
www.allitebooks.com

http://www.allitebooks.org

Android 3.0 Application
Development Cookbook

Over 70 working recipes covering every aspect of
Android development

Kyle Merrifield Mew

 BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Android 3.0 Application Development
Cookbook

Copyright © 2011 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its
dealers and distributors will be held liable for any damages caused or alleged to be
caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: July 2011

Production Reference: 1150711

Published by Packt Publishing Ltd.
32 Lincoln Road
Olton
Birmingham, B27 6PA, UK.

ISBN 978-1-849512-94-7

www.packtpub.com

Cover Image by Javier Barría C. (jbarriac@yahoo.com)

www.allitebooks.com

http://www.allitebooks.org

Credits

Author
Kyle Merrifield Mew

Reviewers
Md. Mahmud Ahsan

Dr. Frank Grützmacher

Bob Kerns

Acquisition Editor
Tarun Singh

Development Editor
Alina Lewis

Technical Editor
Aaron Rosario

Copy Editor
Neha Shetty

Project Coordinator
Srimoyee Ghoshal

Proofreader
Aaron Nash

Indexer
Tejal Daruwale

Graphics
Nilesh Mohite

Production Coordinators
Kruthika Bangera

Adline Swetha Jesuthas

Cover Work
Kruthika Bangera

www.allitebooks.com

http://www.allitebooks.org

About the Author

Kyle Merrifield Mew lives in London and is currently a self employed writer and
developer. Amongst other things he has also been a soldier, a cartoonist, a teacher, a
charity fundraiser, and a web designer.

Kyle has been programming since the early eighties, has written for several technology
websites, and also done three radio plays.

www.allitebooks.com

http://www.allitebooks.org

About the Reviewers

Md. Mahmud Ahsan has been developing web applications for over six years. He has
developed some medium to large web applications and was also an architect on some
web applications. He's a Zend Certified Engineer and an expert in Facebook, Linkedin,
Twitter, Twilio API, and mashup application development. Beside his full time freelance
work, he blogs at http://thinkdiff.net and writes articles on different technologies,
especially Facebook application development. For the past year he's been developing
iOS applications as a hobby and also developed some android applications. He lives in
Bangladesh with his wife Jinat.

Currently he's working as a Freelancer, managing and developing social web applications
and iOS applications.

He publishes his own iOS applications at http://ithinkdiff.net.

He was a technical reviewer for the titles Zend Framework 1.8 Web Application
Development and PHP jQuery Cookbook by Packt.

I'm very grateful to my father who bought a computer for me in 2001, since
then I have loved programming and working with various technologies.

Dr. Frank Grützmacher has spent some years in the research of distributed electronic
design tools and worked for several German blue chip companies such as Deutsche Post
and AEG. He was involved in android platform extensions for a mobile manufacturer.
Therefore, on one hand he knows how to build large enterprise apps, and on the other
hand he knows how to make android system apps.

He is currently working for the IT daughter of the largest German Telco company.

In the past he already reviewed Corba and Java related books for American and German
publishers.

Bob Kerns has been writing software for 40 years, in fields as diverse as artificial
intelligence, computer mathematics, computer networking, internationalization, device
drivers, compilers, language design—and Android.

While studying at MIT, he worked on the pioneering Computer Algebra system Macsyma
and helped maintain the MacLisp compiler and interpreter. He also created the first
distance learning environment accessible over the Internet (then called Arpanet),
teaching Lisp programming to all comers, young and old.

After ending his studies he continued to develop the Lisp language with NIL Lisp for
VAX/VMS, before leaving MIT in 1981 to join the startup Symbolics, a vendor of Lisp
workstations. During his tenure at Symbolics, he worked on virtually every part of
the system. He extended the e-mail client to include early support for conversation
management akin to what is provided in Gmail today. He enhanced the OS support for
multiple languages, including support for Japanese. He managed development groups,
and created and managed the group responsible for QA, release management, and
software support.

After leaving Symbolics, he worked on expert systems and Lisp language development
in Japan and the US, ported the Common Lisp Interface Manager (CLIM) to Macintosh,
developed early tools for working with Unicode and international character sets. He worked
with MCC and Digital Equipment Corporation on the Cyc knowledge engineering project.

He then worked for Expert System pioneer Inference on their ART*Enterprise expert
system shell, and follow-on products, through a succession of spinoffs and acquisitions.
In 1995, as the Web was just beginning to become popular, he pushed for and developed
techniques for integrating ART*Enterprise into web services. This work then became the
foundation for a series of further products combining AI and web technologies.

For the past decade Bob has worked with a wide array of technologies including AI,
neuroscience, XML, knowledge representation, statistical inferencing, 3D computer
graphics, Encryption, and software security, and of course web and mobile technologies.

He is currently working on AI technology for a major vendor to the financial sector.

Bob resides with his family in Marin County, California.

www.PacktPub.com

Support files, eBooks, discount offers and more
You might want to visit www.PacktPub.com for support files and downloads related to
your book.

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.PacktPub.com and
as a print book customer, you are entitled to a discount on the eBook copy. Get in touch
with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up
for a range of free newsletters and receive exclusive discounts and offers on Packt books
and eBooks.

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can access, read and search across Packt's entire library of books.

Why Subscribe?
 f Fully searchable across every book published by Packt

 f Copy and paste, print and bookmark content

 f On demand and accessible via web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials for
immediate access.

Table of Contents
Preface 1
Chapter 1: Activities 5

Introduction 5
Declaring an activity 6
Starting a new activity with an intent object 10
Switching between activities 14
Returning a result from an activity 17
Storing an activity's state 20
Storing persistent activity data 24
Managing the activity lifecycle 27

Chapter 2: Layouts 33
Introduction 33
Declaring a layout 34
Applying a relative layout 37
Applying a table layout 40
Using ListViews and ListAdapters 42
Applying gravity and weight 45
Controlling layout during runtime 48
Optimizing for tablets and multiple screens 50
Dividing the screen into fragments 53
Running 3.0 and higher applications on older platforms 58

Chapter 3: Widgets 61
Introduction 61
Inserting a widget into a layout 62
Adding images to widgets 64
Creating a widget at runtime 68
Applying a style 70

ii

Table of Contents

Turning a style into a theme 73
Using a platform style or theme 76
Creating a custom component 78

Chapter 4: Menus 81
Introduction 81
Creating and inflating an options menu 82
Designing Android compliant menu icons 86
Building a context sensitive menu 88
Handling menu selections 91
Building menu groups of checkable items 94
Applying shortcut keys and submenus 97

Chapter 5: Data and Security 101
Introduction 101
Using internal storage for private data 102
Storing public data on external storage 104
Creating a SQLite database 107
Sharing multimedia files across applications with Content Providers 110
Defining and enforcing permissions 112
Providing backup functionality 115

Chapter 6: Detecting User Activity 119
Introduction 119
Reading a device's orientation 120
Measuring motion with the accelerometer 122
Listing available sensors 127
Recognizing a touch event 128
Detecting multi-touch elements 132
Recognizing gestures 134
Handling multi-touch gestures 136
Controlling on screen keyboards 139

Chapter 7: Notifying the User 145
Introduction 145
Displaying an alert dialog 146
Displaying a progress dialog 150
Customizing a dialog 152
Making a Toast 154
Notifying the user with the status bar 157
Using the Notifcation.Builder class 161

iii

Table of Contents

Chapter 8: Graphics and Animation 163
Introduction 163
Adding graphics to the ImageView class 164
Rotating an image with a matrix 167
Using ShapeDrawable and Paint 171
Drawing with a Canvas 173
Using tween animations 176
Animating with Honeycomb APIs 180
Creating stop frame animations 183
Working with OpenGL 186

Chapter 9: Multimedia 191
Introduction 191
Playing an audio file from within an application 192
Playing back video from external memory 195
Playing multiple sounds with a SoundPool 198
Recording audio 200
Recording video 202
Capturing photos with the camera 204

Chapter 10: Telephony, Networks, and the Web 209
Introduction 209
Initiating a phone call 210
Listening for phone events 212
Sending SMS messages 215
Monitoring SMS messages 218
Connecting to WiFi 220
Connecting Bluetooth devices 223
Including web content 225

Chapter 11: GPS, Locations, and Maps 229
Introduction 229
Detecting a device's location 230
Listening for location changes 232
Setting up Google Maps 235
Zooming in on a MapView 238
Setting a map's location with a GeoPoint 241
Marking a location on a map with an overlay 243

Index 247

Preface
This book covers every aspect of mobile app development, starting with major application
components and screen layout and design, before moving on to how to manage sensors
such as internal gyroscopes and near field communications. Towards the end, it delves into
smartphone multimedia capabilities as well as graphics and animation, web access, and GPS.

Whether you are writing your first app or your hundredth, this is a book that you will come
back to time and time again, with its many tips and tricks on the rich features of Android 3.

What this book covers
Chapter 1, Activities: Create and manage the fundamental components of any Android
application.

Chapter 2, Layouts: Design and format screen layouts.

Chapter 3, Widgets: Include buttons, images and a wide variety of widgets in an application.

Chapter 4, Menus: Provide and manage pop-up menus for activities and applications.

Chapter 5, Data and Security : Store and share private or public data, set up databases, and
control permissions.

Chapter 6, Detecting User Activity: Read sensors, detect gestures, and manage touch-screen
events.

Chapter 7, Notifying the User: Use and customize dialog boxes pop-ups and the status bar.

Chapter 8, Graphics and Animation: Include and manipulate images and create animations.

Chapter 9, Multimedia: Add audio and video to an application and take control of the built-in
camera.

Chapter 10, Telephony, Networks, and the Web: Incorporate phone and network functions in
applications and connect them to the Internet.

Preface

2

Chapter 11, GPS, Locations, and Maps: Detect device location and include Google maps in
applications.

Who this book is for
If you are new to Android application development and looking for a quick start, or if you are
an experienced Android developer looking for a reference guide, then this book is for you.
Ideally, you should know some Java and a little about mark-up languages but this is by no
means necessary. This book will teach you how to write rich Android applications from scratch
in no time.

Conventions
In this book, you will find a number of styles of text that distinguish between different kinds of
information. Here are some examples of these styles, and an explanation of their meaning.

Code words in text are shown as follows: "We can include other contexts through the use of
the include directive."

A block of code is set as follows:

<activity
 android:name=".DeclaringAnActivity"
 android:label="Welcome to the Android 3.0 Cookbook"
 android:screenOrientation="portrait">
 ...
</activity>

Any command-line input or output is written as follows:

keytool.exe -list -alias androiddebugkey -keystore "C:\Users\<user>\.
android\debug.keystore" -storepass android -keypass android

New terms and important words are shown in bold. Words that you see on the screen, in
menus or dialog boxes for example, appear in the text like this: "clicking the Next button
moves you to the next screen".

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Preface

3

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this
book—what you liked or may have disliked. Reader feedback is important for us to develop
titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com, and
mention the book title via the subject of your message.

If there is a book that you need and would like to see us publish, please send us a note in the
SUGGEST A TITLE form on www.packtpub.com or e-mail suggest@packtpub.com.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you to
get the most from your purchase.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do happen.
If you find a mistake in one of our books—maybe a mistake in the text or the code—we would be
grateful if you would report this to us. By doing so, you can save other readers from frustration
and help us improve subsequent versions of this book. If you find any errata, please report them
by visiting http://www.packtpub.com/support, selecting your book, clicking on the errata
submission form link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded on our website, or added to any
list of existing errata, under the Errata section of that title. Any existing errata can be viewed by
selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media. At Packt,
we take the protection of our copyright and licenses very seriously. If you come across any
illegal copies of our works, in any form, on the Internet, please provide us with the location
address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated material.

We appreciate your help in protecting our authors, and our ability to bring you valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with any
aspect of the book, and we will do our best to address it.

1
Activities

This chapter covers the following topics:

 f Declaring an activity

 f Starting a new activity with an Intent object

 f Switching between activities

 f Returning a result from an activity

 f Storing an activity's state

 f Storing persistent activity data

 f Managing the activity lifecycle

Introduction
The Android SDK provides a powerful tool for programming mobile devices, and the best way
to master such a tool is to get our hands dirty right from the very beginning.

You can work through this book step by step as a complete guide, and if you have ideas for
your own applications, which I'm sure you do, then just look up the relevant chapter and
recipe and dive right in.

The Activity class provides one of the fundamental building blocks of Android development,
forming the primary interface between the user and an application.

Activities are the elements of an application that the user sees and interacts with and they
are generally displayed within a rectangular portion (if not all) of the screen. For those with
a background in Java, an activity can be thought of as being similar in function to the Swing
JFrame.

Activities

6

This chapter explains how to declare and launch activities within an application, and how
to manage several activities at once by sharing data between them, requesting results from
them, and by calling one activity from within another.

This chapter also briefly explores the Intent object, which is often used in conjunction with
activities (as well as other fundamental components) and is very handy for starting an activity
from any point.

Before following the recipes in this book you will need to install the Android
SDK, the Android AVD manager, and the Eclipse IDE, along with the ADT
plugin. The ADT plugin, which stands for Android Development Tools,
provides a seamless way to add Android-specific controls to the Eclipse IDE.
Instructions on how to do this can be found at http://developer.
android.com/sdk/installing.html.

Declaring an activity
Activities and other application components, such as services, are declared in the
AndroidManifest XML file. Declaring an activity is how we tell Android about how the activity
can be requested, and what code to run when it is requested. For example, an application will
usually indicate that at least one activity should be visible as a desktop icon and serve as the
main entry point to the application.

Getting ready
As with most recipes, we will be using the Eclipse IDE. If you have not done so already, start
up Eclipse and ensure that you have installed the ADT Plugin.

Android projects are built against a target platform or API level. Here we have used API level
8, which corresponds to the Android 2.2 platform (FroYo). It is quite possible to use any level
for this task but if you intend to make use of the 'holographic' UI you will need to look at the
recipe about optimizing for 3.0 in Chapter 2, Layouts.

How to do it...
The Eclipse Android project wizard is as good a place to start building an application as any
and it will automatically generate a manifest file that includes a basic activity declaration:

1. Run the project wizard. From the Eclipse File menu select New and then
Android Project.

Chapter 1

7

2. Enter the details of your project as you can see in the next screenshot and
click on Finish:

3. Open up the manifest file from the Package Explorer, and then click on the
AndroidManifest.xml tab at the bottom to display the code that the IDE has
produced.

Activities

8

4. Within the <activity> element, find the following attributes:

android:name=".DeclaringAnActivity"

android:label="@string/app_name"

5. Edit the code so that it matches the following snippet:

<activity

 android:name=".DeclaringAnActivity"

 android:label="Welcome to the Android 3.0 Cookbook"

 android:screenOrientation="portrait">

 ...

</activity>

6. Run the application on a device or emulator. The title bar and screen orientation now
reflect the changes that we have made. If you have not done this before, instructions
can be found at http://developer.android.com/guide/developing/
building/building-eclipse.html.

Note that the use of string literals, as in "Welcome to the Android 3.0
Cookbook", is not considered good practice, as it makes translation next to
impossible. String constants should be defined in a separate XML file; a literal
is used here (and elsewhere in the book) only to simplify examples.

How it works...
An activity represents a single task that the user can perform, such as editing some
text or selecting a media file from a list. Each of our activities must be declared in the
AndroidManifest XML file, which resides in the root directory of the project.

Chapter 1

9

The project wizard provides us with two basic attributes:

 f The name DeclaringAnActivity refers to the Java subclass that will contain our
activity's methods and fields.

 f The label app_name acts as a title for our application. It is displayed on the title bar
of the device at runtime and also as the text under the application icon.

We also added an attribute of our own, screenOrientation, which does exactly what you
might expect it to.

The manifest is used to control an activity's start-up state and to apply features such as
themes, or as just demonstrated, screen orientation. As we will see later though, most
attributes can be set and changed dynamically through Java code as well.

Activities

10

Downloading the example code
You can download the example code files for all Packt books you have
purchased from your account at http://www.PacktPub.com. If you
purchased this book elsewhere, you can visit http://www.PacktPub.
com/support and register to have the files e-mailed directly to you.

Starting a new activity with an intent object
The Android application model can be seen as a service-oriented one, with activities as
components and intents as the messages sent between them. Here, an intent is used to start
an activity that displays the user's call log, but intents can be used to do many things and we
will encounter them throughout this book.

Getting ready
To keep things simple, we are going to use an intent object to start one of Android's built-in
activities, rather than create a new one. This only requires a very basic application, so start a
new Android project with Eclipse and call it ActivityStarter or something like that.

How to do it...
We are going to edit the Java subclass responsible for the main activity: the one declared
in the manifest file. This class extends the activity class, and by overriding its onCreate()
method we can introduce code that will be executed when the application is first launched:

1. Using the Package Explorer, open the Java file inside the src folder of the project. It
will have the same name as the activity, entered when the project was created:

Chapter 1

11

2. Add a new method to the class, similar to this one:
void startActivity() {

 Intent myIntent = new Intent();

 myIntent.setAction(Intent.ACTION_CALL_BUTTON);

 startActivity(myIntent);

}

3. Now, call this method from the onCreate() method so that it executes when the
application is launched:
@Override

public void onCreate(Bundle state) {

 super.onCreate(state);

 setContentView(R.layout.main);

 startActivity();

}

4. Save and run the project. The application now displays the user's call log.

Activities

12

5. If this generates an error message, it may be that the correct libraries have not been
imported. To use intents we have to import the relevant library, which can be done
with import android.content.Intent; however it's easy to get Eclipse to
import any missing libraries simply by pressing Shift + Ctrl + O.

6. Press the back button on the device (or emulator) to see that the call log activity
was actually called from our original main activity.

How it works...
Intents operate as asynchronous messages sent between application components and
they are used to activate services and broadcast receivers as well as activities. Intents are
passive data structures that provide an infrastructure for our activities and other components.

The onCreate() method is called as soon as the activity starts and so calling our
startActivity() method from within it means that we are immediately taken to the call
log activity. More often than not we would use a button or menu item to perform such an
action, and we haven't done so in order to simplify the demonstration and make it easier to
incorporate in your own application.

Again, note that this project was built against Android 2.2 (API level 8) but this choice was
arbitrary as the libraries used have been available since Android 1.5 and you should, ideally,
build against the target device that you are testing on.

There's more...
The previous example required only an action to be set but most intent objects make use
of a setData() method as well as the setAction() method used.

Chapter 1

13

Setting data and action
Replace the setAction() statement in the example with these two lines:

myIntent.setAction(Intent.ACTION_VIEW);
myIntent.setData(android.provider.MediaStore.Images.Media.INTERNAL_
CONTENT_URI);

This will open the device's image gallery when run and utilize both data and action parts of
the intent.

Exploring other functions with auto-complete
Eclipse's auto-complete function allows us to explore Android's other baked-in activities.
Simply start entering the code here and then scroll through the lists presented:

If the drop-down list fails to appear, press Ctrl + Space but note that when components
share methods you may well see actions that correspond to other classes such as services
or broadcasts, although the inline documentation is quite thorough and will mention when
specific data or extra parameters are required.

See also
To start an activity from a menu selection, see the recipe Handling menu selections in
Chapter 4, Menus.

Activities

14

Switching between activities
Often we will want to activate one activity from within another. Although this is not a difficult
task, it will require more setting up than the previous two recipes as it will need two activities
to be declared in the Manifest, a new Class to serve as our second activity, and a button
along with a click listener to perform the switch.

Getting ready
This recipe can be started from scratch, so create a new Android project in Eclipse and call it
ActivitySwitcher. Creating a project with the wizard automatically generates the first of
our activities. This example can be built against any platform target and here we have used
2.2 (API level 8).

How to do it...
First we create a new public class that we will use to create the second activity:

1. Create a new public class in the same location as the original activity subclass using
the tool bar's New Java Class icon or the package's context menu from the Package
Explorer, selecting New and then Class.

2. Name the class MySubActivity or something similar and make sure to complete
the Superclass field as seen in the following screenshot:

Chapter 1

15

3. Next, we need to declare our new activity in the manifest file. Open the
AndroidManifest.xml file from the Package Explorer and select the
Application tab.

4. Under Application Nodes, click on the Add... button and then select Activity.

5. In the panel on the right-hand side, fill in the Name field as .MySubActivity
and the Label field as my sub activity.

6. Open the AndroidManifest.xml tab and check whether these changes are reflected
in the XML, which should look similar to the following snippet:
<activity

 android:name=".MySubActivity"

Activities

16

 android:label="my sub activity">

</activity>

7. Next, we must add a button that the user can click on to switch activities. This is
set up through the main.xml file which resides in the res/layout folder in the
Package Explorer.

8. Open the main.xml file and click on the XML tab at the bottom so that the code can
be edited.

9. Add the following <Button> element just after the <TextView> element that was
generated automatically:
<Button

 android:text="click to switch activities"

 android:id="@+id/main_activity_button"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content">

</Button>

10. Now open the original Java activity class, ActivitySwitcher or whatever you
called it.

11. Add the following code to the onCreate() method after the setContentView(R.
layout.main); statement, making sure to replace the package and class
parameters in the setClassName() call with your own, as they will most likely be
different:
Button switchButton = (Button) findViewById(R.id.main_activity_
button);

switchButton.setOnClickListener(new OnClickListener() {

 @Override

 public void onClick(View v) {

 Intent intent = new Intent();

 String packageName =

 "com.packtpub.android.activityswitcher";

 String className =

 "com.packtpub.android.activityswitcher.MySubActivity";

 intent.setClassName(packageName, className);

 startActivity(intent);

 }

});

12. Run the application on a device or emulator. Clicking on the button will now start the
sub activity.

Chapter 1

17

How it works...
This new activity is not a very exciting application. Our activity does nothing but demonstrate
how to switch from one activity to another, which of course will form a fundamental aspect of
almost any application that we develop.

In most cases there would be a separate layout declaration alongside main.xml in the res/
layout folder for each new activity. Also a button, or some other object, to return us to our
original activity would be quite reasonable but these features have been omitted here simply
to save us the extra typing, and of course, the user can always use the device's own Back
button to achieve this.

We have seen how to create a new subclass for each new activity and how to declare these
in the manifest. We have also seen how a UI element such as a button is declared in an XML
file, main.xml, and then associated with a data member in Java with the findViewById()
method.

Again we have made use of the intent object, not only to start the new activity but also to
specify which activity class to run.

See also
To learn more about embedding widgets like the Button, see Chapter 3, Widgets.

Returning a result from an activity
Being able to start one activity from another is all well and good, but we will often need to
know how the called activity has fared in its task or even which activity has been called. The
startActivityForResult() method provides the most straightforward way to do this.

Getting ready
Returning a result from an activity is not that different from calling one the way we did in the
previous recipe. Start up a new Android project in Eclipse and call it GettingResults.

How to do it...
In this recipe we will need to create a new activity class, provide it with an onCreate()
method, then edit our default class and include our new activity in the manifest file:

1. Create a new class called MyNewActivity in the same package as the
GettingResults class and give it the Superclass android.app.Activity.

Activities

18

2. Extend the class as an activity, provide it with an onCreate() method, and fill it out
as given next.

3. Pressing Ctrl + Space once you have typed as far as public void onCrea will
prompt Eclipse to complete most of this method for you:
public class MyNewActivity extends Activity {

 @Override

 public void onCreate(Bundle state) {

 super.onCreate(state);

 setResult(42);

 finish();

 }

}

4. Press Ctrl + Shift + O. This will import the following libraries:
import android.app.Activity;

import android.os.Bundle;

5. Open the GettingResults class and edit it to look like this:
public class GettingResults extends Activity {

 @Override

 public void onCreate(Bundle state) {

 super.onCreate(state);

 setContentView(R.layout.main);

 Intent i = new Intent(this, MyNewActivity.class);

 startActivityForResult(i, 0);

 }

 @Override

 protected void onActivityResult(int requestCode,

 int resultCode, Intent data) {

 super.onActivityResult(requestCode, resultCode, data);

 Toast.makeText(this, Integer.toString(resultCode),

 Toast.LENGTH_LONG).show();

 }

}

6. Import any library the class needs with Ctrl + Shift + O.

7. Open the manifest file and include a new <activity> element underneath the one
that is already there. Include the following attributes:
<activity

Chapter 1

19

 android:name=".MyNewActivity"

 android:label="my new activity">

</activity>

8. Run the application on a device or an emulator. A small pop-up appears in the initial
activity that has been passed from the called one:

How it works...
Here, the called activity used setResult() to return a result code back to the calling
activity. We used an arbitrary value in our example but a result code can be used to
represent an outcome such as the index of a selected item.

The corresponding member in the calling activity is the onActivityResults()
method. Besides the result code that we just sent from the called activity, the method
receives a request code. This is simply the integer value that was passed with the
startActivityForResult() call which takes the form:

startActivityForResult(Intent intent, int requestCode);

We used 0 as our request code because we knew where it came from—but this value can be
used to identify where the request originated in less trivial applications with several activities.

If startActivityForResult() is called with a negative request code it
will act exactly as if it were a call to startActivity()—that is, it will not
return a result.

Activity results are always handled by the calling activity's onActivityResults() method,
which makes use of the request code as well as the result code.

Activities

20

We made use of the Toast object which is a neat little pop-up view that can be used to
unobtrusively inform the user of some event or the other. It also functions as a handy
little tool for on-the-fly debugging as it doesn't need setting up or screen estate.

There's more...
In the previous example, we only returned an integer with setResult() but there is an
alternative format.

Returning an intent with the result code
To return an intent along with the result code back to the calling activity, use:

setResult(int resultCode, Intent data);

Applied to the previous demonstration, the code would then look something like this:

Intent i = new Intent();
setResult(42, i);

finish();

See also
To learn more about creating new activity classes refer to the previous recipe, Switching
between activities.

For more information on Toasts see the recipe Making a Toast in Chapter 7, Notifying the user.

Storing an activity's state
A smart phone is a dynamic environment for software to exist in and an application can be
interrupted for any number of reasons. Even turning the handset on its side will cause an
activity to reload in orientation sensitive programs.

Android provides SQLite for storing and retrieving data but this would a little heavy handed for
storing an instance value or two and fortunately the activity class has built-in methods that we
can override and use to store primitive name or value pairs.

Getting ready
Our recipes get a little more involved from here on and so we will not be able to include all
the code in the given examples. We will assume that the reader is familiar with the subjects
covered in the past few recipes and will be able to create applications with the necessary
elements without recourse to the exact text. If not, have a quick look through the preceding
recipes. We will not introduce any new subjects without fully explaining them.

Chapter 1

21

1. Create a new application project and call it StateSaver.

2. Include these elements within the main.xml layout file:

 � An EditText

 � A Button

 � A TextView

3. Provide them with the following android:ids:

 � @+id/edit_text

 � @+id/button

 � @+id/text_view

4. Change the text in the boxes to match the following screenshot:

How to do it...
In this recipe we will create a simple application that 'remembers' a line of text that we enter
when the activity is reloaded. To do this we override the activity's onSaveInstanceState()
and onRestoreInstanceState() methods:

1. Declare the three UI elements that we just created as class-wide fields in the activity
Java file, as follows:
public class StateSaver extends Activity {

 private EditText mEditText;

 private Button mButton;

 private TextView mTextView;

2. We also need a String constant:
 private static final String KEY = null;

Activities

22

3. Inside the onCreate() method and after the setContentView() statement
associate these views with their Resource IDs:
mEditText = (EditText) findViewById(R.id.edit_text);

mButton = (Button) findViewById(R.id.button);

mTextView = (TextView) findViewById(R.id.text_view);

4. Create a click listener for our button (also inside onCreate()):
mButton.setOnClickListener(new OnClickListener() {

 @Override

 public void onClick(View v) {

 mTextView.setText(mEditText.getText().toString);

 }

});

5. Now is a good time to import any libraries. Pressing Shift + Ctrl + O will cause Eclipse
to offer you a choice between android.view.View.OnClickListener and
android.content.DialogInterface.OnClickListener. Make sure that you
select android.view.View.

6. Beneath the onCreate()method, add the onSaveInstanceState() method:
@Override

public void onSaveInstanceState(Bundle state) {

 state.putString(KEY, mTextView.getText().toString());

 super.onSaveInstanceState(state);

}

7. Beneath this last method, include the onRestoreInstanceState() method:
@Override

public void onRestoreInstanceState(Bundle state) {

 super.onRestoreInstanceState(state);

 mTextView.setText(state.getString(KEY));

}

8. Run the project on a device or emulator. Enter some text into the EditText view and
click on the button. Then restart the activity by exiting and restarting or by rotating the
handset. When the activity begins afresh, the TextView restores to its remembered
state.

Chapter 1

23

How it works...
The way these state saving methods work is really quite simple. When our application
is dropped from memory, a Bundle of name/value pairs can be stored with the
onSaveInstanceState() method. This Bundle is then handed back when the
activity restarts to both the onRestoreInstanceState() and the onCreate()
methods. This is an important point as the Bundle is made available to both procedures
and gives us a choice over where and how to handle activity restarts. This is because
onRestoreInstanceState() is not called until after onStart() meaning we can apply
any initialization that we may need before restoring our values.

There's more...
The two methods introduced here are not the only way to ensure that a screen component's
state is stored.

Using ID to include a view in the Bundle
Android will automatically include any view that has been supplied with an ID in the saved
instance state Bundle when the activity is interrupted, regardless of whether we have included
the two methods discussed here.

See also
Internal memory can also be used to store other private data and details on how to do this
can be found in the recipe Using internal storage for private data in Chapter 5, Data and
Security.

Activities

24

The recipe Storing public data on external storage in Chapter 5, Data and Security
demonstrates how to use SD cards to store data available from outside an application.

Storing persistent activity data
Being able to store information about our activities on a temporary basis is very useful but
more often than not we want our application to remember things across multiple sessions.

Obviously we can use an SQLite database, but this is a bit extreme if all we want to store the
user's name or some preference or the other. Android provides a lightweight technique for
doing this in the shape of the SharedPreferences interface.

Getting ready
It is possible to use SharedPreferences in any activity (as well as other application
components). The example we use here makes use of a TextView, an EditText, and
a Button to permanently store the user's name:

1. Create a new project with these elements and provide them with IDs in the layout.
Also edit the text value of the EditText and the Button but leave the TextView as it is.

2. Connect these up in the Java code using findViewById(). In the code here we
have named them mTextView, mEditText and mButton.

Chapter 1

25

How to do it...
In this recipe the persistent data that we want to store is a string value used to represent
the user's name. We will store this during the activity's onPause() method and restore the
value in the onCreate() method (as they are called when we most likely need to restore and
retrieve our preferences) but SharedPreferences can be applied anywhere:

1. Declare a class-wide String field, mUserName and a String constant KEY with
value null.

2. Include the following lines in the onCreate() method after the findViewById()
statements:
SharedPreferences settings = getPreferences(MODE_PRIVATE);

mUserName = settings.getString(KEY, "new user");

mTextView.setText("Welcome " + mUserName);

3. Override the onPause() method and complete it as shown here:
@Override

 protected void onPause() {

 super.onPause();

 SharedPreferences settings = getPreferences(MODE_PRIVATE);

 SharedPreferences.Editor editor = settings.edit();

 editor.putString(KEY, mUserName);

 settings.edit().putString(KEY, mUserName).commit();

}

4. Add a button and a listener to the onCreate() method so that we can actually enter
a value to be stored, as follows:
mButton.setOnClickListener(new OnClickListener() {

 @Override

 public void onClick(View v) {

 mUserName = mEditText.getText().toString();

 mTextView.setText("Welcome " + mUserName);

 }

});

Activities

26

5. Run the application on a device or an emulator. Once a new value has been entered
it will persist across sessions. In fact we would have to clear it using the device's
Applications Manager in Settings, or uninstall and reinstall the application to
completely reset it.

How it works...
We stored just one value here, the string KEY, but we could have stored any number of
primitive name/value pairs. Each data type has equivalent getters and setters, for example
SharedPreferences.getBoolean() or SharedPreferences.setInt().

When we retrieve the value, in the onCreate() method we provided a string literal "new
user". This will be used in the absence of a stored value when the file has not yet been
saved and is very useful for handling first-run events.

The saving of our preferences requires the services of the SharedPreferences.Editor. This is
evoked with edit() and accepts remove() and clear() procedures as well as setters like
the putString() one we used. Note that we must conclude any storing we do here with the
commit() statement.

It is worth bearing in mind that the use of SharedPreferences is slow, and
when more than half a dozen or so values are needed it is worth considering
more serious techniques of retaining an application's data such as a
database or accessing the device's internal memory directly.

Chapter 1

27

There's more...
There is a slightly more sophisticated variant of the getPreferences() accessor,
getSharedPreferences(), which can be used for storing multiple preference sets.

Using more than one preference file
Using getSharedPreferences() is no different from its counterpart but it allows for more
than one preference file. It takes the following form:

getSharedPreferences(String name, int mode)

Here name is the file and the mode can be one of MODE_PRIVATE, MODE_WORLD_READABLE
or MODE_WORLD_WRITABLE and describe the file's access levels.

See also

To store more complex data, see the recipe Creating an SQLite database in Chapter 5, Data
and Security.

Managing the activity lifecycle
The Android OS is a dangerous place for an activity. The demand for resources on a battery-
operated platform is managed quite ruthlessly by the system. Our activities can be dumped
from memory when it's running low, without even a moment's notice, along with any data they
contain.

It is therefore essential that we understand the activity lifecycle and where our activities are
on the back stack.

Getting ready
Android supplies a series of callbacks that are executed at each stage of the activity lifecycle
and can be overridden, enabling us to anticipate user actions and execute code when the
state of an activity changes.

To prepare for this exercise, start up a new Android project in Eclipse.

Activities

28

How to do it...
We are going to record each lifecycle state with a persistent TextView whenever any of the
activity's callbacks are executed:

1. In the main.xml file, define the default TextView with android:id—we used
android:id="@+id/text_view".

2. Open the main Java activity source file and declare a class-wide TextView to
correspond with the one we just defined in XML:
private TextView mTextView;

3. Next, complete the onCreate() method as follows:
@Override

public void onCreate(Bundle state) {

 super.onCreate(state);

 setContentView(R.layout.main);

 mTextView = (TextView) findViewById(R.id.text_view);

 mTextView.append("\n created");

}

4. Now, override the onPause() callback like so:
@Override

public void onPause() {

 super.onPause();

 mTextView.append("\n pausing");

}

5. Override the onResume() method in a similar fashion:
@Override

public void onResume() {

 super.onResume();

 mTextView.append("\n resuming");

}

6. Repeat this for each of the remaining lifecycle callbacks, onStart(),
onRestart(), onStop(), and onDestroy().

7. Run the application and observe what happens when the activity is interrupted by
pressing the Back and Home keys or when a call is sent to or from the phone.

Chapter 1

29

How it works...
Take a look at the next diagram. Our activity can exist in one of three states: active, paused,
or stopped. There is also a fourth state, destroyed, but we can safely ignore it:

Activities

30

An activity is in the active state when its interface is available to the user. It persists from
onResume() until onPause() which is brought about when another activity is pushed
onto the stack. If this new activity does not entirely obscure ours, then ours will remain in
the paused state until the new activity is finished or dismissed. It will then immediately call
onResume() and continue.

When a newly started activity fills the screen or makes our activity otherwise invisible then our
activity will enter the stopped state and resumption will always invoke a call to onRestart().

When an activity is in either the paused or stopped state, the operating system can (and will)
remove it from memory when memory is low or when other applications demand it.

In circumstances where resources are demanded suddenly, for example if the
user receives a phone call, Android may kill our activity without even running
the code in our onDestroy() method. Where possible we should use
onPause() or onStop() to enable the user to navigate back to our activity
seamlessly.

It is worth noting that we never actually see the results of the onDestroy() method, as by
this point the activity has been removed. If you want to explore these methods further then it
is well worth employing Activity.isFinishing() to see if the activity is really finishing
before onDestroy() is executed, as seen in the following snippet:

@Override
 public void onPause() {
 super.onPause();

 mTextView.append("\n pausing");

 if (isFinishing()){
 mTextView.append(" ... finishing");
 }

}

There's more...
Despite the effort that we have had to put into preventing Android from shutting down our
components prematurely, there are times when we want to deliberately exit an activity.
Despite Android's robust approach to resource management it will not wipe our application if
there is no demand or if memory is readily available. Although an activity that persists in this
way is unlikely to have much of a negative impact, the user will most likely not see it that way
and blame our application for draining their battery.

Chapter 1

31

Shutting down an activity
To shut down an activity, directly call its finish() method, which in turn calls onDestroy().
To perform the same action from a child activity use the finishFromChild(Activity
child) where child is the calling sub-activity.

It is often useful to know whether an activity is being shut down or merely paused, and the
isFinishing(boolean) method returns a value indicating which of these two states the
activity is in.

In this chapter we have seen the fundamental role that the Activity class plays in an Android
application. Now that we can control the general structure of our projects, it's time to look
more closely at the individual components such as layouts and fragments, components that
make up the detail of our applications.

2
Layouts

In this chapter, we will cover the following topics:

 f Declaring a layout

 f Applying a relative layout

 f Applying a table layout

 f Using ListViews and ListAdapters

 f Applying gravity and weight

 f Controlling layout during run time

 f Optimizing for tablets and multiple screens

 f Dividing the screen into fragments

 f Running 3.0 and higher applications on older platforms

Introduction
Android provides a useful variety of Layout classes for containing and organizing the
individual elements of an activity such as buttons, checkboxes, and other views.

