
Beginning
Functional JavaScript

Uncover the Concepts of Functional
Programming with EcmaScript 8
—
Second Edition
—
Anto Aravinth
Srikanth Machiraju

www.allitebooks.com

http://www.allitebooks.org

Beginning Functional
JavaScript

Uncover the Concepts of
Functional Programming

with EcmaScript 8

Second Edition

Anto Aravinth
Srikanth Machiraju

www.allitebooks.com

http://www.allitebooks.org

Beginning Functional JavaScript

ISBN-13 (pbk): 978-1-4842-4086-1		 ISBN-13 (electronic): 978-1-4842-4087-8
https://doi.org/10.1007/978-1-4842-4087-8

Library of Congress Control Number: 2018964615

Copyright © 2018 by Anto Aravinth, Srikanth Machiraju

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or
part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way,
and transmission or information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, log os,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Nikhil Karakal
Development Editor: Matthew Moodie
Coordinating Editor: Divya Modi

Cover designed by eStudioCalamar

Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York,
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505,
e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a
California LLC and the sole member (owner) is Springer Science + Business Media Finance Inc
(SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit http://www.apress.
com/rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Print
and eBook Bulk Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is
available to readers on GitHub via the book’s product page, located at www.apress.com/.
For more detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

Anto Aravinth
Chennai, Tamil Nadu, India

Srikanth Machiraju
Hyderabad, Andhra Pradesh, India

www.allitebooks.com

https://doi.org/10.1007/978-1-4842-4087-8
http://www.allitebooks.org

iii

About the Authors���xi

About the Technical Reviewer��xiii

Acknowledgments���xv

Introduction���xvii

Table of Contents

Chapter 1: �Functional Programming in Simple Terms���������������������������1

What Is Functional Programming? Why Does It Matter?��2

Referential Transparency���5

Imperative, Declarative, Abstraction���7

Functional Programming Benefits���8

Pure Functions���8

Pure Functions Lead to Testable Code��9

Reasonable Code��11

Parallel Code��12

Cachable���14

Pipelines and Composable���16

A Pure Function Is a Mathematical Function���17

What We Are Going to Build���18

Is JavaScript a Functional Programming Language?���19

Summary���20

www.allitebooks.com

http://www.allitebooks.org

iv

Chapter 2: �Fundamentals of JavaScript Functions������������������������������21

ECMAScript: A Bit of History���22

Creating and Executing Functions���23

First Function��24

Strict Mode���26

Return Statement Is Optional���28

Multiple Statement Functions��28

Function Arguments���30

ES5 Functions Are Valid in ES6 and Above���30

Setting Up Our Project���30

Initial Setup��31

Our First Functional Approach to the Loop Problem���������������������������������������33

Gist on Exports���36

Gist on Imports���36

Running the Code Using Babel-Node���37

Creating Script in Npm���38

Running the Source Code from Git���39

Summary���40

Chapter 3: �Higher Order Functions��41

Understanding Data���42

Understanding JavaScript Data Types��42

Storing a Function��43

Passing a Function���44

Returning a Function��45

Table of ContentsTable of Contents

www.allitebooks.com

http://www.allitebooks.org

v

Abstraction and Higher Order Functions��47

Abstraction Definitions���48

Abstraction via Higher Order Functions��48

Higher Order Functions in the Real World��53

every Function��53

some Function��55

sort Function��56

Summary���61

Chapter 4: �Closures and Higher Order Functions��������������������������������63

Understanding Closures���64

What Are Closures?��64

Remembering Where It Is Born���67

Revisiting sortBy Function��69

Higher Order Functions in the Real World (Continued)���70

tap Function��70

unary Function��72

once Function���74

memoize Function��75

assign function���78

Summary���80

Chapter 5: �Being Functional on Arrays��81

Working Functionally on Arrays���82

map��82

filter��87

Chaining Operations���88

concatAll���90

Table of ContentsTable of Contents

vi

Reducing Function���95

reduce Function��95

Zipping Arrays��102

zip Function��105

Summary���108

Chapter 6: �Currying and Partial Application��������������������������������������109

A Few Notes on Terminology��110

Unary Function���110

Binary Function��110

Variadic Functions��110

Currying���112

Currying Use Cases��114

A logger Function: Using Currying��116

Revisit Curry���117

Back to logger Function���122

Currying in Action���123

Finding a Number in Array Contents���124

Squaring an Array���124

Data Flow���125

Partial Application��125

Implementing partial Function���127

Currying vs. Partial Application��130

Summary���130

Table of ContentsTable of Contents

vii

Chapter 7: �Composition and Pipelines���133

Composition in General Terms���134

Unix Philosophy��134

Functional Composition���137

Revisiting map,filter���137

compose Function��139

Playing with the compose Function���140

curry and partial to the Rescue��142

compose Many Functions���146

Pipelines and Sequence���148

Implementing pipe��149

Odds on Composition��150

The Pipeline Operator���151

Debugging Using the tap Function���154

Summary���155

Chapter 8: �Fun with Functors��157

What Is a Functor?���158

Functor Is a Container��158

Implementing map���161

MayBe��163

Implementing MayBe��163

Simple Use Cases���165

Real-World Use Cases��168

Table of ContentsTable of Contents

viii

Either Functor��173

Implementing Either���174

Reddit Example Either Version��176

Word of Caution: Pointed Functor��179

Summary���180

Chapter 9: �Monads in Depth��181

Getting Reddit Comments for Our Search Query��182

The Problem���183

Implementation of the First Step��185

Merging Reddit Calls��189

Problem of Nested/Many maps��194

Solving the Problem via join��196

join Implementation��196

chain Implementation���200

Summary���203

Chapter 10: �Pause, Resume, and Async with Generators������������������205

Async Code and Its Problem��206

Callback Hell���206

Generators 101��209

Creating Generators��209

Caveats of Generators��210

yield Keyword���211

done Property of Generator��214

Passing Data to Generators��216

Table of ContentsTable of Contents

ix

Using Generators to Handle Async Calls��219

Generators for Async: A Simple Case���219

Generators for Async: A Real-World Case���226

Async Functions in ECMAScript 2017��230

Promise��230

Await���231

Async��231

Chaining Callbacks���233

Error Handling in Async Calls���236

Async Functions Transpiled to Generators���237

Summary���239

Chapter 11: �Building a React-Like Library���241

Immutability���242

Building a Simple Redux Library��245

Building a Framework Like HyperApp��251

Virtual DOM���252

JSX���254

JS Fiddle���255

CreateActions���261

Render��262

Patch��263

Update��264

Merge���265

Remove���266

Summary���268

Table of ContentsTable of Contents

x

Chapter 12: �Testing and Closing Thoughts��269

Introduction��270

Types of Testing���272

BDD and TDD��273

JavaScript Test Frameworks��274

Testing Using Mocha��275

Mocking Using Sinon��283

Testing with Jasmine��287

Code Coverage���290

Linting��291

Unit Testing Library Code���294

Closing Thoughts��296

Summary���297

�Index��299

Table of ContentsTable of Contents

xi

About the Authors

Anto Aravinth has been in the software

industry for more than six years. He has

developed many systems that are written in

the latest technologies. Anto has knowledge

of the fundamentals of JavaScript and how it

works and has trained many people. Anto is

also does OSS in his free time and loves to play

table tennis. 

Srikanth Machiraju has over ten years of

experience as a developer, architect, technical

trainer, and community speaker. He is

currently working as Senior Consultant with

Microsoft Hyderabad, leading a team of 100

developers and quality analysts developing

an advanced cloud-based platform for

a tech giant in the oil industry. With an

aim to be an enterprise architect who can

design hyperscale modern applications with

intelligence, he constantly learns and shares

modern application development tactics using cutting-edge platforms and

technologies. Prior to Microsoft, he worked with BrainScale as Corporate

Trainer and Senior Technical Analyst on application design, development,

xii

and migrations using Azure. He is a tech-savvy developer who is

passionate about embracing new technologies and sharing his learning via

blog and community engagements. He has also authored the “Learning

Windows Server Containers” and “Developing Bots with Microsoft Bot

Framework,” blogs at https://vishwanathsrikanth.wordpress.com. He

runs his own YouTube channel called “Tech Talk with Sriks” and is active

on LinkedIn at https://www.linkedin.com/in/vishsrik/.  

About the AuthorsAbout the Authors

https://vishwanathsrikanth.wordpress.com/
https://www.linkedin.com/in/vishsrik/

xiii

About the Technical Reviewer

Sakib Shaikh has been working as a Tech

Lead with a large scientific publisher, with

more than ten years of experience as a full

stack developer with JavaScript technologies

on front-end and back-end systems. He has

been reviewing technical books and articles

for the past few years and contributes to the

developer community as a trainer, blogger,

and mentor.  

xv

Acknowledgments

I remember the first code that I wrote for Juspay Systems in my first job

as an intern. Coding was fun for me; at times it is challenging, too. Now

with six years of software experience, I want to make sure I pass on all the

knowledge I have to the community. I love teaching people. I love to share

my thoughts with the community to get feedback. That’s exactly the reason

I’m writing a second edition of this book.

I have to acknowledge few people who have been standing right next

to me in all phases of my life: my late father Belgin Rayen, mother Susila,

Kishore (brother-in-law), Ramya (sibling), and Joshuwa (my new little

nephew). They have been supportive and pushed me harder to achieve

my goals. I want to say thanks to Divya and the technical reviewer of this

book, as they did a wonderful job. Luckily, I have a wonderful coauthor in

Srikanth, who did an amazing job as well.

Finally, I want to give special thanks to Bianaca, Deepak, Vishal, Arun,

Vishwapriya, and Shabala, who have added joy to my life.

Please reach out to me at anto.aravinth.cse@gmail.com with any

feedback.

—Anto Aravinth

I would like to thank Apress for providing me a second opportunity to

author. I would also like to thank my family, especially my dear wife Sonia

Madan and my four-month-old son Reyansh for supporting me throughout

this stint. I’m always reachable at Vishwanath.srikanth@gmail.com for any

feedback or questions.

—Srikanth Machiraju

http://www.anto.aravinth.cse@gmail.com/
http://www.Vishwanath.srikanth@gmail.com/

xvii

Introduction

The second edition of a book is always special. When I wrote the first

edition, I had about two years of IT experience. The book received positive

as well as negative responses. I always wanted to work on the negative

responses to make the content better and make the book worth the price.

In the meantime, JavaScript evolved a great deal. Many ground-breaking

changes were added into the language. The Web is full of JavaScript, and

imagine a world without the Web. Hard, right?

This second edition is a much improved version that teaches the

fundamentals of functional programming in JavaScript. We have added

much new content in this second edition; for example, we will be building

a library for building web applications using functional concepts, and

we have added sections on testing as well. We have rewritten the book to

match the latest ES8 syntax with many samples of async, await patterns,

and a lot more!

We assure you that you will gain a lot of knowledge from this book and at

the same time you will have fun while running the examples. Start reading.

1© Anto Aravinth, Srikanth Machiraju 2018
A. Aravinth and S. Machiraju, Beginning Functional JavaScript,
https://doi.org/10.1007/978-1-4842-4087-8_1

CHAPTER 1

Functional
Programming in
Simple Terms

The first rule of functions is that they should be small. The second
rule of functions is that they should be smaller than that.

—Robert C. Martin

Welcome to the functional programming world, a world that has only

functions, living happily without any outside world dependencies,

without states, and without mutations—forever. Functional programming

is a buzzword these days. You might have heard about this term within

your team or in a local group meeting. If you’re already aware of what

that means, great. For those who don’t know the term, don’t worry. This

chapter is designed to introduce you to functional terms in simple English.

We are going to begin this chapter by asking a simple question: What

is a function in mathematics? Later, we are going to create a function

in JavaScript with a simple example using our function definition. The

chapter ends by explaining the benefits that functional programming

provides to developers.

2

�What Is Functional Programming? Why
Does It Matter?
Before we begin to explore what functional programming means, we have

to answer another question: What is a function in mathematics? A function

in mathematics can be written like this:

f (X) = Y

The statement can be read as “A function f, which takes X as its

argument, and returns the output Y.” X and Y can be any number, for

instance. That’s a very simple definition. There are key takeaways in the

definition, though:

•	 A function must always take an argument.

•	 A function must always return a value.

•	 A function should act only on its receiving arguments

(i.e., X), not the outside world.

•	 For a given X, there will be only one Y.

You might be wondering why we presented the definition of function

in mathematics rather than in JavaScript. Did you? That’s a great question.

The answer is pretty simple: Functional programming techniques are

heavily based on mathematical functions and their ideas. Hold your

breath, though; we are not going to teach you functional programming in

mathematics, but rather use JavaScript. Throughout the book, however, we

will be seeing the ideas of mathematical functions and how they are used

to help understand functional programming.

With that definition in place, we are going to see the examples of

functions in JavaScript. Imagine we have to write a function that does

tax calculations. How are you going to do this in JavaScript? We can

implement such a function as shown in Listing 1-1.

Chapter 1 Functional Programming in Simple Terms

3

Listing 1-1.  Calculate Tax Function

var percentValue = 5;

var calculateTax = (value) => { return value/100 * (100 +

percentValue) }

The calculateTax function does exactly what we want to do. You can

call this function with the value, which will return the calculated tax value

in the console. It looks neat, doesn’t it? Let’s pause for a moment and

analyze this function with respect to our mathematical definition. One of

the key points of our mathematical function term is that the function logic

shouldn’t depend on the outside world. In our calculateTax function,

we have made the function depend on the global variable percentValue.

Thus this function we have created can’t be called as a real function in a

mathematical sense. Let’s fix that.

The fix is very straightforward: We have to just move the percentValue

as our function argument, as shown in Listing 1-2.

Listing 1-2.  Rewritten calculateTax Function

var calculateTax = (value, percentValue) => { return value/100 *

(100 + percentValue) }

Now our calculateTax function can be called as a real function. What

have we gained, though? We have just eliminated global variable access

inside our calculateTax function. Removing global variable access inside

a function makes it easy for testing. (We will talk about the functional

programming benefits later in this chapter.)

Now we have shown the relationship between the math function and

our JavaScript function. With this simple exercise, we can define functional

programming in simple technical terms. Functional programming is a

paradigm in which we will be creating functions that are going to work out

their logic by depending only on their input. This ensures that a function,

Chapter 1 Functional Programming in Simple Terms

4

when called multiple times, is going to return the same result. The function

also won’t change any data in the outside world, leading to a cachable and

testable code base.

FUNCTIONS VS. METHODS IN JAVASCRIPT

We have talked about the word function a lot in this text. Before we move on,

we want to make sure you understand the difference between functions and

methods in JavaScript.

Simply put, a function is a piece of code that can be called by its name. It can

be used to pass arguments that it can operate on and return values optionally.

A method is a piece of code that must be called by its name that is associated

with an object.

Listing 1-3 and Listing 1-4 provide quick examples of a function and a

method.

Listing 1-3.  A Simple Function

var simple = (a) => {return a} // A simple function

simple(5) //called by its name

Listing 1-4.  A Simple Method

var obj = {simple : (a) => {return a} }

obj.simple(5) //called by its name along with its associated

object

There are two more important characteristics of functional

programming that are missing in the definition. We discuss them in detail

in the upcoming sections before we dive into the benefits of functional

programming.

Chapter 1 Functional Programming in Simple Terms

5

�Referential Transparency
With our definition of function, we have made a statement that all the

functions are going to return the same value for the same input. This

property of a function is called a referential transparency. A simple

example is shown in Listing 1-5.

Listing 1-5.  Referential Transparency Example

var identity = (i) => { return i }

In Listing 1-5, we have defined a simple function called identity.

This function is going to return whatever you’re passing as its input; that

is, if you’re passing 5, it’s going to return the value 5 (i.e., the function just

acts as a mirror or identity). Note that our function operates only on the

incoming argument i, and there is no global reference inside our function

(remember in Listing 1-2, we removed percentValue from global access

and made it an incoming argument). This function satisfies the conditions

of a referential transparency. Now imagine this function is used between

other function calls like this:

sum(4,5) + identity(1)

With our referential transparency definition, we can convert that

statement into this:

sum(4,5) + 1

Now this process is called a substitution model as you can directly

substitute the result of the function as is (mainly because the function

doesn’t depend on other global variables for its logic) with its value.

This leads to parallel code and caching. Imagine that with this model,

you can easily run the given function with multiple threads without even

the need to synchronize. Why? The reason for synchronizing comes from

the fact that threads shouldn’t act on global data when running parallel.

Chapter 1 Functional Programming in Simple Terms

6

Functions that obey referential transparency are going to depend only

on inputs from their argument; hence threads are free to run without any

locking mechanism.

Because the function is going to return the same value for the given

input, we can, in fact cache it. For example, imagine there is a function

called factorial, which calculates the factorial of the given number.

Factorial takes the input as its argument for which the factorial needs

to be calculated. We know the factorial of 5 is going to be 120. What if

the user calls the factorial of 5 a second time? If the factorial function

obeys referential transparency, we know that the result is going to be

120 as before (and it only depends on the input argument). With this

characteristic in mind, we can cache the values of our factorial function.

Thus if factorial is called for a second time with the input as 5, we can

return the cached value instead of calculating it once again.

Here you can see how a simple idea helps in parallel code and

cachable code. We will be writing a function in our library for caching the

function results later in the chapter.

REFERENTIAL TRANSPARENCY IS A PHILOSOPHY

Referential transparency is a term that came from analytic philosophy

(https://en.wikipedia.org/wiki/Analytical_philosophy). This

branch of philosophy deals with natural language semantics and its meanings.

Here the word referential or referent means the thing to which the expression

refers. A context in a sentence is referentially transparent if replacing a term in

that context with another term that refers to the same entity doesn’t alter the

meaning.

That’s exactly how we have been defining referential transparency here. We

have replaced the value of the function without affecting the context.

Chapter 1 Functional Programming in Simple Terms

https://en.wikipedia.org/wiki/Analytical_philosophy

7

�Imperative, Declarative, Abstraction
Functional programming is also about being declarative and writing

abstracted code. We need to understand these two terms before we

proceed further. We all know and have worked on an imperative paradigm.

We’ll take a problem and see how to solve it in an imperative and

declarative fashion.

Suppose you have a list or array and want to iterate through the array

and print it to the console. The code might look like Listing 1-6.

Listing 1-6.  Iterating over the Array Imperative Approach

var array = [1,2,3]

for(i=0;i<array.length;i++)

 console.log(array[i]) //prints 1, 2, 3

It works fine. In this approach to solve our problem, though, we are

telling exactly “how” we need to do it. For example, we have written

an implicit for loop with an index calculation of the array length and

printing the items. We will stop here. What was the task here? Print the

array elements, right? It looks like we are telling the compiler what to do,

however. In this case, we are telling the compiler, “Get array length, loop

our array, get each element of the array using the index, and so on.” We call

it an imperative solution. Imperative programming is all about telling the

compiler how to do things.

We will now switch to the other side of the coin, declarative

programming. In declarative programming, we are going to tell what the

compiler needs to do rather than how. The “how” parts are abstracted

into common functions (these functions are called higher order functions,

which we cover in the upcoming chapters). Now we can use the built-in

forEach function to iterate the array and print it, as shown in Listing 1-7.

Chapter 1 Functional Programming in Simple Terms

8

Listing 1-7.  Iterating over the Array Declarative Approach

var array = [1,2,3]

array.forEach((element) => console.log(element))

//prints 1, 2, 3

Listing 1-7 does print exactly the same output as Listing 1-5. Here,

though, we have removed the “how” parts like “Get array length, loop our

array, get each element of an array using an index, and so on.” We have

used an abstracted function, which takes care of the “how” part, leaving us,

the developers, to worry about our problem at hand (the “what” part). We

will be creating these built-in functions throughout the book.

Functional programming is about creating functions in an abstracted

way that can be reused by other parts of the code. Now we have a solid

understanding of what functional programming is; with this in mind, we

can explore the benefits of functional programming.

�Functional Programming Benefits
We have seen the definition of functional programming and a very simple

example of a function in JavaScript. We now have to answer a simple

question: What are the benefits of functional programming? This section

helps you see the huge benefits that functional programming offers us.

Most of the benefits of functional programming come from writing pure

functions. So before we see the benefits of functional programming, we

need to know what a pure function is.

�Pure Functions
With our definition in place, we can define what is meant by pure

functions. Pure functions are the functions that return the same output for

the given input. Take the example in Listing 1-8.

Chapter 1 Functional Programming in Simple Terms

9

Listing 1-8.  A Simple Pure Function

var double = (value) => value * 2;

This function double is a pure function because given an input, it is

always going to return the same output. You can try it yourself. Calling the

double function with input 5 always gives the result as 10. Pure functions

obey referential transparency. Thus we can replace double(5) with 10,

without any hesitations.

So what’s the big deal about pure functions? They provide many

benefits, which we discuss next.

�Pure Functions Lead to Testable Code
Functions that are not pure have side effects. Take our previous tax

calculation example from Listing 1-1:

var percentValue = 5;

var calculateTax = (value) => { return value/100 * (100 +

percentValue) } //depends on external environment percentValue

variable

The function calculateTax is not a pure function, mainly because for

calculating its logic it depends on the external environment. The function

works, but it is very difficult to test. Let’s see the reason for this.

Imagine we are planning to run a test for our calculateTax function

three times for three different tax calculations. We set up the environment

like this:

calculateTax(5) === 5.25

calculateTax(6) === 6.3

calculateTax(7) === 7.3500000000000005

Chapter 1 Functional Programming in Simple Terms

10

The entire test passed. However, because our original calculateTax

function depends on the external environment variable percentValue,

things can go wrong. Imagine the external environment is changing the

percentValue variable while you are running the same test cases:

calculateTax(5) === 5.25

// percentValue is changed by other function to 2

calculateTax(6) === 6.3 //will the test pass?

// percentValue is changed by other function to 0

calculateTax(7) === 7.3500000000000005 //will the test pass or

throw exception?

As you can see here, the function is very hard to test. We can easily fix

the issue, though, by removing the external environment dependency from

our function, leading the code to this:

var calculateTax = (value, percentValue) => { return value/100

* (100 + percentValue) }

Now you can test this function without any pain. Before we close

this section, we need to mention an important property about pure

functions: Pure functions also shouldn’t mutate any external environment

variables. In other words, the pure function shouldn’t depend on any

external variables (as shown in the example) and also change any external

variables. We’ll now take a quick look what we mean by changing any

external variables. For example, consider the code in Listing 1-9.

Listing 1-9.  badFunction Example

var global = "globalValue"

var badFunction = (value) => { global = "changed";

return value * 2 }

Chapter 1 Functional Programming in Simple Terms

11

When the badFunction function is called it changes the global variable

global to the value changed. Is it something to worry about? Yes. Imagine

another function that depends on the global variable for its business logic.

Thus, calling badFunction affects other functions’ behavior. Functions of

this nature (i.e., functions that have side effects) make the code base hard

to test. Apart from testing, these side effects will make the system behavior

very hard to predict in the case of debugging.

So we have seen with a simple example how a pure function can help

us in easily testing the code. Now we’ll look at other benefits we get out of

pure functions: reasonable code.

�Reasonable Code
As developers we should be good at reasoning about the code or a

function. By creating and using pure functions we can achieve that very

simply. To make this point clearer, we are going to use a simple example of

function double (from Listing 1-8):

var double = (value) => value * 2

Looking at this function name, we can easily reason that this function

doubles the given number and nothing else. In fact, using our referential

transparency concept, we can easily go ahead and replace the double

function call with the corresponding result. Developers spend most of their

time reading others’ code. Having a function with side effects in your code

base makes it hard for other developers in your team to read. Code bases

with pure functions are easy to read, understand, and test. Remember that

a function (regardless of whether it is a pure function) must always have a

meaningful name. For example, you can’t name the function double as dd

given what it does.

Chapter 1 Functional Programming in Simple Terms

12

SMALL MIND GAME

We are just replacing the function with a value, as if we know the result

without seeing its implementation. That’s a great improvement in your thinking

process about functions. We are substituting the function value as if that’s the

result it will return.

To give your mind a quick exercise, see this reasoning ability with our in-built

Math.max function.

Given the function call:

Math.max(3,4,5,6)

What will be the result?

Did you see the implementation of max to give the result? No, right? Why?

The answer to that question is Math.max is a pure function. Now have a cup

of coffee; you have done a great job!

�Parallel Code
Pure functions allow us to run the code in parallel. As a pure function is

not going to change any of its environments, this means we do not need

to worry about synchronizing at all. Of course JavaScript doesn’t have

real threads to run the functions in parallel, but what if your project uses

WebWorkers for running multiple things in parallel? Or a server-side code

in a node environment that runs the function in parallel?

For example, imagine we have the code given in Listing 1-10.

Chapter 1 Functional Programming in Simple Terms

13

Listing 1-10.  Impure Functions

let global = "something"

let function1 = (input) => {

 // works on input

 //changes global

 global = "somethingElse"

}

let function2 = () => {

 if(global === "something")

 {

 //business logic

 }

}

What if we need to run both function1 and function2 in parallel?

Imagine thread one (T-1) picks function1 to run and thread two (T-2)

picks function2 to run. Now both threads are ready to run and here comes

the problem. What if T-1 runs before T-2? Because both function1 and

function2 depend on the global variable global, running these functions

in parallel causes undesirable effects. Now change these functions into a

pure function as explained in Listing 1-11.

Listing 1-11.  Pure Functions

let function1 = (input,global) => {

 // works on input

 //changes global

 global = "somethingElse"

}

Chapter 1 Functional Programming in Simple Terms

14

let function2 = (global) => {

 if(global === "something")

 {

 //business logic

 }

}

Here we have moved the global variable as arguments for both the

functions, making them pure. Now we can run both functions in parallel

without any issues. Because the functions don’t depend on an external

environment (global variable), we aren’t worried about thread execution

order as with Listing 1-10.

This section shows us how pure functions help our code to run in

parallel without any problems.

�Cachable
Because the pure function is going to always return the same output

for the given input, we can cache the function outputs. To make this

more concrete, we provide a simple example. Imagine we have a

function that does time-consuming calculations. We name this function

longRunningFunction:

var longRunningFunction = (ip) => { //do long running tasks and

return }

If the longRunningFunction function is a pure function, then we know

that for the given input, it is going to return the same output. With that

point in mind, why do we need to call the function again with its input

multiple times? Can’t we just replace the function call with the function’s

previous result? (Again note here how we are using the referential

transparency concept, thus replacing the function with the previous result

Chapter 1 Functional Programming in Simple Terms

15

value and leaving the context unchanged.) Imagine we have a bookkeeping

object that keeps all the function call results of longRunningFunction

like this:

var longRunningFnBookKeeper = { 2 : 3, 4 : 5 . . . }

The longRunningFnBookKeeper is a simple JavaScript object, which

is going to hold all the input (as keys) and outputs (as values) in it as

a result of invoking longRunningFunction functions. Now with our

pure function definition in place, we can check if the key is present in

longRunningFnBookKeeper before invoking our original function, as shown

in Listing 1-12.

Listing 1-12.  Caching Achieved via Pure Functions

var longRunningFnBookKeeper = { 2 : 3, 4 : 5 }

//check if the key present in longRunningFnBookKeeper

//if get back the result else update the bookkeeping object

longRunningFnBookKeeper.hasOwnProperty(ip) ?

 longRunningFnBookKeeper[ip] :

 longRunningFnBookKeeper[ip] = longRunningFunction(ip)

The code in Listing 1-12 is relatively straightforward. Before calling

our real function, we are checking if the result of that function with the

corresponding ip is in the bookkeeping object. If yes, we are returning

it, or else we are calling our original function and updating the result in

our bookkeeping object as well. Did you see how easily we have made

the function calls cachable by using less code? That’s the power of pure

functions.

We will be writing a functional lib, which does the caching, or technical

memorization, of our pure function calls later in the book.

Chapter 1 Functional Programming in Simple Terms

16

�Pipelines and Composable
With pure functions, we are going to do only one thing in that function. We

have seen already how the pure function is going to act as a self-understanding

of what that function does by seeing its name. Pure functions should be

designed in such a way that they should do only one thing. Doing only one

thing and doing it perfectly is a UNIX philosophy; we will be following the

same while implementing our pure functions. There are many commands

in UNIX and LINUX platforms that we are using for day-to-day tasks. For

example, we use cat to print the contents of the file, grep to search the files,

wc to count the lines, and so on. These commands do solve one problem at

a time, but we can compose or pipeline to do the complex tasks. Imagine we

want to find a specific name in a text file and count its occurrences. How will

we be doing that in our command prompt? The command looks like this:

cat jsBook | grep –i "composing" | wc

This command does solve our problem via composing many functions.

Composing is not only unique to UNIX/LINUX command lines; it is the

heart of the functional programming paradigm. We call this functional

composition in our world. Imagine these same command lines have been

implemented in JavaScript functions. We can use them with the same

principles to solve our problem.

Now think about another problem in a different way. You want to count

the number of lines in text. How will you solve it? Ahaa! You got the answer.

The commands are in fact a pure function with respect to our definition.

It takes an argument and returns the output to the caller without affecting

any of the external environments.

Chapter 1 Functional Programming in Simple Terms

17

That’s a lot of benefits we are getting by following a simple definition.

Before we close this chapter, we want to show the relationship between a

pure function and a mathematical function. We tackle that next.

�A Pure Function Is a Mathematical Function
Earlier we saw this code snippet in Listing 1-12:

var longRunningFunction = (ip) => { //do long running tasks and

return }

var longRunningFnBookKeeper = { 2 : 3, 4 : 5 }

//check if the key present in longRunningFnBookKeeper

//if get back the result else update the bookkeeping object

longRunningFnBookKeeper.hasOwnProperty(ip) ?

 longRunningFnBookKeeper[ip] :

 longRunningFnBookKeeper[ip] = longRunningFunction(ip)

The primary aim was to cache the function calls. We did so using the

bookkeeping object. Imagine we have called the longRunningFunction

many times so that our longRunningFnBookKeeper grows into the object,

which looks like this:

longRunningFnBookKeeper = {

 1 : 32,

 2 : 4,

 3 : 5,

 5 : 6,

 8 : 9,

 9 : 10,

 10 : 23,

 11 : 44

}

Chapter 1 Functional Programming in Simple Terms

18

Now imagine that longRunningFunction input ranges only from 1 to 11

integers, for example. Because we have already built the bookkeeping object

for this particular range, we can refer only the longRunningFnBookKeeper to

say the output longRunningFunction for the given input.

Let’s analyze this bookkeeping object. This object gives us the clear

picture that our function longRunningFunction takes an input and

maps over the output for the given range (in this case it’s 1–11). The

important point to note here is that the inputs (in this case, the keys) have,

mandatorily, a corresponding output (in this case, the result) in the object.

In addition, there is no input in the key section that maps to two outputs.

With this analysis we can revisit the mathematical function definition,

this time providing a more concrete definition from Wikipedia (https://

en.wikipedia.org/wiki/Function_(mathematics):

In mathematics, a function is a relation between a set of inputs
and a set of permissible outputs with the property that each
input is related to exactly one output. The input to a function
is called the argument and the output is called the value. The
set of all permitted inputs to a given function is called the
domain of the function, while the set of permissible outputs is
called the codomain.

This definition is exactly the same as our pure functions. Have a look

at our longRunningFnBookKeeper object. Can you find the domain and

codomain of our function? With this very simple example you can easily

see how the mathematical function idea is borrowed in the functional

paradigm world (as stated in the beginning of the chapter).

�What We Are Going to Build
We have talked a lot about functions and functional programming in

this chapter. With this fundamental knowledge we are going to build the

functional library called ES8-Functional. This library will be built chapter

Chapter 1 Functional Programming in Simple Terms

https://en.wikipedia.org/wiki/Function_(mathematics)
https://en.wikipedia.org/wiki/Function_(mathematics)

19

by chapter throughout the text. By building the functional library you will

be exploring how JavaScript functions can be used (in a functional way) and

also how functional programming can be applied in day-to-day activities

(using our created function to solve the problem in our code base).

�Is JavaScript a Functional Programming
Language?
Before we close this chapter, we have to take a step back and answer a

fundamental question: Is JavaScript a functional programming language?

The answer is yes and no. We said in the beginning of the chapter that

functional programming is all about functions, which have to take at

least an argument and return a value. To be frank, though, we can create

a function in JavaScript that can take no argument and in fact return

nothing. For example, the following code is a valid code in the JavaScript

engine:

var useless = () => {}

This code will execute without any error in the JavaScript world. The

reason is that JavaScript is not a pure functional language (like Haskell)

but rather a multiparadigm language. However, the language is very much

suitable for the functional programming paradigm as discussed in this

chapter. The techniques and the benefits that we have discussed up to now

can be applied in pure JavaScript. This is the reason for this book’s title.

JavaScript is a language that has support for functions as arguments,

passing functions to other functions, and so on, mainly because JavaScript

treats functions as its first-class citizens (we talk more about this in

upcoming chapters). Because of the constraints according to the definition

of the term function, we as developers need to take them into account

while creating them in the JavaScript world. By doing so, we will gain many

advantages from the functional paradigm as discussed in this chapter.

Chapter 1 Functional Programming in Simple Terms

20

�Summary
In this chapter we have seen what functions are in math and in the

programming world. We started with a simple definition of function in

mathematics and reviewed small, solid examples of functions and the

functional programming paradigm in JavaScript. We also defined what

pure functions are and discussed, in detail, their benefits. At the end of

the chapter we also showed the relationship between pure functions

and mathematical functions. We also discussed how JavaScript could be

treated as a functional programming language. A lot of progress has been

made in this chapter.

In the next chapter, we will be reading about creating and executing

functions in the ES8 context. Now with ES8 we have several ways to create

functions; that’s exactly what we will be reading about in the next chapter.

Chapter 1 Functional Programming in Simple Terms

21© Anto Aravinth, Srikanth Machiraju 2018
A. Aravinth and S. Machiraju, Beginning Functional JavaScript,
https://doi.org/10.1007/978-1-4842-4087-8_2

CHAPTER 2

Fundamentals of
JavaScript Functions
In the previous chapter we saw what functional programming is all about.

We saw how functions in the software world are nothing but mathematical

functions. We spent a lot of time discussing how pure functions can bring

us huge advantages such as parallel code execution, being cachable, and

more. We are now convinced that functional programming is all about

functions.

In this chapter we are going to see how functions in JavaScript can

be used. We will be looking at the latest JavaScript version, ES7/8. This

chapter is a refresher on how to create functions, call them, and pass

arguments as defined in ES6 and later versions. That’s not the goal of this

book, though. We strongly recommend that you try all the code snippets

in the book to get a gist of how to use functions (more precisely we will be

working on arrow functions).

Once we have a solid understanding of how to use functions, we will

be turning our focus to seeing how to run the ES8 code in our system. As of

today, browsers don’t support all features of ES8. To tackle that, we will be

using a tool called Babel. At the end of the chapter we will be starting our

groundwork for creating a functional library. For this purpose, we will be

using a node project that will be set up using the Babel-Node tool to run

our code in your system.

22

Note  The chapter examples and library source code are in branch
chap02. The repo’s URL is https://github.com/antsmartian/
functional-es8.git

Once you check out the code, please check out branch chap02:

...
git checkout -b chap02 origin/chap02
...

For running the codes, as before run:

...
npm run playground
...

�ECMAScript: A Bit of History
ECMAScript is a specification of JavaScript, which is maintained by ECMA

International in ECMA-262 and ISO/IEC 16262. Here are the versions of

ECMAScript:

	 1.	 ECMAScript 1 was the very first version of the

JavaScript language, released in 1997.

	 2.	 ECMAScript 2 is the second version of the JavaScript

language, which contains very minor changes with

respect to the previous version. This version was

released in 1998.

	 3.	 ECMAScript 3 introduced several features and was

released in 1999.

Chapter 2 Fundamentals of JavaScript Functions

https://github.com/antsmartian/functional-es8.git
https://github.com/antsmartian/functional-es8.git

23

	 4.	 ECMAScript 5 is supported by almost all browsers

today. This is the version that introduced strict

mode into the language. It was released in 2009.

ECMAScript 5.1 was released with minor corrections

in June 2011.

	 5.	 ECMAScript 6 introduced many changes, including

classes, symbols, arrow functions, generators, and

so on.

	 6.	 ECMAScript 7 and 8 have new concepts like async

await, SharedArrayBuffer, trailing commas, Object.

entries, and so on.

We refer to ECMAScript as ES7 in this book, so these terms are

interchangeable.

�Creating and Executing Functions
In this section we are going to see how to create and execute functions in

several ways in JavaScript. This section is going to be long and interesting

as well. Because many browsers do not yet support ES6 or higher versions,

we want to find a way to run our code smoothly. Meet Babel, a transpiler

that can convert the latest code into valid ES5 code (note that in our

history section, we mentioned ES5 code can be run in all browsers today).

Converting the code into ES5 gives developers a way of seeing and using

the features of the latest version of ECMAScript without any problem. Using

Babel, we can run all the code samples that are presented in this book.

After you have installed Babel, we can get our hands dirty by seeing our

first simple function.

Chapter 2 Fundamentals of JavaScript Functions

24

�First Function
We define our first simple function here. The simplest function one can

write in ES6 or higher versions is given in Listing 2-1.

Listing 2-1.  A Simple Function

() => "Simple Function"

If you try to run this function in babel-repl, you will see this result:

[Function]

Note I t’s not necessary to run the code samples in the Babel world.
If you’re using the latest browser and you’re sure that it supports the
latest version of ECMAScript, then you can use your browser console
to run the code snippets. After all it’s a matter of choice. If you’re
running the code, say in Chrome, for example, Listing 2-1 should give
you this result:

function () => "Simple Function"

The point to note here is the results might differ in showing the
function representation based on where you’re running the code
snippets.

That’s it: We have a function. Take a moment to analyze this function.

Let’s split them:

() => "Simple Function"

//where () represents function arguments

//=> starts the function body/definition

//content after => are the function body/definition.

Chapter 2 Fundamentals of JavaScript Functions

25

We can skip the function keyword to define functions. You can see we

have used the => operator to define the function body. Functions created

this way are called arrow functions. We use arrow functions throughout the

book.

Now that the function is defined, we can execute it to see the result. Oh

wait, the function we have created doesn’t have a name. How do we call it?

Note  Functions that don’t have names are called anonymous
functions. We will understand the usage of anonymous functions in
the functional programming paradigm, when seeing higher order
functions in Chapter 3.

Let’s assign a name for it as shown in Listing 2-2.

