
www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.dummies.com/cheatsheet/beginningprogrammingcplusplus
http://www.allitebooks.org

Beginning
Programming

with C++

2nd Edition

by Stephen R. Davis

www.allitebooks.com

http://www.allitebooks.org

Beginning Programming with C++ For Dummies®, 2nd Edition

Published by: John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030-5774, www.wiley.com

Copyright © 2015 by John Wiley & Sons, Inc., Hoboken, New Jersey

Media and software compilation copyright © 2015 by John Wiley & Sons, Inc. All rights reserved.

Published simultaneously in Canada

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form
or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as
permitted under Sections 107 or 108 of the 1976 United States Copyright Act, without the prior writ-
ten permission of the Publisher. Requests to the Publisher for permission should be addressed to the
Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011,
fax (201) 748-6008, or online at http://www.wiley.com/go/permissions.

Trademarks: Wiley, For Dummies, the Dummies Man logo, Dummies.com, Making Everything Easier, and
related trade dress are trademarks or registered trademarks of John Wiley & Sons, Inc. and may not be
used without written permission. All other trademarks are the property of their respective owners. John
Wiley & Sons, Inc. is not associated with any product or vendor mentioned in this book.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: THE PUBLISHER AND THE AUTHOR MAKE NO
REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF
THE CONTENTS OF THIS WORK AND SPECIFICALLY DISCLAIM ALL WARRANTIES, INCLUDING WITH-
OUT LIMITATION WARRANTIES OF FITNESS FOR A PARTICULAR PURPOSE. NO WARRANTY MAY BE
CREATED OR EXTENDED BY SALES OR PROMOTIONAL MATERIALS. THE ADVICE AND STRATEGIES
CONTAINED HEREIN MAY NOT BE SUITABLE FOR EVERY SITUATION. THIS WORK IS SOLD WITH THE
UNDERSTANDING THAT THE PUBLISHER IS NOT ENGAGED IN RENDERING LEGAL, ACCOUNTING, OR
OTHER PROFESSIONAL SERVICES. IF PROFESSIONAL ASSISTANCE IS REQUIRED, THE SERVICES OF
A COMPETENT PROFESSIONAL PERSON SHOULD BE SOUGHT. NEITHER THE PUBLISHER NOR THE
AUTHOR SHALL BE LIABLE FOR DAMAGES ARISING HEREFROM. THE FACT THAT AN ORGANIZATION
OR WEBSITE IS REFERRED TO IN THIS WORK AS A CITATION AND/OR A POTENTIAL SOURCE OF
FURTHER INFORMATION DOES NOT MEAN THAT THE AUTHOR OR THE PUBLISHER ENDORSES THE
INFORMATION THE ORGANIZATION OR WEBSITE MAY PROVIDE OR RECOMMENDATIONS IT MAY
MAKE. FURTHER, READERS SHOULD BE AWARE THAT INTERNET WEBSITES LISTED IN THIS WORK
MAY HAVE CHANGED OR DISAPPEARED BETWEEN WHEN THIS WORK WAS WRITTEN AND WHEN
IT IS READ.

For general information on our other products and services, please contact our Customer Care Department
within the U.S. at 877-762-2974, outside the U.S. at 317-572-3993, or fax 317-572-4002. For technical support,
please visit www.wiley.com/techsupport.

Wiley publishes in a variety of print and electronic formats and by print-on-demand. Some material
included with standard print versions of this book may not be included in e-books or in print-on-demand.
If this book refers to media such as a CD or DVD that is not included in the version you purchased, you
may download this material at http://booksupport.wiley.com. For more information about Wiley
products, visit www.wiley.com.

Library of Congress Control Number: 2014937186

ISBN 978-1-118-82387-3 (pbk); ISBN 978-1-118-82389-7 (ebk); ISBN 978-1-118-82393-4 (ebk)

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

www.allitebooks.com

http://www.wiley.com/
http://www.wiley.com/go/permissions
http://www.wiley.com/techsupport
http://booksupport.wiley.com/
http://www.wiley.com/
http://www.allitebooks.org

Table of Contents
Introduction ... 1

About This Book .. 1
Foolish Assumptions ... 2
How This Book Is Organized .. 3

Part I: Getting Started with C++ Programming 3
Part II: Writing a Program: Decisions, Decisions 4
Part III: Becoming a Procedural Programmer 4
Part IV: Data Structures ... 4
Part V: Object-Oriented Programming ... 4
Part VI: Advanced Strokes .. 5
Part VII: The Part of Tens .. 5

Icons Used in This Book ... 5
Beyond the Book ... 6
Where to Go from Here ... 6

Part I: Getting Started with C++ Programming 7

Chapter 1: What Is a Program? . 9
How Does My Son Differ from a Computer? ... 9
Programming a “Human Computer” ... 11

Creating the algorithm .. 11
Setting the tire-changing language .. 12
Constructing the program .. 13
Computer processors .. 17

Computer Languages .. 17
High-level languages .. 19
The C++ language ... 20

Chapter 2: Installing Code::Blocks . 21
Reviewing the Compilation Process .. 21
Installing Code::Blocks .. 23

Windows installation ... 23
Ubuntu Linux installation ... 26
Mac OS installation .. 27
Setting up Code::Blocks .. 31

Testing the Code::Blocks Installation ... 33
Creating the project ... 34
Testing your default project ... 37

www.allitebooks.com

http://www.allitebooks.org

Beginning Programming with C++ For Dummies, 2nd Edition iv
Chapter 3: Writing Your First Program . 41

Creating a New Project ... 41
Filename extensions .. 43

Entering Your Program ... 44
Building the Program .. 46
Finding What Could Go Wrong .. 47

Misspelled commands ... 47
Missing semicolon ... 49

Using the Online Material ... 50
Running the Program .. 51
How the Program Works ... 51

The template .. 51
The Conversion program .. 53

Part II: Writing a Program: Decisions, Decisions 55

Chapter 4: Integer Expressions . 57
Declaring Variables ... 57

Variable names ... 58
Assigning a value to a variable ... 59
Initializing a variable at declaration .. 60

Integer Constants .. 61
Expressions .. 62

Binary operators .. 62
Unraveling compound expressions ... 63

Unary Operators .. 65
The Special Assignment Operators ... 67

Chapter 5: Character Expressions . 69
Defining Character Variables ... 69

Encoding characters .. 70
Example of character encoding ... 73

Encoding Strings of Characters ... 75
Special Character Constants .. 75

Chapter 6: if I Could Make My Own Decisions 79
The if Statement ... 79

Comparison operators .. 80
Say “No” to “No braces” .. 83

What Else Is There? ... 84
Nesting if Statements .. 86
Compound Conditional Expressions ... 89

v Table of Contents

Chapter 7: Switching Paths . 93
Controlling Flow with the switch Statement .. 93
Control Fell Through: Did I break It? ... 96
Implementing an Example Calculator with the switch Statement 97

Chapter 8: Debugging Your Programs, Part I . 101
Identifying Types of Errors ... 101
Avoiding Introducing Errors .. 102

Coding with style ... 102
Establishing variable naming conventions 103

Finding the First Error with a Little Help .. 104
Finding the Run-Time Error .. 105

Formulating test data .. 106
Executing the test cases.. 106
Seeing what’s going on in your program .. 107

Part III: Becoming a Procedural Programmer 109

Chapter 9: while Running in Circles . 111
Creating a while Loop ... 111
Breaking out of the Middle of a Loop .. 114
Nested Loops ... 117

Chapter 10: Looping for the Fun of It . 121
The for Parts of Every Loop ... 121
Looking at an Example .. 123
Getting More Done with the Comma Operator .. 125

Chapter 11: Functions, I Declare! . 129
Breaking Your Problem Down into Functions ... 129
Understanding How Functions Are Useful ... 130
Writing and Using a Function ... 131

Returning things ... 132
Reviewing an example ... 133

Passing Arguments to Functions ... 135
Function with arguments .. 136
Functions with multiple arguments ... 137
Exposing main() ... 137

Defining Function Prototype Declarations ... 139

Chapter 12: Dividing Programs into Modules 141
Breaking Programs Apart ... 141
Breaking Up Isn’t That Hard to Do .. 142

Creating Factorial.cpp ... 143
Creating an #include file ... 145
Including #include files ... 146

Beginning Programming with C++ For Dummies, 2nd Edition vi
Creating main.cpp .. 148
Building the result ... 149

Using the Standard C++ Library ... 149
Variable Scope ... 150

Chapter 13: Debugging Your Programs, Par t 2 151
Debugging a Dys-Functional Program ... 151

Performing unit level testing .. 153
Outfitting a function for testing ... 155
Returning to unit test .. 159

Part IV: Data Structures .. 163

Chapter 14: Other Numerical Variable Types . 165
The Limitations of Integers in C++ ... 165

Integer round-off .. 166
Limited range.. 166

A Type That “doubles” as a Real Number .. 167
Solving the truncation problem ... 168
When an integer is not an integer .. 168
Discovering the limits of double .. 169

Variable Size — the “long” and “short” of It ... 172
How far do numbers range? ... 174

Types of Constants .. 175
Passing Different Types to Functions ... 176

Overloading function names .. 177
Mixed-mode overloading .. 177

Chapter 15: Arrays . 181
What Is an Array? .. 181
Declaring an Array ... 182
Indexing into an Array .. 183
Looking at an Example .. 184
Initializing an Array ... 187

Chapter 16: Arrays with Character . 189
The ASCII-Zero Character Array .. 189
Declaring and Initializing an ASCIIZ Array .. 190
Looking at an Example .. 191
Looking at a More Detailed Example ... 193

Foiling hackers ... 197
Do I Really Have to Do All That Work? .. 198

Chapter 17: Pointing the Way to C++ Pointers 203
What’s a Pointer? ... 203
Declaring a Pointer .. 204

vii Table of Contents

Passing Arguments to a Function .. 206
Passing arguments by value ... 206
Passing arguments by reference .. 209
Putting it together .. 211
Reference argument types .. 213

Playing with Heaps of Memory .. 214
Do you really need a new keyword? .. 214
Don’t forget to clean up after yourself .. 215
Looking at an example .. 216

Chapter 18: Taking a Second Look at C++ Pointers 221
Pointers and Arrays .. 221

Operations on pointers ... 222
Pointer addition versus indexing into an array 224
Using the pointer increment operator .. 227
Why bother with array pointers?... 230

Operations on Different Pointer Types ... 231
Constant Nags .. 231
Differences Between Pointers and Arrays .. 233
My main() Arguments ... 233

Arrays of pointers .. 234
Arrays of arguments .. 235

Chapter 19: Programming with Class . 241
Grouping Data .. 241
The Class .. 242
The Object .. 243
Arrays of Objects ... 244
Looking at an Example .. 246

Chapter 20: Debugging Your Programs, Par t 3 253
A New Approach to Debugging .. 253

The solution .. 254
Entomology for Dummies ... 255

Starting the debugger .. 257
Fixing the (first) bug .. 264
Finding and fixing the second bug ... 265

Part V: Object-Oriented Programming 269

Chapter 21: What Is Object-Oriented Programming? 271
Abstraction and Microwave Ovens ... 271

Procedural nachos ... 273
Object-oriented nachos ... 273

Classification and Microwave Ovens .. 274
Why Build Objects This Way? .. 275
Self-Contained Classes .. 276

Beginning Programming with C++ For Dummies, 2nd Edition viii
Chapter 22: Structured Play: Making Classes Do Things 277

Activating Our Objects ... 277
Creating a Member Function .. 278

Defining a member function ... 279
Naming class members ... 280
Calling a member function .. 281
Accessing other members from within a member function 282

Keeping a Member Function after Class ... 284
Overloading Member Functions .. 285

Chapter 23: Pointers to Objects . 287
Pointers to Objects .. 287

Arrow syntax .. 288
Calling all member functions .. 288

Passing Objects to Functions ... 289
Calling a function with an object value ... 289
Calling a function with an object pointer 290
Looking at an example .. 292

Allocating Objects off the Heap ... 296

Chapter 24: Do Not Disturb: Protected Members 299
Protecting Members .. 299

Why you need protected members ... 300
Making members protected ... 301
So what? .. 303

Who Needs Friends, Anyway? .. 304

Chapter 25: Getting Objects Off to a Good Start 307
The Constructor .. 308

Limitations on constructors ... 309
Can I see an example? ... 310
Constructing data members ... 312

Destructors ... 315
Looking at an example .. 316
Destructing data members ... 318

Chapter 26: Making Constructive Arguments 321
Constructors with Arguments ... 321

Looking at an example .. 322
Overloading the Constructor ... 326
The Default default Constructor .. 330
Constructing Data Members .. 332

Initializing data members with the default constructor 332
Initializing data members with a different constructor 334
Looking at an example .. 337
New with C++ 2011 ... 340

ix Table of Contents

Chapter 27: Coping with the Copy Constructor 341
Copying an Object ... 341

The default copy constructor .. 342
Looking at an example .. 344

Creating a Copy Constructor ... 346
Avoiding Copies ... 349

Part VI: Advanced Strokes ... 351

Chapter 28: Inheriting a Class . 353
Advantages of Inheritance .. 354

Learning the lingo .. 355
Implementing Inheritance in C++ ... 355

Looking at an example .. 356
Having a HAS_A Relationship ... 360

Chapter 29: Are Virtual Functions for Real? . 361
Overriding Member Functions ... 361

Early binding .. 362
Ambiguous case ... 364
Enter late binding... 366

When Is Virtual Not? ... 369
Virtual Considerations .. 371

Chapter 30: Overloading Assignment Operators 373
Overloading an Operator .. 374
Overloading the Assignment Operator Is Critical 374
Looking at an Example .. 376
Writing Your Own (or Not) ... 379

Chapter 31: Performing Streaming I/O . 381
How Stream I/O Works .. 381
Stream Input/Output ... 383

Creating an input object ... 383
Creating an output object ... 385
Open modes .. 386
What is binary mode? .. 386
Hey, file, what state are you in? ... 387

Other Member Functions of the fstream Classes 391
Reading and writing streams directly ... 393
Controlling format ... 396
What’s up with endl? ... 399

Manipulating Manipulators .. 399
Using the stringstream Classes .. 400

Beginning Programming with C++ For Dummies, 2nd Edition x
Chapter 32: I Take Exception! . 405

The Exception Mechanism ... 406
Examining the exception mechanism in detail 408
Special considerations for throwing ... 409

Creating a Custom Exception Class .. 410
Restrictions on exception classes ... 414

Part VII: The Part of Tens .. 415

Chapter 33: Ten Ways to Avoid Bugs . 417
Enable All Warnings and Error Messages ... 417
Adopt a Clear and Consistent Coding Style ... 418
Comment the Code While You Write It ... 419
Single-Step Every Path in the Debugger at Least Once 419
Limit the Visibility ... 420
Keep Track of Heap Memory .. 420
Zero Out Pointers after Deleting What They Point To 421
Use Exceptions to Handle Errors ... 421
Declare Destructors Virtual ... 422
Provide a Copy Constructor and Overloaded

Assignment Operator .. 422

Chapter 34: Ten Features Not Covered in This Book 423
The goto Command ... 423
The Ternary Operator ... 424
Binary Logic ... 425
Enumerated Types .. 425
Namespaces ... 425
Pure Virtual Functions .. 426
The string Class ... 426
Multiple Inheritance .. 427
Templates and the Standard Template Library 427
Lambda Functions ... 428

Index ... 429

Introduction

W
elcome to Beginning Programming with C++ For Dummies, Second
Edition. This book is intended for the reader who wants to learn

to program.

Somehow over the years, programming has become associated with mathemat-
ics and logic calculus and other complicated things. I never quite understood
that. Programming is a skill like writing advertising or drawing or photography.
It does require the ability to think a problem through, but I’ve known some
really good programmers who had zero math skills. Some people are natu-
rally good at it and pick it up quickly, others not so good and not so quick.
Nevertheless, anyone with enough patience and “stick-to-itiveness” can learn
to program a computer. Even me.

About This Book
Learning to program necessarily means learning a programming language.
This book is based upon the C++ programming language. Versions of the sug-
gested compiler for Windows and Macintosh are included with the online
materials accompanying this book. Linux versions are available for download
at www.codeblocks.org. (Don’t worry: I include step-by-step instructions
for installing the package and building your first program in the book.)

The goal of this book is to teach you the basics of programming in C++, not
to inundate you with every detail of the C++ programming language. At the
end of this book, you’ll be able to write a reasonably sophisticated program
in C++. You’ll also be in a position to quickly grasp a number of other similar
languages, such as Java and C#.NET.

In this book, you discover what a program is, how it works, plus how to do
the following:

 ✓ Install the Code::Blocks C++ compiler and use it to build a program.

 ✓ Create and evaluate expressions.

 ✓ Direct the flow of control through your program.

 ✓ Create data structures that better model the real world.

http://www.codeblocks.org

2 Beginning Programming with C++ For Dummies, 2nd Edition

 ✓ Define and use C++ pointers.

 ✓ Manipulate character strings to generate output the way you want to
see it.

 ✓ Write to and read from files.

Foolish Assumptions
I try to make very few assumptions in this book about the reader, but I do
assume the following:

 ✓ You have a computer. Most readers will have computers that run
Windows; however, the programs in this book run equally well on
Windows, Macintosh, Linux, and Unix. In fact, because C++ is a stan-
dardized language, these programs should run on any computer that
has a C++ compiler.

 ✓ You know the basics of how to use your computer. For example, I
assume that you know how to run a program, copy a file, create a folder,
and so on.

 ✓ You know how to navigate through menus. I include lots of instructions
such as “Click File and then click Open.” If you can follow that instruction,
then you’re good to go.

 ✓ You are new to programming. I don’t assume that you know anything
about programming. Heck, I don’t even assume that you know what pro-
gramming is.

To help you navigate this book as efficiently as possible, I use a few
conventions:

 ✓ C++ terms and other such items you see in computer code are in mono-
font typeface, like this.

 ✓ New terms are emphasized with italics (and defined).

 ✓ Numbered steps that you need to follow and characters you need to
type are set in bold.

 ✓ The programmer in this book is always female and the user is always
male. When I say “she types in . . .” you know I mean the author of the
program and when I say “he types in . . .” you know I mean the user of
the program.

3 Introduction

I encourage you to read one part of the book; then put the book away and
play with C++ for awhile before moving to the next part. The book is orga-
nized so that by the end of each part, you’ve mastered enough new material
to go out and write programs.

I’d like to add the following advice:

 ✓ If you already know what programming is but nothing about C++, you
can skip Chapter 1.

 ✓ I recommend that you use the Code::Blocks compiler that comes with the
book, even if you want to use a different C++ compiler after you finish the
book. However, if you insist that you don’t want to use Code::Blocks, you
can skip Chapter 2.

 ✓ Skim through Chapter 3 if you’ve already done a little computer
programming.

 ✓ Start concentrating at Chapter 4, even if you have experience with other
languages such as BASIC.

 ✓ You can stop reading after Chapter 20 if you’re starting to feel saturated.
Chapter 21 opens up the new topic of object-oriented programming —
you don’t want to take that on until you feel really comfortable with
what you’ve learned so far.

 ✓ You can skip any of the TechnicalStuff icons.

How This Book Is Organized
Beginning Programming with C++ For Dummies is split into seven parts. You
don’t have to read it sequentially, and you don’t even have to read all the
sections in any particular chapter. You can use the Table of Contents and the
Index to find the information you need and quickly get your answer. In this
section, I briefly describe what you’ll find in each part.

Part I: Getting Started with
C++ Programming
This part describes what programs are and how they work. Using a fictitious
tire-changing computer, I take you through several algorithms for remov-
ing a tire from a car to give you a feel for how programs work. You also get
Code::Blocks up and running on your computer before leaving this part.

4 Beginning Programming with C++ For Dummies, 2nd Edition

Part II: Writing a Program: Decisions,
Decisions
This part introduces you to the basics of programming with C++. You find out
how to declare integer variables and how to write simple expressions. You’ll
even discover how to make decisions within a program — a small step closer
to expertise — by the time you finish this part.

Part III: Becoming a Procedural
Programmer
Here you learn how to direct the flow of control within your programs. You’ll
find out how to loop, how to break your code into modules (and why), and how
to build these separate modules back into a single program. At the end of this
part, you’ll be able to write real programs that actually solve problems.

Part IV: Data Structures
This part expands your knowledge of data types. Earlier sections of the book
are limited to integers; in this part, you work with characters, decimals, and
arrays; and you even get to define your own types. Finally, this is the part
where you master the most-dreaded topic, the C++ pointer.

Part V: Object-Oriented Programming
This is where you expand your knowledge into object-oriented techniques,
the stuff that differentiates C++ from its predecessors, most notably C. (Don’t
worry if you don’t know what object-oriented programming is — you’ll get
there.) You’ll want to be comfortable with the material in Parts I through IV
before jumping into this part, but you’ll be a much stronger programmer by
the time you finish it.

5 Introduction

Part VI: Advanced Strokes
This is a collection of topics that are important but didn’t fit in the earlier
parts. For example, here’s where I discuss how to create, read to, and write
from files.

Part VII: The Part of Tens
This part includes lists of what to do (and what not to do) when program-
ming to avoid creating bugs needlessly. In addition, this part includes some
advice about what topics to study next, should you decide to expand your
knowledge of C++.

Icons Used in This Book
What’s a For Dummies book without icons pointing you in the direction of
really great information that’s sure to help you along your way? In this sec-
tion, I briefly describe each icon I use in this book.

 The Tip icon points out helpful information that is likely to make your job
easier.

 This icon marks a generally interesting and useful fact — something that you
might want to remember for later use. I also use this icon to remind you of
some fact that you may have skipped over in an earlier chapter.

 The Warning icon highlights lurking danger. With this icon, I’m telling you to
pay attention and proceed with caution.

 When you see this icon, you know that there’s techie stuff nearby. If you’re not
feeling very techie, you can skip this info.

6 Beginning Programming with C++ For Dummies, 2nd Edition

Beyond the Book
Beginning Programming with C++ For Dummies, Second Edition includes the
following goodies online for easy download:

 ✓ The source code for all of the examples in the book can be downloaded
from www.dummies.com/extras/beginningprogrammingcplusplus.
The programs are organized by chapter number. I’ve included a project
file for Code::Blocks (more about Code::Blocks in the next bullet point,
and I explain project files in Chapter 2).

 ✓ This book uses the free, open source Code::Blocks environment and
GCC C++ compiler. The version of Code::Blocks used in writing this book
(Version13.12) is available for download at www.dummies.com/extras/
beginningprogrammingcplusplus. I have included versions for
Windows (2000 and later) and for Macintosh (10.6 and later). Chapter 2
includes instructions for how to download and install Code::Blocks. You
can find newer versions of Code::Blocks and versions for different ver-
sions of Linux at www.codeblocks.org/downloads/binaries.

 If you do go to www.codeblocks.org, be sure to download a version
that includes the gcc compiler.

 ✓ Updates to this book, if I have any, are also available at www.dummies.
com/extras/beginningprogrammingcplusplus.

 ✓ A cheat sheet that provides some useful programming aids is available at
www.dummies.com/cheatsheet/beginningprogrammingcplusplus.

Where to Go from Here
You can find a set of errata and Frequently Asked Questions for this and all
my books at www.stephendavis.com. You will also find a link to my email
address there. Feel free to send me your questions and comments (that’s how
I learn). It’s through reader input that these books can improve.

Now you’ve stalled long enough, it’s time to turn to Chapter 1 and start dis-
covering how to program!

http://www.dummies.com/extras/beginningprogrammingcplusplus
http://www.dummies.com/extras/beginningprogrammingcplusplus
http://www.dummies.com/extras/beginningprogrammingcplusplus
http://www.codeblocks.org/downloads/binaries
http://www.codeblocks.org
http://www.dummies.com/extras/beginningprogrammingcplusplus
http://www.dummies.com/extras/beginningprogrammingcplusplus
http://www.dummies.com/cheatsheet/beginningprogrammingcplusplus
http://www.stephendavis.com

Part I
Getting Started with
C++ Programming

 Visit www.dummies.com for great Dummies content online.

http://www.dummies.com/

In this part . . .
 ✓ Writing your first ”program”

 ✓ Installing the development environment

 ✓ Testing your program

 ✓ Examining things that could go wrong

 ✓ Visit www.dummies.com for great Dummies content
online.

http://www.dummies.com/

Chapter 1

What Is a Program?
In This Chapter
▶ Understanding programs

▶ Writing your first “program”

▶ Looking at computer languages

I
n this chapter, you get a handle on what a program is and what it means to
write a program. You get to practice on a Human Computer and see some

program snippets written for a real computer. Finally, you get a look at your
first code snippet written in C++.

Up until now, all of the programs running on your computer were written by
someone else. Very soon now, that won’t be true anymore. You’ll be joining
the ranks of the few, the proud: the programmers.

How Does My Son Differ
from a Computer?

A computer is an amazingly fast but incredibly stupid machine. A computer
can do anything you tell it (within reason), but it does exactly what it’s
told — nothing more and nothing less.

In this respect, a computer is almost the exact opposite of a human: Humans
respond intuitively. When I was learning a second language, I found that it
wasn’t enough to understand what was being said — it’s just as important
and considerably more difficult to understand what was left unsaid. This is
information that the speaker shares with the listener through common expe-
rience or education — things that don’t need to be said.

10 Part I: Getting Started with C++ Programming

For example, I say things to my son such as, “Wash the dishes” (for all the
good it does me). Such instructions seem clear enough, but the vast majority
of the information contained in that sentence is implied and unspoken.

Let’s assume that my son knows what dishes are and that dirty dishes
are normally in the sink. But what about knives and forks? After all, I only
said dishes, I didn’t say anything about eating utensils, and don’t even
get me started on glassware. And did I mean wash them manually, or is it
okay to load them up into the dishwasher to be washed, rinsed, and dried
automatically?

But the fact is, “Wash the dishes” is sufficient instruction for my son. He can
deconstruct that sentence and combine it with information that we both
share, including an extensive working knowledge of dirty dishes, to come up
with a meaningful understanding of what I want him to do — whether he does
it or not is a different story. I would guess that he can perform all the mental
gymnastics necessary to understand that sentence in about the same amount
of time that it takes me to say it — about 1 to 2 seconds.

A computer can’t make head nor tail out of a statement as vague as “wash the
dishes.” You have to tell the computer exactly what to do with each different
type of dish, specify that silverware is included in the task, and state how
to wash a fork, versus a spoon, versus a cup. When does the program stop
washing a dish (that is, how does it know when a dish is clean)? When does it
stop washing (that is, how does it know when the task is finished)?

My son has gobs of memory — it isn’t clear exactly how much memory a
normal human has, but it’s boatloads. Unfortunately, human memory is fuzzy.
For example, witnesses to crimes are notoriously bad at recalling details,
even a short time after the event. Two witnesses to the same event often dis-
agree radically on what transpired.

Computers also have gobs of memory, and that’s very good. Once a fact is
stored, a computer can retrieve that fact as often as you like without chang-
ing the fact. As expensive as memory was back in the early 1980s, the original
IBM PC had only 16K (that’s 16 thousand bytes). This could be expanded to a
whopping 64K. Compare this with the 2GB to 6GB of main storage available in
most computers today (a gigabyte, 1GB, is one billion bytes).

 As expensive as memory was in the early days of personal computing, the IBM
PC included extra memory chips and decoding hardware to detect a memory
failure. If a memory chip went bad, this circuitry was sure to find the problem
and report it before the program went haywire. This so-called parity memory
was discontinued after only a few years; as far as I know, it’s unavailable today
except in specific applications where extreme reliability is required — because
the memory boards almost never fail.

11 Chapter 1: What Is a Program?

On the other hand, humans are very good at certain types of processing that
computers do poorly, if at all. For example, humans are very good at pull-
ing the meaning out of a sentence garbled by large amounts of background
noise. By contrast, digital cellphones (which are at least as much computer
as phone) have the infuriatingly bad habit of just going silent whenever the
noise level gets above a built-in threshold.

The remainder of this chapter looks at instructions that come a little closer
to telling the computer to “wash the dishes” (or some equally fuzzy task).

Programming a “Human Computer”
Before I dive into showing you how to write programs for computer con-
sumption, I start by showing you a program to guide human behavior so that
you can get a better look at what you’re up against. Writing a program to
guide a human is much easier than writing programs for computer hardware.
That’s because we human beings have a lot of experience in dealing with
each other — which gives us some familiarity with (and understanding of)
humans and how they work. (I’ll assume that much, anyway.) We also share
a common human language; no need to translate everything into ones and
zeroes. But assume that the human computer in this thought experiment
takes every instruction quite literally — so the program will have to be very
specific.

The problem I’ve chosen is to instruct our human computer how to change a
flat tire.

Creating the algorithm
The instructions for changing a flat tire are straightforward and go something
like the following:

 1. Raise the car.

 2. Remove the lug nuts that affix the faulty tire to the car.

 3. Remove the tire.

 4. Mount the new tire.

 5. Install the lug nuts.

 6. Lower the car.

12 Part I: Getting Started with C++ Programming

Okay, even these everyday terms are potentially fuzzy: Technically the lug
nuts hold the wheel, not the tire, on the car. To keep it simple, assume that
the terms “wheel” and “tire” are synonymous, and that the computer under-
stands them as the same thing.

As detailed as these instructions might seem to be, they still don’t make up
a program. Such a set of instructions is called an algorithm — a description,
usually at a high level of abstraction, of the steps to be performed. An algo-
rithm is detailed but general. I could use this algorithm to repair any flat tire
I’ve experienced or ever will experience. But an algorithm does not contain
sufficient detail to allow even our intentionally obtuse human computer to
perform the task.

Setting the tire-changing language
Before we can write a program, we need a language that we can all agree on.
For the remainder of this book, that language is C++, but for this example, I
use an imaginary language: TCL (Tire-Changing Language). I have specifically
adapted TCL to the problem of changing tires.

TCL includes a few nouns common in the tire-changing world:

 ✓ car

 ✓ tire

 ✓ nut

 ✓ jack

 ✓ toolbox

 ✓ spare tire

 ✓ wrench

TCL also includes the following verbs:

 ✓ grab

 ✓ move

 ✓ release

 ✓ turn

13 Chapter 1: What Is a Program?

Finally, the TCL-executing processor will need the ability to count and to
make simple decisions. Finally, the TCL processor knows directions like up
vs. down, left vs. right and clockwise vs. counter-clockwise.

These words in TCL are all that the tire-changing robot (the imaginary human
computer) understands. Any other command that’s not part of Tire-Changing
Language generates a blank stare of incomprehension from the human tire-
changing processor.

Constructing the program
Now it’s time to convert the algorithm, written in everyday English, into a
program written in Tire-Changing Language. It’s not as easy as it might seem.
Take, for example, the phrase, “Remove the lug nuts.” Actually, quite a bit
is left unstated in that sentence. The word remove is not in the processor’s
vocabulary. In addition, a wrench (which is a word the computer knows) is
never mentioned in that phrase, though we all know that a wrench must be
involved. We can’t assume that the computer knows what we know.

(If you haven’t changed a flat tire — and didn’t know that a wrench is required
to remove lug nuts, or what a lug nut is — then just play along for now. You’ll
figure it out.)

The following steps implement the phrase “Remove a lug nut” using only the
verbs and nouns contained in Tire-Changing Language:

 1. Grab wrench.

 2. Move wrench to lug nut.

 3. Turn wrench counterclockwise five times.

 4. Move wrench to toolbox.

 5. Release wrench.

At this point, consider these aspects of the syntax (required word order)
implied in this example of Tire-Changing Language:

 ✓ Every command starts with a single verb.

 ✓ The verb grab requires a single noun as its object.

 ✓ The verb turn requires a noun, a direction, and a count of the number
of turns to make.

14 Part I: Getting Started with C++ Programming

Even so, the program snippet should be easy enough to read (after all, this
isn’t a book about Tire-Changing Language).

 You can skate by on this quick look at Tire-Changing Language, but you’ll have
to learn the grammar of each C++ command. Otherwise it won’t work.

The program begins at Step 1 and continues through each step in turn until
reaching Step 5. In programming terminology, we say that the program flows
from Step 1 through Step 5. Of course, the program’s not going anywhere —
the processor is doing all the work — but program flow is a common term for
this smooth execution of steps.

Even a cursory examination of this program reveals a problem: What if there
is no lug nut? I suppose it’s harmless to spin the wrench around a bolt with
no nut on it, but doing so wastes time and isn’t my idea of a good solution.
The Tire-Changing Language needs a branching capability that allows the
program to take one path or another in response to external conditions. We
need an IF statement such as the following:

 1. Grab wrench.

 2. If lug nut is present

 3. {

 4. Move wrench to lug nut.

 5. Turn wrench counterclockwise five times.

 6. }

 7. Move wrench to toolbox.

 8. Release wrench.

The program starts with Step 1 just as before, and grabs a wrench. In the
second step, however, before the program waves the wrench uselessly around
an empty bolt, it checks to see if a lug nut is present. If so, flow continues with
Steps 3, 4, and 5 as before. If not, however, program flow skips these unneces-
sary steps and goes straight on to Step 7 to return the wrench to the toolbox.

In computerese, you say that the program executes the logical expression “is
lug nut present?” This expression returns either a true (yes, the lug nut is
present) or a false (no, there is no lug nut there).

15 Chapter 1: What Is a Program?

 What I call a step, a programming language would normally call a statement.
An expression is a type of statement that returns a value, such as 1 + 2, is an
expression. A logical expression is an expression that returns a true or false
value; for example, the value of “Is the author of this book handsome?” is
true.

 The braces { } in Tire-Changing Language are necessary to tell the program
which steps are to be skipped if the condition is not true. Steps 4 and 5 are
executed only if the condition is true.

I realize that there’s no need to grab a wrench if there’s no lug nut to remove,
but work with me here.

This improved program still has a problem: How do you know that five turns
of the wrench will be sufficient to remove the lug nut? It most certainly
will not be enough for most of the tires with which I am familiar. You could
increase the number of turns to something that seems likely to be more than
enough, say, 25 turns. If the lug nut comes loose after the 20th turn, for exam-
ple, the wrench will turn an extra five times. This is a harmless but wasteful
solution.

A better approach is to add some type of “loop and test” statement to the
Tire-Changing Language:

 1. Grab wrench.

 2. If lug nut is present

 3. {

 4. Move wrench to lug nut.

 5. While (lug nut attached to car)

 6. {

 7. Turn wrench counterclockwise one turn.

 8. }

 9. }

 10. Move wrench to toolbox.

 11. Release wrench.

Here the program flows from Step 1 through Step 4 just as before. In Step 5, how-
ever, the processor must make a decision: Is the lug nut attached? On the first
pass, assume that the answer is yes so the processor will execute Step 7 and
turn the wrench counter-clockwise one turn. At this point, the program returns

16 Part I: Getting Started with C++ Programming

to Step 5 and repeats the test. If the lug nut is still attached, the processor
repeats Step 7 before returning to Step 5 again. Eventually, the lug nut will come
loose and the condition in Step 5 will return a false. At this point, control within
the program will pass to Step 9, and the program will continue as before.

This solution is superior to its predecessor: It makes no assumptions about
the number of turns required to remove a lug nut. It doesn’t waste effort by
requiring the processor to turn a lug nut that is no longer attached, nor does
it fail by leaving a lug nut only half-removed.

As nice as this solution is, however, it still has a problem: It removes only a
single lug nut. Most medium-size cars have five nuts on each wheel. We could
repeat Steps 2 through 9 five times, once for each lug nut. However, this
doesn’t work very well either. Most compact cars have only four lug nuts, and
large pickups have up to eight.

The following program expands our grammar to include the ability to loop
across lug nuts. This program works irrespective of the number of lug nuts
on the wheel:

 1. Grab wrench.

 2. For each lug bolt on wheel

 3. {

 4. If lug nut is present

 5. {

 6. Move wrench to lug nut.

 7. While (lug nut attached to car)

 8. {

 9. Turn wrench counterclockwise one turn.

 10. }

 11. }

 12. }

 13. Move wrench to toolbox.

 14. Release wrench.

This program begins just as before with the grabbing of a wrench from the
toolbox. Beginning with Step 2, however, the program loops through Step 12
for each lug-nut bolt on the wheel.

17 Chapter 1: What Is a Program?

Notice how Steps 7 through 10 are still repeated for each bolt. This is known
as a nested loop. Steps 7 through 10 are called the inner loop; Steps 2 through
12 are the outer loop.

The complete program consists of the addition of similar implementations of
each step in the algorithm.

Computer processors
Removing the wheel from a car seems like such a simple task, and yet it takes
11 instructions in a language designed specifically for tire changing just to get
the lug nuts off. Once completed, this program is likely to include over 60 or
70 steps with numerous loops. Even more steps are needed if you add logic
to check for error conditions like stripped or missing lug nuts.

Think of how many instructions have to be executed just to do something as
mundane as moving a window about on the display screen (remember that a
typical screen may have 1280 x 1024 or a little over a million pixels or more
displayed). Fortunately, though stupid, a computer processor is very fast.
For example, the processor that’s in your PC can likely execute several billion
instructions per second. The instructions in your generic processor don’t do
very much — it takes several instructions just to move one pixel — but when
you can rip through a billion or so at a time, scrolling a mere million pixels
becomes child’s play.

The computer will not do anything that it hasn’t already been programmed
for. The creation of a Tire-Changing Language was not enough to replace
my flat tire — someone had to write the program instructions to map out,
step by step, what the computer will do. And writing a real-world program
designed to handle all the special conditions that can arise is not an easy
task. Writing an industrial-strength program is probably the most challenging
enterprise you can undertake.

So the question becomes: “Why bother?” Because once the computer is prop-
erly programmed, it can perform the required function repeatedly, tirelessly,
and usually at a greater speed than is possible under human control.

Computer Languages
The Tire-Changing Language isn’t a real computer language, of course.
Real computers don’t have machine instructions like grab or turn. Worse
yet, computers “think” by using a series of ones and zeros. Each internal

18 Part I: Getting Started with C++ Programming

command is nothing more than a sequence of binary numbers. Real comput-
ers have instructions like 01011101, which might add 1 to a number con-
tained in a special-purpose register. As difficult as programming in TCL might
be, programming by writing long strings of numbers is even harder.

 The native language of the computer is known as machine language and is usu-
ally represented as a sequence of numbers written either in binary (base 2)
or hexadecimal (base 16). The following represents the first 64 bytes from the
Conversion program in Chapter 3.

<main+0>: 01010101 10001001 11100101 10000011 11100100 11110000 10000011 11101100
<main+8>: 00100000 11101000 00011010 01000000 00000000 00000000 11000111 01000100
<main+16>:00100100 00000100 00100100 01110000 01000111 00000000 11000111 00000100
<main+24>:00100100 10000000 01011111 01000111 00000000 11101000 10100110 10001100
<main+32>:00000110 00000000 10001101 01000100 00100100 00010100 10001001 01000100

Fortunately, no one writes programs in machine language anymore. Very
early on, someone figured out that it’s much easier for a human to under-
stand ADD 1,REG1 as “add 1 to the value contained in register 1,” rather
than 01011101. In the “post-machine-language era,” the programmer wrote
her programs in this so-called assembly language and then submitted it to a
program called an assembler that converted each of these instructions into
its machine-language equivalent.

The programs that people write are known as source code because they are
the source of all evil — just kidding — actually it’s because they are the source
of the program. The ones and zeros that the computer actually executes are
called object code because they are the object of so much frustration.

 The following represents the first few assembler instructions from the
Conversion program when compiled to run on an Intel processor executing
Windows. This is the same information previously shown in binary form.

<main>: push ebp
<main+1>: mov ebp,esp
<main+3>: and esp, 0xfffffff0
<main+6>: sub esp, 0x20
<main+9>: call 0x40530c <__main>
<main+14>: movl [esp+0x04],0x477024
<main+22>: movl [esp],0x475f80
<main+29>: call 0x469fac <operator<<>
<main+34>: lea eax,[esp+0x14]
<main+38>: mov [esp+0x04],eax

19 Chapter 1: What Is a Program?

This is still not very intelligible, but it’s clearly a lot better than just a bunch
of ones and zeros. Don’t worry — you won’t have to write any assembly-
language code in this book either.

 The computer doesn’t actually ever execute the assembly-language instruc-
tions. It executes the machine instructions that result from converting the
assembly instructions.

High-level languages
Assembly language might be easier to remember than machine language,
but there’s still a lot of distance between an algorithm like the tire-changing
algorithm and a sequence of MOVE and ADD instructions. In the 1950s, people
started devising progressively more expressive languages that could be auto-
matically converted into machine language by a program called a compiler.
These were called high-level languages because they were written at a higher
level of abstraction than assembly language.

One of the first of these languages was COBOL (Common Business-Oriented
Language). The idea behind COBOL was to allow the programmer to write
commands that were as much like English sentences as possible. Suddenly
programmers were writing sentences like the following to convert tempera-
ture from Celsius to Fahrenheit (believe it or not, this is exactly what the
machine and assembly-language snippets shown earlier do):

INPUT CELSIUS_TEMP
SET FAHRENHEIT_TEMP TO CELSIUS_TEMP * 9/5 + 32
WRITE FAHRENHEIT_TEMP

The first line of this program reads a number from the keyboard or a file
and stores it into the variable CELSIUS_TEMP. The next line multiplies this
number by 9/5 and adds 32 to the result to calculate the equivalent tempera-
ture in degrees Fahrenheit. The program stores this result in a variable called
FAHRENHEIT_TEMP. The last line of the program writes this converted value
to the display.

People continued to create different programming languages, each with its
own strengths and weaknesses. Some languages, like COBOL, were very
wordy but easy to read. Other languages such as database languages or the
languages used to create interactive web pages, were designed for very spe-
cific jobs. These languages include powerful constructs designed to handle
specific problem areas.

20 Part I: Getting Started with C++ Programming

The C++ language
C++ (pronounced “C plus plus,” by the way) is a symbolically oriented high-
level language. C++ started out life as simply C in the 1970s at Bell Labs. A
couple of guys were working on a new idea for an operating system known as
Unix (the predecessor to Linux and Mac OS and still used across industry and
academia today). The original C language created at Bell Labs in the 1970s
was modified slightly and adopted as a worldwide ISO standard in early 1989.
C++ was created as an extension to the basic C language mostly by adding the
features that I discuss in Parts V and VI of this book.

When I say that C++ is symbolic, I mean that it isn’t very wordy; it uses symbols
instead of the long words in languages like COBOL. However, C++ is easy to
read once you’re accustomed to what the symbols mean. The same Celsius-to-
Fahrenheit conversion code shown in COBOL earlier appears as follows in C++:

cin >> celsiusTemp;
fahrenheitTemp = celsiusTemp * 9 / 5 + 32;
cout << fahrenheitTemp;

The first line reads a value into the variable celsiusTemp. The subsequent
calculation converts this Celsius temperature to Fahrenheit, just as before;
the third line outputs the result.

C++ has several other advantages compared with other high-level languages.
For one, C++ is universal. There is a C++ compiler for almost every computer
in existence.

In addition, C++ is efficient. The more tasks a high-level language tries to
do automatically (to make your programming job easier), the less efficient
the machine code generated tends to be. That doesn’t make much of a dif-
ference for a small program like most of those in this book, but it can make
a big difference when manipulating large amounts of data, as when you’re
moving pixels around on the screen, or when you want blazing real-time per-
formance. It’s no accident that Unix and Windows are written in C++ and the
Macintosh O/S is written in a language very similar to C++.

The goal of the remaining chapters of this book is get you programming in
C++. You won’t have to cram every detail of the C++ language into your head,
but you’ll end up with enough of it under your belt to write some pretty awe-
some programs.

Chapter 2

Installing Code::Blocks
In This Chapter
▶ Reviewing the compilation process

▶ Installing the Code::Blocks development environment

▶ Testing your installation with a default program

▶ Reviewing the common installation errors

I
n this chapter, you review what it takes to use C++ source code to create
executable programs that you can run on Windows, Linux, or Macintosh

computers. Then you install the Code::Blocks integrated development envi-
ronment used in the remainder of the book — and build a default test pro-
gram to check out your installation. If all is working, then by the time you
reach the end of this chapter, you’ll be ready to start writing and building C++
programs of your own — with a little help, of course!

Reviewing the Compilation Process
You need two programs to create your own C++ programs. First, you need a
text editor that you can use to enter your C++ instructions. Any editor capable
of generating straight ASCII text letters will work; I’ve written programs using
the Notepad editor that comes with Windows. However, an editor that knows
something about the syntax of C++ is preferable; it can save you a lot of
typing, and sometimes highlight any mistakes you might make as you type,
in much the same way that a spell checker highlights misspelled words in a
word processor.

The second program you need is a compiler that converts your C++ source
statements into machine language that the computer can understand and
interpret. This process of converting from source-code C++ statements to
machine code is called building. Graphically, the process looks something like
Figure 2-1.

22 Part I: Getting Started with C++ Programming

The process of building a program actually has two steps: The C++ compiler
first converts your C++ source code statements into a machine executable
format in a step known as compiling. It then combines the machine instruc-
tions from your program with instructions from a set of libraries that come
standard with C++ in a second step known as linking to create a complete
executable program.

Figure 2-1:
The C++
program
develop-

ment
process.

Most C++ compilers these days come in a software package known as an
Integrated Development Environment or IDE. IDEs include the editor, the com-
piler, and several other useful development programs together in a common
bundle. Not only does this save you from having to purchase the programs
separately, but also offers productivity benefits by combining them into a
single package:

 ✓ The editor can invoke the compiler quickly without making you switch
back and forth manually.

 ✓ The editors in most IDEs provide quick and efficient means for finding
and fixing coding errors.

 ✓ Some IDEs include visual programming tools that allow the programmer
to draw common windows such as dialog boxes on the display.

 ✓ The IDE generates the C++ code necessary to display onscreen boxes
automatically.

 As nice as that sounds, the automatically generated code only displays
the windows. A programmer still has to generate the real code that gets
executed whenever the operator selects buttons within those windows.

23 Chapter 2: Installing Code::Blocks

Invariably, these visual IDEs are tightly coupled into one particular operating
system. For example, the popular Visual Studio is strongly tied into the .NET
environment in Windows. It’s not possible to use Visual Studio without learn-
ing the .NET environment — and something about Windows — along with
C++ (or one of the other .NET languages). In addition, the resulting programs
only run in a .NET environment.

In this book, you use a public-domain C++ IDE known as Code::Blocks. Versions
of Code::Blocks exist for Windows, Linux, and Mac OS. Versions of Code::Blocks
for these three operating systems (as well as a few others) are available for
free download at www.codeblocks.org. The specific version used in the gen-
eration of the book is version 13.12. You can also download the Windows 13.12
binary at www.dummies.com/extras/beginningprogrammingcplusplus.

You’ll use Code::Blocks to generate the programs in this book. These programs
are known as console applications because they take input from — and display
text back to — a console window. Okay, this isn’t as sexy as developing pro-
grams in onscreen windows, but staying with console applications lets you
focus on C++ without being distracted by the requirements of a windowed
environment. In addition, using console applications will allow the programs in
the book to run the same on all environments that support Code::Blocks.

Installing Code::Blocks
The following instructions take you through installing Code::Blocks on a
Windows, Mac OS, or Linux computer. Jump to the section that applies to
your operating system.

Windows installation
This section provides detailed installation instructions for installing Code::
Blocks for Windows Version 13.12 available at www.dummies.com/extras/
beginningprogrammingcplusplus.

 1. Download the file codeblocks-13.12mingw-setup.exe.

 That’s straightforward enough.

 2. Double-click the downloaded file to start the installation process.

 Depending on which version of Windows you’re using, you may a warn-
ing pop-up message like this one:

Do you want to allow the following program from an unknown publisher to
make changes to your computer?

http://www.codeblocks.org/
http://www.dummies.com/extras/beginningprogrammingcplusplus
http://www.dummies.com/extras/beginningprogrammingcplusplus
http://www.dummies.com/extras/beginningprogrammingcplusplus

24 Part I: Getting Started with C++ Programming

 3. Select Allow.

 Setup unpacks the files it needs to start and run the Code::Blocks Setup
Wizard. This process may take a minute. When it finishes, the startup
window shown in Figure 2-2 appears.

Figure 2-2:
The Code::

Blocks
Setup

Wizard
guides you

through the
installation

process.

 4. Close any other programs that may be running and then select Next.

 The Setup Wizard displays the generic End User License Agreement
(EULA). There’s nothing much here to get excited about.

 5. Select I Agree.

 The Setup Wizard then displays a list of the components that you may
choose to install. See Figure 2-3. The defaults are okay.

 It’s absolutely critical that the MinGW Compiler Suite option appear
onscreen and have a check mark next to it. This is the option that
installs the C++ compiler.

 6. Select Next.

 The next window asks you to choose the installation’s location. This
window also tells you how much space Code::Blocks requires on your
hard drive (about 250MB, depending on the options you’ve selected)
and how much space is available. If you don’t have enough free disk
space, you’ll have to delete some of those captured YouTube videos to
make room before you continue.

25 Chapter 2: Installing Code::Blocks

Figure 2-3:
Checking

the MinGW
Compiler

Suite installs
the GNU C++

compiler
that Code::

Blocks
uses to

 compile your
programs.

 7. The default installation location is fine, so when you’re sure you have
enough disk space, click Install.

 At this point, the Code::Blocks Setup Wizard really goes to work. It extracts
umpteen dozen files that it installs in a myriad of subdirectories in a flurry
too complicated for mere mortals to follow. This process may take several
minutes.

 8. When the installation is complete, a dialog box appears asking you
whether you want to run Code::Blocks now. Select No.

 If all has gone well so far, the Installation Complete window shown in
Figure 2-4 appears.

Figure 2-4:
The

Installation
Complete

window
signals

that Code::
Blocks

has been
 successfully

installed.

26 Part I: Getting Started with C++ Programming

 9. Click Next.

 Finally, the Completing the Code::Blocks Setup Wizard window appears.
This final step creates the icons necessary to start the application.

 10. Click Finish.

You’ve installed Code::Blocks but you still need to make sure that it’s set up
properly for the programs in this book. Jump to the “Setting up Code::Blocks”
section farther along in this chapter.

Ubuntu Linux installation
Code::Blocks does not include the gcc compiler in the Linux installation, so
installation is a two-step process. First you’ll need to install gcc. Then you
can install Code::Blocks.

Installing gcc
The gcc compiler is readily available for Linux. Follow these steps to install it:

 1. Enter the following commands from a command prompt:

sudo apt-get update
sudo apt-get upgrade
sudo apt-get install g++

 The standard Ubuntu Linux distribution includes a GNU C compiler,
but it does not include the C++ extensions; in particular, it doesn’t have
the C++ 2011 standard extensions. The first two commands update and
upgrade the tools you already have. The third command installs C++.

 2. Enter the following command from a command prompt:

gcc --version

 My Ubuntu 13.04 downloaded GNU C++ version 4.7.3. You’ll be fine with
version 4.7.1 or later. If you have an earlier version, some of the C++ 2011
features may not work properly, but otherwise it should be okay.

 If you’re using Debian Linux, the commands are the same. If you’re using Red
Hat Linux, replace the command apt-get with yum so that you end up with

sudo yum install g++

27 Chapter 2: Installing Code::Blocks

Installing Code::Blocks
Fortunately for all concerned, an Ubuntu-ready version of Code::Blocks is avail-
able in the Ubuntu Software Center. Many other versions of Linux include some-
thing similar to the Software Center. Follow these steps to install Code::Blocks:

 1. Click the Software Center Icon on the Ubuntu desktop.

 2. Select Code::Blocks from the list of available software.

 The installation process starts.

 Code::Blocks searches your hard drive, in quest of your C++ compiler. If
Code::Blocks finds your C++ compiler,, you’re done.

 If Code::Blocks doesn’t find your C++ compiler, then execute the follow-
ing steps.

 3. Start Code::Blocks.

 4. Select Settings➪Compiler.

 5. Select the Compiler Flags tab.

 6. Select the Toolchain Executables tab.

 7. Select the "..." icon.

 8. Navigate to /usr, unless you installed your gcc compiler someplace
other than the default location of /user/bin.

 9. Set the following options in the dialog box: “C compiler” should be
gcc, the “C++ compiler” should be g++ and the “Linker for dynamic
libs” should be g++.

 10. Select OK to close the window.

Jump to the “Setting Up Code::Blocks” section of this chapter to make sure
that Code::Blocks is set up properly for the programs in this book.

Mac OS installation
The Macintosh version of Code::Blocks relies on the Xcode distribution from
Apple for its compiler.

Installing Xcode
Xcode is a free development package offered by Apple; you’ll need it. Follow
these steps to install it first:

 1. Open the Safari browser and go to http://developer.apple.com.

 2. Click Download Xcode to get the most recent version.

 This will open the Xcode download dialog box shown in Figure 2-5.

http://developer.apple.com/

28 Part I: Getting Started with C++ Programming

Figure 2-5:
The Xcode
download
dialog box
allows you

to install
Xcode

for free.

 3. Click the Free icon to change it to Install App. Click it again.

 4. Enter your system password (the one you log in with when your Mac
boots up).

 The icon changes to Installing.

 The download and installation takes quite some time, as Xcode takes up
a little over 2GB as of this writing.

Installing the Command Line Tools
As big as Xcode is, you might think that it has everything you need, but you’d
be wrong. You need one more package from Apple to make your joy complete
and to get a working gcc compiler on your Macintosh. Follow these steps to
install the Command Line Tools for Xcode:

 1. Open the Safari browser and go to http://developer.apple.com/
downloads.

 You may be asked to sign up for an Apple Developer ID. Go ahead and do
so — it’s free. Provide your existing developer ID if you already have one.

 2. Search for Command Line Tools for Xcode. Select the application.
See Figure 2-6.

 3. Double-click the mpkg package when it downloads; doing so installs it.

 4. Accept all the default values.

 The installation should finish with Installation Was Successful.

http://developer.apple.com/downloads
http://developer.apple.com/downloads

29 Chapter 2: Installing Code::Blocks

Figure 2-6:
You must

install both
Xcode

and the
Command
Line Tools

for Xcode to
get the gcc

compiler for
Macintosh.

Installing Code::Blocks
Now, at last, you can finish your Mac OS installation by downloading the
Code::Blocks package:

 1. Open the Safari browser and go to www.codeblocks.org/downloads.

 2. Click Downloads➪Binaries.

 3. Click Mac OS X.

 4. Select either the BerliOS or the Sourceforge.net mirror site for the
most recent version.

 At the time of this writing, CodeBlocks-13.12-mac.zip was the most
recent.

http://www.codeblocks.org/downloads

30 Part I: Getting Started with C++ Programming

 5. Install the downloaded Zip file into the Applications folder.

 If you’ve never installed an application from a third-party site, you may
need to execute these extra steps before you can do so:

 a. Click System Preferences.

 b. Click Security and Privacy.

 c. Click the padlock in the lower-left corner of the window to allow
changes.

 d. Click Allow Applications Downloaded from: Anywhere, as shown in
Figure 2-7.

 When you’ve completed the installation of Code::Blocks, you may
choose to return to this window and restore the settings to Mac
App Store.

Figure 2-7:
You’ll need

to allow
third-party

applica-
tions to be

installed
before you
can install

Code::
Blocks

on your
Macintosh.

 6. Double-click the Code::Blocks icon.

 The first time you do this, the Mac OS asks, “Are you sure you want to
open it?”

 7. Select Don’t Warn Me When Opening Applications on This Disk Image
and click Open.

 Code::Blocks should start and find the gcc compiler installed with the
Command Line Tools.

31 Chapter 2: Installing Code::Blocks

 8. Select the gcc compiler, as shown in Figure 2-8. Click Set as Default
and then click OK to continue starting Code::Blocks.

 Code::Blocks opens with a banner page, followed by a menu across the
top of the dialog box.

 Continue to the next section, “Setting Up Code::Blocks.”

Figure 2-8:
Code::

Blocks auto-
matically
finds the

gcc com-
piler the first

time you
execute it.

Setting up Code::Blocks
The GNU C++ compiler that comes with Code::Blocks supports a myriad of
options; all of them affect the way it reads your programs. For this book,
you’ll need to make sure that a few of these options are set. The instructions
in this section are the same whether you’re using Windows, Linux, or Mac OS.

 1. Start Code::Blocks if it isn’t started already.

 In Windows, you can use the icon that Code::Blocks installed on the desk-
top. A window similar to Figure 2-9 appears. (The details of this opening
screen vary by operating system and by version. This is the opening
screen from the Version 13.12.)

 2. Choose Settings➪Compiler from the menu options.

 A window similar to Figure 2-10 appears.

 3. Select Global Compiler Settings from the options on the left side of the
window.

32 Part I: Getting Started with C++ Programming

Figure 2-9:
The opening

screen of
the Code::

Blocks
environment.

Figure 2-10:
The com-

piler settings
window

allows the
user to

adjust the
details of

the way the
C++ com-

piler works.

33 Chapter 2: Installing Code::Blocks

 4. Select the Compiler Flags tab.

 This displays the compiler options.

 5. Select the Enable All Compiler Warnings check box.

 This will cause the GNU C++ compiler to complain about anything that
it sees that might be a problem. Turning on all warnings is a good idea
when you’re first learning a language — or when you’ve been program-
ming for over 30 years (like me).

 6. Select the Have g++ Follow the C++11 ISO C++ Language Standard
check box.

 The most recent upgrade to the C++ standard was adopted in 2011. This
upgrade implements several new features, many of which are beyond
the scope of this book. Some of these features actually make life easier,
however, so you’ll want to use them. Selecting this check box gives you
access to these useful extensions.

 7. Select OK.

 The Settings window closes.

Testing the Code::Blocks Installation
In this section, you’ll build a default program that comes with Code::Blocks.
This program does nothing more than display Hello, world! on the
display, but building and running this program successfully will verify that
you’ve installed Code::Blocks properly.

Start Code::Blocks by double-clicking the Code::Blocks icon created on the
Desktop or selecting Programs➪Code::Blocks➪Code::Blocks. This should
open a window like the one shown in Figure 2-9.

Across the top of the window are the usual menu options, starting with
File, Edit, View, and so on. The window at the upper right, the one that says
“Start here,” is where the source code will go when you get that far. The
window at the lower right is where Code::Blocks displays messages to the
user. Compiler error messages appear in this space. The window on the
left labeled Management is where Code::Blocks keeps track of the files that
make up the programs. It should be empty now since you have yet to create
a program. The first thing to do is create a project.

Okay, what’s a project?

34 Part I: Getting Started with C++ Programming

You want Code::Blocks to create only Console Applications, but it can create
a lot of different types of programs. For Windows programmers, Code::Blocks
can create Dynamic Link Libraries (also known simply as DLLs). It can create
Windows applications. It can create both static and dynamically linked librar-
ies for Linux and Mac OS.

In addition, Code::Blocks allows the programmer to set different options on
the ways each of these targets is built. (Later chapters show you how to adjust
a few of these settings.) And finally, Code::Blocks remembers how you have
your windows configured for each project. When you return to the project,
Code::Blocks restores the windows to their last configuration to save you time.

Code::Blocks stores the information it needs about the type of program that
you’re building, the optional settings, and the window layout in two project
files. The settings are stored in a file with the same name as the program but
carrying the extension .cbp. The window configuration is stored in a file with
the same name but with the extension .layout.

Creating the project
 1. Select File➪New➪Projects to open the window shown in Figure 2-11.

 This is a list of all of the types of applications that Code::Blocks knows
how to build.

 Fortunately, you’ll be concentrating on just one, the Console Application.

Figure 2-11:
Select the

Console
Application

from the
many types

of targets
offered.

35 Chapter 2: Installing Code::Blocks

 2. Select Console Application and select Go.

 Code::Blocks responds with the display shown in Figure 2-12. Here
Code::Blocks is offering you the option to create either a C or a C++
program.

 3. Select C++ and click Next.

Figure 2-12:
Select C++

as your
language of

choice.

 Code::Blocks opens a dialog box where you’ll enter the name and optional
subfolder for your project. First, click the little ... button to create a folder
to hold your projects, and navigate to the root of your working disk (on
a Windows machine, it’ll be either C or D, most likely C). Select the Make
New Folder button at the bottom left of the window. Name the new folder
Beginning_Programming-CPP.

 4. Click OK when your display looks like the one shown in Figure 2-13.

 The folder that you create to hold your project must not contain any
spaces in the name. In addition, none of the folders in the path should
contain spaces. That automatically eliminates placing your projects on
the Desktop since the path to the Desktop contains spaces. You should
also avoid spaces in the name of the project. You can use underscores
to separate words instead. The Code::Blocks compiler gets confused
with spaces in the filenames and generates obscure and largely mean-
ingless errors.

36 Part I: Getting Started with C++ Programming

Figure 2-13:
Create

the folder
Begin-
ning_

Program-
ming-
CPP into

which you’ll
collect your

C++ projects.

 Now enter the name of the Project as HelloWorld. Notice that Code::
Blocks automatically creates a subfolder of the same name to contain
the files that make up the project.

 5. Click Next when your display looks like Figure 2-14.

Figure 2-14:
Call your

first project
HelloWorld.

 6. When Code::Blocks asks how you want your subfolders set up, you
can accept the default configuration, as shown in Figure 2-15. Select
Finish.

37 Chapter 2: Installing Code::Blocks

 You can select the Back button to back up to a previous menu in the preceding
steps if you screw something up. However, you may have to re-enter any data
you entered when you go forward again. When you select Finish, you can no
longer return and change your selections. (If you screw up and want to redo
the project, you’ll first need to remove the Project: Right-click HelloWorld in
the Management window and select Close Project. Now you can delete the
folder Beginning_Programming-CPP\HelloWorld and start over again.)

Figure 2-15:
Select Finish

on the final
page to

complete
the cre-

ation of the
HelloWorld

Project.

Testing your default project
Code::Blocks creates a console application project — and even populates it
with a working program — when you select Finish on the Project Wizard. To
see that program, click the plus (+) sign next to Sources in the Management
window on the left side of the display. The drop-down list reveals one file,
main.cpp. Double-click main.cpp to display the following simple program
in the source code entry window on the right:

#include <iostream>

using namespace std;

int main()
{
 cout << "Hello world!" << endl;
 return 0;
}

38 Part I: Getting Started with C++ Programming

It’s okay to skip over what some of this stuff means for now, but the crux
of the program starts after the open brace following main(). This is where
execution begins. The line

cout << "Hello world!" << endl;

says to output the line "Hello, world!" to the cout, which by default is
the command line. The next line

return 0;

causes control to return to the operating system, which effectively termi-
nates the program.

 1. Select Build➪Build to build the C++ source statements into an execut-
able machine language program.

 (You can press Ctrl+F9 or click the Build icon if you prefer.) Immediately,
you should see the Build Log tab appear in the lower-right screen fol-
lowed by a series of lengthy commands, as shown in Figure 2-16. This
is Code::Blocks telling the C++ compiler how to build the test program
using the settings stored in the project file. The details aren’t important.
What is important, however, is that the final two lines of the Build Log
window should be

Process terminated with status 0 (0 minutes, 1 seconds)
0 errors, 0 warnings

 The terminated status of 0 means that the build process worked prop-
erly. The “0 errors, 0 warnings” means that the program compiled with-
out errors or warnings. (The build time of 1 second is not important.)

 If you don’t get a status of 0 with 0 errors and 0 warnings, then some-
thing is wrong with your installation or with the project. The most
common sources of error are

 • You already had a gcc compiler installed on your computer before
you installed Code::Blocks. Code::Blocks uses a special version of
the GNU gcc compiler, but it will use any other gcc compiler that
you may already have installed on your computer. Your safest bet
is to uninstall Code::Blocks, uninstall your other gcc compiler, and
reinstall Code::Blocks from scratch.

 • You built your project in a directory that contains a space in the
name; for example, you built your project on the Desktop. Be sure
to build your project in the folder Beginning_Programming-CPP
in the root of your user disk (most likely C on a Windows machine).

39 Chapter 2: Installing Code::Blocks

Figure 2-16:
Building the
default pro-

gram should
result in a

working pro-
gram with
no errors

and no
warnings.

 2. Select Build➪Run (Ctrl+F10) to execute the program.

 Immediately a window should pop open with the message Hello,
world! followed by the return code of zero and the message Press
any key to continue (as shown in Figure 2-17).

Figure 2-17:
The default

program dis-
plays "Hello,
world!" and

waits for
you to press

a key.

40 Part I: Getting Started with C++ Programming

 3. Press Enter.

 The window disappears and control returns to the Code::Blocks text
editor.

If you were able to see the Hello, world! message by executing the pro-
gram, then congratulations! You’ve installed your development environment
and built and executed your first C++ program successfully. If you did not,
then delete the Beginning_Programming_CPP folder, uninstall Code::Blocks,
and try again, carefully comparing your display to the figures shown in this
chapter. If you’re still having problems, refer to www.stephendavis.com for
pointers as to what might be wrong, as well as a link to my email where you
can send me questions and comments. I cannot do your programming home-
work for you, but I can answer some questions to get you started.

http://www.stephendavis.com/

Chapter 3

Writing Your First Program
In This Chapter
▶ Entering your first C++ program

▶ Compiling and executing your program

▶ Examining some things that could go wrong

▶ Executing your program

▶ Reviewing how the program works

T
his chapter guides you through the creation of your first program in C++,
using the Code::Blocks C++ environment. It’s a bit “cookbookish” because

I assume this is your first time programming in C++. I explain all the parts
that make up this program in subsequent chapters (beginning with Part II),
but for now, you’ll be asked to accept a few things on faith. After you’ve had a
chance to see it all work together once, all will be revealed — and everything
you do in this chapter will make perfect sense.

Creating a New Project
As always, you must create a new project to house your program. Follow the
abbreviated steps here (or you can use the detailed steps from Chapter 2):

 1. With Code::Blocks open, select File➪New➪Project.

 2. Select Console Applications and select Go (or double-click the Console
Applications icon).

 3. Select C++ as your language of choice and select Next.

 4. Enter Conversion as the Project Title.

 If you followed the steps in Chapter 2, the “Folder to create project in”
should already be set to Beginning_Programming-CPP. If not, it’s not
too late to click the . . . button and create the folder in the root directory
of your working disk. (Chapter 2 describes this process in detail.) The
Code::Blocks Wizard fills in the name of the project (and the name of the
resulting program) for you.

42 Part I: Getting Started with C++ Programming

 When you’re done, your window should look like that shown in Figure 3-1.

Figure 3-1:
The Project

window
for the

Conversion
program.

 5. Select Next.

 The next window allows you to change the target folders. You probably
won’t need to; the defaults are fine.

 6. Select Finish.

Code::Blocks creates a new Project and adds it to the earlier HelloWorld
project. (See the upcoming “Organizing projects” section for an explanation
of why this happens.) The resulting display should look like Figure 3-2.

Figure 3-2:
The initial

display after
creating the
Conversion

project.

43 Chapter 3: Writing Your First Program

Filename extensions
Windows has a bad habit of hiding the filename extensions when displaying
filenames. For some applications this may be a good idea, but this is almost
never a good idea for a programmer. With extensions hidden, Windows may dis-
play three or four files with the same name HelloWorld. This confusing state
of affairs is easily cleared up when you display file extensions and realize that
they’re all different.

Organizing projects
You may be curious as to why Code::Blocks
added the new Conversion project to the
existing HelloWorld project rather than
replacing it. In practice, a large effort involv-
ing multiple developers may be broken up
into a number of different programs that are
all designed to work together. To support this
reality of the programming world, Code::Blocks
allows you to have any number of different proj-
ects loaded at once.

The collection of all those projects is called a
workspace. If you don’t specify a workspace
when you start Code::Blocks, all the projects
you create go into the default workspace. Only
one project in the workspace can be active at a
time. This is the project that appears onscreen
in bold (refer to Figure 3-2, and you’ll notice that
Conversion is bolded while HelloWorld
is not). Any Code::Blocks commands you per-
form are directed at the active project. By
default, the most recent project you create is
the active project, but you can change which
project is active by right-clicking it in the
Management window and choosing Activate
Project (the first option in the list).

If you were to take a peek in the Beginning_
Programming-CPP folder right now, you
would notice two subfolders: HelloWorld
and Conversion. Each of these subfolders
includes

 ✓ A project file with the extension .cbp that
contains the compiler settings

 ✓ A layout file (with the extension .layout)
that describes the way you want your win-
dows set up when you’re working on this
project

 ✓ The file main.cpp that contains the C++
program created by the Application Wizard

 HelloWorld also contains a subfolder
named Debug.

A C++ program can have any name you like, but
it should end in .cpp. Chapter 12 explains how
to create multiple C++ source files with differ-
ent names.

44 Part I: Getting Started with C++ Programming

 To minimize confusion, disable the Windows Hide Extensions feature. Exactly
how you do that depends upon the version of Windows you’re using:

 ✓ Windows XP with Default View: Select Start➪Control Panel➪Performance
and Maintenance➪File Types.

 ✓ Windows XP with Classic view: Select Start➪Control Panel➪Folder
options.

 ✓ Windows Vista with Default view: Select Start➪Control Panel➪Appearance
and Personalization➪Folder Options.

 ✓ Windows Vista with Classic view: Select Start➪Settings➪Control
Panel➪Folder options.

 ✓ Windows 7: Select Start➪Control Panel➪Appearance and
Personalization➪Folder options.

After startup, navigate to the View tab of the Folder Options dialog box that
appears. Scroll down until you find Hide Extensions for Known File Types;
make sure that this box is unchecked. Then choose OK to close the dialog box.

In Windows 8, you can get to the Folder Options directly. From File Explorer,
choose the View tab. In the Show/Hide section, click to put a check by File
Name Extensions.

Entering Your Program
Follow these steps to enter the code that creates your first program using C++:

 1. Make sure that Conversion is bolded in the Management window
(refer to Figure 3-2).

 This indicates that it’s the active project. If it isn’t, right-click Conversion
and select Activate Project from the drop-down menu.

 2. Close any source-file windows that may be open by selecting File➪Close
All Files.

 Alternatively, you can choose which source files to close by clicking the
small X next to the name of each file in the editor tab. You don’t want to
edit the wrong source file inadvertently.

 3. Open the Sources folder by clicking the small plus sign next to
Sources (it’s underneath Conversion in the Management window).

 The drop-down menu reveals the single file main.cpp.

45 Chapter 3: Writing Your First Program

 4. Double-click main.cpp to open the file in the editor.

 5. Edit the contents of main.cpp by entering the following program
exactly as it appears here.

 The result is shown in Figure 3-3.

Figure 3-3:
The edited

main.cpp
file of the

Conversion
program.