The Android User Interface is defined as a hierarchy of Views and ViewGroups. The
ViewGroup is a container object that acts as the base class for Android's family of Layout
classes, which are extended from it.

Layouts can be combined and nested to produce almost any configuration of visual screen
components that we can imagine. This hierarchy of views can be, and mostly is, declared
statically using XML files. The root node of these files must be a ViewGroup, that is, one of the
provided Layout classes or a custom ViewGroup that we have created ourselves. Terminating
nodes in the structure are all either Views or subclasses of the View object.

Layouts

34

Android provides several built-in layout types designed for specific purposes, such as the
RelativeLayout which allows views to be positioned with respect to other elements and
the TableLayout for producing grids of views. We can also justify views with Gravity and
provide proportional size with Weight control. Layouts and ViewGroups can be nested within
each other to create complex configurations and Android provides over a dozen different
Layout objects for managing widgets, lists, tables, galleries, and other display formats.

Starting with Android 3.0 it has been possible to produce multi-pane Activities with the
Fragment class, which behaves in part like an Activity itself and part like a ViewGroup,
and in addition these new features are made available to earlier platforms through the
Compatibility package.

Declaring a layout
The Eclipse project wizard generates a LinearLayout automatically, in the form of the res/
layout/main.xml file, and inflates it for us from the onCreate() callback with the
setContentView(R.layout.main) statement. Here we will create two, slightly different
layouts and switch between them with a button.

Getting ready
We will begin this task by editing our main layout file, so start a new Android project in Eclipse
and open the res/layout folder.

How to do it...
1. Open and edit the res/layout/main.xml file so that it matches the following code:

<?xml version="1.0" encoding="utf-8"?>

<LinearLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="match_parent"
 android:layout_height="match_parent">

 <TextView
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="This layout is vertical." />

 <Button
 android:text="Click for a horizontal layout"
 android:id="@+id/horizontal_button"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content" />

</LinearLayout>

Chapter 2

35

2. Click on the Graphical Layout tab to check the appearance of this layout:

3. If your code contains the value fill_parent where our code has match_parent,
you can safely ignore this as they mean exactly the same thing.

4. Inside the same folder make an exact copy of main.xml and call it my_layout.xml.

5. In this new layout file make changes only to the following four lines:
android:orientation="horizontal"
android:text="This layout is horizontal."
android:text="Click for a vertical layout"
android:id="@+id/vertical_button"

6. Preview the new layout by clicking on the Graphical Layout tab.

7. Now, open the main Java Activity file for editing and have the class implement the
OnClickListener interface as follows:
public class DeclaringALayout
 extends Activity implements OnClickListener {

8. Directly beneath this declare two class wide buttons:
private Button mHorizontalButton;
private Button mVerticalButton;

Layouts

36

9. Then directly under the setContentView() statement in onCreate(), associate
the buttons with their XML counterparts:
mHorizontalButton =
 (Button) findViewById(R.id.horizontal_button);
mVerticalButton = (Button) findViewById(R.id.vertical_button);

10. Now, beneath the onCreate() method, implement the onClick() method of the
OnClickListener() interface:
public void onClick(View v) {

 if (v == mHorizontalButton) {
 setContentView(R.layout.main);
 } else if (v == mVerticalButton) {
 setContentView(R.layout.my_layout);
 }

}

11. Finally, run this exercise on a handset or emulator and use the two buttons to switch
between layouts.

How it works...
Clearly the key command here is the call to setContentView() which we have come across
before, as Eclipse includes it in the onCreate() method, to automatically inflate the main
layout, whenever we build a new project.

The setting of orientation to horizontal is not connected to screen orientation but
controls whether each view in the layout is placed to the right-hand side of or beneath the
preceding one, regardless of which way the handset is being held.

It is worth noting that vertical and horizontal orientation can also be set for a
layout by clicking the icons to the top left of the Graphical Layout pane.

There's more...
As well as identifying a layout using a resource ID integer, as we did here,
setContentView() can also take a View as an argument, for example:

findViewById(R.id.myView)
setContentView(myView);

For applications targeting Android 3.0 (API level 11) or higher, an
alternative method of laying out view containers is available.

Chapter 2

37

See also
 f For an alternative way to separate screen elements see the recipe Dividing the

screen into Fragments later in this chapter.

Applying a relative layout
The RelativeLayout subclass provides a container that allows us to position views, and even
other layouts, based on each others' screen locations. Like the LinearLayout that we saw in
the previous section, the RelativeLayout is also a ViewGroup; but it is particularly useful for
reducing the number of other ViewGroups that we may have otherwise nested within it, which
in turn saves vital memory.

Getting ready
We are going to set up a single RelativeLayout that contains widgets which are aligned
both horizontally and vertically.

Start up a new Android project in Eclipse.

How to do it...
1. Open the res/layout/main.xml file with the Graphical Layout tab and delete the

default TextView by selecting it and pressing Delete.

2. Open main.xml with the main.xml tab so that you can edit the code directly, delete
the line android:orientation="vertical", and change the opening and
closing tag types from LinearLayout to RelativeLayout. The main.xml file
should then look like this:
<?xml version="1.0" encoding="utf-8"?>

<RelativeLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 >

</RelativeLayout>

3. Again, if your code reads fill_parent where ours reads match_parent, there is
no need to change this as these values are equivalent.

4. Next, return to the Graphical Layout and select Form Widgets from the Palette on
the left of the layout pane.

Layouts

38

5. Now drag a TextView from the Palette and drop it in the top-left corner of the layout. It
should resemble the following screenshot just before you drop it:

6. Next, drag a button and hold it for a moment above the TextView that we just created. A
green grid should appear and when the button is held over any part of this grid, various
properties will appear. Release the button when it is in the position seen here:

7. Continue dragging and dropping form widgets from the palette to the layout until you
have reproduced the following pattern:

Chapter 2

39

8. It is not necessary to run this code on a handset or emulator to follow how it works;
instead, open the main.xml tab again and examine the code that the XML Layout
has generated.

To make the XML layout code more
readable, Press Ctrl + Shift + F to format it.

How it works...
This is a very straightforward exercise but it demonstrates a powerful aspect of relative
layouts. If we only had the linear layout class available to us then creating rows within columns
(or vice versa) would require a separate ViewGroup for each of these.

Examining the layout code shows that we can refer to sibling views, as in layout_below,
layout_toRightOf, and layout_alignLeft, or to the parent ViewGroup, as we did with
layout_alignParentLeft.

Note that a relative layout must have its width and height attributes set to
MATCH_PARENT (or FILL_PARENT) for these parent aligning attributes to
work, as using WRAP_CONTENT would create a circular reference.

There's more...
There are quite a few other relative properties available to views within a relative layout and
the easiest way to explore these is by right-clicking a widget in the Graphical Layout and
selecting Properties.

See also
For another example of a relative layout, see the recipe Zooming in on a MapView in Chapter
11, GPS, Locations, and Maps.

Layouts

40

Applying a table layout
Very often we will want to lay out our information in columns and rows and when we do,
Android provides us with the TableLayout and TableRow classes. TableLayout and TableRow
are very similar to the HTML <table> and <tr> tags, although any Android view can be used
as a cell, including another TableLayout. The system also includes several handy techniques
for managing and organizing our tables.

Getting ready
Start up an Android project in Eclipse and navigate to the main.xml file in the res/layout
folder.

How to do it...
1. Change the root node of the layout file from LinearLayout to TableLayout,

and delete the default TextView and the android:orientation="vertical"
attribute, leaving the code looking like this:
<?xml version="1.0" encoding="utf-8"?>

<TableLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="match_parent"
 android:layout_height="match_parent">

</TableLayout>

2. Switch to the Graphical Layout tab and select Layouts from the Palette pane and
drag a TableRow element from the Palette to the screen—it will appear as a shaded
blue rectangle and also in the Outline pane.

3. Next, open the Form Widgets palette and drag three TextViews into the TableRow,
following the orange guides, so that they lay side by side:

4. Now, provide each TextView with an android:padding of 6dip (device
independent pixels). This is most easily done by right-clicking on the View and
selecting Properties | Padding from the drop-down menu.

Chapter 2

41

5. Copy the TableRow and paste two copies underneath the first, creating a 3 by 3 grid
of TextViews. The Outline pane should look something like this:

6. In the Outline view, right-click on TableLayout and select Properties |
StretchColumns... from the drop-down menu. Now, enter a value of 1.

7. Select one of the central column's views to see the effect of the
android:stretchColumns attribute and also take some time
to examine the XML code:

How it works...
Tables with as many columns and rows as we like can be built using the TableLayout and
TableRow elements demonstrated here. Finer control over formatting can be achieved with
the stretchColumns attribute, which causes its column to take up as much space as is
available. We used the default column numbering, which begins with zero and so the second
column is referred to here as 1, but there is a TableRow property layoutColumn which can
be used to specifically index a column. For example:

<tableRow
 ...
 android:layoutColumn="2" >

Layouts

42

There's more...
Along with stretching a column to fill all available space, we can also command columns to
take up no more space than they require, and even collapse completely.

Columns can shrink as well as stretch
The shrinkColumns attribute can be applied in exactly the same way that its
stretchColumns partner is but has the opposite effect in that it will take up
no more room than it requires.

Both these commands can be applied simultaneously to a single column to generate
a perfect fit.

Hiding columns
It is often desirable to completely obscure an entire column, and the collapseColumns
attribute can be used to do this, specifying the column index in the same way we did when
stretching and shrinking columns.

It is possible to apply these controls to more than one column
at a time by specifying more than one index, for example:
android:collapseColumns="0,2,4" would cause the first, third, and fifth
columns to collapse. Again, Android will conveniently ignore any illegal values.

To un-collapse a column from within Java call setColumnsCollapsed(int column
index, boolean false).

Using ListViews and ListAdapters
The layout classes covered so far are primarily graphical and their use is mainly design
oriented, but there are layout classes that we can connect to various data structures such as
the ListView and the GridView, both of which extend the base AbsListView class.

Getting ready
Here we will need to define a string array to populate our list as well as construct a
ListAdapter to bind our data to our views. Start a new project with Eclipse and open
the res/values/strings.xml file.

Chapter 2

43

How to do it...
1. Select the strings.xml tab and include the following string array so that the whole file

matches the one here:
<?xml version="1.0" encoding="utf-8"?>
<resources>

 <string
 name="hello">Hello World, ListViewsAndAdapters!</string>

 <string
 name="app_name">ListViewsAndAdapters</string>

 <string-array
 name="cities">
 <item>Bath</item>
 <item>Birmingham</item>
 <item>Bradford</item>
 <item>Brighton</item>
 <item>Bristol</item>
 <item>Cambridge</item>
 <item>Canterbury</item>
 </string-array>

</resources>

2. Create a new XML file inside the res/layout folder called list_item.xml and
complete it as shown here:
<?xml version="1.0" encoding="utf-8"?>
<TextView
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:textSize="28dip">
</TextView>

3. In the main activity file, change the Activity declaration so that it extends ListActivity:
public class ListViewExample extends ListActivity {

Replace:
setContentView(R.layout.main);

With:
String[] c = getResources().getStringArray(R.array.cities);
setListAdapter(new ArrayAdapter<String>(this,
 R.layout.list_item, c));

Layouts

44

4. Underneath this, create a OnItemClickListener with the following lines of code:
ListView v = getListView();
v.setOnItemClickListener(new OnItemClickListener() {

 public void onItemClick(AdapterView<?> parent,
 View view, int position, long rowId) {
 String s = ((TextView) view).getText() + " "
 + position + " " + rowId;
 Toast.makeText(getApplicationContext(), s,
 Toast.LENGTH_LONG).show();
 }

});

5. Now run the project on an emulator or handset to see the populated list. Clicking an
item displays its text, position, and row ID:

How it works...
The construction of the string array cities is fairly self explanatory, as should be the way it is
referenced later with the getStringArray() call. The list is managed by an ArrayAdapter,
which is a built-in class that connects our data to our list_item definition using the
setListAdapter() call. We had, first, to reference our string resource in the usual way.

ListViews are more often than not activities in their own right and the ListActivity extension
provides us access to the setListAdapter() method and also allow us to pass this as
our context along with our view definition and the array, as required.

The use of a Toast pop-up in the click listener demonstrates not only that the list is working
but also shows the values of the last two parameters in onItemClick(), which are positions
of the View in the adapter and its row index, or ID. The first two parameters represent the
AdapterView and the View within that were clicked on; here they are both anonymous.

Chapter 2

45

There's more...
For applications targeting Android 3.0 (API level 11) or higher, it is possible for the user to
make multiple selections on a list.

Setting up a multi-choice ListView
To change the choice mode of a ListView call setChoiceMode(CHOICE_MODE_MULTIPLE_
MODAL) on your ListView and use a MultiChoiceModeListener to detect selected items with
the listener's onItemCheckedStateChanged() callback.

See also
For another example of how to create a ListView, see the recipe Dividing the screen into
fragments later in this chapter.

For more on Toasts and how to build custom pop-ups see the recipe Making a Toast in
Chapter 7, Notifying the User.

Applying gravity and weight
Android provides some useful formatting tools when it comes to fine tuning our screen
designs, including a way to specify relative size priorities for individual views and view groups.
When one considers the wide variety of screen sizes and aspects that our application may
end up running on, it is essential to be able to have a generalized control over the screen.

Getting ready
Start up a new Android project in Eclipse and from the res/layout/main.xml Graphical
Layout tab, drag three TextViews onto the form, one beneath another. Also delete the default
TextView.

How to do it...
1. From the Graphical Layout view change the layout width and height of the one at the

bottom to MATCH_PARENT in both cases. This is easily achieved without having to
edit the XML directly by right-clicking on the widget and selecting Layout Height and
Layout Width from the pop-up menu.

2. Change the layout height of the middle TextView to MATCH_PARENT in the same way.

3. Finally, change the layout height of the top view to MATCH_PARENT. By now you will
only be able to see one of the views, the topmost.

Layouts

46

4. Open the main.xml tab and give each view a different background color. Here we
have used three grays:
android:background="#333"

android:background="#666"

android:background="#999"

5. Now provide each view with a different layout weight, like so:
android:layout_weight="2"

android:layout_weight="3"

android:layout_weight="4"

6. View the resulting layout using the preview pane, which should now look something like:

7. With the top two text views, give each one either of the following attributes. Now we
can see all our views. This can be done from the Properties menu:
android:layout_gravity="center"

android:layout_gravity="right"

8. View the results in the Layout tab to see how these commands are followed.
Hopefully, the screen will now resemble the one shown here:

Chapter 2

47

How it works...
The layout_gravity tag we used here is analogous to traditional text justification,
and besides center and right we could also have used left, top, and bottom. It is
also possible to differentiate between horizontal and vertical centering with the center_
horizontal and center_vertical attributes.

The layout_weight attribute, even more than gravity, provides us control over screen
elements without ever having to know exact dimensions. The system calculates the amount of
screen estate allocated to each view based on the relative values of the layout weights. Only
those views with a weight property are considered in this calculation so that, if we wish, we can
omit views from the priority calculation by removing the weight attribute or setting it to zero.

There's more...
With the use of the pipe character (|)it is possible to apply more than one gravity attribute to
a view or view group. For example, the following will both centre and raise its owner:

android:layout_gravity="top|center"

It should be noted that the layout_gravity and gravity tags are not
the same thing. Where layout_gravity dictates where in its parent a
view should lie, gravity simply controls the positioning of the contents of a
view—for example the alignment of text in a button or text view.

Layouts

48

See also
To learn how to adjust the gravity of pop-ups see the recipe Making a Toast in Chapter 7,
Notifying the User.

Controlling layout during runtime
Specifying the UI with XML and keeping the layout separate from the application code makes
for easily maintainable projects and allows us to specify different layouts based on locale,
orientation, pixel density, docking status, and other configuration parameters.

Despite the tidiness of this approach there are occasions when we need to manipulate a
layout or another view group at runtime from within a Java method. All XML code is interpreted
by Java and we have access to ViewGroup parameters through various LayoutParams classes.

Getting ready
Here we will set up a simple layout with XML and use a LinearLayout.LayoutParams object to
change the margins of a View during run time.

Start a new Android project and navigate to the main.xml file in the res/layout folder.

How to do it....
1. Open the Graphical Layout tab and edit the default TextView so that it looks like the

one here:
<TextView
 android:text="This layout was defined in XML"
 android:id="@+id/text_view"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:textSize="18dip"
 android:padding="3dip" />

2. Beneath this, add a Button and change its ID and text properties like so:
 <Button
 android:id="@+id/button"
 android:text="OK"

3. Also provide the containing LinearLayout with an ID:
<LinearLayout
 android:id="@+id/@+id/layout"

Chapter 2

49

4. Open the main Java Activity code and declare a class wide TextView at the top:
TextView textView;

5. Set up the TextView and the Button, from within the onCreate() method:
textView = (TextView) findViewById(R.id.text_view);
Button button = (Button) findViewById(R.id.button);

6. Provide the button with the following click listener:
button.setOnClickListener(new OnClickListener() {

 @Override
 public void onClick(View v) {
 LinearLayout.LayoutParams params =
 (LinearLayout.LayoutParams) v.getLayoutParams();
 params.leftMargin = v.getRight()
 % (findViewById(R.id.layout).getWidth() - v.getWidth());
 textView.setText("This layout was changed dynamically");
 }

});

7. Compile and run the project on a handset or emulator. Clicking the button will change
the specified layout parameters and move it across the screen:

How it works...
Every view and view group has a set of layout parameters associated with it and in particular
all views have parameters that inform their parent of their desired height and width. We
express this in XML with the WRAP_CONTENT and MATCH_PARENT constants, which all views
share, but every view class has its own appropriate set of parameters based on its purpose.
For example, TextViews have parameters for controlling their text content.

Layouts

50

Every View and ViewGroup has a getLayoutParams() method that we can use to access
its layout width, layout height, and any class-specific parameters such as margin and padding.
Here we used the LayoutParams of the view that was clicked on along with our original layout
to move the button.

See also
To see how to change fragments rather than ViewGroups during runtime, see the recipe
Dividing the screen into fragments later in this chapter.

Optimizing for tablets and multiple screens
Android can be (and is) installed on many devices and our applications can end up running
on a wide variety of screen resolutions and range of pixel densities. Although the system
generally scales applications to fit most situations rather well, there are nevertheless times
when an application does not appear as we might wish. Differing pixel densities mean that
screen elements can be larger or smaller than we might like depending on the handset they
are running on.

Naturally we want our applications to run on as many devices as we can, but we do not want
them installed on devices where the screen size makes them unusable. Fortunately, Android
provides a way for us to not only ensure that our applications look how we want on any
targeted screen configuration, but also make sure that they will not even be available to users
with handsets that would not do our application justice.

In this recipe we will configure an application using the <supports-screens> element in
the manifest and resource qualified directories to control how an application renders on
screens of different sizes and/or densities.

Getting ready
Android only introduced compatibility for tablet sized screens in API level 9 (Platform 2.3.1).
Start a new Android project in Eclipse with a Build Target of level 9 or higher—here we used
10. Next, open the main.xml file in the res/layout folder.

How to do it....
1. Edit the default TextView so that it has a height of 100dip, text size of 26sp, and a

background color of #333:
android:layout_height="100dip"
android:textSize="26sp"
android:background="#333"

Chapter 2

51

2. Add another TextView beneath this one and give it both height and width of MATCH_
PARENT (or FILL_PARENT) and a background color of #666.

3. Using the AVD Manager, set up an emulator with an API level to match the project
(no lower than 9). Give it a Resolution of 640 x 1024 pixels and an Abstracted LCD
density of 320 dpi:

4. Set up a second emulator with a small screen of 240 x 320 pixels and a dpi of 160.

5. Now, run the application on both emulators and observe the difference in the way
they appear.

6. Make a copy of the layout folder that contains your main.xml file and paste it back
into the res folder, calling it layout-small.xml.

7. Edit the main.xml file in the layout-small folder so that the top TextView has a
height of 30dip and a text size of 12sp.

Layouts

52

8. Open the manifest file and add the following <supports-screens> element to the
<manifest> element:
<supports-screens
 android:resizeable="true"
 android:xlargeScreens="true"
 android:anyDensity="true" />

9. Test the project on both the emulators to see how they now maintain similar
proportions across very different physical platforms:

How it works...
For ensuring that an application looks the same when rendered on machines with different
screen densities, Android provides the density-independent pixel, written as dip, dp, or sp for
font sizes. The higher the screen density, the more the actual pixels will be displayed and this
is why the text in the top view looked the same size when rendered on both emulators when
we tested the project in step 5 previously.

This matching of size across screens is often desirable but when it is not, Android allows
us to define resources that target screen sizes specifically by using qualified directories. In
the previous example, we created a layout file in a folder called layout-small that will be
automatically applied when the program is run on small screens, and we could have done the
same with layout-large and layout-xlarge folders.

Chapter 2

53

The exact same principle applies when we want to provide resources targeted at screens with
different pixel densities, the qualifiers being ldpi, mdpi, hdpi and xhdpi, for example layout-
xhdpi or values-ldpi. A good example of how this works can be seen by examining the
contents of the qualified drawable folders that were generated with the project, where icon
PNG files were provided with appropriate resolutions for the screens in question.

When resources are required to be a specific size on any screen and not
scaled in any way we can use the nodpi qualifier as in drawable-nodpi.

Providing screen specific resources is only one way of controlling how an application manages
multiple screens; we can also inform the system of which screens our application is designed
to support with the <supports-screens> tag in the manifest. The four screen types being
smallScreens, normalScreens, largeScreens, and xlargeScreens and setting their value as
true indicates that the application is designed for such screens. Setting the value to false
on the other hand can have two possible outcomes:

1. If the screen size is smaller than the target size, for example:
android:smallScreens="false"
android:normalScreens="true"

Then, the application will be filtered out of the Android Market on devices with small
screens.

2. If the screen size is larger than the target, as in the following:
android:normalScreens="true"
android:largeScreens="false"

Then, the system will apply its own compatibility functions such as scaling to the
larger screen.

There were two other attributes we applied to the <supports-screens> tag, resizeable
and anyDensity. Setting resizeable is useful for ensuring that an Activity fills the screen.
anyDensity, when true, will tell Android to assume that the application has been designed
to work with all densities, and so not do any scaling.

See also
For other ways to manage tablet layouts see the next recipe, Dividing the screen into fragments.

Dividing the screen into fragments
So as to cater for the larger screens found on tablet devices, Android introduced the android.
app.fragment package with version 3.0 (API level 11). Fragments simplify the process of
designing and displaying multi-pane screens and are similar to layouts and view groups but
provide some of the functionality of activities.

Layouts

54

This recipe will demonstrate how to open a fragment from a list and how to control content.

Getting ready
Start a new Android project in Eclipse, making sure that the target build is API level 11 or
higher by including the following tag to the <manifest> element of the manifest file:

<uses-sdk
 android:targetSdkVersion="11" />

How to do it....
1. The main layout for this example is a horizontal, LinearLayout containing a ListView

and a fragment. The complete main.xml code looks like the lines below but
substitute the package name in the class declaration with that of your own project:
<?xml version="1.0" encoding="utf-8"?>
<LinearLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="horizontal"
 android:layout_width="match_parent"
 android:layout_height="match_parent">

 <ListView
 android:id="@+id/list"
 android:layout_width="0px"
 android:layout_weight="1"
 android:layout_height="match_parent" />

 <fragment
 class="com.packtpub.android.fragmentexample.MyFragment"
 android:id="@+id/my_fragment"
 android:layout_width="0px"
 android:layout_weight="4"
 android:layout_height="match_parent" />

</LinearLayout>

2. Next, open the main Java activity code and alter the class declaration so that it
implements an OnItemClickListener:
public class FragmentExample
 extends Activity
 implements OnItemClickListener {

Chapter 2

55

3. Beneath the setContentView() statement in the onCreate() callback, set up
the ListView defined in the activity layout:
@Override
public void onCreate(Bundle state) {
 super.onCreate(state);
 setContentView(R.layout.main);

 ListView list = (ListView) findViewById(R.id.list);
 ArrayAdapter<String> n =
 new ArrayAdapter<String>(getApplicationContext(),
 android.R.layout.simple_list_item_1,
 new String[] {
 "Ten", "Twenty", "Thirty", "Forty", "Fifty",
 "Sixty" });
 list.setAdapter(n);
 list.setOnItemClickListener(this);

}

4. Add a onItemClick() method to the activity and complete it as shown here:
public void
 onItemClick(AdapterView<?> parent, View view, int pos,
 long id) {
 Fragment f = new MyFragment(pos + 1);

 FragmentTransaction t =
 getFragmentManager().beginTransaction();
 t.replace(R.id.my_fragment, f);
 t.setTransition(FragmentTransaction.TRANSIT_FRAGMENT_OPEN);
 t.addToBackStack(null);
 t.commit();
}

5. Create a new Java class, in a new file, call it MyFragment, and have it extend the
Fragment class:
public class MyFragment extends Fragment {

6. Give the new class a field and two constructors:
private float mValue;

public MyFragment() {

}

public MyFragment(float v) {
 this.mValue = v;

}

Layouts

56

7. Finally, give the class an onCreateView() method:
 @Override
 public View onCreateView(LayoutInflater inflater,
 ViewGroup container, Bundle state) {
 Context context = getActivity().getApplicationContext();

 LinearLayout layout = new LinearLayout(context);

 TextView text = new TextView(context);
 text.setText("Size " + (mValue * 10));
 text.setTextSize(mValue * 10);

 layout.addView(text);

 return layout;
 }
}

8. Compile and run the project on a tablet or emulator. After pressing several list items,
hit the Back key to see how the fragments have been stored:

How it works...
The first thing we did here was to declare our fragment from within our activity's layout file.
Most of this looks like any other view declaration with the exception of the class declaration,
which simply points to the Java class that we created in steps 5, 6, and 7.

Chapter 2

57

The android.app.FragmentTransaction object is how we perform operations on
fragments, such as adding and removing them. A FragmentTransaction is obtained with
getFragmentManager().beginTransaction() and can then be controlled directly
through its own methods. Here we only had one fragment so we replaced each one using
replace(ViewGroup ID, Fragment), but had we wished, we could have created any
number by using FragmentTransaction.add(ViewGroup ID, Fragment). Fragment
transactions also have show(Fragment), hide(Fragment), and remove(Fragment)
methods, along with several others.

The way a fragment appears (or disappears) is controlled with the FragmentTransaction.
setTransition() method. In this example we used the transaction (int) constant
TRANSIT_FRAGMENT_OPEN, which simply opens our fragment. Along with the corresponding
TRANSIT_FRAGMENT_CLOSE there is also TRANSIT_FRAGMENT_FADE and one or two others.

The FragmentTransaction.addToBackStack() method is how we ensure that each
transaction is stored on the back stack so that previous transactions can be returned to with the
Back key. The optional (string) parameter can be used as a name to identify a particular state.

The FragmentTransaction.commit() call is essential and is the final stage in each
transition. The transition does not necessarily take place immediately but is scheduled to run
on the main thread when it becomes available.

The Fragment class is very similar to the Activity class and contains many of the same
methods such as onCreate(), onPause(), onResume(), and onStop(). Here, we only
used the onCreateView() callback but we could have used these methods to store values
as is often done with an Activity. For example:

@Override
public void onCreate(Bundle state) {
 super.onCreate(state);

 if (null != state) {
 mValue = state.getFloat("mValue");
 }

}

@Override
public void onSaveInstanceState(Bundle state) {
 state.putFloat("mValue", mValue);

}

Fragments provide a useful bridge between Activities and ViewGroups. Each Fragment must
exist with an Activity and, although it has its own lifecycle, when its parent enters the paused
or stopped state, it will too.

Layouts

58

See also
For more on including ListViews, see the recipe Using ListViews and ListAdapters, earlier in
this chapter.

Fragments can be included on earlier versions of Android by using the compatibility package
and this is demonstrated in the next recipe.

Running 3.0 and higher applications
on older platforms

The advent of Android 3.0 introduced some significant new features, aimed in particular
at tablet devices. However, there are a large number of Android tablets that run on earlier
platforms and so Google produced a compatibility package so that most of these new
features would run on older versions, going back as far as Android 1.6 (API level 4).

This chapter has introduced a lot of new concepts but we can conclude it with a nice and easy
example showing how to install the compatibility library and how to include packages from it,
so that we can take advantage of these wonderful new features on older platforms.

Getting ready
There is a strong chance that you have already downloaded and installed the Android
Compatibility Package during a regular software update of your SDK. All the same, open the
AVD manager, select Installed packages, and check that you have; it will look like this:

How to do it....
1. Having checked that the Compatibility package is installed, start up a new Android

project in Eclipse with a Min SDK version of 4 and a Target SDK version of 10.

Chapter 2

59

2. Open the project properties, which can be done with Alt + Enter on a PC, and select
Java Build Path followed by the Libraries tab.

3. Click on the Add External JARs... button and browse to the extras folder in your
android-sdk folder. Find the android-support-v4.jar file and click on OK.

4. There should now be a new folder in your project called Referenced Libraries
containing the library:

5. Change the declaration of your main Java Activity file from extends Activity
to extends FragmentActivity and press Shift + Ctrl + O to include the line
import android.support.v4.app.FragmentActivity; into your project.

How it works...
There is not much to explain when it comes to how this works. All we have done is import a
new library so that we can use features introduced in 3.0 on earlier platforms. However, this is
a remarkably useful function as it allows us to publish applications that will run on the widest
possible range of devices.

The Android layout classes we have covered here allow us to set out our screens in a variety of
useful ways. Of course it is the objects that we place inside these containers that provide their
real functionality and it is these widgets that we will cover in the next chapter.

3
Widgets

In this chapter, we will cover the following topics:

 f Inserting a widget into a layout

 f Adding images to a widget

 f Creating a widget at runtime

 f Applying a style

 f Turning a style into a theme

 f Using a platform style or theme

 f Creating a custom component

Introduction
Many of the individual on-screen components that we see in an Android application are
provided by the android:widget package. It provides dozens of classes and interfaces for
creating and using such objects. The system also allows us to extend the base android.view.
View class to create custom widgets of our own.

The Android Widget package provides us with a wide variety of purpose-built components
such as text views, date pickers, rating bars, and all kinds of other familiar UI elements. In
addition, many widgets have associated interfaces such as the list adapters that we saw in
the previous chapter.

It is worth making the distinction here, between Widgets, which are descended from the
base View class, and AppWidgets, which are mini applications that can be embedded into
an activity.

Widgets

62

Many widgets can have images, sounds, and other media connected to them and these, along
with most other properties, can be set and changed with static XML files or dynamically with
Java code.

Our applications can be easily given a consistent look across different screens with the use of
styles, which can, in turn, be encapsulated in a theme and applied to a wider scope of objects
such as whole activities or even applications.

Another powerful feature of the Android UI is the ability to construct our own customized
widgets, which can be done by extending the View class itself. These classes can again be
reused and like built-in widgets, bound to data.

Inserting a widget into a layout
Android widgets are included into a layout just as the views and view groups that we have
been previously using. Although each widget has its own unique characteristics, they all
inherit from the View class.

Here we will insert a CheckBox widget but use a callback from the parent class to edit
its properties.

Getting ready
Start up a new Android project in Eclipse and open the main.xml file in Graphical
Layout mode.

How to do it...
1. Drag-and-drop a CheckBox from the Form Widget palette onto the default layout,

as seen in the next screenshot:

Chapter 3

63

2. Open the main.xml tab and edit the new element so that it has the following
properties:
<CheckBox
 android:text="A CheckBox"
 android:id="@+id/check_box"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content" />

3. Include the following code inside the main Java activity's onCreate() method:
CheckBox checkBox = (CheckBox) findViewById(R.id.check_box);

checkBox.setOnClickListener(new OnClickListener() {

 public void onClick(View v) {

 if (((CheckBox) v).isChecked()) {
 ((CheckBox) v).setText("selected");
 } else {
 ((CheckBox) v).setText("not selected");
 }

 }

});

4. To import the necessary libraries, from Eclipse, press Shift + Ctrl + O. This will
automatically add the following lines to the code:
import android.view.View.OnClickListener;
import android.widget.CheckBox;

Widgets

64

5. Run the project on an emulator or handset.

How it works...
Widgets, like views, can be given a resource ID as part of their XML definition. Likewise, the
findViewById() method can be used to associate a widget with a Java variable.

Most widgets lie at the bottom or close to the bottom of a hierarchy of classes. The CheckBox,
for example, is descended from the CompoundButton, which in turn is inherited from the
Button and View objects. The OnClickListener interface is defined in the View class, and so
takes its argument as a View. This means that we have to cast the widget as a CheckBox
so as to be able to use the methods not defined in the parent such as setText() and
isChecked().

There's more...
Checkboxes and other widgets descended from the CompoundButton class will change their
states automatically when clicked, but it is possible to change this through code if we wish.

Changing a CheckBox's state with code
The CheckBox handles its own graphical state automatically, that is, it will toggle between
the selected and unselected states without any extra code. If we need to change the state
programmatically, we can use the CompoundButton's setChecked() method, which takes
a Boolean argument to change the checkbox's state.

See also
To learn how to manage checkable menu items refer to the recipe Building menu groups of
checkable items in Chapter 4, Menus.

Adding images to widgets
Along with being able to provide views (and many widgets) with a single background image,
Android also allows us to add more than one image to certain views so that we can represent
various states (such as pressed or focused) graphically. To create a widget with three states:
pressed, focused, and normal, we will need three image files which can then be defined in
XML as a single resource.

Getting ready
Select three different image files (JPG, PNG, BMP, or GIF) of the same size, but no wider than
200 pixels:

Chapter 3

65

How to do it...
1. Start up a new Android project in Eclipse and locate the res/drawable-mdpi

folder.

2. Drag the image files into the drawable-mdpi folder and name them as follows:

 � button_pressed.png

 � button_normal.png

 � button_focused.png

3. Create a new XML file in the same folder called my_button.xml.

4. Fill out the my_button.xml file as follows:
<?xml version="1.0" encoding="utf-8"?>
<selector
 xmlns:android="http://schemas.android.com/apk/res/android">
 <item
 android:drawable="@drawable/button_pressed"
 android:state_pressed="true" />
 <item
 android:drawable="@drawable/button_focused"
 android:state_focused="true" />
 <item
 android:drawable="@drawable/button_normal" />
</selector>

5. Add a new button to the main.xml layout file and ensure that it includes the
attributes:
android:text=""
android:background="@drawable/my_button"

Widgets

66

6. As it has been defined, our drawable can be accessed through the Button's context
menu in the Graphical Layout by selecting Properties | Background...

7. Run the project on an emulator or a handset and press the resultant button to view
the various states.

8. You will see our button in its focused state and will need to use the trackball or
d-pad keys.

How it works...
The essential process here is the my_button.xml file, which encapsulates our three images
into a single drawable resource within the <selector> tag. The state_pressed and state_
focused attributes are provided to allow us to define which image goes with which state.

Other widgets have states appropriate to their purpose and can be accessed in the same way.

It is important to realize that Android will check our items in the order we
have written them and so the normal state must wait until the system has
tested the other two possibilities, or we will only ever see the normal image.

Chapter 3

67

With our three images combined in this way, we can refer to the my_button drawable in the
same way we would with a single image or color value. We can also refer to this drawable from
within Java at runtime in the same way we would with any other resource, adding the attribute
android:id="@+id/button" to our button in the main.xml file.

Android stores these IDs as unique integer identifiers in the R.java file, the @ symbol indicates
that this is a resource, and the + sign tells the system that we are creating a new resource and
therefore should be included. It is well worth taking a look at the R.java file but not worth
editing it; at best, any edits will be written over, and at worst, they will crash our project.

Given such an ID, we can now associate both the button and the drawable using the
resource file:

Button b = (Button) findViewById(R.id.button);
b.setBackgroundResource(R.drawable.my_button);

There's more...
We mentioned at the beginning of this recipe the need to make our three images the same
size but this is not strictly necessary and Android provides means to control image size more
deliberately.

Android will re-size images by default
If we had not made our images the same size, we would have seen a very similar output with
images scaled and stretched to fit the size of the default image, which was button_normal
here. This automatic scaling can be very handy, but bear in mind that Android applies a bi-
cubic remapping, which requires a lot of processing.

The default behavior for Android is to perform this scaling just once when the image is first
encountered, requiring a copy of our image and therefore using more memory.

Using designated folders for screen-specific resources
When Android encounters a @drawable reference, it expects to find the target in one of the
res/drawable folders. These are designed for different screen densities: ldpi (low dots
per inch), mdpi (medium), hdpi (high), and xhdpi (extra-high) and they allow us to create
resources for specific target devices. When an application is running on a specific device,
Android will load resources from the designated folder that most closely matches the actual
screen density. If it finds this folder empty, it will try the next nearest match and so on until
it finds the named resource. For tutorial purposes, a separate set of files for each possible
density is not required and so placing our images in the medium-dpi folder is a simple but
crude way to run the exercise on any device.

Widgets

68

See also
For more on-screen specific resources and qualified directories, see the recipe Optimizing
for tablets and multiple screens in Chapter 2, Layouts and also the documentation at
http://developer.android.com/guide/topics/resources/providing-
resources.html#BestMatch.

