but at that
moment, the system crashes. Your database will state that the Twitter status update was
posted, but in reality it wasn’t. You need to make a choice: tolerate a missing status
update, or tolerate multiple status updates. Hint: it’s a business decision. Figure 16.6
shows the flow of both solutions.

 Now it’s time for a practical example! You’ll design, implement, and deploy a dis-
tributed, fault-tolerant web application on AWS. This example will demonstrate how
distributed systems work and will combine most of the knowledge in this book.

440 CHAPTER 16 Designing for fault tolerance

16.3 Building a fault-tolerant web application: Imagery
Before you begin the architecture and design of the fault-tolerant Imagery applica-
tion, we’ll talk briefly about what the application should do. A user should be able to
upload an image. This image is then transformed with a sepia filter so that it looks old.
The user can then view the sepia image. Figure 16.7 shows the process.

The problem with the process shown in figure 16.7 is that it’s synchronous. If the web
server dies during request and response, the user’s image won’t be processed.
Another problem arises when many users want to use the Imagery app: the system

Ask
Twitter if

the status update
is already

there

Yes

No

Create status
update

Share Twitter
status update.

Solution 1

Share Twitter
status update.

Ask
database if

post was already
shared via

Twitter

Yes

No

Create status
update

Update
database

Solution 2

Figure 16.6 Idempotent Twitter status update: only share a status update if it hasn’t already been done.

Figure 16.7 The user uploads an image to Imagery, where a filter is applied.

File ...

Imagery upload

Upload

Request

User uploads
an image.

A filter is applied to the image.
Resulting image is uploaded and
can be accessed from the internet.

Response

441Building a fault-tolerant web application: Imagery

becomes busy and may slow down or stop working. Therefore the process should be
turned into an asynchronous one. Chapter 15 introduced the idea of asynchronous
decoupling by using an SQS message queue, as shown in figure 16.8.

 When designing an asynchronous process, it’s important to keep track of the pro-
cess. You need some kind of identifier for it. When a user wants to upload an image,
the user creates a process first. This returns a unique ID. With that ID, the user can
upload an image. If the image upload is finished, the worker begins to process the
image in the background. The user can look up the process at any time with the pro-
cess ID. While the image is being processed, the user can’t see the sepia image. But as
soon as the image is processed, the lookup process returns the sepia image. Figure
16.9 shows the asynchronous process.

Message
producers

Queue
tail

Queue
head

Message
consumers

Figure 16.8 Producers send messages to a message queue while consumers read messages.

Figure 16.9 The user asynchronously uploads an image to Imagery, where a filter is applied.

User creates an
image process.
Get's back an ID.

User uploads
an image to the
process identified
by the ID.

A worker picks up the job to
process the image by applying
the sepia filter to it.

User needs to
wait until image
is processed
asynchronously.

User finally can
access the sepia
image by the ID.

User

1. Create 2. Upload 5. View4. Wait

3. Process

Worker

Create

Upload

442 CHAPTER 16 Designing for fault tolerance

Now that you have an asynchronous process, it’s time to map that process to AWS ser-
vices. Keep in mind that most services on AWS are fault-tolerant by default, so it makes
sense to pick them whenever possible. Figure 16.10 shows one way of doing it.

 To make things as easy as possible, all the actions will be accessible via a REST API,
which will be provided by EC2 instances. In the end, EC2 instances will provide the
process and make calls to all the AWS services shown in figure 16.10.

 You’ll use many AWS services to implement the Imagery application. Most of them
are fault-tolerant by default, but EC2 isn’t. You’ll deal with that problem using an
idempotent state machine, as introduced in the next section.

User creates
a process with
a unique ID.
Process is
stored in
DynamoDB.

With the process
ID, the user uploads
an image to S3. The
S3 key is persisted to
DynamoDB together
with the new process
state “uploaded”. An
SQS message is produced
to trigger processing.

The SQS message is consumed by an EC2 instance. The raw
message is downloaded from S3, processed, and the sepia
image is uploaded to S3. The process in DynamoDB is updated
with the new state “processed” and the S3 key of the sepia image.

DynamoDB contains
the current state of
the process. Wait for
state switches to
processed.

S3 contains the
sepia image.
DynamoDB
knows the
S3 key.

User

1. Create 2. Upload

S3

SQS

DynamoDB

5. View

DynamoDB

S3

DynamoDB

4. Wait

DynamoDB

3. Process

S3

SQS

DynamoDB

Worker
EC2

Figure 16.10 Combining AWS services to implement the asynchronous Imagery process

443Building a fault-tolerant web application: Imagery

16.3.1 The idempotent state machine

An idempotent state machine sounds complicated. We’ll take some time to explain it
because it’s the heart of the Imagery application. Let’s look at what a state
machine is and what idempotent means in this context.

THE FINITE STATE MACHINE

A finite state machine has at least one start state and one end state. Between the start
and the end state, the state machine can have many other states. The machine also
defines transitions between states. For example, a state machine with three states
could look like this:

(A) -> (B) -> (C).

This means:

 State A is the start state.
 There is a transition possible from state A to B.
 There is a transition possible from state B to C.
 State C is the end state.

But there is no transition possible between (A) -> (C) or (B) -> (A). With this in mind,
we apply the theory to our Imagery example. The Imagery state machine could look
like this:

(Created) -> (Uploaded) -> (Processed)

Once a new process (state machine) is created, the only transition possible is to
Uploaded. To make this transition happen, you need the S3 key of the uploaded raw
image. So the transition between Created -> Uploaded can be defined by the function
uploaded(s3Key). Basically, the same is true for the transition Uploaded -> Processed.
This transition can be done with the S3 key of the sepia image: processed(s3Key).

 Don’t be confused by the fact that the upload and the image filter processing don’t
appear in the state machine. These are the basic actions that happen, but we’re only
interested in the results; we don’t track the progress of the actions. The process isn’t
aware that 10% of the data has been uploaded or 30% of the image processing is
done. It only cares whether the actions are 100% done. You can probably imagine a

Example is 100% covered by the Free Tier
The example in this chapter is totally covered by the Free Tier. As long as you don’t
run the example longer than a few days, you won’t pay anything for it. Keep in mind
that this applies only if you created a fresh AWS account for this book and there is
nothing else going on in your AWS account. Try to complete the example within a few
days, because you’ll clean up your account at the end of the section.

444 CHAPTER 16 Designing for fault tolerance

bunch of other states that could be implemented, but we’re skipping that for the pur-
pose of simplicity in this example: resized and shared are just two examples.

IDEMPOTENT STATE TRANSITIONS

An idempotent state transition must have the same result no matter how often the
transition takes place. If you can make sure that your state transitions are idempotent,
you can do a simple trick: in case of a failure during transitioning, you retry the entire
state transition.

 Let’s look at the two state transitions you need to implement. The first transition
Created -> Uploaded can be implemented like this (pseudo code):

uploaded(s3Key) {
process = DynamoDB.getItem(processId)
if (process.state !== 'Created') {

throw new Error('transition not allowed')
}
DynamoDB.updateItem(processId, {'state': 'Uploaded', 'rawS3Key': s3Key})
SQS.sendMessage({'processId': processId, 'action': 'process'});

}

The problem with this implementation is that it’s not idempotent. Imagine that
SQS.sendMessage fails. The state transition will fail, so you retry. But the second call to
uploaded(s3Key) will throw a “transition not allowed” error because DynamoDB
.updateItem was successful during the first call.

 To fix that, you need to change the if statement to make the function idempotent:

uploaded(s3Key) {
process = DynamoDB.getItem(processId)
if (process.state !== 'Created' && process.state !== 'Uploaded') {

throw new Error('transition not allowed')
}
DynamoDB.updateItem(processId, {'state': 'Uploaded', 'rawS3Key': s3Key})
SQS.sendMessage({'processId': processId, 'action': 'process'});

}

If you retry now, you’ll make multiple updates to Dynamo, which doesn’t hurt. And
you may send multiple SQS messages, which also doesn’t hurt, because the SQS mes-
sage consumer must be idempotent as well. The same applies to the transition
Uploaded -> Processed.

 Next, you’ll begin to implement the Imagery server.

16.3.2 Implementing a fault-tolerant web service

We’ll split the Imagery application into two parts: the web servers and the workers. As
illustrated in figure 16.11, the web servers provide the REST API to the user, and the
workers process images.

445Building a fault-tolerant web application: Imagery

The REST API will support the following routes:

 POST /image—A new image process is created when executing this route.
 GET /image/:id—This route returns the state of the process specified with the

path parameter :id.
 POST /image/:id/upload—This route offers a file upload for the process speci-

fied with the path parameter :id.

To implement the web server, you’ll again use Node.js and the Express web applica-
tion framework. You’ll use the Express framework, but don’t feel intimidated, as you
won’t need to understand it in depth to follow along.

SETTING UP THE WEB SERVER PROJECT

As always, you need some boilerplate code to load dependencies, initial AWS end-
points, and things like that.

var express = require('express');
var bodyParser = require('body-parser');
var AWS = require('aws-sdk');
var uuidv4 = require('uuid/v4');
var multiparty = require('multiparty');

var db = new AWS.DynamoDB({

Listing 16.1 Initializing the Imagery server (server/server.js)

Providing the REST
API to the user

Processing images

User

SQSWeb serversELB Workers

Figure 16.11 The Imagery application consists of two parts: the web servers and the workers.

Where is the code located?
As usual, you’ll find the code in the book’s code repository on GitHub:
https://github.com/AWSinAction/code2. Imagery is located in /chapter16/.

Load Node.js modules (dependencies)

Creates a DynamoDB endpoint

https://github.com/AWSinAction/code2

446 CHAPTER 16 Designing for fault tolerance

'region': 'us-east-1'
});
var sqs = new AWS.SQS({

'region': 'us-east-1'
});
var s3 = new AWS.S3({

'region': 'us-east-1'
});

var app = express();
app.use(bodyParser.json());

// [...]

app.listen(process.env.PORT || 8080, function() {
console.log('Server started. Open http://localhost:'

➥ + (process.env.PORT || 8080) + ' with browser.');
});

Don’t worry too much about the boilerplate code; the interesting parts will follow.

CREATING A NEW IMAGERY PROCESS

To provide a REST API to create image processes, a fleet of EC2 instances will run
Node.js code behind a load balancer. The image processes will be stored in Dyna-
moDB. Figure 16.12 shows the flow of a request to create a new image process.

You’ll now add a route to the Express application to handle POST /image requests, as
shown here.

app.post('/image', function(request, response) {
var id = uuidv4();
db.putItem({

Listing 16.2 Imagery server: POST /image creates an image process (server/server.js)

Creates an SQS endpoint

Creates an S3 endpoint

Creates an Express application

Tells Express to parse the request bodies

Starts Express on
the port defined by the
environment variable
PORT, or defaults to 8080

User sends a POST /image
request. User gets a
process ID in return.

ELB distributes
request to one of
the EC2 instances.

Node.js code
is executed.

Add an item
to DynamoDB
table.

ELB EC2
instances running in
auto-scaling group

User DynamoDB

Figure 16.12 Creating a new image process in Imagery

Registers the
route with

Express

Creates a
unique ID for
the processInvokes the putItem operation on DynamoDB

447Building a fault-tolerant web application: Imagery

'Item': {
'id': {

'S': id
},
'version': {

'N': '0'
},
'created': {

'N': Date.now().toString()
},
'state': {

'S': 'created'
}

},
'TableName': 'imagery-image',
'ConditionExpression': 'attribute_not_exists(id)'

}, function(err, data) {
if (err) {

throw err;
} else {

response.json({'id': id, 'state': 'created'});
}

});
});

A new process can now be created.

The id attribute will be the
primary key in DynamoDB.

Use the version for optimistic locking
(explained in the following sidebar).

Stores the date and time when
the process was created.

The process is now
in the created

state: this attribute
will change when
state transitions

happen.

The DynamoDB table will be
created later in the chapter.

Prevents the item from being
replaced if it already exists.

Responds with the process ID

Optimistic locking
To prevent multiple updates to an DynamoDB item, you can use a trick called opti-
mistic locking. When you want to update an item, you must specify which version you
want to update. If that version doesn’t match the current version of the item in the
database, your update will be rejected. Keep in mind that optimistic locking is your
responsibility, not a default available in DynamoDB. DynamoDB only provides the fea-
tures to implement optimistic locking.

Imagine the following scenario. An item is created in version 0. Process A looks up
that item (version 0). Process B also looks up that item (version 0). Now process A
wants to make a change by invoking the updateItem operation on DynamoDB. There-
fore process A specifies that the expected version is 0. DynamoDB will allow that
modification, because the version matches; but DynamoDB will also change the
item’s version to 1 because an update was performed. Now process B wants to make
a modification and sends a request to DynamoDB with the expected item version 0.
DynamoDB will reject that modification because the expected version doesn’t match
the version DynamoDB knows of, which is 1.

To solve the problem for process B, you can use the same trick introduced earlier:
retry. Process B will again look up the item, now in version 1, and can (you hope)
make the change.

448 CHAPTER 16 Designing for fault tolerance

The next route you need to implement is to look up the current state of a process.

LOOKING UP AN IMAGERY PROCESS

You’ll now add a route to the Express application to handle GET /image/:id requests.
Figure 16.13 shows the request flow.

Express will take care of the path parameter :id; Express will provide it within
request.params.id. The implementation needs to get an item from DynamoDB
based on the path parameter ID.

function mapImage = function(item) {
return {

'id': item.id.S,
'version': parseInt(item.version.N, 10),
'state': item.state.S,
'rawS3Key': // [...]
'processedS3Key': // [...]

Listing 16.3 GET /image/:id looks up an image process (server/server.js)

(continued)
There is one problem with optimistic locking: If many modifications happen in paral-
lel, a lot of overhead is created because of many retries. But this is only a problem
if you expect a lot of concurrent writes to a single item, which can be solved by chang-
ing the data model. That’s not the case in the Imagery application. Only a few writes
are expected to happen for a single item: optimistic locking is a perfect fit to make
sure you don’t have two writes where one overrides changes made by another.

The opposite of optimistic locking is pessimistic locking. A pessimistic lock strategy
can be implemented by using a semaphore. Before you change data, you need to lock
the semaphore. If the semaphore is already locked, you wait until the semaphore
becomes free again.

User sends a GET
/image/:ID request.

ELB distributes
request to one of
the EC2 instances.

Node.js code
is executed.

Get an item from
DynamoDB table.

ELBUser DynamoDBEC2
instances running in
auto-scaling group

Figure 16.13 Looking up an image process in Imagery to return its state

Helper function to map
a DynamoDB result to a
JavaSscript object

449Building a fault-tolerant web application: Imagery

'processedImage': // [...]
};

};

function getImage(id, cb) {
db.getItem({

'Key': {
'id': {

'S': id
}

},
'TableName': 'imagery-image'

}, function(err, data) {
if (err) {

cb(err);
} else {

if (data.Item) {
cb(null, lib.mapImage(data.Item));

} else {
cb(new Error('image not found'));

}
}

});
}

app.get('/image/:id', function(request, response) {
getImage(request.params.id, function(err, image) {

if (err) {
throw err;

} else {
response.json(image);

}
});

});

The only thing missing is the upload part, which comes next.

UPLOADING AN IMAGE

Uploading an image via POST request requires several steps:

1 Upload the raw image to S3.
2 Modify the item in DynamoDB.
3 Send an SQS message to trigger processing.

Figure 16.14 shows this flow.

Invokes the getItem
operation on DynamoDB

id is the partition key.