 This is definitely the hard part, so take your time and be patient as you
enter this code:

//
// Conversion - Program to convert temperature from
// Celsius degrees into Fahrenheit:
// Fahrenheit = Celsius * (212 - 32)/100 + 32
//
#include <cstdio>
#include <cstdlib>
#include <iostream>
using namespace std;

int main(int nNumberofArgs, char* pszArgs[])
{

46 Part I: Getting Started with C++ Programming

 // enter the temperature in Celsius
 int celsius;
 cout << "Enter the temperature in Celsius:";
 cin >> celsius;

 // convert Celsius into Fahrenheit values
 int fahrenheit;
 fahrenheit = celsius * 9/5 + 32;

 // output the results (followed by a NewLine)
 cout << "Fahrenheit value is:";
 cout << fahrenheit << endl;

 // wait until user is ready before terminating program
 // to allow the user to see the program results
 cout << "Press Enter to continue..." << endl;
 cin.ignore(10, '\n');
 cin.get();
 return 0;
}

 What do I mean by “exactly as you see here”? C++ is very picky about
syntax. It frowns on missing semicolons or misspelled words. It doesn’t
care about extra spaces as long as they don’t appear in the middle
of a word. For example int fahren heit; is not the same as int
fahrenheit; but int fahrenheit; is okay. C++ treats tabs, spaces,
and newlines all the same, referring to them all as whitespace.

 Maybe it was just me, but it took me a long time to get used to the fact
that C++ differentiates between uppercase and lowercase. Thus int
Fahrenheit; is not the same thing as int fahrenheit;.

 One final hint: C++ ignores anything that appears after a //, so you don’t
have to worry about getting that stuff right.

 6. Save the file by selecting File➪Save all files.

Building the Program
Now comes the most nerve-wracking part of the entire software development
process: building your program. During this step, C++ reviews your handi-
work to see if it can make any sense out of what you’ve written.

47 Chapter 3: Writing Your First Program

Programmers are eternal optimists. Somewhere, deep in our hearts, we truly
believe that every time we hit the Build button, everything is going to work,
but it almost never does. Invariably, a missing semicolon or a misspelled
word will disappoint C++ and bring a hail of error messages, like so much crit-
icism from our elementary school teachers, crashing down around our ears.

Actually building the program takes just one step: You select Build➪Build or
press Ctrl+F9 or click the little Build icon.

Finding What Could Go Wrong
No offense, but the Build step almost certainly did not come off without error.
A Gold Star program is one that works the first time you build and execute
it. You’ll almost never write a Gold Star program in your entire programming
career. Nobody does. Don’t sweat it.

Fortunately, the Code::Blocks editor is so well integrated with the compiler
that it can automatically direct you very close to your errors so you can fix
them. Most times, it can place the cursor in the exact row that contains the
error. To prove the point, let me take you through a couple of example errors.

 These are just two of the myriad ways to screw up in C++. I can’t possibly
show you all of them. Learning how to interpret what the compiler is trying
to tell you — with its error and warning messages — is an important part of
learning the language. It can come only from many months of practice and
gaining experience with the language. Hopefully, these two examples will get
you jump-started.

Misspelled commands
Misspelled commands are the easiest errors to identify and correct. To dem-
onstrate the point, I added an extra t to line 14 in the preceding code so that
it now reads

intt celsius;

Unlike int, the word intt has no meaning to C++. Building the resulting pro-
gram generated the display shown in Figure 3-4.

48 Part I: Getting Started with C++ Programming

Figure 3-4:
The error

messages
resulting

from mis-
spelling
int.

Notice first the small, red block on Line 14 that indicates a problem some-
where on this line. You can read all about it down in the Build Messages tab
in the lower-right window. Here you can see the following messages:

 In function 'int main(int, char**)':
14 error: 'intt' was not declared in this scope
14 error: expected ';' before 'celsius'
16 error: 'celsius' was not declared in this scope

The first line indicates the name of the function that contains the error. I
don’t present functions until Chapter 12, but it’s easy to believe that all of
the code in this program is in a function called main. The next line is the key.
This says essentially that C++ didn’t understand what intt is on line 14 of
the program. The error message is a bit cryptic, but suffice it to say you’ll
get this same error message almost every time you misspell something. The
remaining error messages are just by-products of the original error.

 One C++ error can generate a cascade of error messages. It’s possible to iden-
tify and fix multiple errors in a single build attempt, but it takes experience
to figure out which errors stem from which others. For now, focus on the first
error message. Fix it and rebuild the program.

49 Chapter 3: Writing Your First Program

Missing semicolon
Another common error is to leave off a semicolon. The message that this
error generates can be a little confusing. To demonstrate, I removed the semi-
colon from the declaration on line 14 so that it reads

int celsius
cout << "Enter the temperature in Celsius:";

The error reported by C++ for this offense points not to line 14 but to the fol-
lowing line, 15:

15 error: expected initialization before 'cout'
16 error: 'celsius' was not declared in this scope

This is easier to understand when you consider that C++ considers newlines
as just a another form of whitespace. Without the semicolon, C++ runs the
two lines together. There is no separate line 14 anymore. C++ can interpret the
first part, but it doesn’t understand the run-on sentence that starts with cout.

Why is C++ so picky?
You’ll quickly come to appreciate that C++
is about as picky as a judge at a spelling bee.
Everything has to be just so, or the compiler won’t
accept it. Interestingly enough, it doesn’t have to
be that way: Some languages choose to try to
make sense out of whatever you give it. The most
extreme version of this was a language promul-
gated by IBM for its mainframes in the 1970s
known as PL/1 (this stood for “Programming
Language 1”). One version of this compiler would
try to make sense out of whatever you threw at
it. We nerds used to get immense fun during late
nights at the computer center by torturing the
compiler with a program consisting of nothing
but the word “IF” or “WHILE.” Through some
tortured logic, PL/1 would construct an entire
program out of this one command.

The other camp in programming languages, the
camp to which C++ belongs, holds the opposite
view: These languages compel the programmer
to state exactly what she intends. Everything

must be spelled out. Each declaration is checked
against each and every usage to make sure that
everything matches. No missing semicolon or
incorrectly declared label goes unpunished.

It turns out that the “tough love” approach
adopted by C++ is actually more efficient. The
problem with the PL/1 “free love” approach is
that it was almost always wrong in its under-
standing of what I intended. PL/1 ended up cre-
ating a program that compiled but did something
other than what I intended when it executed.
C++ generates a compiler error if something
doesn’t check out — to force me to express my
intentions clearly and unambiguously.

It’s actually a lot easier to find and fix the com-
pile time errors generated by C++ than the so-
called runtime errors created by a compiler that
assumes it understands what I want but gets it
wrong.

50 Part I: Getting Started with C++ Programming

 Missing semicolons often generate error messages that bear little resemblance
to the actual error message, and they’re almost always on the next line after
the actual error. If you suspect a missing semicolon, start on the line with the
reported error and scan backward.

Using the Online Material
If you just can’t get the program entered correctly, you can always copy the
program from the online material at www.dummies.com/extras/beginnin
gprogrammingcplusplus.

 You should really try to enter the program by hand first, before you resort to
the online material. It’s only through working through mistakes that you
develop a feel for how the language works.

You have several ways to use the online material. The most straightforward is
to copy and paste the contents of the file on the CD into your own as follows:

 1. Download the file CPP_Programs.zip and unzip this file somewhere
can find it easily.

 On a Windows machine, that would probably be C:\CPP_Programs.

 2. Select File➪Open from within Code::Blocks. Navigate to CPP_Programs/
Conversion.

 3. Select the file main.cpp.

 Code::Blocks opens the file in a new tab in the editor window.

 4. Select Edit➪Select All or press Ctrl+A.

 Doing so selects the entire contents of the source file.

 5. Select Edit➪Copy or press Ctrl+C.

 This copies the entire file to the Clipboard.

 6. Select the main tab corresponding to your program.

 7. Select Edit➪Select All or press Ctrl+A again.

 8. Select Edit➪Paste or press Ctrl+V.

 This overwrites the entire contents of the main.cpp that you’ve
been working on with the contents of the corresponding file from the
download.

 9. Close the tab containing the downloaded version of the file by click-
ing the small X next to the filename.

http://www.dummies.com/extras/beginningprogrammingcplusplus
http://www.dummies.com/extras/beginningprogrammingcplusplus

51 Chapter 3: Writing Your First Program

Running the Program
You can execute the program once you get a clean compile (that is, 0 errors
and 0 warnings) by following these steps:

 1. Select Build➪Run or press Ctrl+F10.

 This will execute the program without the debugger. (Don’t worry if you
don’t know what a debugger is; Chapter 20 shows you how to use it.)

 The program opens an 80 column by 25 row window and prompts you to
enter a temperature in degrees Celsius.

 2. Enter a known temperature like 100 degrees. Press Enter.

 The program immediately responds with the equivalent temperature in
Fahrenheit, 212 degrees:

Enter the temperature in Celsius:100
Fahrenheit value is:212
Press Enter to continue . . .

 3. Press Enter twice to exit the program and return to the editor.

How the Program Works
Even though this is your first program, I didn’t want to leave this chapter
without giving you some idea of how this program works.

The template
The first part of the program I call the “Beginning Programming Template.”
This is the same magic incantation used for all programs in this book. It goes
like this:

//
// ProgramName - short explanation of what the
// program does
//
#include <cstdio>
#include <cstdlib>
#include <iostream>
using namespace std;

int main(int nNumberofArgs, char* pszArgs[])

52 Part I: Getting Started with C++ Programming

{
 // program goes here

 // wait until user is ready before terminating program
 // to allow the user to see the program results
 cout << "Press Enter to continue..." << endl;
 cin.ignore(10, '\n');
 cin.get();
 return 0;
}

Comments
The first few lines in this template appear to be free-form text. Either this
“code” was meant for human consumption or the computer is a lot smarter
than anyone’s ever given it credit for. These first four lines are known as
comments. A comment is a line or portion of a line that is ignored by the C++
compiler. Comments enable the programmer to explain what she was doing
or thinking while writing a particular segment of code.

A C++ comment begins with double forward slashes and ends with a newline.
You can put any character you want in a comment, and comments can be as
long as you like, though it’s customary to limit them to 80 characters or so
because that’s what fits within a normal screen width.

Note: You may think it odd to create a command line in C++, or any other
programming language, that is specifically ignored by the compiler; yet all
programming languages have some form of comment. It’s critical that the pro-
grammer be able to explain what was going through her mind when a piece of
code was written. It may not be obvious to the next person who picks up the
program and uses it or modifies it. In fact, it may not be obvious to the pro-
grammer herself after only a few days working on something else.

Include files
The next few lines are called include statements because they cause the con-
tents of the named file to be included at that point in the program. Include
files always start with the statement #include in column 1 followed by the
name of the file to include. (See Chapter 12 for further details.) Just consider
them magic for now.

main
Every program must have a main() somewhere in it. Program execution
begins at the open brace immediately following main() and terminates at
the return statement immediately prior to the closed brace. An explanation of
the exact format of the declaration for main() will have to wait.

53 Chapter 3: Writing Your First Program

Notice that the standard template ends with the statement cin.get()prior
to the return 0. This command causes the program to wait for the user to
hit the Enter key before the program terminates.

 The call to cin.get() isn’t necessary as long as you’re running your pro-
grams from the Code::Blocks environment. Code::Blocks waits for the user to
enter a key before closing the console application window anyway. However,
not all environments are so understanding. Leave this off and very often C++
will close the application window before you have a chance to read the output
from the program. (I get lots of hate mail when that happens.)

The Conversion program
The remainder of the Conversion program, sans the template, appears as
follows:

// enter the temperature in Celsius
int celsius;
cout << "Enter the temperature in Celsius:";
cin >> celsius;

// convert Celsius into Fahrenheit values
int fahrenheit;
fahrenheit = celsius * 9/5 + 32;

// output the results (followed by a NewLine)
cout << "Fahrenheit value is:";
cout << fahrenheit << endl;

Skipping over the comment lines, which C++ ignores anyway, this program
starts by declaring a variable called celsius. A variable is a place you can
use to store a number or character.

The next line displays the prompt to the user to "Enter the temperature
in Celsius:". The object cout points to the console window by default.

The next line reads whatever number the operator enters and stores it into
the variable celsius declared earlier.

The next two lines declare a second variable fahrenheit, which it then sets
equal to the value of the variable celsius * 9 / 5 + 32, which is the
conversion formula from Celsius to Fahrenheit temperature.

The final two lines output the string "Fahrenheit value is:" and the
value calculated and stored in the variable fahrenheit immediately above.

54 Part I: Getting Started with C++ Programming

Part II
Writing a Program:
Decisions, Decisions

Visit www.dummies.com/extras/beginningprogrammingcplusplus for
great Dummies content online.

http://www.dummies.com/extras/beginningprogrammingcplusplus

In this part . . .
 ✓ Writing functions

 ✓ Using arrays

 ✓ Passing pointers

 ✓ Defining constants and macros

 ✓ Visit www.dummies.com/extras/beginning
programmingcplusplus for great Dummies content
online

http://www.dummies.com/extras/beginningprogrammingcplusplus
http://www.dummies.com/extras/beginningprogrammingcplusplus

Chapter 4

Integer Expressions
In This Chapter
▶ Declaring variables

▶ Creating expressions

▶ Unraveling compound expressions

▶ Analyzing the assignment operator

▶ Incrementing variables with the unary operator

I
n this chapter, get familiar with integer declarations and expressions. Ah,
memories of algebra class. With any luck, it introduced you to the con-

cepts of variables and expressions. The teacher would write something on
the board like

x = 1

This equation defines a variable x and sets it equal to the value 1 until some
subsequent statement changes that relationship for some reason. The term
x becomes a replacement for 1. The teacher would then write the following
expression:

y = 2x

Because I know that x is 1, I now know that y is equal to 2. This was a real
breakthrough in the seventh grade. The good news is that all conventional
computer languages follow this same pattern of creating and manipulating
variables.

Declaring Variables
An integer variable declaration starts with the keyword int followed by the
name of a variable and a semicolon, as in the following example:

int n1; // declare a variable n1

58 Part II: Writing a Program: Decisions, Decisions

All variables in C++ must be declared before they can be used. A variable
declaration reserves a small amount of space in memory, just enough for a
single integer (in this case), and assigns it a name. You can declare more than
one variable in the same declaration, as in the following example, but it’s
not a good idea; the reasons become clear as you work through subsequent
chapters:

int n2, n3; // declare two variables n2 and n3

 A keyword is a word that has meaning to C++. You cannot give a variable a
name that’s the same as a keyword. Thus, for example, you can’t create a
variable with the name int. However, keywords are case-sensitive, so you
could create a variable Int or INT. Later chapters introduce you a lot more
keywords.

The fact that the keyword int is used instead of integer is just a reflec-
tion of the overall terseness of the C++ language. Makes you wonder whether
the creators of the language were poor typists and wanted to minimize the
amount of typing they had to do.

 If you exceed the range of an int, you’ll get the wrong answer. Unlike in alge-
bra class, the range of an integer is not unlimited in C++. However, it is very
large indeed. I discuss variable size and range in Chapter 14.

Variable names
You can name a variable anything you like — with the following restrictions:

 ✓ The first letter of the variable must be a character in the sequence a
through z, A through Z, or underscore (_).

 ✓ Every letter after the first must be a character in the sequence a through
z, A through Z, underscore (_), or the digits 0 through 9.

 ✓ A variable name can be of any length. All characters are significant.

The following are legal variable names:

int myVariable;
int MyVariable;
int myNumber2Variable;
int _myVariable;
int my_Variable;

59 Chapter 4: Integer Expressions

The following are not legal variable names:

int myPercentage%; // contains illegal character
int 2ndVariable; // starts with a digit
int my Variable; // contains a space

Variable names should be descriptive. Variable names such as x are
discouraged.

Assigning a value to a variable
Every variable has a value from the moment it’s declared. However, until you
assign it a value, a variable will just assume whatever garbage value happens
to be in that memory location when it’s allocated. So, if you don’t assign a
value, you don’t know what value is lurking in that variable — and it’s likely
to change every time you run the program.

You can assign a variable a value by using the equals sign, as in the following
example:

int n; // declare a variable n
n = 1; // set it to 1

This looks remarkably similar to the assignment statement in algebra class,
but the effect is not quite the same. In C++, the assignment statement says,
“Take the value on the right-hand side of the equals sign (in this case, 1) and
store it in the location on the left-hand side, overwriting whatever was there
before (in this case, n).”

You can see the difference in the following expression:

n = n + 1; // increment the variable n

This statement would make absolutely no sense in algebra class. How could
n be both equal to n and n + 1 at the same time? However, this statement
makes perfect sense in C++ if you follow the definition for assignment just
given: “Take the value stored in the variable n (1) ,add 1, and store the result
(2) in the variable n.” This is shown graphically in Figure 4-1.

60 Part II: Writing a Program: Decisions, Decisions

Figure 4-1:
The effect

of executing
the expres-

sion n = n
+ 1 when n

starts out
as 1.

Initializing a variable at declaration
You can initialize your variable at the time it’s declared by following it with an
equals sign and a value:

int n = 1; // declare and initialize variable

Forgetting to initialize a variable
Forgetting to initialize a variable before using it is a very common error in C++. So much so that the
compiler that comes with Code::Blocks actually goes to great pains to detect this case and warn
you about it. Consider the following statements:

int n1, n2 = 0;
n2 = n1 + 1;
cout << "n1 = " << n1 << endl;
cout << "n2 = " << n2 << endl;

Code::Blocks generates the following warning when building the program that contains the pre-
ceding snippet:

warning: "n1" is used uninitialized in this function

Although it’s a really bad idea to ignore warnings, you are free to do so; when I executed the pro-
gram, I got the following output:

n1 = 54
n2 = 55

It’s easy to see why n2 is equal to 55, given that n1 is 54, but why is n1 equal to 54 in the first
place? I could turn the question around and ask, “Why not?” This is an expression of the old adage,
“Everyone has to be somewhere.” The C++ equivalent is, “Every variable must have a value.” If you
don’t initialize a variable to something, it’ll get a random value from memory. In this case, the value
54 was left over from some previous usage.

61 Chapter 4: Integer Expressions

 This statement initializes only the one variable, so if you write the following
compound declaration

int n1, n2 = 0;

you’ve initialized n2 but not n1. This is one reason it’s not a good idea to
declare multiple variables in a single declaration. (See the sidebar “Forgetting
to initialize a variable” for a few more gruesome details.)

Integer Constants
C++ understands any symbol that begins with a digit and contains only digits
to be an integer constant. The following are legal constants:

123
1
256

A constant cannot contain any funny characters. The following is not legal:

123Z456

The following is legal but doesn’t mean what you may think:

123+456

This actually defines the sum of two constants 123 and 456, or the value
579.

 Normally C++ assumes that constants are decimal (base 10). However, for his-
torical reasons, a number that begins with a 0 is assumed to be octal (base 8).
By the same token, a number that starts with 0x or 0X is assumed to be hexa-
decimal, using the letters A through F or a through f for the digits beyond 9.
Thus 0xFF, 0377, and 255 are all equivalent. Don’t worry if octal or hexadeci-
mal still seem arcane — we won’t be using them in this book.

 Don’t start a constant with 0 unless you mean it to be in octal.

An integer constant can have certain symbols appended to the end to change
its type. You get to see the different types of integer constants in Chapter 14.

62 Part II: Writing a Program: Decisions, Decisions

Expressions
Variables and constants are useful only if you can use them to perform cal-
culations. The term expression is C++ jargon for a calculation. You’ve already
seen the simplest expression:

int n; // declaration
n = 1; // expression

Programmers combine variables, constants and operators to make expres-
sions. An operator performs some arithmetic operation on its arguments.
Most operators take two arguments — these are called binary operators. A
few operators take a single argument — these are the unary operators.

All expressions return a value and a type. (Note that int is the type of all the
expressions described in this chapter.)

Binary operators
A binary operator is an operator that takes two arguments. If you can say
var1 op var2, then op must be a binary operator. The most common
binary operators are the same simple operations that you learned in grade
school. The common binary operators appear in Table 4-1. (This table also
includes the unary operators that are described a little later in this chapter.)

Table 4-1 Mathematical Operators in Order of Precedence
Precedence Operator Meaning
1 - (unary) Returns the negative of its

argument

2 ++ (unary) Increment

2 -- (unary) Decrement

3 * (binary) Multiplication

3 / (binary) Division

3 % (binary) Modulo

4 + (binary) Addition

4 - (binary) Subtraction

5 =, *=,%=,+=,-= (special) Assignment types

63 Chapter 4: Integer Expressions

The simplest binary is the assignment operator noted by the equals sign. The
assignment operator says, “Take the value on the right-hand side and store at
the location on the left-hand side of the operator.” (I describe the special assign-
ment operators at the end of this chapter.)

Multiplication, division, addition, subtraction, and modulo are the operators
used to perform arithmetic. They work just like the arithmetic operators you
learned in grammar school, with the following special considerations:

 ✓ Multiplication must always be expressly stated and is never implied as
it is in algebra. Consider the following example:

int n = 2; // declare a variable
int m = 2n; // this generates an error

 The expression above does not assign m the value of 2 times n. Instead,
C++ tries to interpret 2n as a variable name. Since variable names can’t
start with a digit, it generates an error during the build step.

 What the programmer meant was:

int n = 2;
int m = 2 * n; // this is OK

 ✓ Integer division throws away the remainder. Thus, the following:

int n = 13 / 7; // assigns the value 1 to n

 Fourteen divided by 7 is 2. Thirteen divided by seven is 1. (Yeah, that
seems weird. But hang in there. You’ll see decimal variable types that
can handle fractions in Chapter 14.)

 ✓ The modulo operator returns the remainder after division (you might
not remember modulo):

int n = 13 % 7; // sets n to 6

 Fourteen modulo seven is zero. Thirteen modulo seven is six.

Unraveling compound expressions
A single expression can include multiple operators:

int n = 5 + 100 + 32;

When all the operators are the same, C++ evaluates the expression from left
to right:

5 + 100 + 32
105 + 32
137

64 Part II: Writing a Program: Decisions, Decisions

When different operators are combined in a single expression, C++ uses a
property called precedence. Precedence is the order that operators are evalu-
ated in a compound expression. Consider the following example:

int n = 5 * 100 + 32;

What comes first, multiplication or addition? Or is this expression simply
evaluated from left to right? Refer back to Table 4-1, which tells you that
multiplication has a precedence of 3, which is higher than the precedence of
addition which is 4 (smaller values have higher precedence). Thus multiplica-
tion occurs first:

5 * 100 + 32
500 + 32
532

The order of the operations is overruled by the precedence of the operators.
As you can see

int n = 32 + 5 * 100;

generates the same result:

32 + 5 * 100
32 + 500
532

But what if you really want 5 times the sum of 100 plus 32? You can override
the precedence of the operators by wrapping expressions that you want per-
formed first in parentheses, as follows:

int n = 5 * (100 + 32);

Now the addition is performed before the multiplication:

5 * (100 + 32)
5 * 132
660

You can combine parentheses to make expressions as complicated as you
like. C++ always starts with the deepest-nested parentheses it can find and
works its way out.

(3 + 2) * ((100 / 20) + (50 / 5))
(3 + 2) * (5 + 10)
5 * 15
75

65 Chapter 4: Integer Expressions

 You can always divide complicated expressions using intermediate variables.
The following is safer:

int factor = 3 + 2;
int principal = (100 / 20) + (50 / 5);
int total = factor * principal;

Assigning a name to intermediate values also allows the programmer to
explain the parts of a complex equation — making it easier for the next pro-
grammer to understand.

Unary Operators
The unary operators are those operators that take a single argument. The
unary mathematical operators are -, ++, and - -.

The minus operator changes the sign of its argument. A positive number
becomes negative, and a negative number becomes positive:

int n = 10;
int m = -n; // m is now -10

The ++ and the -- operators increment and decrement their arguments by one.

The increment and decrement operators are unique in that they come in two
versions: a prefix and a postfix version.

Why a separate increment operator?
Why did the authors of C++ think that an incre-
ment operator was called for? After all, this
operator does nothing more than add 1, which
can be done with an assignment expression.
The authors of C++ (and its predecessor C)
were obsessed with efficiency. They wanted
to generate the fastest machine code they pos-
sibly could. They knew that most processors
have an increment and decrement instruction,

and they wanted the C++ compiler to use that
instruction if at all possible. They reasoned that
n++ would get converted into an increment
instruction while n = n + 1; might not. This
type of thing makes very little difference today,
but the increment and decrement operators are
here to stay. As Chapters 9 and 10 explain, they
get a lot more use than you might think.

66 Part II: Writing a Program: Decisions, Decisions

 The prefix version of increment is written ++n, while the postfix is written n++.

Both the prefix and postfix increment operators increment their argument
by one. The difference is in the value returned. The prefix version returns
the value after the increment operation, while the postfix returns the value
before the increment. (The same is true of the decrement operator.) This is
demonstrated in the following IncrementOperator program:

// IncrementOperator - demonstrate the increment operator

#include <cstdio>
#include <cstdlib>
#include <iostream>

using namespace std;

int main(int nNumberofArgs, char* pszArgs[])
{
 // demonstrate the increment operator
 int n;

 // first the prefix
 n = 1;
 cout << "The value of n is " << n << endl;
 cout << "The value of ++n is " << ++n << endl;
 cout << "The value of n afterwards is " << n << endl;
 cout << endl;

 // now the postfix
 n = 1;
 cout << "The value of n is " << n << endl;
 cout << "The value of n++ is " << n++ << endl;
 cout << "The value of n afterwards is " << n << endl;
 cout << endl;

 // wait until user is ready before terminating program
 // to allow the user to see the program results
 cout << "Press Enter to continue..." << endl;
 cin.ignore(10, '\n');
 cin.get();
 return 0;
}

67 Chapter 4: Integer Expressions

The output from this program appears as follows:

The value of n is 1
The value of ++n is 2
The value of n afterwards is 2

The value of n is 1
The value of n++ is 1
The value of n afterwards is 2

Press Enter to continue . . .

This example demonstrates both the prefix and postfix increment. In both
cases, the variable n is initialized to 1. Notice that the value of n after exe-
cuting both ++n and n++ is 2. However, the value of ++n was 2 (the value
after the increment), while the value of n++ was 1 (the value before the
increment).

The Special Assignment Operators
The assignment operator is absolutely critical to any computer language.
How else can I store a computed value? However, C++ provides a complete
set of extra versions of the assignment operator — all of which seem less
critical.

The authors of C++ must have noticed that expressions of the following form
were very common:

x = x # value;

Here # stands for some binary operator. In their perhaps overzealous pur-
suit of terseness, the authors created a separate assignment for each of the
binary operators of the form:

x #= value; // where # is any one of the binary operators

Thus, for example

n = n + 2;

can be written as

n += 2;

Note: You don’t see this all that often; I present it here primarily for
completeness.

68 Part II: Writing a Program: Decisions, Decisions

Chapter 5

Character Expressions
In This Chapter
▶ Defining character variables and constants

▶ Encoding characters

▶ Declaring a string

▶ Outputting characters to the console

C
hapter 4 introduces the concept of the integer variable. This chapter
introduces the integer’s smaller sibling, the character or char (pro-

nounced variously as care, chair, or as in the first syllable of charcoal) to us
insiders. I use characters in programs that appear in earlier chapters — this
chapter introduces them formally.

Defining Character Variables
Character variables are declared just like integers except with the keyword
char in place of int:

char inputCharacter;

Character constants are defined as a single character enclosed in single
quotes, as in the following:

char letterA = 'A';

This may seem like a silly question, but what exactly is ‘A’? To answer that, I
need to explain what it means to encode characters.

70 Part II: Writing a Program: Decisions, Decisions

Encoding characters
As mentioned in Chapter 1, everything in the computer is represented by a
pattern of ones and zeros — variations in voltage that are interpreted as num-
bers. Thus the bit pattern 0000 0001 is the number 1 when interpreted as
an integer. However, this same bit pattern means something completely dif-
ferent when interpreted as an instruction by the processor. So it should come
as no surprise that the computer encodes the characters of the alphabet by
assigning each a number.

Consider the character ‘A’. You could assign it any value you want as long as
we all agree on the value. For example, you could assign a value of 1 to ‘A’, if
you wanted to. Logically, you might then assign the value 2 to ‘B’, 3 to ‘C’, and
so on. In this scheme, ‘Z’ would get the value 26. You might then start over
by assigning the value 27 to ‘a’, 28 to ‘b’, right down to 52 for ‘z’. That still
leaves the digits ‘0’ through ‘9’ plus all the special symbols like space, period,
comma, slash, semicolon, and the funny characters you see when you press
the number keys while holding Shift down. Add to that the unprintable char-
acters such as tab and newline. When all is said and done, you could encode
the entire English keyboard using numbers between 1 and 127.

I say you could assign a value for ‘A’, ‘B’, and the remaining characters;
however, that wouldn’t be a very good idea because it’s already been done.
Sometime around 1963, there was a general agreement on how characters
should be encoded in English. The ASCII (American Standard Coding for
Information Interchange) character encoding shown in Table 5-1 was adopted
pretty much universally except for one company. IBM published its own stan-
dard in 1963 as well. The two encoding standards duked it out for about ten
years, but by the early 1970s — when C and C++ were being created — ASCII
had just about won the battle. The char type was created with ASCII charac-
ter encoding in mind.

Table 5-1 The ASCII Character Set
Value Char Value Char
0 NULL 64 @

1 Start of Heading 65 A

2 Start of Text 66 B

3 End of Text 67 C

4 End of Transmission 68 D

5 Enquiry 69 E

71 Chapter 5: Character Expressions

Value Char Value Char

6 Acknowledge 70 F

7 Bell 71 G

8 Backspace 72 H

9 Tab 73 I

10 Newline 74 J

11 Vertical Tab 75 K

12 New Page; Form Feed 76 L

13 Carriage Return 77 M

14 Shift Out 78 N

15 Shift In 79 O

16 Data Link Escape 80 P

17 Device Control 1 81 Q

18 Device Control 2 82 R

19 Device Control 3 83 S

20 Device Control 4 84 T

21 Negative Acknowledge 85 U

22 Synchronous Idle 86 V

23 End of Transmission 87 W

24 Cancel 88 X

25 End of Medium 89 Y

26 Substitute 90 Z

27 Escape 91 [

28 File Separator 92 \

29 Group Separator 93]

30 Record Separator 94 ^

31 Unit Separator 95 _

32 Space 96 `

33 ! 97 a

34 “ 98 b

35 # 99 c

36 $ 100 d

37 % 101 e
(continued)

72 Part II: Writing a Program: Decisions, Decisions

Value Char Value Char

38 & 102 f

39 ‘ 103 g

40 (104 h

41) 105 i

42 * 106 j

43 + 107 k

44 , 108 l

45 = 109 m

46 . 110 n

47 / 111 o

48 0 112 p

49 1 113 q

50 2 114 r

51 3 115 s

52 4 116 t

53 5 117 u

54 6 118 v

55 7 119 w

56 8 120 x

57 9 121 y

58 : 122 z

59 ; 123 {

60 < 124 |

61 = 125 }

62 > 126 ~

63 ? 127 DEL

The first thing that you’ll notice is that the first 32 characters are the “unprint-
able” characters. That doesn’t mean that these characters are so naughty that
the censor won’t allow them to be printed — it means that they don’t appear
as visible symbols when printed on the printer (or on the console, for that
matter). Many of these characters are no longer used or used only in obscure
ways. For example, character 25 “End of Medium” was probably printed as the
last character before the end of a reel of magnetic tape. That was a big deal in

Table 5-1 (continued)

73 Chapter 5: Character Expressions

1963, but today . . . not so much, so use of the character is limited. My favorite
is character 7, the Bell — used to ring the bell on the old teletype machines.
(Code::Blocks C++ generates a beep when you display the bell character.)

The characters starting with 32 are all printable with the exception of the
last one, 127, which is the Delete character.

Example of character encoding
The following simple program allows you to play with the ASCII character set:

// CharacterEncoding - allow the user to enter a
// numeric value then print that value
// out as a character

#include <cstdio>
#include <cstdlib>
#include <iostream>

using namespace std;

int main(int nNumberofArgs, char* pszArgs[])
{
 // Prompt the user for a value
 int nValue;
 cout << "Enter decimal value of char to print:";
 cin >> nValue;

 // Now print that value back out as a character
 char cValue = (char)nValue;
 cout << "The char you entered was [" << cValue
 << "]" << endl;

 // wait until user is ready before terminating program
 // to allow the user to see the program results
 cout << "Press Enter to continue..." << endl;
 cin.ignore(10, '\n');
 cin.get();
 return 0;
}

This program begins by prompting the user to "Enter decimal value of
a char to print". The program then reads the value entered by the user
into the int variable nValue.

The program then assigns this value to a char variable named cValue.

74 Part II: Writing a Program: Decisions, Decisions

 The (char) appearing in front of nValue is called a cast. In this case, it casts
the value of nValue from an int to a char. I could have performed the
assignment without the cast, as in

cValue = nValue;

If I’d done that, however, the types of the variables wouldn’t match: The value
on the right of the assignment is an int, while the value on the left is a char.
C++ will perform the assignment anyway, but it will generally complain about
such conversions by generating a warning during the build step. The cast
converts the value in nValue to a char before performing the assignment:

cValue = (char)nValue; // cast nValue to a char before
 // assigning the value to cValue

The final line outputs the character cValue within a set of square brackets.

The following shows a few sample runs of the program. In the first run, I
entered the value 65, which Table 5-1 shows as the character ‘A’:

Enter decimal value of char to print:65.
The char you entered was [A]
Press Enter to continue . . .

The second time I entered the value 97, which corresponds to the charac-
ter ‘a’:

Enter decimal value of char to print:97.
The char you entered was [a]
Press Enter to continue . . .

On subsequent runs, I tried special characters:

Enter decimal value of char to print:36.
The char you entered was [$]
Press to continue . . .

The value 7 didn’t print anything, but did cause my PC to issue a loud beep
that scared the heck out of me.

The value 10 generated the following odd output:

Enter decimal value of char to print:10.
The char you entered was [
]
Press to continue . . .

75 Chapter 5: Character Expressions

Referring to Table 5-1, you can see that 10 is the newline character. This char-
acter doesn’t actually print anything, but it does cause subsequent output to
start at the beginning of the next line — which is exactly what happened in
this case: The closed brace appears by itself at the beginning of the next line
when following a newline character.

 The endl that appears at the end of many of the output commands seen so
far in this chapter generates a newline. It also does a few other things, which
Chapter 31 describes.

Encoding Strings of Characters
Theoretically, you could print anything you want using individual charac-
ters. However, that could get really tedious — as the following code snippet
demonstrates:

cout << 'E' << 'n' << 't' << 'e' << 'r' << ' '
 << 'd' << 'e' << 'c' << 'i' << 'm' << 'a'
 << 'l' << ' ' << 'v' << 'a' << 'l' << 'u'
 << 'e' << ' ' << 'o' << 'f' << ' ' << 'c'
 << 'h' << 'a' << 'r' << ' ' << 't' << 'o'
 << ' ' << 'p' << 'r' << 'i' << 'n' << 't'
 << ':';

C++ allows you to encode a sequence of characters by enclosing the string in
double quotes:

cout << "Enter decimal value of char to print:";

I have a lot more to say about character strings in Chapter 16.

Special Character Constants
You can code a normal, printable character by placing it in single quotes:

char cSpace = ' ';

You can code any character you want, whether printable or not, by placing
its octal value after a backslash:

char cSpace = '\040';

76 Part II: Writing a Program: Decisions, Decisions

 A constant that appears with a leading zero is assumed to be octal (that is,
base 8).

You can code characters in base 16, also called hexadecimal, by preced-
ing the number with a backslash followed by a small x as in the following
example:

char cSpace = '\x20';

 The decimal value 32 is equal to 40 in base 8 and 20 in base 16. Don’t worry if
you don’t feel comfortable with octal or hexadecimal just yet. C++ provides
shortcuts for the most common characters.

C++ provides names for some of the unprintable characters that are particu-
larly useful. Some of the more common ones are shown in Table 5-2.

Table 5-2 Some of the Special C++ Characters
Char Special Symbol Char Special Symbol
‘ \’ Newline \n

“ \” Carriage Return \r

\ \\ Tab \t

NULL \0 Bell \a

The most common is the newline character, which is nicknamed '\n'. In
addition, you must use the backslash if you want to print the single-quote
character:

char cQuote = '\'';

 Because C++ normally interprets a single quotation mark as enclosing a char-
acter, you have to precede a single quote mark with a backslash character to
tell it, “Hey, this single quote isn’t enclosing a character, it is the character.”

In addition, the character ‘\\’ is a single backslash.

 This leads to one of the more unfortunate coincidences in C++. In Windows,
the backslash is used in filename paths, as in the following:

C:\\Base Directory\Subdirectory\File Name

This is encoded in C++ with each backslash replaced by a pair of backslashes,
as follows:

"C:\\\\Base Directory\\Subdirectory\\File Name"

77 Chapter 5: Character Expressions

Wide load ahead
By the early 1970s (when C and C++ were
invented), the 128-character ASCII character
set had pretty much beat out all rivals. So it
was logical that the char type was defined
to accommodate the ASCII character set.
This character set was fine for English but
became overly restrictive when programmers
tried to write applications for other European
languages.

Fortunately, C and C++ had provided enough
room in the char for 256 different characters.
Standards committees got busy and used the
characters between 128 and 255 for charac-
ters that occur in European languages but not
English, such as umlauts and accented charac-
ters. You can see the results of their handy work
using the example CharacterEncoding
program from this chapter: Enter 142 and the
program prints out an Ä.

Alternative character sets such as Cyrillic,
Hebrew, and Arabic could be handled within
this restrictive framework by changing charac-
ter sets, known more commonly as fonts. Thus,
while 97 might be a lowercase ‘a’ in the ASCII
set, the same number would some other char-
acter in the Cyrillic character set — and some-
thing different yet again in Hebrew. This is not

a very satisfactory solution because it prevents
these languages from appearing together in the
same output. And in any case it doesn’t handle
Oriental languages, in particular Mandarin Chi-
nese, which use far more than the 256 symbols
that an ASCII character can represent.

The first C++ response to this problem was
to introduce the “wide character” of type
wchar_t. This was intended to implement
whichever wide character set was native to the
host operating system. On Windows, that would
be the variant of Unicode known as UTF-2 or
UTF-16. (Here the 2 stands for two bytes — the
size of each wide character — and the 16 stands
for 16 bits.) However, Macintosh’s OS X uses a
different variant of Unicode known as UTF-8.
Unicode can display not only every alphabet on
the planet but also the kanjis used in Chinese
and Japanese. The 2011 update to the C++
standard added two further types, char16_t
and char32_t, which implement specifically
UTF-16 and UTF-32.

For almost every feature that I describe in this
book for handling character variables, there
is an equivalent feature for the wide charac-
ter types; programming Unicode, however, is
beyond the scope of a beginning text.

78 Part II: Writing a Program: Decisions, Decisions

Chapter 6

if I Could Make My Own Decisions
In This Chapter
▶ Making decisions with an if statement

▶ Looking at what else you can do

▶ Nesting if statements

▶ Confounding compound logical expressions

M
aking decisions is a part of the everyday world. Should I get a drink
now or wait for the commercial? Should I take this highway exit to go

to the bathroom or else wait for the next? Should I take another step or stop
and smell the roses? If I’m hungry or I need gas, then I should stop at the con-
venience store? If it’s a weekend and I feel like it, then I can sleep in? See what
I mean?

An assistant, even a stupid one, has to be able to make at least rudimentary
decisions. Consider the Tire-Changing Language in Chapter 1. Even there, the
program must be able to test for the presence of a lug nut to avoid waving a
wrench around uselessly in space over an empty bolt, thereby wasting every-
one’s time.

All computer languages provide some type of decision-making capability. In
C++, this is handled primarily by the if statement.

The if Statement
The format of the if statement is straightforward:

if (m > n) // if m is greater than n...
{
 // ...then do this stuff
}

80 Part II: Writing a Program: Decisions, Decisions

When encountering if, C++ first executes the logical expression contained
within the parentheses. In this case, the program evaluates the conditional
expression “is m greater than n.” If the expression is true, that is, if m truly is
greater than n, then control passes to the first statement after the { and con-
tinues from there. If the logical expression is not true, control passes to the
first statement after the }.

Comparison operators
Table 6-1 shows the different operators that can be used to compare values in
logical expressions.

 Binary operators have the format expr1 operator expr2.

Table 6-1 The Comparison Operators
Operator Meaning
== equality; true if the expression on the left of the ‘==’ has the same

value as the expression on the right
!= inequality; opposite of equality
> greater than; true if the left-hand expression is greater than the one

on the right
< less than; true if the left-hand expression is less than the one on the

right
>= greater than or equal to; true if the left-hand expression is greater

than or equal to the one on the right
<= less than or equal to; true if the left-hand expression is less than or

equal to the one on the right

 Don’t confuse the equality operator (==) with the assignment operator (=).
This is a common mistake for beginners.

81 Chapter 6: if I Could Make My Own Decisions

The following BranchDemo program shows how the operators in Table 6-1
are used:

// BranchDemo - demonstrate the if statement

#include <cstdio>
#include <cstdlib>
#include <iostream>

using namespace std;

int main(int nNumberofArgs, char* pszArgs[])
{
 // enter operand1 and operand2
 int nOperand1;
 int nOperand2;
 cout << "Enter argument 1:";
 cin >> nOperand1;
 cout << "Enter argument 2:";
 cin >> nOperand2;

 // now print the results
 if (nOperand1 > nOperand2)
 {
 cout << "Argument 1 is greater than argument 2"
 << endl;
 }
 if (nOperand1 < nOperand2)
 {
 cout << "Argument 1 is less than argument 2"
 << endl;
 }
 if (nOperand1 == nOperand2)
 {
 cout << "Argument 1 is equal to argument 2"
 << endl;
 }

 // wait until user is ready before terminating program
 // to allow the user to see the program results
 cout << "Press Enter to continue..." << endl;
 cin.ignore(10, '\n');
 cin.get();
 return 0;
}

Program execution begins with main() as always. The program first declares
two int variables cleverly named nOperand1 and nOperand2. It then
prompts the user to "Enter argument 1", which it reads into nOperand1.
The process is repeated for nOperand2.

82 Part II: Writing a Program: Decisions, Decisions

The program then executes a sequence of three comparisons. It first checks
whether nOperand1 is less than nOperand2. If so, the program outputs the
notification "Argument 1 is less than argument 2". The second if
statement displays a message if the two operands are equal in value. The
final comparison is true if nOperand1 is greater than nOperand2.

The following shows a sample run of the BranchDemo program:

Enter argument 1:5
Enter argument 2:10
Argument 1 is less than argument 2
Press Enter to continue . . .

Figure 6-1 shows the flow of control graphically for this particular run.

Figure 6-1:
The path

taken by the
Branch-

Demo
program

when the
user enters

5 for the first
argu ment
and 10 for

the second.

83 Chapter 6: if I Could Make My Own Decisions

The way the BranchDemo program is written, all three comparisons are per-
formed every time. This is slightly wasteful since the three conditions are
mutually exclusive. For example, nOperand1 > nOperand2 can’t possibly
be true if nOperand1 < nOperand2 has already been found to be true.
Later in this chapter, I show you how to avoid this waste.

Say “No” to “No braces”
Actually the braces are optional. Without braces, only the first expression
after the if statement is conditional. However, it’s much too easy to make a
mistake this way, as demonstrated in the following snippet:

// Can't have a negative age. If age is less than zero...
if (nAge < 0)
 cout << "Age can't be negative; using 0" << endl;
 nAge = 0;

// program continues

You may think that if nAge is less than 0, this program snippet outputs a mes-
sage and resets nAge to zero. In fact, the program sets nAge to zero anyway,
no matter what its original value. The preceding snippet is equivalent to the
following:

// Can't have a negative age. If age is less than zero...
if (nAge < 0)
{
 cout << "Age can't be negative; using 0" << endl;
}
 nAge = 0;

// program continues

It’s clear from the comments and the indent that the programmer really
meant the following:

// Can't have a negative age. If age is less than zero...
if (nAge < 0)
{
 cout << "Age can't be negative; using 0" << endl;
 nAge = 0;
}

// program continues

84 Part II: Writing a Program: Decisions, Decisions

The C++ compiler can’t catch this type of mistake. It’s just safer if you always
supply the braces.

 C++ treats all white space the same. It ignores the alignment of expressions on
the page.

 Always use braces to enclose the statements after an if statement, even if
there’s only one. You’ll generate a lot fewer errors that way.

What Else Is There?
C++ allows the program to specify a clause after the keyword else that
is executed if the conditional expression is false, as in the following
example:

if (m > n) // if m is greater than n...
{
 // ...then do this stuff;...
}
else // ...otherwise,...
{
 // ...do this stuff
}

The else clause must appear immediately after the close brace of the if
clause. In use, the else appears as shown in the following snippet:

if (nAge < 0)
{
 cout << "Age can't be negative; using 0." << endl;
 nAge = 0;
}
else
{
 cout << "Age of " << nAge << " entered" << endl;
}

85 Chapter 6: if I Could Make My Own Decisions

In this case, if nAge is less than zero, the program outputs the message
"Age can’t be negative; using 0." and then sets nAge to 0. This
corresponds to the flow of control shown in the first image in Figure 6-2. If
nAge is not less than zero, the program outputs the message "Age of x
entered", where x is the value of nAge. This is shown in the second image
in Figure 6-2.

Logical expressions: Do they have any value?
At the beginning of this chapter, I called the comparison symbols < and > operators, and I described
statements containing these operators as expressions. But expressions have a value and a type.
What is the value and type of an expression like m > n? In C++, the type of this expression is bool
(named in honor of George Boole, the inventor of Logic Calculus). Expressions of type bool can
have only one of two values: true or else false. Thus you can write the following:

bool bComparison = m > n;

For historical reasons, there is a conversion between the numerical types such as int and char
and bool: A value of 0 is considered the same as false. Any nonzero value is considered the
same as true.

Thus the if statement

if (cCharacter)
{
 // execute this code if cCharacter is not NULL
}

is the same as

if (cCharacter != '\0')
{
 // execute this code if cCharacter is not NULL
}

Assigning a true/false meaning to a character value may seem a bit obtuse, but Chapter 16 reveals
a way that it can be very useful.

86 Part II: Writing a Program: Decisions, Decisions

Figure 6-2:
Flow of
 control

through
an if and
else for

two different
values of
nAge.

Nesting if Statements
The braces of an if or an else clause can contain another if statement.
These are known as nested if statements. The following NestedIf program
shows an example of a nested if statement in use.

// NestedIf - demonstrate a nested if statement
//
#include <cstdio>
#include <cstdlib>
#include <iostream>

using namespace std;

int main(int nNumberofArgs, char* pszArgs[])
{

87 Chapter 6: if I Could Make My Own Decisions

 // enter your birth year
 int nYear;
 cout << "Enter your birth year: ";
 cin >> nYear;

 // Make determination of century
 if (nYear > 2000)
 {
 cout << "You were born in the 21st century"
 << endl;
 }
 else
 {
 cout << "You were born in ";
 if (nYear < 1950)
 {
 cout << "the first half";
 }
 else
 {
 cout << "the second half";
 }
 cout << " of the 20th century"
 << endl;
 }

 // wait until user is ready before terminating program
 // to allow the user to see the program results
 cout << "Press Enter to continue..." << endl;
 cin.ignore(10, '\n');
 cin.get();
 return 0;
}

This program starts by asking for the user’s birth year. If the birth year is
later than 2000, then the program outputs the string "You were born in
the 21st century".

 In mathematically accurate terms, the year 2000 belongs to the 20th century,
not the 21st.

If the birth year is not greater than 2000, then the program enters the else
clause of the outer if statement. This clause starts by outputting the string
"You were born in" before comparing the birth year to 1950. If the birth
year is less than 1950, then the program adds the first "the first half".
If the birth year is not less than 1950, then the else clause of the inner if
statement is executed, which tacks on the phrase "the second half".
Finally, the program adds the concluding phrase "of the 20th century"
to whatever has been output so far.

88 Part II: Writing a Program: Decisions, Decisions

In practice, the output of the program appears as follows for three possible
values for birth year. First, 2002 produces the following:

Enter your birth year: 2002
You were born in the 21st century
Press Enter to continue . . .

My own birth year of 1956 generates the following:

Enter your birth year: 1956
You were born in the second half of the 20th century
Press Enter to continue . . .

Finally, my father’s birth year of 1932 generates the third possibility:

Enter your birth year: 1932
You were born in the first half of the 20th century
Press Enter to continue . . .

I could use a nested if to avoid the unnecessary comparisons in the
NestedBranchDemo program:

if (nOperand1 > nOperand2)
{
 cout << "Argument 1 is greater than argument 2"
 << endl;
}
else
{
 if (nOperand1 < nOperand2)
 {
 cout << "Argument 1 is less than argument 2"
 << endl;
 }
 else
 {
 cout << "Argument 1 is equal to argument 2"
 << endl;
 }
}

This version performs the first comparison just as before. If nOperand1 is
greater than nOperand2, this snippet outputs the string "Argument 1 is
greater than argument 2". From here, however, control jumps to the
final closed brace, thereby skipping the remaining comparisons.

89 Chapter 6: if I Could Make My Own Decisions

If nOperand1 is not greater than nOperand2, then the snippet performs a
second test to differentiate the case that nOperand1 is less than nOperand2
from the case that they are equal in value.

Figure 6-3 shows graphically the flow of control for the NestedBranchDemo
program for the same input of 5 and 10 described earlier in the chapter.

Figure 6-3:
The path

taken by the
Nested-
Branch-

Demo
program

when the
user enters
5 and 10 as

before.

 Performing the test for equality is unnecessary: If nOperand1 is neither
greater than nor less than nOperand2, then it must be equal.

Compound Conditional Expressions
The three logical operators that can be used to create what are known as
compound conditional expressions are shown in Table 6-2.

90 Part II: Writing a Program: Decisions, Decisions

Table 6-2 The Logical Operators
Operator Meaning
&& AND; true if the left- and right-hand expressions are true; otherwise

false

|| OR; true if either the left- or right-hand expressions is true; other-
wise false

! NOT; true if the expression on the right is false; otherwise false

The programmer is asking two or more questions in a conditional compound
expression, as in the following code snippet:

// make sure that nArgument is between 0 and 5
if (0 < nArgument && nArgument < 5)

Figure 6-4 shows how three different values of nArgument are evaluated by
this expression.

Figure 6-4:
The evalu-

ation of the
compound
expression
0 < n

&& n < 5
for three
different

values of n.

By the way, the snippet

if (m < nArgument && nArgument < n)

is the normal way of coding the expression "if nArgument is between
m and n, exclusive". This type of test does not include the end
points — that is, this test will fail if nArgument is equal to m or n. Use the <=
comparison operator if you want to include the end points.

91 Chapter 6: if I Could Make My Own Decisions

Short circuit evaluation
Look carefully at a compound expression involving a logical AND such as

if (expr1 && expr2)

If expr1 is false, then the overall result of the compound expression is false, irrespective of
the value of expr2. In fact, C++ doesn’t even evaluate expr2 if expr1 is false — false
&& anything is false. This is known as short circuit evaluation because it acts like a short
circuit, saving time by skipping the execution of unnecessary code.

The situation is exactly the opposite for the logical OR:

if (expr1 || expr2)

If expr1 is true, then the overall expression is true, irrespective of the value of expr2.

Short circuit evaluation is a good thing since the resulting programs execute more quickly; how-
ever, it can lead to unexpected results in a few cases. Consider the following (admittedly contrived)
case:

if (m <= nArgument && nArgument++ <= n)

The intent is to test whether nArgument falls into the range [m, n] and to increment nArgument
as part of the test. However, short circuit evaluation means that the second test doesn’t get exe-
cuted if m <= nArgument is not true. If the second test is never evaluated, then nArgument
doesn’t get incremented.

Warning: If this example seems convoluted, just remember the following: If an expression has a
permanent effect such as incrementing a variable, don’t put it in a conditional.

92 Part II: Writing a Program: Decisions, Decisions

Chapter 7

Switching Paths
In This Chapter
▶ Using the switch keyword to choose among multiple paths

▶ Taking a default path

▶ Falling through from one case to another

O
ften programs have to decide between two options: Either m is greater
than n or it’s not; either the lug nut is present or it’s not. Sometimes,

however, a program has to decide on one option out of a large number of
possible legal inputs. This situation could be handled by a series of if state-
ments, each of which tests for one of the legal inputs. However, C++ provides
a more convenient control mechanism for selecting among multiple options:
the switch statement. This chapter gives you a closer look at what the
switch statement is, what it does, and how to use it.

Controlling Flow with the
switch Statement

The switch statement has the following format:

switch(expression)
{
 case const1:
 // go here if expression == const1
 break;

 case const2:
 // go here if expression == const2
 break;

 case const3: // repeat as often as you like
 // go here if expression == const3
 break;

94 Part II: Writing a Program: Decisions, Decisions

 default:
 // go here if none of the other cases match
}

Upon encountering the switch statement, C++ evaluates expression. It
then passes control to the case with the same value as expression. Control
 continues from there to the break statement, which transfers control to
the } at the end of the switch statement. If none of the cases match, control
passes to the default case.

The default case is optional. If the expression doesn’t match any case and no
default case is provided, control passes immediately to the }.

Consider the following example code snippet:

int nMonth;
cout << "Enter the number of the month: ";
cin >> nMonth;

switch (nMonth)
{
 case 1:
 cout << "It's January" << endl;
 break;
 case 2:
 cout << "It's February" << endl;;
 break;
 case 3:
 cout << "It's March" << endl;;
 break;
 case 4:
 cout << "It's April" << endl;;
 break;
 case 5:
 cout << "It's May" << endl;;
 break;
 case 6:
 cout << "It's June" << endl;;
 break;
 case 7:
 cout << "It's July" << endl;;
 break;
 case 8:
 cout << "It's August" << endl;;
 break;
 case 9:
 cout << "It's September"<< endl;;
 break;
 case 10:
 cout << "It's October" << endl;;
 break;

95 Chapter 7: Switching Paths

 case 11:
 cout << "It's November" << endl;;
 break;
 case 12:
 cout << "It's December" << endl;;
 break;
 default:
 cout << "That's not a valid month" << endl;;

}

I got the following output from the program when inputting a value of 3:

Enter the number of the month: 3
It's March
Press Enter to continue . . .

Figure 7-1 shows how control flowed through the switch statement to
 generate the earlier result of March.

Figure 7-1:
Flow

through a
switch
statement
listing the
months of

the year
where the

operator
enters

month 3.

96 Part II: Writing a Program: Decisions, Decisions

 A switch statement is not like a series of if statements. For example, only
constant integers or characters are allowed after the case keyword (that
is expressions that can be completely evaluated at build time). You cannot
supply an run time expression after a case. Thus the following is not legal:

// cases cannot be expressions; the
// following is not legal for m declared as an int
switch(n)
{
 case m:
 cout << "n is equal to m" << endl;
 break;
 case 2 * m:
 cout << "n is equal to 2m" << endl;
 break;
 case 3 * m:
 cout << "n is equal to 3m" << endl;
}

Each of the cases must have a value at build time. The value of m is not known
until the program executes.

 Actually, the 2011 C++ standard introduces a constant expression type that
can be used as the target of a case statement, but that’s a bit beyond the
scope of this book.

Control Fell Through: Did I break It?
Just as the default case is optional, so the break at the end of each case is also
optional. Without the break statement, however, control simply continues to
move from one case to the next. Programmers say that control falls through.
Falling through is most useful when two or more cases are handled in the
same way.

For example, C++ may differentiate between upper- and lowercase charac-
ters in code, but most humans don’t. The following code snippet prompts
the user to enter a C to create a checking account and an S to create a sav-
ings account. The user might enter a capital or lowercase letter. To keep C++
happy, the following snippet provides extra case statements to handle lower-
case c and s:

cout << "Enter C to create checking account, "
 << "S to create a saving account, "
 << "and X to exit: ";
cin >> cAccountType;

97 Chapter 7: Switching Paths

switch(cAccountType)
{
 case 'S': // upper case S
 case 's': // lower case s
 // creating savings account
 break;

 case 'C': // upper case C
 case 'c': // lower case c
 // create checking account
 break;

 case 'X': // upper case X
 case 'x': // lower case x
 // exit code goes here
 break;

 default:
 cout << "I didn't understand that" << endl;
}

Implementing an Example Calculator
with the switch Statement

The following SwitchCalculator program uses the switch statement to
implement a simple calculator:

// SwitchCalculator - use the switch statement to
// implement a calculator

#include <cstdio>
#include <cstdlib>
#include <iostream>

using namespace std;

int main(int nNumberofArgs, char* pszArgs[])
{
 // enter operand1 op operand2
 int nOperand1;
 int nOperand2;
 char cOperator;
 cout << "Enter 'value1 op value2'\n"
 << "where op is +, -, *, / or %:" << endl;
 cin >> nOperand1 >> cOperator >> nOperand2;

98 Part II: Writing a Program: Decisions, Decisions

 // echo what the operator entered
 cout << nOperand1 << " "
 << cOperator << " "
 << nOperand2 << " = ";

 // now calculate the result; remember that the
 // user might enter something unexpected
 switch (cOperator)
 {
 case '+':
 cout << nOperand1 + nOperand2;
 break;
 case '-':
 cout << nOperand1 - nOperand2;
 break;
 case '*':
 case 'x':
 case 'X':
 cout << nOperand1 * nOperand2;
 break;
 case '/':
 cout << nOperand1 / nOperand2;
 break;
 case '%':
 cout << nOperand1 % nOperand2;
 break;
 default:
 // didn't understand the operator
 cout << " is not understood";
 }
 cout << endl;

 // wait until user is ready before terminating program
 // to allow the user to see the program results
 cout << "Press Enter to continue..." << endl;
 cin.ignore(10, '\n');
 cin.get();
 return 0;
}

This program begins by prompting the user to enter "value1 op value2"
where op is one of the common arithmetic operators +, -, *, / or %. The pro-
gram then reads the variables nOperand1, cOperator, and nOperand2.

The program starts by echoing back to the user what it read from the key-
board. It follows this with the result of the calculation.

99 Chapter 7: Switching Paths

 Echoing the input back to the user is always a good programming practice. It
gives the user confirmation that the program read his input correctly.

The switch on cOperator differentiates between the operations that this
calculator implements. For example, in the case that cOperator is '+', the
program reports the sum of nOperand1 and nOperand2.

Because 'X' is another common symbol for multiply, the program accepts
'*', 'X', and 'x' all as synonyms for multiply using the case “fall through”
feature. The program outputs an error message if cOperator doesn’t match
any of the known operators.

The output from a few sample runs appears as follows:

Enter 'value1 op value2'
where op is +, -, *, / or %:
22 x 6
22 x 6 = 132
Press Enter to continue . . .

Enter 'value1 op value2'
where op is +, -, *, / or %:
22 / 6
22 / 6 = 3
Press Enter to continue . . .

Enter 'value1 op value2'
where op is +, -, *, / or %:
22 % 6
22 % 6 = 4
Press Enter to continue . . .

Enter 'value1 op value2'
where op is +, -, *, / or %:
22 $ 6
22 $ 6 = is not understood
Press Enter to continue . . .

Notice that the final run executes the default case of the switch statement
since the character '$' did not match any of the cases.

100 Part II: Writing a Program: Decisions, Decisions

Chapter 8

Debugging Your Programs, Part I
In This Chapter
▶ Avoiding introducing errors needlessly

▶ Creating test cases

▶ Peeking into the inner workings of your program

▶ Fixing and retesting your programs

Y
ou may have noticed that your programs often don’t work the first time
you run them. In fact, I have seldom, if ever, written a nontrivial C++ pro-

gram that didn’t have some type of error the first time I tried to execute it.

This leaves you with two alternatives: You can abandon a program that has
an error, or you can find and fix the error. I assume that you want to take the
latter approach. In this chapter, I first help you distinguish between types of
errors and show you how to avoid errors in the first place. Then you get to
find and eradicate two bugs that originally plagued the Conversion program
in Chapter 3.

Identifying Types of Errors
Two types of errors exist — those that C++ can catch on its own and those that
the compiler can’t catch. Errors that C++ can catch are known as compile-time
or build-time errors. Build-time errors are generally easier to fix because the
compiler points you to the problem, if you can understand what the compiler’s
telling you. Sometimes the description of the problem isn’t quite right (it’s
easy to confuse a compiler), but you start to understand better how the com-
piler thinks as you gain experience.

Errors that C++ can’t catch don’t show up until you try to execute the pro-
gram during the process known as unit testing. During unit testing, you
execute your program with a series of different inputs, trying to find inputs

102 Part II: Writing a Program: Decisions, Decisions

that make it crash. (You don’t want your program to crash, of course, but
it’s always better that you — rather than your user — find and correct these
cases.)

The errors that you find by executing the program are known as run-time
errors. Run-time errors are harder to find than build-time errors because you
have no hint of what’s gone wrong except for whatever errant output the pro-
gram might generate.

The output isn’t always so straightforward. For example, suppose that the
program lost its way and began executing instructions that aren’t even part
of the program you wrote. (That happens a lot more often than you might
think.) An errant program is like a train that’s jumped the track — the pro-
gram doesn’t stop executing until it hits something really big. For example,
the CPU may just happen to execute a divide-by-zero operation — this gener-
ates an alarm that the operating system intercepts and uses as an excuse to
terminate your program.

 An errant program is like a derailed train in another way — once the program
starts heading down the wrong path, it never jumps back onto the track.

Not all run-time errors are quite so dramatic. Some errant programs stay on
the tracks but generate the wrong output (almost universally known as “gar-
bage output”). These are even harder to catch since the output may seem
reasonable until you examine it closely.

In this chapter, you debug a program that has both a compile-time error and
a run-time error — not the “jump off the track and start executing randomly”
variety but more of the “generate garbage” kind.

Avoiding Introducing Errors
The easiest and best way to fix errors is to avoid introducing them into your
programs in the first place. Part of this is just a matter of experience, but
adopting a clear and consistent programming style helps.

Coding with style
We humans have a limited amount of CPU power between our ears. We need
to direct what CPU cycles we do have toward the act of creating a working
program. We shouldn’t get distracted by things like indentation.

103 Chapter 8: Debugging Your Programs, Part I

This makes it important that you be consistent in how you name your
variables, where you place the opening and closing braces, how much
you indent, and so on. This is called your coding style. Develop a style and
stick to it. After a while, your coding style becomes second nature. You’ll
find that you can code your programs in less time — and you can read the
resulting programs with less effort — if your coding style is clear and con-
sistent. This translates into fewer coding errors.

 I recommend that as a beginner you mimic the style you see in this book. You
can change it later when you’ve gained some experience of your own.

When you’re working on a program with several programmers, it’s just as
important that you all use the same style to avoid a Tower of Babel effect
with conflicting and confusing styles. Every project that I’ve ever worked
on had a coding manual that articulated (sometimes in excruciating detail)
exactly how an if statement was to be laid out, how far to indent for case,
and whether to put a blank line after the break statements, to name just a
few examples.

Fortunately, Code::Blocks can help. The Code::Blocks editor understands
C++. It will automatically indent the proper number of spaces for you after
an open brace, and it will outdent when you type in the closed brace to align
statements properly.

 You can run the Source Code Formatter plug-in that comes with Code::Blocks.
With the file you are working on open and the project active, select Plugins➪
Source Code Formatter (AStyle). This will reformat the current file, using the
standard indentation rules.

 C++ doesn’t care about indentation. All whitespace is the same to it. Indentation
is there to make the resulting program easier to read and understand.

Establishing variable naming conventions
There is more debate about the naming of variables than about how many
angels would fit on the head of a pin. I use the following rules when naming
variables:

 ✓ The first letter is lowercase and indicates the type of the variable. n
for int, c for char, b for bool. You’ll see others in later chapters. This
is very helpful when you’re using the variable because you immediately
know its type.

104 Part II: Writing a Program: Decisions, Decisions

 ✓ Names of variables are descriptive. I’ve made it a rule: No variables
with vague names like x or y. I’m too old — I need something that I can
recognize when I try to read my own program tomorrow or next week or
next year.

 ✓ Multiple word names use uppercase at the beginning of each word
with no underscores between words. I save underscores for a particu-
lar application, which I describe in Chapter 12.

I expand on these rules in chapters involving other types of C++ objects
(such as functions in Chapter 11 and classes in Chapter 19).

Finding the First Error with a Little Help
My first version of the Conversion program appeared as follows (it appears
online as ConversionError1):

//
// Conversion - Program to convert temperature from
// Celsius degrees into Fahrenheit:
// Fahrenheit = Celsius * (212 - 32)/100 + 32
//
#include <cstdio>
#include <cstdlib>
#include <iostream>
using namespace std;

int main(int nNumberofArgs, char* pszArgs[])
{
 // enter the temperature in Celsius
 int nCelsius;
 cout << "Enter the temperature in Celsius: ";

 // convert Celsius into Fahrenheit values
 int nFahrenheit;
 nFahrenheit = 9/5 * nCelsius + 32;

 // output the results (followed by a NewLine)
 cout << "Fahrenheit value is: ";
 cout << nFahrenheit << endl;

 // wait until user is ready before terminating program
 // to allow the user to see the program results
 cout << "Press Enter to continue..." << endl;
 cin.ignore(10, '\n');
 cin.get();
 return 0;
}

105 Chapter 8: Debugging Your Programs, Part I

During the build step, I get my first indication that there’s a problem —
Code::Blocks generates the following warning message:

In function 'int main(int char**)':
warning: 'nCelsius' is used uninitialized in this function
=== Build finished: 0 errors, 1 warnings ===

How bad can this be? After all, it’s just a warning, right? So I decide to push
forward and execute the program anyway.

Sure enough, I get the following meaningless output without giving me a
chance to enter the Celsius temperature:

Enter the temperature in Celsius:
Fahrenheit value is:110
Press Enter to continue . . .

Referring to the prompt, I can see that I have forgotten to input a value for
nCelsius. The program proceeded forward calculating a Fahrenheit tem-
perature based upon whatever garbage happened to be in nCelsius when it
was declared.

Adding the following line immediately after the prompt gets rid of the warn-
ing and solves the first problem:

cin >> nCelsius;

 The moral to this story is Pay attention to warnings! A warning almost always
indicates a problem in your program. You shouldn’t even start to test your
programs until you get a clean build: no errors and no warnings. If that’s not
possible, at least convince yourself that you understand the reason for every
warning generated.

Finding the Run-Time Error
Once all the warnings are gone, it’s time to start testing. Good testing
requires an organized approach. First, you decide the test data that you’re
going to use. Next, you determine what output you expect for each of the
given test inputs. Then you run the program and compare the actual results
with the expected results. What could be so hard?

106 Part II: Writing a Program: Decisions, Decisions

Formulating test data
Determining what test data to use is part engineering and part black art. The
engineering part is that you want to select data such that every statement in
your program gets executed at least once. That means every branch of every
if statement and every case of every switch statement gets executed at
least once.

 Having every statement execute at least once is called full statement coverage
and is considered the minimum acceptable testing criteria. The chance of pro-
gramming mistakes making it into the field is just too high if you don’t execute
every statement at least once under test conditions.

This simple program has only one path and contains no branches.

The black art is looking at the program and determining where errors might
lie in the calculation. For some reason, I just assume that every test should
include the key values of 0 and 100 degrees Celsius. To that, I will add one
negative value and one value in the middle between 0 and 100. Before I start,
I use a handy-dandy conversion program to look up the equivalent tempera-
ture in Fahrenheit, as shown in Table 8-1.

Table 8-1 Test Data for the Conversion Program
Input Celsius Resulting Fahrenheit
0 32

100 212

-40 -40

50 122

Executing the test cases
Running the tests is simply a matter of executing the program and supplying
the input values from Table 8-1. The first case generates the following results:

Enter the temperature in Celsius: 0
Fahrenheit value is: 32
Press Enter to continue . . .

107 Chapter 8: Debugging Your Programs, Part I

So far, so good. The second data case generates the following output:

Enter the temperature in Celsius: 100
Fahrenheit value is: 132
Press Enter to continue . . .

This doesn’t match the expected value. Houston, we have a problem.

 The value of 132 degrees is not completely unreasonable. That’s why it’s
important to decide what the expected results are before you start. Otherwise,
reasonable but incorrect results can slip by undetected.

Seeing what’s going on in your program
What could be wrong? I check over the calculations and everything looks
fine. I need to get a peek at what’s going on in the calculation. A way to get at
the internals of your program is to add output statements. I want to print the
values going into each of the calculations. I also need to see the intermediate
results. To do so, I break the calculation into its parts that I can print.

 Keep the original expression as a comment so you don’t forget where you
came from.

This version of the program is available online as ConversionError2.

This version of the program includes the following changes:

// nFahrenheit = 9/5 * nCelsius + 32;
cout << "nCelsius = " << nCelsius << endl;
int nFactor = 9 / 5;
cout << "nFactor = " << nFactor << endl;
int nIntermediate = nFactor * nCelsius;
cout << "nIntermediate = " << nIntermediate << endl;
nFahrenheit = nIntermediate + 32;
cout << "nFahrenheit = " << nFahrenheit << endl;

I display the value of nCelsius to make sure that it got read properly from
the user input. Next, I try to display the intermediate results of the conver-
sion calculation in the same order that C++ will. First to go is the calculation
9 / 5, which I save into a variable I name nFactor (the name isn’t impor-
tant). This value is multiplied by nCelsius, the results of which I save into
nIntermediate. Finally, this value will get added to 32 to generate the
result, which is stored into nFahrenheit.

108 Part II: Writing a Program: Decisions, Decisions

By displaying each of these intermediate values, I can see what’s going on in
my calculation. Repeating the error case, I get the following results:

Enter the temperature in Celsius: 100
nCelsius = 100
nFactor = 1
nIntermediate = 100
nFahrenheit = 132
Fahrenheit value is: 132
Press Enter to continue . . .

Right away I see a problem: nFactor is equal to 1 and not 9 / 5. Then the
problem occurs to me; integer division rounds down to the nearest integer
value. Integer 9 divided by integer 5 is 1.

I can avoid this problem by performing the multiply operation before the
divide operation. There will still be a small amount of integer round-off, but it
will only amount to a single degree.

 Another solution would be to use decimal variables that can retain fractional
values. You’ll see that solution in Chapter 14.

The resulting formula appears as follows:

nFahrenheit = nCelsius * 9/5 + 32;

Now, when I rerun the tests, I get the following:

Enter the temperature in Celsius: 0
Fahrenheit value is: 32
Press Enter to continue . . .