Creating a widget at runtime
We have already seen how it is possible to create a view or view group in XML and then to edit
its properties from within Java code. It is in fact perfectly possible and quite easy to create any
screen element from scratch at runtime. All of Android's built-in widgets are extensions of the
View class and here we will use a DatePicker, create it, and then set some of its properties
from within Java code.

Getting ready
As just mentioned, we will be doing very little in the way of XML in this recipe. Nevertheless,
start a new Android project and navigate to the res/layout/main.xml file.

How to do it...
1. Remove any default views that the project wizard may have created, so that all we

have is an empty LinearLayout filling the screen:
<?xml version="1.0" encoding="utf-8"?>
<LinearLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent">
</LinearLayout>

2. Give our layout object an ID so that we can refer to it from Java:
android:id="@+id/layout"

3. Open the main Java activity class and include the following lines inside the
onCreate() method after the setContentView() call:
LinearLayout = (LinearLayout) findViewById(R.id.layout);
DatePicker picker = new DatePicker(this);
layout.addView(picker);

4. Run the project on an emulator or handset to see the date picker widget.

5. Now, add the following line:
picker.updateDate(1969, 6, 21);

Chapter 3

69

6. Directly after the date picker declaration, the entire method should now look like this:
@Override
public void onCreate(Bundle state) {
 super.onCreate(state);
 setContentView(R.layout.main);

 LinearLayout layout =
 (LinearLayout) findViewById(R.id.layout);
 DatePicker picker = new DatePicker(this);
 picker.updateDate(1969, 6, 21);
 layout.addView(picker);
}

7. Run the project again to see the changes the new line has generated, as seen in the
following screenshot:

How it works...
Although all of our widget creation and manipulation was done from within the main activity,
we still had to provide our layout object with an ID. This is in the same way we would with
views and their subclasses, so that we can refer to it later.

Once we have declared our LinearLayout and DatePicker objects in code, it is a simple
matter of using findViewById() to associate the layout with our variable and the
addView() method, which is defined by the ViewGroup class to inflate our widget.

Widgets

70

Every widget has its own set of appropriate methods specific to its purpose. For this example,
we used the DatePicker's updateDate(int year, int month, int day) member.

To view a list of available members for a widget in Eclipse, type the name of
the object in a legal context and press Ctrl + Space after the period.

There's more...
We created our date picker by passing just the child object (picker) to the parent ViewGroup
(layout) with the addView() method. This caused the widget to display itself with its default
layout parameters, but the best way to master the SDK is to experiment with it and it is left as
an exercise for the reader to apply other constructors and find ways to gain more control over
this and other widget's appearances and behaviors.

Using addView() with width and height parameters
To directly specify a widget's width and height properties, use:

addView(View child, int width, int height)

It is perfectly admissible to use the constants MATCH_PARENT and WRAP_
CONTENT as the integer arguments here, although WRAP_CONTENT is the
default setting and as such not generally used, although it is needed if you
are going to use MATCH_PARENT for one dimension and WRAP_CONTENT
for the other.

Applying a style
Android provides a system for separating our data from our design, in a manner similar to the
way Cascading Stylesheets do in web design. Android Styles can be applied to single views or
view groups and can inherit attributes from other styles.

Getting ready
Creating an Android Style requires a separate XML file to define it. Start up a new Android
project in Eclipse and navigate to the res/values folder.

Chapter 3

71

How to do it...
1. Using the res/values folder's context menu, create a new XML file and call it

my_style.xml:

2. Open this file for editing. The wizard should have created a <resources> root node
as follows:
<?xml version="1.0" encoding="utf-8"?>
<resources>
</resources>

3. Inside the <resources> node, nest the following <style> and <item> elements:
<style name="MyStyle">
 <item name="android:layout_width">wrap_content</item>
 <item name="android:layout_height">wrap_content</item>

Widgets

72

 <item name="android:background">#60F</item>
 <item name="android:textColor">#AF0</item>
 <item name="android:textSize">20dip</item>
 <item name="android:padding">8dip</item>
</style>

4. Alternatively, this can be done from the Resources tab, as seen in the next
screenshot:

5. Now open the main.xml file inside the res/layout folder.

6. If a TextView is not already provided, add one and edit it to look like this:
<TextView
 style="@style/MyStyle"
 android:layout_width="match_parent"
 android:text="This is an example of a style" />

7. It is not necessary to compile or run this application as the results can be seen
through the main.xml preview screen (Graphical Layout tab).

How it works...
We created an XML file in the values folder called my_style.xml. We could have
called it anything we wanted, but it had to have the .xml extension. Likewise we had to
nest our <style> inside the <resources> node for the system to know how to treat
the file at compile time. The other compulsory element was the style name, <style
name="MyStyle">, which we needed anyway to refer to it in the layout file.

Not only is the main.xml file far tidier than it might have been, we can now apply this style, or
any other, wherever we want in our application, enabling us to easily create a consistent look
and feel across different screen elements.

Chapter 3

73

It is possible and often useful to be able to override a style's properties from the layout file
and this was done here by defining the style's width as wrap_content and then deciding
differently in the main.xml file and setting it to match_parent.

There's more...
It is not necessary that we create a new file for each defined style. We could have easily had
as many styles as desired alongside each other inside the <resources> node and then
referred to them, as we wished, later.

Not only can we define several styles together, but we can also create styles that inherit
properties from other styles that we have made. For example, we could define a new style
as follows:

<style name="MyStyle.skinny">
 <item name="android:padding">0dip</item>
</style>

This would take all the properties of MyStyle and override just the padding setting. In this
way, complex hierarchies of styles can be constructed with very little effort.

Turning a style into a theme
A consistent visual design can be generated by applying a style to an entire activity or
even to a whole application. This is done by including an android:theme attribute in the
manifest.xml file, rather than in main.xml or another layout file. Styles applied in this way
are referred to as themes, but are defined using the same <resources> and <style> tags
and in the same location.

Widgets

74

Once applied, an Android theme will change the properties of all views in its specified activity
or application.

Getting ready
Themes are defined in the same resource folder as styles, so start a new Android project with
Eclipse and navigate to the res/values folder in the Package Explorer.

How to do it...
1. In the res/values folder, create a new XML file as we did in the last recipe.

2. Call the file my_theme.xml and fill it out as follows:
<?xml version="1.0" encoding="utf-8"?>
<resources>

 <style name="MyTheme">
 <item name="android:textSize">20dip</item>
 <item name="android:textColor">#0F0</item>
 <item name="android:padding">8dip</item>
 </style>

</resources>

3. Open the AndroidManifest.xml file and edit the <activity> tag to include a
theme element, like so:
<activity
 ...
 android:theme="@style/MyTheme">

4. Open the main.xml file in edit mode and replace the default TextView with two
TextViews that have the following properties:
<TextView
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="this text is green" />

<TextView
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="and has padding" />

5. View the result in preview mode, as seen in the next screenshot:

Chapter 3

75

6. Unlike applying a Style, our Theme is not apparent until compiled, so compile and run
the project on a handset or an emulator:

How it works...
Here we defined our theme with the <style> tag, just as we did in the previous recipe.
The difference being that this time we introduced it into the manifest file, as part of the
<activity> tag, with android:theme="@style/MyTheme". This way, our theme was
applied to all views in our activity.

Eclipse's Graphical Layout preview takes no notice of the manifest file, which means that it
cannot be accessed from the theme drop-down and so we had to compile and run the project
to properly appreciate the results.

Widgets

76

There's more...
There are times when we would like to apply a theme to an entire application rather than just
a specific activity, and this can be achieved by simply moving the android:theme attribute
elsewhere in the manifest.

Applying a theme to an entire application
Moving the android:theme attribute from the <activity> tag to the <application>
tag. For example:

<application
 ...
 android:theme="@style/MyGlobalTheme">

This would cause MyGlobalTheme to apply across the whole application.

Where themes are referred to in both application and activity tags, the activity
theme will override the application when attributes are shared and extend it
when they are absent.

Using a platform style or theme
As well as being able to design our own styles and themes, we can also adapt and customize
Android's built in themes such as dialog boxes and drop-down lists. Here we will take the
provided Dialog theme and then customize it with some properties of our own.

Getting ready
In this exercise, we will be creating a new XML file in the values folder and editing both the
main and manifest files. Start up a new project in Eclipse and open the res/values folder.

How to do it...
1. Inside the res/values folder, create a new XML file called my_theme.xml.

2. Complete my_theme.xml with the following code:
<?xml version="1.0" encoding="utf-8"?>
<resources>

 <style
 name="MyTheme"
 parent="@android:style/Theme.Dialog">
 <item name="android:typeface">monospace</item>

Chapter 3

77

 <item name="android:background">#A00</item>
 </style>

</resources>

3. Inside the res/layout folder, replace the default TextView with the following in the
main.xml file:
<TextView
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="inherited from a dialog" />

4. In the Manifest file, ensure that the application tag has the following theme property:
<application
 ...
 android:theme="@style/MyTheme">

5. Run the project on a handset or emulator to view our customized dialog box:

How it works...
The theme here was created in the same way we did earlier, by nesting a style tag
inside a resources tag and saving it in the res/values folder. The difference here was
the use of the parent attribute which gave us the built-in dialog theme (Theme.Dialog) as
the starting point.

Widgets

78

There are many other such ready-made themes and styles which can be viewed from within
the main.xml Graphical Layout tab (preview mode) by clicking on the Theme drop-down,
although this does not display custom themes.

Once we have a theme as parent, we can edit it to suit our needs by defining item tags such
as the typeface and background values set here.

By including MyTheme in the application tag in the manifest file, we ensured that our
customized theme will be applied throughout the application and so there was no need to
refer to it in the main.xml file, which was edited here simply to view the effect of the changes
we made. As always, throughout this book, the reader is encouraged to experiment with these
examples to gain a real feel for the SDK.

See also

For more on managing dialog boxes see the first three recipes in Chapter 7, Notifying the user.

Creating a custom component
Not only can we define widgets in XML, set their properties, and generally manipulate and edit
them at runtime, but it is also possible to create widgets entirely from scratch by extending
existing views (or subclasses) and overriding their methods.

Getting ready
We are going to create a custom widget solely from within Java, so start a new Android project
in Eclipse and open up the main Java activity.

How to do it...
1. Inside our new activity, add a new inner class called MyCustomView that extends

the View class. It is always a good idea to get into the habit of declaring instances as
static where possible, because memory leaks on a battery-operated device have a far
greater impact than they do on a PC:
private static class MyCustomView extends View {

}

2. Give the new class a constructor:
public MyCustomView(Context context) {

 super(context);

}

Chapter 3

79

3. Now add and initialize a Paint field to this new class:
private static class MyCustomView extends View {

 final Paint paint = new Paint();
{
paint.setColor(Color.YELLOW);
 paint.setTextSize(18);
 paint.setAntiAlias(true);
 paint.setTextScaleX(2.0f);
}

4. In the MyCustomView constructor, change the following class setting:
 this.setBackgroundColor(Color.GRAY);

5. Now, override the MyCustomView's onDraw() method, like so:
@Override
protected void onDraw(Canvas canvas) {
 super.onDraw(canvas);

 canvas.drawText("My Custom Widget", 2, 20, paint);
 canvas.drawCircle(160, 45, 25, paint);
 invalidate();
}

6. Replace the following setContentView() command:
setContentView(R.layout.main);

With the following:
setContentView(new MyCustomView(this));

7. Finally, compile the project and run the code on an emulator or handset to view the
custom View:

Widgets

80

How it works...
We built our custom widget by creating an anonymous inner class that extended the
View object.

We imported three new android.graphics classes, namely, Paint, Color, and Canvas.

The Paint object is a useful class that allows us to define how text, bitmaps, and shapes are
drawn to screen, allowing us to describe the colors and graphical appearance of our new
class.

We also took advantage of the Color class, which provides common color constants such
as GRAY and RED which we can use instead of hex color values. The Color class also has
a TRANSPARENT value and methods for reading and converting colors, for example, an
RGBToHSV() function. As with other classes, Eclipse's in-line documentation provides a
comprehensive list of Color's constants and methods.

To make our changes visible, we had to override the new view's onDraw() method, which
is called prior to a view being displayed. The Canvas object is how we control a view's
appearance and contains all our drawing methods, such as the calls we made which are
constructed thus far:

drawText(String text, float xOrigin, float yOrigin, Paint paint)
drawCircle(float centerX, float centerY, float radius,
 Paint paint)

We demonstrated how it is possible to set our new object's properties directly with this.
setBackgroundColor(Color.GRAY);.

For simplicity's sake, we displayed our new widget by changing the setContentView()
parameter but it is more common, and more useful, to refer to it in the same way as we would
with any other view and this can be done with setId(int id).

See also
To learn more about the Paint object, have a look at the Using ShapeDrawable and Paint
recipe in Chapter 8, Graphics and Animation.

4
Menus

In this chapter, we will cover the following topics:

 f Creating and inflating an options menu

 f Designing Android compliant menu icons

 f Building a context sensitive menu

 f Handling menu selections

 f Building menu groups of checkable items

 f Applying shortcut keys and submenus

Introduction
Menus are an essential part of almost any operating system. On mobile systems where
screen real estate is limited, they play an even more important role. Android provides similar
mechanisms for menus as it does for other visual elements, making it possible to separate
them from application code by the use of XML.

Menus

82

All Android handsets have a hard menu key for calling up secondary choices that do not
need to be made available from a main screen, or perhaps need to be made available
across an application.

In concord with Android's philosophy of separating appearance from function, menus are
generally created in the same way as other visual elements, that is, with the use of a definitive
XML layout file.

There is lot that can be done to control menus dynamically and Android provides classes and
interfaces for displaying context-sensitive menus, organizing menu items into groups, and
including shortcuts.

Creating and inflating an options menu
To keep our application code separate from our menu layout information, Android uses
a designated resource folder (res/menu) and an XML layout file to define the physical
appearance of our menu; such as the titles and icons we see in Android pop-up menus.
The Activity class contains a callback method, onCreateOptionsMenu(), that can be
overridden to inflate a menu.

Getting ready
Android menus are defined in a specific, designated folder. Eclipse does not create this folder by
default so start up a new project and add a new folder inside the res folder and call it menu.

How to do it...
1. Create a new XML file in our new res/menu folder and call it my_menu.xml.

Complete the new file as follows:

Chapter 4

83

<?xml version="1.0" encoding="utf-8"?>
<menu
 xmlns:android="http://schemas.android.com/apk/res/android">
 <item
 android:id="@+id/item_one"
 android:title="first item" />
 <item
 android:id="@+id/item_two"
 android:title="second item" />
</menu>

2. In the Java application file, include the following overridden callback:
@Override
public boolean onCreateOptionsMenu(Menu menu) {
 MenuInflater inflater = getMenuInflater();
 inflater.inflate(R.menu.my_menu, menu);
 return true;
}

3. Run the application on a handset or emulator and press the hard menu key to view
the menu:

How it works...
Whenever we create an Android menu using XML we must place it in the folder we used here
(res/menu). Likewise, the base node of our XML structure must be <menu>.

The purpose of the id element should be self explanatory and the title attribute is used to
set the text that the user sees when the menu item is inflated.

There are nearly a dozen other menu attributes that we could use to control things such as
menu order, or whether an item is enabled or not, and we will encounter most of these in this
chapter. The reader is encouraged to explore these possibilities throughout.

Menus

84

The MenuInflater object is a straightforward way of turning an XML layout file into a Java
object. We create a MenuInflater with getMenuInflater() which returns a MenuInflater
from the current activity, of which it is a member. The inflate() call takes both the XML file
and the equivalent Java object as its parameters.

There's more...
The type of menu we created here is referred to as an options menu and it comes in two
flavors depending on how many items it contains. There is also a neater way to handle item
titles when they are too long to be completely displayed.

Handling longer options menus
When an options menu has six or fewer items it appears as a block of items at the bottom
of the screen. This is called the icon menu and is, as its name suggests, the only menu type
capable of displaying icons. On tablets running API level 11 or greater the Action bar can also
be used to access the menu.

The icon menu is also the only menu type that
cannot display radio buttons or check marks.

When an inflated options menu has more than six items, the sixth place on the icon menu is
replaced by the system's own More item, which when pressed calls up the extended menu
which displays all items from the sixth onwards, adding a scroll bar if necessary.

Providing condensed menu titles
If Android cannot fit an item's title text into the space provided (often as little as one third of
the screen width) it will simply truncate it. To provide a more readable alternative, include the
android:titleCondensed="string" attribute alongside android:title in the item
definition.

Chapter 4

85

Adding Option menu items to the Action Bar
For tablet devices targeting Android 3.0 or greater, option menu items can be added to the
Action Bar.

Adjust the target build of the above project to API level 11 or above and replace the res/
menu/my_menu.xml file with the following:

<?xml version="1.0" encoding="utf-8"?>
<menu
 xmlns:android="http://schemas.android.com/apk/res/android">
 <item
 android:id="@+id/item_one"
 android:title="first item"
 android:icon="@drawable/icon"
 android:showAsAction="ifRoom" />
 <item
 android:id="@+id/item_two"
 android:title="second item"
 android:icon="@drawable/icon"
 android:showAsAction="ifRoom|withText" />
 <item
 android:id="@+id/item_three"
 android:title="third item"
 android:icon="@drawable/icon"
 android:showAsAction="always" />
 <item
 android:id="@+id/item_four"
 android:title="fourth item"
 android:icon="@drawable/icon"
 android:showAsAction="never" />
</menu>

Note from the output that unless the withText flag is included, the menu item will display
only as an icon:

Menus

86

Designing Android compliant menu icons
The menu items we defined in the previous recipe had only text titles to identify them to
the user, however nearly all Icon Menus that we see on Android devices combine a text
title with an icon. Although it is perfectly possible to use any graphic image as a menu icon,
using images that do not conform to Android's own guidelines on icon design is strongly
discouraged, and Android's own development team are particularly insistent that only the
subscribed color palette and effects are used. This is so that these built-in menus which are
universal across Android applications provide a continuous experience for the user.

Here we examine the colors and dimensions prescribed and also examine how to provide
the subsequent images as system resources in such a way as to cater for a variety of
screen densities.

Getting ready
The little application we put together in the last recipe makes a good starting point for this
one. Most of the information here is to do with design of the icons, so you may want to have a
graphics editor such as GIMP or PhotoShop open, or you may want to refer back here later for
the exact dimensions and palettes.

How to do it...
1. Open the res/menu/my_menu.xml file and add the android:icon elements seen

here to each item:
<?xml version="1.0" encoding="utf-8"?>
<menu
 xmlns:android="http://schemas.android.com/apk/res/android">
 <item
 android:id="@+id/item_one"
 android:icon="@drawable/my_menu_icon"
 android:title="first item" />
 <item
 android:id="@+id/item_two"
 android:icon="@drawable/my_menu_icon"
 android:title="second item" />
</menu>

2. With your graphics editor, create a new transparent PNG file, precisely 48 by 48 pixels
in dimension.

3. Ensuring that there is at least a 6 pixel border all the way around, produce your icon
as a simple two-dimensional flat shape. Something like this:

Chapter 4

87

4. Fill the shape with a grayscale gradient that ranges from 47% to 64% (white) with the
lighter end at the top.

5. Provide a black inner shadow with the following settings:

 � 20% opaque

 � 90° angle (top to bottom)

 � 2 pixel width

 � 2 pixel distance

6. Next, add an inner bevel with:

 � Depth of 1%

 � 90° altitude

 � 70% opaque, white highlight

 � 25% opaque, black shadow

7. Now give the graphic a white outer glow with:

 � 55% opacity

 � 3 pixel size

 � 10% spread

8. Make two copies of our graphic, one resized to 36 by 36 pixels and one 72 by 72
pixels.

9. Save the largest file in the res/drawable-hdpi as my_menu_icon.png.

10. Save the 48 by 48 pixel file with the same name in the drawable-mdpi folder and
the smallest image in drawable-ldpi.

11. To see the full effect of these three files in action you will need to run the software on
handsets with different screen resolutions or construct emulators to that purpose.

Menus

88

How it works...
As already mentioned, Android currently insists that menu icons conform to their guidelines and
most of the terms used here should be familiar to anyone who has designed an icon before.

The designated drawable folders allow us to provide the best possible graphics for a wide
variety of screen densities. Android will automatically select the most appropriate graphic
for a handset or tablet so that we can refer to our icons generically with @drawable/.

It is only ever necessary to provide icons for the first five
menu items as the Icon Menu is the only type to allow icons.

See also
For more on icons see the recipes Optimizing for tablets and multiple screens and Dividing
the screen into Fragments in Chapter 2, Layouts and the recipes Displaying an alert dialog,
Making a toast, Notifying the user with the status bar, and Using the Notification.Builder class
in Chapter 7, Notifying the User.

Building a context sensitive menu
Very often we want our menus to present choices to the user in a context sensitive way,
commonly achieved on PCs with a right-click. In Android a long click is used to produce such
menus when they are available. All Android Views are capable of receiving this action and
here we will create two different Views and connect them to a menu. Also we will examine one
or two of the built-in features of the Android ContextMenu.

Getting ready
Just as in the previous two recipes, we will be defining a menu layout here in XML which we
will then connect to our Views with Java using an activity callback. Start a new Android project
in Eclipse and create a new folder res/menu.

How to do it...
1. Within the res/menu folder, create an Android XML file called my_menu.xml.

2. Complete my_menu.xml so that it contains two items, each with a title and an id, as
we did before. You can of course copy much of this from the previous recipe if you wish:
<?xml version="1.0" encoding="utf-8"?>
<menu
 xmlns:android="http://schemas.android.com/apk/res/android">

Chapter 4

89

 <item
 android:id="@+id/item_one"
 android:title="first item" />
 <item
 android:id="@+id/item_two"
 android:title="second item" />
</menu>

3. Open and edit the main.xml file in the res/layout folder, and also replace the
default TextView and add an EditText to the vertically aligned LinearLayout, as seen
in the following screenshot:

4. Provide each view with an appropriate ID, for example android:id="@+id/text_
view" and android:id="@+id/edit_text".

5. In our Java activity class, declare two private fields, mTextView and mEditText.

6. Retrieve the XML resources with findViewById() from within the onCreate()
method:
mTextView = (TextView) findViewById(R.id.text_view);
mEditText = (EditText) findViewById(R.id.edit_text);

7. Still within onCreate() connect our views with our menu using:
registerForContextMenu(mTextView);
registerForContextMenu(mEditText);

8. Now override the onCreateContextMenu() activity method:
@Override
public void onCreateContextMenu(ContextMenu m,
 View v, ContextMenuInfo i) {
 super.onCreateContextMenu(m, v, i);
 m.setHeaderTitle("my title");
 MenuInflater inflater = getMenuInflater();
 inflater.inflate(R.menu.my_menu, m);
 }

9. Test the application on an emulator or handset, making sure to examine the context
menu for both views.

Menus

90

How it works...
In terms of definition and inflation Context Menus are very similar to Options Menus.
In fact the format of the XML and use of a MenuInflater are identical. It is the
registerForContextMenu() call that makes the difference here and it is simply used to
inform the system that a view has a context menu associated with it.

Our activity supplies us with the onCreateContextMenu() method, which performs
the same function that the onCreateOptionsMenu() does for a standard menu,
with the exception that we also need to pass the view that received the long click and a
ContextMenuInfo object.

ContextMenuInfo is an interface belonging to ContextMenu and acts as an adapter passing
any extra information about the menu inflation such as the item selected in a list view.

We gave our menu a header title with ContextMenu.setHeaderTitle(). Here we simply
applied a string literal, but it is more conventional and logical to identify the view that was
long-clicked in the title of its context menu. This value can be retrieved with View.getID().

Note that if you remove the line m.setHeaderTitle("my title"); and
call up the menu from the EditText, then it will provide its own header Edit
text which is overridden when we provide our own.

Android widgets such as EditText that contain editable text provide their own context menus
with various cut and paste functions. This is why we call onCreateContextMenu() on its
superclass, to handle menu items provided by the system.

Chapter 4

91

When we register our view with a context menu, we append our items to these readymade ones.

There's more...
It is not always possible to know in advance precisely what items may or may not be needed in a
menu at runtime and so Android provides a way to add menu items from within our Java code.

Adding menu items dynamically
Menu items can be included either from within the onCreateOptionsMenu() method or
the onCreateContextMenu() method, with Menu's add() member:

@Override
public boolean onCreateOptionsMenu(Menu menu) {
 menu.add("a new item");
 ...

We can also define menu item IDs as class fields, for example:

public class MenuExample extends Activity {
 private static final int MENU1 = Menu.FIRST;
 ...

This gives us greater control over our dynamically constructed items:

 menu.add(0, MENU1, 0, "another item");

The previous line, when included in one of our menu onCreate callbacks has the following
structure:

Menu.add(int groupId, int itemId, int order, CharSequence title).

See also
For more information about MenuInflater see the recipe Creating and inflating an options
menu earlier in this chapter.

Handling menu selections
It is all very well to be able to design menus and have them inflate according to user actions
but we also need some way to interpret and respond in return. Again the Activity class
provides a hook for menu selections in the form of a callback, onOptionsItemSelected().

Menus

92

Getting ready
In this recipe we will be using an XML menu definition identical to the previous one, so you
may well wish to copy and paste this file to save time. Nevertheless start up a new Android
project in Eclipse.

How to do it...
1. Define an XML menu called my_menu.xml in the res/menu folder, creating this folder

if necessary, and provide it with two items, giving each at least an id and a title.

2. In the res/layout folder edit the main.xml file so that the layout contains a single
TextView with an android:id, for example:
<TextView
 android:id="@+id/text_view"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:textSize="20dip"
 android:text="Press menu" />

3. In our Java activity class create a TextView field and associate it with its XML
resource equivalent.

4. Include code to inflate our menu by overriding the onCreateOptionsMenu()
method as follows:
@Override
public boolean onCreateOptionsMenu(Menu m) {
 MenuInflater inflater = getMenuInflater();
 inflater.inflate(R.menu.my_menu, m);
 return true;
}

5. Finally add the code to control the actual individual selections with the
onOptionsItemSelected() method:
@Override
public boolean onOptionsItemSelected(MenuItem item) {

 switch (item.getItemId()) {

 case R.id.item_one:
 mTextView.setText("You selected menu item one");
 return true;

 case R.id.item_two:
 mTextView.setText("You selected menu item two");
 return true;

 default:

Chapter 4

93

 return super.onOptionsItemSelected(item);
 }

}

6. Run the project on a handset or emulator to test the menu selections:

How it works...
The construction of an options menus was covered earlier in the chapter, as was its inflation.
The activity member introduced here is onOptionsItemSelected() and the key identifier
is MenuItem.getItemId(), which we used to differentiate between items.

We could of course use the passed MenuItem variable item to identify its source, and along
with getItemId() we could have used getTitle() or getOrder() or several other public
MenuItem methods.

We called onCreateOptionsMenu() on its superclass here more for completion than
necessity and it is used to handle system menu items that may be called.

There's more...
As stated in its name the onOptionsItemSelected() is suitable only for Android's Options
Menu. As one would expect, there is an equivalent method for Context Menus.

It is also possible to do more sophisticated things than change some text; for example we
could start an activity from a menu item.

Selecting context menu items
To control the behavior of individual menu items for Context Menus use the
onContextItemSelected(MenuItem item) activity callback.

Starting an activity from a menu
To start an activity from within the onOptionsItemSelected() or
onContextItemSelected() methods, launch the activity with an Intent object using
startActivity().

Menus

94

Building menu groups of checkable items
Another common use for menus is to switch certain functions on or off and often this has
to be done in a mutually exclusive manner such as when only one possible selection can be
made from a list. For this purpose Android provides a framework for defining checkboxes and
radio buttons using groups of menu items.

Getting ready
The Eclipse IDE provides another, more intuitive way to construct XML menu files in the form
of a graphical pane that can be accessed with the Layout tab of any Android XML file. Start up
a new project and inside the res folder, create a new folder called menu.

How to do it...
1. Create a new Android XML file inside res/menu and call it my_menu.xml.

2. View the new file through the Layout tab.

3. Using the controls provided (in particular the Add..., Up, and Down buttons) construct
a menu as seen in the next screenshot. Give each item an id and a title. You will
need to create the Group first:

4. Give the menu group an id and set the Checkable behavior to single:

Chapter 4

95

5. Edit the main.xml file in the res/layout folder so that the root layout contains a
single TextView:

<TextView
 android:id="@+id/text_view"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:textSize="20sp"
 android:padding="6dip"
 android:text="long click here" />

6. In the main Java activity file, connect the TextView in Java and register it for a Context
Menu:
private TextView mTextView;

@Override
public void onCreate(Bundle state) {
 super.onCreate(state);
 setContentView(R.layout.main);
 mTextView = (TextView) findViewById(R.id.text_view);

 registerForContextMenu(mTextView);
}

7. Override the onCreateContextMenu() hook as we have here:
@Override
public void onCreateContextMenu(ContextMenu m,
 View v, ContextMenuInfo i) {
 super.onCreateContextMenu(m, v, i);
 m.setHeaderTitle("my title");

Menus

96

 MenuInflater inflater = getMenuInflater();
 inflater.inflate(R.menu.my_menu, m);
}

8. Now run the project on an emulator or a handset and call up our menu by long-
clicking on the text view. The three items in the group should have radio buttons
alongside them.

9. Using the Layout pane, edit our menu file so that the Checkable behavior of the
group is all rather than single.

10. Run the program again to observe the difference this change makes. Our radio
buttons are now checkboxes:

How it works...
Despite using Eclipse's visual XML editing capacities, the way we constructed our menu here
was no different from previous recipes in this chapter and the same can be said for the way we
registered a view with a menu and the way we inflated it. It is a good idea to take a look at the
XML code directly to see how this exercise differs. The use of the <group> node should not be
difficult to understand. The android:checkableBehavior element can take three values:

 f single—where only one item can be checked at a time, producing radio buttons

 f all—where any item can be checked, producing check boxes

 f none—making no items checkable

Individual items can be set as checkable with android:checkable="true" and their state
can be controlled specifically with android:checked="true" or "false".

Chapter 4

97

There's more...
The state of checkable objects created in this way must be managed in code and Android
provides the isChecked() and setChecked() methods for this purpose.

Changing checkable items dynamically
The state of an Android menu checkable item can be requested and changed from within our
Java code. Generally speaking this would be done from one of the related callbacks such as
the onContextItemSelected() method.

The MenuItem.isChecked() method returns a boolean reflecting the checked state of the
item which can be changed by passing a boolean with MenuItem.setChecked().

Applying shortcut keys and submenus
The Menu, ContextMenu, and MenuItem classes that we have covered in this chapter make
up the key components of Android's menus. However there is still one class that we have not
touched, the SubMenu, and no chapter on menus would be complete without a mention of
shortcuts. As with other features, Android allows us to create and manipulate submenus and
shortcuts using both XML and Java.

Getting ready
It is probably a good idea to use the project we created in the last recipe (Building menu
groups of checkable items) but if you do not have it, start up an Android project and put
together a quick menu XML file with three or four items in the res/menu folder. We will also
need a TextView that is registered for a Context Menu.

How to do it...
1. Open the menu file inside res/menu and replace the first item with the code below:

<item
 android:id="@+id/sub_menu"
 android:title="sub menu">
 <menu>
 <item
 android:id="@+id/sub_one"
 android:title="submenu one" />
 <item
 android:id="@+id/sub_two"
 android:title="submenu two" />
 </menu>
</item>

Menus

98

2. In the same file, add one of the following elements to the second item and the other
to the third:
android:numericShortcut="3"

3. In the Java activity file, implement an onCreateContextMenu() method to inflate
our menu as follows:
@Override
public void onCreateContextMenu(ContextMenu m,
 View v, ContextMenuInfo i) {
 super.onCreateContextMenu(m, v, i);
 MenuInflater inflater = getMenuInflater();
 inflater.inflate(R.menu.my_menu, m);
}

4. Next, provide the class-wide field:
private static final int MENU1 = Menu.FIRST;

5. Then, add the following line before the MenuInflater declaration:
m.addSubMenu(0, MENU1, 1, "my new submenu");

6. Finally, run and view the project on an emulator or a handset with a keyboard and call
up the context menu followed by the submenu:

Chapter 4

99

How it works...
SubMenus are created and accessed in almost exactly the same manner as other menu
elements and can be placed in any of the provided menus, although they cannot be placed
within each other, that is, a SubMenu cannot contain another SubMenu.

Shortcuts too are simple to include although they will only work on a handset or emulator with
a keyboard. They can be assigned in Java as well with setNumericShortcut(char).

SubMenus can be added dynamically as we did here and the addSubMenu() method allows
us to specify the group, ID, position, and title.

See also
For more information about MenuInflater refer to the recipe Creating and inflating an options
menu earlier in this chapter.

So far in this book we have covered the basic structure and physical appearance of an
Android application. For software to be truly useful however, it needs to be able to manage
information of some kind. In the next chapter, we will examine how to connect our applications
to various kinds of data.

Data and Security

In this chapter, we will cover the following topics:

 f Using internal storage for private data

 f Storing public data on external storage

 f Creating a SQLite database

 f Sharing multimedia files across applications with Content Providers

 f Defining and enforcing permissions

 f Giving your users Android backup functionality

Introduction
The Android platform provides a variety of formats for us to store user data, from the basic
name/value pairs and user preferences that we discussed in Chapter 1, Activities, to fully
fledged SQLite 3 databases that can be used to store any data we want in an organized fashion.

A smart phone or tablet will come equipped with internal memory and this is often the ideal
place to record and maintain our application data. Android provides classes and interfaces to
handle data that will be familiar to anyone acquainted with Java.

Along with this generally small internal storage space, the system, more often than not,
provides external memory in the form of at least one removable SD card which is also
available to us as developers.

Perhaps the most powerful data tool available to the Android developer is the inclusion of SQLite
3 and the system exposes all the methods we might need to administer such databases.

5

Data and Security

102

In addition to generating data, we can also control how (or even if) it is shared. Users of
Android handsets can see the levels of data protection and choose whether to accept them at
the point of installation. These permissions can be put in place by the developer and can be
applied to individual program components such as activities as well as to entire applications.

The mobile nature of Android handsets exposes them to accidents and the elements more
than many other electronic devices. This level of risk makes it more important than ever to
protect our users' data, which we can do with Android using their Backup Service Tool.

Using internal storage for private data
As we saw in Chapter 1, Activities, Android provides a variety of methods for storing user
preferences and settings but many applications require a more sophisticated filing system and a
convenient way to do this is by using our handset's internal storage.

As one might expect the Java OutputStream object forms the basis for most of these types of
operations.

Getting ready
Writing to internal storage is done through our Java activity class, so start up a new Android
project in Eclipse and open the main activity pane.

How to do it...
1. Declare two string fields FSPC and mString to act as our filename and content:

final static String FSPC = "my_file.txt";
private final String mString = "a string";

2. Inside the onCreate() method add the following lines:
FileOutputStream outStream;

try {
 outStream = openFileOutput(FSPC, Context.MODE_PRIVATE);
 outStream.write(mString.getBytes());
 outStream.close();

} catch (FileNotFoundException e) {
 e.printStackTrace();

} catch (IOException e) {
 e.printStackTrace();
}

Chapter 5

103

3. Run the project on a handset or emulator.

4. Once the program has run, open the DDMS (Dalvik Debug Monitor Server)
perspective in Eclipse.

5. Use the File Explorer tab to open the folder data/data and find our application:

6. The file can be examined manually with the Pull File... command in the File Explorer
drop-down menu.

How it works...
The key component here is the FileOutputStream, which is returned from the
openFileOutput() call. While passing the file name we also provided a content.
Context constant, MODE_PRIVATE. This was not strictly necessary as this is the default
mode. It will overwrite our file each time the program is run. To append to an existing file we
could have used MODE_APPEND.

We can also make files created in this way available to
other applications with the MODE_WORLD_READABLE
and MODE_WORLD_WRITABLE constants.

Data and Security

104

Quite as we would expect, there is also a FileInputStream object with an equivalent read()
function for inputting data. Again these operations need to be in a try/catch clause and
closed properly to work correctly.

There's more...
Once we have more than one internal file, we will need to do more sophisticated things than
simply read and write data, and often we will want to store static files of data internally.
Android makes both these things possible.

Exploring internal memory
Temporary files can be disposed off with the deleteFile(String filename) method,
which returns true if successful. We can also put together a list of all our files with
fileList(), which returns a String array.

Storing static data
If we have data that we only need to read from, we can store it in the res/raw folder and
access it with R.raw.filename, which returns a FileInputStream.

Storing public data on external storage
Nearly all Android devices come equipped with some form of external memory, very often in
the form of an SD card. We can use such devices to store shared files that are available to the
user from within our application.

The most straightforward way to write to an SD card is the Java FileWriter object but because
of the removable nature of external storage, we need some way to check the status of our
memory before we attempt to access it. Android provides the android.os.Environment class
for us to accomplish this.

Getting ready
Most of this exercise is done using Java code but we will need a layout with a single TextView
to observe our results, so start up a new Android project in Eclipse and edit the main.xml file
so that it contains one TextView.

How to do it...
1. Provide the TextView we just created with an ID and associate it with a private field in

Java with the findViewById() method.