Registers the route
with Express

Responds with the
image process

450 CHAPTER 16 Designing for fault tolerance

Ths listing shows the implementation of these steps.

function uploadImage(image, part, response) {
var rawS3Key = 'upload/' + image.id + '-' + Date.now();
s3.putObject({

'Bucket': process.env.ImageBucket,
'Key': rawS3Key,
'Body': part,
'ContentLength': part.byteCount

}, function(err, data) {
if (err) {

throw err;
} else {

db.updateItem({
'Key': {
'id': {

'S': image.id
}

},
'UpdateExpression': 'SET #s=:newState,

➥ version=:newVersion, rawS3Key=:rawS3Key',
'ConditionExpression': 'attribute_exists(id)

➥ AND version=:oldVersion

➥ AND #s IN (:stateCreated, :stateUploaded)',
'ExpressionAttributeNames': {
'#s': 'state'

},
'ExpressionAttributeValues': {
':newState': {

'S': 'uploaded'
},
':oldVersion': {

Listing 16.4 POST /image/:id/upload uploads an image (server/server.js)

User sends a POST
/image/:ID/upload
request.

ELB distributes
request to one of
the EC2 instances.

Raw image is
stored on S3.

An SQS message
is sent to trigger
image processing
by a worker.

Node.js code
is executed.

Process state
is updated in
DynamoDB.

ELB EC2
instances running in
auto-scaling group

User DynamoDB SQSS3

Figure 16.14 Uploading a raw image to Imagery and trigger image processing

Creates a key for
the S3 object

Calls the S3 API to upload an object

The S3 bucket name is passed in as an
environment variable (the bucket will
be created later in the chapter).

The body
is the

uploaded
stream of

data.

Calls the DynamoDB API
to update an object.

Updates the state,
version, and raw S3 key

Updates only when item
exists. Version equals the
expected version, and
state is one of those
allowed.

451Building a fault-tolerant web application: Imagery

'N': image.version.toString()
},
':newVersion': {

'N': (image.version + 1).toString()
},
':rawS3Key': {

'S': rawS3Key
},
':stateCreated': {

'S': 'created'
},
':stateUploaded': {

'S': 'uploaded'
}

},
'ReturnValues': 'ALL_NEW',
'TableName': 'imagery-image'

}, function(err, data) {
if (err) {

throw err;
} else {
sqs.sendMessage({

'MessageBody': JSON.stringify(
{'imageId': image.id, 'desiredState': 'processed'}

),
'QueueUrl': process.env.ImageQueue,

}, function(err) {
if (err) {

throw err;
} else {

response.redirect('/#view=' + image.id);
response.end();

}
});

}
});

}
});

}

app.post('/image/:id/upload', function(request, response) {
getImage(request.params.id, function(err, image) {

if (err) {
throw err;

} else {
var form = new multiparty.Form();
form.on('part', function(part) {

uploadImage(image, part, response);
});
form.parse(request);

}
});

});

Calls the SQS
API to publish

a message
Creates the message body
containing the image’s ID
and the desired state

The queue URL is passed in
as an environment variable.

Registers the
route with
Express

We are using the
multiparty module to
handle multi-part uploads.

452 CHAPTER 16 Designing for fault tolerance

The server side is finished. Next you’ll continue to implement the processing part in
the Imagery worker. After that, you can deploy the application.

16.3.3 Implementing a fault-tolerant worker to consume SQS messages

The Imagery worker does the asynchronous stuff in the background: processing
images by applying a sepia filter. The worker handles consuming SQS messages and
processing images. Fortunately, consuming SQS messages is a common task that is
solved by Elastic Beanstalk, which you’ll use later to deploy the application. Elastic
Beanstalk can be configured to listen to SQS messages and execute an HTTP POST
request for every message. In the end, the worker implements a REST API that is
invoked by Elastic Beanstalk. To implement the worker, you’ll again use Node.js and
the Express framework.

SETTING UP THE SERVER PROJECT

As always, you need some boilerplate code to load dependencies, initial AWS end-
points, and so on.

var express = require('express');
var bodyParser = require('body-parser');
var AWS = require('aws-sdk');
var assert = require('assert-plus');
var Caman = require('caman').Caman;
var fs = require('fs');

var db = new AWS.DynamoDB({
'region': 'us-east-1'

});
var s3 = new AWS.S3({

'region': 'us-east-1'
});

var app = express();
app.use(bodyParser.json());

app.get('/', function(request, response) {
response.json({});

});

// [...]

app.listen(process.env.PORT || 8080, function() {
console.log('Worker started on port ' + (process.env.PORT || 8080));

});

The Node.js module caman is used to create sepia images. You’ll wire that up next.

Listing 16.5 Initializing the Imagery worker (worker/worker.js)

Loads Node.js modules
(dependencies)

Creates a DynamoDB endpoint

Creates an S3 endpoint

Creates an Express application

Registers a route for
health checks that
returns an empty object

Starts Express on a port defined by the
environment variable PORT, or defaults to 8080

453Building a fault-tolerant web application: Imagery

HANDLING SQS MESSAGES AND PROCESSING THE IMAGE

The SQS message to trigger the image processing is handled in the worker. Once a
message is received, the worker starts to download the raw image from S3, applies the
sepia filter, and uploads the processed image back to S3. After that, the process state
in DynamoDB is modified. Figure 16.15 shows the steps.

Instead of receiving messages directly from SQS, you’ll take a shortcut. Elastic Bean-
stalk—the deployment tool you’ll use—provides a feature that consumes messages
from a queue and invokes a HTTP POST request for every message. You configure the
POST request to be made to the resource /sqs.

function processImage(image, cb) {
var processedS3Key = 'processed/' + image.id + '-' + Date.now() + '.png';
// download raw image from S3
// process image
// upload sepia image to S3
cb(null, processedS3Key);

}

function processed(image, request, response) {
processImage(image, function(err, processedS3Key) {

if (err) {
throw err;

} else {
db.updateItem({

Listing 16.6 Imagery worker: POST /sqs handles SQS messages (worker/worker.js)

An SQS message
is sent to trigger
image processing
by a worker.

Sepia image is
stored on S3.

Node.js code
is executed.

Raw image
is downloaded
from S3.

EC2
instances running in
auto-scaling group

Process state is
updated in DynamoDB.

DynamoDBSQS

S3

S3

Figure 16.15 Processing a raw image to upload a sepia image to S3

The implementation of processImage
isn’t shown here; you can find it in

the book’s source code folder.

Invokes the updateItem
operation on DynamoDB

454 CHAPTER 16 Designing for fault tolerance

'Key': {
'id': {

'S': image.id
}

},
'UpdateExpression': 'SET #s=:newState,

➥ version=:newVersion, processedS3Key=:processedS3Key',
'ConditionExpression': 'attribute_exists(id)

➥ AND version=:oldVersion

➥ AND #s IN (:stateUploaded, :stateProcessed)',
'ExpressionAttributeNames': {
'#s': 'state'

},
'ExpressionAttributeValues': {
':newState': {

'S': 'processed'
},
':oldVersion': {

'N': image.version.toString()
},
':newVersion': {

'N': (image.version + 1).toString()
},
':processedS3Key': {

'S': processedS3Key
},
':stateUploaded': {

'S': 'uploaded'
},
':stateProcessed': {

'S': 'processed'
}

},
'ReturnValues': 'ALL_NEW',
'TableName': 'imagery-image'

}, function(err, data) {
if (err) {
throw err;

} else {
response.json(lib.mapImage(data.Attributes));

}
});

}
});

}

app.post('/sqs', function(request, response) {
assert.string(request.body.imageId, 'imageId');
assert.string(request.body.desiredState, 'desiredState');
getImage(request.body.imageId, function(err, image) {

if (err) {
throw err;

} else {
if (request.body.desiredState === 'processed') {

Updates the
state, version, and
processed S3 key

Updates only when an
item exists, version
equals the expected
version, and state is
one of those allowed.

Responds with the
process’s new state

Registers the route
with Express

The implementation
of getImage is the
same as on the server.

455Building a fault-tolerant web application: Imagery

processed(image, request, response);
} else {

throw new Error("unsupported desiredState");
}

}
});

});

If the POST /sqs route responds with a 2XX HTTP status code, Elastic Beanstalk con-
sidered the message delivery successful and deletes the message from the queue. Oth-
erwise, the message is redelivered.

 Now you can process the SQS message to transform the raw image and upload the
sepia version to S3. The next step is to deploy all that code to AWS in a fault-tolerant
way.

16.3.4 Deploying the application

As mentioned previously, you’ll use Elastic Beanstalk to deploy the server and the
worker. You’ll use CloudFormation to do so. This may sound strange, because you’re
using an automation tool to use another automation tool. But CloudFormation does a
bit more than just deploying two Elastic Beanstalk applications. It defines the following:

 The S3 bucket for raw and processed images
 The DynamoDB table imagery-image
 The SQS queue and dead-letter queue
 IAM roles for the server and worker EC2 instances
 Elastic Beanstalk applications for the server and worker

It takes quite a while to create that CloudFormation stack; that’s why you should do so
now. After you’ve created the stack, we’ll look at the template. After that, the stack
should be ready to use.

 To help you deploy Imagery, we created a CloudFormation template located at
http://mng.bz/Z33C. Create a stack based on that template. The stack output End-
pointURL returns the URL that you can access from your browser to use Imagery.
Here’s how to create the stack from the terminal:

$ aws cloudformation create-stack --stack-name imagery \

➥ --template-url https://s3.amazonaws.com/\

➥ awsinaction-code2/chapter16/template.yaml \

➥ --capabilities CAPABILITY_IAM

Now let’s look at the CloudFormation template.

DEPLOYING S3, DYNAMODB, AND SQS
Listing 16.7 describes the S3 bucket, DynamoDB table, and SQS queue.

Invokes the processed
function if the SQS
message’s desiredState
equals “processed”.

http://mng.bz/Z33C

456 CHAPTER 16 Designing for fault tolerance

AWSTemplateFormatVersion: '2010-09-09'
Description: 'AWS in Action: chapter 16'
Parameters:

KeyName:
Description: 'Key Pair name'
Type: 'AWS::EC2::KeyPair::KeyName'
Default: mykey

Resources:
Bucket:

Type: 'AWS::S3::Bucket'
Properties:

BucketName: !Sub 'imagery-${AWS::AccountId}'
WebsiteConfiguration:

ErrorDocument: error.html
IndexDocument: index.html

Table:
Type: 'AWS::DynamoDB::Table'
Properties:

AttributeDefinitions:
- AttributeName: id

AttributeType: S
KeySchema:
- AttributeName: id

KeyType: HASH
ProvisionedThroughput:

ReadCapacityUnits: 1
WriteCapacityUnits: 1

TableName: 'imagery-image'
SQSDLQueue:

Type: 'AWS::SQS::Queue'
Properties:

QueueName: 'message-dlq'
SQSQueue:

Type: 'AWS::SQS::Queue'
Properties:

QueueName: message
RedrivePolicy:

deadLetterTargetArn: !Sub '${SQSDLQueue.Arn}'
maxReceiveCount: 10

[...]
Outputs:

EndpointURL:
Value: !Sub 'http://${EBServerEnvironment.EndpointURL}'
Description: Load Balancer URL

The concept of a dead-letter queue (DLQ) needs a short introduction here as well. If a sin-
gle SQS message can’t be processed, the message becomes visible again on the queue
for other workers. This is called a retry. But if for some reason every retry fails (maybe
you have a bug in your code), the message will reside in the queue forever and may waste
a lot of resources because of all the retries. To avoid this, you can configure a dead-letter

Listing 16.7 Imagery CloudFormation template: S3, DynamoDB, and SQS

S3 bucket for uploaded and
processed images, with web
hosting enabled

The bucket name contains
the account ID to make
the name unique.

DynamoDB table containing
the image processes

The id attribute is used
as the partition key.

SQS queue that receives
messages that can’t be
processed

SQS queue to trigger
image processing

If a message is
received more than 10
times, it’s moved to
the dead-letter queue.

Visit the output with your
browser to use Imagery.

457Building a fault-tolerant web application: Imagery

queue. If a message is retried more than a specific number of times, it’s removed from
the original queue and forwarded to the DLQ. The difference is that no worker listens
for messages on the DLQ. But you should create a CloudWatch alarm that triggers if the
DLQ contains more than zero messages, because you need to investigate this problem
manually by looking at the message in the DLQ.

 Now that the basic resources have been designed, let’s move on to the more spe-
cific resources.

IAM ROLES FOR SERVER AND WORKER EC2 INSTANCES

Remember that it’s important to only grant the privileges that are necessary. All server
instances must be able to do the following:

 sqs:SendMessage to the SQS queue created in the template to trigger image
processing

 s3:PutObject to the S3 bucket created in the template to upload a file to S3
(you can further limit writes to the upload/ key prefix)

 dynamodb:GetItem, dynamodb:PutItem, and dynamodb:UpdateItem to the
DynamoDB table created in the template

 cloudwatch:PutMetricData, which is an Elastic Beanstalk requirement
 s3:Get*, s3:List*, and s3:PutObject, which is an Elastic Beanstalk requirement

All worker instances must be able to do the following:

 sqs:ChangeMessageVisibility, sqs:DeleteMessage, and sqs:ReceiveMes-
sage to the SQS queue created in the template

 s3:PutObject to the S3 bucket created in the template to upload a file to S3
(you can further limit writes to the processed/ key prefix)

 dynamodb:GetItem and dynamodb:UpdateItem to the DynamoDB table created
in the template

 cloudwatch:PutMetricData, which is an Elastic Beanstalk requirement
 s3:Get*, s3:List*, and s3:PutObject, which is an Elastic Beanstalk requirement

If you don’t feel comfortable with IAM roles, take a look at the book’s code repository
on GitHub at https://github.com/AWSinAction/code2. The template with IAM roles
can be found in /chapter16/template.yaml.

 Now it’s time to design the Elastic Beanstalk applications.

ELASTIC BEANSTALK FOR THE SERVER

First off, a short refresher on Elastic Beanstalk, which we touched on in chapter 5.
Elastic Beanstalk consists of these elements:

 An application is a logical container. It contains versions, environments, and con-
figurations. To use AWS Elastic Beanstalk in a region, you have to create an
application first.

 A version contains a specific release of your application. To create a new version,
you have to upload your executables (packed into an archive) to S3. A version is
basically a pointer to this archive of executables.

https://github.com/AWSinAction/code2

458 CHAPTER 16 Designing for fault tolerance

 A configuration template contains your default configuration. You can manage the
configuration of your application (such as the port your application listens on)
as well as the configuration of the environment (such as the size of the virtual
server) with your custom configuration template.

 An environment is the place where AWS Elastic Beanstalk executes your application.
It consists of a version and the configuration. You can run multiple environments
for one application by using the versions and configurations multiple times.

Figure 16.16 shows the parts of an Elastic Beanstalk application.

Now that you’ve refreshed your memory, let’s look at the Elastic Beanstalk application
that deploys the Imagery server.

EBServerApplication:
Type: 'AWS::ElasticBeanstalk::Application'
Properties:

ApplicationName: 'imagery-server'
Description: 'Imagery server: AWS in Action: chapter 16'

EBServerConfigurationTemplate:
Type: 'AWS::ElasticBeanstalk::ConfigurationTemplate'
Properties:

ApplicationName: !Ref EBServerApplication
Description: 'Imagery server: AWS in Action: chapter 16'
SolutionStackName:

➥ '64bit Amazon Linux 2017.09 v4.4.0 running Node.js'
OptionSettings:
- Namespace: 'aws:autoscaling:asg'

OptionName: 'MinSize'
Value: '2')

Listing 16.8 Imagery CloudFormation template: Elastic Beanstalk for the server

Figure 16.16 An AWS Elastic Beanstalk application consists of versions, environments, and configurations.