Enter the temperature in Celsius: 100
Fahrenheit value is: 212
Press Enter to continue . . .

Enter the temperature in Celsius: -40
Fahrenheit value is: -40
Press Enter to continue . . .

Enter the temperature in Celsius: 50
Fahrenheit value is: 122
Press Enter to continue . . .

This matches the expected values from Table 8-1.

 Notice that, after making the change, I started over from the beginning, sup-
plying all four test cases — not just the values that didn’t work properly the
first time. Any changes to the calculation invalidate all previous tests.

Part III
Becoming a Procedural

Programmer

Visit www.dummies.com/extras/beginningprogrammingcplusplus for
great Dummies content online.

http://www.dummies.com/extras/beginningprogrammingcplusplus

In this part . . .
 ✓ Repeating while loops

 ✓ Counting for loops

 ✓ Creating functions

 ✓ Structuring modules

 ✓ Testing complex programs

 ✓ Visit www.dummies.com/extras/beginningprogramm
ingcplusplus for great Dummies content online

http://www.dummies.com/extras/beginningprogrammingcplusplus
http://www.dummies.com/extras/beginningprogrammingcplusplus

Chapter 9

while Running in Circles
In This Chapter
▶ Looping using the while statement

▶ Breaking out of the middle of a loop

▶ Avoiding the deadly infinite loop

▶ Nesting loops within loops

D
ecision-making is a fundamental part of almost every program you
write, which I initially emphasize in Chapter 1. However, another

fundamental feature that is clear — even in the simple Lug Nut Removal
algorithm — is the ability to loop. That program turns the wrench in a loop
until the lug nut fallsl off, and it loops from one lug nut to the other until
the entire wheel comes off. This chapter introduces you to two of the three
looping constructs in C++.

Creating a while Loop
The while loop has the following format:

while (expression)
{
 // stuff to do in a loop
}

// continue here once expression is false

When a program comes upon a while loop, it first evaluates the expression
in the parentheses. If this expression is true, then control passes to the first
line inside the {. When control reaches the }, the program returns back to
the expression and starts over. Control continues to cycle through the code
in the braces until expression evaluates to false (or until something else
breaks the loop — more on that a little later in this chapter).

112 Part III: Becoming a Procedural Programmer

The following Factorial program demonstrates the while loop:

Factorial(N) = N * (N-1) * (N-2) * ... * 1

//
// Factorial - calculate factorial using the while
// construct.
//
#include <cstdio>
#include <cstdlib>
#include <iostream>
using namespace std;

int main(int nNumberofArgs, char* pszArgs[])
{
 // enter the number to calculate the factorial of
 int nTarget;
 cout << "This program calculates factorial.\n"
 << "Enter a number to take factorial of: ";
 cin >> nTarget;

 // start with an accumulator that's initialized to 1
 int nAccumulator = 1;
 int nValue = 1;
 while (nValue <= nTarget)
 {
 cout << nAccumulator << " * "
 << nValue << " equals ";
 nAccumulator = nAccumulator * nValue;
 cout << nAccumulator << endl;
 nValue++;
 }

 // display the result
 cout << nTarget << " factorial is "
 << nAccumulator << endl;

 // wait until user is ready before terminating program
 // to allow the user to see the program results
 cout << "Press Enter to continue..." << endl;
 cin.ignore(10, '\n');
 cin.get();
 return 0;
}

The program starts by prompting the user for a target value. The program reads
this value into nTarget. The program then initializes both nAccumulator and
nValue to 1 before entering the loop.

(Pay attention — this is the interesting part.) The program compares nValue
to nTarget. Assume that the user had entered a target value of 5. On the
first loop, the question becomes, “Is 1 less than or equal to 5?” The answer

113 Chapter 9: while Running in Circles

is obviously true, so control flows into the loop. The program outputs
the value of nAccumulator (1) and nValue (also 1) before multiplying
nAccumulator by nValue and storing the result back into nAccumulator.

The last statement in the loop increments nValue from 1 to 2.

That done, control passes back up to the while statement where nValue
(now 2) is compared to nTarget (still 5). “Is 2 less than or equal to 5?”
Clearly, true; so control flows back into the loop. nAccumulator is now set
to the result of nAccumulator (1) times nValue (2). The last statement
increments nValue to 3.

This cycle of fun continues until nValue reaches the value 6, which is no
longer less than or equal to 5. At that point, control passes to the first state-
ment beyond the closed brace }. This is shown graphically in Figure 9-1.

Figure 9-1:
Control

continues
to cycle
through

the body of
a while
loop until
the con-
ditional

expression
evaluates to

false.

The actual output from the program appears as follows for an input value of 5:

This program calculates factorial.
Enter a number to take factorial of: 5
1 * 1 equals 1
1 * 2 equals 2
2 * 3 equals 6
6 * 4 equals 24
24 * 5 equals 120
5 factorial is 120
Press Enter to continue . . .

114 Part III: Becoming a Procedural Programmer

 You are not guaranteed that the code within the braces of a while loop is
executed at all: If the conditional expression is false the first time it’s evalu-
ated, control passes around the braces without ever diving in. Consider, for
example, the output from the Factorial program when the user enters a target
value of 0:

This program calculates factorial.
Enter a number to take factorial of: 0
0 factorial is 1
Press Enter to continue . . .

No lines of output are generated from within the loop because the condition
“Is nValue less than or equal to 0” was false even for the initial value of 1.
The body of the while loop was never executed.

Breaking out of the Middle of a Loop
Sometimes the condition that causes you to terminate a loop doesn’t occur
until somewhere in the middle of the loop. This is especially true when test-
ing user input for some termination character. C++ provides these two con-
trol commands to handle this case:

 ✓ break exits the inner most loop immediately.

 ✓ continue passes control back to the top of the loop.

The following Product program demonstrates both break and continue.
This program multiplies positive values entered by the user until the user
enters a negative number. The program ignores zero.

//
// Product - demonstrate the use of break and continue.
//
#include <cstdio>
#include <cstdlib>
#include <iostream>
using namespace std;

int main(int nNumberofArgs, char* pszArgs[])
{
 // enter the number to calculate the factorial of
 cout << "This program multiplies the numbers\n"
 << "entered by the user. Enter a negative\n"
 << "number to exit. Zeroes are ignored.\n"
 << endl;

115 Chapter 9: while Running in Circles

 int nProduct = 1;
 while (true)
 {
 int nValue;
 cout << "Enter a number to multiply: ";
 cin >> nValue;
 if (nValue < 0)
 {
 cout << "Exiting." << endl;
 break;
 }
 if (nValue == 0)
 {
 cout << "Ignoring zero." << endl;
 continue;
 }

 // multiply accumulator by this value and
 // output the result
 cout << nProduct << " * " << nValue;
 nProduct *= nValue;
 cout << " is " << nProduct << endl;
 }

 // wait until user is ready before terminating program
 // to allow the user to see the program results
 cout << "Press Enter to continue..." << endl;
 cin.ignore(10, '\n');
 cin.get();
 return 0;
}

The program starts out with an initial value of nProduct of 1. The program
then evaluates the logical expression true to see if it’s true. It is.

 There aren’t too many rules that hold in C++ without exception, but here’s
one: true is always true.

The program then enters the loop to prompt the user for another value to
multiply times nProduct, the accumulated product of all numbers entered
so far. If the value entered is negative, then the program outputs the phrase
"Exiting." before executing the break, which passes control out of the
loop.

If the value entered is not negative, control passes to the second if state-
ment. If nValue is equal to zero, then the program outputs the messages
"Ignoring zero." before executing the continue statement which passes
control back to the top of the loop to allow the user to enter another value.

116 Part III: Becoming a Procedural Programmer

If nValue is neither less than zero nor zero, then control flows down to
where nValue is multiplied by nProduct using the special assignment oper-
ator (see Chapter 4 if you don’t remember this one):

nProduct *= nValue;

This expression is the same as:

nProduct = nProduct * nValue;

The output from a sample run from this program appears as follows:

This program multiplies the numbers
entered by the user. Enter a negative
number to exit. Zeroes are ignored.

Enter a number to multiply: 2
1 * 2 is 2
Enter a number to multiply: 5
2 * 5 is 10

Why is “break” necessary?
You might be tempted to wonder why break is really necessary. Suppose I had coded the loop in
the Product example program this way:

int nProduct = 1;
int nValue = 1;
while (nValue > 0)
{
 cout << "Enter a number to multiply: ";
 cin >> nValue;

 cout << nProduct << " * " << nValue;
 nProduct *= nValue;
 cout << " is " << nProduct << endl;
}

You might think that as soon as the user enters a negative value for nValue, the expression
nValue > 0 is no longer true and control immediately exits the loop — unfortunately, this is
not the case.

The problem is that the logical expression is only evaluated at the beginning of each pass through
the loop. Control doesn’t immediately fly out of the body of the loop as soon as the condition ceases
to be true. An if statement followed by a break allows me to move the conditional expression
into the body of the loop where the value of nValue is assigned.

117 Chapter 9: while Running in Circles

Enter a number to multiply: 0
Ignoring zero.
Enter a number to multiply: 3
10 * 3 is 30
Enter a number to multiply: -1
Exiting.
Press Enter to continue . . .

Nested Loops
The body of a loop can itself contain a loop; this arrangement is known as
nested loops. The inner loop must execute to completion during each time
through the outer loop.

I have created a program that uses nested loops to create a multiplication
table in the following form:

 0 1 2 3 4 5 6 7 8 9
0 0*0 0*1 0*2 0*3 0*4 0*5 0*6 0*7 0*8 0*9
1 1*0 1*1 1*2 1*3 1*4 1*5 1*6 1*7 1*8 1*9
2 2*0 2*1 2*2 2*3 2*4 2*5 2*6 2*7 2*8 2*9
//... and so on...

You can see that for row 0, the program has to iterate from column 0 through
column 9. The program repeats the process for row 1, again for row 2, and so
on right down to row 9. This implies the need for two loops: an inner loop to
iterate over the columns and a second outer loop to iterate over the rows.
Each position in the table is simply the row number times the column number.

This is exactly how the following NestedLoops program works:

//
// NestedLoops - this program uses a nested loop to
// calculate the multiplication table.
//
#include <cstdio>
#include <cstdlib>
#include <iostream>
using namespace std;

int main(int nNumberofArgs, char* pszArgs[])
{
 // display the column headings
 int nColumn = 0;
 cout << " ";
 while (nColumn < 10)
 {
 // set the display width to two characters

118 Part III: Becoming a Procedural Programmer

 // (even for one digit numbers)
 cout.width(2);

 // now display the column number
 cout << nColumn << " ";

 // increment to the next column
 nColumn++;
 }

 cout << endl;

 // now go loop through the rows
 int nRow = 0;
 while (nRow < 10)
 {
 // start with the row value
 cout << nRow << " - ";

 // now for each row, start with column 0 and
 // go through column 9
 nColumn = 0;
 while(nColumn < 10)
 {
 // display the product of the column*row
 // (use 2 characters even when product is
 // a single digit)
 cout.width(2);
 cout << nRow * nColumn << " ";

 // go to next column
 nColumn++;
 }

 // go to next row
 nRow++;
 cout << endl;
 }

 // wait until user is ready before terminating program
 // to allow the user to see the program results
 cout << "Press Enter to continue..." << endl;
 cin.ignore(10, '\n');
 cin.get();
 return 0;
}

The first section creates the column headings. This section initializes nColumn
to 0. It then iterates through nColumn printing out its value separated by a
space until nColumn reaches 10. At this point, the program exits the first loop
and then tacks a new line on the end to finish the row. Figure 9-2 illustrates this
process graphically.

119 Chapter 9: while Running in Circles

Executing just this section alone generates the following output:

0 1 2 3 4 5 6 7 8 9

This program demonstrates an unfair advantage that I have over you, the reader.
The expression cout.width(2) sets the display width to two columns — C++
will pad a space on the left for single-digit numbers. I know it’s cheating to make
use of a feature like width() that I don’t introduce until Chapter 31 (you can
sneak a peek if you like), but it’s very difficult to get the columns to line up
without resorting to fixed-width output.

Figure 9-2:
The first

loop outputs
the column

headings.

The second set of loops, the nested loops, starts at nRow equal to 0. The pro-
gram prints out the row number followed by a dash before launching into a
second loop that starts nColumn at 0 again and iterates it back up to 9. For
each pass through this inner loop, the program sets the output width to two
spaces and then displays nRow * nColumn followed by a space.

 The display width resets itself each time you output something, so it’s neces-
sary to set it back to 2 each time before outputting a number.

The program outputs a newline to move output to the next row each time it
increments nRow. This is shown graphically in Figure 9-3.

The output from this program appears as follows:

 0 1 2 3 4 5 6 7 8 9
0 - 0 0 0 0 0 0 0 0 0 0
1 - 0 1 2 3 4 5 6 7 8 9
2 - 0 2 4 6 8 10 12 14 16 18
3 - 0 3 6 9 12 15 18 21 24 27
4 - 0 4 8 12 16 20 24 28 32 36

120 Part III: Becoming a Procedural Programmer

5 - 0 5 10 15 20 25 30 35 40 45
6 - 0 6 12 18 24 30 36 42 48 54
7 - 0 7 14 21 28 35 42 49 56 63
8 - 0 8 16 24 32 40 48 56 64 72
9 - 0 9 18 27 36 45 54 63 72 81
Press Enter to continue . . .

Figure 9-3:
The inner

loop iterates
from left to

right across
the columns,

while the
outer loop

iterates
from top

to bottom
down the

rows.

There is nothing magic about 0 through 9 in this table. I could just have easily
created a 12 x 12 multiplication table (or any other combination) by changing
the comparison expression in the three while loops. However, for anything
larger than 10 x 10, you’ll need to increase the minimum width to accommo-
date three-digit products: Use cout.width(3).

Chapter 10

Looping for the Fun of It
In This Chapter
▶ Introducing the for loop

▶ Reviewing an example ForFactorial program

▶ Using the comma operator to get more done in a single for loop

T
he most basic of all control structures is the while loop, which is the
topic of Chapter 9. This chapter introduces you its sibling, the for

loop. Though not quite as flexible, the for loop is actually the more popular
of the two — it has a certain elegance that is hard to ignore.

The for Parts of Every Loop
If you look again at the examples in Chapter 9, you’ll notice that most loops
have four essential parts. (This feels like breaking down a golf swing into its
constituent parts.)

 ✓ The setup: Usually the setup involves declaring and initializing an
increment variable. This generally occurs immediately before the
while.

 ✓ The test expression: The expression within the while loop that will
cause the program to either execute the loop or exit and continue
on. This always occurs within the parentheses following the keyword
while.

122 Part III: Becoming a Procedural Programmer

 ✓ The body: This is the code within the braces.

 ✓ The increment: This is where the increment variable is incremented.
This usually occurs at the end of the body.

In the case of the Factorial program, the four parts looked like this:

int nValue = 1; // the setup
while (nValue <= nTarget) // the test expression
{ // the body
 cout << nAccumulator << " * "
 << nValue << " equals ";
 nAccumulator = nAccumulator * nValue;
 cout << nAccumulator << endl;
 nValue++; // the increment
}

The for loop incorporates these four parts into a single structure using the
keyword for:

for(setup; test expression; increment)
{
 body;
}

The flow is shown graphically in Figure 10-1.

 1. As the CPU comes innocently upon the for keyword, control is diverted
to the setup clause.

 2. Once the setup has been performed, control moves over to the test
expression.

 3. (a) If the test expression is true, control passes to the body of the
for loop.

 (b) If the test expression is false, control passes to the next state-
ment after the closed brace.

 4. Once control has passed through the body of the loop, the CPU is forced
to perform a U-turn back up to the increment section of the loop.

 5. That done, control returns to the test expression and back to Step 3.

123 Chapter 10: Looping for the Fun of It

Figure 10-1:
The flow in
and around

the for
loop.

 This for loop is completely equivalent to the following while loop:

setup;
while(test expression)
{
 body;

 increment;
}

Looking at an Example
The following example program is the Factorial program written as a for
loop :

//
// ForFactorial - calculate factorial using the for
// construct.
//
#include <cstdio>
#include <cstdlib>
#include <iostream>
using namespace std;

124 Part III: Becoming a Procedural Programmer

int main(int nNumberofArgs, char* pszArgs[])
{
 // enter the number to calculate the factorial of
 int nTarget;
 cout << "This program calculates factorial.\n"
 << "Enter a number to take factorial of: ";
 cin >> nTarget;

 // start with an accumulator that's initialized to 1
 int nAccumulator = 1;
 for(int nValue = 1; nValue <= nTarget; nValue++)
 {
 cout << nAccumulator << " * "
 << nValue << " equals ";
 nAccumulator = nAccumulator * nValue;
 cout << nAccumulator << endl;
 }

 // display the result
 cout << nTarget << " factorial is "
 << nAccumulator << endl;

 // wait until user is ready before terminating program
 // to allow the user to see the program results
 cout << "Press Enter to continue..." << endl;
 cin.ignore(10, '\n');
 cin.get();
 return 0;
}

The logic of this ForFactorial program is virtually identical to its older Factorial
twin: The program prompts the user to enter a number to take the factorial of.
It then initializes nAccumulator to 1 before entering the loop that calculates
the factorial.

ForFactorial creates an increment variable, nValue, that it initializes to 1
in the setup clause of the for statement. That done, the program compares
nValue to nTarget, the value entered by the user in the test expression
section of the for. If nValue is less than or equal to nTarget, control enters
the body of the loop where nAccumulator is multiplied by nValue.

That done, control flows back up to the increment section of the for loop.
This expression, nValue++, increments nValue by 1. Flow then moves to the
test expression, where nValue is compared with nTarget and the pro-
cess repeated until eventually nValue exceeds the value of nTarget. At that
point, control passes to the next statement after the closed brace.

125 Chapter 10: Looping for the Fun of It

The output from this program appears as follows:

This program calculates factorials of user input.
Enter a negative number to exit
Enter number: 5
5 factorial is 120
Enter number: 6
6 factorial is 720
Enter number: -1
Press Enter to continue . . .

 All four sections of the for loop are optional. An empty setup, body, or
increment section has no effect; that is, it does nothing. (That makes sense.)
An empty test expression is the same as true. (This is the only thing that
would make sense — if it evaluated to false, then the body of the for loop
would never get executed, and the result would be useless.)

 A variable defined within the setup section of a for loop is only defined within
the for loop. It is no longer defined once control exits the loop.

Getting More Done with
the Comma Operator

There is a seemingly useless operator that I haven’t mentioned (up until now,
that is) known as the comma operator. It appears as follows:

expression1, expression2;

This says execute expression1 and then execute expression2. The
resulting value and type of the overall expression is the same as that of
expression2. Thus, I could say something like the following:

int i;
int j;
i = 1, j = 2;

Why would I ever want to do such a thing, you ask? Answer: You wouldn’t
except when writing for loops.

The following CommaOperator program demonstrates the comma operator
in combat. This program calculates the products of pairs of numbers. If the
operator enters N, the program outputs 1 * N, 2 * N-1, 3 * N-2, and so on, all

126 Part III: Becoming a Procedural Programmer

the way up to N * 1. (This program doesn’t do anything particularly useful.
You’ll see the comma operator used to effect when discussing arrays in
Chapter 15.)

//
// CommaOperator - demonstrate how the comma operator
// is used within a for loop.
//
#include <cstdio>
#include <cstdlib>
#include <iostream>
using namespace std;

int main(int nNumberofArgs, char* pszArgs[])
{
 // enter a target number
 int nTarget;
 cout << "Enter maximum value: ";
 cin >> nTarget;

 for(int nLower = 1, nUpper = nTarget;
 nLower <= nTarget; nLower++, nUpper--)
 {
 cout << nLower << " * "
 << nUpper << " equals "
 << nLower * nUpper << endl;
 }

 // wait until user is ready before terminating program
 // to allow the user to see the program results
 cout << "Press Enter to continue..." << endl;
 cin.ignore(10, '\n');
 cin.get();
 return 0;
}

The program first prompts the operator for a target value, which is read into
nTarget. It then moves to the for loop. However, this time not only do you
want to increment a variable from 1 to nTarget, you also want to decrement
a second variable from nTarget down to 1.

Here the setup clause of the for loop declares a variable nLower that it ini-
tializes to 1 and a second variable nTarget that gets initialized to nTarget.
The body of the loop displays nLower, nUpper, and the product nLower *
nTarget. The increment section increments nLower and decrements
nUpper.

127 Chapter 10: Looping for the Fun of It

The output from the program appears as follows:

Enter maximum value: 15
1 * 15 equals 15
2 * 14 equals 28
3 * 13 equals 39
4 * 12 equals 48
5 * 11 equals 55
6 * 10 equals 60
7 * 9 equals 63
8 * 8 equals 64
9 * 7 equals 63
10 * 6 equals 60
11 * 5 equals 55
12 * 4 equals 48
13 * 3 equals 39
14 * 2 equals 28
15 * 1 equals 15
Press Enter to continue . . .

In this example run, I entered 15 as the target value. You can see how nLower
increments in a straight line from 1 to 15, while nUpper makes its way from
15 down to 1.

Actually, the output from this program is mildly interesting: No matter what
you enter, the value of the product increases rapidly at first as nLower incre-
ments from 1. Fairly quickly, however, the curve flattens out and asymp-
totically approaches the maximum value in the middle of the range before
heading back down. The maximum value for the product always occurs when
nLower and nUpper are equal.

Could I have made the earlier for loop work without using the comma opera-
tor? Absolutely. I could have taken either variable, nLower or nUpper, out of
the for loop and handled them as separate variables. Consider the following
code snippet:

nUpper = nTarget;
for(int nLower = 1; nLower <= nTarget; nLower++)
{
 cout << nLower << " * "
 << nUpper << " equals "
 << nLower * nUpper << endl;
 nUpper--;
}

This version would have worked just as well.

128 Part III: Becoming a Procedural Programmer

 The for loop can’t do anything that a while loop cannot do. In fact, any for
loop can be converted into an equivalent while loop. However, because of its
compactness, you will see the for loop a lot more often.

Up to and including this chapter, all of the programs have been one mono-
lithic whole stretching from the opening brace after main() to the cor-
responding closing brace. This is okay for small programs, but it would be
really cool if you could divide your program into smaller bites that could be
digested separately. That is the goal of the next chapter on functions.

Chapter 11

Functions, I Declare!
In This Chapter
▶ Breaking programs down into functions

▶ Writing and using functions

▶ Returning values from a function

▶ Passing values to a function

▶ Providing a function prototype declaration

T
he programs you see prior to this chapter are small enough and simple
enough that you can write any of them in one sequence of instructions.

Sure, there have been branches using if statements and looping with while
and for loops, but the entire program was in one place for all to see.

Real-world programs aren’t usually that way. Programs that are big enough
to deal with the complexities of the real world are generally too large to write
in one single block of C++ instructions. Real-world programs are broken into
modules called functions in C++. This chapter introduces you to the wonder-
ful world of functions.

Breaking Your Problem Down
into Functions

Even the Tire-Changing Program from Chapter 1 is too big to write in a single
block. It only tackles the problem of removing the lug nuts. It doesn’t even
touch the problem of jacking up the car, removing the wheel, getting the
spare out, and so on.

In fact, suppose I were to put the lug-nut-removing code into a module that I
call something fiendishly clever, like RemoveLugNuts(). (I add the parenthe-
ses to follow C++ grammar.) I could bundle up similar modules for the other
functions.

130 Part III: Becoming a Procedural Programmer

The resulting top-level module for changing a tire might look like the following:

1. Grab spare tire;
2. RaiseCar();
3. RemoveLugNuts(); // we know what this does
4. ReplaceWheel();
5. AttachLugNuts(); // inverse of RemoveLugNuts()
6. LowerCar();

Only the first statement is actually an instruction written in Tire-Changing
Language. Each of the remaining statements is a reference to a module
somewhere. These modules consist of sequences of statements written in
Tire-Changing Language (including possible references to other, simpler
modules).

Imagine how this program is executed: The tire-changing processor starts at
statement 1. First it sees the simple instruction Grab spare tire, which it
executes without complaint (it always does exactly what you tell it to do). It
then continues on to Statement 2.

Statement 2, however, says, “Remember where you are at and go find the set
of instructions called RaiseCar() and execute them. Once you’ve finished
there, come back here for further instructions.” In similar fashion, Statements
3 through 6 also direct the friendly, mechanically inclined processor off to
separate sets of instructions.

Understanding How Functions Are Useful
There are several reasons for breaking complex problems up into simpler
functions. The original reason that a function mechanism was added to early
programming languages was the Holy Grail of reuse. The idea was to create
functions that could be reused in multiple programs. For example, factorial is
a common mathematical procedure. If I rewrote the Factorial program as
a function, I could invoke it from any program in the future that needs to cal-
culate a factorial. This form of reuse allows code to be easily reused — from
different programs as well as from different areas within the same program.

Once a function mechanism was introduced, however, people discovered
that breaking up large problems into simpler, smaller problems brought with
it further advantages. The biggest advantage has to do with the number of
things that a person can think about at one time. This is often referred to
as the “Seven Plus or Minus Two” Rule. That’s the number of things that a
person can keep active in his mind at one time. Almost everyone can keep
at least five objects in their active memory, but very few can keep more than
nine objects active in their consciousness at one time.

131 Chapter 11: Functions, I Declare!

You’ve noticed, no doubt, that there are a lot of details to worry about when
writing C++ code. A C++ module quickly exceeds the nine-object upper limit
as it increases in size. Such functions are hard to understand — and therefore
hard to write and to get working properly.

It turns out to be much easier to think of the top-level program in terms of
high-level functionality, much as I did in the tire changing example at the
beginning of this chapter. This example divided the act of changing a tire into
six steps, implemented in five functions.

Of course, I still have to implement each of these functions, but these are
much smaller problems than the entire problem of changing a tire. For exam-
ple, when implementing RaiseCar(), I don’t have to worry about tires or
spares, and I certainly don’t have to deal with the intricacies of loosening and
tightening lug nuts. All I have to think about in that function is how to get the
car off the ground.

 In computer-nerd-speak, we say that these different functions are written at
different levels of abstraction. The Tire-Changing program is written at a very
high level of abstraction; the RemoveLugNuts() function in Chapter 1 is writ-
ten at a low level of abstraction.

Writing and Using a Function
Like so many things, functions are best understood by example. The follow-
ing code snippet shows the simplest possible example of creating and invok-
ing a function:

void someFunction()
{
 // do stuff
 return;
}

int main(int nNumberofArgs, char* pszArgs[])
{
 // do something

 // now invoke someFunction()
 someFunction();

 // keep going here once control returns
}

132 Part III: Becoming a Procedural Programmer

This example contains all the critical elements necessary to create and
invoke a function:

 1. The declaration: The first thing is the declaration of the function: the
name of the function with a type in front, followed by a set of open
and closed parentheses. In this case, the name of the function is
someFunction(), and its return type is void. (I’ll explain what that last
part means in the “Returning things” section of this chapter.)

 2. The definition: The declaration of the function is followed by the defini-
tion of what it does, also called the body of the function. The body of a
function always starts with an open brace and ends with a closed brace.
The statements inside the body are just like those within a loop or an if
statement.

 3. The return: The body of the function contains zero or more return
statements. A return returns control to a point immediately after the
point where the function was invoked. Control returns automatically if it
ever reaches the final closed brace of the function body.

 4. The call: A function is called by invoking the name of the function fol-
lowed by open and closed parentheses.

The flow of control is shown in Figure 11-1.

Figure 11-1:
Invoking

a function
passes

control to
the module.

Control
returns to

immediately
after the

call.

Returning things
Functions often return a value to the caller. Sometimes this is a calculated
value — a function like factorial() might return the factorial of a number.
Sometimes this value is an indication of how things went — this is usually

133 Chapter 11: Functions, I Declare!

known as an error return. So the function might return a zero if everything
went OK, and a non-zero if something went wrong during the execution of the
function.

To return a value from a function, you need to make two changes:

 1. Replace void with the type of value you intend to return.

 2. Place the value you want the function to return after the keyword
return. C++ does not allow you to return from a function by running
into the final closed brace if the return type is other than void.

 The keyword void is C++-ese for “nothing.” Thus a function declared with a
return type of int returns an integer. A function declared with a return type of
void returns nothing.

Reviewing an example
The following FunctionDemo program uses the function sumSequence() to
sum a series of numbers entered by the user at the keyboard. This function is
invoked repeatedly until the user enters a zero length sequence.

//
// FunctionDemo - demonstrate how to use a function
// to simplify the logic of the program.
//
#include <cstdio>
#include <cstdlib>
#include <iostream>
using namespace std;

//
// sumSequence() - return the sum of a series of numbers
// entered by the user. Exit the loop
// when the user enters a negative
// number.
int sumSequence()
{
 // create a variable into which we will add the
 // numbers entered by the user
 int nAccumulator = 0;

 for(;;)
 {
 // read another value from the user
 int nValue;
 cout << "Next: ";
 cin >> nValue;

134 Part III: Becoming a Procedural Programmer

 // exit if nValue is negative
 if (nValue < 0)
 {
 break;
 }

 // add the value entered to the accumulated value
 nAccumulator += nValue;
 }

 // return the accumulated value to the caller
 return nAccumulator;
}

int main(int nNumberofArgs, char* pszArgs[])
{
 cout << "This program sums sequences of numbers.\n"
 << "Enter a series of numbers. Entering a\n"
 << "negative number causes the program to\n"
 << "print the sum and start over with a new\n"
 << "sequence. "
 << "Enter two negatives in a row to end the\n"
 << "program." << endl;

 // stay in a loop getting input from the user
 // until he enters a negative number
 for(;;)
 {
 // accumulate a sequence
 int nSum = sumSequence();

 // if the sum is zero...
 if (nSum == 0)
 {
 // ...then exit the program
 break;
 }

 // display the result
 cout << "Sum = " << nSum << endl;
 }

 // wait until user is ready before terminating program
 // to allow the user to see the program results
 cout << "Press Enter to continue..." << endl;
 cin.ignore(10, '\n');
 cin.get();
 return 0;
}

First, concentrate on the main() program. After outputting rather verbose
instructions to the user, the program enters a for loop.

135 Chapter 11: Functions, I Declare!

 A for loop whose conditional expression is empty (as in for(;;)) will loop
forever unless something within the body of the loop causes control to exit
the loop (or until Hell freezes over).

The first non-comment line within this loop is the following:

int nSum = sumSequence();

This expression passes control to the sumSequence() function. Once con-
trol returns, the declaration uses the value returned by sumSequence() to
initialize nSum.

The function sumSequence() first initializes nAccumulator to zero. It then
prompts the user for value from the keyboard. If the number entered is not
negative, it is added to the value in nAccumulator, and the user is prompted
for another value in a loop. As soon as the user enters a negative number,
the function breaks out of the loop and returns the value accumulated in
nAccumulator to the caller.

The following is a sample run from the FunctionDemo program:

This program sums sequences of numbers.
Enter a series of numbers. Entering a
negative number causes the program to
print the sum and start over with a new
sequence. Enter two negatives in a row to end the
program.
Next: 5
Next: 15
Next: 20
Next: -1
Sum = 40
Next: 1
Next: 2
Next: 3
Next: 4
Next: -1
Sum = 10
Next: -1
Press Enter to continue . . .

Passing Arguments to Functions
Functions that do nothing but return a value are of limited value because the
communication is one-way — from the function to the caller. Two-way com-
munication requires function arguments, which I discuss next.

136 Part III: Becoming a Procedural Programmer

Function with arguments
A function argument is a variable whose value is passed to the function
during the call. The following FactorialFunction converts the previous
factorial operation into a function:

//
// FactorialFunction - rewrite the factorial code as
// a separate function.
//
#include <cstdio>
#include <cstdlib>
#include <iostream>
using namespace std;

//
// factorial - return the factorial of the argument
// provided. Returns a 1 for invalid arguments
// such as negative numbers.
int factorial(int nTarget)
{
 // start with an accumulator that's initialized to 1
 int nAccumulator = 1;
 for (int nValue = 1; nValue <= nTarget; nValue++)
 {
 nAccumulator *= nValue;
 }

 return nAccumulator;
}

int main(int nNumberofArgs, char* pszArgs[])
{
 cout << "This program calculates factorials"
 << " of user input.\n"
 << "Enter a negative number to exit" << endl;

 // stay in a loop getting input from the user
 // until he enters a negative number
 for (;;)
 {
 // enter the number to calculate the factorial of
 int nValue;

 cout << "Enter number: ";
 cin >> nValue;

 // exit if the number is negative
 if (nValue < 0)

137 Chapter 11: Functions, I Declare!

 {
 break;
 }

 // display the result
 int nFactorial = factorial(nValue);
 cout << nValue << " factorial is "
 << nFactorial << endl;
 }

 // wait until user is ready before terminating program
 // to allow the user to see the program results
 cout << "Press Enter to continue..." << endl;
 cin.ignore(10, '\n');
 cin.get();
 return 0;
}

The declaration of factorial() includes an argument nTarget of int.
Looking ahead, you can see that this is intended to be the value whose facto-
rial the program calculates. The return value of the function is the calculated
factorial.

In main(), the program prompts the user for a value, which it stores in
nValue. If the value is negative, the program terminates. If not, it calls
factorial() and passes the value of nValue. The program stores the
returned value in nFactorial. It then outputs both values before returning
to prompt the user for a new value.

Functions with multiple arguments
A function can have multiple arguments by separating them by commas.
Thus the following function returns the product of two integer arguments:

int product(int nValue1, int nValue2)
{
 return nValue1 * nValue2;
}

Exposing main()
Now the truth can be told: The “keyword” main() from our standard tem-
plate is nothing more than a function — albeit a function with strange argu-
ments, but a function nonetheless.

138 Part III: Becoming a Procedural Programmer

When a program is built, C++ adds some boilerplate code that executes
before your program ever gains control. This code sets up the environment
in which your program will operate. For example, this boilerplate code opens
the default input and output channels and attaches them to cin and cout.

After the environment has been established, the C++ boilerplate code calls
the function main(), thereby beginning execution of your code. When your
program finishes, it returns from main(). This enables the C++ boilerplate
to clean up a few things before terminating the program and handing control
back to the operating system.

Overloading function names
C++ allows the programmer to assign the same name to two or more functions if the functions can
be distinguished by either the number or types of arguments they contain. This practice is called
function overloading. Consider the following example functions:

void someFunction()
{
 // ...perform some function
}
void someFunction(int nValue)
{
 // ...perform some other function
}
void someFunction(char cValue)
{
 // ...perform a function on characters
}

int main(int nNumberofArgs, char* pszArgs[])
{
 someFunction(); // call the first function
 someFunction(10); // call the second function
 someFunction('a'); // now the third function
 return 0;
}

Comparing each of the preceding calls with the declarations makes clear which function is
meant by each call. C++ aficionados include the type of arguments with the name of the func-
tion in what is called the function’s extended name or signature. Thus, the extended names of
the three functions are, in fact, different: someFunction(), someFunction(int), and
someFunction(char).

Warning: Notice that the return type is not part of the extended name and cannot be used to dif-
ferentiate functions.

139 Chapter 11: Functions, I Declare!

Defining Function Prototype Declarations
There’s a little more to the previous program examples than meets the eye.
Consider the second program, FactorialFunction, for example. During the
build process, the C++ compiler scanned through the file. As soon as it came
upon the factorial() function, it made a note in an internal table some-
where of the function’s extended name and its return type. This is how the
compiler was able to understand what I was talking about when I invoked the
factorial() function later on in main() — it saw that I was trying to call
a function, and it said, “Let me look in my table of defined functions for one
called factorial(). Aha, here’s one!”

In this case, the function was defined and the types and number of arguments
matched perfectly, but that isn’t always the case. What if I had invoked the
function not with an integer but with something that could be converted into
an integer? Suppose I had called the function as follows:

factorial(1.1);

That’s not a perfect match, 1.1 is not an integer, but C++ knows how
to convert 1.1 into an integer. So it could make the conversion and use
factorial(int) to complete the call. The question is, does it?

The answer is “Yes.” C++ will generate a warning in some cases to let you
know what it’s doing, but it will generally make the necessary type conver-
sions to the arguments to use the functions that it knows about.

Note: I know that I haven’t discussed the different variable types yet (I do so in
Chapter 14), but the argument I am making is fairly generic. You will also see in
Chapter 14 how to avoid warnings caused by automatic type conversions.

What about a call like the following:

factorial(1, 2);

There is no conversion that would allow C++ to lop off an argument and use
the factorial(int) function to satisfy this call, so C++ generates an error
in this case.

The only way C++ can sort out this type of thing is if it sees the function dec-
laration before it sees the attempt to invoke the function. This means each
function must be declared before it is used.

I know what you’re thinking (I think): C++ could be a little less lazy and look
ahead for function declarations that occur later on before it gives up and
starts generating errors, but the fact is that it doesn’t. It’s just one of those
things, like my crummy car; you learn to live with it.

140 Part III: Becoming a Procedural Programmer

So does that mean you have to define all of your functions before you can
use them? No. C++ allows you to declare a function without a body in what is
known as a prototype declaration.

A prototype declaration creates an entry for the function in the table I was
talking about. It fills in the extended name, including the number and type
of the arguments, and the return type. C++ leaves the definition of the func-
tion, the function body, empty until later.

In practice, a prototype declaration appears as follows:

// the prototype declaration
int factorial(int nTarget);

int main(int nNumberofArgs, char* pszArgs[])
{
 cout << "The factorial of 10 is "
 << factorial(10) << endl;

 return 0;
}

// the definition of the factorial(int) function;
// this satisfies our promise to provide a definition
// for the prototype function declaration above
int factorial(int nTarget)
{
 // start with an accumulator that's initialized to 1
 int nAccumulator = 1;
 for (int nValue = 1; nValue <= nTarget; nValue++)
 {
 nAccumulator *= nValue;
 }

 return nAccumulator;
}

The prototype declaration tells the world (or at least that part of the world
after the declaration) that factorial() takes a single integer argument and
returns an integer. That way, C++ can check the call in main() against the
declaration to see whether any type conversions need to take place — or
whether the call is even possible.

The prototype declaration also represents a promise to C++ to provide a com-
plete definition of factorial(int) somewhere else in the program. In this
case, the full definition of factorial(int) follows right after main().

 It’s common practice to provide prototype declarations for all functions
defined within a module. That way, you don’t have to worry about the order in
which they are defined. I have more to say about this topic in the next chapter.

Chapter 12

Dividing Programs into Modules
In This Chapter
▶ Breaking programs down into functions

▶ Writing and using functions

▶ Returning values from a function

▶ Passing values to a function

▶ Providing a function prototype declaration

I
n Chapter 11, I show you how to divide a complex problem into a number
of separate functions; it is much easier to write and get a number of

smaller functions to work than one large, monolithic program. Often, how-
ever, you may want to reuse the functions you create in other applications.
For example, I could imagine reusing the factorial() function created in
Chapter 11.

One way to reuse such functions is to copy-and-paste the source code for
the factorial() function into my new program. However, it would be a lot
easier if I could put the function in a separate file that I could then link into
future applications. Breaking programs into separate source code modules is
the subject of this chapter.

Breaking Programs Apart
The programmer can break a single program into separate source files gener-
ally known as modules. These modules are compiled into machine code by
the C++ compiler separately and then combined during the build process to
generate a single program.

 These modules are also known by compiler geeks as C++ translation units.

The process of combining separately compiled modules into a single program
is called linking.

142 Part III: Becoming a Procedural Programmer

Breaking programs into smaller, more manageable pieces has several advan-
tages. First, breaking a program into smaller modules reduces the compile
time. Code::Blocks takes only a few seconds to gobble up and digest the pro-
grams that appear in this book. Very large programs can take quite a while,
however. I have worked on projects that took most of the night to rebuild.

In addition, recompiling all of the source code in the project just because one
or two lines change is extremely wasteful. It’s much better to recompile just
the module containing the change and then relink it into all of the unchanged
modules to create a new executable with the change. (Compiling usually
takes longer than linking.)

Second, it’s easier to comprehend — therefore, easier to write, test and
debug — a program that consists of a number of well-thought-out but quasi-
independent modules, each of which represents a logical grouping of func-
tions. A large, single source module full of all the functions that a program
might use quickly becomes hard to keep straight.

Third is the much-vaunted specter of reuse. A module full of reusable func-
tions that can be linked into future programs is easier to document and
maintain. A change in the module to fix some bug is quickly incorporated into
other executables that use that module.

Finally, there’s the issue of working together as a team. Two programmers
can’t work on the same module (at least not very well). An easier approach
is to assign one set of functions contained in one module to one programmer
while assigning a different set of functions in a different module to a second
programmer. The modules can be linked together when ready for testing.

Breaking Up Isn’t That Hard to Do
I can’t really include a large program in a book like this . . . well, I could,
but there wouldn’t be enough room left for anything else. Instead, I use the
FactorialFunction demo from Chapter 11 as my example large-scale pro-
gram. In this section, I create the FactorialModule project that separates
the program into several source modules. To do this, I perform the following
steps:

 1. Create the FactorialModule project.

 This procedure is no different from creating any of the other project files
up to this point in the book.

 2. Create the Factorial.cpp file to contain the factorial function.

 3. Create the Factorial.h include file (whatever that is) to be used by all
modules that want to call.

 4. Update main.cpp to use the factorial() function.

143 Chapter 12: Dividing Programs into Modules

Creating Factorial.cpp
The initial console application project created by Code::Blocks has only one
source file, main.cpp. The next step is to create a second source file that will
contain the factorial function.

Follow these steps to create factorial.cpp containing the factorial()
function:

 1. Select File➪New➪File.

 Code::Blocks responds by opening the window shown in Figure 12-1
showing the different types of files you can add.

Figure 12-1:
The New

File Wizard
provides
you help

in adding
source

files to your
project.

 2. Select C/C++ Source and then click Go.

 A box opens onscreen, showing a warning that you are about to enter
the mysterious and dangerous Source File Wizard.

 3. Click Next.

 This will open the Source File Wizard.

 4. Click the . . . next to the Filename with Full Path prompt.

 A File Open dialog box appears, allowing you to navigate to a different
folder if you want to keep your source files in different directories. But
don’t make it any more complicated than it has to be.

144 Part III: Becoming a Procedural Programmer

 5. Enter factorial.cpp as the name of the source file and click Save.

 6. You want this file added to all executables that you create, so select
All for the build targets.

 When you are finished, the dialog box should look like Figure 12-2.

Figure 12-2:
The C/C++

Source File
dialog box

lets you
enter the
name of
the new
module,
fact-
orial.

cpp.

 7. Click Finish to create Factorial.cpp and add it to the Project.

 The project file includes the list of all source files that it takes to build
your program.

 8. Update Factorial.cpp as follows:

//
// factorial - this module includes the factorial function
//
#include <cstdio>
#include <cstdlib>
#include <iostream>
using namespace std;
#include "factorial.h"
//
// factorial - return the factorial of the argument
// provided. Returns a 1 for invalid arguments
// such as negative numbers.
int factorial(int nTarget)
{
 // start with an accumulator that's initialized to 1
 int nAccumulator = 1;
 for (int nValue = 1; nValue <= nTarget; nValue++)

145 Chapter 12: Dividing Programs into Modules

 {
 nAccumulator *= nValue;
 }

 return nAccumulator;
}

The first four lines are part of the standard template used for all C++ source
files in this book. The next line is the factorial.h include file, which I discuss
in further detail later in this chapter. This is followed by the factorial()
function much as it appeared in Chapter 11.

 Include files don’t follow the same grammar rules as C++. For example, unlike
other statements in C++, the #include must start in column 1 and doesn’t
require a semicolon at the end.

 Don’t try to compile factorial.cpp, as you haven’t created factorial.h yet.

Creating an #include file
The next step in the process is to create an include file. Okay, what’s an
include file?

As I discuss in Chapter 11, the prototype declaration describes the functions
to be called by providing the number and types of arguments and the type of
the return value. Every function that you invoke must have a prototype decla-
ration somewhere before the call.

It is possible to list out the prototype declarations manually for each function
you intend to use, but fortunately that isn’t necessary. Instead C++ allows the
same dummy who created the function to create an include file that contains
the function’s prototype declarations. This file can then be included in the
source files of the modules where the functions are called.

There are (at least) two ways to include these prototypes. One way is to copy
the contents of the include file and paste them into the module where the calls
are made. This isn’t a very good idea, however. For one thing, it is really labori-
ous. For another, if the prototype declaration for any one of the functions in the
include file is changed, the programmer will have to go through every place the
include file is used, delete the old one, and repaste in the new file.

Rather than do that, C++ includes a preprocessor that understands very
few instructions. Each of these instructions starts with a pound sign (#) in
column 1 followed immediately by a command. (Preprocessor commands
also end at the end of the line and don’t require a semicolon.)

146 Part III: Becoming a Procedural Programmer

The most common preprocessor command is #include "filename.h".
This command copies and pastes the contents of filename.h at the point
of the #include to create what is known as an intermediate translation file.
The preprocessor then passes this intermediate translation file on to the C++
compiler for processing. This process is shown graphically in Figure 12-3.

Figure 12-3:
The prepro-

cessor
inserts the

contents of
an include

file at the
point of the

#include
command

before
passing the

results to the
C++ compiler.

Including #include files
The Code::Blocks wizard makes creating an include file painless. Just execute
the following steps:

 1. Select File➪New➪File.

 Code::Blocks responds by opening the window shown in Figure 12-1, just
as before. This time you’re creating an include file.

 2. Select Include File and then click Go.

 3. In the next window that warns you’re about to enter the Include File
Wizard, click Next.

 4. Click the . . . next to the Filename with Full Path prompt.

 A File Open dialog box appears.

 5. Enter factorial.h as the name of the include file and click Save.

 6. You want this file added to all executables that you create, so select
All for the build targets.

 When you’re finished, the dialog box should look like Figure 12-4.

147 Chapter 12: Dividing Programs into Modules

Figure 12-4:
The C/C++

Header File
dialog box

lets you
enter the
name of
the new

include file
module,
fact-

orial.h.

 7. Click Finish to create an empty include file that looks like the following:

#ifndef FACTORIAL_H_INCLUDED
#define FACTORIAL_H_INCLUDED

#endif // FACTORIAL_H_INCLUDED

 8. Edit the include file by adding the prototype for the factorial()
function as follows:

#ifndef FACTORIAL_H_INCLUDED
#define FACTORIAL_H_INCLUDED

int factorial(int nTarget);

#endif // FACTORIAL_H_INCLUDED

 9. Click File Save.

 You’re done!

Notice that the include file has been added to the project description in the
Management tab of Code::Blocks. This indicates that Code::Blocks will auto-
matically rebuild the application if the include file changes.

 Why include factorial.h in factorial.cpp? After all, factorial()
doesn’t require a prototype of itself. You do this as a form of error checking.
C++ will generate an error message when compiling factorial.cpp if the
prototype declaration in factorial.h does not match the definition of the
function. This ensures that the prototype declaration being used by other
source-code modules matches the function definition.

148 Part III: Becoming a Procedural Programmer

Creating main.cpp
You’re almost there: Open main.cpp and edit it to look like the following:

//
// FactorialModule - rewrite the factorial code as
// a separate function in its own module.
//
#include <cstdio>
#include <cstdlib>
#include <iostream>
using namespace std;

#include "factorial.h"

int main(int nNumberofArgs, char* pszArgs[])
{
 cout << "This program calculates factorials"
 << " of user input.\n"
 << "Enter a negative number to exit" << endl;

 // stay in a loop getting input from the user
 // until he enters a negative number
 for (;;)
 {
 // enter the number to calculate the factorial of
 int nValue;

 cout << "Enter number: ";
 cin >> nValue;

 // exit if the number is negative
 if (nValue < 0)
 {
 break;
 }

 // display the result
 int nFactorial = factorial(nValue);
 cout << nValue << " factorial is "
 << nFactorial << endl;
 }

 // wait until user is ready before terminating program
 // to allow the user to see the program results
 cout << "Press Enter to continue..." << endl;
 cin.ignore(10, '\n');
 cin.get();
 return 0;
}

149 Chapter 12: Dividing Programs into Modules

This version of main.cpp looks identical to the FactorialFunction
version except that the definition of the factorial() function has been
removed and the #include "factorial.h" added.

Building the result
Now you can build the program (by selecting Build➪Build). Notice in the
output messages that the compiler now compiles two files, main.cpp and
factorial.cpp. This is then followed by a single link step.

When executed, the output from this version is indistinguishable from earlier
versions, as demonstrated by the following test output:

This program calculates factorials of user input.
Enter a negative number to exit
Enter number: 5
5 factorial is 120
Enter number: 6
6 factorial is 720
Enter number: -1
Press Enter to continue . . .

Using the Standard C++ Library
Now you can see why the standard C++ template includes the directives

#include <cstdio>
#include <cstdlib>
#include <iostream>

These include files contain the prototype declarations for functions provided
by C++ as part of its standard library of routines (like cin >>, for example).

Notice that the standard C++ library include files are included in angle brack-
ets (<>), while I included my user-defined include file in quotes (" "). The only
difference between the two is that C++ looks for files contained in quotes
starting with the “current” directory (the directory containing the project
file), while C++ begins searching for bracketed files in the C++ include file
directories.

 You can find links to C++ wiki pages at www.dummies.com/extras/
beginningprogrammingcplusplus that are a good source of information
about the functions that make up the Standard C++ Library.

http://www.dummies.com/extras/beginningprogrammingcplusplus
http://www.dummies.com/extras/beginningprogrammingcplusplus

150 Part III: Becoming a Procedural Programmer

Variable Scope
A variable is also assigned a storage type depending upon where and how it’s
defined, as shown in the following snippet:

int nGlobalVariable;
void fn()
{
 int nLocalVariable;
 static int nStaticVariable = 1;

 nStaticVariable = 2;
}

Variables defined within a function like nLocalVariable don’t exist until
control passes through the declaration. In addition, nLocalVariable is only
defined within fn() — the variable ceases to exist when control exits the
fn() function.

By comparison, the variable nGlobalVariable is created when the program
begins execution and exists as long as the program is running. All functions
have access to nGlobalVariable all the time.

 We say that nLocalVariable has local scope, and nGlobalVariable has
global scope.

The keyword static can be used to create a sort of mishling — something
between a global and a local variable. The static variable nStaticVariable
is created when execution reaches the declaration the first time that function
fn() is called. Unlike nLocalVariable, however, nStaticVariable is
not destroyed when program execution returns from the function. Instead, it
retains its value from one call to the next.

In this example, nStaticVariable is initialized to 1 the first time that fn()
is called. The function changes its value to 2. nStaticVariable retains the
value 2 on every subsequent call — it is not reinitialized once it has been cre-
ated. The initialization portion of the declaration is ignored every subsequent
time that fn() is called after the first time.

However, the scope of nStaticVariable is still local to the function. Code
outside of fn() does not have access to nStaticVariable.

Global variables are useful for holding values that you want all functions to
have access to. Static variables are most useful for counters — for example,
if you want to know how many times a function is called. However, most vari-
ables are of the plain ol’ local variety.

Chapter 13

Debugging Your Programs, Par t 2
In This Chapter
▶ Debugging a multifunction program

▶ Performing a unit test

▶ Using predefined preprocessor commands during debug

T
his chapter expands upon the debugging techniques introduced in
Chapter 8 by showing you how to create debugging functions that allow

you to navigate your errors more quickly.

C++ functions represent further opportunities both to excel and to screw up.
On the downside are the errors that are possible only when your program is
divided into multiple functions. However, dividing your programs into func-
tions allows you to examine, test, and debug each function without regard
to how the function is being used in the outside program. This allows you to
create a much more solid program.

Debugging a Dys-Functional Program
To demonstrate how dividing a program into functions can make the result
easier to read and maintain, I created a version of the SwitchCalculator
program in which the calculator operation has been split off as a separate
function (which it would have been in the first place if I had only known
about functions back then). Unfortunately, I introduced an error during the
process that didn’t show up until I performed some testing. I saved this error
as CalculatorError1:

// CalculatorError1 - the SwitchCalculator program
// but with a subtle error in it
//
#include <cstdio>
#include <cstdlib>
#include <iostream>
using namespace std;

152 Part III: Becoming a Procedural Programmer

// prototype declarations
int calculator(char cOperator, int nOper1, int nOper2);

int main(int nNumberofArgs, char* pszArgs[])
{
 // enter operand1 op operand2
 int nOper1;
 int nOper2;
 char cOperator;
 cout << "Enter 'value1 op value2'\n"
 << "where op is +, -, *, / or %:" << endl;
 cin >> nOper1 >> cOperator >> nOper2;

 // echo what the user entered followed by the
 // results of the operation
 cout << nOper1 << " "
 << cOperator << " "
 << nOper2 << " = "
 << calculator(cOperator, nOper1, nOper2)
 << endl;

 // wait until user is ready before terminating program
 // to allow the user to see the program results
 cout << "Press Enter to continue..." << endl;
 cin.ignore(10, '\n');
 cin.get();
 return 0;
}

// calculator -return the result of the cOperator
// operation performed on nOper1 and nOper2
int calculator(char cOperator, int nOper1, int nOper2)
{
 int nResult = 0;
 switch (cOperator)
 {
 case '+':
 nResult = nOper1 + nOper2;
 case '-':
 nResult = nOper1 - nOper2;
 break;
 case '*':
 case 'x':
 case 'X':
 nResult = nOper1 * nOper2;
 break;

153 Chapter 13: Debugging Your Programs, Part 2

 case '/':
 nResult = nOper1 / nOper2;
 break;
 case '%':
 nResult = nOper1 % nOper2;
 break;
 default:
 // didn't understand the operator
 cout << " is not understood";
 }
 return nResult;
}

The beginning of this program starts the same as its SwitchCalculator precur-
sor except for the addition of the prototype declaration for the newly cre-
ated calculator() function. Notice how much cleaner main() is here: It
prompts the user for input and then echoes the output along with the results
from calculator(). Very clean.

The calculator() function is also simpler than before; all it does is per-
form the computation specified by cOperator. Gone is the irrelevant code
that prompts the user for input and displays the results.

All that’s left to do is test the results.

Performing unit level testing
Breaking a program down into functions not only allows you to write your
program in pieces, but also it allows you to test each function in your pro-
gram separately. In this function version of the SwitchCalculator pro-
gram, I need to test the calculator() function by providing all possible
inputs (both legal and illegal) to the function.

First, I generate a set of test cases for calculator(). Clearly, I need a test
for each case in the switch statement. I will also need some boundary con-
ditions, such as “how does the function respond when asked to divide by
zero?” Table 13-1 outlines some of the cases I need to test.

154 Part III: Becoming a Procedural Programmer

Table 13-1 Test Cases for calculator() Showing Expected
 and Actual Results
Operator Operand1 Operand2 Expected

Result
Actual
Result

Explanation

+ 10 20 30 Simple case

- 20 10 10 Simple case

- 10 20 −10 Generate
a negative
number

* 10 20 200 Simple case

* 10 −5 −50 Try with a
negative
argument

X 10 20 200 Use the
other form
of multiply
operator

/ 20 10 2 Simple case

/ 10 0 Don’t care
as long error
generated
and program
doesn’t crash

Try to divide
by zero

% 23 10 3 Simple case

% 20 10 0 Generate a
zero result

% 23 −10 3 Try modulo
with a nega-
tive number

y 20 10 Don’t care as
long as error
generated
and program
doesn’t crash

Illegal input

155 Chapter 13: Debugging Your Programs, Part 2

It turns out that I’m lucky in this case — the calling function main() allows
me to provide any input to the function that I want. I can send each of these
test cases to calculator() without modifying the program. That isn’t usu-
ally the case — very often the function is only invoked from the main pro-
gram in certain ways. In such cases, I must write a special test module that
puts the function I’m testing through its paces by passing the various test
cases to it and recording the results.

 Why do you need to write extra debug code? What do you care if the function
doesn’t handle a case properly if that case never occurs in the program? You
care because you don’t know how the function will be used in the future. Once
written, a function tends to take on a life of its own beyond the program that
it was written for. A useful function might be used in dozens of different pro-
grams that invoke the function in all sorts of different ways that you may not
have thought of when you first wrote the function. In addition, such bugs are
often exploited by hackers.

The following shows the results for the first test case:

Enter 'value1 op value2'
where op is +, -, *, / or %:
10 + 20
10 + 20 = -10
Press Enter to continue . . .

Already something seems to be wrong. What now?

Outfitting a function for testing
Like most functions, calculator() doesn’t perform any I/O of its own. This
makes it impossible to know for sure what’s going on within the function.
I addressed this problem in Chapter 8 by adding output statements in key
places within the program. Of course, in Chapter 8, you didn’t know about
functions, but now you do.

It turns out that it’s easier to create an error function that prints out every-
thing you might want to know. You can then just copy and paste calls to this
test function in key spots. This approach is quicker and less error-prone than
making up a unique output statement for each different location.

C++ provides some help in creating and calling such debug functions. The
preprocessor defines several special symbols shown in Table 13-2.

156 Part III: Becoming a Procedural Programmer

Table 13-2 Predefined Symbols Useful in Creating
 Debug Functions
Symbol Type Value
__LINE__ int The line number within the current

source-code module

__FILE__ const
char*

The name of the current module

__DATE__ const
char*

The date that the module was
compiled (not the current date)

__TIME__ const
char*

The time that the module was com-
piled (not the current time)

__func__ const
char*

The name of the current function

__FUNCTION__ const
char*

The name of the current function
(GCC only)

__PRETTY_
FUNCTION__

const
char*

The extended name of the current
function (GCC only)

 You haven’t yet seen the type const char* (which makes its debut in
Chapter 16). For now, take my word that this is the type of a character string
contained in double quotes for example, "Stephen Davis is a great
guy" — used in the upcoming code.

You can see how the predefined preprocessor commands from Table 13-2 are
used in the following version of the calculator() function outfitted with
calls to a newly created debugger function printErr(). The following code
segment is taken from the program CalculatorError2, which is in the
online material:

void printErr(int nLN, char cOperator, int nOp1, int nOp2)
{
 cout << "On line " << nLN
 << ": \'" << cOperator
 << "\' operand 1 = " << nOp1
 << " and operand 2 = " << nOp2
 << endl;
}

// calculator -return the result of the cOperator
// operation performed on nOper1 and nOper2
int calculator(char cOperator, int nOper1, int nOper2)
{
 printErr(__LINE__, cOperator, nOper1, nOper2);

157 Chapter 13: Debugging Your Programs, Part 2

 int nResult = 0;
 switch (cOperator)
 {
 case '+':
 printErr(__LINE__, cOperator, nOper1, nOper2);
 nResult = nOper1 + nOper2;
 case '-':
 printErr(__LINE__, cOperator, nOper1, nOper2);
 nResult = nOper1 - nOper2;
 break;
 case '*':
 case 'x':
 case 'X':
 printErr(__LINE__, cOperator, nOper1, nOper2);
 nResult = nOper1 * nOper2;
 break;
 case '/':
 printErr(__LINE__, cOperator, nOper1, nOper2);
 nResult = nOper1 / nOper2;
 break;
 case '%':
 printErr(__LINE__, cOperator, nOper1, nOper2);
 nResult = nOper1 % nOper2;
 break;
 default:
 // didn't understand the operator
 cout << " is not understood";
 }
 return nResult;
}

The printErr() function displays the value of the operator and the two
operands. It also displays the line number that it was called from. The line
number is provided by the C++ preprocessor in the form of the __LINE__
symbol. Printing the line number with the error messages tells me how to dif-
ferentiate the debug output from the program’s normal output.

You can see how this works in practice by examining the output from this
newly outfitted version of the program:

Enter 'value1 op value2'
where op is +, -, *, / or %:
10 + 20
On line 50: '+' operand 1 = 10 and operand 2 = 20
On line 55: '+' operand 1 = 10 and operand 2 = 20
On line 58: '+' operand 1 = 10 and operand 2 = 20
10 + 20 = -10
Press any key to continue . . .

158 Part III: Becoming a Procedural Programmer

Figure 13-1 shows the display of the program within the Code::Blocks editor,
including the line numbers along the left side of the display.

Figure 13-1:
The view of

the cal-
culator
() function
in the Code::

Blocks
editor show-

ing the line
num bers.

Immediately after I input “10 + 20” followed by the Enter key, the program
calls the printErr() function from line 50. That’s correct because this is
the first line of the function. Checking the values, you can see that the input
appears to be correct: cOperator is ‘+’, nOper1 is 10, and nOper2 is 20 just
as you expect.

The next call to printErr() occurred from line 55, which is the first line
of the addition case, again just as expected. The values haven’t changed, so
everything seems okay.

The next line is completely unexpected. For some reason, printErr() is
being called from line 58. This is the first line of the subtraction case. For
some reason, control is falling through from the addition case directly into
the subtraction case.

And then I see it! The break statement is missing at the end of the addition
case. The program is calculating the sum correctly but then falling through
into the next case and overwriting that value with the difference.

First, I add the missing break statement. I do not remove the calls to
printErr()— there may be other bugs in the function, and I’ll just end up
putting them back. There’s no point in removing these calls until I am con-
vinced that the function is working properly.

159 Chapter 13: Debugging Your Programs, Part 2

Returning to unit test
The updated program generates the following output for the addition test case:

Enter 'value1 op value2'
where op is +, -, *, / or %:
10 + 20
On line 49: '+' operand 1 = 10 and operand 2 = 20
On line 54: '+' operand 1 = 10 and operand 2 = 20
10 + 20 = 30
Press Enter to continue . . .

This matches the expected results from Table 13-1. Continuing through the
test cases identified in this table, everything matches until I get to the case of
10 / 0 — to which I get the output shown in Figure 13-2. The output from
the printErr() shows that the input is being read properly, but the pro-
gram crashes soon after line 68.

Figure 13-2:
The

Calculator-
Error

program
terminates

with a mys-
terious error

message
when I enter

‘10 / 0’.

160 Part III: Becoming a Procedural Programmer

It’s pretty clear that the program is, in fact, dying on line 69 when it performs
division by zero. I need to add a test to intercept that case and tell the pro-
gram not to perform the division if the value of nOper2 is zero.

Of course, this begs the question: What value should I return from the func-
tion if nOper2 is zero? The “Expected Result” case in Table 13-1 says that we
don’t care what gets returned when dividing by zero as long as the program
doesn’t crash. That being the case, I decide to return 0. However, I need
to document this case in the comments to the function.

With that addition to the function, I start testing again from the top.

 You need to restart back at the beginning of your test cases each time you
modify the function.

The function generates the expected results in every case. Now I can
remove the printErr() functions. The completed calculator() func-
tion (included in the CalculatorError4 program in the online material)
appears as follows:

// calculator -return the result of the cOperator
// operation performed on nOper1 and nOper2
// (In the case of division by zero or if it
// cannot understand the operator, the
// function returns a zero.)
int calculator(char cOperator, int nOper1, int nOper2)
{
 int nResult = 0;
 switch (cOperator)
 {
 case '+':
 nResult = nOper1 + nOper2;
 break;
 case '-':
 nResult = nOper1 - nOper2;
 break;
 case '*':
 case 'x':
 case 'X':
 nResult = nOper1 * nOper2;
 break;
 case '/':
 if (nOper2 != 0)
 {
 nResult = nOper1 / nOper2;
 }

161 Chapter 13: Debugging Your Programs, Part 2

 break;
 case '%':
 nResult = nOper1 % nOper2;
 break;
 default:
 // didn't understand the operator
 cout << " is not understood";
 }
 return nResult;
}

This version of the calculator() function does not suffer from the error
that made the original version incapable of adding properly.Also, this
updated version includes a test in the division case: If nOper2, the divisor, is
zero, the function does not perform a division that would cause the program
to crash but leaves the value of nResult unchanged, as its initial value of 0.

162 Part III: Becoming a Procedural Programmer

Part IV
Data Structures

Visit www.dummies.com/extras/beginningprogrammingcplusplus for
great Dummies content online.

http://www.dummies.com/extras/beginningprogrammingcplusplus

In this part . . .
 ✓ Applying floating point variables

 ✓ Creating constant values

 ✓ Building arrays

 ✓ Declaring pointers

 ✓ Passing arguments to functions

 ✓ Creating classes and objects

 ✓ Testing with the debugger utility

 ✓ Visit www.dummies.com/extras/beginningprogramm
ingcplusplus for great Dummies content online

http://www.dummies.com/extras/beginningprogrammingcplusplus
http://www.dummies.com/extras/beginningprogrammingcplusplus

Chapter 14

Other Numerical Variable Types
In This Chapter
▶ Reviewing the limitations of integers

▶ Introducing real numbers to C++

▶ Examining the limitations of real numbers

▶ Looking at some variable types in C++

▶ Overloading function names

T
he programs so far have limited themselves to variables of type int with
just a few chars thrown in. Integers are great for most calculations —

more than 90 percent of all variables in C++ are of type int. Unfortunately,
int variables aren’t adapted to every problem. In this chapter, you see both
variations of the basic int as well as other types of intrinsic variables. An
intrinsic type is one that’s built into the language. In Chapter 19, you see how
the programmer can define her own variable types.

 Some programming languages allow you to store different types of data in the
same variable. These are called weakly typed languages. C++, by contrast, is a
strongly typed language — it requires you to declare the type of data the vari-
able is to store. A variable, once declared, cannot change its type.

The Limitations of Integers in C++
The int variable type is the C++ version of an integer. As such, int variables
suffer the same limitations as their counting integer equivalents in mathemat-
ics do.

166 Part IV: Data Structures

Integer round-off
It isn’t that an integer expression can’t result in a fractional value. It’s just
that an int has no way of storing the fractional piece. The processor lops off
the part to the right of the decimal point before storing the result. (This lop-
ping off of the fractional part of a number is called truncation.)

Consider the problem of calculating the average of three numbers. Given
three int variables — nValue1, nValue2, and nValue3 — their average is
given by the following expression:

int nAverage = (nValue1 + nValue2 + nValue3)/3;

Suppose that nValue1 equals 1, nValue2 equals 2, and nValue3 equals 2 —
the sum of this expression is 5. This means that the average is 5 /3 or either
1 2/3 or 1.666, depending upon your personal preference. But that’s not using
integer math.

Because all three variables are integers, the sum is assumed to be an integer
as well. And because 3 is also an integer, you guessed it, the entire expression
is taken to be an integer. Thus, given the same values of 1, 2, and 2, C++ will
calculate the unreasonable-but-logical result of 1 for the value of nAverage.

The problem is much worse in the following mathematically equivalent
formulation:

int nAverage = nValue1/3 + nValue2/3 + nValue3/3;

Plugging in the same values of 1, 2, and 2, the resulting value of nAverage is
now 0 (talk about logical-but-unreasonable, there it is). To see how this can
occur, consider that 1/2 truncates to 0, 2/3 truncates to 0, and 2/3 truncates
to 0. The sum of 0, 0, and 0 is (surprise!) 0.

You can see that there are times when integer truncation is completely
unacceptable.

Limited range
A second problem with the int variable type is its limited range. A normal
int can store a maximum value of 2,147,483,647 and a minimum value of
−2,147,483,648 — that’s roughly from positive 2 billion to negative 2 billion —
for a total range of 4 billion.

167 Chapter 14: Other Numerical Variable Types

 That’s on a modern PC, Mac, or other common processor. If you have a much
older machine, the int may not be nearly so expansive in its range. I will have
a little more to say about that later in this chapter.

 Two billion is a very large number — plenty big enough for most applications.
That’s why the int is useful. But it’s not large enough for some applications,
including computer technology. In fact, your computer probably executes
faster than 2 GHz (gigahertz) (2 GHz is two billion cycles per second). A single
strand of fiber cable (the kind that’s strung back and forth from one side of
the country to the other) can carry way more than 2 billion bits per second.
(I won’t even start on the number of stars in the Milky Way.)

A Type That “doubles” as a Real Number
The limitations of the int variable are unacceptable in some applications.
Fortunately, C++ understands decimal numbers that have a fractional part.
(Mathematicians call these real numbers.) In C++, decimal numbers are called
floating-point numbers or simply floats. This is because the decimal point can
float around from left to right to handle fractional values.

Floating-point variables come in two basic flavors in C++. The small variety is
declared by using the keyword float as follows:

float fValue1; // declare a floating point
float fValue2 = 1.5; // initialize it at declaration

Oddly enough, the standard floating-point variable in C++ is its larger sibling,
the double-precision floating point or simply double. You declare a double-
precision floating point as follows:

double dValue1;
double dValue2 = 1.5;

 Because the native floating-point type for C++ is the double, I generally avoid
using float. The float does take up less memory, but this is not an issue
for most applications. I stick with double for the remainder of this book. In
addition, when I say “floating-point variable,” you can assume that I’m talking
about a variable of type double.

168 Part IV: Data Structures

Solving the truncation problem
To see how the double fixes our truncation problem, consider the average of
three floating-point variables dValue1, dValue2, and dValue3 given by the
formula

double dAverage = dValue1/3.0 + dValue2/3.0 + dValue3/3.0;

Assume, once again, the initial values of 1.0, 2.0, and 2.0. This renders the
expression just given here as equivalent to

double dAverage = 1.0/3.0 + 2.0/3.0 + 2.0/3.0;

which is, in turn, equivalent to

double dAverage = 0.333... + 0.6666... + 0.6666...;

resulting in a final value of

double dAverage = 1.666...;

 I have written the preceding expressions as though there were an infinite
number of sixes after the decimal point. In fact, this isn’t the case. The
accuracy of a double is limited to about 14 significant digits. The difference
between 1.666666666666 and 1 2/3 is small, but not zero. I have more to say
about this a little later in this chapter.

When an integer is not an integer
C++ assumes that a number followed by a decimal point is a floating-point
constant. Thus it assumes that 2.5 is a floating point. This decimal-point rule
is true even if the value to the right of the decimal point is zero. Thus 3.0 is
also a floating point. The distinction between 3 and 3.0 looks small to you and
me, but not to C++.

 Actually, you don’t have to put anything to the right of the decimal point. Thus
C++ also sees 3. as a double. However, it’s considered good style to include
the 0 after the decimal point for all floating-point constants.

Computer geeks will be interested to know that the internal representations
of 3 and 3.0 are totally different (yawn). More importantly, the constant int
3 is subject to int rules, whereas 3.0 is subject to the rules of floating-point
arithmetic.

169 Chapter 14: Other Numerical Variable Types

Thus you should try to avoid expressions like the following:

double dValue = 1.0;
double dOneThird = dValue/3;

Technically this is what is known as a mixed-mode expression because
dValue is a double but 3 is an int. Okay, C++ is not a total idiot — it knows
what you want in a case like this, so it converts the 3 to a double and per-
forms floating-point arithmetic.