2. Also create a private FileWriter called mFileWriter.

Chapter 5

105

3. Inside the onCreate() callback add the following clause:
if (Environment.MEDIA_MOUNTED.equals(Environment.
getExternalStorageState())) {
 mTextView.setText(Environment.MEDIA_MOUNTED);
} else {
 mTextView.setText(Environment.MEDIA_REMOVED);
}

4. On your handset or an emulator, test this code with the SD card both mounted and
ejected:

5. Now add this try/catch clause to the if part of the previous code to write our
external file:
 try {
 mFileWriter = new FileWriter("/sdcard/myfile.txt");
 mFileWriter.append("some text ");
 mFileWriter.flush();
 mFileWriter.close();
 } catch (IOException e) {
 e.printStackTrace();
 }

Data and Security

106

6. With the File Explorer window open in Eclipse, test the program again:

How it works...
The Environment constants MEDIA_MOUNTED and MEDIA_REMOVED are two of several
useful string constants provided by the Environment class. Their actual values as we saw
are mounted and removed. getExternalStorageState() returns other values such as
MEDIA_SHARED, which allows us to check whether a card is also connected to a computer
and MEDIA_BAD_REMOVAL, which can be used to discover if a card has been removed
without being properly dismounted. The best way to become better acquainted with these
values, as always, is for the reader to experiment further.

In cases where the media we are trying to access is read-only,
getExternalStorageState() returns MEDIA_MOUNTED_READ_ONLY,
which has a constant value of mounted_ro.

For a tiny file like the one we used here, the use of FileWriter.flush() might seem
unnecessary but is generally advised for external files.

There's more...
Android makes use of several public directories for storing things such as ringtones or music.
It is possible to take advantage of these and also to prevent our files from being automatically
included in galleries or music collections by the system.

Chapter 5

107

Public directories
Unless it has been stored in a public directory, any file created by our application will be
deleted when that application is uninstalled. To prevent this, save any file to its appropriate
public folder such as Pictures, Alarms, or Movies.

All the public folders can be found immediately in the root directory and will be created if they
do not already exist.

Preventing files from being included in galleries
Android employs a media scanner that will automatically include sound, video, and image
files in system collections. To avoid this, include an empty file called .nomedia in the same
directory as the files you wish to exclude.

Creating a SQLite database
The methods outlined here provide some powerful techniques for storing and manipulating
data, but providing a structured database this way would be a tiresome task. Fortunately
Android incorporates SQLite (version 3 to be precise), a server-less, transactional database
engine for this purpose. Instruction in SQL is beyond the scope of this book and it is assumed
that the reader has some familiarity with self-contained databases, cursors, and queries.

In this recipe we will demonstrate how to set up a simple SQLiteDatabase, add a table and
include some entries.

Getting ready
SQLite databases can be created and accessed through Java code, so to begin this task start
up a new Android project with Eclipse and open the main Java activity file.

How to do it...
1. Inside the onCreate() method declare and assign an SQLiteDatabase as follows:

SQLiteDatabase db;
db = openOrCreateDatabase("my_database.db", SQLiteDatabase.CREATE_
IF_NECESSARY, null);

2. Underneath this, define a table for our database in the following manner:
final String CREATE_TABLE_CITIES = "CREATE TABLE tb_cities ("
 + "id INTEGER PRIMARY KEY AUTOINCREMENT,"
 + "city_name TEXT);";

Data and Security

108

3. Then execute this SQL statement:
db.execSQL(CREATE_TABLE_CITIES);

4. Now using a ContentValues object insert some entries:
ContentValues cv = new ContentValues();
cv.put("city_name", "Aberdeen");
db.insert("tb_cities", null, cv);
cv.put("city_name", "Dundee");
db.insert("tb_cities", null, cv);

5. And finally close the database:
db.close();

6. Run this code on an emulator or a handset connected to your computer and open
Eclipse's File Explorer tab to locate our new database:

How it works...
More often than not a database or at least its structure would be created beforehand, but
we can use the SQLiteDatabase method openOrCreateDatabase() to produce one from
scratch, as we did here. The openOrCreateDatabase() function takes a string name, an SQL
mode, and a CursorFactory object, which is a public interface for handling Cursor objects.

Chapter 5

109

The flag that we used in the SQL mode, CREATE_IF_NECESSARY, is just one of several
we could have applied—the others being OPEN_READWRITE, OPEN_READONLY, and NO_
LOCALIZED_COLLATORS.

We put together an SQL statement, CREATE TABLE tb_cities (id INTEGER PRIMARY
KEY AUTOINCREMENT,city_name TEXT), which we concatenated into a string constant,
CREATE_TABLECITIES, for clarity. Any SQL statement can be constructed in this way and
executed with execSQL().

Inserting data is something we will need to do often with a working database and here
we took advantage of the ContentValues class, which allows us to pass values to a
ContentResolver that provides us access to the underlying grammar or content model.

Viewed as a database, what we have created would resemble the following screenshot:

There's more...
On a battery-operated device it is even more important to keep the number of threads and
processes to a minimum, and Android provides a technique for setting locks on critical
sections of a database.

There will also be times when we want to version our database and this too is simple with
Android.

Making a database thread safe
To apply locks around our database and therefore making it thread safe, use:

db.setLockingEnabled(true);

Versioning a database
An Android SQLite database can be versioned with:

db.setVersion(2);

Data and Security

110

Sharing multimedia files across applications
with Content Providers

To enable the developer to share data from one application with another, Android provides the
android.content.ContentProvider class. This vastly simplifies the management of common
data types, such as audio, video, images, and contact details, and also provides several built-in
providers under the android.provider package.

Getting ready
In this exercise we will use the MediaStore provider to examine the audio files on
our device's SD card. Make sure that the handset or emulator being used for this recipe has
some MP3 files loaded onto the SD card, then start up a new Android project in Eclipse.

How to do it...
1. Starting with the main.xml file in the res/layout folder, give the default TextView

an android:id of text_view and set android:text to an empty string:
android:id="@+id/text_view"
android:text=""

2. In the main Java Activity code, inside the onCreate() method and after the
setContentView() call, create and associate a TextView instance:
TextView textView = (TextView) findViewById(R.id.text_view);

3. Beneath this add the following instances:
String[] columns = new String[] {
 MediaStore.Audio.Media.TITLE,
 MediaStore.Audio.Media.DURATION };
Uri myTunes = MediaStore.Audio.Media.EXTERNAL_CONTENT_URI;
Cursor c = managedQuery(myTunes, columns, null, null,
 MediaStore.Audio.Media.DURATION);

4. Now, beneath this include the following:
if (c.moveToFirst()) {

 String title;
 String duration;

 do {
 title = c.getString(
 c.getColumnIndex(MediaStore.Audio.Media.TITLE)
);

Chapter 5

111

 duration = c.getString(
 c.getColumnIndex(MediaStore.Audio.Media.DURATION)
);

 textView.append(title + " " + duration + "\n");

 } while (c.moveToNext());

}

5. Compile and run the project on an emulator or handset to view MP3 files on the SD
card sorted by duration:

How it works...
The key class in this demonstration is the Activity.managedQuery, which allows us to query a
Provider, in this case the MediaStore that provides access to common multimedia data types.
Constructing a managedQuery returns a Cursor object based on the parameters we provided.
The first is a URI, here pointing to the SD card. The second is a string array representing which
columns we want to query. We used MediaStore.Audio.Media constants to select title
and duration. The final parameter is the column that we wish our data to be sorted by. We
ignored the third and fourth parameters in this example but we could have added selection
criteria (in the form of an SQL WHERE clause, omitting the WHERE itself) and arguments
respectively. Setting these as null, causes all columns to be selected.

We could have just as easily used a ContentResolver.query rather than a managedQuery. It
would have taken the same arguments and returned the same Cursor, and if we had wanted
to edit the data, this would have been the path to take. However, the managedQuery is very
handy as it is handled directly by the activity and will unload itself automatically when the activity
enters the paused or destroyed state.

This exercise only explored one of the built-in MediaStore providers to access
audio files but there are also MediaStore.Video, MediaStore.Files, and MediaStore.
Images.

Data and Security

112

Defining and enforcing permissions
As anyone who has downloaded and installed an Android application will
have seen, certain actions such as accessing the Internet or receiving SMS require explicit
permissions from the user at the point of installation. This is because the default security only
allows application processes to run isolated from each other unless specified.

Getting ready
We will be returning to the Android Manifest XML file in this recipe to set our permissions,
but we will need a screen with a Button, to trigger our action and some Java code to give our
application something to do.

Start a new Android project in Eclipse and edit the main.xml file in the res/layout folder
so that it contains a Button with an ID—@+id/button is fine.

How to do it...
1. Inside our main activity Java file, declare a Button widget and reference the XML in

the usual way with findViewById():
mButton = (Button) findViewById(R.id.button);

2. Create a click listener with an onClick() method and have it start the following new
activity:
mButton.setOnClickListener(new OnClickListener() {
 @Override
 public void onClick(View v) {
 Uri uri = Uri.parse("http://www.packtpub.com");
 startActivity(new Intent(Intent.ACTION_VIEW, uri));
 }

});

3. Now open the AndroidManifest.xml file in the root folder of our project.

4. Include a uses-permissions tag with the following setting inside the root node
(but no deeper) of the manifest:
 ...
 </application>
 <uses-permission
 android:name="android.permission.INTERNET" />
 ...
</manifest>

Chapter 5

113

5. This can be typed directly using the AndroidManifest.xml tab or using buttons and
drop-downs on the Permissions tab:

6. Run the code on an emulator or handset:

Data and Security

114

How it works...
Strictly speaking, setting permissions during the development stage will make no difference,
but to view permissions on a handset or emulator select Settings | Applications | Manage
Applications from the Applications menu, and then pick your application:

The Manifest.permission object comes with dozens of built-in constants such as android.
permission.INTERNET and commonly used permissions include READ_CONTACTS, READ_
SMS, and SET_TIME_ZONE.

Use Eclipse's JavaDoc facility to explore all the permission based constants in
the android.Manifest.permission class.

There's more...
Despite the large number of built-in permissions available to us, it is often handy to be able
to create a customized constraint for more specific control over individual components such
as activities. Android allows us to define and enforce our own permissions and to control the
protection level applied.

Defining and enforcing custom permissions
By placing a <permission> tag in the top level of our <manifest> we can set permissions
for the entire application. To set permissions for single activities, place <permission> tags
inside the respective activities. For example:

<activity>
<permission
 android:name

Chapter 5

115

 ="com.packtpub.android.permissionsexample.MY_PERMISSION"
 android:label="@string/permission_label"
 android:description="@string/permission_description"
 android:protectionLevel="dangerous" />
...

Tags of this nature, when placed inside an <activity> node, can be checked from the
starytActivityForResult() method. The label and description are both required and
the description is often a whole sentence or two.

Custom permissions can also be given one of the several permission group headings: when
an action may cost the user money, COST_MONEY, or make calls, PHONE_CALLS. The syntax
of this Manifest.permission_group element is:

android:permissionGroup="android.permission-group.PHONE_CALLS"

Android gives us three usable protection levels to tell the system how to inform the user of
the risk level of the permission. A setting of normal will generally not require confirmation
from the user (although it will, as always, during installation). The dangerous setting
will require user conformation and the signature setting will only accept request from
applications that have the same signature—that is, applications that have been built to run as
one package.

See also
For more on the startActivityForResult() method see the recipe Returning a result
from an Activity in Chapter 1, Activities.

Providing backup functionality
One of the most useful security functions provided by Google for the Android platform is the
cloud based backup and restore service for user data generated by our applications.

This functionality will come into play automatically when a user reinstalls or updates a backup-
enabled application or when they get a new phone or restore factory settings for some reason.

Getting ready
As a developer you will require a Backup Service Key, which you receive when registering
for backup service from Google. If you have not already done so you can register at
http://code.google.com/android/backup/signup.html.

This demonstration can be applied to any application that requires backing up, so open any
application you like, ideally one with some significant data such as shared preferences and/or
internal files.

Data and Security

116

How to do it...
1. Open the AndroidManifest.xml file so that it is ready to edit.

2. Inside the <application> node include:
android:backupAgent="my_backup_agent"

3. Also inside <application> add the key and the meta-data code that you received
when you registered for backup with Google:
<meta-data
 android:name="com.google.android.backup.api_key"
 android:value="your key goes here" />

4. Create a new class that extends BackupAgentHelper and override its onCreate()
method as follows:
public class MyPrefsBackup extends BackupAgentHelper {

 void onCreate() {
 SharedPreferencesBackupHelper helper =
 new SharedPreferencesBackupHelper(
 this, "user_preferences"
);
 addHelper("prefs", helper);
 }

}

5. If you have other internal files that you wish to include, then add another class and
reference these files as laid out here:

public class MyFilesBackup extends BackupAgentHelper {

 void onCreate() {
 FileBackupHelper helper
 = new FileBackupHelper(
 this, "my_file", "another_file"
);
 addHelper("all_my_files", helper);
 }

}

6. Our application is now backup-enabled.

Chapter 5

117

How it works...
Despite there being little to show for our work, there is quite a lot going on here, not the least
of which is the employment of backup agent helpers which reduces the amount of code
by providing an interface for the underlying backup agent that we defined in the manifest.
Without these helpers we would have to override the onRestore() and onBackup()
methods in the agent itself.

In practice it would be preferable to have used constants rather than string literals which we did
here simply to reduce the amount of typing. The string parameters "prefs" and "all_my_
files" serve as a unique prefix to identify individual helpers.

To request a backup call the dataChanged() method on the BackupAgent or
onRestore() to force a restore.

6
Detecting User

Activity

In this chapter, we will cover the following topics:

 f Reading a device's orientation

 f Measuring motion with the accelerometer

 f Listing available sensors

 f Recognizing a touch event

 f Detecting multi-touch elements

 f Recognizing gestures

 f Handling multi-touch gestures

 f Controlling on screen keyboards

Introduction
If one aspect of modern smartphones makes them stand out from other digital devices, it is
surely the large array of sensors that can be found on-board. Android handsets can detect
speed, motion, gravitational pull, and even the Earth's magnetic field.

Combined with sensitive touch-screens capable of reading complex gestures, these new forms
of input device make smartphones among the most versatile and fun devices a programmer
can get his or her hands on.

Android provides us with many handy tools for detecting user activity of this nature along with
an intuitive series of callbacks and listeners.

Detecting User Activity

120

The ability of a phone to know which way it is being held, and so orient its on-screen content
accordingly, is something users take for granted these days. As developers we need to be able
to control this process and this chapter begins by exploring how to manage configuration
changes. Not only can we intercept changes in orientation using these configuration tools, but
also events such as the sliding in and out of a hard keyboard or the presence of a touch-screen.

Android devices generally contain several sensors and are able to take readings of various
environmental conditions such as temperature and movement. Most of these instruments
are accessed in the same way with the android.hardware.SensorManager class along with
various listeners. We will see how to read and interpret the data that these devices produce
and how to quiz a handset to discover which sensors are available to our applications.

Next, we will take a look at touch-screens and the android.view.MotionEvent class which
plays a primary role in recognizing touch events. We will see how to distinguish between more
than one digit in multi-touch settings.

Next we demonstrate how to detect single pointer gestures such as double taps, scrolls, and
flings as well as multi-touch gestures like the pinch-zoom.

Finally we come to the soft keyboard and how to best manage the issue of the amount of
screen space these items generally consume.

Reading a device's orientation
Perhaps one of the most useful features of the smartphone is the device's ability to detect
its own screen orientation with regard to the user. Although much of this can be handled
automatically when a user turns their device around, it is very useful at times to be able to
take control of the process.

By informing the system through our manifest and overriding activity callbacks we can include
code that will run when the device is rotated.

Getting ready
We are going to take over from the system's automatic handling of screen orientation with
a callback method, but first we have to inform Android of this, which we do through our
manifest. We will also need some way to observe results, so start up a new Android project in
Eclipse and create a TextView with an ID in main.xml.

How to do it...
1. Open the AndroidManifest.xml file and inside the <activity> node add a

configChanges element with the following value:

Chapter 6

121

<activity
 android:name=".OrientationReader"
 android:configChanges="orientation"
 android:label="@string/app_name">
 ...
</activity>

2. Open the Java activity window and form an association between a private class
member, mTextView, and the TextView that we created in XML:
 mTextView = (TextView) findViewById(R.id.text_box);

3. Override the onConfigurationChanged() method as follows:
@Override
public void onConfigurationChanged(Configuration config) {
 super.onConfigurationChanged(config);

 if (config.orientation ==
 Configuration.ORIENTATION_LANDSCAPE) {
 mTextView.setText("landscape");

 } else if (config.orientation ==
 Configuration.ORIENTATION_PORTRAIT) {
 mTextView.setText("portrait");
 }

}

4. Now compile and run the project on a handset or emulator. Rotate the phone or
virtual device through 90 degrees to observe the onConfigurationChanged()
method in action:

The screen can be rotated using a virtual device
by pressing Ctrl + F12 on the PC keyboard.

Detecting User Activity

122

How it works...
By default, Android will restart an Activity when a device (or emulator) is rotated through
90 degrees. This is very useful for taking advantage of the system's designated resource
folder res/layout-land/ but reloading resources every time the device is turned can be
expensive in some applications and Android provides the configChanges attribute value
"orientation", allowing us to control how an application behaves in these circumstances.

The onConfigurationChanged() method acts like many other hooks although it requires
a Configuration object to operate. The Configuration object provides us with many useful
fields such as Configuration.orientation, which we used here and which can also take
the value ORIENTATION_SQUARE.

The next table contains a list of a few of the more useful Configuration fields and their
associated constants:

Configuration.field constants
.hardKeyboardHidden HARDKEYBOARDHIDDEN_NO, HARDKEYBOARDHIDDEN_YES.
.keyboard KEYBOARD_NOKEYS, KEYBOARD_QWERTY, KEYBOARD_12KEY.
.navigation NAVIGATION_NONAV, NAVIGATION_DPAD, NAVIGATION_TRACKBALL,

NAVIGATION_WHEEL.
.navigationHidden NAVIGATIONHIDDEN_NO, NAVIGATIONHIDDEN_YES.
.touchscreen TOUCHSCREEN_NOTOUCH, TOUCHSCREEN_STYLUS,

TOUCHSCREEN_FINGER.

These configuration fields are extremely useful when you consider that we have little idea in
advance about what hardware will be available for our applications in the wild.

Measuring motion with the accelerometer
There are a wide and growing variety of sensors that can be found on an Android handset,
from accelerometers and gyroscopes to light and proximity sensors. Most of these devices
can be accessed with the android.hardware.SensorEvent class, although naturally they each
produce their own specific data sets.

Here we will use Sensor.TYPE_ACCELEROMETER to measure a handset's motion in three
dimensions before going on to explore other sensor types.

Chapter 6

123

Getting ready
Gathering information from sensors is quite straightforward as Android provides a handy
interface, android.hardware.SensorEventListener, to facilitate this. Nevertheless there
is a little more housekeeping required than previous tasks as we must take control of the
registering of these listeners with the SensorManager class.

Start up a new Android project in Eclipse and create a TextView with an ID in main.xml.

How to do it...
1. Inside our main activity's Java class edit the declaration so that it implements

SensorEventListener, like so:
public class MotionDetector extends Activity implements
SensorEventListener {

2. Just below this, declare a class field of type SensorManager:
private SensorManager mSensorManager;

3. At the end of the onCreate() method add the following SensorManager assignment:
mSensorManager = (SensorManager) getSystemService(SENSOR_SERVICE);

4. We need to disable our sensors when we are not using them, so add an onPause()
and an onResume() method, completed as seen here:
@Override
protected void onResume() {
 super.onResume();

 mSensorManager.registerListener(
 this,
 mSensorManager.getDefaultSensor(
 Sensor.TYPE_ACCELEROMETER
),
 SensorManager.SENSOR_DELAY_UI);

}

@Override
protected void onPause() {
 super.onPause();

 mSensorManager.unregisterListener(this);

}

Detecting User Activity

124

5. Eclipse will probably have informed you of an error by this point and will offer to add
the unimplemented methods. Accept this suggestion and fill out the body of the
onSensorChanged() method as follows:
public void onSensorChanged(SensorEvent e) {
 synchronized (this) {

 if (e.sensor.getType() == Sensor.TYPE_ACCELEROMETER) {
 mTextView.setText("x= " + e.values[0] +
 "\ny= " + e.values[1] +
 "\nz= " + e.values[2]);
 }

 }
}

6. The onAccuracyChanged() method is not used in this example but must be
included anyway—you can leave it like this:
public void onAccuracyChanged(Sensor sensor, int accuracy) {
 // TODO Auto-generated method stub
}

7. Provided you have assigned the TextView with findViewById(), this program can
be run on any emulator or handset with an accelerometer:

How it works...
Reading a sensor's values requires several components, including the SensorEventListener
interface that implements two callbacks which we use to respond to changes in sensor values
or accuracy. The onAccuracyChanged() callback is required less often but is nevertheless
useful as demands on battery and environmental conditions can cause this setting to change.
The possible constant int values for this can be:

SENSOR_STATUS_ACCURACY_HIGH,
SENSOR_STATUS_ACCURACY_MEDIUM
SENSOR_STATUS_ACCURACY_LOW

Chapter 6

125

Many sensors, including the accelerometer, are a powerful drain on a device's battery
so we need to disable them when not in use. We did so in the onPause() callback
using SensorManager's unregisterListener(SensorEventListener) method.
Registering the listener, on the other hand, was slightly more complex, requiring a
SensorEventListener, an int type, which here was the default accelerometer, and a
delay value. This delay (int) value controls how quickly the sensor operates and can have a
dramatic affect on power usage. There are four settings:

 f SENSOR_DELAY_FASTEST

 f SENSOR_DELAY_GAME

 f SENSOR_DELAY_NORMAL

 f SENSOR_DELAY_UI

The actual reading of the accelerometer's values was done in the onSensorChanged()
method. We managed the SensorEvent's sensor.getType() method to select the
accelerometer and we can also use this to gain other information about a sensor such as
sensor.getPower(), which returns the power the sensor uses in micro amps or sensor.
getMaximumRange(), which returns a distance based on the sensor's own measurements.

The accelerometer, along with the magnetic field sensor and the gyroscope, returns three
values based on a coordinate system. In our example here the three values describe the
acceleration of the device along each of the three axes of this coordinate system measured in
m/s2. Relative to the handset the three directions are as shown in the next image:

Detecting User Activity

126

Note that the force of Earth's gravity (approximately 9.8 m/s2) will always
register with the accelerometer. For example, if a phone is perfectly upright,
as in the diagram, then the Y axis, event.values[1], will read -9.8.

There's more...
The technique we used to register and access the accelerometer is very similar in operation
and structure to the way we would access the other sensors.

Accessing any available sensor
We referred to our accelerometer with the Sensor constant TYPE_ACCELEROMETER
in the two lines:

mSensorManager.registerListener(this,
mSensorManager.getDefaultSensor(Sensor.TYPE_ACCELEROMETER),
 SensorManager.SENSOR_DELAY_UI);
...
if (e.sensor.getType() == Sensor.TYPE_ACCELEROMETER)

We could have used any one of several constants provided by the Sensor object. Here is a
comprehensive list of sensor types:

 f TYPE_ACCELEROMETER

 f TYPE_ALL

 f TYPE_GRAVITY

 f TYPE_GYROSCOPE

 f TYPE_LIGHT

 f TYPE_LINEAR_ACCELERATION

 f TYPE_MAGNETIC_FIELD

 f TYPE_ORIENTATION

 f TYPE_PRESSURE

 f TYPE_PROXIMITY

 f TYPE_ROTATION_VECTOR

 f TYPE_TEMPERATURE

These are largely self explanatory with the possible exception of TYPE_ALL. This special case
is used to detect any sensor.

Chapter 6

127

Listing available sensors
Android handsets come with a wide variety of sensors but which sensors are included is
a matter for manufacturers to decide and differs from model to model. As developers we
need some way to detect which sensors are available to us. In particular we may want to
select between sensors that perform similar functions. For example it may be preferable to
measure motion with a gyroscope if one is available but prepare a function that utilizes the
accelerometer when one is not.

Getting ready
The project we put together in the last recipe is as good a place to start this exercise as any,
as we will be doing little in the way of coding. You can of course apply this task to any of your
own applications if you prefer.

How to do it...
1. Open up the Java activity file and declare the following private members:

private SensorManager mSensorManager;
private TextView mTextView;
private List mList;

2. You will have needed to define the TextView in XML and provide it with an android:id.

3. Inside the onCreate() method assign our SensorManager and TextView like this:
mSensorManager = (SensorManager) getSystemService(SENSOR_SERVICE);
mTextView = (TextView) findViewById(R.id.text_view);

4. Finally, add the following statement block just beneath this:
mList = mSensorManager.getSensorList(Sensor.TYPE_ALL);

for (int i = 1; i < mList.size(); i++) {
 mTextView.append("\n" + mList.get(i));
}

5. When run on a handset or emulator this routine will display a list of all available
sensors for that device:

Detecting User Activity

128

How it works...
This is a nice simple exercise and all we have done is demonstrate the usefulness of
SensorManager's getSensorList(int) method. In practice we would probably only
make inquiries regarding a particular sensor type and this is simply a matter of replacing
the Sensor.TYPE_ALL constant with the appropriate type in the mSensorManager.
getSensorList() call.

Being able to test for the presence of sensors enables us to develop for a wide variety of
handsets without necessarily knowing in advance what hardware is available.

Recognizing a touch event
One of the most challenging aspects of smartphone programming is the often very small
amount of screen estate available, with some handsets having screen sizes of less than
3". Programming such devices would prove very frustrating if it were not for the presence of
touch-screens on most of them.

Here we will create a slider button that we can drag across the screen with a finger using the
view.View.OnTouchListener and view.MotionEvent classes. This will demonstrate how to
make any View respond to a touch event and read the position of any movement we make.

Getting ready
Although there is quite a lot of code in this example, to start with all we need is a new Android
project and a Button to use as a slider. Start a new project and in the res/layout/main.
xml file add the following Button:

<Button
 android:text="slide me"
 android:id="@+id/button"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:padding="6dip" />

How to do it...
1. Inside the onCreate() method in our Java file, add the following code:

final Button slider = (Button) findViewById(R.id.button);

slider.setOnTouchListener(new OnTouchListener() {
 int sldrX;
 int wndwX;

});

Chapter 6

129

2. We need to implement the OnTouchListener's onTouch() method. To do this
quickly, use Eclipse's help function by hovering over the marked code and selecting
Add unimplemented methods from the quick fix window:

3. Fill out our new method as we have here. Although, as you can see, the case
MotionEvent.ACTION_UP clause is not actually required for this demonstration:
@Override
public boolean onTouch(View view, MotionEvent event) {
 int action = event.getAction();

 switch (action) {

 case MotionEvent.ACTION_DOWN:
 sldrX = (int) event.getX();
 wndwX = (int) event.getRawX();
 break;

 case MotionEvent.ACTION_MOVE:
 int l = (int) event.getRawX() - sldrX;
 int r = l + view.getWidth();
 view.layout(l, view.getTop(), r, view.getBottom());
 break;

 case MotionEvent.ACTION_UP:
 // actions to be completed
 // when the button is released
 break;
 }

 return false;
}

Detecting User Activity

130

4. That's it. Run the project on a handset or an emulator with the touchscreen enabled.
Our button will now respond to touch events and slide across the screen:

How it works...
The OnTouchListener.onTouch() method gives us access to the View that was touched
as well as the event itself. This event is returned in the form of a MotionEvent instance and
we used its public method's getX() and getRawX() to return the position of the event. The
first method returns the position within the view (that is, how far from the button's left edge it
was touched) and the second, Raw, version returns the position on the entire screen.

We could just as easily have used getY() and getRawY() to return the view's vertical
position in a similar fashion.

The units returned by these methods are in pixels and the origin is
found in the top left corner of the screen or view being measured.

The MotionEvent class is able to do far more than tell us where our finger is on the screen,
and methods such as getEventTime(long) and getDownTime(long) tell us when and
for how long (in milliseconds) our event occurred.

The other useful feature of the MotionEvent class is the getAction() method which allowed
us to capture the three parts of a screen swipe: ACTION_DOWN, ACTION_MOVE, and ACTION_
UP. There is also a fourth ACTION_CANCEL value for when a touch event is interrupted or
ends unexpectedly.

Other View.view methods that we used were getWidth() and getTop() for retrieving our
view's location and layout(int,int,int,int) for positioning it.

It is well worth noting that in releases prior to API 11 (Android 3.0)
only a single view could receive a touch event at any one time. If,
for reasons of backwards compatibility, you wish to disable the
multi-view touch feature, provide the android:splitMotionE
vents="false" attribute to the layout concerned.

Chapter 6

131

There's more...
A lot of mobile applications, in particular maps and games, make use of the edges of the
screen as a method of input. The MotionEvent class provides us with constants to record
screen edge activity.

It is also possible to detect pressure on some handsets and in the absence of such a sensor,
a size detector is usually available which can provide a crude but effective approximation of
pressure by registering the spread of contact.

Edge detection
There are four flags, available to us as MotionEvent constants:

 f EDGE_TOP

 f EDGE_BOTTOM

 f EDGE_LEFT

 f EDGE_RIGHT

These can be used in the manner we applied above to detect when a touch event intersects
the edges of the physical screen.

Pressure and size detection
To find the pressure of an event use MotionEvent.getPressure(), which will return a
float between 0.0 for no pressure and 1.0 for maximum pressure.

If this method returns values greater than 1.0 then the device itself may need
calibrating and the same may apply if this value never reaches close to 1.0.

The MotionEvent.getSize() method provides a measure of how spread out the point of
contact is and also returns a float between 0.0 and 1.0

See also
For further examples of the onTouchListener see the recipes Drawing with a Canvas in Chapter
8, Graphics and Animation and Capturing photos with the camera in Chapter 9, Multimedia

Detecting User Activity

132

Detecting multi-touch elements
Detecting touch on just a single point is useful enough, but far more information can be
gathered from a touchscreen that can detect and distinguish the presence of more than one
finger. Android can, in theory, detect up to 256 touch events at once, although one can see
how this might be difficult to achieve in practice.

The programming of multi-touch events is necessarily more complex than tracing a single point
but thankfully for us, it is achieved in a similar manner. Here we will see how to determine the
number of touch events at a given moment and how to differentiate between them.

Getting ready
As mentioned earlier, detecting multiple touch events is similar to detecting single touch
events. Start this task from where we left off in the previous recipe or apply the techniques
laid out here to a project of your own.

How to do it...
1. We will be adding to our previous OnTouchListener so open the Java activity and

scroll down to the onTouch() method.

2. Near the top of onTouch() add the following two declarations:
int index =
 (action & MotionEvent.ACTION_POINTER_INDEX_MASK)
 >> MotionEvent.ACTION_POINTER_INDEX_SHIFT;
int id;

3. Replace the switch expression:
switch (action) {

With:
switch (action & MotionEvent.ACTION_MASK) {

4. Now add two more case clauses to the switch statement as follows:
case MotionEvent.ACTION_POINTER_DOWN:
 id = event.getPointerId(index);
 Toast.makeText(getApplicationContext(),
 "finger " + id + " pressed", Toast.LENGTH_LONG);
 break;

case MotionEvent.ACTION_POINTER_UP:
 id = event.getPointerId(index);
 Toast.makeText(getApplicationContext(),
 "finger " + id + " released", Toast.LENGTH_LONG);
 break;

Chapter 6

133

5. To allow us to touch our view with more than one finger, we need to make it a bit
wider. In main.xml change the width with the following:
android:layout_width="match_parent"

6. Our project will now respond to more than a single touch event. Compile and run the
code either on a handset or emulator with multi-touch capacity to try it out.

How it works...
Again, we have only used one dimension to keep the example simple, but the same principles
apply equally well for both axes. The key difference here is that we now have to keep track of
more than one event.

First we filtered out our action with the bit mask MotionEvent.ACTION_MASK, so that
we could handle it with a switch statement as we did before. The MotionEvent values
ACTION_POINTER_UP and ACTION_POINTER_DOWN are returned instead of ACTION_UP
and ACTION_DOWN when a secondary pointer is detected. Then we obtained the index of
our individual pointer by ANDing (>>) another bit mask, MotionEvent.ACTION_POINTER_
INDEX_MASK with our action code and shifting it up or down with MotionEvent.ACTION_
POINTER_INDEX_SHIFT, which keeps track of the number of pointers.

Once we can identify a pointer by its index, we can locate it: getX(), getY(), and their
variants can all take an int parameter that represents a pointer's index. For example
getX(1) will return the X coordinate of the second pointer placed on that view. The
MotionEvent class also has a getPointerCount() method which returns the current
number of pointer events.

It might seem that having a pointer's index is all we need but it is simple to confuse this
system with three or more points over time. Fortunately Android provides a way for us to give
each pointer an ID that will remain consistent over many individual events. This is far simpler
than obtaining the index as MotionEvent provides the getPointerId(int index) method
which we used here. To see the difference between referring to a multi-touch event by its
index and its ID, replace id with index in the Toast statements in the code.

Detecting User Activity

134

Recognizing gestures
The techniques outlined here allow us to detect, locate, and discriminate between any
number of touch events. Using MotionEvent methods such as getX() and getY() to
determine an event's position and getEventTime(), getDownTime() and others to
provide information about when these events took place, we can build all sorts of complex
shape recognition routines.

Constructing high level gestures this way could soon become cumbersome. Android provides
the GestureDetector class along with one or two subclasses that allow us to detect gestures
such as scrolling, flinging, and long-pressing.

Getting ready
This recipe shows how to recognize a fling gesture. This is when a user quickly moves and
then releases a finger in a specific direction. As we only demonstrate how to capture the event
and interpret its data here, you can apply these techniques to any application you wish.

Start up a new Android project in Eclipse.

How to do it...
1. First declare the following gesture detector in our main Java activity class:

private GestureDetector mGestureDetector;

2. Create a new inner class that extends a gesture listener subclass as shown here and
give it an onFling() callback:
class MyGestureListener extends GestureDetector.OnGestureListener
{

 @Override
 public boolean onFling(MotionEvent e1,
 MotionEvent e2, float vX, float vY) {
 Toast.makeText(getBaseContext(),
 "velocity " + vX + " x " + vY, Toast.LENGTH_SHORT);

 return true;
 }

}

3. Next assign our gesture detector with the class we just created:
mGestureDetector = new GestureDetector(this, new
MyGestureListener());

Chapter 6

135

4. Now add an onTouchEvent() method and fill it out with the single line of code
seen below:
@Override
public boolean onTouchEvent(MotionEvent event) {
 return mGestureDetector.onTouchEvent(event);
}

5. Test your application on a handset or emulator to view the results.

How it works...
The way gesture detection works is relatively straightforward. The GestureDetector object is
not used directly, but rather one of its subclasses is used to report, as was seen here with
OnGestureListener.

We still overrode onTouchEvent() but passed the event directly to the GestureDetector.
This means that we can still hook MotionEvents in the way did earlier in the chapter from
within the onTouchEvent() method but our routine can now capture single motions and
gestures together.

The onFling() callback provides us with four items of data describing the gesture. The first
two are MotionEvents: The ACTION_DOWN that started the fling and the ACTION_MOVE that
followed it. The two float values returned represent the velocity (in pixels per second) of the
fling along the X and Y axes respectively.

The OnGestureListener class provides six gesture callbacks in total, their return values and
parameters are laid out in the following table:

Method Returns Parameters Notes
onDown() boolean MotionEvent A single tap down event
onFling() boolean MotionEvent

MotionEvent
float
float

Initial down event
Consequent move event
X velocity in px/sec
Y velocity in px/sec

onLongPress() void MotionEvent The down event that triggered a long press
onScroll() boolean MotionEvent

MotionEvent
float
float

Initial down event
Movement that caused the scroll
X distance traveled in px
Y distance traveled in px

onShowPress() void MotionEvent Like a long press but called before
onSingleTapUp() boolean MotionEvent A single tap up event

Detecting User Activity

136

There's more...
As mentioned before, OnGestureListener is not the only subclass of GestureDetector.
There is also a listener for double-taps and a convenience listener that combines the
functionality of both.

Detecting double-taps
The GestureDetector.OnDoubleTapListener class has three public methods for detecting
double-taps:

 f onDoubleTap(MotionEvent) is called when a double-tap has occurred

 f onDoubleTapEvent(MotionEvent) is called after a single MotionEvent within
a double-tap

 f onSingleTapConfirmed(MotionEvent) is called after the first tap

These hooks all return true when an event is successfully completed and false otherwise.

Detecting all gesture events
Simply for convenience, Android has included a further subclass of GestureDetector,
SimpleOnGestureListener. This listener implements both the OnGestureListener and the
OnDoubleTapListener and is a useful class for extending and creating custom listeners.

Handling multi-touch gestures
Gesture recognition on mobile devices is not restricted to single pointer inputs such as the
double-taps and flings we met earlier in this chapter, and functions such as pinch-zoom would
be difficult to perform on a touch-screen with fewer than two fingers.

Again we will make use of a gesture detector and its listeners. In this case we will be using the
ScaleGestureDetector and its OnScaleGestureListener, which provide measurements useful
for pinch-zooming but are flexible enough to apply to any number of situations.

Getting ready
The structure behind detecting multi-touch gestures is the same as for the single pointed
gestures we covered earlier in the chapter. Load up any project you wish and we will create
the listener as an inner class that you can apply as you wish.