Application

Environment:
Version 0.3, config A

Environment:
Version 0.3, config B

Version 0.3

Version 0.2

Configuration:
Template A

Configuration:
Template B

Environment:
Version 0.2, config A

Logical
container

Specific version
of application

Runtime environment
for your application

Configure application
and environment

Describes the server
application container

Uses Amazon
Linux 2017.09
running Node.js
6.11.5 per default

Minimum of two
EC2 instances for
fault-tolerance

459Building a fault-tolerant web application: Imagery

- Namespace: 'aws:autoscaling:launchconfiguration'
OptionName: 'EC2KeyName'
Value: !Ref KeyName

- Namespace: 'aws:autoscaling:launchconfiguration'
OptionName: 'IamInstanceProfile'
Value: !Ref ServerInstanceProfile

- Namespace: 'aws:elasticbeanstalk:container:nodejs'
OptionName: 'NodeCommand'
Value: 'node server.js'

- Namespace: 'aws:elasticbeanstalk:application:environment'
OptionName: 'ImageQueue'
Value: !Ref SQSQueue

- Namespace: 'aws:elasticbeanstalk:application:environment'
OptionName: 'ImageBucket'
Value: !Ref Bucket

- Namespace: 'aws:elasticbeanstalk:container:nodejs:staticfiles'
OptionName: '/public'
Value: '/public'

EBServerApplicationVersion:
Type: 'AWS::ElasticBeanstalk::ApplicationVersion'
Properties:

ApplicationName: !Ref EBServerApplication
Description: 'Imagery server: AWS in Action: chapter 16'
SourceBundle:

S3Bucket: 'awsinaction-code2'
S3Key: 'chapter16/build/server.zip'

EBServerEnvironment:
Type: 'AWS::ElasticBeanstalk::Environment'
Properties:

ApplicationName: !Ref EBServerApplication
Description: 'Imagery server: AWS in Action: chapter 16'
TemplateName: !Ref EBServerConfigurationTemplate
VersionLabel: !Ref EBServerApplicationVersion

Under the hood, Elastic Beanstalk uses an ELB to distribute the traffic to the EC2
instances that are also managed by Elastic Beanstalk. You only need to worry about the
configuration of Elastic Beanstalk and the code.

ELASTIC BEANSTALK FOR THE WORKER

The worker Elastic Beanstalk application is similar to the server. The differences are
annotated in the following listing.

EBWorkerApplication:
Type: 'AWS::ElasticBeanstalk::Application'
Properties:

ApplicationName: 'imagery-worker'
Description: 'Imagery worker: AWS in Action: chapter 16'

EBWorkerConfigurationTemplate:
Type: 'AWS::ElasticBeanstalk::ConfigurationTemplate'
Properties:

ApplicationName: !Ref EBWorkerApplication

Listing 16.9 Imagery CloudFormation template: Elastic Beanstalk for the worker

Passes a
value from

the
KeyName

parameter

Links to the IAM
instance profile
created in the
previous section

Start
command

Passes the
SQS queue

into an
environment

variable

Passes the S3
bucket into an
environment
variable

Serves all files from
/public as static files

Loads code from the
book’s S3 bucket

Describes the worker
application container

460 CHAPTER 16 Designing for fault tolerance

Description: 'Imagery worker: AWS in Action: chapter 16'
SolutionStackName:

➥ '64bit Amazon Linux 2017.09 v4.4.0 running Node.js'
OptionSettings:
- Namespace: 'aws:autoscaling:launchconfiguration'

OptionName: 'EC2KeyName'
Value: !Ref KeyName

- Namespace: 'aws:autoscaling:launchconfiguration'
OptionName: 'IamInstanceProfile'
Value: !Ref WorkerInstanceProfile

- Namespace: 'aws:elasticbeanstalk:sqsd'
OptionName: 'WorkerQueueURL'
Value: !Ref SQSQueue

- Namespace: 'aws:elasticbeanstalk:sqsd'
OptionName: 'HttpPath'
Value: '/sqs'

- Namespace: 'aws:elasticbeanstalk:container:nodejs'
OptionName: 'NodeCommand'
Value: 'node worker.js'

- Namespace: 'aws:elasticbeanstalk:application:environment'
OptionName: 'ImageQueue'
Value: !Ref SQSQueue

- Namespace: 'aws:elasticbeanstalk:application:environment'
OptionName: 'ImageBucket'
Value: !Ref Bucket

EBWorkerApplicationVersion:
Type: 'AWS::ElasticBeanstalk::ApplicationVersion'
Properties:

ApplicationName: !Ref EBWorkerApplication
Description: 'Imagery worker: AWS in Action: chapter 16'
SourceBundle:

S3Bucket: 'awsinaction-code2'
S3Key: 'chapter16/build/worker.zip'

EBWorkerEnvironment:
Type: 'AWS::ElasticBeanstalk::Environment'
Properties:

ApplicationName: !Ref EBWorkerApplication
Description: 'Imagery worker: AWS in Action: chapter 16'
TemplateName: !Ref EBWorkerConfigurationTemplate
VersionLabel: !Ref EBWorkerApplicationVersion
Tier:

Type: 'SQS/HTTP'
Name: 'Worker'
Version: '1.0'

After all that YAML reading, the CloudFormation stack should be created. Verify the
status of your stack:

$ aws cloudformation describe-stacks --stack-name imagery
{

"Stacks": [{
[...]
"Description": "AWS in Action: chapter 16",
"Outputs": [{

Configures the HTTP resource
that is invoked when an SQS
message is received

Switches to the worker environment
tier (pushes SQS messages to your app)

461Building a fault-tolerant web application: Imagery

"Description": "Load Balancer URL",
"OutputKey": "EndpointURL",
"OutputValue": "http://awseb-...582.us-east-1.elb.amazonaws.com"

}],
"StackName": "imagery",
"StackStatus": "CREATE_COMPLETE"

}]
}

The EndpointURL output of the stack contains the URL to access the Imagery applica-
tion. When you open Imagery in your web browser, you can upload an image as shown
in figure 16.17.

Go ahead and upload some images and enjoy watching the images being processed.

Copy this output into
your web browser.

Wait until CREATE_COMPLETE
is reached.

Figure 16.17 The Imagery application in action

Cleaning up
To get the name of the S3 bucket used by Imagery, run the following command in your
terminal.

$ aws cloudformation describe-stack-resource --stack-name imagery \

➥ --logical-resource-id Bucket \

➥ --query "StackResourceDetail.PhysicalResourceId"

➥ --output text
imagery-000000000000

Delete all the files in your S3 bucket imagery-000000000000. Don’t forget to replace
$bucketname with the output from the previous command.

$ aws s3 rm s3://$bucketname --recursive

Execute the following command to delete the CloudFormation stack:

$ aws cloudformation delete-stack --stack-name imagery

Stack deletion will take some time.

462 CHAPTER 16 Designing for fault tolerance

Congratulations, you have accomplished a big milestone: building a fault tolerant
application on AWS. You are only one step away from the end game, which is scaling
your application dynamically based on load.

Summary
 Fault tolerance means expecting that failures happen, and designing your sys-

tems in such a way that they can deal with failure.
 To create a fault-tolerant application, you can use idempotent actions to trans-

fer from one state to the next.
 State shouldn’t reside on the EC2 instance (a stateless server) as a prerequisite

for fault-tolerance.
 AWS offers fault-tolerant services and gives you all the tools you need to create

fault-tolerant systems. EC2 is one of the few services that isn’t fault-tolerant out
of the box.

 You can use multiple EC2 instances to eliminate the single point of failure.
Redundant EC2 instances in different availability zones, started with an auto-
scaling group, are the way to make EC2 fault-tolerant.

463

Scaling up and down:
 auto-scaling and

 CloudWatch

Suppose you’re organizing a party to celebrate your birthday. How much food and
drink do you need to buy? Calculating the right numbers for your shopping list is
difficult:

 How many people will attend? You received several confirmations, but some
guests will cancel at short notice or show up without letting you know in
advance. So the number of guests is vague.

This chapter covers
 Creating an auto-scaling group with launch configuration

 Using auto-scaling to change the number of virtual
machines

 Scaling a synchronous decoupled app behind a load
balancer (ALB)

 Scaling an asynchronous decoupled app using a queue
(SQS)

464 CHAPTER 17 Scaling up and down: auto-scaling and CloudWatch

 How much will your guests eat and drink? Will it be a hot day, with everybody drink-
ing a lot? Will your guests be hungry? You need to guess the demand for food
and drink based on experiences from previous parties.

Solving the equation is a challenge because there are many unknowns. Behaving as a
good host, you’ll order more food and drink as needed, and no guest will be hungry
or thirsty for long.

 Planning to meet future demands is nearly impossible. To prevent a supply gap,
you need to add extra capacity on top of the planned demand to prevent running
short of resources.

 Before the cloud, the same was true for our industry when planning the capacity of
our IT infrastructure. When procuring hardware for a data center, we always had to
buy hardware based on the demands of the future. There were many uncertainties
when making these decisions:

 How many users needed to be served by the infrastructure?
 How much storage would the users need?
 How much computing power would be required to handle their requests?

To avoid supply gaps, we had to order more or faster hardware than needed, causing
unnecessary expenses. On AWS, you can use services on demand. Planning capacity is
less and less important. You can scale from one EC2 instance to thousands of EC2
instances. Storage can grow from gigabytes to petabytes. You can scale on demand,
thus replacing capacity planning. The ability to scale on demand is called elasticity
by AWS.

 Public cloud providers like AWS can offer the needed capacity with a short waiting
time. AWS serves millions of customers, and at that scale it isn’t a problem to provide you
with 100 additional virtual machines within minutes if you need them suddenly. This
allows you to address another problem: typical traffic patterns, as shown in figure 17.1.
Think about the load on your infrastructure during the day versus at night, on a weekday
versus the weekend, or before Christmas versus the rest of year. Wouldn’t it be nice if you
could add capacity when traffic grows and remove capacity when traffic shrinks? In this
chapter, you’ll learn how to scale the number of virtual machines based on current load.

12 noon 6 pm6 am

Sy
st

em
 lo

ad

Sy
st

em
 lo

ad

Thursday SundayMonday

Sy
st

em
 lo

ad

DecemberJanuary

Figure 17.1 Typical traffic patterns for a web shop

465Managing a dynamic EC2 instance pool

Scaling the number of virtual machines is possible with auto-scaling groups (ASG)
and scaling policies on AWS. Auto-scaling is part of the EC2 service and helps you to
scale the number of EC2 instances you need to fulfill the current load of your system.
We introduced auto-scaling groups in chapter 14 to ensure that a single virtual
machine was running even if an outage of an entire data center occurred. In this
chapter, you’ll learn how to use a dynamic EC2 instance pool:

 Using auto-scaling groups to launch multiple virtual machines of the same kind.
 Changing the number of virtual machines based on CPU load with the help of

CloudWatch alarms.
 Changing the number of virtual machines based on a schedule, to adapt to

recurring traffic patterns.
 Using a load balancer as an entry point to the dynamic EC2 instance pool.
 Using a queue to decouple the jobs from the dynamic EC2 instance pool.

There are two prerequisites for being able to scale your application horizontally,
which means increasing and decreasing the number of virtual machines based on the
current workload:

 The EC2 instances you want to scale need to be stateless. You can achieve stateless servers
by storing data with the help of service like RDS (SQL database), DynamoDB
(NoSQL database), EFS (network filesystem), or S3 (object store) instead of storing
data on disks (instance store or EBS) that are only available to a single EC2 instance.

 An entry point to the dynamic EC2 instance pool is needed to be able to distribute the
workload across multiple EC2 instances. EC2 instances can be decoupled synchro-
nously with a load balancer, or asynchronously with a queue.

We introduced the concept of the stateless server in part 3 of this book and explained
how to use decoupling in chapter 15. In this chapter you’ll return to the concept of
the stateless server and also work through an example of synchronous and asynchro-
nous decoupling.

17.1 Managing a dynamic EC2 instance pool
Imagine that you need to provide a scalable infrastructure to run a web application,
such as a blogging platform. You need to launch uniform virtual machines when the
number of requests grows, and terminate virtual machines when the number of
requests shrinks. To adapt to the current workload in an automated way, you need to

Examples are 100% covered by the Free Tier
The examples in this chapter are totally covered by the Free Tier. As long as you don’t
run the examples longer than a few days, you won’t pay anything for it. Keep in mind
that this applies only if you created a fresh AWS account for this book and there is
nothing else going on in your AWS account. Try to complete the chapter within a few
days, because you’ll clean up your account at the end of the chapter.

466 CHAPTER 17 Scaling up and down: auto-scaling and CloudWatch

be able to launch and terminate VMs automatically. Therefore, the configuration and
deployment of the web application needs to be done during bootstrapping, without
human interaction.

 AWS offers a service to manage such a dynamic EC2 instance pool, called auto-scaling
groups. Auto-scaling groups help you to:

 Dynamically adjust the number of virtual machines that are running
 Launch, configure, and deploy uniform virtual machines

The auto-scaling group grows and shrinks within the bounds you define. Defining a
minimum of two virtual machines allows you to make sure at least two virtual
machines are running in different availability zones to plan for failure. Conversely,
defining a maximum number of virtual machines ensures you are not spending more
money than you intended for your infrastructure.

 As figure 17.2 shows, auto-scaling consists of three parts:

1 A launch configuration that defines the size, image, and configuration of virtual
machines.

2 An auto-scaling group that specifies how many virtual machines need to be run-
ning based on the launch configuration.

3 Scaling plans that adjust the desired number of EC2 instances in the auto-scaling
group based on a plan or dynamically.

Because the auto-scaling group requires a launch configuration, you need to create
one before you can create an auto-scaling group. If you use a template, as you will in
this chapter, this dependency will be resolved by CloudFormation automatically.

Define the maximum and
minimum number of virtual machines.
Update the desired number of virtual

machines as needed.

Min/max/desired number
of virtual machines

Auto-scaling group

Trigger the launch
of virtual server.

Terminate
virtual machine.

Multiple virtual machines need
to be stateless and decoupled.

Template and configuration
for virtual machine

Launch configuration

Auto-scaling defines dynamic pool
of EC2 instances and consists
of ASG and launch
configuration.

Monitor the health of
virtual machines by checking

the instance state or the
health of the application.

Launch a virtual machine
based on the template from

the launch configuration.

Figure 17.2 Auto-scaling consists of
an ASG and a launch configuration,
launching and terminating uniform
virtual machines.

467Managing a dynamic EC2 instance pool

If you want multiple EC2 instances to handle a workload, it’s important to start identi-
cal virtual machines to build a homogeneous foundation. You use a launch configura-
tion to define and configure new virtual machines. Table 17.1 shows the most
important parameters for a launch configuration.

After you create a launch configuration, you can create an auto-scaling group that ref-
erences it. The auto-scaling group defines the maximum, minimum, and desired num-
ber of virtual machines. Desired means this number of EC2 instances should be running.
If the current number of EC2 instances is below the desired number, the auto-scaling
group will add EC2 instances. If the current number of EC2 instances is above the
desired number, EC2 instances will be removed. The desired capacity can be changed
automatically based on load or a schedule or manually. Minimum and maximum are the
lower and upper limit for the number of virtual machines within the auto-scaling group.

 The auto-scaling group also monitors whether EC2 instances are healthy and
replaces broken instances. Table 17.2 shows the most important parameters for an
auto-scaling group.

Table 17.1 Launch configuration parameters

Name Description Possible values

ImageId Image from which to start a vir-
tual machine

ID of Amazon Machine Image
(AMI)

InstanceType Size for new virtual machines Instance type (such as t2.micro)

UserData User data for the virtual machine
used to execute a script during
bootstrapping

BASE64-encoded String

KeyName The key pair used to authenti-
cate via SSH

Name of an EC2 key pair

AssociatePublicIpAddress Associates a public IP address
to the virtual machine

True or false

SecurityGroups Attaches security groups to new
virtual machines

List of security group names

IamInstanceProfile Attaches an IAM instance pro-
file linked to an IAM role

Name or Amazon Resource
Name (ARN, an ID) of an IAM
instance profile

Table 17.2 Auto-scaling group (ASG) parameters

Name Description Possible values

DesiredCapacity Desired number of healthy virtual
machines

Integer

MaxSize Maximum number of virtual
machines, the upper scaling limit

Integer

468 CHAPTER 17 Scaling up and down: auto-scaling and CloudWatch

If you specify multiple subnets with the help of VPCZoneIdentifier for the auto-
scaling group, EC2 instances will be evenly distributed among these subnets and thus
among availability zones.