Listing 2-2.  A Simple Function with a Name

var simpleFn = () => "Simple Function"

Because we now have access to the function simpleFn we can use this

reference to execute the function:

simpleFn()

//returns "Simple Function" in the console

Now we have created a function and also executed it. We can see how

the same function looks alike in ES5. We can use babel to convert our code

into ES5, using the following command:

babel simpleFn.js --presets babel-preset-es2015 --out-file

script-compiled.js

Chapter 2 Fundamentals of JavaScript Functions

26

This will generate the file called script-compiled.js in your current

directory. Now open the generated file in your favorite editor:

"use strict";

var simpleFn = function simpleFn() {

 return "Simple Function";

};

That’s our equivalent code in ES5. You can sense how it is much easier

and more concise to write functions in the latest versions. There are two

important points to note in the converted code snippets. We discuss them

one after the other.

�Strict Mode
In this section we discuss strict mode in JavaScript. We’ll see its benefits

and why one should prefer strict mode.

You can see that the converted code runs in strict mode, as shown

here:

"use strict";

var simpleFn = function simpleFn() {

 return "Simple Function";

};

Strict mode has nothing to do with the latest versions, but discussing

it here is appropriate. As we have already discussed, strict mode was

introduced to JavaScript language with ES5.

Simply put, strict mode is a restricted variant of JavaScript. The same

JavaScript code that is running in strict mode can be semantically different

from the code, which is not using strict mode. All the code snippets that

don’t use strict in their JavaScript files are going to be in nonstrict mode.

Chapter 2 Fundamentals of JavaScript Functions

27

Why should we use strict mode? What are the advantages? There are

many advantages of using strict mode style in the world of JavaScript.

One simple advantage occurs if you are defining a variable in global state

(i.e., without specifying var command) like this:

"use strict";

globalVar = "evil"

In strict mode it’s going to be an error! That’s a good catch for our

developers, because global variables are very evil in JavaScript. However,

if the same code were run in nonstrict mode, then it wouldn’t have

complained about the error.

Now as you can guess, the same code in JavaScript can produce

different results whether you’re running in strict or nonstrict mode.

Because strict mode is going to be very helpful for us, we will leave Babel to

use strict mode while transpiling our ES8 codes.

Note  We can place use stricts in the beginning of a JavaScript
file, in which case it’s going to apply its check for the full functions
defined in the particular file. Otherwise, you can use strict mode only
for specific functions. In that case, strict mode will be applied only to
that particular function, leaving other function behaviors in nonstrict
mode. For more information on this, see https://developer.
mozilla.org/en-US/docs/Web/JavaScript/Reference/
Strict_mode.

Chapter 2 Fundamentals of JavaScript Functions

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Strict_mode
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Strict_mode
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Strict_mode

28

�Return Statement Is Optional
In the ES5 converted code snippet, we saw that Babel adds the return

statement in our simpleFn.

"use strict";

var simpleFn = function simpleFn() {

 return "Simple Function";

};

In our real code, though, we didn’t specify any return statement:

var simpleFn = () => "Simple Function"

Thus here, if you have a function with only a single statement then it

implicitly means that it returns the value. What about multiple statement

functions? How we are going to create them?

�Multiple Statement Functions
Now we are going to see how to write multiple statement functions. Let’s

make our simpleFn a bit more complicated, as shown in Listing 2-3.

Listing 2-3.  Multistatement Function

var simpleFn = () => {

 let value = "Simple Function"

 return value;

} //for multiple statement wrap with { }

Run this function, and you will get the same result as before. Here,

though, we have used multiple arguments to achieve the same behavior.

Apart from that, notice that we have used the let keyword to define our

value variable. The let keyword is new to the JavaScript keyword family.

Chapter 2 Fundamentals of JavaScript Functions

29

It allows you to declare variables that are limited to a particular scope of

block, unlike the var keyword, which defines the variable globally to a

function regardless of the block in which it is defined.

To make the point concrete, we can write the same function with var

and the let keyword, inside an if block as shown in Listing 2-4.

Listing 2-4.    SimpleFn with var and let Keywords

var simpleFn = () => { //function scope

 if(true) {

 let a = 1;

 var b = 2;

 console.log(a)

 console.log(b)

 } //if block scope

 console.log(b) //function scope

 console.log(a) //function scope

}

Running this function gives the following output:

1

2

2

Uncaught ReferenceError: a is not defined(...)

As you can see from the output, the variable declared via the let

keyword is accessible only within the if block, not outside the block.

JavaScript throws the error when we access a variable outside the block,

whereas the variable declared with var doesn’t act that way. Rather, it

declares the variable scope for the whole function. That’s the reason

variable b can be accessed outside the if block.

Chapter 2 Fundamentals of JavaScript Functions

30

Because block scope is very much needed going forward, we will be

using the let keyword for defining variables throughout the book. Now

let’s see how to create a function with arguments as the final section.

�Function Arguments
Creating functions with arguments is the same as in ES5. Look at a quick

example as follows (Listing 2-5).

Listing 2-5.  Function with Argument

let identity = (value) => value

Here we create a function called identity, which takes value as its

argument and returns the same. As you can see, creating functions with

arguments is the same as in ES5; only the syntax of creating the function is

changed.

�ES5 Functions Are Valid in ES6 and Above
Before we close this section, we need to make an important point clear.

The functions that were written in ES5 are still valid in the latest version(s).

It’s just a small matter that newer versions have introduced arrow

functions, but that doesn’t replace the old function syntax or anything

else. However, we will be using arrow functions throughout this book to

showcase the functional programming approach.

�Setting Up Our Project
Now that we understand how to create arrow functions, we shift our focus

to project setup in this section. We are going to set up our project as a node

project and at the end of the section, we will be writing our first functional

function.

Chapter 2 Fundamentals of JavaScript Functions

31

�Initial Setup
In this section, we follow a simple step-by-step guide to set up our

environment. The steps are as follows.

	 1.	 The first step is to create a directory where our

source code is going to be. Create a directory and

name it whatever you want.

	 2.	 Go into that particular directory and run the

following command from your terminal:

npm init

	 3.	 After running Step 2, you will be asked a set of

questions; you can provide the value you want.

Once it’s done, it will create a file called package.

json in your current directory.

The project package.json that we have created looks like Listing 2-6.

Listing 2-6.  Package.json Contents

{

 "name": "learning-functional",

 "version": "1.0.0",

 "description": "Functional lib and examples in ES8",

 "main": "index.js",

 "scripts": {

 "test": "echo \"Error: no test specified\" && exit 1"

 },

 "author": "Anto Aravinth @antoaravinth",

 "license": "ISC"

}

Chapter 2 Fundamentals of JavaScript Functions

32

Now we need to add a few libraries, which will allow us to write ES8 code

and execute them. Run the following command in the current directory:

npm install --save-dev babel-preset-es2017-node7

Note  The book uses Babel version “babel-preset-es2017-node7.”
This specific version might be outdated by the time you read this text.
You are free to install the latest version, and everything should work
smoothly. However, in the context of the book, we will be using the
specified version.

This command downloads the babel package called ES2017; the main

aim of this package is to allow the latest ECMAScript code to run on the

Node Js platform. The reason is that Node Js, at the time of writing this

book, is not fully compatible with the latest features.

Once this command is run, you will be able to see a folder called

node_modules created in the directory, which has the babel-preset-es2017

folder.

Because we have used --save-dev while installing, npm does add the

corresponding babel dependencies to our package.json. Now if you open

your package.json, it looks like Listing 2-7.

Listing 2-7.  After Adding devDependencies

{

 "name": "learning-functional",

 "version": "1.0.0",

 "description": "Functional lib and examples",

 "main": "index.js",

 "scripts": {

 "test": "echo \"Error: no test specified\" && exit 1"

 },

Chapter 2 Fundamentals of JavaScript Functions

33

 "author": "Anto Aravinth @antoaravinth>",

 "license": "ISC",

 "devDependencies": {

 "babel-preset-es2017-node7": "^0.5.2",

 "babel-cli": "^6.23.0"

 }

}

Now that this is in place, we can go ahead and create two directories

called lib and functional-playground. So now your directory looks

like this:

learning-functional

 - functional-playground

 - lib

 - node_modules

 - babel-preset-es2017-node7/*

 - package.json

Now we are going to put all our functional library code into lib and

use functional-playground to explore and understand our functional

techniques.

�Our First Functional Approach to the Loop
Problem
Imagine we have to iterate through the array and print the data to the

console. How do we achieve this in JavaScript?

Chapter 2 Fundamentals of JavaScript Functions

34

Listing 2-8.  Looping an Array

var array = [1,2,3]

for(i=0;i<array.length;i++)

 console.log(array[i])

As we have already discussed in Chapter 1, abstracting the operations

into functions is one of the pillars of functional programming. Let’s

abstract this operation into function, so that we can reuse it any time we

need to rather than repeating ourselves in telling it how to iterate the loop.

Create a file called es8-functional.js in the lib directory. Our

directory structure looks like this:

learning-functional

 - functional-playground

 - lib

 - es8-functional.js

 - node_modules

 - babel-preset-es2017-node7/*

 - package.json

Now with that file in place, go ahead and place the content of

Listing 2-9 into that file.

Listing 2-9.  forEach Function

const forEach = (array,fn) => {

 let i;

 for(i=0;i<array.length;i++)

 fn(array[i])

}

Chapter 2 Fundamentals of JavaScript Functions

35

Note  For now don’t worry about how this function works. We are
going to see how higher order functions work in JavaScript in the
next chapter and provide loads of examples.

You might notice that we have started with a keyword const for our

function definition. This keyword is part of the latest version, which makes

the declaration constant. For example, if someone tries to reassign the

variable with the same name like this:

forEach = "" //making your function as string!

The preceding code will throw an error like this:

TypeError: Assignment to constant variable.

This will prevent it from being accidentally reassigned. Now we’ll go

and use the created function to print all the data of the array to the console.

To do that, create a file called play.js function in the functional-

playground directory. So now the current file looks like this:

learning-functional

 - functional-playground

 - play.js

 - lib

 - es8-functional.js

 - node_modules

 - babel-preset-es2017-node7/*

 - package.json

We will call the forEach in our play.js file. How are we are going to

call this function, which resides in a different file?

Chapter 2 Fundamentals of JavaScript Functions

36

�Gist on Exports
ES6 also introduced the concept called modules. ES6 modules are stored

in files. In our case we can think of the es8-functional.js file itself as

a module. Along with the concept of modules came import and export

statements. In our running example, we have to export the forEach function

so that others can use it. We can add the code shown in Listing 2-10 to our

es8-functional.js file.

Listing 2-10.  Exporting forEach Function

const forEach = (array,fn) => {

 let i;

 for(i=0;i<array.length;i++)

 fn(array[i])

}

export default forEach

�Gist on Imports
Now that we have exported our function as you can see in Listing 2-10,

let’s go and consume it via import. Open the file play.js and add the code

shown in Listing 2-11.

Listing 2-11.  Importing forEach Function

import forEach from '../lib/es8-functional.js'

This line tells JavaScript to import the function called forEach from

es8-functional.js. Now the function is available to the whole file with the

name forEach. Now add the code into play.js as shown in Listing 2-12.

Chapter 2 Fundamentals of JavaScript Functions

37

Listing 2-12.  Using the Imported forEach Function

import forEach from '../lib/es8-functional.js'

var array = [1,2,3]

forEach(array,(data) => console.log(data)) //refereing to

imported forEach

�Running the Code Using Babel-Node
Let’s run our play.js file. Because we are using the latest version in our

file, we have to use Babel-Node to run our code. Babel-Node is used to

transpile our code and run it on Node js. Babel-Node should be installed

along with babel-cli.

So, from our project root directory, we can call the babel-node like this:

babel-node functional-playground/play.js --presets es2017

This command tells us that our play.js file should be transpiled with

es2017 and run into node js. This should give the output as follows:

1

2

3

Hurray! Now we have abstracted out for logic into a function. Imagine

you want to iterate and print the array contents with multiples of 2. How

will we do it? Simply reuse our forEach, which will print the output as

expected:

forEach(array,(data) => console.log(2 * data))

Chapter 2 Fundamentals of JavaScript Functions

38

Note  We will be using this pattern throughout the book. We discuss
the problem with an imperative approach and then go ahead and
implement our functional techniques and capture them in a function
into es8-functional.js. We then use that to play around in the
play.js file!

�Creating Script in Npm
We have seen how to run our play.js file, but it’s a lot to type. Each time

we need to run the following:

babel-node functional-playground/play.js --presets es2015-node5

Rather than entering this, we can bind the command shown in

Listing 2-13 to our npm script. We will change the package.json

accordingly:

Listing 2-13.  Adding npm Scripts to package.json

{

 "name": "learning-functional",

 "version": "1.0.0",

 "description": "Functional lib and examples",

 "main": "index.js",

 "scripts": {

 �"playground" : "babel-node functional-playground/play.js

--presets es2017-node7"

 },

 "author": "Anto Aravinth @antoaravinth",

 "license": "ISC",

Chapter 2 Fundamentals of JavaScript Functions

39

 "devDependencies": {

 "babel-preset-es2017-node7": "^0.5.2"

 }

}

Now we have added the babel-node command to scripts, so we can

run our playground file (node functional-playground/play.js) as

follows:

npm run playground

This will run the same as before.

�Running the Source Code from Git
Whatever we are discussing in the chapter will go into a git repository

(https://github.com/antoaravinth/functional-es8). You can clone

them into your system using git like this:

git clone https://github.com/antsmartian/functional-es8.git

Once you clone the repo, you can move into a specific chapter source

code branch. Each chapter has its own branch in the repo. For example, to

see the code samples used in Chapter 2, you need to enter this:

git checkout -b chap02 origin/chap02

Once you check out the branch, you can run the playground file as

before.

Chapter 2 Fundamentals of JavaScript Functions

https://github.com/antoaravinth/functional-es8

40

�Summary
In this chapter, we have spent a lot of time learning how to use functions.

We have taken advantage of Babel tools for running our code seamlessly

in our Node platform. We also created our project as a node project. In our

node project, we saw how to use Babel-node to convert the code and run

them in a node environment using presets. We also saw how to download

the book source code and run it. With all these techniques under our belt,

in the next chapter we will be focusing on what higher order functions

mean. We will explain the Async/Await features of ES7 in later chapters.

Chapter 2 Fundamentals of JavaScript Functions

41© Anto Aravinth, Srikanth Machiraju 2018
A. Aravinth and S. Machiraju, Beginning Functional JavaScript,
https://doi.org/10.1007/978-1-4842-4087-8_3

CHAPTER 3

Higher Order
Functions
In the previous chapter we saw how to create simple functions in ES8.

We also set up our environment to play around with functional programs

using a node ecosystem. In fact, we created our first functional program

application programming interface (API) called forEach in the previous

chapter. There is something special about the forEach function that we

developed in Chapter 2. We passed a function itself as an argument to our

forEach function. There is no trick involved there; it’s part of the JavaScript

specification that a function can be passed as an argument. JavaScript as

a language treats functions as data. This is a very powerful concept that

allows us to pass functions in place of data. A function that takes another

function as its argument is called a higher order function.

We are going to see higher order functions (HOC for short) in this

chapter in depth. We start the chapter with a simple example and

definition of HOC. Later we provide more real-world examples of how

HOC can help a programmer to solve complex problems easily. As before,

we will be adding the HOC functions that we are creating in the chapter to

our library. Let’s get started!

We will be creating a few higher order functions and adding them

to our library. We are doing this to show how things work behind the

scenes. The library is good for learning current resources, but they are not

production ready for the library, so keep that in mind.

42

Note  The chapter examples and library source code are in branch
chap03. The repo’s URL is: https://github.com/antsmartian/
functional-es8.git

Once you check out the code, please check out branch chap03:

...
git checkout -b chap03 origin/chap03
...

For running the codes, as before run:

...
npm run playground
...

�Understanding Data
As programmers, we know our programs act on data. Data is something

that is very important for the consumption of our written program to

execute. Hence almost all programming languages give several data for

the programmer to work with. For example, we can store the name of a

person in the String data type. JavaScript offers several data types that we

cover in the next subsection. At the end of the section, we introduce a solid

definition of higher order functions, with simple and concise examples.

�Understanding JavaScript Data Types
Every programming language has data types. These data types can hold

data and allow our program to act on it. In this brief section, we introduce

JavaScript data types.

Chapter 3 Higher Order Functions

https://github.com/antsmartian/functional-es8.git
https://github.com/antsmartian/functional-es8.git

43

In a nutshell, JavaScript as a language supports the following data

types:

•	 Numbers

•	 Strings

•	 Booleans

•	 Objects

•	 null

•	 undefined

Importantly, we also have our friend functions as a data type in

JavaScript language. Because functions are data types like String, we

can pass them around, store them in a variable, and so on. Functions are

first-class citizens when the language permits them to be used as any other

data type; that is, functions can be assigned to variables, passed around

as arguments, and returned from other functions similarly as we do for

String and Numbers data. In the next section we provide a quick example

of what we mean by storing and passing functions around.

�Storing a Function
As previously mentioned, functions are nothing but data. Because they

are data, we can hold them in a variable! The code in Listing 3-1 is valid

code in a JavaScript context.

Listing 3-1.  Storing a Function in Variable

let fn = () => {}

Chapter 3 Higher Order Functions

44

In this code snippet, fn is nothing but a variable that is pointing to a

data type function. We can quickly check that fn is of type function by

running the following code:

typeof fn

=> "function"

Because fn is just a reference to our function, we can call it like this:

fn()

This will execute the function that fn points to.

�Passing a Function
As day-to-day JavaScript programmers, we know how to pass data to a

function. Consider the following function (Listing 3-2), which takes an

argument and logs to console the type of the argument:

Listing 3-2.  tellType Function

let tellType = (arg) => {

 console.log(typeof arg)

}

One can pass the argument to the tellType function to see it in action:

let data = 1

tellType(data)

=> number

There is nothing fancy here. As seen in the previous section, we can

store even functions in our variable (as functions in JavaScript are data).

So how about passing a variable that has reference to a function? Let’s

quickly check it:

Chapter 3 Higher Order Functions

45

let dataFn = () => {

 console.log("I'm a function")

}

tellType(dataFn)

=> function

That’s great! Now we will make our tellType execute the passed

argument as shown in Listing 3-3 if it is of type function:

Listing 3-3.  tellType Executes arg if It Is a Function

var tellType = (arg) => {

 if(typeof arg === "function")

 arg()

 else

 console.log("The passed data is " + arg)

}

Here we are checking whether the passed arg is of type function; if

so, call it. Remember if a variable is of type function, it means it has a

reference to a function that can be executed. That is the reason we are

calling arg() if it enters an if statement in the code in Listing 3-3.

Let’s execute our tellType function by passing our dataFn variable to it:

tellType(dataFn)

=> I'm a function

We have successfully passed a function dataFn to another function

tellType, which has executed the passed function. It is that simple.

�Returning a Function
We have seen how to pass a function to another function. Because

functions are simple data in JavaScript, we can return them from other

functions, too (like other data types).

Chapter 3 Higher Order Functions

46

We’ll take a simple example of a function that returns another function

as shown in Listing 3-4.

Listing 3-4.  Crazy Function Return String

let crazy = () => { return String }

Note  JavaScript has a built-in function called String. We can use
this function to create new string values in JavaScript like this:

String("HOC")
=> HOC

Note that our crazy function returns a function reference that is

pointing to String function. Let’s call our crazy function:

crazy()

=> String() { [native code] }

As you can see, calling the crazy function returns a String function.

Note that it just returns the function reference and does not execute the

function. We can hold back the returned function reference and call them

like this:

let fn = crazy()

fn("HOC")

=> HOC

or even better like this:

crazy()("HOC")

=> HOC

Chapter 3 Higher Order Functions

47

Note  We use simple documentation on top of all functions that are
going to return another function. It will be really helpful going forward
as it makes reading the source code easy. For example, the crazy
function will be documented like this:

//Fn => String

let crazy = () => { return String }

The Fn => String comment helps the reader understand that
crazy function, which executes and returns another function that
points to String.

We use these sorts of readable comments in this book.

In these sections we have seen functions that take other functions

as their argument and have also seen examples of functions that do not

return another function. Now it’s time to bring you to the definition of a

higher order function: a function that receives the function as its argument,

returns it as output, or both.

�Abstraction and Higher Order Functions
We have seen how to create and execute higher order functions. Generally

speaking, higher order functions are usually written to abstract common

problems. In other words, higher order functions are nothing but defining

abstractions.

In this section we discuss the relationship that higher order functions

have with the term abstraction.

Chapter 3 Higher Order Functions

48

�Abstraction Definitions
Wikipedia helps us by providing this definition of abstraction:

In software engineering and computer science,

abstraction is a technique for managing complexity

of computer systems. It works by establishing a level

of complexity on which a person interacts with the

system, suppressing the more complex details below

the current level. The programmer works with an

idealized interface (usually well defined) and can

add additional levels of functionality that would

otherwise be too complex to handle.

It also includes the following text, which is what we are interested in:

For example, a programmer writing code that

involves numerical operations may not be interested

in the way numbers are represented in the

underlying hardware (e.g., whether they’re 16 bit or

32 bit integers), and where those details have been

suppressed it can be said that they were abstracted

away, leaving simply numbers with which the

programmer can work.

This text clearly gives the idea of abstraction. Abstraction allows us to

work on the desired goal without worrying about the underlying system

concepts.

�Abstraction via Higher Order Functions
In this section we will see how higher order functions help us to achieve

the abstraction concept we discussed in the previous section. Here is the

code snippet of our forEach function defined in Chapter 2 (Listing 2-9):

Chapter 3 Higher Order Functions

https://doi.org/10.1007/978-1-4842-4087-8_2#Fig9

49

const forEach = (array,fn) => {

 for(let i=0;array.length;i++)

 fn(array[i])

}

The preceding forEach function here has abstracted away the problem

of traversing the array. The user of the forEach API does not need to

understand how forEach has implemented the traversing part, thus

abstracting away the problem.

Note I n the forEach function, the passed function fn is called
with a single argument as the current iteration content of the array,
as you can see here:

. . .
fn(array[i])
. . .

So when the user of the forEach function calls it like this:

forEach([1,2,3],(data) => {
//data is passed from forEach function
//to this current function as argument
})

forEach essentially traverses the array. What about traversing a

JavaScript object? Traversing a JavaScript object has steps like this:

	 1.	 Iterate all the keys of the given object.

	 2.	 Identify that the key belongs to its own object.

	 3.	 Get the value of the key if Step 2 is true.

Chapter 3 Higher Order Functions

50

Let’s abstract these steps into a higher order function named

forEachObject, as shown in Listing 3-5.

Listing 3-5.  forEachObject Function Definition

const forEachObject = (obj,fn) => {

 for (var property in obj) {

 if (obj.hasOwnProperty(property)) {

 //calls the fn with key and value as its argument

 fn(property, obj[property])

 }

 }

}

Note  forEachObject takes the first argument as a JavaScript
object (as obj) and the second argument is a function fn. It traverses
the object using the precedng algorithm and calls the fn with key
and value as its argument, respectively.

Here they are in action:

let object = {a:1,b:2}

forEachObject(object, (k,v) => console.log(k + ":" + v))

=> a:1

=> b:1

Cool! An important point to note is that both forEach and

forEachObject functions are higher order functions, which allow the

developer to work on task (by passing the corresponding function),

abstracting away the traversing part! Because these traversing functions are

being abstracted away, we can test them thoroughly, leading to a concise

code base. Let’s implement an abstracted way for handling control flows.

Chapter 3 Higher Order Functions

51

For that, let us create a function called unless. Unless is a simple

function that takes a predicate (which should be either true or false);

if the predicate is false, call the fn as shown in Listing 3-6.

Listing 3-6.  unless Function Definition

const unless = (predicate,fn) => {

 if(!predicate)

 fn()

}

With the unless function in place, we can write a concise piece of code

to find the list of even numbers. The code for it looks like this:

forEach([1,2,3,4,5,6,7],(number) => {

 unless((number % 2), () => {

 console.log(number, " is even")

 })

})

This code, when executed, is going to print the following:

2 ' is even'

4 ' is even'

6 ' is even'

In this case we are getting the even numbers from the array list.

What if we want to get the list of even numbers from, say, 0 to 100? We

cannot use forEach here (of course we can, if we have the array that has

[0,1,2.....,100] content). Let’s meet another higher order function

called times. Times is yet another simple higher order function that takes

the number and calls the passed function as many times as the caller

indicates. The times function is shown in Listing 3-7.

Chapter 3 Higher Order Functions

52

Listing 3-7.  times Function Definition

const times = (times, fn) => {

 for (var i = 0; i < times; i++)

 fn(i);

}

The times function looks very similar to the forEach function; it’s

just that we are operating on a Number rather than an Array. Now with the

times function in place, we can go ahead and solve our problem at hand

like this:

times(100, function(n) {

 unless(n % 2, function() {

 console.log(n, "is even");

 });

});

That’s going to print our expected answer:

0 'is even'

2 'is even'

4 'is even'

6 'is even'

8 'is even'

10 'is even'

. . .

. . .

94 'is even'

96 'is even'

98 'is even'

With this code we have abstracted away looping, and the condition

checks into a simple and concise higher order function!

Chapter 3 Higher Order Functions

53

Having seen a few examples of higher order functions, it’s time to

go one step further. In the upcoming section, we will discuss real-world

higher order functions and how to create them.

Note A ll the higher order functions that we are creating in this
chapter will be in the chap03 branch.

�Higher Order Functions in the Real World
In this section we will introduce real-world examples of higher order

functions. We are going to start with simple higher order functions and

slowly move into more complex higher order functions, which are used by

JavaScript developers in their day-to-day lives. Excited? So what are you

waiting for? Read on.

Note  The examples are continued in the next chapters after we
introduce the concept of closures. Most of the higher order functions
work with the help of closures.

�every Function
Often JavaScript developers need to check if the array of content is a

number, custom object, or anything else. We usually use a typical for

loop approach to solve these problems, but let’s abstract these away into a

function called every. The every function takes two arguments: an array

and a function. It checks if all the elements of the array are evaluated to

true by the passed function. The implementation looks like Listing 3-8:

Chapter 3 Higher Order Functions

54

Listing 3-8.  every Function Definition

const every = (arr,fn) => {

 let result = true;

 for(let i=0;i<arr.length;i++)

 result = result && fn(arr[i])

 return result

}

Here we are simply iterating over the passed array and calling the fn

by passing the current content of the array element at the iteration. Note

that the passed fn should be returning a Boolean value. Then we use &&

to make sure all the contents of the array are obeying the criteria that are

given by the fn.

We need to quickly check that our every function works fine. Then

pass on the array of NaN and pass fn as isNaN, which does check if the given

number is NaN or not:

every([NaN, NaN, NaN], isNaN)

=> true

every([NaN, NaN, 4], isNaN)

=> false

Great. The every is a typical higher order function that is easy to

implement and it’s very useful too! Before we go further, we need to make

ourselves comfortable with the for..of loop. For..of loops can be used

to iterate the array elements. Let’s rewrite our every function with a for

loop (Listing 3-9).

Listing 3-9.  every Function with for..of Loop

const every = (arr,fn) => {

 let result = true;

 for(const value of arr)

Chapter 3 Higher Order Functions

55

 result = result && fn(value)

 return result

}

The for..of loop is just an abstraction over our old for loop. As you

can see here, the for..of has eliminated the traversing of an array by

hiding the index variable, and so on. We have abstracted away for..of

with every. It’s all about abstraction. What if the next version of JavaScript

changes the way of for..of? We just need to change it in the every

function. This is one of the most important advantages of abstraction.

�some Function
Similar to the every function, we also have a function called some. The

some works quite the opposite way of the every function such that the

some function returns true if either one of the elements in the array

returns true for the passed function. The some function is also called as

any function. To implement the some function we use || rather than &&, as

shown in Listing 3-10.

Listing 3-10.  some Function Definition

const some = (arr,fn) => {

 let result = false;

 for(const value of arr)

 result = result || fn(value)

 return result

}

Chapter 3 Higher Order Functions

56

Note  Both every and some functions are inefficient
implementations for large arrays as the every function should
traverse the array until the first element that doesn’t match the
criteria, and the some function should traverse the array only until the
first match. Remember that we are trying to understand the concepts
of higher order functions in this chapter rather than writing code for
efficiency and accuracy.

With the some function in place, we can check its result by passing the

arrays like this:

some([NaN,NaN, 4], isNaN)

=>true

some([3,4, 4], isNaN)

=>false

Having seen both some and every function, let’s look at the sort

function and how a higher order function plays an important role there.

�sort Function
The sort is a built-in function that is available in the Array prototype of

JavaScript. Suppose we need to sort a list of fruits:

var fruit = ['cherries', 'apples', 'bananas'];

You can simply call the sort function that is available on the Array

prototype:

fruit.sort()

=> ["apples", "bananas", "cherries"]

Chapter 3 Higher Order Functions

57

That’s so simple. The sort function is a higher order function that

takes up a function as its argument, which will help the sort function to

decide the sorting logic. Simply put, the signature of the sort function

looks like this:

arr.sort([compareFunction])

Here the compareFunction is optional. If the compareFunction is

not supplied, elements are sorted by converting them to strings and

comparing strings in Unicode code point order. You don’t need to worry

about Unicode conversion in this section as we are more focused on the

higher order functions. The important point to note here is that to compare

the element with our own logic while sorting is performed, we need to pass

our compareFunction. We can sense how the sort function is designed to

be so flexible in such a way that it can sort any data in the JavaScript world,

provided we pass a compareFunction. The sort function is flexible due to

the nature of higher order functions!

Before writing our compareFunction, let’s see what it should really

implement. The compareFunction should implement the logic shown in

Listing 3-11 as mentioned at https://developer.mozilla.org/en-US/

docs/Web/JavaScript/Reference/Global_Objects/Array/sort.

Listing 3-11.  Skeleton of compare Function

function compare(a, b) {

 if (a is less than b by some ordering criterion) {

 return -1;

 }

 if (a is greater than b by the ordering criterion) {

 return 1;

 }

 // a must be equal to b

 return 0;

}

Chapter 3 Higher Order Functions

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/sort
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/sort

58

As a simple example, imagine we have a list of people:

var people = [

 {firstname: "aaFirstName", lastname: "cclastName"},

 {firstname: "ccFirstName", lastname: "aalastName"},

 {firstname:"bbFirstName", lastname:"bblastName"}

];

Now we need to sort people using the firstname key in the object,

then we need to pass on our own compareFunction like this:

people.sort((a,b) => { return (a.firstname < b.firstname) ? -1 :

(a.firstname > b.firstname) ? 1 : 0 })

which is going to return the following data:

 [{ firstname: 'aaFirstName', lastname: 'cclastName' },

 { firstname: 'bbFirstName', lastname: 'bblastName' },

 { firstname: 'ccFirstName', lastname: 'aalastName' }]

Sorting with respect to lastname looks like this:

people.sort((a,b) => { return (a.lastname < b.lastname) ? -1 :

(a.lastname > b.lastname) ? 1 : 0 })

will return:

[{ firstname: 'ccFirstName', lastname: 'aalastName' },

 { firstname: 'bbFirstName', lastname: 'bblastName' },

 { firstname: 'aaFirstName', lastname: 'cclastName' }]

Hooking again into the logic of compareFunction:

function compare(a, b) {

 if (a is less than b by some ordering criterion) {

 return -1;

 }

Chapter 3 Higher Order Functions

59

 if (a is greater than b by the ordering criterion) {

 return 1;

 }

 // a must be equal to b

 return 0;

}

Having known the algorithm for our compareFunction, can we do it

better? Rather than writing the compareFunction every time, can we

abstract away this logic into a function? As you can see in the preceding

example, we wrote two functions each for comparing firstName and

lastName with almost the same duplicate code. Let’s solve this problem

with our higher order function. Now the function that we are going to

design won’t take a function as its argument but rather return a function.

(Remember HOC can also return a function.)

Let’s call this function sortBy, which allows the user to sort the array of

objects based on the passed property as shown in Listing 3-12.

Listing 3-12.  sortBy Function Definition

const sortBy = (property) => {

 return (a,b) => {

 �var result = (a[property] < b[property]) ? -1 :

(a[property] > b[property]) ? 1 : 0;

 return result;

 }

}

The sortBy function takes an argument named property and returns

a new function that takes two arguments:

. . .

 return (a,b) => { }

. . .

Chapter 3 Higher Order Functions

60

The returned function has a very simple function body that clearly

shows the compareFunction logic:

. . .

(a[property] < b[property]) ? -1 : (a[property] > b[property])

? 1 : 0;

. . .

Imagine we are going to call the function with the property name

firstname, and then the function body with the replaced property

argument looks like this:

(a,b) => return (a['firstname'] < b['firstname']) ? -1 :

(a['firstname'] > b['firstname']) ? 1 : 0;

That’s exactly what we did by manually writing a function. Here is our

sortBy function in action:

people.sort(sortBy("firstname"))

will return:

[{ firstname: 'aaFirstName', lastname: 'cclastName' },

 { firstname: 'bbFirstName', lastname: 'bblastName' },

 { firstname: 'ccFirstName', lastname: 'aalastName' }]

Sorting with respect to lastname looks like this:

people.sort(sortBy("lastname"))

returns:

[{ firstname: 'ccFirstName', lastname: 'aalastName' },

 { firstname: 'bbFirstName', lastname: 'bblastName' },

 { firstname: 'aaFirstName', lastname: 'cclastName' }]

Chapter 3 Higher Order Functions

61

as before. Wow, that’s truly amazing! The sort function takes the

compareFunction, which is returned by the sortBy function! That’s a lot of

higher order functions floating around! Again we have abstracted away the

logic behind compareFunction, leaving the user to focus on what he or she

really needs. After all, a higher order function is all about abstractions.

Pause for a moment here, though, and think about the sortBy

function. Remember that our sortBy function takes a property and

returns another function. The returned function is what passed as

compareFunction to our sort function. The question here is why the

returned function carries the property argument value that we have

passed.

Welcome to the world of closures! The sortBy function works just

because JavaScript supports closures. We need to clearly understand what

closures are before we go ahead and write higher order functions. Closures

are the topic of the next chapter.

Remember, though, that we will be writing our real-world higher order

function after explaining closures in the next chapter!

�Summary
We started with simple data types that JavaScript supports. We found that

function is also a data type in JavaScript. Thus, we can keep functions

in all the places where we can keep our data. In other words, function

can be stored, passed, and reassigned like other data types in JavaScript.

This extreme feature of JavaScript allows the function to be passed over

to another function, which we call a higher order function. Remember

that a higher order function is a function that takes another function

as its argument or returns a function. We saw a handful of examples in

this chapter showcasing how these higher order function concepts help

Chapter 3 Higher Order Functions

62

developers to write code that abstracts away the difficult part! We have

created and added a few such functions in our own library. We concluded

the chapter by mentioning that higher order functions work with the

blessing of another important concept in JavaScript called closures, which

are the topic of Chapter 4.

Chapter 3 Higher Order Functions

63© Anto Aravinth, Srikanth Machiraju 2018
A. Aravinth and S. Machiraju, Beginning Functional JavaScript,
https://doi.org/10.1007/978-1-4842-4087-8_4

CHAPTER 4

Closures and Higher
Order Functions
In the previous chapter we saw how higher order functions help

developers create abstraction over common problems. It’s a very powerful

concept, as we learned. We have created our sortBy higher order function

to showcase a valid and relevant example of the use case. Even though

the sortBy function is working on the basis of higher order functions

(which is again the concept of passing functions as arguments to the other

functions), it has something to do with yet another concept called closures

in JavaScript.

We need to understand closures in the JavaScript world before we

go further in our journey of functional programming techniques. That’s

where this chapter comes into the picture. In this chapter we are going to

discuss in detail what is meant by closures and at the same time continue

our journey of writing useful and real-world higher order functions. The

concept of closures has to do with scopes in JavaScript, so let’s get started

with closures in the next section.

64

Note  The chapter examples and library source code are in
branch chap04. The repo’s URL is https://github.com/
antoaravinth/functional-es8.git

Once you check out the code, please check out branch chap04:

...

git checkout -b chap04 origin/chap04

...

For running the codes, as before run:

...

npm run playground

...

�Understanding Closures
In this section we are going to explain what we mean by closures with a

simple example and then move on to our sortBy function by unwrapping

how it works with closures.

�What Are Closures?
Simply put, a closure is an inner function. So what is an inner function? It

is just a function within another function, something like the following:

function outer() {

 function inner() {

 }

}

Chapter 4 Closures and Higher Order Functions

https://github.com/antoaravinth/functional-es8.git
https://github.com/antoaravinth/functional-es8.git

65

Yes, that’s exactly what a closure is. The function inner is called a

closure function. Closure is powerful because of its access to the scope

chains (or scope levels). We will discuss scope chains in this section.

Note S cope chains and scope levels mean the same, so they are
used interchangeably in this chapter.

Technically the closure has access to three scopes:

	 1.	 Variables that are declared in its own declaration.

	 2.	 Access to the global variables.

	 3.	 Access to the outer function’s variable (interesting).

Let’s talk about these three points separately with a simple example.

Consider the following code snippet:

function outer() {

 function inner() {

 let a = 5;

 console.log(a)

 }

 inner() //call the inner function.

}

What will be printed to the console when the inner function gets

called? The value will be 5. This is mainly due to the first point. A closure

function can access all the variables declared in its own declaration

(see Point 1). No rocket science here!

Note A strong takeaway from the preceding code snippet is that
the inner function won’t be visible outside the outer function! Go
ahead and test it.

Chapter 4 Closures and Higher Order Functions

66

Now modify the preceding code snippet to the following:

let global = "global"

function outer() {

 function inner() {

 let a = 5;

 console.log(global)

 }

 inner() //call the inner function.

}

Now when the inner function is executed, it does print the value

global. Thus closures can access the global variable (see Point 2).

Points 1 and 2 are now clear with the example. The third point is very

interesting, and the claim can be seen in the following code:

let global = "global"

function outer() {

 let outer = "outer"

 function inner() {

 let a = 5;

 console.log(outer)

 }

 inner() //call the inner function.

}

Now when the inner function executes, it does print the value outer.

This looks reasonable, but it is a very important property of a closure.

Closure has access to the outer function’s variable(s). Here outer function

means the function that encloses the closure function. This property is

what makes the closures so powerful!

Chapter 4 Closures and Higher Order Functions

67

Note  Closure also has access to the enclosing function parameters.
Try adding a paramater to our outer function and try to access it
from the inner function. We will wait here until you are done with
this small exercise.

�Remembering Where It Is Born
In the previous section we saw what a closure is. Now we will be seeing

a slightly complicated example, which explains yet another important

concept in closure: closure remembering its context.

Take a look at the following code:

var fn = (arg) => {

 let outer = "Visible"

 let innerFn = () => {

 console.log(outer)

 console.log(arg)

 }

 return innerFn

}

The code is simple. The innerFn is a closure function to fn and fn

returns the innerFn when called. There is nothing fancy here.

Let’s play around with fn:

var closureFn = fn(5);

closureFn()

will print the following:

Visible

5

Chapter 4 Closures and Higher Order Functions

68

How does calling closureFn print Visible and 5 to the console? What

is happening behind the scenes? Let’s break it down.