 There’s a name for this bit of magic: We say that C++ promotes the int 3 to a
double.

C++ also allows you to assign a floating-point result to an int variable:

int nValue = dValue / 3.0;

 Assigning a double to an int is known as a demotion.

 Some C++ compilers generate a warning when promoting a variable, but
Code::Blocks/gcc does not. All C++ compilers generate a warning (or error)
when demoting a result due to the loss of precision.

You should get in the habit of avoiding mixed-mode arithmetic. If you have to
change the type of an expression, do it explicitly by using a cast, as in the fol-
lowing example:

void fn(int nArg)
{
 // calculate one third of nArg; use a cast to
 // promote it to a floating point
 double dOneThird = (double)nArg / 3.0;

 // ...function continues on

 I am using the naming convention of starting double-precision double vari-
ables with the letter d. That is merely a convention. You can name your vari-
ables any way you like — C++ doesn’t care.

Discovering the limits of double
Floating-point variables come with their own limitations. They cannot be
used to count things, they take longer to process, they consume more
memory, and they also suffer from round-off error (though not nearly as bad
as int). Now to consider each one of these problems in turn.

170 Part IV: Data Structures

Counting
You can’t use a floating-point variable in an application where counting is
important. In C++, you can’t say that there are 7.0 characters in my first
name. Operators involved in counting don’t work on floating-point variables.
In particular, the auto-increment (++) and auto-decrement (- -) operators are
strictly verboten on double.

Calculation speed
Computers can perform integer arithmetic faster than they can do floating-
point arithmetic. Fortunately, floating-point processors have been built into
CPUs for many years now, so the difference in performance is not nearly as
significant as it once was. I wrote the following loop just as a simple example,
first using integer arithmetic:

int nValue1 = 1, nValue2 = 2, nValue3 = 2;
for (int i = 0; i < 1000000000; i++)
{
 int nAverage = (nValue1 + nValue2 + nValue3) / 3;
}

This loop took about 5 seconds to execute on my laptop. I then executed the
same loop in floating-point arithmetic:

double dValue1 = 1, dValue2 = 2, dValue3 = 2;
for (int i = 0; i < 1000000000; i++)
{
 double dAverage = (dValue1 + dValue2 + dValue3) / 3.0;
}

This look took about 21 seconds to execute on the same laptop. Calculating
an average 1 billion times in a little over 20 seconds ain’t shabby, but it’s still
four times slower than the processing time for its integer equivalent.

Consume more memory
Table 14-2 shows the amount of memory consumed by a single variable
of each type. On a PC or Macintosh, an int consumes 4 bytes, whereas
a double takes up 8 bytes. That doesn’t sound like much — and, in
fact, it isn’t — but if you had a few million of these things to keep in
memory . . . well, it still wouldn’t be much. But if you had a few hundred mil-
lion, then the difference would be considerable.

This is another way of saying that unless you need to store a heck of a lot
of objects, don’t worry about the difference in memory taken by one type
versus another. Instead, pick the variable type that meets your needs.

171 Chapter 14: Other Numerical Variable Types

If you do just happen to be programming an application that needs (say) to
manipulate the age of every human being on the planet at the same time,
then you may want to lean toward the smaller int (or one of the other inte-
ger types I discuss in this chapter) because it consumes lessmemory. (Do
you do that sort of thing often?)

Loss of accuracy
A double variable has about 16 significant digits of accuracy. Consider that a
mathematician would express the number 1/3 as 0.333..., where the ellipses
indicate that the threes go on forever. The concept of an infinite series makes
sense in mathematics, but not in computing. A computer only has a finite
amount of memory and a finite amount of accuracy. Therefore it has to round
off, which results in a tiny (but real) error.

C++ can correct for round-off error in a lot of cases. For example, on output
if a variable is 0.99999999999999, C++ will just assume that it’s really 1.0 and
display it accordingly. However, C++ can’t correct for all floating-point round-
off errors, so you need to be careful. For example, you can’t be sure that 1/3 +
1/3 + 1/3 is equal to 1.0:

double d1 = 23.0;
double d2 = d1 / 7.0;
if (d1 == (d2 * 7.0))
{
 cout << "Did we get here?" << endl;
}

You might think that this code snippet would always display the "Did
we get here?" string, but surprisingly it does not. The problem is that
23 divided by 7 cannot be expressed exactly in a floating-point number.
Something is lost. Thus d2 * 7 is very close to 23, but is not exactly equal.

Rather than looking for exact equality between two floating-point numbers,
you should be asking, “Is d2 * 7 vanishingly close to d1 in value?” You can do
that as follows:

double d1 = 23.0;
double d2 = d1 / 7.0;

// Is d2 * 7.0 within delta of d1?
double difference = (d2 * 7.0) - d1;
double delta = 0.00001;
if (difference < delta && difference > -delta)
{
 cout << "Did we get here?" << endl;
}

172 Part IV: Data Structures

This code snippet calculates the difference between d1 and d2 * 7.0. If this
difference is less than some small delta, the code calls it a day and says that
d1 and d2 * 7 are essentially equal.

Not-so-limited range
The largest number that a double can store is roughly 10 to the 38th power.
That’s a 1 with 38 zeroes after it; that eats the puny 2 billion maximum size
for an int for breakfast. That’s even more than the national debt (at least, at
the time of this writing). I’m almost embarrassed to call this a limit, but I sup-
pose there are applications where 38 zeroes aren’t enough.

 Remember that only the first 16 digits are significant. The remaining 22 digits
are noise, having already succumbed to standard floating-point round-off
error.

Variable Size — the “long”
and “short” of It

C++ allows you to expand on integer variable types by adding the following
descriptors on the front: const, unsigned, short, or else long. Thus you
could declare something like the following:

unsigned long int ulnVariable;

A const variable cannot be modified. All numbers are implicitly const.
Thus, 3 is of type const int, while 3.0 is a const double, and ‘3’ is a
const char.

An unsigned variable can take on non-negative values only; however, it
can handle a number roughly twice as large as its signed sibling. Thus an
unsigned int has a range of 0 to 4 billion (as opposed to the regular
signed int’s range of −2 billion to 2 billion).

C++ allows you to declare a short int and a long int. For example, a
short int takes less space but has a more limited range than a regular int,
whereas a long int takes more storage and has a significantly larger range.

 The int is assumed. Thus the following two declarations are both accepted
and completely equivalent:

long int lnVar1; // declare a long int
long lnVar2; // also a long int; int is assumed

173 Chapter 14: Other Numerical Variable Types

 The C++ 2011 Standard even defines a long long int and a long double.
These are just like long int and double, respectively, only more so — more
accuracy and larger range.

Not all combinations are allowed. For example, unsigned can be applied
only to the counting types int and char. Table 14-1 shows the legal combi-
nations and their meaning, along with how to declare a constant of that type.

Table 14-1 The Common C++ Variable Types
Type Declaring a

Constant
What It Is

int 1 A simple counting number, either posi-
tive or negative.

unsigned
int

1U A non-negative counting number.

short int --- A potentially smaller version of the
int. It uses less memory but has a
more limited range.

long int 1L A potentially larger version of the
int. It may use more memory but
has a larger range. There is no differ-
ence between long and int on the
Code::Blocks/gcc compiler.

long long
int

1LL A version of the int that is potentially
even larger.

float 1.0F A single-precision real number.

double 1.0 A double-precision real number.
long
double

--- A potentially larger floating-point
number. On the PC, long double is
the native size for numbers internal to
the numeric processor.

char ‘c’ A single char variable stores a single
character. Not suitable for arithmetic.

wchar_t L’c’ A wide character. Used to store larger
character sets such as Chinese ideo-
grams and Japanese kanji symbols.
Also known as UTF or Unicode.

174 Part IV: Data Structures

How far do numbers range?
It may seem odd, but the C++ standard doesn’t actually say exactly how big
a number each data type can accommodate. The standard addresses only
the relative size of each variable type. For example, it says that the maximum
long int is at least as large as the maximum int. (The 2011 standard says
a little bit more than that — for example, a long int must be at least 32
bits — but it still doesn’t specify the size of every variable type.)

The authors of C++ weren’t trying to be mysterious. They wanted to allow
the compiler to implement the absolute fastest code possible for the base
machine. The standard was designed to work for all different types of proces-
sors, running different operating systems.

In fact, the standard size of an int has changed over the past decades.
Before 2000, the standard int on most PCs was 2 bytes and had a range of
plus or minus 64,000. Some time around 2000, the basic word size on the Intel
processors changed to 32 bits. Most compilers changed to the default int of
today — it’s 4 bytes and has a range of plus or minus 2 billion.

Table 14-2 provides the size and range of each variable type on the
Code::Blocks/gcc compiler (and most other compilers meant for an Intel pro-
cessor running on a 32-bit operating system).

Table 14-2 Range of Numeric Types in Code::Blocks/gcc
Type Size

[bytes]
Accuracy Range

short int 2 exact −32,768 to 32,767

int 4 exact −2,147,483,648 to 2,147,483,647

long int 4 exact −2,147,483,648 to 2,147,483,647
long long
int

8 exact −9,223,372,036,854,775,808 to
9,223,372,036,854,775,807

float 4 7 digits +/− 3.4028 * 10+/-38

double 8 16 digits +/− 1.7977 * 10+/-308

long
double

12 19 digits +/−1.1897 * 10+/-4932

Attempting to calculate a number that is beyond the range of a variable’s
type is known as an overflow. The C++ standard generally leaves the results of
an overflow undefined. That’s another way that the inventors of C++ wanted
to leave the language flexible so that the machine code generated would be
as fast as possible.

175 Chapter 14: Other Numerical Variable Types

 On the PC, a floating-point overflow generates an exception that, if not
handled, will cause your program to crash. (For more about exception han-
dling, refer to Chapter 32.) As bad as that sounds, an integer overflow is even
worse — C++ generates an incorrect result without complaint.

Types of Constants
Here’s where the const declaration (mentioned earlier in this chapter and
again in Table 14-1) rears its head again. I’d like to take a minute to expand
upon constants.

A constant value is an explicit number or character such as 1 or 0.5 or ‘c’.

 ✓ Constant values cannot be changed; that is, they cannot appear on the
left-hand side of an assignment statement.

 ✓ Every constant value has a type. The type of 1 is const int. The type
of 0.5 is const double.

Table 14-1 explains how to declare constant values with different types. For
example, 1L is of type const long.

A variable can be declared constant using the const keyword:

const double PI = 3.14159; // declare a constant variable

A const variable must be initialized when it is declared since you will not get
another chance in the future — just like a constant value, a const variable
cannot appear on the left-hand side of an assignment statement.

 It is common practice to declare const variables using all capitals. Multiple
words within a variable name are divided by an underscore as in TWO_PI. As
always, this is just convention — C++ doesn’t care.

It may seem odd to declare a variable and then say that it can’t be changed.
Why bother? Largely because a carefully named constant can make a pro-
gram a lot easier to understand. Consider the following two equivalent
expressions:

double dC = 6.28318 * dR; // what does this mean?
double dCircumference = TWO_PI * dRadius; // this is a lot
 // easier to understand

176 Part IV: Data Structures

It should be a lot clearer to the reader of this code that the second expres-
sion is multiplying the radius by 2π to calculate the circumference.

The 2011 C++ standard allows you to specify the type of a variable from the
type of the initialization value. To do this, declare the variable with the key-
word auto rather than with a type:

long function();

auto nIntVar = 1;
auto lLongVar = function();
auto dVar = 1.0;

Here the variable nIntVar is declared to be an int because 1 is an int.
Similarly, lLongVar is a long because function() is declared as returned
a long.

Notice that the type of the initialization value must be known at compile time
and once declared, the type of the variable is fixed; you can’t change it later.

Passing Different Types to Functions
Floating-point variables and variables of different size are passed to function
in the same way that int variables are as demonstrated in the following code
snippet. This example snippet passes the value of the variable dArg along
with the const double 0.0 to the function maximumFloat().

// maximumFloat - return the larger of two floating
// point arguments
double maximumFloat(double d1, double d2)
{
 if (d1 > d2)
 {
 return d1;
 }
 return d2;
}

void otherFunction()
{
 double dArg = 1.0;
 double dNonNegative = maximumFloat(dArg, 0.0);
 // ...function continues...

I discuss functions in Chapter 11.

177 Chapter 14: Other Numerical Variable Types

Overloading function names
The type of the arguments are part of the extended name of the function. Thus
the full name of the earlier example function is maximumFloat(double,
double). In Chapter 11, you see how to differentiate between two functions by
the number of arguments. You can also differentiate between two functions by
the type of the arguments, as shown in the following example:

double maximum(double d1, double2);
int maximum(int n1, int n2);

When you do the declaration this way, it’s clear that the call maximum(1, 2)
refers to maximum(int, int), while the call maximum(3.0, 4.0) refers
to maximum(double, double).

 Defining functions that have the same name but different arguments is called
function overloading.

You can differentiate by the signedness and length as well:

int maximum(int n1, int n2);
long maximum(long l1, long l2);
unsigned maximum(unsigned un1, unsigned un2);

Fortunately, this is rarely necessary in practice.

Mixed-mode overloading
The rules can get really weird when the arguments in the call don’t line up
exactly with the declarations. Consider the following example code snippet:

double maximum(double d1, double d2);
int maximum(int n1, int n2);

void otherFunction()
{
 // which function is invoked by the following?
 double dNonNegative = maximum(dArg, 0);
 // ...function continues...

Here the arguments don’t line up exactly with either declaration. There is no
maximum(double, int). C++ could reasonably take any one of the follow-
ing three options:

 ✓ Promote the 0 to a double and call maximum(double, double).

 ✓ Demote the double to an int and invoke maximum(int, int).

 ✓ Throw up its electronic hands and report a compiler error.

178 Part IV: Data Structures

The general rule is that C++ will promote arguments in order to find a match
but will not automatically demote an argument. However, you can’t always
count on this rule. In this particular case, Code::Blocks generates an error
that says the call is ambiguous. That is, the third option wins.

My advice is to not rely on C++ to figure out what you mean; instead, make
the necessary conversions explicit:

void otherFunction(int nArg1, double dArg2)
{
 // use an explicit cast to make sure that the
 // proper function is called
 double dNonNegative = maximum((double)nArg1, dArg2);

Now it’s clear that I mean to call maximum(double, double).

const arguments are a constant problem
Since C++ passes the value of the argument, you cannot differentiate by const-ness. Consider
the following call to see why:

double maximum(double d1, double d2);

void otherFunction()
{
 double dArg = 2.0;
 double dNonNegative = maximum(dArg, 0.0);

In this case, what actually gets passed to maximum() are the values 2.0 and 0.0. The maximum()
function can’t tell whether these values came from a variable like dArg or a constant like 0.0.

You can declare the arguments of a function to be const. Such a declaration means that you
cannot change the argument’s value within the function. This is demonstrated in the following
implementation of maximum(double, double):

double maximum(const double d1, const double d2)
{
 double dResult = d1;
 if (d2 > dResult)
 {
 dResult = d2;
 }

 // the following would be illegal
 d1 = 0.0; d2 = 0.0

 return dResult;
}

179 Chapter 14: Other Numerical Variable Types

The assignment to d1 and d2 is not allowed because both have been declared const and there-
fore are not changeable.

What is not legal is the following:

// these two functions are not different enough to be distinguished
double maximum(double d1, double d2);
double maximum(const double d1, const double d2);

void otherFunction()
{
 double dArg = 2.0;

 // C++ doesn't know which one of the above functions to call
 double dNonNegative = maximum(dArg, 0.0);

Here C++ has no way of differentiating between the two when you make the call. I have more to
say about const arguments in Chapter 17.

180 Part IV: Data Structures

Chapter 15

Arrays
In This Chapter
▶ Expanding simple variables into an array

▶ Comparing the array to a rental car lot

▶ Indexing into an array

▶ Initializing an array

T
he variables declared so far have been of different types with different
sizes and capabilities. Even so, each variable has been capable of hold-

ing only a single value at a time. If I wanted to hold three numbers, I had to
declare three different variables. The problem is that there are times when I
want to hold a set of numbers that are somehow closely related. Storing them
in variables with names that bear some similarity of spelling such as nArg1,
nArg2, and so on may create associations in my mind but not for poor, igno-
rant C++.

There is another class of variable known as the array that can hold a series
of values. Arrays are the subject of this chapter and the next chapter. (Here I
present arrays in general. In the next chapter, I look at the particular case of
the character array.)

What Is an Array?
 If you are mathematically inclined and were introduced to the concept of the

array in high school or college, you may want to skim this section.

You may think of a variable as a truck. There are small trucks, like a short
int, capable of holding only a small value; and there are larger trucks, like
a long double, capable of holding astoundingly large numbers. However,
each of these trucks can hold only a single value.

182 Part IV: Data Structures

Each truck has a unique designator. Perhaps you give your vehicles names,
but even if you don’t, each has a license plate that uniquely describes each of
your vehicles, at least within a given state.

This works fine for a single family. Even the largest families don’t have so
many cars that this arrangement gets confusing. But think about an auto
rental agency. What if they referred to their cars solely by a license plate
number or some other ID? (Boy, just thinking about that Hertz!)

After filling out the myriad forms — including deciding whether I want the
full insurance coverage and whether I’m too lazy to fill it up with gas before I
bring it back — the guy behind the counter says, “Your car is QZX123.” Upon
leaving the building and walking to the parking lot, I look over a sea of cars
that rival a Wal-Mart parking lot. Exactly where is QZX123?

That’s why the guy behind the counter actually says something quite differ-
ent. He says something like, “Your car is in slot B11.” This means that I am
to skip past row A directly to row B and then start scanning down the line
for the eleventh car from the end. The numbers are generally painted on the
pavement to help me out, but even if they weren’t visible, I could probably
figure out which car he meant.

Several things have to be true in order for this system to work:

 ✓ The slots have to be numbered in order (B2 follows B1 and comes imme-
diately before B3), ideally with no breaks or jumps in the sequence.

 ✓ Each slot is designed to hold a car (a given parking slot may be empty,
but the point is that I would never find a house in a parking slot).

 ✓ The slots are equally spaced (being equally spaced means that I can
jump ahead and guess about where B50 is without walking along from B1
through B49, checking each one).

That’s pretty much the way arrays work. I can give a series of numbers a
single name. I refer to individual numbers within the series by index. So the
variable x may refer to a whole series of whole numbers, x(1) would be the
first number in the series, x(2) the second, and so on in sequence, just like
the cars at the rental agency.

Declaring an Array
To declare an array in C++, you must provide the name, type, and number of
elements in the array. The syntax is as follows:

int nScores[100];

183 Chapter 15: Arrays

This declares an array of 100 integers and gives them the name nScores.

 It’s common practice to use the same naming convention for arrays as for non-
arrays — but to use the plural form. That makes sense because nScores
refers to 100 integer values.

Indexing into an Array
You must provide an index to access a specific element within the array. An
index must be a counting type (such as int), as demonstrated here:

nScores[11] = 10;

This is akin to the way that rental cars are numbered. However, unlike humans,
C++ starts with 0 when numbering its arrays. Thus the first score in the array
nScores is nScores[0].

So how does this work exactly? Well, return to the rental car lot one more
time (for the last time, I promise). Figure 15-1 shows how rental cars are typi-
cally numbered in their parking lots. The first car in row B carries the desig-
nation B1. To find B11, I simply move my gaze ten cars to the right.

Figure 15-1:
Cars in a

rental car lot
are typically

numbered
sequentially
starting with

1 to make
them easier

to find.

C++ does a similar thing. To execute the statement nScores[11] = 10, C++
starts with the address of the first element in nScores. It then moves to the
right 11 spaces and stores a 10 at that location. This is shown graphically in
Figure 15-2. (I say a lot more about what it means to “take the address of the
first element” in the next three chapters. Please just accept the statement
for now.)

184 Part IV: Data Structures

Figure 15-2:
C++

 calculates
the location

 of
nScores
[11] by

moving over
11 int slots

from the
beginning

of the
nScores

 array.

 The fact that C++ starts counting at zero leads to a point that always confuses
beginners. The statement

int nScores[100];

declares 100 scores, which are numbered from 0 to 99. The expression

nScores[100] = 0; // this is an error

zeroes out the first element beyond the end of the array. The last element in
the array is nScores[99]. The C++ compiler will not catch this error and
will happily access this non-element, which very often leads to the program
accessing some other variable by mistake. This type of error is very hard to
find because the results are so unpredictable.

Looking at an Example
The following example averages a set of scores and then displays that aver-
age. However, unlike earlier demonstrations, this program retains the scores’
input in an array that it can then output along with the average.

//
// ArrayDemo - demonstrate the use of an array
// to accumulate a sequence of numbers
//
#include <cstdio>
#include <cstdlib>
#include <iostream>

185 Chapter 15: Arrays

using namespace std;

// displayArray - displays the contents of the array
// of values of length nCount
void displayArray(int nValues[100], int nCount)
{
 for(int i = 0; i < nCount; i++)
 {
 cout.width(3);
 cout << i << " - " << nValues[i] << endl;
 }
}

// averageArray - averages the contents of an array
// of values of length nCount
int averageArray(int nValues[100], int nCount)
{
 int nSum = 0;
 for(int i = 0; i < nCount; i++)
 {
 nSum += nValues[i];
 }
 return nSum / nCount;
}

int main(int nNumberofArgs, char* pszArgs[])
{
 int nScores[100];
 int nCount;

 // prompt the user for input
 cout << "This program averages a set of scores\n"
 << "Enter scores to average\n"
 << "(enter a negative value to terminate input"
 << endl;
 for(nCount = 0; nCount < 100; nCount++)
 {
 cout << "Next: ";
 cin >> nScores[nCount];
 if (nScores[nCount] < 0)
 {
 break;
 }
 }

186 Part IV: Data Structures

 // now output the results
 cout << "Input terminated." << endl;
 cout << "Input data:" << endl;
 displayArray(nScores, nCount);
 cout << "The average is "
 << averageArray(nScores, nCount)
 << endl;

 // wait until user is ready before terminating program
 // to allow the user to see the program results
 cout << "Press Enter to continue..." << endl;
 cin.ignore(10, '\n');
 cin.get();
 return 0;
}

This program starts at the beginning of main() by prompting the user for
a series of integer values. The program saves each of the numbers that the
user inputs into the array nScores in a loop. The program exits the loop as
soon as the user enters a negative number.

 Notice that this program keeps track of the number of values entered in the
variable nCount. The program will exit the loop after 100 entries, whether or
not the user enters a negative number — because that’s all the room the pro-
gram has for storing values. You should always make sure that you don’t over-
run the end of an array.

Once the user has either entered a negative value or 100 values in a row,
the program exits the loop. Now the nScores array contains all of the num-
bers entered, and nCount contains a count of the number of values that are
stored in the array.

The program then calls the function displayArray() to echo to the user
the values entered. Finally, the function averageArray() returns the integer
average of the numbers entered.

The displayAverage() function iterates through the values in the array
passed it, displaying each value in turn. The averageArray() function
works by also iterating through the array nValues, accumulating the sum of
the array’s elements in a local variable nSum. The function returns nSum /
nCount, which is the average of the values in nValues.

187 Chapter 15: Arrays

In practice, the output of the program appears as follows:

This program averages a set of scores
Enter scores to average
(enter a negative value to terminate input
Next: 10
Next: 20
Next: 30
Next: 40
Next: 50
Next: -1
Input terminated.
Input data:
 0 - 10
 1 - 20
 2 - 30
 3 - 40
 4 - 50
The average is 30
Press Enter to continue . . .

Initializing an Array
Like any other variable, an array starts out with an indeterminate value if you
don’t initialize it. The only difference is that unlike a simple variable, which
contains only one undetermined value, an array starts out with a whole lot of
unknown values:

int nScores[100]; // none of the values in nScores
 // known until you initialize them

You can initialize the elements of an array with a loop as follows:

int nScores[100]; // declare the array and then...
for (int i = 0; i < 100; i++) // ...initialize it
{
 nScores[i] = 0;
}

You can also initialize an array when you declare it by including the initial
values in braces after the declaration. For a small array, this is easy:

int nCount[5] = {0, 1, 2, 3, 4};

188 Part IV: Data Structures

Here I initialized the value of nCount[0] to 0, nCount[1] to 1, nCount[2]
to 2, and so on. If there are more elements than numbers in the list, C++ pads
the list with zeros. Thus, in the following case:

int nCount[5] = {1};

the first element (nCount[0]) is set to 1. Every other element gets initialized
to zero. You can use this approach to initialize a large array to zero as well:

int nScores[100] = {0};

This not only declares the array but initializes every element in the array
to zero.

By the same token, you don’t have to provide an array size if you have an ini-
tializer list — C++ will just count the number of elements in the list and make
the array that size:

int nCount[] = {1, 2, 3, 4, 5};

This declares nCount to be 5 elements large because that’s how many values
there are in the initializer list.

 Arrays are useful for holding small to moderate amounts of data. (Really large
amounts of data require a database of some sort.) By far, the most common
type of array is the character array, which is the subject of the next chapter.

Chapter 16

Arrays with Character
In This Chapter
▶ Introducing the null-terminated character array

▶ Creating an ASCIIZ array variable

▶ Examining two example ASCIIZ manipulation programs

▶ Reviewing some of the most common built-in ASCIIZ library functions

I
n Chapter 15, which introduces the concept of arrays, the example pro-
gram collects values into an integer array, which is then passed to a func-

tion to display and to a separate function to average. However, as useful as
an array of integers might be, far and away the most common type of array
is the character array. Specifically something known as the ASCIIZ character
array, which is the subject of this chapter.

The ASCII-Zero Character Array
Arrays have an inherent problem: You can never know, just by looking at
the array, how many values are actually stored in it. Knowing the size of an
array is not enough. That tells you how many values the array can hold, not
how many it actually does hold. The difference is like the difference between
how much gas your car’s tank can hold and how much gas it actually has.
Even if your tank holds 20 gallons, you still need a gas gauge to tell you how
much is in it.

For a specific example, the ArrayDemo program in Chapter 15 allocates
enough room in nScores for 100 integers, but that doesn’t mean the user
actually entered that many. He might have entered a lot fewer.

There are essentially two ways of keeping track of the amount of data in
an array:

190 Part IV: Data Structures

 ✓ Keep a count of the number of values in a separate int variable. This
is the technique used by the ArrayDemo program. The code that reads
the user input keeps track of the number of entries in nCount. The only
problem is that the program has to pass nCount along to every function
to which it has passed the nScores array. The array isn’t useful without
knowledge of how many values it stores.

 ✓ Use a special value in the array as an indicator of the last element
used. By convention, this is the technique used for character arrays
in C++.

Take a look at the table of legal ASCII characters in Chapter 5. You’ll notice
that one character in particular is not a legal character: ‘\0’. This character
is also known as the null character. It’s the character with a numerical value
of zero. A program can use the null character as the end of a string of char-
acters. The null character has no purpose other than signaling the end of a
character array. The user can never enter a null character. This means that
you don’t have to pass a separate count variable around — you can always
tell the end of the string by looking for a null.

The designers of C and C++ liked this feature so well that they settled on it as
the standard for character strings. They even gave it a name: the ASCII-zero
array or ASCIIZ for short.

The null character has another advantageous property. It is the only charac-
ter whose value is considered false in a comparison expression (such as in
a loop or an if statement).

 Remember from Chapter 9 that 0 or null is considered false. All other
values evaluate to true.

This makes writing loops that manipulate ASCIIZ strings even easier, as you
see in the following examples.

Declaring and Initializing
an ASCIIZ Array

I could declare an ASCIIZ character array containing my first name as follows:

char szMyName[8] = {'S', 't', 'e', 'p',
 'h', 'e', 'n', '\0'};

191 Chapter 16: Arrays with Character

Actually, the 8 is redundant. C++ is smart enough to count the number of
characters in the initialization string and just make the array that big. Thus
the following is completely equivalent to the previous example:

char szMyName[] = {'S', 't', 'e', 'p',
 'h', 'e', 'n', '\0'};

The only problem with this is that it’s awfully clumsy. I have to type a lot
more than just the seven characters that make up my name. (I had to type
about five keystrokes for every character in my name — that’s a lot of over-
head.) ASCIIZ strings are so common in C++ that the language provides a
shorthand option:

char szMyName[] = "Stephen";

These two initialization statements are completely equivalent. In fact, a string
contained in double quotes is nothing more than an array of constant charac-
ters terminated with a null.

 The string "Stephen" consists of eight characters — don’t forget to count
the terminating null.

Looking at an Example
Let’s take the simple case of displaying a string. You know by now that C++
understands how to display ASCIIZ strings just fine, but suppose it didn’t.
What would a function designed to display a string look like? The following
DisplayASCIIZ program shows one example:

//
// DisplayASCIIZ - display an ASCIIZ string one character
// at a time as an example of ASCIIZ
// manipulation
//
#include <cstdio>
#include <cstdlib>
#include <iostream>
using namespace std;

192 Part IV: Data Structures

// displayString - display an ASCIIZ string one character
// at a time
void displayString(char szString[])
{
 for(int index = 0; szString[index] != '\0'; index++)
 {
 cout << szString[index];
 }
}

int main(int nNumberofArgs, char* pszArgs[])
{
 char szName1[] = {'S', 't', 'e', 'p',
 'h', 'e', 'n', '\0'};
 char szName2[] = "Stephen";

 cout << "Output szName1: ";
 displayString(szName1);
 cout << endl;

 cout << "Output szName2: ";
 displayString(szName2);
 cout << endl;

 // wait until user is ready before terminating program
 // to allow the user to see the program results
 cout << "Press Enter to continue..." << endl;
 cin.ignore(10, '\n');
 cin.get();
 return 0;
}

The displayString() function is the key to this demonstration program.
This function iterates through the array of characters passed to it using the
variable index. However, rather than rely on a separate variable containing
the number of characters in the array, this function loops until the character
at szString[index] is the null character, '\0'. As long as the current
character is not a null character, the loop outputs it to the display.

The main() function creates two versions of my name, first using dis-
crete characters for szName1 and then a second time using the shortcut
"Stephen" for szName2. The function then displays both strings, using the
displayString() function both to show that the function works and to
demonstrate the equivalence of the two strings.

193 Chapter 16: Arrays with Character

The output from the program appears as follows:

Output szName1: Stephen
Output szName2: Stephen
Press Enter to continue . . .

Notice that szName1 and szName2 display identically (since they are the
same).

Looking at a More Detailed Example
Displaying a string of characters is fairly simple. What about a slightly tougher
example? The following program concatenates two strings that it reads from
the keyboard.

Constant character problems
Technically "Stephen" is not of type char[], that is, “array of characters” — it’s of type
const char[], that is, “array of constant characters.” The difference is that you cannot modify
the characters in an array of constant characters. Thus you could do the following:

 char cT = "Stephen"[1]; // fetch the second character, the
't'

But you could not modify it by putting it on the left-hand side of an equal sign:

"Stephen"[1] = 'x'; // replace the 't' with an 'x'

This pickiness about const doesn’t normally make a difference, but it can cause C++ conster-
nation when declaring arguments to a function. For example, in the DisplayASCIIZ demo
program, I could not say displayString("Stephen") because displayString() is
declared to accept an array of characters (char[]), where "Stephen" is an array of const
characters (const char[]).

I can solve this problem by simply declaring displayString() as follows:

void displayString(const char szString[]);

The function works because displayString() never tries to modify the szString array
passed to it.

Don’t worry if this discussion of const versus non-const variables leaves you confused — you’ll
get another chance to see this in action in Chapter 18.

194 Part IV: Data Structures

 To concatenate two strings means to tack one onto the end of the other. For
example, the result of concatenating "abc" with "DEF" is "abcDEF".

Before you examine the program, think about how you could go about con-
catenating a string, call it szSource, onto the end of another one called
szTarget.

First, you need to find the end of the szTarget string (see the top of
Figure 16-1). Once you’ve done that, you copy characters from szSource one
at a time into szTarget until you reach the end of the szSource string (as
demonstrated at the bottom of Figure 16-1). Make sure that the result has a
final null on the end, and you’re done.

Figure 16-1:
To concat-
enate, the

function
must (a)
find the

terminating
null of the
target string,
and then (b)

copy char-
acters from
the source

to the target
until reach-

ing the
terminating
null on

the source.

That’s exactly how the concatenateString() function works in the
ConcatenateString example program.

//
// ConcatenateString - demonstrate the manipulation of
// ASCIIZ strings by implementing a
// concatenate function
//
#include <cstdio>
#include <cstdlib>
#include <iostream>

195 Chapter 16: Arrays with Character

using namespace std;

// concatenateString - concatenate one string onto the
// end of another
void concatenateString(char szTarget[],
 const char szSource[])
{
 // first find the end of the target string
 int nT;
 for(nT = 0; szTarget[nT] != '\0'; nT++)
 {
 }

 // now copy the contents of the source string into
 // the target string, beginning at 'nT'
 for(int nS = 0; szSource[nS] != '\0'; nT++, nS++)
 {
 szTarget[nT] = szSource[nS];
 }

 // add the terminator to szTarget
 szTarget[nT] = '\0';
}

int main(int nNumberofArgs, char* pszArgs[])
{
 // Prompt user
 cout << "This program accepts two strings\n"
 << "from the keyboard and outputs them\n"
 << "concatenated together.\n" << endl;

 // input two strings
 cout << "Enter first string: ";
 char szString1[256];
 cin.getline(szString1, 256);

 cout << "Enter the second string: ";
 char szString2[256];
 cin.getline(szString2, 256);

 // now concatenate one onto the end of the other
 cout << "Concatenate first string onto the second"
 << endl;
 concatenateString(szString1, szString2);

 // and display the result
 cout << "Result: <"
 << szString1
 << ">" << endl;

196 Part IV: Data Structures

 // wait until user is ready before terminating program
 // to allow the user to see the program results
 cout << "Press Enter to continue..." << endl;
 cin.ignore(10, '\n');
 cin.get();
 return 0;
}

The concatenateString() function accepts two strings, szTarget and
szSource. Its goal is to tack szSource onto the end of szTarget.

 The function assumes that the szTarget array is large enough to hold both
strings tacked together. It has no way of checking to make sure that there is
enough room. (More about that a little later in this chapter.)

 Notice that the target argument is passed first and the source second. This
sequence may seem backwards, but it really doesn’t matter — either argument
can be the source or the target. It’s just a C++ convention that the target goes
first.

In the first for loop, the function iterates through szTarget by increment-
ing the index nT until szTarget[nT] == ’\0’, that is, until nT points to
the terminating null character. This corresponds to the situation at the top
of Figure 16-1.

The function then enters a second loop in which it copies each character
from szSource into szTarget starting at nT and moving forward. This cor-
responds to the bottom of Figure 16-1.

This example shows a situation when using the comma operator in a for
loop is justified.

Since the for loop terminates before it copies the terminating null from
szSource, the function must add the terminating null onto the result
before returning.

The main() program prompts the user to enter two strings, each terminated
with a newline. The program then concatenates the two strings by calling the
new concatenateString() function and displays the results.

The expression cin >> string; stops inputting at the first white space.
The getline() function used in the example program reads input from the
keyboard just like cin >> string;, but it reads an entire line up to the new-
line at the end. It does not include the newline in the character string that it
returns. Don’t worry about the strange syntax of the call to getline() — I
cover that in Chapter 23.

197 Chapter 16: Arrays with Character

The results of a sample run of the program appear as follows:

This program accepts two strings
from the keyboard and outputs them
concatenated together.

Enter first string: String 1
Enter the second string: STRING 2
Concatenate first string onto the second
Result: <String 1STRING 2>
Press Enter to continue . . .

 Note that the second argument to concatenateString() is actually declared
to be a const char[] (pronounced “array of constant characters”). That’s
because the function does not modify the source string. Declaring it to be an
array of constant characters allows you to call the function passing it a con-
stant string as in the following call:

concatenateString(szString, "The End");

Foiling hackers
How does the concatenateString() function in the earlier example pro-
gram know whether there’s enough room in szTarget to hold both the
source and target strings concatenated together? The answer is simple: It
doesn’t.

This is a serious bug. If a user entered enough characters before pressing
Enter, he could overwrite large sections of data or even code. In fact, this
type of fixed-buffer overwrite bug is one of the ways that hackers gain control
of PCs through a browser to plant virus code.

In the following corrected version, concatenateString() accepts an addi-
tional argument: the size of the szTarget array. The function checks the
index nT against this number to make sure that it does not write beyond the
end of the target array.

The program appears as ConcatenateNString in the online material:

// concatenateString - concatenate one string onto the
// end of another (don't write beyond
// nTargetSize)
void concatenateString(char szTarget[],
 int nTargetSize,
 const char szSource[])

198 Part IV: Data Structures

{
 // first find the end of the target string
 int nT;
 for(nT = 0; szTarget[nT] != '\0'; nT++)
 {
 }

 // now copy the contents of the source string into
 // the target string, beginning at 'nT' but don't
 // write beyond the nTargetSize'th element (- 1 to
 // leave room for the terminating null)
 for(int nS = 0;
 nT < (nTargetSize - 1) && szSource[nS] != '\0';
 nT++, nS++)
 {
 szTarget[nT] = szSource[nS];
 }

 // add the terminator to szTarget
 szTarget[nT] = '\0';
}

The first part of the function starts out exactly the same, incrementing
through szTarget looking for the terminating null. The difference is in the
second loop. This for loop includes two terminating conditions. Control
exits the loop if either of the following is true:

 ✓ szSource[nS] is the null character, meaning that you’ve gotten to the
final character in szSource.

 ✓ nT is greater than or equal to nTargetSize - 1 meaning that you’ve
exhausted the space available in szTarget (- 1 because you have to
leave room for the terminating null at the end).

This extra check is irritating but necessary to avoid overrunning the array
and producing a program that can crash in strange and mysterious ways.

Do I Really Have to Do All That Work?
C++ doesn’t provide much help with manipulating strings in the language
itself. Fortunately, the standard library includes a number of functions for
manipulating these strings that save you the trouble of writing them yourself.
Table 16-1 shows the most common of these functions.

199 Chapter 16: Arrays with Character

Table 16-1 Common ASCIIZ String Manipulation Functions
Function Description
isalpha(char c) Returns a true if the character is alphabetic

(‘A’ through ‘Z’ or ‘a’ through ‘z’).

isdigit(char c) Returns a true if the character is a digit (‘0’
through ‘9’).

isupper(char c) Returns a true if the character is an upper-
case alphabetic.

islower(char c) Returns a true if the character is a lowercase
alphabetic.

isprint(char c) Returns a true if the character is printable.

isspace(char c) Returns a true if the character is a form of
white space (space, tab, newline, and so on).

strlen(char s[]) Returns the number of characters in a string
(not including the terminating null).

strcmp(char s1[],
 char s2[])

Compares two strings. Returns 0 if the strings
are identical. Returns a 1 if the first string
occurs later in the dictionary than the second.
Returns a −1 otherwise.

strncpy(char
target[],
 char source[],
 int size)

Copies the source string into the target string
but not more than ‘size’ characters.

strncat(char
target[],
 char source[],
 int size)

Concatenates the source string onto the end
of the target string for a total of not more than
‘size’ characters.

tolower(char c) Returns the lowercase version of the character
passed to it. Returns the current character if
it is already lowercase or has no uppercase
equivalent (as a digit does not).

toupper(char c) Returns the uppercase version of the character
passed to it.

200 Part IV: Data Structures

The following example program uses the toupper() function to convert a
string entered by the user into all caps:

//
// ToUpper - convert a string input by the user to all
// upper case.
//
#include <cstdio>
#include <cstdlib>
#include <iostream>
using namespace std;

// toUpper - convert every character in an ASCIIZ string
// to uppercase
void toUpper(char szTarget[], int nTargetSize)
{
 for(int nT = 0;
 nT < (nTargetSize - 1) && szTarget[nT] != '\0';
 nT++)
 {
 szTarget[nT] = toupper(szTarget[nT]);
 }
}

int main(int nNumberofArgs, char* pszArgs[])
{
 // Prompt user
 cout << "This program accepts a string\n"
 << "from the keyboard and echoes the\n"
 << "string in all caps.\n" << endl;

 // input two strings
 cout << "Enter string: ";
 char szString[256];
 cin.getline(szString, 256);

 // now convert the string to all uppercase
 toUpper(szString, 256);

 // and display the result
 cout << "All caps version: <"
 << szString
 << ">" << endl;

 // wait until user is ready before terminating program
 // to allow the user to see the program results
 cout << "Press Enter to continue..." << endl;
 cin.ignore(10, '\n');
 cin.get();
 return 0;
}

201 Chapter 16: Arrays with Character

The toUpper() function follows a pattern that will quickly become old hat
for you: It loops through each element in the ASCIIZ string using a for loop.
The loop terminates if either the size of the string is exhausted or the pro-
gram reaches the terminating null character.

The function passes each character in the string to the standard C++ library
toupper() function. It stores the character returned by the function by put-
ting it back into the character array.

 It’s not necessary to test first by using islower() to make sure that the char-
acter is lowercase.Both the tolower() and the toupper() functions return
the character passed to them if the character has no lower- or uppercase
equivalent.

The main() function simply prompts the user to enter a string. The program
reads the input string by calling getline(). It then converts whatever it
reads to uppercase by calling toUpper() and then displays the results.

The following shows the results of a sample run:

This program accepts a string
from the keyboard and echoes the
string in all caps.

Enter string: This is a string 123!@#.
All caps version: <THIS IS A STRING 123!@#.>
Press Enter to continue . . .

Notice that the input string includes uppercase characters, lowercase charac-
ters, digits, and symbols. The lowercase characters are converted to upper-
case in the output string, but the uppercase characters, digits, and symbols
are unchanged.

This chapter shows how to handle ASCIIZ strings as a special case of charac-
ter arrays. In practice, however, many standard functions rely on something
known as a pointer; the next two chapters detail how pointers work. Then I
return to these same example functions and implement them using pointers
to demonstrate the elegance of the pointer solution.

202 Part IV: Data Structures

Chapter 17

Pointing the Way to C++ Pointers
In This Chapter
▶ Introducing the concept of pointer variables

▶ Declaring and initializing a pointer

▶ Using pointers to pass arguments by reference

▶ Allocating variable-sized arrays from the heap

T
his chapter introduces the powerful concept of pointers. By that I don’t
mean specially trained dogs that point at birds but rather variables that

point at other variables in memory. I start with an explanation of computer
addressing, before getting into the details of declaring and using pointer vari-
ables. This chapter wraps up with a discussion of something known as the
heap and how we can use it to solve a problem that I slyly introduced in the
last chapter.

But don’t think the fun is over when this chapter ends. The next chapter
takes the concept of pointers one step further. In fact, in one way or another,
pointers will reappear in almost every remaining chapter of this book.

 It may take you a while before you get comfortable with the concept of pointer
variables. Don’t get discouraged. You may have to read through this chapter
and the next a few times before you grasp all the subtleties.

What’s a Pointer?
A pointer is a variable that contains the address of another variable in the
computer’s internal memory. Before you can get a handle on that statement,
you need to understand how computers address memory.

 The details of computer addressing on the Intel processor in your PC or
Macintosh are quite complicated and much more involved than you need
to worry about in this book. I use a very simplified memory model in these
discussions.

204 Part IV: Data Structures

Every piece of random-access memory (RAM) has its own, unique address.
For most computers, including Macintoshes and PCs, the smallest address-
able piece of memory is a byte.

 A byte is 8 bits and corresponds to a variable of type char.

An address in memory is exactly like an address of a house, or would be if
the following conditions were true:

 ✓ Every house is numbered in order.

 ✓ There are no skipped or duplicated numbers.

 ✓ The entire city consists of one long street.

So, for example, the address of a particular byte of memory might be 0x1000.
The next byte after that would have an address of 0x1001. The byte before
would be at 0x0FFF.

 I don’t know why, but, by convention, memory addresses are always
expressed in hexadecimal. Maybe it’s so that non-programmers will think that
computer addressing is really complicated.

Declaring a Pointer
A char variable is designed to hold an ASCII character, an int an integer
number, and a double a floating-point number. Similarly, a pointer variable is
designed to hold a memory address. You declare a pointer variable by adding
an asterisk (*) to the end of the type of the object that the pointer points at,
as in the following example:

char* pChar; // pointer to a character
int* pInt; // pointer to an int

A pointer variable that has not otherwise been initialized contains an unknown
value. Using the ampersand (&) operator, you can initialize a pointer variable
with the address of a variable of the same type:

char cSomeChar = 'a';
char* pChar;
pChar = &cSomeChar;

In this snippet, the variable cSomeChar has some address. For argument’s
sake, let’s say that C++ assigned it the address 0x1000. (C++ also initialized
that location with the character 'a'.) The variable pChar also has a loca-
tion of its own, perhaps 0x1004. The value of the expression &cSomeChar is

205 Chapter 17: Pointing the Way to C++ Pointers

0x1000, and its type is char* (read “pointer to char”). So the assignment on
the third line of the snippet example stores the value 0x1000 in the variable
pChar. This is shown graphically in Figure 17-1.

Figure 17-1:
The layout

of cSome-
Char and
pChar in

memory
after their

declaration
and initial-
ization, as

described in
the text.

Take a minute to really understand the relationship between the figure and
the three lines of C++ code in the snippet. The first declaration says, “go out
and find a 1-byte location in memory, assign it the name cSomeChar, and ini-
tialize it to 'a'.” In this example, C++ picked the location 0x1000.

The next line says, “go out and find a location large enough to hold the
address of a char variable and assign it the name pChar.” In this example,
C++ assigned pChar to the location 0x1004.

 In Code::Blocks, all addresses are 4 bytes in length irrespective of the size of
the object being pointed at — a pointer to a char is the same size as a pointer
to a double. The real world is similar — the address of a house looks the
same no matter how large the house is.

The third line says, “assign the address of cSomeChar (0x1000) to the vari-
able pChar.” Figure 17-1 represents the state of the program after these three
statements.

“So what?” you say. Here comes the really cool part, as demonstrated in the
following expression:

*pChar = 'b';

This line says, “store a 'b' at the char location pointed at by pChar.” This
is demonstrated in Figure 17-2. To execute this expression, C++ first retrieves
the value stored in pChar (that would be 0x1000). It then stores the charac-
ter 'b' at that location.

206 Part IV: Data Structures

Figure 17-2:
The steps

involved in
executing
*pChar
= 'b'.

 The * when used as a binary operator means “multiply”; when used as a unary
operator, * means “find the thing pointed at by.” Similarly & has a meaning as a
binary operator (though I didn’t discuss it), but as a unary operator, it means
“take the address of.”

So what’s so exciting about that? After all, I could achieve the same effect by
simply assigning a 'b' to cSomeChar directly:

cSomeChar = 'b';

Why go through the intermediate step of retrieving its address in memory?
Because there are several problems that can be solved only with pointers. I
discuss two common ones in this chapter. Subsequent chapters describe a
number of problems that are solved most easily with pointers.

Passing Arguments to a Function
There are two ways to pass arguments to a function: either by value or by ref-
erence. Now, consider both in turn.

Passing arguments by value
In Chapter 11, I write that arguments are passed to functions by value, mean-
ing that it is the value of the variable that gets passed to the function and not
the variable itself.

The implications of this become clear in the following snippet (taken from
the PassByReference example program in the online material):

207 Chapter 17: Pointing the Way to C++ Pointers

void fn(int nArg1, int nArg2)
{
 // modify the value of the arguments
 nArg1 = 10;
 nArg2 = 20;
}

int main(int nNumberofArgs, char* pszArgs[])
{
 // initialize two variables and display their values
 int nValue1 = 1;
 int nValue2 = 2;

 // now try to modify them by calling a function
 fn(nValue1, nValue2);

 // what is the value of nValue1 and nValue2 now?
 cout << "nValue1 = " << nValue1 << endl;
 cout << "nValue2 = " << nValue2 << endl;

 return 0;
}

This program declares two variables, nValue1 and nValue2, initializes them
to some known value, and then passes their value to a function fn(). This
function changes the value of its arguments and simply returns 0.

Question: What is the value of nValue1 and nValue2 in main() after
the control returns from fn()?

Answer: The value of nValue1 and nValue2 remain unchanged at 1 and
2, respectively.

To understand why, examine carefully how C++ handles memory in the call to
fn(). C++ stores local variables (such as nValue1 and nValue2) in a special
area of memory known as the stack. Upon entry into the function, C++ figures
out how much stack memory the function will require, and then reserves that
amount. Say, for argument’s sake, that in this example, the stack memory
carved out for main() starts at location 0x1000 and extends to 0x101F. In this
case, nValue1 might be at location 0x1000 and nValue2 at location 0x1004.

 An int takes up 4 bytes in Code::Blocks. See Chapter 14 for details.

As part of making the call to fn(), C++ first stores the values of each argu-
ment on the stack — starting at the rightmost argument and working its way
to the left.

 The last thing that C++ stores as part of making the call is the return address
so that the function knows where to return to after it is complete.

208 Part IV: Data Structures

For reasons that have more to do with the internal workings of the CPU, the
stack “grows downward,” meaning that the memory used by fn() will have
addresses smaller than 0x1000. Figure 17-3 shows the state of memory at the
point that the computer processor reaches the first statement in fn(). C++
stored the second argument to the function at location 0x0FF4 and the first
argument at 0x0FF0.

 Remember that this is just a possible layout of memory. I don’t know (or care)
that any of these are in fact the actual addresses used by C++ in this or any
other function call.

Figure 17-3:
A possible

layout of
memory

immediately
after enter-

ing the
function

fn(int,
int).

The function fn(int, int) contains two statements:

nArg1 = 10;
nArg2 = 20;

Figure 17-4 shows the contents of memory immediately after these two state-
ments are executed. Pretty simple, really — the value of nArg1 has changed
to 10 and nArg2 to 20, just as you would expect. The main point of this dem-
onstration, however, is to show that changing the value of nArg1 and nArg2
has no effect on the original variables back at nValue1 and nValue2.

209 Chapter 17: Pointing the Way to C++ Pointers

Figure 17-4:
The same

memory
locations

immediately
prior to
return-

ing from
fn(int,

int).

Passing arguments by reference
So what if I wanted the changes made by fn() to be permanent? I could do
this by passing not the value of the variables but their address. This is dem-
onstrated by the following snippet (also taken from the PassByReference
example program):

// fn(int*, int*) - this function takes its arguments
// by reference
void fn(int* pnArg1, int* pnArg2)
{
 // modify the value of the arguments
 *pnArg1 = 10;
 *pnArg2 = 20;
}

int main(int nNumberofArgs, char* pszArgs[])
{
 // initialize two variables and display their values
 int nValue1 = 1;
 int nValue2 = 2;

 fn(&nValue1, &nValue2);

 return 0;
}

210 Part IV: Data Structures

Notice first that the arguments to fn() are now declared not to be integers
but pointers to integers. The call to fn(int*, int*) passes not the values
of the variables nValue1 and nValue2 but their addresses.

 In this example, the value of the expression &nValue1 is 0x1000, and the type
is int* (which is pronounced “pointer to int”).

The state of memory upon entry into this function is shown in Figure 17-5.

Figure 17-5:
The content

of memory
after the

call to fn
(int*,
 int*).

The function fn(int*, int*) now stores its values at the locations to
which its arguments point:

*pnArg1 = 10;
*pnArg2 = 20;

This first statement says “store the value 10 at the int location passed to me
in the argument pnArg1.” This stores a 10 at location 0x1000, which happens
to be the variable nValue1. This is demonstrated graphically in Figure 17-6.

211 Chapter 17: Pointing the Way to C++ Pointers

Figure 17-6:
The content

memory
immediately

prior to
return-

ing from
fn(int*,

int*).

Putting it together
The complete PassByReference program appears as follows:

//
// PassByReference - demonstrate passing arguments to a
// function both by value and by
// reference.
//
#include <cstdio>
#include <cstdlib>
#include <iostream>
using namespace std;

// fn(int, int) - demonstrate a function that takes two
// arguments and modifies their value
void fn(int nArg1, int nArg2)
{
 // modify the value of the arguments
 nArg1 = 10;
 nArg2 = 20;
}

// fn(int*, int*) - this function takes its arguments
// by reference

212 Part IV: Data Structures

void fn(int* pnArg1, int* pnArg2)
{
 // modify the value of the arguments
 *pnArg1 = 10;
 *pnArg2 = 20;
}

int main(int nNumberofArgs, char* pszArgs[])
{
 // initialize two variables and display their values
 int nValue1 = 1;
 int nValue2 = 2;
 cout << "The value of nArg1 is " << nValue1 << endl;
 cout << "The value of nArg2 is " << nValue2 << endl;

 // now try to modify them by calling a function
 cout << "Calling fn(int, int)" << endl;
 fn(nValue1, nValue2);
 cout << "Returned from fn(int, int)" << endl;
 cout << "The value of nArg1 is " << nValue1 << endl;
 cout << "The value of nArg2 is " << nValue2 << endl;

 // try again by calling a function that takes
 // addresses as arguments
 cout << "Calling fn(int*, int*)" << endl;
 fn(&nValue1, &nValue2);
 cout << "Returned from fn(int*, int*)" << endl;
 cout << "The value of nArg1 is " << nValue1 << endl;
 cout << "The value of nArg2 is " << nValue2 << endl;

 // wait until user is ready before terminating program
 // to allow the user to see the program results
 cout << "Press Enter to continue..." << endl;
 cin.ignore(10, '\n');
 cin.get();
 return 0;
}

The following is the output from this program:

The value of nArg1 is 1
The value of nArg2 is 2
Calling fn(int, int)
Returned from fn(int, int)
The value of nArg1 is 1
The value of nArg2 is 2
Calling fn(int*, int*)
Returned from fn(int*, int*)
The value of nArg1 is 10
The value of nArg2 is 20
Press Enter to continue . . .

213 Chapter 17: Pointing the Way to C++ Pointers

This program declares the variables nValue1 and nValue2 and initializes
them to 1 and 2, respectively. The program then displays their value just to
make sure. Next, the program calls the fn(int, int), passing the value of
the two variables. That function modifies the value of its arguments, but this
has no effect on nValue1 and nValue2 as demonstrated by the fact that
their value is unchanged after control returns to main().

The second call passes not the values of nValue1 and nValue2 but their
addresses to the function fn(int*, int*). This time, the changes to
pnArg1 and pnArg2 are retained even after control returns to main().

Notice that there is no confusion between the overloaded functions
fn(int, int) and fn(int*, int*). The types of the arguments are
easily distin guished.

Reference argument types
C++ provides a second way to pass arguments by reference: C++ allows
 variables — including arguments to functions — to be declared referential,
as follows:

void fn2(int& rnArg1, int& rnArg2)
{
 rnArg1 = 10;
 rnArg2 = 20;
}

int nValue1 = 1;
int nValue2 = 2;
fn2(nValue1, nValue2); // called just like fn(int, int)

// the values of nValue1 and nValue2 are now 10 and 20

The int& declares rnArg1 and rnArg2 to be references to int. Calling
fn2() actually passes the address of nValue1 and nValue2 but C++ handles
the pointer manipulation for you behind the curtains. Changes in fn2(int&,
int&) are retained in the calling function.

The program PassByReference2 contained in the online material demon-
strates a version of pass by reference, using the reference variable type.

 The reference is not part of the type. Therefore you cannot overload two func-
tions that differ only insofar as one uses pass by value and the the other uses
pass by reference:

// the following two functions cannot be differentiated
// since they are called the same way
void fn(int nArg1, int nArg2);
void fn(int& nArg1, int& nArg2);

214 Part IV: Data Structures

So why mess with pointer variables when the referential declaration can
handle it all for you? The fact is that I recommend that beginning program-
mers avoid using referential variable types — C++ may be handling the
pointer work for you, but you still have to understand what C++ is doing
for you under the covers. Without a firm understanding of pointer types,
the beginner has a hard time understanding errors generated by referential
declarations.

Playing with Heaps of Memory
One of the problems addressed in Chapter 16 was that of fixed-size arrays.
For example, the concatenate() function concatenated two ASCIIZ strings
into a single string. However, the function had to be careful not to overrun
the target array in case the array didn’t have enough room to hold the com-
bined string. This problem would have gone away if concatenate() could
have allocated a new array that was guaranteed to be large enough to hold
the concatenated string.

That’s a great idea, but how big should I make this target array — 256 bytes,
512 bytes? There’s no right answer, because there’s no way to know at com-
pile time how to make the target array big enough to hold all possible concat-
enated strings. You can’t know for sure until runtime how much memory you
will need.

Do you really need a new keyword?
C++ provides an extra area in memory just for this purpose, known by the
somewhat cryptic name of the heap. A programmer can allocate any amount
of memory off of the heap by using the keyword new, as in the following
example snippet:

char* pArray = new char[256];

This example carves a block of memory large enough to hold 256 characters
off of the heap. The new keyword returns a pointer to the newly created
array. Unlike other variables, heap memory is not allocated until runtime,
which means the array size is not limited to constants that are determined at
compile time — they can also be variables that are computed at runtime.

215 Chapter 17: Pointing the Way to C++ Pointers

 It may seem odd that the argument to new is an array while what is returned
is a pointer. (I have a lot more to say about the relationship between pointers
and arrays in the next chapter.) Consider that I could have said something like
the following:

int nSizeOfArray = someFunction();
char* pArray = new char[nSizeOfArray];

Here the size of the array is computed by someFunction(). Obviously this
computation can’t occur until the program is actually executing. Whatever
value someFunction() returns is used as the size of the array to be allo-
cated in the next statement.

A more practical example is the following code snippet that makes a copy of
an ASCIIZ string (assuming you consider copying a string as practical):

int nLength = strlen(pszString) + 1;
char* pszCopy = new char[nLength];
strncpy(pszCopy, nLength, pszString);

The first statement calls the string function strlen(), which returns the
length of the string passed it not including the terminating null character.
The + 1 adds room for the terminating null. The next statement allocates
room for the copy off of the heap. Finally, the third statement uses the string
function strncpy() to copy the contents of pszString into pszCopy. By
calculating how big an array you need to store the copy, you are guaranteed
that pszCopy is large enough to hold the entire string.

Don’t forget to clean up after yourself
Allocating memory off of the heap is a neat feature, but it has one very big
danger in C++: If you allocate memory off of the heap, you must remember to
return it to the heap when you’re done using it.

You return memory to the heap by using the delete keyword, as in the
following:

char* pArray = new char[256];

// ...use the memory all you want...

// now return the memory block to the heap
delete[] pArray;
pArray = nullptr;

216 Part IV: Data Structures

The delete[] keyword accepts a pointer to an array that has been passed
to you from the new keyword and restores that memory to the heap.

 Use delete[] to return an array. Use delete (without the open and closed
brackets) when returning a single object to the heap.

If you don’t return heap memory when you are done with it, your program
will slowly consume memory and eventually slow down more and more
as the operating system tries to fulfill its apparently insatiable gluttony.
Eventually, the program will come to a halt when the OS can no longer satisfy
its requests for memory.

Returning the same memory to the heap twice is not quite as bad: Doing so
causes the program to crash almost immediately. It’s considered good pro-
gramming practice to zero out a pointer, using the keyword nullptr, once
you’ve deleted the memory block that it points to. You do this for two very
good reasons:

 ✓ Deleting a pointer that contains a nullptr has no effect.

 ✓ nullptr is never a valid address. Trying to access memory at the
nullptr location will always cause your program to crash immediately,
which will tip you off that there’s a problem and make it a lot easier to find.

 You don’t have to delete memory if your program will exit soon — all heap
memory is restored to the operating system when a program terminates.
However, returning memory that you allocate off the heap is a very good habit
to get into.

 The keyword nullptr was added by the 2011 C++ standard. If your compiler
does not support nullptr, use 0 instead.

Looking at an example
The following ConcatenateHeap program is a version of the concatenate()
function that allocates its memory from off the heap:

//
// ConcatenateHeap - similar to ConcatenateString except
// this version stores the concatenated
// string in memory allocated from the
// heap so that we are guaranteed
// that the target array is always
// large enough
//

217 Chapter 17: Pointing the Way to C++ Pointers

#include <cstdio>
#include <cstdlib>
#include <iostream>
#include <cstring>
using namespace std;

// concatenateString - concatenate two strings together
// into an array allocated off of the
// heap
char* concatenateString(const char szSrc1[],
 const char szSrc2[])
{
 // allocate an array of sufficient length
 int nTargetSize = strlen(szSrc1) + strlen(szSrc2) + 1;
 char* pszTarget = new char[nTargetSize];

 // first copy the first string into the target
 int nT;
 for(nT = 0; szSrc1[nT] != '\0'; nT++)
 {
 pszTarget[nT] = szSrc1[nT];
 }

 // now copy the contents of the second string onto
 // the end of the first
 for(int nS = 0; szSrc2[nS] != '\0'; nT++, nS++)
 {
 pszTarget[nT] = szSrc2[nS];
 }

 // add the terminator to szTarget
 pszTarget[nT] = '\0';

 // return the results to the caller
 return pszTarget;
}

int main(int nNumberofArgs, char* pszArgs[])
{
 // Prompt user
 cout << "This program accepts two strings\n"
 << "from the keyboard and outputs them\n"
 << "concatenated together.\n" << endl;

 // input two strings
 cout << "Enter first string: ";
 char szString1[256];
 cin.getline(szString1, 256);

 cout << "Enter the second string: ";
 char szString2[256];
 cin.getline(szString2, 256);

218 Part IV: Data Structures

 // now concatenate one onto the end of the other
 cout << "Concatentate second string onto the first"
 << endl;
 char* pszT = concatenateString(szString1, szString2);

 // and display the result
 cout << "Result: <"
 << pszT
 << ">" << endl;

 // return the memory to the heap
 delete[] pszT;
 pszT = nullptr;

 // wait until user is ready before terminating program
 // to allow the user to see the program results
 cout << "Press Enter to continue..." << endl;
 cin.ignore(10, '\n');
 cin.get();
 return 0;
}

This program includes the #include file cstring to gain access to the
strlen() function. The concatenateString() function is similar to the
earlier versions, except that it returns the address of a block of heap memory
containing the concatenated string rather than modify either of the strings
passed to it.

 Declaring the arguments as const means that the function promises not to
modify them. This allows the function to be called with a const string as in
the following snippet:

char* pFullName = concatenateString("Mr. ", pszName);

The string "Mr. " is a const character array in the same sense that 1 is a
const integer.

The first statement within concatenateString() calculates the size of the
target array by calling strlen() on both source strings and adding 1 for the
terminating null.

The next statement allocates an array of that size from off the heap, using the
new keyword.

219 Chapter 17: Pointing the Way to C++ Pointers

The two for loops work exactly like those in the earlier concatenate exam-
ples by copying first szSrc1 and then szSrc2 into the pszTarget array
before tacking on the final terminating null.

The function then returns the address of the pszTarget array to the caller.

The main() function works the same as in the earlier Concatenate program
by prompting the user for two strings and then displaying the concatenated
result. The only difference is that this version returns the pointer returned by
concatenateString() to the heap before terminating by executing the fol-
lowing snippet:

delete[] pszT;
pszT = nullptr;

The output from running this program is indistinguishable from its earlier
cousins:

This program accepts two strings
from the keyboard and outputs them
concatenated together.

Enter first string: this is a string
Enter the second string: THIS IS ALSO A STRING
Concatentate second string onto the first
Result: <this is a stringTHIS IS ALSO A STRING>
Press Enter to continue . . .

The subject of C++ pointers is too vast to be handled in a single chapter. The
next chapter examines the relationship between arrays and pointers, a topic I
admittedly glossed over in the final example programs in this chapter.

220 Part IV: Data Structures

Chapter 18

Taking a Second Look
at C++ Pointers

In This Chapter
▶ Defining operations on a pointer

▶ Comparing pointer addition with indexing an array

▶ Extending arithmetic to different types of pointers

▶ Sorting out constant pointers from pointers to constants

▶ Reading the arguments to a program

C
hapter 17 introduces the concept of a pointer variable as a variable
designed to contain the address of another variable, and even suggests

a couple of uses for pointer variables. However, you’ve only begun to see
the myriad ways that pointer variables can be used to do some pretty cool
stuff — and really confuse you at times as well.

This chapter examines carefully the relationship between pointers and
arrays, a topic that I brush over in the previous chapter.

Pointers and Arrays
Some of the same operators applicable to integers are applicable to pointer
types. This section examines the implications of this to pointers and to the
array types studied so far.

222 Part IV: Data Structures

Operations on pointers
Table 18-1 lists the fundamental operations that are defined on pointers.

Table 18-1 The Operations Defined on Pointer Type Variables
Operation Result Meaning
pointer + offset
pointer - offset

pointer Calculate the address of the object
offset entries from the pointer

pointer++
++pointer
pointer--
--pointer

pointer Move the pointer over one entry

pointer2 -
pointer1

offset Calculate the number of entries
between pointer2 and pointer1

Although not listed in Table 18-1, operations that are related to addition and
subtraction, such as pointer += offset, are also defined.

The simple memory model used to explain pointers in Chapter 17 will
work here to explain how these operations work. Consider an array of
32 one-byte characters called cArray. If the first byte of this array is
stored at address 0x1000, then the last location will be at 0x101F. While
cArray[0] will be at 0x1000, cArray[1] will be at 0x1001, cArray[2]
at 0x1002, and so forth.

Now assume a pointer pArray is located at location 0x1100. After executing
the expression

pArray = &cArray[0];

the pointer pArray will contain the value 0x1000 (see Figure 18-1). By the
way, you read this as “pArray gets the address of cArray sub 0.”

223 Chapter 18: Taking a Second Look at C++ Pointers

Figure 18-1:
After the

assignment
pArray =
&cArray-

[0] the
pointer

pArray
points to the

beginning
of the array
cArray.

Adding a value n to pArray generates the address of cArray[n]. For exam-
ple, consider the case where n equals 2. In that case, pArray + 2 generates
the address 0x1002, which is the address of cArray[2]. This correspon-
dence is demonstrated in Table 18-2. Figure 18-2 shows this graphically.

Table 18-2 The Correspondence between Pointer Offsets
 and Array Elements
Offset Result Corresponds to...
+ 0 0x1000 cArray[0]

+ 1 0x1001 cArray[1]

+ 2 0x1002 cArray[2]

...

+ n 0x1000 + n cArray[n]

224 Part IV: Data Structures

Figure 18-2:
If pArray

points to the
beginning of
cArray,

then
pArray

+ 2
points to

cArray-
[2].

Pointer addition versus indexing
into an array
I claim that

pArray = &cArray[0];
*(pArray + 2) = 'c';

is the same as

cArray[2] = 'c';

Before you can respond to this claim, I need to explain how to read the first
code snippet. Take it one step at a time. You already know to read the first
expression: pArray = &cArray[0] means “pArray gets the address of
cArray sub 0.”

225 Chapter 18: Taking a Second Look at C++ Pointers

To interpret the second expression, remember that pArray + 2 generates
the value 0x1002, and it is of type char*. *(pArray + 2) on the left-hand
side of an assignment operator says, “store a ’c’ in the char pointed at by
pArray + 2.” This is demonstrated graphically in Figure 18-3.

Figure 18-3:
The

expression
*(pArray
+ 2) =

'c' stores
a 'c' in

cArray-
[2].

 The parentheses around *(pArray + 2) are necessary because unary *
has higher precedence than addition. The expression *pArray + 2 retrieves
the character pointed at by pArray and adds 2 to it. Adding the parentheses
forces the addition to occur first and the unary operator to be applied to the
result.

In fact (here comes the kicker), the correspondence between the two forms
of expression is so strong that C++ considers cArray[n] nothing more than
shorthand for *(pArray + n) where pArray points to the first element in
cArray:

cArray[n] is interpreted as *(&cArray[0] + n)

226 Part IV: Data Structures

To complete this association, C++ takes another shortcut by making the
second, following interpretation:

cArray is interpreted as &cArray[0]

That is, an array name when it appears without a subscript is interpreted as
the address of the first element of the array; thus the following:

cArray[n] is interpreted as *(cArray + n)

In fact, the C++ compiler considers the expression on the left nothing more
than some human shorthand for the expression on the right.

So, if I can treat the name of an array as though it were a pointer (which it is,
by the way), can I use the index operator on pointer variables? Absolutely.
Thus the following is perfectly legal:

char cArray[256];
char* pArray = cArray;
pArray[2] = 'c';

That is how I can write expressions like the following (as in Chapter 17):

int nTargetSize = strlen(szSrc1) + strlen(szSrc2) + 1;
char* pszTarget = new char[nTargetSize];

// first copy the first string into the target
int nT;
for(nT = 0; szSrc1[nT] != '\0'; nT++)
{
 pszTarget[nT] = szSrc1[nT];
}

The variable pszTarget is declared as char* (read “pointer to a char”)
because that’s what new char[nTargetSize] returns. The subsequent
for loop assigns values to elements in this array using the expression
pszTarget[nT], which is the same as accessing char elements pointed at
by pszTarget + nT.

 By the way, the psz prefix is the naming convention for “pointer to an ASCIIZ
string.” An ASCIIZ string is a character array that ends with a terminating null
character.

227 Chapter 18: Taking a Second Look at C++ Pointers

Using the pointer increment operator
The following is what you might call the pointer arithmetic version of the
concatenateString() function from the ConcatenateHeap program from
Chapter 17. This version is part of the program ConcatenatePtr in the
online material.

 In fact, you deal with pointer arithmetic in Chapter 17 as well but that pointer
arithmetic is written using array indexing.

C++ programmers love their pointers. The following explicit pointer version
of concatenateString() is much more common than the array index ver-
sion in Chapter 17:

// concatenateString - concatenate two strings together
// into an array allocated off of the
// heap
char* concatenateString(const char* pszSrc1,
 const char* pszSrc2)
{
 // allocate an array of sufficient length
 int nTargetSize = strlen(pszSrc1)+strlen(pszSrc2)+1;
 char* pszTarget = new char[nTargetSize];

 // first copy the first string into the target
 char* pszT = pszTarget;
 for(; *pszSrc1 != '\0'; pszT++, pszSrc1++)
 {
 *pszT = *pszSrc1;
 }

 // now copy the contents of the second string onto
 // the end of the first
 for(; *pszSrc2 != '\0'; pszT++, pszSrc2++)
 {
 *pszT = *pszSrc2;
 }

 // add the terminator to szTarget
 *pszT = '\0';

 // return the unmodified address of the array
 // to the caller
 return pszTarget;
}

228 Part IV: Data Structures

This version of concatenateString() starts out exactly like the earlier
ConcatenateHeap version from Chapter 17. The difference between this ver-
sion and its predecessor lies in the two for loops. The version in Chapter 17
leaves the pointer to the target array, pszTarget, unchanged — and
increments an index into that array.