Chapter 6

137

How to do it...
1. Select the activity or class that you wish to add a scale detector to, and declare the

following class-wide field:
private ScaleGestureDetector mDetector;

2. Now include the following inner class in this activity:
private class MyScaleDetector
 extends ScaleGestureDetector.OnScaleGestureListener {

 @Override
 public boolean onScaleBegin(ScaleGestureDetector detector) {
 // called when the gesture starts

 return true;
 }

 @Override
 public boolean onScale(ScaleGestureDetector detector) {
 // called for every MotionEvent within the gesture

 if (detector.getScaleFactor() >= 1) {
 mIsZoomingOut = true;
 } else {
 mIsPinchingIn = true;
 }

 return true;
 }

 @Override
 public boolean onScaleEnd(ScaleGestureDetector detector) {
 // called when the gesture is consumed

 return true;
 }

}

3. You will, no doubt want to include you own text within the onScale() method. When
done, compile and run your code in the usual way.

How it works...
The way that motion detectors and listeners work should be familiar by now. The difference
with multi-touch gesture detection lies in the nature of the data that is captured. As before,
the detector supplies a series of getters that we can use to interrogate events that make up
our gestures.

Detecting User Activity

138

The distance (in pixels) between the two pointers can be captured with
ScaleGestureDetector.getCurrentSpan() and the time (ms) that it occurred is
available through getEventTime(). To make the detector truly useful, methods are provided
to record data from the previous scaling event as well. In particular, getPreviousSpan()
which gives us the last distance between pointers and getTimeDelta() which returns the
time between events.

These values need to be compared to yield useful results and Android saves us some
time here with the getScaleFactor() method which we employed and which is a ratio
equivalent to getCurrentSpan() divided by getPreviousSpan(). It is common, with fast
finger movements for this number to grow too large or too small to be meaningful and it is
normal to include some preventative measures such as:

mScaleFactor = Math.max(0.1f, Math.min(mScaleFactor, 10.f));

The ScaleGestureDetector has three callbacks that are fired at least once during each gesture:

 f onScaleBegin()—This is called once, at the beginning of each gesture

 f onScale()—This is called for every MotionEvent that is part of the gesture

 f onScaleEnd()—Called when the gesture has been completed

We only looked at one or two of the public methods available to us through the
OnScaleGestureListener, although there are several more all of which are useful, so below is
a table outlining each of them:

Method Purpose and unit
getCurrentSpan(float) The current distance between the pointers in pixels
getEventTime(long) The time in milliseconds when the event occurred
getFocusX(float) The X coordinate (px) of the current focal point, this

is the center point between all pointers
getFocusY(float) The Y coordinate (px) of the current focal point
getPreviousSpan(float) The distance between the pointers during the

previous scale event
getScaleFactor(float) A ratio equal to (current span/previous span)
getTimeDelta(long) The time, in milliseconds, between the previous

event and the current one
isInProgress(boolean) A test to inquire if a gesture is in progress, so that

execution can be delayed if necessary

Chapter 6

139

Controlling on screen keyboards
There is one form of user activity that we have thus far neglected, but which is in many
applications, the most used input method of all. That is the soft keyboard that appears when
a user taps on an EditText widget:

More often than not it is sufficient only to work with the resultant text that a user has
input rather than consider the keyboard itself. However the limited screen size on many
Android handsets means that it can be important to control how these keyboards appear
in our applications.

There are also a number of things that we can do to help the system select the most
appropriate keyboard layout based on our desired input type. Here we will learn how to set
soft keyboard appearances to two of three configurations according to our activity's needs and
have the system select keyboard layout based on our input type.

Getting ready
We will need a way of calling up the soft keyboard, so start a new project in Eclipse and add
three EditText widgets to the main layout.

How to do it...
1. We will return to our EditText in a moment. First open up the project's

AndroidManifest.xml file.

2. Inside the <activity> tag include the following attribute:
<activity
 ...
 android:windowSoftInputMode="stateVisible|adjustResize">

Detecting User Activity

140

3. Now return to our main.xml layout file and add to each EditText box the attributes
shown here:
<EditText
 ...
 android:id="@+id/edit_text1"
 android:inputType="text"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:layout_weight="1" />

<EditText
 ...
 android:id="@+id/edit_text2"
 android:inputType="number"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:layout_weight="1" />

<EditText
 ...
 android:id="@+id/edit_text3"
 android:inputType="phone"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:layout_weight="1" />

4. Run this application on a handset and test each of the edit boxes.

5. Having seen how each view behaves, change the inputType lines in the first and
third EditTexts to the following:
android:inputType="textCapSentences|textAutoCorrect"

android:inputType="textEmailAddress|textAutoComplete"

6. Run the project again, experimenting with each text view and observe the difference
in behavior.

7. Return finally to the manifest and change the line that we entered earlier to:
android:windowSoftInputMode="stateVisible|adjustPan">

How it works...
There is quite a lot going on here. Firstly we handled the way that Android manages screen
space when a soft keyboard is required. There are three possible modes for this behavior, one
is applied automatically and we will deal with it at the end of this recipe.

Chapter 6

141

The other two are controlled with the windowSoftInputMode attribute in the manifest. We
applied two attributes here, separated by a pipe character (|). The first, stateVisible,
simply ensures that the keyboard displays correctly when requested, it is the other two that
control our keyboard display mode. As you probably saw during the exercise, when the input
mode is set to adjustPan, the keyboard scrolls our activity to make room. On the other hand
the setting adjustResize will cause our activity to resize to fit the remaining space:

Having made sure that our application is making the best possible use of screen space, we
can concentrate on the input itself, in particular the input type. There are five basic input
types: text, number, phone, date, and datetime, and at their simplest they control the
keyboard layout that is chosen by the system, for example, an inputType of number causes
the numeric keyboard to display:

Detecting User Activity

142

These basic types can be enhanced by any number of variations, separated by a pipe (|),
and we used one or two of them here, for example the textEmailAddress caused the
resultant keyboard to have a "@" character clearly displayed:

All we did to apply this variation was append text with EmailAddress and there are many
other variations on the text type, with some of the more useful listed below for reference:

 f textCapCharacters

 f textCapWords

 f textCapSentences

 f textAutoCorrect

 f textAutoComplete

 f textMultiLine

 f textNoSuggestions

 f textEmailAddress

 f textPassword

 f textVisiblePassword

The number input type is the only other type that can take variations and these are limited to
numberDecimal and numberSigned.

There's more...
We mentioned earlier that there was a third soft keyboard layout mode. This is the exclude
mode and it is applied when the system considers that there is insufficient space to display
any part of an activity, as is often the case when a screen is in landscape orientation. When
this occurs, Android provides default buttons for the user to return to our activity or continue
to the next field depending on how our activity is laid out.

Chapter 6

143

We have seen now how to take advantage of many of the features found on today's mobile
devices such as touchscreens and motion sensors, and how to use the data they provide to
develop applications that can be accessed in intuitive and imaginative ways. Now it is time
for the information to flow the other way and to explore the different ways we can provide
information to the user.

7
Notifying the User

In this chapter, we will cover the following topics:

 f Displaying an alert dialog

 f Displaying a progress dialog

 f Customizing a dialog

 f Making a Toast

 f Notifying the user with the status bar

 f Using the Notification.Builder class

Introduction
The efficient management of screen space is of utmost importance when it comes to
programming mobile devices, and there are many occasions when an application will need
to notify the user of some event or another. We could of course create text views or other
widgets of our own, but as one would expect, Android provides several techniques specifically
designed for this purpose.

Perhaps the most useful way to inform users is the dialog box and Android comes equipped
with some flexible dialog objects that suit almost any purpose. It is also quite possible and not
at all that difficult to create custom dialog boxes that match more precisely the appearance or
function of our applications.

Android also provides a handy little pop-up that requires no dismissing called a Toast. We have
encountered these in earlier chapters but here we will explore them in more detail, explaining
how we can gain finer control over their positioning and even how to customize them.

As with most smartphones, Android handsets will display a small notification in the status
bar, (most often to be found at the top of the screen) that contains iconic information usually
regarding the general state of the device. We can take advantage of the notification bar and
this is especially useful when our application is running in the background.

Notifying the User

146

The notification bar also gives us access to to a sliding drawer tool, which drops down from
the status bar as seen in the following screenshot:

The sliding drawer mechanism permits us to notify a user with the bar and then provide
further information with the sliding drawer but without taking the user away from the activity
they are engaged in. From Android 3.0 (API level 11) onwards the Notification.Builder class
has been available and this has considerably simplified this form of notification.

Displaying an alert dialog
AlertDialog is the most common form of built-in dialog box on the Android platform, and
probably the most useful as well. It can be used to present the user with a variety of just
activity-specific information in the form of a temporary window that partially obscures the
screen, and more often than not allows the user to respond to that information by providing
one or more clickable buttons or selectable items:

Chapter 7

147

Here we will see how to generate such windows and how to provide them with components
that will notify the user and also allow them to take an action.

Getting ready
Android makes the production of an AlertDialog box remarkably simple. To follow the
instructions in this task simply start up a new Android project in Eclipse.

There is no need to add or identify any new widgets but you may want to remove the default
text view the wizard includes in new projects.

How to do it...
1. We need some way to refer to our dialog box, so open the Java activity file and

declare and assign the following static variable:
static final int DIALOG_ID = 0;

2. We will have our dialog appear as soon as our activity starts up so add the
showDialog() call shown below, at the end of the onCreate() method:
@Override
 public void onCreate(Bundle state) {
 ...
 showDialog(DIALOG_ID);
 }

3. Now we need to handle the creation of the dialog, which is done generally with the
onCreateDialog() method. Enter the following routine to create a simple dialog
creator:
@Override
protected Dialog onCreateDialog(int id) {
AlertDialog.Builder builder = new AlertDialog.Builder(this);

builder.setTitle("An alert dialog")
 .setMessage("This dialog does nothing")
 .setPositiveButton("OK",
 new DialogInterface.OnClickListener() {
 public void onClick(DialogInterface dialog, int id) {

 // when the user clicks the OK button
 // do something

 dialog.dismiss();
 }
 });

 return builder.create();
}

Notifying the User

148

4. That's all there is to creating an alert dialog. Run the code on your handset or an
emulator to view the results.

How it works...
It will be obvious that the use of the final int DIALOG_ID is not strictly required for this code
to run successfully and it is included simply to demonstrate how we might handle situations
where we are employing more than one dialog box and need to distinguish between them:
we could just as easily have conjured up our alert dialog using showDialog(0), or even
showDialog().

We called up our dialog from within the onCreate() hook but this was for ease of
demonstration and often we would have to be more specific about when we called this
routine. Nevertheless the showDialog() method is the key to how dialogs are employed. The
other side of this process is managed by another Activity member, the onCreateDialog()
method and a specific AlertDialog descendant, the Builder. Dialog builders do what their
name suggests and allow us to put together the components of each alert by stringing these
parts together as we did here, stringing together a title, a message and a single button.

The Builder method's setTitle() and setMessage() were passed character sequences
in this demonstration but the use of resource ID integers is also permitted and, for longer
passages of text, provides a far tidier approach, for example setMessage(R.id.my_
message_string).

We included a button on our dialog box and caught it with a DialogInterface.
OnClickListener which behaves as other listeners do. The use of a "positive"
button requires some explanation as there are also setNegativeButton() and
setNeutralButton() methods that allow us up to three buttons per alert dialog. These
names however are somewhat arbitrary and there is no reason, other than a certain semantic
clarity, to have them behave as their names suggest.

There's more...
The dialog box we created here was rather simple and there are a number of other things we
could have done to enhance it, such as include an icon, supply a list of selectable items as
our dialog content, or respond specifically to dialog dismissals and cancellations.

Adding an icon to an alert dialog
Including an icon within our alert dialog is simply a matter of adding another setter to the
builder chain. To see this in action add the following line to our builder:

setIcon(R.drawable.icon)

Here we have used the default application icon but would more usually design one of our own
that was specific to our purpose.

Chapter 7

149

Employing lists in dialogs
Alert dialogs are often used to present the user with a selectable list of items and this is
achieved with another method, setItems() which takes a list and a listener. To create
such a dialog with the example here insert the following code into our onCreateDialog()
callback.

builder.setItems(items, new DialogInterface.OnClickListener() {
 public void onClick(DialogInterface dialog, int item) {
 }
});

Here items can be either a resource int ID or a character sequence such as the following:

final CharSequence[] items =
 { "Bath", "Birmingham", "Bradford", "Brighton" };

There are often situations where we might like our user to be able to select more
than one item and Android allows the use of multiple choice selections with the
setMultiChoiceItems() method, which then includes check boxes beside each item.
Furthermore, the system will retain information regarding which items were selected as long
as the calling activity is active.

Notifying the User

150

There is also a setSingleChoiceItems() method which produces radio buttons by each
item and is also managed by the system.

Listening for dialog cancellations and dismissals
It is easy to imagine situations where we would need listeners to tell us more than just which
button or item had been selected and Android provides methods that listen for the actual
cancellation or dismissal of a dialog. This can be done with the onDialogCancelled()
and onDialogDismissed() callback methods.

See also
To see how to customize an alert dialog see the recipe Customizing a dialog later in this chapter.

For more on lists and list views, refer to the recipe Using ListViews and ListAdapters in
Chapter 2, Layouts.

Displaying a progress dialog
No matter how hard we try or how fast a particular hardware might be, there will inevitably be
times when the user is required to wait for certain events to complete, such as retrieving a
large file, and it will come as no surprise to learn that Android provides progress dialogs and
progress bars to keep the user informed of when and how long they will be required to wait.

Getting ready
Once again we will be calling up our dialog the moment our application begins to run just as
we did with the alert dialog in the previous task and, in fact, the ProgressDialog descends
directly from the AlertDialog and in its simplest form is even easier to render.

Start up a new project in Eclipse and open up the Java activity source.

How to do it...
1. A non-specific progress alert can be produced with a single line. Add the

ProgressDialog.show() command to the onCreate() method as follows:
@Override
public void onCreate(Bundle state) {
 super.onCreate(state);
 setContentView(R.layout.main);

 ProgressDialog.show(this, "title (normally omitted)",
 "doing something - please wait...", true);
}

Chapter 7

151

2. Run the project on your handset or an emulator to see what this code does and then
return to this task:

3. For a granular progress bar replace the final line of the previous code snippet with the
following:
ProgressDialog dialog = new ProgressDialog(this);

dialog.setProgressStyle(ProgressDialog.STYLE_HORIZONTAL);
dialog.setMessage("doing something...");
dialog.setCancelable(true);

dialog.show();

4. Again, run the project to view the output:

5. Finally add the following lines beneath the dialog.show() call:
dialog.setProgress(41);
dialog.incrementProgressBy(1);

6. The progress bar will now appear like the one seen here:

Notifying the User

152

How it works...
There are really two kinds of progress dialog boxes that we have created here, a spinner for
when we do not know how long a task will take and a horizontal bar for when we do and
wish to indicate this to the user. We made this switch in the second half of this exercise with
the setProgressStyle(ProgressDialog.STYLE_HORIZONTAL) instruction and also
demonstrated a slightly neater way to set the box's other attributes such as the message. The
setCancelable(true) command allows the user to escape the process with the BACK key
and is generally preferable to blocking this action with setCancelable(false).

The ProgressDialog.show() method takes three arguments, the context (usually the
owning activity), the character sequence to be displayed, and a Boolean value controlling
whether the dialog can be canceled.

When setting the actual value of a progress bar, most of the code would be tied up with
whatever action was being carried out but the two methods, setProgress() and
incrementProgressBy(), are all we need to reflect this behavior on the dialog.

There's more...
It is often very useful to be able to hide a dialog without dismissing or canceling it, and dialogs
can be hidden from view like this with the Dialog.hide() command.

Another useful tool is the ability to send the user a message upon cancellation and this can
be achieved with the setCancelMessage("a message") call.

Customizing a dialog
The Android dialogs that we have used so far all have a similar appearance to them which may
not match the specific look of our activities. Fortunately we can create customized dialogs in
XML and maintain a consistent feel to our applications.

Getting ready
Once a custom dialog has been defined it can be summoned in exactly the same way as any
other dialog, so either start up a new project or load any of those we have used in this chapter
thus far.

How to do it...
1. We define our customized dialog box with an XML layout. Begin by creating a new

Android XML file in the res/layout folder, alongside main.xml called my_
custom_dialog.xml or some such name.

Chapter 7

153

2. We only need one view to demonstrate how to customize a dialog box. Add the
TextView below to a vertical LinearLayout:
<LinearLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:orientation="vertical"
 android:padding="6dip">
 <TextView
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:background="#0F0"
 android:textColor="#000"
 android:textSize="20sp"
 android:typeface="serif"
 android:text="This dialog has some custom settings."
 android:padding="6dip" />
</LinearLayout>

3. Now open up the Java source code for the activity and complete the onCreate()
method like so:
@Override
public void onCreate(Bundle state) {
 super.onCreate(state);
 setContentView(R.layout.main);

 Dialog dialog = new Dialog(this);

 dialog.setContentView(R.layout.my_dialog);
 dialog.setTitle("My custom dialog");

 dialog.show();
}

Notifying the User

154

4. Run this code on an emulator or handset to observe our applied XML:

How it works...
Constructing a custom dialog is remarkably simple. All the skills acquired when we learned
how to design activity layouts can be applied to our dialog design. And any view or widget that
can be included in a normal layout can be added to our custom dialogs. Furthermore, once we
have constructed our dialog we can treat it exactly as if it were a system-built one. All we had
to do to set this up was reference the XML from Java with Dialog.setContentView(int
resource ID) in a very familiar fashion.

We also used Dialog.setTitle() and Dialog.show() but any of the Dialog members
encountered in this chapter can be applied.

It is worth noting that if the method setTitle() is not called
then an empty space will appear at the top of the box. If you
want to create a custom dialog with no title at all you will need to
customize an AlertDialog rather than the Dialog object.

See also
To learn how to customize other types of widget see the recipe Creating a custom component
in Chapter 3, Widgets.

Making a Toast
Small rectangular pop-up notifications known as Toasts are by far the simplest way to inform a
user of an application event, such as the completion of a download. Toasts are a fantastic way
to notify a user of an event that he or she need not respond to, as Toasts dismiss themselves,
do not interrupt any processes, or shift application or processor focus.

Chapter 7

155

We have encountered Toasts already in this book simply because they are so easy to
implement, but now it is time to take a closer look.

Getting ready
Toasts are great mainly because they can be implemented in a single line of code. Here
however, we will deconstruct the process somewhat, to show the inner workings in greater detail.
Start up a new Android project in Eclipse and make your way to the main Java activity code.

How to do it...
1. Within the onCreate() method and immediately following the setContentView(R.

layout.main) call, add these declarations and assignments:
Context context = this;
CharSequence chrSeq = "this is a toast";
int time = Toast.LENGTH_LONG;

2. Following this, add this line to call up our Toast:
Toast toast = Toast.makeText(context, chrSeq, time).show();

3. Compile and run this code on an emulator or handset. The Toast will appear near the
bottom of the screen for a second.

4. Now, replace the line we just added with the three shown here:
Toast toast = Toast.makeText(context, chrSeq, time);
toast.setGravity(Gravity.TOP | Gravity.RIGHT, 0, 30);
toast.show();

5. Finally, compile and run the code again. This time we will see the Toast appear near
to the upper right-hand side of the screen.

Notifying the User

156

How it works...
There should be nothing unfamiliar in the three parameters taken by the Toast.
makeText() method that we used here. The context is simply the calling component, which
here is our single activity. We used this but in less trivial applications we would probably find
ourselves using getApplicationContext() instead. The use of a character sequence is
obvious but the makeText() method is overloaded so that a resource ID would be equally
permitted. The time (int) argument refers, quite naturally, to the toast's duration on the
screen. LENGTH_LONG and LENGTH_SHORT are provided for us and represent durations of
1000 and 500 milliseconds respectively, but it is very easy to set these to user defined values
if it suits the need of our application better.

Nothing of what we did in this task was any different from the way we have made toasts
before, using a single line of code, until we reached the Toast.setGravity() method
which allows us to not only chain together relative screen constants such as Gravity.TOP
and Gravity.RIGHT with the pipe character (|) but also to take finer control by including
horizontal and vertical offsets (in pixels) with the second and third (int) parameters.

There's more...
Just like many other Android widgets and dialogs, it is also possible to create custom Toasts to
suit the needs of our applications more thoroughly.

Customizing Toasts
Customizing a Toast pop-up is managed in a similar fashion to the way we customized alert
dialogs earlier in the chapter by defining our new view group in XML. For example, create the
following file inside the res/layout folder and call it my_toast.xml:

<LinearLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:id="@+id/toast_layout"
 android:orientation="horizontal"
 android:layout_width="match_parent"
 android:layout_height="match_parent" >

 <TextView android:id="@+id/text_view"
 android:layout_width="wrap_content"
 android:layout_height="match_parent" />

 <ImageView android:id="@+id/image_view"
 android:layout_width="wrap_content"
 android:layout_height="match_parent" />

</LinearLayout>

Chapter 7

157

There is slightly more to the way we call up a custom toast than there is with a dialog, and we
need to make use of the LayoutInflater object.

LayoutInflater inflater = getLayoutInflater();
View view =
 inflater.inflate(R.layout.my_toast,
 (ViewGroup) findViewById(R.id.toast_layout));

The rest of the code required is what we might imagine and should be familiar with, probably
along the lines of the following snippet:

ImageView image = (ImageView) view.findViewById(R.id.image_view);
image.setImageResource(R.drawable.icon);
TextView text = (TextView) view.findViewById(R.id.text_view);
text.setText("this is a custom toast view");

Toast toast = new Toast(this);
toast.setGravity(Gravity.TOP, 0, 40);
toast.setView(view);
toast.setDuration(Toast.LENGTH_LONG);
toast.show();

See also
For information on how to apply gravity to other screen components, such as layouts, see the
recipe Applying gravity and weight in Chapter 2, Layouts.

Notifying the user with the status bar
Perhaps the least intrusive way of notifying a user is with the status bar. This notification
area allows us to display an icon, along with a scrolling 'ticker' style message which, if
responded to with a long click, opens a 'sliding drawer' window that provides more message
space and the opportunity for the user to generate some resultant action, usually the firing of
an Intent and the starting of an Activity.

Notifying the User

158

Both Activities and Services are able to produce status bar notifications. More often than
not, we would use this from within a Service, that is, when our application is running in the
background. Here for the sake of brevity we will call our notification from the main activity as
the principles remain the same and this approach allows us to concentrate on how status
bars work without having to worry about setting up extra components.

Getting ready
We will be doing all the work here from within the main Java activity but we will also need
an icon. Create a 24 bit, transparent, PNG image that is 24 pixels wide and 38 pixels high.
Place any graphic you like inside but ensure the top seven, and bottom seven rows are left
transparent.

Now start up a new Android project in Eclipse and place the icon we just created in the res/
drawable-hdpi folder and call it status_bar_icon.png.

How to do it...
1. Open the project's main Java source and, following the setContentView() call in

the onCreate() method, and create and assign the variables as follows:
final int NOTIFICATION_ID = 0;
int icon = R.drawable.status_bar_icon;
CharSequence tickerText = "this is the ticker text";
Notification note =
 new Notification(icon,
 tickerText, System.currentTimeMillis());

2. To connect to the system's built-in notification manager insert the following line, after
the code we just entered:
NotificationManager manager =
 (NotificationManager)
 getSystemService(Context.NOTIFICATION_SERVICE);

3. We need to set up the details of our notification now so continue the code with:
Context context = getApplicationContext();
Intent intent = new Intent(context, SomeActivity.class);
PendingIntent contentIntent =
 PendingIntent.getActivity(this, 0, intent, 0);

4. The class SomeActivity does not yet exist, so we need to create it. A quick and
simple way to do this is to take advantage of Eclipse's quick fix function by hovering
over the text SomeActivity.class, which the IDE will have identified as an error.
Then simply select Create class 'SomeActivity' from the list of fixes and then click
the Finish button on the subsequent dialog:

Chapter 7

159

5. Finally we want the NotificationManager to trigger our notification. Enter the last two
lines of code shown here:
note.setLatestEventInfo(context,
 "a notification", "this is the content text", contentIntent);
manager.notify(NOTIFICATION_ID, note);

6. Run the project on a handset or emulator. The notification will appear along with the
ticker message:

7. A long press on the icon will enable the sliding drawer containing our other elements
to be dragged downwards:

How it works...
First we created a new Notification with three arguments: a resource pointer to our icon,
our ticker text, and the time when we wish the notification to take place with System.
currentTimeMillis() simply meaning 'now'. The declaration of the int NOTIFICATION_
ID does not come up again until later but that is how we would refer to notifications when we
have more than one.

Notifying the User

160

This brings us onto the NotificationManager, which is the key class here and manages all
system notifications. Notification managers are simple to set up; we can call on Context.
getSystemService() as we have before but using the string constant NOTIFICATION_
SERVICE.

We created an Intent that started an Activity that did nothing here but would, in most
applications, represent the point of the notification and we also used PendingIntent which is
really just a way of combining Contexts and Intents together.

There's more...
For times when the user is not actually using the handset, we can set it to beep or vibrate
when the notification is called.

Adding a sound to a notification
To include the user's default notification sound with our notification use:

note.defaults |= Notification.DEFAULT_SOUND;

If you want to provide your own sound file then replace this line with:

note.sound =
 Uri.parse(
 Environment.getExternalStorageDirectory() + "/my_note.mp3"
);

Adding a flashing light to a notification
If the user's device has any LED lights, then it is equally simple to cause these to flash by
including the following line:

note.defaults |= Notification.DEFAULT_LIGHTS;

Custom light settings can be created with note.ledARGB = long (ARGB color value),
note.ledOnMS = long (light on in ms), and note.ledOffMS = long (light off in ms),
followed by note.flags |= Notification.FLAG_SHOW_LIGHTS.

Adding a vibration to a notification
Vibrations are just as easy to include in a notification and notification.defaults |=
Notification.DEFAULT_VIBRATE; will do this.

See also
To learn more on designing compliant icons see the recipe Designing Android compliant menu
icons in Chapter 4, Menus.

Chapter 7

161

For programming status bar notification in applications targeting Android 3.0 (API level 11)
and above, see the next recipe Using the Notification.Builder class.

Using the Notifcation.Builder class
For applications targeting API level 11 (Android 3.0) and above, developers can take
advantage of the Notification.Builder class, which makes the production of notifications far
simpler than with earlier versions and also provides some extra functionality such as changing
the size of the associated icon.

Here we will reproduce the status bar notification from the previous recipe for the Android 3.0
Honeycomb status bar.

Getting ready
Start up a new Android project in Eclipse, making sure that it is built against API level 11
or greater.

How to do it...
1. In the onCreate() method, underneath the setContentView() statement add

the following declarations:
final int NOTIFICATION_ID = 0;
NotificationManager manager =
 (NotificationManager) getSystemService(NOTIFICATION_SERVICE);

2. Beneath this set up a Notification.Builder, as follows:
Notification.Builder builder = new Notification.Builder(this);
builder.setSmallIcon(R.drawable.icon);
builder.setContentText("This is the content text");

3. Underneath that, add this line to call the notification:
manager.notify(NOTIFICATION_ID, builder.getNotification());

Notifying the User

162

4. Now run the code on a handset or emulator running Android 3.0 or higher to view the
notification:

Note that Notification.Builder is not available to
applications using the Android compatibility package.

How it works...
Using a Notification.Builder is similar to using the Notification class that is used in Android
versions prior to 3.0 in that it is initialized with the use of a NotificationManager and then called
from the Notification.Manager's notify() method. However, in this example we passed the
output of the builder's getNotification() method rather than the Notification itself.

Here only the icon and the content text were set but but the notification builder has plenty of
other useful methods, for example there is also a setLargeIcon() method that is great for
thumbnail images.

Other handy Builder methods include setTicker(character sequence) for defining
the text that appears when the notification icon first appears and setWhen(long), which
controls the moment the alert took place.

The Notification.Builder class also makes associating and defining
flashing lights, sounds, and vibrations simpler with setLights (int ARGB,
int onMs, int offMs), setSound (Uri), and setVibrate (long[]).

Having covered user input and output in this and the previous chapter it is time to include a
little glamour in our applications by looking at Android graphics and animation.

8
Graphics and

Animation

In this chapter, we will cover the following topics:

 f Adding graphics to the ImageView class

 f Rotating an image with a matrix

 f Using ShapeDrawable and Paint

 f Drawing with a Canvas

 f Using tween animations

 f Animating with Honeycomb APIs

 f Creating stop frame animations

 f Working with OpenGL

Introduction
Android offers a variety of tools that allow us to produce graphic images and animations. From
simple color and shape control and transitional animations to full blown 3D rendering, this
wide range of functionality means that we can produce graphics that best suit the needs of
our applications and the demands of our target devices.

Android has a powerful 2D graphics library and unless an application requires fast,
responsive animations, it is well worth first considering the android.graphics.drawable and
the android.view.animation packages.

Generally speaking, when dealing with the android.graphics.drawable package we
use the abstract class Drawable, or rather we use extensions of it such as BitmapDrawable,
AnimationDrawable, or ShapeDrawable.

Graphics and Animation

164

The simplest way to produce 2D graphics is to draw them directly onto a view (generally an
ImageView). This way, the system's view hierarchy takes care of displaying our graphics.

For greater control, Android provides the BitmapFactory class, which can generate Bitmaps
dynamically from a variety of sources, and the Matrix object for applying transformations.

In situations when we want more control over an image we can make use of the Canvas class,
which allows us to call our Drawable subclasses' draw() method directly.

Another powerful yet simple set of tools that we can use are provided by the android.
view.animation package which, amongst other things, allows us to produce inbetweening
(tweening) animations. We can also create stop frame animations using individual bitmaps
as frames.

A whole new animation package was introduced with the release of Android 3.0 (API level
11) that enables the animation of objects and properties other than views, and which is far
simpler and quite a bit more powerful than its view-based counterpart.

The production of high level 3D graphics animations is even possible with Android although
this is done through the OpenGL graphics library.

Adding graphics to the ImageView class
It is quite possible to draw a graphic onto any view, by setting its background property, but the
ImageView subclass is designed for this purpose and here we will see two different ways of
setting an ImageView's content with a graphic.

Getting ready
We are going to use ImageViews to display two images here but we will use the built-in icon
PNG file for one of them. For the other, select any PNG image that you wish and, once you
have started up a new Android project in Eclipse, save it in any of the res/drawable folders
as my_drawable_image.png.

How to do it...
1. Eclipse should have automatically generated a TextView in main.xml, and if so

provide it with the following android:id:
android:id="@+id/text_view"

2. Beneath this TextView add the following two ImageViews:
<ImageView
 android:src="@drawable/icon"
 android:tint="#5f00"

Chapter 8

165

 android:layout_width="wrap_content"
 android:layout_height="wrap_content" />

<ImageView
 android:id="@+id/my_resource_image"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content" />

3. View this using the Graphical Layout tab. The TextView and the icon should be visible:

4. From the main Java activity, associate the TextView from the previous steps by adding
this line after the setContentView(R.layout.main); line in the onCreate()
method:
TextView textView = (TextView) findViewById(R.id.text_view);

5. Do the same with the image view and set the image resource as seen here:
ImageView imageView =
 (ImageView) findViewById(R.id.my_resource_image);
imageView.setImageResource(R.drawable.my_drawable_image);

6. Finally, set the text box to display the default scale type, like so:
textView.setText(imageView.getScaleType().toString());

7. Now run the project on a handset or an emulator to view both the images:

Graphics and Animation

166

How it works...
As this has been quite an easy exercise we have actually been able to combine two tasks: how
to set an ImageView's content from XML and how to do this with Java, and by now this should
not be an unfamiliar distinction.

The use of android:src to set the graphical content of the top image view is a very
straightforward way to do this, provided we do not wish to change the image at any point. If we
had wanted to do this, we could have used the setImageResource() method, which is the
Java equivalent of android:src, to dynamically change the image any number of times.

As this was such a simple task we added a line to display the enum ImageView.ScaleType,
which is a very handy way to control how an image will be laid out within a view. This can be
done with ImageView.setScaleType(ImageView.ScaleType), where ScaleType is a
string constant with the following possible values:

Value Explanation
CENTER Centers the image but does not scale it.
CENTER_CROP Scales the image without changing the aspect ratio, cropping it if it's larger

than the view.
CENTER_INSIDE Scales the image to fit inside the view without changing the aspect ratio. If

the image is smaller than the view, no scaling takes place.
FIT_CENTER Centers the image and scales it to fit along at least one axis.
FIT_END Scales and aligns the image to the bottom right of the view.
FIT_START Scales and aligns the image to the top left of the view.
FIT_XY Scales the image to fit exactly within the view with respect to the original

aspect ratio.
FIT_MATRIX Scales the image according to its matrix.

Our use of ImageView.setImageResource() is often not the best way to produce
graphics in a view as it uses the UI thread and can cause an application to stutter. Very often
it is preferable to define our image as a Bitmap or a Drawable and we will cover how to do
this in the next few recipes. Nevertheless, for static graphics the setImageResource()
method is quite adequate.

Although Android can manage BMP, PNG, JPG and GIF file
formats, the system far prefers PNG images to the other three
and, when size is an issue, JPG is preferable to BMP or GIF.

There's more...
The ability to control scaling type is not the only useful formatting tool available to the images
within our ImageViews. We can also set constraints on their size and control how aspect ratio
is managed.

Chapter 8

167

Setting an image's maximum dimensions
Often we do not want an image to take up more than a certain amount of screen space.
This can be easily achieved with the ImageView methods setMaxHeight(int) and
setMaxWidth(int). Both these methods expect their single argument to be in pixels.

We can achieve precisely the same effect from within XML if we
want with android:maxWidth and android:maxHeight.

Controlling an image's aspect ratio
To force an image to be displayed with its original aspect ratio, use
setAdjustViewBounds(true) or android:adjustViewBounds="true" from XML.

Naturally, using false will switch this option off.

See also
To see how to use ImageViews in custom widgets see the recipe Creating a custom
component in Chapter 3, Widgets.

For an example of applying an ImageView to a Google map refer to the recipe OverIaying a
map in Chapter 11, GPS, Locations, and Maps

Rotating an image with a matrix
The methods applied in the previous recipe, although simple to apply, are restricted. Ideally
we would like to take control of a bitmap directly so that we can impose more sophisticated
transformations.

In this recipe we will create a bitmap with a BitmapFactory and rotate it with a Matrix. Both
these objects belong to the android.graphics package.

Getting ready
This recipe is quite similar to the preceding one. If you wish, you can edit it to match what you
find here or simply start a new project in eclipse. Either way we will need an image file stored
in any of the res/drawable folders called my_image.png.

Graphics and Animation

168

How to do it...
1. We do not need the TextView included by the wizard, so remove this and provide the

layout in main.xml with the single ImageView as follows:
<?xml version="1.0" encoding="utf-8"?>
<LinearLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="match_parent"
 android:layout_height="match_parent">

 <ImageView
 android:id="@+id/my_image"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content" />

</LinearLayout>

2. Inside the Java activity source complete the onCreate() method so that it matches
the code here:
@Override
public void onCreate(Bundle state) {
 super.onCreate(state);
 setContentView(R.layout.main);

 ImageView imageView =
 (ImageView) findViewById(R.id.my_image);

 Bitmap bmp =
 BitmapFactory.decodeResource(getResources(),
 R.drawable.my_image);
 Matrix matrix = new Matrix();

 matrix.setRotate(60);
 bmp =
 Bitmap.createBitmap(bmp, 0, 0, bmp.getWidth(),
 bmp.getHeight(), matrix, false);
 imageView.setImageBitmap(bmp);
}

3. That's all there is to it. Run the project on a handset or in an emulator to view the
rotated bitmap.

Chapter 8

169

How it works...
Despite being a relatively short exercise there is actually quite a lot going on here. However,
everything other than the BitmapFactory and the Matrix should be familiar to you by now.

We first used the BitmapFactory to create the bitmap bmp, using its
decodeResource(Resources, int) method where getResources() returns the
Resources object of the application package and the int refers to our image's ID that we
declared in the XML. Once established this way, we used Bitmap.createBitmap() to rotate
the image according to our Matrix. The createBitmap() method takes seven arguments:

 f Bitmap—the bitmap in question

 f int—x offset (in pixels)

 f int—y offset (in pixels)

 f int—image width (in pixels)

 f int—image height (in pixels)

 f Matrix—transformation matrix

 f Boolean—true if the source image is to be filtered

Graphics and Animation

170

The Matrix object is far more sophisticated than the simple setRotate() method that we
used here suggests. It is in fact a three by three transformation vector whose values can be
set directly with Matrix.setValues(float[]) or read with getValues(float[]).

There's more...
It is not always necessary to resort to adjusting the elements of our matrix individually if we
want to perform simple transformations such as scaling and skewing, as the Matrix object
provides similar methods to setRotate(). Try using any of the following lines instead of
matrix.setRotate() in the previous code:

matrix.setSkew(0.5f, 0.1f);

matrix.setScale(1.1f, 0.9f);

matrix.setTranslate(30, 50);

To apply more than one transformation replace the set prefix of the command with post,
for example:

matrix.setRotate(60);
matrix.postSkew(0.5f, 0.1f);

The readout of the Matrix's values in the screenshot
here was achieved with Matrix.toString().