There are two steps happening in this case:

	 1.	 When this line is called:

var closureFn = fn(5);

our fn gets called with argument 5. As per our fn definition, it

returns the innerFn.

	 2.	 This where interesting things happen. When innerFn

is returned, the JavaScript execution engine sees

innerFn as a closure and sets its scope accordingly.

As we saw in the previous section, closures will have

access to the three scope levels. All these three scope

levels are set (arg, outer values will be set in scope

level of innerFn) when the innerFn is returned. The

returned function reference is stored in closureFn.

Thus closureFn will have arg, outer values when

called via scope chains.

	 3.	 When we finally call the closureFn:

closureFn()

it prints:

Visible

5

As now you can guess, closureFn remembers its context (the scopes;

i.e., outer and arg) when it is born in the second step. Thus the calls to

console.log print appropriately.

You might be wondering what is the use case of closure?. We have

already seen it in action in our sortBy function. Let’s quickly revisit it.

Chapter 4 Closures and Higher Order Functions

69

�Revisiting sortBy Function
Recall the sortBy function that we defined and used in the previous

chapter:

const sortBy = (property) => {

 return (a,b) => {

 �var result = (a[property] < b[property]) ? -1 :

(a[property] > b[property]) ? 1 : 0;

 return result;

 }

}

When we called the sortBy function like this:

sortBy("firstname")

sortBy returned a new function that takes two arguments, like this:

(a,b) => { /* implementation */ }

Now we are comfortable with closures and we are aware that the

returned function will have access to the sortBy function argument

property. Because this function will be returned only when sortBy is

called, the property argument is linked with a value; hence the returned

function will carry this context throughout its life:

//scope it carries via closure

property = "passedValue"

(a,b) => { /* implementation */ }

Now because the returned function carries the value of property in its

context, it will use the returned value where it is appropriate and when it is

needed. With that explanation in place, we can fully understand closures

and higher order functions that allow us to write a function like sortBy

that is going to abstract away the inner details. Moving ahead to our

functional world.

Chapter 4 Closures and Higher Order Functions

70

That’s a lot to take in for this section; in the next section we continue

our journey of writing more abstract functions using closures and higher

order functions.

�Higher Order Functions in the Real World
(Continued)
With our understanding of closures in place, we can go ahead and

implement some useful higher order functions that are used in the real

world.

�tap Function
Because we are going to deal with lots of functions in the programming

world, we need a way to debug what is happening between them. As we

have seen in previous chapters, we are designing the functions, which

take arguments and return another function, which again takes a few

arguments, and so on.

Let’s design a simple function called tap:

const tap = (value) =>

 (fn) => (

 typeof(fn) === 'function' && fn(value),

 console.log(value)

)

Here the tap function takes a value and returns a function that has the

closure over value and it will be executed.

Chapter 4 Closures and Higher Order Functions

71

Note I n JavaScript, (exp1,exp2) means it will execute the two
arguments and return the result of the second expression, which is
exp2. In our preceding example, the syntax will call the function fn
and also print the value to the console.

Let’s play around with the tap function:

tap("fun")((it) => console.log("value is ",it))

=>value is fun

=>fun

As you can see in this example, the value value is fun gets printed

and then the value fun is printed. This seems easy and straightforward.

So where can the tap function be used? Imagine you are iterating an

array that has data come from a server. You feel that the data are wrong, so

you want to debug and see what the array really contains, while iterating.

How will you do that? This is where the tap function comes into the

picture. For the current scenario, we can do this:

forEach([1,2,3], (a) =>

 tap(a)(() =>

 {

 console.log(a)

 }

)

)

This prints the value as expected, providing a simple yet powerful

function in our toolkit.

Chapter 4 Closures and Higher Order Functions

72

�unary Function
There is a default method in the array prototype called map. Don’t worry;

we are going to discover numerous functions for arrays in the next chapter,

where we will be seeing how to create our own map, too. For now, map is

a function, which is very similar to the forEach function we have already

defined. The only difference is that map returns the result of the callback

function.

To get the gist of it, let’s say we want to double the array and get back

the result; using the map function, we can do that like this:

[1, 2, 3].map((a) => { return a * a })

=>[1, 4, 9]

The interesting point to note here is that map calls the function with

three arguments, which are element, index, and arr. Imagine we want

to parse the array of strings to the array of int; we have a built-in function

called parseInt that takes two argument parses and radixes and converts

the passed parse into a number if possible. If we pass the parseInt to

our map function, map will pass the index value to the radix argument of

parseInt, which will result in unexpected behavior.

['1', '2', '3'].map(parseInt)

=>[1, NaN, NaN]

Oops! As you can see in this result, the array [1, NaN, NaN] is not

what we expect. Here we need to convert the parseInt function to another

function that will be expecting only one argument. How can we achieve

that? Meet our next friend, the unary function. The task of the unary

function is to take the given function with n arguments and convert it into

a single argument.

Chapter 4 Closures and Higher Order Functions

73

Our unary function looks like the following:

const unary = (fn) =>

 fn.length === 1

 ? fn

 : (arg) => fn(arg)

We are checking if the passed fn has an argument list of size 1 (which

we can find via the length property); if so, we are not going to do anything.

If not, we return a new function, which takes only one argument arg and

calls the function with that argument.

To see our unary function in action, we can rerun our problem with

unary:

['1', '2', '3'].map(unary(parseInt))

=>[1, 2, 3]

Here our unary function returns a new function (a clone of parseInt),

which is going to take only one argument. Thus the map function passing

index, arr argument, becomes unaffected as we are getting back the

expected result.

Note  There are also functions like binary and others that will
convert the function to accept corresponding arguments.

The next two functions that we are going to see are special higher

order functions that will allow the developer to control the number of

times the function is getting called. They have a lot of use cases in the real

world.

Chapter 4 Closures and Higher Order Functions

74

�once Function
There are a lot of situations in which we need to run a given function

only once. This scenario occurs for JavaScript developers in their day-to-

day life, as they want to set up a third-party library only once, initiate the

payment set up only once, do a bank payment request only once, and so

on. These are common cases that developers face.

In this section we are going to write a higher order function called

once, which will allow the developer to run the given function only once.

Again the point to note here is that we have to keep on abstracting away

our day-to-day activities into our functional toolkits.

const once = (fn) => {

 let done = false;

 return function () {

 �return done ? undefined : ((done = true), fn.apply(this,

arguments))

 }

}

This once function takes an argument fn and returns the result of it

by calling it with the apply method (a note on the apply method is given

later). The important point to note here is that we have declared a variable

called done and set it to false initially. The returned function will have a

closure scope over it; hence it will access it to check if done is true, if return

undefined else set done to true (thus preventing the next execution), and

calling the function with necessary arguments.

Note  The apply function will allow us to set the context for the function
and also pass on the arguments for the given function. You can find
more about it at https://developer.mozilla.org/en-US/docs/
Web/JavaScript/Reference/Global_Objects/Function/apply.

Chapter 4 Closures and Higher Order Functions

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Function/apply
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Function/apply

75

With the once function in place, we can do a quick check of it.

var doPayment = once(() => {

 console.log("Payment is done")

})

doPayment()

=>Payment is done

//oops bad, we are doing second time!

doPayment()

=>undefined!

This code snippet showcases that the doPayment function that is

wrapped over once will be executed only once regardless of how many

times we call them. The once function is a simple but effective function in

our toolkit.

�memoize Function
Before we close this section, let’s take a look at the function called memoize.

We know that the pure function is all about working on its argument and

nothing else. It does not depend on the outside world for anything. The

results of the pure function are purely based on its argument. Imagine that

we have a pure function called factorial, which calculates the factorial

for a given number. The function looks like this:

var factorial = (n) => {

 if (n === 0) {

 return 1;

 }

 // This is it! Recursion!!

 return n * factorial(n - 1);

}

Chapter 4 Closures and Higher Order Functions

76

You can quickly check that factorial function with a few inputs:

factorial(2)

=>2

factorial(3)

=>6

Nothing fancy here. We knew, though, that the factorial of the value 2 is

2, 3 is 6, and so on, mainly because we know the factorial function does

work, but only based on its argument and nothing else. This question then

arises here: Why can’t we store back the result for each input (some sort

of an object) and give back the output if the input is already present in the

object? Moreover for calculating the factorial for 3, we need to calculate

the factorial for 2, so why can’t we reuse those calculations in our function?

Well, that’s exactly what the memoize function is going to do. The memoize

function is a special higher order function that allows the function to

remember or memorize its result.

Let’s see how we can implement such a function in JavaScript. It is as

simple as it looks here:

const memoized = (fn) => {

 const lookupTable = {};

 �return (arg) => lookupTable[arg] || (lookupTable[arg] =

fn(arg));

}

Here we have a local variable called lookupTable that will be in the

closure context for the returned function. This will take the argument and

check if that argument is in the lookupTable:

. . lookupTable[arg] . .

Chapter 4 Closures and Higher Order Functions

77

If so, return the value; otherwise update the object with new input as a

key and the result from fn as its value:

(lookupTable[arg] = fn(arg))

Perfect. Now we can go and wrap our factorial function into a

memoize function to keep remembering its output:

let fastFactorial = memoized((n) => {

 if (n === 0) {

 return 1;

 }

 // This is it! Recursion!!

 return n * fastFactorial(n - 1);

})

Now go and call fastFactorial:

fastFactorial(5)

=>120

=>lookupTable will be like: Object {0: 1, 1: 1, 2: 2, 3: 6,

4: 24, 5: 120}

fastFactorial(3)

=>6 //returned from lookupTable

fastFactorial(7)

=> 5040

=>lookupTable will be like: Object {0: 1, 1: 1, 2: 2, 3: 6,

4: 24, 5: 120, 6: 720, 7: 5040}

It is going to work the same way, but now much faster than before.

While running fastFactorial, I would like you to inspect the lookupTable

object and how it helps in speeding things up as shown in the preceding

snippet. That is the beauty of the higher order function: closure and pure

functions in action!

Chapter 4 Closures and Higher Order Functions

78

Note O ur memoized function is written for functions that take only
one argument. Can you come up with a solution for all functions with
n number of arguments?

We have abstracted away many common problems into higher order

functions that allowed us to write a solution with elegance and ease.

�assign function
JavaScript (JS) objects are mutable, which means the state of the object

can be changed after it is created. Often, you will come across a scenario

in which you have to merge objects to form a new object. Consider the

following objects:

var a = { name: "srikanth" };

var b = { age: 30 };

var c = { sex: 'M' };

What if I want to merge all objects to create a new object? Let us go

ahead and write the relevant function.

function objectAssign(target, source) {

 var to = {};

 for (var i = 0; i < arguments.length; i += 1) {

 var from = arguments[i];

 var keys = Object.keys(from);

 for (var j = 0; j < keys.length; j += 1) {

 to[keys[j]] = from[keys[j]];

 }

 }

 return to;

 }

Chapter 4 Closures and Higher Order Functions

79

arguments is a special variable available to every JS function. JS

functions allow you to send any number of arguments to a function, which

means that if a function is declared with two arguments, JS allows you to

send more than two arguments. Object.keys is an inbuilt method that

gives you the property names of every object, in our case, the name, age,

and sex. The following usage shows how we abstracted the functionality to

merge any number of JS objects into one object.

var customObjectAssign = objectAssign(a, b, c);

//prints { name: 'srikanth', age: 30, sex: 'M' }

However, if you’re following ES6 standards, you may not have to write a

new function. The following function also does the same.

// ES6 Object.Assign

var nativeObjectAssign = Object.assign(a, b, c);

//prints { name: 'srikanth', age: 30, sex: 'M' }

Note that when we use Object.assign to merge objects a, b, and c,

even object a is changed. This does not occur with our custom

implementation. That is because object a is considered to be the target

object we merge into. Because the objects are mutable, a is now updated

accordingly. If you require the preceding behavior, you can do this:

var nativeObjectAssign = Object.assign({}, a, b, c);

Object a will be intact with the preceding usage, because all the objects

are merged into an empty object.

Let me show you another new addition to ES6, Object.entries.

Suppose you have an object such as the following:

var book = {

 "id": 111,

 "title": "C# 6.0",

 "author": "ANDREW TROELSEN",

Chapter 4 Closures and Higher Order Functions

80

 "rating": [4.7],

 "reviews": [{good : 4 , excellent : 12}] };

If you’re only interested in the title property, the following function can

help you convert that property into an array of strings.

console.log(Object.entries(book)[1]);

//prints Array ["title", "C# 6.0"]

What if you do not want to upgrade to ES6 and yet you’re interested in

getting object entries? The only way is to implement a functional method

that does the same, such as we did earlier. Are you up for the challenge? If

yes, I will leave that as an exercise for you.

We have now abstracted away many common problems into higher-

order functions that allowed us to write an elegant solution with ease.

�Summary
We started this chapter with a set of questions about what a function

can see. By starting small and building up examples, we showed how

closures make the function remember the context in which it is born.

With this understanding in place, we implemented few more higher order

functions that are used in the day-to-day life of a JavaScript programmer.

Throughout we have seen how to abstract away common problems into

a specific function and reuse it. Now we understand the importance of

closures, higher order functions, abstraction, and pure functions. In the

next chapter we are going to continue building the higher order functions,

but with respect to arrays.

Chapter 4 Closures and Higher Order Functions

81© Anto Aravinth, Srikanth Machiraju 2018
A. Aravinth and S. Machiraju, Beginning Functional JavaScript,
https://doi.org/10.1007/978-1-4842-4087-8_5

CHAPTER 5

Being Functional
on Arrays
Welcome to the chapter on arrays and objects. In this chapter we continue

our journey of exploring higher order functions that are useful for arrays.

Arrays are used throughout our JavaScript programming world. We use

them to store data, manipulate data, find data, and convert (project) the data

to another format. In this chapter we are going to see how to improve all these

activities using the functional programming techniques we have learned so far.

We create several functions on array, and we solve the common

problems functionally rather than imperatively. The functions that we are

creating in this chapter might or might not be defined already in the array

or object prototype. Be advised that these are for understanding how the

real functions themselves work, rather than overriding them.

Note  The chapter examples and library source code are in
branch chap05. The repo’s URL is https://github.com/
antoaravinth/functional-es8.git

Once you check out the code, please check out branch chap05:

...
git checkout -b chap05 origin/chap05
...

https://github.com/antoaravinth/functional-es8.git
https://github.com/antoaravinth/functional-es8.git

82

For running the codes, as before run:
...

npm run playground

...

�Working Functionally on Arrays
In this section we create a set of useful functions, and using those

functions we solve common problems with Array.

Note  All the functions that we create in this section are called
projecting functions. Applying a function to an array and creating a
new array or new set of value(s) is called a projection. The term will
make sense when we see our first projecting function map.

�map
We have already seen how to iterate over the Array using forEach.

forEach is a higher order function that is going to iterate over the given

array and call the passed function with the current index as its argument.

forEach hides away the common problem of iteration, but we cannot use

forEach in all cases.

Imagine we want to square all the contents of the array and get back

the result in a new array. How can we achieve this using forEach? Using

forEach we cannot return the data; instead it just executes the passed

function. That’s where our first projecting function comes into the picture,

and it’s called map.

Implementing map is an easy and straightforward task given that we

have already seen how to implement forEach itself. The implementation

of forEach looks like Listing 5-1.

Chapter 5 Being Functional on Arrays

83

Listing 5-1.  forEach Function Definition

const forEach = (array,fn) => {

 for(const value of arr)

 fn(value)

}

The map function implementation looks like Listing 5-2.

Listing 5-2.  map Function Definition

const map = (array,fn) => {

 let results = []

 for(const value of array)

 results.push(fn(value))

 return results;

}

The map implementation looks very similar to forEach; it’s just that we

are capturing the results in a new array as:

. . .

 let results = []

. . .

and returning the results from the function. Now is a good time to talk

about the term projecting function. We mentioned earlier that the map

function is a projecting function. Why do we call the map function that?

The reason is quite simple and straightforward: Because map returns the

transformed value of the given function, we call it a projecting function.

Some people do call map a transforming function, but we are going to stick

to the term projection.

Chapter 5 Being Functional on Arrays

84

Now let’s solve the problem of squaring the contents of the array using

our map function defined in Listing 5-2.

map([1,2,3], (x) => x * x)

=>[1,4,9]

As you can see in this code snippet, we have achieved our task with simple

elegance. Because we are going to create many functions that are specific

to the Array type, we are going to wrap all the functions into a const called

arrayUtils and then export arrayUtils. It typically looks like Listing 5-3.

Listing 5-3.  Wrapping Functions into arrayUtils Object

//map function from Listing 5-2

const map = (array,fn) => {

 let results = []

 for(const value of array)

 results.push(fn(value))

 return results;

}

const arrayUtils = {

 map : map

}

export {arrayUtils}

//another file

import arrayUtils from 'lib'

arrayUtils.map //use map

//or

const map = arrayUtils.map

//so that we can call them map

Chapter 5 Being Functional on Arrays

85

Note I n the text we call them map rather than arrayUtils.map
for clarity purposes.

Perfect. To make the chapter examples more realistic, we are going to

build an array of objects, which looks like Listing 5-4.

Listing 5-4.  apressBooks Object Describing Book Details

let apressBooks = [

 {

 "id": 111,

 "title": "C# 6.0",

 "author": "ANDREW TROELSEN",

 "rating": [4.7],

 "reviews": [{good : 4 , excellent : 12}]

 },

 {

 "id": 222,

 "title": "Efficient Learning Machines",

 "author": "Rahul Khanna",

 "rating": [4.5],

 "reviews": []

 },

 {

 "id": 333,

 "title": "Pro AngularJS",

 "author": "Adam Freeman",

 "rating": [4.0],

 "reviews": []

 },

Chapter 5 Being Functional on Arrays

86

 {

 "id": 444,

 "title": "Pro ASP.NET",

 "author": "Adam Freeman",

 "rating": [4.2],

 "reviews": [{good : 14 , excellent : 12}]

 }

];

Note  This array does contain real titles that are published by
Apress, but the review key values are my own interpretations.

All the functions that we are going to create in this chapter will be run

for the given array of objects. Now suppose we need to get the array of an

object that only has a title and author name in it. How are we going to

achieve the same thing using the map function? Do you see a solution in

your mind?

The solution is simple using the map function, which looks like this:

map(apressBooks,(book) => {

 return {title: book.title,author:book.author}

})

That code is going to return the result as you would expect. The object

in the returned array will have only two properties: One is title and the

other one is author, as you specified in your function:

[{ title: 'C# 6.0', author: 'ANDREW TROELSEN' },

 { title: 'Efficient Learning Machines', author: 'Rahul Khanna' },

 { title: 'Pro AngularJS', author: 'Adam Freeman' },

 { title: 'Pro ASP.NET', author: 'Adam Freeman' }]

Chapter 5 Being Functional on Arrays

87

We do not always just want to transform all our array contents into

a new one. Rather, we want to filter the content of the array and then

perform the transformation. It is time now to meet the next function in the

queue, filter.

�filter
Imagine we want to get the list of books with ratings higher than 4.5. How

we are going to achieve this? It is definitely not a problem for map to solve,

but we need a function similar to map that just checks a condition, before

pushing the results into the results array.

Let’s first take another look at the map function (from Listing 5-2):

const map = (array,fn) => {

 let results = []

 for(const value of array)

 results.push(fn(value))

 return results;

}

Here we need to check a condition or predicate before we do this:

. . .

 results.push(fn(value))

. . .

Let’s add that into a separate function called filter as shown in

Listing 5-5.

Chapter 5 Being Functional on Arrays

88

Listing 5-5.  filter Function Definition

const filter = (array,fn) => {

 let results = []

 for(const value of array)

 (fn(value)) ? results.push(value) : undefined

 return results;

}

With the filter function in place, we can solve our problem at hand in

the following way:

filter(apressBooks, (book) => book.rating[0] > 4.5)

which is going to return the expected result:

[{ id: 111,

 title: 'C# 6.0',

 author: 'ANDREW TROELSEN',

 rating: [4.7],

 reviews: [[Object]] }]

We are constantly improving the method to deal with arrays using

these higher order functions. Before we go further with the next functions

on the array, we are going to see how to chain the projection functions

(map, filter) to get the desired results in complex situations.

�Chaining Operations
It’s always the case that we need to chain several functions to achieve our

goal. For example, imagine the problem of getting the title and author

objects out of our apressBooks array for which the review value is greater

than 4.5. The initial step to tackle this problem is to solve it via map and

filter. In that case, the code might look like this:

Chapter 5 Being Functional on Arrays

89

let goodRatingBooks =

 filter(apressBooks, (book) => book.rating[0] > 4.5)

map(goodRatingBooks,(book) => {

 return {title: book.title,author:book.author}

})

which is going to return the result as expected:

[{

 title: 'C# 6.0',

 author: 'ANDREW TROELSEN'

 }

]

An important point to note here is that both map and filter are

projection functions, so they always return data after applying the

transformation (via the passed higher order function) on the array. We can

therefore chain both filter and map (the order is very important) to get the

task done without the need for additional variables (i.e., goodRatingBooks):

map(filter(apressBooks, (book) => book.rating[0] > 4.5),(book)

=> {

 return {title: book.title,author:book.author}

})

This code literally tells the problem we are solving: “Map over the filtered

array whose rating is 4.5 and return their title and author keys in an object.”

Due to the nature of both map and filter, we have abstracted away the details

of the array themselves, and we started focusing on the problem at hand.

We show examples of chaining methods in the upcoming sections.

Note  We will see another way to achieve the same thing via
function composition later.

Chapter 5 Being Functional on Arrays

90

�concatAll
Let’s now tweak the apressBooks array a bit, so that we have a data

structure that looks like the one shown in Listing 5-6.

Listing 5-6.    Updated apressBooks Object with Book Details

let apressBooks = [

 {

 name : "beginners",

 bookDetails : [

 {

 "id": 111,

 "title": "C# 6.0",

 "author": "ANDREW TROELSEN",

 "rating": [4.7],

 �"reviews": [{good : 4 ,

excellent : 12}]

 },

 {

 "id": 222,

 �"title": "Efficient Learning

Machines",

 "author": "Rahul Khanna",

 "rating": [4.5],

 "reviews": []

 }

]

 },

Chapter 5 Being Functional on Arrays

91

 {

 name : "pro",

 bookDetails : [

 {

 "id": 333,

 "title": "Pro AngularJS",

 "author": "Adam Freeman",

 "rating": [4.0],

 "reviews": []

 },

 {

 "id": 444,

 "title": "Pro ASP.NET",

 "author": "Adam Freeman",

 "rating": [4.2],

 �"reviews": [{good : 14 ,

excellent : 12}]

 }

]

 }

];

Now let’s take up the same problem that we saw in the previous

section: getting the title and author for the books with ratings above 4.5.

We can start solving the problem by first mapping over data:

map(apressBooks,(book) => {

 return book.bookDetails

})

Chapter 5 Being Functional on Arrays

92

That is going to return us this value:

[[{ id: 111,

 title: 'C# 6.0',

 author: 'ANDREW TROELSEN',

 rating: [Object],

 reviews: [Object] },

 { id: 222,

 title: 'Efficient Learning Machines',

 author: 'Rahul Khanna',

 rating: [Object],

 reviews: [] }],

 [{ id: 333,

 title: 'Pro AngularJS',

 author: 'Adam Freeman',

 rating: [Object],

 reviews: [] },

 { id: 444,

 title: 'Pro ASP.NET',

 author: 'Adam Freeman',

 rating: [Object],

 reviews: [Object] }]]

As you can see, the return data from our map function contains Array

inside Array because our bookDetails itself is an array. Now if we pass

these data to our filter, we are going to have problems, as filters

cannot work on nested arrays.

That’s where the concatAll function comes in. The job of concatAll

is simple enough: It needs to concatenate all the nested arrays into a

single array. You can also call concatAll as a flatten method. The

implementation of concatAll looks like Listing 5-7.

Chapter 5 Being Functional on Arrays

93

Listing 5-7.  concatAll Function Definition

const concatAll = (array,fn) => {

 let results = []

 for(const value of array)

 results.push.apply(results, value);

 return results;

}

Here we just pushed up the inner array while iterating into our

results array.

Note  We have used JavaScript Function’s apply method to set the
push context to results itself and pass the argument as the current
index of the iteration - value.

The main goal of concatAll is to unnest the nested arrays into a single

array. The following code explains the concept in action:

concatAll(

 map(apressBooks,(book) => {

 return book.bookDetails

 })

)

That is going to return us the result we expected:

[{ id: 111,

 title: 'C# 6.0',

 author: 'ANDREW TROELSEN',

 rating: [4.7],

 reviews: [[Object]] },

Chapter 5 Being Functional on Arrays

94

 { id: 222,

 title: 'Efficient Learning Machines',

 author: 'Rahul Khanna',

 rating: [4.5],

 reviews: [] },

 { id: 333,

 title: 'Pro AngularJS',

 author: 'Adam Freeman',

 rating: [4],

 reviews: [] },

 { id: 444,

 title: 'Pro ASP.NET',

 author: 'Adam Freeman',

 rating: [4.2],

 reviews: [[Object]] }]

Now we can go ahead and easily do a filter with our condition like this:

let goodRatingCriteria = (book) => book.rating[0] > 4.5;

filter(

 concatAll(

 map(apressBooks,(book) => {

 return book.bookDetails

 })

)

,goodRatingCriteria)

That is going to return the expected value:

[{ id: 111,

 title: 'C# 6.0',

 author: 'ANDREW TROELSEN',

 rating: [4.7],

 reviews: [[Object]] }]

Chapter 5 Being Functional on Arrays

95

We have seen how designing a higher order function within the world

of the array does solve a lot of problems in elegant fashion. We have done

a really good job up to now. We still have to see a few more functions with

respect to arrays in the upcoming sections.

�Reducing Function
If you talk about functional programming anywhere, you often hear the

term reduce functions. What are they? Why they are so useful? reduce is

a beautiful function that is designed to showcase the power of closure

in JavaScript. In this section, we are going to explore the usefulness of

reducing an array.

�reduce Function
To give a solid example of the reduce function and where it’s been used,

let’s look at the problem of finding the summation of the given array. To

start, suppose we have an array called“:

let useless = [2,5,6,1,10]

We need to find the sum of the given array, but how we can achieve

that? A simple solution would be the following:

let result = 0;

forEach(useless,(value) => {

 result = result + value;

})

console.log(result)

=> 24

Chapter 5 Being Functional on Arrays

96

With this problem, we are reducing the array (which has several data)

into a single value. We start with a simple accumulator; in this case we call it

as result to store our summation result while traversing the array itself. Note

that we have set the result value to default 0 in case of summation. What

if we need to find the product of all the elements in the given array? In that

case we will be setting the result value to 1. This whole process of setting up

the accumulator and traversing the array (remembering the previous value

of accumulator) to produce a single element is called reducing an array.

Because we are going to repeat this process for all array-reducing

operations, can’t we abstract these into a function? You can, and that’s

where the reduce function comes in. The implementation of the reduce

function looks like Listing 5-8.

Listing 5-8.  reduce Function First Implementation

const reduce = (array,fn) => {

 let accumlator = 0;

 for(const value of array)

 accumlator = fn(accumlator,value)

 return [accumlator]

}

Now with the reduce function in place, we can solve our summation

problem using it like this:

reduce(useless,(acc,val) => acc + val)

=>[24]

That is great, but what if we want to find a product of the given array?

The reduce function is going to fail, mainly because we are using an

accumulator value to 0. So, our product result will be 0, too:

reduce(useless,(acc,val) => acc * val)

=>[0]

Chapter 5 Being Functional on Arrays

97

We can solve this by rewriting the reduce function from Listing 5-8

such that it takes an argument for setting up the initial value for the

accumulator. Let’s do this right away in Listing 5-9.

Listing 5-9.  reduce Function Final Implementation

const reduce = (array,fn,initialValue) => {

 let accumlator;

 if(initialValue != undefined)

 accumlator = initialValue;

 else

 accumlator = array[0];

 if(initialValue === undefined)

 for(let i=1;i<array.length;i++)

 accumlator = fn(accumlator,array[i])

 else

 for(const value of array)

 accumlator = fn(accumlator,value)

 return [accumlator]

}

We have made the changes to the reduce function so that now if

initialValue is not passed, the reduce function will take the first element

in the array as its accumulator value.

Note H ave a look at the two for loop statements. When
initialValue is undefined, we need to start looping the array from
the second element, as the first value of the accumulator will be used
as the initial value. If initialValue is passed by the caller, then we
need to iterate the full array.

Chapter 5 Being Functional on Arrays

98

Now let’s try our product problem using the reduce function:

reduce(useless,(acc,val) => acc * val,1)

=>[600]

Next we’ll use reduce in our running example, apressBooks.

Bringing apressBooks (updated in Listing 5-6) in here, for easy reference,

we have this:

let apressBooks = [

 {

 name : "beginners",

 bookDetails : [

 {

 "id": 111,

 "title": "C# 6.0",

 "author": "ANDREW TROELSEN",

 "rating": [4.7],

 �"reviews": [{good : 4 ,

excellent : 12}]

 },

 {

 "id": 222,

 �"title": "Efficient Learning

Machines",

 "author": "Rahul Khanna",

 "rating": [4.5],

 "reviews": []

 }

]

 },

Chapter 5 Being Functional on Arrays

99

 {

 name : "pro",

 bookDetails : [

 {

 "id": 333,

 "title": "Pro AngularJS",

 "author": "Adam Freeman",

 "rating": [4.0],

 "reviews": []

 },

 {

 "id": 444,

 "title": "Pro ASP.NET",

 "author": "Adam Freeman",

 "rating": [4.2],

 �"reviews": [{good : 14 ,

excellent : 12}]

 }

]

 }

];

On a good day, your boss comes to your desk and asks you to

implement the logic of finding the number of good and excellent reviews

from our apressBooks. You think this is a perfect problem that can be

solved easily via the reduce function. Remember that apressBooks

contains an array inside an array (as we saw in the previous section), so

we need to concatAll to make it a flat array. Because reviews are a part

Chapter 5 Being Functional on Arrays

100

of bookDetails, we don’t name a key, so we can just map bookDetails and

concatAll in the following way:

concatAll(

 map(apressBooks,(book) => {

 return book.bookDetails

 })

)

Now let’s solve our problem using reduce:

let bookDetails = concatAll(

 map(apressBooks,(book) => {

 return book.bookDetails

 })

)

reduce(bookDetails,(acc,bookDetail) => {

 �let goodReviews = bookDetail.reviews[0] != undefined ?

bookDetail.reviews[0].good : 0

 �let excellentReviews = bookDetail.reviews[0] !=

undefined ? bookDetail.reviews[0].excellent : 0

 �return {good: acc.good + goodReviews,excellent :

acc.excellent + excellentReviews}

},{good:0,excellent:0})

That is going to return the following result:

[{ good: 18, excellent: 24 }]

Now let’s walk through the reduce function to see how this magic

happened. The first point to note here is that we are passing an

accumulator to an initialValue, which is nothing but:

{good:0,excellent:0}

Chapter 5 Being Functional on Arrays

101

In the reduce function body, we are getting the good and excellent

review details (from our bookDetail object) and storing them in the

corresponing variables, namely goodReviews and excellentReviews:

let goodReviews = bookDetail.reviews[0] != undefined ?

bookDetail.reviews[0].good : 0

let excellentReviews = bookDetail.reviews[0] != undefined ?

bookDetail.reviews[0].excellent : 0

With that in place, we can walk through the reduce function call trace

to understand better what’s happening. For the first iteration, goodReviews

and excellentReviews will be the following:

goodReviews = 4

excellentReviews = 12

and our accumulator will be the following:

{good:0,excellent:0}

as we have passed the initial line. Once the reduce function executes the

line:

 return {good: acc.good + goodReviews,excellent : acc.

excellent + excellentReviews}

our internal accumulator value gets changed to:

{good:4,excellent:12}

We are now done with the first iteration of our array. In the second

and third iterations, we don’t have reviews; hence, both goodReviews

and excellentReviews will be 0, but not affecting our accumulator value,

which remains the same:

{good:4,excellent:12}

Chapter 5 Being Functional on Arrays

102

In our fourth and final iteration, we will be having goodReviews and

excellentReviews as:

goodReviews = 14

excellentReviews = 12

and the accumulator value being:

{good:4,excellent:12}

Now when we execute the line:

return {good: acc.good + goodReviews,excellent : acc.excellent +

excellentReviews}

our accumulator value changes to:

{good:18,excellent:28}

Because we are done iterating all our array content, the latest

accumulator value will be returned, which is the result.

As you can see here, in this process we have abstracted away internal

details into higher order functions, leading to elegant code. Before we close

this chapter, let’s implement the zip function, which is another useful

function.

�Zipping Arrays
Life is not always as easy as you think. We had reviews within our

bookDetails in our apressBooks details such that we could easily work

with it. However, if data like apressBooks does come from the server, they

do return data like reviews as a separate array, rather than the embedded

data, which will look like Listing 5-10.

Chapter 5 Being Functional on Arrays

103

Listing 5-10.  Splitting the apressBooks Object

let apressBooks = [

 {

 name : "beginners",

 bookDetails : [

 {

 "id": 111,

 "title": "C# 6.0",

 "author": "ANDREW TROELSEN",

 "rating": [4.7]

 },

 {

 "id": 222,

 �"title": "Efficient Learning

Machines",

 "author": "Rahul Khanna",

 "rating": [4.5],

 "reviews": []

 }

]

 },

 {

 name : "pro",

 bookDetails : [

 {

 "id": 333,

 "title": "Pro AngularJS",

 "author": "Adam Freeman",

 "rating": [4.0],

 "reviews": []

 },

Chapter 5 Being Functional on Arrays

104

 {

 "id": 444,

 "title": "Pro ASP.NET",

 "author": "Adam Freeman",

 "rating": [4.2]

 }

]

 }

];

Listing 5-11.  reviewDetails Object Contains Review Details of the

Book

let reviewDetails = [

 {

 "id": 111,

 "reviews": [{good : 4 , excellent : 12}]

 },

 {

 "id" : 222,

 "reviews" : []

 },

 {

 "id" : 333,

 "reviews" : []

 },

 {

 "id" : 444,

 "reviews": [{good : 14 , excellent : 12}]

 }

]

Chapter 5 Being Functional on Arrays

105

In Listing 5-11, the reviews are fleshed out into a separate array; they are

matched with the book id. It’s a typical example of how data are segregated

into different parts. How do we work with these sorts of split data?

�zip Function
The task of the zip function is to merge two given arrays. In our example,

we need to merge both apressBooks and reviewDetails into a single

array, so that we have all necessary data under a single tree.

The implementation of zip looks like Listing 5-12.

Listing 5-12.  zip Function Definition

const zip = (leftArr,rightArr,fn) => {

 let index, results = [];

 �for(index = 0;index < Math.min(leftArr.length,

rightArr.length);index++)

 results.push(fn(leftArr[index],rightArr[index]));

 return results;

}

zip is a very simple function; we just iterate over the two given arrays.

Because here we are dealing with two array details, we get the minimum

length of the given two arrays using Math.min:

. . .

Math.min(leftArr.length, rightArr.length)

. . .

Once you get the minimum length, we call our passed higher order

function fn with the current leftArr value and rightArr value.

Chapter 5 Being Functional on Arrays

106

Suppose we want to add the two contents of the array; we can do so via

zip like the following:

zip([1,2,3],[4,5,6],(x,y) => x+y)

=> [5,7,9]

Now let’s solve the same problem that we have solved in the previous

section: Find the total count of good and excellent reviews for the Apress

collection. Because the data are split into two different structures, we are

going to use zip to solve our current problem:

//same as before get the

//bookDetails

let bookDetails = concatAll(

 map(apressBooks,(book) => {

 return book.bookDetails

 })

)

//zip the results

let mergedBookDetails = zip(bookDetails,reviewDetails,

(book,review) => {

 if(book.id === review.id)

 {

 let clone = Object.assign({},book)

 clone.ratings = review

 return clone

 }

})

Let’s break down what’s happening in the zip function. The result

of the zip function is nothing but the same old data structure we had,

precisely, mergedBookDetails:

Chapter 5 Being Functional on Arrays

107

[{ id: 111,

 title: 'C# 6.0',

 author: 'ANDREW TROELSEN',

 rating: [4.7],

 ratings: { id: 111, reviews: [Object] } },

 { id: 222,

 title: 'Efficient Learning Machines',

 author: 'Rahul Khanna',

 rating: [4.5],

 reviews: [],

 ratings: { id: 222, reviews: [] } },

 { id: 333,

 title: 'Pro AngularJS',

 author: 'Adam Freeman',

 rating: [4],

 reviews: [],

 ratings: { id: 333, reviews: [] } },

 { id: 444,

 title: 'Pro ASP.NET',

 author: 'Adam Freeman',

 rating: [4.2],

 ratings: { id: 444, reviews: [Object] } }]

The way we have arrived at this result is very simple; while doing the

zip operation we are taking the bookDetails array and reviewDetails

array. We are checking if both the ids match, and if so we clone a new

object out of the book and call it clone:

. . .

 let clone = Object.assign({},book)

. . .

Chapter 5 Being Functional on Arrays

108

Now clone gets a copy of what’s there in the book object. However, the

important point to note is that clone is pointing to a separate reference.

Adding or manipulating clone doesn’t change the real book reference

itself. In JavaScript, objects are used by reference, so changing the book

object by default within our zip function will affect the contents of

bookDetails itself, which we don’t want to do.

Once we took up the clone, we added to it a ratings key with the

review object as its value:

clone.ratings = review

Finally, we are returning it. Now you can apply the reduce function as

before to solve the problem. zip is yet another small and simple function,

but its uses are very powerful.

�Summary
We have made a lot of progress in this chapter. We created several useful

functions such as map, filter, concatAll, reduce, and zip to make it

easier to work with arrays. We term these functions projection functions, as

these functions always return the array after applying the transformation

(which is passed via a higher order function). An important point to keep

in mind is that these are just higher order functions, which we will be using

in daily tasks. Understanding how these functions work helps us to think in

more functional terms, but our functional journey is not yet over.

Having created many useful functions on arrays in this chapter, in

the next one we will be discussing the concepts of currying and partial

application. These terms are nothing to fear; they are simple concepts but

become very powerful when put into action. See you in Chapter 6.

Chapter 5 Being Functional on Arrays

109© Anto Aravinth, Srikanth Machiraju 2018
A. Aravinth and S. Machiraju, Beginning Functional JavaScript,
https://doi.org/10.1007/978-1-4842-4087-8_6

CHAPTER 6

Currying and Partial
Application
In this chapter we are going to see what the term currying means. Once we

understand what this means and where it can be used, we will move onto

another concept in functional programming called partial application. Both

currying and partial application are important to understand as we use

them during functional composition. As in the previous chapters, we are

going to look at a sample problem and explain how functional programming

techniques like currying and partial application can be applied.