The version that appears here skips the intermediate step of incrementing an
index and simply increments the pointer itself. First, it checks to make sure
that pszSrc1 doesn’t already point to the null character that indicates the
end of the source character string. If not, the assignment within the for loop

*pszT = *pszSrc1;

says to retrieve the character pointed at by pszSrc1 and store it in the loca-
tion to which pszT points. This is demonstrated graphically in Figure 18-4.

Figure 18-4:
The

expression
*pszT =
*pszSrc1

copies the
character

pointed at by
pszSrc1
to the loca-
tion pointed
at by pszT.

The increment clause of the for loop

pszT++, pszSrc1++

229 Chapter 18: Taking a Second Look at C++ Pointers

increments both the source pointer, pszSrc1, and the target pointer, pszT,
to the next character in the source and destination arrays. This is demon-
strated by Figure 18-5.

Figure 18-5:
The incre-

ment clause
of the for
loop incre-
ments both
source and
destination

pointers
to the next
location in
the array.

The remainder of the program is identical to its Chapter 17 predecessor, and
the results from executing the program are identical as well:

This program accepts two strings
from the keyboard and outputs them
concatenated together.

Enter first string: this is a string
Enter the second string: SO IS THIS
Concatentate first string onto the second
Result: <this is a stringSO IS THIS>
Press Enter to continue . . .

230 Part IV: Data Structures

Why bother with array pointers?
The sometimes-cryptic nature of using pointers to manipulate character
strings might lead the reader to wonder, “Why do it that way?” That is, what
advantage does the char* pointer version of concatenateString() have
over the easier-to-read index version?

Note: “Easier-to-read” is a matter of taste. To a seasoned C++ programmer,
the pointer version is just as easy to fathom as the index version.

The answer is partially historic and partially a matter of human nature. As
complicated as it might appear to the human reader, a statement such as
*pszT = *pszSrc1 can be converted into an amazingly small number
of machine instructions. Older computer processors weren’t very fast by
today’s standards. When C, the progenitor of C++, was introduced to the
world some 45 years ago, saving time by saving a few computer instruc-
tions was a big deal. Pointer arithmetic gave C a big advantage over other
languages of the day, notably Fortran, which did not offer pointer arithmetic.
This single feature, more than any other, advanced C (and later C++) over its
competitors.

In addition, programmers like to generate clever program statements to
combat the boredom of what can be a repetitive job. Once C++ programmers
learn how to write compact and cryptic-but-efficient statements, there’s no
getting them back to scanning arrays with indices.

 Don’t fall into the trap of cramming as much as you can into a single C++ state-
ment, thinking that a few C++ source statements will generate fewer machine
instructions that will, therefore, execute faster. In the old days, when compil-
ers were simpler, that may have worked, but today there’s no obvious rela-
tionship between the number of C++ instructions and the number of machine
instructions generated. For example, the expression

*pszT++ = '\0';

does not necessarily generate machine instructions that are any different
from those that come from the following expression (which is both easier to
read and easier to debug):

*pszT = '\0';
pszT++;

Today’s optimizing compilers generate minimal amounts of code.

231 Chapter 18: Taking a Second Look at C++ Pointers

Operations on Different
Pointer Types

It’s not too hard to convince yourself that pszTarget + n points to
pszTarget[n] when each element in the array is 1 byte in length as is
the case for char strings. After all, if cArray is located at 0x1000, then
cArray[5] must be at 0x1005.

It is not so obvious that pointer addition works for arrays of objects other
than 1-byte characters. Consider an array nArray of ints. Since an int
occupies 4 bytes in Code::Blocks/gcc, if nArray is located at 0x1000, then
nArray[5] will be located at 0x1000 + (5 * 4) or 0x1014.

 Hexadecimal 0x14 is equal to 20 decimal.

Fortunately for us, in C++, array + n points to array[n] no matter how
large a single element of array might be. C++ makes the necessary conver-
sions to ensure that this relationship is true.

Constant Nags
Chapter 14 introduced the concept of const variables. For example, the
following

const double PI = 3.14159;

declares a constant variable PI. Constant variables must be initialized when
created and cannot be changed later, as with numbers like 2 and 3.14159.

The concept of const-ness can be applied to pointers as well, but the ques-
tion is, where does the const keyword go? Consider the following three dec-
larations. Which of these are legal?

const char* pszArray1;
char const* pszArray2;
char* const pszArray3;

232 Part IV: Data Structures

It turns out all three are legal, but one of them has a different meaning from
the other two. The first two variables, pszArray1 and pszArray2, are both
pointers to constant char arrays. This means you can modify the pointers,
but you cannot modify the characters that they point at. Thus the following
is legal:

pszArray1 = new char[128]; // this is OK

The following, however, is not:

(*pszArray1) = 'a'; // not legal

By comparison, pszArray3 is a constant pointer to a char array. In this
case, you cannot change the pointer once it has been declared. Therefore you
must initialize it when it’s declared (since you won’t get a chance to do that
later), as in the following:

char* const pszArray3 = new char[128];

Once the pointer is declared, the following is not legal:

pszArray3 = pszArray1; // not legal - you
 // can't change pszArray3

But you can change the characters that it points to, like this:

char* const pszArray3 = new char[128];
(*pszArray3) = 'a'; // legal

A single pointer can both be a constant and point to constant characters:

const char* const pszMyName = "Stephen";

The value of this pointer cannot be changed, nor can the characters that it
points to.

 As a beginning programmer, do you really need to worry about all these con-
stant declarations? The answer is, “Sometimes.” You’ll get a warning if you do
the following:

char* pszMyName = "Stephen";

233 Chapter 18: Taking a Second Look at C++ Pointers

because you could conceivably try to modify my name by putting *pszMyName
(or the equivalent pszMyName[n]) on the left-hand side of an assignment
operator. The proper declaration is

const char* pszMyName = "Stephen";

Differences Between Pointers
and Arrays

With all the similarities, one might be tempted to turn the question around
and ask, “What’s the difference between a pointer and the address of an
array?” There are basically two differences:

 ✓ An array allocates space for the objects; a pointer does not.

 ✓ A pointer allocates space for the address; an array does not.

Consider these two declarations:

int nArray[128];
int* pnPtr;

Both nArray and pnPtr are of type pointer to int, but nArray also allo-
cates space for 128 int objects, whereas pnPtr does not. You can consider
nArray to be a constant address in the same way that 3 is a constant int.
You can no more put nArray on the left-hand side of an assignment than you
can 3. The following is not allowed:

nArray = pnPtr; // not allowed

Thus pnPtr is of type int*, whereas nArray is actually of type int* const.

My main() Arguments
Now you’ve come far enough to learn the last secret of the program template
that you’ve been using: What are the arguments to main()?

int main(int nNumberOfArgs, char* pszArgs[])

234 Part IV: Data Structures

These point to the arguments of the program. The first argument is the
number of arguments to the program, including the name of the program
itself. The second argument is an array of pointers to the ASCIIZ character
strings that represent the arguments themselves. Arrays of pointers? What?

Arrays of pointers
If a pointer can point to an array, then it seems only fitting that the reverse
should be true as well. Arrays of pointers are a type of array of particular
interest.

The following declares an array of ten pointers to integers:

int* pInt[10];

Given this declaration, then pInt[0] is a pointer to an integer. The follow-
ing snippet declares an array of three pointers to integers and assigns them
values:

void fn()
{
 int n1, n2, n3;
 int* pInts[3] = {&n1, &n2, &n3};

 for(int n = 0; n < 3; n++)
 {
 // initialize the integers
 *pInts[n] = n * 10;
 }
}

After the declaration, pInts[0] points to the variable n1, pInts[1] points
to n2, and pInts[2] points to n3. Thus an expression like

*pInts[1] = 10;

sets the int pointed at by pInts[1] (that would be n2) to 10. The effect of
the for loop in the prior snippet is to initialize n1, n2, and n3 to 0, 10, and
20, respectively. This is shown graphically in Figure 18-6.

235 Chapter 18: Taking a Second Look at C++ Pointers

Figure 18-6:
The effects

of setting up
and using

an array
of three

pointers to
integers.

Arrays of arguments
Returning to the main() example, the arguments to the program are the
strings that are passed to the program when it is executed. Thus, if I execute
MyProgram as

MyProgram file1 file2 /w

the arguments to the program are file1, file2, and /w.

Although technically not an argument, C++ includes the name of the program
as the first “argument.”

 Switches are not interpreted, so /w is passed to the program as an argument.
However, the special symbols <", "> and | are interpreted by the command
line interpreter and are not passed to the program.

236 Part IV: Data Structures

The following simple PrintArgs program displays the arguments passed to
it by the command line interpreter:

// PrintArgs - print the arguments to the program
#include <cstdio>
#include <cstdlib>
#include <iostream>
using namespace std;

int main(int nNumberofArgs, char* pszArgs[])
{
 for(int n = 0; n < nNumberofArgs; n++)
 {
 cout << "Argument " << n
 << " is <" << pszArgs[n]
 << ">" << endl;
 }

 // wait until user is ready before terminating program
 // to allow the user to see the program results
 cout << "Press Enter to continue..." << endl;
 cin.ignore(10, '\n');
 cin.get();
 return 0;
}

Now the trick is how to pass arguments to the program.

Passing arguments to your program through the command line
The easiest and most straightforward way is to simply type the arguments
when executing the program from the command-line prompt:

PrintArgs file1 file2 /w

Doing so generates the following output:

C:\Beginning_Programming-CPP\PrintArgs\bin\Debug>PrintArgs file1 file2 /w
Argument 0 is <printargs>
Argument 1 is <file1>
Argument 2 is <file2>
Argument 3 is </w>
Press Enter to continue . . .

237 Chapter 18: Taking a Second Look at C++ Pointers

The difficulty to this approach is knowing where the executable is stored.
During the Build step, Code::Blocks creates the executable program in a sub-
directory of the directory containing the project. Whether or not you used
the default installation location shown in the preceding code, you can always
find the project directory by selecting Project➪Properties. The default
Project Settings tab of the dialog box that pops up displays the path to the
project file, as shown in Figure 18-7.

Figure 18-7:
The Code::

Blocks
Project

Settings
tab of the

Project/
Target

Options
dialog box

contains the
path to the
project file.

Select the Build Targets tab to find the path to the executable file, as shown
in Figure 18-8.

If you’re using Windows, open an MS-DOS window by selecting Start➪
Programs➪Accessories➪Command Prompt. Navigate to the proper
window by using the CD command (“CD” stands for Change Directory;
it’s okay to use lowercase).

Using the directory path provided in Figure 18-7, I would enter the following:

cd \Beginning_Programming-CPP\PrintArgs\bin\Debug
PrintArgs file1 file2 /w

The details for Linux and Macintosh will be slightly different but similar.

238 Part IV: Data Structures

Figure 18-8:
The Build

Targets tab
indicates
the name
and loca-
tion of the

executable.

Passing arguments to your program from the
Code::Blocks environment
You can pass arguments to your program from within Code::Blocks itself by
selecting Project➪Set Projects’ Arguments. This opens the dialog box shown
in Figure 18-9. Enter the arguments into the Program Arguments entry field.

Figure 18-9:
You can set
up the proj-
ect to pass
arguments
to the pro-

gram when
executed

from Code::
Blocks.

239 Chapter 18: Taking a Second Look at C++ Pointers

Executing the program from Code::Blocks opens a command-line window
with the following contents:

Argument 0 is <C:\Beginning_Programming-CPP\PrintArgs\bin\Debug\PrintArgs.exe>
Argument 1 is <file1>
Argument 2 is <file2>
Argument 3 is </w>
Press Enter to continue . . .

This technique is a lot easier, but it works only from within the Code::Blocks
environment. However, this is the only way to pass arguments to your pro-
gram when you’re using the Code::Blocks debugger. (I talk about the debug-
ger in Chapter 20.)

Passing arguments to your program through Windows
In Windows, there is one final way of passing arguments to a program: Windows
executes a program with no arguments if you double-click the name of the exe-
cutable file. However, if you drag a set of files and drop them on the program’s
executable filename, Windows executes the program, passing it the names of
the files as its arguments.

To demonstrate, I created a couple of dummy files in the same directory
as the PrintArg.exe file called file1.txt and file2.txt, as shown in
Figure 18-10.

Figure 18-10:
Here I cre-

ated two
dummy

files in the
same direc-

tory as the
Print-

Args.exe
executable.

I then selected both files and dragged and dropped them onto the
PrintArgs.exe filename. Figure 18-11 shows the result.

240 Part IV: Data Structures

Figure 18-11:
Dropping

the two
filenames

on the
Print-
Args.

exe
filename
instructs

Windows
to launch

the program
and pass

the names
of the files

as argu-
ments to the

program.

 Windows does not pass the filenames to the program in any particular order.
Specifically, it does not necessarily pass them in the same order in which they
appear in the directory list — or the order in which you selected them.

 This chapter and its predecessor are not easy for a beginner. Don’t despair if
you’re feeling a little uncertain right now. You may need to reread this section.
Make sure that you understand the examples and the demonstration programs.
You should find yourself growing more and more comfortable with the concept
of pointer variables as you make your way through the remainder of the book.

Chapter 19

Programming with Class
In This Chapter
▶ Grouping data using parallel arrays

▶ Grouping data in a class

▶ Declaring an object

▶ Creating arrays of objects

A
rrays are great at handling sequences of objects of the same type, such
as ints or doubles. Arrays do not work well, however, when grouping

different types of data — as when we try to combine a Social Security number
with the name of a person into a single record. C++ provides a structure
called the class (or struct) to handle this problem.

Grouping Data
Many of the programs in earlier chapters read a series of numbers, some-
times into an array, before processing. A simple array is great for standalone
values. However, many times (if not most of the time), data comes in groups
of information. For example, a program may ask the user for his first name,
last name, and Social Security number. Alone, any one of these values is not
sufficient — only in the aggregate do the values make any sense.

You can store associated data of different types in what are known as parallel
arrays. For example, I might use an array of strings called pszFirstNames to
hold people’s first names, a second pszLastNames to hold the last names,
and a third nSocialSecurities to hold the corresponding Social Security
number. I would store the data such that any given index n points to the data
for a given individual.

242 Part IV: Data Structures

Thus my personal data might be at offset 3. In that case, szFirstNames[3]
would point to “Stephen,” szLastNames[3] would point to “Davis,” and
nSocialSecurityNumbers[3] would contain . . . well, you get the idea.
This is shown in Figure 19-1.

Figure 19-1:
Parallel

arrays are
sometimes

used to
hold col-

lections of
related-but-

dissimilar
data in

languages
that don’t

support
classes.

This method works, but it’s prone to errors because there’s nothing that
directly associates the first name with the last name and the Social Security
number other than an index. You could easily imagine that a missing instruc-
tion here or there, and I would become “Stephen Eddins” or any other
random combination of first and last names.

Fortunately for us, C++ provides a better way.

The Class
A first name or a Social Security number doesn’t make any sense except in
the context of the person to whom they belong — data like that must have a
context created by association with other, related data. What we would like is
to be able to create a structure, say Person, that contains all of the relevant
properties that make up a person (in this case, first name, last name, and
Social Security number).

243 Chapter 19: Programming with Class

C++ uses a structure known as the class that has the following format:

class Person
{
 public:
 char szFirstName[128];
 char szLastName[128];
 int nSocialSecurityNumber;
};

A class definition starts with the keyword class followed by the name of the
class and an open brace.

 The naming rules for class names are the same as for variable names: The first
letter must be one of the letters ‘a’ through ‘z’ or ‘A’ through ‘Z’ or underscore.
Every subsequent character in the name must be one of these or the digits ‘0’
through ‘9’. By convention, class names always start with an uppercase letter.
Class names normally consist of multiple words jammed together, with each
word starting with an uppercase letter.

The first keyword within the open brace in the early examples will always
be public. (I describe the alternatives to public in Chapter 24; for the
moment, just accept it as part of the declaration.)

 You can also use the keyword struct instead of class. A struct is identical
to a class in every respect except that the public is assumed in a struct.
For historical reasons, the term class is more popular in C++; the term
struct is used more often in C programs.

Following the public keyword are the declarations for the entries it takes to
describe the class. The Person class contains two arrays for the first and
last names and a third entry to hold the Social Security number.

 The entries within a class are known as members or properties of the class.

The Object
Declaring a class in C++ is like defining a new variable type. You can create a
new instance of a class as follows:

Person me;

An instance of a class is called an object.

244 Part IV: Data Structures

 People get confused about the difference between a class and an object; some-
times people even use the terms interchangeably. Actually, the difference is
easy to explain with an example. Dog is a class. My dog, Lollie, is an instance
of a dog. My other dog, Jack, is a separate, independent instance of a dog. Dog
is a class; lollie and jack are objects.

You can access the members of an object by including their name after the
name of the object followed by a dot, as in the following:

Person me;
me.nSocialSecurityNumber = 456789012;
cin >> me.szLastName;

Here me is an object of class Person. The element me.nSocialSecurity
Number is a member or property of the me object. The type of me is Person.
The type of me.nSocialSecurityNumber is int, and its value is set to
456-78-9012. The type of me.szLastName is char[] (pronounced “array of
char”).

A class object can be initialized when it is created as follows:

Person me = {"Stephen", "Davis", 456789012};

Assignment is the only operation defined for user-defined classes by default.
Its use is shown here:

Person copyOfMe;
copyOfMe = me; // copy each member of me to copyOfMe

The default assignment operator copies the members of the object on the
right to the members on the left. The objects on the right and left of the
assignment operator must be exactly the same type.

 You can define what the other operators might mean when applied to an
object of a class that you define. That is considered advanced strokes, how-
ever, and is beyond the scope of this book.

Arrays of Objects
You can declare and initialize arrays of objects as follows:

Person people[5] = {{ "Adam", "Laskowski", 123456789},
 { "Kinsey", "Davis", 234567890},
 { "Janet", "Eddins", 345678901},
 {"Stephen", "Davis", 456789012},
 {"Tiffany", "Amrich", 567890123}};

245 Chapter 19: Programming with Class

The layout of people in memory is shown in Figure 19-2. Compare this with
the parallel array equivalent in Figure 19-1.

Figure 19-2:
The

arrange-
ment in

memory of
an array

of five
Person

objects.

In this example, each one of the elements of the array people is an object.
Thus, people[0] is the first object in the array. My information appears
as people[3]. You can access the members of an individual member of an
array of objects using the same “dot-member” syntax as that used for simple
objects:

// change my social security number
people[3].nSocialSecurityNumber = 456789012;

246 Part IV: Data Structures

 The type of people is Person[], which is read “array of Person” (some-
times programmers use the plural of the class name as in “array of Persons”).
The type of people[3] is Person.

Looking at an Example
I’ve gone far enough without an example program to demonstrate how class
objects appear in a program. The following InputPerson program inputs
the data for an array of people. It then sorts the array by Social Security
number and outputs the sorted list.

 The sorting algorithm I used is known as a Bubble Sort. It isn’t particularly effi-
cient, but it’s very simple to code. I explain how it works in a sidebar, but don’t
get wrapped up in the details of the Bubble Sort. Focus instead on how the
program inputs the critical elements of a Person into a single element of an
array that it can then manipulate as a single entity.

// InputPerson - create objects of class Person and
// display their data
#include <cstdio>
#include <cstdlib>
#include <iostream>
using namespace std;

// Person - stores the name and social security number
class Person
{
 public:
 char szFirstName[128];
 char szLastName[128];
 int nSocialSecurityNumber;
};

// getPerson - read a Person object from the keyboard
// and return a copy to the caller
Person getPerson()
{
 Person person;

 cout << "\nEnter another Person\n"
 << "First name: ";
 cin >> person.szFirstName;

247 Chapter 19: Programming with Class

 cout << "Last name: ";
 cin >> person.szLastName;

 cout << "Social Security number: ";
 cin >> person.nSocialSecurityNumber;

 return person;
}

// getPeople - read an array of Person objects;
// return the number read
int getPeople(Person people[], int nMaxSize)
{
 // keep going until operator says he's done or
 // until we're out of space
 int index;
 for(index = 0; index < nMaxSize; index++)
 {
 char cAnswer;
 cout << "Enter another name? (Y or N):";
 cin >> cAnswer;

 if (cAnswer != 'Y' && cAnswer != 'y')
 {
 break;
 }

 people[index] = getPerson();
 }
 return index;
}

// displayPerson - display a person on the default display
void displayPerson(Person person)
{
 cout << "First name: " << person.szFirstName << endl;
 cout << "Last name : " << person.szLastName << endl;
 cout << "Social Security number : "
 << person.nSocialSecurityNumber << endl;
}

// displayPeople - display an array of Person objects
void displayPeople(Person people[], int nCount)
{
 for(int index = 0; index < nCount; index++)
 {
 displayPerson(people[index]);
 }
}

248 Part IV: Data Structures

// sortPeople - sort an array of nCount Person objects
// by Social Security Number
// (this uses a binary sort)
void sortPeople(Person people[], int nCount)
{
 // keep going until the list is in order
 int nSwaps = 1;
 while(nSwaps != 0)
 {
 // we can tell if the list is in order by
 // the number of records we have to swap
 nSwaps = 0;

 // iterate through the list...
 for(int n = 0; n < (nCount - 1); n++)
 {
 // ...if the current entry is greater than
 // the following entry...
 if (people[n].nSocialSecurityNumber >
 people[n+1].nSocialSecurityNumber)
 {
 // ...then swap them...
 Person temp = people[n+1];
 people[n+1] = people[n];
 people[n] = temp;

 // ...and count it.
 nSwaps++;
 }
 }
 }
}

int main(int nNumberofArgs, char* pszArgs[])
{
 // allocate room for some names
 Person people[128];

 // prompt the user for input
 cout << "Read name/social security information\n";
 int nCount = getPeople(people, 128);

 // sort the list
 sortPeople(people, nCount);

249 Chapter 19: Programming with Class

 // now display the results
 cout << "\nHere is the list sorted by "
 << "social security number" << endl;
 displayPeople(people, nCount);

 // wait until user is ready before terminating program
 // to allow the user to see the program results
 cout << "Press Enter to continue..." << endl;
 cin.ignore(10, '\n');
 cin.get();
 return 0;
}

The program starts by declaring class Person with data members for first
name, last name, and Social Security number. Contrary to good programming
practice, this program uses fixed-length arrays for the name strings. (If I were
writing this code for a commercial package, I would use variable-length arrays,
or I would include a test to make sure that input from the keyboard did not
overflow the buffer. See Chapter 17 if you don’t know what I’m talking about.)

The first function, getPerson(), prompts the user for the data necessary to
describe a single Person object. It then returns a copy of that Person to the
caller.

The second function, getPeople(), invokes the getPerson() function
repeatedly to retrieve the data for a number of individuals. It stores the
Person objects retrieved into the array people. This function accepts as an
argument the maximum size of the people array and returns to the caller the
actual number of elements stored there.

The displayPerson() and displayPeople() functions are the output ana-
logs to the getPerson() and getPeople() functions. displayPerson()
outputs the information for a single individual, whereas displayPeople()
calls that function on each element defined in the people array.

The sortPeople() function sorts the elements of the people array in
order of increasing Social Security number. This function is described in the
“Bubble Sort” sidebar. Don’t worry too much about how this function works.
You’re way ahead of the game if you can follow the rest of the program.

250 Part IV: Data Structures

The output from a test run of this program appears as follows:

Read name/social security information
Enter another name? (Y or N):y

Enter another Person
First name: Adam
Last name: Laskowski
Social Security number: 123456789
Enter another name? (Y or N):y

Enter another Person
First name: Stephen
Last name: Davis
Social Security number: 456789012
Enter another name? (Y or N):y

Enter another Person
First name: Janet
Last name: Eddins
Social Security number: 345678901
Enter another name? (Y or N):n

Here is the list sorted by social security number.
First name: Adam
Last name : Laskowski
Social Security number : 123456789
First name: Janet
Last name : Eddins
Social Security number : 345678901
First name: Stephen
Last name : Davis
Social Security number : 456789012
Press any key to continue . . .

You’ve seen most of the non-object-oriented features of C++. The next chap-
ter introduces you to the Code::Blocks debugger, which wraps up the sec-
tions dedicated to what I call procedural programming. After that, I jump into
object-oriented programming in Part V.

251 Chapter 19: Programming with Class

Bubble Sort
Most of this book is dedicated to the syntax of C++. However, in addition to the details of the lan-
guage, you also need to learn common programming algorithms in order to become a proficient
programmer. The Bubble Sort is one of those algorithms that every programmer should master.

There are a number of common algorithms for sorting fields. Each has its own advantages. In gen-
eral, the simpler algorithms take longer to execute, whereas the really fast algorithms are more
difficult to program. The Bubble Sort is very easy to program but isn’t particularly fast. This is not a
problem for small data sets; arrays up to several thousand entries in length can be sorted in very
much less than a second on modern high-speed processors. For small to moderate amounts of
data, the simplicity of the Bubble Sort far outweighs any performance penalty.

In the Bubble Sort, the program makes multiple passes through the data set. On each pass, it com-
pares each element with the next element in the list. If element N is less than N+1, then these two
are in the proper order so the Bubble Sort takes no action. However, if element N is greater than
N+1, the Bubble Sort swaps the two elements and then moves on to the next element. In practice,
this looks like the following:

// if the current entry is greater than
// the following entry...
if (people[n].nSocialSecurityNumber >
 people[n+1].nSocialSecurityNumber)
{
 // ...then swap them...
 Person temp = people[n+1];
 people[n+1] = people[n];
 people[n] = temp;

 // ...and count it.
 nSwaps++;
}

At the end of the first pass through the entire array, the largest element will have moved to the
end of the list, but the rest of the array will still not be in order. However, repeated passes through
the array cause each element to “bubble” up to its proper place in the array. The Bubble Sort sets
the number of elements that were swapped on each pass by zeroing the counter nSwaps before
iterating through the list and incrementing the number of elements swapped on each pass. The
algorithm doesn’t really care how many swaps were executed; if any swaps were executed, then
the array was not in order. However, once the Bubble Sort can make it all the way through the list
without executing any swaps, then it knows that the array is in order.

The figure demonstrates how the Bubble Sort sorts an array of five integers. During the first
pass through the list, two swaps are executed. On the second pass, the algorithm executes only
a single swap. The resulting list is in order, but the algorithm doesn’t know this until it makes its
way all the way through the array without making any swaps, as shown in the third pass. At this
point, the Bubble Sort is finished.

(continued)

252 Part IV: Data Structures

(continued)

Chapter 20

Debugging Your Programs, Par t 3
In This Chapter
▶ Debugging using the built-in debugger

▶ Building your application with debugger information

▶ Setting a breakpoint

▶ Single-stepping your program

▶ Fixing a sample problem

I introduce a few techniques for finding errors at the end of Parts II
(Chapter 8) and III (Chapter 13). Here, near the end of Part IV, I want to

touch on debugging techniques one final time.

In this chapter, I introduce you to the debugging tools built into the
Code::Blocks development environment (similar tools exist for most other
environments). Learning to use the debugger will give you clear insight into
what your program is doing (and what it’s not doing, at times).

A New Approach to Debugging
Chapters 8 and 13 demonstrated how to find problems by adding output
statements in key positions. Outputting key variables lets you see what inter-
mediate values your program is calculating and what path it’s taking through
your C++ code.

However, the output technique has several distinct disadvantages. The first
is the difficulty of knowing what to display. In a small program, such as most
of the programs in this book, you can display almost everything — there
just aren’t that many variables to slog through. A major-league program,
however, may contain many hundreds of variables, especially if you include
all of the elements in the arrays. Knowing which variables to display can be
problematic.

254 Part IV: Data Structures

A second problem is the time it takes to rebuild the program. Once again, this
isn’t a problem with small programs. Code::Blocks can rebuild a small program
in just a few seconds. In these cases, adding or changing output statements
doesn’t take more than a few minutes. However, I have been on projects where
rebuilding the entire program took many hours. In a big program, adding new
output statements as you zero in on a bug can take a long time.

Finally, it’s very difficult to debug a pointer problem by using the output
approach. If a pointer is invalid, any attempt to use it will cause the program
to abort, and discerning a valid pointer from an invalid one simply by display-
ing its value on cout is almost impossible.

The solution
What you need is a way to stop the program in the middle of its execution
and query the value of key variables. That’s exactly what the debugger does.

The debugger is actually a utility built into the Code::Blocks environment.
Every environment has some type of debugger; all offer the same basic fea-
tures, though the specific commands may be different. The debugger allows
the programmer to control the execution of her program. She can execute
one step in the program at a time, she can stop the program at any point, and
she can examine the value of variables.

 Unlike the C++ language, which is standardized, every debugger has its own
command set. Fortunately, once you’ve learned how to use the Code::Blocks
debugger, you won’t have any trouble learning to use the debugger that comes
with your favorite C++ environment.

 As of this writing, Code::Blocks did not work with the gnu debugger on the
Machintosh.

The programmer controls the debugger through commands entered from the
keyboard within the Code::Blocks environment exactly as she would use the
edit commands to modify the C++ source code or build commands to create
the executable program. The debug commands are available from both menu
items and hot keys.

The best way to learn how to use the Code::Blocks debugger is to use it to
find a couple of nasty problems in a buggy version of one of the programs
you’ve already seen.

255 Chapter 20: Debugging Your Programs, Part 3

Entomology for Dummies
The following version of the Concatenate program (which you’ll find in the
online material as ConcatenateError1) represents my first attempt at the
ConcatenatePtr program from Chapter 18.

 This version has at least two serious bugs, both of which are in the
concatenateString() function.

//
// ConcatenateError1 - similar to ConcatenatePtr except
// this version has several bugs in it
// that can be easily found with the
// debugger
//
#include <cstdio>
#include <cstdlib>
#include <iostream>
#include <cstring>
using namespace std;

// concatenateString - concatenate two strings together
// into an array allocated off of the
// heap
char* concatenateString(const char* pszSrc1,
 const char* pszSrc2)
{
 // allocate an array of sufficient length
 int nTargetSize = strlen(pszSrc1)+strlen(pszSrc2)+1;
 char* pszTarget = new char[nTargetSize];

 // first copy the first string into the target
 while(*pszSrc1 != '\0')
 {
 *pszTarget++ = *pszSrc1++;
 }

 // now copy the contents of the second string onto
 // the end of the first
 while(*pszSrc2 != '\0')
 {
 *pszTarget++ = *pszSrc2++;
 }

 // return the resulting string to the caller
 return pszTarget;
}

256 Part IV: Data Structures

int main(int nNumberofArgs, char* pszArgs[])
{
 // Prompt user
 cout << "This program accepts two strings\n"
 << "from the keyboard and outputs them\n"
 << "concatenated together.\n" << endl;

 // input two strings
 cout << "Enter first string: ";
 char szString1[256];
 cin.getline(szString1, 256);

 cout << "Enter the second string: ";
 char szString2[256];
 cin.getline(szString2, 256);

 // now concatenate one onto the end of the other
 cout << "Concatenate first string onto the second"
 << endl;
 char* pszT = concatenateString(szString1, szString2);

 // and display the result
 cout << "Result: <"
 << pszT
 << ">" << endl;

 // return the memory to the heap
 delete pszT;
 pszT = nullptr;

 // wait until user is ready before terminating program
 // to allow the user to see the program results
 cout << "Press Enter to continue..." << endl;
 cin.ignore(10, '\n');
 cin.get();
 return 0;
}

The following shows the results of executing the program (you may see a dif-
ferent Result for reasons that will quickly become clear):

This program accepts two strings
from the keyboard and outputs them
concatenated together.

Enter first string: this is a string
Enter the second string: THIS IS ALSO A STRING
Concatenate first string onto the second
Result: <OF_ƒdT☻ΓD>
Press Enter to continue . . .

257 Chapter 20: Debugging Your Programs, Part 3

Clearly, the result is not correct, so something must be wrong. Rather than
start inserting output statements, I will use the debugger to find the problems
this time.

I suggest that you follow along with me and take the same steps I do in the
following section. You can start with the ConcatenateError1 program from
the online material.

Starting the debugger
I can tell the debugger that I want to execute the program up to a certain line
or view a particular variable. In order for me to do that, however, the debugger
has to know exactly where each C++ line of code is stored and where each vari-
able is kept. It does this by attaching extra information onto the executable —
actually, quite a bit of extra information. Because this information can get really
lengthy — and because I don’t need it for the release version that I ship to the
public — including debug information is optional.

I decided whether to include debug information in the executable when I
created the project. Figure 20-1 shows the next-to-last dialog box presented
by the Project Wizard, the Console Application dialog box. The default is to
generate debug information as shown here. The Release configuration is the
version of the executable without the extra debug information. I cannot use
the debugger if I do not create a Debug configuration version.

Figure 20-1:
The Console
Application

dialog box of
the Project

Wizard
allows you

to select
whether

to build a
debug ver-
sion of the

executable.

258 Part IV: Data Structures

 I can turn debugger information on at any time by selecting Settings➪Compiler
and Debugger and then making sure that the Produce Debugging Symbols
[-g] check box is checked in the Compiler Flags subwindow of the Compiler
Settings window. I have to rebuild the executable by selecting Build➪Rebuild
for the change to have any effect.

So assume that I did tell Code::Blocks to include debug information in the
executable.

I’m reasonably certain that the problem is in the concatenateString()
function itself. So I decide that I want to stop executing the program at the
call to concatenateString(). To do this, I need to do what’s called setting
a breakpoint.

A breakpoint is a command to the debugger that says, “Stop execution of the
program if you get to this spot.” There are at least four ways to set a break-
point, all of which are equivalent:

 ✓ Click with the cursor just to the right of the line number on line 60 (see
Figure 20-2).

 ✓ Right-click on line 60 and select Toggle Breakpoint from the menu that
appears (it’s the first option).

 ✓ Put the cursor on line 60 and select F5 (Toggle Breakpoint).

 ✓ Put the cursor on line 60 and select Debug➪Toggle Breakpoint.

Multiple methods exist for entering almost every other debugger command
that I describe in this chapter, but in the interest of brevity, I describe only
one. You can experiment to find the others.

A small stop sign appears just to the right of the line number, as shown in
Figure 20-2.

To start the program, I select Debug➪Start. At first, the program seems to
execute like normal. It first prompts me for the first string. It follows that by
prompting me for a second string. As soon as I enter that string, however,
the program appears to stop, and a small, yellow arrow appears inside the
stop sign on the source code display. This is shown in Figure 20-3. This little,
yellow arrow is the current location indicator. This points to the next C++ line
to be executed.

259 Chapter 20: Debugging Your Programs, Part 3

Figure 20-2:
A small, red

stop sign
indicates

that a
breakpoint

has been
set at the
specified
location.

You will also notice from Figure 20-3 that another toolbar appears. The
Debugger toolbar includes the most common debug commands, including
most of the commands that I demonstrate in this chapter. (I’ve added call-
outs for the commands I describe later in this chapter.) Navigating through
a program with the debugger

Okay, so I’ve managed to stop the execution of my program in the middle
with the debugger. What can I do now?

I’ll start by executing the concatenateString() function one statement
at a time. I could set a new breakpoint at the first instruction in the func-
tion, but setting a new breakpoint on every line is tedious. Fortunately,
the Code::Blocks debugger offers a more convenient choice: the Step Into
command.

260 Part IV: Data Structures

Figure 20-3:
The pro-

gram stops
executing,

and a small,
yellow
arrow

appears at
the next line

to be exe-
cuted when
the program

encoun-
ters a

breakpoint.

 On the Debug toolbar, this is the fifth command from the left. However, if you
get confused, this menu has Tool Tips — just point at the command in the
toolbar and leave the arrow motionless. After a few seconds, the name of
the command will pop up. Or you can select Debug➪Step Into from the main
menu.

The Step Into command executes a single C++ statement; in this case, the
command steps into the function call. Execution stops immediately before
the first executable statement in concatenateString(). Next, I select

261 Chapter 20: Debugging Your Programs, Part 3

Debug➪Debugging Windows➪Watches to display the window shown in
Figure 20-4. From this window, I can see that the two arguments to the func-
tion, pszSrc1 and pszSrc2, appear to be correct.

 The values of nTargetSize and pszTarget have no meaning at this point
since they have yet to be initialized.

Figure 20-4:
The

Watches
window

shows both
the argu-
ments to
the func-
tions and

any locally
defined

variables.

I could select Step Into again to move forward, but doing so would step me
into the strlen() functions.

The other option is known as Next Line. Next Line steps to the next line of
C++ code in the current function, treating function calls just like any other
C++ command.

 Together, Step Into and Next Line are known as single-step commands. For
commands other than function calls, the two commands are equivalent. Many
debuggers use the term Step Over rather than Next Line to highlight the dis-
tinction from Step Into.

I select Next Line from the Debug toolbar. Notice how the Current location
pointer moves from line 21 to line 22, as shown in Figure 20-5. In addition, the
nTargetSize variable is highlighted red in the Watch window to indicate
that its value has changed. The value of nTargetSize is now 33, the correct
length of the sum of the two strings.

262 Part IV: Data Structures

Figure 20-5:
Selecting
Next Line

moves the
current

location
pointer to

line 22 and
initializes

nTarget-
Size.

 You need to be absolutely clear about what just happened. All you see is that
the screen blinks and the current location pointer moves down one line. What
actually happened is that the debugger set a temporary breakpoint at line
22 and then restarted the program at line 21. The program executed the two
calls to strlen() and then performed the addition, storing the results in
nTargetSize. You may have seen only the one line of code get executed, but
in fact many lines of C++ code were executed within the strlen() functions
(executed twice, actually).

So far, so good, so I select Next Line a few more times until I enter the while
loop.

 This while loop is structured a little differently from what you’ve seen before.
Here I increment the pointer as part of the assignment itself, rather than in the
increment clause of a for loop, as follows:

while(*pszSrc1 != '\0')
{
 *pszTarget++ = *pszSrc1++; // Line 27
}

Line 27 of the program says, “Store the value of the char pointed at by
pszSrc1 into the char location pointed at by pszTarget and then incre-
ment pszSrc1 and pszTarget.”

263 Chapter 20: Debugging Your Programs, Part 3

Figure 20-6 shows the debug display after I execute the loop a few times.
Notice after each execution that, since their value is modified, both pszSrc1
and pszTarget are highlighted in the Watches window.

Figure 20-6:
The while

loop incre-
ments

pszSrc1
and psz-

Target on
each pass.

Also notice that the string pointed at by pszSrc1 seems to be shrinking.
This is because as pszSrc1 is incremented, it is effectively moving down
the string until eventually it will point to nothing more than the terminating
null. That’s when control will leave the while loop and continue on to the
next loop.

But wait! The string pointed at by pszTarget is not growing. Remember
that the intent is to copy the contents of pszSrc1 into pszTarget. What’s
happening?

After a moment’s reflection, the answer is obvious: I’m also changing the
value of pszTarget and leaving behind the characters I’ve copied. That’s
what was wrong with my function in the first place. I need to keep a copy of
the original pointer unmodified to return to the caller!

264 Part IV: Data Structures

Now that I know the problem (or, at least, a problem — there may be more),
I stop the debugger by clicking Stop Debugger on the Debug toolbar. The
Console Application dialog box disappears immediately, and the Code::Blocks
display returns to that used for editing.

Fixing the (first) bug
To solve the problem that I noted, I only need to save the value returned by
new and return it rather than the modified pszTarget pointer from the func-
tion. I include only the modified concatenateString() function here (the
rest of the program is unchanged — the entire program is included in the
online material as ConcatenateError2):

char* concatenateString(const char* pszSrc1,
 const char* pszSrc2)
{
 // allocate an array of sufficient length
 int nTargetSize = strlen(pszSrc1)+strlen(pszSrc2)+1;
 char* pszTarget = new char[nTargetSize];
 char* pszT = pszTarget; // save a pointer to return

 // first copy the first string into the target
 while(*pszSrc1 != '\0')
 {
 *pszTarget++ = *pszSrc1++;
 }

 // now copy the contents of the second string onto
 // the end of the first
 while(*pszSrc2 != '\0')
 {
 *pszTarget++ = *pszSrc2++;
 }

 // return the original pointer to the caller
 return pszT;
}

Here I save the pointer returned by new into both pszTarget, which I intend
to increment, and pszT, which will stay unmodified. The function returns the
latter, unmodified pointer to the caller.

I rebuild the application, and then I repeat my earlier steps to single-step
through the first loop within concatenateString(). Figure 20-7 shows the
display after executing the loop seven times.

265 Chapter 20: Debugging Your Programs, Part 3

Figure 20-7:
The

Watches
window of

the updated
conca-
tenate-
String()

function
shows

the string
being built

in the array
pointed at by

pszT.

Notice how pszT points to an array containing the first seven characters
of the source string this is. Also notice that the value of pszTarget is 7
larger than pszT.

But also notice all the garbage characters in the pszT string that appear after
this is. Code::Blocks displays extra garbage because the target string has
no terminating null. It doesn’t need one yet, because I haven’t completed
constructing it.

Finding and fixing the second bug
The two source strings aren’t all that long, so I use the Next Line command
to single-step through the entire loop. Figure 20-8 shows the Debug window
after executing the second loop for the last time. Here, pszT points to the
completed target string with both source strings concatenated together.
Without a terminating null, however, the string still displays garbage after
the final character.

266 Part IV: Data Structures

Figure 20-8:
The Debug

window
after exe-
cuting the

second loop
for the last

time.

Because I’m now done with the function, I select Debug➪Continue from the
Code::Blocks menu. This causes the debugger to resume the program where
it left off — and to continue to the next breakpoint or to the end of the pro-
gram, whichever comes first.

Sure enough, the displayed concatenated array includes the same garbage
that I saw in the debugger:

This program accepts two strings
from the keyboard and outputs them
concatenated together.

Enter first string: this is a string
Enter the second string: THIS IS A STRING
Concatenate first string onto the second
Result: <this is a stringTHIS IS A STRINGε½½½½½½½½■ε■ε■ε■>
Press Enter to continue . . .

267 Chapter 20: Debugging Your Programs, Part 3

 If I didn’t include a terminating null, then what caused the string returned
by concatenateString() to terminate at all? Why didn’t the string con-
tinue on for pages? The short answer is, “Nothing.” It could be that C++ had
to display many thousands of characters before eventually hitting a character
containing a null. In practice, this rarely happens, however. Zero is by far
the most common value in memory. You generally don’t have to look too far
before you find a byte containing a zero that terminates the string.

All I need to do to fix this problem is add a terminating null after the final
while loop:

char* concatenateString(const char* pszSrc1,
 const char* pszSrc2)
{
 // allocate an array of sufficient length
 int nTargetSize = strlen(pszSrc1)+strlen(pszSrc2)+1;
 char* pszTarget = new char[nTargetSize];
 char* pszT = pszTarget; // save a pointer to return

 // first copy the first string into the target
 while(*pszSrc1 != '\0')
 {
 *pszTarget++ = *pszSrc1++;
 }

 // now copy the contents of the second string onto
 // the end of the first
 while(*pszSrc2 != '\0')
 {
 *pszTarget++ = *pszSrc2++;
 }

 // add a terminating NULL
 *pszTarget = '\0';

 // return the unmodified pointer to the caller
 return pszT;
}

Executing this version in the debugger creates the display shown in Figure 20-9.
Notice that after the terminating null is added, the string pointed at by pszT
magically “cleans up,” losing all the garbage that strings on after the data that I
put there.

268 Part IV: Data Structures

Figure 20-9:
Adding the

terminat-
ing null

removes
all of the
garbage

characters
at the end

of the con-
catenated

string.

 Let me be clear: Those garbage characters are still there. It’s just that the ter-
minating null tells C++ not to display them.

The output from the program is the predictable string that you’ve come to
love and admire:

This program accepts two strings
from the keyboard and outputs them
concatenated together.

Enter first string: this is a string
Enter the second string: THIS IS A STRING
Concatenate first string onto the second
Result: <this is a stringTHIS IS A STRING>
Press Enter to continue . . .

It’s possible to find problems in small programs by adding output statements
at key locations. However, the debugger is a much more elegant and power-
ful tool for finding problems. Single-stepping your way through a program in
the debugger gives you a real feel for what the computer is doing with your
source code. You develop an understanding for how the computer works
that I don’t think you can get any other way. The debugger that comes with
Code::Blocks is about as easy to use as any that I’ve seen. I recommend that
you use it early and often.

Part V
Object-Oriented

Programming

Visit www.dummies.com/extras/beginningprogrammingcplusplus for
great Dummies content online.

http://www.dummies.com/extras/beginningprogrammingcplusplus

In this part . . .
 ✓ Structuring objects with classes

 ✓ Applying functions

 ✓ Protecting class members

 ✓ Calling and ending functions automatically

 ✓ Passing arguments to constructors

 ✓ Copying objects

 ✓ Visit www.dummies.com/extras/beginningprogram
mingcplusplus for great Dummies content online

http://www.dummies.com/extras/beginningprogrammingcplusplus
http://www.dummies.com/extras/beginningprogrammingcplusplus

Chapter 21

What Is Object-Oriented
Programming?

In This Chapter
▶ Abstracting away the details

▶ Contrasting the object-oriented approach with the functional approach

▶ Classifying things

E
xamples of objects abound in everyday life. Right in front of me is a chair,
a table, a computer, and a red Starbucks mug. I have no trouble grouping

these objects into taxonomies based on their properties. For example, the mug
is a container, it’s also a thermal insulator, so I can use it to hold hot or cold
things, and it has mass, so that I can use it as a paperweight or to throw at the
dog. Object-oriented programming applies this view of the world to that of pro-
gramming. To explain what I mean, let me start with a story.

Abstraction and Microwave Ovens
Sometimes, when my son and I are watching football, I whip up a batch of
nachos. Nothing fancy, mind you — I dump some chips on a plate, throw
on refried beans, cheese, and a batch of jalapeños, and nuke the lot in the
microwave oven for five minutes. To use the oven, I open the door, place the
nachos inside, punch some buttons on the front, and hit start. After a few
minutes, the bell rings to tell me they’re done. If I do something wrong, the
oven beeps at me and doesn’t start. Sometimes it displays an error message
on the little display.

272 Part V: Object-Oriented Programming

This doesn’t sound very profound, and it isn’t really — until you consider all
the things that I don’t do to use my microwave oven:

 ✓ I limit myself to the front panel of the microwave. I don’t look inside the
case. I don’t look at the listings of the code that tells the processor unit
what to do. I don’t study the wiring diagram that’s pasted on the inside
wall of the case.

 ✓ I don’t rewrite any of the code or change anything inside the microwave
to get it to work. The microwave oven that I use to make nachos is the
exact same microwave that I used earlier to heat up chili dogs (nothing
but health food at my house). And it will be the same microwave I use to
heat up my Malt-O-Meal tomorrow (assuming it doesn’t break).

 ✓ I don’t think about what might be going on inside my microwave oven in
order to use it. Even if I designed microwaves for a living, I’m not likely
to think about how it works when I make nachos before the big game.

These are not profound observations. Humans can think about only so much
at any one time. We tend to reduce the number of things that we have to deal
with by abstracting away all the little details. This allows us to work at the
level of detail appropriate to the problem we’re trying to solve.

Note: In object-oriented (OO) terms, this level of detail is known as the level
of abstraction.

When I’m working on nachos, I view my microwave oven as a black box. I
don’t concern myself with what’s going on inside that box unless, of course,
it breaks. Then I might take the top off and see if I can figure out what’s wrong
with it; then I’m working at a different level of abstraction. I still don’t take
the tops off the computer chips on the circuit board or try to take apart the
individual components. (I’m not that crazy.)

As long as the microwave is heating food, I limit myself to the interface that
it exposes to the outside world: the keypad and LCD display. It is very impor-
tant that from this interface, there’s nothing that I can do that will cause the
microwave to

 ✓ Enter an inconsistent state and crash (causing me to have to reboot my
microwave)

 ✓ Worse, turn my nachos into a blackened, flaming mass

 ✓ Worse yet, catch on fire and burn down the house

273 Chapter 21: What Is Object-Oriented Programming?

Procedural nachos
Suppose I were to ask my son to write an algorithm for making nachos using
the same basic approach used for changing tires in Chapter 1. He would prob-
ably write something like, “Open a can of beans, grate some cheese, cut the
jalapeños,” and so on. For the part about heating the nachos, he would write
something similar to, “Cook in the oven until cheese is melted.”

That description is straightforward and complete, but it’s not how a proce-
dural programmer would code a program to make nachos. Procedural pro-
grammers live in a world devoid of objects such as microwave ovens. They
tend to worry about flowcharts (with their myriad functional paths). In a pro-
cedural solution, the flow of control would pass from my finger through the
microwave’s front panel and on into the interior of the thing. Soon, the flow
would be wiggling through complex logic paths concerned with how long to
charge up some capacitor and whether it’s time to sound the “come and get
it” tone.

In a world like this, it’s hard to think in terms of levels of abstraction. There
are no objects, no abstractions behind which to hide inherent complexity.

Object-oriented nachos
In an object-oriented approach to making nachos, I would start by identifying
the types of objects in the problem: chips, beans, cheese, and an oven. These
are the nouns that I have to work with. That done, I would identify the verbs
relevant to each object. Next, I would solve the problem using nothing but
the nouns and verbs identified before. Finally, then, and only then, I would
implement each of these objects in software.

 I identify the nouns and verbs relevant to tire-changing for you in Chapter 1.
You’re left with the job of implementing the solution, using the nouns and
verbs I gave you.

While I’m writing object-level code, I’m working (and thinking) at the level of
abstraction of the basic objects. I need to think about making a useful oven,
but I don’t have to think about the process of making nachos yet. After all,
the designers of my microwave didn’t think about the specific problem of my
making a snack. Rather, they set about the problem of designing and building
a useful microwave oven.

274 Part V: Object-Oriented Programming

After I have successfully coded and tested the objects I need, I can ratchet up
to the next level of abstraction. I can start thinking at the nacho-making level,
rather than at the microwave-making level. At this point, I can pretty much
translate my son’s instructions directly into C++ code.

Classification and Microwave Ovens
Critical to the concept of abstraction is that of classification. If I were to ask
my son, “What’s a microwave oven?” he would probably say, “It’s an oven
that. . . .” If I then ask, “What’s an oven?” he might reply, “It’s a kitchen appli-
ance that. . . .” I could keep asking this question, ratcheting myself up the
abstraction ladder until I ended up with, “It’s a thing,” which is another way
of saying, “It’s an object.”

My son understands that our particular microwave is an instance of the type
of things called microwave ovens. In addition, he sees microwave ovens as
just a special kind of oven, which is, in turn, a special type of kitchen appli-
ance, and so on.

The technical way of saying all this is that our oven is an instance of the class
microwave. The class microwave is a subclass of the class oven, and the class
oven is a superclass of the class microwave.

Humans classify. Everything about our world is ordered into taxonomies. We
do this to reduce the number of things that we have to remember. Consider,
for example, the first time that you saw a hybrid car. The advertisement
called it a “revolutionary automobile, unlike any car you’ve ever seen,” but
you and I know that this just isn’t so. Sure, its propulsion system is different
from conventional cars, but it’s still a car and as such does the same things
that all cars do: convey you and your kin from one place to another. It has a
steering wheel, seats, a motor, brakes, and so on. I bet I could even drive one
without help.

I don’t have to clutter my limited storage with all the things that a hybrid card
has in common with other cars. All I have to remember is that “a hybrid car is
a car that . . .” and tack on those few things that are unique to a hybrid. Cars
are a subclass of wheeled vehicles, of which there are other members, such as
trucks and pickups. Maybe wheeled vehicles are a subclass of vehicles, which
includes boats and planes. And on and on and on.

275 Chapter 21: What Is Object-Oriented Programming?

Why Build Objects This Way?
It may seem easier to design and build a microwave oven specifically for
this one problem, rather than to build a separate, more generic oven-object.
Suppose, for example, that I were to build a microwave to cook nachos and
nachos only. I wouldn’t need to put a front panel on it, other than a START
button. I always cook nachos the same amount of time. I could dispense with
all that DEFROST and TEMP COOK nonsense. The microwave could be tiny.
It would need to hold only one fat, little plate. Any more cubic feet of space
would be completely wasted on nachos.

For that matter, suppose I just dispense with the concept of “microwave
oven” altogether. All I really need is the guts of the oven. Then in the recipe, I
can put the instructions to make it work: “Put nachos in the box. Connect the
red wire to the black wire. Notice a slight hum. Don’t stand too close if you
intend to have children.” Stuff like that.

Nevertheless, the procedural approach does have some problems:

 ✓ Too complex. You don’t want the details of oven-building mixed in with
the details of nacho-building. If you can’t define the objects and pull
them out of the morass of details to deal with separately, you must deal
with all the complexities of the problem at the same time.

 ✓ Not flexible. If you need to replace the microwave oven with some other
type of oven, you should be able to do so as long as the interface to the
new oven is about the same as the old one. Without a simple and clearly
delineated interface, it becomes impossible to cleanly remove one
object type and replace it with another.

 ✓ Not reusable. Ovens are used to make many different dishes. You don’t
want to create a new oven each time you encounter a new recipe. Having
solved a problem once, it would be nice to reuse the solution in future
programs.

It does cost more to write a generic object. It would be cheaper to build a
microwave made specifically for nachos. You could dispense with expensive
timers, buttons, and the like that aren’t needed to make nachos. After you
have used a generic object in more than one application, however, the costs
of a slightly more expensive class more than outweigh the repeated costs of
building cheaper, less flexible classes for every new application.

276 Part V: Object-Oriented Programming

Self-Contained Classes
Now, it’s time to reflect on what you’ve learned. Here’s what happens in an
object-oriented approach to programming:

 ✓ The programmer identifies the classes necessary to solve the problem.
(I knew right off that I was going to need an oven to make decent nachos.)

 ✓ The programmer creates self-contained classes that fit the requirements
of the problem and doesn’t worry about the details of the overall
application.

 ✓ The programmer writes the application using the classes just created
without thinking about how they work internally.

An integral part of this programming model is that each class is responsible
for itself. A class should be in a defined state at all times. It should not be
possible to crash the program by calling a class with illegal data or with an
illegal sequence of correct data.

Many of the features of C++ that are shown in subsequent chapters deal with
giving the class the capability to protect itself from errant programs just wait-
ing to trip it up.

Chapter 22

Structured Play: Making
Classes Do Things

In This Chapter
▶ Adding member functions to a class

▶ Defining the member function

▶ Invoking the member function

▶ Accessing one member from another member

▶ Overloading member functions

C
lasses were introduced to the C language as a convenient way to group
unalike-but-related data elements — for example, the Social Security

number and name of the same person. (That’s the way I introduce them in
Chapter 19.) C++ expanded the concept of classes to give them the ability to
mimic objects in the real world. That’s the essence of the difference between
C and C++.

In the previous chapter, I review at a high level the concept of object-oriented
programming. In this chapter, I make it more concrete by examining the
active features of a class that allow it to better mimic the object-oriented
world we live in.

Activating Our Objects
C++ uses classes to simulate real-world objects. However, the classes in
Chapter 19 are lacking in that regard because classes do things. (The classes
in Chapter 19 don’t have any verbs associated with them — they don’t do any-
thing.) Consider for example, a savings account. It is necessary for a Savings
class to save the owner’s name, probably her Social Security number,

278 Part V: Object-Oriented Programming

certainly her account number and balance. But this isn’t sufficient. Objects in
the real world do things. Ovens cook. Savings accounts accumulate interest.
CDs charge a substantial penalty for early withdrawal. Stuff like that.

Consider the problem of handling deposits in a Savings account class.
Procedural programs do things via functions. Thus, a procedural program might
create a separate function that takes as its argument a pointer to a Savings
account object that it wants to update followed by the amount to deposit.

 Never mind (for now) exactly how to pass a pointer to a Savings account
object. You get to see more about that in the next chapter.

But that’s not the way that savings accounts work in the real world. When I
drive up to the bank window and tell them I want to make a deposit to my sav-
ings account, the teller doesn’t hand me a ledger into which I note the deposit
and write the new balance. She doesn’t do it herself either. Instead, she types
in the amount of the deposit at some terminal and then places that amount in
the till. The machine spits out a deposit slip with the new balance on it that she
hands me, and it’s all done. Neither of us touches the bank’s books directly.

This may seem like a silly exercise but consider why the bank doesn’t do
things “the procedural way.” Ignore for a minute the temptation I might have
to add a few extra zeros to the end of my deposit before adding it up. The
bank doesn’t do things this way for the same reason that I don’t energize my
microwave oven by connecting and disconnecting wires inside the box — the
bank wants to maintain tight controls on what happens to its balances.

This care extends to programmers as well. You can rest easy at night knowing
that not every programmer gets direct access to bank balances either. Only
the most trusted of programmers get to write the code that increments and
decrements bank balances.

To make the Savings class mimic a real-world savings account, it needs
active properties of its own, such as deposit() and withdrawal() (and
chargePenalty() for who-knows-why, in my case). Only in this way can a
Savings class be held responsible for its state.

Creating a Member Function
A function that is part of a class definition is known as a member function.
The data within the class is known as data members. Member functions are
the verbs of the class; data members are the nouns.

279 Chapter 22: Structured Play: Making Classes Do Things

 Member functions are also known as methods because that’s what they were
called in the original object-oriented language, Smalltalk. The term methods
had meaning to Smalltalk, but it has no special meaning in C++, except that it’s
easier to say and sounds more impressive in a conversation. I’ll try not to bore
you with this trivia, but you will hear the term method bandied about at object-
oriented parties, so you might as well get used to it. I’ll try to stick with the
term member functions, but even I slip into technical jargon from time to time.

Note: Functions that you’ve seen so far that are not members of a class don’t
have a special name. I refer to them as non-member functions when I need to
differentiate them from their member cousins.

There are three aspects to adding a member function to a class: defining the
function, naming the function, and calling the function. Sounds pretty obvious
when you say it that way.

Defining a member function
The following class demonstrates how to define two key member functions,
deposit() and withdraw(), in a class Savings account:

// Savings - a simple savings account class
class Savings
{
 public:
 int nAccountNumber;
 double dBalance;

 // deposit - deposit an amount to the balance;
 // deposits must be positive number; return
 // the resulting balance or zero on error
 double deposit(double dAmount)
 {
 // no negative deposits - that's a withdrawal
 if (dAmount < 0)
 {
 return 0.0;
 }

 // okay - add to the balance and return the total
 dBalance += dAmount;
 return dBalance;
 }

280 Part V: Object-Oriented Programming

 // withdraw - execute a withdrawal if sufficient funds
 // are available
 double withdraw(double dAmount)
 {
 if (dBalance < dAmount)
 {
 return 0.0;
 }

 dBalance -= dAmount;
 return dBalance;
 }
};

 A real savings-account class would have a lot of other information such as the
customer’s name. Adding that extra stuff doesn’t help explain the concepts,
however, so I’ve left it off to keep the listings as short as possible.

You can see that the definition of the deposit() and withdraw() member
functions look just like those of any other function, except they appear within
the definition of the class itself. There are some other subtle differences that I
address later in this chapter.

 It’s possible to define a member function outside the class, as you see a little
later in this chapter.

Naming class members
A member function is a lot like a member of a family. The full name of
the deposit function is Savings::deposit(double) just as my name
is Stephen Davis. My mother doesn’t call me that unless I’m in trouble.
Normally, members of my family just call me by my first name, Stephen.
Similarly, from within the Savings class, the deposit function is known
simply as deposit(double).

The class name at the beginning indicates that this is a reference to the
deposit() function that is a member of the class Savings. The :: is simply
a separator between the class name and the member name. The name of the
class is part of the extended name of the member function, in the same way
that like Stephen Davis is my extended name. (See Chapter 11 if you need a
refresher on extended names.)

281 Chapter 22: Structured Play: Making Classes Do Things

 Classes are normally named using nouns that describe concepts such as
Savings or SavingsAccount. Member functions are normally named with
associated verbs like deposit() or withdraw(). Other than that, member
functions follow the same naming convention as other functions. Data mem-
bers are normally named using nouns that describe specific properties such
as szName or nSocialSecurityNumber.

You can define a different deposit() function that has nothing to do with
the Savings class — there are Stephens out there who have nothing to
do with my family. (I mean this literally: I know several Stephens who want
nothing to do with my family.) For example, Checking::deposit(double)
or River::deposit() are easily distinguishable from
Savings::deposit(double).

 A non-member function can appear with a null class name. For example, if
there were a deposit function that was not a member of any class, its extended
name would be ::deposit().

Calling a member function
Before I show you how to invoke a member function, let me quickly refresh
you on how to access a data member of an object. Given the earlier definition
of the Savings class, you could write the following:

void fn()
{
 Savings s;

 s.nAccountNumber = 0;
 s.dBalance = 0.0;
}

The function fn() creates a Savings object s and then zeros the data mem-
bers nAccountNumber and dBalance of that object.

Notice that the following does not make sense:

void fn()
{
 Savings s1, s2;

 nAccountNumber = 0; // doesn't work
 dBalance = 0.0;
}

282 Part V: Object-Oriented Programming

Which nAccountNumber and dBalance are you talking about? The account
number and balance of s1 or s2. Or some other object entirely? A reference
to a data member makes sense only in the context of an object.

Invoking a member function is the same. You must first create an object and
then you can invoke the member function on that object:

void fn()
{
 // create and initialize an object s
 Savings s = {0, 0.0};

 // now make a deposit of $100
 s.deposit(100.0);

 // or a withdrawal
 s.withdraw(50.0);
}

The syntax for calling a member function looks like a cross between the
syntax for accessing a data member and that used for calling functions. The
right side of the dot looks like a conventional function call, but an object
appears on the left side of the dot.

This syntax makes sense when you think about it. In the call s.deposit(), s
is the savings object to which the deposit() is to be made. You can’t make
a deposit without knowing to which account. Calling a member function with-
out an object makes no more sense than referencing a data member without
an object.

Accessing other members from
within a member function
I can see it now: You repeat to yourself, “You can’t access a member without
reference to an object. You can’t access a member without reference to an
object. You can’t. . . .” And then, wham, it hits you. Savings::deposit()
appears to do exactly that:

283 Chapter 22: Structured Play: Making Classes Do Things

double deposit(double dAmount)
{
 // no negative deposits - that's a withdrawal
 if (dAmount < 0)
 {
 return 0.0;
 }

 // okay - add to the balance and return the total
 dBalance += dAmount;
 return dBalance;
}

The Savings::deposit() function references dBalance without an
explicit reference to any object. It’s like that TV show: “How Do They Do It?”

So, okay, which is it? Can you or can you not reference a member without an
object? Believe me, the answer is no, you cannot. When you reference one
member from within another member of the same class without explicitly
referring to an object, the reference is implicitly against the “current object.”

What is the current object? Go back and look at the example in greater detail.
I am pulling out just the key elements of the example here for brevity’s sake:

class Savings
{
 public:
 int nAccountNumber;
 double dBalance;

 double deposit(double dAmount)
 {
 dBalance += dAmount;
 return dBalance;
 }
};

void fn()
{
 // create and initialize two objects
 Savings s1 = {0, 0.0};
 Savings s2 = {1, 0.0};

 // now make a deposit of $100 to one account
 s1.deposit(100.0);

 // and then the other
 s2.deposit(50.0);
}

284 Part V: Object-Oriented Programming

When deposit() is invoked with s1, the unqualified reference to dBalance
refers to s1.dBalance. At that moment in time, s1 is the “current object.”
During the call to s2.deposit(50.0), s2 becomes the current object. During
this call, the unqualified reference to dBalance refers to s2.dBalance.

 The “current object” has a name. It’s called this as in “this object.” Clever,
no? Its type is “pointer to an object of the current class.” I say more about this
in Chapter 23 when I talk about pointers to objects.

Keeping a Member Function after Class
One of the things I don’t like about C++ is that it provides multiple ways of
doing most things. In keeping with that penchant for flexibility, C++ allows
you to define member functions outside the class as long as they’re declared
within the class.

The following is an example of the withdraw() function written outside the
class declaration (once again, I’ve left out the error checking to make the
example as short as possible):

// this part normally goes in the Savings.h include file
class Savings
{
 public:
 int nAccountNumber;
 double dBalance;

 double deposit(double dAmount);
};

// this part appears in a separate Savings.cpp file
double Savings::deposit(double dAmount)
{
 dBalance += dAmount;
 return dBalance;
}

Now the definition of Savings contains nothing more than the prototype
declaration of the member function deposit(). The actual definition of the
function appears later. Notice, however, that when it does appear, it appears
with its full extended name, including the class name — there is no default
class name outside of the class definition.

285 Chapter 22: Structured Play: Making Classes Do Things

This form is ideal for larger member functions. In these cases, the number of
lines of code within the member functions can get so large that it obscures
the definition of the class itself. In addition, this form is useful when defin-
ing classes in their own C++ source modules. The definition of the class can
appear in an include file, Savings.h, while the definition of the function
appears in a separately compiled Savings.cpp.

Overloading Member Functions
You can overload member functions just like you overload any other func-
tions. Remember, however, that the class name is part of the extended name.
That means that the following is completely legal:

class Student
{
 public:
 double grade(); // return Student's grade
 double grade(double dNewGPA); // set Student's grade
};

class Hill
{
 public:
 double grade(double dSlope); // set the slope
};
 void grade(double);

void fn()
{
 Student s;
 Hill h;

 // set the student's grade
 s.grade(3.0);

 // now query the grade
 double dGPA = s.grade();

 // now grade a hill to 3 degrees slope
 h.grade(3.0);

 // call the non-member function
 grade(3.0);
}

286 Part V: Object-Oriented Programming

When calling a member function, the type of the object is just as important as
the number and type of the arguments. The first call to grade() invokes the
function Student::grade(double) to set the student’s grade-point aver-
age. The second call is to Student::grade(), which returns the student’s
grade-point average without changing it.

The third call is to a completely unrelated function, Hill::grade(double),
that sets the slope on the side of the hill. And the final call is to the non-
member function ::grade(double).

Chapter 23

Pointers to Objects
In This Chapter
▶ Defining pointers to objects

▶ Invoking a member function through a pointer

▶ Passing pointers to objects to functions

▶ Examining this more closely

C
hapters 17 and 18 focus on various aspects of the care and feeding of
pointers. Surely, you think, nothing more can be said on the subject. But

I don’t introduce the concept of classes before those chapters. In this chapter,
I describe the intersection of pointer variables and object-oriented programming.
This chapter deals with the concept of pointers to class objects. I describe how
to create one, how to use it, and how to delete it once you’re finished with it.

Pointers to Objects
A pointer to a programmer-defined type such as a class works essentially the
same as a pointer to an intrinsic type:

int nInt;
int* pInt = &nInt;

class Savings
{
 public:
 int nAccountNumber;
 double dBalance;
};
Savings s;
Savings* pS = &s;

The first pair of declarations defines an integer, nInt, and a pointer to an
integer, pInt. The pointer pInt is initialized to point to the integer nInt.

288 Part V: Object-Oriented Programming

Similarly, the second pair of declarations creates a Savings object s. It then
declares a pointer to a Savings object, pS, and initializes it to the address of s.

The type of pS is “pointer to Savings” which is written Savings*.

I feel like the late Billy Mays when I say, “But wait! There’s more!” The similari-
ties continue. The following statement assigns the value 1 to the int pointed
at by pInt:

*pInt = 1;

Similarly, the following assigns values to the account number and balance of
the Savings object pointed at by pS.

(*pS).nAccountNumber = 1234;
(*pS).dBalance = 0.0;

 The parentheses are required because the precedence of . is higher than that
of *. Without the parentheses, *pS.nAccountNumber = 1234 would be
interpreted as *(pS.nAccountNumber) = 1234, which means “store 1234
at the location pointed at by pS.nAccountNumber.” This generates a com-
piler error because nAccountNumber isn’t a pointer (nor is pS a Savings).

Arrow syntax
The only thing that I can figure is that the authors of the C language couldn’t
type very well. They wasted no efforts in finding shorthand ways of saying
things. Here is another case where they made up a shorthand way to save
keystrokes, inventing a new operator -> to stand for *():

pS->dBalance = 0.0; // same as (*pS).dBalance = 0.0

Even though the two are equivalent, the arrow operator is used almost exclu-
sively because it’s easier to read (and type). Don’t lose sight of the fact, how-
ever, that the two forms are completely equivalent.

Calling all member functions
The syntax for invoking a member function with a pointer is similar to access-
ing a data member:

289 Chapter 23: Pointers to Objects

class Savings
{
 public:
 int nAccountNumber;
 double dBalance;

 double withdraw(double dAmount);
 double deposit(double dAmount);
};

void fn()
{
 Savings s = {1234, 0.0};
 Savings* pS = &s;

 // deposit money into the account pointed at by pS
 pS->deposit(100.0);
}

The last statement in this snippet says “invoke the deposit() member func-
tion on the object pointed at by pS.”

Passing Objects to Functions
Passing pointers to functions is just one of the many ways to entertain your-
self with pointers.

Calling a function with an object value
As you know, C++ passes arguments to functions by value by default. If you
don’t know that, refer to Chapter 11. Complex, user-defined objects are
passed by value as well:

class Savings
{
 public:
 int nAccountNumber;
 double dBalance;

 double withdraw(double dAmount);
 double deposit(double dAmount);
};

290 Part V: Object-Oriented Programming

void someOtherFunction(Savings s)
{
 s.deposit(100.0);
}

void someFunction()
{
 Savings s = {1234, 0.0};

 someOtherFunction(s);
}

Here the function someFunction() creates and initializes a Savings object s.
It then passes a copy of that object to someOtherFunction(). The fact that
it’s a copy is important for two reasons:

 ✓ Making copies of large objects can be very inefficient, causing your pro-
gram to run slower.

 ✓ Changes made to copies don’t have any effect on the original object in
the calling function.

In this case, the second problem is much worse than the former. I can stand
a little bit of inefficiency — a Savings object isn’t very big anyway — but the
deposit made in someOtherFunction() got booked against a copy of the
original account. My Savings account back in someFunction() still has a
balance of zero. This is shown graphically in Figure 23-1.

Calling a function with an object pointer
The programmer can pass the address of an object rather than the object
itself, as demonstrated in the following example:

class Savings
{
 public:
 int nAccountNumber;
 double dBalance;

 double withdraw(double dAmount);
 double deposit(double dAmount);
};

291 Chapter 23: Pointers to Objects

void someOtherFunction(Savings* pS)
{
 pS->deposit(100.0);
}

void someFunction()
{
 Savings s = {1234, 0.0};

 someOtherFunction(&s);
}

Figure 23-1:
By default,

C++ passes
a copy of the
Student
object s to

some
Other
Func

tion().