See also
For more information on including images see the recipe Adding graphics to the ImageView
class earlier in this chapter.

Chapter 8

171

To rotate components using a different technique refer to the Using tween animations recipe
later in this chapter.

For animation methods in Android 3.0 and higher there is a recipe later in this chapter called
Animations for Honeycomb APIs.

Using ShapeDrawable and Paint
Another useful extension of the Drawable class is the ShapeDrawable, which allows
us to define basic geometrical shapes such as arcs, ovals, and rounded rectangles.
ShapeDrawables are often used alongside the Paint class which provides a way of applying
drawing styles. A common way to achieve this is by extending the View class and overriding its
onDraw() callback.

Getting ready
Everything that is done in this task is generated by the system and there is no need to import
any graphic file. Simply start a new Android project in Eclipse and open the Java editor on the
Activity file.

How to do it...
1. Within our main Activity, create a new inner class that extends View as follows:

 public class MyShape extends View {
 private final ShapeDrawable mShape;

 }

2. Give the new class the constructor shown here:
 public MyShape(Context context) {
 super(context);

 Paint paint = new Paint();
 paint.setARGB(255, 255, 255, 0);
 paint.setStyle(Paint.Style.STROKE);
 paint.setStrokeWidth(4.0f);

 mShape = new ShapeDrawable(new ArcShape(0, 180));
 mShape.getPaint().set(paint);
 mShape.setBounds(0, 0, 300, 200);
 }

3. Override its onDraw() method as follows:
 @Override
 protected void onDraw(Canvas canvas) {

Graphics and Animation

172

 mShape.draw(canvas);
 }

4. Now change the activity's onCreate() method so that it inflates our new view rather
than main.xml:
 @Override
 public void onCreate(Bundle state) {
 super.onCreate(state);
 setContentView(new MyShape(this));
 }

5. Run the project on a handset or emulator to view the ShapeDrawable:

How it works...
When we set up our new class we created a Paint object to control the look of our drawable.
We only set color, style, and stroke-width here, but Paint has many more public methods that
simplify the styling of our shapes. The setARGB() method is straightforward enough and is a
handy way to control color through alpha, red, green, and blue arguments.

We used setARGB() here to control color because it provides a lot of
flexibility but if we'd been feeling lazy we could have just used paint.
setColor(Color.YELLOW).

We set the style to STROKE but we could have used FILL or FILL_AND_STROKE
if we'd preferred.

Chapter 8

173

There are three shapes available to the ShapeDrawable class: ArcShape, RoundRectShape,
and OvalShape. The arc that we drew here is defined by two floats representing the start
angle and the angle of sweep (both in degrees). The rounded rectangle takes arrays of floats
to define the inner and outer radii of each corner and can also take another inner rectangle to
create a ring shape. The oval shape draws an ellipse and its proportions are dependent on the
size and proportions of the view containing it.

Applying our paint object to our drawable was a simple matter and the setBounds() method
requires four integer values representing the left, top, right, and bottom edges of the bounding
rectangle. It is also possible to define these rectangles as Rect objects and we could have
defined one with something like myRect = new Rect(0,0,300,200) and then mShape.
setBounds(myRect).

See also
We briefly introduced a new object here with Canvas which is a class for handling all our
drawing calls. We will cover Canvases more thoroughly in the next recipe but it was provided
automatically here by our custom View's onDraw() method and passed to our Drawable's
draw() method.

Drawing with a Canvas
We briefly introduced the Canvas class in the previous recipe, using it to draw a shape.
Objects that have an onDraw() callback, like Views, provide one for us, but the real power
of the Canvas is that it gives us control over all our draw() calls so that we can change our
graphics in real time.

Here we will use a Canvas, along with a Paint object to produce a graphic that will follow the
user's finger as it moves across a touch screen.

Getting ready
This task is similar to the previous one. If you like, load it up and edit it according to what you
find here. Otherwise start up a new project from scratch in Eclipse.

If you have not yet come across touch listeners, you might want to take a quick look at the
recipes in Chapter 6, Detecting User Activity first as they are explained in more detail there.

Graphics and Animation

174

How to do it...
1. As before we are going to set a custom view of our own as the activity content view,

so as to make it immediately visible when the application runs. Edit the onCreate()
method in the Java source code to match what you see here:
@Override
public void onCreate(Bundle state) {
 super.onCreate(state);
 setContentView(new MyShape(this));

}

2. Now we need to define our new class. Make it extend View as before but also provide
the OnTouchListener interface and the fields seen here:
public class MyShape extends View implements OnTouchListener {
 float y;
 float x;
 Paint paint = new Paint();

}

3. Add this constructor to the MyShape class:
public MyShape(Context context) {
 super(context);

 paint.setColor(Color.YELLOW);
 paint.setStyle(Paint.Style.STROKE);
 paint.setStrokeWidth(4.0f);
 paint.setAntiAlias(true)

 this.setOnTouchListener(this);
}

4. Next give our view something to do when its onDraw() method is called:
@Override
public void onDraw(Canvas canvas) {
 canvas.drawCircle(x, y, 20, paint);
}

Finally add a response to any motion event with an onTouch() callback:
public boolean onTouch(View view, MotionEvent event) {
 x = event.getX();
 y = event.getY();
 invalidate();
 return true;
}

Chapter 8

175

5. Run the code on a handset or emulator and run your finger across the touchscreen to
observe our canvas in action:

How it works...
The structure of this program is very similar to the previous recipe, using an extended View,
a Paint definition, and an overridden onDraw() callback. The most significant difference
here is that instead of calling Drawable.draw(Canvas) to produce an image, we called the
Canvas directly to draw a circle with a radius of 20 pixels, using our defined Paint at the point
of the last touchscreen event.

The Canvas class has many such useful methods, and if we declare a bitmap as an activity
wide field like this:

 Bitmap bmp =
 BitmapFactory.decodeResource(getResources(), R.drawable.icon);

And then replace the drawCircle() call in onDraw() with the following line, the circle is
replaced with a bitmap:

canvas.drawBitmap(bmp, null, paint);

If its text we want to display, we could try something like:

 canvas.drawText("text", x, y, paint);

Although it may be worth including paint.setTextSize(72.0f) and paint.
setStrokeJoin(Paint.Join.ROUND) in the Paint definition to improve appearance:

Graphics and Animation

176

See also
For a more thorough look at touch events, refer to the Recognizing touch events and Detecting
multi-touch elements recipes in Chapter 6, Detecting User Activity.

Using tween animations
Android's built-in tweening (or more correctly inbetweening) functions are often overlooked as
being unable to produce more than simple translations but the android.view.animation
package allows us to fade, stretch, and rotate the contents of a view and to combine these
effects with each other and also a neat speed interpolator. Furthermore, tweening is often
easier on system resources than the direct manipulation of bitmaps and drawables.

Getting ready
When possible, tween animations are best defined in XML. Start up a new Android project in
Eclipse and create a new folder named anim inside the res folder.

How to do it...
1. In the res/anim folder create a New Android XML file called my_tween_anim.xml:

Chapter 8

177

2. If you used the New wizard to create the file and selected set as the root element,
the file should look something like this:
<?xml version="1.0" encoding="utf-8"?>
<set
 xmlns:android="http://schemas.android.com/apk/res/android">

</set>

3. We want our graphic to move in from the right, so add the following element inside
the set tag:
<translate
 android:interpolator="@android:anim/accelerate_interpolator"
 android:fromXDelta="100%p"
 android:toXDelta="0"
 android:duration="1000" />

4. Next, to create a fade-in effect, add the following alpha element beneath the
translate element:
<alpha
 android:fromAlpha="0.0"
 android:toAlpha="1.0"
 android:duration="2500" />

5. Beneath this add a new set element:
<set
 android:interpolator="@android:anim/decelerate_interpolator">

</set>

6. Now, within this second set element add the rotate tag as follows:
<rotate
 android:fromDegrees="0"
 android:toDegrees="-90"
 android:pivotX="50%"
 android:pivotY="0%"
 android:startOffset="1000"
 android:duration="3000" />

7. Now, open up the main Java activity code and and edit the onCreate() method to
match the one found here:
public void onCreate(Bundle state) {
 super.onCreate(state);
 setContentView(R.layout.main);

 final LinearLayout layout =
 (LinearLayout) findViewById(R.id.my_layout);

Graphics and Animation

178

 final Animation myAnim =
 AnimationUtils.loadAnimation(this, R.anim.my_anim);

 layout.startAnimation(myAnim);
}

8. We referred to a LinearLayout here but have not set one up. However, the project
wizard provided us with one in main.xml. Open the file and provide it with the
appropriate ID. I also changed the text in the TextView:
android:id="@+id/my_layout"

9. Now run the project on your emulator or device to view the animation. As this
animation is called whenever our activity is created, simply turn the phone, or hit Ctrl
+ F12 to repeat it:

How it works...
The concepts behind what we have just done, such as rotate and translate, should be
reasonably apparent. However, some of the notations used may require some explanation.

There are four kinds of basic transformation that we can apply. These are scaling,
translation, rotation and transparency. We can control the time (in milliseconds) that
transformations take to complete with the duration attribute and we can delay their start
with startOffset.

The <translate> element controls the movement of a graphic from the point described by
fromXDelta and fromYDelta to the point toXDelta, toYDelta. Depending on the
notation used, there are three different metrics we can apply:

1. To translate a view to an absolute number of pixels, apply a value that is made up of
digits only, for example toXDelta="100".

Chapter 8

179

2. Suffixing the value with a percent sign allows us to apply a movement that is relative
to the animated view, so toXDelta="100%" would refer to the width of the view.

3. To apply a transformation that is relative to the whole screen, append the value with
a 'p', as in toXDelta="100%p".

Setting transparency with <alpha> is far simpler with the value 0.0 producing a wholly see-
through image, and 1.0 a wholly opaque one.

The <rotate> element allows us to not only rotate our view contents (in degrees) from one
angle to another but also to select a pivot point. As with the scale animation we can place this
point absolutely, or relatively with '%' and 'p'.

We did not use the <scale> element in our example but its make up is straightforward and
self explanatory. Attributes include fromXScale and fromYScale with 1.0 meaning no
difference. It is also possible to control the point at which this scaling is centered using
pivotX and pivotY.

Interpolators allow us to control the speed and movement of our animations and can be
applied to whole set element as well as individual transformations, which is why we nested
one set within another here.

There are several other neat interpolators that allow us to apply fancy transformation effects
with a minimum effort. Given next is a list of @android:anim/ values and it is well worth
inserting them into the exercise code to see how they work:

 f accelerate_decelerate_interpolator

 f accelerate_interpolator

 f anticipate_interpolator

 f anticipate_overshoot_interpolator

 f bounce_interpolator

 f cycle_interpolator

 f decelerate_interpolator

 f linear_interpolator

 f overshoot_interpolator

There was nothing complex about the Java in this task. The AnimationUtils class provides
a few other animation based functions such as load interpolators and return the current
animation's time.

See also
For animation techniques for platforms higher than 3.0 (API 11) see the next recipe.

Graphics and Animation

180

Animating with Honeycomb APIs
Android 3.0 (API level 11) brought with it a whole new animation package, android.animation.
It is easier to use and more powerful than the android.view.animation package. It can be
used to animate object values and properties as well as views.

This exercise makes use of the ObjectAnimator to set up and trigger a transition animation
and the AnimatorListenerAdapter interface to detect the completion of the animation.

Getting ready
Start a new Android project in Eclipse and open the main.xml file.

How to do it...
1. Either using the Graphical Layout menu or by editing the XML directly, edit the

following three properties:
android:id="@+id/text_view"
android:textSize="26sp"
android:layout_marginTop="150dip"

2. Everything in this example can go straight into the onCreate() method. Underneath
the setContentView() statement add these fields:
final TextView textView =
 (TextView) findViewById(R.id.text_view);

ObjectAnimator twirl =

 ObjectAnimator.ofFloat(textView, "rotation", 0f, 360f);

3. Now, beneath this, set up the animator like so:
twirl.setDuration(2000);
twirl.setStartDelay(100);
twirl.setRepeatCount(2);
twirl.setRepeatMode(ObjectAnimator.REVERSE);
twirl.start();

4. Next, give our animator a listener:
twirl.addListener(new AnimatorListenerAdapter() {

 @Override
 public void onAnimationEnd(Animator twirl) {
 textView.setText("Finished");
 }

});

Chapter 8

181

5. Compile and run the example on a handset or emulator to view the animation:

How it works...
The ObjectAnimator class is the object that does a bulk of the work here. It is descended
from the ValueAnimator which itself is descended from android.animation.Animator.
Animator itself is not used directly (although custom animators can be extended from it)
instead either ObjectAnimators or ValueAnimators are used, the difference between
them being that the ValueAnimator calculates the values of the properties being animated
and controls the timing, whilst the ObjectAnimator does both this and the actual animating.

The ObjectAnimator here was constructed to calculate floats, ObjectAnimator.
ofFloat() but we could have calculated integers with .ofInt() or ARGB color values with
.ofObject().

It is also possible to animate arbitrary object
properties with the TypeEvaluator interface.

The arguments we passed to ObjectAnimator.ofFloat() are the the object to
be animated, the property to be changed, and the desired start and end points of the
transition—here expressed in degrees.

These properties can also be set with setTarget(object),
setPropertyName(String), setValueFrom(valueType),
and setValueTo(valueType).

The rotation property used in this example was added to View in Android 3.0 (API level 11),
and there are several others. We could have used rotationX or rotationY to animate in
all three dimensions and we can change these values at any time, as we would any property
with a setter, for example with setRotationX(float). Honeycomb also introduced scale
and pivot properties, along with X and Y variants for 3D transitions.

Graphics and Animation

182

Translation can be handled with translationX and translationY properties based on
an object's position within its container view group or absolutely with X and Y properties.
Transparency can also be managed with the alpha property with 1.0 equal to fully opaque
and 0.0 fully transparent. All arguments are in pixels or degrees and all have appropriate
setter and getter methods.

A useful feature of the ObjectAnimator constructors is
that if the start point is omitted from the arguments,
then it will start the transition using the current value.

Setting the properties of our ObjectAnimator was pretty straightforward and easy to follow, and
as you would imagine this can be achieved from within a static XML file. The example here
would look like the following:

<objectAnimator
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:propertyName="rotation"
 android:valueFrom="0"
 android:valueTo="360"
 android:valueType="floatType"
 android:duration="2000"
 android:startDelay="100"
 android:repeatCount="7"
 android:repeatMode="reverse"/>

Note that one property that cannot be set from within XML is the target.

Animators have listeners to detect various events in a transition's lifecycle. Here we used a
special kind of listener, an AnimatorListenerAdapter, which is a convenient interface so we
do not have to override callbacks that are not needed. The other callbacks we could have
used are onAnimationStart(), onAnimationRepeat(), and onAnimationCancel().

Another handy listener is the AnimatorUpdateListener which calls
onAnimationUpdate() on every frame change. Use getAnimatedValue(String
propertyName).

There's more...
Another great feature of the android.animation API is the AnimationSet class which allows
us to group several animations and play them back in a desired order, either before,
alongside, or after each other. Previously defined animators can be combined into an
AnimationSet as follows:

Chapter 8

183

AnimatorSet mySet =
 new AnimatorSet().play(anim1).before(anim2).with(anim3);
mySet.play(anim4).after(anim3);
mySet.start();

To implement animation sets in XML use the <set> tag.

See also
To animate a view on platforms earlier than Android 3.0 see the previous recipe Using
tween animations.

Creating stop frame animations
Traditional animations can be constructed using a series of images, and Android provides the
AnimationDrawable that can accomplish the same. Any number of slightly differing bitmaps
can be defined as a list in XML and played in sequence to produce a stop frame animation.

Getting ready
Before we start we will require a number of images to act as the frames of our animation. As
few as three or four is enough for demonstration purposes—we used the following:

As always with Android, the PNG format is preferred over other formats, although BMP, JPG
and GIF are permitted. Depending on the screen density of your target device, store these
bitmaps in the appropriate res/drawable folder. We called them image01.png, image02.
png, and so on.

When developing fully blown applications, it is more than likely
that you will have to prepare three versions of these files.

Graphics and Animation

184

How to do it...
1. Create a new XML file called my_frames.xml in the res/drawable folder (or

folders) you are using. This is easier to do if you use New XML rather than New
Android XML File, as the resource type we are using is not provided by the wizard.

2. Fill out my_frames.xml so as to match the code here:
<animation-list
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:oneshot="false">

 <item android:drawable="@drawable/image01"
 android:duration="200" />
 <item android:drawable="@drawable/image02"
 android:duration="200" />
 <item android:drawable="@drawable/image03"
 android:duration="200" />
 <item android:drawable="@drawable/image04"
 android:duration="200" />

</animation-list>

3. We need a view to contain our animation so add the following ImageView to the
main.xml layout definition:
<ImageView
 android:id="@+id/my_anim"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content" />

4. In the Java activity code, declare this Activity wide field:
AnimationDrawable myAnimation;

5. Now, edit the onCreate() callback, associate our view with its XML counterpart,
and set its background resource:
@Override
public void onCreate(Bundle state) {
 super.onCreate(state);
 setContentView(R.layout.main);

 ImageView view = (ImageView) findViewById(R.id.my_anim);
 view.setBackgroundResource(R.drawable.my_frames);
 myAnimation = (AnimationDrawable) view.getBackground();

}

Chapter 8

185

6. Add a touch listener to trigger our animation:
@Override
public boolean onTouchEvent(MotionEvent event) {

 if (event.getAction() == MotionEvent.ACTION_UP) {
 myAnimation.start();
 return true;
 }

 return super.onTouchEvent(event);

}

7. Now run the application on your handset or an emulator and tap the screen to start
the stop frame animation:

How it works...
The XML definition of our animation that we added at the beginning of the exercise is a
straightforward list of drawable resources and durations (in milliseconds), and the system
plays them in the order they appear. The attribute oneshot allows us to play the animation
just once or in a repeating loop.

Once we have connected our ImageView with the element in our layout XML, it is a simple
matter of setting its background resources to our XML animation definition and then assigning
this background to our AnimationDrawable.

There's more...
We included a touch event in this exercise to trigger the animation. However, we would not
have been able to call it directly from onCreate() as one might expect. This is due to the
fact that the AnimationDrawable would not have finished configuring by the time the
method concludes. It is nevertheless possible to have an animation run automatically when
an activity starts.

Graphics and Animation

186

Using window focus to trigger an animation
The Activity callback onWindowFocusChanged() will trigger once the AnimationDrawable
is ready. Simply override the method and call Animation.start() from within it to have an
animation play on start up:

@Override
public void onWindowFocusChanged() {
 myAnimation.start();
}

Working with OpenGL
Many modern smartphone applications require fast, color, 3D animations of complex, textured
surfaces. To achieve this, Android provides support for an OpenGL API, specifically the OpenGL
ES 1.0 API. It is beyond the scope of this book to go into the workings of graphics libraries
and it is assumed that the reader has some familiarity with the subject. OpenGL is developed
by the Khronos Group and their site at www.khronos.org/opengles contains a wealth of
information for the beginner and expert alike.

In this recipe we explain how to set up an OpenGL Renderer from an activity and what such a
renderer may look like.

Getting ready
This recipe assumes that the reader already has an OpenGL object that they wish to render.
This needs to be in the form of a Java class. If you are unsure about OpenGL, there are plenty
of places on the web where sample objects can be downloaded, such as www.opengl.org.

Start a new Android project in Eclipse and import the OpenGL object class into the same
folder as the Java activity file, /src. Here we have called it Cube. It will need a method called
draw() that takes a GL10 interface as an argument.

How to do it...
1. We need to set a GLSurfaceView, with a renderer, as our main content so edit the

projects Java activity code to match the lines here:
@Override
protected void onCreate(Bundle state) {
 super.onCreate(state);

 mGLView = new GLSurfaceView(this);

 mGLView.setRenderer(new MyRenderer());

 setContentView(mGLView);
}

Chapter 8

187

2. To stop and start the animation along with the activity, include the onResume() and
onPause() methods:
@Override
protected void onResume() {
 super.onResume();
 mGLView.onResume();
}

@Override
protected void onPause() {
 super.onPause();
 mGLView.onPause();
}

3. Now, complete the MyRenderer, implementing a GLSurfaceView.Renderer, below:
class MyRenderer implements GLSurfaceView.Renderer {

 private final Cube mCube;
 private float mRotate;

 public MyRenderer() {
 mCube = new Cube();
 }

 public void onDrawFrame(GL10 gl) {
 gl.glClear(GL10.GL_COLOR_BUFFER_BIT |
 GL10.GL_DEPTH_BUFFER_BIT);

 gl.glMatrixMode(GL10.GL_MODELVIEW);
 gl.glLoadIdentity();
 gl.glTranslatef(0, 0, -2.5f);
 gl.glRotatef(mRotate, 1.5f, 1.5f, 0);

 gl.glEnableClientState(GL10.GL_VERTEX_ARRAY);
 gl.glEnableClientState(GL10.GL_COLOR_ARRAY);

 mCube.draw(gl);

 mRotate += 2.0f;
 }

 public void onSurfaceChanged(GL10 gl,
 int width, int height) {
 float ratio = (float) width / height;
 gl.glViewport(0, 0, width, height);
 gl.glMatrixMode(GL10.GL_PROJECTION);
 gl.glLoadIdentity();
 gl.glFrustumf(-ratio, ratio, -1, 1, 1, 10);
 }

 public void onSurfaceCreated(GL10 gl, EGLConfig config) {
 gl.glEnable(GL10.GL_CULL_FACE);
 }

}

Graphics and Animation

188

4. Provided that you have an OpenGL object saved as Cube.java in the same folder,
this should run on a handset or emulator:

How it works...
Although most of the work done here requires some knowledge of OpenGL, from an
Android point of view it is the android.opengl.GLSurfaceView that is of interest. This
descendant of android.view.SurfaceView is what provides us with the Renderer in
our onCreate() method. It is important that we call onPause() and onResume() on our
GLSurfaceView when the holding activity loses and gains focus to prevent memory leakage,
and 3D rendering can leak a lot of memory.

As for the implementation of the renderer, there is no room here to go into detail. To anyone
with OpenGL experience it should appear straightforward, and for those who are not it will
hopefully provide a clue or two as to how it works.

There's more...
On more recent devices it is now possible to use a certain amount of native code for
programming 3D graphics and also to apply hardware graphic acceleration when available.

The Renderscript system
Staring with Honeycomb (API 11) it has been possible, for those readers that are comfortable
developing in native code, to maximize graphic performance with the Renderscript API code
written in C and saved as Renderscript files (.rs), included in the application's .apk file.
Some examples are shipped with the SDK and can be found in the android-sdk/samples/
android-11/Renderscript folder.

Chapter 8

189

Hardware acceleration
From Android 3.0 onwards it has been possible to provide hardware acceleration on devices
that have the appropriate hardware. Simply include android:hardwareAccelerated=
"true" in the manifest's <application> element.

Now that we have covered various aspects of image control it seems only right that we should
venture into the world of Android sound and video.

9
Multimedia

In this chapter, we will cover the following topics:

 f Playing an audio file from within an application

 f Playing back video from external memory

 f Playing multiple sounds with a SoundPool

 f Recording audio

 f Recording video

 f Capturing photos with the camera

Introduction
As the computing power of mobile devices has increased, so has their ability to play and
record a variety of media such as audio and video. Android provides some useful tools for
managing multimedia.

Very few successful applications are completely silent or have only static graphics, and in
order that Android developers take full advantage of the advanced multimedia capabilities of
today's smartphones, the system provides the android.media package, which contains many
useful classes.

The MediaPlayer class allows the playback of both audio and video from raw resources, files,
and network streams, and the MediaRecorder class makes it possible to record both sound
and images.

Android also offers ways to manipulate sounds and create interactive effects through the use
of the SoundPool class, which allows us to not only bend the pitch of our sounds but also to
play more than one at a time.

Multimedia

192

One of the most pleasing aspects of the Android system is the way that it allows us to take
near-complete control over hardware such as cameras and although this process requires
a little setting up we can nevertheless incorporate these cameras into our applications and
have them take photographs.

Playing an audio file from within
an application

One of the first things that we may want to do with regards to multimedia is play back an audio
file. Android provides the android.media.MediaPlayer class for us and this makes playback
and most media related functions remarkably simple.

In this recipe we will create a simple media player that will play a single audio file.

Getting ready
Before we start this project we will need an audio file for playback. Android can decode audio
with any of the following file extensions:

 f .3GP

 f .MP4

 f .M4A

 f .MP3

 f .OGG

 f .WAV

There are also quite a few MIDI file formats that are acceptable
but have not been included here as their use is less common and
their availability often depends on whether a device is running the
standard Android platform or a specific vendor extension.

Before you start this exercise create or find a short sound sample in one of the given formats.
We used a five second Ogg Vorbis file and called it my_sound_file.ogg.

How to do it...
1. Start up a new Android project in Eclipse and create a new folder: res/raw.

2. Place the sound file that you just prepared in this folder. In this example we refer to it
as my_sound_file.

Chapter 9

193

3. Using either the Graphical Layout or the main.xml panel edit the file res/layout/
main.xml to contain three buttons, as seen in the following screenshot:

4. Call these buttons play_button, pause_button and stop_button.

5. In the Java activity code declare a MediaPlayer in the onCreate() method:
@Override
public void onCreate(Bundle state) {
 super.onCreate(state);
 setContentView(R.layout.main);

 final MediaPlayer mPlayer;

6. Associate the buttons we added in step 3 with Java variables by adding the following
lines to onCreate():
 Button playButton =
 (Button) findViewById(R.id.play_button);
 Button pauseButton =
 (Button) findViewById(R.id.pause_button);
 Button stopButton =
 (Button) findViewById(R.id.stop_button);

7. We need a click listener for our play button. This also can be defined from within
onCreate():
 playButton.setOnClickListener(new OnClickListener() {

 public void onClick(View v) {
 mPlayer = MediaPlayer.create(this, R.raw.my_sound_file);
 mPlayer.setLooping(true);
 mPlayer.start();
 }

 });

8. Next add a listener for the pause button as follows:
 pauseButton.setOnClickListener(new OnClickListener() {

 public void onClick(View v) {
 mPlayer.pause();
 }

 });

Multimedia

194

9. Finally, include a listener for the stop button:
 stopButton.setOnClickListener(new OnClickListener() {

 public void onClick(View v) {
 mPlayer.stop();
 mPlayer.reset();
 }

 });

10. Now run this code on an emulator or your handset and test each of the buttons.

How it works...
The MediaPlayer class provides some useful functions and the use of start(), pause(),
stop(), and setLooping() should be clear. However, if you are thinking that calling
MediaPlayer.create(context, ID) every time the start button is pressed is overkill,
you would be correct. This is because once stop() has been called on the MediaPlayer, the
media needs to be reset and prepared (with reset() and prepare()) before start() can
be called again. Fortunately MediaPlayer.create() also calls prepare() so that the first
time we play an audio file we do not have to worry about this.

The lifecycle of the MediaPlayer is not always straightforward and the order in which it takes
on various states is best explained diagrammatically:

Completed

Prepared

Initialized

Idle

Started

Preparing

Stopped Paused

Chapter 9

195

Otherwise, MediaPlayer has lots of useful methods such as isPlaying(), which will
return a Boolean telling us whether our file is being played or not, or getDuration() and
getCurrentPosition(), which inform us of how long the sample is and how far through
it we are. There are also some useful hooks that we can employ using MediaPlayer and the
most commonly used are onCompletionListener() and onErrorListener().

There's more...
We are not restricted to playing back raw resources. We can also playback local files or even
stream audio.

Playing back a file or a stream
Use the MediaPlayer.setDataSource(String) method to play an audio file or stream.
In the case of streaming audio this will need to be a URL representing a media file that is
capable of being played progressively, and you will need to prepare the media player each
time it runs:

MediaPlayer player = new MediaPlayer();
player.setDataSource("string value of your file path or URL");
player.prepare();
player.start();

It is essential to surround setDataSource() with a try/catch clause in
case the source does not exist when dealing with removable or online media.

See also
For playing more than one sound file at a time see the recipe Playing multiple sounds with a
SoundPool later in this chapter.

Playing back video from external memory
The MediaPlayer class that we met in the previous recipe works for video in the same manner
that it does for audio and so as not to make this task a near copy of the last, here we will look
at how to play back video files stored on an SD card using the VideoView object.

Getting ready
This recipe requires a video file for our application to playback. Android can decode H.263,
H.264 and MPEG-4 files; generally speaking this means files with .3gp and .mp4 file
extensions. For platforms since 3.0 (API level 11) it is also possible to manage H.264 AVC files.

Multimedia

196

Find a short video clip in one of these compatible formats and save it on the SD card of your
handset. Alternatively you can create an emulator with an SD card enabled and push your
video file onto it. This can be done easily through Eclipse's DDMS perspective from the File
Explorer tab:

In this example we called our video file my_video.3gp.

How to do it...
1. Start a new project in Eclipse and navigate to the main.xml file. Replace the

prepared TextView with the following VideoView:
<VideoView
 android:layout_height="fill_parent"
 android:layout_width="fill_parent"
 android:id="@+id/video_view" />

2. Associate this view with a Java variable in the usual manner from within the
onCreate() method:
@Override
public void onCreate(Bundle state) {
 super.onCreate(state);
 setContentView(R.layout.main);

 VideoView view =
 (VideoView) findViewById(R.id.video_view);

3. Directly underneath this, set a path to our video with this line:
 view.setVideoPath(Environment.getExternalStorageDirectory()
 + "/myvideo.3gp");

4. Now add a command to play the video:
view.start();

Chapter 9

197

5. Run this code on your handset or emulator. The video will play as soon as the
application starts:

How it works...
We have not encountered the VideoView object before but nevertheless it is very similar
to the View subclasses that we saw earlier in the book. However, it also implements the
MediaController.MediaPlayerControl class and this gives us access to some of the useful
methods that we used with the MediaPlayer earlier in the chapter such as isPlaying(),
getDuration(), and getCurrentPosition(), and like other views it has an
onTouchEvent(MotionEvent) callback which can prove very useful.

For Android platforms 3.0 onwards it has been possible to run HTTP live
streaming sessions by passing an M3U playlist URL to the media framework.

There's more...
When it comes to adding common media controls such as play, pause and seek, Android
provides a very handy little widget in the form of the MediaPlayerControl interface that
can be accessed through the android.widget.MediaController class, and which
automatically synchronizes with the active media and floats above it.

Multimedia

198

Adding a MediaPlayerControl to a view
A MediaPlayerControl can be created with something along the lines of:

myPlayerControl = new MediaController.MediaPlayerControl()

This will necessitate the implementing of several methods that give us further control over the
widget's appearance and behavior.

Once defined, we can apply the widget to our media using:

myMediaController.setMediaPlayer(myPlayerControls)

We can also select which view it hovers over with:

myMediaController.setAnchorView(some_view)

The media player control will take care of when it appears by itself. To force it to be displayed
use MediaController.show(int), where int is the number of milliseconds to display the
controls and a value of 0 will cause the widget to display as long as the related view is visible,
regardless of whether media is playing or not.

Playing multiple sounds with a SoundPool
Android provides an extremely useful audio tool in the form of the android.media.SoundPool
class. This class allows us to play more than one sound at a time and to adjust the pitch and
stereo placement of these sounds programmatically. Here we will create a SoundPool that will
play three sound files simultaneously.

Getting ready
You will need three audio files to complete this exercise. Find three short samples in one of
the compatible formats, ideally noises that will not sound unpleasant when played together.
Here we have used Ogg Vorbis files and named them sound1, sound2, and sound3.

How to do it...
1. Start up a new Android project in Eclipse and create a new folder called raw inside

the res folder.

2. Place the three sound files you selected earlier inside res/raw.

3. As a class-wide field in the main Java activity code, declare and assign a new
SoundPool as follows:
SoundPool pool =
 new SoundPool(3, AudioManager.STREAM_MUSIC, 0);

Chapter 9

199

4. We will have our sounds play as the activity starts and use a hash map as a simple
index. Amend the onCreate() method to match the one found here:
@Override
public void onCreate(Bundle state) {
 super.onCreate(state);
 setContentView(R.layout.main);

 HashMap<Integer, Integer> map = null;
 map.put(1, pool.load(this, R.raw.sound1, 1));
 map.put(2, pool.load(this, R.raw.sound2, 1));
 map.put(3, pool.load(this, R.raw.sound3, 1));

 for (int i = 1; i < 4; i++) {
 pool.play(map.get(i), 0.8f, 0.2f, 1, 0, 1.0f);
 }

}

5. SoundPools need to be shut down when they are no longer needed, so add an
onPause() method and include the following lines:
@Override
public void onPause() {
 super.onPause();

 pool.release();
 pool = null;

}

6. This is all the code we need to play back our samples. Run the project on your
handset or emulator in the usual way.

How it works...
The main object of interest in this task is the SoundPool. We constructed it with three int
values. The first number tells the system about the maximum number of sounds that we wish
to play at any one time, and is not limited.

The second argument is a constant member of AudioManager and is used to select the type
of sound we want. Here we chose STREAM_MUSIC but there are others available and some of
the most commonly used include STREAM_ALARM and STREAM_RING.

The final value represents the desired audio quality. However, as of Android 3.1, it still has not
been implemented and so is left as zero.

Multimedia

200

The SoundPool.play() method is self explanatory in function and the purpose of each of
the six required parameters is explained in the following list:

 f int - the index of the sound.

 f float - the left volume, between 0 and 1.

 f float - the right volume.

 f int - the priority. This is for situations where the number of played sounds exceeds
the maximum, with higher numbers having higher priority.

 f int - sets the number of times the sound should loop. Set to -1 to loop indefinitely.
This can be halted with SoundPool.stop().

 f float - the speed of the file's playback. Set at 2.0 to double the speed and 0.5 to
halve it.

It is this last parameter to adjust the pitch of our sounds that demonstrates what is perhaps
the most useful function of the SoundPool class. This can be applied to create Doppler-like
effects in games or to save on memory by using a single resource to produce several notes.
Another advantage of the way that SoundPools work is the way that they cut down on latency
by preparing the samples during construction.

It is worth noting that although we used raw resources as our audio source it
is perfectly possible and just as simple to use files from any available source.

Recording audio
Most mobile devices contain audio recording equipment, either as an independent
microphone or as part of a camcorder setup. Provided that our target devices contain this
hardware, we can use the android.media.MediaRecorder class to record audio samples
from within our applications. In this recipe, we will create a basic audio recorder that stores
captured sound on the SD card.

Getting ready
Audio recording support does not currently work with an emulator, so you will need to test this
recipe with a handset.

How to do it...
1. Start up a new Android project and open up the res/layout/main.xml file.

2. Using either the Graphical Layout or the main.xml tab, add two buttons and give
them the IDs start_button and stop_button.

Chapter 9

201

3. Declare the following class-wide fields in the Java activity class:
private MediaRecorder recorder = new MediaRecorder();
private Button playButton;
private Button stopButton;

4. Next, associate these with the views defined in main.xml:
playButton = (Button) findViewById(R.id.start_button);
stopButton = (Button) findViewById(R.id.stop_button);

5. Now add a click listener for the play button:
playButton.setOnClickListener(new OnClickListener() {

 @Override
 public void onClick(View v) {
 recorder.setAudioSource(MediaRecorder.AudioSource.MIC);
 recorder.setOutputFormat(MediaRecorder.OutputFormat.THREE_GPP);
 recorder.setAudioEncoder(MediaRecorder.AudioEncoder.AMR_NB);
 recorder.setOutputFile(Environment.getExternalStorageDirectory()
 + "/my_recording.3gp");

 try {
 recorder.prepare();
 } catch (IllegalStateException e) {
 e.printStackTrace();
 finish();
 } catch (IOException e) {
 e.printStackTrace();
 finish();
 }

 recorder.start();
 }

});

6. Finally, add a click listener for the stop button:
stopButton.setOnClickListener(new OnClickListener() {

 @Override
 public void onClick(View v) {
 recorder.stop();
 recorder.release();
 }

});

7. Run this example on a handset. The stored audio can be found on the SD card
as my_recording.3gp.

Multimedia

202

How it works...
The key object here is the MediaRecorder class and this allows us to set up everything we
need to record our audio. The AudioSource class does little more than offer a number of
constants used to identify the desired source. Here we used the device's built-in microphone,
MIC: we could have used CAMCORDER or one or two others and very often we would simply
use DEFAULT. The OutputFormat and AudioEncoder classes operate in a similar fashion.

Although reset() can be called at any point in a recording's process, other MediaRecorder
methods must be executed in a certain order as the next diagram shows. Once release()
has been called the recorder will need to be set up again:

reset()

setAudioSource()
setVideoSource()

setOutputFormat()

setAudioEncoder()
setVideoEncoder()()
setOutputFile()
setVideoSize()
setVideoFrameRate()
setPreviewDisplay()

release()

stop()

start()

prepare()

See also
Note that the previous diagram also includes details pertinent to video recording which we
cover in the next recipe.

Recording video
Recording video content is remarkably similar to recording audio. In fact, both processes
employ the MediaRecorder class. The two forms of recording are so similar that, for this
exercise, we will convert the audio recorder of the previous recipe into a video recorder.