You can’t edit a launch configuration, for example to change the instance type, the
machine image (AMI), or the security groups of your instances. If you need to make
changes to a launch configuration, follow these steps:

1 Create a launch configuration.
2 Edit the auto-scaling group, and reference the new launch configuration.
3 Delete the old launch configuration.

Fortunately, CloudFormation does this for you when you make changes to a launch
configuration in a template. The following listing shows how to set up such a dynamic
EC2 instance pool with the help of a CloudFormation template.

MinSize Minimum number of virtual
machines, the lower scaling limit

Integer

HealthCheckType How the auto-scaling group checks
the health of virtual machines

EC2 (health of the instance) or
ELB (health check of instance
performed by a load balancer)

HealthCheckGracePeriod Period for which the health check is
paused after the launch of a new
instance, to wait until the instance
is fully bootstrapped

Number of seconds

LaunchConfigurationName Name of the launch configuration
used to start new virtual machines

Name of a launch
configuration

TargetGroupARNs The target groups of a load bal-
ancer, where auto-scaling registers
new instances automatically

List of target group ARNs

VPCZoneIdentifier List of subnets in which to launch
EC2 instances in

List of subnet identifiers of a
VPC

Table 17.2 Auto-scaling group (ASG) parameters (continued)

Name Description Possible values

Don’t forget to define health check grace period
If you are using the ELB’s health check for your auto-scaling group, make sure you
specify a HealthCheckGracePeriod as well. Specify a health check grace period
based on the time it takes from launching an EC2 instance until your application is
running and passes the ELB’s health check. For a simple web application, a health
check period of 5 minutes is suitable.

469Using metrics or schedules to trigger scaling

[...]
LaunchConfiguration:

Type: 'AWS::AutoScaling::LaunchConfiguration'
Properties:

ImageId: 'ami-6057e21a'
InstanceMonitoring: false
InstanceType: 't2.micro'
SecurityGroups:
- webapp
KeyName: mykey
AssociatePublicIpAddress: true
UserData:

'Fn::Base64': !Sub |
 #!/bin/bash -x

 yum -y install httpd
AutoScalingGroup:

Type: 'AWS::AutoScaling::AutoScalingGroup'
Properties:

TargetGroupARNs:
- !Ref LoadBalancerTargetGroup
LaunchConfigurationName: !Ref LaunchConfiguration
MinSize: 2
MaxSize: 4
DesiredCapacity: 2
HealthCheckGracePeriod: 300
HealthCheckType: ELB
VPCZoneIdentifier:
- 'subnet-a55fafc'
- 'subnet-fa224c5a'

[...]

Auto-scaling groups are a useful tool if you need to start multiple virtual machines of
the same kind across multiple availability zones. Additionally, an auto-scaling group
replaces failed EC2 instances automatically.

17.2 Using metrics or schedules to trigger scaling
So far in this chapter, you’ve learned how to use an auto-scaling group and a launch
configuration to manage virtual machines. With that in mind, you can change the
desired capacity of the auto-scaling group manually, and new instances will be started
or old instances will be terminated to reach the new desired capacity.

 To provide a scalable infrastructure for a blogging platform, you need to increase
and decrease the number of virtual machines in the pool automatically by adjusting
the desired capacity of the auto-scaling group with scaling policies.

 Many people surf the web during their lunch break, so you might need to add vir-
tual machines every day between 11:00 a.m. and 1:00 p.m. You also need to adapt to
unpredictable load patterns—for example, if articles hosted on your blogging plat-
form are shared frequently through social networks.

Listing 17.1 Auto-scaling group and launch configuration for a web app

Image (AMI) from
which to launch
new virtual
machinesInstance type

for new EC2
instances Attach these security groups when

launching new virtual machines.

Name of the key pair
used for new virtual

machines

Associates a public IP address
with new virtual machines

Script executed during the
bootstrap of virtual machines

Registers new virtual
machines at the target
group of the load balancerReferences

the launch
configuration

Minimum number of EC2 instancesMaximum number
of EC2 instances

Desired number of healthy virtual
machines the auto-scaling group
tries to reach

Waits 300 seconds
before terminating

a new virtual
machine because of

a unsuccessful
health check

Uses the health check from the ELB to
check the health of the EC2 instancesStarts the virtual machines in

these two subnets of the VPC

470 CHAPTER 17 Scaling up and down: auto-scaling and CloudWatch

Figure 17.3 illustrates two different ways to change the number of virtual machines:

 Defining a schedule. The timing would increase or decrease the number of virtual
machines according to recurring load patterns (such as decreasing the number
of virtual machines at night).

 Using a CloudWatch alarm. The alarm will trigger a scaling policy to increase or
decrease the number of virtual machines based on a metric (such as CPU usage
or number of requests on the load balancer).

Scaling based on a schedule is less complex than scaling based on a CloudWatch met-
ric, because it’s difficult to find a metric to scale on reliably. On the other hand, scal-
ing based on a schedule is less precise, as you have to over-provision your
infrastructure to be able to handle unpredicted spikes in load.

Auto-scaling respects the minimum
and maximum number of servers you
specify in your ASG.

Multiple virtual servers

Auto-scaling

CloudWatch alarm

Schedule

CPU load > 75%: +1 server
CPU load < 25%: –1 server

11 a.m.: +2 servers
4 p.m.: –2 servers

Launching and terminating
an EC2 instance based on
the launch configuration

Scaling policy

Figure 17.3 Triggering auto-scaling based on CloudWatch alarms or schedules

471Using metrics or schedules to trigger scaling

17.2.1 Scaling based on a schedule

When operating a blogging platform, you might notice the following load patterns:

 One-time actions—Requests to your registration page increase heavily after you
run a TV advertisement in the evening.

 Recurring actions—Many people seem to read articles during their lunch break,
between 11:00 a.m. and 1:00 p.m.

Luckily, scheduled actions adjust your capacity with one-time or recurring actions. You
can use different types of actions to react to both load pattern types.

 The following listing shows a one-time scheduled action increasing the number
of web servers at 12:00 UTC on Jan. 1, 2018. As usual, you’ll find the code in the
book’s code repository on GitHub: https://github.com/AWSinAction/code2. The
CloudFormation template for the WordPress example is located in /chapter17/
wordpress-schedule.yaml.

OneTimeScheduledActionUp:
Type: 'AWS::AutoScaling::ScheduledAction'
Properties:

AutoScalingGroupName: !Ref AutoScalingGroup
DesiredCapacity: 4
StartTime: '2018-01-01T12:00:00Z'

You can also schedule recurring scaling actions using cron syntax. The following
example shows how to use two scheduled actions to increase the desired capacity
during business hours (08:00 to 20:00 UTC) every day.

RecurringScheduledActionUp:
Type: 'AWS::AutoScaling::ScheduledAction'
Properties:

AutoScalingGroupName: !Ref AutoScalingGroup
DesiredCapacity: 4
Recurrence: '0 8 * * *'

RecurringScheduledActionDown:
Type: 'AWS::AutoScaling::ScheduledAction'
Properties:

AutoScalingGroupName: !Ref AutoScalingGroup
DesiredCapacity: 2
Recurrence: '0 20 * * *'

Recurrence is defined in Unix cron syntax format as shown here:

Listing 17.2 Scheduling a one-time scaling action

Listing 17.3 Scheduling a recurring scaling action that runs at 20:00 UTC every day

Defining a scheduled action

Name of the auto-scaling group

Set desired capacity to 4.

Change setting at 12:00 UTC on Jan. 1, 2018.

Defining a scheduled action

Set desired capacity to 4.

Increase capacity at
08:00 UTC every day.

Set desired capacity to 2.

Decrease capacity at 20:00 UTC every day.

https://github.com/AWSinAction/code2

472 CHAPTER 17 Scaling up and down: auto-scaling and CloudWatch

* * * * *
| | | | |
| | | | +- day of week (0 - 6) (0 Sunday)
| | | +--- month (1 - 12)
| | +----- day of month (1 - 31)
| +------- hour (0 - 23)
+--------- min (0 - 59)

We recommend using scheduled scaling actions whenever your infrastructure’s capac-
ity requirements are predictable—for example, an internal system used during work
hours only, or a marketing action planned for a certain time.

17.2.2 Scaling based on CloudWatch metrics

Predicting the future is hard. Traffic will increase or decrease beyond known patterns
from time to time. For example, if an article published on your blogging platform is
heavily shared through social media, you need to be able to react to unplanned load
changes and scale the number of EC2 instances.

 You can adapt the number of EC2 instances to handle the current workload using
CloudWatch alarms and scaling policies. CloudWatch helps monitor virtual machines
and other services on AWS. Typically, services publish usage metrics to CloudWatch,
helping you to evaluate the available capacity.

 There are three types of scaling policies:

1 Step scaling allows more advanced scaling, as multiple scaling adjustments are
supported, depending on how much the threshold you set has been exceeded.

2 Target tracking frees you from defining scaling steps and thresholds. You need
only to define a target (such as CPU utilization of 70%) and the number of EC2
instances is adjusted accordingly.

3 Simple scaling is a legacy option which was replaced with Step Scaling.

All types of scaling policies use metrics and alarms to scale the number of EC2 instances
based on the current workload. As shown in figure 17.4, the virtual machines publish
metrics to CloudWatch constantly. A CloudWatch alarm monitors one of these metrics
and triggers a scaling action if the defined threshold is reached. The scaling policy then
increases or decreases the desired capacity of the auto-scaling group.

 An EC2 instance publishes several metrics to CloudWatch by default: CPU, net-
work, and disk utilization are the most important. Unfortunately, there is currently no
metric for a virtual machine’s memory usage. You can use these metrics to scale the
number of VMs if a bottleneck is reached. For example, you can add EC2 instances if
the CPU is working to capacity.

 The following parameters describe a CloudWatch metric:

 Namespace—Defines the source of the metric (such as AWS/EC2)
 Dimensions—Defines the scope of the metric (such as all virtual machines

belonging to an auto-scaling group)
 MetricName—Unique name of the metric (such as CPUUtilization)

473Using metrics or schedules to trigger scaling

CloudWatch alarms are based on CloudWatch metrics. Table 17.3 explains the alarm
parameters in detail.

Table 17.3 Parameters for a CloudWatch alarm that triggers scaling based on CPU utilization of all virtual
machines belonging to an ASG

Context Name Description Possible values

Condition Statistic Statistical function applied to
a metric

Average, Sum, Minimum, Maximum,
SampleCount

Condition Period Defines a time-based slice of
values from a metric

Seconds (multiple of 60)

Condition EvaluationPeriods Number of periods to evaluate
when checking for an alarm

Integer

Condition Threshold Threshold for an alarm Number

Virtual machines

Auto-scaling group

Scaling policy

• CPU load
• Network usage
• Custom metric

CloudWatch
metric and alarm

1. Triggers scaling
 policy.

3. Launching and terminating
 EC2 instance

2. Increase or decrease
 desired capacity if
 threshold is reached

CloudWatch alarm

Monitors metric

Publishes metrics
indicating the current

load within the system.

Figure 17.4 Triggering auto-scaling
based on a CloudWatch metric and
alarm

474 CHAPTER 17 Scaling up and down: auto-scaling and CloudWatch

You can define alarms on many different metrics. You’ll find an overview of all name-
spaces, dimensions, and metrics that AWS offers at http://mng.bz/8E0X. For exam-
ple, you could scale based on the load balancer’s metric counting the number of
requests per target, or the networking throughput of your EC2 instances. You can also
publish custom metrics—for example, metrics directly from your application like
thread pool usage, processing times, or user sessions.

You’ve now learned how to use auto-scaling to adapt the number of virtual machines
to the workload. It’s time to bring this into action.

Condition ComparisonOperator Operator to compare the
threshold against the result
from a statistical function

GreaterThanOrEqualToThreshold,
GreaterThanThreshold,
LessThanThreshold,
LessThanOrEqualToThreshold

Metric Namespace Source of the metric AWS/EC2 for metrics from the EC2
service

Metric Dimensions Scope of the metric Depends on the metric; references the
ASG for an aggregated metric over all
associated EC2 instances

Metric MetricName Name of the metric For example, CPUUtilization

Action AlarmActions Actions to trigger if the thresh-
old is reached

Reference to the scaling policy

Table 17.3 Parameters for a CloudWatch alarm that triggers scaling based on CPU utilization of all virtual
machines belonging to an ASG (continued)

Context Name Description Possible values

Scaling based on CPU load with VMs that offer burstable performance
Some virtual machines, such as instance family t2, offer burstable performance.
These virtual machines offer a baseline CPU performance and can burst performance
for a short time based on credits. If all credits are spent, the instance operates at
the baseline. For a t2.micro instance, baseline performance is 10% of the perfor-
mance of the underlying physical CPU.

Using virtual machines with burstable performance can help you react to load spikes.
You save credits in times of low load, and spend credits to burst performance in
times of high load. But scaling the number of virtual machines with burstable perfor-
mance based on CPU load is tricky, because your scaling strategy must take into
account whether your instances have enough credits to burst performance. Consider
searching for another metric to scale (such as number of sessions) or using an
instance type without burstable performance.

http://mng.bz/8E0X

475Decouple your dynamic EC2 instance pool

17.3 Decouple your dynamic EC2 instance pool
If you need to scale the number of virtual machines running your blogging platform
based on demand, auto-scaling groups can help you provide the right number of uni-
form virtual machines, and scaling schedules or CloudWatch alarms can increase or
decrease the desired number of EC2 instances automatically. But how can users reach
the EC2 instances in the pool to browse the articles you’re hosting? Where should the
HTTP request be routed?

 Chapter 15 introduced the concept of decoupling: synchronous decoupling with
ELB, and asynchronous decoupling with SQS. If you want to use auto-scaling to grow
and shrink the number of virtual machines, you need to decouple your EC2 instances
from the clients, because the interface that’s reachable from outside the system needs
to stays the same no matter how many EC2 instances are working behind the scenes.

 Figure 17.5 shows how to build a scalable system based on synchronous or asyn-
chronous decoupling. A load balancer is acting as the entry point for synchronous
decoupling, by distributing requests among a fleet of virtual machines. A message
queue is used as the entry point for asynchronous requests. Messages from producers
are stored in the queue. The virtual machines then poll the queue and process the
messages asynchronously.

 Decoupled and scalable applications require stateless servers. A stateless server
stores any shared data remotely in a database or storage system. The following two
examples implement the concept of a stateless server:

 WordPress blog—Decoupled with ELB, scaled with auto-scaling and CloudWatch
based on CPU utilization, and data outsourced to a MySQL database (RDS) and
a network filesystem (EFS).

 URL2PNG taking screenshots of URLs—Decoupled with a queue (SQS), scaled
with auto-scaling and CloudWatch based on queue length, and data outsourced
to a NoSQL database (DynamoDB) and an object store (S3).

Request

Load balancer

Auto-scaling Auto-scaling

Virtual machines
1..n

Synchronous decoupling

SQS message queue

Message
producers

Virtual machines
1..n

Asynchronous decoupling

Figure 17.5 Decoupling allows you to scale the number of virtual machines dynamically.

476 CHAPTER 17 Scaling up and down: auto-scaling and CloudWatch

17.3.1 Scaling a dynamic EC2 instance pool synchronously decoupled
by a load balancer

Answering HTTP(S) requests is a synchronous task. If a user wants to use your web
application, the web server has to answer the corresponding requests immediately.
When using a dynamic EC2 instance pool to run a web application, it’s common to
use a load balancer to decouple the EC2 instances from user requests. The load bal-
ancer forwards HTTP(S) requests to multiple EC2 instances, acting as a single entry
point to the dynamic EC2 instance pool.