The type of the argument to someOtherFunction() is “pointer to Savings.”
This is reflected in the way that someFunction() performs the call, passing
not the object s but the address of the object, &s. This is shown graphically in
Figure 23-2.

292 Part V: Object-Oriented Programming

Figure 23-2:
By pass-

ing the
address of

the original
Savings
object, the

programmer
can avoid

creating
a copy of

the original
object.

This addresses both of the problems with passing a copy:

 ✓ No matter how large and complicated the object might be, the call
passes only a single address.

 ✓ Changes made in someOtherFunction() are permanent because they
refer to the original object and not a copy.

Looking at an example
The following program demonstrates the difference between passing an
object by value versus passing the address of an object:

//
// PassObjects - this program demonstrates passing an
// object by value versus passing the
// address of the object
//
#include <cstdio>
#include <cstdlib>

293 Chapter 23: Pointers to Objects

#include <iostream>
#include <cstring>
using namespace std;

// Savings - a simple savings account class
class Savings
{
 public:
 int nAccountNumber;
 double dBalance;

 // deposit - deposit an amount to the balance;
 // deposits must be positive number; return
 // the resulting balance or zero on error
 double deposit(double dAmount)
 {
 // no negative deposits - that's a withdrawal
 if (dAmount < 0)
 {
 return 0.0;
 }

 // okay - add to the balance and return the total
 dBalance += dAmount;
 return dBalance;
 }

 // withdraw - execute a withdrawal if sufficient funds
 // are available
 double withdraw(double dAmount)
 {
 if (dBalance < dAmount)
 {
 return 0.0;
 }

 dBalance -= dAmount;
 return dBalance;
 }

 // balance - return the balance of the current object
 double balance()
 {
 return dBalance;
 }
};

// someFunction(Savings) - accept object by value
void someFunction(Savings s)

294 Part V: Object-Oriented Programming

{
 cout << "In someFunction(Savings)" << endl;

 cout << "Depositing $100" << endl;
 s.deposit(100.0);

 cout << "Balance in someFunction(Savings) is "
 << s.balance() << endl;
}

// someFunction(Savings*) - accept address of object
void someFunction(Savings* pS)
{
 cout << "In someFunction(Savings*)" << endl;

 cout << "Depositing $100" << endl;
 pS->deposit(100.0);

 cout << "Balance in someFunction(Savings) is "
 << pS->balance() << endl;
}

int main(int nNumberofArgs, char* pszArgs[])
{
 Savings s = {0, 0.0};

 // first, pass by value
 someFunction(s);
 cout << "Balance back in main() is "
 << s.balance() << endl;

 // now pass the address
 someFunction(&s);
 cout << "Balance back in main() is "
 << s.balance() << endl;

 // wait until user is ready before terminating program
 // to allow the user to see the program results
 cout << "Press Enter to continue..." << endl;
 cin.ignore(10, '\n');
 cin.get();
 return 0;
}

This program starts by defining a conventional Savings class with
deposit(), withdrawal(), and balance() member functions (the last
one just returns the current balance).

The program then defines two overloaded functions someFunction(), one
of which accepts as its argument an object of type Savings and the second a
pointer to an object of type Savings (written Savings*). Both functions do

295 Chapter 23: Pointers to Objects

the same things, first outputting a “Here I am” message and then depositing
$100 to the account.

The main() program creates a Savings object s, which it first passes to
someFunction(Savings). It then passes the address of the s object to
someFunction(Savings*).

The output from this program appears as follows:

In someFunction(Savings)
Depositing $100
Balance in someFunction(Savings) is 100
Balance back in main() is 0
In someFunction(Savings*)
Depositing $100
Balance in someFunction(Savings) is 100
Balance back in main() is 100
Press Enter to continue . . .

Passing by reference
In an attempt to make things simpler, C++ added a level of complexity by allowing the programmer
to declare a function that accepts its argument by reference as follows:

// pass by reference
void someFunction(Savings& refS)
{
 refS.deposit(100.0); // this deposits back into the original
 // object in fn() even though it looks
 // copy semantics
}
void fn()
{
 Savings s;
 someFunction(s); // this passes a reference, not a copy
}

This causes C++ to pass some form of address of s to the function someFunction(Savings).
Within the function, C++ automatically dereferences the address for you. The effect is exactly the
same as if you had passed the address yourself, except C++ handles the pointer grammar. You
might think that this makes things simpler. (I suspect that the authors of C++ thought it would.) In
practice, however, it makes things more complicated because a value becomes difficult to tell
apart from a reference.

This is exactly analogous to the reference arguments for simple types I discuss in Chapter 17. I
would encourage you to avoid use of references until you’re really comfortable with pointers.

296 Part V: Object-Oriented Programming

Notice how both functions deposit $100 into a Savings account object.
However, since someFunction(Savings) makes the deposit into a copy,
the original s object back in main() is left unchanged as demonstrated by
the zero balance.

By passing the address of s to someFunction(Savings*), the program
allows that function to modify the original object so the value “stays modi-
fied” in main() as demonstrated by the fact that the balance is $100 after
control returns.

Allocating Objects off the Heap
You can allocate objects off the heap by using the new keyword, as shown in
the following example:

Savings* newSavings(int nAccountNum)
{
 Savings* pS = new Savings;
 pS->nAccountNumber = nAccountNum;
 pS->dBalance = 0.0;
 return pS;
}

Here the function allocates a new object of class Savings and then initializes
it with the account number (passed as an argument) and a zero balance.

This is useful when you don’t know how many objects you are going to need,
as in the dynamically sized character arrays described in Chapter 18. In that
case, I first count how many characters I need room for, and then allocate an
array of appropriate size off the heap.

In this present example, I can determine how many Savings accounts I need
in memory at one time and allocate them dynamically off the heap.

 Of course, there is the little matter of how to store an unknown quantity of
objects. C++ provides several variable-size data structures, in addition to the
fixed-size array, as part of the Standard Template Library. A general discussion
of the STL is beyond the scope of this book, but feel free to take comfort from
the fact that it exists.

 You must return every object that you allocate off the heap; to do so, you pass
the unmodified address of that object to the keyword delete. Otherwise your
program will slowly run out of memory and die a horrible death.

297 Chapter 23: Pointers to Objects

What is this anyway?
In Chapter 22, I mention that an otherwise-unqualified reference to a member made from within
a member function always refers to the current object. I even mention that the current object has
a name: this. You can reference this explicitly. I could have written the Savings class as
follows:

class Savings
{
 public:
 int nAccountNumber;
 double dBalance;

 double withdraw(double dAmount)
 {
 this->dBalance -= dAmount;
 return this->dBalance;
 }
 double deposit(double dAmount)
 {
 this->dBalance += dAmount;
 return this->dBalance;
 }
 double balance()
 {
 return this->dBalance;
 }
};

In fact, even without explicitly referring to the current object (or its name), you use this all the
time. If you don’t specify an object within a member function, C++ assumes a reference to this.
Thus the preceding is what C++ actually “sees” even if you don’t mention this.

298 Part V: Object-Oriented Programming

Chapter 24

Do Not Disturb: Protected
Members

In This Chapter
▶ Protecting members of a class

▶ Asking, “Why do that?”

▶ Declaring friends of the class

M
y goal with this part of the book, starting with Chapter 21, is to model
real-world objects in C++ by using the class structure. In Chapter 22, I

introduce the concept of member functions in order to assign active proper-
ties to the classes. Returning to the microwave oven example in Chapter 21,
assigning active properties allows me to give my Oven class properties like
cook() and defrost().

However, that’s only part of the story. I still haven’t put a box around the
insides of my classes to ward off meddling. I can’t very well hold some-
one responsible if the microwave catches on fire so long as the insides are
exposed to anyone who wants to mess with them.

This chapter “puts a box” around the classes by declaring certain members
off-limits to user functions.

Protecting Members
Members of a class can be flagged as inaccessible from outside the class with
the keyword protected. This is in direct opposition to the public keyword,
which designates those members that are accessible to all functions. The
public members of a class form the interface to the class (think of the keypad
on the front of the microwave oven) while the protected members form the
inner workings (“no user-serviceable parts inside”).

300 Part V: Object-Oriented Programming

 There is a third category called private. The only difference between private
and protected members is the way they react to inheritance, a concept I present
in Chapter 28.

Why you need protected members
Declaring a member protected allows a class to put a protective box
around the class. This makes the class responsible for its own internal
state. If something in the class gets screwed up, the author of the class has
nowhere to look except herself. It’s not fair, however, to ask the programmer
to take responsibility for the state of the class if any ol’ function can reach in
and muck with it.

In addition, limiting the interface to a class makes the class easier to learn
for programmers that use that interface in their programs. In general, I don’t
really care how my microwave works inside as long as I know how to use the
controls. In a similar fashion, I don’t generally worry about the inner work-
ings of library classes as long as I understand the arguments to the public
member functions.

Finally, limiting the class interface to just some choice public functions
reduces the level of coupling between the class and the application code.

Note: Coupling refers to how much knowledge the application has of how the
class works internally, and vice versa. A tightly coupled class has intimate
knowledge of the surrounding application — and uses that knowledge. A
loosely coupled class works only through a simple, generic public interface.
A loosely coupled class knows little about its surroundings and hides most of
its own internal details as well. Loosely coupled classes are easier to test and
debug — and easier to replace when the application changes.

I know what you procedural types out there are saying: “You don’t need some
fancy feature to do all that. Just make a rule that says certain members are
publicly accessible and others are not.” This is true in theory, and I’ve even
been on projects that employed such rules, but in practice it doesn’t work.
People start out with good intentions, but as long as the language doesn’t at
least discourage direct access to protected members, these good intentions
get crushed under the pressure to get the product out the door.

301 Chapter 24: Do Not Disturb: Protected Members

Making members protected
Adding the keyword public: to a class makes subsequent members publicly
accessible. Adding the keyword protected: makes subsequent members
protected, which means they are accessible only to other members of the
same class or functions that are specifically declared friends (more on that
later in this chapter). They act as toggles — one overrides the other. You can
switch back and forth between protected and public as often as you like.

Take, for example, a class Student that describes the salient features of a
college student. This class has the following public member functions:

 ✓ addGrade(int nHours, double dGrade) — add a grade to the
student.

 ✓ grade() — return the student’s grade-point average (GPA).

 ✓ hours() — return the number of semester hours toward graduation.

The remaining members of Student should be declared protected to keep
prying expressions out of his business.

The following SimpleStudent program defines such a Student class and
includes a simple main() that exercises the functions:

//
// SimpleStudent - this program demonstrates how the
// protected keyword is used to protect
// key internal members
//
#include <cstdio>
#include <cstdlib>
#include <iostream>
using namespace std;

class Student
{
 protected:
 double dGrade; // the student's GPA
 int nSemesterHours;

 public:
 // init() - initialize the student to a legal state
 void init()
 {
 dGrade = 0.0;
 nSemesterHours = 0;
 }

302 Part V: Object-Oriented Programming

 // getGrade() - return the current grade
 double getGrade()
 {
 return dGrade;
 }

 // getHours() - get the class hours towards graduation
 int getHours()
 {
 return nSemesterHours;
 }

 // addGrade - add a grade to the GPA and total hours
 double addGrade(double dNewGrade, int nHours)
 {
 double dWtdHrs = dGrade * nSemesterHours;
 dWtdHrs += dNewGrade * nHours;
 nSemesterHours += nHours;
 dGrade = dWtdHrs / nSemesterHours;
 return dGrade;
 }
};

int main(int nNumberofArgs, char* pszArgs[])
{
 // create a student and initialize it
 Student s;
 s.init();

 // add the grades for three classes
 s.addGrade(3.0, 3); // a B
 s.addGrade(4.0, 3); // an A
 s.addGrade(2.0, 3); // a C (average should be a B)

 // now print the results
 cout << "Total # hours = " << s.getHours()
 << ", GPA = " << s.getGrade()
 << endl;

 // wait until user is ready before terminating program
 // to allow the user to see the program results
 cout << "Press Enter to continue..." << endl;
 cin.ignore(10, '\n');
 cin.get();
 return 0;
}

303 Chapter 24: Do Not Disturb: Protected Members

This Student protects its members dGrade and nSemesterHours. Outside
functions can’t surreptitiously set their own GPA high by slipping in the
following:

void MyFunction(Student* pS)
{
 // set my grade to A+
 pS->dGrade = 3.9; // generates a compiler error
}

This assignment generates a compiler error.

 You can start with either the protected or public members; it doesn’t matter.
In fact, you can switch back and forth as often as you like.

Any function can read a student’s GPA through the function getGrade().
This is known as an access function. However, although external functions
can read a value, they cannot change the value via this access function.

 An access function is also known as a getter function (as in “get the value”).
A function that sets the value is also known as a setter function. They are also
known as accessors and mutators, respectively.

The main() function in this program creates a Student object s. It cannot
initialize s to some legal state since the data members are protected.
Fortunately, the Student class has provided an init() function for main()
to call that initializes the data members to their proper starting state.

After initializing s, main() calls addGrade() to add three different courses
and prints out the results using the access member functions. The results
appear as follows:

Total # hours = 9, GPA = 3
Press Enter to continue . . .

So what?
So what’s the big deal? “Okay,” you say, “I see the point about not letting
other functions set the GPA to some arbitrary value, but is that it?” No. A
finer point lies behind this loose coupling. I chose to implement the algo-
rithms for calculating the GPA as simply as I possibly could. With no more
than five minutes’ thought, I can imagine at least three different ways I could
have chosen to store the grades and semester hours internally, each with
their own advantages and disadvantages.

304 Part V: Object-Oriented Programming

For example, I could save each grade — along with the number of semester
hours — in an internal array. This would allow the student to review the
grades that are going into his GPA.

The point is that the application programmer shouldn’t care. As long as the
member functions getGrade() and getHours() calculate the GPA and total
number of semester hours accurately, no application is going to care.

Now suppose the school changes the rules for how to calculate the GPA.
Suppose, for example, that it declares certain classes to be Pass/Fail, mean-
ing that you get credit toward graduation but the grade in the class doesn’t
go into the GPA calculation. This may require a total rewrite of the Student
class. That, in turn, would require modification to any functions that rely
upon the way that the information is stored internally — that is, any func-
tions that have access to the protected members. However, functions that
limit themselves to the public members are unaffected by the change.

That is the true advantage of loose coupling: tolerance to change.

Who Needs Friends, Anyway?
Occasionally, you need to give a non-member function access to the pro-
tected members of a class. You can do this by declaring the function to be a
friend — which means you don’t have to expose the protected members to
everyone by declaring them public.

It’s like giving your neighbor a key to check on your house during your vaca-
tion. Giving non-family members keys to the house is not normally a good
idea, but it beats the alternative of leaving the house unlocked.

The friend declaration appears in the class that contains the protected
member. The friend declaration consists of the keyword friend followed
by a prototype declaration. In the following example, the initialize()
function is declared as a non-member. However, initialize() clearly
needs access to all the data members of the class, protected or not:

class Student
{
 friend void initialize(Student*);
 protected:
 double dGrade; // the student's GPA
 int nSemesterHours;

305 Chapter 24: Do Not Disturb: Protected Members

 public:
 double grade();
 int hours();
 double addGrade(double dNewGrade, int nHours);
};

void initialize(Student* pS)
{
 pS->dGrade = 0.0;
 pS->nSemesterHours = 0;
}

A single function can be declared to be a friend of two different classes at
the same time. Although this may seem convenient, it tends to bind the two
classes together. However, sometimes the classes are bound together by
their very nature, as in the following teacher-student example:

class Student; // forward declaration
class Teacher
{
 friend void registration(Teacher*, Student*);
 protected:
 int noStudents;
 Student *pList[128];

 public:
 void assignGrades();
};

class Student
{
 friend void registration(Teacher*, Student*);
 protected:
 Teacher *pTeacher;
 int nSemesterHours;
 double dGrade;
};

In this example, the registration() function can reach into both the
Student object to set the pTeacher pointer and into the Teacher object to
add to the teacher’s list of students.

 Notice how the class Student first appears by itself with no body. This is
called a forward declaration and declares the intention of the programmer to
define a class Student somewhere within the module. This is a little bit like
the prototype declaration for a function described in Chapter 11. This is gen-
erally necessary only when two or more classes reference each other; in this
case, Teacher contains a reference to Student and Student to Teacher.

306 Part V: Object-Oriented Programming

Without the forward declaration to Student, the declaration within Teacher
of Student *pList[100] generates a compiler error because the compiler
doesn’t yet know what a Student is. Swap the order of the definitions, and
the declaration Teacher *pTeacher within Student generates a compiler
error because Teacher has not been defined yet.

The forward declaration solves the problem by telling the compiler to be
patient — a definition for this new class is coming very soon.

A member of one class can be declared a friend of another class:

class Student;

class Teacher
{
 // ...other members...
 public:
 void assignGrade(Student*, int nHours, double dGrade);
};

class Student
{
 friend void Teacher::assignGrade(Student*,
 int, double);
 // ...other members...
};

An entire class can be declared a friend of another class. This has the effect
of making every member function of the class a friend. For example:

class Student;

class Teacher
{
 protected:
 int noStudents;
 Student* pList[128];

 public:
 void assignGrade(Student*, int nHours, double dGrade);
};

class Student
{
 friend class Teacher;

 // ...other members...
};

Now every member of Teacher can access the protected members of Student
(but not the other way around). Declaring one class to be a friend of another
binds the classes together inseparably.

Chapter 25

Getting Objects Off to a Good Start
In This Chapter
▶ Creating a constructor

▶ Examining limitations on how constructors are invoked

▶ Reviewing an example constructor

▶ Constructing data members

▶ Introducing the “NOT constructor” — the destructor

N

ormally an object is initialized when it is created, as in the following:

double PI = 3.14159;

This is true of class objects as well:

class Student
{
 public:
 int nHours;
 double dGrade;
};

Student s = {0, 0.0};

However, this is no longer possible when the data elements are declared
protected if the function that’s creating the objects is not a friend or
member of the class (which, in most cases it would not be — see Chapter 24
for more about these relationships).

Some other mechanism is required to initialize objects when they’re created,
and that’s where the constructor comes in.

308 Part V: Object-Oriented Programming

The Constructor
One approach to initializing objects with protected members would be to
create an init() member function that the application could call when the
object is created. This init() function would initialize the object to some
legal starting point. In fact, that’s exactly what I do in Chapter 24.

This approach would work, but it doesn’t exactly fit the “microwave oven”
rules of object-oriented programming (see Chapter 21) because it’s akin to
building a microwave oven that requires you to hit the Reset button before
you could do anything with it. It’s as if the manufacturer put some big dis-
claimer in the manual: “DO NOT start any sequence of commands without
FIRST depressing the RESET button. Failure to do so may cause the oven to
explode and kill everyone in the vicinity or WORSE.” (What could be worse
than that?)

Now I’m no lawyer, but even I know that putting a disclaimer like that in your
manual is not going to save your butt when you end up in court because
someone forgot to hit Reset and got cut with shrapnel from an exploding
microwave, even though you say very clearly to hit Reset first.

Fortunately, C++ takes the responsibility for calling the initialization function
away from the applications programmer: It calls the function automatically
whenever an object is created.

You could call this initialization function anything you want, as long as there
is a rule for everyone to follow. (I’m kind of partial to init() myself, but I
didn’t get a vote.) The rule is that this initialization function is called a con-
structor, and it has the same name as the name of the class.

Outfitted with a constructor, the Student class appears as follows:

class Student
{
 protected:
 int nSemesterHours;
 double dGrade;

 public:
 Student()
 {
 nSemesterHours = 0;
 dGrade = 0.0;
 }

 // ...other public member functions...
};

309 Chapter 25: Getting Objects Off to a Good Start

void fn()
{
 Student s; // create an object and invoke the
 // constructor on it
}

At the point of the declaration of s, C++ embeds a call to Student::Student().

Notice that the constructor is called once for every object created. Thus the
following declaration calls the constructor five times in a row:

void fn()
{
 Student s[5];
}

It first calls the constructor for s[0], then for s[1], and so forth.

Limitations on constructors
The constructor can only be invoked automatically by C++. You cannot call a
constructor as you would a normal member function. That is, you cannot do
something like the following:

void fn()
{
 Student s;

 // ...do stuff...

 // now reinitialize s back to its initial state
 s.Student(); // this doesn't work
}

The constructor is not just any ol’ function.

In addition, the constructor has no return type, not even void. The default
constructor has no arguments, either.

 The next chapter shows you how to declare and use a constructor with
arguments.

310 Part V: Object-Oriented Programming

Finally, the constructor must be declared public, or else you’ll only be able
to create objects from within other member functions.

The constructor can call other functions. Thus your constructor could invoke
a publicly available init() function that could then be used by anyone to
reset the object to its initial state.

Can I see an example?
The following StudentConstructor program looks a lot like the
SimpleStudent program from Chapter 24, except that this version includes a
constructor that outputs every time it’s creating an object. The interesting part
to this program is seeing the cases during which the constructor is invoked.

 I highly encourage you to single-step this program in the debugger, using the
Step-Into debugger command from Chapter 20. Use the Step Into debugger
command near the declaration of the Student objects to step into the con-
structor automatically.

//
// StudentConstructor - this program demonstrates the use
// of a default constructor to initialize
// objects when they are created
//
#include <cstdio>
#include <cstdlib>
#include <iostream>
using namespace std;

class Student
{
 protected:
 double dGrade; // the student's GPA
 int nSemesterHours;

 public:
 // constructor - init the student to a legal state
 Student()
 {
 cout << "Constructing a Student object" << endl;
 dGrade = 0.0;
 nSemesterHours = 0;
 }

 // getGrade() - return the current grade
 double getGrade()

311 Chapter 25: Getting Objects Off to a Good Start

 {
 return dGrade;
 }

 // getHours() - get the class hours towards graduation
 int getHours()
 {
 return nSemesterHours;
 }

 // addGrade - add a grade to the GPA and total hours
 double addGrade(double dNewGrade, int nHours)
 {
 double dWtdHrs = dGrade * nSemesterHours;
 dWtdHrs += dNewGrade * nHours;
 nSemesterHours += nHours;
 dGrade = dWtdHrs / nSemesterHours;
 return dGrade;
 }
};

int main(int nNumberofArgs, char* pszArgs[])
{
 // create a student and initialize it
 cout << "Creating the Student s" << endl;
 Student s;

 // add the grades for three classes
 s.addGrade(3.0, 3); // a B
 s.addGrade(4.0, 3); // an A
 s.addGrade(2.0, 3); // a C (average should be a B)

 // now print the results
 cout << "Total # hours = " << s.getHours()
 << ", GPA = " << s.getGrade()
 << endl;

 // create an array of Students
 cout << "Create an array of 5 Students" << endl;
 Student sArray[5];

 // now allocate one off of the heap
 cout << "Allocating a Student from the heap" << endl;
 Student *pS = new Student;

 // wait until user is ready before terminating program
 // to allow the user to see the program results
 cout << "Press Enter to continue..." << endl;
 cin.ignore(10, '\n');
 cin.get();
 return 0;
}

312 Part V: Object-Oriented Programming

The output from this program appears as follows:

Creating the Student s
Constructing a Student object
Total # hours = 9, GPA = 3
Create an array of 5 Students
Constructing a Student object
Constructing a Student object
Constructing a Student object
Constructing a Student object
Constructing a Student object
Allocating a Student from the heap
Constructing a Student object
Press Enter to continue . . .

The Student class has been outfitted with a constructor that not only initial-
izes the number of semester hours and grade-point average to zero, but also
outputs a message to the console to announce that a Student object is being
created.

The main() program then simply creates Student objects in various ways:

 ✓ The first declaration creates a single Student object s resulting in C++
invoking the constructor.

 ✓ The second declaration creates an array of five Student objects. C++
calls the constructor five times, once for each object in the array.

 ✓ The program allocates a Student object from the heap. C++ invokes the
constructor again to initialize the object.

Constructing data members
The data members of a class are created at the same time as the object itself.
Consider the following simple class TutorPair that consists of a Student
and a Teacher:

class TutorPair
{
 protected:
 Student s;
 Teacher t;

 int nNumberOfMeetings;

313 Chapter 25: Getting Objects Off to a Good Start

 public:
 TutorPair()
 {
 nNumberOfMeetings = 0;
 }

 // ...other stuff...
};

It’s not the responsibility of the TutorPair class to initialize the member
Student or the member Teacher; these objects should be initialized by con-
structors in their respective classes.

Thus, when a TutorPair is created, C++ does the following (in the order
shown):

 ✓ It invokes the constructor for the Student s.

 ✓ It invokes the constructor for the Teacher t.

 ✓ It enters the constructor for TutorPair itself.

 The constructors for the data members are invoked in the order in which they
appear in the class definition.

The following TutorPairConstructor program demonstrates:

//
// TutorPairConstructor - this program demonstrates
// how data members are constructed automatically
//
#include <cstdio>
#include <cstdlib>
#include <iostream>
using namespace std;

class Student
{
 protected:
 double dGrade; // the student's GPA
 int nSemesterHours;

 public:
 // constructor - init the student to a legal state
 Student()
 {
 cout << "Constructing a Student object" << endl;
 dGrade = 0.0;
 nSemesterHours = 0;
 }
};

314 Part V: Object-Oriented Programming

class Teacher
{
 public:
 // constructor - init the student to a legal state
 Teacher()
 {
 cout << "Constructing a Teacher object" << endl;
 }
};

class TutorPair
{
 protected:
 Student s;
 Teacher t;

 int nNumberOfMeetings;

 public:
 TutorPair()
 {
 cout << "Constructing the TutorPair members"
 << endl;
 nNumberOfMeetings = 0;
 }
};

int main(int nNumberofArgs, char* pszArgs[])
{
 // create a TutorPair and initialize it
 cout << "Creating the TutorPair tp" << endl;
 TutorPair tp;

 // wait until user is ready before terminating program
 // to allow the user to see the program results
 cout << "Press Enter to continue..." << endl;
 cin.ignore(10, '\n');
 cin.get();
 return 0;
}

The main() program does nothing more than output a message and then
creates an object tp of class TutorPair. This causes C++ to invoke the
constructor for TutorPair. However, before the first line of that function is
executed, C++ goes through the data members and constructs any objects
that it finds there.

315 Chapter 25: Getting Objects Off to a Good Start

The first object C++ sees is the Student object s. This constructor outputs
the first message that you see on the output. The second object that C++
finds is the Teacher member t. This constructor generates the next line of
output.

With all the data members out of the way, C++ passes control to the body of
the TutorPair constructor that outputs the final line of output:

Creating the TutorPair tp
Constructing a Student object
Constructing a Teacher object
Constructing the TutorPair members
Press Enter to continue . . .

Destructors
Just as objects are created, so they are destroyed. (I think there’s a Biblical
passage to that effect.) If a class can have a constructor to set things up, it
should also have a special member function to take the object apart and put
back any resources that the constructor may have allocated. This function is
known as the destructor.

A destructor has the name of the class, preceded by a tilde (~). Like a con-
structor, the destructor has no return type (not even void), and it cannot be
invoked like a normal function.

 Technically, you can call the destructor explicitly: s.~Student(). However,
this is rarely done, and it’s needed only in advanced programming techniques,
such as allocating an object on a predetermined memory address.

 In logic, the tilde is sometimes used to mean “NOT” — so the destructor is the
“NOT constructor.” Get it? Cute.

C++ automatically invokes the destructor in the following three cases:

 ✓ A local object is passed to the destructor when it goes out of scope.

 ✓ An object allocated off the heap is passed to the destructor when it is
passed to delete.

 ✓ A global object is passed to the destructor when the program
terminates.

316 Part V: Object-Oriented Programming

Looking at an example
The following StudentDestructor program features a Student class that
allocates memory off of the heap in the constructor. Therefore this class
needs a destructor to return that memory to the heap.

 Any class whose constructor allocates resources, in particular, a class that
allocates memory off the heap, requires a destructor to put that memory back.

The program creates a few objects within a function fn() and then allows
those objects to go out of scope and get destructed when the function
returns. The function returns a pointer to an object that fn() allocates off
the heap. This object is returned to the heap back in main().

//
// StudentDestructor - this program demonstrates the use
// of the destructor to return resources
// allocated by the constructor
//
#include <cstdio>
#include <cstdlib>
#include <iostream>
using namespace std;

class Student
{
 protected:
 double* pdGrades;
 int* pnHours;

 public:
 // constructor - init the student to a legal state
 Student()
 {
 cout << "Constructing a Student object" << endl;
 pdGrades = new double[128];
 pnHours = new int[128];
 }
 ~Student()
 {
 cout << "Destructing a Student object" << endl;
 delete[] pdGrades;
 pdGrades = nullptr;

 delete[] pnHours;
 pnHours = nullptr;
 }
};

317 Chapter 25: Getting Objects Off to a Good Start

Student* fn()
{
 cout << "Entering fn()" << endl;

 // create a student and initialize it
 cout << "Creating the Student s" << endl;
 Student s;

 // create an array of Students
 cout << "Create an array of 5 Students" << endl;
 Student sArray[5];

 // now allocate one off of the heap
 cout << "Allocating a Student from the heap" << endl;
 Student *pS = new Student;

 cout << "Returning from fn()" << endl;
 return pS;
}

int main(int nNumberofArgs, char* pszArgs[])
{
 // now allocate one off of the heap
 Student *pS = fn();

 // delete the pointer returned by fn()
 cout << "Deleting the pointer returned by fn()"
 << endl;
 delete pS;
 pS = nullptr;

 // wait until user is ready before terminating program
 // to allow the user to see the program results
 cout << "Press Enter to continue..." << endl;
 cin.ignore(10, '\n');
 cin.get();
 return 0;
}

The output from the program appears as follows:

Entering fn()
Creating the Student s
Constructing a Student object
Create an array of 5 Students
Constructing a Student object
Constructing a Student object
Constructing a Student object
Constructing a Student object

318 Part V: Object-Oriented Programming

Constructing a Student object
Allocating a Student from the heap
Constructing a Student object
Returning from fn()
Destructing a Student object
Destructing a Student object
Destructing a Student object
Destructing a Student object
Destructing a Student object
Destructing a Student object
Deleting the pointer returned by fn()
Destructing a Student object
Press Enter to continue . . .

The first message is from fn() itself as it displays an opening banner to let
us know that control has entered the function. The fn() function then cre-
ates an object s that causes the constructor to output a message. It then
creates an array of five Student objects, which causes the Student con-
structor to output five more messages. And finally fn() allocates one more
Student object from the heap, using the new keyword.

The last thing fn() does before returning is output an exit banner message.
C++ automatically calls the destructor six times: five times for the elements of
the array, and once for the s object created at the beginning of the function.

 You can’t tell from the output, but the objects are destructed-in the reverse
order from that in which they were constructed.

The destructor is not invoked for the object allocated off the heap until
main() deletes the pointer returned by fn().

 A memory block allocated off the heap does not go out of scope when the
pointer to it goes out of scope. It is the programmer’s responsibility to make
sure that the object is returned to the heap using the delete command. (See
Chapter 17 for a discussion of delete.)

 Return a pointer to a non-array with delete. Return an array using delete[].

Destructing data members
The destructor also destructs data members automatically. Destruction
occurs in the reverse order to the order of construction: The body of the
destructor is invoked first, and then the destructor for each data member in
the reverse order that the data members were constructed.

319 Chapter 25: Getting Objects Off to a Good Start

To demonstrate this, I added a destructor to the TutorPairConstructor
program. The entire listing is a bit lengthy to include here, but it is con-
tained in the online material as TutorPairDestructor. I include just the
TutorPair class here:

class TutorPair
{
 protected:
 Student s;
 Teacher t;

 int nNumberOfMeetings;

 public:
 TutorPair()
 {
 cout << "Constructing the TutorPair members"
 << endl;
 nNumberOfMeetings = 0;
 }
 ~TutorPair()
 {
 cout << "Destructing the TutorPair object"
 << endl;
 }
};

void fn()
{
 // create a TutorPair and initialize it
 cout << "Creating the TutorPair tp" << endl;
 TutorPair tp;

 cout << "Returning from fn()" << endl;
}

The output from this program appears as follows:

Creating the TutorPair tp
Constructing a Student object
Constructing a Teacher object
Constructing the TutorPair members
Returning from fn()
Destructing the TutorPair object
Destructing a Teacher object
Destructing a Student object
Press Enter to continue . . .

320 Part V: Object-Oriented Programming

This program creates the TutorPair object within the function fn(). The
messages from the constructors are identical to the TutorPairConstructor
program. The messages from the TutorPair destructor appear as control is
returning to main, and they appear in the exact reverse of the order of mes-
sages from the constructors, coming first from ~TutorPair itself, then from
~Teacher, and finally from ~Student.

Static data members
A special type of data member that deserves separate mention is known as a class member or
static member because it is flagged with the keyword static:

class Student
{
 protected:
 static int nNumberOfStudents;
 int nSemesterHours;
 double dGrade;

 public:
 Student()
 {
 nSemesterHours = 0;
 dGrade = 0.0;

 // count how many Students
 nNumberOfStudents++;
 }
 ~Student()
 {
 nNumberOfStudents--;
 }
};

// allocate space for the static member; be sure to
// initialize it here (when the program starts) because
// the class constructor will not initialize it
int Student::nNumberOfStudents = 0;

A static member is a property of the class and not of each object. In this example, a single variable
Student::nNumberOfStudents is shared by all Student objects. This example demon-
strates exactly what such members are good for: In this case, nNumberOfStudents keeps a
running count of the number of Student objects that currently exist.

Static members are initialized when the program starts. You can manipulate them from the con-
structor for each object — in this case, I increment the counter in the Student constructor and
decrement it in the destructor. In general, you don’t want to initialize a static member in the class
constructor; if you do, it will get re-initialized every time an object is created.

Chapter 26

Making Constructive Arguments
In This Chapter
▶ Creating and invoking a constructor with arguments

▶ Overloading the constructor

▶ Constructing data members with arguments

▶ Initializing data members with the declaration.

T
he Student class in Chapter 25 is extremely simple — almost unrea-
sonably so. After all, a student has a name and a student ID as well as a

grade-point average and other miscellaneous data. I choose GPA as the data
to model in Chapter 25 because I know how to initialize it without someone
telling me — I could just zero out this field. But I can’t just zero out the name
and ID fields; a no-named student with a null ID probably does not represent
a valid student. Somehow I need to pass arguments to the constructor to tell
it how to initialize fields that start out with a value that’s not otherwise pre-
dictable. This chapter shows you how to pass arguments to the constructor.

Constructors with Arguments
C++ allows the program to define a constructor with arguments as shown here:

class Student
{
 public:
 Student(const char* pszNewName, int nNewID)
 {
 int nLength = strlen(pszNewName) + 1;
 pszName = new char[nLength];
 strcpy(pszName, pszNewName);
 nID = nNewID;
 }
 ~Student()

322 Part V: Object-Oriented Programming

 {
 delete[] pszName;
 pszName = nullptr;
 }

 protected:
 char* pszName;
 int nID;
};

Here the arguments to the constructor are a pointer to an ASCIIZ string that
contains the name of the new student and the student’s ID. The constructor
first allocates space for the student’s name. It then copies the new name into
the pszName data member. Finally it copies over the student ID.

 A destructor (see Chapter 25) is required to return the memory to the heap
once the object is destroyed. Any class that allocates a resource like memory
in the constructor must return that memory in the destructor.

Remember, you can’t call a constructor like you call a function, so you have
to somehow associate the arguments to the constructor with the object when
it is declared. The following code snippet shows how this is done:

void fn()
{
 // put arguments next to object normally
 Student s1("Stephen Davis", 1234);

 // or next to the class name when allocating
 // an object from the heap
 Student* pS2 = new Student("Kinsey Davis", 5678);
}

The arguments appear next to the object normally, and next to the class
name when you’re allocating an object off the heap.

Looking at an example
The following NamedStudent program uses a constructor similar to the one
shown in the snippet to create a Student object and display my, I mean his,
name:

//
// NamedStudent - this program demonstrates the use
// of a constructors with arguments
//

323 Chapter 26: Making Constructive Arguments

#include <cstdio>
#include <cstdlib>
#include <iostream>
#include <cstring>
using namespace std;

class Student
{
 protected:
 char* pszName;
 int nID;

 public:
 Student(const char* pszNewName, int nNewID)
 {
 cout << "Constructing " << pszNewName << endl;
 int nLength = strlen(pszNewName) + 1;
 pszName = new char[nLength];
 strcpy(pszName, pszNewName);
 nID = nNewID;
 }
 ~Student()
 {
 cout << "Destructing " << pszName << endl;
 delete[] pszName;
 pszName = nullptr;
 }

 // getName() - return the student's name
 const char* getName()
 {
 return pszName;
 }

 // getID() - get the student's ID
 int getID()
 {
 return nID;
 }
};

Student* fn()
{
 // create a student and initialize it
 cout << "Constructing a local student in fn()" <<endl;
 Student student("Stephen Davis", 1234);

324 Part V: Object-Oriented Programming

 // display the student's name
 cout << "The student's name is "
 << student.getName() << endl;

 // now allocate one off of the heap
 cout << "Allocating a Student from the heap" << endl;
 Student *pS = new Student("Kinsey Davis", 5678);

 // display this student's name
 cout << "The second student's name is "
 << pS->getName() << endl;

 cout << "Returning from fn()" << endl;
 return pS;
}

int main(int nNumberofArgs, char* pszArgs[])
{
 // call the function that creates student objects
 cout << "Calling fn()" << endl;
 Student* pS = fn();
 cout << "Back in main()" << endl;

 // delete the object returned by fn()
 delete pS;
 pS = nullptr;

 // wait until user is ready before terminating program
 // to allow the user to see the program results
 cout << "Press Enter to continue..." << endl;
 cin.ignore(10, '\n');
 cin.get();
 return 0;
}

The main() program starts by outputting a message and then calling the
function fn(). This function creates a student with the unlikely name
“Stephen Davis” and an ID of 1234. The function then asks the object for its
name just to prove that the name was accurately noted in the object. The
function goes on to create another Student object, this time off the heap,
and similarly asks it to display its name.

The fn() function then returns control to main(); this causes the student
object to go out of scope, which causes C++ to invoke the destructor. Then
main() restores the memory returned from fn() to the heap, using the key-
word delete. This invokes the destructor for that object.

325 Chapter 26: Making Constructive Arguments

The constructor for class Student accepts a pointer to an ASCIIZ string and
an int student ID. The constructor allocates a new character array from the
heap and then copies the string passed it into that array. It then copies the
value of the student ID.

 Refer to Chapter 16 if you don’t remember what an ASCIIZ string is or what
strlen() does.

The destructor for class Student simply restores the memory allocated by
the constructor to the heap by passing the address in pszName to delete[].

 Use delete[] when restoring an array to the heap; use delete when restor-
ing a single object. Use nullptr to zero out the pointer after deleting its
contents.

The getName() and getID() member functions are access functions for
the name and ID. Declaring the return type of getName() as const char*
(read “pointer to constant char”) — as opposed to simply char* — means
that the caller cannot change the name using the address returned by
getName().

 Refer to Chapter 18 if you don’t remember the difference between a const
char* and a char * const (or if you have no idea what I’m talking about).

The output from this program appears as follows:

Calling fn()
Constructing a local student in fn()
Constructing Stephen Davis
The student's name is Stephen Davis
Allocating a Student from the heap
Constructing Kinsey Davis
The second student's name is Kinsey Davis
Returning from fn()
Destructing Stephen Davis
Back in main()
Destructing Kinsey Davis
Press Enter to continue . . .

 I’ve said it before (and you probably ignored me), but I really must insist this
time: You need to invoke the preceding constructor in the debugger to get a
feel for what C++ is doing with your declaration.

But what if you need both a named constructor and a default constructor?
Keep reading.

326 Part V: Object-Oriented Programming

Overloading the Constructor
You can have two or more constructors as long as they can be differentiated
by the number and types of their arguments. This is called overloading the
constructor.

 Overloading a function means to define two or more functions with the same
short name but with different arguments. Refer to Chapter 11 for a discussion
of function overloading.

Thus the following Student class from the OverloadedStudent program
has three constructors:

//
// OverloadedStudent - this program overloads the Student
// constructor with 3 different choices
// that vary by number of arguments
//
#include <cstdio>
#include <cstdlib>
#include <iostream>
#include <cstring>
using namespace std;

class Student
{
 protected:
 char* pszName;
 int nID;
 double dGrade; // the student's GPA
 int nSemesterHours;

 public:
 Student(const char* pszNewName, int nNewID,
 double dXferGrade, int nXferHours)
 {
 cout << "Constructing " << pszNewName
 << " as a transfer student." << endl;
 int nLength = strlen(pszNewName) + 1;
 pszName = new char[nLength];
 strcpy(pszName, pszNewName);
 nID = nNewID;
 dGrade = dXferGrade;
 nSemesterHours = nXferHours;
 }
 Student(const char* pszNewName, int nNewID)

327 Chapter 26: Making Constructive Arguments

 {
 cout << "Constructing " << pszNewName
 << " as a new student." << endl;
 int nLength = strlen(pszNewName) + 1;
 pszName = new char[nLength];
 strcpy(pszName, pszNewName);
 nID = nNewID;
 dGrade = 0.0;
 nSemesterHours = 0;
 }
 Student()
 {
 pszName = 0;
 nID = 0;
 dGrade = 0.0;
 nSemesterHours = 0;
 }
 ~Student()
 {
 cout << "Destructing " << pszName << endl;
 delete[] pszName;
 pszName = nullptr;
 }

 // access functions
 const char* getName()
 {
 return pszName;
 }
 int getID()
 {
 return nID;
 }
 double getGrade()
 {
 return dGrade;
 }
 int getHours()
 {
 return nSemesterHours;
 }

 // addGrade - add a grade to the GPA and total hours
 double addGrade(double dNewGrade, int nHours)
 {
 double dWtdHrs = dGrade * nSemesterHours;
 dWtdHrs += dNewGrade * nHours;
 nSemesterHours += nHours;

328 Part V: Object-Oriented Programming

 dGrade = dWtdHrs / nSemesterHours;
 return dGrade;
 }
};

int main(int nNumberofArgs, char* pszArgs[])
{
 // create a student and initialize it
 Student student("Stephen Davis", 1234);

 // now create a transfer student with an initial grade
 Student xfer("Kinsey Davis", 5678, 3.5, 12);

 // give both students a B in the current class
 student.addGrade(3.0, 3);
 xfer.addGrade(3.0, 3);

 // display the student's name and grades
 cout << "Student "
 << student.getName()
 << " has a grade of "
 << student.getGrade()
 << endl;

 cout << "Student "
 << xfer.getName()
 << " has a grade of "
 << xfer.getGrade()
 << endl;

 // wait until user is ready before terminating program
 // to allow the user to see the program results
 cout << "Press Enter to continue..." << endl;
 cin.ignore(10, '\n');
 cin.get();
 return 0;
}

Starting with the Student class, you can see that the first constructor within
Student accepts a name, a student ID, and transfer credit in the form of an
initial grade-point average (GPA) and number of semester hours. The second
constructor accepts only a name and ID; this constructor is intended for new
students as it initializes the GPA and hours to zero. It’s unclear what the third
constructor is for — this default constructor initializes everything to zero.

329 Chapter 26: Making Constructive Arguments

The main() function creates a new student using the second constructor
with the name “Stephen Davis”; then it uses the second constructor to create
a transfer student with the name “Kinsey Davis”. The program adds three
hours of credit to both (just to show that this still works) and displays the
resulting GPA.

The output from this program appears as follows:

Constructing Stephen Davis as a new student.
Constructing Kinsey Davis as a transfer student.
Student Stephen Davis has a grade of 3
Student Kinsey Davis has a grade of 3.4
Press Enter to continue . . .

Notice how similar the first two Student constructors are. This is not
uncommon. This case is one in which you can create an init() function that
both constructors call (only the constructors are shown in this example for
brevity’s sake):

class Student
{
 protected:
 void init(const char* pszNewName, int nNewID,
 double dXferGrade, int nXferHours)
 {
 cout << "Constructing " << pszNewName
 << " as a transfer student." << endl;
 int nLength = strlen(pszNewName) + 1;
 pszName = new char[nLength];
 strcpy(pszName, pszNewName);
 nID = nNewID;
 dGrade = dXferGrade;
 nSemesterHours = nXferHours;
 }
 public:
 Student(const char* pszNewName, int nNewID,
 double dXferGrade, int nXferHours)
 {
 init(pszNewName, nNewID, dXferGrade, nXferHours);
 }
 Student(const char* pszNewName, int nNewID)
 {
 init(pszNewName, nNewID, 0.0, 0);
 }

 // ...class continues as before...
};

330 Part V: Object-Oriented Programming

In general, the init() function will look like the most complicated construc-
tor. All simpler constructors call init() passing default values for some of
the arguments, such as a 0 for transfer grade and credit for new students.

 You can also default the arguments to the constructor (or any function, for
that matter) as follows:

class Student
{
 public:
 Student(const char* pszNewName, int nNewID,
 double dXferGrade = 0.0, int nXferHours = 0);

 // ...and so it goes...
};

C++ will supply the defaulted arguments if they are not provided in the decla-
ration. However, default arguments can generate strange error messages and
are beyond the scope of this book.

 You can also invoke one constructor from another starting with the C++ 2011
standard. The details are a little beyond the scope of a beginner book; for now,
just note that this is possible.

The Default default Constructor
As far as C++ is concerned, every class must have a constructor; otherwise,
you can’t create any objects of that class. If you don’t provide a constructor
for your class, C++ should probably just generate an error, but it doesn’t. To
provide compatibility with existing C code, which knows nothing about con-
structors, C++ automatically provides an implicitly defined default constructor
(sort of a default default constructor) that invokes the default constructor for
any data members. Sometimes I call this a Miranda constructor. You know: “If
you cannot afford a constructor, a constructor will be provided for you.”

If your class already has a constructor, however, C++ doesn’t provide the
automatic default constructor. (Having tipped your hand that this isn’t
a C program, C++ doesn’t feel obliged to do any extra work to ensure
compatibility.)

331 Chapter 26: Making Constructive Arguments

 The result is: If you define a constructor for your class but you also want a
default constructor, you must define it yourself.

The following code snippets help demonstrate this principle. The following
is legal:

class Student
{
 // ...all the same stuff but no constructors...
};

void fn()
{
 Student s; // create Student using default constructor
}

Here the object s is built using the default constructor. Because the program-
mer has not provided a constructor, C++ provides a default constructor that
doesn’t really do anything in this case.

However, the following snippet does not compile properly:

class Student
{
 public:
 Student(const char* pszName);

 // ...all the same stuff...
};

void fn()
{
 Student s; // doesn't compile
}

The seemingly innocuous addition of the Student(const char*) construc-
tor precludes C++ from automatically providing a Student() constructor
with which to build the s object. Now the compiler complains that it can
no longer find Student::Student() with which to build s. You can add a
default constructor yourself to solve the problem.

332 Part V: Object-Oriented Programming

The 2011 C++ standard also allows you to reinstate the default constructor
using the following curious syntax:

class Student
{
 public:
 Student(const char* pszName);
 Student() = default;

 // ...all the same stuff...
};

void fn()
{
 Student s; // this does compile
}

It’s just this type of illogic that explains why C++ programmers make the
really big bucks.

Constructing Data Members
In the preceding examples, all the data members have been simple types
such as int and double and arrays of char. With these simple types, it’s
sufficient to just assign the variable a value within the constructor. But what
if the class contains data members of a user-defined class? There are two
cases to consider here.

Initializing data members with
the default constructor
Consider the following example:

class StudentID
{
 protected:
 static int nBaseValue;
 int nValue;

 public:
 StudentID()
 {
 nValue = nBaseValue++;
 }

333 Chapter 26: Making Constructive Arguments

 int getID()
 {
 return nValue;
 }
};

// allocate space for the class property
int StudentID::nBaseValue = 1000;

class Student
{
 protected:
 char* pszName;
 StudentID sID;

 public:
 Student(const char* pszNewName)
 {
 int nLength = strlen(pszNewName) + 1;
 pszName = new char[nLength];
 strcpy(pszName, pszNewName);
 }
 ~Student()
 {
 delete[] pszName;
 pszName = nullptr;
 }

 // getName() - return the student's name
 const char* getName()
 {
 return pszName;
 }

 // getID() - get the student's ID
 int getID()
 {
 return sID.getID();
 }
};

The class StudentID is designed to allocate student IDs sequentially. The
class retains the “next value” in a static variable StudentID::nBaseValue.

 Static data members, also known as class members, are shared among all
objects.

334 Part V: Object-Oriented Programming

Each time a StudentID is created, the constructor assigns nValue the “next
value” from nBaseValue and then increments nBaseValue in preparation
for the next time the constructor is called.

The Student class has been updated so that the sID field is now of type
StudentID. The constructor now accepts the name of the student but relies
on StudentID to assign the next sequential ID each time a new Student
object is created.

 The constructor for each data member, including StudentID, is invoked
before control is passed to the body of the Student constructor.

All the Student constructor has to do is make a copy of the student’s
name — the sID field takes care of itself.

Initializing data members with
a different constructor
So now the boss comes in and wants an addition to the program. Now she
wants to update the program so that it can assign a new student ID instead of
always accepting the default value handed over by the StudentID class.

Accordingly, I make the following changes:

class StudentID
{
 protected:
 static int nBaseValue;
 int nValue;

 public:
 StudentID(int nNewID)
 {
 nValue = nNewID;
 }
 StudentID()
 {
 nValue = nBaseValue++;
 }

 int getID()
 {
 return nValue;
 }
};

335 Chapter 26: Making Constructive Arguments

// allocate space for the class property
int StudentID::nBaseValue = 1000;

class Student
{
 protected:
 char* pszName;
 StudentID sID;

 void initName(const char* pszNewName)
 {
 int nLength = strlen(pszNewName) + 1;
 pszName = new char[nLength];
 strcpy(pszName, pszNewName);
 }

 public:
 Student(const char* pszNewName, int nNewID)
 {
 initName(pszNewName);
 StudentID sID(nNewID);
 }
 Student(const char* pszNewName)
 {
 initName(pszNewName);
 }
 ~Student()
 {
 delete pszName;
 pszName = nullptr;
 }

 // getName() - return the student's name
 const char* getName()
 {
 return pszName;
 }

 // getID() - get the student's ID
 int getID()
 {
 return sID.getID();
 }
};

336 Part V: Object-Oriented Programming

I added a constructor to StudentID to allow the caller to pass a value to use
for the student ID rather than accept the default. Now, if the program doesn’t
provide an ID, the student is assigned the next sequential ID. If the program
does provide an ID, however, then it is used instead; the static counter is left
untouched.

I also added a constructor to Student to allow the program to provide a
studentID when the student is created. This Student(const char*,
int) constructor first initializes the student’s name and then invokes the
StudentID(int) constructor on sID.

When I execute the program, however, I am disappointed to find that this
seems to have made no apparent difference. Students are still assigned
sequential student IDs, whether or not they are passed a value to use instead.

The problem, I quickly realize, is that the Student(const char*, int)
constructor is not invoking the new StudentID(int) constructor on the
data member sID. Instead, it’s creating a new local object called sID within
the constructor, which it then immediately discards without any effect on the
data member of the same name.

Remember that the constructor for the data members is called before con-
trol is passed to the body of the constructor. Rather than create a new value
locally, I need some way to tell C++ to use a constructor other than the
default constructor when creating the data member sID.

C++ uses the following syntax to initialize a data member with a specific
constructor:

class Student
{
 public:
 Student(const char* pszName,
 int nNewID) : sID(nNewID)
 {
 initName(pszName);
 }

 // ...remainder of class unchanged...
};

The data member appears to the right of a colon used to separate such dec-
larations from the arguments to the function but before the open brace of the
function itself. This causes the StudentID(int) constructor to be invoked,
passing the nNewID value to be used as the new student ID.

337 Chapter 26: Making Constructive Arguments

Looking at an example
The following CompoundStudent program creates one Student object with
the default, sequential student ID, while assigning a specific student ID to a
second Student object:

//
// CompoundStudent - this version of the Student class
// includes a data member that's also
// of a user defined type
//
#include <cstdio>
#include <cstdlib>
#include <iostream>
#include <cstring>
using namespace std;

class StudentID
{
 protected:
 static int nBaseValue;
 int nValue;

 public:
 StudentID()
 {
 nValue = nBaseValue++;
 }

 StudentID(int nNewValue)
 {
 nValue = nNewValue;
 }

 int getID()
 {
 return nValue;
 }
};

// allocate space for the class property
int StudentID::nBaseValue = 1000;

class Student
{
 protected:
 char* pszName;
 StudentID sID;

338 Part V: Object-Oriented Programming

 void initName(const char* pszNewName)
 {
 int nLength = strlen(pszNewName) + 1;
 pszName = new char[nLength];
 strcpy(pszName, pszNewName);
 }

 public:
 Student(const char* pszNewName,
 int nNewID) : sID(nNewID)
 {
 initName(pszNewName);
 }
 Student(const char* pszNewName)
 {
 initName(pszNewName);
 }
 ~Student()
 {
 delete[] pszName;
 pszName = nullptr;
 }

 // getName() - return the student's name
 const char* getName()
 {
 return pszName;
 }

 // getID() - get the student's ID
 int getID()
 {
 return sID.getID();
 }
};

int main(int nNumberofArgs, char* pszArgs[])
{
 // create a student and initialize it
 Student student1("Stephen Davis");

 // display the student's name and ID
 cout << "The first student's name is "
 << student1.getName()
 << ", ID is "
 << student1.getID()
 << endl;

339 Chapter 26: Making Constructive Arguments

 // do the same for a second student
 Student student2("Janet Eddins");
 cout << "The second student's name is "
 << student2.getName()
 << ", ID is "
 << student2.getID()
 << endl;

 // now create a transfer student with a unique ID
 Student student3("Tiffany Amrich", 1234);
 cout << "The third student's name is "
 << student3.getName()
 << ", ID is "
 << student3.getID()
 << endl;

 // wait until user is ready before terminating program
 // to allow the user to see the program results
 cout << "Press Enter to continue..." << endl;
 cin.ignore(10, '\n');
 cin.get();
 return 0;
}

The Student and StudentID classes are similar to those shown earlier. The
main() function creates three students, the first two using the Student(const
char*) constructor that allocates the default student ID. The third student is
created — using the Student(const char*, int) constructor — and passed
an ID of 1234. The resulting display confirms that the default IDs are being allo-
cated sequentially and that the third student has a unique ID:

The first student's name is Stephen Davis, ID is 1000
The second student's name is Janet Eddins, ID is 1001
The third student's name is Tiffany Amrich, ID is 1234
Press Enter to continue . . .

The : syntax here can also be used to initialize simple variables if you prefer:

class SomeClass
{
 protected:
 int nValue;
 const double PI;

 public:
 SomeClass(int n) : nValue(n), PI(3.14159) {}
};

340 Part V: Object-Oriented Programming

Here the data member nValue is initialized to n, and the constant double is
initialized to 3.14159.

In fact, this is the only way to initialize a data member flagged as const. You
can’t put a const variable on the left-hand side of an assignment operator.

Notice that the body of the constructor is now empty since all the work is
done in the header; however, the empty body is still required (otherwise the
definition would look like a prototype declaration).

New with C++ 2011
Starting with the 2011 standard, you can initialize data members to a value in
the declaration itself using an “assignment format”, as in the following:

class SomeClass
{
 protected:
 int nValue;
 const double PI = 3.14159;
 char* pSomeString = new char[128];

 public:
 SomeClass(int n) : nValue(n) {}
};

The effect is the same as if you had written the constructor as follows:

class SomeClass
{
 protected:
 int nValue;
 const double PI;
 char* pSomeString;

 public:
 SomeClass(int n)
 : nValue(n), PI(3.14159), pSomeString(new char[128])
 {}
};

This assignment format is easier to read and just seems more natural. Though
this is a recent addition to C++, you’re likely to see this more and more.

Chapter 27

Coping with the Copy
Constructor

In This Chapter
▶ Letting C++ make copies of an object

▶ Creating your own copy constructor

▶ Making copies of data members

▶ Avoiding making copies altogether

T
he constructor is a special function that C++ invokes when an object is
created in order to allow the class to initialize the object to a legal state.

Chapter 25 introduces the concept of the constructor. Chapter 26 demon-
strates how to create constructors that take arguments. This chapter con-
cludes the discussion of constructors by examining a particular constructor
known as the copy constructor.

Copying an Object
A copy constructor is the constructor that C++ uses to make copies of objects.
It carries the name X::X(const X&), where X is the name of the class. That
is, it’s the constructor of class X that takes as its argument a reference to an
object of class X. I know that sounds pretty useless, but let me explain why
you need a constructor like that on your team.

342 Part V: Object-Oriented Programming

 A reference argument type like fn(X&) says, “pass a reference to the object”
rather than “pass a copy of the object.” I discuss reference arguments in
Chapter 23.

Think for a minute about the following function call:

void fn(Student s)
{
 // ...whatever fn() does...
}

void someOtherFn()
{
 Student s;
 fn(s);
};

Here the function someOtherFn() creates a Student object and passes a
copy of that object to fn().

 By default, C++ passes objects by value, meaning that it must make a copy of
the object to pass to the functions it calls (refer to Chapter 23 for more).

Consider that creating a copy of an object means creating a new object —
and that process, by definition, means invoking a constructor. But what
would the arguments to that constructor be? Why, a reference to the original
object. That, by definition, is the copy constructor.

The default copy constructor
C++ provides a default copy constructor that works most of the time. This
copy constructor does a member-by-member copy of the source object to
the destination object.

 A member-by-member copy is also known as a shallow copy for reasons that
soon will become clear.

There are times when copying one member at a time is not a good thing, how-
ever. Consider the Student class from Chapter 26:

343 Chapter 27: Coping with the Copy Constructor

class Student
{
 protected:
 char* pszName;
 int nID;

 // ...other stuff...
};

Copying the int data member nID from one object to another is no problem.
However, copying the pointer pszName from the source to the destination
object could cause problems.

For example, what if pszName points to heap memory (which it almost
surely does)? Now you have two objects that both point to the same block of
memory on the heap. This is shown in Figure 27-1.

Figure 27-1:
By default,

C++ per-
forms a

member-
by-member,

“shallow”
copy to
create

copies of
objects,

as when
passing an
object to a

function.

When the copy of the Student object goes out of scope, the destructor for
that class will likely delete the pszName pointer, thereby returning the block of
memory to the heap, even though the original object is still using that memory.
When the original object continues to use the now deleted block of memory
the program is sure to crash with a bizarre — and largely misleading — error
message.

344 Part V: Object-Oriented Programming

Looking at an example
The following ShallowStudent program demonstrates how making a shal-
low copy can cause serious problems:

//
// ShallowStudent - this program demonstrates why the
// default shallow copy constructor
// isn't always the right choice.
//
#include <cstdio>
#include <cstdlib>
#include <iostream>
#include <cstring>
using namespace std;

class Student
{
 protected:
 char* pszName;
 int nID;

 public:
 Student(const char* pszNewName, int nNewID)
 {
 cout << "Constructing " << pszNewName << endl;
 int nLength = strlen(pszNewName) + 1;
 pszName = new char[nLength];
 strcpy(pszName, pszNewName);
 nID = nNewID;
 }
 ~Student()
 {
 cout << "Destructing " << pszName << endl;
 delete[] pszName;
 pszName = nullptr;
 }

 // access functions
 const char* getName()
 {
 return pszName;
 }
 int getID()
 {
 return nID;
 }
};

345 Chapter 27: Coping with the Copy Constructor

void someOtherFn(Student s)
{
 // we don't need to do anything here
}

void someFn()
{
 Student student("Adam Laskowski", 1234);
 someOtherFn(student);

 cout << "The student's name is now "
 << student.getName() << endl;
}

int main(int nNumberofArgs, char* pszArgs[])
{
 someFn();

 // wait until user is ready before terminating program
 // to allow the user to see the program results
 cout << "Press Enter to continue..." << endl;
 cin.ignore(10, '\n');
 cin.get();
 return 0;
}

This deceptively simple program contains a serious problem: The function
main() does nothing more than call the function someFn(). This function
creates a local student object and passes it by value to the function
someOtherFn(). This second function does nothing except return to the
caller. The someFn() function then displays the name of the student and
returns to main().

The output from the program shows some interesting results:

Constructing Adam Laskowski
Destructing Adam Laskowski
The student's name is now X$±
Destructing X$±
Press Enter to continue . . .

The first message comes from the Student constructor as the student
object is created at the beginning of someFn(). No message is generated
by the default copy constructor that’s called to create the copy of Student
for someOtherFn(). The destructor message is invoked at the end of
someOtherFn() when the local object s goes out of scope.

346 Part V: Object-Oriented Programming

The output message in someFn() shows that the object is now messed up
as the memory allocated by the Student constructor to hold the student’s
name has been returned to the heap. The subsequent destructor that’s
invoked at the end of someFn() verifies that things are amiss.

 This type of error is normally fatal (to the program, not the programmer). The
only reason this program didn’t crash is that it was about to stop anyway.

Creating a Copy Constructor
Classes that allocate resources in their constructor should normally include
a copy constructor to create copies of these resources. For example, the
Student copy constructor should allocate another block of memory off the
heap for the name, and copy the original object’s name into this new block.
This is shown in Figure 27-2.

Figure 27-2:
A class that

allocates
resources
in the con-

structor
requires a
copy con-

structor that
performs a

so-called
deep copy

of the
source
object.

 Allocating a new block of memory and copying the contents of the original
into this new block is known as creating a deep copy (as opposed to the
default shallow copy).

347 Chapter 27: Coping with the Copy Constructor

The following DeepStudent program includes a copy constructor that per-
forms a deep copy of the student object:

//
// DeepStudent - this program demonstrates how a copy
// constructor that performs a deep copy
// can be used to solve copy problems
//
#include <cstdio>
#include <cstdlib>
#include <iostream>
#include <cstring>
using namespace std;

class Student
{
 protected:
 char* pszName;
 int nID;

 public:
 Student(const char* pszNewName, int nNewID)
 {
 cout << "Constructing " << pszNewName << endl;
 int nLength = strlen(pszNewName) + 1;
 pszName = new char[nLength];
 strcpy(pszName, pszNewName);
 nID = nNewID;
 }
 Student(const Student& s)
 {
 cout<<"Constructing copy of "<< s.pszName << endl;

 int nLength = strlen(s.pszName) + 25;
 this->pszName = new char[nLength];
 strcpy(this->pszName, "Copy of ");
 strcat(this->pszName, s.pszName);
 this->nID = s.nID;
 }

 ~Student()
 {
 cout << "Destructing " << pszName << endl;
 delete[] pszName;
 pszName = nullptr;
 }

348 Part V: Object-Oriented Programming

 // access functions
 const char* getName()
 {
 return pszName;
 }
 int getID()
 {
 return nID;
 }
};

void someOtherFn(Student s)
{
 // we don't need to do anything here
}

void someFn()
{
 Student student("Adam Laskowski", 1234);
 someOtherFn(student);

 cout << "The student's name is now "
 << student.getName() << endl;
}

int main(int nNumberofArgs, char* pszArgs[])
{
 someFn();

 // wait until user is ready before terminating program
 // to allow the user to see the program results
 cout << "Press Enter to continue..." << endl;
 cin.ignore(10, '\n');
 cin.get();
 return 0;
}

This program is identical to its ShallowStudent cousin except for the
addition of the copy constructor Student(const Student&), but what a
difference it makes in the output from the program:

Constructing Adam Laskowski
Constructing copy of Adam Laskowski
Destructing Copy of Adam Laskowski
The student's name is now Adam Laskowski
Destructing Adam Laskowski
Press Enter to continue . . .

349 Chapter 27: Coping with the Copy Constructor

The first message is output by the Student(const char*, int) con-
structor that’s invoked when the student object is created at the begin-
ning of someFn(). The second message comes from the copy constructor
Student(const Student&) that’s invoked to create the copy of student
as part of the call to SomeOtherFn().

This constructor first allocates a new block of heap memory for the pszName
of the copy. It then copies the string Copy of into this field before concat-
enating the student’s name in the next line.

 You would normally make a true copy of the name and not tack Copy of onto
the front; I do so for instructional reasons.

The destructor that’s invoked as s goes out of scope at the end of
someOtherFn() is now clearly returning the copy of the name to the heap
and not the original string. This is verified back in someFn() when the
student’s name is intact (as you would expect). Finally, the destructor at
the end of someFn() returns the original string to the heap.

Avoiding Copies
Passing arguments by value is just one of several reasons that C++ invokes
a copy constructor to create temporary copies of your object. You may be
wondering, “Doesn’t all this creating and deleting copies of objects take
time?” The obvious answer is, “You bet!” Is there some way to avoid creating
copies?

Well, one way is not to pass objects by value; instead, you can pass the
address of the object. There wouldn’t be a problem if someOtherFn() were
declared as follows:

// the following does not cause a copy to be created
void someOtherFn(const Student *pS)
{
 // ...whatever goes here...
}
void someFn()
{
 Student student("Adam Laskowski", 1234);
 someOtherFn(&student);
}

350 Part V: Object-Oriented Programming

This is faster because a single address is smaller than an entire Student
object, but it also avoids the need to allocate memory off the heap for hold-
ing copies of the student’s name.

 You can get the same effect using reference arguments, as in the following:

// the following function doesn't create a copy either
void someOtherFn(const Student& s)
{
 // ...whatever you want to do...
}

void someFn()
{
 Student student("Adam Laskowski", 1234);
 someOtherFn(student);
}

See Chapter 23 for a refresher on referential arguments.

Part VI
Advanced Strokes

Visit www.dummies.com/extras/beginningprogrammingcplusplus for
great Dummies content online.

http://www.dummies.com/extras/beginningprogrammingcplusplus

In this part . . .
 ✓ Implementing inheritance

 ✓ Binding virtual functions

 ✓ Overloading operators

 ✓ Streaming input and output

 ✓ Handling exceptions

 ✓ Visit www.dummies.com/extras/beginningprogram
mingcplusplus for great Dummies content online

http://www.dummies.com/extras/beginningprogrammingcplusplus
http://www.dummies.com/extras/beginningprogrammingcplusplus

Chapter 28

Inheriting a Class
In This Chapter
▶ Introducing inheritance

▶ Implementing inheritance in C++

▶ Reviewing an example program

▶ Comparing HAS_A to IS_A

I
nheritance occurs all around us every day. I am human; I inherit certain
properties from the class Human, such as my ability to converse intel-

ligently (more or less) and my dependence on air, water, and carbohydrate-
based nourishment like Twinkies. These latter properties are not unique to
humans. The class Human inherits these from class Mammal (along with some-
thing about bearing live young), which inherits other properties from class
Animal, and so on.

The capability to pass down properties is a powerful one. It enables you
to describe things in an economical way. For example, if my son asks me,
“What’s a duck?” I might say, “It’s a bird that floats and goes quack.” Despite
your first reaction, that answer actually conveys a significant amount of
knowledge. My son knows what a bird is. He knows that birds have wings,
that birds can fly (he doesn’t know about ostriches yet), and that birds lay
eggs. Now, he knows all those same things about a duck plus the facts that
ducks can float and make a quacking sound. (This might be a good time to
refer to Chapter 21 for a discussion about microwave ovens and their rela-
tionship to ovens and kitchen appliances.)

Object-oriented languages express this relationship by allowing one class
to inherit from another. Thus, in C++, the class Duck might well inherit from
Bird, and that class might also inherit from Animal. Exactly how C++ does
this is the topic of this chapter.

354 Part VI: Advanced Strokes

Advantages of Inheritance
Inheritance was added to C++ for several reasons. Of course, the major reason
is the capability to express the inheritance relationship: that MicrowaveOven
is an Oven is a KitchenAppliance thing. More on the IS_A relationship a
little later in this and the next chapter.

A minor reason is to reduce the amount of typing and the number of lines of
code that you and I have to write. You may have noticed that the commands
in C++ may be short, but you need a lot of them to do anything. C++ programs
tend to get pretty lengthy, so anything that reduces typing is a good thing.

To see how inheritance can reduce typing, consider the Duck example. I
don’t have to document all the properties about Duck that have to do with
flying and landing and eating and laying eggs. It inherits all that stuff from
Bird. I just need to add Duck’s quackness property and its ability to float.
That’s a considerable number of keystrokes saved.

A more important and related issue is the major buzzword, reuse. Software
scientists realized some time ago that starting from scratch with each
new project and rebuilding the same software components doesn’t make
much sense.

Compare the situation in the software industry to that in other industries.
How many car manufacturers start from scratch each time they want to
design a new car? None. Practitioners in other industries have found it makes
more sense to start from screws, bolts, nuts, and even larger existing off-the-
shelf components such as motors and transmissions when designing a car.

Unfortunately, except for very small functions like those found in the Standard
C++ Library, it’s rare to find much reuse of software components. One prob-
lem is that it’s virtually impossible to find a component from an earlier pro-
gram that does exactly what you want. Generally, these components require
“tweaking.” Inheritance allows you to adopt the major functionality of an
existing class and tweak the smaller features to adapt an existing class to a
new application.

This arrangement carries with it another benefit that’s more subtle but just
as important: adaptability. It never fails that as soon as users see your most
recent program, they like it but want just one more fix or addition. Consider
checking accounts for a moment. After I finish the program that handles
checking accounts for a bank, how long will it be before the bank comes out
with a new “special” checking account that earns interest on the balance?

Not everyone gets this checking account, of course (that would be too
easy) — only certain customers get InterestChecking accounts. With
inheritance, however, I don’t need to go through the entire program and

355 Chapter 28: Inheriting a Class

recode all the checking-account functions. All I need to do is create a new
subclass InterestChecking that inherits from Checking but has the one
additional property of accumulatesInterest() and, voilà, the feature is
implemented. (It isn’t quite that easy, of course, but it’s not much more dif-
ficult than that. I show you how to do it in Chapter 29.)

Learning the lingo
You need to get some terms straight before going much further. The class
Dog inherits properties from class Mammal. This is called inheritance. We also
say that Dog is a subclass of Mammal. Turning that sentence around, we say
that Mammal is a base class of Dog. We can also say that Dog IS_A Mammal. (I
use all caps as a way of expressing this unique relationship.) C++ shares this
terminology with other object-oriented languages.

 The term is adopted from other languages, but you will also find C++ program-
mers saying things like, “the class Dog extends Mammal with its barkiness and
tail-wagging properties.” Well, maybe not in those exact words, but a subclass
extends a base class by adding properties.