Chapter 9

203

Getting ready
To prepare for this task load the project from the previous recipe. Most Android devices have
video capacities built-in but if you are planning on testing this recipe on an emulator, make
sure you have the hardware property Camera support set to yes when you create it.

How to do it...
1. In the main.xml file of the project, add a SurfaceView, with the ID camera_view,

beneath the two buttons:

2. Add the following class field:
SurfaceHolder holder;

3. Also, declare a SurfaceView and associate it with the one defined in XML:
SurfaceView cameraView =
 (SurfaceView) findViewById(R.id.camera_view);

4. We can connect our SurfaceHolder and MediaRecorder like so:
holder = cameraView.getHolder();
recorder.setPreviewDisplay(holder.getSurface());

5. The start button click listener needs a video source as well as an audio one:
recorder.setVideoSource(MediaRecorder.VideoSource.CAMERA);

6. Also, the output file type needs to be a video file type:
recorder.setOutputFile(
 Environment.getExternalStorageDirectory()
 + "/my_recording.mp4");

7. These are the only changes that are needed to convert the previous recipe into one that
records video. Run the project on your handset or emulator and touch start to record.

Multimedia

204

How it works...
This recipe bears such a resemblance to the previous one that little explanation is needed
although there are one or two other configurations that we could have applied to our video
before preparing it: once we had set the output file we could have added recorder.
setMaxDuration(int milliseconds) to control the maximum allowed recording time, or
recorder.setMaxFileSize(long bytes) to limit memory.

SurfaceHolder is a very useful interface for configuring and monitoring any display surface.
Here we used it simply to set our preview window but it has several other useful functions and
a few of the handier ones are listed next:

 f getSurfaceFrame()—returns a Rect object describing the current surface

 f isCreating()—true until creation is complete

 f setFixedSize(int, int)—desired width and height (in pixels)

 f setKeepScreenOn(boolean)—prevents screen timeout if true

 f setSizeFromLayout()—adjusts the size to fit its container view

There's more...
For platforms equal to or greater than API level 11 (Honeycomb) it has been possible record
time-lapse video. The frame rate can be controlled with:

android.media.MediaRecorder.setCaptureRate(double framesPerSecond)

The actual frame rate range can be computed with getPreviewFpsRange(int).

See also
To learn how to record audio and for more details on the MediaRecorder class, see the
previous recipe Recording audio.

Capturing photos with the camera
Virtually every Android device is equipped with at least one digital camera and it's nice
to be able to take control of this equipment and take photographs directly from within an
application. Although the android.hardware.Camera class makes it simple to take an actual
photo, the preparation of the camera preview is relatively more complex.

In this exercise we will construct a SurfaceView that will take a photograph when tapped. Be
warned that there is more typing involved in this task than most.

Chapter 9

205

Getting ready
All you will need to prepare for this recipe is to start a new Android project in Eclipse. Make
your way to the AndroidManifest file.

How to do it...
1. Use of the camera requires for permissions to be granted. Add the following lines to

the Manifest file at the same level as the <application> tag:
<uses-permission
 android:name="android.permission.CAMERA" />

<uses-feature
 android:name="android.hardware.camera" />

2. We need only one view in our layout, so replace the default TextView with this
SurfaceView:
<SurfaceView
 android:id="@+id/camera_view"
 android:layout_width="match_parent"
 android:layout_height="match_parent" />

3. Provide the following class fields to the Java activity class:
private SurfaceView mView;
private SurfaceHolder mHolder;
private Camera mCamera;
private boolean mIsPreviewing;

4. Identify our view and connect it to the SurfaceHolder like so:
mView = (SurfaceView) findViewById(R.id.camera_view);
mHolder = mView.getHolder();
mHolder.addCallback(this);
mHolder.setType(SurfaceHolder.SURFACE_TYPE_PUSH_BUFFERS);

5. Change the activity definition so that along with extending Activity, it also implements
SurfaceHolder.Callback:
public class CameraPreviewer
 extends Activity implements SurfaceHolder.Callback {

6. This will cause Eclipse to suggest that you add some unimplemented methods, do so.

7. Complete the surfaceCreated() method as shown here:
@Override
public void surfaceCreated(SurfaceHolder holder) {
 mCamera = Camera.open();
}

Multimedia

206

8. Next, fill in the surfaceChanged() method:
@Override
public void surfaceChanged(
 SurfaceHolder holder, int format, int w, int h) {
 if (mIsPreviewing) {
 mCamera.stopPreview();
 }

 Camera.Parameters param = mCamera.getParameters();
 param.setPreviewSize(w, h);
 mCamera.setParameters(param);

 mCamera.setPreviewDisplay(holder);
 mCamera.startPreview();

 mIsPreviewing = true;
}

9. Now the surfaceDestroyed() method:
@Override
public void surfaceDestroyed(SurfaceHolder holder) {
 mCamera.stopPreview();
 mCamera.release();

 mIsPreviewing = false;
}

10. We need to create a callback for when a picture is taken. It looks like this:
Camera.PictureCallback mPictureCallback =
 new Camera.PictureCallback() {
 public void onPictureTaken(byte[] image, Camera camera) {
 // manage or convert the picture here
 }
};

11. Finally we need a mechanism to trigger the shutter. Here we use a touch listener so
that we can take photos with a tap on the preview:
mView.setOnTouchListener(new OnTouchListener() {
 @Override
 public boolean onTouch(View v, MotionEvent event) {
 mCamera.takePicture(null,
 mPictureCallback, mPictureCallback);
 return true;
 }
});

Chapter 9

207

12. With all that typing done, it is now time to test this code. This is best done on a
handset as all you will get on an emulator is the sound of the shutter.

How it works...
There is a lot going on in the previous code, but hopefully most of it should make sense by
now. In step 4 we hooked our SurfaceView and our SurfaceHolder together. SurfaceView.
getHolder() gives the view access to the underlying data.

The three surface callbacks we implemented come into play as the surface reaches various
stages of its life cycle. The surfaceCreated() and surfaceDestroyed() are quite easy
to follow and we have created surfaceChanged() with only the barest essentials so as
to make it easier to understand the general structure of camera enabled applications. The
getting and setting of parameters enables the preview to handle screen orientation and other
UI changes.

We implemented our activity with an interface (SurfaceHolder.Callback) that you may not
have seen before. This is what gave us access to the surface callbacks as well as being able to
call addCallback() on our SurfaceHolder. The onPictureTaken() method provides our
photo as a byte array which we could convert, if we wished, with a BitmapFactory.

See also
For more about SurfaceViews see the previous recipe, Recording video.

For an introduction to BitmapFactories take a look at the recipe Drawing with a Canvas in
Chapter 8, Graphics and Animation.

Now that we have covered the multimedia side of Android capabilities, we can go a step
further and look at how to connect our applications to the outside world using networks and
the Web.

10
Telephony, Networks,

and the Web

In this chapter, we will cover the following topics:

 f Initiating a phone call

 f Listening for phone events

 f Sending SMS messages

 f Monitoring SMS messages

 f Connecting to WiFi

 f Connecting Bluetooth devices

 f Including web content

Introduction
With so much being made of the computing power of Android devices it is easy to almost
forget that they can also function as telephones. It's ironic that we do not cover this subject
until the end of this book. As we deal with telephony at this point, we will also explore other
network functionality.

This chapter introduces several new packages and classes, particularly the TelephonyManager
in the android.telephony package. We will use these along with the system's built-in Phone
Application to take control over the making of phone calls from within an application. We will
also use the PhoneStateListener class to monitor the device's mobile radio.

The android.telephony package also provides a SmsManager class and this can be
utilized to send text messages from our applications. The monitoring of outbound and inbound
SMS messages is covered along with how to use PendingIntent and BroadcastReceiver
objects to cause and detect these events.

Telephony, Networks, and the Web

210

This chapter also examines mobile WiFi, which is accessed through the android.net
package that provides us with the ConnectivityManager for dealing with networking in
general, and the WifiManager for managing WiFi networks specifically.

Finally, we explore the WebView class, which is powered by the Webkit engine. The
WebViewClient class allows us to provide web content from within an application.

Initiating a phone call
Although some elements of telephony development can be quite complicated, Android
provides a built-in Phone Application that we can call on from our own applications by making
use of an Intent object to call an activity in one application from another.

Getting ready
This is a quick and easy exercise with very little coding and a single class. Start up a new
project with Eclipse and open up the main Java activity source.

How to do it...
1. There are just three lines to add to our onCreate() method and they can be seen

here beneath the setContentView() statement:
@Override
public void onCreate(Bundle state) {
 super.onCreate(state);
 setContentView(R.layout.main);

 Intent intent = new Intent(Intent.ACTION_DIAL);
 intent.setData(Uri.parse("content://contacts/people/13"));
 startActivity(intent);
}

2. That really is all there is to it. Run the project on a handset to test this properly. If
you have fewer than 13 contacts on your phone, adjust the value in the code to
accommodate.

Chapter 10

211

How it works...
The built-in Phone Application does most of the work for us here and all we did was
provide our new instance of an Intent with the action ACTION_DIAL and the data which
refers to the thirteenth person in our contact list. We also pulled the dialed number from a
contacts list but we could have dialed the number specifically with intent.setData(Uri.
parse("tel:7890123456")) instead.

If there are other installed applications on a handset that contain an ACTION_
DIAL action, then these too may be called. The system attempts to select the
most appropriate application from the data field and usually with great success.

One of the nice things, in this case, about Android's ability to call up other applications is that
the Phone App does all the telephone-based error checking for us, so we do not have to think
about whether the network may be down or our call interrupted. Nevertheless it is usually wise
to attempt to catch 'activity-not-found' exceptions as follows:

try {
 Intent intent = new Intent(Intent.ACTION_DIAL);
 intent.setData(Uri.parse("content://contacts/people/13"));
 startActivity(intent);
} catch (ActivityNotFoundException notFound) {
 // error trap statements
}

Telephony, Networks, and the Web

212

Listening for phone events
Using the built-in Phone Application is a handy way to access telephonic functions, but
it is very limited. To really get under the skin of our mobile radio we need to make use of
the android.telephony package which contains many useful classes. Here we will use the
TelephonyManager and the PhoneStateListener classes to create a simple application that
records the phone's state during incoming and outgoing calls while the application is running.

Getting ready
This application requires no external resources, so simply start up a new Android project in
Eclipse and open the Manifest file.

How to do it...
1 To allow our application to use the phone device, include the following permission

inside the <activity> node:
<uses-permission
 android:name="READ_PHONE_STATE" />

2. Open the res/layout/main.xml file, remove the android:text element, and
provide this resource ID:
android:id="@+id/text_view"

3. We will place all our Java code within the onCreate() method of our Java activity.
First declare and assign a TextView and a TelephonyManager:
final TextView textView =
 (TextView) findViewById(R.id.text_view);

final TelephonyManager phoneManager =
 (TelephonyManager)
 getSystemService(Context.TELEPHONY_SERVICE);

4. Next, call the Phone Application with these two lines:
Intent intent = new Intent(Intent.ACTION_CALL_BUTTON);
startActivity(intent);

5. Now, start the phone listener with the next line:
phoneManager.listen(phoneListener,
 PhoneStateListener.LISTEN_CALL_STATE);

6. Finally, create this listener with the following inner class:
PhoneStateListener phoneListener = new PhoneStateListener() {

Chapter 10

213

 @Override
 public void onCallStateChanged(int state, String number) {
 String phoneState = number;

 switch (state) {
 case TelephonyManager.CALL_STATE_IDLE:
 phoneState += " idle\n";
 case TelephonyManager.CALL_STATE_RINGING:
 phoneState += " ringing\n";
 case TelephonyManager.CALL_STATE_OFFHOOK:
 phoneState += " off hook\n";
 }

 textView.append(phoneState);
 }

};

7. Now, we can test our project by installing it on a mobile device or emulator and
making and receiving a few calls while it is running.

8. The application opens the Phone Application as soon as it starts so that we can make
calls. To call an emulator with Eclipse, use the Emulator Control tab in the DDMS
perspective:

Telephony, Networks, and the Web

214

9. Once you have made a call or two, press the back button on the phone or emulator to
view the record of events:

How it works...
Setting permissions and defining views has been covered earlier and we have also used
Context previously. Here we used the constant TELEPHONY_SERVICE to retrieve a
TelephonyManager. The use of an Intent to start an activity is similar to the one used in the
previous example. We used it here to open the Phone Application as the program loaded.

The phoneManager.listen() method registers our listener with the system. Along with
the listener itself (phoneListener), we also passed the device that we wished to listen to
in the form of the PhoneStateListener constant LISTEN_CALL_STATE. If we had wanted to
unregister the listener we could have used LISTEN_NONE.

The PhoneStateListener class has other useful constants which are listed here:

 f LISTEN_CALL_FORWARDING_INDICATOR

 f LISTEN_CELL_LOCATION

 f LISTEN_DATA_ACTIVITY

 f LISTEN_DATA_CONNECTION_STATE

 f LISTEN_MESSAGE_WAITING_INDICATOR

 f LISTEN_SERVICE_STATE

 f LISTEN_SIGNAL_STRENGTH

 f LISTEN_SIGNAL_STRENGTHS

Chapter 10

215

Note that these devices may well
require different permissions to be set.

The listener itself is very similar to other such methods and here we used it to report the call
state to our text view. Observe that the PhoneStateListener only records incoming numbers
but not the numbers we dial.

Sending SMS messages
As with Android's built in Phone Application, we can call up the SMS Messaging Application
in the same way by using an Intent. More often, when employing SMS within an application,
we will want our own interface and we can achieve this with the android.telephony.
SmsManager class.

In this exercise we will create a simple application that sends a text message to a predefined
number.

Getting ready
It is not possible, and may well be illegal, to send SMS messages from an emulator to a real
phone. If you intend to test this code on an emulator, then you will need to open two of them.

Either way, start up a new Android project in Eclipse and make your way to the res/layout/
main.xml file. We will need an EditText and a button with the IDs message_text and send_
button. Here we have also changed the text content:

How to do it...
1. Open the project Manifest file and include the following permission in the top level:

 <uses-permission
 android:name="android.permission.SEND_SMS">
 </uses-permission>

2. Now, open the main Java activity code and provide two class-wide fields:
EditText messageText;
Button sendButton;

Telephony, Networks, and the Web

216

3. Connect these with their XML counterparts with:
messageText = (EditText) findViewById(R.id.message_text);
sendButton = (Button) findViewById(R.id.send_button);

4. Now, add a click listener for the send button as follows:
sendButton.setOnClickListener(new OnClickListener() {

 @Override
 public void onClick(View v) {
 String message = messageText.getText().toString()
;
 SmsManager sms = SmsManager.getDefault();
 sms.sendTextMessage("5556", null, message, null, null);
 }

});

5. If you are testing this on a handset, replace the number 5556 with another handset's
number before testing the application:

Chapter 10

217

How it works...
Unlike many classes, we do not instantiate the SmsManager directly but instead call
getDefault(). The SmsManager's sendTextMessage() method takes five parameters.
The first three are Strings; the first and the third represent the destination number and the
text content, while the second is the service center number and if ignored will use the device's
default center. The final two parameters are both PendingIntents that inform the system
which activity to perform, both when the message is sent and when it is received. Using
PendingIntents to monitor the progress of SMS messages is covered in the next recipe.

There's more...
Text messages are generally restricted to between 70 and 160 characters in length by the
mobile carriers and longer texts have to be broken down into shorter segments. Fortunately
the SmsManager provides methods to both divide and send long messages.

The SmsManager does not restrict us to text alone and sending data, as byte arrays, is very
similar to sending text.

Sending long text messages
The SmsManager.divideMessage() method has a single String argument that is the original
(long) text message. It returns an ArrayList of Strings comprised of the constituent parts.

To send a multi-part SMS message use sendMultipartTextMessage(). This operates in
the same way as the sendTextMessage() method, with the exception that it expects an
ArrayList of Strings as the text content and ArrayLists of PendingIntents (one for each message
part) for the sent and received intents.

Sending data with SMS
Byte arrays can be sent through SMS in the same way as text, and the SmsManager provides
the sendDataMessage() method to facilitate this. The sendDataMessage() method works
like sendTextMessage() but takes six parameters. The first two are destination number and
service center as before and the last two, likewise, are PendingIntents, but the third and the
fourth are a short which refers to the destination port and a byte array for the data.

See also
To learn how to detect incoming SMS messages refer to the next recipe Monitoring SMS
messages.

For more on using the status bar see the recipe Notifying the user with the status bar in
Chapter 7, Notifying the User.

Telephony, Networks, and the Web

218

Monitoring SMS messages
In the previous recipe we had no way of knowing for sure if our message had been correctly
sent or not. To monitor the success or otherwise of SMS messages we need to use a
PendingIntent to trigger some activity once the action is completed. We will also need a
BroadcastReceiver to pick up on our message sends.

This exercise is much the same as the last but here we will provide a way of monitoring our
message's progress.

Getting ready
This task picks up from where the previous one left off, so if you have not yet done so, quickly
complete it now and return here, it is very short and will not take long.

How to do it...
1. Along with the button and EditText field declarations in the Java code add these:

PendingIntent sendIntent;
PendingIntent receiveIntent;

String sent = "MESSAGE_SENT";
String received "MESSAGE_DELIVERED";

BroadcastReceiver sendBR;
BroadcastReceiver receiveBR;

2. Inside the onCreate() callback, set up a PendingIntent for when the message is
sent and one for when it is received:
sendIntent =
 PendingIntent.getBroadcast(this, 0, new Intent(sent), 0);
receiveIntent =
 PendingIntent.getBroadcast(this, 0, new Intent(received), 0);

3. Then, inside the onClick() method of the Button's onClickListener, change the
sendTextMessage line to:
sms.sendTextMessage("5556", null, message,
 sendIntent, receiveIntenet);

4. Now create some send and receive broadcast receivers:
registerReceiver(new BroadcastReceiver() {
 @Override
 public void onReceive(Context context, Intent intent) {
 switch (getResultCode()) {

Chapter 10

219

 case Activity.RESULT_OK:
 messageText.append(" ... sent");
 break;
 default:
 messageText.append(" ... not sent");
 break;
 }
 }
}, new IntentFilter(sent));

registerReceiver(new BroadcastReceiver() {
 @Override
 public void onReceive(Context context, Intent intent) {
 switch (getResultCode()) {
 case Activity.RESULT_OK:
 messageText.append(" ... received");
 break;
 case Activity.RESULT_CANCELLED:
 messageText.append(" ... not received");
 break;
 }
 }
}, new IntentFilter(received));

5. Finally add an onStop() callback to unregister:
@Override
public void onStop() {
 super.onStop();
 unregisterReceiver(sendBR);
 unregisterReceiver(receiveBR);
}

6. Run the code as before with another handset or emulator running. After a moment or
two, the result should look something like the next screenshot:

Telephony, Networks, and the Web

220

How it works...
To monitor the progress of our text message we needed to first broadcast two PendingIntents
and then pick them up with two BroadcastReceivers. It is possible to start an activity in
another application using a PendingIntent, just as it is with a standard Intent. The difference is
that with a pending intent the permissions from our own application are passed to the called
activity and so should be used with a certain caution.

When we register a BroadcastReceiver we override its onReceive() callback and use
getResultCode() to retrieve the behavior of SMS. In the previous example we only
considered Activity.RESULT_OK, but the SMS manager also provides results and we could
have also included any of the following calls to discover the reason for the failure to send:

 f RESULT_ERROR_GENERIC_FAILURE

 f RESULT_ERROR_NO_SERVICE

 f RESULT_ERROR_NULL_PDU

 f RESULT_ERROR_RADIO_OFF

When a BroadcastReceiver is no longer needed, it can, and should, be released with
unregisterReceiver().

Connecting to WiFi
The android.net package provides two very useful classes for incorporating WiFi into
applications, the ConnectivityManager and the wifi.WifiManager. The first of these manages
and monitors the network connection and the latter is the primary class for WiFi connectivity.

In this example we will use these classes to query the network and WiFi state of a device.

Getting ready
WiFi is not available on Android Virtual Devices so to test this demonstration you will need a
handset with WiFi enabled. Next, start up a new project in Eclipse.

How to do it...
1. WiFi connectivity requires the following two permissions to be declared in the Manifest:

<uses-permission
 android:name="android.permission.ACCESS_NETWORK_STATE" />
<uses-permission
 android:name="android.permission.ACCESS_WIFI_STATE" />

Chapter 10

221

2. We will use three TextViews to display our information. Include these in the res/
layout/main.xml file and give then the following resource IDs:
android:id="@+id/network_text"
android:id="@+id/signal_text"
android:id="@+id/connection_text"

3. Along with the text views, we need to declare two other class-wide fields for the two
network managers:
ConnectivityManager conMan;
WifiManager wifiMan;

TextView networkText;
TextView signalText;
TextView connectionText;

4. Now, from within the onCreate() method, connect the Java TextViews with their
XML counterparts in the usual way:
networkText = (TextView) findViewById(R.id.network_text);
signalText = (TextView) findViewById(R.id.signal_text);
connectionText = (TextView) findViewById(R.id.connection_text);

5. Still inside onCreate(), retrieve the two managers with these lines:
conMan = (ConnectivityManager)
 getSystemService(Context.CONNECTIVITY_SERVICE);
wifiMan = (WifiManager) getSystemService(Context.WIFI_SERVICE);

6. Directly after this calculate and display the network data:
String network = conMan.getNetworkInfo(
 ConnectivityManager.TYPE_WIFI).toString()
String signal = "signal strength: "

 + WifiManager.calculateSignalLevel(200, 100) + "%"
String connection = "ConnectionInfo: "
 + wifiMan.getConnectionInfo()

networkText.setText(network);
signalText.setText(signal);
connectionText.setText(connection);

Telephony, Networks, and the Web

222

7. Now run the project on a handset to examine its current WiFi settings:

How it works...
The two classes doing all the work here are ConnectivityManager and WifiManager,
and they are both retrieved with the activity's getSystemService() method. The
ConnectivityManager provides access to and control over all network types, and swapping the
constant TYPE_WIFI with TYPE_MOBILE in the code will provide mobile data and TYPE_
WIMAX, WiMAX data.

The WifiManager gives us a lot of control over all available WiFi networks and here we used it
to gather information about the connection and signal strength.

The two parameters in the calculateSignalLevel() method are both integers: the
first is the power of the signal and the second the scale of the output. There is also a
compareSignalLevel() function that takes two levels and is very useful for selecting the
strongest signal from those available.

To finish using WiFi use the WifiManager.disconnect() method:

@Override
public void onStop() {
 super.onStop();
 wifiMan.disconnect();
}

There's more...
The WifiManager class also provides methods that allow us to check the state of the WiFi
before we access it and to query the state at any time.

Besides querying the current network, we can create a list of all available networks.

Chapter 10

223

Checking the WiFi state
To detect whether a device is WiFi enabled use the WifiManager.isWifiEnabled()
method.

The WifiManager.getWifiState() method returns an integer representing the following
constants:

0 = WIFI_STATE_DISABLING
1 = WIFI_STATE_DISABLED
2 = WIFI_STATE_ENABLING
3 = WIFI_STATE_ENABLED
4 = WIFI_STATE_UNKNOWN

Listing all configured WiFi networks
To view a list of available WiFi networks use the getConfiguredNetworks() method,
although this does not return all the fields that the previous methods do:

List<WifiConfiguration> configs = wifiMan.getConfiguredNetworks();
for (WifiConfiguration wc : configs) {
 networkText.setText("\n\n" + wc.toString());
}

Connecting Bluetooth devices
Along with WiFi and other network capabilities, Android also provides support for discovering
and connecting to Bluetooth enabled devices. The android.bluetooth package contains
several useful classes such as the BluetoothAdapater, which represents the device's own
Bluetooth adapter. In this recipe the default BluetoothAdapter is used to check for already
paired devices and be discovered by new devices that are in range.

Getting ready
Android emulators do not support Bluetooth so you will need a handset to test this code and
you will also need another Bluetooth enabled device for the application to connect to.

When ready, start up a new Android project in Eclipse.

How to do it...
1. Bluetooth applications require at least one permission to be set, so open up the

Android Manifest file and add the following permissions:
<uses-permission
 android:name="android.permission.BLUETOOTH"
 android:name="android.permission.BLUETOOTH_ADMIN" />

Telephony, Networks, and the Web

224

2. In the main activity Java code, in the onCreate() method, directly after the
setContentView() statement, add this declaration:
BluetoothAdapter adapter =
 BluetoothAdapter.getDefaultAdapter();

3. To check for already known devices, add the following code beneath this:
Set<BluetoothDevice> pairedDevices =
 adapter.getBondedDevices();

if (pairedDevices.size() > 0) {

 for (BluetoothDevice device : pairedDevices) {
 Toast.makeText(this, device.getName(),
 Toast.LENGTH_LONG).show();
 }

}

4. Beneath this, to make our device discoverable, add this code:
if (adapter == null) {
 Toast.makeText(this, "Bluetooth not supported",
 Toast.LENGTH_LONG).show();
 finish();
 return;

} else {
 Intent intent = new
 Intent(BluetoothAdapter.ACTION_REQUEST_DISCOVERABLE);
 startActivity(intent);
}

5. Run this code on a handset with Bluetooth enabled in the presence of another
Bluetooth device.

How it works...
Creating an object to represent the Bluetooth adapter of our device with
getDefaultAdapter() is straightforward and once we have such an adapter we
can easily search for all paired (bonded) devices in range; the BluetoothAdapter.
getBondedDevices() method returns a set of all such devices.

Here we displayed the name of the discovered device in a toast but we could also have pulled
the MAC address with device.getAddress(), and once we have this address we could
represent any remote device by creating an instance of the BluetoothDevice class using
BluetoothAdapter.getRemoteDevice(String address).

Chapter 10

225

Android devices are not discoverable by default but the BluetoothAdapter can be used to
make a handset discoverable by other Bluetooth devices, and this is achieved by creating a
new Intent with the adapter's built-in Action ACTION_REQUEST_DISCOVERABLE and starting
an activity with it.

It is worth noting that the calling of this activity will cause the system to
prompt the user to switch Bluetooth on, if he or she has not already done so.

By default our device will remain discoverable for 120 seconds but this can be changed by
adding intent.putExtra(BluetoothAdapter.EXTRA_DISCOVERABLE_DURATION, int
seconds) after the Intent declaration. The int value can take any value less than 300 seconds.

Including web content
A large number of applications make use of a mobile device's ability to access the Internet
and one of the most straightforward and flexible ways to do this with Android is through the
purpose built WebView viewgroup.

Here we will create a very simple web browser with a back button.

Getting ready
This exercise can be started from scratch, start up a new Android project in Eclipse and add
the following permission to the Manifest file:

<uses-permission
 android:name="android.permission.INTERNET" />

How to do it...
1. Create a simple layout in the main.xml file with a single Button and WebView:

<Button
 android:text="back"
 android:id="@+id/button"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content" />

<WebView
 android:id="@+id/web_view"
 android:layout_width="match_parent"
 android:layout_height="match_parent" />

Telephony, Networks, and the Web

226

2. In the Java activity source declare a WebView field:
WebView webView;

3. Next, in the onCreate() method, set up the Button like so:
Button button = (Button) findViewById(R.id.button);
button.setOnClickListener(new OnClickListener() {

 @Override
 public void onClick(View view) {
 webView.goBack();
 }

});

4. Now, still within the onCreate() method, set up the WebView widget:
webView = (WebView) findViewById(R.id.web_view);
webView.loadUrl("http://www.packtpub.com");
webView.setWebViewClient(new MyWebViewClient());

5. Finally, add a WebViewClient class after the onCreate() method:
private class MyWebViewClient extends WebViewClient {

 @Override
 public boolean
 shouldOverrideUrlLoading(WebView view, String url) {
 view.loadUrl(url);
 return true;
 }

}

6. With this done, run the code on a handset or emulator, select a hyperlink, and then
press the button to return to the previous page:

Chapter 10

227

How it works...
We have introduced two new classes here: The WebView, which is an extension of View, and
the WebViewClient, which belongs to the android.webkit package. The WebView acts like
a canvas and is powered by Webkit which is the layout engine behind Google's Chrome and
Apple's Safari browsers. It is not within the scope of this book to cover Webkit in any detail
but the android.webkit package offers numerous ways to access and control web content
from within an application and is well worth exploring.

We created just a single button to go back one page with goBack() but WebView has many
such functions and we could have buttons calling goForward() and reload() easily.

The reason for creating a WebViewClient may not seem obvious at first but without the
shouldOverrideUrlLoading() method the system would render all but the first page in
the default browser.

Applications targeting Android 3.0 (API level 11) or higher have access to one or two extra
methods that allow the developer finer control over network traffic. For example when a
WebView becomes hidden from view, its onPause() callback will be called and this can be
overridden to allow us to prevent network traffic when the user is not focused on the web view.
When the WebView becomes visible again the corresponding onResume() callback is called.

Also introduced in API level 11 is the saveWebArchive() method, which unsurprisingly
saves the current view on the device and the showFindDialog() method, which allows the
user to perform a text search of the page.

There's more...
There are times when we do not want a web page to open in an application but rather open
in a browser, and this is remarkably simple. There are also times when we want to render
HTML directly.

Opening the browser at a specific page
To take a user directly to a site within the device's default browser, parse the URL as a String
and start a new activity using a ACTION_VIEW intent:

Uri uri = Uri.parse("http://www.packtpub.com");
startActivity(new Intent(Intent.ACTION_VIEW, uri));

Telephony, Networks, and the Web

228

Rendering HTML in a WebView
The WebView.loadData(String markup, String type, String format) can be
used to display HTML within a WebView like so:

String markup="<html><body><h1><center>Greetings!</></></></>"
webView.loadData(markup, "text/html", "UTF-8");

See also
Defining and enforcing permissions in Chapter 5, Data and Security.

Phone calls, text messages, WiFi, and HTML make up only a part of the way in which a
smartphone can communicate with the outside world but perhaps the most exciting aspect
of mobile development is the ability of these devices to know where they are and next we will
explore the world of GPS and maps.

11
GPS, Locations,

and Maps

In this chapter, we will cover the following topics:

 f Detecting a device's location

 f Listening for location changes

 f Setting up Google Maps

 f Zooming in on a MapView

 f Setting a map's location with a GeoPoint

 f Marking a location on a map with an overlay

Introduction
One of the most remarkable aspects of modern smartphones is the way they can detect their
location either through a Global Positioning System (GPS), or cell towers and WiFi signal
strength; and more often than not, applications use both.

For managing location based information, Android provides the android.location package
which in turn gives us the LocationManager class that gives us access to location based
functions such as the latitude and longitude of a device's position. Tracking a device over time
is made equally convenient and the LocationListener class monitors changes in location as
they occur.

Listening for location changes is only a part of the story, as Google provides APIs for managing
Google Maps data and displaying and manipulating maps through the use of the MapView
and MapController classes. These powerful tools require us to sign up with Google first, and
once done enable us to zoom in and out of maps, pan to any location that we are looking for,
and when we want to, include application information on a map, and even add our own layers
to maps and mark locations on a Google map.

GPS, Locations, and Maps

230

Detecting a device's location
Android locations are expressed in terms of latitude and longitude coordinates. The default
format is degrees. The Location object can also be used to store a time-stamp and other
information such as speed and distance traveled.

Although obtaining a device's last known location does not always yield the most accurate
information, it is often the first reading that we may want. It is fast, simple to employ, and
makes a good introduction to the LocationManager.

Getting ready
Start a new Android project in Eclipse and provide the following permission to the manifest file
as a child of the root node:

<uses-permission
 android:name="android.permission.ACCESS_FINE_LOCATION" />

How to do it...
1. Use the TextView provided in the main.xml file and give it a resource ID:

android:id="@+id/text_view"

2. Declare a TextView as a class-wide field in the Java activity code:
TextView textView;

3. Then, find it in the usual way, from within the onCreate() method:
textView = (TextView) findViewById(R.id.text_view);

4. Next, and still within onCreate(), declare and define our LocationManager:
LocationManager manager =
 (LocationManager) getSystemService(Context.LOCATION_SERVICE);

5. Then, to retrieve the last known location using GPS and display this in the text view,
add these lines:
Location loc =
 manager.getLastKnownLocation(LocationManager.GPS_PROVIDER);
textView.setText("latitude: " + loc.getLatitude()
 + "\nlongitude: " + loc.getLongitude());

6. Run the code on a handset or emulator to obtain its location:

Chapter 11

231

How it works...
The use of a LocationManager to obtain the device's last known location is very
straightforward. As with other system services, we obtained it with getSystemService()
and the getLastKnownLocation() method returns the Location object itself, which can
be further queried to provide latitude and longitude coordinates. We could have done more
with the Location object, for example Location.getAltitude() will return altitude and
getDistance(Location) and getBearing(Location) will return distance and bearing
to another Location.

It is possible to send mock locations to an emulator using the DDMS perspective in Eclipse:

Before sending location data this way, make sure that you have set the emulator to allow
mock locations under Settings | Applications | Development.

It is worth noting that although use of the
getLastKnownLocation() method may not always be accurate,
particularly if the device has been switched off for some time, it does
have the advantage of yielding almost immediate results.

GPS, Locations, and Maps

232

There's more...
Using GPS to obtain a location has a couple of drawbacks. Firstly, it does not work indoors;
and secondly, it is very demanding on the battery. Location can be determined by comparing
cell tower signal strengths, and although this method is not as accurate, it works well indoors
and is much more considerate to the device's battery.

Obtaining a location with a network provider
The network provider is set up in exactly the same way as the previous GPS example, simply
exchange the Location declaration with:

 Location loc =
 manager.getLastKnownLocation(LocationManager.NETWORK_PROVIDER);

You will also need to change, or amend, the permission in the manifest file with:

<uses-permission
 android:name="android.permission.ACCESS_COURSE_LOCATION" />

See also
To see how to apply a location object in conjunction with a Google map, see the recipe Setting
a map's location with a GeoPoint later in this chapter.

Listening for location changes
Obtaining the last known location as we did in the previous recipe is all well and good and
handy for retrieving a Location quickly, but it can be unreliable if the handset has been
switched off or if the user is on the move. Ideally we want to be able to detect location
changes as they happen and to do this we employ a LocationListener.

In this recipe we will create a simple application that keeps track of a mobile device's
movements.

Getting ready
This task can be performed most easily by starting where the previous one left off. If you have
not completed that task yet, do so now—it is very short—then return here. If you have already
completed the recipe then simply open it up to proceed.

Chapter 11

233

How to do it...
1. First, move the declaration of our LocationManager so that it is a class-wide field:

LocationManager manager;

2. In the main Java activity code, before the TextView.setText() call, add the
following three lines:
LocationListener listener = new MyLocationListener();
manager.requestLocationUpdates(LocationManager.GPS_PROVIDER,
 30000, 50, listener);
Location location =
 manager.getLastKnownLocation(LocationManager.GPS_PROVIDER);

3. Now create an inner class called MyLocationListener that implements
LocationListener:
public class MyLocationListener implements LocationListener {

}

4. Eclipse will most likely insist that you add some unimplemented methods and you
should do so.

5. For now, only complete one of them, the onLocationChanged() callback:
@Override
public void onLocationChanged(Location l) {
 textView.setText("/n/nlatitude: " +
 l.getLatitude() + "\nlongitude: " + l.getLongitude());
}

6. Leave the others as they are:
@Override
public void onProviderDisabled(String provider) {}

@Override
public void onProviderEnabled(String provider) {}

@Override
public void onStatusChanged(String provider,
 int status, Bundle extras) {}

7. If you want to test this code on an emulator, then go right ahead. However, this code
will create a serious drain on the battery of a handset, and it is wise to switch our
listener off when it is not needed. Here we have used the activity's onPause() and
onResume() functions to control this. You may wish to include these statements in
any part of your activity's life cycle that suits your application's purpose:
@Override
protected void onResume() {

GPS, Locations, and Maps

234

 super.onResume();
 manager.requestLocationUpdates(LocationManager.GPS_PROVIDER,
 30000, 50, listener);
}

@Override
protected void onPause() {
 super.onPause();
 manager.removeUpdates(this);
}

8. If you have not already tested this application, do so now. You will need to move
around if you are testing it on a real device, or send mock locations to an emulator to
see the code in action:

How it works...
In this recipe we used the LocationManager to provide location updates roughly every 30
seconds (30000 milliseconds) or whenever the location changed by more than 50 meters.
We say 'roughly' because these values work only as a guide and the actual frequency of
updates often varies from the values we set. Nevertheless, setting these two parameters of
the requestLocationUpdates() method to high values can make a big difference to the
amount of battery power the GPS provider consumes. Hopefully the use of the provider and
the LocationListener as the other two parameters is self explanatory.

The LocationListener operates very much as other listeners do and the purpose of
the onProviderEnabled() and onProviderDisabled() should be clear. The
onStatusChanged() method is called whenever a provider becomes unavailable after a
period of availability or vice versa. The int, status can represent 0 = OUT_OF_SERVICE, 1 =
TEMPORARILY_UNAVAILABLE, or 2 = AVAILABLE.

Chapter 11

235

See also
To see how to use locations in conjunction with Google maps see the recipes Setting a map's
location with a GeoPoint and Marking a location on a map with an overlay later in this chapter.