 Suppose your company has a corporate blog for publishing announcements and
interacting with the community. You’re responsible for hosting the blog. The market-
ing department complains about slow page speed and even timeouts in the evening,
when traffic reaches its daily peak. You want to use the elasticity of AWS by scaling the
number of EC2 instances based on the current workload.

 Your company uses the popular blogging platform WordPress for its corporate
blog. Chapters 2 and 11 introduced a WordPress setup based on EC2 instances and
RDS (MySQL database). In this final chapter of the book, we’d like to complete the
example by adding the ability to scale.

 Figure 17.6 shows the final, extended WordPress example. The following services
are used for this highly available scaling architecture:

 EC2 instances running Apache to serve WordPress, a PHP application
 RDS offering a MySQL database that’s highly available through Multi-AZ

deployment
 EFS storing PHP, HTML, and CSS files as well as user uploads such as images

and videos
 ELB to synchronously decouple the web servers from visitors
 Auto-scaling and CloudWatch to scale the number of EC2 instances based on

the current CPU load of all running virtual machines

As usual, you’ll find the code in the book’s code repository on GitHub:
https://github.com/AWSinAction/code2. The CloudFormation template for the
WordPress example is located in /chapter17/wordpress.yaml.

 Execute the following command to create a CloudFormation stack that spins up the
scalable WordPress setup. Replace $Password with your own password consisting of 8
to 30 letters and digits.

$ aws cloudformation create-stack --stack-name wordpress \

➥ --template-url https://s3.amazonaws.com/\

➥ awsinaction-code2/chapter17/wordpress.yaml --parameters \

➥ ParameterKey=WordpressAdminPassword,ParameterValue=$Password \

➥ --capabilities CAPABILITY_IAM

It will take up to 15 minutes for the stack to be created. This is a perfect time to grab
some coffee or tea. Log in to the AWS Management Console, and navigate to the AWS
CloudFormation service to monitor the process of the CloudFormation stack named

https://github.com/AWSinAction/code2

477Decouple your dynamic EC2 instance pool

wordpress. You have time to look through the most important parts of the CloudFor-
mation template, shown in the following two listings.

LaunchConfiguration:
Type: 'AWS::AutoScaling::LaunchConfiguration'
Metadata: # [...]
Properties:

AssociatePublicIpAddress: true
ImageId: 'ami-6057e21a'
InstanceMonitoring: false
InstanceType: 't2.micro'
SecurityGroups:
- !Ref WebServerSecurityGroup
KeyName: !Ref KeyName
UserData: # [...]

AutoScalingGroup:
Type: 'AWS::AutoScaling::AutoScalingGroup'
DependsOn:

Listing 17.4 Creating a scalable, HA WordPress setup (part 1)

Load balancer
Visitor

Send
metrics

Auto-scaling

Trigger
scaling

Virtual machines

RDS
MySQL database

EFS network
filesystem

CloudWatch
metric and alarm

Figure 17.6 Auto-scaling web servers running WordPress, storing data on
RDS and EFS, decoupled with a load balancer scaling based on load

Creates a launch
configuration for
auto-scalingImage (AMI) from

which to start a
virtual machine

Size of the
virtual machine

Security group with firewall
rules for virtual machines

Key pair for
SSH access

Script to install and configure
WordPress automatically

Creates an
auto-scaling

group

478 CHAPTER 17 Scaling up and down: auto-scaling and CloudWatch

- EFSMountTargetA
- EFSMountTargetB
Properties:

TargetGroupARNs:
- !Ref LoadBalancerTargetGroup
LaunchConfigurationName: !Ref LaunchConfiguration
MinSize: 2
MaxSize: 4
DesiredCapacity: 2
HealthCheckGracePeriod: 300
HealthCheckType: ELB
VPCZoneIdentifier:
- !Ref SubnetA
- !Ref SubnetB
Tags:
- PropagateAtLaunch: true

Value: wordpress
Key: Name

[...]

You will learn how to create CloudWatch alarms for scaling in the next example. For
now, we are using a target tracking scaling policy that creates CloudWatch alarms
automatically in the background. A target tracking scaling policy works like the ther-
mostat in your home: you define the target and the thermostat constantly adjusts the
heating power to reach the target.

 Predefined metric specifications for the use with target tracking are:

 ASGAverageCPUUtilization to scale based on the average CPU utilization
among all instances within an auto-scaling group.

 ALBRequestCountPerTarget to scale based on the number of requests for-
warded from the Application Load Balancer (ALB) to a target.

 ASGAverageNetworkIn and ASGAverageNetworkOut to scale based on the aver-
age number of bytes received or sent.

In some cases, scaling based on CPU utilization, request count per target, or network
throughput does not work. For example, you might have another bottleneck you need
to scale on, such as disk I/O. Any CloudWatch metric can be used for target tracking as
well. There is only one requirement: adding or removing instances must affect the met-
ric proportionally. For example, request latency is not a valid metric for target tracking,
as adjusting the number of instances does not affect the request latency directly.

ScalingPolicy:
Type: 'AWS::AutoScaling::ScalingPolicy'
Properties:
 AutoScalingGroupName: !Ref AutoScalingGroup
PolicyType: TargetTrackingScaling

Listing 17.5 Creating a scalable, HA WordPress setup (part 2)

Registers VMs at the target
group of the load balancer

References the launch configuration

Ensures that at
least two virtual

machines are
running, one for
each of the two

AZs for high
availability

Launches not more than four VMs, to limit costs

Launches with two
desired web servers,
changed later by the

scaling policy if
necessary

Uses the ELB health check to monitor
the health of the virtual machines

Launches VMs into two different subnets
in two different AZs for high availability

Adds a tag including a name for
all VMs launched by the ASG

Creates a scaling policyAdjusts the
desired capacity

of the auto-
scaling group.

Creates a scaling
policy tracking a
specified target

479Decouple your dynamic EC2 instance pool

TargetTrackingConfiguration:
PredefinedMetricSpecification:

PredefinedMetricType: ASGAverageCPUUtilization
TargetValue: 70

EstimatedInstanceWarmup: 120

Follow these steps after the CloudFormation stack reaches the state CREATE_COMPLETE
to create a new blog post containing an image:

1 Select the CloudFormation stack wordpress, and switch to the Outputs tab.
2 Open the link shown for key URL with a modern web browser.
3 Search for the Log In link in the navigation bar, and click it.
4 Log in with username admin and the password you specified when creating the

stack with the CLI.
5 Click Posts in the menu on the left.
6 Click Add New.
7 Type in a title and text, and upload an image to your post.
8 Click Publish.
9 Go back to the blog by clicking on the View Post link.

Now you’re ready to scale. We’ve prepared a load test that will send 500,000 requests
to the WordPress setup within a few minutes. Don’t worry about costs: the usage is cov-
ered by the Free Tier. After three minutes, new virtual machines will be launched to
handle the load. The load test takes 10 minutes. Another 15 minutes later, the addi-
tional VMs will disappear. Watching this is fun; you shouldn’t miss it.

NOTE If you plan to do a big load test, consider the AWS Acceptable Use Pol-
icy at https://aws.amazon.com/aup and ask for permission before you begin
(see also https://aws.amazon.com/security/penetration-testing).

Configures the
target tracking

Uses a
predefined
scaling metric

Average CPU
utilization across
all EC2 instances

of the ASG

Defines the target at 70% CPU utilization

Exclude newly launched EC2 instances from CPU metric
for 120 seconds to avoid scaling on load caused due to
the bootstrapping of the VM and your application.

Simple HTTP load test
We’re using a tool called Apache Bench to perform a load test of the WordPress
setup. The tool is part of the httpd-tools package available from the Amazon Linux
package repositories.

Apache Bench is a basic benchmarking tool. You can send a specified number of
HTTP requests by using a specified number of threads. We’re using the following com-
mand for the load test, to send 500,000 requests to the load balancer using 15
threads. The load test is limited to 600 seconds and we’re using a connection time-
out of 120 seconds. Replace $UrlLoadBalancer with the URL of the load balancer:

$ ab -n 500000 -c 15 -t 300 -s 120 -r $UrlLoadBalancer

https://aws.amazon.com/aup
https://aws.amazon.com/security/penetration-testing

480 CHAPTER 17 Scaling up and down: auto-scaling and CloudWatch

Update the CloudFormation stack with the following command to start the load test:

$ aws cloudformation update-stack --stack-name wordpress \

➥ --template-url https://s3.amazonaws.com/\

➥ awsinaction-code2/chapter17/wordpress-loadtest.yaml \

➥ --parameters ParameterKey=WordpressAdminPassword,UsePreviousValue=true \

➥ --capabilities CAPABILITY_IAM

Watch for the following things to happen, using the AWS Management Console:

1 Open the CloudWatch service, and click Alarms on the left.
2 When the load test starts, the alarm called TargetTracking-wordpress-Auto-

ScalingGroup-*-AlarmHigh-* will reach the ALARM state after about 3 minutes.
3 Open the EC2 service, and list all EC2 instances. Watch for two additional

instances to launch. At the end, you’ll see five instances total (four web servers
and the EC2 instance running the load test).

4 Go back to the CloudWatch service, and wait until the alarm named
TargetTracking-wordpress-AutoScalingGroup-*-AlarmLow-* reaches the
ALARM state.

5 Open the EC2 service, and list all EC2 instances. Watch for the two additional
instances to disappear. At the end, you’ll see three instances total (two web serv-
ers and the EC2 instance running the load test).

The entire process will take about 20 minutes.
 You’ve watched auto-scaling in action: your WordPress setup can now adapt to the

current workload. The problem with pages loading slowly or even timeouts in the eve-
ning is solved.

17.3.2 Scaling a dynamic EC2 instances pool asynchronously decoupled
by a queue

Imagine that you’re developing a social bookmark service where users can save and
share their links. Offering a preview that shows the website being linked to is an
important feature. But the conversion from URL to PNG is causing high load during
the evening, when most users add new bookmarks to your service. Because of that,
customers are dissatisfied with your application’s slow response times.

 You will learn how to dynamically scale a fleet of EC2 instances to asynchronously
generate screenshots of URLs in the following example. Doing so allows you to

Cleaning up
Execute the following commands to delete all resources corresponding to the Word-
Press setup:

$ aws cloudformation delete-stack --stack-name wordpress

481Decouple your dynamic EC2 instance pool

guarantee low response times at any time because the load-intensive workload is
isolated into background jobs.

 Decoupling a dynamic EC2 instance pool asynchronously offers an advantage if
you want to scale based on workload: because requests don’t need to be answered
immediately, you can put requests into a queue and scale the number of EC2
instances based on the length of the queue. This gives you an accurate metric to scale,
and no requests will be lost during a load peak because they’re stored in a queue.

 To handle the peak load in the evening, you want to use auto-scaling. To do so, you
need to decouple the creation of a new bookmark and the process of generating a
preview of the website. Chapter 12 introduced an application called URL2PNG that
transforms a URL into a PNG image. Figure 17.7 shows the architecture, which con-
sists of an SQS queue for asynchronous decoupling as well as S3 for storing generated
images. Creating a bookmark will trigger the following process:

1 A message is sent to an SQS queue containing the URL and the unique ID of
the new bookmark.

2 EC2 instances running a Node.js application poll the SQS queue.
3 The Node.js application loads the URL and creates a screenshot.
4 The screenshot is uploaded to an S3 bucket, and the object key is set to the

unique ID.
5 Users can download the screenshot directly from S3 using the unique ID.

A CloudWatch alarm is used to monitor the length of the SQS queue. If the length of
the queue reaches five, an additional virtual machine is started to handle the work-
load. When the queue length goes below five, another CloudWatch alarm decreases
the desired capacity of the auto-scaling group.

 The code is in the book’s code repository on GitHub at https://github
.com/AWSinAction/code2. The CloudFormation template for the URL2PNG exam-
ple is located at chapter17/url2png.yaml.

 Execute the following command to create a CloudFormation stack that spins up
the URL2PNG application. Replace $ApplicationID with a unique ID for your applica-
tion (such as url2png-andreas):

$ aws cloudformation create-stack --stack-name url2png \

➥ --template-url https://s3.amazonaws.com/\

➥ awsinaction-code2/chapter17/url2png.yaml \

➥ --parameters ParameterKey=ApplicationID,ParameterValue=$ApplicationID \

➥ --capabilities CAPABILITY_IAM

It will take up to five minutes for the stack to be created. Log in to the AWS Manage-
ment Console, and navigate to the AWS CloudFormation service to monitor the pro-
cess of the CloudFormation stack named url2png.

 We’re using the length of the SQS queue to scale the number of EC2 instances. As
the number of messages in the queue does not correlate with the number of EC2

https://github.com/AWSinAction/code2
https://github.com/AWSinAction/code2
https://github.com/AWSinAction/code2

482 CHAPTER 17 Scaling up and down: auto-scaling and CloudWatch

instances processing messages from the queue, it is not possible to use a target track-
ing policy. Therefore, you will use a step scaling policy in this scenario.

[...]
HighQueueAlarm:

Type: 'AWS::CloudWatch::Alarm'
Properties:

EvaluationPeriods: 1
Statistic: Sum
Threshold: 5
AlarmDescription: 'Alarm if queue length is higher than 5.'
Period: 300
AlarmActions:
- !Ref ScalingUpPolicy
Namespace: 'AWS/SQS'
Dimensions:
- Name: QueueName

Value: !Sub '${SQSQueue.QueueName}'

Listing 17.6 Monitoring the length of the SQS queue

Message
producers

SQS message queue CloudWatch
metric and alarm

Convert the URL to
an image (PNG)

Fetch job
from queue

Trigger scaling

Insert job
into queue

Send
metrics

S3 object store
media files

Upload the image
(PNG) to S3

Auto-scaling

Figure 17.7 Auto-scaling virtual machines that convert URLs into images, decoupled by an SQS queue

Number of time periods to evaluate
when checking for an alarmSums up all

values in a
period Alarms if the threshold

of 5 is reached

Uses a period of 300
seconds because SQS

metrics are published
every 5 minutes

Increases the number of desired instances
by 1 through the scaling policy

The metric is
published by the

SQS service.

The queue, referenced
by name, is used as the
dimension of the metric.

483Decouple your dynamic EC2 instance pool

ComparisonOperator: GreaterThanThreshold
MetricName: ApproximateNumberOfMessagesVisible

[...]

The CloudWatch alarm triggers a scaling policy. The scaling policy defines how to
scale. To keep things simple, we are using a step scaling policy with only a single step.
Add additional steps if you want to react to a threshold breach in a more fine-grained
way.

[...]
ScalingUpPolicy:
 Type: 'AWS::AutoScaling::ScalingPolicy'
 Properties:
 AdjustmentType: 'ChangeInCapacity'
 AutoScalingGroupName: !Ref AutoScalingGroup
 PolicyType: 'StepScaling'
 MetricAggregationType: 'Average'
 EstimatedInstanceWarmup: 60
 StepAdjustments:
 - MetricIntervalLowerBound: 0
 ScalingAdjustment: 1
[...]

To scale down the number of instances when the queue is empty, a CloudWatch alarm
and scaling policy with the opposite values needs to be defined.

 You’re ready to scale. We’ve prepared a load test that will quickly generate 250
messages for the URL2PNG application. A virtual machine will be launched to process
jobs from the SQS queue. After a few minutes, when the load test is finished, the addi-
tional virtual machine will disappear.