Note  The chapter examples and library source code are in
branch chap06. The repo’s URL is https://github.com/
antoaravinth/functional-es8.git.

Once you check out the code, please check out branch chap06:
...

git checkout -b chap06 origin/chap06

...

For running the codes, as before run:
...

npm run playground

...

https://github.com/antoaravinth/functional-es8.git
https://github.com/antoaravinth/functional-es8.git

110

�A Few Notes on Terminology
Before explaining what currying and partial application mean, we need to

understand a few terms that we will be using in this chapter.

�Unary Function
A function is called unary if it takes a single function argument. For

example, the identity function, shown in Listing 6-1, is a unary function.

Listing 6-1.  Unary identity Function

const identity = (x) => x;

This function takes only one argument, x, so we can call it a unary function.

�Binary Function
A function is called binary if it takes two arguments. For example, in

Listing 6-2, the add function is a binary function.

Listing 6-2.  Binary add Function

const add = (x,y) => x + y;

The add function takes two arguments, x,y; hence we call it a binary

function.

As you can guess, there are ternary functions that take three

arguments, and so on. JavaScript also allows a special type of function that

we call a variadic function, which takes a variable number of arguments.

�Variadic Functions
A variadic function is a function that takes a variable number of

arguments. Remember that we had arguments in older versions of

JavaScript, which we can use to capture the variable number of arguments.

Chapter 6 Currying and Partial Application

111

Listing 6-3.  Variadic Function

function variadic(a){

 console.log(a);

 console.log(arguments)

}

We call the variadic function like this:

variadic(1,2,3)

=> 1

=> [1,2,3]

Note A s you can see in the output, arguments do capture all the
arguments that are passed to a function.

As you can see in Listing 6-3, using arguments we are able to capture

the additional arguments one could call on a function. Using this

technique, we used to achieve the variadic functions in ES5 versions.

However, starting with ES6, we have an operator called Spread Operator

that we can use to achieve the same result.

Listing 6-4.  Variadic Function Using Spread Operator

const variadic = (a,...variadic) => {

 console.log(a)

 console.log(variadic)

}

Now if we call this function we get exactly what we would expect:

variadic(1,2,3)

=> 1

=> [2,3]

Chapter 6 Currying and Partial Application

112

As you can see in the result, we were pointed to the first passed

argument 1 and all other remaining arguments captured by our variadic

variable that uses the ... rest argument! ES6 style is more concise as

it clearly mentions that a function does take variadic arguments for

processing.

Now that we have some common terms in mind with respect to

functions, it’s time to turn our attention to the fancy term currying.

�Currying
Have you heard the term currying n number of times from the blogs

and still wonder what it means? Don’t worry; we are going to break the

currying definition into smaller definitions, which will make sense to you.

We’ll start with a simple question: What is currying? A simple answer

to that question would be this: Currying is a process of converting a

function with n number of arguments into a nested unary function. Don’t

worry if that doesn’t make sense to you yet. Let’s see what it means using a

simple example.

Imagine we have a function called add:

const add = (x,y) => x + y;

It’s a simple function. We can call this function like add(1,1), which

is going to give the result 2. Nothing fancy there. Now here is the curried

version of the add function:

const addCurried = x => y => x + y;

The addCurried function is now a curried version of add. If we call

addCurried with a single argument like this:

addCurried(4)

Chapter 6 Currying and Partial Application

113

it returns a function where x value is captured via the closure concept as

we saw in earlier chapters:

=> fn = y => 4 + y

We can call the addCurried function like this to get the proper result:

addCurried(4)(4)

=> 8

Here we have manually converted the add function, which takes the

two arguments into an addCurried function, which has nested unary

functions. The process of converting a function from two arguments to a

function that takes one argument (unary function) is called currying, as

shown in Listing 6-5.

Listing 6-5.  curry Function Definition

const curry = (binaryFn) => {

 return function (firstArg) {

 return function (secondArg) {

 return binaryFn(firstArg, secondArg);

 };

 };

};

Note  We have written the curry function in ES5 format so that we
can visualize the process of returning a nested unary function.

Now we can use our curry function to convert the add function to a

curried version like this:

let autoCurriedAdd = curry(add)

autoCurriedAdd(2)(2)

=> 4

Chapter 6 Currying and Partial Application

114

The output is exactly what we wanted to get. Now it’s time to revise the

definition of currying: Currying is a process of converting a function with n

number of arguments into a nested unary function.

As you can see in our curry function definition, we are converting

the binary function into nested functions, each of which takes only one

argument; that is, we are returning the nested unary functions. Now we

have clarified the term currying in your head, but the obvious questions

you still have are these: Why do we need currying? What is its use?

�Currying Use Cases
We’ll start simple. Imagine we have to create a function for creating tables.

For example, we need to create tableOf2, tableOf3, tableOf4, and so on.

We can achieve this via Listing 6-6.

Listing 6-6.  tables Function Without Currying

const tableOf2 = (y) => 2 * y

const tableOf3 = (y) => 3 * y

const tableOf4 = (y) => 4 * y

With that in place, the functions can be called this:

tableOf2(4)

=> 8

tableOf3(4)

=> 12

tableOf4(4)

=> 16

Now you see that you can generalize the tables concept into a single

function like this:

const genericTable = (x,y) => x * y

Chapter 6 Currying and Partial Application

115

and then you can use genericTable to get tableOf2 like the following:

genericTable(2,2)

genericTable(2,3)

genericTable(2,4)

and the same for tableOf3 and tableOf4. If you notice the pattern, we are

filling up 2 in the first argument for tableOf2, 3 for tableOf3, and so on!

Perhaps you are thinking that we can solve this problem via curry? Let’s

build tables from genericTable using curry:

Listing 6-7.  tables Function Using Currying

const tableOf2 = curry(genericTable)(2)

const tableOf3 = curry(genericTable)(3)

const tableOf4 = curry(genericTable)(4)

Now you can do your testing with these curried versions of the tables:

console.log("Tables via currying")

console.log("2 * 2 =",tableOf2(2))

console.log("2 * 3 =",tableOf2(3))

console.log("2 * 4 =",tableOf2(4))

console.log("3 * 2 =",tableOf3(2))

console.log("3 * 3 =",tableOf3(3))

console.log("3 * 4 =",tableOf3(4))

console.log("4 * 2 =",tableOf4(2))

console.log("4 * 3 =",tableOf4(3))

console.log("4 * 4 =",tableOf4(4))

Chapter 6 Currying and Partial Application

116

This is going to print the value we expect:

Table via currying

2 * 2 = 4

2 * 3 = 6

2 * 4 = 8

3 * 2 = 6

3 * 3 = 9

3 * 4 = 12

4 * 2 = 8

4 * 3 = 12

4 * 4 = 16

�A logger Function: Using Currying
The example in the previous section helped us understand what currying

does, but let’s use a more complicated example in this section. As

developers when we write code, we do a lot of logging at several stages

of the application. We could write a helper logger function that looks like

Listing 6-8.

Listing 6-8.  Simple loggerHelper Function

const loggerHelper = (mode,initialMessage,errorMessage,lineNo)

=> {

 if(mode === "DEBUG")

 �console.debug(initialMessage,errorMessage +

"at line: " + lineNo)

 else if(mode === "ERROR")

 �console.error(initialMessage,errorMessage +

"at line: " + lineNo)

Chapter 6 Currying and Partial Application

117

 else if(mode === "WARN")

 �console.warn(initialMessage,errorMessage +

"at line: " + lineNo)

 else

 throw "Wrong mode"

}

When any developer needs to print an error to the console from the

Stats.js file, he or she can use the function like the following:

loggerHelper("ERROR","Error At Stats.js","Invalid argument

passed",23)

loggerHelper("ERROR","Error At Stats.js","undefined argument",223)

loggerHelper("ERROR","Error At Stats.js","curry function is not

defined",3)

loggerHelper("ERROR","Error At Stats.js","slice is not

defined",31)

Similarly, we can use the loggerHelper function for debug and warn

messages. As you can tell, we are repeating the arguments, mainly mode

and initialMessage, for all the calls. Can we do it better? Yes, we can

do these calls better via currying. Can we use our curry function that is

defined in the previous section? Unfortunately, no, because the curry

function that we have designed can handle only binary functions, not a

function like loggerHelper that takes four arguments.

Let us solve this problem and implement the fully functional curry

function, which handles any function with n number of arguments.

�Revisit Curry
We all know that we can curry (Listing 6-5) only a function. How about

many functions? It’s simple but important to have it in our implementation

of curry. Let’s add the rule first, as shown in Listing 6-9.

Chapter 6 Currying and Partial Application

118

Listing 6-9.  Revisting curry Function Definition

let curry =(fn) => {

 if(typeof fn!=='function'){

 throw Error('No function provided');

 }

};

With that check in place, if others call our curry function with an

integer like 2, and so on, they get back the error. That’s perfect! The

next requirement to our curried function is that if anyone provided all

arguments to a curried function, we need to execute the real function by

passing the arguments. Let’s add that using Listing 6-10.

Listing 6-10.  curry Function Handling Arguments

let curry =(fn) => {

 if(typeof fn!=='function'){

 throw Error('No function provided');

 }

 return function curriedFn(...args){

 return fn.apply(null, args);

 };

};

Now if we have a function called multiply:

const multiply = (x,y,z) => x * y * z;

We can use our new curry function like the following:

curry(multiply)(1,2,3)

=> 6

curry(multiply)(1,2,0)

=> 0

Chapter 6 Currying and Partial Application

119

Let’s look at how it really works. We have added the logic in our curry

function like this:

return function curriedFn(...args){

 return fn.apply(null, args);

};

The returned function is a variadic function, which returns the

function result by calling the function via apply along by passing the args:

. . .

fn.apply(null, args);

. . .

With our curry(multiply)(1,2,3) example, args will be pointing to

[1,2,3] and because we are calling apply on fn, it’s equivalent to:

multiply(1,2,3)

which is exactly what we wanted! Thus, we get back the expected result

from the function.

Now let us get back to the problem of converting the n argument

function into a nested unary function (that’s the definition of curry itself)!

Listing 6-11.  curry Function Converting n arg Function to Unary

Function

let curry =(fn) => {

 if(typeof fn!=='function'){

 throw Error('No function provided');

 }

 return function curriedFn(...args){

Chapter 6 Currying and Partial Application

120

 if(args.length < fn.length){

 return function(){

 �return curriedFn.apply(null, args.concat([].slice.

call(arguments)));

 };

 }

 return fn.apply(null, args);

 };

};

We have added the part:

if(args.length < fn.length){

 return function(){

 �return curriedFn.apply(null, args.concat([].slice.

call(arguments)));

 };

}

Let’s understand what’s happening in this piece of code, one element

at a time.

args.length < fn.length

This line checks if the argument that is passed via ...args length and

the function argument list length is less or not. If so we go into the if

block, or else we fall back to call the full function as before.

Once we enter the if block, we use the apply function to call

curriedFn recursively like this:

curriedFn.apply(null, args.concat([].slice.call(arguments)));

The snippet

args.concat([].slice.call(arguments))

Chapter 6 Currying and Partial Application

121

is important. Using the concat function, we are concatenating the

arguments that are passed one at a time and calling the curriedFn

recursively. Because we are combining all the passed arguments and

calling it recursively, we will meet a point in which the line

 if (args.length < fn.length)

condition fails. The argument list length (args) and function argument

length (fn.length) will be equal, thus skipping the if block and calling

return fn.apply(null, args);

which is going to yield the function’s full result!

With that understanding in place, we can use our curry function to

invoke the multiply function:

curry(multiply)(3)(2)(1)

=> 6

Perfect! We have created our own curry function.

Note Y ou can call the preceding code snippet like the following, too:

let curriedMul3 = curry(multiply)(3)
let curriedMul2 = curriedMul3(2)
let curriedMul1 = curriedMul2(1)

where curriedMul1 will be equal to 6. We use curry(multiply)
(3)(2)(1), though, as it is much more readable.

An important point to note is that our curry function is now converting

a function of n arguments into a function that can be called as a unary

function as the example shows.

Chapter 6 Currying and Partial Application

122

�Back to logger Function
Now let’s solve our logger function using the defined curry function.

Bringing up the function here for easy reference (Listing 6-8):

const loggerHelper = (mode,initialMessage,errorMessage,lineNo) => {

 if(mode === "DEBUG")

 �console.debug(initialMessage,errorMessage +

"at line: " + lineNo)

 else if(mode === "ERROR")

 �console.error(initialMessage,errorMessage +

"at line: " + lineNo)

 else if(mode === "WARN")

 �console.warn(initialMessage,errorMessage +

"at line: " + lineNo)

 else

 throw "Wrong mode"

}

The developer used to call the function:

loggerHelper("ERROR","Error At Stats.js","Invalid argument

passed",23)

Now let’s solve the repeating first two arguments problem via curry:

let errorLogger = curry(loggerHelper)("ERROR")("Error At

Stats.js");

let debugLogger = curry(loggerHelper)("DEBUG")("Debug At

Stats.js");

let warnLogger = curry(loggerHelper)("WARN")("Warn At

Stats.js");

Chapter 6 Currying and Partial Application

123

Now we can easily refer to the earlier curried functions and use them

under the respective context:

//for error

errorLogger("Error message",21)

=> Error At Stats.js Error messageat line: 21

//for debug

debugLogger("Debug message",233)

=> Debug At Stats.js Debug messageat line: 233

//for warn

warnLogger("Warn message",34)

=> Warn At Stats.js Warn messageat line: 34

That’s brilliant! We have seen how the curry function helps in the

real world to remove a lot of boilerplates in function calls. Don’t forget to

thank the closures concept, which is backing up the curry function. The

debug module of the node uses the curry concept in its API (see https://

github.com/visionmedia/debug).

�Currying in Action
In the previous section we created our own curry function. We have also

seen a simple example of using this curry function.

In this section we are going to see small but compact examples in

which the currying technique is used. The examples shown in this section

will help you better understand how to use currying in your day-to-day

activities.

Chapter 6 Currying and Partial Application

https://github.com/visionmedia/debug
https://github.com/visionmedia/debug

124

�Finding a Number in Array Contents
Imagine we want to find the array content that has a number. We can solve

the problem via the following code snippet:

let match = curry(function(expr, str) {

 return str.match(expr);

});

The returned match function is a curried function. We can give the first

argument expr a regular expression /[0-9]+/ that will indicate whether

the content has a number in it.

let hasNumber = match(/[0-9]+/)

Now we will create a curried filter function:

let filter = curry(function(f, ary) {

 return ary.filter(f);

});

With hasNumber and filter in place, we can create a new function

called findNumbersInArray:

let findNumbersInArray = filter(hasNumber)

Now you can test it:

findNumbersInArray(["js","number1"])

=> ["number1"]

�Squaring an Array
We know how to square contents of an array. We have also seen the same

problem in previous chapters. We use the map function and pass on the

square function to achieve the solution to our problem. Here we can use

the curry function to solve the same problem in another way:

Chapter 6 Currying and Partial Application

125

let map = curry(function(f, ary) {

 return ary.map(f);

});

let squareAll = map((x) => x * x)

squareAll([1,2,3])

=> [1,4,9]

As you can see in this example, we have created a new function,

squareAll, that we can now use elsewhere in our code base. Similarly you

can also do this for findEvenOfArray, findPrimeOfArray, and so on.

�Data Flow
In both sections on using currying, we have designed the curried functions

such that they always take the array at the end. This is an intentional way

of creating a curried function. As discussed in previous chapters, we as

programmers often work on data structures like array, so making the array as

the last argument allows us to create lot of reusable functions like squareAll

and findNumbersInArray that we can use throughout the code base.

Note I n our source code companion, we have called the curry
function curryN. It’s just to keep the old curry as is, which was
supposed to do currying on binary functions.

�Partial Application
In this section we are going to see yet another function called partial that

allows developers to apply the function arguments partially.

Chapter 6 Currying and Partial Application

126

Imagine we want to perform a set of operations every 10 milliseconds.

Using the setTimeout function, we can do this:

setTimeout(() => console.log("Do X task"),10);

setTimeout(() => console.log("Do Y task"),10);

As you can see, we are passing on 10 for every one of our setTimeout

function calls. Can we hide that from the code? Can we use a curry

function to solve this problem? The answer is no, because the curry

function applies the argument from the leftmost to rightmost lists. Because

we want to pass on the functions as needed and keep 10 as a constant

(which is most of the argument list), we cannot use curry as such. One

workaround is that we can wrap our setTimeout function so that the

function argument becomes the rightmost one:

const setTimeoutWrapper = (time,fn) => {

 setTimeout(fn,time);

}

Then we can use our curry function to wrap our setTimeout to a

10-millisecond delay:

const delayTenMs = curry(setTimeoutWrapper)(10)

delayTenMs(() => console.log("Do X task"))

delayTenMs(() => console.log("Do Y task"))

which will work as we needed it to. The problem is, though, we must create

wrappers like setTimeoutWrapper, which will be an overhead. That’s

where we can use partial application techniques.

Chapter 6 Currying and Partial Application

127

�Implementing partial Function
To fully understand how the partial application technique is working,

we will be creating our own partial function in this section. Once the

implementation is done, we will learn how to use our partial function

with a simple example.

The implementation of the partial function looks like Listing 6-12.

Listing 6-12.  partial Function Definition

const partial = function (fn,...partialArgs){

 let args = partialArgs;

 return function(...fullArguments) {

 let arg = 0;

 �for (let i = 0; i < args.length && arg < fullArguments.

length; i++) {

 if (args[i] === undefined) {

 args[i] = fullArguments[arg++];

 }

 }

 return fn.apply(null, args);

 };

};

Let’s quickly use the partial function with our current problem:

let delayTenMs = partial(setTimeout,undefined,10);

delayTenMs(() => console.log("Do Y task"))

Chapter 6 Currying and Partial Application

128

which will print to the console as you expect. Now let’s walk through the

implementation details of the partial function. Using closures, we are

capturing the arguments that are passed to the function for the first time:

partial(setTimeout,undefined,10)

//will lead to

let args = partialArgs

=> args = [undefined,10]

We return a function that will remember the args value (yes, we

are using closures again). The returned function is very easy. It takes an

argument called fullArguments, so we call functions like delayTenMs by

passing this argument:

delayTenMs(() => console.log("Do Y task"))

//fullArguments points to

//[() => console.log("Do Y task")]

//args using closures will have

//args = [undefined,10]

Now in the for loop we iterate and create the necessary arguments

array for our function:

if (args[i] === undefined) {

 args[i] = fullArguments[arg++];

 }

}

Now let’s start with value i as 0:

//args = [undefined,10]

//fullArguments = [() => console.log("Do Y task")]

args[0] => undefined === undefined //true

Chapter 6 Currying and Partial Application

129

//inside if loop

args[0] = fullArguments[0]

=> args[0] = () => console.log("Do Y task")

//thus args will become

=> [() => console.log("Do Y task"),10]

As you can see in those code snippet examples, our args point to the array

as we would expect for setTimeout function calls. Once we have the necessary

arguments in args, we call the function via fn.apply(null, args).

Remember that we can apply partial for any function that has

n arguments. To make the point concrete, let’s look at an example. In

JavaScript we use the following function call to do JSON pretty print:

let obj = {foo: "bar", bar: "foo"}

JSON.stringify(obj, null, 2);

As you can see, the last two arguments for the function called

stringify are always going to be the same: null,2. We can use partial to

remove the boilerplate:

let prettyPrintJson = partial(JSON.stringify,undefined,null,2)

You can then use prettyPrintJson to print the JSON:

prettyPrintJson({foo: "bar", bar: "foo"})

which will give you this output:

"{

 "foo": "bar",

 "bar": "foo"

}"

Chapter 6 Currying and Partial Application

130

Note  There is a slight bug in our implementation of the partial
function. What if you call prettyPrintJson again with a different
argument? Does it work?

It always gives the result for the first invoked argument, but why? Can
you see where we are making the mistake?

Hint: Remember, we are modifying the partialArgs by replacing
the undefined values with our argument, and Arrays are used for
reference.

�Currying vs. Partial Application
We have seen both techniques, so the question is when to use which one.

The answer depends on how your API is defined. If your API is defined

as map,filter, then we can easily use the curry function to solve our

problem. As discussed in the previous section, though, life is not always

easy. There could be functions that are not designed for curry such as

setTimeout in our examples. In those cases, the best option would be to

use partial functions. After all, we use curry or partial to make function

arguments and function setup easy and more powerful.

It’s also important to note that currying will return nested unary

functions; we have implemented curry so that it takes n arguments just for

our convenience. It’s also a proven fact that developers need either curry

or partial but not both.

�Summary
Currying and partial application are always a tool in functional

programming. We started the chapter by explaining the definition of

currying, which is nothing but converting a function of n arguments into

Chapter 6 Currying and Partial Application

131

nested unary functions. We saw the examples of currying and where

it can be very useful, but there are cases where you want to fill the first

two arguments of a function and the last argument, leaving the middle

argument unknown for a certain time. That’s where partial application

comes into the picture. To fully understand both these concepts, we have

implemented our own curry and partial functions. We have made a lot of

progress, but we’re not done yet.

Functional programming is all about composing functions, namely

composing several small functions to build a new function. Composing

and pipelines are the topics of the next chapter.

Chapter 6 Currying and Partial Application

133© Anto Aravinth, Srikanth Machiraju 2018
A. Aravinth and S. Machiraju, Beginning Functional JavaScript,
https://doi.org/10.1007/978-1-4842-4087-8_7

CHAPTER 7

Composition and
Pipelines
In the previous chapter we saw two important techniques for functional

programming: currying and partial application. We discussed how these

two techniques work and that as JavaScript programmers we choose either

currying or partial application in our code base. In this chapter we are

going to see what functional composition means and its practical use cases.

Functional composition is simply referred to as composition in the

functional programming world. We are going to see a bit of theory on the

idea of composition and quite a few examples of it, then we will write our

own compose function. Understanding how the compose function can be

used to writer cleaner JavaScript is a fun task.

Note  The chapter examples and library source code are in branch
chap07. The repo’s URL is https://github.com/antsmartian/
functional-es8.git.

Once you check out the code, please check out branch chap07:

...

git checkout -b chap07 origin/chap07

...

https://github.com/antsmartian/functional-es8.git
https://github.com/antsmartian/functional-es8.git

134

For running the codes, as before run:

...

npm run playground

...

�Composition in General Terms
Before we see what functional composition is all about, let’s step back and

understand the idea behind composition. In this section we explore the

idea of composition by using a philosophy that is much more pronounced

in the Unix world.

�Unix Philosophy
Unix philosophy is a set of ideas that were originated by Ken Thompson.

One part of the Unix philosophy is this:

Make each program do one thing well. To do a

new job, build afresh rather than complicate old

programs by adding new “features.”

This is exactly what we are doing as part of creating our functions.

Functions, as we have seen until now in this book, are supposed to take an

argument and return data. Yes, functional programming does follow Unix

philosophy.

The second part of the philosophy is this:

Expect the output of every program to become the

input to another, as yet unknown, program.

Chapter 7 Composition and Pipelines

135

That’s an interesting quote. What does it mean by “Expect the output

of every program to become the input to another”? To make the point

clear, let’s look at a few commands on a Unix platform that were built by

following these philosophies.

For example, cat is a command (or you can think of it as a function)

that is used to display the contents of a text file to a console. Here the cat

command takes an argument (as similar to a function), that is, the file

location, and so on, and returns the output (again as similar to a function)

to the console. So we can do the following:

cat test.txt

which will print to the console

Hello world

Note H ere the content of test.txt will be Hello world.

That’s so simple. Another command called grep allows us to search for

content in a given text. An important point to note is that the grep function

takes an input and gives the output (again very similar to a function).

We can do the following with the grep command:

grep 'world' test.txt

which will return the matching content, in this case:

Hello world

We have seen two quite simple functions—grep and cat—that are

built by following the Unix philosophy. Now we can take some time to

understand this quote:

Expect the output of every program to become the

input to another, as yet unknown, program.

Chapter 7 Composition and Pipelines

136

Imagine you to want to send the data from the cat command as

an input to the grep command to do a search. We know that the cat

command will return the data; we also know that the grep command takes

the data for processing the search operation. Thus, using the Unix | (pipe

symbol), we can achieve our task:

cat test.txt | grep 'world'

which will return the data as expected:

Hello world

Note  The symbol | is called a pipe symbol. This allows us to
combine several functions to create a new function that will help us
to solve our problem. Basically | sends the output of a function on
the left side as an input to a function on the right side! This process,
technically, is called s pipeline.

This example might be trivial, but it conveys the idea behind the quote:

Expect the output of every program to become the

input to another, as yet unknown, program.

As our example shows, the grep command or a function receives

the output of a cat command or a function. Here we have created a new

function altogether without any effort by combining two existing base

functions. Of course, here the | pipe acts as a bridge to connect the given

two commands.

Let’s change our problem statement a bit. What if we want to count the

number of occurrences of the word world in a given text file? How we can

achieve it?

This is how we are going to solve it:

cat test.txt | grep 'world' | wc

Chapter 7 Composition and Pipelines

137

Note  The command wc is used to count the words in a given text.
This command is available on all Unix and Linux platforms.

This is going to return the data as we expected. As the preceding

examples show, we are creating a new function as per our need on the fly

from our base functions! In other words, we are composing a new function

from our base function(s). Note that the base function needs to obey this rule:

Each base function needs to take an argument and

return value.

We would be able to compose a new function with the help of |. As this

chapter shows, we will be building our own compose function in JavaScript,

which does the same job of | in the Unix and Linux world.

Now we have the idea of composing functions from base functions.

The real advantage of composing functions is that we can combine our

base function to solve the problem at hand, without re-creating a new

function.

�Functional Composition
In this section we discuss a use case where functional composition will be

useful in the JavaScript world. Stay with us; you’re going to absolutely love

the idea of the compose function.

�Revisiting map,filter
In Chapter 5, we saw how to chain the data from a map and filter to solve

the problem at hand. Let’s quickly revisit the problem and the solution.

Chapter 7 Composition and Pipelines

138

We had an array of objects, the structure of which looks like Listing 7-1.

Listing 7-1.  Apressbook Object Structure, Let apressBooks = [

 {

 "id": 111,

 "title": "C# 6.0",

 "author": "ANDREW TROELSEN",

 "rating": [4.7],

 "reviews": [{good : 4 , excellent : 12}]

 },

 {

 "id": 222,

 "title": "Efficient Learning Machines",

 "author": "Rahul Khanna",

 "rating": [4.5],

 "reviews": []

 },

 {

 "id": 333,

 "title": "Pro AngularJS",

 "author": "Adam Freeman",

 "rating": [4.0],

 "reviews": []

 },

 {

 "id": 444,

 "title": "Pro ASP.NET",

 "author": "Adam Freeman",

 "rating": [4.2],

 "reviews": [{good : 14 , excellent : 12}]

 }

];

Chapter 7 Composition and Pipelines

139

The problem was to get the title and author objects out of

apressBooks for which the review value is greater than 4.5. Our solution to

the problem was Listing 7-2.

Listing 7-2.  Getting author Details Using map

map(filter(apressBooks, (book) => book.rating[0] > 4.5),

(book) => {

 return {title: book.title,author:book.author}

})

For this, the result is the following:

[

 {

 title: 'C# 6.0',

 author: 'ANDREW TROELSEN'

 }

]

The code to achieve the solution tells an important point. The data

from our filter function is passed into the map function as its input

argument. Yes, you have guessed it correctly: Does it sound like the same

problem we solved in the previous section using | in the Unix world? Can

we do the same thing in the JavaScript world? Can we create a function

that will combine two functions by sending the output of one function as

an input to another function? Yes, we can! Meet the compose function.

�compose Function
In this section, let’s create our first compose function. Creating a new

compose function is easy and straightforward. The compose function

needs to take the output of one function and provide it as input to another

function. Let’s write a simple compose function in Listing 7-3.

Chapter 7 Composition and Pipelines

140

Listing 7-3.  compose Function Definition

const compose = (a, b) =>

 (c) => a(b(c))

The compose function is simple and does what we need it to do. It takes

two functions, a and b, and returns a function that takes one argument c.

When we call the compose function by supplying the value of c, it will call

the function b with input of c and the output of the function b goes into

function a as input. That’s exactly what a compose function definition is.

Now let’s quickly test our compose function with a simple example

before we dive into our running example from the previous section.

Note  The compose function executes b first and passes the return
value of b as an argument to the function a. The direction of functions
invoked in compose is right to left (i.e., b executes first, followed by a).

�Playing with the compose Function
With our compose function in place, let’s build some examples.

Imagine we want to round a given number. The number will be a float,

so we have to convert that number to a float and then call Math.round.

Without compose, we can do the following:

let data = parseFloat("3.56")

let number = Math.round(data)

The output will be 4 as we would expect. As you can see in this

example, the data (which is the output of the parseFloat function) is

passed as input to Math.round to get a solution; this is the right problem

candidate that our compose function will solve.

Chapter 7 Composition and Pipelines

141

Let’s solve this via our compose function:

let number = compose(Math.round,parseFloat)

This statement will return a new function that is stored as a number and

looks like this:

number = (c) => Math.round(parseFloat(c))

Now if we pass the input c to our number function, we will get what

we expect:

number("3.56")

=> 4

What we have just done is functional composition! Yes, we have

composed two functions to build a new function on the fly! A key point to

note here is that the functions Math.round and parseFloat aren’t executed

or run until we call our number function.

Now imagine we have two functions:

let splitIntoSpaces = (str) => str.split(" ");

let count = (array) => array.length;

Now if you want to build a new function to count the number of words

in a string, we can easily do this:

const countWords = compose(count,splitIntoSpaces);

Now we can call that:

countWords("hello your reading about composition")

=> 5

The newly created function countWords using compose is an elegant

and easy way to author simple functions by composing multiple base

functions.

Chapter 7 Composition and Pipelines

142

�curry and partial to the Rescue
We know that we can compose two functions only if this function takes

one input argument. That’s not always the case, though, as there can be

functions that have multiple arguments. How are we going to compose

those functions? Is there something we can do about it?

Yes, we can do it using either the curry or partial functions that

we defined in the previous chapter. Earlier in this chapter we used the

following code to solve one of the problems (Listing 7-2):

map(filter(apressBooks, (book) => book.rating[0] > 4.5),

(book) => {

 return {title: book.title,author:book.author}

})

Now can we use the compose function to compose both map and filter

with specifics to our example? Remember that both map and filter

functions take two arguments: The first argument is the array and the

second argument is the function to operate on that array. Therefore we

cannot compose these two functions directly.

We can, however, take help from partial functions. Remember that

the preceding code snippet does work on the apressBooks object. We pull

it out here again for easy reference:

let apressBooks = [

 {

 "id": 111,

 "title": "C# 6.0",

 "author": "ANDREW TROELSEN",

 "rating": [4.7],

 "reviews": [{good : 4 , excellent : 12}]

 },

Chapter 7 Composition and Pipelines

143

 {

 "id": 222,

 "title": "Efficient Learning Machines",

 "author": "Rahul Khanna",

 "rating": [4.5],

 "reviews": []

 },

 {

 "id": 333,

 "title": "Pro AngularJS",

 "author": "Adam Freeman",

 "rating": [4.0],

 "reviews": []

 },

 {

 "id": 444,

 "title": "Pro ASP.NET",

 "author": "Adam Freeman",

 "rating": [4.2],

 "reviews": [{good : 14 , excellent : 12}]

 }

];

Now let’s say we have many small functions in our code base for

filtering the books based on different ratings like the following:

let filterOutStandingBooks = (book) => book.rating[0] === 5;

let filterGoodBooks = (book) => book.rating[0] > 4.5;

let filterBadBooks = (book) => book.rating[0] < 3.5;

Chapter 7 Composition and Pipelines

144

and we do have many projection functions like this:

let projectTitleAndAuthor = (book) => { return {title: book.

title,author:book.author} }

let projectAuthor = (book) => { return {author:book.author} }

let projectTitle = (book) => { return {title: book.title} }

Note  You might be wondering why we have small functions even
for simple things. Remember that composition is all about small
functions being composed into a larger function. Simple functions are
easy to read, test, and maintain; and using compose we can build
anything out of it, as we will see in this section.

Now to solve our problem—to get book titles and authors with ratings

higher than 4.5—we can use compose and partial as in the following:

let queryGoodBooks = partial(filter,undefined,filterGoodBooks);

let mapTitleAndAuthor = partial(map,undefined,projectTitleAnd

Author)

let titleAndAuthorForGoodBooks = compose(mapTitleAndAuthor,

queryGoodBooks)

Let’s take some time to understand the position of the partial

function in the current problem domain. As mentioned, the compose

function can only compose a function that takes one argument. However,

both filter and map take two arguments, so we cannot compose them

directly.

That’s the reason we have used the partial function to partially apply

the second argument for both map and filter, as you can see here:

partial(filter,undefined,filterGoodBooks);

partial(map,undefined,projectTitleAndAuthor)

Chapter 7 Composition and Pipelines

145

Here we have passed the filterGoodBooks function to query the books

that have ratings over 4.5 and the projectTitleAndAuthor function to

take the title and author properties from the apressBooks object. Now

the returned partial application will expect only one argument, which

is nothing but the array itself. With these two partial functions in place,

we can compose them via compose as we already have done, as shown in

Listing 7-4.

Listing 7-4.  Using compose Function

let titleAndAuthorForGoodBooks = compose(mapTitleAndAuthor,

queryGoodBooks)

Now the function titleAndAuthorForGoodBooks expects one

argument, in our case apressBooks; let’s pass the object array to it:

titleAndAuthorForGoodBooks(apressBooks)

=> [

 {

 title: 'C# 6.0',

 author: 'ANDREW TROELSEN'

 }

]

We got back exactly what we wanted without compose, but the latest

composed version titleAndAuthorForGoodBooks is much more readable

and elegant in our opinion. You can sense the importance of creating small

units of function that can be rebuilt using compose as per our needs.

In the same example, what if we want to get only the titles of the

books with a rating higher than 4.5? It’s simple:

let mapTitle = partial(map,undefined,projectTitle)

let titleForGoodBooks = compose(mapTitle,queryGoodBooks)

Chapter 7 Composition and Pipelines

146

//call it

titleForGoodBooks(apressBooks)

=> [

 {

 title: 'C# 6.0'

 }

]

How about getting only author names for books with ratings that equal

5? That should be easy, right? We leave it to you to solve this using the

functions already defined and the compose function.

Note I n this section, we have used partial to fill the arguments
of a function. However you can use curry to do the same thing. It’s
just a matter of choice. Can you come up with a solution for using
curry in our example here? (Hint: Reverse the order of argument for
map, filter).

�compose Many Functions
Currently our version of the compose function only composes two given

functions. How about composing three, four, or n number of functions?

Sadly, our current implementation doesn’t handle this. Let’s rewrite our

compose function so that it can compose multiple functions on the fly.

Remember that we need to send the output of each function as an

input to another function (by remembering the last executed function

output recursively). We can use the reduce function, which we used in

previous chapters to reduce the n of function calls one at a time. The

rewritten compose function now looks like Listing 7-5.

Chapter 7 Composition and Pipelines

147

Listing 7-5.  compose many Function

const compose = (...fns) =>

 (value) =>

 reduce(fns.reverse(),(acc, fn) => fn(acc), value);

Note  This function is called composeN in the source code repo.

The important line of the function is this:

reduce(fns.reverse(),(acc, fn) => fn(acc), value);

Note  Recall from the previous chapter that we used the reduce
function to reduce the array into a single value (along with an
accumulator value; i.e., the third parameter of reduce). For example,
to find the sum of the given array, using reduce:

reduce([1,2,3],(acc,it) => it + acc,0)=> 6

Here the array [1,2,3] is reduced into [6]; the accumulator value
here is 0.

Here we are first reversing the function array via fns.reverse() and

passing the function as (acc, fn) => fn(acc), which is going to call

each function one after the other by passing the acc value as its argument.

Notably, the initial accumulator value is nothing but a value variable,

which will be the first input to our function.

With the new compose function in place, let’s test it with our old

example. In the previous section we composed a function to count words

given in a string:

let splitIntoSpaces = (str) => str.split(" ");

let count = (array) => array.length;

const countWords = compose(count,splitIntoSpaces);

Chapter 7 Composition and Pipelines

148

//count the words

countWords("hello your reading about composition")

=> 5

Imagine we want to find out whether the word count in the given string

is odd or even. We already have a function for it:

let oddOrEven = (ip) => ip % 2 == 0 ? "even" : "odd"

Now with our compose function in place, we can compose these three

functions to get what we really want:

const oddOrEvenWords = composeN(oddOrEven,count,splitIntoSpaces);

oddOrEvenWords("hello your reading about composition")

=> ["odd"]

We got back the expected result. Go and play around with our new

compose function!

Now we have a solid understanding of how to use the compose

function to get what we need. In the next section, we are going to see the

same concept of compose in a different way, called pipelines.

�Pipelines and Sequence
In the previous section, we saw that the data flow of compose is from left

to right, as the functions on the left mostly get executed first, passing on

the data to the next function, and so on, until the rightmost function gets

executed last.

Certain people prefer the other way—where the rightmost function

gets executed first and the leftmost function gets executed last. As you can

remember, the data flow on Unix commands when we do | is from right to

left. In this section, we are going to implement a new function called pipe

that does exactly the same thing as the compose function, but just swaps

the data flow.

Chapter 7 Composition and Pipelines

149

Note  This process of flowing the data from right to left is called
pipelines or even sequences. You can call them either pipeline or
sequences as you prefer.

�Implementing pipe
The pipe function is just a replica of our compose function; the only change

is the data flow, as shown in Listing 7-6.

Listing 7-6.  pipe Function Definition

const pipe = (...fns) =>

 (value) =>

 reduce(fns,(acc, fn) => fn(acc), value);

That’s it. Note that there is no more call on fns reverse functions as

in compose, which means we are going to execute the function order as it is

(from left to right).

Let’s quickly check our implementation of the pipe function by

rerunning the same example as in the previous section:

const oddOrEvenWords = pipe(splitIntoSpaces,count,oddOrEven);

oddOrEvenWords("hello your reading about composition");

=> ["odd"]

The result is going to be the exact same; however, notice that we

have changed the order of functions when we do piping. First, we call

splitIntoSpaces and then count and finally oddOrEven.

Some people (who have knowledge of shell scripting) prefer pipes

over compose. It’s just a personal preference and nothing to do with the

underlying implementation. The takeaway is that both pipe and compose

do the same thing, but with different data flow. You can use either pipe or

compose in your code base, but not both, as it can lead to confusion among

your team members. Stick to one style of composing.

Chapter 7 Composition and Pipelines

150

�Odds on Composition
In this section, we discuss two topics. The first is one of the most important

properties of compose: Composition is associative. The second discussion

is on how we debug when we compose many functions.

Let’s tackle one after the other.