Setting up Google Maps
When it comes to displaying Google Maps from within our own applications Android makes
this wonderfully simple by providing the MapView widget, which we can treat just like we
would any other View.

Unfortunately, because the data we are using belongs to Google, before we can begin working
with maps we have to register for a Google API key. This is free and simple to do, as this
recipe will demonstrate.

Getting ready
Before we start, you will need to know the whereabouts of the files that you use when signing
an application. These are debug.keystore and keytool.exe. The debug.keystore
file can usually be found somewhere like C:\Users\<user>\.android\ on most PCs and
keytool.exe should be in your Java program files; on my machine it was in C:\Program
Files\Java\jdk1.6.0_25\bin\.

This exercise is designed to be run on an emulator. If you wish to run it on a handset then you
will need to substitute debug.keystore with your own keystore file, which you will have set
up when you registered as a developer with Google.

You will also need to check whether you have installed the Google APIs with
the SDK. Although it is almost certain that you have as they install as default.

How to do it...
1. From the command prompt enter the following line, substituting the location of your

keystore where different:
keytool.exe -list -alias androiddebugkey -keystore "C:\
Users\<user>\.android\debug.keystore" -storepass android -keypass
android

GPS, Locations, and Maps

236

2. After a moment you should see the MD5 fingerprint, which you should copy to your
clipboard:

3. Next, visit http://code.google.com/android/maps-api-signup.html and
follow the instructions there.

4. If all is successful you should receive your API key, which will be a long string of
seemingly random alphanumeric characters. Save this somewhere secure.

5. Now start up a new Android project in Eclipse, but instead of selecting an Android API
level as the Build Target, select Google APIs:

6. For Google Maps to work we need to set Internet permissions in the Manifest file as a
child of the <manifest> element:
<uses-permission
 android:name="android.permission.INTERNET" />

7. We also need to inform the system that we are using a library. As a child of the
<application> element include the following line:

Chapter 11

237

<uses-library
 android:name="com.google.android.maps" />

8. We can create a layout from a single MapView, so edit the main.xml file to match
the code here:
<?xml version="1.0" encoding="utf-8"?>
<com.google.android.maps.MapView
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:clickable="true"
 android:apiKey="[your API key goes here]" />

9. Finally, in the Java activity code simply change the class extension from Activity to
MapActivity:
public class MapViewer extends MapActivity {

10. This will cause Eclipse to ask you to implement isRouteDisplayed(). Ignore this
for now by having it simply return false:
@Override
protected boolean isRouteDisplayed() {
 return false;
}

11. This code will now display Google Maps, although all we can do for the moment is
pan around the map:

GPS, Locations, and Maps

238

How it works...
Signing up with Google this way is a task that needs to be performed only once and is fairly
straightforward. The purpose is mainly security, and MD5 is a 128 bit Message-Digest
algorithm that is widely used for checking file integrity.

Obviously a map with no zoom function is not much use and now that we have the API sign up
process completed, we can concentrate on having a bit more fun with Google Maps.

Zooming in on a MapView
A map is of any use only if we can view it at particular scales and the Google Maps API allows
us to achieve this by having zoom controls built into the MapView widget.

Here we will build a small application that will open Google Maps with built-in zoom controls
that will allow us to view any area of the map at any allowable scale.

Getting ready
Start a new Android project in Eclipse but, as with any map based application, select a Google
API as the build target.

How to do it...
1. Open the manifest file of your project and add the following library <uses> definition

to the <application> element:
<uses-library
 android:name="com.google.android.maps" />

2. Now add Internet permission to the <manifest> element:
<uses-permission
 android:name="android.permission.INTERNET" />

3. Open the main.xml file and set it up as follows:
<?xml version="1.0" encoding="utf-8"?>
<com.google.android.maps.MapView
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:id="@+id/map_view"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:clickable="true"
 android:apiKey="[your API key goes here]" />

Chapter 11

239

4. In the Java activity class, declare a MapView as a class field:
MapView mapView;

5. In the onCreate() method of the Java activity class and after the
setContentView() statement add the following three lines.
mapView = (MapView) findViewById(R.id.map_view);
mapView.setBuiltInZoomControls(true);
mapView.setSatellite(true);

6. Next, change the activity class itself from an Activity extension to a MapActivity
extension, like so:
public class MapViewer extends MapActivity {

7. Finally, override the isRouteDisplayed() method that Eclipse will insist you
implement:
@Override
protected boolean isRouteDisplayed() {
 return false;
}

8. Now run the program on an emulator or handset to test the zoom controls:

GPS, Locations, and Maps

240

How it works...
This is another wonderful example of how simple it can be to incorporate Google Maps into our
own applications. Once set up, the MapView widget is very easy to use and it took only a single
statement to include the built in zoom controls and another to change to satellite mode.

We can gain further control still over our map with the help of a MapController which,
amongst other things, allows us to zoom in and out programmatically. To declare a
MapController for the MapView in the example above add a line like the one below after the
setSatellite() statement:

MapController mapController = mapView.getController();

To zoom in or out one level at a time use mapController.zoomIn() or mapController.
zoomOut(). To set the scale to a specific zoom level we can use mapController.
setZoom(int) where int is a value between 1 and 21 with 1 being the largest scale and
21 the smallest:

There's more...
The MapController provides another handy function that allows us to zoom to a set point on
the map. This is a point measured in pixels and is not the same as setting a geographical
location which will be covered in the next section.

Chapter 11

241

Zooming to a fixed point on a MapView
To change the zoom focus from its default center point, use zoomInFixing(int x, int
y) with x and y being a distance in pixels from the top-left corner of the MapView.

Setting a map's location with a GeoPoint
It is pleasant enough to be able to pan around and zoom into Google Maps but most useful
applications require that a map opens at a specific location, either the user's location or a
location set by the developer.

Here we will use the GeoPoint object to control the location displayed by our map.

Getting ready
Start up a library project by setting the build target as a Google API and, if you are not
planning on testing this an a real handset, set up an Android Virtual Device to match.

How to do it...
1. Start by adding the following <uses-library> declaration to the <application>

element of the Android Manifest file of the project:
<uses-library
 android:name="com.google.android.maps" />

2. Also include Internet permission as a child of the <manifest> element itself:
<uses-permission
 android:name="android.permission.INTERNET" />

3. In the main.xml file create a MapView widget. Make it clickable and include your API
key within it along with an ID:
<com.google.android.maps.MapView
 android:id="@+id/map_view"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:clickable="true"
 android:apiKey="[your API key goes here]" />

4. Now, open the main Java activity file and change the extension type from Activity
to MapActivity:
public class MapViewer extends MapActivity {

GPS, Locations, and Maps

242

5. This will mean overriding the isRouteDisplayed() method, but having it simply
return false will effectively lead to it being ignored:
@Override
protected boolean isRouteDisplayed() {
 return false;
}

6. Within the onCreate() method create and associate a local MapView and set it to
display in satellite mode:
MapView mapView = (MapView) findViewById(R.id.map_view);
mapView.setSatellite(true);

7. We will also need a map controller:
MapController mapControl = mapView.getController();

8. Next, define two doubles to act as our latitude and longitude. Here we have used a
location in a central London park, but any legitimate coordinates will do:
double lat = 51.50773;
double lng = -0.16582;

9. Then, convert these values to a GeoPoint, like so:
GeoPoint gPoint =
new GeoPoint((int) (lat * 1E6), (int) (lng * 1E6));

10. Now we can call on the MapController to animate to our designated GeoPoint:
mapControl.animateTo(gPoint);
mapControl.setZoom(17);
mapView.invalidate();

11. Run the code on your handset or emulator to view the location set by the GeoPoint:

Chapter 11

243

How it works...
The way we set this project up is the same as the other library projects, which is simply a matter
of building against a Google API library and adding the <uses-library> to the application
node of the manifest. Again we used the MapController class to take us to the geographic
point with animateTo(GeoPoint). GeoPoints are constructed using integer units called
micro-degrees which, as their names suggests, represent a millionth of a degree. One might
just as easily have used GeoPoint point = new GeoPoint(51507730, -165820).

Note that although the invalidate() call is not always
necessary, it does guarantee that our view will be redrawn.

Of course, it is not a difficult matter to take data provided by the GPS or network location finder
to display a user's current location on the map, and this is left as an exercise for the reader.

See also
To learn how obtain the device's actual location see the recipe Detecting a device's location
earlier in this chapter.

Marking a location on a map with an overlay
Above all else one of the best features of the Google Maps API is the ability to add our own
content to maps by overlaying them with our own material.

In this final exercise we will display a map at a particular location and then overlay it with our
own imagery. We will also see how to translate from geographical locations to screen positions.

Getting ready
This task is a continuation of the previous one, so make sure you have completed this first
and have it open in Eclipse.

Here we have used the built in icon.png as our graphic but if you want to use your own, then
add this first to a res/drawable folder, ideally as a PNG file.

How to do it...
1. Mostly what is required here is a new class, which we can add as an inner class, but

first we need to convert our MapView and MapController to class wide fields:
MapView mapView;
MapController mapControl;

GPS, Locations, and Maps

244

2. Now it is simply a matter of adding a new class to our MapActivity. It should be
defined like this:
class MyMapOverlay extends com.google.android.maps.Overlay {

}

3. To take control of our overlay class we can override its draw() method:
@Override
public boolean draw(Canvas canvas, MapView mapView,
 boolean shadow, long when) {
 super.draw(canvas, mapView, shadow);

 double lat = 51.50778;
 double lng = -0.16590;
 GeoPoint oPoint =
 new GeoPoint((int) (lat * 1E6), (int) (lng * 1E6));

 Point sPoint = new Point();
 mapView.getProjection().toPixels(oPoint, sPoint);

 Bitmap bmp = BitmapFactory.decodeResource(
 getResources(), R.drawable.icon);
 canvas.drawBitmap(bmp, sPoint.x, sPoint.y, null);
 return true;

}

4. This is now ready to run, and as we are providing the locations ourselves, it does not
matter whether this code is tested on a real handset or an AVD:

Chapter 11

245

How it works...
The class of real interest here is Overlay, which is a library class and belongs to com.
google.android.maps. Once established, all we had to do was override the draw()
method to add our own layer to the map. The image is drawn onto a Canvas which makes the
first parameter and the desired MapView the second. The boolean, shadow, shows only the
shadow view if true and the long, when, controls the time that the overlay will be displayed
in milliseconds after the instruction is received. If this argument is ignored in the call to the
super class, then our layer will be displayed as soon as possible.

The GeoPoint of the overlay was set only meters away from the map location itself and one
micro-meter is equal to around 10 centimeters, but do note that it is the top left corner of our
image that the GeoPoint will locate at this point and we normally would have to adjust this to
accommodate our overlay's dimensions.

Handiest of all of the MapView's methods is getProjection().toPixels which lets us
easily convert real-world geographical coordinates to screen position in pixels and so mark
any location we desire on our map.

See also
For more information on using canvases see the recipe Drawing with a canvas in Chapter 8,
Graphics and Animation.

It's entirely impossible to cover everything that the Android SDK is capable of in just one
book, the subject is just too vast and growing every day. However, we hope that this book will
have given you what you need to turn your ideas into working applications and everyone who
worked on this book wishes all its readers the very best of luck in what is without doubt the
most exciting arena for imaginative people for a whole generation.

Index
Symbols
2D graphics library 163
3D rendering 163
<activity> element 8, 18
<activity> node 120
<activity> tag 76
<application> element 236
<application> tag 76
<Button> element 16
<manifest> element 236
<resources> node 73
<selector> tag 66
<table> tag 40
<TextView> element 16
<tr> tag 40

A
AbsListView class 42
accelerometer

motion, measuring with 123-125
action bar

Option menu items, adding to 85
active state 29, 30
activities

about 5, 158
switching between 14-17

activity
about 6
declaring 6-9
result, returning from 17-19
shutting down 31
starting, from menu 93
starting, with Intent object 10-12

Activity class 5, 82
activity layouts 154

activity lifecycle
about 27
managing 28, 30

Activity.managedQuery 111
activity state

storing 20-23
ActivitySwitcher class 16
addSubMenu() method 99
addToBackStack() method 57
addView() method

about 69, 70
parameters 70

ADT plugin 6
alert dialog

about 146
displaying 147, 148
icon, adding to 148
lists, including in 149
methods 150

alpha element 177, 179
alpha property 182
Android

applying, to view group 70-73
audio file extensions 192
backup functionality, providing 115-117
bluetooth devices, connecting 223, 224
compliant menu icons, designing 86, 88
context sensitive menu, creating 88-91
custom component, creating 78-80
Dialog theme, customizing 76-78
Google Maps, opening with zoom controls

238-240
Google Maps, setting up 235-238
images, resizing by default 67
layout, controlling during runtime 48, 49
layouts 33, 34

248

location, detecting of devices 230, 231
map location, setting with GeoPoint object

241-243
movements, tracking of mobile devices

 232-234
multiple screens optimization 50-53
phone call, initiating 210, 211
phone events, listening 212-215
screen designs, tuning 45-47
screen, dividing into fragments 54-57
SMS messages, monitoring 218-220
SMS messages, sending 215, 217
styles, converting to themes 74, 75
tablet optimization 50-53
web content, including 225, 227
WiFi connectivity 220-222

Android 3.0
running, on older platforms 58, 59

Android activities
about 6
declaring 6-9
lifecycle, managing for 28, 30
persistent activity data, storing 25, 26
result, returning from 17-19
starting, with Intent object 10-12
state, storing of 20-23
switching between 14-17

android.animation package 180
android.app.fragment package 53
android.bluetooth package 223
android.content.DialogInterface.OnClickLis-

tener 22
Android Development Tools. See ADT plugin
Android device

orientation, reading for 120-122
android.graphics.drawable package 163
android.graphics package 167
android.hardware.SensorManager class 120
android.location package 229
AndroidManifest.xml file 15, 120
AndroidManifest XML file 6
android.media.MediaPlayer 192
android.media package 191
android.media.SoundPool class 198
Android menus

about 81
option menu, creating 82-84

option menu, inflating 82-84
android.net package 220
Android projects 6
android.provider package 110
Android SDK 5
android:stretchColumns attribute 41
android.telephony package 209, 212
android:theme attribute 76
android.view.animation package 163, 164,

180
android.view.MotionEvent class 120
android.view.View 22
android.view.View.OnClickListener 22
android.webkit package 227
android:widget package 61
Android widgets

about 61, 62
creating, at runtime 68, 69
images, adding to 64-67
inserting, into layout 62-64

AnimationDrawable class 163
animations

triggering, window focus used 186
AnimationSet class 182
AnimationUtils class 179
AnimatorListenerAdapter interface 180
AnimatorUpdateListener 182
application

audio file, playing from 192, 193
theme, applying to 76

AppWidgets 61
apsect ratio

controlling, for images 167
ArcShape 173
audio

recording 200-202
AudioEncoder class 202
audio file

playing back 195
playing, from application 192, 193

audio file extensions 192
audio recorder

creating 200-202
audio recording 200-202
audio recording equipment 200
AudioSource class 202
auto-complete function 13

249

AVD manager 6

B
backup agent helpers 117
backup and restore service 115
backup functionality

providing, in Android 115-117
Backup Service Key 115
Backup Service Tool 102
BitmapDrawable class 163
BitmapFactory class 164, 167
BluetoothAdapater class 223
Bluetooth devices

connecting 223, 224
BroadcastReceiver object 209
broadcast receivers 12
browser

opening, at specific page 227
Bundle 23

C
calculateSignalLevel() method 222
camcorder setup 200
camera

photos, capturing with 205-207
Canvas class

about 173
drawing with 174, 175

Canvas object 80
center_horizontal attribute 47
center_vertical attribute 47
checkable items

menu groups, creating of 94-96
modifying, dynamically 97

CheckBox widget
about 62, 64
state, modifying 64

clear() method 26
click listener 14
collapseColumns attribute 42
color and shape control 163
Color class 80
columns

hiding, in table layout 42
commit() method 26
compareSignalLevel() function 222

compatibility package 58
compliant menu icons

designing 86, 88
components 10
CompoundButton class 64
condensed menu titles

providing 84
configChanges element 120
Configuration fields

about 122
hardKeyboardHidden 122
keyboard 122
navigation 122
navigationHidden 122
touchscreen 122

Configuration object 122
configured WiFi networks

listing 223
ConnectivityManager class 210-222
Content Providers

multimedia files, sharing across applications
110, 111

ContentResolver.query 111
ContentValues class 109
ContentValues object 108
ContextMenu class 97
ContextMenuInfo object 90
context menu items

selecting 93
context sensitive menu

creating 88-91
createBitmap() method 169
CursorFactory object 108
Cursor object 111
custom component

creating 78-80
custom permissions

defining 114
enforcing 114

D
Dalvik Debug Monitor Server. See DDMS
data

sending, with SMS 217
dataChanged() method 117
DatePicker widget 68

250

DDMS 103, 196
density-independent pixel 52
destroyed state 29
dialog

about 152
customizing 152, 154

dialog box 145, 146
Dialog.hide() command 152
DialogInterface.OnClickListener 148
Dialog.setTitle() method 154
Dialog.show() method 154
Dialog theme

about 76
customizing 76-78

dimensions
setting, for image 167

divideMessage() method 217
Drawable class 163, 171
drawable folders 88
drawCircle() method 175
draw() method 164, 173, 244
duration attribute 178

E
Eclipse Android project wizard 6
Eclipse IDE 6
EDGE_BOTTOM constant 131
EDGE_LEFT constant 131
EDGE_RIGHT constant 131
EDGE_TOP constant 131
edit() method 26
Environment class 104, 106
exclude mode 142
extended menu 84
external memory

video, playing back from 196, 197
external storage

public data, storing on 104-106

F
FileOutputStream object 103
FileWriter object 104
findViewById() method 17, 24, 64, 69, 104,

112
finish() method 31

flashing light
adding, to notification 160

fling gesture 134
Form Widget palette 62
Fragment class

about 34
methods 57

fragments
about 53
screen, dividing into 54-57

FragmentTransaction object 57
FSPC field 102

G
GeoPoint object

map’s location, setting with 241-243
GestureDetector class 134
GestureDetector object 135
GestureDetector.OnDoubleTapListener class

about 136
methods 136

gesture events
detecting 136

gestures
identifying 134, 135

getApplicationContext() method 156
getBearing() method 231
getCurrentPosition() function 195, 197
getCurrentSpan(float) method 138
getCurrentSpan() method 138
getDefaultAdapter() method 224
getDistance() method 231
getDuration() function 195
getDuration() method 197
getEventTime(long) method 138
getEventTime() method 138
getExternalStorageState() function 106
getFocusX(float) method 138
getFocusY(float) method 138
getLastKnownLocation() method 231
getLayoutParams() method 50
getMenuInflater() method 84
getNotification() method 162
getPointerCount() method 133
getPreviousSpan(float) method 138
getPreviousSpan() method 138

251

getRawX() method 130
getScaleFactor(float) method 138
getScaleFactor() method 138
getSharedPreferences() function 27
getStringArray() method 44
getSurfaceFrame() method 204
getSystemService() method 222, 231
getTimeDelta(long) method 138
getTimeDelta() method 138
GettingResults class 17
getX() method 130
getY() method 130
GIMP 86
Global Positioning System. See GPS
GLSurfaceView 188
goBack() method 227
goForward() method 227
Google API key 235
Google Maps

about 235
opening, with zoom controls 238-240
setting up 235-238

GPS 229
Graphical Layout mode 62
Graphical Layout tab 35
graphics

adding, to ImageView 164-166
GridView class 42

H
H.263 file 195
H.264 AVC files 195
H.264 file 195
hardKeyboardHidden field 122
hardware.SensorEventListener interface 123
height attribute 39
Honeycomb APIs

about 180
animating with 181, 182

Honeycomb status bar 161
horizontal bar 152
HTML

rendering, in WebView class 228

I
icon

adding, to alert dialog 148
icon menu 84
icons 82
id element 83
images

adding, to widgets 64-67
aspect ratio, controlling for 167
dimensions, setting for 167
re-sizing, by default 67
rotating, with matrix object 167-170

ImageView
graphics, adding to 164-166

incrementProgressBy() method 152
inflate() method 84
input type 139
intent

returning, with result code 20
Intent object

about 6, 210
action part, utilizing 13
data part, utilizing 13
new activity, starting with 10-12
working 12

interfaces 61
internal memory

exploring 104
internal storage

private data, storing on 102, 103
interpolators 179
invalidate() method 243
isChecked() method 64, 97
isCreating() method 204
isFinishing(boolean) method 31
isInProgress(boolean) method 138
isPlaying() function 195, 197
isRouteDisplayed() method 237, 239, 242

K
keyboard field 122
Khronos Group 186

252

L
layoutColumn property 41
layout_gravity tag 47
LayoutInflater object 157
layouts

about 33, 34
controlling, during runtime 48, 49
declaring 34-36
relative layout, applying 37-39
table layout, applying 40, 41
widget, inserting into 62-64

layout_weight attribute 47
LinearLayout object 34, 69
ListActivity 43
list adapters 61
ListAdapters

using 43, 44
LISTEN_CALL_FORWARDING_INDICATOR

constant 214
LISTEN_CALL_STATE constant 214
LISTEN_CELL_LOCATION constant 214
LISTEN_DATA_ACTIVITY constant 214
LISTEN_DATA_CONNECTION_STATE

constant 214
listener 149
LISTEN_MESSAGE_WAITING_INDICATOR

constant 214
LISTEN_NONE constant 214
LISTEN_SERVICE_STATE constant 214
LISTEN_SIGNAL_STRENGTH constant 214
LISTEN_SIGNAL_STRENGTHS constant 214
lists

including, in alert dialogs 149
ListView class 42
ListViews

using 43, 44
location

detecting, of devices 230, 231
marking, on map with overlay 243-245
obtaining, with network provider 232

LocationListener class 229, 232, 234
LocationManager class 229, 230
Location object 230, 231
longer options menus

handling 84

long text messages
sending 217

M
main.xml file 17
makeText() method 156
manifest 120
manifest file 6, 75
Manifest.permission object 114
map

about 238
location, marking on 243-245

MapController class 229
map’s location

setting, with GeoPoint object 241-243
MapView class 229
MapView widget 235, 238
MATCH_PARENT constant 49, 70
Matrix object

about 164
images, rotating with 167-170

MEDIA_BAD_REMOVAL constant 106
MEDIA_MOUNTED constant 106
MEDIA_MOUNTED_READ_ONLY constant 106
media player

creating 192
MediaPlayer class

about 191-195
functions 194, 195
lifecycle 194, 195

MediaPlayerControl
about 198
adding, to view 198

MediaPlayer.setDataSource(String)
method 195

MediaRecorder class 191, 202
MEDIA_REMOVED constant 106
media scanner 107
MEDIA_SHARED constant 106
MediaStore 110
Menu class 97
menu groups

creating, of checkable items 94-96
MenuInflater object 84
MenuItem class 97
MenuItem.isChecked() method 97

253

menu items
about 91
adding, dynamically 91

menus
about 81
activity, starting from 93
option menu. creating 82-84
option menu. inflating 82-84

menu selections
handling 92, 93

messages 10, 148
micro-degrees 243
microphone 200
MIDI file formats 192
mobile device

movements, tracking of 232-234
MODE_APPEND constant 103
MODE_PRIVATE 27
MODE_PRIVATE constant 103
MODE_WORLD_READABLE 27
MODE_WORLD_READABLE constant 103
MODE_WORLD_WRITABLE 27
MODE_WORLD_WRITABLE constant 103
motion

measuring, with accelerometer 123-125
MotionEvent class

about 130
constants 131

MotionEvent.getPressure() method 131
MotionEvent.getSize() method 131
movements

tracking, of mobile devices 232-234
MPEG-4 file 195
mString field 102
multi-choice ListView

setting up 45
multimedia files

sharing, across applications with Content
Providers 110, 111

multiple preference file
using 27

multiple screens
optimizing for 50-53

multiple sounds
playing, with SoundPool class 198-200

multi-touch events
about 132

capturing 132, 133
multi-touch gestures

about 120
handling 137, 138

my_button.xml file 65
MyCustomView class 78
MyNewActivity class 17
MyShape class 174
MySubActivity class 14

N
navigation field 122
navigationHidden field 122
network provider

location, obtaining with 232
new activity

starting, with Intent object 10-12
nodpi qualifier 53
notification

flashing light, adding to 160
sound, adding to 160
vibrations, adding to 160

notification area 157
Notification.Builder class 146, 161
NotificationManager 159, 160

O
ObjectAnimator class 181
Ogg Vorbis file 192
older platforms

Android 3.0, running on 58, 59
onAccuracyChanged() method 124
onActivityResults() method 19
onAnimationCancel() method 182
onAnimationRepeat() method 182
onAnimationStart() method 182
OnClickListener interface 35, 64
onCompletionListener() method 195
onConfigurationChanged() method 121, 122
onContextItemSelected() method 97
onCreateContextMenu() method 90, 91, 98
onCreateDialog() method 147-149
onCreate() method 10-12, 16, 18, 22, 25, 28,

63, 102, 105, 123, 147, 150, 153, 165,
193

onCreateOptionsMenu() method 82, 90-93

254

onCreateView() method 56
onDestroy() method 28, 31
onDialogCancelled() method 150
onDialogDismissed() method 150
onDown() method 135
onDraw() method 79, 80, 171, 173
onErrorListener() method 195
oneshot attribute 185
onFling() method 134, 135
OnGestureListener class 135
onItemCheckedStateChanged() method 45
onItemClick() method 55
onLocationChanged() method 233
onLongPress() method 135
onOptionsItemSelected() method 91, 92
onPause() method 25, 28, 123, 233
onPictureTaken() method 207
onRestart() method 28, 30
onRestoreInstanceState() method 21-23
onRestore() method 117
onResume() method 28, 30, 123, 233
onSaveInstanceState() method 21-23
OnScaleGestureListener 136
onScroll() method 135
onSensorChanged() method 124
onShowPress() method 135
onSingleTapUp() method 135
onStart() method 28
onStatusChanged() method 234
onStop() method 28
onTouchEvent() method 135
OnTouchListener interface 174
OnTouchListener.onTouch() method 130
onTouch() method 129, 132, 174
onWindowFocusChanged() method 186
openFileOutput() function 103
OpenGL

about 164, 186
working with 187, 188

openOrCreateDatabase() method 108
Option menu items

adding, to action bar 85
options menu

about 84
creating 82-84
inflating 82-84
longer options menus, handling 84

orientation
reading, for Android device 120-122

OutputFormat class 202
OutputStream object 102
OvalShape 173

P
Package Explorer 7
Paint class

about 171
using 172

Paint object 80
parent attribute 77
pause button 193
paused state 29, 30
pause() method 194
PendingIntent object 209
permissions

about 112
defining 112, 114
enforcing 112, 114

persistent activity data
storing 25, 26

phone call
initiating 210, 211

phone events
listening for 212-215

PhoneStateListener class 209, 212
photos

capturing, with camera 205-207
PhotoShop 86
pipe character 47
pivot point 179
pixel densities 50
play button 193
private data

storing, on internal storage 102, 103
progress bars 150
progress dialog

about 150
displaying 150-152

ProgressDialog.show() command 150, 152
project wizard

attributes 9
public data

storing, on external storage 104-106

255

Pull File... command 103
putString() method 26

R
read() function 104
registerForContextMenu() method 90
relative layout

applying 37-39
RelativeLayout class 37
release() method 202
reload() method 227
remove() method 26
Renderscript system 188
request code 19
requestLocationUpdates() method 234
reset() method 202
res/layout folder 17
resource ID 156
resource qualified directories 50
resources tag 77
result

returning, from activity 17-19
result code

about 19
intent, returning with 20

RESULT_ERROR_GENERIC_FAILURE constant
220

RESULT_ERROR_NO_SERVICE constant 220
RESULT_ERROR_NULL_PDU constant 220
RESULT_ERROR_RADIO_OFF constant 220
RGBToHSV() function 80
rotate property 179
rotation 178
rotation property 181
RoundRectShape 173
runtime

widget, creating at 68, 69

S
satellite mode 240
saveWebArchive() method 227
scale element 179
ScaleGestureDetector 136
scaling 170, 178
screen keyboards

controlling on 139-142

screen orientation 120
screen resolutions 50
sendDataMessage() method 217
sendMultipartTextMessage() method 217
sendTextMessage() method 217
SENSOR_DELAY_FASTEST setting 125
SENSOR_DELAY_GAME setting 125
SENSOR_DELAY_NORMAL setting 125
SENSOR_DELAY_UI setting 125
sensor.getMaximumRange() method 125
sensor.getPower() method 125
sensor.getType() method 125
SensorManager class 123, 127
sensors

about 120, 122
accessing 126
listing 127, 128

services 6, 158
setAction() method 12
setARGB() method 172
setBounds() method 173
setChecked() method 64, 97
setClassName() method 16
setColumnsCollapsed() method 42
setContentView() method 36, 110, 210
setData() method 12
setDataSource() method 195
setFixedSize() method 204
setImageResource() method 166
setItems() method 149
setKeepScreenOn() method 204
setLargeIcon() method 162
setListAdapter() method 44
setLooping() method 194
setMaxHeight() method 167
setMaxWidth() method 167
setMessage() method 148
setMultiChoiceItems() method 149
setNegativeButton() method 148
setNeutralButton() method 148
setProgressStyle() method 152
setResult() method 19
setRotate() method 170
setSatellite() method 240
setSingleChoiceItems() method 150
setSizeFromLayout() method 204
setText() method 64

256

setTitle() method 148, 154
ShapeDrawable class

about 163, 171
using 172

SharedPreferences.Editor 26
SharedPreferences interface 24
shortcut keys

applying 97-99
shouldOverrideUrlLoading() method 227
showDialog() method 147, 148
showFindDialog() method 227
shrinkColumns attribute 42
single pointer gestures 120
skewing 170
sliding drawer tool 146
smart phone 101
SMS

data, sending with 217
SmsManager class 209, 215
SMS messages

monitoring 218-220
sending 215, 217

soft keyboard 139
sound

adding, to notification 160
SoundPool class

about 191
multiple sounds, playing with 198-200

speed interpolator 176
spinner 152
SQL 107
SQLite 20
SQLite 3 database 101
SQLite database

about 107
creating 108, 109
versioning 109

src folder 10
startActivityForResult() method 17, 19
startActivity() method 12, 19
start() method 194
state_focused attribute 66
state_pressed attribute 66
static data

storing 104
status bar

about 145

user, notifying with 157-159
stop button 194
stop frame animations

creating 183-185
stop() method 194
stopped state 29, 30
stretchColumns attribute 41
String constant 21
styles

about 74
applying, to view group 70-73
applying, to views 70-73
converting, to themes 74, 75

SubMenus
about 99
applying 97-99

surfaceChanged() method 206, 207
surfaceCreated() method 205, 207
surfaceDestroyed() method 206, 207
SurfaceHolder class 204
Swing JFrame 5
switch expression 132

T
table layout

applying 40, 41
columns, hiding 42

TableLayout class 40
TableRow class 40
tablets

about 101
optimizing for 50-53

TelephonyManager class 209, 212
text messages 217
TextView object 104, 120
theme

about 73
applying, to application 76
styles, converting to 74, 75

time-lapse video 204
title 148
title attribute 83
titles 82
Toast object 20
Toast pop-up

about 145, 154

257

creating 155, 156
customizing 156, 157

touch event
identifying 128-130

touchscreen field 122
transitional animations 163
translate element 177, 178
translation 178
transparency 178
tween animations

about 176
using 177-179

TYPE_ACCELEROMETER constant 126
TYPE_ALL constant 126, 128
TypeEvaluator interface 181
TYPE_GRAVITY constant 126
TYPE_GYROSCOPE constant 126
TYPE_LIGHT constant 126
TYPE_LINEAR_ACCELERATION constant 126
TYPE_MAGNETIC_FIELD constant 126
TYPE_ORIENTATION constant 126
TYPE_PRESSURE constant 126
TYPE_PROXIMITY constant 126
TYPE_ROTATION_VECTOR constant 126
TYPE_TEMPERATURE constant 126

U
unregisterListener method 125
updateDate() method 70
user

notifying, with status bar 157-159

V
vibration

adding, to notification 160
video

playing back, from external memory 196, 197
recording 203, 204

video recording 203, 204
VideoView object 195, 197
view

about 33
MediaPlayerControl, adding to 198

View class 78
ViewGroup class 33
view.MotionEvent class 128

View object 33
view.View.OnTouchListener class 128

W
web content

including 225, 227
WebView class

about 210
HTML, rendering in 228

WebViewClient class 210
WHERE clause 111
Widget package 61
widgets

about 61, 62
creating, at runtime 68, 69
images, adding to 64-67
inserting, into layout 62-64

width attribute 39
WiFi

about 210
connecting to 220-222

WifiManager class 220, 222
WiFi signal strength 229
WiFi state

verifying 223
window focus

used, for triggering animations 186
windowSoftInputMode attribute 141
WRAP_CONTENT constant 70
WRAP_CONTENTconstant 49

Z
zoom controls

about 238
Google Maps, opening with 238-240

Thank you for buying
Android 3.0 Application
Development Cookbook

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective MySQL
Management" in April 2004 and subsequently continued to specialize in publishing highly focused
books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting and
customizing today's systems, applications, and frameworks. Our solution based books give you the
knowledge and power to customize the software and technologies you're using to get the job done.
Packt books are more specific and less general than the IT books you have seen in the past. Our
unique business model allows us to bring you more focused information, giving you more of what
you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website: www.packtpub.com.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should be
sent to author@packtpub.com. If your book idea is still at an early stage and you would like to
discuss it first before writing a formal book proposal, contact us; one of our commissioning editors
will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

MeeGo 1.0 Mobile Application
Development Cookbook
ISBN: 978-1-84969-032-4 Paperback: 300pages

Simple and effective recipes for professional MeeGo
mobile applications supporting calls, SMS, UI, display,
GPS, multimedia, and much more

1. A step-by-step guide to creating feature-rich,
powerful Qt mobile applications in Python rapidly

2. Quick recipes for building professional
Smartphone applications for UI, display, GPS,
multimedia, and games

3. Plenty of code examples to help you develop your
own applications

4. No Qt experience required

Mobile Web Development
ISBN: 978-1-847193-43-8 Paperback: 236 pages

Building mobile websites, SMS and MMS messaging,
mobile payments, and automated voice call systems
with XHTML MP, WCSS, and mobile AJAX

1. Build mobile-friendly sites and applications

2. Adapt presentation to different devices

3. Build mobile front ends to server-side applications

4. Use SMS and MMS and take mobile payments

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Activities
	Introduction
	Declaring an activity
	Starting a new activity with an intent object
	Switching between activities
	Returning a result from an activity
	Storing an activity's state
	Storing persistent activity data
	Managing the activity lifecycle

	Chapter 2: Layouts
	Introduction
	Declaring a layout
	Applying a relative layout
	Applying a table layout
	Using ListViews and ListAdapters
	Applying gravity and weight
	Controlling layout during runtime
	Optimizing for tablets and multiple screens
	Dividing the screen into fragments
	Running 3.0 and higher applications
	on older platforms

	Chapter 3: Widgets
	Introduction
	Inserting a widget into a layout
	Adding images to widgets
	Creating a widget at runtime
	Applying a style
	Turning a style into a theme
	Using a platform style or theme
	Creating a custom component

	Chapter 4: Menus
	Introduction
	Creating and inflating an options menu
	Designing Android compliant menu icons
	Building a context sensitive menu
	Handling menu selections
	Building menu groups of checkable items
	Applying shortcut keys and submenus

	Chapter 5: Data and Security
	Introduction
	Using internal storage for private data
	Storing public data on external storage
	Creating a SQLite database
	Sharing multimedia files across applications
	with Content Providers
	Defining and enforcing permissions
	Providing backup functionality

	Chapter 6: Detecting User Activity
	Introduction
	Reading a device's orientation
	Measuring motion with the accelerometer
	Listing available sensors
	Recognizing a touch event
	Capturing multi-touch
	Recognizing gestures
	Handling multi-touch gestures
	Controlling on screen keyboards

	Chapter 7: Notifying the User
	Introduction
	Displaying an alert dialog
	Displaying a progress dialog
	Customizing a dialog
	Making a Toast
	Notifying the user with the status bar
	Using the Notification.Builder

	Chapter 8: Graphics and Animation
	Introduction
	Adding graphics to an ImageView
	Rotating an image with a matrix
	Using ShapeDrawable and Paint
	Drawing with a Canvas
	Using tween animations
	Animating with Honeycomb APIs
	Creating stop frame animations
	Working with OpenGL

	Chapter 9: Multimedia
	Introduction
	Playing an audio file from within
	an application
	Playing back video from external memory
	Playing multiple sounds with a SoundPool
	Recording audio
	Recording video
	Capturing photos with the camera

	Chapter 10: Telephony, Networks, and the Web
	Introduction
	Initiating a phone call
	Listening for phone events
	Sending SMS messages
	Monitoring SMS messages
	Connecting to WiFi
	Connecting Bluetooth devices
	Including web content

	Chapter 11: GPS, Locations, and Maps
	Introduction
	Detecting a device's location
	Listening for location changes
	Setting up Google Maps
	Zooming in on a MapView
	Setting a map's location with a GeoPoint
	Marking a location on a map with an overlay

	Index