 Update the CloudFormation stack with the following command to start the load
test:

$ aws cloudformation update-stack --stack-name url2png \

➥ --template-url https://s3.amazonaws.com/\

➥ awsinaction-code2/chapter17/url2png-loadtest.yaml \

➥ --parameters ParameterKey=ApplicationID,UsePreviousValue=true \

➥ --capabilities CAPABILITY_IAM

Watch for the following things to happen, with the help of the AWS Management
Console:

Listing 17.7 A step scaling policy which adds one more instance to an ASG

Alarms if the sum of
the values within the

period is greater than
the threshold of 5

The metric contains an approximate
number of messages pending in the queue.

Creates a
scaling policy The scaling policy increases the

capacity by an absolute number.

Attaches the
scaling policy

to the auto-
scaling group

Creates a scaling policy
of type step scaling

The aggregation type
used when evaluating
the steps, based on
the metric defined
within the CloudWatch
alarm that triggers the
scaling policy

The metrics of a newly launched
instance are ignored for 60
seconds while it boots up.

Defines the scaling
steps. We use a single

step in this example.
The scaling step is valid from the
alarms threshold to infinity.Increase the desired

capacity of the ASG by 1.

484 CHAPTER 17 Scaling up and down: auto-scaling and CloudWatch

1 Open the CloudWatch service, and click Alarms at left.
2 When the load test starts, the alarm called url2png-HighQueueAlarm-* will

reach the ALARM state after a few minutes.
3 Open the EC2 service, and list all EC2 instances. Watch for an additional

instance to launch. At the end, you’ll see three instances total (two workers and
the EC2 instance running the load test).

4 Go back to the CloudWatch service, and wait until the alarm named url2png-
LowQueueAlarm-* reaches the ALARM state.

5 Open the EC2 service, and list all EC2 instances. Watch for the additional
instance to disappear. At the end, you’ll see two instances total (one worker and
the EC2 instance running the load test).

The entire process will take about 15 minutes.
 You’ve watched auto-scaling in action. The URL2PNG application can now adapt

to the current workload, and the problem with slowly generated screenshots has been
solved.

Whenever distributing an application among multiple EC2 instances, you should use
an auto-scaling group. Doing so allows you to spin up identical instances with ease.
You get the most out of the possibilities of the cloud when scaling the number of
instances based on a schedule or a metric depending on the load pattern.

Summary
 You can use auto-scaling to launch multiple identical virtual machines by using

a launch configuration and an auto-scaling group.
 EC2, SQS, and other services publish metrics to CloudWatch (CPU utilization,

queue length, and so on).
 CloudWatch alarms can change the desired capacity of an auto-scaling group.

This allows you to increase the number of virtual machines based on CPU utili-
zation or other metrics.

 Virtual machines need to be stateless if you want to scale them according to
your current workload.

Cleaning up
Execute the following commands to delete all resources corresponding to the
URL2PNG setup, remembering to replace $ApplicationID:

$ aws s3 rm s3://$ApplicationID --recursive
$ aws cloudformation delete-stack --stack-name url2png

485Summary

 To distribute load among multiple virtual machines, synchronous decoupling
with the help of a load balancer or asynchronous decoupling with a message
queue is necessary.

That’s it! You have mastered the end game: scaling your infrastructure dynamically.
Kudos, you have learned about and experienced the most important aspects of Ama-
zon Web Services. We wish you all the best for moving your first production workload
to the cloud.

487

index

A

Acceptable Use Policy 479
access control lists (ACLs) 189, 193
access control, database

network access control 310–311
overview 311
using IAM service 309–310

account, AWS
creating

choosing support plan 26
contact information 24
creating key pair 29–32
login credentials 23
payment details 24
signing in 28–29
verifying identity 25

security
authentication roles 177–179
authorization policies 174–176
creating users 176–177
IAM service 173–174
root user 172–173

ACID (atomicity, consistency, isolation, and
durability) 294, 349

ACLs (access control lists) 189, 193
agent forwarding 187–188
AKI (Amazon Kernel Image) 63
alarms, CloudWatch 203, 387–388
Amazon API Gateway 229
Amazon EFS. See EFS (Elastic File System)
Amazon ElastiCache. See ElastiCache
AMI (Amazon Machine Image) 62–63, 139–140
Apache Bench 479
APIs (application programming interfaces) 102
apt package manager 75

archiving objects 242
ARN (Amazon Resource Name) 175
asynchronous decoupling

consuming messages 425–428
converting synchronous process to

asynchronous 421–422
creating SQS queue 423
overview 420–421
sending messages to queue 423–425
SQS messaging limitations 428–429
URL2PNG application example 422–423

atomic operations 255
atomicity, consistency, isolation, and durability

(ACID) 294, 349
auto-scaling 397, 465

groups 397–398, 466
overview 396–407
triggering

based on CloudWatch metrics 472–474
based on schedule 471–472
overview 469–470

automating operational tasks, with AWS Lambda
adding tag containing owner of EC2 instance

automatically 218–226
authorizing Lambda function to use other

AWS services with IAM role 224–226
deploying Lambda function with SAM 226
implementing Lambda function in

Python 222–223
setting up Lambda function with SAM

223–224
subscribing to CloudWatch events 219–222

building website health check 203–218
accessing endpoints within VPC 217–218
creating Lambda function 204–210

INDEX488

automating operational tasks, with AWS Lambda
(continued)
monitoring Lambda function with Cloud-

Watch metrics and alarms 212–216
using CloudWatch to search through Lambda

function's logs 210–212
executing code 200–203

comparing AWS Lambda with virtual
machines (Amazon EC2) 202–203

running code on AWS Lambda 201–202
Free Tier 228
impacts of serverless pricing model 228–229
limitations of 227–228
pricing model 228
use cases

data processing 230
IoT back end 231
web application 229

AWS (Amazon Web Services)
advantages

automation capabilities 10
fast-growing platform 10
platform of services 10
reducing time to market 11
reliability 11
scalability 11
standards compliance 12
worldwide deployments 12

alternatives 15–16
costs 275

billing example 13–15
Free Tier 13
overview 12–13
pay-per-use pricing model 15

services overview 16–18
tools

blueprints 22
CLI 20
Management Console 19
SDKs 21

use cases
fault-tolerant systems 8–10
running Java EE applications 7–8
running web shop 5–7

AWS Elastic Beanstalk 145
applications in Management Console 149–150
creating application 147
creating environment 147
deleting applications 150–151
deployment 457–461
deployment options comparison 138–139
describing status of installation 147–148
overview 145–146
uploading Zip archive 147

AWS Lambda
adding tag containing owner of EC2 instance

automatically 218–226
authorizing Lambda function to use other

AWS services with IAM role 224–226
deploying Lambda function with SAM 226
implementing Lambda function in

Python 222–223
setting up Lambda function with SAM

223–224
subscribing to CloudWatch events 219–222

building website health check with 203–218
accessing endpoints within VPC 217–218
creating Lambda function 204–210
monitoring Lambda function with Cloud-

Watch metrics and alarms 212–216
use CloudWatch to search through Lambda

function's logs 210–212
executing code with 200–203

comparing AWS Lambda with virtual
machines (Amazon EC2) 202–203

running code on AWS Lambda 201–202
Free Tier 228
impacts of serverless pricing model 228–229
limitations 227–228
pricing model 228
use cases

data processing 230
IoT back end 231
web application 229

AWS OpsWorks
deployment options comparison 138–139
multilayer applications using

accessing kiwiIRC 162–163
adding app to Node.js layer 160–161
adding client and server instances for IRC

chat 161
creating custom layers 156–159
creating Node.js layer 155–156
creating stack 154
deleting stacks 163–164

overview 151–153
AZ (availability zones) 274, 314, 407

defined 392
outages 392–396

auto-scaling 396–399
IP addresses and 407–411
network-attached storage and 402
recovering failed EC2 instance to another

availability zone 399–407
recovering failed EC2 instance to another

availability zone 399–407
redundancy 436

INDEX 489

B

backup 289–292
automated snapshots 303–304
copying database to other region 307
manual snapshots 304–305
restoring database 305–307

!Base64 function 142
bastion host

defined 186
benchmarking 479
block-level storage

instance stores
backups 272
overview 268–271
performance testing 272
viewing and mounting volumes 271–272

network-attached storage
backing up data 266–268
creating volumes 260–261
managing volumes 261–263
performance improvements 263

BlockDeviceMappings 269–270
blueprints

AWSTemplateFormatVersion value 123
example template 127–133
Lambda function configuration 205
outputs structure 126
overview 22, 121–122
parameters structure 123–125
resources structure 125–126

bucket policies 253
BucketNotEmpty error 240
buckets, S3

configuring 253–254
creating programmatically 253
linking custom domain 255
listing files 251–252
setting up 249
versioning 239–240

burst rate, EFS 286
burstable performance 474
BurstCreditBalance metric 286–287

C

Cache Engine 334
cache, invalidating 439
caching data in memory. See ElastiCache
calculator for monthly costs 13
Cassandra 354
CDN (content delivery network) 6, 83, 252
Chef 138, 152
CIDR (Classless Inter-Domain Routing) 185

CLI (command-line interface) 237
--query option 114–115
advantages of using scripts 108–109
configuring user authentication 110–113
creating virtual machine using script 113–115
help keyword 113
installing

on Linux 109
on Mac OS 109
on Windows 109–110

listing EC2 instances 113
overview 20
usage overview 113

cloud computing
deployment environment 136–137
overview 4–5

CloudFormation
alternatives 133
blueprints

AWSTemplateFormatVersion value 123
example template 127–133
outputs structure 126
overview 121–122
parameters structure 123–125
resources structure 125–126

CloudFormation template
defining Lamda function with SAM within 224
minimal 327–328

CloudWatch
creating alarm 387–388
monitoring Lambda function with metrics and

alarms 212–216
overview 385–386
subscribing to events 219–222
triggering auto-scaling based on metric 472–474

CNAME records 255
cold-start 227
content delivery network (CDN) 6, 83, 252–253
cookbooks, Chef 152
cost

AWS Lamda 203
billing example 13–15
DynamoDB service 352
Free Tier 13
optimizing for virtual machines

overview 92
reserved virtual machines 93–94
spot instances 95–100

overview 12–13
pay-per-use pricing model 15

CPU load 474
CPUUtilization metric 344–345
CREATE_COMPLETE state 43, 298–299, 479
CREATE_IN_PROGRESS state 43
CRUD (create, remove, update, delete) 248

INDEX490

D

data centers
locations 4, 12
starting virtual machine in different 82–86

data processing, automating operational tasks with
AWS Lambda 230

databases
for WordPress blogs example 49–51
network access control 310–311

dd utility 263
DDoS (Distributed Denial of Service) attacks 167
declarative approach, defined 121
decoupling

asynchronous, with message queues
consuming messages 425–428
converting synchronous process to

asynchronous 421–422
creating SQS queue 423
overview 420–421
sending messages to queue 423–425
SQS messaging limitations 428–429
URL2PNG application example 422–423

concept explained 413–415
dynamic EC2 instance pools

by load balancer 476–480
by queue 481–484
overview 475–482

redundant EC2 instances 436–437
synchronous, with load balancers

overview 415–416
setting up load balancer 416–420

default region setting 39
dependencies, CloudFormation templates 122
deployment

AWS Lambda 203
comparison of options 138–139
defined 135
in scalable cloud environment 136–137
multilayer applications with AWS OpsWorks

Stacks 152–153
running script on virtual machine startup

overview 139
using user data 140

web applications with AWS Elastic Beanstalk
components 146
creating application 147
creating environment 147
deleting applications 150–151
uploading Zip archive 147

DevOps (development operations)
movement 104–105

df command 262
disaster recovery 411–412

Discourse application, installing with
CloudFormation 336–344

cache 338–339
database 339–340
testing CloudFormation template 342–344
virtual machine 340–342
VPC 337–338

Distributed Denial of Service (DDoS) attacks 167
DLQ (dead-letter queue) 456
DNS (Domain Name System) 83
DSL (domain-specific language) 152
DSS (data security standard) 12
dynamic EC2 instance pools

decoupling
by load balancer 476–480
by queue 481–484
overview 475–482

managing 465–469
DynamoDB service

administrative tasks 352
costs 352
deleting data 373–374
eventual consistency 372–373
modifying data 374–375
NoSQL comparison 354
overview 349–351
primary key

defined 355
partition key and sort key 355–356

querying data
by key 365–366
by key and filter 366–368
overview 364–365
retrieving all items 371–372
using secondary indexes 368–371

RDS vs. 353
running DynamoDB locally 356
scaling 375–379
tables

creating 358
overview 354–355
using partition key 358–359
using partition key and sort key 360–361

E

EBS (Elastic Block Store)
backing up data from 266–268
creating volumes 260–261
defined 432
managing volumes 261–263
performance improvements 263

EBS. See instance stores

INDEX 491

EC2 (Elastic Compute Cloud) service
comparing AWS Lambda with 202–203
defined 3, 37
recovering instances 386
See also virtual machines

EFS (Elastic File System)
backing up data 289–292

using CloudFormation to describe EBS
volume 290

using EBS volume 290–292
burst rate 286
filesystem, creating 277–278

pricing 277–278
using CloudFormation to describe

filesystem 277
filesystem, monitoring 286–289

Max I/O Performance Mode, whether to
use 286

monitoring permitted throughput 287–288
monitoring usage 288–289

mount target, creating 278–279
mounting EFS share on EC2 instances 280–283
performance, tweaking 284–286

expected throughput 285–286
Performance mode 285

sharing files between EC2 instances 283–284
Elastic Beanstalk. See AWS Elastic Beanstalk
elastic IP addresses 86
ElastiCache

access to cache, controlling 334–336
access to configuration 334
cluster and data access 335–336
network access 334–335

cache deployment options 330–334
Memcached 330–331
Redis 331–334

creating cache cluster 327–330
minimal CloudFormation template 327–328
testing Redis cluster 328–330

monitoring cache 344–346
monitoring host-level metrics 344–345
Redis replication, whether up-to-date

345–346
sufficient memory 345

performance of cache, tweaking 346–348
compressing data 348
selecting right cache node type 347
selecting right deployment option 347–348

elasticity 464
ELB (Elastic Load Balancing) 37, 415
ENI (Elastic Network Interface) 432
environment variables

temporary credentials and 224
to pass settings to Lambda function 209

environment, defined 458

Erlang programming language 437
Errors metric, CloudWatch 212
eventual consistency 255, 372–373, 439
Evictions metric 344–345

F

failure recovery
availability zone outages

auto-scaling 396–399
availability zones 392–396
IP addresses and 407–411
network-attached storage and 402
recovering failed EC2 instance to another

availability zone 399–407
fault-tolerance

code considerations
“let it crash” concept 437–438
idempotent retry 438–439

defined 432
high availability vs. 384
overview 431–433
redundant EC2 instances

decoupling required 436–437
overview 434
removing single point of failure 434–436

web application
creating process 446–448
idempotent state machine 443–444
idempotent state transitions 444
Imagery application overview 440–461
looking up process 448–449
server 445–446
uploading files 449–452
worker for consuming SQS messages 452–455

web application deployment
DynamoDB 455–457
Elastic Beanstalk for worker 459–461
IAM roles 457
overview 455
S3 455–457
SQS 455–457

fdisk utility 261, 271
filesystem. See EFS (Elastic File System)

See also EBS; instance stores
firewalls 69, 158
Free Tier 13
fsfreeze command 267

G

generations, defined 65
GiB (gibibyte) 265

INDEX492

Glacier service
adding lifecycle rule to bucket 242
moving objects to and from 245–248
S3 service 241

globally unique identifiers 236–237

H

HA (high availability)
defined 384, 432
disaster-recovery requirements 411–412
fault tolerance vs. 384
for databases 311–314
recovering from availability zone outages

auto-scaling 396–399
availability zones 392–396
IP addresses and 407–411
network-attached storage and 402
recovering failed EC2 instance to another

availability zone 399–407
recovering from EC2 instance failure with

CloudWatch
creating alarm 387–388
overview 385–386

redundant EC2 instances for
decoupling required for 436–437
overview 434
removing single point of failure 434–436

host machines 60
host-level metrics 344–345
httpd-tools package 479
HVM (Hardware Virtual Machine) 64