Notice that although Dog IS_A Mammal, the reverse is not true. A Mammal is
not a Dog. (A statement like this always refers to the general case. It could be
that a particular mammal is, in fact, a dog, but in general a mammal is not a
dog.) This is because a Dog shares all the properties of other Mammals, but a
Mammal does not have all the properties of a Dog. Not all Mammals can bark,
for example, or wag their tails.

Implementing Inheritance in C++
The following is an outline of how to inherit one class from another:

class Student
{
 // ...whatever goes here...
};

class GraduateStudent : public Student
{
 // ...graduate student unique stuff goes here...
};

The class Student is declared the usual way. The GraduateStudent class
appears with the name followed by a colon, the keyword public, and the
name of the base class, Student.

356 Part VI: Advanced Strokes

 The keyword public implies that there’s probably something called protected
inheritance. It’s true, there is; but protected inheritance is very uncommon,
and I don’t discuss it in this book.

Now, I can say that a GraduateStudent IS_A Student. More to the point, I
can use a GraduateStudent object anywhere that a Student is required,
including as arguments to functions. That is, the following is allowed:

void fn(Student* pS);
void someOtherFn()
{
 GraduateStudent gs;
 fn(&gs);
}

This is allowed because a gs object has all the properties of Student. Why?
Because a GraduateStudent IS_A Student!

Looking at an example
The following GSInherit program makes this more concrete by creating
a Student class and a GraduateStudent class and invoking functions
of each:

//
// GSInherit - demonstrate inheritance by creating
// a class GraduateStudent that inherits
// from Student.
//
#include <cstdio>
#include <cstdlib>
#include <iostream>
#include <cstring>
using namespace std;

class Student
{
 protected:
 char* pszName;
 int nID;
 double dGrade; // the student's GPA
 int nSemesterHours;

 public:
 Student(const char* pszNewName, int nNewID)
 {
 cout << "Constructing student "

357 Chapter 28: Inheriting a Class

 << pszNewName << endl;
 pszName = new char[strlen(pszNewName) + 1];
 strcpy(pszName, pszNewName);
 nID = nNewID;
 dGrade = 0.0;
 nSemesterHours = 0;
 }
 ~Student()
 {
 cout << "Destructing " << pszName << endl;
 delete[] pszName;
 pszName = nullptr;
 }

 // access functions
 const char* getName()
 {
 return pszName;
 }
 int getID()
 {
 return nID;
 }
 double getGrade()
 {
 return dGrade;
 }
 int getHours()
 {
 return nSemesterHours;
 }

 // addGrade - add a grade to the GPA and total hours
 double addGrade(double dNewGrade, int nHours)
 {
 double dWtdHrs = dGrade * nSemesterHours;
 dWtdHrs += dNewGrade * nHours;
 nSemesterHours += nHours;
 dGrade = dWtdHrs / nSemesterHours;
 return dGrade;
 }
};

class Advisor
{
 public:
 Advisor() { cout << "Advisor constructed" << endl;}
};

class GraduateStudent : public Student
{

358 Part VI: Advanced Strokes

 protected:
 double dQualifierGrade;
 Advisor advisor;

 public:
 GraduateStudent(const char* pszName, int nID) :
 Student(pszName, nID)
 {
 cout << "Constructing GraduateStudent" << endl;
 dQualifierGrade = 0.0;
 }
};

void someOtherFn(Student* pS)
{
 cout << "Passed student " << pS->getName() << endl;
}

void someFn()
{
 Student student("Lo Lee Undergrad", 1234);
 someOtherFn(&student);

 GraduateStudent gs("Upp R. Class", 5678);
 someOtherFn(&gs);
}

int main(int nNumberofArgs, char* pszArgs[])
{
 someFn();

 // wait until user is ready before terminating program
 // to allow the user to see the program results
 cout << "Press Enter to continue..." << endl;
 cin.ignore(10, '\n');
 cin.get();
 return 0;
}

This example appears lengthy at first blush. Fortunately, however, the Student
class is identical to its predecessors in earlier chapters.

 The fact that the Student class hasn’t changed is an important point: You
don’t have to modify a class in order to inherit from it. I did not have to make
any changes to Student in order to create the subclass GraduateStudent.

The GraduateStudent class extends Student by adding the data member
dQualifierGrade. In addition, I provided GraduateStudent with a con-
structor that accepts the student name and ID. Of course, GraduateStudent
doesn’t need to manipulate the student’s name and ID on its own — it calls
the perfectly serviceable Student constructor to do that instead, as the fol-
lowing small excerpt demonstrates:

359 Chapter 28: Inheriting a Class

GraduateStudent(const char* pszName, int nID) :
 Student(pszName, nID)
{
 cout << "Constructing GraduateStudent" << endl;
 dQualifierGrade = 0.0;
}

The constructor for the base class is invoked before any part of the current
class is constructed. Next to be invoked are the constructors for any data
members — this accounts for the message from Advisor. Control passes
into the body of the GraduateStudent constructor last.

The output from this program appears as follows:

Constructing student Lo Lee Undergrad
Passed student Lo Lee Undergrad
Constructing student Upp R. Class
Advisor constructed
Constructing GraduateStudent
Passed student Upp R. Class
Destructing Upp R. Class
Destructing Lo Lee Undergrad
Press Enter to continue . . .

You can follow the chain of events by starting with main(). The main() func-
tion does nothing more than call someFn(). The someFn() function first
creates a Student object Lo Lee Undergrad. The constructor for Student
generates the first line of output.

someFn() then passes the address of “Lo Lee” to someOtherFn(Student*).
someOtherFn() does nothing more than display the student’s name, which
accounts for the second line of output.

The someFn() function then creates a GraduateStudent “Upp R. Class.”
Returning to the output for a minute, you can see that this invokes the
Student(const char*, int) constructor first with the name Upp R.
Class. Once that constructor has completed building the Student founda-
tion, the GraduateStudent constructor gets a chance to output its mes-
sage and build on the graduate student floor.

The someFn() function then does something rather curious: It passes the
address of the GraduateStudent object to someOtherFn(Student*).
This apparent mismatch of object types is easily explained by the fact that
(here it comes) a GraduateStudent IS_A Student and can be used any-
where a Student is required. (Similarly a GraduateStudent* can be used
in place of a Student*.)

The remainder of the output is generated when both student and gs go out
of scope at the return from someFn(). The objects are destructed in the

360 Part VI: Advanced Strokes

reverse order of their construction, so gs goes first and then student. In
addition, the destructor for GraduateStudent is called before the destruc-
tor for Student().

 The destructor for the subclass should destruct only those fields that are
unique to the subclass. Leave the destructing of the base class data members
to the base class’s destructor.

Having a HAS_A Relationship
Notice that the class GraduateStudent includes the members of class
Student and Advisor but in a different way. By defining a data member of
class Advisor, a GraduateStudent contains all the members of Advisor
within it. However, you can’t say that a GraduateStudent IS_AN Advisor.
Rather, a GraduateStudent HAS_AN Advisor.

The analogy is like a car with a motor. Logically, you can say that car is a sub-
class of vehicle, so it inherits the properties of all vehicles. At the same time, a
car has a motor. If you buy a car, you can logically assume that you are buying a
motor as well (unless you go to the used car lot where I got my last junk heap).

If some friends ask you to show up at a rally on Saturday with your vehicle
of choice, and you arrive in your car, they can’t complain and kick you out.
But if you were to appear on foot carrying a motor, your friends would have
reason to laugh you off the premises, because a motor is not a vehicle.

These assertions appear as follows when written in C++:

class Vehicle {};
class Motor {};
class Car : public Vehicle
{
 public:
 Motor motor;
};

void vehicleFn(Vehicle* pV);
void motorFn(Motor* pM);

void someFn()
{
 Car c;

 vehicleFn(&c); // this is allowed
 motorFn(&c.motor); // so is this

 motorFn(&c); // this is not allowed
}

Chapter 29

Are Virtual Functions for Real?
In This Chapter
▶ Overriding between functions that are members of a class

▶ Introducing virtual member functions

▶ Binding early versus binding late

▶ Declaring your destructor virtual — when and when not to do it

I
nheritance gives users the ability to describe one class in terms of another.
Just as important, it highlights the relationship between classes. I describe

a duck as “a bird that . . .”, and that description points out the relationship
between duck and bird. From a C++ standpoint, however, a piece of the puzzle
is still missing.

You have probably noticed this, but a microwave oven looks nothing like a
conventional oven and nor does it work the same internally. Nevertheless,
when I say “cook,” I don’t want to worry about the details of how each oven
works internally. This chapter describes this problem in C++ terms and then
goes on to describe the solution as well.

Overriding Member Functions
It has always been possible to overload a member function with another
member function in the same class, as long as the arguments differ:

class Student
{
 public:
 double grade(); // return the student's gpa
 double grade(double); // set the student's gpa

 // ...other stuff...
};

362 Part VI: Advanced Strokes

You see this in spades in Chapters 26 and 27, where I overload the construc-
tor with a number of different types of constructors. It’s also possible to
overload a function in one class with a function in another class, even if the
arguments are the same, because the class is not the same:

class Student
{
 public:
 double grade(double); // set the student's gpa
};

class Hill
{
 public:
 double grade(double); // set the slope of the hill
};

Inheritance offers yet another way to confuse things: A member function in a
subclass can overload a member function in the base class.

Overloading a base-class member function is called overriding.

Early binding
Overriding is fairly straightforward. Consider, for example, the following
EarlyBinding demonstration program:

//
// EarlyBinding - demonstrates early binding in
// overriding one member function with
// another in a subclass.
//
#include <cstdio>
#include <cstdlib>
#include <iostream>
using namespace std;

class Student
{
 public:
 double calcTuition() { return 0.0; }
};

class GraduateStudent : public Student
{
 public:
 double calcTuition() { return 1.0; }
};

363 Chapter 29: Are Virtual Functions for Real?

int main(int nNumberofArgs, char* pszArgs[])
{
 // the following calls Student::calcTuition()
 Student s;
 cout << "The value of s.calcTuition() is "
 << s.calcTuition()
 << endl;

 // the following calls GraduateStudent::calcTuition()
 GraduateStudent gs;
 cout << "The value of gs.calcTuition() is "
 << gs.calcTuition()
 << endl;

 // wait until user is ready before terminating program
 // to allow the user to see the program results
 cout << "Press Enter to continue..." << endl;
 cin.ignore(10, '\n');
 cin.get();
 return 0;
}

Here both the Student and GraduateStudent classes include a
calcTuition() member function (and nothing else, just to keep the list-
ings short). Presumably, the university calculates tuition for graduate and
undergraduate students differently, but for this demonstration, determin-
ing which function is being called is the only important thing. Therefore
Student::calcTuition() returns a 0, while GraduateStudent::calcT
uition() returns a 1 — can’t get much simpler than that!

The main() function first creates a Student object s and then invokes
s.calcTuition(). Not surprisingly, this call is passed to Student::
calcTuition() as is clear from the output of the program as quoted here.
The main() function then does the same for GraduateStudent, with pre-
dictable results:

The value of s.calcTuition() is 0
The value of gs.calcTuition() is 1
Press Enter to continue . . .

In this program, the C++ compiler can decide at compile time which member
function to call, basing the decision on the declared type of s and gs.

 Resolving calls to overridden member functions based on the declared type of
the object is called compile-time binding or early binding.

This simple example is not too surprising so far, but let me put a wrinkle in
this simple fabric.

364 Part VI: Advanced Strokes

Ambiguous case
The following AmbiguousBinding program is virtually identical to the
earlier EarlyBinding program. The only difference is that instead of invok-
ing calcTuition() directly, this version of the program calls the function
through a pointer passed to a function:

//
// AmbiguousBindng - demonstrates a case where it's not
// clear what should happen. In this
// case, C++ goes with early binding
// while languages like Java and C#
// use late binding.
//
#include <cstdio>
#include <cstdlib>
#include <iostream>
using namespace std;

class Student
{
 public:
 double calcTuition() { return 0.0; }
};

class GraduateStudent : public Student
{
 public:
 double calcTuition() { return 1.0; }
};

double someFn(Student* pS)
{
 return pS->calcTuition();
}

int main(int nNumberofArgs, char* pszArgs[])
{
 // the following calls Student::calcTuition()
 Student s;
 cout << "The value of someFn(&s) is "
 << someFn(&s)
 << endl;

 // the following calls GraduateStudent::calcTuition()
 GraduateStudent gs;
 cout << "The value of someFn(&gs) is "
 << someFn(&gs)
 << endl;

365 Chapter 29: Are Virtual Functions for Real?

 // wait until user is ready before terminating program
 // to allow the user to see the program results
 cout << "Press Enter to continue..." << endl;
 cin.ignore(10, '\n');
 cin.get();
 return 0;
}

Just as in the EarlyBinding example, this program starts by creating a
Student object s. Rather than invoke s.calcTuition() directly, how-
ever, this version passes the address of the object s to someFn() and
that function does the honors. The program repeats the process with a
GraduateStudent object gs.

Now, without looking ahead, consider this question: Which calcTuition()
will pS->calcTuition() call when main() passes the address of a
GraduateStudent to someFn()?

You could argue that it will call Student::calcTuition() because the
declared type of pS is Student*. On the other hand, you could argue that
the same call will invoke GraduateStudent::calcTuition() because the
“real type” is GraduateStudent*.

 The “real type” of an object is known as the run-time type or the dynamic type.
These are also known as dynamic type and static type, respectively.

The output from this program appears as follows:

The value of someFn(&s) is 0
The value of someFn(&gs) is 0
Press Enter to continue . . .

You can see that, by default, C++ bases its decision on the declared type of
the object. Therefore someFn() calls Student::calcTuition() because
that’s the way the object is declared irrespective of the run-time type of the
object provided in the call.

 The alternative to early binding is to decide which member function to call
based on the run-time type of the object. This is known as late binding.

Thus we say that C++ prefers early binding.

366 Part VI: Advanced Strokes

Enter late binding
Early binding does not capture the essence of object-oriented programming.
Consider how I make nachos in Chapter 21. In a sense, I act as the late binder.
The recipe says, “Heat the nachos in the oven.” It doesn’t say, “If the type
of oven is microwave, do this; if the type is convection oven, do this; if the
type is conventional oven, do this; if using a campfire, do this.” The recipe
(the code) relies on me (the late binder) to decide what the action (member
function) heat means when applied to the oven (the particular instance
of class Oven) or any of its variations (subclasses), such as a microwave
(MicrowaveOven). People think this way, and designing a language along
these lines enables the software model to describe more accurately a real-
world solution that a person might think up.

There are also mundane reasons of maintainability and reusability to justify late
binding. Suppose I write a great program around the class Student. This pro-
gram, cool as it is, does lots of things, and one of the things it does is calculate
the student’s tuition for the upcoming year. After months of design, coding, and
testing, I release the program to great acclaim and accolades from my peers.

Time passes and my boss asks me to change the rules for calculating the
tuition on graduate students. I’m to leave the rules for students untouched,
but I’m to give graduate students some type of break on their tuition so that
the university can attract more and better postgraduate candidates. Deep
within the program, someFunction() calls the calcTuition() member
function as follows:

void someFunction(Student* pS)
{
 pS->calcTuition();

 // ...function continues on...
}

 This should look familiar. If not, refer to the beginning of this chapter.

If C++ did not support late binding, I would need to edit someFunction() to
do something similar to the following:

void someFunction(Student* pS)
{
 if (pS->type() == STUDENT)
 {
 pS->Student::calcTuition();
 }

367 Chapter 29: Are Virtual Functions for Real?

 if (pS->type() == GRADUATESTUDENT)
 {
 pS->GraduateStudent::calcTuition();
 }

 // ...function continues on...
}

Using the extended name of the function (as discussed in Chapter 11),
including the class name, forces the compiler to use the specific version of
calcTuition().

I would add a member type() to the class that would return some constant.
I could establish the value of this constant in the constructor.

This change doesn’t seem so bad until you consider that calcTuition()
isn’t called in just one place; it’s called throughout the program. The chances
are not good that I will find all the places that it’s called.

And even if I do find them all, I’m editing (read “breaking”) previously debugged,
tested, checked in, and certified code. Edits can be time-consuming and boring,
and they introduce opportunities for error. Any one of my edits could be
wrong. At the very least, I will have to retest and recertify every path involving
calcTuition().

What happens when my boss wants another change? (My boss, like all bosses,
is like that.) I get to repeat the entire process.

What I really want is for C++ to keep track of the run-time type of the object
and to perform the call using late binding.

 The ability to perform late binding is called polymorphism (“poly” meaning
“varied” and “morph” meaning “form”). Thus a single object may take varied
actions based on its run-time type.

All I need to do is add the keyword virtual to the declaration of the member
function in the base class as demonstrated in the following LateBinding
example program:

//
// LateBinding - addition of the keyword 'virtual'
// changes C++ from early binding to late
// binding.
//
#include <cstdio>
#include <cstdlib>

368 Part VI: Advanced Strokes

#include <iostream>
using namespace std;

class Student
{
 public:
 virtual double calcTuition() { return 0.0; }
};

class GraduateStudent : public Student
{
 public:
 virtual double calcTuition() { return 1.0; }
};

double someFn(Student* pS)
{
 return pS->calcTuition();
}

int main(int nNumberofArgs, char* pszArgs[])
{
 // the following calls Student::calcTuition()
 Student s;
 cout << "The value of someFn(&s) is "
 << someFn(&s)
 << endl;

 // the following calls GraduateStudent::calcTuition()
 GraduateStudent gs;
 cout << "The value of someFn(&gs) is "
 << someFn(&gs)
 << endl;

 // wait until user is ready before terminating program
 // to allow the user to see the program results
 cout << "Press Enter to continue..." << endl;
 cin.ignore(10, '\n');
 cin.get();
 return 0;
}

 It’s not necessary to add the virtual keyword to the subclass as well, but
doing so is common practice. A member function that is bound late is known
as a virtual member function.

Other than the virtual keyword, there is no other difference between the
LateBinding program and its AmbiguousBinding predecessor, but the
results are strikingly different:

369 Chapter 29: Are Virtual Functions for Real?

The value of someFn(&s) is 0
The value of someFn(&gs) is 1
Press Enter to continue . . .

This is exactly what I want: C++ is now deciding which version of
calcTuition() to call, basing the decision on its run-time type and not
on its declared type.

It may seem surprising that the default for C++ is early binding, but the reason
is simple. Late binding adds a small amount of overhead to every call to vir-
tual member functions. The inventors of C++ did not want to give critics any
reasons to reject the language — so, by default, C++ does not include the over-
head of late binding with functions that are not virtual.

When Is Virtual Not?
Beware: A particular function call is not necessarily bound late just because
you think it is. The most critical thing to watch for is that all the member
functions in question are declared identically, including the return type. If
they aren’t declared with the same arguments in the subclass, the member
functions aren’t overridden; without overriding, there can’t be late binding.
Consider the following code snippet:

class Base
{
 public:
 virtual void fn(int x);
};

class Subclass : public Base
{
 public:
 virtual void fn(double x);
};
void test(Base* pB)
{
 pB->fn(1);

 pB->fn(2.0);
};

The function fn() is not bound late because the arguments don’t match. Not
surprisingly, the first call to fn() within test() goes to Base::fn(int)
even if test() is passed to an object of class Subclass. Somewhat surpris-
ingly, the second call goes to Base::fn(int) as well after converting the
double to an int. Again, no overriding, no late binding.

370 Part VI: Advanced Strokes

The only exception to this rule is best explained by the following example:

class Base
{
 public:
 virtual Base* fn();
};

class Subclass : public Base
{
 public:
 virtual Subclass* fn();
};

Here the function fn() is bound late, even though the return type doesn’t
match exactly. In practice, this is quite natural. If a function is dealing with
Subclass objects, it seems natural that it should return a Subclass object
as well.

The 2011 standard introduces a way to make sure that overriding is, in fact,
occurring: It uses the newly introduced keyword override, as shown in the
following snippet:

class Base
{
 public:
 virtual void fn(int x);
};

class Subclass : public Base
{
 public:
 virtual void fn(double x) override;
};

This generates a compiler error because Subclass::fn() does not, in fact,
override a function in the base class — even though the override keyword
says it does.

Correcting the argument solves the problem:

class Base
{
 public:
 virtual void fn(int x);
};

class Subclass : public Base
{
 public:
 virtual void fn(int x) override;
};

371 Chapter 29: Are Virtual Functions for Real?

This code compiles properly because Subclass::fn(int) does override
Base::fn(int).

Virtual Considerations
Specifying the class name in the call forces the call to find out early whether
the function is declared virtual or not. For example, the following call is to
Base::fn() because that’s what the programmer indicated she intended:

void test(Base* pB)
{
 pB->Base::fn(); // this call is not bound late
}

Constructors cannot be declared virtual because there is no completed
object at the time the constructor is invoked to use as the basis for late
binding.

On the other hand, destructors should almost always be declared virtual. If
they aren’t, you run the risk of not completely destructing the object, as dem-
onstrated in the following snippet:

class MyObject {};

class Base
{
 public:
 ~Base() {} // this should be declared virtual
};

class Subclass
{
 protected:
 MyObject* pMO;

 public:
 Subclass()
 {
 pMO = new MyObject;
 }
 ~Subclass()
 {
 delete pMO;
 pMO = nullptr;
 }
};

372 Part VI: Advanced Strokes

Base* someOtherFn()
{
 return new Subclass;
}

void someFn()
{
 Base* pB = someOtherFn();
 delete pB;
}

The program has a subtle but devastating bug. When someFn() is called, it
immediately calls someOtherFn(), which creates an object of class Subclass.
The constructor for Subclass allocates an object of class MyObject off the
heap. Ostensibly, all is well because the destructor for Subclass returns
MyObject to the heap when the Subclass object is destructed.

However, when someFn() calls delete, it passes a pointer of type Base*. If
this call is allowed to bind early, it will invoke the destructor for Base, which
knows nothing about MyObject. The memory will not be returned to the heap.

 I realize that technically delete is a keyword and not a function call, but the
semantics are the same.

Declaring the destructor for Base virtual solves the problem. Now the call to
delete is bound late — realizing that the pointer passed to delete actually
points to a Subclass object, delete invokes the Subclass destructor, and
the memory is returned, as it’s supposed to be.

So is there a case in which you don’t want to declare the destructor virtual?
Only one. Earlier I said that virtual functions introduce a “little” overhead. Let
me be more specific. One thing they add is an additional hidden pointer to
every object — not one pointer per virtual function, just one pointer, period.
A class with no virtual functions does not have this pointer.

Now, one pointer doesn’t sound like much, and it isn’t, unless the following
two conditions are true:

 ✓ The class doesn’t have many data members (so that one pointer is a lot
compared with what’s there already).

 ✓ You create a lot of objects of this class (otherwise the overhead doesn’t
matter).

 If either of these two conditions is not true, always declare your destructors
virtual.

Chapter 30

Overloading Assignment
Operators

In This Chapter
▶ Overloading operators — in general, a bad idea

▶ Overloading the assignment operator — why that one is critical

▶ Getting by without an assignment operator

T
he little symbols like +, −, =, and so on are called operators. These opera-
tors are already defined for the intrinsic types like int and double.

However, C++ allows you to define the existing operators for classes that you
create. This is called operator overloading.

Operator overloading sounds like a great idea. The examples that are com-
monly named are classes such as Complex that represent complex numbers.
(Don’t worry if you don’t know what a complex number is. Just know that C++
doesn’t handle them intrinsically.) Having defined the class Complex, you
can then define the addition, multiplication, subtraction, and division opera-
tors (all of these operations are defined for complex numbers). Then you
write cool stuff like this:

Complex c1(1, 0), c2(0, 1);
Complex c3 = c1 + c2;

Whoa, there, not so fast. Overloading operators turns out to be much more
difficult in practice than in theory. So much so that I consider operator over-
loading beyond the scope of this book, with two exceptions — one of which
is the subject of this chapter: overloading the assignment operator. The
second operator worth overloading is the subject of the next chapter. But
first things first . . .

374 Part VI: Advanced Strokes

Overloading an Operator
C++ considers an overloaded operator as a special case of a function call. It
considers the + operator to be shorthand for the function operator+(). In
fact, for any operator %, the function version is known as operator%(). So
to define what addition means when applied to a Complex object, for exam-
ple, you need merely to define the following function:

Complex& operator+(const Complex& c1, const Complex& c2);

You can define what existing operators mean when applied to objects of your
making, but there are a lot of things you can’t do when overloading operators.
Here are just a few:

 ✓ You can’t define a new operator, only redefine what an existing operator
means when applied to your user-defined class.

 ✓ You can’t overload the intrinsic operators such as addition of two
integers.

 ✓ You can’t affect the precedence of the operators.

In addition, the assignment operator must be a member function — it cannot
be a non-member function like the addition operator just defined. (For more
about member functions, see Chapter 22.)

Overloading the Assignment
Operator Is Critical

The C++ language does provide an assignment operator. That’s why you can
write things like the following:

Student s1("Stephen Davis", 1234);
Student s2;
s2 = s1; // use the default assignment operator

The C++ provided assignment operator does a member-by-member copy of
each data member from the object on the right into the object on the left
using each data member’s assignment operator. This is completely analo-
gous to the C++ provided copy constructor. Remember that this member-by-
member copy is called a shallow copy. (Refer to Chapter 27 for more on copy
constructors and shallow copies.)

375 Chapter 30: Overloading Assignment Operators

The problems inherent in the C++ provided assignment operator are similar
to those of the copy constructor, only worse. Consider the following example
snippet:

class Student
{
 protected:
 char* pszName;
 int nID;

 public:
 Student(const char* pszNewName, int nNewID)
 {
 cout << "Constructing " << pszNewName << endl;
 int nLength = strlen(pszNewName) + 1;
 pszName = new char[nLength];
 strcpy(pszName, pszNewName);
 nID = nNewID;
 }
 ~Student()
 {
 cout << "Destructing " << pszName << endl;
 delete[] pszName;
 pszName = nullptr;
 }

 // ...other members...
};
void someFn()
{
 Student s1("Stephen Davis", 1234);
 Student s2("Cayden Amrich", 5678);

 s2 = s1; // this is legal but very bad
}

The function someFn() first creates an object s1. The Student(const
char*, int) constructor for Student allocates memory from the heap to
use to store the student’s name. The process is repeated for s2.

The function then assigns s1 to s2. This does two things, both of which
are bad:

 ✓ Copies the s1.pszName pointer into s2.pszName so that both objects
now point to the same block of heap memory.

 ✓ Wipes out the previous value of s2.pszName so that the block of memory
used to store the student name Cayden Amrich is lost.

376 Part VI: Advanced Strokes

Here’s what the assignment operator for Student needs to do:

 ✓ Delete the memory block pointed at by s2.pszName (that is, act like a
destructor).

 ✓ Perform a deep copy of the string from s1.pszName into a newly allo-
cated array in s2.pszName (act like a copy constructor). (Again, see
Chapter 27 for a description of deep copying.)

 In fact, you can make this general statement: An assignment operator acts like
a destructor to wipe out the current values in the object, and then acts like a
copy constructor that copies new values into the object.

Looking at an Example
The following StudentAssignment program contains a Student class that
has a constructor and a destructor along with a copy constructor and an
assignment operator — everything a self-respecting class needs!

//
// StudentAssignment - this program demonstrates how to
// create an assignment operator that
// performs the same deep copy as the copy
// constructor
//
#include <cstdio>
#include <cstdlib>
#include <iostream>
#include <cstring>
using namespace std;

class Student
{
 protected:
 char* pszName;
 int nID;

 void init(const char* pszNewName, int nNewID)
 {
 int nLength = strlen(pszNewName) + 1;
 pszName = new char[nLength];
 strcpy(pszName, pszNewName);
 nID = nNewID;
 }

377 Chapter 30: Overloading Assignment Operators

 void destruct()
 {
 delete[] pszName;
 pszName = nullptr;
 }

 public:
 Student(const char* pszNewName, int nNewID)
 {
 cout << "Constructing " << pszNewName << endl;
 init(pszNewName, nNewID);
 }
 Student(Student& s)
 {
 cout<<"Constructing copy of "<< s.pszName << endl;
 init(s.pszName, s.nID);
 }

 virtual ~Student()
 {
 cout << "Destructing " << pszName << endl;
 destruct();
 }

 // overload the assignment operator
 Student& operator=(const Student& source)
 {
 // don't do anything if we are assigned to
 // ourselves
 if (this != &source)
 {
 cout << "Assigning " << source.pszName
 << " to " << pszName << endl;

 // first destruct the existing object
 destruct();

 // now copy the source object
 init(source.pszName, source.nID);
 }

 return *this;
 }

 // access functions
 const char* getName()
 {
 return pszName;
 }

378 Part VI: Advanced Strokes

 int getID()
 {
 return nID;
 }
};

void someFn()
{
 Student s1("Adam Laskowski", 1234);
 Student s2("Vanessa Barbossa", 5678);

 s2 = s1;
}

int main(int nNumberofArgs, char* pszArgs[])
{
 someFn();

 // wait until user is ready before terminating program
 // to allow the user to see the program results
 cout << "Press Enter to continue..." << endl;
 cin.ignore(10, '\n');
 cin.get();
 return 0;
}

The data members of this Student class are the same as the versions from
earlier chapters. The constructor and copy constructor are the same as well,
except that the actual work is performed in an init() function invoked from
both constructors. The assignment operator can reuse the same init()
function as well to perform its construction function.

The code that implements the destruct sequence has also been transferred
from ~Student() to a protected destruct() member function.

Following the destructor is the assignment operator operator=(). This
function first tests to see if the address of the object passed is the same as
the current object. This is to detect the following case:

s1 = s1;

In this case, the assignment operator does nothing. If the source and current
objects are not the same, the function first destructs the current object and
then copies the contents of the source object into the current object. Finally,
it returns a reference to the current object.

379 Chapter 30: Overloading Assignment Operators

The someFn() function shows how this works in practice. After first declar-
ing two Student objects s1 and s2, someFn() executes the assignment

s2 = s1;

which is interpreted as if it had been written as

s2.operator=(s1);

That is, the assignment operator destructs s2 and then deep-copies the con-
tents of s1 into s2.

The destructor invoked at the end of someFn() demonstrates that the two
objects, s1 and s2, don’t both refer to the same piece of heap memory. The
output from the program appears as follows:

Constructing Adam Laskowski
Constructing Vanessa Barbossa
Assigning Adam Laskowski to Vanessa Barbossa
Destructing Adam Laskowski
Destructing Adam Laskowski
Press Enter to continue . . .

 The reason that the assignment operator returns a reference to the current
object is to allow the following:

s3 = s1 = s2;

Writing Your Own (or Not)
I don’t expect you to learn all the ins and outs of overloading operators; how-
ever, you can’t go too wrong if you follow the pattern set out by the Student
example:

 1. Check to make sure that the left-hand and right-hand objects aren’t the
same — if they are the same, return without taking any action.

 2. Destruct the left-hand object (the current object which is the same
object pointed at by this).

 3. Copy-construct the left-hand object, using the right-hand object as the
source.

 4. Return a reference to the left-hand object (that is, return *this;).

380 Part VI: Advanced Strokes

If all this is too much, you can use the delete keyword to delete the default
assignment operator, like so:

class Student
{
 public:
 Student& operator=(const Student&) = delete;

 // ...whatever else...
};

This command removes the default assignment operator without replacing it
with a user-defined version. Without an assignment operator, the assignment

s1 = s2;

generates a compiler error.

Chapter 31

Performing Streaming I/O
In This Chapter
▶ Using stream I/O — an overview

▶ Opening an object for file input and output

▶ Detecting errors when performing file I/O

▶ Formatting output to a file

▶ Using the stream classes on internal buffers for easy string formatting

I
 gave you a template to follow when generating new programs in Chapter 2.
Since you were just starting the journey to C++, I asked you to take a lot

of what was in that template on faith; then throughout subsequent chapters,
I explained each of the features of the template. There’s just one item remain-
ing: stream input/output (commonly shortened to just stream I/O).

 I must warn you that stream I/O can’t be covered completely in a single
chapter — entire books are devoted to this one topic. Fortunately, however,
you don’t need to know too much about stream I/O in order to write the vast
majority of programs.

How Stream I/O Works
Stream I/O is based on overloaded versions of operator>>() and
operator<<() (known as the right-shift and left-shift operators, respectively).

Note: I don’t cover the << (left-shift) and >> (right-shift) operators in my dis-
cussion of arithmetic operators in Chapter 4. That’s because these operators
perform bit operations that are beyond the scope of a beginning program-
ming book.

382 Part VI: Advanced Strokes

The prototype declarations for the stream operators are found in the include
file iostream. The code for these functions is part of the Standard C++
Library that your programs link with by default. That’s why the standard
template starts out with #include <iostream> — without it, you can’t
perform stream I/O. The following excerpt shows just a few of the prototype
declarations that appear in iostream:

//for input we have:
istream& operator>>(istream& source, int &dest);
istream& operator>>(istream& source, double &dest);
istream& operator>>(istream& source, char *pDest);
//...and so forth...

//for output we have:
ostream& operator<<(ostream& dest, const char *pSource);
ostream& operator<<(ostream& dest, int source);
ostream& operator<<(ostream& dest, double source);
//...and so it goes...

When overloaded to perform stream input, operator>>() is called the
extractor. The class istream is the basic class for performing input from a
file. C++ creates an istream object cin and associates it with the keyboard
when your program first starts and before main() is executed.

The first prototype in the earlier extract from the iostream include file
refers to the function that is invoked when you enter the following C++ code:

int i;
cin >> i;

As you’ve seen, extracting from cin is the standard way of performing key-
board input.

When overloaded to perform stream output, operator<<() is called the
inserter. C++ uses the ostream class for performing formatted output from a
file. C++ creates an ostream object cout at program start and associates it
with the console display.

The first prototype among the output functions is called when you enter the
following:

cout << "C++ programming is fn()";

Inserting to cout is the standard means for displaying stuff to the operator.

Both cin and cout are declared in the iostream include file. That’s how
your program knows what they are.

383 Chapter 31: Performing Streaming I/O

 C++ opens a second ostream object at program startup. This object, cerr,
is also associated with the display by default, but it’s used as a standard error
output. If you’ve used Linux, Unix, or the Windows console window much,
you know that you can redirect standard input and output. For example, the
command

myprogram <file1.txt >file2.txt

says, “Execute myprogram.exe, but read from file1.txt rather than the
keyboard, and output to file2.txt rather than the display.” That is, cin
is associated with file1.txt and cout with file2.txt. In this case, if
you send error messages to cout, the operator will never see them because
they’ll be sent to the file. However, messages sent to cerr will continue to go
to the display because it isn’t redirected with cout.

 Always send error messages to cerr rather than to cout just in case cout
has been redirected.

Stream Input/Output
C++ provides separate classes for performing input and output to files. These
classes, ifstream and ofstream, are defined in the include file fstream.

 Collectively both ifstream and ofstream are known as fstream classes.

Creating an input object
The class ifstream provides a constructor used to open a file for input:

ifstream(const char* pszFileName,
 ios_base::openmode mode);

This constructor opens a file, creates an object of class ifstream, and asso-
ciates that object with the opened file to be used for input. The first argu-
ment to the constructor is a pointer to the name of the file to open. You can
provide a full pathname or just the filename.

If you provide the filename without a path, C++ will look in the current directory
for the file to read. When executing from your program from within Code::Blocks,
the current directory is the directory that contains the project file.

384 Part VI: Advanced Strokes

 Don’t forget that a Windows/DOS backslash is written "\\" in C++. Refer to
Chapter 5 for details.

The second argument directs some details about how the file is to be opened
when the object is created. The type openmode is a user-defined type within
the class ios_base. The legal values of mode are defined in Table 31-1. If
mode is not provided, the default value is ios_base::in, which means open
the file for input. (Pretty logical for a file called ifstream.)

The following example code snippet opens the text file MyData.txt and
reads a few integers from it:

void someFn()
{
 // open the file MyData.txt in the current directory
 ifstream input("MyData.txt");

 int a, b, c;

 input >> a >> b >> c;
 cout << "a = " << a
 << ", b = " << b
 << ", c = " << c << endl;
}

To specify the full path, I could write something like the following:

ifstream input("C:\\\\MyFolder\\MyData.txt");

This command opens the C:\\MyFolder\MyData.txt file.

The destructor for class ifstream closes the file. In the preceding snippet,
the file MyData.txt is closed when control exits someFn() and the input
object goes out of scope.

Table 31-1 Constants That Control How Files
 Are Opened for Input
Flag Meaning
ios_base::binary Open file in binary mode (alternative is text mode)

ios_base::in Open file for input (implied for istream)

385 Chapter 31: Performing Streaming I/O

Creating an output object
The class ofstream is the output counterpart to ifstream. The constructor
for this class opens a file for output using the inserter operator:

ofstream(const char* pszFileName,
 ios_base::openmode mode);

This constructor opens a file for output. Here again, pszFileName points to
the name of the file, whereas mode controls some aspects about how the file
is to be opened. Table 31-2 lists the possible values for mode. If you don’t pro-
vide a mode, the default value is out + trunc, which means “open the file
for output and truncate whatever is already in the file” (the alternative is to
append whatever you output to the end of the existing file).

The following example code snippet opens the text file MyData.txt and
writes some absolutely true information into it:

void someFn()
{
 // open the file MyData.txt in the current directory
 ofstream output("MyData.txt");

 output << "Stephen is suave and handsome\n"
 << "and definitely not balding prematurely"
 << endl;
}

The destructor for class ofstream flushes any buffers to disk and closes the
file before destructing the object and returning any local memory buffers to
the heap when the output object goes out of scope at the end of someFn().

Table 31-2 Constants That Control How Files
 Are Opened for Output
Flag Meaning
ios_base::app Seek to End of File before each write

ios_base::ate Seek to End of File immediately after opening the file

ios_base::binary Open file in binary mode (alternative is text mode)

ios_base::out Open file for output (implied for ostream)

ios_base::trunc Truncate file, if it exists (default for ostream)

386 Part VI: Advanced Strokes

Open modes
Tables 31-1 and 31-2 show the different modes that are possible when open-
ing a file. To set these values properly, you need to answer the following three
questions:

 ✓ Do you want to read from the file or write to the file? Use ifstream to
read and ofstream to write. If you intend to both read and write to the
same file, then use the class fstream and set the mode to in | out,
which opens the file for both input and output. Good luck, however,
because getting this to work properly is difficult. It’s much better to
write to a file with one object and read from the file with another object.

 ✓ If you are writing to the file and it already exists, do you want to add to
the existing contents (in which case, open with mode set to out | ate)
or delete the contents and start over (in which case, open with mode set
to out | trunc)?

 ✓ Are you reading or writing text or binary data? Both ifstream and
ofstream default to text mode. Use binary mode if you are reading
or writing raw, nontext data. (See the next section in this chapter for a
short explanation of binary mode.)

 The | is the “binary OR” operator. The result of in | out is an int with the
in bit set and the out bit set. You can OR any of the mode flags together.

If the file does not exist when you create the ofstream object, C++ will
create an empty output file.

What is binary mode?
You can open a file for input or output in either binary or text mode. The
primary difference between binary and text mode lies in the way that new-
lines are handled. The Unix operating system was written in the days when
typewriters were still fashionable (when it was called “typing” instead of
“keyboarding”). Unix ends sentences with a carriage return followed by a
line feed.

Subsequent operating systems saw no reason to continue using two char-
acters to end a sentence, but they couldn’t agree on which character to
use. Some used the carriage return and others the line feed, now renamed
 newline. The C++ standard is the single newline.

387 Chapter 31: Performing Streaming I/O

When a file is opened in text mode, the C++ library converts the single new-
line character into what is appropriate for your operating system on output,
whether it’s a carriage-return-plus-line-feed, a single carriage return, or a
line feed (or something else entirely). C++ performs the opposite conver-
sion when reading a file. The C++ library does no such conversions for a file
opened in binary mode.

 Always use binary mode when manipulating a file that’s not in human-readable
text format. If you don’t, the C++ library will modify any byte in the data stream
that happens to be the same as a carriage return or line feed.

Hey, file, what state are you in?
A properly constructed ifstream or ofstream object becomes a stand-in
for the file that it’s associated with.

The programmer tends to think of operations on the fstream objects as
being the same as operations on the file itself. However, this is only true
so long as the object is properly constructed. If an fstream object fails to
construct properly, it might not be associated with a file — for example, if
an ifstream object is created for a file that doesn’t exist. In this case, C++
rejects stream operations without taking any action at all.

Fortunately, C++ tells you when something is wrong — the member function
bad() returns a true if something is wrong with the fstream object and if
it cannot be used for input or output. This usually happens when the object
cannot be constructed for input because the file doesn’t exist or for output
because the program doesn’t have permission to write to the disk or direc-
tory. Other system errors can also cause the bad() state to become true.

The term “bad” is descriptive, if a bit excessive (I don’t like to think of com-
puter programs as being bad or good). A lesser state called fail() is set to
true if the last read or write operation failed. For example, if you try to read
an int and the stream operator can find only characters, then C++ will set
the fail() flag. You can call the member function clear() to clear the fail
flag and try again — the next call may or may not work. You cannot clear the
bad() flag — just like wine, an object gone bad is not recoverable.

 Attempts to perform input from or output to an object with either the bad()
or fail() flag set are ignored.

I mean this literally — no input or output is possible as long as the internal
state of the fstream object has an error. The program won’t even try to
perform I/O, which isn’t so bad on output — it’s pretty obvious when your

388 Part VI: Advanced Strokes

program isn’t performing output the way it’s supposed to. This situation can
lead to some tricky bugs in programs that perform input, however. It’s very
easy to mistake garbage left in the variable, perhaps from a previous read, for
valid input from the file.

Consider the following ReadIntegers program, which contains an unsafeFn()
that reads values from an input file:

//
// ReadIntegers - this program reads integers from
// an input file MyFile.txt contained
// in the current directory.
//
#include <cstdio>
#include <cstdlib>
#include <fstream>
#include <iostream>
using namespace std;

void unsafeFn()
{
 ifstream myFile("MyFile.txt");
 int nInputValue;

 for(int n = 1; n <= 10; n++)
 {
 // read a value
 myFile >> nInputValue;

 // value successfully read - output it
 cout << n << " - " << nInputValue << endl;
 }
}

int main(int nNumberofArgs, char* pszArgs[])
{
 unsafeFn();

 // wait until user is ready before
terminating program

 // to allow the user to see the program results
 cout << "Press Enter to continue..." << endl;
 cin.ignore(10, '\n');
 cin.get();
 return 0;
}

389 Chapter 31: Performing Streaming I/O

The preceding unsafeFn() function reads ten values from MyFile.txt
and displays them on the console. That sounds okay, but what if there aren’t
ten values in MyFile.txt — what if there are only nine (or five or none!)?
This version of the program generated the following output when provided a
sample MyFile.txt:

1 - 1
2 - 2
3 - 3
4 - 4
5 - 5
6 - 6
7 - 7
8 - 7
9 - 7
10 - 7
Press Enter to continue . . .

The question is, did the file really contain the value 7 four times, or did an
error occur after the seventh read? There is no way for the user to tell because
once the program gets to the End of File, all subsequent read requests fail.
The value of nInputValue is not set to zero or some other “special value.” It
retains whatever value it had on the last successful read request, which in this
case is 7.

The most flexible means to avoid this problem is to exit the loop as soon as an
error occurs using the member function fail(), as demonstrated by the fol-
lowing safeFn() version of the same function (also part of the ReadIntegers
program in the online material):

//
// ReadIntegers - this program reads integers from
// an input file MyFile.txt contained
// in the current directory.
//
#include <cstdio>
#include <cstdlib>
#include <fstream>
#include <iostream>
using namespace std;

void safeFn()
{
 ifstream myFile("MyFile.txt");
 int nInputValue;

390 Part VI: Advanced Strokes

 for(int n = 0; n < 10; n++)
 {
 // read a value
 myFile >> nInputValue;

 // exit the loop on read error
 if (myFile.fail())
 {
 break;
 }

 // value successfully read - output it
 cout << n << " - " << nInputValue << endl;
 }
}

int main(int nNumberofArgs, char* pszArgs[])
{
 safeFn();

 // wait until user is ready before
terminating program

 // to allow the user to see the program results
 cout << "Press Enter to continue..." << endl;
 cin.ignore(10, '\n');
 cin.get();
 return 0;
}

This version generated the following output when reading the same MyFile.
txt file:

1 - 1
2 - 2
3 - 3
4 - 4
5 - 5
6 - 6
7 - 7
Press Enter to continue . . .

Now it’s obvious that there are only seven values in the file rather than the
expected ten — and that the number 7 isn’t repeated.

 Always check the value of fail() after extracting data from an input file to
make sure that you’ve actually read a new value.

391 Chapter 31: Performing Streaming I/O

Notice that the preceding ReadIntegers program adds the line #include
<fstream> to the standard template I’ve used for all programs in earlier
chapters. This extra include file is necessary to gain access to the ifstream
and ofstream classes.

Other Member Functions
of the fstream Classes

The fstream classes provide a number of member functions, as shown in
Table 31-3 (the list isn’t a complete list of all the functions in these very large
classes). The prototype declarations for these member functions reside in
the fstream include file. They are described in the remainder of this section.

Don’t overflow that buffer
If you look closely at some of the earlier programs in this book, you’ll see C++ statements like the
following:

char szStudentName[80];
cin >> szStudentName;

This snippet allocates 80 characters for the student’s name (surely that’s enough for anyone’s
name) and then extracts a string into that array. The problem is that the extractor doesn’t know
how large the array is — if the user types more than 80 characters before entering a return or
whitespace, then the C++ library function will overflow the end of the array and overwrite memory.
Hackers use this overflow capability in programs that interface directly to the Internet to overwrite
the machine instructions in the program, thereby taking over control of your computer.

You can avoid this problem two ways. One way is to use the member function getline(). This
function allows you to specify the length of the array as in the following:

char szStudentName[80];
cin.getline(szStudentName, 80);

This call reads input until the first newline or until 80 characters have been read, whichever comes
first. Any characters not read are left in cin for the next read to pick up.

A second approach is to use the string class. This class acts like a char array except that it
dynamically resizes to fit the amount of data. Thus the following is safe:

string sStudentName;
cin >> sStudentName;

The string class will automatically allocate an array off the heap that’s large enough to hold what-
ever data is input. Unfortunately, the string class is beyond the scope of a beginning book on
programming.

392 Part VI: Advanced Strokes

Table 31-3 Major Methods of the I/O Stream Classes
Method Meaning
bool bad() Returns true if a serious error has

occurred.

void clear(iostate flags =
 ios_base::goodbit)

Clears (or sets) the I/O state flags.

void close() Closes the file associated with a
stream object.

bool eof() Returns true if there are no more
characters in the read pointer at the
End of File.

char fill()
char fill(char newFill)

Returns or sets the fill character.

fmtflags flags()fmtflags
flags(fmtflags f)

Returns or sets format flags. (See next
section on format flags.)

void flush() Flushes the output buffer to the disk.

int gcount() Returns the number of bytes read
during the last input.

char get() Reads individual characters from file.

char getline(
 char* buffer,
 int cou nt,
 char delimiter = ’\n’)

Reads multiple characters up until
either End of File, until delimiter
encountered, or until count - 1
characters read. Tacks a null onto the
end of the line read. Does not store
the delimiter read into the buffer. The
delimiter defaults to newline, but you
can provide a different one if you like.

bool good() Returns true if no error conditions
are set.

void open(
 const char* filename,
 openmode mode)

Same arguments as the constructor.
Performs the same file open on an
existing object that the constructor
performs when creating a new object.

streamsize precision()
streamsize precision
(streamsize s)

Reads or sets the number of digits dis-
played for floating point variables.

ostream& put(char ch) Writes a single character to the
stream.

393 Chapter 31: Performing Streaming I/O

Method Meaning

istream& read(
 char* buffer,
 streamsize num)

Reads a block of data. Reads either
num bytes or until an End of File is
encountered, whichever occurs first.

fmtflags setf(fmtflags) Sets specific format flags. Returns old
value.

fmtflags unsetf
(fmtflags)

Clears specific format flags. Returns
old value.

int width()
 int width(int w)

Reads or sets the number of charac-
ters to be displayed by the next format-
ted output statement.

ostream& write(
 const char* buffer,
 streamsize num)

Writes a block of data to the output file.

Reading and writing streams directly
The inserter and extractor operators provide a convenient mechanism for
reading formatted input. However, sometimes you just want to say, “Give it to
me; I don’t care what the format is.” Several member functions are useful in
this case.

The simplest function, get(), returns the next character in an input file. Its
output equivalent is put(), which writes a single character to an output file.
The function getline() returns a string of characters up to some terminator —
the default terminator is a newline, but you can specify any other character you
like as the third argument to the function. The getline() function strips off the
terminator but makes no other attempt to reformat or otherwise interpret
the input.

The member function read() is even more basic. This function reads the
number of bytes that you specify, or less if the program encounters the End
of File. The function gcount() always returns the actual number of bytes
read. The output equivalent is write().

The following FileCopy program uses the read() and write() functions
to create a backup of any file you give it by making a copy with the string
".backup" appended to the name:

394 Part VI: Advanced Strokes

//
// CopyFiles - make backup copies of whatever files
// are passed to the program by creating
// a file with the same name plus the name
// ".backup" appended.
//
#include <cstdio>
#include <cstdlib>
#include <fstream>
#include <iostream>
#include <cstring>
using namespace std;

void copyFile(const char* pszSrcFileName)
{
 // create a copy of the specified filename with
 // ",backup" added to the end
 int nTargetNameLength = strlen(pszSrcFileName) + 10;
 char *pszTargetFileName = new char[nTargetNameLength];
 strcpy(pszTargetFileName, pszSrcFileName);
 strcat(pszTargetFileName, ".backup");

 // now open the source file for input and
 // the target file for output
 ifstream input(pszSrcFileName,
 ios_base::in | ios_base::binary);
 if (input.good())
 {
 ofstream output(pszTargetFileName,
 ios_base::out | ios_base::binary | ios_base::trunc);
 if (output.good())
 {

 while (!input.eof() && input.good())
 {
 char buffer[4096];
 input.read(buffer, 4096);
 output.write(buffer, input.gcount());
 }
 }
 }

 // restore memory to the heap
 delete pszTargetFileName;
}

395 Chapter 31: Performing Streaming I/O

int main(int nNumberofArgs, char* pszArgs[])
{
 // pass every file name provided to main() to
 // the copyFile() function, one name at a time
 for (int i = 1; i < nNumberofArgs; i++)
 {
 cout << "Copying " << pszArgs[i] << endl;
 copyFile(pszArgs[i]);
 }

 // wait until user is ready before
terminating program

 // to allow the user to see the program results
 cout << "Press Enter to continue..." << endl;
 cin.ignore(10, '\n');
 cin.get();
 return 0;
}

The program iterates through the arguments passed to it, remembering that
pszArgs[0] points to the name of the program itself. The program passes
each argument, one at a time, to the function copyFile().

The copyFile() function first creates a copy of the name passed it in the
array pszTargetFileName. It then concatenates the string ".backup" to
that name. Finally, you get to the good part: copyFile() opens the source
file whose name was passed as the argument to the copyFile() function for
binary input.

Note: The ios_base:: is necessary when using the in, out, binary, and
trunc flags as these flags are const static members of the ios_base class.

 Use binary mode if you are working with non-text files or you don’t intend to
display the contents. In this case, I did not limit the program to work only with
text files.

The function only continues executing if input.good() is true, indicating
that the input object was created successfully, since it would be impossible
to read from the file if the opening operation did not work properly.

 In a real-world program, I would have displayed some useful error message
before returning to the caller.

If the input object is created okay, copyFile() creates an output object
using the pszTargetFileName created earlier. This file is opened for binary
output. The mode flag is also set to truncate to delete the contents of the
target file if it already exists. If output.good() is true, the function exe-
cutes the next section of the function; otherwise, control jumps to the end.

396 Part VI: Advanced Strokes

The function is now ready to copy the contents of one file to the other: It
enters a loop in which it reads 4K blocks from the input file and writes them
to the output file.

Notice that in the call to write(), copyFile() uses the value returned from
input.gcount() rather than a hardcoded 4096. This is because unless the
source file just happens to be an integer multiple of 4096 bytes in length (not
very likely), the last call to read() will fetch less than the requested number
of bytes before encountering the End of File.

The loop terminates when either input reaches the End of File or the input
object is no longer good.

 The ! operator (pronounced “the NOT operator”) inverts the sense of a
Boolean expression. In other words, !true is false and !false is true.
(You read that last phrase as “NOT true is false and NOT false is true.”)

Immediately before exiting, the function returns the pszTargetFileName
array to the heap. Exiting the function causes the destructor for both input
and output to be called, which closes both the input and output files.

To execute the program within the Code::Blocks environment, I first selected
Project➪Set Programs’ Arguments to open the Select target dialog box. In
the Program arguments field, I entered main.cpp and clicked OK. I could
just as well have selected and dropped several files onto the name of the
CopyFiles executable file — or, at the command prompt, entered the com-
mand name, followed by the names of the files to ".backup".

Chapter 18 discusses the various ways to pass arguments to your program.

When I run the program, I get the following output:

Copying main.cpp
Press Enter to continue . . .

Looking into the folder containing the main.cpp source file, I now see a
second main.cpp.backup file that has the identical size and contents as the
original.

Controlling format
The flags(), setf(), and unsetf() member functions are all used to set
or retrieve a set of format flags used to control the format of input extracted
from an ifstream or inserted into an ofstream object. The flags get set to

397 Chapter 31: Performing Streaming I/O

some default value that makes sense most of the time when the object is cre-
ated. However, you can change these flags to control the format of input and/
or output. Table 31-4 describes the flags that can be used with the flags(),
setf(), and unsetf() member functions.

Table 31-4 I/O Stream Format Flags Used with setf(),
 unsetf(), and flags()
Flag If Flag Is True Then . . .
boolalpha Displays variables of type bool as either true or false rather

than 1 or 0

dec Reads or writes integers in decimal format (default)

fixed Displays floating-point number in fixed-point, as opposed to
scientific (default), notation

hex Reads or writes integers in hexadecimal

left Displays output left-justified (that is, pads on the right)

oct Reads or writes integers in octal

right Displays output right-justified (that is, pads on the left)

scientific Displays floating-point number in scientific format

showbase Displays a leading 0 for octal output and leading 0x for hexa-
decimal output

showpoint Displays a decimal point for floating-point output even if the
fractional portion is zero

skipws Skips over whitespace when using the extractor to read the file

unitbuf Flushes output after each output operation

uppercase Replaces lowercase letters with their uppercase equivalents
on output

For example, the following code segment displays integer values in hexadeci-
mal (rather than the default, decimal):

// fetch the previous value so we can restore it
ios_base::fmtflags prevValue = cout.flags();

// clear the decimal flag
cout.unsetf(cout.dec);

// now set the hexadecimal flag
cout.setf(cout.hex);

398 Part VI: Advanced Strokes

// ...do stuff...

// restore output to previous state
cout.flags(prevValue);

This example first queries the cout object for the current value of the format
flags using the flags() member function. The type of the value returned is
ios_base::fmtflags.

I didn’t discuss user-defined types defined within classes — that’s an advanced
topic — so (for now) just trust me that this type makes sense.

 It’s always a good idea to record the format flags of an input or output object
before changing them so that you can restore them to their previous value
once you’re finished.

The program then clears the decimal flag using the unsetf() function (it does
this because hexadecimal, octal, and decimal are mutually exclusive format
modes) before setting the hex mode using setf(). The setf() sets the hexa-
decimal flag without changing the value of any other format flags that may be
set. Every time an integer is inserted into the cout object for the remainder of
the function, C++ will display the value in hexadecimal.

Once the function finishes displaying values in hexadecimal format, it restores
the previous value by calling flags(fmtflags). This member function over-
writes the current flags without whatever value you pass it.

Further format control is provided by the width(int) member function that
sets the minimum width of the next output operation. In the event that the
field doesn’t take up the full width specified, the inserter adds the requisite
number of fill characters. The default fill character is a space, but you change
this by calling fill(char). Whether C++ adds the fill characters on the left
or right is determined by whether the left or right format flag is set.

For example, the code snippet

int i = 123;
cout.setf(cout.right);
cout.unsetf(cout.left);
cout.fill('+');
cout << "i = [";
cout.width(10);
cout << i;
cout << "]" << endl;

generates the following output:

i = [+++++++123]

399 Chapter 31: Performing Streaming I/O

 Notice that the call to width(int) appears immediately before cout << i.
Unlike the other formatting flags, the width(int) call applies only to the
very next value that you insert. The call to width() must be repeated after
every value that you output.

What’s up with endl?
Most programs in this book terminate an output stream by inserting the
object endl. However, some programs include \n within the text to output a
newline. What’s the deal?

The endl object inserts a newline into the output stream, but it takes one
more step. Disks are slow devices (compared to computer processors). Writing
to disk more often than necessary will slow your program considerably. To
avoid this, the ofstream class collects output into an internal buffer. The class
writes the contents to disk when the buffer is full.

 A memory buffer used to speed up output to a slow device like a disk is known
as a cache — pronounced “cash.” Writing the contents of the buffer to disk is
known as flushing the cache.

The endl object adds a newline to the buffer and then flushes the cache to
disk. You can also flush the cache manually by calling the member function
flush().

Note that C++ does not cache output to the standard error object, cerr.

Manipulating Manipulators
The span of some formatting member functions is fairly short. The best
example of this is the width(n) member function — this function is good
only for the next value output. After that it must be set again. You saw this
implication in the preceding snippet — the call to cout.width(n) had to
appear right in the middle of the inserters:

cout << "i = [";
cout.width(10);
cout << i;
cout << "]" << endl;

The call to cout.width(10) is good only for the very next output cout << i;
it has no effect on the following output cout << "]".

400 Part VI: Advanced Strokes

Other functions have a short span, usually because you need to change
their values often. For example, switching back and forth between decimal
and hexadecimal mode while performing output requires multiple calls to
setf(hex) and setf(dec) throughout the program.

This process can be a bit clumsy, so C++ defines a more convenient way to
invoke these common member functions: As shown in Table 31-5, a set of so-
called manipulators can be inserted directly into the output stream. These
manipulators — defined in the include file iomanip — have the same effect
as calling the corresponding member function.

Table 31-5 Common Manipulators and Their Equivalent
 Member Functions
Manipulator Member Function Description
dec setf(dec) Sets display radix to decimal

hex setf(hex) Sets display radix to
hexadecimal

oct setf(oct) Sets display radix to octal

setfill(c) fill(c) Sets the fill character to c

setprecision(n) precision(n) Sets the display precision to n

setw(n) width(n) Sets the minimum field width for
the next output to n

For example, the earlier snippet can be written as follows:

cout << "i = [" << setw(10) << i << "]" << endl;

I/O manipulators are nothing more than a labor-saving device — they don’t
add any new capability.

 You must include iomanip if you intend to use I/O manipulators.

Using the stringstream Classes
After some practice, you get pretty good at parsing input from a file using
the extractors and generating attractive output using the format controls
provided with the inserter. It’s a shame that you can’t use that skill to parse
character strings that are already in memory.

401 Chapter 31: Performing Streaming I/O

Well, of course, C++ provides just such a capability (I wouldn’t have men-
tioned it otherwise). C++ provides a pair of classes that allow you to parse
a string in memory by using the same member functions that you’re accus-
tomed to using for file I/O. An object of class istringstream “looks and
feels” like an ifstream object. Similarly, an object of class ostringstream
responds to the same commands as an ofstream object.

The istringstream class reads input from an object of class string.
Similarly, the class ostringstream class creates a string object for output.
The istringstream and ostringstream classes are defined in the sstream
include file.

I don’t discuss the string class in this book because, in practice, it’s a little
beyond the scope of a beginning programmer. However, the string class
acts like an ASCIIZ array whose size changes automatically to conform to the
size of the string it’s asked to hold. In practice, there’s very little that you
have to know about the string class in order to use the stringstream
classes.

The following StringStream program parses Student information from
an input file by first reading in a line using getline() before parsing it with
istringtream.

// StringStream - demonstrate the use of string stream
// classes for parsing input safely
#include <cstdio>
#include <cstdlib>
#include <iostream>
#include <sstream>
#include <string>
#include <cstring>
using namespace std;

struct Student
{
 protected:
 char szFirstName[256];
 char szLastName[256];
 int nStudentID;

 public:
 Student(const char* pszFN, const char* pszLN,int nSID)
 {
 strncpy(szFirstName, pszFN, 256);
 strncpy(szLastName, pszLN, 256);
 nStudentID = nSID;
 }

402 Part VI: Advanced Strokes

 // display - write the student's data into the
 // array provided; don't exceed the size
 // of the array set by nLength
 void display(char* pszBuffer, int nLength)
 {
 ostringstream out;

 out << szFirstName << " " << szLastName
 << " [" << nStudentID << "]" << ends;
 string s = out.str();
 strncpy(pszBuffer, s.c_str(), nLength);
 }
};

int main(int nNumberofArgs, char* pszArgs[])
{
 Student *pStudents[128];
 int nCount = 0;

 cout << "Input student <last name, first name ID>\n"
 << "(Input a blank line to stop input)" << endl;

 for(;;)
 {
 // get another line to parse
 char szLine[256];
 cin.getline(szLine, 256);

 // terminate if line is blank
 if (strlen(szLine) == 0)
 {
 break;
 }

 // associate an istrstream object with the
 // array that we just read
 string s(szLine);
 istringstream input(s);

 // now try to parse the buffer read
 char szLastName[256];
 char szFirstName[256];
 int nSSID;

 // read the last name up to a comma separator
 input.getline(szLastName, 256, ',');

 // read the first name until encountering white
 // space
 input >> szFirstName;

403 Chapter 31: Performing Streaming I/O

 // now read the student id
 input >> nSSID;

 // skip this line if anything didn't work
 if (input.fail())
 {
 cerr << "Bad input: " << szLine << endl;
 continue;
 }

 // create a Student object with the data
 // input and store it in the array of pointers
 pStudents[nCount++] = new Student(szFirstName,
 szLastName, nSSID);
 }

 // display the students input - use the Student's
 // output function to format the student data
 for(int n = 0; n < nCount; n++)
 {
 char szBuffer[256];
 pStudents[n]->display(szBuffer, 256);
 cout << szBuffer << endl;
 }

 // wait until user is ready before
terminating program

 // to allow the user to see the program results
 cout << "Press Enter to continue..." << endl;
 cin.ignore(10, '\n');
 cin.get();
 return 0;
}

The program starts by creating an array of pointers that it will use to store
the Student objects that it creates. It then prompts the user for the format
that it expects for the student data to be read.

The program then enters a loop in which it first reads an entire line of input
up to and including the terminating newline. If the length of the line read is
zero, meaning that nothing was entered but a newline, the program breaks
out of the input loop.

If something was entered, the program wraps the line of input in a string
object and then associates that object with an istringstream object named
input. The next section reads the last name, first name, and Social Security
number from this input object just as if it were a file or the keyboard.

404 Part VI: Advanced Strokes

These reads are safe — they cannot overflow the szLastName and szFirst
Name buffers because the extractor cannot possibly return more than
256 characters in any single read — that’s is the maximum number of
 characters that the original call to getline() could have read.

 Notice how the program calls getline() passing a ‘,’ as the terminator. This
reads characters up to and including the comma that separates the last name
and first name.

Once the program has read the three student fields, it checks the input
object to see if everything worked by calling input.fail(). If fail() is
true, the program throws away whatever it read and spits the line back out
to the user with an error message.

The Student constructor is typical of those you’ve seen elsewhere in the
book. The program uses the Student::display() function to display the
contents of a Student object. It does this in a fairly elegant fashion: simply
associating an ostringstream object with a local string and then insert-
ing to the object. The call to s.c_str() returns a pointer to the ASCIIZ string
maintained within the string object. All main() has to do is output the result.

This is much more flexible than the alternative of inserting output directly to
cout — the program can do anything it wants with the szBuffer array con-
taining the Student data. It can write it to a file, send it to cout, or put it in a
table, to name just three possibilities.

Notice that the last object display() inserts is the object ends. This is sort
of the stringstream version of endl; however, ends does not insert a new-
line. Instead, it inserts a null to terminate the ASCIIZ string within the buffer.

 Always insert an ends last to terminate the ASCIIZ string that you build.

The output from the program appears as follows:

Input student <last name, first name ID>
(Input a blank line to stop input)
Davis, Stephen 12345678
Ashley 23456789
Bad input: Ashley 23456789
Webb, Jessalyn 34567890

Stephen Davis [12345678]
Jessalyn Webb [34567890]
Press Enter to continue . . .

Notice how the second line is rejected because it doesn’t follow the specified
input format, but the program recovers gracefully to accept input again on
the third line. This graceful recovery is very difficult to do any other way.

Chapter 32

I Take Exception!
In This Chapter
▶ Introducing the exception mechanism for handling program errors

▶ Examining the mechanism in detail

▶ Creating your own custom exception class

I know it’s hard to accept, but occasionally programs don’t work properly —
not even mine. The traditional means of reporting a failure within a function

is to return some indication to the caller, usually as a return value. Historically,
C and C++ programmers have used 0 as the “all clear” indicator — and anything
else as meaning an error occurred — the exact value returned indicates the
nature of the error.

The problem with this approach is that people generally don’t check all the
possible error returns. It’s too much trouble. And if you were to check all the
possible error returns, pretty soon you wouldn’t see the “real code” because
of all those error paths that are almost never executed.

Finally, you can embed just so much information in a single return value. For
example, the factorial() function could return a −1 for “negative argu-
ment” (the factorial of a negative number is not defined) and a −2 for “argu-
ment too large” (factorials get large very quickly — factorial(100) is well
beyond the range of an int). But if the program were to return a −2, wouldn’t
you like to know the value of that “too-large argument”? There’s no easy way
to embed that information in the return.

The fathers (and mothers) of C++ decided that the language needed a better
way of handling errors, so they invented the exception mechanism that has
since been duplicated in many similar languages. Exceptions are the subject
of this chapter.

406 Part VI: Advanced Strokes

The Exception Mechanism
The exception mechanism is a way for functions to report errors so that the
error is not ignored even if the calling function does nothing. It’s based on
three new keywords: try, catch, and throw (that’s right, more variable
names that you can’t use). The exception mechanism works like this: A func-
tion tries to make it through a block of code without error. If the program
does detect a problem, it throws an error indicator that a calling function can
catch for processing.

The following FactorialException demonstrates how this works in ones
and zeros:

// FactorialException - demonstrate the Exception error
// handling mechanism with a
// factorial function.
#include <cstdio>
#include <cstdlib>
#include <iostream>
using namespace std;

// factorial - compute factorial
int factorial(int n)
{
 // argument must be positive; throw exception if
 // n is negative
 if (n < 0)
 {
 throw "Argument for factorial is negative";
 }

 // anything over 100 will overflow
 if (n > 100)
 {
 throw "Argument too large";
 }

 // go ahead and calculate factorial
 int nAccum = 1;
 while(n > 1)
 {
 nAccum *= n--;
 }
 return nAccum;
}

407 Chapter 32: I Take Exception!

int main(int nNumberofArgs, char* pszArgs[])
{
 try
 {
 cout << "Factorial of 3 is "
 << factorial(3)
 << endl;

 cout << "Factorial of -1 is "
 << factorial(-1)
 << endl;

 cout << "Factorial of 5 is "
 << factorial(5)
 << endl;
 }
 catch(const char* pMsg)
 {
 cerr << "Error occurred: " << pMsg << endl;
 }
 catch(...)
 {
 cerr << "Unexpected error thrown" << endl;
 }

 // wait until user is ready before terminating program
 // to allow the user to see the program results
 cout << "Press Enter to continue..." << endl;
 cin.ignore(10, '\n');
 cin.get(); return 0;
}

The main() function starts with the keyword try followed by an open brace
and, eventually, a closed brace. Everything within the braces is said to be
within a try block. The function then proceeds to display the factorial of
three values: 3, −1, and 5. The only problem is that the factorial of a negative
number is not defined.

You can see this within the factorial() function. This version of the func-
tion now contains a check for a negative argument and for an argument that
is so large that it will overflow the int. In the event that either condition is
true, control passes to a statement consisting of the keyword throw followed
by an ASCIIZ string that contains a description of the error.

408 Part VI: Advanced Strokes

Back in main(), at the end of the try block, are two catch phrases. Each con-
sists of the keyword catch followed by an argument. These catch phrases
are designed to catch any exceptions thrown from within the try block. The
type of the object thrown is compared with the type of the argument in the
catch. The control passes to the first one that matches.

The first catch phrase in the FactorialException program catches a
pointer to an ASCIIZ string. This catch phrase displays the string. The second
catch phrase, the one with the ellipsis for an argument, is designed to catch
anything. This wild-card catch phrase also displays a message, but since
the catch phrase is so generic, it has no idea from where the exception was
thrown or how to interpret the exception, so it just outputs a generic error
message.

In practice, the program works like this: The first call to factorial(3) skips
over both error conditions and returns the value 6. No problem so far.

The second call, factorial(-1) causes control to pass to the statement
throw "Argument for factorial is negative". This command
passes control immediately out of factorial() and to the end of the try
block where C++ starts comparing the type of "Argument for factorial
is negative" (which is const char* by the way — but you knew that) to
each of the catch arguments.

Fortunately, the type of object thrown matches the type of the first catch
phrase. This displays the string "Error occurred:" followed by the string
thrown from within factorial(). Control then passes to the first state-
ment after the last catch phrase, which is the usual call to cout << "Press
Enter to continue. . .".

In execution, the output from the program appears as follows:

Factorial of 3 is 6
Error occurred: Argument for factorial is negative
Press Enter to continue . . .

Notice that the call to factorial(5) never gets executed. There is no way
to return from a catch block.

Examining the exception
mechanism in detail
Now, take a closer look at how C++ processes an exception.

When C++ encounters a throw, it first copies the object thrown to some neutral
place other than the local memory of the function. It then starts looking in the
current function for the end of the current try block. If it does not encounter

409 Chapter 32: I Take Exception!

one, it then executes a return from the function and continues the search. C++
continues to return and search, return and search until it finds the end of the
current try block. This process is known as unwinding the stack.

An important feature of stack unwinding is that as each stack is unwound,
objects that go out of scope are destructed just as though the function had
executed a return statement. This keeps the program from losing assets or
leaving objects dangling. (Unfortunately memory allocated off of the heap is
not returned to the heap just because a pointer goes out of scope. Again, this
is no different from executing a return.)

When an enclosing try block is found, the code searches the first catch
phrase to see if the argument type matches the object thrown. If not, it
checks the next catch phrase, and the next if necessary, and so on until a
match is found.