�Composition Is Associative

Functional composition is always associative. In general, the associative

law states the outcome of the expression remains the same irrespective of

the order of the parentheses, for example:

x * (y * z) = (x * y) * z = xyz

Likewise,

compose(f, compose(g, h)) == compose(compose(f, g), h);

Let’s quickly check our previous section example:

//compose(compose(f, g), h)

let oddOrEvenWords = compose(compose(oddOrEven,count),splitInto

Spaces);

let oddOrEvenWords("hello your reading about composition")

=> ['odd']

//compose(f, compose(g, h))

let oddOrEvenWords = compose(oddOrEven,compose(count,splitIntoS

paces));

let oddOrEvenWords("hello your reading about composition")

=> ['odd']

As you can see in these examples, the result is going to be the same for

both cases. Thus it proves the functional composition is associative. You

might be wondering what the benefit of compose being associative is?

Chapter 7 Composition and Pipelines

151

The real benefit is that it allows us to group functions into their own

compose; that is:

let countWords = compose(count,splitIntoSpaces)

let oddOrEvenWords = compose(oddOrEven,countWords)

or

let countOddOrEven = compose(oddOrEven,count)

let oddOrEvenWords = compose(countOddOrEven,splitIntoSpaces)

or

...

This code is possible just because the composition possesses the

associative property. Earlier in the chapter we discussed that creating

small functions is the key to composing. Because compose is associative we

can create small functions by composition, without any worry, as the result

is going to be the same.

�The Pipeline Operator
One other way of composing or chaining base functions is by using the

pipeline operator. The pipeline operator is like the Unix pipe operator we

saw earlier. The new pipeline operator is intended to make the chained

JavaScript functions’ code more readable and extendible.

Note A t the time of writing, the pipeline operator is still at Stage 1
draft (proposal) state in the TC39 approval workflow, which means
it is not part of the ECMAScript specification yet. The latest status
of this proposal along with browser compatibility will be available at
https://github.com/tc39/proposals.

Chapter 7 Composition and Pipelines

https://github.com/tc39/proposals

152

Let us see some examples of the pipeline operator.

Consider the following mathematical functions that operate on a single

string argument.

const double = (n) => n * 2;

const increment = (n) => n + 1;

const ntimes = (n) => n * n;

Now, to call these functions on any number, normally we would write

the following statement:

ntimes(double(increment(double(double(5)))));

This statement should return a value of 1764. The problem with this

statement is the readability, as the sequence of operations or number of

the operations is not readable. Linux-like systems use a pipeline operator

like the one we saw at the beginning of the chapter. To make the code

more readable a similar operator is being added to the ECMAScript 2017

(ECMA8). The name of the operator is pipeline (or binary infix operator),

which looks like ‘|>’. The binary infix operator evaluates its left-hand side

(LHS) and applies the right-hand side (RHS) to the LHS’s value as a unary

function call. Using this operator, the preceding statement can be written

as shown here.

5 |> double |> double |> increment |> double |> ntimes //

returns 1764.

That is more readable, isn’t it? Of course, it is easier to read than

the nested expressions, contains fewer or no parentheses, and has less

indentation. Remember at this point it only works on unary functions,

functions with only one argument.

Chapter 7 Composition and Pipelines

153

Note  We haven’t had the chance to execute it using the Babel
compiler at the time of writing because the operator is in proposal
state. You can try the preceding example when the proposal passes
Stage 0 (Released) using the latest Babel compiler. You can also use
an online Babel compiler like the one at https://babeljs.io/.
The latest status of this proposal’s inclusion into ECMAScript can be
watched at http://tc39.github.io/proposal-pipeline-
operator/.

Using the pipeline operator with our earlier example of getting the title

and author of highly reviewed books is shown here.

let queryGoodBooks = partial(filter,undefined,filterGoodBooks);

let mapTitleAndAuthor = partial(map,undefined,projectTitleAnd

Author)

let titleAndAuthorForGoodBooks = compose(mapTitleAndAuthor,

queryGoodBooks)

titleAndAuthorForGoodBooks(apressBooks)

This can be rewritten more understandably as

apressBooks |> queryGoodBooks |> mapTitleAndAuthor.

Once again, this operator just a syntactic alternative; the code behind

the curtains remains the same, so it is a matter of choice for the developer.

However, this pattern saves a few keystrokes by eliminating the effort to

name intermediate variables. The GitHub repository for this pipeline

operator is https://github.com/babel/babel/tree/master/packages/

babel-plugin-syntax-pipeline-operator.

Chapter 7 Composition and Pipelines

https://babeljs.io/
http://tc39.github.io/proposal-pipeline-operator/
http://tc39.github.io/proposal-pipeline-operator/
https://github.com/babel/babel/tree/master/packages/babel-plugin-syntax-pipeline-operator
https://github.com/babel/babel/tree/master/packages/babel-plugin-syntax-pipeline-operator

154

Although the pipeline operator works only on unary functions, there is

a way around that to use it for functions with multiple arguments. Say we

have these functions:

let add = (x, y) => x + y;

let double = (x) => x + x;

// without pipe operator

add(10, double(7))

// with pipe operator

7 |> double |> (_=> add(10, _) // returns 24.

Note H ere the character _ can be replaced with any valid variable
name.

�Debugging Using the tap Function
We have used the compose function quite a lot in this chapter. The compose

function can compose any number of functions. The data are going to

flow from left to right in a chain until the full function list is evaluated.

In this section, we teach you a trick that allows you to debug the failures

on compose.

Let’s create a simple function called identity. The aim of this function

is to take the argument and return the same argument; hence the name

identity.

const identity = (it) => {

 console.log(it);

 return it

}

Chapter 7 Composition and Pipelines

155

Here we have added a simple console.log to print the value this

function receives and also return it as it is. Now imagine we have the

following call:

compose(oddOrEven,count,splitIntoSpaces)("Test string");

When you execute this code, what if the count function throws an

error? How will you know what value the count function receives as

its argument? That’s where our little identity function comes into the

picture. We can add identity in the flow where we see an error like this:

compose(oddOrEven,count,identity,splitIntoSpaces)("Test string");

That is going to print the input argument that the count function is

going to receive. This simple function can be very helpful in debugging

what data a function does receive.

�Summary
We started this chapter by taking Unix philosophy as an example. We

have seen how, by following the Unix philosophy, Unix commands like

cat, grep, and wc could be able to compose as needed. We created our

own version of the compose function to achieve the same in the JavaScript

world. The simple compose function is useful to developers as we can

compose complex functions as needed from our well-defined small

functions. We also saw an example of how currying helps in functional

composition, by a partial function.

We also discussed another function called pipe, which does exactly

the same thing but inverts the data flow when compared to the compose

function. At the end of the chapter we discussed an important property

of compose: Composition is associative. We also introduced the usage of

a new pipeline operator (|>) also called the binary infix operator, which

Chapter 7 Composition and Pipelines

156

can be used with unary functions. The pipeline operator is a proposal to

ECMAScript 2017 that is at the proposal stage and will be available soon in

the next release of ECMAScript. We also presented a small function called

identity that we can use as our debugging tool while facing problems

with the compose function.

In the next chapter, we are going to cover functors. Functors are very

simple, but very powerful. We introduce use cases and a lot more about

functors in the next chapter.

Chapter 7 Composition and Pipelines

157© Anto Aravinth, Srikanth Machiraju 2018
A. Aravinth and S. Machiraju, Beginning Functional JavaScript,
https://doi.org/10.1007/978-1-4842-4087-8_8

CHAPTER 8

Fun with Functors
In our previous chapter, we dealt with many functional programming

techniques. In this chapter we are going to see yet another important

concept in programming called error handling. Error handling is a

common programming technique for handling errors in your application.

The functional programming method of error handling will be different,

though, and that’s exactly what we are going to see in this chapter.

We will be looking at a new concept called functor. This new friend is

going to help us handle errors in a purely functional way. Once we grasp

the idea of a functor, we are going to implement two real-world functors:

MayBe and Either. Let’s get started.

Note  The chapter examples and library source code are in branch
chap08. The repo’s URL is https://github.com/antsmartian/
functional-es8.git.

Once you check out the code, please check out branch chap08:

...

git checkout -b chap08 origin/chap08

...

https://github.com/antsmartian/functional-es8.git
https://github.com/antsmartian/functional-es8.git

158

For running the codes, as before run:

...

npm run playground

...

�What Is a Functor?
In this section we are going to see what a functor really is. Here is its

definition:

A functor is a plain object (or type class in other

languages) that implements the function map

that, while running over each value in the object,

produces a new object.

It is not that easy to understand the definition at first sight. We are

going to break it down step by step so that we clearly understand it and see

in action (via writing code) what a functor is.

�Functor Is a Container
Simply put, a functor is a container that holds the value in it. We have

seen this in the definition stating that functor is a plain object. Let’s create

a simple container that can hold any value we pass into it, and call it a

Container (see Listing 8-1).

Listing 8-1.  Container Definition

const Container = function(val) {

 this.value = val;

}

Chapter 8 Fun with Functors

159

Note  You might be wondering why we didn’t write the Container
function using our arrow syntax:

const Container = (val) => {

this.value = val;

}

That code will be fine, but the moment we try to apply the new
keyword on our Container, we will get an error like this:

Container is not a constructor(...)(anonymous
function)

Why is that? Well, technically, to create a new Object, the function
should have the internal method [[Construct]] and the property
prototype. Sadly, the Arrow function doesn’t have both! So here we
are falling back to our old friend function, which has the internal
method [[Construct]], and it also has access to the prototype
property.

Now with Container in place, we can create a new object out of it, as

shown in Listing 8-2.

Listing 8-2.  Playing With Container

let testValue = new Container(3)

=> Container(value:3)

let testObj = new Container({a:1})

=> Container(value:{a:1})

let testArray = new Container([1,2])

=> Container(value:[1,2])

Chapter 8 Fun with Functors

160

Container is just holding the value inside it. We can pass any data type

in JavaScript to it and Container will hold it. Before we move on, we can

create a util method called of in the Container prototype, which will

save us in writing the new keyword to create a new Container. The code

looks like Listing 8-3.

Listing 8-3.  of Method Definition

Container.of = function(value) {

 return new Container(value);

}

With this of method in place, we can rewrite the code in Listing 8-2 as

shown in Listing 8-4.

Listing 8-4.  Creating Container with of

testValue = Container.of(3)

=> Container(value:3)

testObj = Container.of({a:1})

=> Container(value:{a:1})

testArray = new Container([1,2])

=> Container(value:[1,2])

It is worth noting that Container can contain nested Containers, too.

Container.of(Container.of(3));

is going to print:

Container {

 value: Container {

 value: 3

 }

}

Chapter 8 Fun with Functors

161

Now that we have defined that the functor is nothing but a Container

that can hold the value, let’s revisit the definition of a functor.

Functor is a plain object (or type class in other languages) that

implements the function map while running over each value in the object

to produce a new object.

It looks like functor needs to implement a method called map. Let’s

implement that method in the next section.

�Implementing map
Before we implement the map function, let’s pause here and think about

why we need the map function in the first place. Remember that we created

Container that just holds the value we pass into it. Holding the value

hardly has any use, though, and that is where the map function comes into

place. The map function allows us to call any function on the value that is

being currently held by the Container.

The map function takes the value out of the Container, applies the

passed function on that value, and again puts the result back in the

Container. Let’s visualize using the image shown in Figure 8-1.

Figure 8-1.    Mechanism of Container and map function

Figure 8-1 shows the way the map function is going to work with our

Container object. It takes the value in the Container—in this case the

value is 5—and passes on that value to the passed function double (this

Chapter 8 Fun with Functors

162

function just doubles the given number). The result is put back again into

the Container. With that understanding in place, we can implement the

map function, as shown in Listing 8-5.

Listing 8-5.  map Function Definition

Container.prototype.map = function(fn){

 return Container.of(fn(this.value));

}

As shown earlier, the preceding map function simply does what we have

discussed in Figure 8-1. It’s simple and elegant. Now to make the point

concrete, let’s put our image piece into code action:

let double = (x) => x + x;

Container.of(3).map(double)

=> Container { value: 6 }

Note that the map returns the result of the passed function again in the

container, which allows us to chain the operation:

Container.of(3).map(double)

 .map(double)

 .map(double)

=> Container {value: 24}

Now implementing Container with our map function, we can make

complete sense of the functor definition:

Functor is a plain object (or type class in other

languages) that implements the function map

that, while running over each value in the object,

produces a new object.

Chapter 8 Fun with Functors

163

Or in other words:

Functor is an object that implements a map contract.

Now that we have defined it, you might be wondering what functor is

useful for. We are going to answer that in the next section.

Note  Functor is a concept that looks for a contract. The contract
as we have seen is simple, implementing map. The way in which
we implement the map function provides different types of functor
like MayBe and Either, which we are going to discuss later in this
chapter.

�MayBe
We started the chapter with the argument of how we handle errors and

exception using functional programming techniques. In the previous

section we learned about the fundamental concept of functor. In this

section, we are going to see a type of functor called MayBe. The MayBe

functor allows us to handle errors in our code in a more functional way.

�Implementing MayBe
MayBe is a type of functor, which means it’s going to implement a

map function but in a different way. Let’s start with a simple MayBe

in Listing 8-6, which can hold the data (very similar to a Container

implementation):

Chapter 8 Fun with Functors

164

Listing 8-6.  MayBe Function Definition

const MayBe = function(val) {

 this.value = val;

}

MayBe.of = function(val) {

 return new MayBe(val);

}

We just created MayBe, which resembles the Container

implementation. As stated earlier, we have to implement a map contract for

the MayBe, which looks like Listing 8-7.

Listing 8-7.  MayBe’s map Function Definition

MayBe.prototype.isNothing = function() {

 return (this.value === null || this.value === undefined);

};

MayBe.prototype.map = function(fn) {

 �return this.isNothing() ? MayBe.of(null) : MayBe.of(fn(this.

value));

};

The map function does very similar things to the Container (simple

functor) map function. MayBe’s map first checks whether the value in the

container is null or undefined before applying the passed function using

the isNothing function, which takes care of null and undefined checks:

(this.value === null || this.value === undefined);

Note that map puts the result of applying the function back in the

container:

return this.isNothing() ? Maybe.of(null) : Maybe.of(f(this.__

value));

Now it’s time to see MayBe in action.

Chapter 8 Fun with Functors

165

�Simple Use Cases
As we discussed in the previous section, MayBe checks the null, undefined

before applying the passed function in map. This is a very powerful

abstraction that takes care of error handling. To make this concrete, a

simple example is provided in Listing 8-8.

Listing 8-8.  Creating our First MayBe

MayBe.of("string").map((x) => x.toUpperCase())

which returns

MayBe { value: 'STRING' }

The most important and interesting point to note here is this:

(x) => x.toUpperCase()

doesn’t care if x is null or undefined or that it has been abstracted by

the MayBe functor. What if the value of the string is null? Then the code

looks like this:

MayBe.of(null).map((x) => x.toUpperCase())

We will be getting back this:

MayBe { value: null }

Now our code doesn’t explode in null or undefined values as we have

wrapped our value in the type safety container MayBe. We are now handling

the null values in a declarative way.

Chapter 8 Fun with Functors

166

Note  On MayBe.of(null) case, if we call the map function, from
our implementation we know that map first checks if the value is
null or undefined by calling isNothing:

//implementation of map

MayBe.prototype.map = function(fn) {

return this.isNothing() ? MayBe.of(null) : MayBe.
of(fn(this.value));

};

if isNothing returns true. We return back MayBe.of(null)
instead of calling the passed function.

In a normal imperative way, we would have done this:

let value = "string"

if(value != null || value != undefined)

 return value.toUpperCase();

The preceding code does exactly the same thing, but look at the steps

required to check if the value is null or undefined, even for a single call.

Also using MayBe, we don’t care about those sneaky variables to hold the

resulting value. Remember that we can chain our map function as desired,

as shown in Listing 8-9.

Listing 8-9.  Chaining with map

MayBe.of("George")

 .map((x) => x.toUpperCase())

 .map((x) => "Mr. " + x)

Chapter 8 Fun with Functors

167

gives back:

MayBe { value: 'Mr. GEORGE' }

Before we close this section, we need to talk about two more important

properties of MayBe. The first one is that even if your passed function to map

returns null/undefined, MayBe can take care of it. In other words, in the

whole chain of map calls, it is fine if a function returns null or undefined.

To illustrate the point, let’s tweak the last example:

MayBe.of("George")

 .map(() => undefined)

 .map((x) => "Mr. " + x)

Note that our second map function returns undefined; however,

running the preceding code will give this result:

MayBe { value: null }

as expected.

The second important point is that all map functions will be called

regardless if they receive null/undefined. We’ll pull out the same code

snippet (Listing 8-9) that we used in the previous example:

MayBe.of("George")

 .map(() => undefined)

 .map((x) => "Mr. " + x)

The point here is that even though the first map does return undefined:

map(() => undefined)

the second map will be called always (i.e., the chained maps to any level will

be called always); it is just that the next map function in the chain returns

undefined (as the previous map returns undefined/null), without applying

the passed function. This process is repeated until the last map function call

is evaluated in the chain.

Chapter 8 Fun with Functors

168

�Real-World Use Cases
Because MayBe is a type of container that can hold any values, it can also

hold values of type Array. Imagine you have written an API to get the top 10

SubReddit data based on types like top, new, and hot (see Listing 8-10).

Listing 8-10.  Getting Top 10 SubReddit Posts

let getTopTenSubRedditPosts = (type) => {

 let response

 try{

 �response = JSON.parse(request('GET',"https://www.

reddit.com/r/subreddits/" + type + ".json?limit=10").

getBody('utf8'))

 }catch(err) {

 �response = { message: "Something went wrong" ,

errorCode: err['statusCode'] }

 }

 return response

}

Note  request comes from the package sync-request. This
will allow us to fire a request and get the response in synchronous
fashion. This is just for illustration; we don’t recommend using
synchronous calls in production.

The getTopTenSubRedditPosts function just hits the URL and gets the

response. If there are any issues in hitting the Reddit API, it sends back a

custom response of this format:

. . .
response = { message: "Something went wrong" , errorCode:
err['statusCode'] }

. . .

Chapter 8 Fun with Functors

169

If we call our API like this:

getTopTenSubRedditPosts('new')

we will be getting back the response in this format:

{"kind": "Listing", "data": {"modhash": "", "children": [],

"after": null, "before": null}}

where the children property will have an array of JSON objects. It will look

something like this:

"{

 "kind": "Listing",

 "data": {

 "modhash": "",

 "children": [

 {

 "kind": "t3",

 "data": {

 . . .

 �"url": "https://twitter.com/malyw/

status/780453672153124864",

 "title": "ES7 async/await landed in Chrome",

 . . .

 }

 }

],

 "after": "t3_54lnrd",

 "before": null

 }

}"

Chapter 8 Fun with Functors

170

From the response we need to return the array of JSON object that has

the URL and title in it. Remember that if we pass an invalid subreddit

type such as test to our getTopTenSubRedditPosts, it will return an error

response that does not have a data or children property.

With MayBe in place, we can go ahead and implement the logic as

shown in Listing 8-11.

Listing 8-11.  Getting Top 10 SubReddit Posts Using MayBe

//arrayUtils from our library

import {arrayUtils} from '../lib/es8-functional.js'

let getTopTenSubRedditData = (type) => {

 let response = getTopTenSubRedditPosts(type);

 return MayBe.of(response).map((arr) => arr['data'])

 .map((arr) => arr['children'])

 .map((arr) => arrayUtils.map(arr,

 (x) => {

 return {

 �title : x['data'].

title,

 url : x['data'].url

 }

 }

))

}

Let’s break down how getTopTenSubRedditData works. First we are

wrapping the result of the Reddit API call within the MayBe context using

MayBe.of(response). Then we are running a series of functions using

MayBe’s map:

Chapter 8 Fun with Functors

171

. . .

.map((arr) => arr['data'])

.map((arr) => arr['children'])

. . .

This will return the children array object from the response structure:

{"kind": "Listing", "data": {"modhash": "", "children":

[. . . .], "after": null, "before": null}}

In the last map, we are using our own ArrayUtils’s map to iterate over

the children property and return only the title and URL as needed:

. . .

.map((arr) =>

 arrayUtils.map(arr,

 (x) => {

 return {

 title : x['data'].title,

 url : x['data'].url

 }

 }

. . .

Now if we call our function with a valid Reddit name like new:

getTopTenSubRedditData('new')

we get back this response:

MayBe {

 value:

 �[{ title: '/r/UpliftingKhabre - The subreddit for uplifting

and positive stories from India!',

 url: 'https://www.reddit.com/r/ },

Chapter 8 Fun with Functors

172

 �{ title: '/R/JerkOffToCelebs - The Best Place To Off To

Your Fave Celebs',

 url: 'https://www.reddit.com/r/ },

 { title: 'Angel Vivaldi channel',

 �url: 'https://qa1web-portal.immerss.com/angel-vivaldi/

angel-vivaldi' },

 { title: 'r/test12 - Come check us out for INSANE',

 url: 'https://www.reddit.com/r/' },

 { title: 'r/Just - Come check us out for GREAT',

 url: 'https://www.reddit.com/r/just/' },

 { title: 'r/Just - Come check us out for GREAT',

 url: 'https://www.reddit.com/r/just/' },

 { title: 'How to Get Verified Facebook',

 url: 'http://imgur.com/VffRnGb' },

 �{ title: '/r/TrollyChromosomes - A support group for those

of us whose trollies or streetcars suffer from chronic

genetic disorders',

 url: 'https://www.reddit.com/r/trollychromosomes' },

 { title: 'Yemek Tarifleri Eskimeyen Tadlarımız',
 url: 'http://otantiktad.com/' },

 �{ title: '/r/gettoknowyou is the ultimate socializing

subreddit!',

 �url: 'https://www.reddit.com/r/subreddits/

comments/50wcju/rgettoknowyou_is_the_ultimate_

socializing/' }] }

Note  The response might not be the same for the readers, as the
response will change from time to time.

Chapter 8 Fun with Functors

173

The beauty of the getTopTenSubRedditData method is how it handles

unexpected input that can cause null/undefined errors in our logic flow.

What if someone calls your getTopTenSubRedditData with a wrong Reddit

type? Remember that it will return the JSON response from Reddit:

{ message: "Something went wrong" , errorCode: 404 }

That is, the data—children property—will be empty. Try this by

passing the wrong Reddit type and see how it responds:

getTopTenSubRedditData('new')

which returns:

MayBe { value: null }

without throwing any error. Even though our map function tries to get

the data from the response (which is not present in this case), it returns

MayBe.of(null), so the corresponding maps would not apply the passed

function, as we discussed earlier.

We can clearly sense how MayBe handled all the undefined/null errors

with ease. Our getTopTenSubRedditData looks so declarative.

That’s all about the MayBe Functor. We are going to meet another

functor in the next section called Either.

�Either Functor
In this section we are going to create a new functor called Either, which

will allow us to solve the branching-out problem. To provide a context, let’s

revisit an example from the previous section (Listing 8-9):

MayBe.of("George")

 .map(() => undefined)

 .map((x) => "Mr. " + x)

Chapter 8 Fun with Functors

174

This code will return the result

MayBe {value: null}

as we would expect. However, the question is which branching (i.e., out

of two earlier map calls) failed with undefined or null values. We cannot

answer this question easily with MayBe. The only way is to manually dig

into the branching of MayBe and discover the culprit. This doesn’t mean

that MayBe has flaws, but just that in certain use cases, we need a better

functor than MayBe (mostly where you have many nested maps). This is

where Either comes into the picture.

�Implementing Either
We have seen the problem Either is going to solve for us; now let’s see its

implementation (Listing 8-12).

Listing 8-12.  Either Functor Parts Definition

const Nothing = function(val) {

 this.value = val;

};

Nothing.of = function(val) {

 return new Nothing(val);

};

Nothing.prototype.map = function(f) {

 return this;

};

const Some = function(val) {

 this.value = val;

};

Chapter 8 Fun with Functors

175

Some.of = function(val) {

 return new Some(val);

};

Some.prototype.map = function(fn) {

 return Some.of(fn(this.value));

}

The implementation has two functions, Some and Nothing. You can see

that Some is just a copy of a Container with a name change. The interesting

part is with Nothing. Nothing is also a Container, but its map doesn’t run

over a given function but rather just returns this:

Nothing.prototype.map = function(f) {

 return this;

};

In other words, you can run your functions on Some but not on Nothing

(not a technical statement, right?). Here’s a quick example:

Some.of("test").map((x) => x.toUpperCase())

=> Some {value: "TEST"}

Nothing.of("test").map((x) => x.toUpperCase())

=> Nothing {value: "test"}

As shown in the preceding code snippet, calling map on Some runs over

the passed function. However, in Nothing, it just returns the same value, test.

We wrap these two objects into the Either object as shown in Listing 8-13.

Listing 8-13.  Either Definition

const Either = {

 Some : Some,

 Nothing: Nothing

}

Chapter 8 Fun with Functors

176

You might be wondering what the usefulness of Some or Nothing are.

To understand this, let’s revisit our Reddit example version of MayBe.

�Reddit Example Either Version
The MayBe version of the Reddit example looks like this (Listing 8-11):

let getTopTenSubRedditData = (type) => {

 let response = getTopTenSubRedditPosts(type);

 return MayBe.of(response).map((arr) => arr['data'])

 .map((arr) => arr['children'])

 .map((arr) => arrayUtils.map(arr,

 (x) => {

 return {

 �title : x['data'].

title,

 url : x['data'].url

 }

 }

))

}

On passing a wrong Reddit type, say, for example, unknown:

getTopTenSubRedditData('unknown')

=> MayBe {value : null}

we get back MayBe of null value, but we didn’t know why null

was returned. We know that getTopTenSubRedditData uses

getTopTenSubRedditPosts to get the response. Now that Either is in

place, we can create a new version of getTopTenSubRedditPosts using

Either, as shown in Listing 8-14.

Chapter 8 Fun with Functors

177

Listing 8-14.  Get Top Ten Subreddit Using Either

let getTopTenSubRedditPostsEither = (type) => {

 let response

 try{

 �response = Some.of(JSON.parse(request('GET',

"https://www.reddit.com/r/subreddits/" + type +

".json?limit=10").getBody('utf8')))

 �}catch(err) { response = Nothing.of({ message:

"Something went wrong" , errorCode: err['statusCode'] })

 }

 return response

}

Note that we have wrapped the proper response with Some and the

error response with Nothing. Now with that in place, we can modify our

Reddit API to the code shown in Listing 8-15.

Listing 8-15.  Get Top Ten Subreddit Using Either

let getTopTenSubRedditDataEither = (type) => {

 let response = getTopTenSubRedditPostsEither(type);

 return response.map((arr) => arr['data'])

 .map((arr) => arr['children'])

 .map((arr) => arrayUtils.map(arr,

 (x) => {

 return {

 �title : x['data'].

title,

 url : x['data'].url

 }

 }

))

}

Chapter 8 Fun with Functors

178

This code is just literally the MayBe version, but it’s just not using MayBe;

rather it’s using Either’s type.

Now let’s call our new API with the wrong Reddit data type:

getTopTenSubRedditDataEither('new2')

This will return

Nothing { value: { message: 'Something went wrong', errorCode:

404 } }

This is so brilliant. Now with Either types in place, we get

back the exact reason why our branching failed. As you can guess,

getTopTenSubRedditPostsEither returns Nothing in case of

an error (i.e., unknown Reddit type); hence the mappings on

getTopTenSubRedditDataEither will never happen because it is of type

Nothing. You can sense how Nothing helped us in preserving the error

message and also blocking the functions to map over.

On a closing note, we can try our new version with a valid Reddit type:

getTopTenSubRedditDataEither('new')

It will return the expected response in Some:

Some {

 value:

 �[{ title: '/r/UpliftingKhabre - The subreddit for uplifting

and positive stories from India!',

 url: 'https://www.reddit.com/r/ },

 { title: '/R/ - The Best Place To Off To Your Fave,

 url: 'https://www.reddit.com/r/ },

 { title: 'Angel Vivaldi channel',

 �url: 'https://qa1web-portal.immerss.com/angel-vivaldi/

angel-vivaldi' },

 { title: 'r/test12 - Come check us out for INSANE',

Chapter 8 Fun with Functors

179

 url: 'https://www.reddit.com/r/ /' },

 { title: 'r/Just - Come check us out for',

 url: 'https://www.reddit.com/r/just/' },

 { title: 'r/Just - Come check us out for',

 url: 'https://www.reddit.com/r/' },

 { title: 'How to Get Verified Facebook',

 url: 'http://imgur.com/VffRnGb' },

 �{ title: '/r/TrollyChromosomes - A support group for those

of us whose trollies or streetcars suffer from chronic

genetic disorders',

 url: 'https://www.reddit.com/r/trollychromosomes' },

 { title: 'Yemek Tarifleri Eskimeyen Tadlarımız',
 url: 'http://otantiktad.com/' },

 �{ title: '/r/gettoknowyou is the ultimate socializing

subreddit!',

 �url: 'https://www.reddit.com/r/subreddits/comments/50wcju/

rgettoknowyou_is_the_ultimate_socializing/' }] }

That’s all about Either.

Note I f you are from a Java background, you can sense that
Either is very similar to Optional in Java 8. In fact, Optional is
a functor.

�Word of Caution: Pointed Functor
Before we close the chapter, we need to make a point clear. In the

beginning of the chapter we started saying that we created the of method

just to escape the new keyword in place for creating Container. We did the

same for MayBe and Either as well. To recall, functor is just an interface

that has a map contract. Pointed functor is a subset of functor, which has an

interface that has an of contract.

Chapter 8 Fun with Functors

180

What we have designed thus far is called a pointed functor. This is

just to make the terms right in the book, but you got to see what problem

functor or pointed functor solves for us in the real world, which is more

important.

�Summary
We started our chapter by asking questions about how we will be handling

exceptions in the functional programming world. We began with creating

a simple functor. We defined a functor as being nothing but a container

with a map function implemented. Then we went ahead and implemented

a functor called MayBe. We saw how MayBe helps us in avoiding pesky

null/undefined checks. MayBe allowed us to write code in functional

and declarative ways. Then we saw how Either helped us to preserve the

error message while branching out. Either is just a supertype of Some and

Nothing. Now we have seen functors in action.

Chapter 8 Fun with Functors

181© Anto Aravinth, Srikanth Machiraju 2018
A. Aravinth and S. Machiraju, Beginning Functional JavaScript,
https://doi.org/10.1007/978-1-4842-4087-8_9

CHAPTER 9

Monads in Depth
In the previous chapter we saw what functors are and how they are useful

to us. In this chapter we are going to continue with functors, learning about

a new functor called a monad. Don’t be afraid of the terms; the concepts

are easy to understand.

We are going to start with a problem of retrieving and displaying

the Reddit comments for our search query. Initially we are going to use

functors, especially the MayBe functor, to solve this problem. As we solve

the problem, though, we are going to encounter a few issues with the MayBe

functor. Then we will be moving ahead to create a special type of functor

called a monad.

Note  The chapter examples and library source code are in branch
chap09. The repo’s URL is https://github.com/antsmartian/
functional-es8.git

Once you check out the code, please check out branch chap09:
...

git checkout -b chap09 origin/chap09
...

https://github.com/antsmartian/functional-es8.git
https://github.com/antsmartian/functional-es8.git

182

For running the codes, as before run:

...

npm run playground

...

�Getting Reddit Comments for Our Search
Query
We have been using Reddit API starting with the previous chapter. In

this section, we use the same Reddit API for searching the posts with

our query and getting the list of comments for each of the search results.

We are going to use MayBe for this problem; as we saw in the previous

chapter, MayBe allows us to focus on the problem without worrying about

null/undefined values.

Note  You might be wondering why we are not using the Either
functor for the current problem, as MayBe has a few drawbacks of
not capturing the error when branching out as we saw in the previous
chapter. That’s true, but the reason we have chosen MayBe is mainly
to keep things simple. As you see, we will be extending the same
idea to Either as well.

Chapter 9 Monads in Depth

183

�The Problem
Before we begin implementing the solution, let’s look at the problem and

its associated Reddit API endpoints. The problem contains two steps:

	 1.	 For searching specific posts and comments we need

to hit the Reddit API endpoint:

https://www.reddit.com/search.json?q=<SEARCH_STRING>

and pass along the SEARCH_STRING. For example, if

we search for the string functional programming

like this:

https://www.reddit.com/search.json?q=

functional%20programming

we get back the result shown in Listing 9-1.

Listing 9-1.  Structure of Reddit Response

{ kind: 'Listing',

 data:

 { facets: {},

 modhash: ",

 children:

 [[Object],

 [Object],

 [Object],

 [Object],

 [Object],

 [Object],

 . . .

Chapter 9 Monads in Depth

https://www.reddit.com/search.json?q=<SEARCH_STRING>
https://www.reddit.com/search.json?q=functional programming
https://www.reddit.com/search.json?q=functional programming

184

 [Object],

 [Object]],

 after: 't3_terth',

 before: null } }

and each children object looks like this:

{ kind: 't3',

 data:

 { contest_mode: false,

 banned_by: null,

 domain: 'self.compsci',

 . . .

 downs: 0,

 mod_reports: [],

 archived: true,

 media_embed: {},

 is_self: true,

 hide_score: false,

 �permalink: '/r/compsci/comments/3mecup/eli5_what_is_

functional_programming_and_how_is_it/?ref=search_posts',

 locked: false,

 stickied: false,

 . . .

 visited: false,

 num_reports: null,

 ups: 134 } }

These objects specify the results that are matching

our search query.

Chapter 9 Monads in Depth

185

	 2.	 Once we have the search result, we need to get each

search result’s comments. How do we do that? As

mentioned in the previous point, each children

object is our search result. These objects have a field

called permalink, which looks like this:

permalink: '/r/compsci/comments/3mecup/eli5_what_is_

functional_programming_and_how_is_it/?ref=search_posts',

We need to navigate to the preceding URL:

GET: https://www.reddit.com//r/compsci/comments/3mecup/eli5_

what_is_functional_programming_and_how_is_it/.json

That is going to return the array of comments like the following:

[Object,Object,..,Object]

where each Object gives the information about comments.

Once we get the comments object, we need to merge the result with

title and return a new object:

{

 title : Functional programming in plain English,

 comments : [Object,Object,..,Object]

}

where title is the title we get from the first step. Now with our

understanding of the problem, let’s implement the logic.

�Implementation of the First Step
In this section, we implement the solution for the first step, which involves

firing a request to the Reddit search API endpoint along with our search

query. Because we need to fire the HTTP GET call, we will be requiring the

sync-request module that we used in the previous chapter.

Chapter 9 Monads in Depth

186

Let’s pull out the module and hold it in a variable for future use:

let request = require('sync-request');

Now with the request function, we could fire the HTTP GET call to

our Reddit search API endpoint. Let’s wrap the search steps in a specific

function, which we call searchReddit (Listing 9-2).

Listing 9-2.  searchReddit Function Definition

let searchReddit = (search) => {

 let response

 try{

 �response = JSON.parse(request('GET',"https://www.reddit.

com/search.json?q=" + encodeURI(search)).getBody('utf8'))

 }catch(err) {

 �response = { message: "Something went wrong" ,

errorCode: err['statusCode'] }

 }

 return response

}

Now we’ll walk through the code in steps.

	 1.	 We are firing the search request to the URL endpoint

https://www.reddit.com/search.json?q= as

shown here:

response = JSON.parse(request('GET',"https://www.

reddit.com/search.json?q=" + encodeURI(search)).

getBody('utf8'))

Note that we are using the encodeURI method for

escaping special characters in our search string.

	 2.	 Once the response is a success, we are returning

back the value.

Chapter 9 Monads in Depth

https://www.reddit.com/search.json?q=

187

	 3.	 In case of error, we are catching it in a catch block

and getting the error code and returning the error

response like this:

. . .

catch(err) {

 �response = { message: "Something went wrong" ,

errorCode: err['statusCode'] }

 }

. . .

With our little function in place, we go ahead and test it:

searchReddit("Functional Programming")

This will return the following result:

{ kind: 'Listing',

 data:

 { facets: {},

 modhash: ",

 children:

 [[Object],

 [Object],

 [Object],

 [Object],

 [Object],

 [Object],

 [Object],

 [Object],

 . . .

 after: 't3_terth',

 before: null } }

Chapter 9 Monads in Depth

188

That’s perfect. We are done with Step 1. Let’s implement Step 2.

Implementing the second step for each search children object, we

need to get its permalink value to get the list of comments. We can write a

separate method for getting a list of comments for the given URL. We call

this method getComments. The implementation of getComments is simple,

as shown in Listing 9-3.

Listing 9-3.  getComments Function Definition

let getComments = (link) => {

 let response

 try {

 �response = JSON.parse(request('GET',"https://www.

reddit.com/" + link).getBody('utf8'))

 } catch(err) {

 �response = { message: "Something went wrong" ,

errorCode: err['statusCode'] }

 }

 return response

}

The getComments implementation is very similar to our searchReddit.

Let’s walk through the steps and see what getComments does.

	 1.	 It fires the HTTP GET call for the given link value. For

example, if the link value is passed as:

r/IAmA/comments/3wyb3m/we_are_the_team_working_on_

react_native_ask_us/.json

getComments then will fire an HTTP GET call to the URL:

https://www.reddit.com/r/IAmA/comments/

3wyb3m/we_are_the_team_working_on_react_

native_ask_us/.json

Chapter 9 Monads in Depth

https://www.reddit.com/r/IAmA/comments/3wyb3m/we_are_the_team_working_on_react_native_ask_us/.json
https://www.reddit.com/r/IAmA/comments/3wyb3m/we_are_the_team_working_on_react_native_ask_us/.json
https://www.reddit.com/r/IAmA/comments/3wyb3m/we_are_the_team_working_on_react_native_ask_us/.json

189

which is going to return the array of comments. As before, we are a bit

defensive here and catching any errors within the getComments method in

our favorite catch block. Finally, we are returning back the response.

Quickly we’ll test our getComments by passing the following link value:

r/IAmA/comments/3wyb3m/we_are_the_team_working_on_react_native_

ask_us/.json

getComments('r/IAmA/comments/3wyb3m/we_are_the_team_working_on_

react_native_ask_us/.json')

For this call we get back this result:

[{ kind: 'Listing',

 �data: { modhash: ", children: [Object], after: null,

before: null } },

 { kind: 'Listing',

 �data: { modhash: ", children: [Object], after: null,

before: null } }]

Now with both APIs ready, it’s time to merge these results.

�Merging Reddit Calls
Now we have defined two functions, namely, searchReddit and

getComments (Listing 9-2 and Listing 9-3, respectively), that perform

their tasks and return the responses seen in the previous sections. In this

section, let’s write a higher level function, which takes up the search text

and use these two functions to achieve our end goal.

We’ll call the function we create mergeViaMayBe and its

implementation looks like Listing 9-4.