I

IaaS (infrastracture as a service) 5, 104
IAM (Identity and Access Management)

service 173–174, 309, 334
database access control using 309–310
roles

authorizing Lambda function to use AWS
services with 224–226

deployment 457
ICMP (Internet Control Message Protocol)

182–183
idempotent

defined 429, 438
retry 438–439
state machine 443–444
state transitions 444

IGW (internet gateway) 190–191
infrastructure as code

CLI
advantages of using scripts 108–109

configuring user authentication 110–113
creating virtual machine using script 113–115
help keyword 113
installing 109–110
listing EC2 instances 113
usage overview 113

defined 104
DevOps movement 104–105
JIML 105–108
using SDKs 117

inline policy 176
installation

software on virtual machines 75
instance family groups 65
instance stores

backups and 272
overview 268–271
performance testing 272
viewing and mounting volumes 271–272

instances, defined 152
IOPS (input/output operations per second)

264–266
IoT 231
IP (Internet Protocol) 180
IP addresses

allocating for virtual machine 86–88
public vs. private 184

IRC (Internet Relay Chat) 153

J

Java EE applications 7–8
JIML (JSON Infrastructure Markup

Language) 105–108
JMESPath 114
jump boxes 186

K

key pair for SSH
creating 29–32
selecting for virtual machine 70–72

key-value stores 325, 350, 364
kiwiIRC 154–161, 163

L

Lambda function 203
configuring scheduled event triggering 208
creating 205–206
defining with SAM within CloudFormation

template 224
invocations 210
log messages from 211

INDEX 493

Lambda function (continued)
monitoring with CloudWatch metrics and

alarms 212
website health check and environment variables

to pass settings to 209
Lambda. See AWS Lambda
launch configurations 397
lazy-loading 322
“let it crash” concept 437–438
lifecycle rules 242
linkchecker tool 75
Linux

connecting to virtual machines from 73
installing CLI on 109

load balancers
decoupling dynamic EC2 instance pools

by 476–480
for WordPress blogs example 47–48
synchronous decoupling with

overview 415–416
setting up load balancer 416–420

load monitoring 77–78
load tests 479
logs

viewing for AWS Elastic Beanstalk
application 150

viewing for virtual machines 76–77

M

Mac OS X
connecting to virtual machines from 73
installing CLI on 109
key file permissions 31

managed policy 176
Management Console

overview 19
signing in 28

Max I/O Performance Mode 286
Memcached 326, 330–331
memory, caching data in. See ElastiCache
message queues

consuming messages 425–428
converting synchronous process to

asynchronous 421–422
creating SQS queue 423
overview 420–421
sending messages to queue 423–425
SQS messaging limitations 428–429
URL2PNG application example 422–423

metadata 236
MFA (multifactor authentication) 172
mkfs command 262
MongoDB 354

monitoring
load 77–78
viewing logs 76–77

MySQL databases
costs 300
database instance information 299–300
exporting 301
for WordPress blogs example 49–51
WordPress platform using 297–299

N

Name tag 67
NAT (Network Address Translation) 7, 184, 190,

196–197
Neo4j 354
network access control 310–311
network-attached storage

availability zone outages and 402
backing up data from 266–268
creating volumes 260–261
managing volumes 261–263
performance improvements 263

networking
ACLs (access control lists) 189, 193
controlling traffic 183–189

overview 179–181
using security groups 181–182

for virtual machines
allocating fixed public IP address 86–88
creating additional network interface 88–92

using access control lists (ACLs) 189, 193
Node.js

installing 117, 249, 361, 423
NoSQL databases 229

RDS vs. DynamoDB 353
running DynamoDB locally 356
scaling 375–379
tables

creating 358
overview 354–355
using partition key 358–359
using partition key and sort key 360–361

O

object stores 229
backing up data using 238–240
concepts of 236–237
data consistency 255
Glacier service

adding lifecycle rule to bucket 242
creating S3 bucket for 241–242

INDEX494

object stores (continued)
moving objects to and from 245–248
S3 service vs. 241

S3 service 237
selecting keys for objects 256–257
static web hosting using

accessing website 254–255
configuring bucket 253–254
creating bucket for 253

storing objects programmatically
installing web application 249–250
listing files in bucket 251–252
overview 248–249
setting up S3 bucket 249
uploading files to S3 250–251

on-demand instances 92
OpenSwan VPN server

installing VPN with script 144–145
overview 140–142

optimistic locking 447–448
OS (operating system) 46, 62–64

P

PaaS (platform as a service) 5
partition key 355–356, 358–361
PCI (payment card industry) 12
performance

database
increasing database resources 314–315
using read replication 316–318

increasing speed using CDN 252–253
PermittedThroughput metric 286–287
pessimistic locking 448
pip tool 109
policies, authorization 174–176
PostgreSQL 339
primary key, DynamoDB

defined 355
partition key 355–356

private IP addresses 184
public IP addresses 86–88, 184
putItem operation 362
PuTTY 32, 188
Python

implementing Lambda function 222–223
installing packages 109

Q

querying data, from DynamoDB service
by key 365–366
by key and filte 366–368
overview 364–365

retrieving all items 371–372
using secondary indexes 368–371

queue
decoupling dynamic EC2 instances pools

by 481–484
queuing theory 345

R

RDP (Remote Desktop Protocol) 29
RDS (relational database service)

access control
network access control 310–311
overview 311
using IAM service 309–310

backup/restore
automated snapshots 303–304
copying database to other region 307
costs 308
manual snapshots 304–305
restoring database 305–307

defined 37
DynamoDB service vs. 353
failures possible for 432
high availability 311–314
importing data 300–303
monitoring database 318–320
MySQL databases

costs 300
database instance information 299–300
WordPress platform using 297–299

overview 294–296
performance

increasing database resources 314–315
using read replication 316–318

Redis
cluster with cluster mode disabled 332
cluster with cluster mode enabled 332–334
replication, whether up-to-date 345–346
single-node cluster 331–332
SortedSet 326
testing cluster 328–330

regions 39, 392
reliability, of AWS 11
reserved instances 92–94
resource groups 44
REST API 103–104
roles, authentication 177–179
root user 172–174
RPO (recovery point objective) 411–412
RTO (recovery time objective) 411–412

INDEX 495

S

S3 (Simple Storage Service)
backing up data using 238–240
data consistency 255
defined 3
deployment 455–457
Glacier service 241
linking custom domain to bucket 255
overview 237
selecting keys for objects 256–257
static web hosting using

accessing website 254–255
configuring bucket 253–254
creating bucket for 253

storing objects programmatically
installing web application 249–250
listing files in bucket 251–252
overview 248–249
setting up S3 bucket 249
uploading files to S3 250–251

versioning for 239–240
SaaS (software as a service) 5
SAM (Serverless Application Model)

defining Lambda function with 224
deploying Lambda function with 226
setting up Lambda function with 223–224

scaling
advantages of AWS 11
based on CPU load 474
decoupling dynamic EC2 instance pool

by load balancer 476–480
by queue 481–484
overview 475–482

DynamoDB service 375–379
general discussion 463–465
managing dynamic EC2 instance pool 465–469
policies 465
triggering auto-scaling

based on CloudWatch metrics 472–474
based on schedule 471–472
overview 469–470

scan operation 371–372
schedule expressions 207
scheduled events 203, 208
SDKs (software development kits)

overview 21
platform and language support 117

secondary indexes 368–371
security

AWS account
authentication roles 177–179
authorization policies 174–176
creating users 176–177
IAM service 173–174

importance of securing 171–177
root user 172–173

controlling network traffic
allowing ICMP traffic 182–183
allowing SSH traffic 183–184
allowing SSH traffic from IP address 184–185
allowing SSH traffic from security group

185–189
overview 179–181
using security groups 181–182

creating VPC
accessing internet via NAT gateway 196–197
adding private Apache web server

subnet 194–195
creating IGW 190–191
defining public bastion host subnet 192–193
launching virtual machines in subnets

195–196
overview 189–190

shared responsibility with AWS 167
updating software

checking for security updates 168–169
installing updates on running virtual

machines 170–171
installing updates on startup 169–170

security groups 338–342
allowing SSH traffic 185–189
defined 38
overview 181–182

sharing data volumes between machines. See EFS
(Elastic File System)

single point of failure (SPOF) 332
single-node cluster, Redis 331–332
snapshots, database

automated 303–304
copying automated as manual 305
manual 304–305

software, installing on virtual machines 75
SPOF (single point of failure) 332, 432, 434–436
spot instances 92, 95–100
SQS (Simple Queue Service)

consuming messages 425–428
creating queue 423
creating worker for consuming messages

452–455
defined 415
deployment 455–457
limitations of 428–429
sending messages to queue 423–425

SSH traffic, allowing 183–184
from IP address 184–185
from security group 185–189

stacks 128, 152
stateless servers 249

INDEX496

statelessness 465
static web hosting

accessing website 254–255
configuring bucket 253–254
creating bucket 253

stopping vs. terminating machines 78
storage

instance stores
backups 272
overview 268–271
performance testing 272
viewing and mounting volumes 271–272

network-attached storage
backing up data 266–268
creating volumes 260–261
managing volumes 261–263
performance improvements 263

streams, DynamoDB 364–365
strongly consistent reads 373, 375
subnet group 338–340
subnets 436
synchronous decoupling

overview 415–416
setting up load balancer 416–420

system status checks 385

T

tables, DynamoDB
creating 358
overview 354–355
using partition key 358–359
using partition key and sort key 360–361

tags, defined 67
templates, CloudFormation

AWSTemplateFormatVersion value 123
example of 127–133
outputs structure 126
overview 121–122
parameters structure 123–125
resources structure 125–126

terminating vs. stopping machines 78
Terraform 133
TiB (tebibyte) 265
tools

blueprints 22
CLI 20
Management Console 19
SDKs 21

Troposphere 133
TTL (time to live) 415

U

updates, security
checking for 168–169
installing on running virtual machines 170–171
installing on startup 169–170

use cases
fault-tolerant systems 8–10
running Java EE applications 7–8
running web shop 5–7

user data 140
users, creating 176–177
UUID (universally unique identifier) 438

V

versioning
for applications 146
for S3 buckets 239–240
versions defined 457

virtual appliances 63–64
virtual machines 37

allocating fixed public IP address 86–88
changing size of 79–82
comparing AWS Lambda with 202–203
connecting to

from Linux 73
from Mac OS X 73
from Windows 73
login message when connecting 74–75
overview 72–75

cost optimization
overview 92
reserved virtual machines 93–94
spot instances 95–100

creating additional network interface for
88–92

creating using CLI script 113–115
installing software on 75
launching

choosing size of 64–65
naming 66
overview 60–61
selecting key pair for SSH 70–72
selecting OS 62–64

listing EC2 instances using CLI 113
monitoring

load 77–78
viewing logs 76–77

overview 60–75
running script on virtual machine startup

application update process 145
overview 139
using user data 140

INDEX 497

virtual machines (continued)
security updates for

checking 168–169
installing on running virtual machines

170–171
installing on startup 169–170

shutting down 78–79
starting in another data center 82–86

virtualization, granularity of 202
VMs (virtual machines) 7

See also EC2 Instance
VPC (Virtual Private Cloud) 337–338, 386, 395

accessing endpoints within 217–218
accessing internet via NAT gateway 196–197
adding private Apache web server subnet

194–195
creating IGW 190–191
defined 432
defining public bastion host subnet 192–193
launching virtual machines in subnets 195–196
overview 189–190

VPN (Virtual Private Network) 7
installing VPN with script 144–145
overview 140–142
using CloudFormation to start virtual machine

with user data 142–144

W

web applications
using AWS Elastic Beanstalk

components of 146
creating application 147

website health check
building 203–218

wildcard character (*) 174
Windows

connecting to virtual machines from 73
EC instances on 270
installing CLI on 109–110
SSH client on 32

WordPress
AWS installation example

costs 52–53
creating infrastructure 37–44
load balancer 47–48
MySQL database 49–51
web servers 45–47

X

Xen 64

Y

yum package manager 85–86, 144, 168

For ordering information go to www.manning.com

Learn Amazon Web Services in a Month of Lunches
by David Clinton

ISBN: 9781617294440
328 pages, $39.99
August 2017

AWS Lambda in Action
Event-driven serverless applications
by Danilo Poccia

ISBN: 9781617293719
384 pages, $49.99
November 2016

Google Cloud Platform in Action
by JJ Geewax

ISBN: 9781617293528
632 pages, $59.99
September 2018

Learn Azure in a Month of Lunches
by Iain Foulds

ISBN: 9781617295171
375 pages, $44.99
September 2018

RELATED MANNING TITLES

https://www.manning.com/books/learn-amazon-web-services-in-a-month-of-lunches
https://www.manning.com/books/aws-lambda-in-action
https://www.manning.com/books/google-cloud-platform-in-action
https://www.manning.com/books/learn-azure-in-a-month-of-lunches
https://www.manning.com/books/learn-amazon-web-services-in-a-month-of-lunches
https://www.manning.com/books/aws-lambda-in-action
https://www.manning.com/books/google-cloud-platform-in-action
https://www.manning.com/books/learn-azure-in-a-month-of-lunches

Storage & Database

Abbr. Name Description Where

S3 Amazon Simple Storage Service Object store to save data without any
size restrictions

8

Amazon Glacier Inexpensive data archive solution 8.4

EBS Amazon Elastic Block Store Network attached block level storage
for EC2 instances

9.1

Amazon EC2 Instance Store Block level storage for EC2 instances 9.2

EFS Amazon Elastic File System Scalable network file system based on
NFSv4

10

RDS Amazon Relational Database Service MySQL, Oracle Database, Microsoft
SQL Server, or PostgreSQL

11

Amazon DynamoDB Proprietary NoSQL key-value database
with limited but powerful options for
queries

13

Amazon ElastiCache In-memory data store based on Redis
or Memcached typically used to cache
data

12

Architecting on AWS

Abbr. Name Description Where

AZ Availability Zone Group of isolated data centers within a
region

14.2

ASG Amazon EC2
auto-scaling group

Observes a fleet of servers: Replaces
faulty servers and
increases/decreases the size of the
fleet based on external triggers like
CPU usage

17

Amazon CloudWatch Keeps track of metrics and triggers
alarms when a threshold is reached

14.1

ELB Elastic Load Balancing Load balancer for EC2 instances 15.1

ALB Application Load Balancer Layer 7 load balancer with HTTP and
HTTPS support

15.1

SQS Amazon Simple Queue Service Message queue 15.2

Michael Wittig ● Andreas Wittig

T
he largest and most mature of the cloud platforms, AWS
offers over 100 prebuilt services, practically limitless
compute resources, bottomless secure storage, as well as

top-notch automation capabilities. This book shows you how
to develop, host, and manage applications on AWS.

Amazon Web Services in Action, Second Edition is a comprehen-
sive introduction to deploying web applications in the AWS
cloud. You’ll fi nd clear, relevant coverage of all essential AWS
services, with a focus on automation, security, high availabil-
ity, and scalability. This thoroughly revised edition covers the
latest additions to AWS, including serverless infrastructure
with AWS Lambda, sharing data with EFS, and in-memory
storage with ElastiCache.

What’s Inside
● Completely revised bestseller!
● Secure and scale distributed applications
● Deploy applications on AWS
● Design for failure to achieve high availability
● Automate your infrastructure

Written for mid-level developers and DevOps engineers.

Andreas and Michael Wittig are software engineers and DevOps
consultants focused on AWS. Together, they migrated the fi rst
bank in Germany to AWS in 2013.