If no matching catch phrase is found, then C++ resumes looking for the next
higher try block in an ever outward spiral until an appropriate catch can be
found. If no matching catch phrase is found, control eventually passes out-
side of main() where the exception is caught by the C++ library that outputs a
generic message and terminates the program.

Once a catch phrase is found, the exception is said to be handled and control
passes to the statement following the last catch phrase.

The phrase catch(...) catches all exceptions.

Special considerations for throwing
I need to mention a few special considerations in regard to throwing excep-
tions. You need to be careful not to throw a pointer to an object in local
memory. As the stack is unwound, all local variables are destroyed. C++ will
copy the object into a safe memory location to keep it from being destroyed,
but there’s no way that C++ can tell what a pointer might be pointing to.

Note that I avoid this problem in the earlier example by throwing a pointer
to a const string — these are kept in a different memory area and not on the
stack. You can see a better way to avoid this problem in the next section.

410 Part VI: Advanced Strokes

Don’t catch an exception if you don’t know what to do with the error. That
may sound obvious, but it isn’t really. The exception mechanism allows pro-
grammers to handle errors at a level at which they can truly do something
about them. For example, if you are writing a data-storage function and you
get an exception from a write to the disk, there’s not much point in catching
it. The destructor for the output object should close the file, and C++ calls
that destructor automagically. Better to let the error propagate up to a level
where the program knows what it’s trying to do.

A catch phrase can rethrow an exception by executing the keyword throw;
alone (without an argument). This allows the programmer to partially pro-
cess an error. For example, a database function might catch an exception,
close any open tables or databases, and rethrow the exception to the applica-
tion software to be handled there for good. (Assuming that the destructors
haven’t done that stuff already.)

Creating a Custom Exception Class
What follows a throw is actually an expression that creates an object of some
kind. In the earlier example, the object is a pointer, but it could be any object
you like (with one exception that I mention a little later in this section).

For example, I could create my own class specifically for the purpose of hold-
ing information about errors. For the factorial() example, I could create a
class ArgOutOfRange that includes everything you need to know about out-
of-range arguments. In this way, I could store as much information as needed
to debug the error (if it is an error), process the exception, and report the
problem accurately to the user.

The following CustomExceptionClass program creates an ArgOutOfRange
class and uses it to provide an accurate description of the error encountered in
factorial():

// CustomExceptionClass - demonstrate the flexibility of
// the exception mechanism by creating
// a custom exception class.
#include <cstdio>
#include <cstdlib>
#include <iostream>
#include <sstream>
#include <exception>
using namespace std;

411 Chapter 32: I Take Exception!

class ArgOutOfRange : public exception
{
 protected:
 string sMsg;
 int nValue;
 int nMaxLegal;
 int nMinLegal;

 public:
 ArgOutOfRange(const char* pszFName, int nVal,
 int nMin = 0, int nMax = 0)
 {
 nValue = nVal;
 nMinLegal = nMin;
 nMaxLegal = nMax;

 ostringstream out;
 out << "Argument out of range in " << pszFName
 << ", arg is " << nValue;
 if (nMin != nMax)
 {
 out << ", legal range is "
 << nMin << " to " << nMax;
 }
 out << ends;
 sMsg = out.str();
 }

 virtual const char* what()
 {
 return sMsg.c_str();
 }
};

// factorial - compute factorial
int factorial(int n)
{
 // argument must be positive; throw exception if
 // n is negative
 if (n < 0)
 {
 throw ArgOutOfRange("factorial()", n, 0, 100);
 }

 // anything over 100 will overflow
 if (n > 100)
 {
 throw ArgOutOfRange("factorial()", n, 0, 100);
 }

412 Part VI: Advanced Strokes

 // go ahead and calculate factorial
 int nAccum = 1;
 while(n > 1)
 {
 nAccum *= n--;
 }
 return nAccum;
}

int main(int nNumberofArgs, char* pszArgs[])
{
 try
 {
 cout << "Factorial of 3 is "
 << factorial(3)
 << endl;

 cout << "Factorial of -1 is "
 << factorial(-1)
 << endl;

 cout << "Factorial of 5 is "
 << factorial(5)
 << endl;
 }
 catch(ArgOutOfRange e)
 {
 cerr << "Error occurred:\n" << e.what() << endl;
 }
 catch(...)
 {
 cerr << "Unexpected error thrown" << endl;
 }

 // wait until user is ready before terminating program
 // to allow the user to see the program results
 cout << "Press Enter to continue..." << endl;
 cin.ignore(10, '\n');
 cin.get();
 return 0;
}

Here the main() program starts just like the previous example. The
factorial() function contains the same tests. Rather than throw a simple
character string, however, this version of factorial() throws an object of

413 Chapter 32: I Take Exception!

class ArgOutRange. The constructor for ArgOutOfRange provides room for
the name of the function, the value of the offending argument, and the range
of legal values for the argument.

All the real work is done in the ArgOutOfRange class. First, this class
extends the class exception, which is defined in the exception include
file. The exception class defines the virtual member function what() that
you must override with a version that outputs your message. Everything else
is optional.

 User-defined exception classes should extend exception so that C++ will
know what to do with your exception should you fail to catch it.

The constructor to ArgOutOfRange accepts the name of the function,
the value of the argument, and the minimum and maximum legal argument
values. Providing a default value for these arguments makes them optional.
The constructor uses the ostringstream class (discussed in Chapter 31)
to create a complex description of the problem in the internal string object
sMsg. It also saves off the arguments themselves.

A complete version of ArgOutOfRange would provide access functions to
allow each of these values to be queried from the application code, if desired.
I have to leave these details out in order to keep the programs as short as
possible.

Back in factorial(), the two throws now throw ArgOutOfRange objects
with the appropriate information. The catch back in main() is for an
ArgOutOfRange object. This block does nothing more than display an error
message along with the description returned by ArgOutRange::what().

Since all the real work was done in the constructor, the what() function
doesn’t have to do anything except return a char* pointer to the message
stored within the string object.

The output from the program is now very descriptive:

Factorial of 3 is 6
Error occurred:
Argument out of range in factorial(), arg is -1, legal

range is 0 to 100
Press Enter to continue . . .

414 Part VI: Advanced Strokes

Restrictions on exception classes
I’ve mentioned that the exception mechanism can throw almost any type
of object. The only real restriction is that the class must be copyable. That
means either the default copy constructor provided by C++ is sufficient
(that was the case for ArgOutOfRange) or the class provides its own copy
constructor.

This restriction is because C++ has to copy the exception object out of local
storage and to some “safe place” before unwinding the stack. C++ uses the
copy constructor again to copy the object to the catch’s storage area.

Part VII
The Part of Tens

 Visit www.dummies.com for great Dummies content online.

http://www.dummies.com/

In this part . . .
 ✓ Problem prevention

 ✓ Further features

 ✓ Visit www.dummies.com for great Dummies content
online.

http://www.dummies.com/

Chapter 33

Ten Ways to Avoid Bugs
In This Chapter
▶ Adopting a clear and consistent coding style

▶ Keeping track of heap memory

▶ Using exceptions to handle errors

▶ Providing a copy constructor and overloaded assignment operator

I
t’s an unfortunate fact that you will spend more time searching for and
removing bugs than you will spend actually writing your programs in

the first place. The suggestions in this section may help you minimize the
number of errors you introduce into your programs to make programming a
more enjoyable experience.

Enable All Warnings and Error Messages
The syntax of C++ allows for a lot of error-checking. When the compiler
encounters a construct that it just can’t decipher, it has no choice but to
output a message. It tries to sync back up with the source code (sometimes
less than successfully), but it will not generate an executable. This forces the
programmer to fix all error messages — she has no choice.

However, when C++ comes across a structure that it can figure out but the
structure smells fishy anyway, C++ generates a warning message. Because
C++ is pretty sure that it understands what you want, it goes ahead and cre-
ates an executable file so you can ignore warnings if you like. In fact, if you
really don’t want to be bothered, you can disable warnings.

418 Part VII: The Part of Tens

 Disabling or otherwise ignoring warnings is an extraordinarily bad idea. It’s a
bit like unplugging the “check engine” light on your car’s dashboard because
it bothers you. Ignoring the problem doesn’t make it go away. It doesn’t mean
that you can always fix the problem but you need to at least understand the
warning. What you don’t know will hurt you.

If your compiler has a Syntax Check from Hell mode, enable it.

Adopt a Clear and Consistent
Coding Style

Writing your C++ code in a clear and consistent style not only enhances the
readability of your program, but also it results in fewer coding mistakes. This
somewhat surprising state of affairs results from the fact that our brains have
only a limited amount of computing power. When you read code that is clean
and neat and that follows a style you’re familiar with, you spend very little brain
power parsing the syntax of the C++ statements. This leaves more brain CPU
power to decode what the program is trying to do and not how it’s doing it.

A good coding style lets you do the following with ease:

 ✓ Differentiate between class names, object names, and function names

 ✓ Understand what the class, function, or object is used for, based on its
name

 ✓ Differentiate preprocessor symbols from C++ symbols (that is, #define
objects should stand out)

 ✓ Identify blocks of C++ code at the same level (this is the result of consis-
tent indentation)

In addition, you need to establish a standard format for your module headers
that provides information about the functions or classes in each module, the
author (presumably that’s you), the date, the version, and something about
the modification history.

 All programmers involved in a single project should use the same coding style.
A program written in a patchwork of different coding styles is confusing and
looks unprofessional.

419 Chapter 33: Ten Ways to Avoid Bugs

Comment the Code While You Write It
You can avoid errors if you comment your code while you write it, rather
than wait until everything works and then go back and add comments. I can
understand not taking the time to write voluminous headers and function
descriptions until later, but I have never understood why some programmers
don’t write short comments while coding.

Have you ever had the experience of asking someone a question, and even as
you got to the end of the question, you knew the answer? Somehow formulat-
ing the question forced you to organize your thoughts sufficiently so that the
answer became clear.

Writing comments is like that. Formulating comments forces you to take
stock of what it is you’re trying to do. Short comments are enlightening, both
when you read them later and as you’re writing them.

Write comments as if you’re talking to another, knowledgeable programmer.
You can assume that the reader understands the basics of the program, so
please don’t explain how C++ works. There’s no point in writing comments
that explain how a switch statement works unless you’re relying on some
obscure point of the language (like the fall-through capability of the switch
statement mentioned in Chapter 7).

Single-Step Every Path in the
Debugger at Least Once

It may seem like an obvious statement, but I’ll say it anyway: As a program-
mer, you have to understand what your program is doing. It isn’t sufficient
that the program outputs the expected value. You need to understand every-
thing your program is doing. Nothing gives you a better feel for what’s going
on under the hood than single-stepping the program, executing it step by step
with a good debugger (like the one that comes with Code::Blocks).

Beyond that, as you debug a program, you need raw material to figure out
some bizarre behavior that might crop up as the program runs. Nothing gives
you that material better than single-stepping through each function as it
comes into service.

420 Part VII: The Part of Tens

Finally, when a function is finished and ready to be added to the program,
every logical path needs to be traveled at least once. Bugs are much easier
to find when you examine the function by itself rather than after it has been
thrown into the pot with the rest of the functions — by then, your attention
has gone on to new programming challenges.

Limit the Visibility
Limiting the visibility of class internals to the outside world is a cornerstone
of object-oriented programming. The class should be responsible for its
internal state — if something gets screwed up in the class, then it’s the class
programmer’s fault. The application programmer should worry about solving
the problem at hand.

Specifically, limited visibility means that data members should not be acces-
sible outside the class — that is, they should be marked as protected. In addi-
tion, member functions that the application software does not need to know
about should also be marked protected. Don’t expose any more of the class
internals than necessary to get the job done.

A related rule is that public member functions should trust application code
as little as possible, even if the class programmer and the application pro-
grammer are the same person. The class programmer should act like it’s a
fact that the application programmer is a felonious hacker; if your program-
mer is accessible over the Internet, all too often this assumption is true.

Keep Track of Heap Memory
Losing track of heap memory is the most common source of fatal errors in
programs that have been released into the field — and, at the same time,
the hardest problem to track down and remove. (Because this class of error
is so hard to find and remove, it’s prevalent in programs that you buy.)
You may have to run a program for hours before problems start to arise
(depending upon how big the memory leak is).

As a general rule, programmers should always allocate and release heap
memory at the same “level.” If a member function MyClass::create()
 allocates a block of heap memory and returns it to the caller, then there should
be a member MyClass::release() that returns it to the heap. Specifically,
MyClass::create() should not require the parent function to release the
memory.

421 Chapter 33: Ten Ways to Avoid Bugs

If at all possible, MyClass should keep track of such memory pointers on its
own and delete them in the destructor.

Certainly, this approach doesn’t avoid all memory problems, but it does
reduce their prevalence somewhat.

Zero Out Pointers after Deleting
What They Point To

Sort of a corollary to the warning in the preceding section is to make sure that
you zero out pointers after they are no longer valid; you do so by assigning
them the value nullptr. The reasons for this action become clear with expe-
rience: You can continue to use a memory block that has been returned to the
heap and not even know it. A program might run fine 99 percent of the time,
making it very difficult to find the 1 percent of cases where the block gets
reallocated and the program doesn’t work. But why tempt Murphy’s Law?

If you null out pointers that are no longer valid and you attempt to use
them to store a value (you can’t store anything at or near the null location),
your program will crash immediately. Crashing sounds bad, but it’s not if it
exposes a problem. The problem is there; it’s merely a question of whether
you find it or not before putting it into production.

It’s like finding a tumor at an early stage in an X-ray. Finding a tumor early
when it’s easy to treat is a good thing. Given that the tumor is there either
way, not finding it is much worse.

Use Exceptions to Handle Errors
The exception mechanism in C++ (described in Chapter 32) is designed to
handle errors conveniently and efficiently. In general, you should throw an
error indicator rather than return an error flag. The resulting code is easier to
write, read, and maintain. Besides, other programmers have come to expect
it, and you wouldn’t want to disappoint them, would you?

Having said that, limit your use of exceptions to true errors. It is not neces-
sary to throw an exception from a function that returns a “didn’t work” indi-
cator if this is a part of everyday life for that function. Consider a function
lcd() that returns the least common denominator of its two arguments.
That function will not return any values when presented with two mutually
prime numbers. This is not an error and should not result in an exception.

422 Part VII: The Part of Tens

Declare Destructors Virtual
Don’t forget to create a destructor for your class if the constructor allocates
resources such as heap memory that need to be returned when the object
reaches its ultimate demise. This rule is pretty easy to teach. What’s a little
harder for students to remember is this: Having created a destructor, don’t
forget to declare it virtual.

“But,” you say, “my class doesn’t inherit from anything, and it’s not sub-
classed by another class.” Yes, but it could become a base class in the future.
Unless you have some good reason for not declaring the destructor virtual,
then do so when you first create the class. (See Chapter 29 for a detailed
 discussion of virtual destructors.)

Provide a Copy Constructor and
Overloaded Assignment
Operator

Here’s another rule to live by: If your class needs a destructor, it almost
surely needs a copy constructor and an overloaded assignment operator. If
your constructor allocates resources such as heap memory, the default copy
constructor and assignment operator will do nothing but create havoc by
generating multiple pointers to the same resources. When the destructor for
one of these objects is invoked, it will restore the assets. When the destruc-
tor for the other copy comes along, it will screw things up.

Chapter 34

Ten Features Not Covered in
This Book

In This Chapter
▶ Binary logic

▶ Pure virtual functions

▶ The string class

▶ Templates and the Standard Template Library

T
he C++ language contains so many features that covering every one in a
single book — especially a book intended for beginning programmers —

is impossible. Fortunately, you don’t need to master all the features of the
language in order to write big, real-world programs.

Nevertheless, you may want to look ahead at some of the features that didn’t
make the cut for this beginner’s book, just in case you see them in other
people’s programs.

The goto Command
This command goes all the way back to C, the progenitor of C++. In principle,
using this command is easy. You can place goto label; anywhere you
want. When C++ comes across this command, control passes immediately to
the label, as demonstrated in this code snippet:

 for(;;)
 {

424 Part VII: The Part of Tens

 if (conditional expression)
 {
 goto outahere;
 }
 // ...whatever you want...
 }
outahere:
 // ...program continues here...

In practice, however, goto introduces a lot of ways to screw up — many
more than I can go into here. In any case, it didn’t take long before program-
mers noticed that the two most common uses of the goto were to exit loops
and to go to the next case within a loop. The C Standards Committee intro-
duced break and continue and almost completely removed the need for
the goto command. I can say that I’ve been programming in C and C++ for
almost 20 years, and I’ve never had an application for a goto that I couldn’t
handle in some other way more clearly.

The Ternary Operator
The ternary operator is an operator unique to C and C++. It works as follows:

int n = (conditional) ? expression1 : expression2;

The ? operator first evaluates the conditional. If the condition is true, then
the value of the expression is equal to the value of expression1; otherwise,
it’s equal to the value of expression2.

For example, you could implement a maximum() function as follows:

int max(int n1, int n2)
{
 return (n1 > n2) ? n1 : n2;
}

The ternary operator can be applied to any type of numeric but cannot be
overloaded. The ternary operator is truly an expression — not a control
statement like an if.

425 Chapter 34: Ten Features Not Covered in This Book

Binary Logic
I chose to skip entirely the topic of bitwise operators. Some readers will
 consider this scandalous. After all, how can you talk about programming with-
out getting down to ones and zeros? It’s not that I don’t consider the topic
 worthwhile — it’s just that I find explaining the topic properly takes many
pages of text and leaves readers somewhat confused, when in practice it’s
rarely used. Google the topic once you feel comfortable with the basics of C++
programming.

Enumerated Types
This topic was almost included in the book but it just isn’t used often
enough. A quick overview here should suffice. The simple idea is that you
can define constants and let C++ assign them values, as shown here:

enum Colors {BLACK, BLUE, GREEN, YELLOW, RED};
Colors myColor = BLACK;

The problem with enumerated types lies in the implementation: Rather than
create a true type, C++ uses integers. In this case, BLACK is assigned the value
0, BLUE is assigned 1, GREEN 2, and so on.

The 2011 Standard Library for C++ “fixed” this problem by creating an enu-
merated class type as shown in the following snippet:

enum class Colors {BLACK, BLUE, GREEN, YELLOW, RED};
Colors myColor = Colors::BLACK;

In this version, Colors is a new type. Each of the constants, BLACK, BLUE,
and so on, are members of type Colors. You can still cast an object of class
Colors into an int, but an implicit cast is not allowed.

Namespaces
It’s possible to give different entities in two different libraries the same name.
For example, the grade() function within the Student library probably
assigns a grade, whereas the grade() function within the CivilEngineering
library might set the slope on the side of a hill. To avoid this problem, C++

426 Part VII: The Part of Tens

allows the programmer to place her code in a separate namespace. Thus
the grade within the Student namespace is different from the grade within
CivilEngineering.

The namespace is above and beyond the class name. The grade() member
function of the class BullDozer in the CivilEngineering namespace has
the extended name CivilEngineering::BullDozer::grade().

 All library objects and functions are in the namespace std. The statement at
the beginning of the program template using namespace std; says that
if you don’t see the specified object in the default namespace, then go look in
std. Without this feature, I would have to include the namespace explicitly, as
in the following snippet:

std::cout << "Hello, world!" << std::endl;

Pure Virtual Functions
You get a handle on how to declare functions virtual in Chapter 29. What I
don’t mention there is that you don’t have to define a function declared vir-
tual. Such an undefined function is known as a pure virtual member function.
At that point, however, things get complicated. For example, a class with one
or more pure virtual functions is said to be abstract and cannot be used to
create an object (see what I mean?). Tackle this subject after you feel com-
fortable with virtual functions and late binding.

The string Class
This is another topic that barely missed the cut. Most languages include a
string class as an intrinsic type for handling strings of characters easily. In
theory, the string class should do the same for C++. In practice, however, it’s
not that simple. Because string is not an intrinsic type, the error messages
that the compiler generates when something goes wrong are more like those
associated with user-defined classes. For a beginner, these messages can be
very difficult to interpret.

 It’s actually worse than I’m describing here — string isn’t even a class. It’s
an instance of a template class. The error messages can be breathtaking.

427 Chapter 34: Ten Features Not Covered in This Book

Multiple Inheritance
In Chapter 28, I describe how to base one class on another by using inheri-
tance. What I don’t mention there is that one class can actually extend
more than one base class. This sounds simple but can get quite complicated
when the two base classes contain member functions with the same name.
Even worse is when both base classes are themselves subclasses of some
common class. In fact, so many problems arise that C++ is the only C-like
language that supports multiple inheritance. Java and C#, both languages
derived from C++, decided to drop support for multiple inheritance. I recom-
mend that beginning programmers avoid the subject.

Templates and the Standard
Template Library

The makers of C++ noticed how similar functions like the following are:

int max(int n1, int n2)
{
 if (n1 > n2)
 {
 return n1;
 }
 return n2;
}
double max(double n1, double n2)
{
 if (n1 > n2)
 {
 return n1;
 }
 return n2;
}
char max(char n1, char n2)
{
 if (n1 > n2)
 {
 return n1;
 }
 return n2;
}

428 Part VII: The Part of Tens

I can almost imagine the scene: “Wouldn’t it be cool,” one says to another, “if
we could replace the type with a pseudo-type T that we could define at com-
pile time?” Before you know it, presto — templates become part of C++:

template <class T> T max(T t1, T t2)
{
 if (t1 > t2)
 {
 return t1;
 }
 return t2;
}

Now the programmer can create a max(int, int) by replacing T with int
and compiling the result, create a max(double, double) by replacing T
with double, and so forth. The Standards Committee even released an entire
library of classes, known as the Standard Template Library (STL for short),
based upon template classes.

For a beginner, however, the subject of template classes starts to get syntacti-
cally very complicated. In addition, the errors that the compiler generates
when you get a template instantiation wrong are bewildering to an expert,
never mind a beginner. This is definitely a topic that needs to wait until you
feel comfortable with the basic language.

Lambda Functions
The older C++ standard was adopted in 2003. A newer standard was finally
adopted in 2011, introducing a number of features to the language. Although
these new features certainly add more capability, they’ve also changed C++
from a nice (if somewhat quirky) smallish language to a very large language.
For example, lambda functions are a new — and remarkably different — way
of declaring and invoking functions. Lambda functions support a different
style of programming known as functional programming. The problem is that
many of the new 2011 features don’t address a burning need for what they
provide. So it’s okay to save them for later. You can attack many of these new
features, such as lambda functions, after you feel comfortable with the basic
features of C++ presented in this book.

Index
• Symbols •
! (NOT operator), 90, 396
!= (inequality operator), 80
(pound sign), 145–146
& (ampersand) operator, 204, 206
&& (AND operator), 90, 91
* (asterisk), pointers, 204, 206
{ } (braces), 15, 83–84
|| (OR operator), 90, 386
~ (tilde), in destructors, 315
< (less than operator), 80
<= (less than or equal to operator), 80
<> (angle brackets), 149
=. See assignment operator
== (equality operator), 80
> (greater than operator), 80
>= (greater than or equal to operator), 80
" " (quotes), 149

• A •
abstraction, levels of, 131, 272, 273–274
access functions, 303, 325
accessors (getter functions), 303
addition, pointer

on different pointer types, 231
versus indexing into arrays, 224–226, 230

address of objects, passing, 290–296,
349–350

addressing, computer, 203–204. See also
pointers

algorithms, 11–12, 251–252
alternative character sets, 77
AmbiguousBinding program, 364–365
ampersand (&) operator, 204, 206
AND operator (&&), 90, 91
angle brackets (<>), 149
applications, console, 23, 34–35

arguments
arrays of, 235–240
const, 178–179, 218
constructors with, 321–325
defaulted, 330
example of passing, 211–213
main() function, 137–138, 233–234, 235
multiple, 137
overview, 135–137
passing by reference, 209–211, 295
passing by value, 206–209, 342
passing from Code::Blocks, 238–239
passing through command line, 236–238
passing through Windows, 239–240
reference types, 213–214, 342, 350

arithmetic, pointer, 227–230
array of constant characters (const

char[] type), 156, 193, 197
ArrayDemo program, 184–187, 189–190
arrays. See also character arrays

of arguments, 235–240
of constant characters, 156, 193, 197
declaring, 182–183
defined, 181
example of, 184–187
fixed-length, 214, 249
heap memory, 214–219
indexing into, 183–184, 224–226, 230
initializing, 187–188
keeping track of amount of data in, 189–190
of objects, 244–246
operations on pointers, 222–224, 231
overflow capability, 391
overview, 181–182, 221
parallel, 241–242
pointer addition versus indexing into,

224–226, 230
pointer increment operator, 227–230
versus pointers, 233
of pointers, 234–235

430 Beginning Programming with C++ For Dummies, 2nd Edition

arrow operator, 288
ASCII (American Standard Coding for

Information Interchange) character
encoding, 70–75, 77

ASCIIZ strings, 226, 404
ASCII-zero (ASCIIZ) character arrays

arrays of constant characters, 193, 197
concatenating strings, 193–197
declaring and initializing, 190–191
example of, 191–193
fixed-buffer overwrite bug, foiling,

197–198
overview, 189–190
string manipulation functions, 198–201

assembler, 18
assembly language, 18–19
assignment format, 340
assignment operator (=)

class objects, 244
default, deleting, 380
versus equality operator, 80
extra versions of, 67
overloading, example of, 376–379
overloading, importance of, 374–376
overloading to avoid bugs, 422
overview, 59–60, 63

asterisk (*), pointers, 204, 206
auto keyword, 176

• B •
backslash, 75, 76
bad() state, 387
base class, 355. See also overriding

member functions
Bell character, 73
binary logic, 425
binary mode, 384, 386–387, 395
binary numbers, 18
binary operators, 62–63, 67, 80, 386
bitwise operators, 425
boilerplate code, 138
bold text, use in book, 2
bool expressions, 85
boolalpha format flag, 397
braces ({ }), 15, 83–84
BranchDemo program, 81–83
break statement, 94, 96–97, 114–117

breakpoint, setting, 258–259, 260
Bubble Sort, 246, 251–252
bugs, avoiding. See also debugger,

Code::Blocks; debugging
coding style, 418–419
comments, 419
copy constructor, providing, 422
exception mechanism, using, 421–422
heap memory, keeping track of, 420–421
limiting visibility, 420
overloaded assignment operator, 422
overview, 417
pointers, zeroing out, 421
single-stepping programs, 419–420
virtual destructors, 422
warnings and error messages, 417–418

Build Log, Code::Blocks IDE, 38
Build Messages tab, Code::Blocks IDE, 48
Build option, Code::Blocks IDE, 38
building programs, 21–22, 46–47, 149
build-time errors, 101, 104–105
bytes, 204

• C •
C++ programming language

additional features, overview of, 423
general discussion, 20
online extras, 6
organization of book, 3–5
overview, 1–2
recommendations, 3
Standard C++ Library, 149
syntax, importance of in, 49
upgrades to, 33

cache, 399
calculation speed, 170
calculator example, switch statement,

97–99
CalculatorError1 program, 151–155
CalculatorError2 program, 156–158
CalculatorError3 program, 159
calling functions

defined, 132
member functions, 281–282
with object pointer, 290–292
with object value, 289–290

case sensitivity, 46

431 Index

cases, switch statement, 94, 96
cast, 74, 169
catch keyword, 406, 408
catch phrases, 408, 409, 410
catching exceptions, 410
cerr object, 383
char variables, 173
character arrays

arrays of constant characters, 156,
193, 197

concatenating strings, 193–197
declaring and initializing, 190–191
example of, 191–193
fixed-buffer overwrite bug, 197–198
overview, 189–190
string manipulation functions, 198–201

characters. See also strings
alternative character sets, 77
constants, 69, 75–76
encoding, 70–75
overview, 69
special constants, 75–76
variables, 69
wide, 77, 173

cheat sheet, 6
cin >> string expression, 196
cin object, 382, 383
cin.get() command, 53
class members, 243, 320, 333. See also

protected members
classes. See also inheritance; member

functions; specific classes
activating objects, 277–278
arrays of objects, 244–246
base, 355
copy constructor, creating, 346–349
coupling, 300, 303–304
custom exception, creating, 410–414
declaring, 243
destructors, 316
example of, 246–250
exception, creating, 410–414
friend declaration, 304–306
general discussion, 242–243
grouping data, 241–242
interface, limiting, 300
limiting visibility, 420
loosely coupled, 300, 303–304

naming, 243
objects, 243–244
overview, 241, 277
properties, 243
self-contained, 276
subclass, 355
tightly coupled, 300

classification, 274
clean build, 105
clean compile, 51
clear() member function, 387
COBOL (Common Business-Oriented

Language), 19
Code::Blocks IDE. See also debugger,

Code::Blocks
active project, 43, 44
building program, 46–47
code, entering, 44–46
coding style in, 103
compilation process, 21–23
compiler settings, 31–33
default project, testing, 37–40
example errors, 47–50
filename extensions, 43–44
include files, creating, 146–147
Mac OS installation, 27–31
online material, using, 50
opening screen, 31, 32, 33
overview, 3, 6, 21
passing arguments to program from,

238–239
programs, types built by, 34
project, creating new, 41–42
project files, 34
projects, organizing, 43
range of numeric types in, 174
running program, 51
setting up, 31–33
source files, creating, 143–145
testing installation, 33–37
Ubuntu Linux installation, 26–27
versions of, 23
Windows installation, 23–26
workspace, 43

coding manual, 103
coding style, 102–103, 418–419
comma operator, 125–128
command line interpreter, 235–236

432 Beginning Programming with C++ For Dummies, 2nd Edition

command line, passing arguments to
program through, 236–238

Command Line Tools for Xcode, 28–29
CommaOperator program, 125–128
comments, 52, 107, 419
comparison operators, 80–83
compiler, 19, 21–23. See also gcc compiler
Compiler Settings window, Code::Blocks

IDE, 258
compile-time binding, 362–365
compile-time errors, 101, 104–105
compiling, 22, 142
complex numbers, 373
compound conditional expressions, 89–91
compound expressions, 63–65
CompoundStudent program, 337–340
computer addressing, 203–204. See also

pointers
computer languages. See C++ programming

language; programming languages
computer processors, 17
computers

human, programming, 11–17
versus humans, 9–11

ConcatenateError1 program, 255–257
ConcatenateError2 program, 264–265
ConcatenateHeap program, 216–219
ConcatenateNString program, 197–198
ConcatenatePtr program, 227–230
ConcatenateString program, 194–197
concatenating strings

heap memory, 214–219
overview, 193–197

console applications, 23, 34–35
const arguments, 178–179, 218
const char[] type (array of constant

characters), 156, 193, 197
const variables, 172, 175, 231–233
constant expression type, 96
constant values, 175
constants

character, 69, 75–76
data members flagged as, initializing, 340
declaring, 173
integer, 61
pointers, 231–233
types of, 175–176

constructors. See also copy constructor;
data member construction

with arguments, 321–325
CustomExceptionClass program, 413
default, 330–332
example of, 310–312, 322–325
ifstream class, 383
inheritance, 358–359
limitations on, 309–310
ofstream class, 385
overloading, 326–330
overview, 307–309, 321, 341
static members, 320
StringStream program, 404
virtual, 371

continue command, 114–117
control

falling through, 96–97, 99
functions, 132, 135
for loop, 122–123, 124
switch statement, 93–96
while loop, 113, 114

conventions used in book, 2
Conversion program

building process, 46–47
build-time errors, 104–105
code, entering, 44–46
example errors, 47–50
filename extensions, 43–44
how program works, 51–53
online material, using, 50
overview, 41
project, creating new, 41–42
projects, organizing, 43
running, 51
run-time errors, finding, 105–108

copies, of objects, 290
copy constructor

avoiding copies, 349–350
creating, 346–349
default, 342–343
example of, 344–346
exception classes, 414
overview, 341–342
providing to avoid bugs, 422

counting, with floating-point variables, 170
coupling, 300, 303–304

433 Index

cout object, 53, 382, 383
cout.width(2) expression, 119
cout.width(3) expression, 120
current directory, 383
current location indicator, Code::Blocks

debugger, 258–259
current object (this), 283–284, 297
custom exception class, creating, 410–414
CustomExceptionClass program,

410–413

• D •
data, grouping, 241–243
data member construction

with assignment format, 340
with default constructor, 332–334
with different constructor, 334–336
example of, 337–340
overview, 312–315

data members
defined, 278
destructors, 318–320
naming, 281
static, 320, 333

data structures, 4
Debian Linux, 26
debug functions, 151, 155–158
Debug toolbar, Code::Blocks, 259, 260
debugger, Code::Blocks

breakpoint, setting, 258–259, 260
example bug, 255–257
executable, including debug information

in, 257–258
fixing bugs, 264–268
Next Line command, 261–264
overview, 253–254
single-stepping, 261, 419–420
starting, 258
Step Into command, 259–261, 310
stopping, 264

debugging. See also bugs, avoiding;
debugger, Code::Blocks

character arrays, 197–198
errors, types of, 101–102
example program for, 151–153

finding errors, 104–105
functions for, 155–158
introducing errors, avoiding, 102–104
overview, 101, 151, 253–254
run-time error, finding, 105–108
unit level testing, 153–155, 159–161

dec format flag, 397
decimal constants, 61
decimal points, 168–169
decision-making capability. See also

switch statement
compound conditional expressions,

89–91
else statement, 84–86
if statement, 79–84
nested if statements, 86–89
overview, 79
short circuit evaluation, 91

declaration
arrays, 182–183
ASCIIZ character arrays, 190–191
character variables, 69
class, 243
forward, 305–306
function, 132
integer variables, 57–60
pointer, 204–206
prototype, 139–140, 145, 147

declared type, 365
decrement operator, 65–66
deep copy, 346–349, 376
DeepStudent program, 347–349
default arguments, 330
default assignment operator, 380
default case, switch statement, 94, 99
default constructor, 330–334
default copy constructor, 342–343
default program, Code::Blocks IDE

creating, 34–37
overview, 33–34
testing, 37–40

default workspace, Code::Blocks IDE, 43
definition

of functions, 132, 140
of member functions, 279–280

Delete character, 73

434 Beginning Programming with C++ For Dummies, 2nd Edition

delete keyword
default assignment operator,

deleting, 380
destructors, 324, 325
importance of, 296
overview, 215–216, 318
virtual destructors, 372

delete[] keyword, 216, 318, 325
demotion, variable, 169
destructors

assignment operator overloading, 379
data members, 318–320
deep copy, 349
default copy constructor, 343
example of, 316–318
ifstream class, 384
inheritance, 359–360
NamedStudent program, 325
ofstream class, 385
overview, 315, 322
static members, 320
virtual, 371–372, 422

directory, current, 383
disabling warnings, 418
DisplayASCIIZ program, 191–193
division operator, 63
double-precision floating point (double)

accuracy, 171–172
calculation speed, 170
common variable types, 173
counting, 170
decimal points, 168–169
limitations of, 169–172
memory consumption, 170–171
overview, 167
range, 172, 174
truncation problem, solving, 168

dynamic type, 365

• E •
early binding, 362–365
EarlyBinding program, 362–363
echoing input back to user, 98–99
editor, text, 21, 22
else statement, 84–86, 87
Enable All Compiler Warnings check box,

Code::Blocks IDE, 33

encoding
character strings, 75
characters, 70–75

End of Medium character, 72–73
endl object, 75, 399
ends object, 404
enumerated types, 425
equality operator (==), 80
equals sign. See assignment operator
error functions, 155–158
error messages, enabling, 417–418
error output, standard, 383
error return, 133
errors. See also bugs, avoiding; debugging;

exception mechanism
avoiding introduction of, 102–104
in Code::Blocks IDE, examples of, 47–50
finding, 104–105
run-time, finding, 105–108
types of, 101–102

exception mechanism
bugs, avoiding through use of, 421–422
custom exception class, creating,

410–414
example of, 406–408
handling, 409
overview, 405–406
processing of, 408–409
throwing, special considerations for,

409–410
executable program

including debug information in, 257–258
passing arguments to in Windows,

239–240
path to, 237, 238

execution, Conversion program, 51
expressions. See also logical expressions

binary operators, 62–63
bool, 85
cast, changing type of with, 169
compound, 63–65
compound conditional, 89–91
constant expression type, 96
defined, 15
mixed-mode, 169
overview, 57, 62
short circuit evaluation, 91
test, for loops, 121, 122, 124, 125

435 Index

extended name
functions, 138, 177, 367
member functions, 280

extensions, filename, 43–44
extractor, 382

• F •
Factorial program
for loop, 123–125
while loop, 112–114, 122

factorial.cpp file, 143–145
FactorialException program, 406–408
FactorialFunction program, 136–137,

139–140
factorial.h include file, 146–147
FactorialModule project

building, 149
factorial.cpp, creating, 143–145
include file, creating, 146–147
include file, overview, 145–146
main.cpp, editing, 148–149
overview, 142

fail() state, 387, 389–390, 404
falling through, 96–97, 99
file states, stream I/O, 387–391
FileCopy program, 393–396
filename extensions, 43–44
filenames, Code::Blocks IDE, 35
files

Code::Blocks IDE project, 34, 43
for input, opening, 383–384
intermediate translation, 146
open modes, 386
for output, opening, 385

fixed format flag, 397
fixed-buffer overwrite bug, 197–198
fixed-length arrays, 214, 249
flags() member function, 396–399
flat tire example, 11–17, 129–130, 131
float variables, 167, 173, 174
floating-point variables (floats)

accuracy, 171–172
calculation speed, 170
common variable types, 173
counting, 170
decimal points, 168–169
limitations of, 169–172

memory consumption, 170–171
overflow, 175
overview, 167
range, 172, 174
truncation problem, solving, 168

flow
controlling with switch statement,

93–96
functions, 132, 135
for loop, 122–123, 124
program, 14
while loop, 113, 114

flush() member function, 399
flushing cache, 399
folder, Code::Blocks IDE project, 35–36, 41
Folder Options, Windows, 44
fonts, 77
for loop

comma operator, 125–128
ConcatenateHeap program, 219
concatenating strings, 196
example program, 123–125
fixed-buffer overwrite bug, foiling, 198
functions, 134–135
overview, 121
pointer increment operator, 228–229
toupper() function, 201
versus while loop, 121–123, 128

ForFactorial program, 123–125
format flags, stream I/O, 396–399
forward declaration, 305–306
fractional values. See floating-point

variables
friend declaration, 304–306
fstream classes
endl object, 399
file states, 387–391
format, controlling, 396–399
ifstream, 383–384
member functions of, 391–399
ofstream, 385
open modes, 386
overview, 383
reading and writing streams directly,

393–396
full statement coverage, 106
function arguments, 135–138
function overloading, 138, 177–178

436 Beginning Programming with C++ For Dummies, 2nd Edition

FunctionDemo program, 133–135
functions. See also member functions;

modules; specific functions
access, 303
calling with object pointer, 290–292
calling with object value, 289–290
debug, 151, 155–158
debugging, example program for, 151–153
elements of, 132
example of, 131–132, 133–135
lambda, 428
multiple arguments, 137
overloading, 138, 177–178, 326
overview, 129–130, 141
passing arguments to, 135–138
passing different types to, 176–178
passing objects to, 289–296
prototype declaration, 139–140, 145, 147
returning value from, 132–133
reuse of, 130, 142
Standard C++ Library, 149
string manipulation, 198–201
unit level testing, 153–155, 159–161
variable scope, 150

• G •
garbage output, 102
gcc compiler

common errors with, 38
installing for Linux, 26
on Mac OS, 30–31
range of numeric types in, 174
setting up, 31–33
Windows installation, 24, 25

gcount() member function, 393
get() member function, 393
getline() function
ConcatenateString program, 196
overflow, avoiding, 391
overview, 393
StringStream program, 401, 404

getter functions (accessors), 303
Global Compiler Settings, Code::Blocks

IDE, 31–33
global objects, invoking destructor for, 315
global scope, variables, 150
GNU C++ compiler. See gcc compiler
Gold Star programs, 47

goto command, 424
greater than operator (>), 80
greater than or equal to operator (>=), 80
grouping data, 241–243
GSInherit program, 356–360

• H •
handling exceptions, 409
HAS_A relationship, inheritance, 360
heap memory

allocating objects off, 296
assignment operator overloading,

375–376
copy constructor, 343
deep copy, 346, 349
delete keyword, 215–216, 296
destructors, 315, 318
example of, 216–219
keeping track of, 420–421
new keyword, 214–215, 296
overview, 214
returning memory to, 215–216

HelloWorld Project
creating, 34–37
overview, 33–34
testing, 37–40

hex flag, 397–398
hexadecimal constants, 61, 76
Hide Extensions feature, Windows, 43–44
high-level languages, 19
human computer, programming

algorithm, creating, 11–12
computer processors, 17
constructing program, 13–17
language, setting, 12–13
overview, 11

humans, versus computers, 9–11

• I •
icons, explained, 5
IDEs (Integrated Development

Environments), 22–23. See also
Code::Blocks IDE

if statement
braces, 83–84
comparison operators, 80–83
else statement, 84–86

437 Index

example of, 14
nested, 86–89
overview, 79–80

ifstream class, 383–384, 386
include file

creating, 146–147
fstream classes, 391
iomanip, 400
iostream, 382
overview, 145–146
sstream, 401

Include File Wizard, Code::Blocks
IDE, 146

include statements, 52
increment, loop, 122
increment operator

overview, 65
pointer, 227–230
prefix and postfix versions, 65–67

increment variable, 121, 122, 124, 126
indentation, 103
indexing into arrays

general discussion, 183–184
pointer addition versus, 224–226, 230

inequality operator (!=), 80
inheritance. See also overriding member

functions
adaptability, 354–355
advantages of, 354–355
defined, 355
example of, 356–360
HAS_A relationship, 360
implementing, 355–356
multiple, 427
overview, 353, 361
reuse, 354
terminology related to, 355

init() function
constructors, 308, 310
overloading constructors, 329–330
SimpleStudent program, 303
StudentAssignment

program, 378
initialization value, specifying type of

variable from type of, 176
initializing. See also constructors

arrays, 187–188
ASCIIZ character arrays, 190–191
class objects, 244

objects with protected members,
307–312

variables, at declaration, 60–61
variables, forgetting, 60

inner loop, 17
input, echoing back to user, 98–99
input object, creating, 383–384. See also

stream input/output
InputPerson program, 246–250
inserter, 382
installation, Code::Blocks IDE

Mac OS, 27–31
testing, 33–37
Ubuntu Linux, 26–27
Windows, 23–26

Installation Complete window,
Code::Blocks, 25

int keyword, 58
int variable type. See integers
integer constants, 61
integers. See also arrays

arrays of pointers, 234–235
assignment operators, 67
calculation speed, 170
common variable types, 173
constants, 61
expressions, 62–65
limitations of, 165–167
operations on pointers, 231
overflow, 175
overview, 57
range of, 58, 166–167
size of, 172–175
standard size of, 174
truncation, 166
unary operators, 65–67
variable declaration, 57–61

Integrated Development Environments
(IDEs), 22–23. See also Code::Blocks IDE

interface, class, 300
intermediate translation file, 146
intrinsic variables, 165
iomanip include file, 400
iostream include file, 382
IS_A relationship, inheritance, 355, 356
isdigit() function, 199
islower() function, 199, 201
isprint() function, 199
isspace() function, 199

438 Beginning Programming with C++ For Dummies, 2nd Edition

istream class, 382
istringstream class, 401
isupper() function, 199
italics, use in book, 2

• K •
keywords, defined, 58. See also specific

keywords

• L •
lambda functions, 428
languages, programming. See C++

programming language; programming
languages

late binding, 365, 366–369, 370
LateBinding program, 367–369
layout file, Code::Blocks IDE, 43
left format flag, 397, 398
left-shift operator (operator<<()),

381, 382
less than operator (<), 80
less than or equal to operator (<=), 80
levels of abstraction, 131, 272, 273–274
limited range, integers, 166–167
limiting visibility, 420
line number, printing, 157–158
linking, 22, 141
Linux installation, Code::Blocks, 26–27
local objects, invoking destructor for, 315
local scope, variables, 150
logical expressions
bool, 85
comparison operators, 80–83
defined, 15
example, 14–15
if statement, 80

logical operators, 89–90, 91
long double variables, 173, 174
long int variables, 173, 174
long long int variables, 173, 174
looping

breaking out of middle of loop, 114–117
comma operator, 125–128
example of, 15–17
for loop, 121–125
nested loops, 117–120
overview, 111

parts of loops, 121–122
terminating, 114–117
while loop, 111–114

loosely coupled classes, 300, 303–304

• M •
Mac OS installation, Code::Blocks, 27–31
machine language, 18
main() function

arguments to, 233–234, 235
general discussion, 137–138
overview, 52

main.cpp file, FactorialModule project,
148–149

Management window, Code::Blocks IDE,
33, 37

manipulators, 399–400
manual, coding, 103
mathematical operators. See operators
member functions. See also overriding

member functions
accessing other members from within,

282–284
calling, 281–282
current object, 283–284
defined, 278
defining, 279–280
of fstream classes, 391–399
invoking with pointer, 288–289
manipulators, 399–400
naming, 280–281
operator overloading, 374
overloading, 285–286
overview, 278–279
pure virtual, 426
virtual, 368, 426
written outside class declaration, 284–285

member-by-member copy, 342–346, 374
members, class, 243, 320, 333. See also

protected members
memory. See also heap memory; pointers

cache, 399
computer addressing, 203–204
floating-point variables, 170–171
human versus computer, 10
stack, 207–208

methods, 279. See also member functions
middle of loop, breaking out of, 114–117

439 Index

MinGW Compiler Suite option,
Code::Blocks Setup Wizard, 24, 25

minus operator, 65
misspelled commands, 47–48
mixed-mode expression, 169
mixed-mode overloading, 177–178
mode values, 384, 385
modules

advantages of, 142
breaking program into, 142
building program, 149
defined, 141
include file, creating, 146–147
include file, overview, 145–146
main.cpp, editing, 148–149
overview, 141
second source file, creating, 143–145
Standard C++ Library, 149
variable scope, 150

modulo operator, 63
monofont typeface, explained, 2
multiple arguments, functions, 137
multiple inheritance, 427
multiplication operator, 63
mutators (setter functions), 303

• N •
NamedStudent program, 322–325
namespaces, 426
naming conventions, variable, 103–104
nested if statements, 86–89
nested loops, 17, 117–120
NestedBranchDemo program, 86–89
NestedLoops program, 117–120
new keyword, 214–215, 218, 296
newline character, 75, 76
newlines, 386–387, 399
Next Line command, Code::Blocks

debugger, 261–264, 265
NOT constructor. See destructors
NOT operator (!), 90, 396
null character, 190, 267–268
nullptr keyword, 216, 325, 421
numbers, complex, 373
numerical variable types. See also floating-

point variables; integers

const arguments, 178–179
constants, 175–176
overview, 165
passing different types to functions,

176–178
range of, 174–175
variable size, 172–175

• O •
object code, 18
object-oriented programming

classification, 274
general discussion, 273–274
overview, 4, 271–272
versus procedural programming, 275
self-contained classes, 276

objects. See also copy constructor
activating, 277–278
address of, passing, 290–296, 349–350
allocating off heap, 296
arrays of, 244–246
calling function with value, 289–290
constructor, associating arguments

to, 322
constructors, general discussion, 307–312
destructors, 315–320
fstream, state of, 387–388
general discussion, 243–244
passing to functions, 289–296
pointers to, 287–289

oct format flag, 397
octal constants, 61, 75–76
offsets, pointer, 222, 223–224
ofstream class, 385, 386
online material, 6, 50
open modes, stream I/O, 386
openmode type, 384
operations on pointers, 222–224, 231
operator overloading

assignment operator, example of, 376–379
assignment operator, importance of,

374–376
assignment operator, to avoid bugs, 422
general discussion, 374
overview, 373
writing, 379–380

440 Beginning Programming with C++ For Dummies, 2nd Edition

operators. See also specific operators
assignment, 67
binary, 62–63, 80
comma, 125–128
comparison, 80–83
in compound expressions, 63–65
defined, 62, 373
logical, 89–90, 91
ternary, 424–425
unary, 62, 65–67

OR operator (||), 90, 386
organization, Code::Blocks IDE project, 43
ostream class, 382, 383
ostringstream class, 401
outer loop, 17
output, garbage, 102
output object, creating, 385. See also

stream input/output
output statements, 107, 155, 253–254
overflow, 174–175, 391
OverloadedStudent program, 326–330
overloading. See also operator overloading

constructors, 326–330
functions, 138, 177–178, 326
member functions, 285–286

override keyword, 369–371
overriding member functions

ambiguous case, 364–365
early binding, 362–363
late binding, 366–369
override keyword, 369–371
overview, 361–362
virtual considerations, 371–372

• P •
parallel arrays, 241–242
parentheses, 64, 225, 288
parity memory, 10
PassByReference program

complete program, 211–213
passing arguments by reference, 209–211
passing arguments by value, 206–209

PassByReference2 program, 213
PL/1 language, 49
pointers

addition, versus indexing into arrays,
224–226, 230

versus arrays, 233
arrays of, 234–235
arrow operator, 288
calling function with object pointer,

290–292
calling function with object value,

289–290
calling member functions, 288–289
computer addressing, 203–204
const variables, 231–233
debugging, 254
declaring, 204–206
defined, 203
delete keyword, 215–216
heap memory, 214–219, 296
increment operator, 227–230
new keyword, 214–215
to objects, 287–289
operations on, 222–224, 231
overview, 201, 203, 221, 287
passing address of object, 290–296
passing arguments by reference,

209–211
passing arguments by value, 206–209
passing arguments, example of, 211–213
passing object by value, 289–290,

292–296
passing objects to functions, 289–296
reference argument types, 213–214
throwing exceptions, 409
virtual destructors, 372
zeroing out, 421

polymorphism, 367
postfix version, increment and decrement

operators, 65–67
pound sign (#), 145–146
precedence

in compound expressions, 64
mathematical operators in order of, 62
pointer addition, 225
pointers to objects, 288

prefix version, increment and decrement
operators, 65–67

preprocessor commands, 145–146, 155–156
PrintArgs program

overview, 236
passing arguments from Code::Blocks,

238–239

441 Index

passing arguments through command
line, 236–238

passing arguments through Windows,
239–240

private members, 300
procedural programming, 4, 250,

273, 275
processors, computer, 17
Produce Debugging Symbols [-g] check

box, Compiler Settings window, 258
Product program, 114–117
program flow, 14. See also flow
programming. See also Code::Blocks IDE

with C++, 1–2
general discussion, 2–3
human computer, 11–17
online material, 6
organization of book, 3–5
overview, 1
recommendations, 3

programming languages. See also C++
programming language

assembly language, 18–19
high-level, 19
for human computer programming

example, 12–13
machine language, 18
overview, 17–18
PL/1, 49
weakly typed versus strongly typed, 165

programs. See also specific programs
Gold Star, 47
overview, 9

projects, Code::Blocks IDE. See also
Conversion program

creating new, 41–42
files for, 34, 43
organizing, 43
overview, 33–34

promotion, variable, 169
properties, class, 243
protected inheritance, 356
protected members

advantages of, 303–304
constructors, 307–312
friend declaration, 304–306
need for, 300

overview, 299–300
protecting, 301–303

prototype declaration, 139–140, 145, 147
psz prefix, 226
public keyword, 243, 299, 310, 355–356
pure virtual member function, 426
put() member function, 393

• Q •
quotes (" "), 149

• R •
range

floating-point variables, 172
integer, 58, 166–167
numerical variable types, 174–175

read() member function, 393–396
reading, open modes for, 386
ReadIntegers program, 388–391
real numbers. See floating-point variables
Red Hat Linux, 26
reference, passing arguments by,

209–211, 295
reference argument types, 213–214,

342, 350
Release configuration, executable

program, 257
Remember icon, explained, 5
rethrowing exceptions, 410
return statement, 132, 409
return values, 405
returning memory to heap,

215–216
returning value from function,

132–133
reuse

of functions, 130, 142
inheritance as related to, 354

right format flag, 397, 398
right-shift operator (operator>>()),

381, 382
round-off

floating-point variables, 171–172
integer, 166

Run option, Code::Blocks IDE, 39

442 Beginning Programming with C++ For Dummies, 2nd Edition

run-time errors
defined, 102
executing test cases, 106–107
formulating test data, 106
internals of program, viewing, 107–108
overview, 49, 105

run-time type, 365, 367, 369

• S •
scientific format flag, 397
scope, variable, 150
self-contained classes, 276
semicolons, missing, 49–50
Set Projects’ Arguments option,

Code::Blocks IDE, 238
setf() member function, 396–399
setter functions (mutators), 303
setup, loop, 121
setup clause, for loop, 122, 125, 126
Setup Wizard, Code::Blocks, 24–26
“Seven Plus or Minus Two” Rule, 130
shallow copy, 342–346, 374
ShallowStudent program, 344–346
short circuit evaluation, 91
short int variables, 172, 173, 174
showbase format flag, 397
showpoint format flag, 397
signature, functions, 138
SimpleStudent program, 301–303
single newline, 386–387
single quotes, 75, 76
single-stepping, debugger, 261, 419–420
size descriptors, variables, 172–173
skipws format flag, 397
Smalltalk, 279
Software Center, Ubuntu, 27
sorting algorithms, 251–252
source argument, when concatenating

strings, 196
source code, 6, 18
Source Code Formatter plug-in,

Code::Blocks, 103
Source File Wizard, Code::Blocks, 143
source files, 44, 141, 143–145
Sources drop-down list, Code::Blocks,

37, 44

spaces, in Code::Blocks IDE filenames, 35
special assignment operators, 67
sstream include file, 401
stack memory, 207–208
stack unwinding, 408–409
Standard C++ Library, 149
Standard Template Library (STL), 296,

427–428
statements. See also specific statements

defined, 15
testing, 106

static data members, 320, 333
static type, 365
static variables, 150
std namespace, 426
Step Into command, Code::Blocks

debugger, 259–261, 310
Stop Debugger option, Code::

Blocks IDE, 264
strcmp() function, 199
stream input/output (stream I/O)

binary mode, 386–387
endl object, 399
file states, 387–391
format, controlling, 396–399
input object, creating, 383–384
manipulators, 399–400
member functions of fstream classes,

overview of, 391–393
open modes, 386
output object, creating, 385
overflow capability, 391
overview, 381–383
reading and writing streams directly,

393–396
stringstream classes, 400–404

string class, 391, 401, 426–427
string manipulation functions, 198–201
strings

ASCIIZ, 226, 404
ASCIIZ character arrays, 191–193
concatenating, 193–197
encoding, 75
heap memory, 214–219

stringstream classes, 400–404
StringStream program, 401–404
strlen() function, 199, 215, 218

443 Index

strncat() function, 199
strncpy() function, 199, 215
strongly typed language, 165
struct keyword, 243
StudentAssignment program, 376–379
StudentConstructor program, 310–312
StudentDestructor program, 316–318
style, coding, 102–103, 418–419
subclass, 355
subfolders, Code::Blocks project, 35–36
sumSequence() function, 133–135
switch statement

calculator example, 97–99
controlling flow with, 93–96
falling through, 96–97
overview, 93

SwitchCalculator program
function version, 151–153
overview, 97–99
unit level testing, 153–155, 159–161

symbolically oriented high-level
language, 20

symbols, for debug functions, 156
syntax, 13–14, 46, 49

• T •
target argument, when concatenating

strings, 196
Technical Stuff icon, explained, 5
templates, 51–53, 427–428
terminating loops, 114–117
terminating null, 267–268
ternary operator, 424–425
test expression, loops, 121, 122, 124, 125
test functions, 155–158
testing, unit

executing test cases, 106–107
formulating test data, 106
functions, 153–155, 159–161
internals of program, viewing, 107–108
overview, 101–102, 105

testing installation, Code::Blocks IDE, 33–37
text editor, 21, 22
text mode, 386–387
third-party applications, installing on

Mac OS, 30

this (current object), 283–284, 297
throw keyword, 406, 407
throwing exceptions, 409–410
tightly coupled classes, 300
tilde (~), in destructors, 315
Tip icon, explained, 5
tire change example, 11–17,

129–130, 131
Toggle Breakpoint option, Code::Blocks

IDE, 258
tolower() function, 199, 201
Tool Tips, Debug toolbar, 260
toupper() function, 199, 200–201
translation units. See modules
truncation

floating-point variables, 168
integer, 166

try block, 407, 408–409
try keyword, 406, 407
TutorPairConstructor program,

313–315
TutorPairDestructor program,

319–320

• U •
Ubuntu Linux installation, Code::Blocks

IDE, 26–27
unary operators, 62, 65–67
Unicode, 77, 173
unit testing

executing test cases, 106–107
formulating test data, 106
functions, 153–155, 159–161
internals of program, viewing, 107–108
overview, 101–102, 105

unitbuf format flag, 397
unprintable characters, 72–73, 76
unsetf() member function, 396–399
unsigned int variables, 172, 173
unsigned variables, 173
unwinding stack, 408–409
updates, book, 6
uppercase format flag, 397
user, echoing input back to, 98–99
user-defined exception classes,

410–414

444 Beginning Programming with C++ For Dummies, 2nd Edition

• V •
value

assigning to variables, 59–60
calling function with object,

289–290
constant, 175
passing arguments by, 206–209, 342
returning from function, 132–133

variable-length arrays, 249
variables. See also arrays; integers;

numerical variable types; pointers
assigning value to, 59–60
character, 69
common types of, 173
declaration, 57–61
defined, 53
forgetting to initialize, 60
global scope, 150
initializing at declaration, 60–61
intrinsic, 165
local scope, 150
mixed-mode expression, 169
naming, 58–59, 103–104
overview, 57
passing different types to functions,

176–178
referential types, 213–214
scope of, 150
size of, 172–175
static, 150

virtual constructors, 371
virtual destructors, 371–372, 422
virtual keyword, 367, 368
virtual member function, 368, 426
visibility, limiting, 420
Visual Studio, 23
void keyword, 133

• W •
Warning! icon, explained, 5
warnings

enabling, 417–418
gcc compiler, 33, 105

Watches window, Code::Blocks IDE, 261
wchar_t variables, 173
weakly typed languages, 165
while loop

in Code::Blocks debugger, 262–263
general discussion, 111–114
versus for loop, 121–123, 128
parts of, 121–122

whitespace, 46, 84
wide character sets, 77, 173
width(int) member function, 398, 399
width(n) member function, 399
wild-card catch phrase, 408
Windows

Code::Blocks IDE installation, 23–26
Hide Extensions feature, disabling, 43–44
passing arguments through, 239–240
passing arguments through command

line, 237
windows, Code::Blocks IDE, 34
workspace, Code::Blocks IDE, 43
write() member function, 393–396
writing, open modes for, 386

• X •
Xcode, installing, 27–28

• Z •
zeroing out pointers, 421

About the Author
Stephen R. Davis, CISSP (who goes by the name “Randy”) lives with his wife
and two dogs in Corpus Christi, Texas. Randy has three kids and three grand-
kids with more on the way (grandkids, not kids). Randy develops browser
based applications for Agency Consulting Group.

Dedication
To Janet, the love of my life.

Author’s Acknowledgments
I find it very strange that only a single name appears on the cover of any book,
but especially a book like this. In reality, many people contribute to the creation
of a For Dummies book. From the beginning, acquisition editor Constance
Santisteban, project editor Pat O’Brien, my technical reviewer Danny Kalev and
my agent, Claudette Moore, were involved in guiding and molding the book’s
content. During the development of this book, I found myself hip-deep in edits,
corrections, and suggestions from a group of project editors, copyeditors, and
technical reviewers — this book would have been a poorer work but for their
involvement. Nevertheless, one name does appear on the cover and that name
must take responsibility for any inaccuracies in the text.

Finally, a summary of the animal activity around my house. For those of you
who have not read any of my other books, I should warn you that this has
become a regular feature of my For Dummies books.

I moved to the “big city” of Rockwall (near Dallas) in 2005, which meant
giving away our dogs Chester and Sadie. I tried to keep our two Great Danes,
Monty and Bonnie, but they were just too much for the backyard. We were
forced to give them away as well. I married my high school sweetheart in
2011 and moved from Dallas back to my home town of Corpus Christi which
meant adopting a new pair of dogs (more like, they adopted me). Jack is
a stubborn, black dog of an unidentifiable breed. Jack used to be the best
Frisbee catching dog that I had ever seen but age and stubbornness have put
a stop to all that work. Scruffy is said to be a wire haired dachshund but you
couldn’t tell by his appearance as he stays shaved most of the time. Scruffy
is recovering from heart worms but we caught them very early in a random
blood screening so his prognosis is very good.

If you are having problems getting started, I maintain a FAQ of common prob-
lems at www.stephendavis.com. You can e-mail me questions from there if
you don’t see your problem. I can’t write your program (you don’t know how
often I get asked to do people’s homework assignments), but I try to answer
most questions.

http://www.stephendavis.com

Publisher’s Acknowledgments

Project Editor: Pat O’Brien

Copy Editor: Barry Childs-Helton

Technical Editor: Danny Kalev

Editorial Assistant: Claire Johnson

Sr. Editorial Assistant: Cherie Case

Project Coordinator: Sheree Montgomery

Cover Image: ©iStock.com/Adriana3d

http://iStock.com/Adriana3d

http://www.facebook.com/fordummies
http://www.twitter.com/fordummies

WILEY END USER LICENSE AGREEMENT
Go to www.wiley.com/go/eula to access Wiley’s ebook EULA.

http://www.wiley.com/go/eula

	Title Page
	Copyright Page
	Table of Contents
	Introduction
	About This Book
	Foolish Assumptions
	How This Book Is Organized
	Part I: Getting Started with C++ Programming
	Part II: Writing a Program: Decisions, Decisions
	Part III: Becoming a Procedural Programmer
	Part IV: Data Structures
	Part V: Object-Oriented Programming
	Part VI: Advanced Strokes
	Part VII: The Part of Tens

	Icons Used in This Book
	Beyond the Book
	Where to Go from Here

	Part I: Getting Started with C++ Programming
	Chapter 1: What Is a Program?
	How Does My Son Differ from a Computer?
	Programming a “Human Computer”
	Creating the algorithm
	Setting the tire-changing language
	Constructing the program
	Computer processors

	Computer Languages
	High-level languages
	The C++ language

	Chapter 2: Installing Code::Blocks
	Reviewing the Compilation Process
	Installing Code::Blocks
	Windows installation
	Ubuntu Linux installation
	Mac OS installation
	Setting up Code::Blocks

	Testing the Code::Blocks Installation
	Creating the project
	Testing your default project

	Chapter 3: Writing Your First Program
	Creating a New Project
	Filename extensions

	Entering Your Program
	Building the Program
	Finding What Could Go Wrong
	Misspelled commands
	Missing semicolon

	Using the Online Material
	Running the Program
	How the Program Works
	The template
	The Conversion program

	Part II: Writing a Program: Decisions, Decisions
	Chapter 4: Integer Expressions
	Declaring Variables
	Variable names
	Assigning a value to a variable
	Initializing a variable at declaration

	Integer Constants
	Expressions
	Binary operators
	Unraveling compound expressions

	Unary Operators
	The Special Assignment Operators

	Chapter 5: Character Expressions
	Defining Character Variables
	Encoding characters
	Example of character encoding

	Encoding Strings of Characters
	Special Character Constants

	Chapter 6: if I Could Make My Own Decisions
	The if Statement
	Comparison operators
	Say “No” to “No braces”

	What Else Is There?
	Nesting if Statements
	Compound Conditional Expressions

	Chapter 7: Switching Paths
	Controlling Flow with the switch Statement
	Control Fell Through: Did I break It?
	Implementing an Example Calculator with the switch Statement

	Chapter 8: Debugging Your Programs, Part I
	Identifying Types of Errors
	Avoiding Introducing Errors
	Coding with style
	Establishing variable naming conventions

	Finding the First Error with a Little Help
	Finding the Run-Time Error
	Formulating test data
	Executing the test cases
	Seeing what’s going on in your program

	Part III: Becoming a Procedural Programmer
	Chapter 9: while Running in Circles
	Creating a while Loop
	Breaking out of the Middle of a Loop
	Nested Loops

	Chapter 10: Looping for the Fun of It
	The for Parts of Every Loop
	Looking at an Example
	Getting More Done with the Comma Operator

	Chapter 11: Functions, I Declare!
	Breaking Your Problem Down into Functions
	Understanding How Functions Are Useful
	Writing and Using a Function
	Returning things
	Reviewing an example

	Passing Arguments to Functions
	Function with arguments
	Functions with multiple arguments
	Exposing main()

	Defining Function Prototype Declarations

	Chapter 12: Dividing Programs into Modules
	Breaking Programs Apart
	Breaking Up Isn’t That Hard to Do
	Creating Factorial.cpp
	Creating an #include file
	Including #include files
	Creating main.cpp
	Building the result

	Using the Standard C++ Library
	Variable Scope

	Chapter 13: Debugging Your Programs, Part 2
	Debugging a Dys-Functional Program
	Performing unit level testing
	Outfitting a function for testing
	Returning to unit test

	Part IV: Data Structures
	Chapter 14: Other Numerical Variable Types
	The Limitations of Integers in C++
	Integer round-off
	Limited range

	A Type That “doubles” as a Real Number
	Solving the truncation problem
	When an integer is not an integer
	Discovering the limits of double

	Variable Size — the “long” and “short” of It
	How far do numbers range?

	Types of Constants
	Passing Different Types to Functions
	Overloading function names
	Mixed-mode overloading

	Chapter 15: Arrays
	What Is an Array?
	Declaring an Array
	Indexing into an Array
	Looking at an Example
	Initializing an Array

	Chapter 16: Arrays with Character
	The ASCII-Zero Character Array
	Declaring and Initializing an ASCIIZ Array
	Looking at an Example
	Looking at a More Detailed Example
	Foiling hackers
	Do I Really Have to Do All That Work?

	Chapter 17: Pointing the Way to C++ Pointers
	What’s a Pointer?
	Declaring a Pointer
	Passing Arguments to a Function
	Passing arguments by value
	Passing arguments by reference
	Putting it together
	Reference argument types

	Playing with Heaps of Memory
	Do you really need a new keyword?
	Don’t forget to clean up after yourself
	Looking at an example

	Chapter 18: Taking a Second Look at C++ Pointers
	Pointers and Arrays
	Operations on pointers
	Pointer addition versus indexing into an array
	Using the pointer increment operator
	Why bother with array pointers?

	Operations on Different Pointer Types
	Constant Nags
	Differences Between Pointers and Arrays
	My main() Arguments
	Arrays of pointers
	Arrays of arguments

	Chapter 19: Programming with Class
	Grouping Data
	The Class
	The Object
	Arrays of Objects
	Looking at an Example

	Chapter 20: Debugging Your Programs, Part 3
	A New Approach to Debugging
	The solution

	Entomology for Dummies
	Starting the debugger
	Fixing the (first) bug
	Finding and fixing the second bug

	Part V: Object-Oriented Programming
	Chapter 21: What Is Object-Oriented Programming?
	Abstraction and Microwave Ovens
	Procedural nachos
	Object-oriented nachos

	Classification and Microwave Ovens
	Why Build Objects This Way?
	Self-Contained Classes

	Chapter 22: Structured Play: Making Classes Do Things
	Activating Our Objects
	Creating a Member Function
	Defining a member function
	Naming class members
	Calling a member function
	Accessing other members from within a member function

	Keeping a Member Function after Class
	Overloading Member Functions

	Chapter 23: Pointers to Objects
	Pointers to Objects
	Arrow syntax
	Calling all member functions

	Passing Objects to Functions
	Calling a function with an object value
	Calling a function with an object pointer
	Looking at an example

	Allocating Objects off the Heap

	Chapter 24: Do Not Disturb: Protected Members
	Protecting Members
	Why you need protected members
	Making members protected
	So what?

	Who Needs Friends, Anyway?

	Chapter 25: Getting Objects Off to a Good Start
	The Constructor
	Limitations on constructors
	Can I see an example?
	Constructing data members

	Destructors
	Looking at an example
	Destructing data members

	Chapter 26: Making Constructive Arguments
	Constructors with Arguments
	Looking at an example

	Overloading the Constructor
	The Default default Constructor
	Constructing Data Members
	Initializing data members with the default constructor
	Initializing data members with a different constructor
	Looking at an example
	New with C++ 2011

	Chapter 27: Coping with the Copy Constructor
	Copying an Object
	The default copy constructor
	Looking at an example

	Creating a Copy Constructor
	Avoiding Copies

	Part VI: Advanced Strokes
	Chapter 28: Inheriting a Class
	Advantages of Inheritance
	Learning the lingo

	Implementing Inheritance in C++
	Looking at an example

	Having a HAS_A Relationship

	Chapter 29: Are Virtual Functions for Real?
	Overriding Member Functions
	Early binding
	Ambiguous case
	Enter late binding

	When Is Virtual Not?
	Virtual Considerations

	Chapter 30: Overloading Assignment Operators
	Overloading an Operator
	Overloading the Assignment Operator Is Critical
	Looking at an Example
	Writing Your Own (or Not)

	Chapter 31: Performing Streaming I/O
	How Stream I/O Works
	Stream Input/Output
	Creating an input object
	Creating an output object
	Open modes
	What is binary mode?
	Hey, file, what state are you in?

	Other Member Functions of the fstream Classes
	Reading and writing streams directly
	Controlling format
	What’s up with endl?

	Manipulating Manipulators
	Using the stringstream Classes

	Chapter 32: I Take Exception!
	The Exception Mechanism
	Examining the exception mechanism in detail
	Special considerations for throwing

	Creating a Custom Exception Class
	Restrictions on exception classes

	Part VII: The Part of Tens
	Chapter 33: Ten Ways to Avoid Bugs
	Enable All Warnings and Error Messages
	Adopt a Clear and Consistent Coding Style
	Comment the Code While You Write It
	Single-Step Every Path in the Debugger at Least Once
	Limit the Visibility
	Keep Track of Heap Memory
	Zero Out Pointers after Deleting What They Point To
	Use Exceptions to Handle Errors
	Declare Destructors Virtual
	Provide a Copy Constructor and Overloaded Assignment Operator

	Chapter 34: Ten Features Not Covered in This Book
	The goto Command
	The Ternary Operator
	Binary Logic
	Enumerated Types
	Namespaces
	Pure Virtual Functions
	The string Class
	Multiple Inheritance
	Templates and the Standard Template Library
	Lambda Functions

	Index
	About the Author
	Wiley End User License Agreement

Beginiog
Programmingwih G