Chapter 9 Monads in Depth

190

Listing 9-4.  mergeViaMayBe Function Definition

let mergeViaMayBe = (searchText) => {

 let redditMayBe = MayBe.of(searchReddit(searchText))

 let ans = redditMayBe

 .map((arr) => arr['data'])

 .map((arr) => arr['children'])

 .map((arr) => arrayUtils.map(arr, (x) => {

 return {

 title : x['data'].title,

 permalink : x['data'].permalink

 }

 }

))

 .map((obj) => arrayUtils.map(obj, (x) => {

 return {

 title: x.title,

 �comments: MayBe.of(getComments(x.

permalink.replace("?ref=search_posts",".

json")))

 }

 }));

 return ans;

}

Let’s quickly check our function by passing the search text functional

programming:

mergeViaMayBe('functional programming')

Chapter 9 Monads in Depth

191

That call will give this result:

MayBe {

 value:

 �[{ title: 'ELI5: what is functional programming and how is

it different from OOP',

 comments: [Object] },

 �{ title: 'ELI5 why functional programming seems to be "on

the rise" and how it differs from OOP',

 comments: [Object] }] }

Note  For better clarity we have reduced the number of results in
the output of this call. The default call will give back 25 results, which
will take a couple of pages to put in the output of mergeViaMayBe.
From here on, we display only minimal output in the book. Note,
though, that the source code example does call and print all 25
results.

Now let’s step back and understand in detail what the mergeViaMayBe

function does. The function first calls the searchReddit with searchText

value. The result of the call is wrapped in MayBe:

let redditMayBe = MayBe.of(searchReddit(searchText))

Once the result is wrapped inside a MayBe type, we are free to map over

it as you can see in the code.

To remind us of the search query (which our searchReddit will call), it

will send back the result in the following structure:

{ kind: 'Listing',

 data:

 { facets: {},

 modhash: ",

Chapter 9 Monads in Depth

192

 children:

 [[Object],

 [Object],

 [Object],

 [Object],

 [Object],

 [Object],

 . . .

 [Object],

 [Object]],

 after: 't3_terth',

 before: null } }

To get the permalink (which is in our children object), we need to

navigate to data.children. This is demonstrated in the code:

redditMayBe

 .map((arr) => arr['data'])

 .map((arr) => arr['children'])

Now that we have a handle on a children array, remember that each

children has an object with the following structure:

{ kind: 't3',

 data:

 { contest_mode: false,

 banned_by: null,

 domain: 'self.compsci',

 . . .

 �permalink: '/r/compsci/comments/3mecup/eli5_what_is_

functional_programming_and_how_is_it/?ref=search_posts',

 locked: false,

 stickied: false,

 . . .

Chapter 9 Monads in Depth

193

 visited: false,

 num_reports: null,

 ups: 134 } }

We need to get only title and permalink out of it; because it’s an

array, we run Array’s map function over it:

.map((arr) => arrayUtils.map(arr, (x) => {

 return {

 title : x['data'].title,

 permalink : x['data'].permalink

 }

 }

))

Now that we have both title and permalink, our last step is to take

permalink and pass it to our getComments function, which will fetch the list

of comments for the passed value. This is seen here in the code:

.map((obj) => arrayUtils.map(obj, (x) => {

 return {

 title: x.title,

 �comments: MayBe.of(getComments(x.permalink.

replace("?ref=search_posts",".json")))

 }

}));

Because the call of getComments can get an error value, we are

wrapping it again inside a MayBe:

. . .

 �comments: MayBe.of(getComments(x.permalink.

replace("?ref=search_posts",".json")))

. . .

Chapter 9 Monads in Depth

194

Note  We are replacing the permalink value ?ref=search_
posts with .json as search results append the value
?ref=search_posts, which is not the correct format for the
getComments API call.

Throughout the full process we haven’t come outside our MayBe type.

We run our all map functions happily on our MayBe type without worrying

about it too much. We solved our problem so elegantly with MayBe, didn’t

we? There is a slight problem with our MayBe functor that is used this way,

though. Let’s talk about it in the next section.

�Problem of Nested/Many maps
If you count the number of map calls on our MayBe in our mergeViaMayBe

function, it is four. You might be wondering why we care about the

number of map calls.

Let’s try to understand the problem of many chained map calls like in

mergeViaMayBe. Imagine we want to get a comments array that is returned

from mergeViaMayBe. We’ll pass our search text functional programming

in our mergeViaMayBe function:

let answer = mergeViaMayBe("functional programming")

after the call answer:

MayBe {

 value:

 �[{ title: 'ELI5: what is functional programming and how is

it different from OOP',

 comments: [Object] },

Chapter 9 Monads in Depth

195

 �{ title: 'ELI5 why functional programming seems to be "on

the rise" and how it differs from OOP',

 comments: [Object] }] }

Now let’s get the comments object for processing. Because the return

value is MayBe, we can map over it:

answer.map((result) => {

 //process result.

})

The result (which is the value of MayBe) is an array that has title and

comments, so let’s map over it using our Array’s map:

answer.map((result) => {

 arrayUtils.map(result,(mergeResults) => {

 //mergeResults

 })

})

Each mergeResults is an object, which has title and comments.

Remember that comments are also a MayBe. To get comments, therefore, we

need to map over our comments:

answer.map((result) => {

 arrayUtils.map(result,(mergeResults) => {

 mergeResults.comments.map(comment => {

 //finally got the comment object

 })

 })

})

It looks like we have done more work to get the list of comments. Imagine

someone is using our mergeViaMayBe API to get the comments list. They will

be really irritated to get back the result using nested maps already shown.

Can we make our mergeViaMayBe better? Yes we can: Meet monads.

Chapter 9 Monads in Depth

196

�Solving the Problem via join
We saw in previous sections how deep we have to go inside our MayBe to

get back our desired results. Writing such APIs is not going to help us, but

rather will irritate other developers working on it. To solve these deep-

nested issues, let’s add join to the MayBe functor.

�join Implementation
Let’s start implementing the join function. The join function is simple

and looks like Listing 9-5.

Listing 9-5.  join Function Definition

MayBe.prototype.join = function() {

 return this.isNothing() ? MayBe.of(null) : this.value;

}

join is very simple and it simply returns the value inside our container

(if there are values); if not, it returns MayBe.of(null). join is simple, but

it helps us to unwrap the nested MayBes:

let joinExample = MayBe.of(MayBe.of(5))

=> MayBe { value: MayBe { value: 5 } }

joinExample.join()

=> MayBe { value: 5 }

As shown in this example, it unwraps the nested structure into a single

level. Imagine we want to add 4 to our value in joinExample MayBe. Let’s

give it a try:

joinExample.map((outsideMayBe) => {

 return outsideMayBe.map((value) => value + 4)

})

Chapter 9 Monads in Depth

197

This code returns the following:

MayBe { value: MayBe { value: 9 } }

Even though the value is correct, we have mapped twice to get the

result. Again the result that we got ends up in a nested structure. Now let’s

do the same via join:

joinExample.join().map((v) => v + 4)

=> MayBe { value: 9 }

That code is simply elegant. The call to join returns the inside MayBe,

which has the value of 5; once we have that, we are running over it via map

and then add the value 4. Now the resulting value is in a flatten structure

MayBe { value: 9 }.

Now with join in place, let’s try to level the nested structure returned

by mergeViaMayBe. We’ll change the code to Listing 9-6.

Listing 9-6.  mergeViaMayBe Using join

let mergeViaJoin = (searchText) => {

 let redditMayBe = MayBe.of(searchReddit(searchText))

 let ans = redditMayBe.map((arr) => arr['data'])

 .map((arr) => arr['children'])

 .map((arr) => arrayUtils.map(arr, (x) => {

 return {

 title : x['data'].title,

 permalink : x['data'].permalink

 }

 }

))

Chapter 9 Monads in Depth

198

 .map((obj) => arrayUtils.map(obj, (x) => {

 return {

 title: x.title,

 �comments: MayBe.of(getComments

(x.permalink.replace

("?ref=search_posts",".json"))).join()

 }

 }))

 .join()

 return ans;

}

As you can see, we have just added two joins in our code. One is on

the comments section, where we create a nested MayBe, and another one is

right after our all map operation.

Now with mergeViaJoin in place, let’s implement the same logic of

getting the comments array out of the result. First let’s quickly look at the

response returned by mergeViaJoin:

mergeViaJoin("functional programming")

That is going to return the following:

[{ title: 'ELI5: what is functional programming and how is it

different from OOP',

 comments: [[Object], [Object]] },

 �{ title: 'ELI5 why functional programming seems to be "on the

rise" and how it differs from OOP',

 comments: [[Object], [Object]] }]

Chapter 9 Monads in Depth

199

Compare that result with our old mergeViaMayBe:

MayBe {

 value:

 �[{ title: 'ELI5: what is functional programming and how is

it different from OOP',

 comments: [Object] },

 �{ title: 'ELI5 why functional programming seems to be "on

the rise" and how it differs from OOP',

 comments: [Object] }] }

As you can see, join has taken out the MayBe’s value and sent it back.

Now let’s see how to use the comments array for our processing task.

Because the value returned from mergeViaJoin is an array, we can map

over it using our Arrays map:

arrayUtils.map(result, mergeResult => {

 //mergeResult

})

Now each mergeResult variable directly points to the object that has

title and comments. Note that we have called join in our MayBe call of

getComments, so the comments object is just a simple array. With that in

mind, to get the list of comments from the iteration, we just need to call

mergeResult.comments:

arrayUtils.map(result,mergeResult => {

 //mergeResult.comments has the comments array

})

This looks promising, as we have gotten the full benefit of our MayBe

and also a good data structure to return the results, which are easy for

processing.

Chapter 9 Monads in Depth

200

�chain Implementation
Have a look at the code in Listing 9-6. As you can guess, we need to call

join always after map. Let’s wrap this logic inside a method called chain, as

shown in Listing 9-7.

Listing 9-7.  chain Function Definition

MayBe.prototype.chain = function(f){

 return this.map(f).join()

}

Once chain is in place, we can make our merge function logic look like

Listing 9-8.

Listing 9-8.  mergeViaMayBe Using chain

let mergeViaChain = (searchText) => {

 let redditMayBe = MayBe.of(searchReddit(searchText))

 let ans = redditMayBe.map((arr) => arr['data'])

 .map((arr) => arr['children'])

 .map((arr) => arrayUtils.map(arr, (x) => {

 return {

 title : x['data'].title,

 permalink : x['data'].permalink

 }

 }

))

 .chain((obj) => arrayUtils.map(obj, (x) => {

 return {

 title: x.title,

 �comments: MayBe.of(getComments(x.

permalink.replace("?ref=search_posts",

".json"))).join()

 }

Chapter 9 Monads in Depth

201

 }))

 return ans;

}

The output is going to be exactly the same via chain, too. Play around with

this function. In fact, with chain in place, we can move the logic of counting

the number of comments to an in-place operation, as shown in Listing 9-9.

Listing 9-9.  Making Improvements on mergeViaChain

let mergeViaChain = (searchText) => {

 let redditMayBe = MayBe.of(searchReddit(searchText))

 let ans = redditMayBe.map((arr) => arr['data'])

 .map((arr) => arr['children'])

 .map((arr) => arrayUtils.map(arr, (x) => {

 return {

 title : x['data'].title,

 permalink : x['data'].permalink

 }

 }

))

 .chain((obj) => arrayUtils.map(obj, (x) => {

 return {

 title: x.title,

 �comments: MayBe.of(getComments(x.

permalink.replace("?ref=search_posts",".

json"))).chain(x => {

 return x.length

 })

 }

 }))

 return ans;

}

Chapter 9 Monads in Depth

202

Now calling this code:

mergeViaChain("functional programming")

will return the following:

[{ title: 'ELI5: what is functional programming and how is it

different from OOP',

 comments: 2 },

 �{ title: 'ELI5 why functional programming seems to be "on the

rise" and how it differs from OOP',

 comments: 2 }]

The solution looks so elegant, but we still haven’t seen a monad,

have we?

�What Is a Monad?

You might be wondering why we started the chapter with a promise of

teaching you about a monad, but still haven’t defined what a monad is.

We’re sorry for not defining the monad, but you have already seen it in

action. (What?)

Yes, a monad is a functor that has a chain method; that’s it, that’s what

a monad is. As you have already seen, we have extended our favorite MayBe

functor to add a chain (and of course a join function) to make it a monad.

We started with an example of a functor to solve an ongoing problem

and ended up solving the problem using a monad without even being

aware of using it. That’s intentional from our side as we wanted to see the

intuition behind monad (the problem it solves with a functor). We could

have started with a simple definition of monad, but although that shows

what a monad is, it won’t show why a monad should be used.

Chapter 9 Monads in Depth

203

Note  You might be confused thinking about whether MayBe is a
monad or a functor. Don't get confused: MayBe with only of and map
is a functor. A functor with chain is a monad.

�Summary
In this chapter we have seen a new functor type called a monad. We

discussed the problem of how repetitive maps will cause nested values,

which become difficult to handle later. We introduced a new function

called chain, which helps to flatten the MayBe data. We saw that a pointed

functor with a chain is called a monad. In this chapter, we were using a

third-party library to create Ajax calls. In the next chapter, we will be seeing

a new way to think of asynchronous calls.

Chapter 9 Monads in Depth

205© Anto Aravinth, Srikanth Machiraju 2018
A. Aravinth and S. Machiraju, Beginning Functional JavaScript,
https://doi.org/10.1007/978-1-4842-4087-8_10

CHAPTER 10

Pause, Resume,
and Async with
Generators
We started the book with a simple definition of functions, then we saw

how to use functions to do great things using the functional programming

technique. We have seen how to handle arrays, objects, and error

handling, in pure functional terms. It has been quite a long journey for us,

but we still have not talked about yet another important technique that

every JavaScript developer should be aware of: asynchronous code.

You have dealt with a great deal of asynchronous codes in your

project. You might be wondering whether functional programming can

help developers in asynchronous code. The answer is yes and no. The

technique that we’re going to showcase initially is using ES6 Generators

and then using Async/Await, which is a new addition to the ECMAScript

2017/ES8 specification. Both the patterns try to solve the same callback

problem in their own way, so pay close attention to the subtle differences.

Generators were new specs for functions in ES6. Generators are not really

a functional programming technique; however, they are part of a function

(functional programming is about function, right?); for that reason we have

dedicated a chapter to it in this functional programming book.

206

Even if you are a big fan of Promises (which is a technique for solving

the callback problem), we still advise you to have a look at this chapter.

You are likely to love generators and the way they solve the async code

problems.

Note  The chapter examples and library source code are in branch
chap10. The repo’s URL is https://github.com/antsmartian/
functional-es8.git.

Once you check out the code, please check out branch chap10:

git checkout -b chap10 origin/chap10

For running the codes, as before run:

...

npm run playground

...

�Async Code and Its Problem
Before we really see what generators are, let’s discuss the problem of

handling async code in JavaScript in this section. We are going to talk

about a callback hell problem. Most of the async code patterns like

Generators or Async/Await try to solve the callback hell problem in their

own ways. If you already know what it is, feel free to move to the next

section. For others, please read on.

�Callback Hell
Imagine you have a function like the one shown in Listing 10-1.

Chapter 10 Pause, Resume, and Async with Generators

https://github.com/antsmartian/functional-es8.git
https://github.com/antsmartian/functional-es8.git

207

Listing 10-1.  Synchronous Functions

let sync = () => {

 //some operation

 //return data

}

let sync2 = () => {

 //some operation

 //return data

}

let sync3 = () => {

 //some operation

 //return data

}

The functions sync, sync1, and sync2 do some operations

synchronously and return the results. As a result, one can call these

functions like this:

result = sync()

result2 = sync2()

result3 = sync3()

What if the operation is asynchronous? Let’s see it in action in Listing 10-2.

Listing 10-2.  Asynchronous Functions

let async = (fn) => {

 //some async operation

 //call the callback with async operation

 fn(/* result data */)

}

Chapter 10 Pause, Resume, and Async with Generators

208

let async2 = (fn) => {

 //some async operation

 //call the callback with async operation

 fn(/* result data */)

}

let async3 = (fn) => {

 //some async operation

 //call the callback with async operation

 fn(/* result data */)

}

Synchronous vs. Asynchronous S ynchronous is when the
function blocks the caller when it is executing and returns the result
once it’s available.

Asynchronous is when the function doesn't block the caller when it’s
executing the function but returns the result once available.

We deal with Asynchronous heavily when we deal with an AJAX
request in our project.

Now if someone wants to process these functions at once, how they do

it? The only way to do it is shown in Listing 10-3.

Listing 10-3.  Async Functions Calling Example

async(function(x){

 async2(function(y){

 async3(function(z){

 ...

 });

 });

});

Chapter 10 Pause, Resume, and Async with Generators

209

Oops! You can see in Listing 10-3 that we are passing many callback

functions to our async functions. This little piece of code showcases what

callback hell is. Callback hell makes the program harder to understand.

Handling errors and bubbling the errors out of callback are tricky and

always error prone.

Before ES6 arrived, JavaScript developers used Promises to solve

this problem. Promises are great, but given the fact that ES6 introduced

generators at a language level, we don’t need Promises anymore!

�Generators 101
As mentioned, generators were part of the ES6 specifications and they are

bundled up at language level. We talked about using generators to help

with handling async code. Before we get there, though, we are going to talk

about the fundamentals of generators. This section focuses on explaining

the core concepts behind generators. Once we learn the basics, we can

create a generic function using generators to handle async code in our

library. Let’s begin.

�Creating Generators
Let’s start our journey by seeing how to create generators in the first place.

Generators are nothing but a function that comes up with its own syntax. A

simple generator looks like Listing 10-4.

Listing 10-4.  First Simple Generator

function* gen() {

 return 'first generator';

}

Chapter 10 Pause, Resume, and Async with Generators

210

The function gen in Listing 10-4 is a generator. As you might notice, we

have used an asterisk before our function name (in this case gen) to denote

that it is a generator function. We have seen how to create a generator; now

let’s see how to invoke a generator:

let generatorResult = gen()

What will be the result of generatorResult? Is it going to be a first

generator value? Let’s print it on the console and inspect it:

console.log(generatorResult)

The result will be:

gen {[[GeneratorStatus]]: "suspended", [[GeneratorReceiver]]:

Window}

�Caveats of Generators
The preceding examples show how to create a generator, how to create an

instance for it, and how it gets values. There are a few important things we

need to take care of, though, while we are working with generators.

The first thing is that we cannot call next as many times as we want

to get the value from the generator. To make it clearer, let’s try to fetch a

value from our first generator (refer to Listing 10-4 for the first generator

definition):

let generatorResult = gen()

//for the first time

generatorResult.next().value

=> 'first generator'

//for the second time

generatorResult.next().value

=> undefined

Chapter 10 Pause, Resume, and Async with Generators

211

As you can see in this code, calling next for the second time will return

an undefined rather than first generator. The reason is that generators

are like sequences: Once the values of the sequence are consumed, you

cannot consume it again. In our case generatorResult is a sequence that

has value as first generator. With our first call to next, we (as the caller

of the generator) have consumed the value from the sequence. Because

the sequence is empty now, calling it a second time will return you

undefined.

To consume the sequence again, you need to create another generator

instance:

let generatorResult = gen()

let generatorResult2 = gen()

//first sequence

generatorResult.next().value

=> 'first generator'

//second sequence

generatorResult2.next().value

=> 'first generator'

This code also shows that different instances of generators can be

in different states. The key takeaway here is that each generator’s state

depends on how we are calling the next function on it.

�yield Keyword
With generator functions, there is a new keyword that we can use called

yield. In this section, we are going to see how to use yield within a

generator function. Let’s start with the code in Listing 10-5.

Chapter 10 Pause, Resume, and Async with Generators

212

Listing 10-5.  Simple Generator Sequence

function* generatorSequence() {

 yield 'first';

 yield 'second';

 yield 'third';

}

As usual we can create a generator instance for that code:

let generatorSequence = generatorSequence();

Now if we call next for the first time we get back the value first:

generatorSequence.next().value

=> first

What happens if we call next again? Do we get first? Or second? Or

third? Or an error? Let’s find out:

generatorSequence.next().value

=> second

We got back the value second. Why? yield makes the generator

function pause the execution and send back the result to the caller.

Therefore when we call generatorSequence for the first time, the function

sees the yield with value first, so it puts the function to pause mode and

returns the value (and it remembers where it exactly paused, too). The next

time we call the generatorSequence (using the same instance variable),

the generator function resumes from where it left off. Because it paused at

the line:

yield 'first';

for the first time, when we call it for a second time (using the same

instance variable), we get back the value second. What happens when we

call it for the third time? Yes, we will get back the value third.

Chapter 10 Pause, Resume, and Async with Generators

213

This is better explained by looking at Figure 10-1. This sequence is

explained via the code in Listing 10-6.

Listing 10-6.  Calling Our Generator Sequence

//get generator instance variable

let generatorSequenceResult = generatorSequence();

console.log('First time sequence value',generatorSequenceResult.

next().value)

console.log('Second time sequence value',generatorSequenceResult.

next().value)

console.log('third time sequence value',generatorSequenceResult.

next().value)

This prints the following back to the console:

First time sequence value first

Second time sequence value second

third time sequence value third

Figure 10-1.  Visual view of generator listed in Listing 10-4

Chapter 10 Pause, Resume, and Async with Generators

214

With that understanding in place, you can see why we call a generator

a sequence of values. One more important point to keep in mind is that all

generators with yield will execute in lazy evaluation order.

Lazy Evaluation W hat is lazy evaluation? To put it in simple terms,
lazy evaluation means the code won’t run until we ask it to run. As
you can guess, the example of the generatorSequence function
shows that generators are lazy evaluated. The values are being
executed and returned only when we ask for them. That’s so lazy
about generators, isn’t it?

�done Property of Generator
Now we have seen how a generator can produce a sequence of values

lazily with the yield keyword. A generator can also produce n numbers

of sequence; as a user of the generator function, how will you know when

to stop calling next? Because calling next on your already consumed

generator sequence will return the undefined value. How can you handle

this situation? This is where the done property enters the picture.

Remember that every call to the next function is going to return an

object that looks like this:

{value: 'value', done: false}

We are aware that the value is the value from our generator, but what

about done? done is a property that is going to tell whether the generator

sequence has been fully consumed or not.

We rerun the code from previous sections here (Listing 10-4), just to

print the object being returned from the next call.

Chapter 10 Pause, Resume, and Async with Generators

215

Listing 10-7.  Code for Understanding done Property

//get generator instance variable

let generatorSequenceResult = generatorSequence();

console.log('done value for the first time',

generatorSequenceResult.next())

console.log('done value for the second time',

generatorSequenceResult.next())

console.log('done value for the third time',

generatorSequenceResult.next())

Running this code will print the following:

done value for the first time { value: 'first', done: false }

done value for the second time { value: 'second', done: false }

done value for the third time { value: 'third', done: false }

As you can see we have consumed all the values from the generator

sequence, so calling next again will return the following object:

console.log(generatorSequenceResult.next())

=> { value: undefined, done: true }

Now the done property clearly tells us that the generator sequence

is already fully consumed. When the done is true, it’s time for us to stop

calling next on that particular generator instance. This can be better

visualized with Figure 10-2.

Chapter 10 Pause, Resume, and Async with Generators

216

Because generator became the core part of ES6, we have a for loop

that will allow us to iterate a generator (after all it’s a sequence):

for(let value of generatorSequence())

 �console.log("for of value of generatorSequence

is",value)

This is going to print:

for of value of generatorSequence is first

for of value of generatorSequence is second

for of value of generatorSequence is third

notably for using the generator’s done property to iterate through it.

�Passing Data to Generators
In this section, let’s discuss how we pass data to generators. Passing data to

generators might feel confusing at first, but as you will see in this chapter, it

makes async programming easy.

Let’s take a look at the code in Listing 10-8.

Figure 10-2.  View of generators done property for generatorSequence

Chapter 10 Pause, Resume, and Async with Generators

217

Listing 10-8.  Passing Data Generator Example

function* sayFullName() {

 var firstName = yield;

 var secondName = yield;

 console.log(firstName + secondName);

}

This code now might not be a surprise for you. Let’s use this code to

explain the concept of passing data to the generator. As always, we create a

generator instance first:

let fullName = sayFullName()

Once the generator instance is created, let’s call next on it:

fullName.next()

fullName.next('anto')

fullName.next('aravinth')

=> anto aravinth

In this code snippet the last call will print anto aravinth to the

console. You might be confused with this result, so let’s walk through the

code slowly. When we call next for the first time:

fullName.next()

the code will return and pause at the line

var firstName = yield;

Because here we are not sending any value back via yield, next will

return the value undefined. The second call to next is where an interesting

thing happens:

fullName.next('anto')

Chapter 10 Pause, Resume, and Async with Generators

218

Here we are passing the value anto to the next call. Now the generator

will be resumed from its previous paused state. Remember that the

previous paused state is on the line

var firstName = yield;

Because we have passed the value anto on this call, yield will be

replaced by anto and thus firstName holds the value anto. After the value

is set to firstName, the execution will be resumed (from the previous

paused state) and again sees the yield and stops the execution at

var secondName = yield;

Now for the third time, if we call next:

fullName.next('aravinth')

When this line gets executed, our generator will resume from where it

paused. The previous paused state is

var secondName = yield;

As before, the passed value aravinth of our next call will be replaced

by yield and aravinth is set to secondName. Then the generator happily

resumes the execution and sees this statement:

console.log(firstName + secondName);

By now, firstName is anto and secondName is aravinth, so the console

will print anto aravinth. This full process is illustrated in Figure 10-3.

Chapter 10 Pause, Resume, and Async with Generators

219

You might be wondering why we need such an approach. It turns out

that using generators by passing data to them makes it very powerful. We

use the same technique in the next section to handle async calls.

�Using Generators to Handle Async Calls
In this section, we are going to use generators for real-world stuff. We are

going to see how passing data to generators makes them very powerful to

handle async calls. We are going to have quite a lot of fun in this section.

�Generators for Async: A Simple Case
In this section, we are going to see how to use generators for handling

async code. Because we are getting started with a different mindset of

using generators to solve the async problem, we want to keep things

simple, so we will mimic the async calls with setTimeout calls!

Imagine you two functions shown in Listing 10-9 (which are async

in nature).

Figure 10-3.  Explaining how data are passed to sayFullName
generator

Chapter 10 Pause, Resume, and Async with Generators

220

Listing 10-9.  Simple Asynchronous Functions

let getDataOne = (cb) => {

 setTimeout(function(){

 //calling the callback

 cb('dummy data one')

 }, 1000);

}

let getDataTwo = (cb) => {

 setTimeout(function(){

 //calling the callback

 cb('dummy data two')

 }, 1000);

}

Both these functions mimic the async code with setTimeout. Once the

desired time has elapsed, setTimeout will call the passed callback cb with

value dummy data one and dummy data two, respectively. Let’s see how we

will be calling these two functions without generators in the first place:

getDataOne((data) => console.log("data received",data))

getDataTwo((data) => console.log("data received",data))

That code will print the following after 1,000 ms:

data received dummy data one

data received dummy data two

Now as you notice, we are passing the callbacks to get back the

response. We have talked about how bad the callback hell can be in async

code. Let’s use our generator knowledge to solve the current problem.

We now change both the functions getDataOne and getDataTwo to use

generator instances rather than callbacks for passing the data.

Chapter 10 Pause, Resume, and Async with Generators

221

First let’s change the function getDataOne (Listing 10-8) to what is

shown in Listing 10-10.

Listing 10-10.  Changing getDataOne to Use Generator

let generator;

let getDataOne = () => {

 setTimeout(function(){

 //call the generator and

 //pass data via next

 generator.next('dummy data one')

 }, 1000);

}

We have changed the callback line from

. . .

cb('dummy data one')

. . .

to

generator.next('dummy data one')

That’s a simple change. Note that we have also removed the cb, which is

not required in this case. We will do the same for getDataTwo (Listing 10-8),

too, as shown in Listing 10-11.

Listing 10-11.  Changing getDataTwo to Use Generator

let getDataTwo = () => {

 setTimeout(function(){

 //call the generator and

 //pass data via next

 generator.next('dummy data two')

 }, 1000);

}

Chapter 10 Pause, Resume, and Async with Generators

222

Now with that change in place, let’s go and test our new code. We’ll

wrap our call to getDataOne and getDataTwo inside a separate generator

function, as shown in Listing 10-12.

Listing 10-12.  main Generator Function

function* main() {

 let dataOne = yield getDataOne();

 let dataTwo = yield getDataTwo();

 console.log("data one",dataOne)

 console.log("data two",dataTwo)

}

Now the main code looks exactly like the sayFullName function from

our previous section. Let’s create a generator instance for main and trigger

the next call and see what happens.

generator = main()

generator.next();

That will print the following to the console:

data one dummy data one

data two dummy data two

That is what exactly we wanted. Look at our main code; the code looks

like synchronous calls to the functions getDataOne and getDataTwo.

However both these calls are asynchronous. Remember that these calls

never block and they work in async fashion. Let’s distill how this whole

process works.

First we are creating a generator instance for main using the generator

variable that we declared earlier. Remember that this generator is used by

both getDataOne and getDataTwo to push the data to its call, which we will

Chapter 10 Pause, Resume, and Async with Generators

223

see soon. After creating the instance, we are firing the whole process with

the line

generator.next()

This calls the main function. The main function is put into execution

and we see the first line with yield:

. . .

let dataOne = yield getDataOne();

. . .

Now the generator will be put into pause mode as it has seen a yield

statement. Before it’s been put into pause mode, though, it calls the

function getDataOne.

Note A n important point here is that even though the yield makes
the statement pause, it won’t make the caller wait (i.e., caller is not
blocked). To make the point more concrete, see the following code.

generator.next() //even though the generator pause
for Async codes

console.log("will be printed")

=> will be printed

=> Generator data result is printed

This code shows that even though our generator.next causes
the generator function to wait on the next call, the caller (the one
who is calling the generator) won’t be blocked! As you can see,
console.log will be printed (showcasing generator.next isn’t
blocked), and then we get the data from the generator once the async
operation is done.

Chapter 10 Pause, Resume, and Async with Generators

224

Now interestingly the getDataOne function has the following line in its

body:

. . .

 generator.next('dummy data one')

. . .

As we discussed earlier, calling next by passing a parameter will

resume the paused yield, and that’s exactly what happens here in this

case. Remember that this piece of line is inside setTimeout, so it will get

executed only when 1,000 ms have elapsed. Until then, the code will be

paused at the line

let dataOne = yield getDataOne();

One more important point to note here is that while this line is paused,

the timeout will be running down from 1,000 to 0. Once it reaches 0, it is

going to execute the line

. . .

 generator.next('dummy data one')

. . .

That is going to send back dummy data one to our yield statement, so

the dataOne variable becomes dummy data one:

//after 1,000 ms dataOne becomes

//'dummy data one'

let dataOne = yield getDataOne();

=> dataOne = 'dummy data one'

That’s a lot of interesting stuff happening. Once dataOne is set to the

dummy data one value, the execution will continue to the next line:

. . .

let dataTwo = yield getDataTwo();

. . .

Chapter 10 Pause, Resume, and Async with Generators

225

This line is going to run the same way as the line before! So after the

execution of this line, we have dataOne and dataTwo:

dataOne = dummy data one

dataTwo = dummy data two

That is what is getting printed to the console at the final statements of

the main function:

. . .

 console.log("data one",dataOne)

 console.log("data two",dataTwo)

. . .

The full process is shown in Figure 10-4.

Now you have made an asynchronous call look like a synchronous call,

but it works in an asynchronous way.

Figure 10-4.  Image explaining how main generator works
internally

Chapter 10 Pause, Resume, and Async with Generators

226

�Generators for Async: A Real-World Case
In the previous section, we saw how to handle asynchronous code using

generators effectively. To mimic the async workflow we used setTimeout.

In this section, we are going to use a function to fire a real AJAX call to

Reddit APIs to showcase the power of generators in the real world.

To make an async call, let’s create a function called httpGetAsync,

shown in Listing 10-13.

Listing 10-13.  httpGetAsync Function Definition

let https = require('https');

function httpGetAsync(url,callback) {

 return https.get(url,

 function(response) {

 var body = ";

 response.on('data', function(d) {

 body += d;

 });

 response.on('end', function() {

 let parsed = JSON.parse(body)

 callback(parsed)

 })

 }

);

}

This is a simple function that uses an https module from a node to fire

an AJAX call to get the response back.

Chapter 10 Pause, Resume, and Async with Generators

227

Note H ere we are not going to see in detail how httpGetAsync
function works. The problem we are trying to solve is how to convert
functions like httpGetAsync, which works the async way but
expects a callback to get the response from AJAX calls.

Let’s check httpGetAsync by passing a Reddit URL:

httpGetAsync('https://www.reddit.com/r/pics/.json',(data)=> {

 console.log(data)

})

It works by printing the data to the console. The URL https://www.

reddit.com/r/pics/.json prints the list of JSON about the Picture Reddit

page. The returned JSON has a data key with a structure that looks like the

following:

{ modhash: ",

 children:

 [{ kind: 't3', data: [Object] },

 { kind: 't3', data: [Object] },

 { kind: 't3', data: [Object] },

 . . .

 { kind: 't3', data: [Object] }],

 after: 't3_5bzyli',

 before: null }

Imagine we want to get the URL of the first children of the array; we

need to navigate to data.children[0].data.url. This will give us a URL

like https://www.reddit.com/r/pics/comments/5bqai9/introducing_

new_rpics_title_guidelines/. Because we need to get the JSON format

of the given URL, we need to append .json to the URL, so that it becomes

https://www.reddit.com/r/pics/comments/5bqai9/introducing_new_

rpics_title_guidelines/.json.

Chapter 10 Pause, Resume, and Async with Generators

https://www.reddit.com/r/pics/.json
https://www.reddit.com/r/pics/.json
https://www.reddit.com/r/pics/comments/5bqai9/introducing_new_rpics_title_guidelines/
https://www.reddit.com/r/pics/comments/5bqai9/introducing_new_rpics_title_guidelines/
https://www.reddit.com/r/pics/comments/5bqai9/introducing_new_rpics_title_guidelines/.json
https://www.reddit.com/r/pics/comments/5bqai9/introducing_new_rpics_title_guidelines/.json

228

Now let’s see that in action:

httpGetAsync('https://www.reddit.com/r/pics/.json',(picJson)=>

{

 �httpGetAsync(picJson.data.children[0].data.url+".

json",(firstPicRedditData) => {

 console.log(firstPicRedditData)

 })

})

This code will print the data as required. We are least worried about

the data being printed, but we are worried about our code structure. As

we saw at the beginning of this chapter, code that looks like this suffers

from callback hell. Here there are two levels of callbacks, which might not

be a real problem, but what if it goes to four or five nested levels? Can you

read such codes easily? Definitely not. Now let’s find out how to solve the

problem via generator.

Let’s wrap httpGetAsync inside a separate method called request,

shown in Listing 10-14.

Listing 10-14.  request Function

function request(url) {

 httpGetAsync(url, function(response){

 generator.next(response);

 });

}

We have removed the callback with the generator’s next call, very

similar to our previous section. Now let’s wrap our requirement inside a

generator function; again we call it main, as shown in Listing 10-15.

Chapter 10 Pause, Resume, and Async with Generators

229

Listing 10-15.  main Generator Function

function *main() {

 �let picturesJson = yield request("https://www.reddit.

com/r/pics/.json");

 �let firstPictureData = yield request(picturesJson.data.

children[0].data.url+".json")

 console.log(firstPictureData)

}

This main function looks very similar to the main function we defined

in Listing 10-11 (the only change is the method call details). In the code

we are yielding on two calls to request. As we saw in the setTimeout

example, calling yield on request will make it pause until request calls

the generator next by sending the AJAX response back. The first yield will

get the JSON of pictures, and the second yield gets the first picture data

by calling request, respectively. Now we have made the code look like

synchronous code, but in reality, it works in an asynchronous fashion.

We have also escaped from callback hell using generators. Now the

code looks clean and clearly tells what it’s doing. That’s so much more

powerful for us!

Try running it:

generator = main()

generator.next()

It’s going to print the data as required. We have clearly seen how to use

generators to convert any function that expects a callback mechanism into

a generator-based one. In turn, we get back clean code for handling an

asynchronous operation.

Chapter 10 Pause, Resume, and Async with Generators

230

�Async Functions in ECMAScript 2017
So far, we have seen multiple ways to run functions asynchronously.

Primitively the only way to perform background jobs was by using a

callback, but we just learned how they result in callback hell. Generators

or sequences provide one way of solving the callback hell problem using

the yield operator and generator functions. As part of the ECMA8 script,

two new operators are introduced, called async and await. These two new

operators solve the callback hell problem by introducing a modern design

pattern for authoring asynchronous code using Promise.

�Promise
If you are already aware of Promises you can skip this section. A Promise

in JavaScript world is piece of work that is expected to complete (or fail) at

some point in the future. For example, parents might Promise to give their

child an XBOX if they get an A+ on an upcoming test, as represented by the

following code.

let grade = "A+";

let examResults = new Promise(

 function (resolve, reject) {

 if (grade == "A+")

 resolve("You will get an XBOX");

 else

 reject("Better luck next time");

 }

);

Now, the Promise examResults when consumed can be in any of three

states: pending, resolved, or rejected. The following code shows a sample

consumption of the preceding Promise.

Chapter 10 Pause, Resume, and Async with Generators

231

let conductExams = () => {

 examResults

 �.then(x => console.log(x)) // captures resolve and logs

"You will get an XBOX"

 �.catch(x => console.error(x)); // captures rejection and

logs "Better luck next time"

};

conductExams();

Now if you have successfully relearned the philosophy of Promise, we

can understand what async and await do.

�Await
An await is a keyword that can be prepended to a function if the function

returns a Promise object, thus making it run in the background. Usually

a function or another Promise is used to consume a Promise, and await

simplifies the code by allowing the Promise to resolve in the background.

In other words, the await keyword waits for the Promise to resolve or fail.

Once the Promise is resolved, the data returned by the Promise—either

resolved or rejected—can be consumed, but meanwhile the main flow of

the application is unblocked to perform any other important tasks. The

rest of the execution unfolds when the Promise completes.

�Async
A function that uses await should be marked as async.