To download their free eBook in PDF, ePub, and Kindle formats,
owners of this book should visit

manning.com/books/amazon-web-services-in-action-second-edition

$54.99 / Can $72.99 [INCLUDING eBOOK]

Amazon Web Services IN ACTION Second Edition

CLOUD/AWS

M A N N I N G

“Slices through the
complexity of AWS using
examples and visuals to

cement knowledge in the
minds of readers.”

—From the Foreword by
Ben Whaley

AWS community hero and author

“The authors’ ability to
explain complex concepts is

the real strength of the book.”—Antonio Pessolano
Consoft Sistemi

“Useful examples, fi gures,
and sources to help you

 learn effi ciently.”
—Christof Marte, Daimler-Benz

“Does a great job of
explaining some of the key

services in plain English
so you have the knowledge
necessary to dig deeper.”

—Ryan Burrows
Rooster Park Consulting

See first page

	Amazon Web Services in Action, Second Edition
	brief contents
	contents
	foreword
	preface
	acknowledgments
	about this book
	Roadmap
	Code conventions and downloads
	Book forum

	about the authors
	about the cover illustration
	Part 1: Getting started
	Chapter 1: What is Amazon Web Services?
	1.1 What is cloud computing?
	1.2 What can you do with AWS?
	1.2.1 Hosting a web shop
	1.2.2 Running a Java EE application in your private network
	1.2.3 Implementing a highly available system
	1.2.4 Profiting from low costs for batch processing infrastructure

	1.3 How you can benefit from using AWS
	1.3.1 Innovative and fast-growing platform
	1.3.2 Services solve common problems
	1.3.3 Enabling automation
	1.3.4 Flexible capacity (scalability)
	1.3.5 Built for failure (reliability)
	1.3.6 Reducing time to market
	1.3.7 Benefiting from economies of scale
	1.3.8 Global infrastructure
	1.3.9 Professional partner

	1.4 How much does it cost?
	1.4.1 Free Tier
	1.4.2 Billing example
	1.4.3 Pay-per-use opportunities

	1.5 Comparing alternatives
	1.6 Exploring AWS services
	1.7 Interacting with AWS
	1.7.1 Management Console
	1.7.2 Command-line interface
	1.7.3 SDKs
	1.7.4 Blueprints

	1.8 Creating an AWS account
	1.8.1 Signing up
	1.8.2 Signing In
	1.8.3 Creating a key pair

	1.9 Create a billing alarm to keep track of your AWS bill

	Chapter 2: A simple example: WordPress in five minutes
	2.1 Creating your infrastructure
	2.2 Exploring your infrastructure
	2.2.1 Resource groups
	2.2.2 Virtual machines
	2.2.3 Load balancer
	2.2.4 MySQL database
	2.2.5 Network filesystem

	2.3 How much does it cost?
	2.4 Deleting your infrastructure

	Part 2: Building virtual infrastructure consisting of computers and networking
	Chapter 3: Using virtual machines: EC2
	3.1 Exploring a virtual machine
	3.1.1 Launching a virtual machine
	3.1.2 Connecting to your virtual machine
	3.1.3 Installing and running software manually

	3.2 Monitoring and debugging a virtual machine
	3.2.1 Showing logs from a virtual machine
	3.2.2 Monitoring the load of a virtual machine

	3.3 Shutting down a virtual machine
	3.4 Changing the size of a virtual machine
	3.5 Starting a virtual machine in another data center
	3.6 Allocating a public IP address
	3.7 Adding an additional network interface to a virtual machine
	3.8 Optimizing costs for virtual machines
	3.8.1 Reserve virtual machines
	3.8.2 Bidding on unused virtual machines

	Chapter 4: Programming your infrastructure: The command-line, SDKs, and CloudFormation
	4.1 Infrastructure as Code
	4.1.1 Automation and the DevOps movement
	4.1.2 Inventing an infrastructure language: JIML

	4.2 Using the command-line interface
	4.2.1 Why should you automate?
	4.2.2 Installing the CLI
	4.2.3 Configuring the CLI
	4.2.4 Using the CLI

	4.3 Programming with the SDK
	4.3.1 Controlling virtual machines with SDK: nodecc
	4.3.2 How nodecc creates a virtual machine
	4.3.3 How nodecc lists virtual machines and shows virtual machine details
	4.3.4 How nodecc terminates a virtual machine

	4.4 Using a blueprint to start a virtual machine
	4.4.1 Anatomy of a CloudFormation template
	4.4.2 Creating your first template

	Chapter 5: Automating deployment: CloudFormation, Elastic Beanstalk, and OpsWorks
	5.1 Deploying applications in a flexible cloud environment
	5.2 Comparing deployment tools
	5.2.1 Classifying the deployment tools
	5.2.2 Comparing the deployment services

	5.3 Creating a virtual machine and run a deployment script on startup with AWS CloudFormation
	5.3.1 Using user data to run a script on startup
	5.3.2 Deploying OpenSwan: a VPN server to a virtual machine
	5.3.3 Starting from scratch instead of updating

	5.4 Deploying a simple web application with AWS Elastic Beanstalk
	5.4.1 Components of AWS Elastic Beanstalk
	5.4.2 Using AWS Elastic Beanstalk to deploy Etherpad, a Node.js application

	5.5 Deploying a multilayer application with AWS OpsWorks Stacks
	5.5.1 Components of AWS OpsWorks Stacks
	5.5.2 Using AWS OpsWorks Stacks to deploy an IRC chat application

	Chapter 6: Securing your system: IAM, security groups, and VPC
	6.1 Who?s responsible for security?
	6.2 Keeping your software up to date
	6.2.1 Checking for security updates
	6.2.2 Installing security updates on startup
	6.2.3 Installing security updates on running virtual machines

	6.3 Securing your AWS account
	6.3.1 Securing your AWS account?s root user
	6.3.2 AWS Identity and Access Management (IAM)
	6.3.3 Defining permissions with an IAM policy
	6.3.4 Users for authentication, and groups to organize users
	6.3.5 Authenticating AWS resources with roles

	6.4 Controlling network traffic to and from your virtual machine
	6.4.1 Controlling traffic to virtual machines with security groups
	6.4.2 Allowing ICMP traffic
	6.4.3 Allowing SSH traffic
	6.4.4 Allowing SSH traffic from a source IP address
	6.4.5 Allowing SSH traffic from a source security group

	6.5 Creating a private network in the cloud: Amazon Virtual Private Cloud (VPC)
	6.5.1 Creating the VPC and an internet gateway (IGW)
	6.5.2 Defining the public bastion host subnet
	6.5.3 Adding the private Apache web server subnet
	6.5.4 Launching virtual machines in the subnets
	6.5.5 Accessing the internet from private subnets via a NAT gateway

	Chapter 7: Automating operational tasks with Lambda
	7.1 Executing your code with AWS Lambda
	7.1.1 What is serverless?
	7.1.2 Running your code on AWS Lambda
	7.1.3 Comparing AWS Lambda with virtual machines (Amazon EC2)

	7.2 Building a website health check with AWS Lambda
	7.2.1 Creating a Lambda function
	7.2.2 Use CloudWatch to search through your Lambda function?s logs
	7.2.3 Monitoring a Lambda function with CloudWatch metrics and alarms
	7.2.4 Accessing endpoints within a VPC

	7.3 Adding a tag containing the owner of an EC2 instance automatically
	7.3.1 Event-driven: Subscribing to CloudWatch events
	7.3.2 Implementing the Lambda function in Python
	7.3.3 Setting up a Lambda function with the Serverless Application Model (SAM)
	7.3.4 Authorizing a Lambda function to use other AWS services with an IAM role
	7.3.5 Deploying a Lambda function with SAM

	7.4 What else can you do with AWS Lambda?
	7.4.1 What are the limitations of AWS Lambda?
	7.4.2 Impacts of the serverless pricing model
	7.4.3 Use case: Web application
	7.4.4 Use case: Data processing
	7.4.5 Use case: IoT back end

	Part 3: Storing data in the cloud
	Chapter 8: Storing your objects: S3 and Glacier
	8.1 What is an object store?
	8.2 Amazon S3
	8.3 Backing up your data on S3 with AWS CLI
	8.4 Archiving objects to optimize costs
	8.4.1 Creating an S3 bucket for the use with Glacier
	8.4.2 Adding a lifecycle rule to a bucket
	8.4.3 Experimenting with Glacier and your lifecycle rule

	8.5 Storing objects programmatically
	8.5.1 Setting up an S3 bucket
	8.5.2 Installing a web application that uses S3
	8.5.3 Reviewing code access S3 with SDK

	8.6 Using S3 for static web hosting
	8.6.1 Creating a bucket and uploading a static website
	8.6.2 Configuring a bucket for static web hosting
	8.6.3 Accessing a website hosted on S3

	8.7 Best practices for using S3
	8.7.1 Ensuring data consistency
	8.7.2 Choosing the right keys

	Chapter 9: Storing data on hard drives: EBS and instance store
	9.1 Elastic Block Store (EBS): Persistent block-level storage attached over the network
	9.1.1 Creating an EBS volume and attaching it to your EC2 instance
	9.1.2 Using EBS
	9.1.3 Tweaking performance
	9.1.4 Backing up your data with EBS snapshots

	9.2 Instance store: Temporary block-level storage
	9.2.1 Using an instance store
	9.2.2 Testing performance
	9.2.3 Backing up your data

	Chapter 10: Sharing data volumes between machines: EFS
	10.1 Creating a filesystem
	10.1.1 Using CloudFormation to describe a filesystem
	10.1.2 Pricing

	10.2 Creating a mount target
	10.3 Mounting the EFS share on EC2 instances
	10.4 Sharing files between EC2 instances
	10.5 Tweaking performance
	10.5.1 Performance mode
	10.5.2 Expected throughput

	10.6 Monitoring a filesystem
	10.6.1 Should you use Max I/O Performance mode?
	10.6.2 Monitoring your permitted throughput
	10.6.3 Monitoring your usage

	10.7 Backing up your data
	10.7.1 Using CloudFormation to describe an EBS volume
	10.7.2 Using the EBS volume

	Chapter 11: Using a relational database service: RDS
	11.1 Starting a MySQL database
	11.1.1 Launching a WordPress platform with an RDS database
	11.1.2 Exploring an RDS database instance with a MySQL engine
	11.1.3 Pricing for Amazon RDS

	11.2 Importing data into a database
	11.3 Backing up and restoring your database
	11.3.1 Configuring automated snapshots
	11.3.2 Creating snapshots manually
	11.3.3 Restoring a database
	11.3.4 Copying a database to another region
	11.3.5 Calculating the cost of snapshots

	11.4 Controlling access to a database
	11.4.1 Controlling access to the configuration of an RDS database
	11.4.2 Controlling network access to an RDS database
	11.4.3 Controlling data access

	11.5 Relying on a highly available database
	11.5.1 Enabling high-availability deployment for an RDS database

	11.6 Tweaking database performance
	11.6.1 Increasing database resources
	11.6.2 Using read replication to increase read performance

	11.7 Monitoring a database

	Chapter 12: Caching data in memory: Amazon ElastiCache
	12.1 Creating a cache cluster
	12.1.1 Minimal CloudFormation template
	12.1.2 Test the Redis cluster

	12.2 Cache deployment options
	12.2.1 Memcached: cluster
	12.2.2 Redis: Single-node cluster
	12.2.3 Redis: Cluster with cluster mode disabled
	12.2.4 Redis: Cluster with cluster mode enabled

	12.3 Controlling cache access
	12.3.1 Controlling access to the configuration
	12.3.2 Controlling network access
	12.3.3 Controlling cluster and data access

	12.4 Installing the sample application Discourse with CloudFormation
	12.4.1 VPC: Network configuration
	12.4.2 Cache: Security group, subnet group, cache cluster
	12.4.3 Database: Security group, subnet group, database instance
	12.4.4 Virtual machine?security group, EC2 instance
	12.4.5 Testing the CloudFormation template for Discourse

	12.5 Monitoring a cache
	12.5.1 Monitoring host-level metrics
	12.5.2 Is my memory sufficient?
	12.5.3 Is my Redis replication up-to-date?

	12.6 Tweaking cache performance
	12.6.1 Selecting the right cache node type
	12.6.2 Selecting the right deployment option
	12.6.3 Compressing your data

	Chapter 13: Programming for the NoSQL database service: DynamoDB
	13.1 Operating DynamoDB
	13.1.1 Administration
	13.1.2 Pricing
	13.1.3 Networking
	13.1.4 RDS comparison
	13.1.5 NoSQL comparison

	13.2 DynamoDB for developers
	13.2.1 Tables, items, and attributes
	13.2.2 Primary key
	13.2.3 DynamoDB Local

	13.3 Programming a to-do application
	13.4 Creating tables
	13.4.1 Users are identified by a partition key
	13.4.2 Tasks are identified by a partition key and sort key

	13.5 Adding data
	13.5.1 Adding a user
	13.5.2 Adding a task

	13.6 Retrieving data
	13.6.1 Getting an item by key
	13.6.2 Querying items by key and filter
	13.6.3 Using global secondary indexes for more flexible queries
	13.6.4 Scanning and filtering all of your table?s data
	13.6.5 Eventually consistent data retrieval

	13.7 Removing data
	13.8 Modifying data
	13.9 Scaling capacity
	13.9.1 Capacity units
	13.9.2 Auto-scaling

	Part 4: Architecting on AWS
	Chapter 14: Achieving high availability: availability zones, auto-scaling, and CloudWatch
	14.1 Recovering from EC2 instance failure with CloudWatch
	14.1.1 Creating a CloudWatch alarm to trigger recovery when status checks fail
	14.1.2 Monitoring and recovering a virtual machine based on a CloudWatch alarm

	14.2 Recovering from a data center outage
	14.2.1 Availability zones: groups of isolated data centers
	14.2.2 Using auto-scaling to ensure that an EC2 instance is always running
	14.2.3 Recovering a failed virtual machine to another availability zone with the help of auto-scaling
	14.2.4 Pitfall: recovering network-attached storage
	14.2.5 Pitfall: network interface recovery

	14.3 Analyzing disaster-recovery requirements
	14.3.1 RTO and RPO comparison for a single EC2 instance

	Chapter 15: Decoupling your infrastructure: Elastic Load Balancing and Simple Queue Service
	15.1 Synchronous decoupling with load balancers
	15.1.1 Setting up a load balancer with virtual machines

	15.2 Asynchronous decoupling with message queues
	15.2.1 Turning a synchronous process into an asynchronous one
	15.2.2 Architecture of the URL2PNG application
	15.2.3 Setting up a message queue
	15.2.4 Producing messages programmatically
	15.2.5 Consuming messages programmatically
	15.2.6 Limitations of messaging with SQS

	Chapter 16: Designing for fault tolerance
	16.1 Using redundant EC2 instances to increase availability
	16.1.1 Redundancy can remove a single point of failure
	16.1.2 Redundancy requires decoupling

	16.2 Considerations for making your code fault-tolerant
	16.2.1 Let it crash, but also retry
	16.2.2 Idempotent retry makes fault tolerance possible

	16.3 Building a fault-tolerant web application: Imagery
	16.3.1 The idempotent state machine
	16.3.2 Implementing a fault-tolerant web service
	16.3.3 Implementing a fault-tolerant worker to consume SQS messages
	16.3.4 Deploying the application

	Chapter 17: Scaling up and down: auto-scaling and CloudWatch
	17.1 Managing a dynamic EC2 instance pool
	17.2 Using metrics or schedules to trigger scaling
	17.2.1 Scaling based on a schedule
	17.2.2 Scaling based on CloudWatch metrics

	17.3 Decouple your dynamic EC2 instance pool
	17.3.1 Scaling a dynamic EC2 instance pool synchronously decoupled by a load balancer
	17.3.2 Scaling a dynamic EC2 instances pool asynchronously decoupled by a queue

	index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y