Let us understand the usage of async and await using the following

example.

function fetchTextByPromise() {

 return new Promise(resolve => {

 setTimeout(() => {

Chapter 10 Pause, Resume, and Async with Generators

232

 resolve("es8");

 }, 2000);

 });

}

Before ES8 can consume this Promise, you might have to wrap it in a

function as shown in the preceding example or use another Promise as

shown here.

function sayHello() {

 return new Promise((resolve, reject) => fetchTextByPromise()

 .then(x => console.log(x))

 .catch(x => console.error(x)));

}

Now, here is a much simpler and cleaner version using async and await.

async function sayHello() {

 const externalFetchedText = await fetchTextByPromise();

 console.log(`Response from SayHello: Hello,

${externalFetchedText}`);

}

We can also write using arrow syntax as shown here.

let sayHello = async () => {

 const externalFetchedText = await fetchTextByPromise();

 �console.log(`Response from SayHello: Hello,

${externalFetchedText}`); // Hello, es8

}

You can consume this method by simply calling

sayHello()

Chapter 10 Pause, Resume, and Async with Generators

233

�Chaining Callbacks
The beauty of async and await is harder to understand until we see some

sample uses of remote API calls. What follows is an example where we call

a remote API that returns a JSON array. We silently wait for the array to

arrive and process the first object and make another remote API call. The

important thing to learn here is that while all this is happening, the main

thread can work on something else because the remote API calls might

take some time; hence the network call and corresponding processing is

happening in the background.

Here is the function that invokes a remote URL and returns a Promise.

// returns a Promise

const getAsync = (url) => {

 return fetch(url)

 .then(x => x)

 .catch(x =>

 console.log("Error in getAsync:" + x)

);

}

The next function consumes getAsync.

// 'async' can only be used in functions where 'await' is used

async function getAsyncCaller() {

 try {

 �// https://jsonplaceholder.typicode.com/users is a

sample API which returns a JSON Array of dummy users

 �const response = await getAsync("https://

jsonplaceholder.typicode.com/users"); // pause until

Promise completes

 �const result = await response.json(); //removing .json

here demonstrates the error handling in Promises

Chapter 10 Pause, Resume, and Async with Generators

234

 �console.log("GetAsync fetched " + result.length + "

results");

 return result;

 } catch (error) {

 �await Promise.reject("Error in getAsyncCaller:" +

error.message);

 }

}

The following code is used to invoke the flow.

getAsyncCaller()

 .then(async (x) => {

 console.log("Call to GetAsync function completed");

 �const website = await getAsync("http://" + x[0].

website);

 �console.log("The website (http://" + x[0].website + ")

content length is " + website.toString().length + "

bytes");

 })

 �.catch(x => console.log("Error: " + x)); // Promise.Reject

is caught here, the error message can be used to perform

custom error handling

Here is the output for the preceding invocation:

This message is displayed while waiting for async operation to

complete, you can do any compute here...

GetAsync fetched 10 results

Call to GetAsync function completed

The website (http://hildegard.org) content length is 17 bytes

Chapter 10 Pause, Resume, and Async with Generators

235

As you can see, the code execution continues and prints the following

console statement, which is the last statement in the program, while the

remote API call is happening in the background. Any code following this

also gets executed.

console.log("This message is displayed while waiting for async

operation to complete, you can do any compute here...");

The following result is available when the first await completes; that is,

the first API call is completed, and the results are enumerated.

This message is displayed while waiting for async operation to

complete, you can do any compute here...

GetAsync fetched 10 results

Call to GetAsync function completed

At this point the control returns to the caller, getAsyncCaller in

this case, and the call is again awaited by the async call, which makes

another remote call using the website property. Once the final API call is

completed, the data are returned to the website object and the following

block is executed:

 �const website = await getAsync("http://" + x[0].

website);

 �console.log("The website (http://" + x[0].website + ")

content length is " + website.toString().length + "

bytes");

You can observe that we have made dependent remote API calls

asynchronously, yet the code appears flat and readable, so the call

hierarchy can grow to any extent without involving any callback

hierarchies.

Chapter 10 Pause, Resume, and Async with Generators

236

�Error Handling in Async Calls
As explained earlier, Promises can be rejected as well (say the Remote

API is not available or the JSON format is incorrect). In such cases the

consumer’s catch block is invoked, which can be used to perform any

custom exception handling, as shown here.

 �await Promise.reject("Error in getAsyncCaller:" +

error.message);

The error can be bubbled to the caller’s catch block as well, as shown

next. To simulate an error, remove the .json function getAsyncCaller

(read the comments for more details). Also, observe the async usage in

the then handler here. Because the dependent remote call uses await the

arrow function can be tagged as async.

getAsyncCaller()

 .then(async (x) => {

 console.log("Call to GetAsync function completed");

 �const website = await getAsync("http://" + x[0].

website);

 �console.log("The website (http://" + x[0].website + ")

content length is " + website.toString().length + "

bytes");

 })

 �.catch(x => console.log("Error: " + x)); // Promise.Reject

is caught here, the error message can be used to perform

custom error handling

The new asynchronous pattern is more readable, includes less code,

is linear, and is better than the previous ones, making it an instinctive

replacement for the previous patterns. Figure 10-5 shows the browser support

at the time of writing. For latest information, you can check the browser

support from https://caniuse.com/#feat=async-functions.

Chapter 10 Pause, Resume, and Async with Generators

https://caniuse.com/#feat=async-functions

237

�Async Functions Transpiled to Generators
Async and await have an awfully close relationship with generators. In fact,

Babel transpiles async and await to generators in the background, which

is quite evident if you look at the transpiled code.

let sayHello = async () => {

 const externalFetchedText = await new Promise(resolve => {

 setTimeout(() => {

 resolve("es8");

 }, 2000)});

 �console.log(`Response from SayHello: Hello,

${externalFetchedText}`);

}

For example, the preceding async function will be transpiled to the

following code, and you can use any online Babel transpiler like https://

babeljs.io to watch the transformation. Detailed explanation of the

transpiled code is beyond the scope of this book but you might notice

that the keyword async is converted into a wrapper function called

_asyncToGenerator (line 3). _asyncToGenerator is a routine that Babel

adds. This function will be pulled into the transpiled code for any piece

of code that uses the async keyword. The crux of our preceding code is

converted into a switch case statement (lines 41–59) where each line of

code is transpiled into a case as shown here.

Figure 10-5.  Asynchronous browser support. Source: https://
caniuse.com/#feat=async-functions

Chapter 10 Pause, Resume, and Async with Generators

https://babeljs.io
https://babeljs.io
https://caniuse.com/#feat=async-functions
https://caniuse.com/#feat=async-functions

238

Chapter 10 Pause, Resume, and Async with Generators

239

Nevertheless async/await and generators are the two most prominent

ways of authoring linear-looking asynchronous functions in JavaScript.

The decision on which one to use is purely a matter of choice. The

async/await pattern makes async code look like sync and therefore

increases readability, whereas generators provide finer control over the

state changes within the generator and two-way communication between

the caller and the callee.

�Summary
The world is full of AJAX calls. There was a time when handling AJAX calls

we needed to pass a callback to process the result. Callbacks have their

own limitations. Too many callbacks create callback hell problems, for

example. We have seen in this chapter a type in JavaScript called generator.

Generators are functions that can be paused and resumed using the next

method. The next method is available on all generator instances. We have

seen how to pass data to generator instances using the next method. The

technique of sending data to generators helps us to solve the asynchronous

code problem. We have seen how to use generators to make asynchronous

code look synchronous, which is an immensely powerful technique for any

JavaScript developer. Generators are one way of solving the callback hell

problem, but ES8 offers another intuitive way to solve the same problem

using async and await. The new asynchronous pattern is transpiled

into generators in the background by compilers like Babel and uses the

Promise object. Async/await can be used to write linear asynchronous

functions in a simple, elegant manner. Await (an equivalent of yield in

generators) can be used with any function that returns a Promise object

and a function should be tagged async if it uses await anywhere within the

body. The new patterns also make error handling easy, as the exceptions

raised by both synchronous and asynchronous code can be handled in an

equivalent manner.

Chapter 10 Pause, Resume, and Async with Generators

241© Anto Aravinth, Srikanth Machiraju 2018
A. Aravinth and S. Machiraju, Beginning Functional JavaScript,
https://doi.org/10.1007/978-1-4842-4087-8_11

CHAPTER 11

Building a React-Like
Library
So far, we have learned to write functional JavaScript code and to

appreciate the modularity, reusability, and simplicity it brings to your

applications. We have seen concepts like composition, filters, map, reduce,

and other features such as async, await, and pipes. Nonetheless, we have

not combined these features together to build a reusable library. That is

something we are going to learn in this chapter. In this chapter we build

a complete library that will be helpful in building applications, just like

React or HyperApp (https://hyperapp.js.org). This chapter is dedicated

towards building applications instead of just functions. We will build two

HTML applications using functional JavaScript programming concepts we

have learned so far. We will learn how to build an application with central

storage, render a user interface (UI) using declarative syntax, and wire up

events using our custom library. We are going to build a tiny JavaScript

library that will be capable of rendering HTML applications with behavior.

In the next chapter we will learn to write unit tests for the library we build

in this chapter.

Before we start building a library, we need to understand a very

important concept in JavaScript called immutability.

https://hyperapp.js.org

242

Note  The chapter examples and library source code are in branch
chap11. The repo’s URL is https://github.com/antsmartian/
functional-es8.git.

Once you check out the code, please check out branch chap11:

git checkout -b chap11 origin/chap11

Open the command prompt as administrator, navigate to the folder that
contains package.json, and run

npm install

to download the packages required for the code to run.

�Immutability
JavaScript functions act on data, which are typically stored in variables like

strings, arrays, or objects. The state of data is usually defined as the value

of the variable at any given point in time. For example:

let x = 5; // the state of x is 5 here

let y = x; // the state of y is same as that of x

y = x * 2; // we are altering the state of y

console.log('x = ' + x); // prints: x=5; x is intact,

pretty simple

console.log('y = ' + y); // prints: y=10

Now consider string data type:

let x = 'Hello'; // the state of x is Hello here

let y = x; // the state of y is same as x

Chapter 11 Building a React-Like Library

https://github.com/antsmartian/functional-es8.git
https://github.com/antsmartian/functional-es8.git

243

x = x + ' World'; // altering the state of x

console.log('x = ' + x); // prints: x = Hello World

console.log('y = ' + y); // prints: y = y = Hello ; Value of y

is intact

So, to conclude JavaScript numbers and strings are immutable. The

state of these variable types cannot be altered after it is created. That is not

the case with objects and arrays, however. Consider this example:

let x = { foo : 'Hello' };

let y = x; // the state of y should be the same as x

x.foo += ' World'; // altering the state of x

console.log('x = ' + x.foo); // prints: x = Hello World

console.log('y = ' + y.foo); // prints: y = Hello World; y is

also impacted

JavaScript objects and arrays are mutable, and the state of a mutable

object can be modified after creation.

Note  This also implies that equality is not a reliable operator for
mutable objects because changing a value in one place will update
all references.

Here is an example for arrays.

let x = ['Red', 'Blue'];

let y = x;

x.push('Green');

console.log('x = ' + x); // prints ['Red', 'Blue', 'Green']

console.log('y = ' + y); // prints ['Red', 'Blue', 'Green']

Chapter 11 Building a React-Like Library

244

If you would like to enforce immutability onto JavaScript objects, it is

possible by using Object.freeze. Freeze makes the object read-only. For

example, consider this code:

let x = { foo : 'Hello' };

let y = x;

Object.freeze(x);

// y.foo += ' World';

// uncommenting the above line will throw an error, both x and

y are made read-only.

console.log('x = ' + x.foo);

console.log('y = ' + y.foo);

To summarize, Table 11-1 differentiates the mutable and immutable

types in JavaScript.

Immutability is a very important concept for building modular

JavaScript libraries that can be reused across projects. An application’s life

cycle is driven by its state, and JavaScript applications store state mostly in

mutable objects. To predict the state of an application at any given point in

time is critical.

In the next section we build a library that can be used as a predictable

state container. In this library we use immutability and various functional

programming concepts we have learned earlier.

Table 11-1.  Data Types in JavaScript

Immutable Types Mutable Types

Numbers, strings Objects, arrays

Chapter 11 Building a React-Like Library

245

�Building a Simple Redux Library
Redux is a library that is inspired by popular single application architectues

like Flux, CQRS, and Event Sourcing. Redux helps you centralize the

application state and helps you build a predictable state pattern. Before

understanding what Redux is, let us try to understand how state is handled

in few popular JavaScript frameworks. Let us take Angular as an example.

Angular applications rely on the Document Object Model (DOM) to store

state, the data is bound to UI components called views (or DOM), the views

represent the model, and in turn model changes can update the views.

When the application scales horizontally over time as you add new

features, it becomes highly challenging to predict the cascading effect of

state change. At any given point in time the state can be changed by any

component in the application or another model, which makes it extremely

unpredictable to determine when and what has caused the application

state to change. React, on the other hand, works using virtualized DOM.

Given any state, a React application creates a virtual DOM and can then

render the virtual DOM.

Redux is a framework-agnostic state library. It can be used with

Angular, React, or any other application. Redux is built to address the

common problems with application state and how they are influenced by

models and views. Redux is inspired by Flux, an application architecture

introduced by Facebook. Redux uses a unidirectional flow of data. The

following are the design principles of Redux.

•	 Single source of truth: The application has a central state.

•	 State is read-only: Special events called actions describe

the state change.

•	 Changes are made by pure functions: Actions are

consumed by reducers, and reducers are pure

functions that can be invoked when user action is

identified. Only one change takes place at a time.

Chapter 11 Building a React-Like Library

246

The key feature of Redux is that there is a single source of truth (state).

The state is inherently read-only, so the only way to change the state is to

emit an action describing what happened. The action is consumed by the

reducer and a new state is created, which in turn triggers a DOM update.

The actions can be stored and replayed, which allows us to do things like

time travel debugging. If you’re still confused, do not worry; read on as the

pattern is unveiled and becomes simpler when we start implementing it

using what we have learned so far.

Figure 11-1 shows how Redux implements predictable state container.

The key ingredients of Redux are reducers, actions, and state. With this

context, let’s start building our own Redux library.

Note  The Redux library we build here is not production ready;
rather, the Redux example is used to demonstrate the power of
functional JavaScript programming.

Figure 11-1.  Redux implementation of a state container

Chapter 11 Building a React-Like Library

247

Create a new folder for the Redux library and create a new file called

redux.js that will host our library. Copy and paste the code from the

following sections into this file. You can use any JavaScript editor of your

choice; for example, VS Code. The first and most important part of our

Redux library is state. Let’s declare a simple state with one property called

counter.

let initialState = {counter: 0};

The next key ingredient is reducer, the only function that can alter the

state. A reducer takes two inputs: the current state and an action that acts

on the current state and creates a new state. The following function acts as

reducer in our library:

function reducer(state, action) {

 if (action.type === 'INCREMENT') {

 state = Object.assign({}, state, {counter: state.counter + 1})

 }

 return state;

}

In Chapter 4 we discussed the usage of Object.assign for creating new

state by merging old states. This method is very helpful when you want to

get around the mutability. The reducer function is responsible for creating

a new state without altering the current state. You can see how we have

used object.assign to achive this: object.assign is used to create a new

state by merging two states into one, without affecting the state object.

The action is dispatched by a user interaction; in our example it is a

simple button click as shown here.

document.getElementById('button').addEventListener('click',

function() {

 incrementCounter();

 });

Chapter 11 Building a React-Like Library

248

When the user clicks a button with Id button the incrementCounter is

invoked. Here is the code for incrementCounter:

function incrementCounter() {

 store.dispatch({

 type: 'INCREMENT'

 });

}

What is store? store is the main function that encapsulates behaviors

that cause the state to change, invokes listeners for state change like UI,

and registers listeners for the actions. A default listener in our case is the

view renderer. The following function elaborates how a store looks.

function createStore(reducer,preloadedState){

 let currentReducer = reducer;

 let currentState = preloadedState;

 let currentListeners = [];

 let nextListeners = currentListeners;

 function getState() {

 return currentState;

 }

 function dispatch(action) {

 currentState = currentReducer(currentState, action);

 const listeners = currentListeners = nextListeners;

 for (let i = 0; i < listeners.length; i++) {

 const listener = listeners[i];

 listener();

 }

 return action;

 }

Chapter 11 Building a React-Like Library

249

 function subscribe(listener) {

 nextListeners.push(listener);

 }

 return {

 getState,

 dispatch,

 subscribe

 };

}

The following code is our one and only listener that renders the UI

when there is a change in state.

function render(state) {

 document.getElementById('counter').textContent = state.

counter;

}

The following code shows how the listener is subscribed using the

subscribe method.

store.subscribe(function() {

 render(store.getState());

});

This code is used to bootstrap the application:

let store = createStore(reducer, initialState);

function loadRedux(){

 // Render the initial state

 render(store.getState());

}

Chapter 11 Building a React-Like Library

250

It is time to plug our Redux library into an application, create a new file

called index.html under the same folder, and paste in the following code.

<html>

<head>

 <h1>Chapter 11 - Redux Sample</h1>

</head>

<body>

 <h1 id="counter">-</h1>

 <button id="button">Increase</button>

 <script src="./redux.js"></script>

</body>

</html>

The function loadRedux is invoked on page load. Let us understand the

life cycle of our application.

	 1.	 On load: Redux store object is created and listener

is registered using store.subscribe. The onclick

event is also registered to call the reducer.

	 2.	 On click: The dispatcher is invoked, which creates a

new state and invokes the listener.

	 3.	 On render: The listener (render function) gets the

updated state and renders the new view.

This cycle continues until the application is unloaded or destroyed.

You can either open index.html in a new file or update package.json with

the following code (to see the details of the full package.json, check out

the branch mentioned at the beginning of the chapter).

"scripts": {

 �"playground" : "babel-node functional-playground/play.js

--presets es2015-node5",

 "start" : "open functional-playground/index.html"

 }

Chapter 11 Building a React-Like Library

251

To run the application you can run this command, which opens index.

html in the browser:

npm run start

Notice that each action performed on the UI is stored in the Redux store,

which adds tremendous value to our project. If you want to know the reason

for the current state of the application, just traverse through all actions

performed on the initial state and replay them; this feature is also called

time traveling. This pattern also helps you undo or redo a state change at any

point in time. For example, you might want the user to make some changes

in the UI but only commit them based on certain validation. If the validation

fails you can easily undo the state. Redux can also be used with non-UI

applications; remember, it is a state container with time travel capabilities. If

you want to know more about Redux, visit https://redux.js.org/.

�Building a Framework Like HyperApp
Frameworks help reduce development time by allowing us to build on

something that already exists and to develop applications within less time.

The most common assumption with frameworks is that all the common

concerns like caching, garbage collection, state management, and DOM

rendering (applicable to UI frameworks only) are addressed. It would

be like reinventing the wheel if you start to build an application without

Figure 11-2.  Example using our redux library

Chapter 11 Building a React-Like Library

https://redux.js.org/

252

any of these frameworks. However, most of the frameworks available in

the market to build a single-page UI application suffer from a common

problem: bundle size. Table 11-2 provides the gzipped bundle size of most

popular modern JavaScript frameworks.

HyperApp, on the other hand, Promises to be the thinnest JavaScript

framework available to build UI applications. The gzipped version of

HyperApp is 1 KB. Why are we talking about a library that is already built?

The idea behind this section is not to introduce or to build applications

with HyperApp. HyperApp builds on top of functional programming

concepts like immutability, closures, higher order functions, and so on.

That’s the primary reason we are learning to build a Hyper-App-like

library.

Because HyperApp needs JSX (JavaScript Extension) syntax to be

parsed, and so on, we will learn what Virtual Dom and JSX are in the

upcoming sections.

�Virtual DOM
DOM is a universally accepted language to represent documents like

HTML. Each node in an HTML DOM represents an element in an HTML

document. For example:

Table 11-2.  Bundle Size of Popular JavaScript Frameworks

Name Size

Angular 1.4.5 51K

Angular 2 + Rx 143K

React 16.2.0 + React DOM 31.8K

Ember 2.2.0 111K

Source: https://gist.github.com/Restuta/cda69e50a853aa64912d

Chapter 11 Building a React-Like Library

https://gist.github.com/Restuta/cda69e50a853aa64912d

253

<div>

<h1>Hello, Alice </h1>

<h2>Logged in Date: 16th June 2018</h2>

</div>

JavaScript frameworks used to build UI applications intend to build

and interact with DOM in a most efficient way. Angular, for example, uses

a component-based approach. An application built using Angular contains

multiple components, each storing part of the applicaion state locally at the

component level. The state is mutable, and every state change rerenders

the view, and any user interaction can update the state. For example, the

preceding HTML DOM can be written in Angular as shown here:

<div>

<h1>Hello, {{username}} </h1> ➔ Component 1

<h2>Logged in Date: {{dateTime}}</h2> ➔ Component 2

</div>

The variables username and dateTime are stored on the component.

Unfortunately, DOM manipulations are costly. Although this is a very

popular model, it has various caveats, and here are a few.

	 1.	 The state is not central: The application’s state is

locally stored in components and passed across

components, resulting in uncertainty of overall state

and its transition at any given point in time.

	 2.	 Direct DOM manipulation: Every state change

triggers a DOM update, so in a large application

with 50 or more controls on a page the impact on

the performance is pretty evident.

To solve these problems we would need a JavaScript framework that

can centralize storage and reduce DOM manipulations. In the previous

section we learned about Redux, which can be used to build a central

Chapter 11 Building a React-Like Library

254

predictable state container. The DOM manipulations can be reduced by

using Virtual DOM.

Virtual DOM is an in-memory representation of DOM using JSON. The

DOM operations are done on the in-memory representation before they are

applied to the actual DOM. Based on the framework, the representation of

DOM varies. The HyperApp library we discussed earlier uses Virtual DOM

to detect the changes during state change and only re-creates the delta

DOM, which leads to an increase in the overall efficiency of the application.

The following is a sample representation of DOM used by HyperApp.

{

 name: "div",

 props: {

 id: "app"

 },

 children: [{

 name: "h1",

 props: null,

 children: ["Hello, Alice"]

 }]

}

Virtual DOM is heavily used in the React framework, which uses JSX to

represent DOM.

�JSX
JSX is a syntax extension of JavaScript that can be used to represent DOM.

Here is an example of JSX:

const username = "Alice"

const h1 = <h1>Hello, {username}</h1>; //HTML DOM embedded in JS

Chapter 11 Building a React-Like Library

255

React heavily uses JSX but it can live without it, too. You can put any

valid JavaScript expression into the JSX expression like calling a function as

shown next.

const username = "aliCe";

const h1 = <h1>Hello, {toTitleCase(username)}</h1>;

let toTitleCase = (str) => {

 // logic to convert string to title case here

}

We will not be delving into JSX concepts; the idea behind introducing

JSX and Virtual DOM is to familiarize you with the concepts. To learn more

about JSX please visit https://reactjs.org/docs/introducing-jsx.html.

�JS Fiddle
In all the previous chapters we have executed code from our development

machines. In this section we introduce an online code editor and compiler

called JS Fiddle (https://jsfiddle.net). JS Fiddle can be used to code,

debug, and collaborate over HTML, JavaScript, and Cascading Style Sheets

(CSS)-based applications. JS Fiddle contains ready-to-use templates and

it supports multiple languages, frameworks, and extensions. JS Fiddle is

the best tool to use if you’re planning to do quick and dirty POCs (Proof of

Concepts) or learn something interesting as in this book. It allows you to

save work online and work from anywhere, relieving us from the need to

set up an appropriate development environment for any new combination

of language, compiler, and library.

Chapter 11 Building a React-Like Library

https://reactjs.org/docs/introducing-jsx.html
https://jsfiddle.net

256

Let us start building our library by creating a new JS Fiddle. Click

Save on the top ribbon anytime you wish you save the code. As shown in

Figure 11-4, in the Language drop-down list box, select Babel + JSX. In the

Frameworks & Extensions drop-down list box, select No-Library (Pure JS).

Selecting the right combination of language and framework is very

important for the library to compile.

Figure 11-3.  The image below shows JSFiddle editor

Chapter 11 Building a React-Like Library

257

Our library consists of three main components: state, view, and actions

(like HyperApp). The following function acts as a bootstrap for our library.

Paste this code into the JavaScript + No-Library (Pure JS) code section.

function main() {

 app({ view: (state, actions) =>

 <div>

 <button onclick={actions.up}>Increase</button>

 <button onclick={actions.down}>Decrease</button>

 �<button onclick={actions.changeText}>Change Text</button>

 <p>{state.count}</p>

 <p>{state.changeText}</p>

 </div>,

 state : {

 count : 5,

 changeText : "Date: " + new Date().toString()

 },

Figure 11-4.  The below image shows Framework and Exteions
selection for this code sample

Chapter 11 Building a React-Like Library

258

 actions: {

 down: state => ({ count: state.count - 1 }),

 up: state => ({ count: state.count + 1 }),

 �changeText : state => ({changeText : "Date: " +

new Date().toString()})

 }

 })

}

The state here is a simple object.

state : {

 count : 5,

 changeText : "Date: " + new Date().toString()

}

The actions do not change the state directly, but return a new state

every time the action is called. The functions down, up, and changeText act

on the state object passed as a parameter and return a new state object.

actions: {

 down: state => ({ count: state.count - 1 }),

 up: state => ({ count: state.count + 1 }),

 changeText : state => ({changeText : "Date: " + new

Date().toString()})

}

The view uses JSX syntax representing a Virtual DOM. The DOM

elements are bound to the state object and the events are registered to the

actions.

 <div>

 <button onclick={actions.up}>Increase</button>

 <button onclick={actions.down}>Decrease</button>

Chapter 11 Building a React-Like Library

259

 �<button onclick={actions.changeText}>Change Text

</button>

 <p>{state.count}</p>

 <p>{state.changeText}</p>

</div>

The app function shown here is the crux of our library, which accepts

state, view, and actions as a single JavaScript object and renders the actual

DOM. Copy the following code into the JavaScript + No-Library (Pure JS)

section.

function app(props){

let appView = props.view;

let appState = props.state;

let appActions = createActions({}, props.actions)

let firstRender = false;

let node = h("p",{},"")

}

The function h is inspired from HyperApp, which creates a JavaScript

object representation of DOM. This function is basically responsible for

creating an in-memory representation of the DOM that is rendered when

the state changes. The following function, when called during pageLoad,

creates an empty <p></p> node. Copy this code into the JavaScript + No-

Library (Pure JS) section.

//transformer code

function h(tag, props) {

 let node

 let children = []

 for (i = arguments.length; i-- > 2;) {

 stack.push(arguments[i])

 }

Chapter 11 Building a React-Like Library

260

 while (stack.length) {

 if (Array.isArray((node = stack.pop()))) {

 for (i = node.length; i--;) {

 stack.push(node[i])

 }

 } else if (node != null && node !== true && node !== false)

{

 �children.push(typeof node === "number" ?

(node = node + "") : node)

 }

 }

 return typeof tag === "string"

 ? {

 tag: tag,

 props: props || {},

 children: children,

 generatedId : id++

 }

 : tag(props, children)

}

Please note that for the JSX to call our h function, we would have left

the following comment:

/** @jsx h */

This is read by the JSX parser and the h function is called.

The app function contains various child functions that are explained

in the sections that follow. These functions are built using functional

programming concepts we have already learned. Each function accepts

an input, acts on it, and returns a new state. The transformer (i.e., h

function) receives tags and properties. This function is invoked by the

Chapter 11 Building a React-Like Library

261

JSX parser, typically once they parse the JSX and send across the tag and

properties as arguments. If we look closely at the h function, it uses the

fundamental functional programming paradigm, recursion. It recursively

builds the tree structure of DOM in JavaScript data type.

For example, calling h('buttons', props) where props is an object

carrying other properties attached to the tag like onclick function, the

function h would return a JSON equivalent as shown here.

{

children:["Increase"]

generatedId:1

props:{onclick: ƒ}

tag:"button"

}

�CreateActions
The createActions function creates an array of functions, one each for

action. The actions object is passed in as a parameter as shown earlier.

Notice the usage of Object.Keys, closures, and the map function here.

Each object within the actions array is a function that can be identified

by its name. Each such function has access to the parent’s variable scope

(withActions), a closure. The closure when executed retains the values in

the parent scope even though the function createAction has exited the

execution context. The name of the function here in our example is up,

down, and changeText.

function createActions(actions,withActions){

 Object.keys(withActions || {}).map(function(name){

 return actions[name] = function(data) {

 data = withActions[name];

 update(data)

 }

Chapter 11 Building a React-Like Library

262

 })

 return actions

 }

Figure 11-5 is a sample of how the actions object looks during runtime.

�Render
The render function is responsible for replacing the old DOM with the

new DOM.

Figure 11-5.  The actions object during runtime

Figure 11-6.  The below image shows the state of Children Object
during runtime

Chapter 11 Building a React-Like Library

263

 function render() {

 let doc = patch(node,(node = appView(appState,appActions)))

 if(doc) {

 let children = document.body.children;

 for(let i = 0; i <= children.length; i++){

 �removeElement(document.body, children[i],

children[i])

 }

 document.body.appendChild(doc);

 }

 }

�Patch
The patch function is responsible for creating HTML nodes in recursion;

for example, when patch receives the virtual DOM object, it creates the

HTML equivalent of the node recursively.

function patch(node,newNode) {

 if (typeof newNode === "string") {

 let element = document.createTextNode(newNode)

 } else {

 let element = document.createElement(newNode.tag);

 for (let i = 0; i < newNode.children.length;) {

 �element.appendChild(patch(node,newNode.

children[i++]))

 }

 for (let i in newNode.props) {

 element[i] = newNode.props[i]

 }

Chapter 11 Building a React-Like Library

264

 �element.setAttribute("id",newNode.props.id !=

undefined ? newNode.props.id : newNode.

generatedId);

 }

 return element;

 }

}

�Update
The update function is a higher order function responsible for updating

the old state with a new state and rerendering the application. The update

function is invoked when the user invokes an action like clicking any of the

buttons shown in Figure 11-7.

The update function receives a function as an argument; for example,

up, down, or changeText, which makes it a higher order function. This gives

us the benefit of adding dynamic behavior to the application. How? The

update function is not aware of the argument with state until runtime,

which leaves the app behavior to be decided during runtime based on

what argument is passed. If up gets passed, the state is incremented; if down

is passed, it is decremented. So much functionality with less code is the

power of functional programming.

Figure 11-7.  The below image shows the final UI for this example

Chapter 11 Building a React-Like Library

265

The current state of the application is passed on to your actions

(example, up, down). Actions fundamentally follows the functional

paradigm by returning a new state altogether. (Yes, HyperApp strictly

follows the concepts of Redux, which in turn is fundamentally based on

functional programming concepts.) This is done by the merge function.

Once we get a new state, we will call the render function, as shown here.

function update(withState) {

 withState = withState(appState)

 if(merge(appState,withState)){

 appState = merge(appState,withState)

 render();

 }

 }

�Merge
The merge function is a simple function that ensures the new state is

merged with the old state.

function merge(target, source) {

 let result = {}

 for (let i in target) { result[i] = target[i] }

 for (let i in source) { result[i] = source[i] }

 return result

}

As you can see, where the state is altered, a new state that contains

the old state and the state that has changed is created and altered. For

example, if you invoke the Increase action, the merge ensures only the

count property is updated. If you look closely, the merge function very

closely resembles what Object.assign does; that is, it creates a new state

Chapter 11 Building a React-Like Library

266

from any given state by not affecting the given states. Hence we can also

rewrite the merge function as shown here.

function merge(target, source) {

 let result = {}

 Object.assign(result, target, source)

 return result

}

That’s the power of ES8 syntax.

�Remove
The following functions are used to remove the children from the real

DOM.

// remove element

function removeElement(parent, element, node) {

 function done() {

 parent.removeChild(removeChildren(element, node))

 }

 let cb = node.attributes && node.attributes.onremove

 if (cb) {

 cb(element, done)

 } else {

 done()

 }

}

// remove children recursively

function removeChildren(element, node) {

 let attributes = node.attributes

 if (attributes) {

Chapter 11 Building a React-Like Library

267

 for (let i = 0; i < node.children.length; i++) {

 removeChildren(element.childNodes[i], node.children[i])

 }

 }

 return element

}

The UI of the application looks like Figure 11-8. Increase, Decrease,

and ChangeText are the actions, the number is 5, and Date is the state.

The source code of the library is available under hyperapp.js of the

checkout branch. You can copy paste it into a new JS Fiddle to create

the application (remember to select the correct language as explained

earlier). You can also fork from my JS Fiddle at https://jsfiddle.net/

vishwanathsrikanth/akhbj9r8/70/.

With this, we are finished building our second library. Clearly our

library is much smaller than 1 KB, yet it is capable of building interactive

web apps. Both the libraries that we built are based only on functions.

All these functions work only on the input, rather than on global state.

Functions use concepts like higher order functions to make the system

easier to maintain. We see how each function receives input on time and

works only with that input, returning a new state or function. We reused

Figure 11-8.  The below image shows the final UI for this example

Chapter 11 Building a React-Like Library

https://jsfiddle.net/vishwanathsrikanth/akhbj9r8/70/
https://jsfiddle.net/vishwanathsrikanth/akhbj9r8/70/

268

many higher order functions like map, each, assign, and so on. This shows

how well-defined functions can be reused within our code base.

Also, both of these codes are taken from Redux and HyperApp (with

tweaking of course), but you can see how popular libraries can be built by

just following the functional concepts. It’s all about functions at the end of

the day!

Try to build more libraries like these using the functional JavaScript

concepts explained in this book.

�Summary
In this chapter we learned to use functional JavaScript concepts to build a

library. We have learned how distributed state will disrupt the application’s

maintainability and predictability over time and how Redux-like

frameworks can help us centralize state. Redux is a state container with a

centralized read-only state; the state change is only allowed by reducers by

passing actions and the old state. We also built a Redux-like library and an

HTML application using functional JavaScript concepts. We learned about

Virtual DOM and how it helps reduce DOM manipulations, and JSX syntax

that can be used to represent DOM in JavaScript files. JSX and Virtual DOM

concepts are used in building a library like HyperApp, the thinnest library

available to build single-page applications.

Chapter 11 Building a React-Like Library

269© Anto Aravinth, Srikanth Machiraju 2018
A. Aravinth and S. Machiraju, Beginning Functional JavaScript,
https://doi.org/10.1007/978-1-4842-4087-8_12

CHAPTER 12

Testing and Closing
Thoughts

All code is guilty, until proven innocent.

—Anonymous

We have covered most of the concepts surrounding functional JavaScript.

We have learned the fundamentals, advanced ideas, and the latest

concepts in the ES8 specification. Is our learning complete? Can we

strongly assert that we have written workable code? No; unless the code is

tested, no code is complete.

In this concluding chapter we learn to author tests for the functional

JavaScript code we have written thus far. We will learn to use the industry’s

best testing frameworks and coding patterns for authoring flexible,

easy-to-learn, automated tests. The patterns and practices discussed in this

chapter can be used to test any functional code for all possible scenarios.

We will also learn to test code that uses advanced JavaScript like Promises

and asynchronous methods. The remainder of the chapter deals with

using various tools for running tests, reporting test status, calculating code

coverage, and applying linting to enforce better coding standards. Finally,

we wrap up with some concluding thoughts for this second edition.

270

Note  The chapter examples and library source code are in branch
chap12. The repo’s URL is https://github.com/antsmartian/
functional-es8.git.

Once you check out the code, please check out branch chap12:

git checkout -b chap12 origin/chap12

Open the command prompt as administrator, navigate to the folder that
contains package.json, and run

npm install

to download the packages required for the code to run.

�Introduction
Every developer should know that writing a test case is the only way to

certify the code runs and ensure there are no buggy paths. The tests are of

many kinds—unit, integration, performance, security/penetration, and so

on—each satisfying some certain criteria of the code. Which tests to author

depends completely on the function and priority of the functionality: It

is all about return on investment (ROI). Your tests should answer these

questions: Is this functionality important for the application? Will I be able

to certify this functionality works if I write this test? The core functionality

of the application is covered by all the previously mentioned tests,

whereas rarely used features might only need unit and integration tests.

Evangelizing unit tests is not going to be the gist of this section. Instead we

will learn the importance of authoring automated unit tests in the current

DevOps scenario.

DevOps (Development + Operations) is a set of processes, people,

and tools together used to define and ensure continuous frictionless

delivery of software applications. Now where does testing fit into this

Chapter 12 Testing and Closing Thoughts

https://github.com/antsmartian/functional-es8.git
https://github.com/antsmartian/functional-es8.git

271

model? The answer lies within continuous testing. Every high-performing

Agile team with a DevOps delivery model should ensure they follow

practices like continuous integration, testing, and delivery. In simple

terms, every code check-in done by a developer is integrated into the one

single repository, all the tests are run automatically, and the latest code is

deployed automatically (provided the tests’ passing criteria are met) to a

staging environment. Having a flexible, reliable, and fast delivery pipeline

is the key to success for the most successful companies as shown in

Table 12-1.

Table 12-1.  Delivery Pipelines of Successful Companies

Organization Deployments

Facebook 2 deployments per day

Amazon Deploys every 11.6 seconds

Netflix 1,000 times a day

Source: Wikipedia.

Let’s say you are part of an Agile team that is building an application

using Node, you have authored lot of code using best practices explained in

this book, and now it is your responsibility to also write tests for your code

so that it reaches acceptable code coverage and pass criteria. Teaching you

how to author tests for the JavaScript functions is the aim of this chapter.

Figure 12-1 shows where the continuous testing phase sits in the

overall application life cycle.

Chapter 12 Testing and Closing Thoughts

272

�Types of Testing
The following are the most important categories of tests.

•	 Unit tests: Unit tests are written to test every function

in isolation. This is going to be the primary focus of

this chapter. Unit tests test individual functions by

supplying input and making sure the output matches

what is expected. Unit tests mock dependent behavior.

More on mocking follows later in this chapter.

•	 Integration tests: Integration tests are written to test

end-to-end functionality. For example, for a user

registration scenario this test might go ahead and

create a user in the data store and ensure it exists.

•	 UI (functional tests): UI tests are for web applications;

these tests are written to control the browser and enact

user journeys.

Other types of tests are smoke tests, regression tests, acceptance tests,

system tests, preflight tests, penetration tests, and performance tests.

Figure 12-1.  The continuous testing phase of the application life cycle

Chapter 12 Testing and Closing Thoughts

273

There are various frameworks available for authoring the tests in these

categories, but explanation of these test types is beyond the scope of this

book. This chapter deals only with unit tests.

�BDD and TDD
Before we delve into the JavaScript test frameworks, let us briefly introduce

the most notable test development methodologies, behavioral-driven

development (BDD) and test-driven development (TDD).

BDD suggests testing the behavior of the function instead of its

implementation. For example, consider the following function that just

increments a given number by 1.

var mathLibrary = new MathLibrary();

var result = mathLibrary.increment(10)

BDD advises the test to be written as shown next. Although this looks

like a simple unit test, there is a subtle difference. Here we are not worried

about the implementation logic (like the initial value of Sum).

var expectedValue = mathlibrary.seed + 10;

// imagine seed is a property of MathLibrary

Assert.equal(result, expectedValue);

Assertions are functions that help us verify the actual value against

the expected value or vice versa. Here, we are not worried over the

implementation details; rather, we assert the behavior of the function,

which is to increment the value by 1. If the value of the seed changes

tomorrow, we do not have to update the function.

Note A ssert is part of the nomenclature in most testing frameworks.
It is used primarily to compare expected vs. actual in a variety of ways.

Chapter 12 Testing and Closing Thoughts

274

TDD suggests you write the test first. For example, in the current

scenario we write the following test first. Of course it would fail because

there is no MathLibrary or its corresponding function called increment.

Assert.equal(MathLibrary.increment(10), 11);

The idea behind TDD is to write assertions first that satisfy the

functional requirement and that would initially fail. Development

progresses by making necessary corrections (writing code) to pass the test.

�JavaScript Test Frameworks
JavaScript being a vastly adapted language for writing functional code,

there are numerous test frameworks available, including Mocha, Jest (by

Facebook), Jasmine, and Cucumber, to name a few. The most famous

among them are Mocha and Jasmine. To write a unit test for JavaScript

functions we need the libraries or tools that can cover the following basic

needs.

•	 Test structure, which defines the folder structure, file

names, and corresponding configuration.

•	 Assertion functions, a library that can be used to assert

with flexibility.

•	 Reporter, a framework for displaying the results in

various formats like Console, HTML, JSON, or XML.

•	 Mocks, a framework that can provide test doubles to

fake dependent components.

•	 Code coverage, so the framework should be able to

clearly tell the number of lines or functions covered

with tests.

Chapter 12 Testing and Closing Thoughts

275

Unfortunately, no one testing framework provides all of these

functionalities. For example, Mocha does not have an assertion library.

Fortunately, most frameworks like Mocha and Jasmine are extensible; we

can use Babel’s assertion library or expect.js with Mocha for performing

clean assertions. Between Mocha and Jasmine, we will be writing Mocha

tests as we feel it is more flexible than Jasmine. Of course we will also see a

glimpse of Jasmine tests at the end of this section.

Note A t the time of writing Jasmine does not support tests for ES8
features, which is one of the reasons for the bias toward Mocha.

�Testing Using Mocha
The following sections explain how to set up Mocha for authoring tests and

the nitty-gritty of authoring sync and async tests with mocking. Let’s get

started.

�Installation

Mocha (https://mochajs.org) is a community-backed, feature-rich

JavaScript test framework that can run on both Node.js and browsers.

Mocha boasts of making asynchronous testing simple and fun, which we

will witness in a moment.

Install Mocha globally and for the development environment as

shown here.

npm install –global mocha

npm install –save-dev mocha

Chapter 12 Testing and Closing Thoughts

https://mochajs.org

276

Add a new folder called test and add a new file within the test folder

called mocha-tests.js. The following is the updated file structure.

| functional-playground

|------play.js

| lib

|------es8-functional.js

| test

| -----mocha-tests.js

�Simple Mocha Test

Add the following simple Mocha test to mocha-tests.js.

var assert = require('assert');

describe('Array', function () {

 describe('#indexOf()', function () {

 �it('should return -1 when the value is not present',

function () {

 assert.equal(-1, [1, 2, 3].indexOf(4));

 });

 });

});

Let’s understand this bit by bit. The first line of code is required to

import the Babel assertion library. As mentioned earlier, Mocha doesn’t

have an out-of-the-box assertion library so this line is required. You can

also use any other assertion library like expect.js, chai.js, should.js, or

many more.

var assert = require('assert');

Mocha tests are hierarchical in nature. The first describe function

shown earlier describes the first test category 'Array'. Each primary

Chapter 12 Testing and Closing Thoughts

277

category can have multiple describes, like '#indexOf'. Here '#indexOf' is

a subcategory that contains the tests related to the indexOf function of

the array. The actual test starts with the it keyword. The first parameter

of the it function should always describe the expected behavior (Mocha

uses BDD).

it('should return -1 when the value is not present', function(){})

There can be multiple it functions within a subcategory. The following

code is used to assert the expected vs. actual. There can also be multiple

asserts in a single test case (the it function here is a single test case). By

default, the test stops at the first failure in case of multiple asserts, but this

behavior can be altered.

The following code is added to package.json for running the Mocha

tests. Also check the dev dependencies and dependencies section when

you check out the branch to understand the support libraries that are

pulled in.

"mocha": "mocha --compilers js:babel-core/register --require

babel-polyfill",

The switches –compilers and –require here are optional; in this case

they are used to compile ES8 code. Running the following command runs

the tests.

npm run mocha

Chapter 12 Testing and Closing Thoughts

278

Figure 12-2 shows a sample response.

Observe the way test results are presented. Array is the first level in

the hierarchy, followed by #indexOf and then the actual test result. The

statement 1 passing above shows the summary of tests.

�Tests for Currying, Monads, and Functors

We have learned a lot of functional programming concepts like currying,

functors, and monads. In this section we learn to write tests for the

concepts we learned earlier.

Let’s start by authoring unit tests for currying, the process of converting

a function with n number of arguments into a nested unary function. Well,

that’s the formal definition, but it will probably not help us author unit

tests. Authoring unit tests for any function is quite easy. The first step is to

list its primary feature set. Here we are referring to the curryN function we

wrote in Chapter 6. Let’s define its behavior

	 1.	 CurryN should always return a function.

	 2.	 CurryN should only accept functions, and passing

any other value should throw an error.

Figure 12-2.  Sample response to switches

Chapter 12 Testing and Closing Thoughts

279

	 3.	 CurryN function should return the same value as

that of a normal function when called with the same

number of arguments.

Now, let us start writing tests for these features.

it("should return a function", function(){

 let add = function(){}

 assert.equal(typeof curryN(add), 'function');

});

This test will assert if curryN always returns a function object.

it("should throw if a function is not provided", function(){

 assert.throws(curryN, Error);

 });

This test will ensure that curryN throws Error when a function is not

passed.

it("calling curried function and original function with same

arguments should return the same value", function(){

 let multiply = (x,y,z) => x * y * z;

 let curriedMultiply = curryN(multiply);

 assert.equal(curriedMultiply(1,2,3), multiply(1,2,3));

 assert.equal(curriedMultiply(1)(2)(3), multiply(1,2,3));

 assert.equal(curriedMultiply(1)(2,3), multiply(1,2,3));

 curriedMultiply = curryN(multiply)(2);

 assert.equal(curriedMultiply(1,3), multiply(1,2,3));

 });

The preceding test can be used to test the basic functionality of a

curried function. Now let’s write some tests for functors. Before that, like

we did for currying, let’s review the features of a functor.

Chapter 12 Testing and Closing Thoughts

280

	 1.	 A functor is a container that holds a value.

	 2.	 A functor is a plain object that implements the

function map.

	 3.	 A functor like MayBe should handle null or

undefined.

	 4.	 A functor like MayBe should chain.

Now, based on how we defined the functor let’s see some tests.

it("should store the value", function(){

 let testValue = new Container(3);

 assert.equal(testValue.value, 3);

 });

This test asserts that a functor like container holds a value. Now, how

do you test if the functor implements map? There are couple of ways: You

can assert on the prototype or call the function and expect a correct value,

as shown here.

it("should implement map", function(){

 let double = (x) => x + x;

 assert.equal(typeof Container.of(3).map == 'function', true)

 let testValue = Container.of(3).map(double).map(double);

 assert.equal(testValue.value, 12);

 });

The following tests assert if the function handles null and is capable of

chaining.

it("may be should handle null", function(){

 let upperCase = (x) => x.toUpperCase();

 let testValue = MayBe.of(null).map(upperCase);

 assert.equal(testValue.value, null);

 });

Chapter 12 Testing and Closing Thoughts

281

 it("may be should chain", function(){

 let upperCase = (x) => x.toUpperCase();

 �let testValue = MayBe.of("Chris").map(upperCase).

map((x) => "Mr." + x);

 assert.equal(testValue.value, "Mr.CHRIS");

 });

Now, with this approach it should be easy to write tests for monads.

Where do you start? Here is a little help: Let’s see if you can author tests for

the following rules by yourself.

	 1.	 Monads should implement join.

	 2.	 Monads should implement chain.

	 3.	 Monads should remove nesting.

If you need help, check out chap12 branch from the GitHub URL.

�Testing Functional Library

We have authored many functions in the es-functional.js library and

used play.js to execute them. In this section we learn how to author

tests for the functional JavaScript code we have written so far. Like

play.js, before using the functions they should be imported in the file

mocha-tests.js, so add the following line to the mocha-tests.js file.

import { forEach, Sum } from "../lib/es8-functional.js";

The following code shows the Mocha tests written for JavaScript

functions.

describe('es8-functional', function () {

 describe('Array', function () {

 �it('Foreach should double the elements of Array, when

double function is passed', function () {

 var array = [1, 2, 3];

Chapter 12 Testing and Closing Thoughts

282

 const doublefn = (data) => data * 2;

 forEach(array, doublefn);

 assert.equal(array[0], 1)

 });

 it('Sum should sum up elements of array', function () {

 var array = [1, 2, 3];

 assert.equal(Sum(array), 6)

 });

 �it('Sum should sum up elements of array including

negative values', function () {

 var array = [1, 2, 3, -1];

 assert.notEqual(Sum(array), 6)

 });

 });

�Async Tests with Mocha

Surprise, surprise! Mocha also supports async and await, and it is

suprisingly simple to test Promises or async functions as shown here.

 describe('Promise/Async', function () {

 it('Promise should return es8', async function (done) {

 done();

 var result = await fetchTextByPromise();

 assert.equal(result, 'es8');

 })

 });

Notice the call to done here. Without the call to the done function, the

test will time out because it does not wait for 2 s as required by our promise.

The done function here notifies the Mocha framework. Run the tests again

using the following command.

npm run mocha

Chapter 12 Testing and Closing Thoughts

283

The results are shown in Figure 12-3.

Reiterating the opening statement, Mocha might be initially very hard

to set up due to its inherent flexibility adhering to the fact that it gels well

with almost any framework for authoring fine unit tests, but at the end of

the day, the rewards are profuse.

�Mocking Using Sinon
Let’s say you are part of Team A, which is part of a large Agile team divided

into smaller teams like Team A, Team B, and Team C. Larger Agile teams

usually are divided by business requirements or geographical regions.

Let us say Team B consumes Teams C’s library and Team A uses Team

B’s functional library and each team is expected to hand over thoroughly

tested code. As a developer from Team A, while consuming Team B’s

functions would you author tests again? No. Then how would you ensure

Figure 12-3.  The below image shows the test results

Chapter 12 Testing and Closing Thoughts

284

your code is working when you are dependent on calling Team B’s

functions? This is where mocking libraries come into the picture and Sinon

is one such library. As mentioned earlier, Mocha doesn’t come with a

mocking library out of the box, but it seamlessly integrates with Sinon.

Sinon (Sinonjs.org) is a stand-alone framework that provides spies,

stubs, and mocks for JavaScript. Sinon integrates with any test framework

easily.

Note S pies, mocks, or stubs, although they solve a similar problem
and sound related, have subtle differences that are critical to
understand. We recommend learning the differences between fakes,
mocks, and stubs in greater detail. This section provides only a
summary.

A fake imitates any JavaScript object like a function or object. Consider

the following function.

var testObject= {};

testObject.doSomethingTo10 = (func) => {

 const x = 10;

 return func(x);

}

This code takes a function and runs it on constant 10. The following

code shows how to test this function using Sinon fakes.

 it("doSomethingTo10", function () {

 const fakeFunction = sinon.fake();

 testObject.doSomethingTo10(fakeFunction);

 assert.equal(fakeFunction.called, true);

 });

Chapter 12 Testing and Closing Thoughts

http://sinonjs.org

285

As you can see we have not created an actual function to act on 10;

instead we faked a function. It is important to assert the fake, hence

the statement assert.equal (fakeFunction.called, true) ensures

the fake function is called, which asserts the behavior of the function

doSomethingTo10. Sinon provides more comprehensive ways to test

the behavior of fake within the context of the test function. See the

documentation for more details.

Consider this function:

testObject.tenTimes = (x) => 10 * x;

The following code shows a test case written using Sinon’s stub. As you

notice, a stub can be used to define the behavior of the function.

 it("10 Times", function () {

 �const fakeFunction = sinon.stub(testObject, "tenTimes");

 fakeFunction.withArgs(10).returns(10);

 var result = testObject.tenTimes(10);

 assert.equal(result, 10);

 assert.notEqual(result, 0);

 });

More often we write code that interacts with external dependencies

like HTTP Call. As mentioned earlier, unit tests are light scoped, and the

external dependencies should be mocked, in this case the HTTP Call.

Let’s say we have the following functions:

var httpLibrary = {};

function httpGetAsync(url,callback) {

 // HTTP Get Call to external dependency

}

Chapter 12 Testing and Closing Thoughts

286

httpLibrary.httpGetAsync = httpGetAsync;

httpLibrary.getAsyncCaller = function (url, callback) {

 try {

 �const response = httpLibrary.httpGetAsync(url, function

(response) {

 if (response.length > 0) {

 for (let i = 0; i < response.length; i++) {

 �httpLibrary.usernames += response[i].username +

",";

 }

 callback(httpLibrary.usernames)

 }

 });

 } catch (error) {

 throw error

 }

}

If you would like to test only getAsyncCaller without getting into the

nitty-gritty of httpGetAsync (let’s say it is developed by Team B), we can

use Sinon mocks as shown here.

 it("Mock HTTP Call", function () {

 const getAsyncMock = sinon.mock(httpLibrary);

 getAsyncMock.expects("httpGetAsync").once().returns(null);

 �httpLibrary.getAsyncCaller("", (usernames) =>

console.log(usernames));

 getAsyncMock.verify();

 getAsyncMock.restore();

 });

Chapter 12 Testing and Closing Thoughts

287

This test case makes sure while testing getAsyncCaller, httpGetAsync is

mocked. The following test case tests the same method without using mock.

 it("HTTP Call", function () {

 �httpLibrary.getAsyncCaller("https://jsonplaceholder.

typicode.com/users");

 });

Before I wrap up writing tests for functional JavaScript code, let me

show how to write tests using Jasmine.

�Testing with Jasmine
Jasmine (https://jasmine.github.io) is also a famous testing

framework; in fact, the APIs of Jasmine and Mocha are similar. Jasmine

is the most widely used framework when building applications with

AngularJS (or Angular). Unlike Mocha, Jasmine comes with a built-in

assertion library. The only troublesome area with Jasmine at the point of

writing was testing asynchronous code. Let’s learn to set up Jasmine in our

code in the next few steps.

npm install –save-dev jasmine

If you intend to install it globally, run this command:

npm install -g jasmine

Jasmine dictates a test structure including a configuration file, so

running the following command will set up the test’s structure.

./node_modules/.bin/jasmine init

Chapter 12 Testing and Closing Thoughts

https://jasmine.github.io

288

That command creates the following folder structure:

|-Spec

|-----Support

|---------jasmine.json (Jasmine configuration file)

Jasmine.json contains the test configuration; for example, spec_dir

is used to specify the folder in which to look for Jasmine tests, and spec_

files describes the common keyword that is used to identify test files. For

more configuration details, please visit https://jasmine.github.io/2.3/

node.html#section-Configuration.

Let’s create a Jasmine test file in the spec folder that is created with the

init command and name the file jasmine-tests-spec.js. (Remember

without the keyword spec our test file will not be located by Jasmine.)

The following code shows a sample Jasmine test.

import { forEach, Sum, fetchTextByPromise } from "../lib/es8-

functional.js";

import 'babel-polyfill';

describe('Array', function () {

 describe('#indexOf()', function () {

 �it('should return -1 when the value is not present',

function () {

 expect([1, 2, 3].indexOf(4)).toBe(-1);

 });

 });

});

describe('es8-functional', function () {

 describe('Array', function () {

 �it('Foreach should double the elements of Array, when

double function is passed', function () {

 var array = [1, 2, 3];

Chapter 12 Testing and Closing Thoughts

https://jasmine.github.io/2.3/node.html#section-Configuration
https://jasmine.github.io/2.3/node.html#section-Configuration

289

 const doublefn = (data) => data * 2;

 forEach(array, doublefn);

 expect(array[0]).toBe(1)

 });

 });

As you can see, the code looks very similar to Mocha tests except for

the assertions. You can rebuild the test library entirely using Jasmine, and

we leave it up to you to figure out how to do so.

The following command is added to package.json to execute Jasmine

tests.

"jasmine": "jasmine"

Running the following command executes the tests:

npm run jasmine

Figure 12-4.  The below image shows test results using Jasmine

Chapter 12 Testing and Closing Thoughts

290

�Code Coverage
How sure are we that we have covered the critical areas with the tests? Well

for any language the code coverage is the only metric that can explain the

code covered by tests. JavaScript is no exception, as we can get the number

of lines or percentage of our code covered by tests.

Istanbul (https://gotwarlost.github.io/istanbul/) is one of the

best known frameworks that can calculate the code coverage for JavaScript

at the statement, Git branch, or function level. Setting up Istanbul is easy.

nyc is the name of the command-line argument that can be used to get

code coverage, so let us run this command to install nyc:

npm install -g --save-dev nyc

The following command can be used to run Mocha tests with code

coverage, so let us add it to package.json.

"mocha-cc": "nyc mocha --compilers js:babel-core/register

--require babel-polyfill"

Run the following command to run the Mocha tests and also get the

code coverage.

npm run mocha-cc

Chapter 12 Testing and Closing Thoughts

https://gotwarlost.github.io/istanbul/

291

The results are shown in Figure 12-5.

As you can see, we are 93% covered except lines 20 and 57 from the file

es8-functional.js. The ideal percentage of code coverage depends on

several factors, all accounting for return on investment. Most commonly

85% is a recommended number, but lesser than that will also work if the

code is covered by any other tests.

�Linting
Code analysis is as important as code coverage, especially in larger

teams. Code analysis helps you impose uniform coding rules, follow best

practices, and enforce best practices for readability and maintainability.

JavaScript code we have written so far might not adhere to best practices,

as this is more applicable to production code. In this section let’s see how

to apply coding rules to functional JavaScript code.

ESLint (https://eslint.org/) is a command-line tool for identifying

incorrect coding patterns in ECMAScript/JavaScript. It is relatively easy

to install ESLint into any new or existing project. The following command

installs ESLint.

npm install --save-dev -g eslint

Figure 12-5.  The below image shows code coverage for tests written
using Mocha

Chapter 12 Testing and Closing Thoughts

https://eslint.org/

292

ESLint is configuration driven, and the command that follows creates a

default configuration. You might have to answer a few questions as shown

in Figure 12-6 here. For this coding sample we are using coding rules

recommended by Google.

eslint --init

Here is the sample configuration file.

{

 "parserOptions": {

 "ecmaVersion": 6,

 "sourceType": "module"

 },

 "rules": {

 "semi": ["error", "always"],

 "quotes": ["error", "double"]

 },

 "env": {

 "node": true

 }

}

Let's look at the first rule.

"semi": ["error", "always"],

Figure 12-6.  The below image shows eslinit initialization steps

Chapter 12 Testing and Closing Thoughts

293

This rule says a semicolon is mandatory after every statement. Now if

we run it against the code file es-functional.js we have written so far, we

get the results shown in Figure 12-7. As you can see, we violated this rule

in many places. Imposing coding rules or guidelines should be done at

the very beginning of the project. Introducing coding rules or adding new

rules after accumulating a huge code base results in an enormous amount

of code debt, which will be difficult to handle.

Figure 12-7.  The below image shows the result from eslint tool

ESLint helps you fix these errors. As suggested earlier, you just have to

run this command:

eslint lib\es8-functional.js --fix

All errors are gone! You might not be lucky all the time, so ensure you

impose restrictions early in the development phase.

Chapter 12 Testing and Closing Thoughts

294

�Unit Testing Library Code
In the previous chapter we learned to create libraries that can help build

applications. A good library is one that is testable, so the more the code

coverage of your tests, the higher the likelihood consumers can trust your

code. Tests help quickly check your code for affected areas when you

change something. In this section we author Mocha tests for the Redux

library code we have written in the previous chapter.

The following code is available in the mocha-test.js file.

The mocha-test.js file refers to the code from our Redux library. The

following test ensures that initially the state is always empty.

it('is empty initially', () => {

 assert.equal(store.getState().counter, 0);

 });

One of the main functions in our library was to assert if actions can

influence state change. In the following state we initiate state change by

calling IncrementCounter, which is called when a click event is raised.

IncrementCounter should increase the state by 1.

// test for state change once

 it('state change once', () => {

 global.document = null;

 incrementCounter();

 assert.equal(store.getState().counter, 1);

 });

// test for state change twice

 it('state change twice', () => {

 global.document = null;

 incrementCounter();

 assert.equal(store.getState().counter, 2);

 });

Chapter 12 Testing and Closing Thoughts

295

The last function we are going to assert is to check if there is at least

one listener registered for state change. To ensure we have a listener we

also register a listener; this is also called an Arrange phase.

// test for listener count

 it('minimum 1 listener', () => {

 //Arrange

 global.document = null;

 store.subscribe(function () {

 console.log(store.getState());

 });

 //Act

 var hasMinOnelistener = store.currentListeners.length > 1;

 //Assert

 assert.equal(hasMinOnelistener, true);

 });

You can run npm run mocha or npm run mocha-cc to execute the tests

with code coverage. You will notice in Figure 12-8 that we have covered

more than 80% of the code we have written in the library.

Figure 12-8.  The below image shows the code coverage results

With this experience it would be a good exercise to write unit tests for

the HyperApp-like library we built in the previous chapter.

Chapter 12 Testing and Closing Thoughts

296

�Closing Thoughts
Another wonderful journey comes to an end. We hope you had fun like

we did learning new concepts and patterns in JavaScript functional

programming. Here are some closing thoughts.

•	 If you’re starting fresh on project, try to use the

concepts used in this book. Each concept used in this

book has a specific area of use. In going through a user

scenario, analyze if you can use any of the explained

concepts. For example, if you are making a REST API

call, you would analyze if you can create a library to

execute REST API calls asynchronously.

•	 If you’re working on an existing project with lots of

spaghetti JavaScript code, analyze the code to refactor

some of it into reusable, testable functions. The best

way to learn is by practice, so scan through your code,

find loose ends, and stitch them together to make an

extensible, testable, reusable JavaScript function.

•	 Stay tuned to ECMAScript updates, as ECMAScript will

continue to mature and get better over time. You can

watch for the proposals at https://github.com/tc39/

proposals or if you have a new idea or thought that can

improve ECMAScript or help developers, you can go

ahead with the proposal.

Chapter 12 Testing and Closing Thoughts

https://github.com/tc39/proposals
https://github.com/tc39/proposals

297

�Summary
In this chapter we learned the importance of tests, types of tests, and

development models like BDD and TDD. We came to understand the

requirements of a JavaScript testing framework and learned about the

best known ones, Mocha and Jasmine. We authored simple tests, tests for

a functional library, and async tests using Mocha. Sinon is a JavaScript

mocking library that provides spies, stubs, and mocks for JavaScript. We

learned how to integrate Sinon with Mocha to mock dependent behavior

or objects. We also learned to use Jasmine to write tests for JavaScript

functions. Istanbul integrates well with Mocha and provides us code

coverage that can be used as a measure of reliability. Linting helps us write

clean JavaScript code, and in this chapter we learned to define coding rules

using ESLint.

Chapter 12 Testing and Closing Thoughts

299© Anto Aravinth, Srikanth Machiraju 2018
A. Aravinth and S. Machiraju, Beginning Functional JavaScript,
https://doi.org/10.1007/978-1-4842-4087-8

Index

A
Abstracted function, 8
Abstraction

definitions, 48
via higher order functions

forEach, 48–49
forEachObject, 50
times, 51
unless function, 51

Arrays, 81
chaining operations

(see Chaining operations)
filter function, 87–88
map

arrayUtils, 84
example, 85–86
forEach function, 82
implementation, 83
projecting function, 83
solution, 86

reduce function, 95
accumulator, 96
concatAll, 99
final implementation, 97
first implementation, 96
product problem, 98
review details, 101
rewriting, 97

zip function, 105–108
Arrow functions, 25
Asynchronous code

async/await, 206
callback hell

asynchronous
functions, 207

errors, 209
promises, 209
synchronous functions, 207

ECMAScript, async functions
(see ECMAScript)

JavaScript, 206

B
Babel-Node tool

forEach function, 37
git repository, 39
npm scripts, 38–39

Babel tool
ES2017, 32
function arguments, 30
multiple statement

functions, 28–29
return statement, 28
simple function

babel-repl, 24
ES5, 25–26

https://doi.org/10.1007/978-1-4842-4087-8

300

with name, 25
strict mode, 26–27

badFunction function, 11
Behavioral-driven development

(BDD), 273
Binary function, 110
Bundle size, JavaScript, 252

C
calculateTax function, 3, 9–10
Chaining operations, 88

concatAll function, 94
code, 93–95
data structure, 90–91
goal, 93
implementation, 92
mapping over data, 91
nested arrays, 92

filter and map, 89
Closures, 63

closureFn, 68
context, 67
defining, 64
function, 65
and higher order functions, 70

memoize function, 75–78
once function, 74–75
tap function, 70–71
unary function, 72–73

inner function, 65–66
outer function, 66
scopes, 65
sortBy function, 69

Composing, 16–17
Currying application

addCurried function, 112–113
array contents, finding number,

124
conversion, 114
data flow, 125–130
logger function

loggerHelper function,
116–117, 122

mode and initialMessage,
117

revisiting
concat function, 121
handling arguments, 118
implementation, 117
multiply function, 118
n argument to unary

function, 119–121
variadic function, 119

squaring array, 124–125
use cases, 114–115

D
Data

crazy function return string,
46–47

tellType function, 44–45
type function, 43–44
types, 43

Declarative programming, 7–8
DevOps, 270
Document Object Model

(DOM), 245

Babel tool (cont.)

Index

301

E
ECMAScript

async, 230–232
await, 230–231
callbacks chaining

API call, 235
call hierarchy, 235
getAsyncCaller, 235
getAsync

function, 233–234
JSON array, 233
promise, 233

error handling, 236–237
generators

async, 237
async/await pattern, 239
_asyncToGenerator

function, 237
await, 237
Babel transpiler, 237
two-way

communication, 239
history, 22–23
promises, 231

Either functor
branching, 174
definition, 175
getTopTenSubRedditData,

176, 178
getTopTenSubRedditPosts,

176–177
implementation, 174
nothing container, 175
Reddit, 176

Error handling, 157
ES2017 package, 32
ES5 version, Babel tool (see Babel

tool)
ES6 modules, 36
ES8-Functional library, 18
ESLint

coding patterns, 291
coding rules, 292–293
configuration, 292
errors, 293
es-functional.js, 293
installation, 291

every function, 53–55

F
Factorial, 6
Functional composition

compose function, 139–140
composeN functions,

146–148
countWords function, 141
curry and partial

functions, 142–146
number function, 141
parseFloat function, 140

map and filter,
revisiting, 137, 139

pipelines (see Pipelines)
Unix philosophy

cat command, 135–136
compose function, 137
defined, 134
grep command, 135–136

Index

302

rule, 137
Functional programming

calculateTax function, 3
in mathematics, 2
vs. method, 4

Functor
container

arrow function, 159
creation, 158
JavaScript, 160
map function, 161
object, 159
of Method, 160

defined, 158, 162–163
Either, 157
map function

container, 161–162
definition, 162
mechanism, 161

MayBe, 157

G
Generators, 205

async calls
AJAX, 226, 229
callback hell, 228–229
callbacks, 220
dataOne variable, 224
dataTwo variable, 225
generator.next(), 223
getDataOne function, 221, 224

getDataTwo
function, 221–222

httpGetAsync function, 226
instance, 222
JSON, 227
main function,

223, 225, 229
pause mode, 223
Reddit URL, 227
request function, 228
sayFullName function, 222
setTimeout, 219–220, 224
yield statement, 224

asynchronous code, 209
creation, 209–210
done property, 214–216
generatorResult, 210–211
gen function, 210
passing data

code, 217
generator instance, 217
sayFullName, 219
yield, 217

sequence, 211
value, 210
yield

generator
Sequence, 212–213

lazy evaluation, 214
visual view, 213

getTopTenSubReddit
DataEither, 178

getTopTenSubReddit
PostsEither, 178

Functional composition (cont.)

Index

303

H
Higher order function (HOC)

definition, 41
every function, 53–55
some function, 55–56
sort function, 57–61

HTML applications, 241
HyperApp

createActions
function, 261–262

JavaScript framework, 252
JS Fiddle, 255–259, 261
JSX, 252, 254–255
merge function, 265–266
patch function, 263, 264
remove function, 266–268
render function, 262
update function, 264, 265
virtual DOM, 252, 254

I
identity function, 30, 154
Immutability

arrays, 243
JavaScript data types, 244
JavaScript libraries, 244
Object.freeze, 244
objects, 243
string data type, 242–243
variable types, 243
variable value, 242

Imperative programming, 7
Istanbul

defined, 290
Mocha tests, 290–291
nyc, 290

J, K
JavaScript library, 241
JavaScript test frameworks

assertion functions, 274
Babel’s assertion

library, 275
code coverage, 274
Jasmine

asynchronous code, 287
execution, 289
init command, 288
installation, 287
package.json, 289
spec_dir, 288
spec_files, 288
tests, 275

Mocks, 274
Reporter, 274
Sinon, mocking

assert.equal, 285
doSomethingTo10

function, 285
getAsyncCaller function,

286–287
HTTP call, 285
httpGetAsync

function, 286–287
mocking library, 284
Sinon fakes, 284

Index

304

Sinon mocks, 286
Sinon stub, 285

testing, Mocha (see Mocha)
test structure, 274

JS Fiddle
Babel + JSX, 256–257
changeText function, 258
components, 257
creation, 256
h function, 259–260
JavaScript + No-Library

(Pure JS), 257–258
JSX parser, 261
No-Library, 256–257
onclick function, 261
pageLoad, 259
virtual DOM, 258
work online, 255

JSX, 254–255

L
Lazy evaluation, 214

M
Map, 72
MayBe functor

arrayUtils’s map, 171
chaining map function, 166
definition, 164
error handling, 165
error response, 170

errors, 163
getTopTenSubRedditData

method, 171, 173
getTopTenSubRedditPosts

function, 168
isNothing function, 164
JSON objects, 169–170
map function, 163–164, 170
MayBe.of(null), 173
null/undefined value, 164, 167
null values, 165
Reddit API, 168
string value, 165
SubReddit posts, 170
undefined/null errors, 173

memoize function, 75–78
mergeViaMayBe API, 194–195
Mocha

async test, 282–283
Babel assertion library, 276
–compilers switch, 277
curried function, 279
currying test, 278
curryN function, 278
defined, 275
describe function, 276
functional library test, 281–282
functors test, 279–280
indexOf function, 277
installation, 275
monads test, 281
package.json, 277
–require switch, 277
switches response, 278

JavaScript test frameworks (cont.)

Index

305

Monad functor
chain function

definition, 200
mergeViaChain, 201–202
mergeViaMayBe, 200

defined, 202–203
join function

arrays map, 199
chain, 200
definition, 196
getComments, 199
mergeResult, 199
mergeViaMayBe, 197–199

problem (see Monad, problem)
Monad, problem

nested/many maps, 194–195
permalink, 185
Reddit API endpoint, 183
Reddit calls

array’s map function, 193
children array, 192
functional programming, 190
getComments

function, 189, 193
MayBe type, 191, 193–194
mergeViaMayBe function, 190
permalink, 192
search query, 191
searchReddit, 189

Reddit response, 183–184
solution

catch block, 189
encodeURI method, 186
error, 187

getComments method, 188
HTTP GET call, 185, 188
permalink value, 188
searchReddit function, 186

Multiparadigm language, 19
Multiple statement

functions, 28–29

N
Npm script, 38–39

O
once function, 74–75

P, Q
parseInt function, 72
Partial application, data flow

vs. currying, 130
implementing, 127–129
setTimeout function, 126

Pipelines, 16–17
and sequence

composition, associative
law, 150–151

debugging using tap
function, 154–155

pipe function, 148–149
pipeline operator, 151–154

Pointed functor, 179–180
Projecting function, 82–83
Projection, 82

Index

306

Project setup
ES6 modules, 36
loop problem, 33–35
step-by-step guide, 31–33

Pure functions
badFunction function, 11
caching, 14–15
calculateTax function, 9–10
composing, 16
definition, 8
double function, 9, 11
mathematical function, 17–18
parallel code

impure function, 12–13
pure function, 13–14

pipelines, 16

R
real function, 3
Reddit comments, 182
Redux library

actions, 246
counter property, 247
design principles, 245
DOM, 245
incrementCounter, 248
JavaScript frameworks, 245
loadRedux function, 250
non-UI applications, 251
object.assign method, 247
on click event, 250
predictable state container, 246
reducer, 246, 247

Redux, defined, 245
Redux store, 251
store function, 248–249
subscribe method, 249
time traveling, 251
views, 245

Referential transparency, 5–6
REST API call, 296
Return on investment (ROI), 270

S
Sinon, 284, 285
some function, 55–56
sortBy function, 69
sort function

compareFunction, 57–59
lastname, 60–61
passed property, 59
replaced property, 60
returned function, 59–60

Strict mode, 26–27
SubReddit posts, 168
Substitution model, 5
Synchronous vs. asynchronous

functions, 208

T
tap function, 70–71
Test-driven development (TDD), 273
Testing

Agile team, 271
automated unit tests, 270

Index

307

BDD, 273
code analysis, 291
code coverage, 290–291
continuous testing

phase, 271–272
delivery pipelines,

companies, 271
DevOps, 270
integration tests, 272
JavaScript functions, 271
ROI, 270
TDD, 274
UI tests, 272
unit tests, 272

U
unary function, 72–73, 110
Unit testing

arrange phase, 295
code coverage, 295
HyperApp, 295
IncrementCounter, 294

Mocha tests, 294
Redux library code, 294

Unix philosophy
cat command, 135–136
compose function, 137
defined, 134
grep command, 135–136
rule, 137

unless function, 51

V, W, X, Y, Z
Variadic function, 110–112

rest arguments, 111
spread operator, 111

Virtual DOM
Angular, 253
caveats, 253
component-based

approach, 253
delta DOM, 254
manipulations, 254

React framework, 254

Index

	Table of Contents
	About the Authors
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Chapter 1: Functional Programming in Simple Terms
	What Is Functional Programming? Why Does It Matter?
	Referential Transparency
	Imperative, Declarative, Abstraction
	Functional Programming Benefits
	Pure Functions
	Pure Functions Lead to Testable Code
	Reasonable Code
	Parallel Code
	Cachable
	Pipelines and Composable

	A Pure Function Is a Mathematical Function
	What We Are Going to Build
	Is JavaScript a Functional Programming Language?
	Summary

	Chapter 2: Fundamentals of JavaScript Functions
	ECMAScript: A Bit of History
	Creating and Executing Functions
	First Function
	Strict Mode
	Return Statement Is Optional
	Multiple Statement Functions
	Function Arguments
	ES5 Functions Are Valid in ES6 and Above

	Setting Up Our Project
	Initial Setup
	Our First Functional Approach to the Loop Problem
	Gist on Exports
	Gist on Imports
	Running the Code Using Babel-Node
	Creating Script in Npm
	Running the Source Code from Git

	Summary

	Chapter 3: Higher Order Functions
	Understanding Data
	Understanding JavaScript Data Types
	Storing a Function
	Passing a Function
	Returning a Function

	Abstraction and Higher Order Functions
	Abstraction Definitions
	Abstraction via Higher Order Functions

	Higher Order Functions in the Real World
	every Function
	some Function
	sort Function

	Summary

	Chapter 4: Closures and Higher Order Functions
	Understanding Closures
	What Are Closures?
	Remembering Where It Is Born
	Revisiting sortBy Function

	Higher Order Functions in the Real World (Continued)
	tap Function
	unary Function
	once Function
	memoize Function
	assign function

	Summary

	Chapter 5: Being Functional on Arrays
	Working Functionally on Arrays
	map
	filter

	Chaining Operations
	concatAll

	Reducing Function
	reduce Function

	Zipping Arrays
	zip Function

	Summary

	Chapter 6: Currying and Partial Application
	A Few Notes on Terminology
	Unary Function
	Binary Function
	Variadic Functions

	Currying
	Currying Use Cases
	A logger Function: Using Currying
	Revisit Curry
	Back to logger Function

	Currying in Action
	Finding a Number in Array Contents
	Squaring an Array

	Data Flow
	Partial Application
	Implementing partial Function
	Currying vs. Partial Application

	Summary

	Chapter 7: Composition and Pipelines
	Composition in General Terms
	Unix Philosophy

	Functional Composition
	Revisiting map,filter
	compose Function

	Playing with the compose Function
	curry and partial to the Rescue
	compose Many Functions

	Pipelines and Sequence
	Implementing pipe
	Odds on Composition
	Composition Is Associative

	The Pipeline Operator
	Debugging Using the tap Function

	Summary

	Chapter 8: Fun with Functors
	What Is a Functor?
	Functor Is a Container
	Implementing map

	MayBe
	Implementing MayBe
	Simple Use Cases
	Real-World Use Cases

	Either Functor
	Implementing Either
	Reddit Example Either Version

	Word of Caution: Pointed Functor
	Summary

	Chapter 9: Monads in Depth
	Getting Reddit Comments for Our Search Query
	The Problem
	Implementation of the First Step
	Merging Reddit Calls
	Problem of Nested/Many maps

	Solving the Problem via join
	join Implementation
	chain Implementation
	What Is a Monad?

	Summary

	Chapter 10: Pause, Resume, and Async with Generators
	Async Code and Its Problem
	Callback Hell

	Generators 101
	Creating Generators
	Caveats of Generators
	yield Keyword
	done Property of Generator
	Passing Data to Generators

	Using Generators to Handle Async Calls
	Generators for Async: A Simple Case
	Generators for Async: A Real-World Case

	Async Functions in ECMAScript 2017
	Promise
	Await
	Async
	Chaining Callbacks
	Error Handling in Async Calls
	Async Functions Transpiled to Generators

	Summary

	Chapter 11: Building a React-Like Library
	Immutability
	Building a Simple Redux Library
	Building a Framework Like HyperApp
	Virtual DOM
	JSX
	JS Fiddle
	CreateActions
	Render
	Patch
	Update
	Merge
	Remove

	Summary

	Chapter 12: Testing and Closing Thoughts
	Introduction
	Types of Testing
	BDD and TDD
	JavaScript Test Frameworks
	Testing Using Mocha
	Installation
	Simple Mocha Test
	Tests for Currying, Monads, and Functors
	Testing Functional Library
	Async Tests with Mocha

	Mocking Using Sinon
	Testing with Jasmine

	Code Coverage
	Linting
	Unit Testing Library Code
	Closing Thoughts
	Summary

	Index

